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ABSTRACT 
 
 
 

HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OBTAINING 
PARETO FRONT OF DISCRETE TIME-COST TRADE-OFF PROBLEM 

 
Aminbakhsh, Saman 

M.S., Department of Civil Engineering 
Supervisor: Assoc. Prof. Dr. Rıfat Sönmez 

 
January 2013, 92 Pages 

 
In pursuance of decreasing costs, both the client and the contractor would 
strive to speed up the construction project. However, accelerating the project 
schedule will impose additional cost and might be profitable up to a certain 
limit. Paramount for construction management, analyses of this trade-off 
between duration and cost is hailed as the time-cost trade-off (TCT) 
optimization. Inadequacies of existing commercial software packages for such 
analyses tied with eminence of discretization, motivated development of 
different paradigms of particle swarm optimizers (PSO) for three extensions of 
discrete TCT problems (DTCTPs). A sole-PSO algorithm for concomitant 
minimization of time and cost is proposed which involves minimal adjustments 
to shift focus to the completion deadline problem. A hybrid model is also 
developed to unravel the time-cost curve extension of DCTCPs. Engaging 
novel principles for evaluation of cost-slopes, and pbest/gbest positions, the 
hybrid SAM-PSO model combines complementary strengths of overhauled 
versions of the Siemens Approximation Method (SAM) and the PSO algorithm. 
Effectiveness and efficiency of the proposed algorithms are validated 
employing instances derived from the literature. 
 
Throughout computational experiments, mixed integer programming 
technique is implemented to introduce the optimal non-dominated fronts of 
two specific benchmark problems for the very first time in the literature. 
Another chief contribution of this thesis can be depicted as potency of SAM-
PSO model in locating the entire Pareto fronts of the practiced instances, 
within acceptable time-frames with reasonable deviations from the optima. 
Possible further improvements and applications of SAM-PSO model are 
suggested in the conclusion. 
 
Keywords: Discrete Time-Cost Trade-Off Problem, Time-Cost Curve Problem, 
Pareto Front, Particle Swarm Optimization, Hybrid Algorithm 
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ÖZ 
 
 
 

KESİKLİ ZAMAN-MALİYET ÖDÜNLEŞİM PROBLEMLERİNDE PARETO EĞRİSİNİN 
MELEZ KUŞ SÜRÜSÜ OPTİMİZASYON ALGORİTMASI İLE OLUŞTURULMASI 

 
Aminbakhsh, Saman 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 
Tez Yöneticisi: Doç. Dr. Rıfat Sönmez 

 
Ocak 2013, 92 Sayfa 

 
İnşaat projelerinin süresinin kısaltılması maliyetleri düşürebileceğinden hem 
işveren hem de müteahhit açısından önemlidir. Ancak, projelerin 
hızlandırılması ek maliyetlere neden olmakta ve sadece belirli bir sınıra kadar 
toplam maliyetleri düşürebilmektedir. İnşaat yönetiminde büyük önem 
taşımakta olan, süre ve maliyet arasındaki bu ödünleşimin analizi, zaman-
maliyet ödünleşim (TCT) optimizasyonu olarak adlandırılmaktadır. Mevcut 
ticari yazılımlar ve literatürde önerilen yöntemler kesikli zaman-maliyet 
ödünleşim probleminin (DTCTP) çözümü için son derece sınırlı çözümler 
üretebilmektedir. Bu doğrultuda, bu tezde DTCTP’nin üç farklı türü için, 
değişik kuş sürüsü algoritmaları (PSO) geliştirilmiştir. Önerilen yalın-PSO 
algoritması zaman ve maliyetin birlikte minimize edilmesini mümkün kılmakta 
ve küçük değişiklerle, zaman sınırlı problem için de sonuç elde edilmesini 
sağlamaktadır. Bir diğer model ise, DTCTP’nin zaman-maliyet ödünleşim 
eğrisinin elde edilmesi için geliştirilmiştir. Bu model doğrultusunda oluşturulan 
melez algoritmada maliyet eğrileri ve pbest/gbest pozisyonlarının 
değerlendirilmesi için yeni yöntemler önerilmiş ve aynı zamanda Siemens 
Yaklaşım Metodu (SAM) ve PSO algoritmasının güçlü özellikleri entegre 
edilmiştir. Önerilen algoritmaların etkinliği ve performansı literatürden alınmış 
örneklerle gösterilmiştir. 
 
Sayısal deneyler esnasında, karışık tamsayı programlama tekniği vasıtasıyla, 
iki denektaşı probleminin optimal tam Pareto eğrileri literatürde ilk kez 
belirlenmiştir. Bu çalışmanın bir diğer önemli katkısıysa, geliştirilen SAM-PSO 
algoritmasının örnek problemlerin tam Pareto eğrisini kısa bir süre içerisinde 
optimum eğrilerden makul bir sapma ile elde edilebilmesidir. SAM-PSO'nun 
kullanılabileceği diğer alternatif uygulamalar ve geliştirilebileceği potansiyel 
alanlar sonuç kısmında önerilmiştir. 
 
Anahtar Kelimeler: Kesitli Zaman-Maliyet Ödünleşim Problemi, Zaman-Maliyet 
Eğrisi Problemi, Pareto Eğrisi, Kuş Sürüsü Algoritması, Melez Algoritması 
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CHAPTER 1  
 
 

INTRODUCTION 
 
 
 

Due to ever evolving competition among construction firms, besides, owing to 
the intrinsic challenges associated with the construction projects, the 
prerequisite for a company to survive is to perform profound appraisals in 
preparation of the project schedules. Opposed to other industries, transient 
nature of the construction projects impose heavy burden to decision makers 
regarding unequivocal optimal devotions of time, cost, and resources. 
Conflicting aspects of planning coupled with other impartible components of 
prosperous project plans further narrow the field for the project management 
teams; such aspects involve provisions of safety and productivity upkeeps in 
the interim of the planning phase. Accordingly, uniting multidisciplinary 
collaborations, construction companies seek to develop realistic schedules 
with systematic updating techniques. Evidently, any company would fail to 
meet the anticipated resolutions in the absence of a decent schedule. 
 
Classical network analyses like critical path method (CPM), in essence, merely 
incorporate the time aspect. Such methods attempt to minimize the project 
duration regardless of the availability of resources (both money and physical 
resources). Even suchlike analyses necessitate a number of assumptions in 
coping with constriction endeavors. Logical relationships, lag times, working 
calendars, resource requirements, and contingency plans are some of the 
many essential concerns amidst preparation of a schedule. An inadequate 
schedule might induce misery for a company, grounding for financial losses, 
dissatisfied customers, disputes, bad reputation, and so forth. 
 
Almost every construction project involves a completion deadline determined 
in the contract by the client. This date is generally obtained by means of the 
network analyses. For such limitations, resource overloads are usually 
provisioned by recruiting subcontractors or directing alternative resource 
supplies. In addition, it is common for construction projects to seek meeting 
shorter than prescribed deadlines, in pursuance of making more profits. Any 
reduction in project duration is facilitated by compression or acceleration of 
the schedule. Decision makers speed up the project forcing least additional 
costs by deploying the slack times of the networks along determining the best 
combination of alternatives for realization of the activities. This task is 
facilitated by providing the best balance between the direct and indirect costs 
of a project, since, exposed to schedule accelerations, they exhibit inverse 
oscillations. 
 
This trade-off between time and cost of projects are dubbed as time-cost 
trade-off problem (TCTP), which is one of the most prominent aspects of the 
project management. For the first time, considerations of TCT problem have 
emerged almost half a century ago in 1960s. Ever since, it has caught 
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attention of numerous researchers and as a result, several studies have been 
devoted to address this problem in the literature. The discrete version of this 
problem considers discrete sets of time-cost options for the activities. Such a 
concern is imperative to TCT practices as they are commonplace in real-life 
projects; besides, time-cost function of any type can be estimated by discrete 
functions. 
 
A real-life construction project almost always involves hundreds or even 
thousands of multi-modal activities. Projects of such kind are classified as 
Non-Polynomial hard (NP-hard) problems that require concurrent searches 
over the solution space, owing to the reason that any escalation in the size of 
the project significantly augments the required time to determine the optimal 
combination of options. Due to this inherent complexity, discrete TCT 
problems are unraveled merely for small instances. 
 
In the literature, the discrete TCT problem has been studied under three 
classes of deadline, budget, and time-cost curve problems. Deadline problem 
minimizes the total cost taking into account an upper boundary for the 
duration of the project. Whilst, the budget constraint minimizes the duration 
of the project without exceeding an upper boundary set for the budget. It is 
traced to find the solutions with minimum amounts of cost or duration while 
satisfying any of these constraints. The latter state of the discrete TCT 
problem maps optimal total costs to any feasible completion time to generate 
a set of so-called non-dominated solutions. It is extensively acknowledged in 
the literature (e.g. Zheng et al. 2005, Yang 2007a, Eshtehardian et al.2008) 
that the ultimate resolution of TCT analyses is to generate all the non-
dominated solutions, hailed as the Pareto front, for all the practical 
realizations of project duration. 
 
Although implementation of the scheduling principles appears to be 
straightforward, the commercial scheduling software packages virtually 
provide inadequate strategies for TCT analyses, signalizing presence of a gap 
between the theoretical attainments and the practical exertions. On the other 
hand, exhaustive enumerations fall short of delivering an efficient and 
convenient mean for discrete TCT analyses. Existence of such gap coupled 
with inefficiencies of the existing procedures, have initiated development of 
several algorithms and heuristics addressing the optimal or near-optimal 
solution for this problem. The researchers, benefitting from the ever evolving 
computer science technologies have established numerous optimization 
methods, mainly involving exact methods (such as linear programming, 
dynamic programming, branch-and-bound methods), heuristic, and meta-
heuristic algorithms (such as genetic algorithms (GAs), particle swam 
optimization method (PSO), and so forth). Though, none of the proposed 
methods are without deficiencies. The proposed exact algorithms, while 
necessitating massive computational resources, are incapable of solving large 
problems. They are more difficult to implement and are prone to being 
stagnated in local optima in non-convex solution spaces (De et al. 1995, Feng 
et al. 1997, Eshtehardian et al. 2008, Afshar et al. 2009). The studies 
providing heuristic algorithms acknowledge that they are problem dependent 
and cannot handle large-scale problems efficiently (Siemens 1971). Most of 
the heuristics assume merely linear time-cost functions and they fail to solve 
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time-cost curve problems (Feng et al. 1997, Zheng et al. 2005). Besides, 
main deficiency of the existing meta-heuristic algorithms is observed as their 
inability to escape from local optima (Zheng et al. 2005, Sonmez and 
Bettemir 2012). 
 
In fact, exact procedures are the only methods guaranteeing optimality of the 
solutions; nevertheless, heuristics and meta-heuristics are incapable of 
securing the optimality of the solutions. Compared to exact procedures, 
heuristics and meta-heuristics demand insignificant computational efforts to 
determine optimal or near-optimal solutions, within acceptable time-frames. 
In recent years, in order to improve the convergence capabilities of the meta-
heuristics, researchers have focused on hybrid algorithms to combine the 
complementary strengths of different procedures. Results of the Hybrid 
algorithms reveal that they are capable of dealing with real-world instances 
more efficiently than the sole algorithms. 
 
In this thesis study, it is perceived that relatively scarce devotion is made 
toward identification of the complete Pareto front for discrete TCT problems. 
Owing to this inadequacy, it is of great importance to provide the decision 
makers with robust techniques to take on the TCT analyses. It is also 
observed that a relatively scant work has been carried out to adopt particle 
swarm optimization (PSO) method in discrete TCT problems. Consequently, 
due to efficiency of meta-heuristics along with the robustness of the PSO 
algorithm, this study aims to take on different paradigms of the PSO 
algorithm in analyzing three extensions of the TCT problems. 
 
The main objective of this study is to present a state-of-the-art model with 
higher efficiency and improved accuracy, which is capable of exerting the 
time-cost curve problem, i.e., identifying the complete Pareto front for larger 
discrete TCT networks. To this end, heuristic method of Siemens (1971) along 
with PSO algorithm are recruited. Primarily, overhauled versions of the 
Siemens Approximation Method (SAM) and the PSO algorithm are introduced; 
thereby, a hybrid-PSO model is generated exploiting the merits of the 
modified-SAM method augmented with the global convergence capabilities of 
the proposed PSO algorithm. The hybrid algorithm contrasts with the previous 
studies both in terms of the approach taken to generate the first population, 
and in terms of the objective function used to evaluate pbest and gbest of the 
particles. The SAM-PSO model is envisioned to support decision makers in 
competent evaluations of the subsequent “what if” scenarios. 
 
All the proposed algorithms have been implemented in C++ programming 
language using the Microsoft Visual Studio 2010. Well-known problems 
obtained from the literature are fed into the PSO optimizers, and experiments 
have been directed to validate their potencies accordingly. In addition, on the 
verge of performance assessments, all the instances are solved to optimality 
by dint of mixed integer programming using the AIMMS optimization software. 
The quality of solutions obtained from the PSO algorithms are measured using 
the optimal solutions; the average deviations are then evaluated for multiple 
experimental runs. Moreover, the time-frames required to unravel the test 
problems are also determined. The results reveal that the proposed 
algorithms are successful for providing optimal or near optimal solutions for 
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the discrete TCT problems. The SAM-PSO was able to obtain adequate Pareto 
fronts for every discrete TCTP, within reasonable computational time. 
 
The sequel of the thesis is organized as follows. Chapter 2 starts with a brief 
introduction on CPM and TCTP, followed by detailed review of existing 
optimization techniques dealing with TCT analyses. Chapter 3 presents the 
main body of this work, illustrating the particle swarm optimizers followed by 
description of the novel hybrid algorithm, and its implementation for solution 
of optimization problems. Chapter 4 presents TCT analyses of sample problem 
sets, followed by results of the computational experiments. Chapter 5 includes 
the conclusions and points out potential topics for future research. 
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CHAPTER 2  
 
 

LITERATURE REVIEW 
 
 
 

In this chapter, the principles of project scheduling are summarized. First, 
Critical path method (CPM) is described along with the types of the expenses 
imposed to the contractors. The time-cost trade-off problem (TCTP) is 
presented in addition to some of the related optimization techniques. Along 
with the other proposed methods in the literature, prospects of particle swarm 
optimization (PSO) in TCT problem are then presented. 
 
 
2.1. CPM 
 
Scheduling can be defined as the appraisal of timing and sequence of a 
project’s actions which facilitates determination of the overall completion date 
(Mubarak 2010). In the course of scheduling, network analysis – a generic 
term for various planning methods – is always exploited (Lock 2007). 
 
Being one of the most widespread scheduling and network analysis 
techniques, the critical path method (CPM), involves determination of the 
longest path through the network. It facilitates defining a project’s duration in 
conjunction with the shortest amount of time required to complete the project 
(Kerzner 2009). Adoption of this technique necessitates identification of the 
duration and logical relationship among the activities. Based upon the initial 
information set, an illustration of the schedule is prepared either by using the 
activity on arrow (AoA) or the activity on node (AoN) notation systems. As the 
names imply, in the first system (AoA) the activities are represented by 
arrows intersecting nodes which resemble events; while, in the second system 
(AoN) activities are represented by nodes and the logical relationships are 
traced by arrows. Courtesy of the ensuing reasons, the activity on node 
system of notation is recruited in this thesis: 
 
• Compared to activity on arrow diagrams, they are more easily understood 

due to their resemblance with the engineering flow diagrams. 
 

• Starts and finishes of activities that do not directly correspond to their 
immediate predecessor and successor activities are clearly demonstrated. 
 

• They assist designation of the activities capable of overlapping each other 
or, the contrary, identification of the activities that must be delayed 
imposing lag times. 
 

• Widespread adoption of the activity on node systems by computer 
programs opposed to the activity on arrow system. 
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Accordingly, the activity on node system of notation is generally preferred and 
has emerged as the prominent method used for the scheduling (Lock 2007). 
 
In a CPM schedule, all the remaining paths of a network are either equal in 
length to or shorter than the critical path. The time discrepancy between the 
latest possible completion times of each activity without affecting the 
completion of the overall project, and the planned completion date is known 
as the slack time. The slack times of the activities are determined by forward-
pass and backward-pass calculations in finding activities’ early start/finish and 
late start/finish times, respectively. If the admissible delay in start/finish time 
of an activity – slack time – is equal to zero, this indicates that the concerned 
activity must be commenced as soon as its predecessors are accomplished; 
these type of activities which constitute the critical path(s) of the network are 
called critical activities. 
 
Virtually every construction project has an overall completion deadline 
determined by the client that is specified in the contract. Some of these 
deadlines are assigned strictly not allowing for any delays in the completion of 
the project. Thus, amidst scheduling phase of a construction project, the 
procedure must be time-limited if the completion date is considered as the 
chief objective. The prevailing resolution in this case is to warrant the project 
will be accomplished on the definite date. This date is usually the earliest 
possible completion date designated via network analysis (indicated by the 
CPM); however, the completion date might also be targeted on a later date. 
Any projected resource over-allocations must be accepted for a time-limited 
scheduling, possibly assuming that either resource overloads can be alleviated 
through hiring subcontract workforce or by making alternative short-term 
resource provisions. 
 
 
2.2. TCTP 
 
Obviously, it is an important resolution for both the contractor and the client 
to finish the project on or ahead of the schedule. Unambiguously, finishing on 
or under the specified budget is another favorable achievement. Accordingly, 
simultaneous realization of these two objectives is undeniably desirable for 
both the parties. Considering the slack time in conjunction with the possible 
crashing alternatives of the activities, a project manager can speed up the 
project to meet a predetermined deadline with imposition of least additional 
costs. For this purpose, respecting the crashing alternatives of the tasks, a 
manager evaluates the cost per unit time (Cost Slope) as well as a feasible 
budgets (cash-flow) region for the project. Hence, one of the dominant 
prospects of the network analysis can be concluded as finding a solution that 
not only satisfies the completion deadline, but also has the lowest feasible 
total cost that resides within the feasible budget boundaries. 
 
Rather than targeting to meet a prescribed completion deadline, there might 
be a couple of other reasons for a contractor to speed up a project. For 
instance, a contractor with good economic conditions might esteem to 
expedite a project in order to be able to start another earlier; to wit, to make 
more profit. Usually, the contractor knows the required date to mobilize to 
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another project; and thus, this may involve compressing the current project in 
favor of freeing required resources so that they can be allocated to the new 
project. However, accelerating a project schedule might prove profitable only 
up to a certain level; since, it gets costly to diminish the project duration 
below a certain limit. The act of accelerating (compressing) or crashing a 
project schedule literally means reducing the duration of a project. Though, 
the distinction between these two approaches must first be clarified. Whilst 
both the techniques aim at advancing the completion date of the project, 
accelerating does not necessarily mean targeting to reach the least possible 
duration. 
 
It must be also clarified that the possibility of schedule acceleration or 
availability of the crashing alternatives for the activities of the projects is 
highly affiliated with the typology of the projects. Those with strict logical 
relationships among the activities, such as high-rise buildings, usually offer 
less flexibility regarding the schedule acceleration compared to other types, 
such as pipeline projects. 
 
According to the Construction Industry Institute (Force 1988), there are more 
than 90 techniques to compress a schedule. Reviewing these techniques, 
Mubarak (2010) has abstracted the ensuing 9 methods to accelerate a project 
schedule: 
 

• Review or evaluate the schedule to discover any errors or imperfect 
logical relationship or constraints 
 

• Fast-track achieving project objectives 
 

• Carry out constructability studies and value engineering 
 

• Assign over-time schedule either by increasing the hours per day 
and/or days per week 
 

• Devote incentives for more productive workers or crews 
 

• Allocate more human resources 
 

• Undertake special construction method using specific materials and/or 
equipment to expedite the project 
 

• Revamp project management and improve supervision 
 

• Prevent communications breakdowns among parties 
 

Throughout a project, the main expenses a contractor has to cope with are 
often classified into two categories; Direct costs and Indirect costs. The main 
principle for distinguishing the direct expenses from the indirect costs can be 
depicted as a direct cost item is directly associated with an explicit work item. 
Direct expenses may encompass labor, material, equipment, subcontractor, 
machinery, and other costs related to fees and permits; whereas, the indirect 
costs might bear project overhead, and general overhead expenditures. 
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Overhead expenses might incorporate salaries of the guard, cook, and office 
personnel as well as the energy costs. It is imperative for a contractor to 
regard that the amounts of direct and indirect costs are susceptible to 
schedule compression; they are usually impacted in an opposite manner as 
the acceleration takes place. 
 
Despite the fact that staffing more crews or assigning them to work over-time 
decreases the productivity and, in turn, increases the ratio of unit cost per 
unit output, though, either of these approaches can be adopted should a 
schedule acceleration required. Therefore, in general, direct costs get 
increased in case of project acceleration; the more the acceleration is 
augmented, the more the daily cost of acceleration increases. As shown in 
Figure 2.1, this progression is usually nonlinear. 
 

 
 

Figure 2.1 – Project acceleration results in a nonlinear escalation of direct costs. 
 
As depicted previously, indirect costs encompass mainly the overhead 
expenditures which vary on daily basis in accord with the climatic conditions 
and the number of the staffed personnel. Nevertheless, for the sake of 
simplified cost computations, they are usually assumed to be linearly 
comparative to the duration of the project; besides, due to exact same 
reason, second order cost components, e.g. insurance and bond payments, 
are excluded from the daily indirect expenses. Hence, in case of schedule 
acceleration, the indirect costs decline at a constant rate (Figure 2.2). 
 

 
 

Figure 2.2 – Project acceleration cause linear decline in indirect costs. 
 
As for the total cost curve, as shown in Figure 2.3, the total cost initially 
declines at a diminishing rate till it reaches a minimum amount. This point 
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resembles the least total cost for the project. As the acceleration continues, 
total cost increases till the project’s least possible duration is met. 
 

 
 

Figure 2.3 – Variation of total cost as a result of project acceleration. 
 
According to the trend of project’s total cost as a function of duration, it can 
be inferred that, in general, the less expensive the recruited resources are, 
the more time it takes to complete the tasks (Feng, Liu et al. 1997). This 
trade-off between time and cost of projects are termed as time-cost trade-off 
problem (TCTP) which is one the prominent aspects of the project 
management and there have been much considerations devoted to this 
problem in the literature. 
 
On the verge of time–cost trade-off analysis, it is the lowest feasible total cost 
that gets assessed within the feasible budget boundaries, usually in accord to 
a specific deadline. Hence, a TCT problem in essence, is an optimization 
problem that attempts to reduce the project duration through accelerating the 
critical activities while relaxing non-critical ones to narrow the expenses 
(Siemens 1971). TCT aims at providing an optimal balance of project duration 
and cost by analyzing different combinations of decisions. 
 
A real-life construction project almost always has hundreds or even thousands 
of activities each which might have several alternatives to opt from. 
Accordingly, it is a challenge for the project managers to find the optimal TCT 
decisions; in fact, it is a Non-Polynomial hard (NP-hard) problem and may 
require extremely time-consuming computations. Since any variation in 
selection of the alternative decisions alters the project schedule, therefore, it 
is required to re-assess the schedule, total cost, and total duration of the 
project using the critical path method (CPM). Exhaustive enumeration even 
with very fast computers is, therefore, not a convenient and economically 
feasible method in TCT analysis; specifically for a real-time project comprised 
of numerous activities. In pursuance of overcoming the pitfalls pertinent to 
the exhaustive enumeration, several algorithms and heuristics have been 
proposed in the literature addressing the optimal or near-optimal solution for 
the TCT problem. 
 
For the first time, considerations of TCT problem emerged almost half a 
century ago, virtually concurrently with the introduction of project analysis 
techniques by Fulkerson (1961) and Kelley (1961). The TCT problem has been 
classified into several categories, ever since it was presented in the primary 
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studies of the early sixties. There have been numerous studies conducted 
covering TCT problems with linear, non-linear, and discrete objective 
functions. Amidst analysis of the latter state of the TCT problem, i.e., a TCT 
problem with a discrete objective function, attempts are raised to make 
appropriate decisions among the limited number of time-cost alternatives, 
referred to as modes. Thus, one mode is assigned for any of the activities of 
the project with regard to the resolution of the TCT analysis. Such a concern 
is imperative to TCT practices as the discrete time-cost alternatives are 
commonplace in real-life projects; to boot, corresponding to the prospect of 
the TCT problem, three types of constraints might be incorporated in the TCT 
analysis. The three categories encompass the Deadline, Budget, and Time-
cost curve problems. As it was discussed previously, generally it is essential 
for both the contractor and the client to finish the project on or ahead of the 
schedule, or, on or under a specified budget. The first assumption, being 
called the Deadline problem, minimizes the total cost taking into account an 
upper boundary for the duration of the project. Whilst, the second approach, 
termed as the Budget problem, minimizes the duration of the project without 
exceeding an upper boundary set for the budget. It is by exploitation of 
deadline or budget problem that all the non-dominated solutions generate 
with regard to the project duration and the total cost benchmarks. Thus, the 
latter state of the TCT analysis, referred to as the Time-cost curve problem, 
aims to generate all the efficient i.e. non-dominated set of solutions. 
 
 
2.3. Exact, Heuristic, and Meta-heuristic Methods 
 
Since, all the categories of the TCT problem are Non-Polynomial hard (NP-
hard) problems and that finding the optimal decisions require enormous time-
consuming computations, several different algorithms have been proposed in 
the literature to cope with this problem. The researchers, benefitting from the 
ever evolving computer science technologies, seek to implement various 
optimization methods in their TCTP studies. TCT problem mainly involve 
Exact, Heuristic, and Meta-heuristic optimization algorithms. 
 
Exact procedures, as the name implies, attempt to explore the entire solution 
space in finding the exact optimal solution. Accordingly, they require massive 
amounts of computations which, in turn, necessitate higher-spec computers 
as well as intricate coding procedures. Respectively, they are often charged to 
just reinforce the competency of the Heuristic algorithms. Nevertheless, exact 
algorithms are indispensible means of the optimization problems since they 
are the only methods capable of guaranteeing optimality of the results. Some 
of the most popular variants of the exact algorithms are linear programming, 
mixed-integer programming, dynamic programming, and branch-and-bound 
method. 
 
