
1



GENERALIZATION OF RESTRICTED PLANAR LOCATION PROBLEMS:
UNIFIED META-HEURISTICS FOR SINGLE FACILITY CASE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MOHAMMAD SALEH FARHAM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JANUARY 2013



Approval of the thesis:

GENERALIZATION OF RESTRICTED PLANAR LOCATION PROBLEMS:
UNIFIED META-HEURISTICS FOR SINGLE FACILITY CASE

submitted by MOHAMMAD SALEH FARHAM in partial fulfillment of the requirements for the
degree of Master of Science in Industrial Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
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ABSTRACT

GENERALIZATION OF RESTRICTED PLANAR LOCATION PROBLEMS:
UNIFIED META-HEURISTICS FOR SINGLE FACILITY CASE

Farham, Mohammad Saleh
M.S., Department of Industrial Engineering
Supervisor : Assoc. Prof. Dr. Haldun Süral
Co-Supervisor : Assist. Prof. Dr. Cem İyigün

January 2013, 137 pages

A planar single facility location problem, also known as the Fermat–Weber problem, is to find a fa-
cility location such that the total weighted distance to a set of given demand points is minimized. A
variation to this problem is obtained if there is a restriction coming from congested regions. In this
study, congested regions are considered as arbitrary shaped polygonal areas on the plane where lo-
cation of a facility is forbidden and traveling is charged with an additional fixed cost. The traveling
fixed cost or penalty can be thought of the cost of risks taken when passing through the region or
the cost of purchasing license or special equipment in order to be able to pass through the region. In
this study we show that the restricted planar location problem with congested regions having fixed
traveling costs maintains generality over two most studied related location problems in the literature,
namely restricted planar facility location problems with forbidden regions and barriers. It is shown
that this problem is non-convex and nonlinear under Euclidean distance metric; hence using heuristic
approaches is reasonable. We propose three meta-heuristic algorithms, namely simulated annealing,
evolutionary algorithm, and particle swarm optimization based on variable neighborhood search to
solve the problem. The proposed algorithms are applied on test instances taken from the literature and
the favorable computational results are presented.

Keywords: Single facility location, Restricted location, Congested regions, Meta-heuristic

v



ÖZ

KISITLI DÜZLEMSEL YER SEÇİMİ PROBLEMLERİNİN GENELLEŞTİRİLMESİ:
TEK TESİS ÖRNEĞİ İÇİN BİRLEŞTİRİLMİŞ META-SEZGİSELLER

Farham, Mohammad Saleh
Yüksek Lisans, Endüstri Mühendisliği Bölümü
Tez Yöneticisi : Doç. Dr. Haldun Süral
Ortak Tez Yöneticisi : Yrd. Doç. Dr. Cem İyigün

Ocak 2013, 137 sayfa

Fermat–Weber problemi olarak bilinen düzlemsel tek tesis yerleştirme problemi, verilen talep nok-
talarına ağırlıklandırılmış mesafelerin toplamını en aza indirecek bir tesisin yerini seçmek-tir. Eğer
kalabalık bölgelerden gelen bir kısıt olursa bu problemin bir varyasyonu elde edilir. Bu çalışmada, kal-
abalık bölgelere bir tesisin yerleştirilmesi yasaktır ve bu bölgelerden geçmek için ek sabit bir maliyet
tahsil edilmektedir. Bölgeler rastgele şekillendirilmiş poligonal alanlara olarak kabul edilmektedir.
Sabit seyahat maliyeti veya cezası, bölgeyi geçebilmek için gereken lisans yada özel ekipman satın
almanın maliyeti, yani geçişte alınan risklerin maliyeti olarak düşünülebilir. Bu çalışmada, kala-
balık bölgelerdeki sabit yolculuk maliyetini içeren sınırlı düzlemsel tek tesis yerleştirme problemi-
nin, literatürde en çok çalışılan ilgili iki yer seçimi probleminin, yani yasak bölgeleri ve bariyerleri
içeren kısıtlı düzlemsel tesis yerleşim problemini genelleştirildiği gösterilmiştir. Bu problemin Öklid
mesafe metriği altında, dış-bükey olmadığı ve nonlineer olduğu gösterilmiştir; dolayısıyla çözüm
için sezgisel yaklaşım-ların kullanılması doğaldır. Üç meta-sezgisel yöntem önerilmiştir. Bunlar
tavlama benzetimi, evrimsel algoritma ve değişken komşuluk arama esaslı parçacık sürüsü eniyileme
yöntemleridir. Önerilen yöntemler literatürden alınan örnek test problemleri üzerinde uygulan-mış ve
olumlu hesaplama sonuçları elde edilmiştir.

Anahtar Kelimeler: Tek tesis yerleşimi, Yasaklı yerleşim, Sıkışık bölgeler, Meta-sezgisel yöntemler
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CHAPTER 1

INTRODUCTION

The classical planar single facility location problem, also known as the Fermat–Weber problem or
simply the Weber problem, is about placing a single facility on the plane to serve a finite number of
demand points having different demand levels. Its aim is to find a facility location to minimize the sum
of weighted distances from the facility to the demand points. While the Weber problem is well-studied
in the literature, it fails to model many real life location problems. In the real life situations, there
might be restrictions on the location of the facility or on the origin-destination travel paths. These
limitations mostly come from environmental and geographical factors. For example, consider the
existence of a lake, rivers or an urban area on the plane in which the facility is going to be located.
If there are some regions that restrict the facility placement on the plane, the problem is called the
restricted (constrained) facility location problem. Some of the restricted regions might also limit the
facility-demand routes such that passing through them becomes costly, risky, or impossible. Examples
of such regions are national parks, military zones, and mountains. Traveling through a national park
may require paying a certain penalty whereas passing over a mountain is prohibitively expensive.

All restricted planar location problems have two common properties.

1. The facilities cannot be located within certain restricted regions on the plane.
2. The minimum travel distance between any two points in the plane may get longer by the presence

of the restricted regions.

Having these properties, restricted facility location problems can be classified according to their con-
straint type. If the location of the facility is prohibited in some regions but traveling through those
regions is free, the problem is called restricted facility location with forbidden regions. An exam-
ple of forbidden regions is protected areas where facility construction is not allowed because of the
recognized natural, ecological, and/or cultural values of those areas.

Another class of restricted facility location problems is the problems with barriers. Barriers are re-
ferred to those regions inside which facility location is infeasible and through which traveling is im-
possible. Examples of barrier regions are lakes and mountains that are obstacles to travel.

The other class of such problems is the restricted facility location problem with congested regions. In
the limited literature of restricted location problems, congested regions are defined as the regions that
forbid placing of a facility but allow traveling at an extra cost. For example, traffics on the roads of
a city considerably increase traveling cost. These problems are studied under the rectilinear distance
metric while the traveling costs within or through congested regions are assumed to be equal to a
certain cost per-unit distance traveled.

When the restrictions are included – whether they are imposed by forbidden regions, barriers, or con-
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gested regions – the underlying problem becomes a non-convex optimization problem on a non-convex
feasible set that results in computational difficulties. Providing solution approaches becomes more
difficult under Euclidean distance measure where the objective function of the problem becomes non-
linear.

In this study, we consider the restricted planar single facility location problem under Euclidean dis-
tance metric where the restrictions are caused by the presence of congested regions on the plane where
passing through them is penalized by certain fixed costs. Our problem is different than the related loca-
tion problems with congested regions in three ways. Firstly, the available studies consider the problem
under rectilinear distance measure, while our problem uses Euclidean distance norm. Secondly, the
traveling costs of congested regions addressed in this study are fixed. Other studies, however, consider
a certain cost per unit distance traveled in a congested region. Finally, like most restricted planar loca-
tion problems, they assume each congested region is a convex polygon. On the other hand, congested
regions in this study can have both convex and non-convex polygonal shapes. We show that the prob-
lem studied in this thesis, i.e. planar single facility location problem restricted by congested regions
with fixed traveling costs, is a general case of the two most studied related problems in the literature,
namely restricted planar location problems with forbidden regions and barriers. Moreover, lower and
upper bounds for the problem are introduced. The structure of our problem allows us to have different
constraint types instead of having exactly one of the solid forbidden region or barrier restrictions.

The presented solution approaches for the problem is based on well-known meta-heuristic approaches.
The implemented meta-heuristics are simulated annealing, evolutionary algorithm, and particle swarm
optimization. Besides, the techniques of variable neighborhood search are used in the search proce-
dure of the proposed algorithms. We believe that this study is the first that provides extended considera-
tion over a general case of restricted planar single facility location problem and presents meta-heuristic
solution approaches.

To illustrate the performance of the meta-heuristics, all available related problem instances in the
literature are solved. Additional test problem instances are also generated in a standard scheme using
the available instances. Furthermore, to assess the performance of our heuristics on large problem
instances we run our heuristics on the test instances taken from the traveling salesman problem and the
vehicle routing problem literature.

In this thesis, we review the literature of the restricted planar location problems in Chapter 2. The
literature of meta-heuristics applications on the location problems is also reviewed in the same chap-
ter. Next, formulation and applications of the restricted planar single facility location problem with
congested regions having fixed costs are given in Chapter 3. The features of the meta-heuristic algo-
rithms and the details about the proposed solution approaches are presented in Chapter 4. In Chapter
5, we first provide information about the test problem instances. Then, preliminary experiments on the
test problems and parameter adjustment for each heuristics are explained. Afterwards, analysis of the
computational experiments and the performance of meta-heuristics are given. Finally, Chapter 6 states
conclusive remarks, extensions to the problem and future works.
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CHAPTER 2

LITERATURE SURVEY

The well-known Weber problem is a single facility location problem on the plane with the objective
of minimizing total facility-demand weighted distances. The application of this problem is studied in
early 20th century by Weber (see Francis et al., 1992). To deal with this problem, Weiszfeld proposed
an algorithm in 1937 that starts with an initial solution and iteratively updates the solution based on
the weights and distances until it converges. The Weiszfeld’s algorithm benefits from the fact that this
problem is an unconstrained optimization problem of a convex function, however, its performance is
highly sensitive to the initial solution. More details on the Weiszfeld’s algorithm, other facility location
models, solution approaches, and applications can be found in Drezner and Hamacher (2002). Besides,
classification for various location problems is provided by Hamacher and Nickel (1998).

When dealing with real life planar facility location problems, we often face environmental restrictions
that limit our location decisions. To illustrate, placing facilities on the lakes or in national parks
cannot be possible. When such restrictions are imposed on the problem, the classical available solution
methods do not work anymore. Despite their numerous real life applications, restricted planar facility
location problems have not attained much attentions compared to the unrestricted problems in the
location literature. Although the problem is shown to be non-convex which makes it hard to solve (see
Katz and Cooper, 1981), there are a few studies that provide an optimal solution approach.

In this chapter an overview of the literature on the restricted planar location problems is given. More-
over, since we are using meta-heuristic approaches for the solution of the problem, the literature of
meta-heuristic approaches for facility location problems is also considered. In Section 2.1 we pro-
vide a literature survey for restricted planar facility location problems. A review on meta-heuristic
approaches for related facility location problems is given in Section 2.2.

2.1 Restricted Planar Facility Location Problems

The Weber problem with restrictions on facility location and/or traveling has been considered widely
in recent years (see Butt and Cavalier, 1997, Hamacher and Nickel, 1995, Klamroth, 2002). Depend-
ing on the type of restrictions, such problems are divided into three categories. The category considers
planar facility location problems in which restrictions come from existence of forbidden regions. For-
bidden regions refer to prohibition of facility placement but allowance of free traveling. In the second
category, restrictions are imposed by barriers. Barrier are defined as regions where neither locating
a facility on nor passing through is allowed. The last category considers restricted planar location
problems with congested regions. Congested regions are bounded areas in the plane that forbid facility
location however passing through their interior is possible at some extra traveling cost. In the following
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sections, the details of these categories are reviewed.

2.1.1 Restricted Problems with Forbidden Regions

Hamacher and Nickel (1995) provided a broad overview on facility location problems with forbidden
regions. They consider both center and median problems as well as their applications and provided
some solution approaches to these problems.

Batta et al. (1989) proposed a solution method for the planar p-median problems with both arbitrary
convex forbidden regions and arbitrary shaped barriers. While employing rectilinear distance metric
for the problems, the authors showed that the search for an optimal solution can be limited to a finite
set of points. Their solution procedure was dividing the plane into cells in which the objective function
is convex. The cell formation technique (also called grid construction method) is useful when coping
with rectilinear distances. This method was introduced by Larson and Sadiq (1983) for the planar
location problems with barriers.

The planar location problems with forbidden regions and Euclidean distance metric was further studied
by Aneja and Parlar (1994). They claimed that the optimal solution for the unconstrained problem (the
Weber problem) is a lower bound for the location problem restricted by forbidden regions. For a special
case, they showed that if the optimal solution to the unrestricted problem is feasible in the restricted
one, it also satisfies optimality in the restricted problem with forbidden regions. Next, they proved that
if the solution to the constrained problem becomes infeasible and falls inside a region when constraints
are considered, then the optimal solution to the constrained problem will fall on the boundary of that
region. Based on this idea, they proposed an algorithm for convex polygonal forbidden regions that
starts with the solution of unconstrained problem and in the case of infeasibility, it searches edges of the
corresponding forbidden region for the optimal solution to the constrained problem. They also provide
an efficient method to find the optimal solution when forbidden regions are non-convex polygons. The
proposed solution procedures are then used to find the exact solution to a problem instance which
considers locating a facility on the plain with a non-convex polygonal forbidden region.

The facility location problem with forbidden regions was studied further by Muñoz-Pérez and Saameño-
Rodrı́guez (1999) who considered the problem of locating an undesirable facility in a bounded polygo-
nal region with polygonal forbidden regions, using Euclidean distances. They considered the problem
with an objective function that generalizes the maximin and maxisum criteria, and includes other crite-
ria such as the linear combinations of them. When the objective is maximin (maxisum), the undesirable
facility is located such that its minimum (total) distance to the set of given existing points is maximized
while satisfying forbidden region constraints. The authors identified a finite set of dominating solu-
tions for this problem and indicated that an optimum solution could be found in polynomial time in
the number of vertices of the regions and the number of demand points.

Location problems constrained by forbidden regions are also studied in the area of minimax objective
functions and Euclidean distance metric. Hamacher and Schöbel (1997) provide a polynomial time
algorithm to find the optimal solution when forbidden regions are convex polygons. The algorithm is
based on level curves and level sets of the objective function. The procedure starts with the solution
to the unconstrained problem and if that solution is infeasible the algorithm search on the edges of the
restricting forbidden region for candidate solutions. Woeginger (1998) proposed a faster algorithm for
this problem by applying standard techniques from computational geometry.

A connection between the location problem with forbidden regions and congested regions with fixed
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cost is established when all fixed costs of congested regions are set to zero. In chapter 3 the detailed
discussion will be provided.

2.1.2 Restricted Problems with Barriers

A special case for facility locations with forbidden regions is obtained when the traveling through
regions also becomes restricted. Regions that forbid both facility location and traveling are called
barriers – they are also called forbidden regions sometimes (see Butt and Cavalier, 1996), but to make
a distinction between the forbidden region concept given in this study, we use the term of barriers. A
comprehensive overview about the continuous location problems incorporating barriers is provided by
Klamroth (2002).

Presenting barriers as a restriction on planar location problems was first introduced by Katz and Cooper
(1981). They studied The Weber problem in the presence of one circular barrier while considering
Euclidean distance measure. The authors showed that the objective function of this problem is non-
convex and discontinuous. They also proposed a heuristic solution approach based on a sequential
unconstrained minimization technique for nonlinear problems. The authors provide some problem in-
stances where restrictions come from circular barriers. Klamroth (2004) analyzed algebraic properties
of the same problem and introduced a solution procedure based on dividing the feasible region into
some convex regions in which the objective function of the Weber problem is convex. In this proce-
dure, the number of convex regions depends polynomially on the number of demand points. As the
set of demand points becomes larger, construction of such convex regions becomes harder and, thus,
not preferable in practice. The studies provided in Katz and Cooper (1981) and Klamroth (2004) are
different from ours as we assume polygonal regions as a restriction on the problem. Nevertheless, Butt
and Cavalier (1996) and Bischoff and Klamroth (2007) worked on the problem instances given in Katz
and Cooper (1981) by approximating the circular regions by regular convex polygons (e.g. hexagons).
In this way they were able to solve the problem instance when the assumption of convex polygonal
regions holds.

The planar location problems with barriers was further studied by Aneja and Parlar (1994). The authors
studied the problem under general lp–metric distances and convex or non-convex polygonal barriers
assumptions. They proposed a solution procedure that consists of simulated annealing meta-heuristic
for generating candidate locations for facility under Euclidean distance measure. For each generated
solution, they consider the problem as a network problem by using visibility graph concept. Visibility
graph is a graph of inter-visible locations, generally for a set of points and obstacles in the plane.
Each node in the graph represents a point location (demand point, facility, or region vertex), and each
edge represents a visible connection between them. That is, if the direct line segment connecting
two locations does not pass through any obstacle, an edge is drawn between them in the graph (see
Klamroth, 2001a, 2002). The visibility graph is constructed in order to find the shortest path between
any candidate location and demand points. To find such a path they used Dijkstra’s algorithm which
runs in polynomial time. The authors also present some problem instance in which there exist both
convex and non-convex polygonal barriers. To deal with such problem, they used simulated annealing
meta-heuristic approach and reported the solutions to those problems. Some other variants to the same
problem instance is given and solved in Aneja and Parlar (1994) by changing the number of regions in
the original problem. Although the reported solutions are found using a heuristic method, they are later
verified by Butt and Cavalier (1996) and Bischoff and Klamroth (2007) as the best solutions known
for those problems.

Butt and Cavalier (1996) considered the restricted problem with convex polygonal barriers and Eu-
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clidean distance metric. They developed an iterative algorithm to find some local optima to the prob-
lem. The authors used the same visibility graph concept presented in Aneja and Parlar (1994). The
solution procedure consists of partitioning the feasible region into subregions in which the shortest
barrier distance between two points remain constant throughout the region, i.e., the shortest path be-
tween two points passes through same points. By solving the unconstrained problem in each of such
regions they obtain a local optimum to the original problem. The main disadvantage of this approach is
that the boundaries of subregions are generally nonlinear and not easily determined. To avoid finding
boundaries of subregions, they developed a heuristic search algorithm that finds a local optimum to
the problem. They also gave a problem instance with two convex polygonal barriers to illustrate the
proposed heuristic algorithm. With their methodology, the authors also verified the best found solution
for one of the problem instances given in Aneja and Parlar (1994).

A different decomposition method for both center and median restricted location problems with bar-
riers was introduced by Klamroth (2001a). The author suggested visibility grid approach where the
feasible region is divided into cells. Constructing visibility grid is also based on the visibility graph
which converts the problem into network. The cells formed by this method has linear boundaries, mak-
ing this method more efficient than the decomposition method given in Butt and Cavalier (1996). The
author proved that in each cell of the constructed grid, the objective function is convex. Therefore, the
exact solution of the non-convex problem can be obtained by reducing it to a finite number of convex
subproblems and solving these underling problems. Still, the number of subproblems depends on the
number of demand points and barrier vertices that make inefficient to generate and to solve all sub-
problems. An algorithm was provided which finds the set of global minima by searching all cells and
boundaries in the constructed grid. Because this algorithm is computationally expensive, the author
provided a second algorithm that can find a heuristic solution to the problem. However, a high quality
solution requires a large number of iteration in this algorithm and thus decreases its efficiency.

To overcome the difficulties arising from subproblem generation, Bischoff and Klamroth (2007) in-
troduced a genetic algorithm to find a heuristic solution to the problem. In the proposed algorithm
subproblems are selected in an iterative manner to find the candidate solutions of the global problem.
The visibility concept are also used in the study to reduce the number of subproblems that need to
be considered. The authors also considered appropriate assignment of points in the facility-demand
shortest paths. The proposed solution approach is only valid when barriers are convex polygons. In
their study, Bischoff and Klamroth tried to solve some problem instances which are either from the
literature or generated arbitrarily. The problems from the literature consist of those given in Katz and
Cooper (1981) and those given in Aneja and Parlar (1994). Since the problem instances provided by
Katz and Cooper (1981) consist circular barriers, Bischoff and Klamroth replaced circles with regu-
lar convex polygons. Then, they generated variants to those problems by changing some features of
the polygons and reported the heuristic solutions obtained by their approach. Some other problem
instances they considered are those given in Aneja and Parlar (1994). Since their solution approach is
valid for convex polygonal barriers, they modified those problems by replacing non-convex polygonal
barriers by the convex hull of them. This is based on the fact that the solution and objective function
value of the modified problem is identical to the original problem unless there is at least one demand
point in the non-convex region of a barrier (see Butt and Cavalier, 1996).

A different solution approach is used by McGarvey and Cavalier (2003). They used Big Square Small
Square method for the Euclidean distanced Weber problem with polygonal barriers. The big square
small square method is a branch and bound technique that divides the continuous feasible region into
discrete square subregions. This iterative algorithm begins by determining the smallest square that
encloses all the points (demand points and barrier vertices) in the instance problem. This square is then
divided into four equal sub-squares. A lower bound is calculated for each sub-square, and sub-squares
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are pruned based on the computed bounds. At the start of the next iteration, every current sub-square
is divided into four new sub-squares and the process repeats. The solution method terminates when
the current sub-squares have sides of length less than a small positive number. The solutions will be
represented as the center of constructed squares. They used visibility concept in calculating distances
to each square. This method produces a solution within a very small tolerance of the optimal solution.
Their procedure can applied on the problem with convex polygonal barriers, and in the case of non-
convexity, the barrier is replaced by its convex hull. The largest instance they experimented contains
100 demand locations and 7 barriers. However, no information about the location of demand points
and barriers in the problem instances is given. It is concluded that the computational times depend on
the number of demand points and barrier vertices.

The Restricted planar location problem with barriers was also considered in the case of rectilinear
distance l1. For the first time, Larson and Sadiq (1983) considered the p-median problem with recti-
linear distances and polygonal barriers. Based on a network determined by the problem, they defined
a special structured grid of nodes and edges, They discovered that the set of nodes provides a finite
dominating set of solution points for the problem. A dominating set consists of candidate solutions
for optimality. The grid is made of horizontal and vertical lines passing through location points in the
problem and their intersection points. In each cell of that grid, the objective function is shown to be
convex. Afterwards, the authors proved that the optimal solutions fall on either one of the corners of
grid cells or the intersection of cell edges and barrier edges. Based on this idea a polynomial time
algorithm was introduced to search for the optimal solution among the candidate points.

The work of Larson and Sadiq (1983) motivated Batta et al. (1989) to extend the work by considering
both convex forbidden regions and arbitrary shaped barriers while the metric is l1. They defined a new
grid structure for arbitrary shaped barriers, yet the set of optimal solution still consists of intersection
points of the grid lines. Furthermore, Dearing and Segars (2002a) considered the problem under
rectilinear distance measure and with any convex, nondecreasing function of distance of l1 norm. They
introduced a modification method to change barrier shapes and proved that the objective function
values of the original problem and the modified problem are identical. Their method is based on
rectilinear distance properties and allows some non-convex barrier shapes to be equivalent to convex
ones if there are no demand points in the non-convex regions. The authors were able to reduce the
feasible region with their modification as well as partitioning the feasible region into rectangular cells
in which the problem is convex. As a sequel discussion, Dearing and Segars (2002b) showed that
an optimal solution is not restricted to nodes of the network. Besides, they provided bounds for the
objective function value in each cell generated using this method.

Dearing et al. (2002) provided similar results based on partitioning the feasible region into cells for
the rectilinear center problems. Considering polygonal barriers and l1 distances, they developed an
algorithm that finds the optimal solution to the problem. The procedure searches for a dominating
set and identifies the best solution. They extended these results by considering block norm distances
instead of rectilinear distances (see Dearing et al., 2005). Block norm distance is defined in the plane
with respect to a symmetric polytope as its unit ball. The polytope is assumed to have 2p distinct
extreme points, for an integer p ≥ 2. The authors also provided a similar method of Dearing and
Segars (2002a) to modify barriers. Block norms in the Weber problem with barriers was first discussed
by Hamacher and Klamroth (2000) who established a discretization result based the grid construction
method. The grid defined in this paper is constructed using the existing facilities and the fundamental
directions of the polyhedral distances. They showed that the barrier problem can be solved with a
polynomial algorithm with the presented method.

Along with the existing literature on the Weber problems with polygonal or circular barriers, a line
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barrier case was introduced by Klamroth (2001b). The problem is considering general lp norm and
existence of a line shaped barrier with a given number of passages. In this case, the barrier divides
the plane into two sub-planes. Traveling from one sub-plane to the other is only possible through
one of the given passages. The problem becomes a combinatorial problem when there are more than
one passages. An algorithm was developed for solving the problem when the number of passages
is 2. Complexity of the problem increases exponentially with the number of passages but remains
polynomial when the number of passages is fixed. Klamroth and Wiecek (2002) worked on the multi
objective median problems with line barriers and different measures of distance. Based on the special
structure of the problems, they proposed a polynomial algorithm for bi-criteria problems to find the set
of efficient solutions. The restricted planar location problem with a line barrier is also the subject of
interest in Canbolat and Wesolowsky (2010). They considered the problem with rectilinear distances
where the position of the barrier is not deterministic. The presence of a line barrier in their problem
occurs randomly on a given horizontal route on the plane. Some properties of such probabilistic
problem are reported and a solution algorithm is provided in that paper.