Opposed to the exact procedures, Heuristic algorithms involve much less 
computational efforts and are capable of producing solutions virtually in no 
time; usually they can be implemented even short of a computer’s assist. 
Derived from the Greek word “Heuriskein” meaning “to find”, heuristics 
involve simple rules to discover solutions to difficult optimization problems. 
Nonetheless, the optimality is not guaranteed in the heuristic methods and 
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the obtained solutions are near-optimal, but rather satisfactory solutions. The 
constructive and the improvement heuristics are the most revered variants of 
the heuristic algorithms. The former uses a stepwise procedure to generate 
solutions, generating them one at a time until a feasible solution is met. 
Generally, a feasible solution is not obtained in the course of the construction 
heuristics unless the conclusion of the procedure is reached. The latter type of 
the heuristic algorithms i.e. the improvement heuristics, initiate with a 
feasible solution and successively improve it via a series of modifications. In 
the course of this procedure, usually a feasible solution is preserved 
regardless of the progression of the process. 
 
In addition, the novel algorithms inspired by the stochastic occurrences of the 
nature, are called Meta-heuristic algorithms. “Meta”, meaning “beyond” is an 
indication of higher-level algorithms when compared to the heuristics, since, 
heuristics are problem dependent; whilst, meta-heuristics are independent of 
the problem’s nature. These random search techniques unravel an 
optimization problem by simulating the evolution and intelligent behaviors of 
the natural organisms. Iterative quality of the meta-heuristic algorithms, in 
contrast with the heuristics, may prevent getting stuck into the local optima. 
This latter trait generally stipulates thorough searches within the solution 
space, increasing the chances of discovering the desired global optimum 
solution. However, similar to the heuristics, meta-heuristics are incapable of 
securing the optimality of the solutions; rather, they obtain near-optimal 
solutions in an inconsiderable amount of time, with trivial computational 
efforts. This category of algorithms is well associated with the modern 
studies, such as evolutionary computation and swarm intelligence, promising 
for those who would prefer fast converged near optimal solutions in the face 
of slow but accurate ones. Some of the most prevalent meta-heuristics are 
genetic algorithms (GA), ant colony optimization (ACO), particle swarm 
optimization (PSO), shuffled frog leaping (SFL), simulated annealing (SA), and 
so forth. 
 
 
2.4. Exact, Heuristic, and Meta-heuristic Methods for TCTP 
 
Conventionally, the objective function of the TCT analysis was supposed to be 
linear (Fulkerson 1961) and the first notable attempt in construal of the TCT 
problem was regarded as the heuristic method proposed by Nicolai Siemens 
(1971). Subsequently, the assumption of linearity was relaxed allowing for 
consideration of other types of the objective function, namely, concave 
function (Falk and Horowitz 1972), convex function (Foldes and Soumis 
1993), a hybrid of concave and convex functions (Moder, Phillips et al. 1983), 
quadratic function (Deckro, Hebert et al. 1995), and discrete function 
(Skutella 1998, Zheng, Ng et al. 2004). The last type of the TCT analysis, 
being more tangible in real-life, constitutes a large portion of the recent 
studies. As a result, several different approaches have been proposed for the 
various time-cost objective functions; viz., linear programming, integer 
programming, dynamic programming, and of course, the heuristics and meta-
heuristics. In this part of the chapter, various methods adopted by the 
researchers in analyzing the TCT problem have been abstracted following a 
comprehensive literature survey. 
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2.4.1. Exact methods for TCTP 
 
The study carried out by Meyer and Shaffer (1965), remains the pioneering 
attempt in application of mixed-integer programming for solving the TCT 
problem. Inspired by this endeavor, Moussourakis and Haksever (2004) 
present a flexible mixed-integer model considering the indirect cost in the 
analysis, whilst, making minimal assumptions regarding the type of the time-
cost objective function. Assuming no specific notation system for the network, 
this model tackles objective functions that are linear, piecewise linear, or 
discrete. The only assumption required for this approach is stated as 
presumption of piecewise linearity for nonlinear continuous functions. This 
model is capable of minimizing the total cost subject to a completion deadline; 
besides, should a slight modification made to the algorithm, it optimizes the 
total cost respecting a budget constraint. Evidently, this model assists the 
decision makers in measuring several different “what if” scenarios. 
 
De et al. (1995) discuss the scant and sparse considerations of the discrete 
TCT problem. Conducting an inclusive literature review, they survey some the 
previous solution approaches and thereby identify drawbacks pertinent to 
these methodologies. Introducing a new dynamic programming formulation, 
they present a centralized approach for the deadline problem with no parallel 
modules. Eventually, adopting the activity on arrow (AoA) representation, 
they take on modular decomposition conjointly with the incremental reduction 
approaches for the TCT problems with parallel modules. 
 
Demeulemeester et al. (1998) propose an exact algorithm for discrete TCT 
problem assuming the activity on arrow (AoA) notation system for the 
network analysis. A variant of branch and bound optimization model is 
programmed by introducing a horizon-varying approach benefiting from the 
Visual C++ platform. This approach iterates minimizing the total cost of a 
time restricted scheduling problem in accord with the interval bounded by the 
crash modes and normal modes of the activities. They calculate the lower 
boundaries by setting out convex piecewise linear underestimations for the 
discrete TCT curves. They propose two distinct rules to assess qualities of 
underestimations, involving vertical distances computations. In the course of 
the branching process of this model, the activity with the largest vertical 
distance is identified; withal, in order to promote convex piecewise linear 
underestimations, they separate crashing modes of the activities into two 
subsets. The results are validated by means of a factorial experiment and are 
compared to the results of Demeulemeester et al.’s (1996) study which 
reveals that this model is capable of solving instances with up to 30 activities 
having 4 crashing modes. 
 
Primarily introduced by Yang and Chen (2000), Vanhoucke (2005) elaborates 
on time/switch constrained discrete TCT problems. Time/switch constraints 
are established by imposing specific start time and inactive time-intervals to 
deal with day, night, and weekend shifts for the activities. Exploiting the lower 
bound calculation approach which was first introduced by Demeulemeester et 
al. (1998), the author suggests another branch and bound algorithm coded in 
the Visual C++. With the activity on arrow (AoA) considerations, this study 
incorporates a branching algorithm that identifies those activities whose lead 
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times are greater than their durations under the lower bound calculations. The 
branching process creates three child nodes as it divides the start time of 
activities into three sections, which, is later relaxed by imposing a dominance 
rule. Referring to the results and further amplifying the real-life instances of 
the study carried out by Vanhoucke et al. (2002), Vanhoucke (2005) validates 
the solutions of this algorithm. The results show that on average, this model 
is four times faster than Vanhoucke et al.’s (2002) approach and that it is 
capable of solving instances of 30 activities with up to seven modes in less 
than 7 seconds on average. 
 
 
2.4.2. Heuristic methods for TCTP 
 
Siemens (1971) develops a logical systematic procedure based upon intuitive 
logic and analysis and verifies the algorithm using an empirical instance. The 
author proposes Siemens Approximation Method (SAM), a heuristic method 
for the TCT problem suited for both manual and computer aided calculations. 
It is capable of solving convex nonlinear TCT problems by making multiple 
curvilinear approximations. The procedure initiates with the construction of 
the project network, and involving a number of rules attempts to expedite 
selected activities that incur least additional costs. The results of this model 
are compared to a linear programming approach which affirms that the 
obtained results are either nearly the same or identical to the exact 
algorithms. However the author acknowledges that the heuristic algorithm 
might shorten the duration of a project beyond the intended amount, due to 
crashing activities merely with the minimum cost slope considerations, and 
regardless of the number of different paths the activities belong to. 
 
Vanhoucke and Debels (2007) study three extensions of the discrete TCT 
problem; time/switch constraints (Yang and Chen 2000), work continuity 
constraints (El-Rayes and Moselhi 1998), and net present value maximization 
(Herroelen, VanDommelen et al. 1997). Assuming activity on arrow (AoA) 
representation, they provide a new meta-heuristic algorithm coded in the 
Visual C++. The heuristic portion of the proposed algorithm involves iteration 
of neighborhood search and diversification steps. The former step selects the 
best nearby solution whilst the latter randomly chooses a crash mode while 
setting taboo for the frequently evaluated mode-combinations. The second 
portion of their algorithm includes a truncated dynamic programming which 
increases the duration of the non-critical activities while meeting the desired 
completion deadline. Administering comparisons with results of an exact 
algorithm, they state the new approach is capable of producing promising 
results for time/switch constrained and net present value versions of the 
discrete TCT problem. 
 
 
2.4.3. Meta-heuristic methods for TCTP 
 
Feng et al. (1997) outline the favored results of TCTP analysis as providing 
optimal balance of time and cost, besides, delivering a TCT curve that shows 
the relationship between total duration and total cost of a project. The authors 
addressing the inefficacy of the existing methods in coping with large-scale 
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TCT problems, propose a more efficient model based upon the principle of 
Holland’s (1975) genetic algorithm (GA). The authors argue the drawbacks 
pertinent to multi-objective decision-making techniques such as multi-
objective weighting (MOW) and there forth incorporate Pareto front approach 
by introducing the convex hull. This model sets two chromosomes, i.e. 
decision sequences, involving normal and crash modes of the activities; 
thence, determines the fitness values of the solutions in accord with their 
minimal distances to the convex hull. Iterative cross-overs and mutations are 
then performed to reproduce new solutions. This algorithm retains each string 
for the next generation in order to avoid the problem raised by Goldberg and 
Segrest (1987), called the genetic drift phenomenon. The authors validate 
their algorithm after developing a computer program (TCGA) with an interface 
designed in Microsoft Excel. Results indicate that this algorithm is capable of 
discovering more than 95% of the optimal solutions for a discrete TCT 
problem comprised of 18-activities. 
 
The GA model proposed by Zheng et al. (2005) attempts to compromise the 
genetic drift phenomenon by reducing the chance of getting stuck into the 
local optima. Thus, the authors integrate a modified adaptive weight approach 
(MAWA) to adjust the priority of objectives respecting the quality of the 
preceding generation. MAWA flags and ranks all the non-dominated solutions 
that are identified amid each generation and clues higher ranked solutions are 
more likely to survive. As the generations evolve, MAWA administers a 
decreasing pattern for the mutation rate to prevent premature convergence. 
Pareto ranking and niche formation are also incorporated to this model with 
the former serving as selection criterion and the latter exerting as population 
diversifier besides supporting uniform sampling. The authors enhance the 
validation process of this model by means of a prototype system which 
operates in conjunction with the Microsoft Project. The 18-activity instance 
used by Feng et al. (1997) is fed into three representative modules and the 
results prove robustness of the proposed module, principally for the solutions 
archived beyond 300 generations. 
 
In order for project managers to incorporate uncertainties in their TCT 
analysis, Eshtehardian et al.(2008), in their study, integrate GA with the fuzzy 
sets theory of Zadeh (1965). A model to tackle stochastic TCT problem is 
prepared for the real-life instances throughout which triangular fuzzy numbers 
are assumed for direct cost of the activities rather than their probability 
distribution, in that, they are merely partially known. Distinct Pareto fronts 
comprised of the non-dominated solutions are developed with consideration of 
the risk attitude of the experts, defined through α cut approach. Adopting 
Hamming-distance for binary comparison of fuzzy numbers and employing 
Euclidian-distance in fitness calculations, two separate techniques are 
prepared to rank the alternative set of options under different values of α cut. 
Implementing single crossover and uniform mutation, the 18-activity problem 
used by Feng et al. (1997) is fitted into the GA based prototype model. The 
second approach, not dealing with a defuzzifier, proves to perform slightly 
better than the other method. 
 
Sonmez and Bettemir (2012) addressing the inherent inadequacies of sole 
meta-heuristic methods along with the merits pertinent to hybrid algorithms, 
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introduce a hybrid GA (HA) for the discrete TCT analysis. This model combines 
the complementary potencies of genetic algorithm (GA), simulated annealing 
(SA), and quantum simulated annealing (QSA) in exploration of the solution 
space. SA introduces a better hill climbing capability for the HA in view of 
attaining the global optima; whilst, QSA revamps the quality of local search 
for this algorithm. HA is implemented to ten benchmark instances ranging 
from 18 to 630 activities, by means of the Visual C++ programming 
language. Test problems include 18-activity TCT problem described by Feng et 
al. (1997), highway upgrading project derived from Chassiakos and 
Sakellaropoulos (2005), and a hypothetical TCT problem with 63 activities, 
which is introduced in the course of this study. All the instances are analyzed 
regarding various assumptions and constraint impositions. Compared to 
optimal results of AIMMS optimization software (mixed integer programming), 
the average percent deviation (APD) of ten runs are measured. The authors 
apply paired t-test to assess the significance of performance difference 
between HA and sole GA, results of which, verifies robustness of the proposed 
algorithm. 
 
Being first introduced by Colorni et al. (1992), Ng and Zhang (2008) use an 
evolutionary-based optimization algorithm known as the ant colony (ACO) to 
analyze the multi-objective TCT problem. They propose an ant colony system 
(ACS) adopting the modified adaptive weight approach (MAWA) (Zheng, Ng et 
al. 2004) for evaluating the fitness of their solutions. Exploiting the Visual 
Basic platform, an optimization program is developed, by means of which, the 
soundness of their algorithm is tested against other analytical methods that 
were studied by Elbeltagi et al. (2005) previously. They conclude that the 
results of the proposed ACS algorithm for the 18-activity instance depicted in 
Feng et al. (1997) are improved compared to the basic ACO and that it is 
capable of solving the TCT problem with much less requirements of 
computational resources. 
 
Another attempt toward combining Zheng et al.’s (2004) modified adaptive 
weight approach (MAWA) with ant colony algorithm is made by Xiong and 
Kuang (2008). MAWA, applying a search stress toward the desired optimal 
point at each of the iterations, enhances the ACO in construal of the optimal 
solutions, and delivering the Pareto front as well. Thru this method, two 
selections are made to decide on possible alternatives. According to the 
membership of a random variable, the first selection is made regarding a 
maximization criterion, and the other involves a probability distribution 
function. The performance of this prototype model is assessed using the 7-
activity problem acquired from Zheng et al. (2004) and the 18-activity 
instance solved by Feng et al. (1997). Modifying the parameters of the 
proposed ACO by a sequel of trial and error, this model manages to find the 
same results found thru the abovementioned studies by exploring rather 
smaller portion of the solution space; proving to be a more efficient measure. 
 
The discrete TCT problem is represented as a graph in the study carried out 
by Afshar et al. (2009). In this study, a multi-colony non-dominated archiving 
ACO (NA-ACO) is introduced thru which separate ant colonies are assigned to 
each of TCTP objectives. Solutions found by agents of each colony are 
iteratively transferred to the next colony to be evaluated in accord with the 
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competing objective. New solutions are then generated regarding the updated 
pheromone trail. Any iteration of this algorithm concludes with reserving the 
non-dominated solutions in a separate offline archive. Performance of this 
method is measured using the 18-activity problem derived from Feng et al. 
(1997), and the results are compared to WM-ACO (Weighted Method Ant 
Colony Optimization) and the GA model of Zheng et al. (2005). The test 
problem is solved engaging three alternate indirect costs of 0, 200, and 1500 
units and for all the instances, it manages to substantially outperform the 
compared algorithms. This model surpasses the previous algorithms 
specifically for the problems with lower incurred indirect costs; however, it 
lacks the competency of exerting the full Pareto front for any of the 
considered cases. 
 
Elbeltagi et al. (2007) recall shuffled frog leaping (SFL) as a robust algorithm 
in handling complex large-scale problems due to its competency in 
incorporating PSO-like (particle swarm optimization) local search along with 
information exchange of parallel local searches. They modify the original SFL 
algorithm by implementing a search-acceleration parameter (C) to avoid MSFL 
from being stagnated at local optimums. Time-variant augmentation of this 
parameter sustains the balance between local and global search; that is, 
gradually decreasing the amount of C from a larger initial value, contributes 
to a wider global search followed by a deeper local search. A parametric study 
is conducted on this parameter toward realization of better results. The 
authors validate their marks by feeding their model into F8 and F10 
benchmark problems, variants of 18-activiy problem derived from Feng et al. 
(1997), and “rehabilitation of bridge-deck infrastructure” problem acquired 
from Hegazy et al. (2004). Test problems are set by implementing MSFL using 
Visual Basic, Microsoft project, and Microsoft Excel programs and are 
compared to original SFL and GA algorithms. The results of this study 
demonstrate competency of the MSFL, as it outperforms the matched 
approaches requiring significantly smaller time frames to produce set of 
solutions with higher success rates. 
 
Anagnostopoulos and Kotsikas (2010) analyze five variants of a simulated 
annealing algorithm using activity on node (AoN) type of networks. They seek 
applying a search method analogous to annealing process of melted 
materials; besides, they utilize analysis of variance (ANOVA) and Duncan 
Multiple Range Test to measure quality and efficiency of the solutions exposed 
to several problem factors. They also estimate the confidence interval for the 
optimal solutions pertinent to discrete TCT instances. Sample problem sets 
are generated randomly using RanGen2 program for the SA algorithms coded 
in Visual Basic programming language. Exploiting formal statistical methods in 
conjunction with Microsoft Excel, SPSS, and Mathcad programs, they evade 
from drawing conclusions flawed by sampling errors. Eventually they rank the 
SA variants in accord with the results of the Duncan test and estimate 
confidence interval of optimum solution for the best and the worst algorithms. 
 
Yang (2007a) bases its model upon the modified PSO algorithm of Shi and 
Eberhart (1998) to archive the Pareto front in a single run, for the feasible 
project durations. Selection of pbest is modified in this PSO as to update 
should a strongly dominating solution emerges. Withal, gbest membership 
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only consents particles that dominate fewest members of the library. This 
algorithm, not relying on metrics, is capable of handling various types of 
objective functions regardless of the time-cost scaling. Non-dominated 
solutions are iteratively stored in a separate elite library, meanwhile, deleting 
the dominated particles. Members of this archive aid further explorations over 
the search space. Indirect costs are not provisioned throughout the 
optimization process; rather, they are implemented exogenously after setting 
up the final Pareto front. The performance of this algorithm is measured by 
externally imposing the constraints of the deadline and budget problems to 
the archived solutions of a 14-activity network. Results demonstrate the 
efficiency of the proposed algorithm, facilitating subsequent “what if” analysis 
by the decision makers. 
 
Yang (2007b), in another study, uses the PSO algorithm to analyze crashing 
alternatives of the budget and deadline TCT problems. Capable of treating 
objective functions of any type, this method aims at creating the Pareto front, 
so as to assist decision makers in conducting further “what if” analysis. This 
model is coded in MATLAB programming environment and is implemented into 
a hypothetical test problem, as well as a real-life highway restoration project. 
Indirect costs are provisioned after setting up the final Pareto front for both 
the hypothetical example involving an 8-activty network, and the case-study 
incorporating 28 activities. Parametric studies for the algorithm operators of 
swarm size, inertia weight, and damping limit are performed, taking on the 
sensitivity analyses. Adopting appropriate parameters, performance of this 
algorithm is assessed through measurement of the average percent deviation 
(APD) per ten runs. Signifying rather small percentages of deviations, the 
efficiency and performance of the proposed PSO algorithm is validated. 
 
In a recent venture by Zhang and Xing (2010), the authors attempt to 
introduce a Fuzzy-based PSO for solving time-cost-quality trade-off problems 
with nondeterministic input data. Fuzzy multi-attribute utility technique 
derived from Keeney and Raiffa (1976), is embedded to the constrained fuzzy 
arithmetic operations to enhance the PSO algorithm with exploration of 
solutions that secure maximum quality while requiring minimum time and 
cost. Fuzzy-multi-objective PSO (FMOPSO) is coded in Visual C++, treating 
time, cost, and quality of the alternatives as triangular fuzzy numbers. 
FMOPSO uses fuzzy attribute utility for generating composite fuzzy utility 
values for each mode combination. The proposed PSO algorithm incorporates 
the mean integration representation (GMIR), so as to discover the solution 
with the largest composite fuzzy utility. The algorithm is examined using a 
three modal 13-activity network, and the results are compared to a fuzzy-GA 
algorithm, illustrating the potency of the FMOPSO. 
 
Another PSO-based algorithm for optimizing intrinsic problems of the 
construction industry is developed by Ashuri and Tavakolan (2012). This study 
integrates the Fuzzy set theory with the hybrid GA-PSO algorithm of Juang 
(2004), to tackle continuous time-cost-resource trade-off problems. 
Triangular fuzzy numbers are presumed for nondeterministic values of time, 
cost, and resources; further, GA and PSO are applied to lower and upper 
halves of the population, respectively. The proposed hybrid GA-PSO is 
implemented in Delphi programming platform to construct the Pareto fronts 
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for the 7-activity instance acquired from Zheng and Ng (2005), as well as the 
14-activity network discussed in Yang (2007a). Compared to earlier methods, 
this algorithm is capable of finding less costly solutions that not only require 
shorter durations, but also, prescribe fewer variations in allocated resource. 
Supremacy of the proposed algorithm is further proved by contrasting the 
demanded processing time with the previous approaches. 
 
A renowned study covering various evolutionary meta-heuristic algorithms is 
carried out by Elbeltagi et al. (2005). In the course of this work, the authors 
conduct a comparison among five meta-heuristic algorithms. The performance 
and efficiency of GA, Memetic algorithm (MA), PSO, ACO, and SFL are 
compared with each other with regard to the required processing time and 
quality of the obtained solutions. Models are coded in Visual Basic platform 
and fitted with three benchmark test problems, including the F8 function, F10 
function, and the 18-activity network explained in Feng et al. (1997). Best-
suited parameters are identified for all the approaches subsequent to a large 
number of trials. The discrete TCT instance is analyzed with a deadline 
consideration of 110 days. Executing twenty experimental runs for each of the 
instances, mean processing time and quality of the results are observed. The 
results of this comparison demonstrate a rather poor performance by the GA; 
whereas, the PSO algorithm manages to outperform all the other approaches, 
inasmuch as, it produces solutions of higher quality within an acceptable time-
frame, with a greater success rate. 
 
Table 2.1 summarizes the exact, heuristic, and meta-heuristic procedures for 
TCT analyses that are detailed in this section. Records are arranged in a 
chronological order in this table, encompassing brief explanations for each 
study. Aside from the adopted methods and administered problems, the 
implemented programming languages are also indicated for due models. The 
table also includes the size of the network problems fitted into the models, as 
well as, the required processing times (seconds), and the associated average 
percent deviations (APD) per multiple runs. The last two columns of this table 
highlight remarkable points and clear-cut drawbacks pertinent to each study. 
Unreported materials are tabulated as ‘na’ in Table 2.1. 
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Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP. 
 
Year of 
Publication Author(s) Method Problem Platform # of 

Activities Seconds APD 
(%) Remarks Shortcomings 

1971 Siemens Heuristic 
(SAM) 

Time-
Cost na 5 na na 

Logical systematic 
approach involving a 
number of rules for 
expediting the activities 
that incur least additional 
costs. 

Merely considers 
minimum cost 
slope for crashing 
activities that 
might shorten the 
duration beyond 
required amount. 

1995 
De, Dunne, 
Ghosh, and 
Wells 

Dynamic 
Program
ming 

Time-
Cost na 5, 10 na na 

A centralized approach for 
deadline problem with no 
parallel modules and a 
combination of modular 
decomposition with 
incremental reduction 
approaches for problems 
with parallel modules. 

Only effective for 
networks with 
reasonably low 
values of certain 
parameters. 

1997 Feng, Liu, 
and Burns GA Time-

Cost na 18 na na 

A genetic algorithm (GA) 
that calculates fitness 
values exploiting minimal 
distance to convex hull and 
retains each string for next 
generation to avoid genetic 
drift. 

Only tackles 
Finish-to-Start 
relationships 
neglecting 
possible resource 
constraints. 

1998 

Demeulem
eester, 
Reyck, 
Foubert, 
Herroelen, 
and 
Vanhoucke 

Branch 
and 
Bound 

Time-
Cost 

Visual 
C++ 

10, 20, 
30, 40, 
and 50 

0.34, 
19.17, 
58.00, 
105.40, 
and 
127.56 

na 

Horizon-varying approach 
is embedded into branch 
and bound method and 
qualities of lower boundary 
underestimations are 
assessed by vertical 
distance computations. 

Effectiveness and 
efficiency 
decreases 
significantly for 
larger networks 
with multiple 
modes. 

2004 
Moussoura
kis and 
Haksever 

Mixed-
Integer 
Program
ming 

Time-
Cost na 7 na na 

Requires no network 
notation system and 
makes minimal 
assumptions regarding the 
type of TCT functions 
availing subsequent "what 
if" analysis. 

Requires 
substantial 
computational 
resources, thus, 
suits small to 
medium 
instances. 
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Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP (Continued) 
 
Year of 
Publication Author(s) Method Problem Platform # of 

Activities Seconds APD 
(%) Remarks Shortcomings 

2005 Vanhoucke 
Branch 
and 
Bound 

Time-
Cost 

Visual 
C++ 

10, 20, 
and 30 

0.004, 
1.507, 
and 
11.506 

0.000, 
0.003, 
and 
0.138 

Branch and bound 
procedure incorporating a 
lower bound branching 
algorithm that involves 
activities whose lead times 
are greater than their 
durations. 

na 

2005 

Zheng, Ng, 
and 
Kumaraswa
my 

GA Time-
Cost na 18 na na 

A genetic algorithm (GA) 
that recruits MAWA, Pareto 
ranking, and Niche 
formation to avoid genetic 
drift, administer selection 
pattern, and exert 
diversifier, respectively. 

na 

2005 

Elbeltagi, 
Hegazy, 
and 
Grierson 

GA, MA, 
PSO, 
ACO, SFL 

Time-
Cost 

Visual 
Basic 18 

GA (16), 
MA (21), 
PSO 
(15), 
ACO 
(10), SFL 
(15) 

GA 
(0.022), 
MA 
(0.007), 
PSO 
(0.004), 
ACO 
(0.033), 
SFL 
(0.029) 

Five meta-heuristic 
algorithms (GA, MA, PSO, 
ACO, SFL) are compared, 
revealing poor 
performance of GA as well 
as robustness of PSO 
methods. 

na 

2007 Vanhoucke 
and Debels 

Meta-
heuristic 
(Exact+ 
Heuristic) 

Time-
Cost 

Visual 
C++ 

10, 20, 
30, 40, 
and 50 

0.008, 
0.096, 
0.337, 
0.811, 
and 
1.605 

0.037, 
0.050, 
0.044, 
0.098, 
and 
0.114 

Heuristic portion involves 
neighborhood search and 
diversification steps. The 
second portion of 
algorithm uses truncated 
dynamic programming to 
relax non-critical activities. 

na 

2007 

Elbeltagi, 
Hegazy, 
and 
Grierson 

SFL Time-
Cost 

Visual 
Basic 18 8 0 

A modified Shuffle Frog 
Leaping (SFL) algorithm 
that incorporates a time-
variant parameter to avoid 
falling into local optima. 

na 
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Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP (Continued) 
 
Year of 
Publication Author(s) Method Problem Platform # of 

Activities Seconds APD 
(%) Remarks Shortcomings 

2007 Yang PSO Time-
Cost na 14 na na 

Selection process of 
Particle Swarm 
Optimization (PSO) 
method is modified in favor 
of strongly dominant 
solutions as pbest, and 
solutions of scant areas as 
gbest. 