From a different point of view, Frieß et al. (2003) conducted a simulation study and suggested a solu-
tion strategy to the restricted center location problem with Euclidean distances. They implemented a
theoretical approach as a physical experiment using water tanks in a lab environment and developed
a computer simulation based on the propagation of circular wavefronts. Considering the behavior of
water waves in their approach makes it also valid for convex congested regions. In the experiment,
barriers are taken as islands in the water tank and congested regions can be made by changing the
depth of water in those regions. Another experimental based study on the Weber problem in the pres-
ence of convex barriers is recently done by Canbolat and Wesolowsky (2012). They used Varignon
frame, a mechanical system of strings, weights, and a board with holes that has been used to identify
an optimal location for the classical Weber problem. They showed through analytical results that the
same approach can also be used for some of the Weber problems in the presence of barriers. This
method provides rapid solutions, allows for flexibility, and enables one to visualize the problem. How-
ever, conducting experiments like the ones given in Frieß et al. (2003) and Canbolat and Wesolowsky
(2012) require time and effort. Not every problem can be simulated in these ways and computational
errors regarding physical experiments are not negligible either.

The literature of the restricted location problems with barriers also contains the multi-facility decision
problems. Bischoff et al. (2009) was the first study that considered this problem. They developed alter-
nate location and allocation procedures for the resulting multi-dimensional mixed-integer optimization
problem that works by iteratively decomposing the problem into single-facility subproblems.

There is also a relation between restricted planar location problems with barriers and the problem
considered in this study. For any congested region in our problem, if the fixed cost is set to infinity, the
region becomes a barrier.

2.1.3 Restricted Problems with Congested Regions

The literature of planar facility location problems restricted by congested regions is more limited. Butt
and Cavalier (1997) was the first study that considered existence of congested regions in the median
planar location problems. The authors considered the p-median case with the rectilinear distance
measure and convex polygonal congested regions. Each congested region in their study is characterized
by a congested factor. Congested factor is defined as a nonnegative number representing a per-unit
distance cost which is an additional cost faced when a traveling occurs in the congested region. The
authors introduced the least cost paths concept and conclude that a rectilinear least cost path between

8



two points in this problem may not necessarily be the path of shortest length. They provided a linear
program to find least cost paths. Based on their finding, the authors proposed an extension of the same
grid construction procedure as in Larson and Sadiq (1983) and claimed that at least one least cost path
would always coincide with the segments of constructed grid. Then, the problem was transformed to
an unconstrained p-median problem on a network where an optimal set of new facility locations is
chosen from a finite dominating set of points. Hence, the problem was reduced to a combinatorial
search where an optimal set of facilities locations is chosen from a finite set of candidate points. They
also described the connection of their problem with location problems with forbidden regions and
barriers.

Later, Sarkar et al. (2004) demonstrated that the proposed grid line method given in Butt and Cavalier
(1997) to find the rectilinear least cost paths is not correct under certain conditions. The authors prove
their claim by giving a contradictory example. They also provide a mixed integer linear programming
formulation to determine the least cost path for that example. They claim that the difficulties arising
from least cost rectilinear path calculations are much more than those mentioned in Butt and Cavalier
(1997). Years after, they considered the problem of finding the least cost paths for rectilinear location
problem with congested regions (see Sarkar et al., 2009). They established that the state-space for the
problem of finding least cost path could be exponential. Moreover, they gave an upper bound for the
number of entry/exit points of a rectilinear path between two points and based on this a memory-based
algorithm is proposed. However, the computation of least cost path becomes prohibitively expensive
when the underlying problem becomes large.

The constrained location problems with congested regions are studied under the assumption of per-unit
traveling costs in congested regions. As a result, finding the least cost path becomes challenging as
it depends on determining proper entry and exit points for each traveling path in congested regions.
Note that our problem differs with the mentioned location problems with congested regions in three
terms. Firstly, instead of the rectilinear distance metric in those problems, the distance metric in our
problem is Euclidean. In this case, the traveler is not limited to move on vertical/horizontal paths.
With euclidean distances the properties of the problem becomes completely different than those with
rectilinear distances. Therefore, the solution approaches available in the literature is not valid for our
case. Secondly, we considered fixed costs for passing trough congested regions rather than variable
costs given in the literature. This also changes the properties of the problem as traveling through
regions matters. Lastly, ignoring the assumption of congested region convexity in our problem makes
it more realistic.

Despite the fact that the Euclidean planar 1-median problem with congested regions maintains general-
ity over other restricted planar problems and has many real-life applications, as we mention in Chapter
3, it has not attained any attention in the literature so far. Moreover, All solution procedures in the lit-
erature that consider restricted planar location problems are given for either forbidden region or barrier
restrictions. If a problem contains both restriction types (there exist some barriers and some forbid-
den regions as well), the available solution procedures in the literature are not valid. Besides, when
considering the restricted problem with barrier case and Euclidean distances, the solution procedures
in the literature are only applicable under the assumption of convex polygonal regions. If there is a
non-convex region with some demand points located inside its non-convex part, the available methods
in the literature cannot be used. The solution approach presented in this thesis is flexible in such a way
that it is not limited to the type of constraining regions in the problem or to the location of demand
points. Hence, the problems containing restrictive regions with different fixed costs and shapes can be
solved using our proposed solution approaches as long as they meet the assumptions noted in Chapter
3.
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2.2 Meta-heuristic Approaches for Single Facility Location Problems

Since we use meta-heuristic approaches in finding solutions to our restricted problem, it is important
to review the literature of meta-heuristic applications for location problems. We concentrate more on
the literature of using simulated annealing, evolutionary algorithm, particle swarm optimization, and
variable neighborhood search for location problems. More details on meta-heuristic algorithms can be
found in Blum and Roli (2003).

The application of meta-heuristics for the p-median problem is well studied in the literature. Mlade-
nović et al. (2007) provides a survey about using well-known meta-heuristics such as simulated an-
nealing, tabu search, variable neighborhood search, and evolutionary algorithms for the p-median
problems.

Simulated annealing is a probabilistic search algorithm based on the annealing procedure of a heated
metal. It was introduced by Kirkpatrick et al. (1983) and then widely used for the traveling salesman
problem (TSP) and other combinatorial problems. A comprehensive review of simulated annealing
as a tool for both single and multi-objective optimization and its applications is presented in Suman
and Kumar (2006). More examples on the use of simulated annealing for the p-median problems are
Al-khedhairi (2008) and the references therein.

Genetic algorithm, which is a class of the evolutionary algorithms, is also used to the p-median location
problems. Alp et al. (2003) used genetic algorithm for the p-median problems and showed that their
algorithm had a relatively high performance. Chaudhry et al. (2003) applied genetic search on the
p-median problem with a maximum distance constraint.

Another implemented meta-heuristic in this area is particle swarm optimization. Particle swarm op-
timization is a population based meta-heuristic inspired by social behavior of bird flocking or fish
schooling. It was first presented by Kennedy and Eberhart (1995) and attained many attentions in op-
timization problems afterwards. An extensive review on particle swarm optimization and its structure
is given by Poli et al. (2007). An example of using particle swarm optimization for the p-median prob-
lems is Sevkli et al. (2012) where the search method is designed for the discrete p-median problems.
Brito (2007) proposed a particle swarm optimization modified with a local search method to solve the
continuous p-median problem.

Variable neighborhood search, introduced by Mladenović and Hansen (1997), is a technique of chang-
ing neighborhood to search for better solutions in a systematic manner. It is also used as a meta-
heuristic approach to deal with a wide range of optimization problems. In the p-median location prob-
lems, for example, variable neighborhood search is used by Hansen and Mladenović (1997). Hansen
et al. (2010) provided a review on the literature of variable neighborhood search as well as its differ-
ent methods and applications. The special structure of variable neighborhood search enables it to be
combined with other heuristics in order to improve the overall performance. In this thesis we refer
to a basic principle of variable neighbor hood search given in Hansen et al. (2010) and use it as an
advanced search process in other proposed meta-heuristics.

Meta-heuristic algorithms are also used in other types of location problems. For the planar multi-
facility problem, Abdullah et al. (2008) applied simulated annealing on the uncapacitated planar multi-
facility location problem where there is a fixed cost associated with opening a given facility in different
zones on the plane. Aras et al. (2007) used simulated annealing for the capacitated multi-source Weber
problem under different distance measures.
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Houck et al. (1996) developed a genetic algorithm for the multi-source Weber problem and gave a
comparison between the proposed genetic algorithm and traditional search algorithms. Brimberg et al.
(2000) compared also various heuristics such as tabu search, genetic search, and different versions of
variable neighborhood search for the uncapacitated multi-source Weber problem.

Güner and Sevkli (2008) implemented particle swarm optimization on the uncapacitated facility loca-
tion problem. Parsopoulos and Vrahatis (2002) investigated particle swarm optimization in the con-
strained problems and compared its performance with evolutionary algorithms.

When the restricted planar facility location problems are considered, not many intensive studies can
be found in the literature. The most relevant work and the first one in this area was done by Aneja
and Parlar (1994). They used simulated annealing approach to find a heuristic solution to the restricted
planar single facility location problem with polygonal barriers. However, no information about the
exploited simulated annealing and its structure is provided in Aneja and Parlar (1994). Another relevant
use of meta-heuristics for this types of problems is given by Bischoff and Klamroth (2007). Even
so, the way that they used this algorithm is different from our procedure. They solved the problem
based on the decomposition of the main problem to subproblems with mixed-integer programming
(see Klamroth, 2001a) and used genetic algorithm to make a selection among subproblems that are
going to be solved. On the contrary, in our study, the solution to the main problem is produced directly
by proposed evolutionary algorithm. Besides, even though good results are obtained in our study
from particle swarm optimization and variable neighborhood search coping with the problem, no more
relevant study is found in the literature that uses particle swarm optimization or variable neighborhood
search for the restricted planar location problems.

In Chapter 4 the application of three well-known meta-heuristics modified with variable neighborhood
search, namely simulated annealing, evolutionary algorithm and particle swarm optimization, on the
restricted planar single facility location problems with fixed cost congested regions is introduced. We
believe that this study is the first that extensively considers application of meta-heuristics on a general
restricted planar location problem with Euclidean distances.
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CHAPTER 3

RESTRICTED SINGLE FACILITY LOCATION PROBLEM

Restricted facility location problems often refer to the problems where there are limitations on the
facility location. Location problems imposing restrictions on locating facilities in and/or traveling
through specific regions are typically referred as constrained or restricted problems (see Sarkar et al.,
2004). Such problems have two topographical properties:

(a) The new facilities cannot be located within certain restricted areas in the plane.
(b) The minimum travel time between any two points in the plane may be made longer due to the

presence of the restricted regions.

The restricted location problems in the literature are considering forbidden regions, barriers, or con-
gested regions with variable costs. In this section we show that congested regions with fixed cost is
another restriction which can be generalized into two types of restrictions, namely as forbidden regions
and barriers. In this study, congested region is defined as a polygonal region where facility location is
not possible while traveling through is permitted at a fixed cost.

There are many applications for the problems with congested regions. In real life situations, it is
possible that traveling through forbidden regions is not completely free and requires facing some risks,
like passing through nuclear plants. Another situation is that existence of a large barrier on our way
may lengthen the route so much that we prefer undergoing some cost to be able to pass over the barrier,
like purchasing aircraft to pass over mountains.

In this chapter, we first formulate our problem and discuss its relation with the restricted location
problems studied in the literature. Next, the mathematical formulation of the problem is given followed
by defining an upper and lower bound on its objective function value.

3.1 Problem Formulation

The classical planar single facility location problem is a well-known optimization problem where a set
of demand points are served by a facility. Each demand point is located at Xm = (xm, ym) with a weight
wm, m = 1, ...,M while the facility location is denoted by X f = (x f , y f ). The objective is to find X f

such that the total weighted distances between the facility and demand points is minimized. In other
words,

∑M
m=1 wmlp(X f , Xm) is minimized over a p-norm distance measure, where,

lp

(
X f , Xm

)
=

(∣∣∣x f − xm

∣∣∣p +
∣∣∣y f − ym

∣∣∣p)1/p
, 1 ≤ p < ∞ (3.1)

This problem is called the Weber problem if it is defined on the plane with Euclidean distance measure,
l2. For simplicity, we call this kind of unconstrained problems as LocP.
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Yet, most of the real world location problems are not as simple as LocP. There may be some restrictions
over the facility location which prevent the decision maker from locating the facility in certain areas
on the plane. Moreover, additional restrictions may be imposed on traveling through these regions
such that direct access between the facility and demand points is obstructed. If there are some regions
which limit location of a facility and/or traveling from the facility to demand points, the problem is
defined as the restricted planar single facility location problem or the restricted Weber problem. For
simplicity, we refer to such problems as RLocP.

Some examples of such regions are mountains, lakes, national parks, and highways where locating the
facility on or inside them is forbidden while passing through them is free, costly, or even impossible.
Note that the existence of such restrictions can make the solution set non-convex. Therefore, along
with non-convexity, discontinuity, and nonlinearity of the objective function under Euclidean distance
norm, the problem becomes more difficult to solve than the (unrestricted) Weber problem.

In this study, we consider a general case where restrictions on the facility location are imposed by a
finite number of arbitrary shaped polygonal regions on the plane. The set of regions is denoted by
R where each region r ∈ R has a bounded interior set Br ⊂ R2. Locating a facility inside any Br

is prohibited, however, passing through some Br is penalized by a fixed cost (or risk) denoted by cr,
r ∈ R. This cost can be any value from zero to infinity. Zero and infinity costs, respectively, imply that
traveling is free and forbidden.

If there is a region on any facility-demand pathway, the decision maker should either make her way
around that region or pay the fixed cost to be able to pass directly through that region and reach her
destination.

As an example, consider the problem of locating a chemicals factory so that the total delivery time from
the facility to some depots is minimized. Suppose that depots are distributed around but not inside an
urban zone. Construction of the factory inside the zone is prohibited by environmental regulations.
The zone offers shorter ways to depots but it has heavier traffic on its roads which increases delivery
times significantly. Therefore, we should decide to pass either through the zone and face the traffic or
round the zone and settle for the longer way.

The costs associated with congested regions can be:

• The cost of obtaining a certificate or paying for some special services provided in that region,
like military and touristic zones;

• The cost of providing a vehicle for special use, like renting a ship to pass through a lake, or the
money spent to modify vehicles regarding tight transportation codes;

• The risk of passing through dangerous and unsafe regions, like nuclear plants or war zones.

In any case, these fixed costs should be considered in the objective function to make it possible to
decide whether the decision maker should face some extra cost for passing through a region or she
should make the way longer and round that region. So, if there is at least one region with nonzero fixed
cost on a facility-demand way, that facility-demand cost is not simply the facility-demand Euclidean
distance in LocP any more, but a higher cost. For simplicity, we name RLocP in the presence of
congested region with fixed cost as RLocP-CR.

In the following section we explain how regions are treated based on the associated fixed costs and
what the special cases of our problem and their relations are.
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3.2 Relation with Existing Restricted Location Problems

Here, assuming that all restrictive regions are polygonal, we introduce two types of RLocP that are
highly connected to RLocP-CR. The aim is to make a distinction between these two types and explain
their relation with our problem.

The first type is RLocP with forbidden regions, indicated by RLocP-FR. Forbidden regions are defined
as those regions in which facility location is forbidden but through which traveling is freely possible.
Butt and Cavalier (1997) argued that forbidden region is equivalent to congested region if the conges-
tion factor of the region is zero. Their claim is also valid for other distance metrics and if the cost of
regions are fixed instead of variable. Therefore, RLocP-FR is a special case of our problem if cr = 0
for all r ∈ R.

The next type is RLocP with barriers where neither locating a facility in nor traveling through is
possible. This type of problems can be considered as the special case of RLocP’s with forbidden
regions where additional restrictions are imposed on traveling through regions. Butt and Cavalier
(1997) also claimed that if the congestion factor of any congested region is set to an infinity large
number, that region behaves like an obstacle to travel. This is also true for the case of having fixed
costs. Thus, RLocP with barriers, referred as RLocP-BR, can be converted to our problem when all
cr’s are set to infinity. The reason is that with penalties cr = ∞, ∀r ∈ R, no facility-demand way which
falls inside a region will minimize the objective function.

Figure 3.1: Relation of LocP and RLocP’s

According to the discussion in this section, one can think of RLocP-CR as the general case of the well-
known two problems, namely RLocP-FR and RLocP-BR. Figure 3.1 shows the relation of RLocP’s
we mentioned so far with each other and their relation with our problem.

Although RLocP with congested regions is said to be more general case than the others, in Section 3.5
we show how consideration of these two kinds of problems can be useful in finding lower and upper
bounds for our problem, RLocP-CR.
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3.3 Mathematical Formulation

Mathematical formulation of RLocP-CR is introduced in this section. Assumptions and parameters of
the problem are as follows.

Assumptions:

• The problem is defined on the continuous, two dimensional space with Euclidean distance mea-
sure, l2.

• There is only a single facility to locate.
• There is not any cost related to locating the facility.
• The size of the facility is negligible and it can be considered as a point on the plane.
• There is a finite number of congested regions with nonnegative fixed traveling costs.
• All congested regions are either line segments or closed arbitrary shaped polygons with bounded

interior sets Br ⊂ R2, r ∈ R.
• Each congested region r ∈ R has a finite set of vertices.
• Locating a facility in the interior of any congested region is prohibited.
• There are a finite number of demand points with nonnegative weights to be served by the facility.
• No demand point is located in the interior of congested regions.

Although our problem structure and solution procedure are also valid when there are fixed costs related
to location of the facility or if there exist some demand points inside a region, which are more general
cases, we keep our assumption, without loss of generality, to be more connected with the literature.

Parameters:

R = set of all congested regions

Ur = set of vertices in region r, ∀r ∈ R

cr = fixed traveling cost of region r, r ∈ R

V = set of all region vertices,
V = {Xv ∈

⋃
r∈R Ur, v ∈ V}, V = {1, ...,

∑
r∈R |Ur |}

M = set of all demand points,
M = {Xm,m ∈ M}, M = {|V| + 1, ..., |V| + |M|}

wm = wight of the mth demand point, m ∈ M

N = set of all region vertices and demand points,
N = {Xi ∈ V ∪M, i ∈ N}, N = {1, ..., |V| + |M|}

pr
i j =

1, if the direct way between Xi and X j passes through region r,∀i, j ∈ N, r ∈ R

0, otherwise

Decision Variable:

X f = location of the facility on the plane with coordinates x f and y f
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Formulation: When there are no congested regions, the least cost path between the facility and
the mth demand point is simply equal to the length of the direct facility-demand way, i.e. l2(X f , Xm).
However, there may be some congested regions in the way of facility toward some demand point Xm

which makes traveling so costly that we prefer the path rounding the region to the direct way.

Let N′ = N ∪ { f }, where f = |N | + 1 is the index referring the facility location X f . Let l̄2(X f , Xm) be
the least cost pathway from X f to Xm. Let E(u)

i j be the least cost pathway from Xi to X j for which all
intermediate points are in the set {X1, ..., Xu} ⊂ V and i, j ∈ N′. Moreover, Define the feasible set, F,
be R2 \

⋃
r∈R Br. Then, the problem is formulated as

min Z
(
X f

)
=

∑
m∈M

wm l̄2
(
X f , Xm

)
(3.2)

Subject to:

X f ∈ F (3.3)

Where,

l̄2
(
X f , Xm

)
= E(u)

f m =

d f m, u = 0

min
{
E(u−1)

f m , E(u−1)
f i + E(u−1)

im

}
, 1 ≤ u ≤ |V |

(3.4)

di j = l2
(
Xi, X j

)
+

∑
r∈R

pr
i jcr, ∀i, j ∈ N′ (3.5)

The objective is to minimize the sum of weighted least-cost facility-demand pathways where Z(X f ) is
a non-linear and non-convex function of X f over the feasible set F which is a non-convex set in many
situations. Calculating E(v)

f m is the same as finding the least cost way from the facility location to the
mth demand point. In the next section we provide algorithmic approaches to find such pathways.

3.4 Insights into Solution Procedure

Due to the nature of our problem, i.e. having a nonlinear, non-convex and discontinuous objective func-
tion and a non-convex feasible set, minimizing the objective function is not as simple as solving the
unrestricted problem. To illustrate, obtaining the exact solution for RLocP with barriers requires de-
composition of the original problem into sub-problems and separately solving those sub-problems and
compare their solution to find the optimal one (see Butt and Cavalier, 1996, Klamroth, 2001a). How-
ever, decomposition procedure and determining sub-problems is itself a complex procedure. Besides,
the number of sub-problems increases exponentially when the number of regions increases which de-
creases the efficiency of this method. After all, there is no optimization method in the literature, so far,
that deals with non-convex regions. Therefore, using heuristics to deal with our problem is justifiable.

In this section, we first explain the evaluation of any solution X f . For any facility location X f , the
objective is to find all weighted least-cost ways to all demand locations. Later, the concepts used to
calculate Z(X f ) for a given X f are given and at the end we provide an upper limit for congested regions
fixed costs, instead of infinity, that makes sure no route falls inside that region. Chapter 4 describes
our search algorithms finding a good location for the facility, X f .
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3.4.1 Direct Access Cost

The direct access cost of point j from point i, denoted by di j in Equation 3.5, is the cost of going
directly from point i to point j without lengthening the way to reach another point (called intermediate
point). To clarify, let i, j ∈ N′, then, the cost associated with di j = d ji is l2(Xi, X j) +

∑R
r=1 pr

i jcr. That is,
for every direct pathway of i to j passing through a region r, we add the traveling penalty cost cr to the
Euclidean distance between the points i and j. Note that, in this study, we consider each unit-distance
of traveling as a unit-cost.

A simple approach given in Algorithm 3.1 is used to find the di j values. If the whole way between
any two vertices of a region r falls inside r, their direct access route is charged with cr. In Line 3, we
check whether an arbitrary point on the way of two vertices falls inside the region. If so, the penalty is
considered, otherwise, another check is performed in Line 7.

Algorithm 3.1 Direct access cost

Input: two points Xi and X j, i, j ∈ N′

Output: di j, the direct access cost of Xi,X j

1: di j ← l2(Xi, X j) /* initialization */

2: for each region r ∈ R do
3: if Xi, X j ∈ Ur and the midpoint of line segment Xi, X j is in the interior of r then
4: di j ← di j + cr /* region r is on the way! */

5: continue for
6: end if
7: for each edge e in r do
8: if line segment Xi, X j intersects edge e then
9: di j ← di j + cr /* region r is on the way! */

10: exit for
11: end if
12: end for
13: end for

An example is shown in Figure 3.2(a) where a non-convex region is considered. None of the direct
ways X1 to X2 or X1 to X3 are charged with fixed cost since all the ways (including the midpoints) fall
outside the interior of the region. However, the entire way of X2 to X4 falls inside the region (including
the midpoint) so the fixed cost is considered in their direct access. X1 to X4 pathway falls partially in
the region. Although the midpoint of this way is not inside the region, the edge X2,X3 crosses the X1,
X4 direct way. Therefore, the direct X1,X4 access way is penalized with the fixed cost.

Figure 3.2(b) shows the direct access route (dashed line) between X f and X4. Note that since region
r in on this way, pr

f 4 = 1 and d f 4 = l2(X f , X4) + cr = 2
√

2 + 5. However, the direct access X f to
X2, shown by a solid line, is not passing through a region, so its cost is simply the euclidean distance
between them, i.e. d f 2 = 2.

18



(a) Direct access routes in a non-convex region (b) Facility-demand least cost pathways

Figure 3.2: Direct access routes and least-cost ways

3.4.2 Least Cost Pathway

Alternative path finding approaches to the shortest path method given in Aneja and Parlar (1994) is
used by Bischoff and Klamroth (2007), Dan (2009) and Lee and Preparata (1984). In this study we
use another approach. If there is no region on the way of X f to Xm for some m ∈ M, or all the regions
on this way have zero fixed cost, then l2(X f , Xm) is the least cost pathway from X f to Xm. However,
if there is a region on their way, we are not sure that the direct way of going from X f to Xm is the
least-cost possible way. Figure 3.2(b) shows an example of a situation where the direct way X f to X1

happens to be not the least cost way. In this case, going to an intermediate point and reaching the
demand point from there is more preferable than directly reaching the demand point from the facility.

Generally, if there exists a vertex of a region, Xv, v ∈ V , for which div + l̄2(Xv, X j) < di j then Xv is
definitely visited in the Xi, X j route, i, j ∈ N′. Thus, not only the direct facility-demand pathways
should be considered, but also all possible combinations of region vertices as intermediate points
in those ways should be considered in order to find the least cost facility-demand ways. In order to
calculate the least cost Xi, X j way for any i, j ∈ N′, i.e. l̄2(Xi, X j), we use Algorithm 3.2. This algorithm
is similar to Floyd–Warshall algorithm (see Cormen et al., 2009) except one has not to restrict herself
to the graph in order to find least cost ways. The Floyd–Warshall algorithm is a polynomial time
algorithm that finds all-pairs shortest paths on a graph. The advantage of using Algorithm 3.2 is
that once the it is implemented, the information about least cost pathways between all pairs of points
becomes available which can be used several times without the need for recalculating the least cost
paths. We will focus on this issue later in Chapter 4.

The complexity of Algorithm 3.2 is O(|V | × |N |2) excluding the initialization step. But since demand-
to-demand least cost ways are not needed the algorithm is reduced and can run in O(|V |2 × |N|).
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Algorithm 3.2 Calculation of the least cost pathways

Input: All locations of Xi’s, ∀i ∈ N′

Output: all least cost path ways, l̄2(Xi, X j),∀i, j ∈ N′

for all i, j pairs in N do
l̄2(Xi, X j)← di j /* initializing */

end for
for all v in V do

for all i, j pairs in N do
l̄2(Xi, X j) = min

{
l̄2(Xi, X j), l̄2(Xi, Xv) + l̄2(Xv, X j)

}
end for

end for

3.4.3 An Upper Limit for Fixed Costs

When cr is set to ∞ for any r ∈ R no route falls inside region r and that region behaves like a barrier
to travel. But, is there a finite cr < ∞ that also prevents traveling through region r? The following
proposition answers this question.