Indirect costs are 
not provisioned 
throughout the 
optimization 
process. 

2007 Yang PSO Time-
Cost MATLAB 8 and 28 48 and 

600 
0.406 
and na 

A PSO algorithm capable of 
handling any function type 
which requires manual 
calculations for subsequent 
"what if" analysis. 

Indirect costs are 
not provisioned 
throughout the 
optimization 
process. 

2008 Ng and 
Zhang ACO Time-

Cost 
Visual 
Basic 18 na na 

Modified adaptive weight 
approach (MAWA) is 
integrated into Ant Colony 
System (ACS). 

Probable 
premature 
convergence with 
higher iterations 
and too sensitive 
to selection of 
parameters. 

2008 Xiong and 
Kuang ACO Time-

Cost na 7 and 18 na na 

MAWA is embeded into Ant 
colony System (ACS) and 
selection of the options are 
made according to 
membership of a random 
variable, the first selection 
involving a maximization 
criterion, and the other 
incorporating a probability 
distribution function. 

na 

2008 

Eshtehardia
n, Afshar, 
and 
Abbasnia 

GA Time-
Cost na 18 na 0.73 

Fuzzy set theory enables 
genetic algorithm (GA) to 
handle stochastic TCTPs. 

na 
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Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP (Continued) 
 
Year of 
Publication Author(s) Method Problem Platform # of 

Activities Seconds APD 
(%) Remarks Shortcomings 

2009 

Afshar, 
Ziaraty, 
Kaveh, and 
Sharifi 

ACO Time-
Cost na 18 na na 

Multi-colony non-
dominated archiving ACO 
(NA-ACO) that assigns 
separate ant colonies to 
each objective and 
evaluates the found 
solutions respecting the 
competing objective within 
the next colony. 

na 

2010 
Anagnostop
oulos and 
Kotsikas 

SA Time-
Cost 

Visual 
Basic na na na 

Performance of five 
variants of simulated 
annealing (SA) algorithm 
are analyzed and 
compared to each other. 

na 

2010 Zhang and 
Xing PSO 

Time-
Cost-
Quality 

Visual 
C++ 13 na na 

A Fuzzy-based PSO with 
quality considerations that 
employs fuzzy attribute 
utility to generate 
composite values. 

Generates only a 
single optimal 
solution rather 
than the Pareto 
front. 

2012 
Sonmez 
and 
Bettemir 

Hybrid-
GA 

Time-
Cost 

Visual 
C++ 

18, 29, 
63, 290, 
and 630 

na 

0.00, 
0.00, 
2.50, 
0.43, 
and 
2.41 

A hybrid genetic algorithm 
combining potencies of 
simulated annealing (SA) 
along with quantum 
simulated annealing 
(QSA). 

na 

2012 Ashuri and 
Tavakolan 

Hybrid 
GA-PSO 

Time-
Cost-
Resource 

Delphi 7 and 14 348 and 
1140 na 

A fuzzy-based hybrid GA-
PSO with resource 
considerations that treats 
lower and upper halves of 
population using GA and 
PSO, respectively. 

Only handles 
TCRO problems 
with continuous 
functions. 
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It is widely documented in the literature (e.g. Zheng et al. 2005, Yang 2007a, 
Eshtehardian et al.2008) that the ultimate resolution of TCT analyses is to find 
non-dominated set of solutions, dubbed as the Pareto front, for the feasible 
set of durations. Experts undertake TCT analyses to come up with appropriate 
selection of resources such as crews, equipment, machinery, etc., required for 
execution of project activities. Obtaining the Pareto front assists the decision 
makers in construal of minimum costs associated with any of the possible 
completion dates. Archiving the Pareto front in essence is a bi-criterion 
optimization problem that attempts to concurrently solve two classical 
derivate of TCT problems, viz., the budget and the deadline problems. 
 
It is also argued in the literature that, literally, every construction project 
involves non-renewable resources dedicated for the discrete modes of the 
activities. Besides, discretization might come in handy amidst approximation 
of any time-cost relationship. Though, in accord to its intrinsic complexity, the 
discrete TCT problem is unraveled merely for small instances. Broadly 
embraced in the literature, is the network explained by Feng et al. (1997) 
comprising only 18-activities. Having surveyed a relatively vast domain of the 
management literature, there seems to be a scant attention devoted to 
practical procedures capable of scrutinizing large-scale projects. It is also 
perceived that sporadic devotion is made toward identification of the complete 
Pareto front for the problems. 
 
As long as the commercial scheduling software packages, in general, do not 
bear robust strategies for TCT analyses, various methods have been 
developed by the researchers. Though, it is noticed that most of the proposed 
exact algorithms suffer from incapability to simultaneously exert more than 
one objective. Linear programming techniques are alleged that they fail to 
solve instances with discrete time-cost relationships. Besides, integer 
programming approaches demonstrate massive consumption of computational 
resources as the size and complexity of multi-modal problems increases. As 
depicted by De et al. (1995), any exact solution algorithm for the discrete TCT 
problem would almost always exhibit an exponential worst-case complexity; 
in that, the processing time would increase in an exponential manner as the 
size of the problem gets augmented. It has been concluded that exact 
algorithms are prone to being stagnated in local optima in non-convex 
solution spaces (De et al. 1995, Feng et al. 1997, Eshtehardian et al. 2008, 
Afshar et al. 2009). Moreover, the studies recruiting heuristic algorithms 
acknowledge that they, analogous to exact procedures, cannot handle large-
scale problems efficiently (Siemens 1971). Most of the heuristics presume 
merely linear time-cost relationships and they fall short of delivering the set 
of possible solutions (Feng et al. 1997, Zheng et al. 2005). Main deficiency of 
the existing meta-heuristic algorithms is observed as the chance to get stuck 
into local optima (Zheng et al. 2005, Sonmez and Bettemir 2012). Such a 
condition causes premature convergence despite of iterated process of 
randomly manipulating the generated solutions. Accordingly, recognizing the 
limitations pertinent to various optimization techniques including the sole 
meta-heuristic algorithms, a recent trend toward combining various 
optimization methods has been emerged as hybrid algorithms. They are 
envisaged to combine the complementary strengths of different procedures to 
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provide more efficient approaches in dealing with complex real-world 
problems. 
 
Acquiring the drawbacks inherent to most of the existing techniques, it is of 
great importance to develop a state-of-the-art model, capable of identifying 
the complete Pareto front for larger discrete TCT networks. In addition, it is 
inferred from the literature on meta-heuristics that, contrasting with the 
genetic algorithms (GAs), a relatively scarce endeavor has been carried out to 
implement particle swarm optimization (PSO) technique in TCT problems. 
Accordingly, considering the efficiency of the meta-heuristic procedures in 
conjunction with the robustness of the PSO method illustrated by Elbeltagi et 
al. (2005), two particle swarm optimizers, as well as, a hybrid PSO algorithm 
are developed in this thesis study, so as to escalate the global convergence 
capabilities of the proposed method. The hybrid algorithm is intended to help 
decision makers to conduct subsequent “what if” analyses efficiently. 
 
In the ensuing chapter, characteristics of the proposed particle swarm 
optimizers along with the hybrid PSO algorithm developed to solve different 
extensions of time-cost trade-off problems (TCTP) for construction projects 
are going to be presented. 
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CHAPTER 3  
 
 

PARTICLE SWARM OPTIMIZATION ALGORITHMS 
 
 
 

This chapter is devoted to particle swarm optimizers (PSO). Initially, 
theoretical properties of contemporary PSO algorithms in conjunction with 
principles of Siemens approximation method (SAM) are clarified. 
Developments of two particle swarm optimizers, as well as a hybrid meta-
heuristic algorithm are presented for solution of time-cost trade-off problems, 
contributing specific emphasis on time-cost curve extension of these analyses. 
To this end, slight modifications as stated herein, are made to both of the 
SAM and PSO methods and a new hybrid SAM-PSO meta-heuristic algorithm 
with improved convergences capabilities is introduced. Flowcharts are given, 
illustrating the infrastructures of the proposed methods; besides, 
implementations of the proposed methods in C++ programming language are 
explained in the form of pseudo-codes. 
 
 
3.1. Particle Swarm Optimization (PSO) 
 
Exquisite studies on natural biological evolution and social behavior extant in 
systems such as animal herds, fish schools, and flock of birds where 
aggregated behaviors take place, triggered origination of swarm intelligence. 
Millonas (1994), toward developing models for artificial life, have documented 
five chief principles of the swarm intelligence, owing to the mutual properties 
of such natural systems: 
 

1. Proximity: Ability to conduct space and time computations. 
 

2. Quality: Ability to respond to environmental quality factors. 
 

3. Diverse response: Flexibility of the responses with multitude spectrum 
of reactions. 
 

4. Stability: Retain unaffected mode of behavior under slight 
environmental changes. 
 

5. Adaptability: Change behavior mode under rewarding external stimuli. 
 

This collective behavior of decentralized natural organisms, which was further 
studied and supported by numerous researchers, established the primitive 
initiatives for development of the PSO algorithm. The earliest precursors of 
PSO were computer simulations of migrating bird flocks for visualizing 
swarming behavior of the species in their search for food, carried out by 
Reynolds (1987) and Heppner and Grenander (1990). The basic rules 
governing simulation experiments of the migrating birds were to match 
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nearest neighbor velocity and to accelerate by distance. Apprehending the 
potency of these simulation models in optimization and analysis of 
sophisticated problems, Kennedy and Eberhart in 1995 developed the first 
paradigm of the PSO, based upon the principles of the swarm intelligence 
(Eberhart and Kennedy 1995, Kennedy and Eberhart 1995). 
 
PSO algorithm is a population-based algorithm that recruits potential solutions 
to concurrently search the domain, that is, promising to deliver enhanced 
convergence capabilities. It is rooted upon imitating the choreography of bird 
flocks that communicate together as they fly. This algorithm conceptually 
resembles evolutionary strategies and has ties to genetic algorithms; in that, 
it vastly relies on stochastic procedures, like the evolutionary algorithms. 
Withal, similar to genetic algorithms, PSO involves randomly generated 
populations and evolves individual solutions providing cooperation and 
competition processes that are theoretically analogous to the crossover 
operations. However, unlike evolutionary algorithms, PSO mimics the social 
behavior of the biological agents. Opposed to genetic algorithms, PSO 
incorporates memory; in addition, unlike GAs randomized velocities are 
assigned for individual solutions. 
 
The system initializes with a population of random potential solutions. The 
population is hailed as “swarm”, while, the potential solutions are termed as 
“particles”. The particles are flown through a multidimensional search space. 
Particles iteratively fly over the search space in explicit directions, and are 
attracted to self-attained historical best position (personal best; pbest) and to 
the best position among the entire swarm (global best; gbest). Each particle 
memorizes the coordinates associated with the best location it has visited so 
far. At each time step, particles evaluate their own positions with respect to 
definite fitness criteria, then, comparing the fitness values, they communicate 
to identify the particle located in the best position. Thenceforth, aiming to 
imitate the best bird, each bird speeds towards the best position using a 
velocity that incorporates coordination of the personal best location. 
Accordingly, at any iteration, velocity of each particle is adjusted depending 
on random terms, with independent random numbers being generated for 
acceleration toward personal and global bests. Each particle, then, evaluates 
the domain from its new location, and the process reiterates until either the 
swarm reaches to a predefined target, or a computational limit. 
 
Considering the numbers of variables, 𝑆, PSO randomly positions 𝑁 particles 
in a 𝑆-dimensional solution space. Each particle is initialized with position and 
velocity vectors of 𝑆 elements. The swarm comprising 𝑁 particles is defined as 
a set: 
 
 𝐴 = {𝑥1, 𝑥2, … , 𝑥𝑁} 
 
where each 𝑥𝑖 is represented by its position as a decision vector in the search 
space, denoted as a set: 
 
 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑆} 
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where each 𝑥𝑖𝑠 resembles particle 𝑖’s coordinates on 𝑆th dimension. The 
particles are assumed to fly within the search space, iteratively. The position 
change is facilitated by means of each particle’s velocity, represented as: 
 
 𝑣𝑖 = {𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝑆} 
 
velocities are modified with respect to the information acquired thru the 
earlier steps of the algorithm. Accordingly, in addition to the swarm set, 𝐴, 
containing current positions of the particles, PSO retains a memory set where 
each particle stores the best position visited thus far. This set is defined as: 
 
 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁} 
 
which contains the personal best positions (pbest) reached in previous cycles, 
on 𝑆th dimension, for each particle: 
 
 𝑝𝑖 = {𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑆} 
 
The index of the best particle among the entire swarm in the population – the 
lowest function value in 𝑃 at a given iteration – is represented by the symbol 
𝑔, and the array index of that agent is assigned to a variable called gbest. 
 
If 𝑡 signifies the iteration counter, then the current position and velocity of the 
𝑖th particle will be henceforth denoted as 𝑥𝑖

(𝑡) and 𝑣𝑖
(𝑡), respectively. 

Accordingly, each particle updates its velocity at each time step 𝑡, using 
current velocity, 𝑣𝑖

(𝑡), the distance to personal best experience, and the 
distance to best position of the swarm. Withal, the velocity term is modified 
involving some randomness in the direction of pbest and gbest, so as to 
approach toward the best particle 𝑔, using the velocity update equation (3.1). 
 

 𝑣𝑖𝑖
(𝑡+1) = 𝑣𝑖𝑖

(𝑡) + 𝑐1𝑟1�𝑃𝑖𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� + 𝑐2𝑟2�𝑃𝑔𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� (3.1) 

 
𝑖 = 1, 2, … ,𝑁, 𝑗 = 1, 2, … , 𝑆 

 
Likewise, using the velocity in proceeding time step, 𝑣𝑖𝑖

(𝑡+1), the particle’s 
updated position is measured exploiting the position update equation (3.2). 
 

 𝑥𝑖𝑖
(𝑡+1) = 𝑥𝑖𝑖

(𝑡) + 𝑣𝑖𝑖
(𝑡+1) (3.2) 

 
where, for both Eqs. (3.1) and (3.2), subscript 𝑗 denotes the dimension of the 
search space; 𝑟1 and 𝑟2 are random 𝑆-dimensional vectors with their 
components uniformly distributed within the range [0,1]; and the constants 𝑐1 
and 𝑐2 are hailed as the cognitive and social parameters, respectively. At each 
time step, 𝑡, succeeding the velocity and position modifications, the 
performance of particles are reevaluated respecting a predefined problem-
specific fitness function. Thereon, the memorized personal bests (pbest) are 
updated accordingly. Ultimately, redetermination of index 𝑔 for the updated 
“pbest”s, completes a cycle of the PSO algorithm. The computation of Eqs. 
(3.1) and (3.2) is demonstrated in Figure 3.1. Particle 1 is directed toward a 
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new location regarding the positions of the pbest and the gbest, in this 
particular case the fifth particle. 
 

 
 

Figure 3.1 – Demonstration of PSO concepts (Yang 2007a). 
 
On the verge of eliminating the explosion effect, i.e., the unrestrained 
escalation of the velocities that promotes swarm divergence, a mechanism to 
clamp individuals’ velocities is applied. This damping factor is implemented 
using Eq. (3.3) prior to the position update. 
 

 𝑣𝑖𝑖
(𝑡+1) ∈ [−𝑣𝑚𝑎𝑥   , 𝑣𝑚𝑎𝑥]       ,      �

𝑣𝑖𝑖
(𝑡+1) < −𝑣𝑚𝑎𝑥    →     𝑣𝑖𝑖

(𝑡+1) = −𝑣𝑚𝑎𝑥
𝑣𝑖𝑖

(𝑡+1) > 𝑣𝑚𝑎𝑥    →     𝑣𝑖𝑖
(𝑡+1) = 𝑣𝑚𝑎𝑥        

 (3.3) 

 
where negative velocities are also considered, for, velocity vectors might 
reverse. In consensus with numerous studies, this parameter, 𝑣𝑚𝑎𝑥, is set as 
integer 2 for problems with continuous objective functions. 
 
The values of 𝑐1 and 𝑐2 constants in Eq. (3.1), controlling the magnitude of 
search, can affect the convergence capabilities of a particle by biasing its 
movement either toward the pbest or the gbest positions, respectively. In 
that, in case of 𝑐1 > 𝑐2, migration would be biased toward the direction of 
pbest, whilst, the contrary, 𝑐1 < 𝑐2 case would favor migration toward the 
direction of gbest. In the literature, these two constants are commonly set to 
be integer 2, in favor of ascribing weighted average of 1 for the second and 
third terms of the equation. On the other hand, the randomness of 𝑟1 and 𝑟2 
further adjust weightings which facilitate finding a better solution along the 
direction guided toward pbest and gbest. 
 
The previous velocity term, 𝑣𝑖𝑖

(𝑡), in the right-hand side of Eq. (3.1) provides 
the particle with an inertial movement, taking on its preceding velocity. This 
principle enhances the convergence capability of the swarm by avoiding 
biased migration towards the pbest and gbest positions. That is, this term 
functions as a perturbation for the global best particle, 𝑃𝑔. In absence of this 
term, the search space would shrink over generations and the global best 
particle might stagnate at the same location for several cycles, until 
identification of a better position by another particle. The ultimate generation 
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5 
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𝑥𝑖𝑖
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deeply relies on the initial population (seeds), hence, most probably the 
swarm would perform local search short of the first term. The second term of 
Eq. (3.1) represents cognition, or the private thinking of the particle since 
compares current position to personally experienced positions. Whereas, the 
third term, characterizes the social cooperation among the particles, since 
compares current position of particles to the best position experienced by the 
swarm. Without these two terms, the particles will continue flying at a 
constant speed in the same direction. Therefore, the swarm would not be able 
to find any suitable solution unless meeting one on their flying trails. 
 
 
3.1.1. Modified particle swarm optimization (M-PSO) 
 
Shi and Eberhart (1998) introduced the so-called inertia weight (𝑤) parameter 
for the original particle swarm optimization algorithm (PSO) of Kennedy and 
Eberhart (1995). Revisiting the roles for each part associated with the PSO 
velocity update equation, and hinting at the trade-off between local and global 
search capabilities of the particles, Shi and Eberhart (1998) modify the 
original velocity update equation by insertion of the inertia weight (3.4). 
 

 𝑣𝑖𝑖
(𝑡+1) = 𝑤(𝑡)𝑣𝑖𝑖

(𝑡) + 𝑐1𝑟1�𝑃𝑖𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� + 𝑐2𝑟2�𝑃𝑔𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� (3.4) 

 
𝑖 = 1, 2, … ,𝑁, 𝑗 = 1, 2, … , 𝑆 

 
Coding the proposed modified PSO in Borland C++ compiler, the benchmark 
F6 function is solved under various 𝑤 considerations. Thirty test runs are 
executed for each value of the 𝑤, and the number of failures (if any) is 
dedicated for each 𝑤. Visualizing the flying process along with the frequency 
of the failures, the authors conclude local search capabilities for smaller 
values of 𝑤, whereas, determine larger values of 𝑤 treat PSO with more global 
search capabilities. Accordingly, the authors propose a time-variant (iteration) 
reduction for this parameter to enhance the algorithm with a better balance 
between the local and global searches, for, providing more exploration ability 
at the initial stages followed by more exploitation ability at the closing cycles. 
Hence, the modified PSO commences with a larger value of 𝑤, in order to 
promote the swarm with a better global search throughout the initial stages; 
thereafter, this parameter linearly decreases as a function of time (iteration) 
to avail a more in-depth local search by the particles (3.5). 
 

 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) �
𝑡𝑚𝑎𝑥 − 𝑡
𝑡𝑚𝑎𝑥 − 1

� (3.5) 

 
where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 denote upper and lower bounds of 𝑤, respectively; and 
𝑡𝑚𝑎𝑥 is the total number of iterations. Shi and Eberhart (1998) conclude the 
modified PSO with a range of [0.9, 1.2] for the inertia weight outperforms the 
classical PSO algorithm discussed in section 3.1. 
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3.1.2. Discrete binary particle swarm optimization (D-PSO) 
 
Acknowledging the importance of discrete optimization problems, the 
founders of classical PSO algorithm (Kennedy and Eberhart 1997), in 1997, 
introduced the binary version of this algorithm for problems with discrete 
objective functions which is slightly modified and adopted in the ensuing 
sections of this thesis to unravel discrete TCT problems. In the original 
paradigm of PSO, each particle’s trajectory was defined as changes in position 
on some dimensions in a 𝑆-dimensional space; whereas, in the discrete 
version, trajectories and velocities are defined in a probabilistic space 
concerning state selection of the bits. The algorithm commences by randomly 
generating 𝑁 particles with their corresponding velocity vectors. Then, based 
on a predefined fitness function, the swarm aims to uphold the probability of 
the binary variable that contributes to a better fit, through assigning due 
velocities. Kennedy and Eberhart (1997) define the migration of particles as 
flying in a state space with binary values of zero and one on any of the 
dimensions. Velocity on a single dimension is defined as the probability of 
change which is measured using the aforementioned Eq. (3.1), while 
satisfying the condition (3.3). Kennedy and Eberhart (1997), this time 
around, propose clamping the velocity for discrete PSO with 𝑣𝑚𝑎𝑥 = 6, since, 
contrary to continuous version, smaller 𝑣𝑚𝑎𝑥 allows for a larger range to be 
explored by the binary system. Moreover, the inertia weight parameter is not 
adopted for the velocity calculations, for, this version was developed prior to 
the modified paradigm of Shi and Eberhart (1998). Following the velocity 
measurements, they are margined to the range [0,1] using the ensuing 
sigmoid function (3.6). 
 

 𝑠𝑖𝑔�𝑣𝑖𝑖
(𝑡)� =

1

1 + exp (−𝑣𝑖𝑖
(𝑡))

 (3.6) 

 
where each 𝑣𝑖𝑖

(𝑡) represents the probability that the bit 𝑥𝑖𝑖
(𝑡) would take the 

value 1, at time step 𝑡. 
 
The component values of 𝑥𝑖𝑆’s, including the pbest and gbest positions, are 
determined by selection of elements from the set {0,1}. However, 𝑥𝑖𝑆 does not 
hold a value unless it is evaluated based the probabilistic update equation. 
Accordingly, any bit with a certain velocity vector 𝑣𝑖𝑆 might possess diverse 
positions, 𝑥𝑖𝑆, on a single dimension at every generation. The position update 
for 𝑖th particle on the 𝑗th dimension is measured subject to the following 
probabilistic condition (3.7). 
 

 𝑥𝑖𝑖
(𝑡+1) = �1     𝑖𝑓     𝑠𝑖𝑔 (𝑣𝑖𝑖

(𝑡+1)) > 𝑟𝑖𝑖                                          

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
 (3.7) 

 
where 𝑟𝑖𝑖 is a uniformly distributed random number in the range [0, 1]. Eq. 
(3.7) indicates that the value of 𝑥𝑖𝑖 will be kept 0, in case 𝑠𝑖𝑔�𝑣𝑖𝑖� equals to 0. 
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3.2. Siemens Approximation Method (SAM) 
 
As it was discussed previously, in 1971, Siemens has developed a heuristic 
algorithm, hailed as the Siemens Approximation Method (SAM), for time-cost 
trade-off analyses (Siemens 1971). This method will be slightly modified and 
exploited in the ensuing sections of this thesis to provide a hybrid SAM-PSO 
algorithm for solving discrete time-cost curve problems. The original 
procedure is initiated with construction of the project network; thereafter, 
administering a couple of rules, activities that incur least additional costs are 
identified and crashed. The SAM algorithm comprises the stepwise procedure 
as follows: 
 

I. Construction of the project network. 
 

II. Identification of the paths in the network passing through the initial 
and final activities. 
 

III. Evaluation of the cost slopes (cost per unit of time saved) for the 
activities in the network. 
 

IV. Measurement of the completion time for the identified paths. 
 

V. Determination of the longest path i.e. the critical path. If more than 
one choice exists, discrimination is made in favor of the path having 
smaller least cost slope. 
 

VI. Detection of the activity with least cost slope within the selected 
critical path. If cost slope is common to more than one activity, 
discrimination is made in favor of the activity which is common to 
greater number of paths. If more than one choice still exists, 
discrimination is made in favor of activity that permits greater amount 
of expedition. 
 

VII. Expedition of the detected activity by the available amount of duration. 
 

VIII. Reiteration of steps III through VII until all the activities of the 
selected critical path is crashed. 
 

The most prominent aspect of this method can be depicted as its assistance in 
crashing activities with lowest cost slopes, on progressively changing paths 
that have the longest duration, i.e., incessantly changing critical paths. 
However this heuristic algorithm might shorten the duration of a project 
beyond the intended amount, due to crashing activities merely with the 
minimum cost slope considerations, and regardless of the number of different 
paths the activities belong to. Besides, the cost slopes are evaluated merely 
with regard to the utmost tuples having shortest and longest durations. Thus, 
any crashing mode residing within the cheapest and the expensive modes will 
most probably be neglected in cost slope calculations. Acknowledging this 
drawback, a slight modification will be made prior to adoption of this model in 
the novel hybrid algorithm. 
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3.3. Initialization and Termination 
 
It is obvious that any optimization algorithm involves fitness functions, 
suchlike, any algorithm requires a pattern to initialize the process, and 
another condition to terminate it. Initialization can be performed either by a 
deterministic or a random scheme; nonetheless, the latter condition is most 
commonly used with the population-based stochastic algorithms. Though, 
following types of initialization can be generally adopted for iterative 
algorithms (Parsopoulos and Vrahatis 2009): 
 

• Deterministic initialization with constant seed: Suitable for the 
algorithm that repeatedly initialize from a certain point, determined by 
the users. 
 

• Deterministic initialization with different seeds: Appropriate for the 
algorithm that initialize from a different point thru each cycle, selected 
by the user within the domain. 
 

• Random initialization with constant seed: Applicable for the algorithm 
that repeatedly requires a certain randomly selected point to initialize. 
 

• Random initialization with different seeds: Due for the algorithm that 
at each time step requires a different randomly generated point to 
initialize, selected from the domain. 
 

The latter scheme is widely incorporated with the evolutionary strategies. 
Accordingly, in this thesis, in addition to a sole-PSO algorithm with random 
initial seeds, a hybrid PSO is also developed which embeds both the merits of 
the first scheme and the last pattern. Deterministic seeds developed by SAM 
portion of the algorithm are fed into the PSO, while, generating additional 
random populations. 
 
Such as the initialization, there exist a couple of approaches toward 
termination of an algorithm. Termination is probably the most user-dependent 
part of the optimization process, and occurs when at least one of the user-
defined conditions arise. The most typical termination conditions are as 
follows (Parsopoulos and Vrahatis 2009): 
 

• Convergence in domain: The series of produced solutions converge to 
a minimizer. 
 

• Convergence in function value: The function values of the solutions 
converge to a minimum. 
 

• Computational budget limitations: The exhaustion of all the available 
computational resources. 
 

• Search stagnation: The state of not being able to produce any new 
solutions. Such condition occurs when velocities in PSO incline to zero. 
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The latter condition is typically used as a termination criterion in the 
evolutionary algorithms. The progress rate of an algorithm reveals its 
efficiency as well as its potential for improving the attained results. In case of 
slow evolutions, search is said to be stagnated. Consequently, in this thesis, 
the algorithm halts if no improvement is observed for the best solution, within 
a certain number of successive generations (a fraction of the maximum 
number of iterations), or, if the maximum number of iterations is reached. 
 
 
3.4. Particle Swarm Optimizer for Time-Cost Trade-Off Analyses 
 
In this thesis, TCT problem has been provisioned under three different 
considerations. Initially, slight modifications are applied to the discrete 
version of the classical sole-PSO algorithm. Additionally, a time-constraint 
paradigm has been also developed. Afterwards, a novel hybrid algorithm has 
been introduced that embeds a slightly modified SAM method to an 
overhauled discrete PSO algorithm, extended for multi-objective 
optimizations. The hybrid SAM-PSO model aims at solving the time-cost curve 
problem in archiving the full Pareto front. In the ensuing sections, the 
developed algorithms, as wells as their flowcharts and pseudo-codes are 
elaborated. 
 
 
3.4.1. Discrete TCTP 
 
As it was discussed earlier, it is imperative for the TCT practices to consider 
discrete sets of time-cost options for the activities, whereof, discrete 
alternatives are commonplace in real-life projects and that any time-cost 
function can be estimated by means of discretization. Accordingly, an efficient 
procedure has been developed in this thesis to enhance the decision making 
process for the managers. The initial discrete sole-PSO algorithm is grounded 
on the version proposed by the founders (Kennedy and Eberhart 1997), which 
was demonstrated in section 3.1.2. However, slight modifications have been 
applied to the equations and an alternate position update equation has been 
adopted. The flowchart of the proposed discrete PSO algorithm is 
demonstrated in Figure 3.2, which is going to be detailed step by step in this 
section. 
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Figure 3.2 – Flowchart of the proposed discrete PSO algorithm. 
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Since the CPM calculations are executed within the framework of the proposed 
algorithm, the initial step requires definition of the project by the users, 
namely, direct cost (𝑑𝑐), duration (𝑑), logical relationship, and realization 
alternatives of the activities, as well as the daily indirect cost (𝑖𝑐). Thereafter, 
the algorithm demands setting values for the operators like number of 
generations (𝑡) and number of birds (𝑁). Subsequent to determination of the 
preliminary information, the PSO algorithm commences as follows. 
 
First of all, it must be noted that in this thesis, alternatives are presumed as 
the decision variables; yet, solutions are encoded in 𝑁 number of 𝑆 × 2𝑚 
matrices, called position matrices, in which 𝑚 is the maximum number of 
available modes (each mode comprising 2 columns, with odd columns 
dedicated for “duration” amounts, and even columns devoted for “direct 
costs” values) for 𝑆 number of activities. The position of 𝑖th particle for the 𝑘th 
option of the 𝑗th activity, in the time step 𝑡 is represented by 𝑥𝑖𝑖𝑘

(𝑡). Moreover, 
the algorithm involves binary discrete values, that is, each particle 𝑖, for its 
𝑗th activity selects only a certain 𝑘 that obtains integer 1 as its value, 
whereas, the rest of the 𝑥𝑖𝑖𝑘 ’s hold 0. In doing so, it is guaranteed that during 
each iteration, every particle chooses only a single option for any of the 
activities (3.8). 
 

 �𝑥𝑖𝑘
(t)

𝑚

𝑘=1

= 1       ,       ∀ 𝑗 = {1, … , 𝑆} (3.8) 

 
Accordingly, incorporating the initialization techniques detailed in section 3.3, 
this model starts with positioning 𝑁 number of randomly generated seeds, 
𝑥𝑖𝑖𝑘 ’s, over the solution space, subject to the precedence constraints 
formulated as Eq. (3.9).  
 

 𝐸𝑆𝑖
(𝑡) + 𝑑𝑖

(𝑡) − 𝐸𝑆𝑙
(𝑡) ≤ 0          ,         ∀ 𝑙 ∈ 𝑆𝑖 (3.9) 

 
where 𝑑𝑖 is activity 𝑗’s duration; 𝐸𝑆𝑖 represents the early start time of 𝑗th 
activity; and 𝑆𝑖 contains all the immediate successors of the 𝑗th activity. For 
the first activity of the network (𝑗 = 1), the early start time is assumed to be 
1, i.e., 𝐸𝑆1

(𝑡) = 1. Besides, non-negativity of the early start times and the 
durations are ensured satisfying the (3.10) condition. 
 

 𝐸𝑆𝑖
(𝑡) ,𝑑𝑖

(𝑡) ≥ 0 (3.10) 

 
In addition to the random positions, each particle is treated with a random 
velocity vector through the first generation, 𝑣𝑖𝑖𝑘

(1), which is clamped in accord 
with the predetermined 𝑣𝑚𝑎𝑥, as follows: 
 

 𝑣𝑖𝑖𝑘
(1) = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟     ,      𝑣𝑖𝑖𝑘

(1) ∈ [−𝑣𝑚𝑎𝑥   , 𝑣𝑚𝑎𝑥] (3.11) 
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Conception of the first generation finalizes with setting each particle’s primary 
pbest, 𝑃𝑖

𝑡0, and gbest, 𝑃𝑔
𝑡0, positions as the current randomly generated 

location, using  𝑆 × 2𝑚 matrices, as: 
 

 𝑃𝑖𝑖𝑘
𝑡0 = 𝑃𝑔𝑖𝑘

𝑡0 = 𝑥𝑖𝑖𝑘
(1) (3.12) 

 
Concluding construction of the initial generation, each particle 𝑖’s fitness is 
evaluated with respect to the objective function (3.13), which involves 
minimization of the total project cost in this case. 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒�𝐶𝑖
∀𝑖

 (3.13) 

 
And the fitness evaluations are conducted by means of the fitness functions 
(3.14) and (3.15). 

 𝐷𝑖 = max ���𝑑𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡)
𝑚

𝑘=1

𝑆

𝑖=1

� (3.14) 

 

 

𝐶𝑖 = ��𝑑𝑐𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡) + 𝐷𝑖 × 𝑖𝑐
𝑚

𝑘=1

𝑆

𝑖=1

 (3.15) 

 
∀ 𝑗 = {1, … , 𝑆}, ∀ 𝑘 = {1, … ,𝑚} 

 
where 𝐷𝑖 and 𝐶𝑖 represent the total duration and the total cost of 𝑖th particle, 
respectively; 𝑑𝑖𝑘 represents duration of the 𝑘th options for the 𝑗th activity; 𝑑𝑐𝑖𝑘 
denotes direct cost for the 𝑘th alternative of the 𝑗th activity; and 𝑖𝑐 denotes 
the daily indirect cost. 
 
Succeeding fitness evaluation of the particles, the optimality of the solutions 
are compared with each other regarding condition (3.16). 
 
 𝑢 > 𝑣      𝑖𝑓     𝐶𝑢 ≤ 𝐶𝑣 (3.16) 
 
which determines discrimination is made in favor of decision vector 𝑢, in case 
the total cost of that particle is less than or equal to decision vector 𝑣; while, 
in case of equality, i.e., 𝐶𝑢 = 𝐶𝑣, discrimination is made in favor of the particle 
having smaller duration (3.17). 
 

 𝑢 > 𝑣      𝑖𝑓     �𝐶𝑢 = 𝐶𝑣
𝐷𝑢 < 𝐷𝑣

 (3.17) 

 
For the occasion that both particles 𝑢 and 𝑣 provide the same total costs and 
durations, discrimination is made randomly. Following identification of the 
better fitted individuals, 𝑃𝑖’s and 𝑃𝑔’s are updated accordingly. Meanwhile, for 
the first generation, 𝑃𝑖𝑖𝑘 will remain identical to 𝑥𝑖𝑖𝑘. 
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Later, particles are flown to their new positions using the velocity vector 
formulated as Eq. (3.18) which are also encoded as 𝑆 × 2𝑚 matrices. Albeit, 
notwithstanding the absence of the inertia weight (𝑤) in the original velocity 
update equation of the discrete PSO (Kennedy and Eberhart 1997), this 
parameter is incorporated in this thesis. Hence, recruiting the aforementioned 
Eq. (3.5), a time-variant reduction for this parameter is directed to enhance 
the algorithm with a better balance between the local and global searches. 
 

 𝑣𝑖𝑖𝑘
(𝑡+1) = 𝑤(𝑡) 𝑣𝑖𝑖𝑘

(𝑡) + 𝑐1𝑟1�𝑃𝑖𝑖𝑘
(𝑡) − 𝑥𝑖𝑖𝑘

(𝑡)� + 𝑐2𝑟2�𝑃𝑔𝑖𝑘
(𝑡) − 𝑥𝑖𝑖𝑘

(𝑡)� (3.18) 

 
Components of the Eq. (3.18) are identical to those discussed in sections 3.1 
and 3.1.1; whilst, subscript 𝑘, denoting the numeral of the alternatives, has 
been supplemented to the operators. As mentioned in section 3.1, damping 
factor (3.3) is applied to the calculated velocities. Thence, measured velocities 
are transformed to probabilities and are margined to the range [0,1], using a 
logistic transformation (3.19), as discussed earlier. 
 

 𝑠𝑖𝑔�𝑣𝑖𝑖𝑘
(𝑡)� =

1

1 + exp (−𝑣𝑖𝑖𝑘
(𝑡))

 (3.19) 

 
Each particle is then migrated to a new position subject to the probabilistic 
condition (3.20), adopted from Izakian et al. (2009, 2010). 
 

 𝑥𝑖𝑖𝑘
(𝑡+1) = �1     𝑖𝑓     𝑠𝑖𝑔 (𝑣𝑖𝑖𝑘

(𝑡+1)) = max�𝑠𝑖𝑔 (𝑣𝑖𝑖𝑘
(𝑡+1))�

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
 (3.20) 

 
Eq. (3.20) differs from the position update equation proposed by Kennedy and 
Eberhart (1997), in that, for every activity, it involves determination of the 
alternative(s) associated with the maximum amount of probability; whereas, 
the original version takes on a uniformly distributed random number for 
evaluations. Eq. (3.20) indicates that in each row of position matrix, only a 
single alternative will obtain value 1, whose corresponding element in the 
velocity vector has the maximum probability. If max�𝑠𝑖𝑔 (𝑣𝑖𝑖𝑘

(𝑡+1))� is common to 
more than one alternative, then, discrimination will be made randomly. 
 
There forth, the process will reiterate by making comparison among particles 
using the fitness functions. This procedure will repeat until meeting the 
termination conditions, deliberated in section 3.3. Accordingly, the algorithm 
will halt if no improvement is monitored for the best particle, within 0.2 × 𝑡𝑚𝑎𝑥 
successive generations, or, if the maximum number of iterations is reached. 
Ultimately, the algorithm will return the final gbest particle as the optimum or 
near-optimum solution for the discrete TCT problem. The pseudo-code of the 
proposed discrete PSO algorithm is illustrated in Figure 3.3. 
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Begin; 
 For each 𝑗 = 1, … , 𝑆; 
  For each 𝑘 = 1, …𝑚; 
   Retrieve first information; 
   Create 𝑆 × 2𝑚 matrices for 𝑁 particles; 
  End; 
 End; 
 For each particle 𝑖 = 1, … ,𝑁;  
  Initialize an array with random positions and  velocities on 𝑆 dimensions; 
  If Eq. (3.9)=true; 
   While 𝑡 ≤ 𝑡𝑚𝑎𝑥 && gbest improved within last 0.2 × 𝑡𝑚𝑎𝑥; 
    For each particle 𝑖 = 1, … ,𝑁;  
     Determine Duration using Eq. (3.14); 
     Calculate Total Cost using Eq. (3.15); 
     Initialize value of 𝑤; 
     If 𝑥𝑖 > 𝑃𝑖; 
      Set 𝑥𝑖𝑖𝑘 as pbest; 
       If 𝑃𝑖 > 𝑃𝑔; 
        Set 𝑃𝑖 as gbest; 
       End; 
     End; 
     Calculate velocity using Eq. (3.18); 
     Transform velocity to probability using Eq. (3.19); 
     Update position using Eq. (3.20); 
    End; 
    Update value of 𝑤; 
   End; 
  End; 
 End; 
 Return gbest; 
End; 

 
Figure 3.3 – Pseudo-code of the proposed discrete PSO algorithm. 

 
 
3.4.2. Time-constraint TCTP 
 
In addition to the modified discrete PSO procedure, a slightly revised version 
of this algorithm is also developed for time-constraint TCT analyses, which is 
going to be presented in this section. The time-constraint TCT problems 
engage minimization of the total cost, taking into account an upper boundary 
for the completion time of projects. These types of TCT problems typically 
occupy contractual clauses concerning the daily liquidated damages for 
delays, and daily incentives for early completions. Accordingly, an efficient 
procedure has been developed in this thesis to assist decision makers with 
assessment of provisions that employ incentives and liquidated damages. On 
the verge of satisfying the resolution of time-constraint optimization, minor 
adjustments are applied to the algorithm detailed in section 3.4.1. These 
adjustments comprise implementation of three new parameters of Deadline, 
Penalty, and Bonus, as well as, introduction of a new fitness function to the 
system. The flowchart of the proposed PSO algorithm for time-constraint 
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version of TCT problem is demonstrated in Figure 3.4, which is going to be 
explained methodically in this section. 
 

 
 

Figure 3.4 – Flowchart of the proposed PSO algorithm for time-constraint TCTP. 
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The proposed procedure remains identical to the version demonstrated in 
section 3.4.1, except for the retrieved initial information and the fitness 
function. In addition to the former definitions, this extension involves setting 
values for three new parameters by the users, namely, the amount of daily 
liquidated damage (𝑝𝑐), the daily incentive amount (𝑏𝑐), and the desired 
deadline (𝑑𝑑). Total cost representing the fitness of the particle is revised, 
such that, it ensures completion date of the optimal solution to be equal to or 
less than the specified deadline. Respectively, succeeding construction of the 
first generation, each particle 𝑖’s fitness is evaluated with regard to the 
following conditions: 
 

 𝐷𝑖 = max ���𝑑𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡)
𝑚

𝑘=1

𝑆

𝑖=1

� (3.21) 

  
𝑇𝑖 = 𝐷𝑖 − 𝑑𝑑 (3.22) 

 

 

𝐶𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧
���𝑑𝑐𝑖𝑘

(𝑡)𝑥𝑖𝑘
(𝑡) + 𝐷𝑖 × 𝑖𝑐

𝑚

𝑘=1

𝑆

𝑖=1

� + (|𝑇𝑖| × 𝑝𝑐)           𝑖𝑓    𝑇𝑖 ≥ 0

���𝑑𝑐𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡) + 𝐷𝑖 × 𝑖𝑐
𝑚

𝑘=1

𝑆

𝑖=1

� − (|𝑇𝑖| × 𝑏𝑐)          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.23) 

 
∀ 𝑗 = {1, … , 𝑆}, ∀ 𝑘 = {1, … ,𝑚} 

 
Eq. (3.21) measures the critical path’s duration; afterwards using Eq. (3.22), 
for each particle 𝑖, the time discrepancy between the desired deadline (𝑑𝑑) 
and the calculated duration is evaluated. This time discrepancy is then 
reflected on total cost calculations (3.23) as an extra term, provisioning 
penalties (𝑝𝑐) for delays and bonus payments (𝑏𝑐) for early completions. The 
sequel of this algorithm practices exactly the same procedure as, the system 
discussed in section 3.4.1. The pseudo-code of the proposed discrete PSO 
algorithm for time-constraint TCT problem is illustrated in Figure 3.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

41 
 

Begin; 
 For each 𝑗 = 1, … , 𝑆; 
  For each 𝑘 = 1, …𝑚; 
   Retrieve first information; 
   Create 𝑆 × 2𝑚 matrices for 𝑁 particles; 
  End; 
 End; 
 For each particle 𝑖 = 1, … ,𝑁;  
  Initialize an array with random positions and  velocities on 𝑆 dimensions; 
  If Eq. (3.9)=true; 
   While 𝑡 ≤ 𝑡𝑚𝑎𝑥 && gbest improved within last 0.2 × 𝑡𝑚𝑎𝑥; 
    For each particle 𝑖 = 1, … ,𝑁;  
     Determine Duration using Eq. (3.21); 
     Evaluate Duration vs. Deadline; 
     Calculate Total Cost using Eq. (3.23); 
     Initialize value of 𝑤; 
     If 𝑥𝑖 > 𝑃𝑖; 
      Set 𝑥𝑖𝑖𝑘 as pbest; 
       If 𝑃𝑖 > 𝑃𝑔; 
        Set 𝑃𝑖 as gbest; 
       End; 
     End; 
     Calculate velocity using Eq. (3.18); 
     Transform velocity to probability using Eq. (3.19); 
     Update position using Eq. (3.20); 
    End; 
    Update value of 𝑤; 
   End; 
  End; 
 End; 
 Return gbest; 
End; 

 
Figure 3.5 – Pseudo-code of the proposed PSO algorithm for the deadline problem. 

 
 
3.4.3. Time-cost curve TCTP 
 
It was declared earlier that the major concern with the TCT analyses is to 
unravel time-cost curve problem through obtaining a complete time-cost 
profile for the feasible project completion times. Originally conceded by 
Vilfredo Pareto, this profile is dubbed as the Pareto front or the efficient 
frontier, whose components are mutually non-dominated with respect to 
multiple criteria. As such, time-cost curve extension of the TCT problem is a 
multi-objective decision making problem, and any of its objectives might 
reach their optimal amounts at miscellaneous positions; thus, necessitating 
judgments of the experts for ultimate selection of the optimum solution along 
the efficient frontier. Obtaining the Pareto front for TCT problem, in essence, 
engages concurrent optimization of two classical TCT extensions, viz., the 
budget and the deadline problems. The results of these analyses are typically 
stored in a repository hailed as the external archive. Resultantly, for TCT 
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problems, the Pareto front does not occupy 𝑣th solution if there is already 
another solution, 𝑢, in the archive, such that 𝐷𝑣 ≥ 𝐷𝑢 while 𝐶𝑣 ≥ 𝐶𝑢, and one of 
these inequalities holds strictly. 
 
Owing to inherent complexity of the time-cost curve problem, it is imperative 
to develop a state-of-the-art model, capable of identifying the complete 
Pareto front for larger discrete TCT networks. To this end, two chief 
considerations are taken into account in this thesis. First, as stated in section 
3.3, most of the evolutionary algorithms use a random scheme to initialize the 
first generation. Though, convergence capabilities of these algorithms 
extremely rely on the initial seed. Second, it is a challenge for the multi-
objective optimization problems to compare the fitness of the archived 
solutions; for, solutions stored in the repository are mutually non-dominated 
and that there exist no general criterion for optimality. Thus, extending PSO 
for multi-objective problems urges practicing novel approaches toward 
evaluation of pbest and gbest positions of the particles. 
 
Focusing on the two concerns mentioned, in this thesis, the complementary 
potencies of a heuristic method and a PSO are combined to develop a novel 
hybrid algorithm. Toward satisfying the first concern, minor modifications are 
applied to the original Siemens Approximation Method (SAM), and it is then 
embedded to a revamped PSO algorithm. The modified-SAM method accounts 
for a certain portion of the initial seed, with the remaining initial particles 
being generated randomly. Grounded upon the discrete PSO algorithm 
proposed in section 3.4.1, an overhauled system has been developed to 
address the second problem. Novel techniques for fitness evaluations are 
implemented into this paradigm of the PSO algorithm. 
 
Correspondingly, this hybrid approach contrasts with the previous studies 
both in terms of the scheme used to generate the first population, and in 
terms of the objective function used to evaluate pbest and gbest of the 
particles. The escalated convergence competencies of this model, in mapping 
optimal costs to feasible durations, will be verified in the ensuing chapter. This 
section is dedicated to practice of the proposed hybrid SAM-PSO algorithm, 
whose flowchart is presented in Figure 3.6. Steps of this model are going to 
be illuminated in the sequel of this section. 
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Figure 3.6 – Flowchart of the proposed hybrid SAM-PSO algorithm. 
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Identical to the earlier proposed systems, the initial step of this model 
requires definition of the project by the users, namely, direct cost (𝑑𝑐), 
duration (𝑑), logical relationship, and realization alternatives of the activities, 
as well as the daily indirect cost (𝑖𝑐). In addition to project information, the 
hybrid algorithm demands assigning a time interval (𝑍𝑚𝑖𝑛 to 𝑍𝑚𝑎𝑥) within 
which, the feasible realizations of durations will be explored. Afterwards, the 
algorithm invokes setting values for the operators like number of generations 
(𝑡) and number of birds (𝑁), with the latter being set meticulously (usually 
larger swarms) for the sake of deterministic seeds (discussed later in this 
section). Subsequent to determination of the preliminary information, the 
SAM-PSO algorithm embarks performing the following sequence of actions. 
 
In lieu of the initialization technique adopted in the former models, SAM-PSO 
incorporates a semi-deterministic (semi-random) initialization scheme 
(readers are referred to section 3.3). To this end, a certain portion of the 
initial population is generated by dint of the modified-SAM method, with the 
remaining initial seeds being generated randomly. The modified-SAM method 
remains virtually unchanged compared to the original procedure (section 3.2), 
with a minor revision made to the cost slope evaluation pattern (step III). The 
reason behind this modification, as discussed in section 3.2 previously, is that 
the original SAM method evaluates cost slopes merely with regard to the 
utmost tuples having the shortest and the longest durations, which most 
probably causes neglecting any crashing mode residing within these 
alternatives. However, the modified-SAM assumes an incremental order for 
the tuples, from left to right, with respect to their costs; and unlike the 
original method, for each activity 𝑗, calculates the cost slopes (𝐶𝑆𝑖) involving 
the available utmost right and the penult crashing modes.  During any 
iteration, this method uses Eq. (3.24) to evaluate the cost slopes. 
 
 𝐶𝑆𝑖 = (𝐶𝑖𝑘 − 𝐶𝑖(𝑘−1))(𝐷𝑖𝑘 − 𝐷𝑖(𝑘−1))−1 (3.24) 

 
∀ 𝑗 = {1, … , 𝑆}, ∀ 𝑘 = {1, … ,𝑚} 

 
where the cost slopes of the first network are evaluated by setting 𝑘 = 𝑚; 
afterwards, decreasing the numeral of option 𝑘, one at a time, as more 
alternatives of the 𝑗th activity gets crashed. The attained solutions from 
modified-SAM are represented by 𝑦𝑖𝑖𝑘, which implies solution 𝑖’s position, for 
the 𝑘th option of the 𝑗𝑡ℎ activity. An external repository, 𝑂, has been 
dedicated to the SAM-PSO model, so as to store all the non-dominated 
solution found by this algorithm. This external archive is designed to hold 
�(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 1� solutions, which are encoded in 𝑆 × 2𝑚 matrices (𝑚, 
allowable modes for 𝑆 activities, comprising 2 column; odd and even columns 
devoted for “duration” and “direct costs”, respectively). Primarily, this hollow 
repository is exploited by the modified-SAM to archive all the time-cost 
realizations obtained thru each cycle. The number of solutions recorded in 
repository 𝑂, at the final cycle of this phase is denoted by 𝑀, allowing 
��(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 1� − 𝑀� number of non-dominated particles to be added to the 
repository over the subsequent stages of SAM-PSO. Accordingly, as expressed 
previously, it is of great importance for this algorithm to set the number of 
particles, 𝑁, with a great obsession; in that, 𝑀 number of particles will be 
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occupied in this phase, leaving 𝑁 −𝑀 particles to be generated randomly 
amidst the PSO stage. Hence, the users are advised to take on larger swarms, 
such that: 
 

𝑁 > 𝑀 
 
The modified-SAM stage concludes with submission of the results stored in 
the archive 𝑂, to the particle swarm optimizer. In doing so, it is intended to 
feed the solutions archived in repository 𝑂, as initial seeds into the PSO 
model; as well, to exploit these solutions in pbest and gbest calculations of 
the PSO algorithm. It must be emphasized, however, that the external archive 
𝑂 is dedicated only to the non-dominated solutions and that the PSO process 
engages alternate matrices for the calculations. Therefore, succeeding the 
final cycle of the modified-SAM, solutions are seeded to the particle swarm 
optimizer; 𝑁 −𝑀 particles are then generated using a random scheme 
(identical to systems discussed in sections 3.4.1 and 3.4.2), initializing the 
PSO process. The aforementioned Eq. (3.9) is used to satisfy the precedence 
constraints of the generated particles. Thereafter, clamped to the feasible 
region [−𝑣𝑚𝑎𝑥   , 𝑣𝑚𝑎𝑥], all the initial seeds, i.e., 𝑀 deterministic and 𝑁 −𝑀 
random particles are treated with random velocity vectors, 𝑣𝑖𝑖𝑘

(1), through the 
first iteration. 
 