Proposition 3.1 If cr ≥ pmr/2 for any region r, where pmr is the perimeter of region r, no traveling
occurs in that region.

Figure 3.3: Upper limit for fixed costs. Wr = {Xr1, Xr2} and W ′r = {Xr3, Xr4}. The dashed line shows
the way passing through the region and the dotted line is the least-cost route when cr = ∞. For values
cr ≥

1
2 (perimeter of region r), no traveling occurs in region r.

Proof. Let Xi and X j be two points on the plain. Let region r defined by set of vertices Ur be a convex
polygonal region on the plane. If pr

i j = 0 then for any cost, no Xi, X j route passes through region r.
Assume pr

i j = 1 and let Ir and Jr the intersection points of line segment Xi, X j with region r which are
respectively closest to Xi and X j (see Figure 3.3). Let Wr = {Xrk, ..., Xrl} be set of verices of region r
that are intermediate points in l̄r(Xi, X j) when cr = ∞ and ordered in the direction of traveling from Xi

to X j. Let W ′
r = {Xrk′ , ..., Xrl′ } be the set of remaining vertices in the same order. Let Wl be the total
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length of edges corresponding to the verices in Wr. Let W ′l be the total length of edges corresponding
to the vertices in W ′r . Then, we prove Proposition 3.1 by contradiction as follows.

If cr = pmr/2 and the least-cost Xi, X j pathway passes through region r then we get

l̄2(Xi, X j) = l2(Xi, Ir) + l2(Ir, Jr) + l2(Jr, X j) +
pmr

2
(3.6)

On the other hand, from triangular inequality we have

l2(Ir, Jr) +
pmr

2
< l2(Ir, Xrk) + Wl + l2(Xrl, Jr) (3.7)

It is obvious that
l2(Ir, Xrk) + Wl + l2(Xrl, Jr) < l2(Ir, Xrk′ ) + W ′l + l2(Xrl′ , Jr) (3.8)

Otherwise, the least cost route would be the other way around when cr = ∞. However, since
l2(Ir, Xrk) + Wl + l2(Xrl, Jr) + l2(Ir, Xrk′ ) + W ′l + l2(Xrl′ , Jr) = pmr, from Equation 3.8 we get

l2(Ir, Xrk) + Wl + l2(Xrl, Jr) <
pmr

2
(3.9)

Now, from Equation 3.7 we obtain l2(Ir, Jr)+ pmr/2 < pmr/2 or l2(Ir, Jr) < 0 which is a contradiction.
�

3.5 Lower and Upper Bounds

Klamroth (2002) provided upper and lower bounds for RLocP with barriers. The author showed that
the optimal objective function value of the unrestricted problem is always less than or equal to that of
restricted problem with forbidden regions, i.e.,

Z
(
XU

f

)
≤ Z

(
XFR

f

)
(3.10)

where, XU
f is the optimal solution for unconstrained LocP and XFR

f is the optimal solution to RLocP-
FR. Klamroth (2002) also proved that the optimal objective function value of RLocP with barriers
cannot be less than that of RLocP with forbidden regions. Or,

Z
(
XFR

f

)
≤ Z

(
XBR

f

)
(3.11)

Where XBR
f is the optimal solution for RLocP-BR.

Here, we give lower and upper bounds for our problem in the following theorem.

Theorem 3.1 Let X∗f be the optimal solution for the RLocP with congested regions. Let XU
f be the

optimal solution to the unrestricted problem LocP. Let XFR
f be the optimal solution for RLocP-FR

where cr = 0, ∀r. Let XBR
f be the optimal solution for RLocP-BR where cr = ∞, ∀r. Then,

Z
(
XU

f

)
≤ Z

(
XFR

f

)
≤ Z

(
X∗f

)
≤ Z

(
XBR

f

)
(3.12)
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Proof. For the first inequality relation, we have Z(XU
f ) ≤ Z(XFR

f ) from Klamroth (2002). For the
last two inequality relations, Z(XFR

f ) ≤ Z(X∗f ) ≤ Z(XBR
f ), consider the optimal solution to RLocP with

congested regions. If no X∗f to demand path passes through any region while all paths are direct,
or all region traveling costs are zero then X∗f and XFR

f are identical, i.e. Z(XFR
f ) = Z(X∗f ) is hold.

On the other hand, suppose that there exists at least one demand point m, and one region r such
that the path f ,m passes through region r in the forbidden region problem, i.e. pr

f m = 1. Thus,
dFR

f m = l2(XFR
f , Xm) +

∑R
r=1 pr

f mcr = l2(XFR
f , Xm). Now, suppose that cr > 0 while all other regions

have zero traveling costs. If cr is small enough, i.e. cr ≤ l̄2(XFR
f , Xm) − l2(XFR

f , Xm), then X∗f and
XFR

f are the same but d f m = l2(XFR
f , Xm) + cr > dFR

f m resulting Z(XFR
f ) < Z(X∗f ). Otherwise, if cr >

l̄2(XFR
f , Xm) − l2(XFR

f , Xm) then passing through region r is not preferred and the path f ,m passes
around region r. In this case, d f m = l̄2(X∗f , Xm) which is greater than or equal to l2(XFR

f , Xm) and again
d f m > dFR

f m . Therefore, Z(XFR
f ) ≤ Z(X∗f ).

Likewise, if all region traveling costs are ∞ then no X∗f to demand path passes through any region.
Hence, X∗f and XBR

f are identical and Z(XBR
f ) = Z(X∗f ) is hold. On the other hand, suppose that there

exists at least one demand m, and one region r such that the path f ,m passes through region r in the
congested region problem, i.e. pr

f m = 1. Thus, d f m = l2(X∗f , Xm) +
∑R

r=1 pr
f m. It means that for this

case, cr ≤ l̄2(X∗f , Xm) − l2(X∗f , Xm) < ∞. Therefore, d f m = l2(X∗f , Xm) + cr which is less than or equal to
dBR

f m = l̄2(XBR
f , Xm) resulting Z(X∗f ) ≤ Z(XBR

f ). �

Based on the results of Theorem 3.1, we use an algorithm based on the idea given in Aneja and
Parlar (1994) which finds the optimal solution of the single facility location problems with forbidden
regions. In chapter 4 we introduce such an algorithm. The solutions for RLocP-FR can be used as
a lower bound for our problem. For the barrier case, we rely on the solutions obtained by heuristic
approaches presented in this study for the upper bounds.
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CHAPTER 4

PROPOSED META-HEURISTICS

The term meta-heuristic was introduced to define heuristic methods that can be applied to a wide set
of problems. In other words, a meta-heuristic designates a general algorithmic framework or compu-
tational method which can be adapted to a specific problem with few modifications and applied with
a few assumptions about the problem being optimized. The aim is to guide the search procedure for
finding a (near) optimal solution (see Blum and Roli, 2003).

This chapter explains how the search of the problem’s good solution in the continuous solution space is
done in order to obtain the best possible objective function value. All meta-heuristic algorithms given
in this study start with an initial solution (or an initial set of solutions) and iteratively try to improve
that solution (or solutions) with regard to their quality. We introduce three different meta-heuristics
namely evolutionary algorithm (EA), particle swarm optimization (PSO), and simulated annealing
(SA) based on variable neighborhood search (VNS) technique. SA is used for both p-median location
problems (Mladenović et al., 2007) and RLocP with barriers (Aneja and Parlar, 1994). However, no
information about how SA algorithm is given in the latter work. EA’s are also used for both p-median
location problems (Mladenović et al., 2007) and RLocP with barriers (Bischoff and Klamroth, 2007).
Bischoff and Klamroth (2007) proposed an EA based meta-heuristic (genetic algorithm) which is used
in selection of subproblems of the original problem where they used the decomposition approach given
in Klamroth (2001a). Hence, it is completely different than EA introduced here. PSO is introduced in
this study as another population based algorithm but with a behavior different from EA.

Firstly, we explain how the solutions generated by heuristic algorithms are evaluated and then infeasi-
ble and outlying solutions are clarified. Next, the variable neighborhood search concept is introduced
and the proposed meta-heuristics along with their basic ideas and structures are given.

4.1 Solution Evaluation

Meta-heuristic algorithms generate new solutions based on the information available from previously
generated solutions. In this study, quality of a solution is indicated by the corresponding objective
function value, i.e. the lower the objective function value of a solution, the better that solution is.

In the proposed algorithms, the chance that more solutions are generated around the good solutions is
increased as time passes. Therefore, we need to evaluate the quality of generated solutions. However,
since the number of generated solutions by meta-heuristics is usually high, it is computationally ex-
pensive to calculate objective function for each solution as described in Section 3.4. In the following
sections, we give an efficient way to compute objective function values, then we define infeasible and
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outlying solutions and the way we treat them.

4.1.1 Preprocessing Procedures

Here, we address two important procedures that are performed before our meta-heuristic is initialized.
Firstly, it is explained how the problem space can be reduced so that we deal with less points in
the problem. Next, another strategy is given to eliminate running least cost pathway approach for
any generated solutions. Both given strategies help us to eliminate some steps in the computation of
objective function values and, consequently, reduce the computational times.

4.1.1.1 Problem Space Reduction

Aneja and Parlar (1994) showed that in the facility location problem with barriers (cr = ∞, ∀r ∈ R) any
barrier that totally falls outside the convex hull of the demand points will not be effective in objective
function value. Their claim is also true for the congested region case, thus based on this idea, we can
eliminate the regions that are outside the convex hull of the demand points using region elimination
algorithm given in Algorithm 4.1.

Algorithm 4.1 Region elimination algorithm

for each region r in R do
if all vertices of r fall outside the convex hull of demand points then

eliminate region r
end if

end for

4.1.1.2 Least Cost Demand-Vertex Pathways

The least cost pathway from a facility location X f to a demand point location Xm for m ∈ M is either
their direct access, d f m or a pathway that has at least one intermediate point, i.e. ∃v ∈ V : l̄2(X f , Xm) =

d f v + l̄2(Xv, Xm). Therefore, once we have l̄2(Xv, Xm) values for all v ∈ V , we only need to find an
intermediate point Xv, v ∈ V that minimizes d f v + l̄2(Xv, Xm). Note that l̄2(Xv, Xm) values, ∀v ∈ V ,
are independent of X f . Therefore, instead of running least cost pathway procedure for each generated
solution X f , we only need to find l̄2(Xv, Xm) values, ∀v ∈ V by running that procedure once and later,
for each generated solution we only need to find l̄2(X f , Xm) = min

{
d f m,minv∈V

[
d f v + l̄2(Xv, Xm)

]}
for

all m ∈ M. Algorithm 4.2 shows how the objective function is calculated. Not that the l̄2(Xv, Xm)
values in Line 5 are available from Algorithm 3.2.
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Algorithm 4.2 Objective function calculation

Input: a solution point X f

Output: Z(X f )
1: Z(X f )← 0 /* initialization */

2: for each demand point Xm, m ∈ M do
3: for each region vertex Xv, v ∈ V do
4: calculate d f m and d f v using Algorithm 3.1
5: l̄2(X f , Xm)← min

{
d f m, d f v + l̄2(Xv, Xm)

}
6: end for
7: Z(X f )← Z(X f ) + wm l̄2(X f , Xm)
8: end for

4.1.2 Infeasible and Outlying Solutions

Infeasible solutions are those who fall inside a congested region, i.e. if ∃r : X ∈ Br then X is called
infeasible solution. Aneja and Parlar (1994) showed that the solution of RLocP with barriers always fall
inside the convex hull of instance points (demand points and barrier vertices). It is also true for RLocP
with congested regions. However, due to random factors, it is possible that our heuristic algorithms
generate a solution outside the convex hull of the instance points. We call these solutions outliers.
For simplicity, instead of actual convex hull of the instance points, the smallest enclosing horizontal
rectangle of the problem instance points called rectangular convex hull is considered. Therefore,
solutions falling outside the rectangular convex hull are considered as outliers.

Repairing is one of the most important factors in our meta-heuristic algorithms. An efficient repairing
procedure can increase the performance of the algorithm significantly. One way to deal with infea-
sible solutions and outliers is penalizing them with a very large objective function value, i.e. setting
Z(X) = ∞ for any infeasible or outlier solution X. In this case any infeasible or outlier solution is
excluded without providing useful information. Another way is to repair them so that they become
feasible and more qualified. The advantage of repairing is that by moving infeasible or outlier solu-
tions to feasible regions, we get some information about the objective function value in their close
neighborhood. Whenever a solution falls inside a congested region we repair it by projecting it to the
nearest edge of that region. Likewise, whenever a generated solution falls outside the rectangular con-
vex hull we repair it by moving it to the nearest edge of the hull. The Check(X) procedure (Algorithm
4.3) shows how a solution X is checked for repairment and the fast repairing procedure if required.
Checking the solution is done as soon as it is generated in any procedure.
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Algorithm 4.3 Check procedure

Requires: a solution point X
Ensures: X is feasible

1: if X is outside the rectangular convex hull of the instance points then
2: /* X needs to be repaired */

3: X ← the nearest projection of X onto the rectangular convex hull
4: go to 13
5: end if
6: for each region r do
7: if X is inside region r then
8: /* X needs to be repaired */

9: X ← the nearest projection of X onto region r’s edges
10: go to 13
11: end if
12: end for
13: /* X is repaired. Algorithm terminates */

4.1.3 Solutions to the Unrestricted and Restricted Problems with Forbidden Regions

If the problem is considered without any constraint it is simply LocP in which the objective function
is convex. In this study, solutions to these problems are found by using Weiszfeld algorithm given
in Francis et al. (1992). The iterative Weiszfeld’s algorithm used in our study terminates when the
Euclidean distance between two consecutive solutions is less than or equal to a small positive number,
ε.

Aneja and Parlar (1994) proved that for any RLocP-FR, if the solution to the unconstrained problem,
XU

f , satisfies the constraint set in the restricted problem it is also optimal to RLocP-FR. On the con-
trary, if that solution does not satisfy any constraint in RLocP-FR, the optimal solution to the original
problem is on the boundary of the particular forbidden region which actually contains XU

f . Based on
this claim, we use the Algorithm 4.4 to find the solution to RLocP-FR.

Algorithm 4.4 Algorithm to find RLocP-FR’s solution

Output: Optimal solution XFR
f

1: find XU the optimal solution to the unrestricted problem by removing all the regions in RLocP-FR
2: if XU is feasible in the original RLocP-FR then
3: return XU /* XU is also optimal to RLocP-FR */

4: else
5: find r, the forbidden region inside which X falls
6: for each edge e of r do
7: perform a line search on e for a candidate solution Xe

8: end for
9: return the best of Xe’s

10: end if

The objective function is convex on each edge of the region r in which the solution falls (see Aneja
and Parlar, 1994). Therefore, a line search procedure can be used to find a candidate solution on each
edge. The line search method in Line 7 of Algorithm 4.4 is Golden Section search technique given in
Kiefer (1953).
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4.2 Variable Neighborhood Search (VNS)

VNS, first proposed by Mladenović and Hansen (1997), is a meta-heuristic or a framework based
on the idea of systematically changing the neighborhood in order to search for better solutions. In
this study, instead of using VNS as a whole single heuristic, we use its basic concepts and embed a
simple one-step VNS approach, similar to Reduced VNS in Hansen et al. (2010), in our main meta-
heuristics. Since the VNS framework in our study is used to enhance the search procedure in other
meta-heuristics, the simplicity and efficiency of the structure matters. The VNS( ) function used in
meta-heuristic algorithms is given in Algorithm 4.5. Note that Check( ) procedure is inserted inside
VNS algorithm to prevent generating infeasible or outlier solution in this step.

Algorithm 4.5 A basic VNS procedure

Input: a solution point X, and a neighborhood size s
Output: a (better) solution point in the neighborhood of X

1: generate a random solution Y in Nbrs(X)
2: Check(Y) /* check for neccessary repair procedures */

3: if Z(Y) < Z(X) then
4: return Y /* a better solution is found around X */

5: else
6: return X /* failed to find a better solution */

7: end if

Nbrs(X) in line 1 is a rectangular area centered at location X with width and height that are at most
sW and sH respectively. Here, W and H are the width and the height of the rectangular convex hull,
respectively. In all meta-heuristic algorithms, s is initially set to 1 and decreases afterwards. To
prevent generation of an outlier solution around X we bound its neighborhood by the boundaries of the
rectangular convex hull. Figure 4.1 shows the rectangular convex hull and the neighborhood of two
generated solutions, shown by filled squares, when s = 0.25 on an instance given in Butt and Cavalier
(1996). Note that the neighborhood of X f 2 is bounded by the rectangular convex hull.

4.3 Simulated Annealing (SA)

SA, first developed by Kirkpatrick et al. (1983), is a trajectory based meta-heuristic inspired from an-
nealing process in metallurgy. It uses an analogy between the way in which a heated metal cools down
into a minimum energy crystalline structure and the search for a global optimum in a more general
system. SA forms a generic probabilistic search approach for finding a good approximation of the
optimum solution as it benefits from uphill and non-improving moves to escape local traps. Its appli-
cations contain a vast area of optimization problems specially for combinatorial and highly nonlinear
problems. In facility location problems it is applied on both the p-median problem (Mladenović et al.,
2007) and RLocP with barriers (Aneja and Parlar, 1994).

SA generates only one solution at a time which makes it different from EA and PSO where a number
of solutions in the population interact with each other. In this section we propose a modified SA
algorithm using a variable neighborhood search and show how it is easily tuned to be implemented for
our problem. Following sections address general components of SA and its main algorithm.
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Figure 4.1: Rectangular convex hull (Dashed rectangle) and neighborhoods of two generated solutions
X f 1 and X f 2 (dotted rectangles)

4.3.1 Main Components

Here, the main elements of SA considered in this study are presented. In the next section we see how
these elements are used in the structure of SA.

Solution Representation and Evaluation:
Solutions in SA are represented as they are, i.e. a vector of two elements of x and y coordinates in
the plain. Solutions are evaluated based on the corresponding objective function values. In its search
procedure, SA tries to find a solution X f which gives the minimum objective function value.

Initialization:
SA starts with an initial solution located randomly on one of the instance points. Besides, the system
should be heated to a high temperature which brings a high thermodynamic free energy enabling the
system to explore the search space more. The initial temperature, indicated by T0, is a parameter to
the algorithm.

Annealing Schedule:
The temperature of the system cools down through time. At any time, the temperature of the system,
denoted by T , identifies the state of the system. The annealing schedule designates how the system
cools down from initially high temperature T0 to a freezing and stable state. Among several cooling
schedules available in the literature, we use the simple constant rate cooling method by defining a
cooling rate, α. With 0 < α < 1, the system cools down from the current state with temperature T to
the next state with temperature αT . The value of α is given as a parameter.

Stopping Criteria:
Cooling down the system continues until the system freezes. With the annealing schedule described
before, the temperature of the system never drops to zero. For this reason, we define a temperature
threshold, ε as the freezing state of the system. Therefore, the algorithm terminates whenever the
current temperature of the system, reaches or drops below ε, i.e. T ≤ ε.
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Number of Iterations:
Defining constant cooling rate enables us to calculate the total number of iterations the algorithm runs.
Let IterT be the total number of remaining iterations when the temperature is T . Then, it is trivial to
show

IterT =

⌈
logα

ε

T

⌉
(4.1)

Therefore, the total number of iterations is given by IterT0 =
⌈
logα ε/T0

⌉
, where, dae for any a ∈ R is

the smallest integer greater than or equal to a.

Inner Repetitions:
In each state, SA can generate several solutions. The number of trials for generating a new solutions
in each state is called inner repetition. Implementation of inner repetitions in SA gives more chance to
the algorithm to find better solutions. The number of inner repetitions can be constant or dynamic. In
this study we use linear dynamic repetition method by defining average number of inner repetitions,
AvgRep, as follows. The algorithm starts with 0.5 of AvgRep and ends with 1.5 of AvgRep. Using
this idea, we let algorithm to exploit more around good solutions in later iterations. Let RepT be the
number of inner repetitions at state T . Then,

RepT = AvgRep ×
(
0.5 +

IterT0 − IterT

IterT0

)
= AvgRep ×

(
0.5 +

logα T/T0

logα ε/T0

)
= AvgRep ×

(
0.5 + logε/T0

T
T0

)
(4.2)

Neighborhood:
Here we use the same definition for the neighborhood for solutions as given in Section 4.2. The
neighborhood of solution X with size s, denoted by Nbrs(X), is a rectangular area centered at X with
dimensions equal to s times dimensions of the rectangular convex hull of the instance points. In each
state, SA generates the next solution, in the neighborhood of the incumbent solution. It is observed
that decreasing the neighborhood size through time, has a significant effect on the convergence of the
algorithm. Therefore, we define a state dependent neighborhood size as follows. Initial we set s = 1
and then, in each state, if an improving solution is found we multiply s by α using the same cooling
rate. Decreasing the neighborhood size helps the algorithm to exploit better in the final iterations which
yields to better convergence to a good solution.

Non-improving Moves:
Performing non-improving or uphill moves is essential for SA as it provides the opportunity of es-
caping from local optima while conserving the exploration factor. When a better solution than the
incumbent solution is found in inner repetition steps, the algorithm immediately updates the incum-
bent solution to the newly generated better solution. It is possible that SA changes the current solution
to a worse solution at a certain probability. Let ∆ be the difference between objective function value of
the newly generated solution Y and that of current solution X, i.e ∆ = Z(Y)−Z(X). Then the probability
of accepting a non-improving solution at state T , denoted as PrT , is given as

PrT =

1 ∆ < 0

e−∆/T ∆ ≥ 0
(4.3)

Note that as the state of the system becomes more stable, the probability of accepting a non-improving
solution decreases. The acceptance of a worse solution also becomes more unlikely as its objective
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function gets higher values. If any solution fails to improve or to perform an uphill move, we replace
it by the best solution found so far.

Repairing:
Repairing infeasible and outlying solutions is essential to our meta-heuristic algorithms. In SA, the
generated solutions are checked whether they are infeasible or outliers. If so, they are repaired by
calling the Check( ) procedure given in Algorithm 4.3.

4.3.2 The Algorithm

Following parameters are inputs to SA algorithm. In Chapter 5 we explain how proper parameter
values for each meta-heuristic are chosen.

Parameters:

• Initial temperature (T0)
• Cooling rate (α)
• Average inner repetitions (AvgRep)
• Temperature Threshold (ε)
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Algorithm 4.6 SA algorithm

Input: the parameters T0, α, AvgRep, and ε
T ← T0 and s← 1
initialize a solution, X
X f ← X
while T > ε do

update RepT using Equation 4.2
for i = 1 to RepT do

generate a new solution Y ∈ Nbrs(X)
Check(Y) /* inspection for any required repairing */

Y ←VNS(Y, s)
∆← Z(Y) − Z(X)
if ∆ < 0 then

X ← Y /* improvement! update the current solution */

if Z(X) < Z(X f ) then
X f ← X /* update the best solution */

end if
else

generate a standard uniform random number, rnd
if rnd < e−∆/T then

X ← Y /* a non-improving move is accepted! */

else
X ← X f /* improve the current solution by moving it to the best location */

end if
end if

end for
if any improvement has been achieved then

s← αs
end if
T ← αT

end while
Output: the best solution generated, X f

4.4 Evolutionary Algorithm (EA)

EA’s are heuristic search methods which take their inspiration from biological evolution. EA is a
generic population based meta-heuristic optimization algorithm that is widely used in solving some
combinatorial optimization problems like the p-median problem (see Mladenović et al., 2007).

Through generations, EA follows the strategy of survival of the fittest in the population. The solutions
with high fitness (or quality) are selected based on a selection method and recombined with other
solutions using a reproduction procedure. Individuals (solutions) are also mutated by making a small
change to their elements. The new solutions are more likely to be produced around the good solutions
which have already been seen. After producing new solutions a replacement strategy is followed to
keep fittest individuals for the next generation.

Before giving the main algorithm, let us explain general components of EA in details.
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4.4.1 Main Components

In this section, general components of EA, namely coding scheme, fitness function, initialization,
selection strategy, reproduction operators, replacement strategy, stopping criteria, and repairing are
presented. In the next section, the algorithm structure is introduced.

Coding Scheme:
We define our solutions as a chromosome of two genes. The first gene represents the x-coordinate of
the solution and the second gene represents its y-coordinate. With this representation, each gene can
hold any real value.

Fitness Function:
Fitness function is used to measure the adaption of individuals to their environment. Here, the fitness
of an individual is inversely proportional to its objective function value.

Initialization:
The number of individuals evolving in each generation of EA is denoted as Pop which is a parameter
of the algorithm. One simple way to initialize these solutions is to generate them with random location
in the plane. In this case there is a possibility that a generated solution becomes infeasible. Checking
and repairing randomly generated solutions or generating only feasible solutions is time consuming.
Another way, is selecting random locations from instance points (without replacement) and placing
initial solutions on them. In this case, we ensure that initial solutions are feasible.

It is observed that different values for Pop changes the performance of EA. If the population size is too
low, the algorithm cannot find a good solution and if it is too high, the CPU time increases dramatically
when the problem size is large. Moreover, selecting large Pop for small instances is not so beneficial
since a solution with almost the same quality can be obtained in less computational time using small
Pop. Therefore, selecting a proper value for population size (Pop) is related to the problem size. For
this reason, we define a population limit, PopLimit, and we set Pop as the minimum of PopLimit and
half of the number of instance points, i.e.

Pop = min
{

PopLimit,
⌈
|N |
2

⌉}
(4.4)

Selection Strategy:
EA works by selecting one or more solutions called parents from a population of solutions and pro-
ducing one or more new solutions from them. The produced solutions are called offspring who carry
some characteristics of their parents. EA favors good solutions in the population by giving them more
chance to reproduce.