Conception of the first generation concludes with determination of the 
primitive pbest, 𝑃𝑖

𝑡0, and gbest, 𝑃𝑔
𝑡0, positions. Encoded in  𝑆 × 2𝑚 matrices, 

each particle acquires the “best” positions using Eq. (3.25) as follows: 
 

 �
𝑃𝑖𝑖𝑘
𝑡0 = 𝑃𝑔𝑖𝑘

𝑡0 = 𝑦𝑖𝑖𝑘      ,       ∀𝑖 ∈ {1, … ,𝑀}         

𝑃𝑖𝑖𝑘
𝑡0 = 𝑃𝑔𝑖𝑘

𝑡0 = 𝑥𝑖𝑖𝑘
(1)     ,       ∀𝑖 ∈ {𝑀 + 1, … ,𝑁}

 (3.25) 

 
where each 𝑦𝑖𝑖𝑘 is the position of the particle attained from the modified-SAM; 
and each 𝑥𝑖𝑖𝑘

(1) represents position of the randomly generated particle. 
 
Toward fitness evaluations, the rationale of the system discussed in section 
3.4.1 has been totally revamped; in that, each particle 𝑖’s fitness is evaluated 
with respect to the new objective function (3.26), which involves concurrent 
minimization of both the total duration and the total cost of the project. 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑦 ≡ (𝐷,𝐶) (3.26) 
 
The fitness evaluations involve Eqs. (3.14) and (3.15) for total duration and 
total cost measurement. Herein, a controller is devised to carry out judgments 
regarding particles’ qualification to enter the external archive 𝑂. For any 
decision vector 𝑥, this controller engages the following criteria with respect to 
the measured 𝐷𝑥 and 𝐶𝑥: 
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 𝐴𝑐𝑐𝑒𝑝𝑡       𝑖𝑓        �
 𝑍𝑚𝑖𝑛 ≤ 𝐷𝑥 ≤ 𝑍𝑚𝑎𝑥
𝐷𝑥 ≠ 𝐷𝑦                     (3.27) 

 

 

                     𝑜𝑟        �
 𝑍𝑚𝑖𝑛 ≤ 𝐷𝑥 ≤ 𝑍𝑚𝑎𝑥
𝐷𝑥 = 𝐷𝑦                    
𝐶𝑥 ≤ 𝐶𝑦                    

 (3.28) 

 
 

𝑅𝑒𝑗𝑒𝑐𝑡                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.29) 

 
where 𝐷𝑦 and 𝐶𝑦 respectively represent duration and cost of particle 𝑦, a 
solution in the archive 𝑂. Eq. (3.27) indicates any particle 𝑥, with a duration 
within the predetermined allowable interval, will be accepted if there is no 
decision vector 𝑦 inside the archive with the same duration amount. Eq. 
(3.28) dictates any allowable solution 𝑥, with a duration amount identical to 
particle(s) 𝑦 placed inside the repository, will be accepted if total cost of this 
solution is less than or equal to the archived particle(s). In this equation, a 
non-strict inequality is incorporated for cost comparison, so as to promote 
exploration. If particle 𝑥 satisfies (3.28) condition, the individual 𝑦 gets 
removed from the archive automatically. Moreover, Eq. (3.29) specifies no 
decision vector 𝑥 will be accepted if none of the abovementioned conditions 
are met. At the end of the iterations, the solutions stored in the external 
repository form the non-dominated front have hitherto been solved. 
 
Succeeding consecution of the archive members, SAM-PSO takes on a novel 
approach to measure pbets, 𝑃𝑖, and gbest, 𝑃𝑔, positions of the particles to 
calculate the velocity vectors. Selection of pbest is modified as to update 
should a strongly dominating solution emerges; that is, pbest will be updated 
only when the new position is non-dominated and it dominates all the 
preceding pbests. Former pbest, 𝑢, is said to dominate new postion, 𝑣, 
regarding condition (3.30). 
 

 𝑢 > 𝑣      𝑖𝑓     �𝐷𝑢 < 𝐷𝑣      𝑎𝑛𝑑      𝐶𝑢 ≤ 𝐶𝑣
𝐷𝑢 ≤ 𝐷𝑣      𝑎𝑛𝑑      𝐶𝑢 < 𝐶𝑣

 (3.30) 

 
which determines discrimination is made in favor of decision vector 𝑢, in case 
its duration and cost are less than or equal to 𝑣, while one of these 
inequalities holds strictly. Meanwhile, for the first generation, 𝑃𝑖’s will remain 
intact. Furthermore, the selection of gbest is revised to randomly select a 
non-dominated particle from the external repository, 𝑂,  throughout each 
iteration. Such a concern is paramount for the model, since, all the archived 
solutions are non-dominated and are equally good. 
 
Ultimately, particles are flown to their new positions following exactly the 
same procedures discussed in section 3.4.1. This process will reiterate until 
meeting the termination condition deliberated in section 3.3. Accordingly, the 
algorithm will halt if the maximum number of iterations is reached. 
Eventually, the algorithm will return the non-dominated solutions stored in 
the external archive, 𝑂, as the  Pareto front of the time-cost curve problem. 
The pseudo-code of the proposed hybrid SAM-PSO algorithm is illustrated in 
Figure 3.7. 
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Begin; 
 For each 𝑗 = 1, … , 𝑆; 
  For each 𝑘 = 1, …𝑚; 
   Retrieve first information; 
   Create 𝑆 × 2𝑚 matrices for (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 1 particles; 
   Create 𝑆 × 2𝑚 matrices for 𝑁 particles; 
  End; 
 End; 
 For each particle 𝑖 = 1, … ,𝑀;  
  Construct network; 
  If path contains 𝑗 = 1 && 𝑗 = 𝑆; 
   While all critical activities crashed != true; 
    Determine Duration; 
    Calculate Total Cost; 
    Store critical path in archive 𝑂; 
    Evaluate cost slopes using Eq. (3.24); 
    Crash critical activity with least cost slope; 
   End; 
  End; 
  Set 𝑦𝑖𝑖𝑘 as pbest and gbest using Eq. (3.25); 
 End; 
 For each particle 𝑖 = 𝑀 + 1, … ,𝑁; 
  Initialize an array with random positions and  velocities on 𝑆 dimensions; 
  If Eq. (3.9)=true; 
   Set 𝑥𝑖𝑖𝑘 as pbest and gbest using Eq. (3.25); 
   While 𝑡 ≤ 𝑡𝑚𝑎𝑥; 
    For each particle 𝑖 = 1, … ,𝑁; 
     Determine Duration using Eq. (3.14); 
     Calculate Total Cost using Eq. (3.15); 
     Initialize value of 𝑤; 
     If Eq. (3.27) || Eq. (3.28) =true; 
      Add to archive 𝑂; 
      If 𝑥𝑖 is non-dominated && Eq. (3.30) =true; 
       Set 𝑥𝑖𝑖𝑘 as pbest; 
      End;   
      Select gbest randomly from archive 𝑂; 
     End; 
     Calculate velocity using Eq. (3.18); 
     Transform velocity to probability using Eq. (3.19); 
     Update position using Eq. (3.20); 
    End; 
    Update value of 𝑤; 
   End; 
  End; 
 End; 
 Return archive 𝑂; 
End; 

 
Figure 3.7 – Pseudo-code of the proposed hybrid SAM-PSO algorithm.
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CHAPTER 4  
 
 

VALIDATION AND EMPIRICAL ANALYSES 
 
 
 

This chapter is devoted to validation and performance measurement of the 
developed algorithms. The proposed optimizers for discrete TCTP, as well as 
the time-constraint TCTP are validated using instances widely adopted in the 
literature. Empirical analyses are then conducted to measure performance and 
efficiency of the proposed model for solution of the time-cost curve problem. 
Throughout the computational experiments, the complete non-dominated 
fronts of test problems are introduced for the very first time in the literature. 
Experiments are also exerted to compare the obtained results using mixed 
integer programming technique. 
 
 
4.1. Validating the Algorithms 
 
In the course of development of the proposed algorithms, several test 
problems were employed to experiment their convergence capabilities. One of 
the chief prospects of these experimentations was to scrutinize the effect of 
selected parameters on the performance of the algorithms. As a result, the 
selected parameters were fine-tuned via a series of trial and error tests, 
respecting the convergence speed and quality of the solutions. The final 
operators set for each method, namely, iterations (𝑡), particles (𝑖), 𝑐1, 𝑐2, 
inertial weight (𝑤), and 𝑣𝑚𝑎𝑥 are given in the sequel of this chapter. The 
practiced test instances are some of the best known TCT problems analyzed in 
the construction management literature. Three extensions of discrete TCT 
problems are fed into the PSO optimizers, and experiments have been 
directed to validate their potencies accordingly. 
 
Yet, as stated earlier, the optimality of the results cannot be confirmed unless 
an exact procedure is recruited. Respectively, it is not possible to accurately 
assess quality of the solutions obtained from heuristic or meta-heuristic 
algorithms short of identified optimal solutions. Accordingly, on the verge of 
performance evaluations, an exact procedure is also adopted within the 
context of this thesis. All the instances are solved to optimality by dint of 
mixed integer programming using the AIMMS 3.11 optimization software. 
Therewith, the obtained results are compared to solutions provided by the 
PSO models. The average percent deviations are then evaluated for multiple 
experimental runs. Moreover, the processing times required to unravel the 
test problems are also determined. 
 
The first test problem involves the 18-activity network derived from Feng et 
al. (1997) incorporating the time-cost alternatives defined in Hegazy (1999). 
This instance is widely adopted by numerous researchers (Elbeltagi et al. 
2005, Zheng et al. 2005, Elbeltagi et al. 2007, Ng and Zhang 2008, Xiong and 
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Kuang 2008, Afshar et al. 2009, Sonmez and Bettemir 2012) as a test-bed for 
performance evaluations. Four sample tests with different indirect cost 
provisions have been implemented to the discrete PSO algorithm introduced 
in section 3.4.1. This algorithm is also experimented for solution of a more 
complex problem to optimize time and cost concomitantly. Thus, the 
hypothetical 63-activity project derived from Sonmez and Bettemir (2012) is 
fitted into the model. Details of these instances along with the results of 
computational experiments are going to be presented in section 4.2.1. The 
achieved results ensure the robustness of the proposed algorithm compared 
to the solutions of well-developed algorithms, as well as the exact procedure. 
 
For the time-constraint TCT analysis, a third test problem based upon the 
former 18-acitivty network is practiced. Described in Hegazy (1999), this 
instance incorporates liquidated damages and incentive payments with regard 
to a predetermined completion deadline. This instance has been implemented 
to the method discussed in section 3.4.2. The attained results further confirm 
efficiency of the proposed algorithm, providing sound solutions within a very 
small processing time. This test problem including the empirical analyses is 
going to be elaborated in section 4.2.2. 
 
The hybrid SAM-PSO model is initially tested against the model developed by 
Afshar et al. (2009). To this end, the 18-activity TCT problem is adopted to 
unravel time-cost curve problem, assuming different values for the indirect 
cost. The results obtained from the modified-SAM method, and the final 
Pareto front are then compared against the optimal efficient frontier achieved 
by means of the exact procedure. Compared well against Afshar et al.’s 
(2009) model, application of SAM-PSO in solution of 63-activity problem 
derived from Sonmez and Bettemir (2012) is experimented. SAM-PSO’s 
convergence capabilities in locating the Pareto front are demonstrated 
alongside the results of mixed integer programming. The results prove 
successful operation of the proposed algorithm by searching merely a small 
fraction of the search space, within an acceptable processing time. Details of 
the experimentations are given in section 4.2.3. 
 
Throughout the validation process, ten successive test runs are executed for 
analysis of any of the instances. The average percent deviations from the 
optima, acquired by means of the exact procedure, are evaluated accordingly. 
The required processing times are also determined with regard to the CPU 
times taken to implement the instances. Throughout these implementations, 
no inflation, interest, or any second order cost component is reflected to the 
cost calculations. Besides, a 7-day workweek calendar is assumed to be 
available for the projects. Details of all the implemented TCT problems, 
selected parameter values, and the results of the empirical analyses are going 
to be presented in the ensuing section. 
 
 
4.2. Empirical Analyses 
 
All the algorithms proposed in sections 3.4.1, 3.4.2, and 3.4.3 have been 
coded in C++ programming language. Microsoft Visual Studio 2010 Ultimate 
Edition has been exploited to compile and debug the implemented algorithms. 
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All the experimentations have been carried out by a laptop computer running 
Windows 7 Ultimate Edition (64-bit) operating system, with Intel Core 2 Duo 
3.06 GHz CPU, and 6 Gigabytes of Physical memory (RAM). The prepared 
programs engage CPM calculations for logical relationships of type finish-to-
start, considering no lags in between. Processing times, presented in precision 
to centiseconds (cs), are measured concerning main blocks of code, 
regardless of the interval required to insert the inputs and the period taken to 
return the outputs. All the durations are reflected in “days”, and the costs are 
measured in “USD ($)”.  
 
In the following sections, TCT problems and the experimentations are 
abstracted. 
 
 
4.2.1. Discrete TCTP analyses 
 
The validation and performance assessment of the algorithm introduced in 
section 3.4.1 is carried out implementing various cases of two test problems 
derived from the literature. The first examined TCT problem involves the 18-
activity project derived from Feng et al. (1997) and Hegazy (1999). The 
logical relationships among the activities of this problem, together with the 
available time-cost alternative are given in Table 4.1. In this example, there is 
one activity with single mode, ten activities with three modes, two activities 
with four modes, and five activities with five modes; accounting for a total of 
5.9×109 possible schedules. The activity on node (AoN) representation of this 
problem is illustrated in Figure 4.1. This problem has been examined under 
four different conditions regarding the amount of the indirect costs. The 
assumed indirect costs are as 200$/𝑑𝑎𝑦, 500$/𝑑𝑎𝑦, and 1,500$/𝑑𝑎𝑦; while, in 
one of the situations the example is solved with no daily indirect cost 
considerations, i.e., 0$/𝑑𝑎𝑦. 
 

Table 4.1 – Data for the 18-activity TCT problem. 
 
Act. No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

  Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

  (days) $ (days) $ (days) $ (days) $ (days) $ 

1 – 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200 

2 – 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000 

3 – 15 4,500 22 4,000 33 3,200 – – – – 

4 – 12 45,000 16 35,000 20 30,000 – – – – 

5 1 22 20,000 24 17,500 28 15,000 30 10,000 – – 

6 1 14 40,000 18 32,000 24 18,000 – – – – 

7 5 9 30,000 15 24,000 18 22,000 – – – – 

8 6 14 220 15 215 16 200 21 208 24 120 

9 6 15 300 18 240 20 180 23 150 25 100 

10 2, 6 15 450 22 400 33 320 – – – – 

11 7, 8 12 450 16 350 20 300 – – – – 
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Table 4.1 – Data for the 18-activity TCT problem. (Continued) 
 

Act. No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

  Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

  (days) $ (days) $ (days) $ (days) $ (days) $ 

12 5, 9, 10 22 2,000 24 1,750 28 1,500 30 1,000 – – 

13 3 14 4,000 18 3,200 24 1,800 – – – – 

14 4, 10 9 3,000 15 2,400 18 2,200 – – – – 

15 12 12 4,500 16 3,500 – – – – – – 

16 13, 14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000 

17 11, 14, 15 14 4,000 18 3,200 24 1,800 – – – – 

18 16, 17 9 3,000 15 2,400 18 2,200 – – – – 

 
 

 
 

Figure 4.1 – Activity on node (AoN) representation of the 18-activity network. 
 
The algorithm detailed in section 3.4.1 is adopted to exert TCT analyses for 
this problem. Since the convergence capabilities of the proposed algorithm 
are sensitive to the selected parameters, values are set for the operators 
through a series of trial experiments which are given in Table 4.2. 
 

Table 4.2 – Parameters selected for discrete PSO algorithm. 
 

Parameter Value 
𝑡  40 
𝑖  70 
𝑐1  2 
𝑐2  2 

𝑤𝑚𝑎𝑥  1.2 
𝑤𝑚𝑖𝑛  0.4 
𝑣𝑚𝑎𝑥  6 
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As shown in Table 4.2, 40 generations with a swarm size of 70 are sufficient 
for the proposed algorithm to tackle the discrete TCT problem efficiently. 
Acquired from the literature, the cognition and social coefficients are set as 
integer 2, ascribing weighted average of 1 for the second and the third terms 
of Eq. (3.18). The inertia weight is set to linearly decrease through the 
execution of the algorithm, from the maximum value of 1.2 to the minimum 
value of 0.4. As depicted in section 3.1.2, the maximum allowed velocity is 
set as integer 6, contributing calculations of probabilities of range 0.0025 to 
0.9975 via Eq. (3.19). 
 
The results of this experiment are shown in Table 4.3, first column of which 
shows the amount of daily indirect cost; the second and the third columns 
demonstrate the best solution found by this algorithm. These results are 
compared to both the solutions provided by numerous researchers (Feng, Liu 
et al. 1997, Hegazy 1999, Elbeltagi, Hegazy et al. 2005, Zheng, Ng et al. 
2005, Elbeltagi, Hegazy et al. 2007, Ng and Zhang 2008, Xiong and Kuang 
2008, Sonmez and Bettemir 2012) and the optimal solutions. The optimal 
solutions are obtained using mixed integer model of Sonmez and Bettemir 
(2012) along with the AIMMS optimization software. The average percent 
deviations (APD) from the optima are then evaluated for ten consecutive 
experimental runs. Inasmuch as the algorithm located the global optima in 
any of the attempts, single solution for any values of the indirect cost are 
presented. Accordingly, APD’s of zero amounts have been measured for the 
obtained solutions. In addition, the average CPU times taken to implement 
instances are also given in the last column of Table 4.3. The results prove that 
the proposed algorithm is capable of handling this instance effectively and 
efficiently, in that, finds global optimum solutions by searching merely a small 
fraction of the search space. In fact, only 2800 possible different schedules 
are explored thru each experiment. Searching only a small portion of the 
search space (4.74×10-5 %) allows this procedure to perform within an 
inconsiderable processing time of 0.08 seconds. As a result, the proposed 
algorithm outperforms all the earlier optimizers with regard to both the 
convergence speed and the quality of the solutions. 
 

Table 4.3 – Results of experimental analyses for the proposed discrete PSO algorithm. 
 

Number of 
Indirect 

Cost Duration Cost APD 
(%) 

Average 

Analyses CPU time 
(s) 

10 0 169 99,740 0.00 0.08 
10 200 126 127,770 0.00 0.08 
10 500 110 161,270 0.00 0.08 
10 1,500 110 271,270 0.00 0.08 

 
A second experiment employing a more complex problem is also conducted to 
measure the performance of the discrete PSO algorithm described in section 
3.4.1. To accomplish this goal, the hypothetical 63-activity project described 
in Sonmez and Bettemir (2012) is fed into the model. Details of this instance, 
comprising the logical relationships of the activities, along with the available 
time-cost alternative are tabulated in Table 4.4. This instance contains two 
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activities with three modes, fifteen activities with four modes, and forty-six 
activities with five modes; inducing a total of 1.37×1042 different possible 
project realizations. The activity on node (AoN) diagram of this problem is 
illuminated in Figure 4.2. This problem has been experimented under two 
different assumptions regarding the amount of the daily indirect costs. The 
presumed indirect costs are as 2,300$/𝑑𝑎𝑦, and 3,500$/𝑑𝑎𝑦. 
 

Table 4.4 – Data for the 63-activity TCT problem. 
 
Act. 
No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

  Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

  (days) $ (days) $ (days) $ (days) $ (days) $ 

1 ‐ 14 3,750 12 4,250 10 5,400 9 6,250 ‐ ‐ 

2 ‐ 21 11,250 18 14,800 17 16,200 15 19,650 ‐ ‐ 

3 ‐ 24 22,450 22 24,900 19 27,950 17 31,650 ‐ ‐ 

4 ‐ 19 17,800 17 19,400 15 21,600 ‐ ‐ ‐ ‐ 

5 ‐ 28 31,180 26 34,200 23 38,250 21 41,400 ‐ ‐ 

6 1 44 54,260 42 58,450 38 63,225 35 68,150 ‐ ‐ 

7 1 39 47,600 36 50,750 33 54,800 30 59,750 ‐ ‐ 

8 2 52 62,140 47 69,700 44 72,600 39 81,750 ‐ ‐ 

9 3 63 72,750 59 79,450 55 86,250 51 91,500 49 99,500 

10 4 57 66,500 53 70,250 50 75,800 46 80,750 41 86,450 

11 5 63 83,100 59 89,450 55 97,800 50 104,250 45 112,400 

12 6 68 75,500 62 82,000 58 87,500 53 91,800 49 96,550 

13 7 40 34,250 37 38,500 33 43,950 31 48,750 ‐ ‐ 

14 8 33 52,750 30 58,450 27 63,400 25 66,250 ‐ ‐ 

15 9 47 38,140 40 41,500 35 47,650 32 54,100 ‐ ‐ 

16 9, 10 75 94,600 70 101,250 66 112,750 61 124,500 57 132,850 

17 10 60 78,450 55 84,500 49 91,250 47 94,640 ‐ ‐ 

18 10, 11 81 127,150 73 143,250 66 154,600 61 161,900 ‐ ‐ 

19 11 36 82,500 34 94,800 30 101,700 ‐ ‐ ‐ ‐ 

20 12 41 48,350 37 53,250 34 59,450 32 66,800 ‐ ‐ 

21 13 64 85,250 60 92,600 57 99,800 53 107,500 49 113,750 

22 14 58 74,250 53 79,100 50 86,700 47 91,500 42 97,400 

23 15 43 66,450 41 69,800 37 75,800 33 81,400 30 88,450 

24 16 66 72,500 62 78,500 58 83,700 53 89,350 49 96,400 

25 17 54 66,650 50 70,100 47 74,800 43 79,500 40 86,800 

26 18 84 93,500 79 102,500 73 111,250 68 119,750 62 128,500 

27 20 67 78,500 60 86,450 57 89,100 56 91,500 53 94,750 

28 21 66 85,000 63 89,750 60 92,500 58 96,800 54 100,500 

29 22 76 92,700 71 98,500 67 104,600 64 109,900 60 115,600 

30 23 34 27,500 32 29,800 29 31,750 27 33,800 26 36,200 
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Table 4.4 – Data for the 63-activity TCT problem. (Continued) 
 

Act. 
No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

  Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

  (days) $ (days) $ (days) $ (days) $ (days) $ 

31 19, 25 96 145,000 89 154,800 83 168,650 77 179,500 72 189,100 

32 26 43 43,150 40 48,300 37 51,450 35 54,600 33 61,450 

33 26 52 61,250 49 64,350 44 68,750 41 74,500 38 79,500 

34 28, 30 74 89,250 71 93,800 66 99,750 62 105,100 57 114,250 

35 24, 27, 29 138 183,000 126 201,500 115 238,000 103 283,750 98 297,500 

36 24 54 47,500 49 50,750 42 56,800 38 62,750 33 68,250 

37 31 34 22,500 32 24,100 29 26,750 27 29,800 24 31,600 

38 32 51 61,250 47 65,800 44 71,250 41 76,500 38 80,400 

39 33 67 81,150 61 87,600 57 92,100 52 97,450 49 102,800 

40 34 41 45,250 39 48,400 36 51,200 33 54,700 31 58,200 

41 35 37 17,500 31 21,200 27 26,850 23 32,300 ‐ ‐ 

42 36 44 36,400 41 39,750 38 42,800 32 48,300 30 50,250 

43 36 75 66,800 69 71,200 63 76,400 59 81,300 54 86,200 

44 37 82 102,750 76 109,500 70 127,000 66 136,800 63 146,000 

45 39 59 84,750 55 91,400 51 101,300 47 126,500 43 142,750 

46 39 66 94,250 63 99,500 59 108,250 55 118,500 50 136,000 

47 40 54 73,500 51 78,500 47 83,600 44 88,700 41 93,400 

48 42 41 36,750 39 39,800 37 43,800 34 48,500 31 53,950 

49 38, 41, 44 173 267,500 159 289,700 147 312,000 138 352,500 121 397,750 

50 45 101 47,800 74 61,300 63 76,800 49 91,500 ‐ ‐ 

51 46 83 84,600 77 93,650 72 98,500 65 104,600 61 113,200 

52 47 31 23,150 28 27,600 26 29,800 24 32,750 21 35,200 

53 43, 48 39 31,500 36 34,250 33 37,800 29 41,250 26 44,600 

54 49 23 16,500 22 17,800 21 19,750 20 21,200 18 24,300 

55 52, 53 29 23,400 27 25,250 26 26,900 24 29,400 22 32,500 

56 50, 53 38 41,250 35 44,650 33 47,800 31 51,400 29 55,450 

57 51, 54 41 37,800 38 41,250 35 45,600 32 49,750 30 53,400 

58 52 24 12,500 22 13,600 20 15,250 18 16,800 16 19,450 

59 55 27 34,600 24 37,500 22 41,250 19 46,750 17 50,750 

60 56 31 28,500 29 30,500 27 33,250 25 38,000 21 43,800 

61 56, 57 29 22,500 27 24,750 25 27,250 22 29,800 20 33,500 

62 60 25 38,750 23 41,200 21 44,750 19 49,800 17 51,100 

63 61 27 9,500 26 9,700 25 10,100 24 10,800 22 12,700 

 
It has been widely documented in the literature that both the effectiveness 
and the efficiency of any meta-heuristic algorithm might be affected by the 
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size of the problem; since, the solution space extents dramatically exposed to 
large-sized instances, urging excessive number of iterations. For such 
complex instances, setting larger swarm sizes with greater iterations provide 
greater chances in locating the global optimum; however, near optimum 
solutions demanding insignificant computational efforts are preferred for 
larger test problems. Accordingly, concluding several trial and error processes 
involving the 63-activity problem, as shown in Table 4.5, the discrete PSO 
algorithm is accommodated with tuned values for the operators. 
 

Table 4.5 – Parameters selected for discrete PSO algorithm. 
 

Parameter Value 
𝑡  500 
𝑖  300 
𝑐1  2 
𝑐2  2 

𝑤𝑚𝑎𝑥  1.9 
𝑤𝑚𝑖𝑛  0.7 
𝑣𝑚𝑎𝑥  6 
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Figure 4.2 – Activity on node (AoN) representation of the 63-activity network. 
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500 iterations and a swarm size of 300 are experienced to provide sufficient 
convergence speed and quality for the proposed algorithm in solving the 63-
activity TCT problem. The cognition and social coefficients remain unchanged 
with values set as integer 2, attributing weighted average of 1 for the second 
and the third terms of Eq. (1.18). For this instance, the inertia weight is set to 
linearly decrease through the iterations, from a larger maximum value of 1.9 
to the minimum value of 0.7, for the sake of enhancing the process with 
greater explorations at the initial stages. However, the damping factor applied 
to the velocity calculations remains as integer 6, contributing calculations of 
probabilities of range 0.0025 to 0.9975 via Eq. (3.19). 
 
The results of the experiments for the 63-activity project are abstracted in 
Table 4.6 and Table 4.7. The second and the third columns demonstrate 
durations and total costs of the best solutions found by this algorithm, 
respectively. These results are compared to both the solutions provided by 
Sonmez and Bettemir (2012), and the optimal solutions acquired from the 
mixed integer programming. Results of ten consecutive experimental runs are 
illustrated in Table 4.6 and Table 4.7, with corresponding percent deviations 
from the optima (PD) specified in the last columns of the aforementioned 
tables. The average percent deviations (APD) from the optima are then 
evaluated for each presumed values of daily indirect cost. In addition, last 
rows of these tables demonstrate the average processing times required to 
implement the instances. The results further validate robustness of the 
proposed algorithm, for, in any of the attempts it finds optimum or near-
optimum solutions by searching simply a small portion of the solution space. 
Literally, mere 1.5× 10P

5 possible different combinations of the time-cost 
alternatives are explored throughout each experiment; that is, searching only 
a small fraction of the search space (1.09×10-35 %). This latter achievement 
allows the procedure to perform within an acceptable CPU time of 45 seconds. 
 

Table 4.6 – Results of analyses for the 63-activity problem with daily indirect cost of 2,300$. 
 

Analysis 
No. Duration Cost PD (%) 

1 630 5,421,120 0.00 
2 630 5,422,420 0.02 
3 630 5,421,120 0.00 
4 630 5,421,120 0.00 
5 633 5,421,320 0.00 
6 636 5,422,970 0.03 
7 631 5,424,420 0.06 
8 633 5,421,320 0.00 
9 633 5,421,320 0.00 
10 629 5,423,270 0.04 
   APD (%) 0.02 

    
Avg. CPU 
time (s) 

45.00 
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Results summarized in Table 4.6 indicate that the proposed algorithm, 
concerning the values assigned for the generation and the swarm size (given 
in Table 4.5) was able to locate the global optimum solution during three 
attempts out of ten successive experiments; whereas, results for a higher 
daily indirect cost of 3,500$ reveals that the algorithm was able to find the 
global optimum only once over ten experiments. Nonetheless, setting larger 
iterations and/or swarms are discarded considering the closeness of the rest 
of the solutions to the global optimum; with the largest percent deviation 
being 0.03%. Ultimately, the proposed procedure proves to outperform all the 
earlier genetic algorithms discussed in Sonmez and Bettemir (2012), 
providing solutions with much less deviations from the optimum amounts. 
 

Table 4.7 – Results of analyses for the 63-activity problem with daily indirect cost of 3,500$. 
 

Analysis 
No. Duration Cost PD (%) 

1 616 6,177,820 0.03 
2 626 6,177,370 0.02 
3 621 6,176,220 0.00 
4 621 6,178,020 0.03 
5 629 6,177,270 0.02 
6 621 6,177,120 0.02 
7 621 6,176,170 0.00 
8 618 6,177,570 0.02 
9 618 6,177,670 0.02 
10 618 6,177,570 0.02 
   APD (%) 0.02 

    
Avg. CPU 
time (s) 

45.00 

 
 
4.2.2. Time-constraint TCTP analyses 
 
Performance of the PSO model elucidated in section 3.4.2 is experimented 
implementing a time-constraint TCT problem derived from Hegazy (1999). 
The test problem exploited for the analyses is identical to the 18-activiy 
example described in section 4.2.1; though, it imposes an additional 
constraint by assuming a completion deadline for the project. Liquidated 
damages and incentive payments are incorporated into this problem. This 
instance has been examined under two different circumstances concerning the 
completion deadline. Supposed desired level of deadline, or, the maximum 
allowable duration for two analyses are set as 110 days and less than 110 
days, respectively. Both the experiments assume an indirect cost of 200$/𝑑𝑎𝑦, 
liquidated damages of 20,000$/𝑑𝑎𝑦, and incentive payments of 1,000$/𝑑𝑎𝑦. 
 
For this specific example, appropriate values for the operators of the proposed 
PSO algorithm are identified following a sequence of trial and error. As 
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presented in Table 4.8, the selected values for the parameters are analogous 
to the amounts identified for the experiments described in section 4.2.1. 
 

Table 4.8 – Parameters of the discrete PSO algorithm for the deadline problem. 
 

Parameter Value 
𝑡  40 
𝑖  70 
𝑐1  2 
𝑐2  2 

𝑤𝑚𝑎𝑥  1.2 
𝑤𝑚𝑖𝑛  0.4 
𝑣𝑚𝑎𝑥  6 

 
The solutions obtained from this experiment are demonstrated in Table 4.9. 
The third and the fourth columns of this table show durations and total costs 
of the global optima found by this algorithm, respectively. The acquired 
results are evaluated with regard to both the solutions provided Hegazy 
(1999) and the optimal solutions of AIMMS optimization software. The 
average percent deviations (APD) from the optima are measured for ten 
successive solutions provided by PSO optimizer for the deadline problem. 
Insomuch the algorithm located the global optima in any of the experiments, 
single solution for each of the assumed completion deadlines are tabulated. As 
a result, APD’s of zero amounts have been measured for the obtained 
solutions. Moreover, the average CPU times taken to process the instances 
are illustrated in the last column of Table 4.9. These experiments verify the 
strengths of the proposed algorithm in dealing with such instances engaging 
exogenous constraints. Notwithstanding the extra calculations imposed to the 
algorithm, this procedure takes an inconsiderable processing time of 0.08 
seconds, equal to the time required by the experimentations elaborated in 
section 4.2.1. As a result, the proposed algorithm outdoes the earlier 
optimizer with regard to the convergence speed; in addition, it bests 
nonsense solution of Hegazy (1999) for 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 < 110 situation, where it 
provides a solution with duration of 107 days and total cost of 138,170$. The 
sound solutions provided by the PSO algorithm further affirm efficiency of the 
proposed optimizer. 
 

Table 4.9 – Results of experimental analyses for time-constraint TCT problem. 
 

Number of 
Deadline Duration Cost APD (%) 

Average 

Analyses CPU time (s) 

10 110 110 128,270 0.00 0.08 
10 <110 104 136,120 0.00 0.08 

 
 
4.2.3. Time-cost curve TCTP analyses 
 
The validation and computational experiments of the hybrid SAM-PSO 
algorithm proposed in section 3.4.3 are carried out implementing various 
cases of the 18-activity and 63-activity problems, given in section 4.2.1 
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previously. For the primary analyses the 18-activity instance is occupied 
which was also used by Afshar et al. (2009) in a similar attempt for obtaining 
the Pareto front. However, the results of Afshar et al. (2009) fall short of 
delivering the full profile of the efficient frontier that comprises seventy 
solutions; rather, they report four, eighteen, and forty-four solutions located 
over the frontier for three different values of daily indirect cost. Furthermore, 
they do not report on the performance of their algorithm concerning multiple 
experiments; instead, results of only single experiments are documented. 
Therefrom, more comprehensive experiments involving multiple runs are 
directed within the context of this thesis. 
 
Experimentations for the proposed hybrid algorithm have been initialed by 
evaluation of the durations associated with any feasible realization of the 
project. Thereafter, having identified the set of feasible durations, total costs 
will be calculated accordingly. Determination of the feasible durations is 
carried out by solving the instance to optimality, recruiting mixed integer 
programming technique. Accordingly, feasibility of the project for any amount 
of duration is tested using the AIMMS 3.11 optimization software, whereon, 
the optimal costs are evaluated. Tabulated below, the complete optimal 
Pareto fronts acquired by dint of this procedure for assumed indirect costs of 
0$/𝑑𝑎𝑦, 200$/𝑑𝑎𝑦, and 1,500$/𝑑𝑎𝑦 are being illustrated in Table 4.10, Table 
4.11, and Table 4.12, respectively. 
 
Table 4.10 – Optimal solutions for 18-activity problem over feasible set of durations (No indirect 

cost). 
 

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

(days) $ (days) $ (days) $ (days) $ (days) $ 

100 133,320 114 105,270 128 102,320 142 100,870 156 99,950 

101 128,320 115 105,020 129 102,320 143 100,770 157 99,950 

102 128,070 116 104,770 130 102,320 144 100,770 158 99,900 

103 127,820 117 104,770 131 102,170 145 100,570 159 99,870 

104 120,320 118 104,470 132 101,970 146 100,570 160 99,870 

105 120,070 119 104,220 133 101,820 147 100,570 161 99,820 

106 119,820 120 103,970 134 101,570 148 100,270 162 99,820 

107 119,770 121 103,820 135 101,570 149 100,270 163 99,820 

108 119,270 122 103,570 136 101,570 150 100,270 164 99,820 

109 119,020 123 103,570 137 101,510 151 100,070 165 99,820 

110 106,270 124 103,070 138 101,470 152 100,070 166 99,820 

111 106,020 125 102,820 139 101,170 153 100,070 167 99,820 

112 105,770 126 102,570 140 100,970 154 100,010 168 99,820 

113 105,770 127 102,570 141 100,970 155 100,010 169 99,740 
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Table 4.11 – Optimal solutions for 18-activity problem over feasible set of durations (daily 
indirect cost of 200$). 

 
Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

(days) $ (days) $ (days) $ (days) $ (days) $ 

100 153,320 114 128,070 128 127,920 142 129,270 156 131,150 

101 148,520 115 128,020 129 128,120 143 129,370 157 131,350 

102 148,470 116 127,970 130 128,320 144 129,570 158 131,500 

103 148,420 117 128,170 131 128,370 145 129,570 159 131,670 

104 141,120 118 128,070 132 128,370 146 129,770 160 131,870 

105 141,070 119 128,020 133 128,420 147 129,970 161 132,020 

106 141,020 120 127,970 134 128,370 148 129,870 162 132,220 

107 141,170 121 128,020 135 128,570 149 130,070 163 132,420 

108 140,870 122 127,970 136 128,770 150 130,270 164 132,620 

109 140,820 123 128,170 137 128,910 151 130,270 165 132,820 

110 128,270 124 127,870 138 129,070 152 130,470 166 133,020 

111 128,220 125 127,820 139 128,970 153 130,670 167 133,220 

112 128,170 126 127,770 140 128,970 154 130,810 168 133,420 

113 128,370 127 127,970 141 129,170 155 131,010 169 133,540 

 
 

Table 4.12 – Optimal solutions for 18-activity problem over feasible set of durations (daily 
indirect cost of 1,500$). 

 
Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

(days) $ (days) $ (days) $ (days) $ (days) $ 

100 283,320 114 276,270 128 294,320 142 313,870 156 333,950 

101 279,820 115 277,520 129 295,820 143 315,270 157 335,450 

102 281,070 116 278,770 130 297,320 144 316,770 158 336,900 

103 282,320 117 280,270 131 298,670 145 318,070 159 338,370 

104 276,320 118 281,470 132 299,970 146 319,570 160 339,870 

105 277,570 119 282,720 133 301,320 147 321,070 161 341,320 

106 278,820 120 283,970 134 302,570 148 322,270 162 342,820 

107 280,270 121 285,320 135 304,070 149 323,770 163 344,320 

108 281,270 122 286,570 136 305,570 150 325,270 164 345,820 

109 282,520 123 288,070 137 307,010 151 326,570 165 347,320 

110 271,270 124 289,070 138 308,470 152 328,070 166 348,820 

111 272,520 125 290,320 139 309,670 153 329,570 167 350,320 

112 273,770 126 291,570 140 310,970 154 331,010 168 351,820 

113 275,270 127 293,070 141 312,470 155 332,510 169 353,240 

 
Table 4.10, Table 4.11, and Table 4.12 reveal 70 possible completion times 
for the 18-activity project. Therefore, having discussed in section 3.4.3, the 
external repository 𝑂, must be able to store 70 solutions as 18 × 2(5) matrices 
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so as to be able to position one particle for any possible duration. Accordingly, 
for the sake of increasing the chances of obtaining a complete Pareto front 
thru any iteration, at least 70 particles must be generated. Respecting Table 
4.13, Table 4.14, and Table 4.15, throughout the first phase of the hybrid 
algorithm, modified-SAM locates 24 particles over the solution space allowing 
for the rest of the population to be generated randomly. 
 
Table 4.13 – Results provided by modified-SAM for 18-activity problem through the first phase 

of hybrid algorithm (No indirect cost). 
 

Duration Cost Duration Cost Duration Cost Duration Cost 

(days) $ (days) $ (days) $ (days) $ 

100 133,420 114 105,270 128 102,970 154 100,010 

101 128,320 116 105,020 134 101,570 156 99,950 

101 128,420 120 104,770 140 100,970 158 99,900 

104 120,320 122 104,270 145 100,570 159 99,870 

105 120,270 123 104,020 148 100,270 161 99,820 

110 106,270 124 103,770 151 100,070 169 99,740 

 
 
Table 4.14 – Results provided by modified-SAM for 18-activity problem through the first phase 

of hybrid algorithm (daily indirect cost of 200$). 
 

Duration Cost Duration Cost Duration Cost Duration Cost 

(days) $ (days) $ (days) $ (days) $ 

100 153,420 114 128,070 128 128,570 154 130,810 

101 148,520 116 128,220 134 128,370 156 131,150 

101 148,620 120 128,770 140 128,970 158 131,500 

104 141,120 122 128,670 145 129,570 159 131,670 

105 141,270 123 128,620 148 129,870 161 132,020 

110 128,270 124 128,570 151 130,270 169 133,540 

 
 
Table 4.15 – Results provided by modified-SAM for 18-activity problem through the first phase 

of hybrid algorithm (daily indirect cost of 1,500$). 
 

Duration Cost Duration Cost Duration Cost Duration Cost 

(days) $ (days) $ (days) $ (days) $ 

100 283,420 114 276,270 128 294,970 154 331,010 

101 279,820 116 279,020 134 302,570 156 333,950 

101 279,920 120 284,770 140 310,970 158 336,900 

104 276,320 122 287,270 145 318,070 159 338,370 

105 277,770 123 288,520 148 322,270 161 341,320 

110 271,270 124 289,770 151 326,570 169 353,240 
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Considering the total durations of the crashed (𝑍𝑚𝑖𝑛) and the all normal (𝑍𝑚𝑎𝑥) 
schedules, time intervals within which the feasible realizations of durations 
will be explored, and thereby the minimum population sizes have been 
identified. Consequently, performing numerous experiments with minimum 
population sizes of 70, the adequate values for the parameters have been 
dedicated as shown in Table 4.16. 
 

Table 4.16 – Parameters of the SAM-PSO model for the 18-activity problem. 
 

Parameter Value 
𝑡  100 
𝑖  80 
𝑐1  2 
𝑐2  2 

𝑤𝑚𝑎𝑥  2.2 
𝑤𝑚𝑖𝑛  1.0 
𝑣𝑚𝑎𝑥  2 

 
100 generations with a swarm size of 80 are experienced to suffice the 
convergence capabilities of the hybrid algorithm for the 18-activity problem. 
The cognition and social coefficients remain unchanged with values set as 
integer 2, attributing weighted average of 1 for the second and the third 
terms of Eq. (1.18). For this instance, the inertia weight is defined as a 
function of time to linearly decrease from a maximum value of 2.2 to a 
minimum amount of 1.0, through the execution of the PSO phase. Assignment 
of larger maximum and minimum values for the inertia weight facilitates 
broader explorations by the individuals through the entire execution of PSO 
phase. Moreover, the maximum allowed velocity is set as integer 2, 
contributing calculations of probabilities of range 0.12 to 0.88 via Eq. (3.19). 
In doing so, not only the unrestrained escalation of velocities that promote 
swarm divergence is eliminated, but also, the algorithm is accommodated 
with more exploration capabilities. 
 
For any amount of daily indirect cost, ten successive experiments have been 
directed for solution of the time-cost curve problem. Henceforth, average 
percent deviations (APD) from the optima have been evaluated for any 
solution located along the time-cost profile. The ultimate Pareto fronts 
obtained by the hybrid algorithm, for three cases of the 18-activity problem 
are demonstrated in Table 4.17, Table 4.18, and Table 4.19. Associated to 
any identified duration, these tables encompass the least total cost observed 
over ten incessant trials. In any of these tables, in addition to APD’s pertinent 
to each solution, the overall APD’s are also evaluated, implying the 
performance of the proposed algorithm. It has been observed that the overall 
APD’s of this model are slightly greater for the cases that assume smaller 
values for the indirect costs. Aside from that, the last rows of Table 4.17, 
Table 4.18, and Table 4.19 demonstrate the average processing times 
required to implement the instances; hereof, it takes an acceptable CPU time 
of approximately 8 seconds for the algorithm to unravel the 18-activity 
instance. These results validate effectiveness and efficiency of the hybrid 
model in locating the complete Pareto front for the 18-activity problem, thru 
any of the experimented cases. This model outperforming Afshar et al.’s 
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(2009) procedure, searches a mere 1.35×10-4 fraction of the solution space to 
provide the whole non-dominated front with inconsiderable deviations from 
the optimal solutions. 
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Table 4.17 – Complete Pareto front of 18-activity problem obtained by SAM-PSO model (No indirect cost). 

 

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % (days) $ % 

100 133,320 0.00 114 105,270 0.00 128 102,320 0.00 142 100,870 0.00 156 99,950 0.00 

101 128,320 0.00 115 105,020 0.00 129 102,510 0.19 143 100,770 0.00 157 100,370 0.42 

102 128,070 0.00 116 104,770 0.00 130 102,470 0.15 144 101,050 0.28 158 99,900 0.00 

103 127,820 0.00 117 104,770 0.00 131 102,170 0.00 145 100,570 0.00 159 99,870 0.00 

104 120,320 0.00 118 104,470 0.00 132 101,970 0.00 146 100,710 0.14 160 100,540 0.67 

105 120,070 0.00 119 104,220 0.00 133 101,820 0.00 147 100,750 0.18 161 99,820 0.00 

106 119,820 0.00 120 103,970 0.00 134 101,570 0.00 148 100,270 0.00 162 100,940 1.12 

107 119,770 0.00 121 103,820 0.00 135 101,770 0.20 149 100,570 0.30 163 100,240 0.42 

108 119,270 0.00 122 103,570 0.00 136 101,620 0.05 150 100,450 0.18 164 100,440 0.62 

109 119,020 0.00 123 103,570 0.00 137 101,510 0.00 151 100,070 0.00 165 100,740 0.92 

110 106,270 0.00 124 103,070 0.00 138 101,470 0.00 152 100,400 0.33 166 99,940 0.12 

111 106,020 0.00 125 102,820 0.00 139 101,170 0.00 153 100,150 0.08 167 100,240 0.42 

112 105,770 0.00 126 102,570 0.00 140 100,970 0.00 154 100,010 0.00 168 na na 

113 105,770 0.00 127 102,570 0.00 141 101,270 0.30 155 100,100 0.09 169 99,740 0.00 

           Overall APD (%) 0.10 

           Avg. CPU time (s) 8.18 
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Table 4.18 – Complete Pareto front of 18-activity problem obtained by SAM-PSO model (daily indirect cost of 200$). 

 

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % (days) $ % 

100 153,320 0.00 114 128,070 0.00 128 127,920 0.00 142 129,270 0.00 156 131,150 0.00 

101 148,520 0.00 115 128,020 0.00 129 128,310 0.15 143 129,370 0.00 157 131,770 0.32 

102 148,470 0.00 116 127,970 0.00 130 128,470 0.12 144 129,850 0.22 158 131,500 0.00 

103 148,420 0.00 117 128,170 0.00 131 128,370 0.00 145 129,570 0.00 159 131,670 0.00 

104 141,120 0.00 118 128,070 0.00 132 128,370 0.00 146 129,910 0.11 160 132,540 0.51 

105 141,070 0.00 119 128,020 0.00 133 128,420 0.00 147 130,150 0.14 161 132,020 0.00 

106 141,020 0.00 120 127,970 0.00 134 128,370 0.00 148 129,870 0.00 162 133,340 0.85 

107 141,170 0.00 121 128,020 0.00 135 128,770 0.16 149 130,370 0.23 163 132,840 0.32 

108 140,870 0.00 122 127,970 0.00 136 128,820 0.04 150 130,450 0.14 164 133,240 0.47 

109 140,820 0.00 123 128,170 0.00 137 128,910 0.00 151 130,270 0.00 165 133,740 0.69 

110 128,270 0.00 124 127,870 0.00 138 129,070 0.00 152 130,800 0.25 166 133,140 0.09 

111 128,220 0.00 125 127,820 0.00 139 128,970 0.00 153 130,750 0.06 167 133,640 0.32 

112 128,170 0.00 126 127,770 0.00 140 128,970 0.00 154 130,810 0.00 168 na na 

113 128,370 0.00 127 127,970 0.00 141 129,470 0.23 155 131,100 0.07 169 133,540 0.00 

           Overall APD (%) 0.08 

           Avg. CPU time (s) 7.98 
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Table 4.19 – Complete Pareto front of 18-activity problem obtained by SAM-PSO model (daily indirect cost of 1,500$). 

 

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % (days) $ % 

100 283,320 0.00 114 276,270 0.00 128 294,320 0.00 142 313,870 0.00 156 333,950 0.00 

101 279,820 0.00 115 277,520 0.00 129 296,010 0.06 143 315,270 0.00 157 335,870 0.13 

102 281,070 0.00 116 278,770 0.00 130 297,470 0.05 144 317,050 0.09 158 336,900 0.00 

103 282,320 0.00 117 280,270 0.00 131 298,670 0.00 145 318,070 0.00 159 338,370 0.00 

104 276,320 0.00 118 281,470 0.00 132 299,970 0.00 146 319,710 0.04 160 340,540 0.20 

105 277,570 0.00 119 282,720 0.00 133 301,320 0.00 147 321,250 0.06 161 341,320 0.00 

106 278,820 0.00 120 283,970 0.00 134 302,570 0.00 148 322,270 0.00 162 343,940 0.33 

107 280,270 0.00 121 285,320 0.00 135 304,270 0.07 149 324,070 0.09 163 344,740 0.12 

108 281,270 0.00 122 286,570 0.00 136 305,620 0.02 150 325,450 0.06 164 346,440 0.18 

109 282,520 0.00 123 288,070 0.00 137 307,010 0.00 151 326,570 0.00 165 348,240 0.26 

110 271,270 0.00 124 289,070 0.00 138 308,470 0.00 152 328,400 0.10 166 348,940 0.03 

111 272,520 0.00 125 290,320 0.00 139 309,670 0.00 153 329,650 0.02 167 350,740 0.12 

112 273,770 0.00 126 291,570 0.00 140 310,970 0.00 154 331,010 0.00 168 na na 

113 275,270 0.00 127 293,070 0.00 141 312,770 0.10 155 332,600 0.03 169 353,240 0.00 

           Overall APD (%) 0.03 

           Avg. CPU time (s) 7.97 
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The solutions obtained from mixed integer programming, modified-SAM, and 
SAM-PSO procedures are plotted against each other in the ensuing figures. 
Figure 4.3, Figure 4.4, and Figure 4.5 illuminate the solutions obtained via 
SAM-PSO model for the 18-activity problem with indirect costs of 0$/𝑑𝑎𝑦, 
200$/𝑑𝑎𝑦, and 1500$/𝑑𝑎𝑦, respectively. For any of the cases, it can be easily 
observed that the 24 initial solutions seeded by modified-SAM are virtually 
lying over the final efficient frontier. Solutions located through this phase 
provide the second phase with seeds of higher quality. To some extent, these 
solutions give head-start to the PSO stage of the hybrid algorithm. Eventually, 
the best non-dominated solutions found over ten incessant experiments 
constitute the final time-cost profile, which practically lies over the optimal 
frontier solved by the AIMMS software. Contrary to the mixed integer 
programming technique, the proposed hybrid algorithm generates solutions 
only with regard to different combinations of time-cost alternatives and 
without incorporating lag times between finish-to-start relationships of the 
activities. Owing to this approach, the hybrid algorithm maps minimum total 
costs to 69 feasible realizations of project duration, whereas, the mixed 
integer programming technique benefitting from lag times, locates 70 
solutions. In other words, for the 18-activity problem, there exist no certain 
combination of time-cost alternatives that results in 168 days of duration, that 
is, it is only feasible by adding lag times between the activities. 
 

 
 

Figure 4.3 – Comparison of obtained Pareto fronts for 18-activity problem (No indirect cost). 
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Figure 4.4 – Comparison of obtained Pareto fronts for 18-activity problem (daily indirect cost of 
200$). 

 
 

 
 

Figure 4.5 – Comparison of obtained Pareto fronts for 18-activity problem (daily indirect cost of 
1,500$). 
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have been initiated by determining durations associated with any feasible 
realization of the project. The feasible set of non-dominated solutions with 
corresponding amounts of duration and cost are identified by dint of the 
mixed integer programming technique derived from Sonmez and Bettemir 
(2012). Pareto fronts achieved through this technique have been tabulated in 
Table 4.20 and Table 4.21, involving two assumptions regarding the amount 
of daily indirect cost; the first case incorporates indirect cost of 2,300$/𝑑𝑎𝑦, 
while the second case considers 3,500$/𝑑𝑎𝑦. 
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Table 4.20 – Optimal solutions for 63-activity problem over feasible set of durations (daily indirect cost of 2,300$). 
 