Among several selection schemes presented in Bäck and Hoffmeister (1991), we used the linear rank-
ing selection method. In this method all individuals are ranked based on their fitness such that the
individual with the lowest objective function value has rank i = 1 and the individual with the highest
objective function value has rank i = Pop. Then, the probability of selecting individual i as a parent is
assigned as

Pri =
1

Pop

[
1 + π − 2π

(
i − 1

Pop − 1

)]
, i = 1, ..., Pop (4.5)

where, π ∈ [0, 1] is called selection pressure. In this study we use low selection pressure (π = 0.5) and
high selection pressure (π = 1). The other strategy we used is random parent selection where parents
are selected randomly without replacement. Note that setting π = 0 in Equation 4.5 implies random
selection.
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Reproduction Operations:
Reproduction methods in EA consists of two main operators: crossover and mutation operators which
are applied on the selected individual(s) with a certain probability. The crossover operator generates
offspring from selected parents by combining them. Let X and Y be two individuals selected as parents.
Then two offspring OX and OY are produced using the following equations.

OX = X + Γ ⊗ (Y − X) (4.6)

OY = Y + Γ ⊗ (X − Y) (4.7)

Where, Γ is a vector of random numbers generated uniformly between −1 and 1, and ⊗ is component-
wise multiplication. For instance, (γ1, γ2) ⊗ (x, y) = (γ1x, γ2y), for any vector (γ1, γ2) and (x, y). The
random element, Γ, enables the algorithm to perform better exploration in the solution space.

The mutation operation is often applied on the offspring and changes it to a new solution by altering its
gene. This operator plays an important role in EA’s hill-climbing as well as preserving randomness and
variety in the population to prevent fast convergence to local optima. Let X be an individual subjected
to mutate. Then, the mutated individual is

X ← VNS(X, rnd) (4.8)

where rnd is a standard uniform random number and VNS(X, rnd) is a solution in the neighborhood of
X with size rnd produced by using variable neighborhood concept in Section 4.2.

Replacement Strategy:
After producing offspring from selected parent, EA should decide which solutions to keep for the next
generation and which solutions to discard. Two methods exist for replacement. In the first method,
named generational approach, among all individuals and produced offspring, bests of them are survived
in the next generation and the rest is discarded. The second method is steady-state method that makes
replacements as soon as offspring are produced.

Süral et al. (2010) performed experiments on TSP and TSP with back-hauls using two EA algorithms.
The first algorithm is based on generational strategy while the second one uses steady-state method.
The authors concluded that the results obtained from the second algorithm are further better than the
first one. Therefore, we use only the steady-state strategy which operates as follows. Among two
parents and their offspring, the best offspring replaces the worst parent unconditionally and the other
offspring replaces the remaining parent only if it is better that that parent.

Stopping Criteria:
The stopping condition determines the time through which the algorithm runs. It can be the total
number of generations to evolve, denoted by NGen, or a factor of the population convergence. For the
latter one, a number δ can be set for the upper limit fo the percentage deviation of objective function
value of the worst individual from that of the best individual in a generation. For small values of δ, it
can be said that the population is converged. Our EA terminates whenever the population deviation is
less than or equal to a given number δ, or, the total number of generations is reached.

Repairing:
Repairing is another component of EA. Whenever a new solution is generated, it is inspected to make
sure that this solution is useful, i.e. it is not infeasible or outlier. Repairing operation is done using
Check( ) procedure as soon as an offspring is produced.

33



4.4.2 The Algorithm

The following parameters are inputs to EA.

Parameters:

• Population size limit (PopLimit)
• Selection pressure (π)
• Crossove probability (Pc)
• Mutation probability (Pm)
• Maximum population deviation (δ) and maximum number of generations (NGen)
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Algorithm 4.7 Evolutionary algorithm

Input: the parameters PopLimit, π, Pc and Pm, δ and NGen
1: set Pop and initialize the population
2: X f ← the best individual in the population
3: gen← 0 /* set the generaton counter to zero */

4: repeat
5: for i = 1 to Pop/2 do
6: generate rnd, a standard uniform random number
7: if rnd < Pc then
8: randomly select two parents, X and Y , from the population
9: produce two offspring OX and OY /* perform crossover operation */

10: Check(OX) and Check(OY) /* inspection for any required repairing */

11: s← 1 − gen
NGen /* decrease the neighborhood size */

12: OX ←VNS(OX , s) and OY ←VNS(OY , s)
13: generate rnd, rnd1, and rnd2 three standard uniform random numbers
14: if rnd1 < Pm then
15: OX ←VNS(OX , rnd) /* mutate the first offspring */

16: end if
17: if rnd2 < Pm then
18: OY ←VNS(OY , rnd) /* mutate the second offspring */

19: end if
20: if Z(OX) < Z(X f ) then
21: X f ← OX /* update the best solution */

22: end if
23: if Z(OY ) < Z(X f ) then
24: X f ← OY /* update the best solution */

25: end if
26: follow the replacement strategy for selected parents and their offspring
27: end if
28: end for
29: gen← gen + 1
30: until deviation of the worst solution’s quality from Z(X f ) is ≤ δ or gen = NGen
Output: the best solution generated, X f

Note that in Line 11 we set the size of the neighborhood in which VNS( ) is going to generate a
solution. As generations passes, this size decreases, allowing the algorithm to explore more in earlier
generations and exploit better in later generations.

4.5 Particle Swarm Optimization (PSO)

PSO, developed by Kennedy and Eberhart (1995), is a population based meta-heuristic which regards
the interaction between the particles in the population. In PSO, a number of simple entities (particles)
are placed across the search space of a problem or function representing a solution to the problem.
Each particle evaluates the objective function at its position and, then, decides to move in search space
to find a better position. A particle’s movement is determined by its current location and the best
position visited by itself combined with those of one or more particles in the swarm and some random
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perturbations. In every single iteration, all particles in the swarm are moved and their attributes are
updated accordingly. Throughout several iterations, the swarm of particles as a whole is likely to move
close to the best value of the function.

Here we present a continuous PSO algorithm to be applied in our problem and show that how the
idea of directional swarm intelligence can be easily justified and implemented for our problem. In the
following sections we introduce main components and notations of PSO and we then we continue by
giving the main algorithm.

4.5.1 Main Components

In this section, some general components of PSO, namely particle representation, initialization, update
procedure, stopping criteria, and repairing are explained.

Particle Representation:
From a mathematical point of view, each particle’s position Xi, is a 2-dimensional vector, where the
first element of the vector represents x-coordinate and the second element represents y-coordinate of
Xi’s location. Each particle has a velocity, Vi, that has the same dimension as Xi. Vi is usually kept
in the range [−Vmax,Vmax] where Vmax, a parameter to PSO, is a vector representing the maximum
value that both elements of Vi can get. In addition to velocity, we define another attribute for each
particle called Age. Each particle i ages whenever it fails to improve itself in its movement. Particles
are allowed to get old until a given AgeLimit. If a particle’s age reaches AgeLimit, the particle is
immediately replaced by the best particle in the population. We observed that when aging concept
with a proper AgeLimit value is added to PSO, its performance improves significantly.

Initialization:
The initialization in PSO is the same as that of EA explained in Section 4.4.1. That is, the number of
particles in the system, Pop, is set by using Equation 4.4. All initial Pop particles are positioned at
locations of Pop instance points selected randomly. Furthermore, all particle velocity vectors, Vi for
i = 1, ..., Pop are initialized such that each element of Vi is randomly generated by uniform distribution
between 0 and Vmax. Initial random velocity is a necessary element of PSO when exploring the solution
space and escaping from local optima matter. Here, instead of setting a constant number for Vmax, we
set Vmax as a fraction of f ar, where f ar is the distance between the farthermost points in the instance.
Finally, all particles are initiated with zero ages, Agei = 0 for i = 1, ..., Pop.

Update Procedure (Particle Movement):
New location for a particle Xi is obtained when it moves from its previous location at velocity Vi.
Besides, previous best position of particle i, defined as vector Pi, can provide useful information about
where better solutions might exist. Therefore, the direction from Xi towards Pi can also be included to
find a new location with a random perturbation:

Vi ← Vi + Φ1 ⊗ (Pi − Xi) (4.9)

Where Φ1 is a 2-dimensional vector in which both entries are equal to a random number uniformly
generated between 0 and a constant ϕ1.

However, a particle itself has almost no power to solve any problem and real progress occurs when
particles interact which is the cornerstone of PSO. Not only do particles consider the history of their
movements, but they also keep an eye on progress of other particles too. As a result of communication
between particles and a social network topology, they become able to choose better directions that
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lead to better solutions. A comprehensive review on topologies is introduced in Poli et al. (2007). The
implemented topology in this study is called global best where all particles are influenced by the best
particle in the entire population. Therefore, Vi can be updated with respect to the direction towards the
global best position, X f , as following:

Vi ← Vi + Φ1 ⊗ (Pi − Xi) + Φ2 ⊗ (X f − Xi) (4.10)

Where Φ2 is a random 2-dimensional vector in which both entries are equal to a random number
uniformly generated between 0 and a constant ϕ2.

ϕ1 and ϕ2 determine the magnitude of the random forces in the direction of personal best Pi and global
best X f . These are often called acceleration coefficients. The behavior of a PSO changes radically
with the value of ϕ1 and ϕ2. Clerc and Kennedy (2002) noted that the acceleration of particles highly
depends on Vmax and acceleration coefficients. Therefore, they proposed a constriction coefficient, χ,
that is multiplied to all additional vectors added to Xi in order to ensure convergence and eliminate the
unwanted effect of Vmax:

Vi ← χ(Vi + Φ1 ⊗ (Pi − Xi) + Φ2 ⊗ (X f − Xi)) (4.11)

Where

χ =
2

ϕ − 2
√
ϕ2 − 4ϕ

(4.12)

for ϕ = ϕ1 +ϕ2. The best setting that introduced by authors is χ = 0.7298 with ϕ1 = ϕ2 = 2.05. Exper-
iments showed that this setting also works well for our problem. Therefore, we set both acceleration
factors, ϕ1 and ϕ2 to the same number, 2.05.
Finally the location of particle i is updated as:

Xi ← Xi + Vi (4.13)

Stopping Criteria:
The stopping condition is the same as the one explained in Section 4.4.1. That is, PSO terminates when
the deviation of objective function value of the worst individual from the objective function value of
the best individual in a generation is less than or equal to a given number δ, or, the maximum number
of iterations, NIter, is reached.

Repairing:
Every generated solution should be checked for repairing. Inspection and required repairing procedure
is done whenever a particle’s location is updated.

4.5.2 The Algorithm

Parameters:

• Population size limit (PopLimit)
• Aging limit (AgeLimit)
• Maximum population deviation (δ) and the maximum number of iterations (NIter)
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Algorithm 4.8 PSO algorithm

Input: the parameters PopLimit, AgeLimiti, δ and NGen
1: set Pop and initialize the population
2: X f ← the best individual in the population
3: iter ← 0 /* set the iteration counter to zero */

4: repeat
5: for each particle Xi in the population do
6: update the particle’s velocity, Vi, using Equation 4.11
7: update the particle’s location, Xi, using Equation 4.13
8: Check(Xi) /* inspection for any required repairing */

9: s← 1 − iter
NIter /* decrease the neighborhood size */

10: Xi ←VNS(Xi, s)
11: if Z(Xi) < Z(Pi) then
12: Pi ← Xi /* update particle i’s personal best */

13: Agei ← 0 /* particle is improved */

14: else
15: Agei ← Agei + 1 /* the particle gets old */

16: end if
17: if Agei ≥ AgeLimit then
18: Xi ← X f /* replace the particle with the best solution */

19: end if
20: if z(Xi) < z(X f ) then
21: X f ← Xi /* update the best solution */

22: end if
23: end for
24: iter ← iter + 1
25: until deviation of the worst solution’s quality from Z(X f ) is ≤ δ or iter = NIter
Output: the best solution generated, X f

Again, the neighborhood size is reduced in Line 9 to explore around the good solutions more in final
iterations.

Chapter 5 provides the experimental results obtained by running the three meta-heuristics presented in
this chapter on different problem instances.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

After introducing meta-heuristic algorithms it is necessary to examine their performance. Performance
of a search procedure is mainly characterized by its ability to find a high quality solution as well as the
time it takes to find such a solution. The better the final solution and the lower the required processing
time, the higher performance the algorithm has.

In this chapter we explain the software package which is coded to deal with the problem. Then,
information about problem instances is provided and the preliminary experiments that yield to best
parameter settings of heuristic algorithms is given. Finally, the experimental results on all problem
instances are presented. The chapter also contains concluding remarks from experiments.

5.1 Software Development

To run the algorithms and to work on problem instances, a software package is developed in Microsoft
Visual Studio 2010 environment using Visual Basic .Net language. The software has the following
features:

• An adequate graphical user interface (GUI) that enables users to open and visually see problem
instances.

• Enabling the user to change the problem instance. For example, changing the location or the
weight of demand points, adding or removing demand points, modifying the location or the
shape of regions, and changing region fixed costs are easily applicable.

• Enabling the user to choose the meta-heuristic algorithm she wants to implement.
• Enabling the user to manage the settings for each meta-heuristic algorithm.
• Making it possible to enable or disable VNS and/or repairing procedure in meta-heuristics algo-

rithms.
• Visualizing the solution generating procedure in algorithms so that the user can see the behavior

of meta-heuristics by visualizing the location of generated solution. This feature enables the
user to observe how solutions are generating, moving, or converging to certain locations on the
plain.

• Showing the convex hull of instance point, convex hull of regions, convex hull of demand points
and rectilinear convex hull. The information about instance points (like minimum, maximum
and range of x and y coordinate values) and the geometry of these convex hulls is also given so
that the user can find out the percentage of instance convex hull that is occupied by the regions.
The eliminated regions in the preprocessing procedure can also be seen.

• Showing the best solution when running an algorithm is done. Location of the facility on the

39



plain is visualized and the least cost pathways to all demand points are shown by lines. The user
can notice the intermediate points on all ways and the cost of that way. All penalized pathways
are shown with a dashed line. Therefore, when the final solution is shown, the user can have an
idea about the facility location and all traveling routes by a single look.

• Providing statistical data of each generated solution, the initial solution(s) and the final solution
as well as CPU time. This data can be imported in statistical or spreadsheet softwares for further
analysis.

Figure 5.1 illustrates the problem instance BC13 given in Butt and Cavalier (1996). A facility loca-
tion with barriers and the traveling routes are shown. The facility is located at (6.857, 6.143) having
objective function value of 29.838055 which is believed to be the optimal solution (see Butt and Cav-
alier, 1996). The facility-demand pathways are also shown by lines. Note that in this figure, since the
problem considers barrier regions, no path passes through the regions.

Figure 5.1: A snapshot of the application from BC13 instance. The best location for the facility is
shown by a square

In Appendix D, more details and instructions about using the program is given.

All experiments are done using a PC with 2.99 GHz CPU and 3.49 GB RAM running Microsoft
Windows XP operation system.

5.2 Problem Instances

Since our problem is a general restricted facility location problem, any LocP or RLocP which meets
our assumptions can be solved using the proposed meta-heuristics. Hence, we tried to collect all
RLocP problem instances available in the literature. Unfortunately, there is no extensive experimental
studies available in the literature, possibly, due to the difficulties arising from the nature of Euclidean
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RLocP’s (i.e. nonlinearity and non-convexity of the objective function value). There are only a few
numerical examples available for which the best known solution is reported. Table 5.1 shows the
available instances in the literature, the problem type, and the type of their regions. The number of
demand points (|M|), number of regions (|R|), total number of region vertices (|V |) and total number of
points in that instance (|N |) is also provided in Table 5.1. To be able to refer to these instances easily,
we name them as given in the same table.

Table 5.1: Available problem instances in the literature

# Name Source Problem Regions |M| |R| |V | |N |
1 AP25 Aneja and Parlar (1994) RLocP-FR non-convex polygon 4 1 21 25
2 AP70 Aneja and Parlar (1994) RLocP-BR non-convex polygons 18 12 52 70
3 BC13 Butt and Cavalier (1996) RLocP-BR convex polygons 4 2 9 13
4 D26 Dan (2009) RLocP-BR convex polygons 6 5 20 26
5 KC5 Katz and Cooper (1981) RLocP-BR circular 5 1 – 5
6 KC10 Katz and Cooper (1981) RLocP-BR circular 10 1 – 10

The name of instances contains the initials of authors’ name and the number of points (demand points +

region vertices) in the problem. Since KC5 and KC10 contain circular regions, corresponding number
of vertices is not applicable for them.

Aneja and Parlar (1994) provided variants of their example, AP70, by removing some of the regions
and reported their solutions up to 2 digits. The variants is denoted by AP70R# where the symbol #
can be 10, 8, 6, 4, 2 or 0 showing the number of regions (|R|) in the problem (out of 12 regions).
AP70R0 refers to the problem where all barriers are removed, the unrestricted problem. Since the
regions that are given in KC5 and KC10 are circular (see Katz and Cooper, 1981), we replace them by
equilateral polygons. The polygons are regular convex polygons that can approximate the circles from
inside or outside. The same approach was also used by Bischoff and Klamroth (2007). They reported
best solutions for KC5 and KC10 instances in Katz and Cooper (1981) by approximating the circular
regions with regular polygons both from outside and inside. The polygons have different number of
edges. The instances used in Bischoff and Klamroth (2007) with the information of the number of
edges in the approximative polygon and whether it is approximated from outside (circumscribed) or
inside (inscribed) are reported in Table 5.2. Number of sides in the polygons is equal to the number
of vertices or |V |. Note that the number of demand points and regions are the same as the source
problems. Because of our assumption for considering polygonal regions, the problem instances given
in Table 5.2 is used instead of KC5 and KC10.

The name of instances in Table 5.2 contains the name given in Table 5.1, followed by a c or i, indicating
that the approximative polygon is circumscribed or inscribed respectively, and the number of edges
(|V |) in that polygon.

Bischoff and Klamroth (2007) also reported the solutions for the variants of AP70 problem given
in Aneja and Parlar (1994) up to 4 digits. The reported best solutions and corresponding objective
function values for all instances available in the literature are given in Table 5.3. From now on, we
refer to the best known solution or the best found solution by BSol notation.
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Table 5.2: Modified problem instances of KC5 and KC10 in Katz and Cooper (1981)

# Name Polygon Type |V | |N |
1 KC5c16 circumscribed 16 21
2 KC5c32 circumscribed 32 37
3 KC5c64 circumscribed 64 69
4 KC5c128 circumscribed 128 133
5 KC5c256 circumscribed 256 261
6 KC5c512 circumscribed 512 517
7 KC5i16 inscribed 16 21
8 KC5i32 inscribed 32 37
9 KC5i64 inscribed 64 69
10 KC5i128 inscribed 128 133
11 KC5i256 inscribed 256 261
12 KC5i512 inscribed 512 517
13 KC10c16 circumscribed 16 26
14 KC10c128 circumscribed 128 138
15 KC10i16 inscribed 16 26
16 KC10i128 inscribed 128 138

Table 5.3: Best solutions reported for the problem instances in the literature

# Name X∗f Z(X∗f )
1 AP70 (8.7667, 4.9797) 119.1387
2 AP70R10 (8.7667, 4.9797) 119.1047
3 AP70R8 (9.1873, 5.4860) 116.3976
4 AP70R6 (9.2658, 6.2527) 114.5610
5 AP70R4 (9.2173, 6.1528) 113.7656
6 AP70R2 (9.0372, 6.1150) 111.6889
7 AP70R0 (8.9127, 6.3554) 110.0068
8 AP25 (5.50, 0) 48.50
9 BC13 (6.857, 6.143) 29.838
10 D26 (31, 26) 29.10
11 KC5c16 (−1.201580, 2.077647) 48.281797
12 KC5c32 (−1.190873, 2.067660) 48.261460
13 KC5c64 (−1.185968, 2.062756) 48.256464
14 KC5c128 (−1.186446, 2.060556) 48.255225
15 KC5c256 (−1.186174, 2.060530) 48.254917
16 KC5c512 (−1.186063, 2.060519) 48.254840
17 KC5i16 (−1.181308, 2.057875) 48.241865
18 KC5i32 (−1.181308, 2.057875) 48.251504
19 KC5i64 (−1.186927, 2.058351) 48.253988
20 KC5i128 (−1.185897, 2.060503) 48.254609
21 KC5i256 (−1.185953, 2.060508) 48.254764
22 KC5i512 (−1.186050, 2.060516) 48.254802
23 KC10c16 (3.324784,−0.085586) 88.468917
24 KC10c128 (3.307095,−0.067167) 88.325077
25 KC10i16 (3.303454,−0.062217) 88.249042
26 KC10i128 (3.305932,−0.067746) 88.321938
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Lack of any intensive instance library for RLocP’s and limited number of available problem instance
in the literature encouraged us to design and generate more problems to perform computational exper-
iments. In the following section the way of generating more problem instances is explained.

5.2.1 Generating Problem Instances

For generating more problem instances, we tried to use available problems in the literature as the
original (seed) problems and create other instances by keeping some features in the original ones as
they are. The term pattern is used for this purpose.

5.2.1.1 Instance Patterns

Patterns are introduced to enable us generating more problem instances from original ones. In gener-
ating instances we focus on the fixed cost and the size of regions. A pattern for a problem instance is
given by two positions as

Pos1-Pos2

Pos1 indicates the level of congested region fixed costs that can be either high (h) or low (l). Following
the discussion in Section 3.4, low variant assigns a fixed cost cr = rnd(0, 0.4)×pmr/2 and high variants
assigns cr = rnd(0.6, 1)× pmr/2 to each region r ∈ R, where, rnd(a, b) is a random number distributed
uniformly between a and b and pmr is the perimeter of any region r ∈ R.

To justify our results using upper and lower bounds given in Section 3.5, Pos1 can also take FR and
BR values for which cr are set to 0 and pmr/2 respectively for all r ∈ R.

Pos2 gives information about size of the regions in the problem. It is given as a percentage: 50 (when
the scale of all regions are one half of original scale) or 25 (where all regions are scaled as 25% of the
original scale). If Pos2 is set to “o” it refers to the original sizes.

When the instance pattern is U, it means that all regions in the original problem is removed and the
problem is considred as unconstrained problem. Moreover, the pattern O is assigned to an instance it
means that the instance is the original problem given in Table 5.3. To illustrate, consider the problem
AP70. If pattern O is assigned, the problem is the original problem. AP70 with pattern h-50 corre-
sponds to the AP70 problem in which all barriers are turned into 50% smaller congested regions with
high fixed cost levels. Finally, the problem AP70 with pattern U is the unrestricted AP70 problem
(which is, in this case, AP70R0 in Table 5.3).

By using this scheme we are able to have 12 different variants for each 25 instances listed in Table 5.3
that has restriction regions. Furthermore, 6 problems in Table 5.1 are considered without restriction
(with pattern U). Thus, we have 306 instances in total originated from the RLocP literature.

5.2.1.2 Large Problem Instances

In addition to the problem instances given in Section 5.2.1.1, we also include large problem instances
from TSP and VRP online libraries. Our aim is to analyze the performance of proposed heuristics
when the problem sizes become large. The list of instances and the corresponding number of demand
points are given in Table 5.4.
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Table 5.4: Large TSP and VRP Instances

# Name Source |M|
1 C600 VRP a 601
2 R800 VRP 801
3 RC800 VRP 801
4 R1000 VRP 1001
5 RC1000 VRP 1001
6 u2319 TSP b 2319
7 fnl4461 TSP 4461
8 pla7397 TSP 7397
9 usa13509 TSP 13509
10 pla33810 TSP 33810
a From Homberger’s instance collection in Vehicle Rout-

ing Problem (2012):
http://neo.lcc.uma.es/vrp/vrp-instances

b From TSPLIB (2008):
http://www.iwr.uni-heidelberg.de/groups

/comopt/software/TSPLIB95

The demand points in the VPR instances are clustered (shown by C), uniformly distributed (shown by
R), or distributed as a mix of C and R (shown by RC). Problem instances given in Table 5.4 contain no
regions and the sizes represents only the number of customers. Thus, we generate more instances by
imposing congested region restrictions in the original problems. Two types of regions are considered
in this case, lines and polygons. The shapes and location of the regions are completely arbitrary,
however, to stick with our assumptions and preserving the number of costumers, we project demand
points that fall inside the located regions to the nearest edge of corresponding regions. If the variant
of the original instance contains line-shaped regions, its pattern is indicated by LR and if it contains
polygonal regions, the pattern is indicated by PR. The fixed costs are set to rnd(0, 1) × pmr/2 for
any located region r ∈ R. The original problem with no restriction is shown with pattern U. In the
problems with patterns U and LR, distribution of demand points remain as original. Table 5.5 shows
more details.

Thus, for each problem instance in Table 5.4 we have two different patterns providing 20 instances
(listed in Table 5.5) in addition to 10 unconstrained ones. Consequently, we have totally 336 instances
in our experiments.
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Table 5.5: Modified large TSP and VRP problem instances in the literature

# Name Pattern |R| |V | |N |
1 C600 LR 3 6 607
2 C600 PR 2 8 609
3 R800 LR 3 6 807
4 R800 PR 3 10 811
5 RC800 LR 2 4 805
6 RC800 PR 2 10 811
7 R1000 LR 4 8 1009
8 R1000 PR 3 12 1013
9 RC1000 LR 3 6 1007
10 RC1000 PR 2 7 1008
11 u2319 LR 2 4 2323
12 u2319 PR 1 5 2324
13 fnl4461 LR 2 4 4465
14 fnl4461 PR 2 6 4467
15 pla7397 LR 2 4 7401
16 pla7397 PR 3 11 7408
17 usa13509 LR 3 6 13515
18 usa13509 PR 3 9 13518
19 pla33810 LR 2 4 33814
20 pla33810 PR 2 7 33817

5.3 Parameter Settings

The performance of heuristic algorithms highly depends on the parameter setting they work with.
Among 336 instances, 10 of them are arbitrary selected to perform our preliminary experiments. The
aim is to determine the best parameter setting for each meta-heuristic in order to run for all instances.
Parameter settings of each heuristic is given in Table 5.6.

Each combination of parameter levels of each heuristic is replicated 10 times on our 10 test instances.
Two way interaction analysis are used to select the best settings for each algorithm. The performance
of the algorithms (determined by the best objective function value and CPU time) was considered the
main response to the parameter factors. In Appendix C, examples of interaction plots are given. Table
5.7 shows the resulting best levels for each heuristic parameters.

45



Table 5.6: Parameter settings of each meta-heuristics

(a) SA’s parameters

Levels
Parameters 1 2 3
T0 500 1000 –
α 0.82 0.92 –
AvgRep 5 10 15
ε 0.005 – –

(b) EA’s parameters

Levels
Parameters 1 2 3
PopLimit 10 20 30
π 0.0 0.5 1.0
Pc 0.85 0.95 –
Pm 0.2 – –
δ 0.05 – –
NGen 90 – –

(c) PSO’s parameters

Levels
Parameters 1 2 3
PopLimit 10 20 30
Vmax 0.3 0.6 –
AgeLimit 3 6 12
ϕ1 2.05 – –
ϕ2 2.05 – –
δ 0.05 – –
NIter 90 – –

Table 5.7: Best parameter adjustments for each meta-heuristics

(a) SA’s best settings

Parameters Value
T0 1000
α 0.92
AvgRep 10
ε 0.005

(b) EA’s best settings

Parameters Value
PopLimit 20
π 0.75
Pc 0.85
Pm 0.2
δ 0.05
NGen 90

(c) PSO’s best settings

Parameters Value
PopLimit 20
Vmax 0.3
AgeLimit 12
ϕ1 2.05
ϕ2 2.05
δ 0.05
NIter 90

The parameter π in EA often results in better objective function values if it is set to 1, however, the CPU
time increases, significantly. For this reason, we performed other experiments on the test instances by
setting the best parameter values obtained from previous experiments and π = 0.75 (see Table 5.7(b)).
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It is observed that the algorithm performed better in this case by producing good quality solutions in
less time compared to π = 1 case (some examples are given in Appendix C). Therefore, π = 0.75 is
set for further experiments.

Moreover, we doubled the population limit for EA and PSO to solve large problem instances given
in Table 5.4. In this way we have more fair and accurate computations since the number of points in
these instances are much more than that in other instances.

5.4 Convergence

In this section we give some illustrations to show the behavior of meta-heuristic algorithms around the
best solution they found. Furthermore, we graphically show the convergence of the solutions to the
solution of unrestricted problem when the fixed costs decreases to zero.

5.4.1 Converging to the Best Solution

Exploration and exploitation are two important processes that the algorithms undergo in solving a
problem. At first, since a limited information is available, it is better to explore the solution space for
a chance of finding a good solution. As time passes, the algorithms try to exploit more around the
good solution in order to improve that solution. Figure 5.2 shows the change of objective function
values corresponding to the generated solution over time. The information comes from one replication
of each algorithm on AP70 problem instance. See Appendix C for more plots of convergence of the
algorithms.

In Figure 5.2(a) the maximum, average and minimum objective function values (OFV’s) are plotted
with respect to the temperature. In any temperature, SA generates several solutions in the inner repe-
tition steps. In Figure 5.2(a), ‘Min. OFV’, ‘AVg. OFV’ and ‘Max. OFV’ respectively correspond to
the best, average and the worst of objective function values of generated solutions at a specific tem-
perature. As the system cools down, all tree values converge to the best objective function value. The
uphill moves and generation of non-improving solutions can be observed from this graph. EA updates
a population of solutions in a generation. Figure 5.2(b) shows the objective function values of the best
solution (‘Min. OFV’ curve) and the worst solution (‘Max. OFV’ curve) as well as the average objec-
tive function value of all solutions of a population (‘AVg. OFV’ curve) through generations. Since EA
generates a population, it is more likely to have a good solution even in the first generation. It can be
seen that EA has a faster convergence than SA. Similar behavior of particles’ objective function values
over iterations in PSO is also shown in Figure 5.2(c). ‘Min. OFV’, ‘AVg. OFV’ and ‘Max. OFV’ in
Figure 5.2(c), respectively shows the best objective function value, average objective function value
and the best objective function value of the generated solutions trough iterations.
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(a) SA’s convergence

(b) EA’s convergence

(c) PSO’s convergence

Figure 5.2: Convergence of three meta-heuristics to the BSol in AP70 problem instance: Objective
function values.

A special characteristic of planar location problems considered in this study is that they are defined
on a plane. Therefore, it is easy to picture problem instances, their solutions and facility-demand
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routes. Figure 5.3 illustrates the behavior of different algorithms when solving AP70. All generated
solutions are displayed by small circles and the final solution (facility location) is shown by a square.
The facility-demand pathways are also shown by lines. Region boundaries are shown by black lines
and demand points are filled circles.

(a) SA’s convergence

(b) EA’s convergence

(c) PSO’s convergence

Figure 5.3: Convergence of three meta-heuristics to the BSol in AP70 problem instance: Generated
solutions.

It can be seen from Figure 5.3 that:

1. The bottom-right most region (shown by dashed edges) is eliminated since it is totally outside
the convex hull of demand points.

49



2. No solution is generated inside the regions since all infeasible ones are repaired and moved to
the edges of corresponding infeasible region.

3. More solutions are generated around the final solution. Most of these solutions are generated in
final iterations when the algorithms exploit the BSol they found.

It can also be noticed that SA explores the solution space more than EA and PSO (see Figure 5.3(a) in
which more solutions are spread in the plain compared to EA (Figure 5.3(a)) and PSO (Figure 5.3(c))).
This verifies the results given in Figure 5.2 where convergence of EA and PSO is faster than SA.

5.4.2 Dependency on Initial Solutions

One important characteristic of the proposed meta-heuristics is that their are independent to the initial
solution(s). Regardless of the initial locations of solutions, the algorithms finally converge to the BSol.
Small deviations from BSol for a particular instance, discussed in Section 5.5, demonstrates almost
the same convergence for all replications. An illustration is given in Figure 5.4. Figure 5.4 shows the
convergence of the generated solutions to the BSol of AP70 problem when all solutions in all meta-
heuristics are initialized at (19, 13). (19, 13) is the location of the upper-right most demand point in the
instance. Again, all algorithms were able to converge to the BSol located at (8.7667, 4.9797).

5.4.3 Converging to the Unrestricted Problem Solution

Figure 5.5 shows the fnl4461 instance with pattern LR where two line regions are placed in the plane
among many demand points. Initially the traveling costs of both regions are set to BR level, meaning
that no facility-demand way will pass through the lines. We solved this problem using PSO (under its
best settings) and record the solution as the solution for the highest fixed cost level. Each time the fixed
costs of both regions are decreased by %10 and the solution is recorded. This procedure is continued
until the cost of both regions became zero, i.e. FR cost level. The solution of the unconstrained problem
is also found using Weiszfeld’s algorithm. Each time we decrease the region costs, the location of the
final solution became closer to the solution of the unrestricted problem. Figure 5.5 shows how solutions
of different fix cost levels approach to XU .

Convergence to the solution of unconstrained problem is investigated more in the next section where it
is concluded that as the cost level of congested regions increases the gap between the objective function
values of the restricted problem and unrestricted problem increases too.
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(a) SA’s convergence

(b) EA’s convergence

(c) PSO’s convergence

Figure 5.4: Convergence of three meta-heuristics to the BSol in AP70 problem instance: Generated
solutions under a different initialization.
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Figure 5.5: Convergence to the solution of the unrestricted problem. Solutions (shown by diamonds)
approach the unrestricted problem’s solution (shown by a square) as fixed cost levels decreases

5.5 Computational Results

All problem instances are solved by using proposed meta-heuristic algorithms and the results are given
in Appendix A and B. All heuristics are replicated 10 times on each problem instance and the calcula-
tions are done using single decimal precision (up to 6 digits). The BSol for all unrestricted problems,
i.e. problems with pattern U, and restricted problems with forbidden regions (problems with pattern
FR-#) are found using the approaches discussed in Chapter 4. The obtained BSols and the reported
BSols in the literature are used to examine the performance of our heuristics. In the following sections
we focus on the solution results as well as the performance of the proposed meta-heuristic algorithms.

5.5.1 Solution Results

Tables in Appendix A show the information about the objective function values and the best solu-
tions generated by meta-heuristic algorithms. Detailed information for different instances are given in
separate tables. For every implemented meta-heuristic, these information contain:

• The instance name and its pattern in the first and second columns.
• The applied meta-heuristic algorithm in the ‘Alg.’ column.
• The x and y coordinates of the best solution out of 10 replications.
• The best objective function value found in 10 replications, indicated by ‘Min. OFV’.
• ‘Avg. OFV’, the average of objective function values in 10 replications.
• ‘Max. OFV’ showing the maximum objective function value of 10 replications.
• ‘Avg. %Gap U’, the percentage gap between the average objective function value of 10 replica-
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tions and the objective function value of the unconstrained problem.

To see the effect of imposing different restrictions on the objective function values, we compare the ob-
jective function value of each problem with that of unrestricted problem. ‘Avg. %Gap U’ is calculated
as.

Avg. %Gap U = 100 ×
Avg. OFV − Z(XU)

Z(XU)
. (5.1)

Tables A.1 to A.25 in Appendix A show that for all problem instances in Table 5.3, at least one of
meta-heuristic algorithms could find the reported solution. Thus we have the same result as Table 5.3
for original problems. One exception occurs for KC10c128 instance for which we were able to find a
slightly better solution than the reported one in Bischoff and Klamroth (2007). The difference between
two objective function values is about 2.6 × 10−6 percent. It is observed that in KC5 and KC10 in-
stances, as the number of edges of the polygons increases, (the shape of polygons becomes closer to the
circular regions), the objective function improves (see Table 5.3 for variants of KC instances). There-
fore, approximating non-polygonal regions is important when using the proposed solution approach.
In Section 5.5.2 we explain the trade off between good approximation of non-polygonal regions and
the required time to solve the problem.

Table 5.8 shows the effect of problem instance patterns on the BSol found by each meta-heuristic.
This analysis is done on the problem instances from the literature given in Table 5.3 and their variants.
Considering all 306 instances, this table shows the mean of ‘Avg. %Gap U’ in Tables A.1 to A.25.

Table 5.8: Effect of instance patterns on the average %GAP U

Algorithm
Pattern SA EA PSO

Cost Level

U 0.00 0.20 0.01
FR 0.22 0.22 0.22
l 1.28 1.28 1.28
h 1.42 1.42 1.42
BR 1.42 1.42 1.42

Region Size
25 0.04 0.04 0.04
50 0.37 0.37 0.37
o 2.85 2.85 2.85

It can be concluded from Table 5.8 that:

1. When considering cost levels, the lower and upper bounds introduced in Chapter 3 are justified.
That is, the BSol’s objective function value of the restricted problems is not less than that of
the unrestricted problem since all gaps for cost levels FR, l, h, and BR are positive. Moreover,
the objective function value of the restricted problems with forbidden regions (i.e. FR-#) are
always less than or equal to that of restricted problems with higher cost levels for congested
regions. Finally, the restricted problems with barriers (i.e. BR-#) always result in the highest
objective function values compared to the restricted problem with lower fixed cost levels of
congested regions and unrestricted problem. It can be justified since the gap values for BR is
highest among other cost levels. In short, the computational results given in Appendix A hold
the conditions in Theorem 3.1 in Chapter 3, as expected.
Besides, the chance of improvement in objective function value increases if the fixed costs of the
regions decrease. For example in AP70 problem, when the fixed cost are decreased from level h
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to level l, improvements in objective function values are observed. Even less objective function
values is achieved if the costs are further decrease to zero (see Table A.2 for more details). The
reason for this trend is that, as expected, the fall in fixed costs of congested regions may result in
less facility-demand direct access costs so that passing through regions becomes more favorable
than going the way around them.

2. The objective function value improves when the size of the regions decreases, as expected. The
reason is that smaller restriction regions provide larger feasible space. In some cases the regions
are so small that they become redundant and yield identical solutions to unrestricted problems
(as an example, when the regions in AP25 are squeezed by 75%, the solution becomes the same
as that of unrestricted AP25. See AP25 problems with #-25 patterns in Table A.1).

However, changes in objective function values with respect to changes in patterns highly depend on
the distribution of demand points. The value of the objective function may remain unaffected when
the regions become smaller or passing costs of congested regions become higher. Even so, one can not
have better objective function if the congested regions become larger or more expensive to pass. An
example to this is AP25 problem where objective function values remained the same for BR and l level
fixed costs. In addition, decreasing the size of the forbidden region from 50 to 25 does not lower the
objective function value (see Table A.1).

Table 5.9 shows the effect of patterns in large problem instances on the average %GAP U. From this
table wee see that with a polygonal congested region, the objective function values differ more than
linear congested regions.

Table 5.9: Effect of large instance patterns on the average %GAP U

Algorithm
Pattern SA EA PSO
U 0.03 0.00 0.00
LR 8.84 8.74 8.71
PR 9.60 9.57 9.57

5.5.2 Performance Measure

Appendix B shows the performance of our algorithm in different problem instances. Each table
presents detailed information for each instance and all three algorithms. The performance informa-
tion contains:

• The instance name and its pattern in the first and second column.
• The applied meta-heuristic algorithm in the ‘Alg.’ column.
• ‘%Imp.’ that shows how the meta-heuristic algorithms were able to improve their initial solu-

tions. To be more specific, we focus on three values indication different improvements, consid-
ering 10 replications of each meta-heuristic:

– ‘Min. %Imp.’ showing that on average how much the algorithms could improve (in
percent) the best individual of initial population before termination.

– ‘Avg. %Imp.’ denoting how much on average the algorithm could improve the initial
population to the final population.

– ‘Max. %Imp.’ which shows the average percent improvement on the worst solution in
the initial population.
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• ‘%DV’ that indicates the percent deviation of final solutions from the BSol:
– ‘Min. %DV’ shows the percent deviation of the best objective function found in 10

replications from BSol.
– ‘Avg. %DV.’ is the average percent deviation of 10 final solutions from BSol.

• ‘BSol Hits’ showing the number of times the algorithm generated final solution with the same
objective function value as BSol running in 10 replications.

• ‘CT’ which refers to CPU time. CPU time is the computational time the algorithm required to
return a solution. The values regarding average computational time of 10 runs is given in ‘CT’
column.

Note that the final population is the generated solutions just before the algorithm terminates. The final
population usually converges to the best individual in the population. Since SA produces a single
solution at a time and does not work with a population of solutions, we give the percent improvement
on the single initial solution as ’Min. %Imp.’ while ’Avg. %Imp.’ and ’Max. %Imp.’ is not applicable
for SA.

The BSol of each problem is obtained from given approaches in Chapter 4 if the problem is unrestricted
(has pattern U) or RLocP-FR (with pattern FR-#). For problems given in Table 5.3, the BSol corre-
sponds the reported solutions in the literature. For other type of problems, BSol is the best solution
found by any of the meta-heuristic algorithms for that problem (when each heuristic runs 10 times,
BSol is the best solution found in all 30 replications). For example, the BSol of AP25 with pattern
BR-o is the solution with minimum ’Min. OFV’ value in its SA, EA and PSO rows (see the first three
rows of Table A.1). Once having BSol, we can calculate ‘%DV’ values from Equations 5.2 and 5.2.

Min. %DV = 100 ×
Min.OFV − Z(BS ol)

Z(BS ol)
(5.2)

Avg. %DV = 100 ×
Avg.OFV − Z(BS ol)

Z(BS ol)
(5.3)

Table 5.10 shows a performance summary of three meta-heuristics over all 26 instances in Table 5.3.

‘Average %Imp.’ shows the percentage improvement meta-heuristics achieved for the initial solution
or the initial population average. ‘Average %DV’ is the average of percent deviation from the BSol.
‘BSol Hits’ is the number of BSols generated by each algorithm in 10 replications. Since we have 26
instances and 10 replications, ’Tot. BSol Hits’ is out of 26 × 10 = 260. Average computational times
are also provided in Table 5.10.

Table 5.10: Overall meta-heuristics performances on problem instances in Table 5.3

Algorithm Average %Imp. Average %DV Tot. BSol Hits Avg. CT
SA 10.13 0.00 66 (%25.4) 88.93
EA 11.62 0.03 194 (%74.6) 41.73
PSO 11.60 0.00 187 (%71.9) 59.98

From Table 5.10 we can see that the percentage deviation values given by ‘Average %DV’ is negligible
for all meta-heuristics and all of them were able to improve the initial solution/population average by
about 11%. What is more, SA required the most time, on average, to solve the problems while EA
took the least time. Although SA has the lowest rate of BSol hits, it produced good quality solutions
with almost zero deviations, on average.
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Similarly, Table 5.11 shows the algorithm performances on the large problems in Table 5.4 and their
variants (30 instances in total).

Table 5.11: Overall meta-heuristics performances on large problem instances in Table 5.4

Algorithm Average %Imp. Average %DV Tot. BSol Hits Avg. CT
SA 23.03 0.16 0 (0.0%) 76.71
EA 25.41 0.11 163 (54.3%) 68.83
PSO 25.14 0.10 44 (14.7%) 101.65

Table 5.11 shows that all algorithms improved the initial solution(s) approximately by 25%. SA has
the most average percent deviation by 0.17%. It also failed to find the BSol to any of 30 problems. In
this case, EA did the best by finding the BSol 54.3% of the time. It also required less time than SA or
PSO. Finally, PSO has the longest CPU time, but the lowest Average %DV.

At last, Table 5.12 shows the meta-heuristic performances on all of our problems.

Table 5.12: Overall meta-heuristics performances on all problem instances

Algorithm Average %Imp. Average %DV Tot. BSol Hits Avg. CT
SA 10.63 0.01 856 (25.5%) 90.24
EA 11.84 0.01 2459 (73.2%) 37.53
PSO 11.81 0.01 2081 (61.9%) 59.77

‘Tot. BSol Hits’ is out of 336 × 10 = 3360. It can be observed from Table 5.12 that on average the
meta-heuristic algorithms have 0.01% average deviation from BSol’s. It also took less time for EA to
solve the problems compared to SA and PSO.

The effect of various instance patterns on CPU time is shown in Table 5.13. The instances considered
here are the ones given in Table 5.3. As it can be seen, patterns have no significant effect on the
computational times, except for the unrestricted problem where no least cost way is calculated.

Table 5.13: Effect of instance patterns on the computational time

Algorithm
Pattern SA EA PSO

Cost Level

U 0.02 0.00 0.00
FR 87.87 27.90 49.00
l 94.60 36.84 58.78
h 95.32 38.27 58.78
BR 95.78 37.59 60.57

Region Size
25 96.39 32.72 56.15
50 93.57 34.46 55.94
o 90.22 38.27 58.25

Table 5.14 provides information about effects of the large instance patterns on average computational
times.
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Table 5.14: Effect of large instance patterns on average computational times

Algorithm
Pattern SA EA PSO
U 9.09 9.07 12.43
LR 86.25 79.76 110.24
PR 134.81 117.65 182.27

Table 5.14 shows that with polygonal regions, which implies larger number of vertices and more
infeasible area, the computational times increase.

Furthermore, Tables B.1 to B.23 in Appendix B show that the average CPU time increases as the
number of region vertices in the problem increases. This is reasonable since the calculation of the
least cost path depends directly on the number of region vertices in the problem instance. To illustrate,
Table 5.15 summarizes the average computational time of all meta-heuristics over variants of KC5 and
KC10 instances given in Table 5.2. It is obvious that as the number of edges in the polygons increases
(the non-polygonal region is approximated more accurately) the computational time increases.

Table 5.15: Effect of number of region vertices in the problem on CPU time: KC5 and KC10 instances

Algorithm
Instance |V | SA EA PSO
KC5 0 0.02 0.00 0.00
KC5 16 1.22 0.26 0.37
KC5 32 3.99 1.47 2.31
KC5 64 14.20 5.78 8.51
KC5 128 53.76 21.01 32.09
KC5 256 206.54 77.81 123.95
KC5 512 809.40 298.94 492.48
KC10 0 0.02 0.00 0.00
KC10 16 1.43 0.38 0.56
KC10 128 56.09 25.13 37.81

The performance of the proposed meta-heuristic algorithms, namely SA, EA, and PSO, are close to
each other. One of their significant differences is CPU time. The computational time, other than the
problem itself, depends on the nature of the algorithm and since the meta-heuristics proposed in this
study have dissimilar nature and behavior, such variety of computational times is reasonable. The
other significant difference is the rate at which the heuristics were able to find BSol. But, even when
the number of BSol hits is small, the deviations are close to zero. Considering the continuous solution
space of the problem, as long as deviations are negligible, the performances are acceptable.
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CHAPTER 6

CONCLUSION

This chapter provides an overview of the work done in this study, introduces some extensions to the
problem, and addresses the future studies of this research.

In this research, a general type of planar single facility location problems is studied. The problem can
be restricted by congested regions. Congested regions are referred to the regions on the plane inside
which locating a facility is infeasible but through which traveling is possible at a certain fixed cost.
Congested regions can have different fixed costs at different levels which make our problem more
general than the most studied restricted problems in the literature, namely restricted planar single
facility location problems with forbidden regions and barriers. The problem is formulated under weak
assumptions that enables us to model numerous real-life problems.

Three different solution approaches are provided for solution of the problem. Solution methods are
based on well-known meta-heuristics, specifically simulated annealing, evolutionary algorithm, and
particle swarm optimization. In addition, variable neighborhood search technique is integrated with
each meta-heuristic to improve the search procedure. The structure of all heuristics is explained in
detail and the procedures needed to calculate objective function values are provided. This study is the
first that designed and implemented evolutionary algorithm and particle swarm optimization to deal
with restricted planar single facility location problems.

A software package, coded in visual basic .net language, with a graphical user interface is developed.
The software enables us to visually see and manage problem instances as well as to implement the
proposed algorithms on them.

The performance of the proposed meta-heuristics are investigated using available restricted planar
problem instances in the literature. Large TSP and VRP examples are also solved to illustrate the exe-
cution of meta-heuristics on large problems. Besides, more problem instances in a structured scheme
are generated. The parameters of the meta-heuristics are adjusted by performing preliminary experi-
ments on a small number of test instances.

Computational results showed that all three heuristic algorithms performed well in solving problem
instances. We were able to justify our meta-heuristics by finding all the best known solutions of the
problems reported in the literature. In unrestricted problems, the insignificant deviation of heuristic so-
lutions from the Weiszfeld’s solution and small computational times support this claim (computational
times are about 10 seconds for an instance having 7397 demand points).

Provided solution approaches in this study are flexible in a way that distance measures other than
Euclidean norm can also be used by small adjustments in the distance calculation procedure. Further-
more, minimax objective function can also be adopted by modest changes in the objective function
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calculation procedure. In this case, one is able to solve restricted planar 1-center problems, as well.

The solution methods are also valid for the problems where some or all demand points are located
inside congested regions. This can even generalize the problem more. For instance, suppose that
a distribution center is to be located for delivering equipment to some military units in several war
zones. Moreover, it is unsafe to build the distribution center inside the war zones. Making deliveries
to the units in the war is essential but dangerous. Such a problem can be solved with the proposed
solution method if the fixed costs are properly set to express the risks.

Moreover, each congested region may have different contour levels. If different fixed costs can assigned
to each contour level of a congested region, the problem becomes more realistic. Examples are nuclear
plants, mountains, and war zones. Usually, the boundaries of such regions cannot be specified, or the
risk is not uniformly the same across the region. However, it is known that the closer to the center
of the region we travel, the higher the risk, or cost, we encounter. The region with the highest risk
(or cost) level can be expanded to regions with lower risk levels around it. Traveling can occur in the
contour regions with lowest levels of risks but the drawback is the longer traveling distance. In Figure
6.1, there exists a region with different levels of fixed costs. As the region becomes darker the fixed
cost becomes larger. The alternative traveling pathways from X f to Xm are shown. The path shown by
a dashed line is the most costly but it is the shortest way. If the solid route is used, less fixed cost is
faced but a longer way is traveled. Doted line shows the longest path without any risk. Having such
congested regions is equivalent to having multiple regions with different fixed cost levels. The least
cost way between two points can be found by enumerating over all contours of all congested regions.

Figure 6.1: A congested regions with contours of fixed costs

Congested regions defined in this study restrict the facility location. However, there may exist zones on
the plane that allow location of a facility but at a determined fixed cost (a location problem with zone-
dependent fixed cost is studied by Brimberg and Salhi (2005)). The traveling through the zones may be
free or costly. For example, consider location a terminal in a rural area. To construct the terminal we
should pay for the land. The cost of land may vary in different zones of the area. For such problems,
new definition of congested regions is suggested: the regions where location of the facility is costly
and traveling is charged with a fixed cost. Note that if the location cost of such regions is set to infinity,
they become identical to the congested regions of our problem. Therefore, we can assign another cost
factor to the congested regions regarding the fixed location cost. In this case, solutions generated inside
congested regions with a finite location cost are not infeasible anymore. Small changes in repairing
procedure and the objective function can handle this problem. The new term added to the objective
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function is L(X f ) indicating the location cost at (x f , y f ). Note that in places outside the congested
regions, L(X f ) = 0. Therefore, similar solution approaches is valid in this case. Following the last
discussion, contours for location costs of congested regions can be defined, as well.

Future studies of this work may contain solving the restricted planar multi-facility (p-median) prob-
lems with congested regions having (different levels of) fixed traveling costs (and location costs). Even
though the multi-facility problems have different characteristics than the single facility case, the flex-
ibility and adaptability of meta-heuristics enables us to provide similar solution approaches for those
problems.