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 
(days) $ (days) $ (days) $ (days) $ (days) $ (days) $ (days) $ 

513 5,864,180 541 5,677,990 569 5,549,700 597 5,468,920 625 5,427,920 653 5,428,770 681 5,448,720 
514 5,861,380 542 5,669,650 570 5,547,450 598 5,467,370 626 5,426,170 654 5,429,470 682 5,449,720 
515 5,845,840 543 5,664,040 571 5,541,450 599 5,466,020 627 5,425,770 655 5,429,770 683 5,451,420 
516 5,839,680 544 5,661,740 572 5,535,390 600 5,464,520 628 5,423,520 656 5,430,970 684 5,452,170 
517 5,832,630 545 5,653,650 573 5,533,330 601 5,465,220 629 5,422,470 657 5,430,720 685 5,453,170 
518 5,822,815 546 5,645,640 574 5,530,430 602 5,460,970 630 5,421,120 658 5,432,120 686 5,454,870 
519 5,811,205 547 5,642,490 575 5,524,770 603 5,461,920 631 5,422,370 659 5,432,220 687 5,455,870 
520 5,804,630 548 5,637,350 576 5,522,420 604 5,460,570 632 5,421,820 660 5,433,070 688 5,457,470 
521 5,797,465 549 5,636,200 577 5,519,720 605 5,461,820 633 5,421,320 661 5,433,420 689 5,458,520 
522 5,792,065 550 5,627,900 578 5,516,420 606 5,460,620 634 5,421,420 662 5,434,420 690 5,459,620 
523 5,782,505 551 5,623,890 579 5,512,370 607 5,458,420 635 5,422,220 663 5,435,820 691 5,460,970 
524 5,779,190 552 5,620,850 580 5,511,020 608 5,456,630 636 5,422,320 664 5,436,170 692 5,461,970 
525 5,770,100 553 5,616,490 581 5,508,530 609 5,453,680 637 5,421,620 665 5,437,170 693 5,463,670 
526 5,760,405 554 5,612,000 582 5,503,030 610 5,452,130 638 5,422,320 666 5,438,370 694 5,464,670 
527 5,756,740 555 5,604,750 583 5,498,980 611 5,451,280 639 5,422,520 667 5,438,720 695 5,466,270 
528 5,747,900 556 5,603,000 584 5,496,480 612 5,445,870 640 5,423,220 668 5,439,470 696 5,467,620 
529 5,740,040 557 5,600,850 585 5,494,580 613 5,445,270 641 5,423,470 669 5,439,770 697 5,468,620 
530 5,739,090 558 5,593,530 586 5,487,770 614 5,443,270 642 5,424,170 670 5,440,970 698 5,470,320 
531 5,729,750 559 5,591,640 587 5,487,140 615 5,440,820 643 5,424,470 671 5,440,720 699 5,471,320 
532 5,726,650 560 5,586,840 588 5,483,170 616 5,438,020 644 5,425,670 672 5,442,120 700 5,472,920 
533 5,719,250 561 5,583,440 589 5,479,670 617 5,436,620 645 5,425,420 673 5,442,220 701 5,474,820 
534 5,714,340 562 5,577,590 590 5,476,520 618 5,435,020 646 5,426,720 674 5,443,070 702 5,476,920 
535 5,709,040 563 5,575,350 591 5,475,020 619 5,434,020 647 5,426,920 675 5,443,420 703 5,478,720 
536 5,702,900 564 5,570,450 592 5,473,070 620 5,434,270 648 5,427,620 676 5,444,420 704 5,480,420 
537 5,696,040 565 5,566,640 593 5,473,470 621 5,430,970 649 5,426,920 677 5,445,820 705 5,481,420 
538 5,693,450 566 5,565,200 594 5,471,720 622 5,430,820 650 5,427,620 678 5,446,170 706 5,483,020 
539 5,688,850 567 5,555,900 595 5,470,420 623 5,430,820 651 5,427,820 679 5,447,170 707 5,484,920 
540 5,679,740 568 5,552,550 596 5,469,220 624 5,428,570 652 5,428,520 680 5,448,370 708 5,487,020 
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Table 4.21 – Optimal solutions for 63-activity problem over feasible set of durations (daily indirect cost of 3,500$). 
 

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 
(days) $ (days) $ (days) $ (days) $ (days) $ (days) $ (days) $ 

513 6,479,780 541 6,327,190 569 6,232,500 597 6,185,320 625 6,177,920 653 6,212,370 681 6,265,920 
514 6,478,180 542 6,320,050 570 6,231,450 598 6,184,970 626 6,177,370 654 6,214,270 682 6,268,120 
515 6,463,840 543 6,315,640 571 6,226,650 599 6,184,820 627 6,178,170 655 6,215,770 683 6,271,020 
516 6,458,880 544 6,314,540 572 6,221,790 600 6,184,520 628 6,177,120 656 6,218,170 684 6,272,970 
517 6,453,030 545 6,307,650 573 6,220,930 601 6,186,420 629 6,177,270 657 6,219,120 685 6,275,170 
518 6,444,415 546 6,300,840 574 6,219,230 602 6,183,370 630 6,177,120 658 6,221,720 686 6,278,070 
519 6,434,005 547 6,298,890 575 6,214,770 603 6,185,520 631 6,179,570 659 6,223,020 687 6,280,270 
520 6,428,630 548 6,294,950 576 6,213,620 604 6,185,370 632 6,180,220 660 6,225,070 688 6,283,070 
521 6,422,665 549 6,295,000 577 6,212,120 605 6,187,820 633 6,180,920 661 6,226,620 689 6,285,320 
522 6,418,465 550 6,287,900 578 6,210,020 606 6,187,820 634 6,182,220 662 6,228,820 690 6,287,620 
523 6,410,105 551 6,285,090 579 6,207,170 607 6,186,820 635 6,184,220 663 6,231,420 691 6,290,170 
524 6,407,990 552 6,283,250 580 6,207,020 608 6,186,230 636 6,185,520 664 6,232,970 692 6,292,370 
525 6,400,100 553 6,280,090 581 6,205,730 609 6,184,480 637 6,186,020 665 6,235,170 693 6,295,270 
526 6,391,605 554 6,276,800 582 6,201,430 610 6,184,130 638 6,187,920 666 6,237,570 694 6,297,470 
527 6,389,140 555 6,270,750 583 6,198,580 611 6,184,480 639 6,189,320 667 6,239,120 695 6,300,270 
528 6,381,500 556 6,270,200 584 6,197,280 612 6,180,270 640 6,191,220 668 6,241,070 696 6,302,820 
529 6,374,840 557 6,269,250 585 6,196,580 613 6,180,870 641 6,192,670 669 6,242,570 697 6,305,020 
530 6,375,090 558 6,263,130 586 6,190,970 614 6,180,070 642 6,194,570 670 6,244,970 698 6,307,920 
531 6,366,950 559 6,262,440 587 6,191,540 615 6,178,820 643 6,196,070 671 6,245,920 699 6,310,120 
532 6,365,050 560 6,258,840 588 6,188,770 616 6,177,220 644 6,198,470 672 6,248,520 700 6,312,920 
533 6,358,850 561 6,256,640 589 6,186,470 617 6,177,020 645 6,199,420 673 6,249,820 701 6,316,020 
534 6,355,140 562 6,251,990 590 6,184,520 618 6,176,620 646 6,201,920 674 6,251,870 702 6,319,320 
535 6,351,040 563 6,250,950 591 6,184,220 619 6,176,820 647 6,203,320 675 6,253,420 703 6,322,320 
536 6,346,100 564 6,247,250 592 6,183,470 620 6,178,270 648 6,205,220 676 6,255,620 704 6,325,220 
537 6,340,440 565 6,244,640 593 6,185,070 621 6,176,170 649 6,205,720 677 6,258,220 705 6,327,420 
538 6,339,050 566 6,244,400 594 6,184,520 622 6,177,220 650 6,207,620 678 6,259,770 706 6,330,220 
539 6,335,650 567 6,236,300 595 6,184,420 623 6,178,420 651 6,209,020 679 6,261,970 707 6,333,320 
540 6,327,740 568 6,234,150 596 6,184,420 624 6,177,370 652 6,210,920 680 6,264,370 708 6,336,620 
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Results given in Table 4.20 and Table 4.21 reveal that the optimal Pareto 
front comprises a total of 196 solutions for the 63-activity project. Thus, as 
stated previously, the external repository 𝑂, must be able to store 196 
particles as 63 × 2(5) matrices that represent solutions along the non-
dominated front for any possible completion time. Accordingly, in behalf of 
increasing the probability of locating the entire Pareto front through each 
cycle, at least 196 particles must be generated. Respecting Table 4.22 and 
Table 4.23, throughout the first portion of the hybrid algorithm, modified-SAM 
locates 130 particles over the solution space leaving the rest of the population 
to be generated following a random scheme. 
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Table 4.22 – Results provided by modified-SAM for 63-activity problem through the first phase of hybrid algorithm (daily indirect cost of 2,300$). 

 
Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

(days) $ (days) $ (days) $ (days) $ (days) $ 

513 5,913,780 566 5,718,280 584 5,572,140 615 5,515,230 668 5,455,970 
516 5,914,930 566 5,721,430 584 5,575,240 616 5,504,580 668 5,461,420 
519 5,916,480 567 5,673,230 585 5,572,990 616 5,510,230 671 5,460,220 
522 5,918,130 569 5,659,680 586 5,573,340 618 5,500,830 672 5,456,870 
526 5,912,630 569 5,662,930 587 5,562,420 618 5,506,130 673 5,457,770 
529 5,913,430 569 5,674,680 587 5,567,370 619 5,498,230 674 5,458,770 
530 5,870,480 570 5,659,580 587 5,572,620 620 5,491,880 677 5,463,120 
534 5,874,830 571 5,656,530 588 5,559,170 620 5,495,330 679 5,465,220 
537 5,866,230 572 5,633,930 590 5,554,680 629 5,499,080 680 5,465,070 
539 5,827,580 572 5,639,830 590 5,560,380 634 5,488,380 681 5,457,420 
539 5,868,080 572 5,653,680 592 5,552,830 639 5,490,080 681 5,463,920 
540 5,820,830 573 5,619,805 597 5,559,930 645 5,497,130 682 5,455,320 
541 5,820,680 573 5,624,730 600 5,563,730 646 5,480,930 682 5,456,170 
542 5,808,330 575 5,615,905 602 5,544,030 648 5,482,880 683 5,456,020 
542 5,817,530 575 5,620,705 602 5,566,330 650 5,469,330 684 5,457,170 
544 5,799,180 576 5,611,855 604 5,540,180 650 5,475,430 685 5,457,870 
546 5,793,980 577 5,603,680 604 5,544,930 650 5,481,430 686 5,459,670 
548 5,789,830 577 5,608,455 605 5,531,130 653 5,473,330 687 5,456,170 
552 5,781,530 578 5,595,230 605 5,537,930 655 5,463,330 690 5,459,620 
553 5,775,330 578 5,602,830 608 5,533,330 655 5,471,280 692 5,461,970 
555 5,772,630 579 5,586,290 609 5,519,780 656 5,458,880 697 5,468,620 
556 5,729,180 579 5,590,480 609 5,528,930 658 5,450,670 699 5,471,320 
559 5,727,330 580 5,585,740 611 5,516,430 658 5,458,230 700 5,472,920 
560 5,720,030 581 5,579,040 611 5,520,730 658 5,461,280 706 5,483,020 
564 5,720,230 581 5,583,990 613 5,516,330 661 5,453,420 707 5,484,920 
566 5,707,430 582 5,575,140 615 5,509,730 664 5,455,970 708 5,487,020 
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Table 4.23 – Results provided by modified-SAM for 63-activity problem through the first phase of hybrid algorithm (daily indirect cost of 3,500$). 

 
Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost 

(days) $ (days) $ (days) $ (days) $ (days) $ 

513 6,529,380 566 6,397,480 584 6,272,940 615 6,253,230 668 6,257,570 
516 6,534,130 566 6,400,630 584 6,276,040 616 6,243,780 668 6,263,020 
519 6,539,280 567 6,353,630 585 6,274,990 616 6,249,430 671 6,265,420 
522 6,544,530 569 6,342,480 586 6,276,540 618 6,242,430 672 6,263,270 
526 6,543,830 569 6,345,730 587 6,266,820 618 6,247,730 673 6,265,370 
529 6,548,230 569 6,357,480 587 6,271,770 619 6,241,030 674 6,267,570 
530 6,506,480 570 6,343,580 587 6,277,020 620 6,235,880 677 6,275,520 
534 6,515,630 571 6,341,730 588 6,264,770 620 6,239,330 679 6,280,020 
537 6,510,630 572 6,320,330 590 6,262,680 629 6,253,880 680 6,281,070 
539 6,474,380 572 6,326,230 590 6,268,380 634 6,249,180 681 6,274,620 
539 6,514,880 572 6,340,080 592 6,263,230 639 6,256,880 681 6,281,120 
540 6,468,830 573 6,307,405 597 6,276,330 645 6,271,130 682 6,273,720 
541 6,469,880 573 6,312,330 600 6,283,730 646 6,256,130 682 6,274,570 
542 6,458,730 575 6,305,905 602 6,266,430 648 6,260,480 683 6,275,620 
542 6,467,930 575 6,310,705 602 6,288,730 650 6,249,330 684 6,277,970 
544 6,451,980 576 6,303,055 604 6,264,980 650 6,255,430 685 6,279,870 
546 6,449,180 577 6,296,080 604 6,269,730 650 6,261,430 686 6,282,870 
548 6,447,430 577 6,300,855 605 6,257,130 653 6,256,930 687 6,280,570 
552 6,443,930 578 6,288,830 605 6,263,930 655 6,249,330 690 6,287,620 
553 6,438,930 578 6,296,430 608 6,262,930 655 6,257,280 692 6,292,370 
555 6,438,630 579 6,281,090 609 6,250,580 656 6,246,080 697 6,305,020 
556 6,396,380 579 6,285,280 609 6,259,730 658 6,240,270 699 6,310,120 
559 6,398,130 580 6,281,740 611 6,249,630 658 6,247,830 700 6,312,920 
560 6,392,030 581 6,276,240 611 6,253,930 658 6,250,880 706 6,330,220 
564 6,397,030 581 6,281,190 613 6,251,930 661 6,246,620 707 6,333,320 
566 6,386,630 582 6,273,540 615 6,247,730 664 6,252,770 708 6,336,620 
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Once again, the time intervals within which the feasible realizations of 
durations will be explored, have been evaluated using the total durations of 
the crashed (𝑍𝑚𝑖𝑛) and the all normal (𝑍𝑚𝑎𝑥) schedules. Thereupon, the 
minimum population sizes have been identified with respect to the evaluated 
time intervals. Subsequently, performing several trials with minimum swarm 
sizes of 196, the adequate values for the operators of the algorithm have 
been designated as shown in Table 4.24. 
  

Table 4.24 – Parameters of the SAM-PSO model for the 63-activity problem. 
 

Parameter Value 
𝑡  500 
𝑖  500 
𝑐1  2 
𝑐2  2 

𝑤𝑚𝑎𝑥  2.2 
𝑤𝑚𝑖𝑛  1.0 
𝑣𝑚𝑎𝑥  2 

 
After a series of trial and error, 500 generations with a swarm size of 500 are 
practiced for SAM-PSO, which provides sufficient convergence capabilities for 
solution of the 63-activity problem. The cognition and social coefficients 
remain untouched with selected values of integer 2, contributing weighted 
average of 1 for the second and the third terms of Eq. (1.18). For this 
experiment, the inertia weight during performance of the PSO phase is 
defined to linearly reduce from a maximum value of 2.2 to a minimum 
amount of 1.0. As depicted earlier, selection of region with larger values for 
the inertia weight enhances the PSO phase with broader explorations. 
Unrestrained escalation of velocities that promote swarm divergence is 
eliminated clamping the velocity to the feasible region of [−2, 2], which 
contributes calculations of probabilities of range 0.12 to 0.88 via Eq. (3.19). 
Smaller values of 𝑣𝑚𝑎𝑥 provide more exploration by this algorithm. 
 
Ten consecutive runs have been executed for any assumed value of daily 
indirect cost. Thereafter, average percent deviations (APD) from the optima 
have been measured for any solution located along the non-dominated front. 
The ultimate Pareto fronts archived by the hybrid algorithm, for two cases of 
the 63-activity problem are illustrated in Table 4.25 and Table 4.26. Akin to 
the previous tests, corresponding to any certain duration determined by the 
hybrid model, the least total cost observed over ten incessant experiments is 
recorded throughout the computational experiments. In addition to APD’s of 
each solution, these tables also contain the overall APD’s as an indication of 
the performance of the hybrid algorithm. In the same way as the former 
experiments, it has been observed that the overall APD is slightly larger for 
the case with smaller assumed value of indirect cost. The average processing 
times required by the proposed model to unravel the 63-activity problem are 
reported in the last rows of Table 4.25 and Table 4.26. The algorithm 
searching 1.82×10-35 fraction of the solution space, takes a reasonable CPU 
time of 108 to 111 seconds to locate the time-cost profile for the 63-activity 
project. These results further verify the robustness of the hybrid model in 
obtaining the entire Pareto front for the discrete TCT problems. Searching 
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rather small portion of the solution space, the proposed model provides the 
complete efficient frontier with inconsiderable deviations from the optimal 
solutions. 
 

Table 4.25 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily 
indirect cost of 2,300$). 

 
Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % 

513 5,898,380 0.61 562 5,589,880 0.27 611 5,452,480 0.04 660 5,438,270 0.11 

514 5,901,380 0.68 563 5,583,880 0.19 612 5,451,730 0.13 661 5,441,320 0.16 

515 5,872,390 0.59 564 5,576,580 0.18 613 5,453,380 0.17 662 5,441,670 0.16 

516 5,850,755 0.31 565 5,573,930 0.22 614 5,445,570 0.13 663 5,440,920 0.11 

517 5,837,830 0.17 566 5,571,480 0.20 615 5,446,620 0.22 664 5,440,970 0.10 

518 5,833,380 0.23 567 5,567,640 0.22 616 5,459,970 0.75 665 5,441,970 0.09 

519 5,815,230 0.30 568 5,564,890 0.23 617 5,454,630 0.62 666 5,440,820 0.05 

520 5,810,530 0.30 569 5,555,280 0.15 618 5,450,930 0.59 667 5,441,170 0.05 

521 5,800,030 0.23 570 5,550,180 0.10 619 5,448,730 0.56 668 5,441,270 0.04 

522 5,794,605 0.19 571 5,635,740 1.75 620 5,445,980 0.39 669 5,439,770 0.00 

523 5,788,055 0.15 572 5,627,480 1.68 621 5,441,820 0.26 670 5,441,120 0.02 

524 5,785,565 0.17 573 5,613,880 1.48 622 5,439,470 0.17 671 5,441,470 0.01 

525 5,778,715 0.17 574 5,592,650 1.26 623 5,433,870 0.12 672 5,442,170 0.00 

526 5,788,165 0.51 575 5,587,300 1.27 624 5,433,320 0.10 673 5,443,170 0.04 

527 5,772,905 0.40 576 5,580,700 1.20 625 5,431,120 0.08 674 5,444,570 0.04 

528 5,764,290 0.39 577 5,579,490 1.21 626 5,428,820 0.05 675 5,444,920 0.05 

529 5,740,040 0.23 578 5,576,990 1.14 627 5,429,020 0.06 676 5,458,520 0.34 

530 5,741,240 0.14 579 5,580,900 1.24 628 5,426,420 0.09 677 5,447,120 0.13 

531 5,737,290 0.21 580 5,565,680 1.08 629 5,425,220 0.06 678 5,447,470 0.09 

532 5,728,050 0.16 581 5,555,200 1.04 630 5,424,920 0.11 679 5,447,170 0.01 

533 5,722,200 0.15 582 5,556,300 1.06 631 5,471,830 1.22 680 5,449,170 0.04 

534 5,720,400 0.23 583 5,548,980 1.03 632 5,446,770 0.55 681 5,450,970 0.04 

535 5,719,000 0.23 584 5,545,970 1.00 633 5,438,420 0.39 682 5,449,720 0.00 

536 5,709,150 0.17 585 5,539,240 0.94 634 5,435,220 0.26 683 5,454,220 0.07 

537 5,705,450 0.20 586 5,551,940 1.17 635 5,426,170 0.15 684 5,454,920 0.07 

538 5,698,400 0.09 587 5,536,830 0.92 636 5,425,270 0.13 685 5,454,820 0.06 

539 5,693,450 0.09 588 5,531,830 0.90 637 5,423,870 0.10 686 5,455,170 0.03 

540 5,685,600 0.12 589 5,531,670 0.95 638 5,425,870 0.15 687 5,456,170 0.01 

541 5,682,280 0.25 590 5,526,170 0.91 639 5,424,770 0.11 688 5,457,470 0.00 
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Table 4.25 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily 
indirect cost of 2,300$). (Continued) 

 
Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % 

542 5,677,290 0.30 591 5,522,170 0.88 640 5,425,570 0.12 689 5,458,520 0.00 

543 5,672,750 0.32 592 5,514,780 0.78 641 5,426,920 0.10 690 5,459,620 0.00 

544 5,668,580 0.24 593 5,511,220 0.69 642 5,424,870 0.08 691 5,461,220 0.01 

545 5,665,080 0.33 594 5,504,880 0.64 643 5,425,170 0.06 692 5,461,970 0.00 

546 5,657,080 0.31 595 5,504,680 0.66 644 5,428,570 0.08 693 5,464,370 0.04 

547 5,653,840 0.30 596 5,488,230 0.46 645 5,429,670 0.09 694 5,465,270 0.03 

548 5,653,070 0.38 597 5,485,630 0.39 646 5,465,780 0.85 695 5,466,270 0.02 

549 5,640,230 0.23 598 5,476,120 0.32 647 5,455,970 0.57 696 5,468,170 0.01 

550 5,633,630 0.23 599 5,470,670 0.25 648 5,438,270 0.42 697 5,468,620 0.00 

551 5,627,280 0.21 600 5,468,170 0.25 649 5,432,320 0.36 698 5,470,320 0.01 

552 5,624,180 0.17 601 5,490,030 0.88 650 5,432,070 0.12 699 5,471,320 0.00 

553 5,622,480 0.19 602 5,480,420 0.37 651 5,430,470 0.09 700 5,472,920 0.00 

554 5,617,130 0.18 603 5,476,180 0.28 652 5,430,720 0.08 701 5,474,820 0.00 

555 5,609,630 0.24 604 5,466,880 0.19 653 5,431,870 0.08 702 5,476,920 0.00 

556 5,714,780 2.02 605 5,465,580 0.18 654 5,432,220 0.06 703 5,478,720 0.00 

557 5,615,640 0.33 606 5,465,180 0.16 655 5,431,470 0.03 704 5,481,470 0.02 

558 5,611,230 0.36 607 5,461,280 0.12 656 5,431,970 0.07 705 5,481,420 0.01 

559 5,609,570 0.35 608 5,465,770 0.17 657 5,431,820 0.09 706 5,483,020 0.00 

560 5,603,240 0.31 609 5,456,620 0.10 658 5,438,670 0.12 707 5,484,920 0.00 

561 5,593,740 0.23 610 5,452,320 0.02 659 5,439,620 0.14 708 5,487,020 0.00 

              Overall APD (%)  0.31 

              Avg. CPU time (s) 111.51 

 
 

Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily 
indirect cost of 3,500$). 