Furthermore, planar facility location problems restricted by congested regions with variable traveling
costs is in the area of this research. With variable costs, restricted regions allow traveling at certain per-
unit traveling costs. The problem is more generalized with variable traveling costs where finding entry
and exit points to congested regions matters. Besides, finding one best passage trough a congested
region (with a fixed or variable traveling cost) to reach demand points behind the region is an interesting
problem to be considered. If several passages is unified into one, the decision maker will not to face a
fixed cost of passage for every demand point. But, finding the number of passages and their location
is an additional decision in the least cost path finding problem. Congested regions can have predefined
gates. In this case, the best gate-to-gate passage can be found. For example, in Figure 6.2 a facility is
located on a plane where there exists a triangular congested region (at the top) and a long linear region
(at the bottom). Demand points are shown by dots and facility location is shown by a square. Note that
to reach the demand points on the other side of the line, one passage is used, instead of two, if the fixed
cost of the linear region is high. By this aggregation, high amount of money could be saved, although
traveling distances are longer. Dashed lines are for passages and the path from facility to the passages
are shown by a solid line. When the regions are passed, the way to demand points follows the dotted
line. To serve demand points falling behind the triangular regions, two penalty costs are paid instead
of different costs for each.

Figure 6.2: Unified passages through congested regions

The restricted obnoxious facility location problem in the presence of congested regions is another
future research problem. In this problem, the facility(facilities) are to be located in order to serve the
customers. However, the facility should be far from some unfavorable points or undesirable regions.
For instance, building an airport too close to a swampland is unfavorable. In this case, congested

61



region can have another cost factor. With this factor, the closer the facility location to the undesirable
region, the more cost is encountered.

Figure 6.3: Facility location in the presence of undesirable congested region

For example, suppose that the triangular region in Figure 6.2 is undesirable, i.e. locating a facility
near that region is risky or unfavorable. Then the new facility location can be the one shown in Figure
6.3 which is now farther from that region. The additional decision in these problems should be made
about locating the facility near an undesirable region to reach demand points better or far from the
undesirable regions to face less risk but having longer traveling ways.

Finally, stochastic models of restricted planar facility locations are also in the area of interest. In
stochastic models, one or all of the following terms can be nondeterministic: location of the demand
points, location of the congested regions, and/or the fixed traveling costs of the congested regions.

62



REFERENCES

Aneja, Y.P., Parlar, M., 1994. Algorithms for Weber facility location in the presence of forbidden
regions and/or barriers to travel. Transportation Science 28(1), 70–76.

Abdullah, T., Zainuddin, Z.M., Salim, S., 2008. A simulated annealing approach for uncapacitated
continuous location-allocation problem with zone-dependent fixed cost. Matematika 24(1), 67–73.

Al-khedhairi, A., 2008. Simulated annealing metaheuristic for solving p-median problem. Interna-
tional Journal of Contemporary Mathematical Sciences 3(28), 1357–1365.

Alp, O., Erkut, E., Drezner, D., 2003. An efficient genetic algorithm for the p-median problem. Annals
of Operations Research 122, 21–42.

Aras, N., Yumusak, S., Altinel, I.K., 2007. Solving the capacitated multi-facility weber problem by
simulated annealing, threshold accepting and genetic algorithms. In Doerner, K.F, Gendreau, M.,
Greistorfer, P., Gutjahr, W., Hartl, R.F., Marc Reimann, M., editors, Metaheuristics, vol. 39, 91–
112. Springer, US.
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APPENDIX A

TABLES OF SOLUTIONS OF ALL PROBLEM INSTANCES

In this appendix, information about the solutions and corresponding objective function values is pro-
vided for all meta-heuristics and all instances and their patterns. The information given in Tables A.1
to A.35 contains:

• The instance name and its pattern in the first and second columns.
• The applied meta-heuristic algorithm in the ‘Alg.’ column.
• The x and y coordinates of the best solution out of 10 replications.
• The best objective function value found in 10 replications, indicated by ‘Min. OFV’.
• ‘Avg. OFV’, the average of objective function values in 10 replications.
• ‘Max. OFV’ showing the maximum objective function value of 10 replications.
• ‘Avg. %Gap U’, the percentage gap between the average objective function value of 10 replica-

tions and the objective function value of the unconstrained problem.
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Table A.1: Solution results for AP25

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP25 BR-o SA 5.5011 -3.2774 50.213366 50.213367 50.213369 3.58
AP25 BR-o EA 5.5000 -3.2778 50.213366 50.213367 50.213374 3.58
AP25 BR-o PSO 5.4997 -3.2773 50.213366 50.213370 50.213385 3.58
AP25 BR-50 SA 5.5001 -0.5712 48.601305 48.601307 48.601309 0.25
AP25 BR-50 EA 5.5000 -0.5714 48.601305 48.601306 48.601306 0.25
AP25 BR-50 PSO 5.5000 -0.5716 48.601305 48.601312 48.601343 0.25
AP25 BR-25 SA 5.5013 0.7999 48.479275 48.479276 48.479278 0.00
AP25 BR-25 EA 5.5000 0.8000 48.479275 48.479275 48.479278 0.00
AP25 BR-25 PSO 5.5004 0.8008 48.479275 48.479278 48.479296 0.00
AP25 h-o SA 5.4997 -3.2768 50.213366 50.213368 50.213370 3.58
AP25 h-o EA 5.5004 -3.2768 50.213366 50.213367 50.213369 3.58
AP25 h-o PSO 5.5009 -3.2772 50.213366 50.213368 50.213383 3.58
AP25 h-50 SA 5.5004 -0.5736 48.601306 48.601307 48.601310 0.25
AP25 h-50 EA 5.5000 -0.5714 48.601305 48.601306 48.601312 0.25
AP25 h-50 PSO 5.4999 -0.5714 48.601305 48.601306 48.601309 0.25
AP25 h-25 SA 5.4990 0.7998 48.479275 48.479275 48.479277 0.00
AP25 h-25 EA 5.5000 0.8000 48.479275 48.479277 48.479294 0.00
AP25 h-25 PSO 5.5016 0.8015 48.479275 48.479276 48.479281 0.00
AP25 l-o SA 5.5009 -3.2773 50.213366 50.213367 50.213369 3.58
AP25 l-o EA 5.4992 -3.2778 50.213366 50.213367 50.213370 3.58
AP25 l-o PSO 5.5001 -3.2776 50.213366 50.213369 50.213375 3.58
AP25 l-50 SA 5.4996 -0.5692 48.601306 48.601306 48.601307 0.25
AP25 l-50 EA 5.5001 -0.5711 48.601305 48.601322 48.601465 0.25
AP25 l-50 PSO 5.4995 -0.5702 48.601306 48.601308 48.601319 0.25
AP25 l-25 SA 5.5001 0.8006 48.479275 48.479276 48.479278 0.00
AP25 l-25 EA 5.5000 0.7984 48.479275 48.479373 48.480202 0.00
AP25 l-25 PSO 5.5002 0.7966 48.479275 48.479278 48.479294 0.00
AP25 O SA 5.5003 0.0000 48.501095 48.501095 48.501095 0.05
AP25 O EA 5.5000 0.0000 48.501095 48.501095 48.501095 0.05
AP25 O PSO 5.4999 0.0000 48.501095 48.501095 48.501095 0.05
AP25 FR-50 SA 5.4996 0.7966 48.479275 48.479275 48.479275 0.00
AP25 FR-50 EA 5.5004 0.7993 48.479275 48.479276 48.479277 0.00
AP25 FR-50 PSO 5.5016 0.8032 48.479275 48.479277 48.479283 0.00
AP25 FR-25 SA 5.5007 0.7997 48.479275 48.479275 48.479277 0.00
AP25 FR-25 EA 5.5000 0.8000 48.479275 48.479300 48.479516 0.00
AP25 FR-25 PSO 5.4998 0.8002 48.479275 48.479280 48.479290 0.00
AP25 U SA 5.4999 0.7970 48.479275 48.479276 48.479279 0.00
AP25 U EA 3.8259 0.7982 48.846559 48.880350 48.959196 0.83
AP25 U PSO 5.3694 1.1494 48.485660 48.487938 48.493253 0.02
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Table A.2: Solution results for AP70

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP70 O SA 8.7662 4.9795 119.138730 119.138742 119.138784 8.30
AP70 O EA 8.7667 4.9797 119.138730 119.138730 119.138730 8.30
AP70 O PSO 8.7667 4.9798 119.138730 119.138730 119.138731 8.30
AP70 BR-50 SA 9.0360 6.1557 110.565933 110.565936 110.565942 0.51
AP70 BR-50 EA 9.0364 6.1561 110.565933 110.565933 110.565937 0.51
AP70 BR-50 PSO 9.0360 6.1558 110.565933 110.565934 110.565940 0.51
AP70 BR-25 SA 8.9360 6.3091 110.054606 110.054610 110.054624 0.04
AP70 BR-25 EA 8.9361 6.3088 110.054606 110.054606 110.054606 0.04
AP70 BR-25 PSO 8.9358 6.3086 110.054606 110.054607 110.054610 0.04
AP70 h-o SA 8.7673 4.9797 119.138730 119.138744 119.138775 8.30
AP70 h-o EA 8.7667 4.9797 119.138730 119.138730 119.138730 8.30
AP70 h-o PSO 8.7667 4.9797 119.138730 119.138730 119.138733 8.30
AP70 h-50 SA 9.0357 6.1554 110.565934 110.565938 110.565958 0.51
AP70 h-50 EA 9.0364 6.1557 110.565933 110.565934 110.565936 0.51
AP70 h-50 PSO 9.0362 6.1559 110.565933 110.565933 110.565935 0.51
AP70 h-25 SA 8.9360 6.3085 110.054606 110.054608 110.054610 0.04
AP70 h-25 EA 8.9358 6.3086 110.054606 110.054607 110.054612 0.04
AP70 h-25 PSO 8.9354 6.3090 110.054606 110.054606 110.054606 0.04
AP70 l-o SA 8.5520 5.0226 117.514750 117.514757 117.514770 6.82
AP70 l-o EA 8.5523 5.0223 117.514750 117.514750 117.514750 6.82
AP70 l-o PSO 8.5521 5.0221 117.514750 117.514751 117.514760 6.82
AP70 l-50 SA 9.0360 6.1564 110.565933 110.565937 110.565945 0.51
AP70 l-50 EA 9.0362 6.1559 110.565933 110.565934 110.565947 0.51
AP70 l-50 PSO 9.0364 6.1562 110.565933 110.565935 110.565940 0.51
AP70 l-25 SA 8.9351 6.3076 110.054607 110.054611 110.054616 0.04
AP70 l-25 EA 8.9358 6.3086 110.054606 110.054606 110.054607 0.04
AP70 l-25 PSO 8.9356 6.3082 110.054606 110.054607 110.054610 0.04
AP70 FR-o SA 8.9129 6.3565 110.006837 110.006839 110.006844 0.00
AP70 FR-o EA 8.9124 6.3554 110.006837 110.006837 110.006837 0.00
AP70 FR-o PSO 8.9125 6.3554 110.006837 110.006840 110.006855 0.00
AP70 FR-50 SA 8.9121 6.3562 110.006837 110.006846 110.006885 0.00
AP70 FR-50 EA 8.9127 6.3554 110.006837 110.006837 110.006837 0.00
AP70 FR-50 PSO 8.9126 6.3554 110.006837 110.006839 110.006846 0.00
AP70 FR-25 SA 8.9128 6.3556 110.006837 110.006840 110.006846 0.00
AP70 FR-25 EA 8.9126 6.3553 110.006837 110.006837 110.006837 0.00
AP70 FR-25 PSO 8.9129 6.3551 110.006837 110.006839 110.006847 0.00
AP70 U SA 8.9121 6.3552 110.006837 110.006842 110.006853 0.00
AP70 U EA 8.9126 6.3554 110.006837 110.006909 110.007030 0.00
AP70 U PSO 8.9129 6.3548 110.006837 110.006889 110.007025 0.00
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Table A.3: Solution results for AP70R10

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP70R10 O SA 8.7670 4.9794 119.104667 119.104681 119.104721 8.27
AP70R10 O EA 8.7667 4.9797 119.104667 119.104667 119.104667 8.27
AP70R10 O PSO 8.7667 4.9797 119.104667 119.104667 119.104671 8.27
AP70R10 BR-50 SA 9.0359 6.1554 110.565933 110.565935 110.565938 0.51
AP70R10 BR-50 EA 9.0361 6.1559 110.565933 110.565934 110.565946 0.51
AP70R10 BR-50 PSO 9.0362 6.1558 110.565933 110.565934 110.565938 0.51
AP70R10 BR-25 SA 8.9352 6.3088 110.054606 110.054612 110.054653 0.04
AP70R10 BR-25 EA 8.9358 6.3086 110.054606 110.054606 110.054606 0.04
AP70R10 BR-25 PSO 8.9361 6.3088 110.054606 110.054607 110.054614 0.04
AP70R10 h-o SA 8.7666 4.9794 119.104667 119.104672 119.104684 8.27
AP70R10 h-o EA 8.7667 4.9797 119.104667 119.104667 119.104667 8.27
AP70R10 h-o PSO 8.7667 4.9798 119.104667 119.104667 119.104667 8.27
AP70R10 h-50 SA 9.0362 6.1561 110.565933 110.565938 110.565947 0.51
AP70R10 h-50 EA 9.0362 6.1559 110.565933 110.565935 110.565948 0.51
AP70R10 h-50 PSO 9.0364 6.1558 110.565933 110.565936 110.565944 0.51
AP70R10 h-25 SA 8.9368 6.3086 110.054607 110.054610 110.054619 0.04
AP70R10 h-25 EA 8.9358 6.3086 110.054606 110.054606 110.054606 0.04
AP70R10 h-25 PSO 8.9357 6.3085 110.054606 110.054606 110.054607 0.04
AP70R10 l-o SA 8.7052 5.0483 118.158977 118.158986 118.159002 7.41
AP70R10 l-o EA 8.7051 5.0481 118.158977 118.158977 118.158978 7.41
AP70R10 l-o PSO 8.7049 5.0483 118.158977 118.158977 118.158978 7.41
AP70R10 l-50 SA 9.0363 6.1557 110.565933 110.565935 110.565940 0.51
AP70R10 l-50 EA 9.0361 6.1558 110.565933 110.565933 110.565934 0.51
AP70R10 l-50 PSO 9.0362 6.1558 110.565933 110.565934 110.565938 0.51
AP70R10 l-25 SA 8.9361 6.3087 110.054606 110.054614 110.054630 0.04
AP70R10 l-25 EA 8.9358 6.3086 110.054606 110.054606 110.054608 0.04
AP70R10 l-25 PSO 8.9358 6.3083 110.054606 110.054607 110.054612 0.04
AP70R10 FR-o SA 8.9127 6.3556 110.006837 110.006840 110.006850 0.00
AP70R10 FR-o EA 8.9127 6.3554 110.006837 110.006838 110.006846 0.00
AP70R10 FR-o PSO 8.9128 6.3557 110.006837 110.006837 110.006841 0.00
AP70R10 FR-50 SA 8.9137 6.3541 110.006839 110.006842 110.006851 0.00
AP70R10 FR-50 EA 8.9127 6.3553 110.006837 110.006837 110.006837 0.00
AP70R10 FR-50 PSO 8.9128 6.3554 110.006837 110.006838 110.006840 0.00
AP70R10 FR-25 SA 8.9122 6.3551 110.006837 110.006841 110.006854 0.00
AP70R10 FR-25 EA 8.9127 6.3554 110.006837 110.006837 110.006841 0.00
AP70R10 FR-25 PSO 8.9123 6.3553 110.006837 110.006838 110.006847 0.00

70



Table A.4: Solution results for AP70R8

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP70R8 O SA 9.1873 5.4861 116.397638 116.397646 116.397669 5.81
AP70R8 O EA 9.1874 5.4860 116.397638 116.397638 116.397639 5.81
AP70R8 O PSO 9.1873 5.4860 116.397638 116.397638 116.397639 5.81
AP70R8 BR-50 SA 9.0451 6.1920 110.548562 110.548565 110.548574 0.49
AP70R8 BR-50 EA 9.0450 6.1915 110.548561 110.548561 110.548562 0.49
AP70R8 BR-50 PSO 9.0451 6.1916 110.548561 110.548566 110.548607 0.49
AP70R8 BR-25 SA 8.9356 6.3092 110.054606 110.054610 110.054621 0.04
AP70R8 BR-25 EA 8.9358 6.3085 110.054606 110.054606 110.054606 0.04
AP70R8 BR-25 PSO 8.9357 6.3087 110.054606 110.054607 110.054611 0.04
AP70R8 h-o SA 9.1874 5.4861 116.397638 116.397642 116.397649 5.81
AP70R8 h-o EA 9.1873 5.4860 116.397638 116.397638 116.397639 5.81
AP70R8 h-o PSO 9.1874 5.4860 116.397638 116.397639 116.397640 5.81
AP70R8 h-50 SA 9.0450 6.1921 110.548562 110.548564 110.548569 0.49
AP70R8 h-50 EA 9.0448 6.1914 110.548561 110.548561 110.548561 0.49
AP70R8 h-50 PSO 9.0450 6.1914 110.548561 110.548562 110.548563 0.49
AP70R8 h-25 SA 8.9350 6.3093 110.054607 110.054609 110.054612 0.04
AP70R8 h-25 EA 8.9358 6.3086 110.054606 110.054606 110.054606 0.04
AP70R8 h-25 PSO 8.9357 6.3085 110.054606 110.054607 110.054611 0.04
AP70R8 l-o SA 8.9839 5.8194 113.526344 113.526348 113.526356 3.20
AP70R8 l-o EA 8.9838 5.8189 113.526344 113.526347 113.526375 3.20
AP70R8 l-o PSO 8.9838 5.8192 113.526344 113.526345 113.526353 3.20
AP70R8 l-50 SA 9.0461 6.1908 110.548563 110.548566 110.548575 0.49
AP70R8 l-50 EA 9.0450 6.1914 110.548561 110.548561 110.548562 0.49
AP70R8 l-50 PSO 9.0449 6.1913 110.548561 110.548562 110.548562 0.49
AP70R8 l-25 SA 8.9361 6.3078 110.054606 110.054607 110.054610 0.04
AP70R8 l-25 EA 8.9358 6.3086 110.054606 110.054606 110.054607 0.04
AP70R8 l-25 PSO 8.9358 6.3086 110.054606 110.054606 110.054607 0.04
AP70R8 FR-o SA 8.9125 6.3561 110.006837 110.006841 110.006848 0.00
AP70R8 FR-o EA 8.9127 6.3554 110.006837 110.006838 110.006843 0.00
AP70R8 FR-o PSO 8.9127 6.3555 110.006837 110.006837 110.006838 0.00
AP70R8 FR-50 SA 8.9131 6.3545 110.006837 110.006841 110.006857 0.00
AP70R8 FR-50 EA 8.9123 6.3555 110.006837 110.006839 110.006857 0.00
AP70R8 FR-50 PSO 8.9126 6.3558 110.006837 110.006837 110.006837 0.00
AP70R8 FR-25 SA 8.9126 6.3562 110.006837 110.006841 110.006856 0.00
AP70R8 FR-25 EA 8.9127 6.3554 110.006837 110.006839 110.006847 0.00
AP70R8 FR-25 PSO 8.9127 6.3551 110.006837 110.006837 110.006839 0.00
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Table A.5: Solution results for AP70R6

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP70R6 O SA 9.2655 6.2527 114.561027 114.561034 114.561046 4.14
AP70R6 O EA 9.2658 6.2527 114.561027 114.561027 114.561027 4.14
AP70R6 O PSO 9.2658 6.2529 114.561027 114.561027 114.561030 4.14
AP70R6 BR-50 SA 9.0064 6.2923 110.399570 110.399574 110.399583 0.36
AP70R6 BR-50 EA 9.0067 6.2926 110.399570 110.399570 110.399570 0.36
AP70R6 BR-50 PSO 9.0063 6.2928 110.399570 110.399570 110.399571 0.36
AP70R6 BR-25 SA 8.9322 6.3186 110.053444 110.053453 110.053482 0.04
AP70R6 BR-25 EA 8.9317 6.3179 110.053443 110.053443 110.053445 0.04
AP70R6 BR-25 PSO 8.9317 6.3177 110.053443 110.053445 110.053450 0.04
AP70R6 h-o SA 9.2653 6.2531 114.561027 114.561032 114.561050 4.14
AP70R6 h-o EA 9.2658 6.2527 114.561027 114.561028 114.561037 4.14
AP70R6 h-o PSO 9.2661 6.2524 114.561027 114.561028 114.561032 4.14
AP70R6 h-50 SA 9.0067 6.2926 110.399570 110.399576 110.399586 0.36
AP70R6 h-50 EA 9.0067 6.2926 110.399570 110.399619 110.399848 0.36
AP70R6 h-50 PSO 9.0069 6.2921 110.399570 110.399570 110.399571 0.36
AP70R6 h-25 SA 8.9319 6.3176 110.053444 110.053446 110.053450 0.04
AP70R6 h-25 EA 8.9318 6.3179 110.053443 110.053444 110.053445 0.04
AP70R6 h-25 PSO 8.9316 6.3180 110.053443 110.053444 110.053447 0.04
AP70R6 l-o SA 8.9869 6.2312 112.068568 112.068572 112.068586 1.87
AP70R6 l-o EA 8.9867 6.2309 112.068567 112.068567 112.068569 1.87
AP70R6 l-o PSO 8.9867 6.2308 112.068567 112.068568 112.068570 1.87
AP70R6 l-50 SA 9.0065 6.2923 110.399570 110.399572 110.399574 0.36
AP70R6 l-50 EA 9.0068 6.2921 110.399570 110.399570 110.399570 0.36
AP70R6 l-50 PSO 9.0066 6.2925 110.399570 110.399570 110.399571 0.36
AP70R6 l-25 SA 8.9315 6.3185 110.053444 110.053448 110.053460 0.04
AP70R6 l-25 EA 8.9317 6.3179 110.053443 110.053443 110.053447 0.04
AP70R6 l-25 PSO 8.9316 6.3180 110.053443 110.053445 110.053455 0.04
AP70R6 FR-o SA 8.9128 6.3563 110.006837 110.006840 110.006850 0.00
AP70R6 FR-o EA 8.9127 6.3554 110.006837 110.006837 110.006838 0.00
AP70R6 FR-o PSO 8.9127 6.3550 110.006837 110.006837 110.006839 0.00
AP70R6 FR-50 SA 8.9135 6.3555 110.006837 110.006840 110.006848 0.00
AP70R6 FR-50 EA 8.9126 6.3554 110.006837 110.006837 110.006837 0.00
AP70R6 FR-50 PSO 8.9129 6.3558 110.006837 110.006838 110.006842 0.00
AP70R6 FR-25 SA 8.9128 6.3562 110.006837 110.006845 110.006872 0.00
AP70R6 FR-25 EA 8.9124 6.3563 110.006837 110.006837 110.006838 0.00
AP70R6 FR-25 PSO 8.9131 6.3553 110.006837 110.006837 110.006839 0.00
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Table A.6: Solution results for AP70R4

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP70R4 O SA 9.2172 6.1526 113.765606 113.765611 113.765621 3.42
AP70R4 O EA 9.2173 6.1528 113.765606 113.765606 113.765607 3.42
AP70R4 O PSO 9.2176 6.1526 113.765606 113.765607 113.765612 3.42
AP70R4 BR-50 SA 9.0028 6.3075 110.397543 110.397547 110.397563 0.36
AP70R4 BR-50 EA 9.0030 6.3075 110.397543 110.397546 110.397564 0.36
AP70R4 BR-50 PSO 9.0030 6.3078 110.397543 110.397544 110.397546 0.36
AP70R4 BR-25 SA 8.9309 6.3179 110.053444 110.053446 110.053453 0.04
AP70R4 BR-25 EA 8.9317 6.3179 110.053443 110.053443 110.053444 0.04
AP70R4 BR-25 PSO 8.9318 6.3180 110.053443 110.053444 110.053445 0.04
AP70R4 h-o SA 9.2168 6.1530 113.765606 113.765610 113.765621 3.42
AP70R4 h-o EA 9.2175 6.1529 113.765606 113.765606 113.765608 3.42
AP70R4 h-o PSO 9.2177 6.1530 113.765606 113.765608 113.765617 3.42
AP70R4 h-50 SA 9.0032 6.3085 110.397544 110.397548 110.397559 0.36
AP70R4 h-50 EA 9.0030 6.3078 110.397543 110.397547 110.397577 0.36
AP70R4 h-50 PSO 9.0031 6.3077 110.397543 110.397544 110.397547 0.36
AP70R4 h-25 SA 8.9318 6.3179 110.053443 110.053446 110.053455 0.04
AP70R4 h-25 EA 8.9317 6.3179 110.053443 110.053443 110.053444 0.04
AP70R4 h-25 PSO 8.9318 6.3180 110.053443 110.053446 110.053453 0.04
AP70R4 l-o SA 8.9841 6.2176 112.985891 112.985896 112.985907 2.71
AP70R4 l-o EA 8.9841 6.2182 112.985891 112.985891 112.985891 2.71
AP70R4 l-o PSO 8.9840 6.2181 112.985891 112.985891 112.985891 2.71
AP70R4 l-50 SA 9.0038 6.3080 110.397544 110.397547 110.397566 0.36
AP70R4 l-50 EA 9.0030 6.3078 110.397543 110.397543 110.397544 0.36
AP70R4 l-50 PSO 9.0029 6.3075 110.397543 110.397547 110.397579 0.36
AP70R4 l-25 SA 8.9317 6.3190 110.053444 110.053447 110.053461 0.04
AP70R4 l-25 EA 8.9317 6.3179 110.053443 110.053443 110.053445 0.04
AP70R4 l-25 PSO 8.9316 6.3179 110.053443 110.053444 110.053446 0.04
AP70R4 FR-o SA 8.9132 6.3561 110.006837 110.006840 110.006845 0.00
AP70R4 FR-o EA 8.9127 6.3554 110.006837 110.006837 110.006837 0.00
AP70R4 FR-o PSO 8.9129 6.3554 110.006837 110.006839 110.006845 0.00
AP70R4 FR-50 SA 8.9132 6.3553 110.006837 110.006842 110.006863 0.00
AP70R4 FR-50 EA 8.9128 6.3554 110.006837 110.006837 110.006837 0.00
AP70R4 FR-50 PSO 8.9129 6.3551 110.006837 110.006837 110.006837 0.00
AP70R4 FR-25 SA 8.9128 6.3564 110.006837 110.006844 110.006857 0.00
AP70R4 FR-25 EA 8.9127 6.3554 110.006837 110.006838 110.006840 0.00
AP70R4 FR-25 PSO 8.9123 6.3554 110.006837 110.006838 110.006840 0.00
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Table A.7: Solution results for AP70R2

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

AP70R2 O SA 9.0373 6.1138 111.688863 111.688867 111.688880 1.53
AP70R2 O EA 9.0372 6.1150 111.688862 111.688866 111.688901 1.53
AP70R2 O PSO 9.0370 6.1147 111.688862 111.688868 111.688912 1.53
AP70R2 BR-50 SA 8.9584 6.2468 110.276942 110.276945 110.276950 0.25
AP70R2 BR-50 EA 8.9585 6.2465 110.276942 110.276945 110.276970 0.25
AP70R2 BR-50 PSO 8.9587 6.2465 110.276942 110.276958 110.277067 0.25
AP70R2 BR-25 SA 8.9284 6.3125 110.052979 110.052982 110.052989 0.04
AP70R2 BR-25 EA 8.9289 6.3132 110.052978 110.052978 110.052980 0.04
AP70R2 BR-25 PSO 8.9291 6.3131 110.052978 110.052981 110.052995 0.04
AP70R2 h-o SA 9.0374 6.1144 111.688863 111.688867 111.688871 1.53
AP70R2 h-o EA 9.0373 6.1148 111.688862 111.688862 111.688864 1.53
AP70R2 h-o PSO 9.0372 6.1151 111.688862 111.688876 111.688976 1.53
AP70R2 h-50 SA 8.9584 6.2470 110.276942 110.276946 110.276967 0.25
AP70R2 h-50 EA 8.9584 6.2465 110.276942 110.277076 110.278257 0.25
AP70R2 h-50 PSO 8.9584 6.2465 110.276942 110.276942 110.276944 0.25
AP70R2 h-25 SA 8.9289 6.3142 110.052979 110.052984 110.053008 0.04
AP70R2 h-25 EA 8.9290 6.3130 110.052978 110.052979 110.052981 0.04
AP70R2 h-25 PSO 8.9289 6.3131 110.052978 110.052986 110.053023 0.04
AP70R2 l-o SA 9.0370 6.1146 111.688863 111.688868 111.688878 1.53
AP70R2 l-o EA 9.0372 6.1150 111.688862 111.688865 111.688884 1.53
AP70R2 l-o PSO 9.0373 6.1147 111.688862 111.688863 111.688865 1.53
AP70R2 l-50 SA 8.9588 6.2467 110.276942 110.276945 110.276948 0.25
AP70R2 l-50 EA 8.9585 6.2466 110.276942 110.276943 110.276946 0.25
AP70R2 l-50 PSO 8.9584 6.2464 110.276942 110.276951 110.277008 0.25
AP70R2 l-25 SA 8.9290 6.3136 110.052979 110.052984 110.052997 0.04
AP70R2 l-25 EA 8.9290 6.3130 110.052978 110.052981 110.053004 0.04
AP70R2 l-25 PSO 8.9291 6.3130 110.052978 110.052981 110.052996 0.04
AP70R2 FR-o SA 8.9130 6.3554 110.006837 110.006840 110.006860 0.00
AP70R2 FR-o EA 8.9127 6.3554 110.006837 110.006837 110.006838 0.00
AP70R2 FR-o PSO 8.9127 6.3555 110.006837 110.006838 110.006840 0.00
AP70R2 FR-50 SA 8.9133 6.3549 110.006837 110.006848 110.006924 0.00
AP70R2 FR-50 EA 8.9127 6.3553 110.006837 110.006838 110.006844 0.00
AP70R2 FR-50 PSO 8.9128 6.3555 110.006837 110.006845 110.006882 0.00
AP70R2 FR-25 SA 8.9126 6.3555 110.006837 110.006843 110.006863 0.00
AP70R2 FR-25 EA 8.9125 6.3558 110.006837 110.006839 110.006850 0.00
AP70R2 FR-25 PSO 8.9129 6.3553 110.006837 110.006839 110.006856 0.00
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Table A.8: Solution results for BC13

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

BC13 O SA 6.8562 6.1434 29.838055 29.838057 29.838063 13.67
BC13 O EA 6.8582 6.1442 29.838055 29.839717 29.849380 13.68
BC13 O PSO 6.8568 6.1433 29.838055 29.838095 29.838312 13.67
BC13 BR-50 SA 6.5494 6.9584 26.476606 26.476607 26.476614 0.87
BC13 BR-50 EA 6.5504 6.9589 26.476606 26.476802 26.478317 0.87
BC13 BR-50 PSO 6.5515 6.9585 26.476606 26.476629 26.476715 0.87
BC13 BR-25 SA 6.7194 7.0986 26.249339 26.249340 26.249344 0.00
BC13 BR-25 EA 6.7186 7.0988 26.249339 26.249824 26.252510 0.00
BC13 BR-25 PSO 6.7183 7.0977 26.249339 26.249349 26.249377 0.00
BC13 h-o SA 6.8556 6.1414 29.838055 29.838056 29.838058 13.67
BC13 h-o EA 6.8571 6.1416 29.838055 29.838097 29.838429 13.67
BC13 h-o PSO 6.8576 6.1448 29.838055 29.838077 29.838154 13.67
BC13 h-50 SA 6.5520 6.9579 26.476606 26.476606 26.476610 0.87
BC13 h-50 EA 6.5506 6.9588 26.476606 26.476618 26.476649 0.87
BC13 h-50 PSO 6.5514 6.9615 26.476608 26.476653 26.476877 0.87
BC13 h-25 SA 6.7202 7.0988 26.249339 26.249339 26.249340 0.00
BC13 h-25 EA 6.7184 7.0986 26.249339 26.249507 26.250521 0.00
BC13 h-25 PSO 6.7182 7.0967 26.249339 26.249354 26.249382 0.00
BC13 l-o SA 6.8578 6.1441 29.838055 29.838057 29.838064 13.67
BC13 l-o EA 6.8565 6.1402 29.838056 29.838888 29.843626 13.67
BC13 l-o PSO 6.8570 6.1445 29.838055 29.838068 29.838116 13.67
BC13 l-50 SA 6.5520 6.9585 26.476606 26.476607 26.476609 0.87
BC13 l-50 EA 6.5517 6.9634 26.476612 26.476930 26.477862 0.87
BC13 l-50 PSO 6.5508 6.9580 26.476606 26.476616 26.476668 0.87
BC13 l-25 SA 6.7167 7.0984 26.249339 26.249340 26.249342 0.00
BC13 l-25 EA 6.7192 7.1000 26.249339 26.249734 26.252192 0.00
BC13 l-25 PSO 6.7204 7.0996 26.249339 26.249368 26.249522 0.00
BC13 FR-o SA 6.7188 7.0988 26.249339 26.249339 26.249341 0.00
BC13 FR-o EA 6.7183 7.0986 26.249339 26.249541 26.250829 0.00
BC13 FR-o PSO 6.7200 7.0984 26.249339 26.249353 26.249429 0.00
BC13 FR-50 SA 6.7183 7.0995 26.249339 26.249339 26.249341 0.00
BC13 FR-50 EA 6.7177 7.0984 26.249339 26.251620 26.267642 0.01
BC13 FR-50 PSO 6.7165 7.0966 26.249339 26.249362 26.249479 0.00
BC13 FR-25 SA 6.7192 7.0988 26.249339 26.249339 26.249339 0.00
BC13 FR-25 EA 6.7183 7.0986 26.249339 26.249419 26.249928 0.00
BC13 FR-25 PSO 6.7166 7.0987 26.249339 26.249341 26.249352 0.00
BC13 U SA 6.7166 7.0984 26.249339 26.249339 26.249342 0.00
BC13 U EA 6.5527 7.5336 26.308552 26.330397 26.335858 0.31
BC13 U PSO 6.7159 7.0918 26.249347 26.252119 26.253307 0.01
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Table A.9: Solution results for D26

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U
D26 O SA 30.9262 25.9467 29.102174 29.102175 29.102177 1.05
D26 O EA 30.9270 25.9468 29.102174 29.102175 29.102188 1.05
D26 O PSO 30.9320 25.9459 29.102174 29.102175 29.102177 1.05
D26 BR-50 SA 32.0137 26.0330 28.830820 28.830821 28.830822 0.11
D26 BR-50 EA 32.0114 26.0337 28.830820 28.830848 28.831097 0.11
D26 BR-50 PSO 32.0098 26.0325 28.830820 28.830820 28.830822 0.11
D26 BR-25 SA 32.1565 25.8831 28.803781 28.803782 28.803784 0.01
D26 BR-25 EA 32.1634 25.8889 28.803781 28.803790 28.803866 0.01
D26 BR-25 PSO 32.1628 25.8839 28.803781 28.803782 28.803785 0.01
D26 h-o SA 30.9312 25.9425 29.102174 29.102175 29.102180 1.05
D26 h-o EA 30.9270 25.9467 29.102174 29.102175 29.102180 1.05
D26 h-o PSO 30.9279 25.9483 29.102174 29.102177 29.102200 1.05
D26 h-50 SA 32.0108 26.0358 28.830820 28.830820 28.830821 0.11
D26 h-50 EA 32.0101 26.0339 28.830820 28.830820 28.830822 0.11
D26 h-50 PSO 32.0060 26.0367 28.830820 28.830822 28.830827 0.11
D26 h-25 SA 32.1597 25.8871 28.803781 28.803782 28.803784 0.01
D26 h-25 EA 32.1600 25.8848 28.803781 28.803785 28.803808 0.01
D26 h-25 PSO 32.1588 25.8857 28.803781 28.803783 28.803786 0.01
D26 l-o SA 31.4376 25.9885 29.065096 29.065098 29.065107 0.92
D26 l-o EA 31.4351 25.9867 29.065096 29.065097 29.065102 0.92
D26 l-o PSO 31.4366 25.9904 29.065096 29.065100 29.065130 0.92
D26 l-50 SA 32.0120 26.0334 28.830820 28.830821 28.830825 0.11
D26 l-50 EA 32.0089 26.0323 28.830820 28.830821 28.830831 0.11
D26 l-50 PSO 32.0184 26.0308 28.830820 28.830821 28.830823 0.11
D26 l-25 SA 32.1624 25.8869 28.803781 28.803781 28.803782 0.01
D26 l-25 EA 32.1600 25.8841 28.803781 28.803783 28.803798 0.01
D26 l-25 PSO 32.1601 25.8850 28.803781 28.803787 28.803820 0.01
D26 FR-o SA 32.0712 25.7754 28.800501 28.800503 28.800513 0.00
D26 FR-o EA 32.0739 25.7737 28.800501 28.800503 28.800515 0.00
D26 FR-o PSO 32.0792 25.7687 28.800501 28.800504 28.800522 0.00
D26 FR-50 SA 32.0741 25.7776 28.800501 28.800501 28.800502 0.00
D26 FR-50 EA 32.0747 25.7738 28.800501 28.800501 28.800502 0.00
D26 FR-50 PSO 32.0740 25.7811 28.800501 28.800501 28.800504 0.00
D26 FR-25 SA 32.0750 25.7716 28.800501 28.800502 28.800504 0.00
D26 FR-25 EA 32.0745 25.7738 28.800501 28.800502 28.800505 0.00
D26 FR-25 PSO 32.0727 25.7771 28.800501 28.800505 28.800528 0.00
D26 U SA 32.0732 25.7758 28.800501 28.800501 28.800503 0.00
D26 U EA 31.9060 25.9517 28.801154 28.804356 28.809158 0.01
D26 U PSO 32.1248 26.0313 28.801072 28.801632 28.801907 0.00

76



Table A.10: Solution results for KC5c16 and KC5U

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5c16 O SA -1.2017 2.0770 48.281797 48.281798 48.281802 1.93
KC5c16 O EA -1.2016 2.0777 48.281797 48.281800 48.281812 1.93
KC5c16 O PSO -1.2016 2.0775 48.281797 48.281799 48.281806 1.93
KC5c16 BR-50 SA -0.7087 1.0949 47.533282 47.533286 47.533300 0.35
KC5c16 BR-50 EA -0.7097 1.0940 47.533281 47.533330 47.533575 0.35
KC5c16 BR-50 PSO -0.7098 1.0941 47.533281 47.533282 47.533285 0.35
KC5c16 BR-25 SA -0.3951 0.5717 47.387318 47.387321 47.387323 0.04
KC5c16 BR-25 EA -0.3949 0.5721 47.387318 47.387425 47.388022 0.04
KC5c16 BR-25 PSO -0.3952 0.5714 47.387318 47.387323 47.387358 0.04
KC5c16 h-o SA -1.2023 2.0785 48.281797 48.281798 48.281802 1.93
KC5c16 h-o EA -1.2016 2.0786 48.281797 48.281857 48.282107 1.93
KC5c16 h-o PSO -1.2018 2.0773 48.281797 48.281798 48.281804 1.93
KC5c16 h-50 SA -0.7096 1.0940 47.533281 47.533285 47.533299 0.35
KC5c16 h-50 EA -0.7097 1.0940 47.533281 47.533282 47.533285 0.35
KC5c16 h-50 PSO -0.7095 1.0937 47.533281 47.533284 47.533305 0.35
KC5c16 h-25 SA -0.3953 0.5720 47.387318 47.387322 47.387332 0.04
KC5c16 h-25 EA -0.3949 0.5721 47.387318 47.387360 47.387724 0.04
KC5c16 h-25 PSO -0.3951 0.5720 47.387318 47.387325 47.387347 0.04
KC5c16 l-o SA -1.2011 2.0775 48.281797 48.281798 48.281804 1.93
KC5c16 l-o EA -1.2003 2.0781 48.281797 48.281800 48.281822 1.93
KC5c16 l-o PSO -1.2011 2.0786 48.281797 48.281799 48.281803 1.93
KC5c16 l-50 SA -0.7096 1.0933 47.533282 47.533284 47.533294 0.35
KC5c16 l-50 EA -0.7097 1.0940 47.533281 47.533285 47.533310 0.35
KC5c16 l-50 PSO -0.7093 1.0942 47.533281 47.533282 47.533286 0.35
KC5c16 l-25 SA -0.3954 0.5714 47.387318 47.387320 47.387323 0.04
KC5c16 l-25 EA -0.3953 0.5720 47.387318 47.387329 47.387393 0.04
KC5c16 l-25 PSO -0.3949 0.5722 47.387318 47.387384 47.387822 0.04
KC5c16 FR-o SA 0.0936 2.0000 47.609492 47.609492 47.609492 0.51
KC5c16 FR-o EA 0.0923 2.0000 47.609492 47.609492 47.609496 0.51
KC5c16 FR-o PSO 0.0942 2.0000 47.609492 47.609492 47.609493 0.51
KC5c16 FR-50 SA -0.0193 1.0000 47.391583 47.391583 47.391583 0.05
KC5c16 FR-50 EA -0.0190 1.0000 47.391583 47.391716 47.392910 0.05
KC5c16 FR-50 PSO -0.0190 1.0000 47.391583 47.391584 47.391592 0.05
KC5c16 FR-25 SA -0.0916 0.5411 47.367374 47.367375 47.367380 0.00
KC5c16 FR-25 EA -0.0923 0.5409 47.367374 47.367933 47.372801 0.00
KC5c16 FR-25 PSO -0.0921 0.5402 47.367374 47.367418 47.367544 0.00
KC5 U SA -0.0915 0.5409 47.367374 47.367375 47.367376 0.00
KC5 U EA -0.0857 0.5384 47.367383 47.382740 47.392978 0.03
KC5 U PSO -0.0836 0.5435 47.367387 47.370764 47.371991 0.01
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Table A.11: Solution results for KC5c32

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5c32 O SA -1.1908 2.0674 48.261460 48.261462 48.261466 1.89
KC5c32 O EA -1.1909 2.0677 48.261460 48.261460 48.261461 1.89
KC5c32 O PSO -1.1909 2.0679 48.261460 48.261460 48.261461 1.89
KC5c32 BR-50 SA -0.7059 1.0840 47.527769 47.527771 47.527773 0.34
KC5c32 BR-50 EA -0.7059 1.0838 47.527769 47.527769 47.527770 0.34
KC5c32 BR-50 PSO -0.7059 1.0839 47.527769 47.527770 47.527777 0.34
KC5c32 BR-25 SA -0.3884 0.5640 47.386346 47.386353 47.386382 0.04
KC5c32 BR-25 EA -0.3883 0.5641 47.386346 47.386346 47.386347 0.04
KC5c32 BR-25 PSO -0.3885 0.5641 47.386346 47.386348 47.386365 0.04
KC5c32 h-o SA -1.1913 2.0671 48.261460 48.261463 48.261468 1.89
KC5c32 h-o EA -1.1907 2.0678 48.261460 48.261462 48.261480 1.89
KC5c32 h-o PSO -1.1909 2.0677 48.261460 48.261460 48.261462 1.89
KC5c32 h-50 SA -0.7064 1.0834 47.527769 47.527776 47.527806 0.34
KC5c32 h-50 EA -0.7061 1.0839 47.527769 47.527769 47.527771 0.34
KC5c32 h-50 PSO -0.7054 1.0836 47.527769 47.527769 47.527771 0.34
KC5c32 h-25 SA -0.3883 0.5648 47.386347 47.386366 47.386448 0.04
KC5c32 h-25 EA -0.3886 0.5642 47.386346 47.386356 47.386414 0.04
KC5c32 h-25 PSO -0.3884 0.5647 47.386346 47.386346 47.386348 0.04
KC5c32 l-o SA -1.1911 2.0677 48.261460 48.261462 48.261470 1.89
KC5c32 l-o EA -1.1909 2.0677 48.261460 48.261462 48.261482 1.89
KC5c32 l-o PSO -1.1904 2.0683 48.261460 48.261460 48.261463 1.89
KC5c32 l-50 SA -0.7063 1.0826 47.527770 47.527776 47.527795 0.34
KC5c32 l-50 EA -0.7059 1.0838 47.527769 47.527769 47.527769 0.34
KC5c32 l-50 PSO -0.7060 1.0839 47.527769 47.527769 47.527771 0.34
KC5c32 l-25 SA -0.3886 0.5641 47.386346 47.386349 47.386362 0.04
KC5c32 l-25 EA -0.3886 0.5638 47.386346 47.386349 47.386367 0.04
KC5c32 l-25 PSO -0.3886 0.5643 47.386346 47.386347 47.386351 0.04
KC5c32 FR-o SA 0.0931 2.0000 47.609492 47.609492 47.609492 0.51
KC5c32 FR-o EA 0.0934 2.0000 47.609492 47.609492 47.609492 0.51
KC5c32 FR-o PSO 0.0937 2.0000 47.609492 47.609492 47.609492 0.51
KC5c32 FR-50 SA -0.0190 1.0000 47.391583 47.391583 47.391583 0.05
KC5c32 FR-50 EA -0.0190 1.0000 47.391583 47.391583 47.391583 0.05
KC5c32 FR-50 PSO -0.0190 1.0000 47.391583 47.391583 47.391583 0.05
KC5c32 FR-25 SA -0.0920 0.5409 47.367374 47.367375 47.367376 0.00
KC5c32 FR-25 EA -0.0923 0.5408 47.367374 47.367382 47.367451 0.00
KC5c32 FR-25 PSO -0.0929 0.5408 47.367374 47.367376 47.367381 0.00
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Table A.12: Solution results for KC5c64

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5c64 O SA -1.1863 2.0634 48.256464 48.256466 48.256473 1.88
KC5c64 O EA -1.1866 2.0630 48.256464 48.256466 48.256488 1.88
KC5c64 O PSO -1.1860 2.0628 48.256464 48.256464 48.256465 1.88
KC5c64 BR-50 SA -0.7029 1.0793 47.526747 47.526751 47.526769 0.34
KC5c64 BR-50 EA -0.7038 1.0793 47.526747 47.526747 47.526747 0.34
KC5c64 BR-50 PSO -0.7037 1.0786 47.526747 47.526747 47.526748 0.34
KC5c64 BR-25 SA -0.3887 0.5627 47.386218 47.386220 47.386224 0.04
KC5c64 BR-25 EA -0.3884 0.5630 47.386218 47.386219 47.386222 0.04
KC5c64 BR-25 PSO -0.3885 0.5628 47.386218 47.386218 47.386219 0.04
KC5c64 h-o SA -1.1853 2.0637 48.256464 48.256467 48.256471 1.88
KC5c64 h-o EA -1.1860 2.0627 48.256464 48.256464 48.256464 1.88
KC5c64 h-o PSO -1.1860 2.0628 48.256464 48.256464 48.256469 1.88
KC5c64 h-50 SA -0.7039 1.0798 47.526747 47.526750 47.526756 0.34
KC5c64 h-50 EA -0.7039 1.0795 47.526747 47.526749 47.526769 0.34
KC5c64 h-50 PSO -0.7038 1.0793 47.526747 47.526747 47.526749 0.34
KC5c64 h-25 SA -0.3881 0.5641 47.386220 47.386226 47.386234 0.04
KC5c64 h-25 EA -0.3884 0.5630 47.386218 47.386219 47.386229 0.04
KC5c64 h-25 PSO -0.3884 0.5627 47.386218 47.386218 47.386219 0.04
KC5c64 l-o SA -1.1869 2.0621 48.256464 48.256467 48.256472 1.88
KC5c64 l-o EA -1.1860 2.0626 48.256464 48.256464 48.256466 1.88
KC5c64 l-o PSO -1.1860 2.0628 48.256464 48.256464 48.256464 1.88
KC5c64 l-50 SA -0.7047 1.0781 47.526748 47.526750 47.526754 0.34
KC5c64 l-50 EA -0.7038 1.0793 47.526747 47.526747 47.526747 0.34
KC5c64 l-50 PSO -0.7038 1.0793 47.526747 47.526747 47.526747 0.34
KC5c64 l-25 SA -0.3882 0.5633 47.386218 47.386223 47.386233 0.04
KC5c64 l-25 EA -0.3884 0.5630 47.386218 47.386218 47.386218 0.04
KC5c64 l-25 PSO -0.3884 0.5630 47.386218 47.386218 47.386219 0.04
KC5c64 FR-o SA 0.1860 1.9914 47.608134 47.608135 47.608136 0.51
KC5c64 FR-o EA 0.1873 1.9912 47.608134 47.608134 47.608134 0.51
KC5c64 FR-o PSO 0.1870 1.9913 47.608134 47.608134 47.608134 0.51
KC5c64 FR-50 SA -0.0187 1.0000 47.391583 47.391583 47.391583 0.05
KC5c64 FR-50 EA -0.0190 1.0000 47.391583 47.391583 47.391583 0.05
KC5c64 FR-50 PSO -0.0190 1.0000 47.391583 47.391583 47.391584 0.05
KC5c64 FR-25 SA -0.0913 0.5406 47.367374 47.367375 47.367380 0.00
KC5c64 FR-25 EA -0.0923 0.5409 47.367374 47.367374 47.367375 0.00
KC5c64 FR-25 PSO -0.0921 0.5404 47.367374 47.367374 47.367375 0.00
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Table A.13: Solution results for KC5c128

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5c128 O SA -1.1868 2.0603 48.255225 48.255228 48.255236 1.87
KC5c128 O EA -1.1864 2.0606 48.255225 48.255226 48.255235 1.87
KC5c128 O PSO -1.1863 2.0610 48.255225 48.255225 48.255226 1.87
KC5c128 BR-50 SA -0.7023 1.0794 47.526496 47.526503 47.526528 0.34
KC5c128 BR-50 EA -0.7033 1.0791 47.526495 47.526496 47.526505 0.34
KC5c128 BR-50 PSO -0.7034 1.0791 47.526495 47.526495 47.526497 0.34
KC5c128 BR-25 SA -0.3882 0.5622 47.386183 47.386192 47.386218 0.04
KC5c128 BR-25 EA -0.3883 0.5624 47.386183 47.386197 47.386310 0.04
KC5c128 BR-25 PSO -0.3879 0.5626 47.386183 47.386184 47.386189 0.04
KC5c128 h-o SA -1.1861 2.0606 48.255225 48.255227 48.255229 1.87
KC5c128 h-o EA -1.1863 2.0605 48.255225 48.255225 48.255227 1.87
KC5c128 h-o PSO -1.1868 2.0606 48.255225 48.255225 48.255225 1.87
KC5c128 h-50 SA -0.7033 1.0804 47.526496 47.526499 47.526506 0.34
KC5c128 h-50 EA -0.7035 1.0791 47.526495 47.526495 47.526496 0.34
KC5c128 h-50 PSO -0.7035 1.0791 47.526495 47.526495 47.526496 0.34
KC5c128 h-25 SA -0.3890 0.5635 47.386185 47.386191 47.386206 0.04
KC5c128 h-25 EA -0.3881 0.5622 47.386183 47.386183 47.386186 0.04
KC5c128 h-25 PSO -0.3882 0.5623 47.386183 47.386183 47.386183 0.04
KC5c128 l-o SA -1.1864 2.0615 48.255225 48.255228 48.255232 1.87
KC5c128 l-o EA -1.1865 2.0606 48.255225 48.255226 48.255234 1.87
KC5c128 l-o PSO -1.1864 2.0606 48.255225 48.255225 48.255226 1.87
KC5c128 l-50 SA -0.7040 1.0785 47.526496 47.526498 47.526500 0.34
KC5c128 l-50 EA -0.7035 1.0791 47.526495 47.526496 47.526503 0.34
KC5c128 l-50 PSO -0.7031 1.0790 47.526495 47.526495 47.526496 0.34
KC5c128 l-25 SA -0.3889 0.5625 47.386183 47.386188 47.386195 0.04
KC5c128 l-25 EA -0.3885 0.5623 47.386183 47.386183 47.386183 0.04
KC5c128 l-25 PSO -0.3882 0.5623 47.386183 47.386183 47.386184 0.04
KC5c128 FR-o SA 0.1867 1.9913 47.608134 47.608135 47.608135 0.51
KC5c128 FR-o EA 0.1865 1.9913 47.608134 47.608134 47.608134 0.51
KC5c128 FR-o PSO 0.1868 1.9913 47.608134 47.608134 47.608135 0.51
KC5c128 FR-50 SA -0.0342 0.9995 47.391572 47.391572 47.391572 0.05
KC5c128 FR-50 EA -0.0342 0.9995 47.391572 47.391572 47.391572 0.05
KC5c128 FR-50 PSO -0.0343 0.9995 47.391572 47.391572 47.391572 0.05
KC5c128 FR-25 SA -0.0920 0.5410 47.367374 47.367375 47.367378 0.00
KC5c128 FR-25 EA -0.0923 0.5408 47.367374 47.367375 47.367380 0.00
KC5c128 FR-25 PSO -0.0925 0.5400 47.367374 47.367377 47.367405 0.00
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Table A.14: Solution results for KC5c256