 
Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % 

513 6,513,980 0.55 562 6,255,800 0.10 611 6,189,230 0.08 660 6,230,020 0.10 

514 6,516,030 0.60 563 6,256,000 0.09 612 6,189,070 0.15 661 6,244,620 0.29 

515 6,496,330 0.53 564 6,248,600 0.05 613 6,181,980 0.09 662 6,243,520 0.26 

516 6,481,780 0.38 565 6,249,800 0.09 614 6,181,620 0.09 663 6,240,920 0.18 
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Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily 
indirect cost of 3,500$). (Continued) 

 
Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % 

517 6,478,730 0.41 566 6,248,900 0.10 615 6,179,720 0.09 664 6,238,420 0.10 

518 6,468,565 0.43 567 6,244,850 0.15 616 6,204,470 0.68 665 6,237,820 0.08 

519 6,458,280 0.42 568 6,240,100 0.12 617 6,200,720 0.60 666 6,240,020 0.04 

520 6,454,590 0.41 569 6,235,730 0.10 618 6,190,970 0.47 667 6,239,170 0.03 

521 6,447,865 0.42 570 6,235,280 0.07 619 6,187,470 0.39 668 6,241,770 0.03 

522 6,439,215 0.36 571 6,302,440 1.40 620 6,187,520 0.42 669 6,243,070 0.03 

523 6,428,955 0.33 572 6,290,290 1.31 621 6,183,420 0.38 670 6,245,120 0.03 

524 6,431,055 0.37 573 6,304,005 1.34 622 6,182,370 0.37 671 6,246,670 0.04 

525 6,423,050 0.38 574 6,279,600 1.13 623 6,181,670 0.34 672 6,248,570 0.02 

526 6,403,850 0.35 575 6,277,950 1.16 624 6,180,120 0.25 673 6,252,920 0.05 

527 6,399,350 0.38 576 6,271,000 1.08 625 6,181,320 0.23 674 6,254,820 0.05 

528 6,388,140 0.22 577 6,270,790 1.09 626 6,178,970 0.16 675 6,257,020 0.06 

529 6,391,390 0.30 578 6,265,950 1.04 627 6,178,770 0.09 676 6,259,070 0.12 

530 6,376,890 0.05 579 6,273,940 1.08 628 6,181,170 0.15 677 6,261,270 0.06 

531 6,373,400 0.14 580 6,271,900 1.07 629 6,180,120 0.12 678 6,263,170 0.07 

532 6,369,100 0.10 581 6,260,040 0.98 630 6,182,720 0.13 679 6,264,220 0.05 

533 6,361,850 0.05 582 6,254,590 0.94 631 6,208,080 0.78 680 6,264,370 0.03 

534 6,361,940 0.14 583 6,221,450 0.65 632 6,189,480 0.41 681 6,265,920 0.04 

535 6,355,440 0.11 584 6,202,320 0.52 633 6,188,480 0.21 682 6,268,120 0.00 

536 6,351,650 0.10 585 6,249,940 0.87 634 6,188,420 0.18 683 6,271,020 0.01 

537 6,342,890 0.09 586 6,248,420 0.95 635 6,190,620 0.13 684 6,273,220 0.02 

538 6,341,130 0.08 587 6,242,370 0.86 636 6,191,230 0.11 685 6,275,170 0.01 

539 6,340,980 0.11 588 6,238,730 0.83 637 6,192,220 0.11 686 6,278,070 0.00 

540 6,335,180 0.14 589 6,234,570 0.80 638 6,189,820 0.07 687 6,280,270 0.00 

541 6,345,940 0.54 590 6,229,880 0.82 639 6,192,170 0.14 688 6,283,070 0.00 

542 6,340,405 0.38 591 6,196,600 0.55 640 6,193,570 0.07 689 6,285,320 0.00 

543 6,333,465 0.35 592 6,192,380 0.42 641 6,195,470 0.06 690 6,287,620 0.00 

544 6,326,400 0.26 593 6,196,830 0.43 642 6,197,170 0.07 691 6,291,670 0.03 

545 6,325,400 0.30 594 6,188,480 0.32 643 6,198,420 0.06 692 6,292,370 0.00 

546 6,318,000 0.30 595 6,187,470 0.32 644 6,200,470 0.06 693 6,295,270 0.01 

547 6,315,330 0.27 596 6,190,070 0.24 645 6,202,020 0.06 694 6,297,470 0.00 
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Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily 
indirect cost of 3,500$). (Continued) 

 
Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD 

(days) $ % (days) $ % (days) $ % (days) $ % 

548 6,303,350 0.16 597 6,205,120 0.35 646 6,240,980 0.75 695 6,300,270 0.02 

549 6,304,200 0.16 598 6,208,930 0.41 647 6,214,770 0.42 696 6,302,820 0.00 

550 6,299,430 0.19 599 6,202,280 0.34 648 6,225,270 0.48 697 6,305,020 0.00 

551 6,295,600 0.26 600 6,197,580 0.29 649 6,219,320 0.37 698 6,307,920 0.00 

552 6,290,500 0.18 601 6,206,330 0.33 650 6,217,570 0.29 699 6,310,120 0.00 

553 6,287,450 0.21 602 6,199,630 0.27 651 6,218,870 0.29 700 6,312,920 0.00 

554 6,287,400 0.22 603 6,197,230 0.25 652 6,210,920 0.18 701 6,316,020 0.01 

555 6,280,290 0.24 604 6,190,930 0.20 653 6,213,870 0.16 702 6,319,320 0.01 

556 6,300,180 1.16 605 6,191,530 0.15 654 6,216,170 0.14 703 6,322,320 0.00 

557 6,281,540 0.29 606 6,189,830 0.08 655 6,218,070 0.16 704 6,325,220 0.01 

558 6,282,210 0.34 607 6,191,930 0.14 656 6,220,020 0.13 705 6,327,420 0.00 

559 6,268,940 0.18 608 6,187,530 0.09 657 6,220,820 0.16 706 6,330,220 0.00 

560 6,263,040 0.14 609 6,185,930 0.04 658 6,228,270 0.12 707 6,333,320 0.00 

561 6,263,450 0.12 610 6,185,470 0.02 659 6,230,420 0.12 708 6,336,620 0.00 

              Overall APD (%) 0.27 

              Avg. CPU time (s) 108.02 

 
The solutions obtained from mixed integer programming (Sonmez and 
Bettemir 2012), modified-SAM, and SAM-PSO procedures are once more 
plotted against each other in the ensuing figures. Figure 4.6 and Figure 4.7 
illuminate the solutions obtained via SAM-PSO model for the 63-activity 
problem with indirect costs of 2,300$/𝑑𝑎𝑦 and 3,500$/𝑑𝑎𝑦 respectively. These 
figures unveil a reasonably good fit for 130 solutions provided by modified-
SAM for any of the experimented cases. Followed by the overhauled PSO 
algorithm, these solutions, in essence, impart the particles with somewhat of 
a head-start. Thus, solutions located through this phase provide the second 
stage with seeds of higher quality. The best non-dominated solutions located 
within ten consecutive trials establish the final time-cost profile. This profile, 
to some extent, lies over the optimal frontier obtained through the mixed 
integer programming; besides, the deviations occur within an acceptable 
range from the optima. 
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Figure 4.6 – Comparison of obtained Pareto fronts for 63-activity problem (daily indirect cost of 
2,300$). 

 
 

 
 

Figure 4.7 – Comparison of obtained Pareto fronts for 63-activity problem (daily indirect cost of 
3,500$). 

 
Throughout the computational experiments, the optimal non-dominated time-
cost profiles of the 18-activity and the 63-activity problems were introduced 
for the very first time in the literature. Due to sound convergence speed and 
quality of the proposed algorithm in locating the entire Pareto fronts of the 
noted instances, it is considered to be a pioneering technique in the 
construction management spectrum. 
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CHAPTER 5  
 
 

CONCLUSIONS 
 
 
 

In this thesis, significance of adequate schedules for construction projects has 
been discussed. Of the scheduling techniques, the TCT analyses have been 
brought to light along with the inadequacies of existing commercial scheduling 
software packages for such analyses. Stated motives tied with eminence of 
discretization, initiated development of PSO based algorithms for discrete TCT 
optimizations. Two particle swarm optimizers, as well as a hybrid meta-
heuristic algorithm have been proposed for solution of TCT problems, 
explicitly emphasizing time-cost curve extension of these analyses. 
Respectively, a state-of-the-art model with decent capabilities in identifying 
the entire Pareto front for discrete TCT problems has been presented. 
 
On the verge of validation and performance assessments of the proposed 
algorithms, empirical analyses have been conducted by implementing a well-
known 18-activity benchmark problem, as well as a more complex 63-activity 
problem into the models. The adequate values for the operators of the 
algorithms have been fine-tuned via sequences of trial and error, with regard 
to the solutions provided for these instances within the literature. Amidst 
computational experiments, implementing mixed integer programming 
technique in the AIMMS 3.11 optimization software, the optimal non-
dominated time-cost profiles of the 18-activity and the 63-activity problems 
have been introduced for the very first time in the literature. Therewith, the 
closeness of solutions obtained from the proposed particle swarm optimizers 
have been measured compared to the optimal solutions; the average 
deviations have been reported for ten consecutive experimental runs. The 
average processing times required to unravel the test problems have been 
also documented. The efficiency and robustness of the proposed algorithms 
have been verified concerning the results attained from these analyses. 
 
The discrete sole-PSO algorithm introduced in this thesis has been established 
upon the classical version proposed by the founders, with trajectories and 
velocities defined as probabilities of state selection for the bits. However, 
modifications have been applied to the equations and an alternate scheme for 
position update has been adopted. The implemented scheme contrasting with 
the original method, in lieu of using uniformly distributed random numbers, 
involves determination of the alternatives holding the maximum probabilities. 
Similarly, notwithstanding the absence of the inertia weight (w) in the 
classical velocity update equation, the proposed algorithm has been treated 
with this parameter. 
 
Compared to solutions of well-developed algorithms along with the optimal 
solution attained from the exact method, it has been verified that the 
proposed discrete PSO algorithm is capable of finding optimum or near-
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optimum solutions for the medium-sized problems with insignificant 
deviations from the optimal solutions. It has been observed that the quality of 
the obtained solutions for larger instances slightly deteriorate as exposed to 
larger daily indirect costs. It has been shown that this algorithm operates 
within acceptable processing time by searching merely small fractions of the 
search space. As a result, the proposed algorithm has been proven to 
outperform all the earlier optimizers with regard to both the convergence 
speed and the quality of the solutions. However, generic to all meta-heuristic 
algorithms, it is impossible to ensure quality of the obtained solutions short of 
the exact procedure. 
 
Another paradigm of the discrete PSO algorithm has been introduced within 
the context of this thesis for solution of the time-constraint TCT problems. 
Minor modifications mainly engaging the fitness functions have been applied 
to the previously specified particle swarm optimizer. Performed revisions 
enhancing assessment of problems with provisions of incentives and 
liquidated damages have been demonstrated. It has been observed that in 
spite of extra calculations imposed to the algorithm, this procedure demands 
inconsiderable processing time due to searching small portions of the solution 
space. The efficiency of this algorithm has been confirmed in providing sound 
solutions throughout the empirical analyses. The optimality of the solutions 
obtained through experimentations has been verified in comparison with the 
results of the exact procedure. In consequence, the proposed algorithm has 
been proven to outdo all the earlier optimizers concerning its convergence 
capabilities. 
 
Reckoned as the chief contribution of this thesis, a novel hybrid SAM-PSO 
algorithm has been introduced for solution of the time-cost curve extension of 
discrete TCT problems. Complementary strengths of the Siemens 
Approximation Method (SAM) and the discrete PSO algorithm have been 
combined to develop a hybrid algorithm. To this end, a new approach has 
been taken toward cost slopes measurements of the SAM method; thereupon, 
the modified-SAM has been embedded to an overhauled discrete PSO 
algorithm. Principles for selection of the pbest and the gbest positions have 
been totally revamped for the overhauled PSO phase of the hybrid model. A 
semi-deterministic (semi-random) initialization scheme has been incorporated 
into the SAM-PSO model, seeding a certain portion of the initial population by 
dint of the modified-SAM method, followed by a random scheme for 
generation of the rest of the population. 
 
Convergence capabilities of the proposed SAM-PSO model in locating the 
Pareto front have been demonstrated in a scatter chart, plotted against the 
results of the mixed integer programming. It has been observed that the 
solutions provided via modified-SAM phase of the hybrid model have 
reasonably good fit compared to the optimal frontier, thus, providing the 
second phase with initial seeds of higher quality. The ultimate time-cost 
profiles located by the hybrid algorithm have been experienced to roughly lie 
over the efficient frontier with deviations within acceptable ranges from the 
optima. However, it has been observed that the quality of the obtained 
solutions slightly deteriorate for instances with smaller daily indirect costs. 
Robustness of this model has been confirmed regarding its competency in 
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locating the entire non-dominated front for the medium-sized instances. As a 
result, operating within reasonable time-frames, the proposed algorithm has 
been proven to outperform the results of the previous researches reported in 
the literature. Albeit, as stated earlier, optimality of the obtained solutions 
through the SAM-PSO model cannot be ensured unless an exact procedure is 
adopted. Moreover, despite the efficiency of the hybrid algorithm in solving 
instances having up to 63 activities, the same level of performance cannot be 
guaranteed extending its application for real-life projects that comprise 
hundreds or even thousands of activities. 
 
The SAM-PSO model is envisioned to support decision makers in competent 
evaluations of the subsequent “what if” scenarios. Due to sound convergence 
capabilities of the proposed algorithm in locating the entire Pareto fronts of 
the represented instances, it is considered to be a pioneering technique in the 
construction management spectrum. Further, it has been noted that the 
performance of SAM-PSO is sensitive to parameter selection, and that setting 
larger values for the generations and/or swarms in behalf of augmented 
solution quality is advisable. However, setting larger values for these 
parameters necessitate greater processing times. As a result, benefitting from 
supercomputers or grid-computing systems that render more processing units 
would be an alternative study area. 
 
Despite potencies of the proposed model, a need remain for methods that 
incorporates resources availabilities during analyses. A comprehensive 
research extending optimization of time-cost to other perspectives of the 
projects such as quality, productivity, safety, etc., is also an investigation 
area that deserves further devotion. Including second order cost components 
– such as insurance or bond expenses that are functions of both the overall 
duration and cost of the project – within TCT analyses would be another 
remarkable focus in this spectrum. Last but not least, it is a common practice 
to assume deterministic amounts for the durations and costs of the time-cost 
alternatives; however, a model can be designed to reflect uncertainties of the 
actual practices. 



 

 
 



 

87 
 

REFERENCES 
 
 
 

Afshar, A., Ziaraty, A. K., Kaveh, A., & Sharifi, F. (2009). Nondominated Archiving 
Multicolony Ant Algorithm in Time-Cost Trade-Off Optimization. Journal of 
Construction Engineering and Management-ASCE, 135(7), 668-674. doi: 
10.1061/(ASCE)0733-9364(2009)135:7(668) 

 
Anagnostopoulos, K. P., & Kotsikas, L. (2010). Experimental evaluation of simulated 

annealing algorithms for the time-cost trade-off problem. Applied Mathematics 
and Computation, 217(1), 260-270. doi: 10.1016/j.amc.2010.05.056 

 
Ashuri, B., & Tavakolan, M. (2012). Fuzzy Enabled Hybrid Genetic Algorithm–Particle 

Swarm Optimization Approach to Solve TCRO Problems in Construction Project 
Planning. Journal of Construction Engineering and Management, 138(9), 1065-
1074. doi: 10.1061/(ASCE)CO.1943-7862.0000513 

 
Chassiakos, A. P., & Sakellaropoulos, S. P. (2005). Time-cost optimization of construction 

projects with generalized activity constraints. Journal of Construction 
Engineering and Management-ASCE, 131(10), 1115-1124. doi: 
10.1061/(ASCE)0733-9364(2005)131:10(1115) 

 
Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed Optimization by Ant Colonies. 

Toward a Practice of Autonomous Systems, 134-142.  
 
De, P., James Dunne, E., Ghosh, J. B., & Wells, C. E. (1995). The discrete time-cost 

tradeoff problem revisited. European Journal of Operational Research, 81(2), 
225-238. doi: 10.1016/0377-2217(94)00187-H 

 
Deckro, R. F., Hebert, J. E., Verdini, W. A., Grimsrud, P. H., & Venkateshwar, S. (1995). 

Nonlinear Time Cost Tradeoff Models in Project-Management. Computers & 
Industrial Engineering, 28(2), 219-229. doi: 10.1016/0360-8352(94)00199-W 

 
Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., & Vanhoucke, M. (1998). 

New computational results on the discrete time/cost trade-off problem in 
project networks. Journal of the Operational Research Society, 49(11), 1153-
1163. doi: 10.1057/palgrave.jors.2600634 

 
Demeulemeester, E. L., Herroelen, W. S., & Elmaghraby, S. E. (1996). Optimal procedures 

for the discrete time cost trade-off problem in project networks. European 
Journal of Operational Research, 88(1), 50-68. doi: 10.1016/0377-
2217(94)00181-2



 

88 
 

Eberhart, R., & Kennedy, J. (1995, 4-6 Oct 1995). A new optimizer using particle swarm 
theory. Paper presented at the Micro Machine and Human Science, 1995. MHS 
'95., Proceedings of the Sixth International Symposium on Micro Machine and 
Human Science, 39-43. 

 
El-Rayes, K., & Moselhi, O. (1998). Resource-driven scheduling of repetitive activities. 

Construction Management and Economics, 16(4), 433-446. doi: 
10.1080/014461998372213 

 
Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-

based optimization algorithms. Advanced Engineering Informatics, 19(1), 43-53. 
doi: 10.1016/j.aei.2005.01.004 

 
Elbeltagi, E., Hegazy, T., & Grierson, D. (2007). A modified shuffled frog-leaping 

optimization algorithm: applications to project management. Structure and 
Infrastructure Engineering, 3(1), 53-60. doi: 10.1080/15732470500254535 

 
Eshtehardian, E., Afshar, A., & Abbasnia, R. (2008). Time–cost optimization: using GA and 

fuzzy sets theory for uncertainties in cost. Construction Management and 
Economics, 26(7), 679-691. doi: 10.1080/01446190802036128 

 
Falk, J. E., & Horowitz, J. L. (1972). Critical Path Problems with Concave Cost-Time 

Curves. Management Science Series B-Application, 19(4), 446-455. doi: 
10.1287/mnsc.19.4.446 

 
Feng, Liu, L., & Burns. (1997). Using Genetic Algorithms to Solve Construction Time-Cost 

Trade-Off Problems. Journal of Computing in Civil Engineering, 11(3), 184-189. 
doi: 10.1061/(ASCE)0887-3801(1997)11:3(184) 

 
Foldes, S., & Soumis, F. (1993). Pert and Crashing Revisited - Mathematical 

Generalizations. European Journal of Operational Research, 64(2), 286-294. doi: 
10.1016/0377-2217(93)90183-N 

 
Force, University of Texas at Austin. Construction Industry Institute. Cost/Schedule 

Controls Task Force (1988). Concepts and Methods of Schedule Compression: 
The Institute. 

 
Fulkerson, D. R. (1961). A Network Flow Computation for Project Cost Curves. 

Management Science, 7(2), 167-178. doi: 10.1287/Mnsc.7.2.167 
 
Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms. 

Paper presented at the Proceedings of the Second International Conference on 
Genetic Algorithms on Genetic algorithms and their application, Cambridge, 
Massachusetts, United States. 



 

89 
 

Hegazy, T. (1999). Optimization of construction time-cost trade-off analysis using genetic 
algorithms. Canadian Journal of Civil Engineering, 26(6), 685-697. doi: 
10.1139/cjce-26-6-685 

 
Hegazy, T., Elbeltagi, E., & El-Behairy, H. (2004). Bridge deck management system with 

integrated life-cycle cost optimization. Maintenance and Management of 
Pavement and Structures(1866), 44-50. 

 
Heppner, F., & Grenander, U. (1990). A Stochastic Nonlinear Model for Coordinated Bird 

Flocks. Ubiquity of Chaos, 233-238. 
 
Herroelen, W. S., VanDommelen, P., & Demeulemeester, E. L. (1997). Project network 

models with discounted cash flows a guided tour through recent developments. 
European Journal of Operational Research, 100(1), 97-121. doi: 10.1016/S0377-
2217(96)00112-9 

 
Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory 

analysis with applications to biology, control, and artificial intelligence: 
University of Michigan Press. 

 
Izakian, H., Ladani, B. T., Abraham, A., & Snasel, V. (2010). A Discrete Particle Swarm 

Optimization Approach for Grid Job Scheduling. International Journal of 
Innovative Computing Information and Control, 6(9), 4219-4233. 

 
Izakian, H., Ladani, B. T., Zamanifar, K., & Abraham, A. (2009). A Novel Particle Swarm 

Optimization Approach for Grid Job Scheduling. Information Systems, 
Technology and Management-Third International Conference, Icistm 2009, 31, 
100-109. 

 
Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for 

recurrent network design. IEEE Trans Syst Man Cybern B Cybern, 34(2), 997-
1006. 

 
Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives : preferences and 

value tradeoffs. Sydney. 
 
Kelley, J. E. (1961). Critical-Path Planning and Scheduling - Mathematical Basis. 

Operations Research, 9(3), 296-320. doi: 10.1287/Opre.9.3.296 
 
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 1995 Ieee International 

Conference on Neural Networks Proceedings, Vols 1-6, 1942-1948.  
 
Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm 

algorithm. Smc '97 Conference Proceedings - 1997 Ieee International 
Conference on Systems, Man, and Cybernetics, Vols 1-5, 4104-4108.  



 

90 
 

Kerzner, H. (2009). Project Management: A Systems Approach to Planning, Scheduling, 
and Controlling: John Wiley & Sons. 

 
Lock, D. (2007). Project Management: 9Th Edition: Gower. 
 
Meyer, W. L., & Shaffer, L. R. (1965). Extending CPM for Multifirm Project Time-Cost 

Curves. J. Construct. Div., ASCE, 91(1), 45-68. 
 
Millonas, M. M. (1994). Swarms, phase transitions and collective intelligence. In C. 

Langton (Ed.), Artificial Life III: Addison-Wesley. 
 
Moder, J. J., Phillips, C. R., & Davis, E. W. (1983). Project management with CPM, PERT, 

and precedence diagramming (3rd ed.). New York: Van Nostrand Reinhold. 
 
Moussourakis, J., & Haksever, C. (2004). Flexible model for time/cost tradeoff problem. 

Journal of Construction Engineering and Management-ASCE, 130(3), 307-314. 
doi: 10.1061/(ASCE)0733-9364(2004)130:3(307) 

 
Mubarak, S. (2010). Construction Project Scheduling and Control: John Wiley & Sons. 
 
Ng, S. T., & Zhang, Y. S. (2008). Optimizing construction time and cost using ant colony 

optimization approach. Journal of Construction Engineering and Management-
ASCE, 134(9), 721-728. doi: 10.1061/(ASCE)0733-9364(2008)134:9(721) 

 
Parsopoulos, K. E., & Vrahatis, M. N. (2009). Particle Swarm Optimization and 

Intelligence: Advances and Applications: IGI Global. 
 
Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Paper 

presented at the Proceedings of the 14th annual conference on Computer 
graphics and interactive techniques. 

 
Shi, Y. H., & Eberhart, R. (1998). A modified particle swarm optimizer. 1998 Ieee 

International Conference on Evolutionary Computation - Proceedings, 69-73. 
doi: 10.1109/Icec.1998.699146 

 
Siemens, N. (1971). A Simple CPM Time-Cost Tradeoff Algorithm. Management Science, 

17(6), B354-B363. doi: 10.2307/2629138 
 
Skutella, M. (1998). Approximation algorithms for the discrete time-cost tradeoff 

problem. Mathematics of Operations Research, 23(4), 909-929. doi: 
10.1287/moor.23.4.909 

 
Sonmez, R., & Bettemir, O. H. (2012). A hybrid genetic algorithm for the discrete time-

cost trade-off problem. Expert Systems with Applications, 39(13), 11428-11434. 
doi: 10.1016/j.eswa.2012.04.019 



 

91 
 

Vanhoucke, M. (2005). New computational results for the discrete time/cost trade-off 
problem with time-switch constraints. European Journal of Operational 
Research, 165(2), 359-374. doi: 10.1016/j.ejor.2004.04.007 

 
Vanhoucke, M., & Debels, D. (2007). The discrete time/cost trade-off problem: 

extensions and heuristic procedures. Journal of Scheduling, 10(4-5), 311-326. 
doi: 10.1007/s10951-007-0031-y 

 
Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2002). Discrete time/cost trade-

offs in project scheduling with time-switch constraints. Journal of the 
Operational Research Society, 53(7), 741-751. doi: 
10.1057/palgrave.jors.2601351 

 
Xiong, Y., & Kuang, Y. P. (2008). Applying an ant colony optimization algorithm-based 

multiobjective approach for time-cost trade-off. Journal of Construction 
Engineering and Management-ASCE, 134(2), 153-156. doi: 10.1061/(ASCE)0733-
9364(2008)134:2(153) 

 
Yang, H. H., & Chen, Y. L. (2000). Finding the critical path in an activity network with 

time-switch constraints. European Journal of Operational Research, 120(3), 603-
613. doi: 10.1016/S0377-2217(98)00390-7 

 
Yang, I. T. (2007a). Using elitist particle swarm optimization to facilitate bicriterion time-

cost trade-off analysis. Journal of Construction Engineering and Management-
ASCE, 133(7), 498-505. doi: 10.1061/(ASCE)0733-9364(2007)133:7(498) 

 
Yang, I. T. (2007b). Performing complex project crashing analysis with aid of particle 

swarm optimization algorithm. International Journal of Project Management, 
25(6), 637-646. doi: http://dx.doi.org/10.1016/j.ijproman.2006.11.001 

 
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: 

http://dx.doi.org/10.1016/S0019-9958(65)90241-X 
 
Zhang, H., & Xing, F. (2010). Fuzzy-multi-objective particle swarm optimization for time-

cost-quality tradeoff in construction. Automation in Construction, 19(8), 1067-
1075. doi: 10.1016/j.autcon.2010.07.014 

 
Zheng, D. X. M., & Ng, S. T. (2005). Stochastic time-cost optimization model 

incorporating fuzzy sets theory and nonreplaceable front. Journal of 
Construction Engineering and Management-ASCE, 131(2), 176-186. doi: 
10.1061/(ASCE)0733-9364(2005)131:2(176) 

 
Zheng, D. X. M., Ng, S. T., & Kumaraswamy, M. M. (2004). Applying a genetic algorithm-

based multiobjective approach for time-cost optimization. Journal of 
Construction Engineering and Management-ASCE, 130(2), 168-176. doi: 
10.1061/(ASCE)0733-9364(2004)130:2(168) 



 

92 
 

Zheng, D. X. M., Ng, S. T., & Kumaraswamy, M. M. (2005). Applying pareto ranking and 
niche formation to genetic algorithm-based multiobjective time-cost 
optimization. Journal of Construction Engineering and Management-ASCE, 
131(1), 81-91. doi: 10.1061/(ASCE)0733-9364(2005)131:1(81) 


	ABSTRACT
	HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OBTAINING PARETO FRONT OF DISCRETE TIME-COST TRADE-OFF PROBLEM
	ÖZ
	KESİKLİ ZAMAN-MALİYET ÖDÜNLEŞİM PROBLEMLERİNDE Pareto EĞRİSİNİN MELEZ Kuş Sürüsü OPTİMİZASYON Algoritması İLE OLUŞTURULMASI
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	LITERATURE REVIEW
	2.1. CPM
	2.2. TCTP
	2.3. Exact, Heuristic, and Meta-heuristic Methods
	2.4. Exact, Heuristic, and Meta-heuristic Methods for TCTP
	2.4.1. Exact methods for TCTP
	2.4.2. Heuristic methods for TCTP
	2.4.3. Meta-heuristic methods for TCTP


	CHAPTER 3
	PARTICLE SWARM OPTIMIZATION ALGORITHMS
	3.1. Particle Swarm Optimization (PSO)
	3.1.1. Modified particle swarm optimization (M-PSO)
	3.1.2. Discrete binary particle swarm optimization (D-PSO)

	3.2. Siemens Approximation Method (SAM)
	3.3. Initialization and Termination
	3.4. Particle Swarm Optimizer for Time-Cost Trade-Off Analyses
	3.4.1. Discrete TCTP
	3.4.2. Time-constraint TCTP
	3.4.3. Time-cost curve TCTP


	CHAPTER 4
	VALIDATION AND EMPIRICAL ANALYSES
	4.1. Validating the Algorithms
	4.2. Empirical Analyses
	4.2.1. Discrete TCTP analyses
	4.2.2. Time-constraint TCTP analyses
	4.2.3. Time-cost curve TCTP analyses


	CHAPTER 5
	CONCLUSIONS
	REFERENCES