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5c256 O SA -1.1851 2.0607 48.254917 48.254920 48.254927 1.87
KC5c256 O EA -1.1862 2.0605 48.254917 48.254917 48.254918 1.87
KC5c256 O PSO -1.1862 2.0604 48.254917 48.254918 48.254924 1.87
KC5c256 BR-50 SA -0.7037 1.0801 47.526428 47.526431 47.526435 0.34
KC5c256 BR-50 EA -0.7033 1.0791 47.526427 47.526427 47.526427 0.34
KC5c256 BR-50 PSO -0.7033 1.0794 47.526427 47.526427 47.526427 0.34
KC5c256 BR-25 SA -0.3883 0.5628 47.386175 47.386190 47.386237 0.04
KC5c256 BR-25 EA -0.3882 0.5624 47.386175 47.386175 47.386179 0.04
KC5c256 BR-25 PSO -0.3882 0.5624 47.386175 47.386176 47.386180 0.04
KC5c256 h-o SA -1.1864 2.0601 48.254917 48.254919 48.254932 1.87
KC5c256 h-o EA -1.1862 2.0605 48.254917 48.254917 48.254918 1.87
KC5c256 h-o PSO -1.1853 2.0615 48.254917 48.254917 48.254917 1.87
KC5c256 h-50 SA -0.7023 1.0793 47.526427 47.526430 47.526440 0.34
KC5c256 h-50 EA -0.7034 1.0790 47.526427 47.526427 47.526428 0.34
KC5c256 h-50 PSO -0.7033 1.0791 47.526427 47.526428 47.526432 0.34
KC5c256 h-25 SA -0.3877 0.5622 47.386175 47.386182 47.386202 0.04
KC5c256 h-25 EA -0.3882 0.5624 47.386175 47.386175 47.386176 0.04
KC5c256 h-25 PSO -0.3881 0.5619 47.386175 47.386175 47.386176 0.04
KC5c256 l-o SA -1.1872 2.0602 48.254917 48.254921 48.254942 1.87
KC5c256 l-o EA -1.1857 2.0599 48.254917 48.254917 48.254917 1.87
KC5c256 l-o PSO -1.1861 2.0606 48.254917 48.254917 48.254918 1.87
KC5c256 l-50 SA -0.7033 1.0781 47.526427 47.526431 47.526454 0.34
KC5c256 l-50 EA -0.7033 1.0791 47.526427 47.526427 47.526428 0.34
KC5c256 l-50 PSO -0.7034 1.0788 47.526427 47.526427 47.526429 0.34
KC5c256 l-25 SA -0.3879 0.5626 47.386175 47.386181 47.386224 0.04
KC5c256 l-25 EA -0.3877 0.5624 47.386175 47.386175 47.386178 0.04
KC5c256 l-25 PSO -0.3882 0.5623 47.386175 47.386175 47.386175 0.04
KC5c256 FR-o SA 0.1871 1.9913 47.608134 47.608135 47.608136 0.51
KC5c256 FR-o EA 0.1867 1.9913 47.608134 47.608134 47.608134 0.51
KC5c256 FR-o PSO 0.1869 1.9913 47.608134 47.608134 47.608134 0.51
KC5c256 FR-50 SA -0.0269 0.9996 47.391556 47.391556 47.391556 0.05
KC5c256 FR-50 EA -0.0265 0.9997 47.391556 47.391556 47.391556 0.05
KC5c256 FR-50 PSO -0.0266 0.9997 47.391556 47.391556 47.391556 0.05
KC5c256 FR-25 SA -0.0923 0.5405 47.367374 47.367376 47.367382 0.00
KC5c256 FR-25 EA -0.0932 0.5406 47.367374 47.367374 47.367376 0.00
KC5c256 FR-25 PSO -0.0921 0.5412 47.367374 47.367374 47.367375 0.00
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Table A.15: Solution results for KC5c512

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5c512 O SA -1.1862 2.0603 48.254840 48.254842 48.254845 1.87
KC5c512 O EA -1.1861 2.0605 48.254840 48.254841 48.254848 1.87
KC5c512 O PSO -1.1860 2.0604 48.254840 48.254840 48.254840 1.87
KC5c512 BR-50 SA -0.7037 1.0786 47.526405 47.526409 47.526419 0.34
KC5c512 BR-50 EA -0.7033 1.0790 47.526405 47.526407 47.526419 0.34
KC5c512 BR-50 PSO -0.7033 1.0790 47.526405 47.526405 47.526406 0.34
KC5c512 BR-25 SA -0.3882 0.5621 47.386173 47.386180 47.386199 0.04
KC5c512 BR-25 EA -0.3881 0.5624 47.386173 47.386307 47.387515 0.04
KC5c512 BR-25 PSO -0.3876 0.5629 47.386173 47.386173 47.386175 0.04
KC5c512 h-o SA -1.1853 2.0617 48.254841 48.254845 48.254864 1.87
KC5c512 h-o EA -1.1857 2.0604 48.254840 48.254840 48.254843 1.87
KC5c512 h-o PSO -1.1861 2.0605 48.254840 48.254840 48.254842 1.87
KC5c512 h-50 SA -0.7032 1.0790 47.526405 47.526409 47.526417 0.34
KC5c512 h-50 EA -0.7034 1.0789 47.526405 47.526405 47.526406 0.34
KC5c512 h-50 PSO -0.7038 1.0790 47.526405 47.526406 47.526408 0.34
KC5c512 h-25 SA -0.3888 0.5623 47.386173 47.386178 47.386195 0.04
KC5c512 h-25 EA -0.3882 0.5624 47.386173 47.386189 47.386327 0.04
KC5c512 h-25 PSO -0.3883 0.5619 47.386173 47.386173 47.386176 0.04
KC5c512 l-o SA -0.3143 2.1216 47.987851 47.987854 47.987864 1.31
KC5c512 l-o EA -0.3145 2.1217 47.987851 47.987852 47.987860 1.31
KC5c512 l-o PSO -0.3145 2.1216 47.987851 47.987851 47.987851 1.31
KC5c512 l-50 SA -0.7030 1.0793 47.526405 47.526407 47.526412 0.34
KC5c512 l-50 EA -0.7033 1.0790 47.526405 47.526407 47.526416 0.34
KC5c512 l-50 PSO -0.7035 1.0789 47.526405 47.526405 47.526406 0.34
KC5c512 l-25 SA -0.3887 0.5624 47.386173 47.386178 47.386191 0.04
KC5c512 l-25 EA -0.3874 0.5620 47.386173 47.386174 47.386183 0.04
KC5c512 l-25 PSO -0.3880 0.5624 47.386173 47.386173 47.386174 0.04
KC5c512 FR-o SA 0.1753 1.9923 47.608123 47.608123 47.608124 0.51
KC5c512 FR-o EA 0.0389 1.9542 47.595094 47.606820 47.608124 0.51
KC5c512 FR-o PSO 0.1753 1.9923 47.608123 47.608124 47.608128 0.51
KC5c512 FR-50 SA -0.0265 0.9996 47.391551 47.391551 47.391551 0.05
KC5c512 FR-50 EA -0.0265 0.9996 47.391550 47.391550 47.391551 0.05
KC5c512 FR-50 PSO -0.0266 0.9996 47.391550 47.391551 47.391551 0.05
KC5c512 FR-25 SA -0.0915 0.5404 47.367374 47.367375 47.367379 0.00
KC5c512 FR-25 EA -0.0923 0.5408 47.367374 47.367378 47.367398 0.00
KC5c512 FR-25 PSO -0.0925 0.5402 47.367374 47.367375 47.367381 0.00
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Table A.16: Solution results for KC5i16

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5i16 O SA -1.1813 2.0577 48.241865 48.241866 48.241869 1.85
KC5i16 O EA -1.1814 2.0576 48.241865 48.241913 48.242140 1.85
KC5i16 O PSO -1.1813 2.0586 48.241865 48.241865 48.241866 1.85
KC5i16 BR-50 SA -0.7020 1.0740 47.522416 47.522421 47.522444 0.33
KC5i16 BR-50 EA -0.7020 1.0742 47.522416 47.522418 47.522425 0.33
KC5i16 BR-50 PSO -0.7022 1.0734 47.522416 47.522417 47.522424 0.33
KC5i16 BR-25 SA -0.3829 0.5568 47.385427 47.385432 47.385450 0.04
KC5i16 BR-25 EA -0.3822 0.5563 47.385426 47.385456 47.385644 0.04
KC5i16 BR-25 PSO -0.3823 0.5564 47.385426 47.385442 47.385474 0.04
KC5i16 h-o SA -1.1808 2.0583 48.241865 48.241866 48.241867 1.85
KC5i16 h-o EA -1.1813 2.0579 48.241865 48.241872 48.241901 1.85
KC5i16 h-o PSO -1.1811 2.0590 48.241865 48.241867 48.241881 1.85
KC5i16 h-50 SA -0.7031 1.0730 47.522416 47.522426 47.522475 0.33
KC5i16 h-50 EA -0.7020 1.0737 47.522416 47.522421 47.522440 0.33
KC5i16 h-50 PSO -0.7017 1.0739 47.522416 47.522418 47.522425 0.33
KC5i16 h-25 SA -0.3823 0.5571 47.385427 47.385433 47.385443 0.04
KC5i16 h-25 EA -0.3821 0.5564 47.385426 47.385566 47.386564 0.04
KC5i16 h-25 PSO -0.3821 0.5563 47.385426 47.385436 47.385476 0.04
KC5i16 l-o SA -1.1820 2.0579 48.241865 48.241868 48.241874 1.85
KC5i16 l-o EA -1.1814 2.0578 48.241865 48.241893 48.242142 1.85
KC5i16 l-o PSO -1.1814 2.0578 48.241865 48.241866 48.241874 1.85
KC5i16 l-50 SA -0.7029 1.0735 47.522416 47.522422 47.522432 0.33
KC5i16 l-50 EA -0.7024 1.0734 47.522416 47.522433 47.522575 0.33
KC5i16 l-50 PSO -0.7019 1.0734 47.522416 47.522424 47.522467 0.33
KC5i16 l-25 SA -0.3821 0.5566 47.385427 47.385432 47.385443 0.04
KC5i16 l-25 EA -0.3822 0.5563 47.385426 47.385496 47.386091 0.04
KC5i16 l-25 PSO -0.3825 0.5562 47.385427 47.385432 47.385456 0.04
KC5i16 FR-o SA 0.2724 1.9458 47.597710 47.597711 47.597711 0.49
KC5i16 FR-o EA 0.2717 1.9460 47.597710 47.597712 47.597716 0.49
KC5i16 FR-o PSO 0.2720 1.9459 47.597710 47.597710 47.597711 0.49
KC5i16 FR-50 SA -0.0823 0.9836 47.390527 47.390527 47.390528 0.05
KC5i16 FR-50 EA -0.0818 0.9837 47.390527 47.390528 47.390536 0.05
KC5i16 FR-50 PSO -0.0821 0.9837 47.390527 47.390528 47.390530 0.05
KC5i16 FR-25 SA -0.0924 0.5407 47.367374 47.367376 47.367378 0.00
KC5i16 FR-25 EA -0.0933 0.5401 47.367374 47.367376 47.367382 0.00
KC5i16 FR-25 PSO -0.0929 0.5417 47.367374 47.367378 47.367401 0.00
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Table A.17: Solution results for KC5i32

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5i32 O SA -1.1808 2.0579 48.251504 48.251506 48.251513 1.87
KC5i32 O EA -1.1810 2.0580 48.251504 48.251504 48.251505 1.87
KC5i32 O PSO -1.1812 2.0579 48.251504 48.251504 48.251506 1.87
KC5i32 BR-50 SA -0.7018 1.0753 47.525732 47.525735 47.525743 0.33
KC5i32 BR-50 EA -0.7016 1.0748 47.525732 47.525732 47.525732 0.33
KC5i32 BR-50 PSO -0.7016 1.0748 47.525732 47.525732 47.525734 0.33
KC5i32 BR-25 SA -0.3877 0.5614 47.386093 47.386096 47.386102 0.04
KC5i32 BR-25 EA -0.3878 0.5617 47.386092 47.386097 47.386116 0.04
KC5i32 BR-25 PSO -0.3881 0.5618 47.386092 47.386093 47.386096 0.04
KC5i32 h-o SA -1.1810 2.0575 48.251504 48.251507 48.251516 1.87
KC5i32 h-o EA -1.1813 2.0579 48.251504 48.251505 48.251509 1.87
KC5i32 h-o PSO -1.1815 2.0582 48.251504 48.251504 48.251505 1.87
KC5i32 h-50 SA -0.7023 1.0735 47.525733 47.525741 47.525788 0.33
KC5i32 h-50 EA -0.7016 1.0748 47.525732 47.525737 47.525772 0.33
KC5i32 h-50 PSO -0.7018 1.0751 47.525732 47.525732 47.525732 0.33
KC5i32 h-25 SA -0.3884 0.5613 47.386092 47.386098 47.386120 0.04
KC5i32 h-25 EA -0.3882 0.5617 47.386092 47.386094 47.386112 0.04
KC5i32 h-25 PSO -0.3883 0.5621 47.386092 47.386092 47.386094 0.04
KC5i32 l-o SA -1.1810 2.0575 48.251504 48.251506 48.251513 1.87
KC5i32 l-o EA -1.1813 2.0579 48.251504 48.251505 48.251509 1.87
KC5i32 l-o PSO -1.1811 2.0578 48.251504 48.251504 48.251505 1.87
KC5i32 l-50 SA -0.7019 1.0743 47.525732 47.525734 47.525737 0.33
KC5i32 l-50 EA -0.7016 1.0748 47.525732 47.525734 47.525747 0.33
KC5i32 l-50 PSO -0.7016 1.0749 47.525732 47.525732 47.525732 0.33
KC5i32 l-25 SA -0.3880 0.5619 47.386092 47.386098 47.386106 0.04
KC5i32 l-25 EA -0.3882 0.5617 47.386092 47.386093 47.386096 0.04
KC5i32 l-25 PSO -0.3881 0.5621 47.386092 47.386092 47.386093 0.04
KC5i32 FR-o SA 0.1860 1.9817 47.605008 47.605008 47.605008 0.50
KC5i32 FR-o EA 0.1855 1.9817 47.605008 47.605008 47.605008 0.50
KC5i32 FR-o PSO 0.1853 1.9818 47.605008 47.605008 47.605008 0.50
KC5i32 FR-50 SA -0.0503 0.9950 47.391225 47.391225 47.391225 0.05
KC5i32 FR-50 EA -0.0499 0.9951 47.391225 47.391225 47.391225 0.05
KC5i32 FR-50 PSO -0.0501 0.9951 47.391225 47.391225 47.391225 0.05
KC5i32 FR-25 SA -0.0920 0.5397 47.367374 47.367375 47.367379 0.00
KC5i32 FR-25 EA -0.0925 0.5409 47.367374 47.367374 47.367376 0.00
KC5i32 FR-25 PSO -0.0924 0.5410 47.367374 47.367375 47.367377 0.00
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Table A.18: Solution results for KC5i64

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5i64 O SA -1.1853 2.0814 48.254236 48.265124 48.291410 1.90
KC5i64 O EA -1.1869 2.0584 48.253988 48.253988 48.253990 1.87
KC5i64 O PSO -1.1869 2.0583 48.253988 48.253988 48.253989 1.87
KC5i64 BR-50 SA -0.7032 1.0790 47.526240 47.526244 47.526254 0.34
KC5i64 BR-50 EA -0.7031 1.0790 47.526240 47.526240 47.526240 0.34
KC5i64 BR-50 PSO -0.7026 1.0791 47.526240 47.526240 47.526241 0.34
KC5i64 BR-25 SA -0.3886 0.5617 47.386147 47.386154 47.386167 0.04
KC5i64 BR-25 EA -0.3882 0.5618 47.386147 47.386147 47.386149 0.04
KC5i64 BR-25 PSO -0.3881 0.5618 47.386147 47.386148 47.386150 0.04
KC5i64 h-o SA -1.1868 2.0591 48.253988 48.253989 48.253993 1.87
KC5i64 h-o EA -1.1869 2.0584 48.253988 48.253988 48.253992 1.87
KC5i64 h-o PSO -1.1863 2.0593 48.253988 48.253988 48.253989 1.87
KC5i64 h-50 SA -0.8389 0.5433 47.475875 47.521205 47.526245 0.32
KC5i64 h-50 EA -0.7032 1.0789 47.526240 47.526240 47.526240 0.34
KC5i64 h-50 PSO -0.7032 1.0789 47.526240 47.526240 47.526240 0.34
KC5i64 h-25 SA -0.3880 0.5620 47.386147 47.386151 47.386160 0.04
KC5i64 h-25 EA -0.3882 0.5618 47.386147 47.386148 47.386155 0.04
KC5i64 h-25 PSO -0.3877 0.5620 47.386147 47.386147 47.386149 0.04
KC5i64 l-o SA -0.3149 2.1207 48.137397 48.137399 48.137404 1.63
KC5i64 l-o EA -0.3144 2.1209 48.137397 48.137400 48.137424 1.63
KC5i64 l-o PSO -0.3146 2.1209 48.137397 48.137397 48.137399 1.63
KC5i64 l-50 SA -0.7028 1.0785 47.526240 47.526244 47.526252 0.34
KC5i64 l-50 EA -0.7031 1.0790 47.526240 47.526240 47.526240 0.34
KC5i64 l-50 PSO -0.7031 1.0790 47.526240 47.526241 47.526249 0.34
KC5i64 l-25 SA -0.3889 0.5610 47.386148 47.386155 47.386174 0.04
KC5i64 l-25 EA -0.3883 0.5617 47.386147 47.386147 47.386149 0.04
KC5i64 l-25 PSO -0.3876 0.5622 47.386147 47.386147 47.386147 0.04
KC5i64 FR-o SA 0.1399 1.9931 47.607613 47.607613 47.607613 0.51
KC5i64 FR-o EA 0.1401 1.9931 47.607613 47.607613 47.607614 0.51
KC5i64 FR-o PSO 0.1401 1.9931 47.607613 47.607613 47.607613 0.51
KC5i64 FR-50 SA -0.0349 0.9983 47.391445 47.391445 47.391446 0.05
KC5i64 FR-50 EA -0.0344 0.9983 47.391445 47.391445 47.391445 0.05
KC5i64 FR-50 PSO -0.0343 0.9983 47.391445 47.391445 47.391445 0.05
KC5i64 FR-25 SA -0.0926 0.5409 47.367374 47.367375 47.367376 0.00
KC5i64 FR-25 EA -0.0923 0.5408 47.367374 47.367374 47.367377 0.00
KC5i64 FR-25 PSO -0.0917 0.5408 47.367374 47.367374 47.367376 0.00

85



Table A.19: Solution results for KC5i128

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5i128 O SA -1.1869 2.0599 48.254609 48.254610 48.254613 1.87
KC5i128 O EA -1.1859 2.0605 48.254609 48.254609 48.254609 1.87
KC5i128 O PSO -1.1857 2.0608 48.254609 48.254610 48.254618 1.87
KC5i128 BR-50 SA -0.7039 1.0779 47.526359 47.526363 47.526383 0.34
KC5i128 BR-50 EA -0.7030 1.0791 47.526359 47.526360 47.526363 0.34
KC5i128 BR-50 PSO -0.7031 1.0790 47.526359 47.526359 47.526359 0.34
KC5i128 BR-25 SA -0.3879 0.5617 47.386167 47.386178 47.386219 0.04
KC5i128 BR-25 EA -0.3881 0.5623 47.386166 47.386168 47.386187 0.04
KC5i128 BR-25 PSO -0.3884 0.5624 47.386166 47.386166 47.386167 0.04
KC5i128 h-o SA -1.1659 2.0452 48.255003 48.267001 48.288779 1.90
KC5i128 h-o EA -1.1859 2.0605 48.254609 48.254609 48.254610 1.87
KC5i128 h-o PSO -1.1855 2.0613 48.254609 48.254609 48.254609 1.87
KC5i128 h-50 SA -0.7035 1.0797 47.526359 47.526361 47.526363 0.34
KC5i128 h-50 EA -0.7031 1.0790 47.526359 47.526359 47.526361 0.34
KC5i128 h-50 PSO -0.7031 1.0790 47.526359 47.526359 47.526360 0.34
KC5i128 h-25 SA -0.3887 0.5625 47.386167 47.386169 47.386174 0.04
KC5i128 h-25 EA -0.3881 0.5623 47.386166 47.386166 47.386166 0.04
KC5i128 h-25 PSO -0.3879 0.5621 47.386166 47.386167 47.386170 0.04
KC5i128 l-o SA -1.1860 2.0600 48.254609 48.254611 48.254623 1.87
KC5i128 l-o EA -1.1859 2.0605 48.254609 48.254609 48.254612 1.87
KC5i128 l-o PSO -1.1859 2.0607 48.254609 48.254609 48.254610 1.87
KC5i128 l-50 SA -0.7020 1.0797 47.526359 47.526360 47.526361 0.34
KC5i128 l-50 EA -0.7031 1.0790 47.526359 47.526359 47.526360 0.34
KC5i128 l-50 PSO -0.7030 1.0786 47.526359 47.526359 47.526359 0.34
KC5i128 l-25 SA -0.3878 0.5621 47.386166 47.386170 47.386176 0.04
KC5i128 l-25 EA -0.3881 0.5623 47.386166 47.386166 47.386167 0.04
KC5i128 l-25 PSO -0.3881 0.5623 47.386166 47.386167 47.386174 0.04
KC5i128 FR-o SA 0.1635 1.9928 47.607967 47.607968 47.607968 0.51
KC5i128 FR-o EA 0.1636 1.9928 47.607967 47.607967 47.607968 0.51
KC5i128 FR-o PSO 0.1635 1.9928 47.607967 47.607967 47.607967 0.51
KC5i128 FR-50 SA -0.0272 0.9993 47.391524 47.391524 47.391524 0.05
KC5i128 FR-50 EA -0.0266 0.9993 47.391524 47.391524 47.391524 0.05
KC5i128 FR-50 PSO -0.0266 0.9994 47.391524 47.391524 47.391524 0.05
KC5i128 FR-25 SA -0.0928 0.5396 47.367374 47.367375 47.367377 0.00
KC5i128 FR-25 EA -0.0923 0.5408 47.367374 47.367385 47.367478 0.00
KC5i128 FR-25 PSO -0.0921 0.5422 47.367374 47.367374 47.367375 0.00
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Table A.20: Solution results for KC5i256

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5i256 O SA -1.1855 2.0607 48.254764 48.254765 48.254766 1.87
KC5i256 O EA -1.1869 2.0597 48.254764 48.254764 48.254764 1.87
KC5i256 O PSO -1.1860 2.0604 48.254764 48.254764 48.254764 1.87
KC5i256 BR-50 SA -0.7026 1.0796 47.526394 47.526398 47.526412 0.34
KC5i256 BR-50 EA -0.7032 1.0790 47.526394 47.526396 47.526413 0.34
KC5i256 BR-50 PSO -0.7034 1.0790 47.526394 47.526394 47.526395 0.34
KC5i256 BR-25 SA -0.3884 0.5616 47.386173 47.386180 47.386198 0.04
KC5i256 BR-25 EA -0.3886 0.5624 47.386173 47.386185 47.386294 0.04
KC5i256 BR-25 PSO -0.3886 0.5622 47.386173 47.386175 47.386183 0.04
KC5i256 h-o SA -1.1866 2.0603 48.254764 48.254766 48.254767 1.87
KC5i256 h-o EA -1.1859 2.0605 48.254764 48.254764 48.254764 1.87
KC5i256 h-o PSO -1.1859 2.0605 48.254764 48.254764 48.254764 1.87
KC5i256 h-50 SA -0.7030 1.0783 47.526394 47.526397 47.526400 0.34
KC5i256 h-50 EA -0.7032 1.0790 47.526394 47.526394 47.526394 0.34
KC5i256 h-50 PSO -0.7035 1.0779 47.526394 47.526394 47.526394 0.34
KC5i256 h-25 SA -0.3876 0.5624 47.386173 47.386180 47.386196 0.04
KC5i256 h-25 EA -0.3882 0.5623 47.386173 47.386175 47.386184 0.04
KC5i256 h-25 PSO -0.3882 0.5623 47.386173 47.386173 47.386173 0.04
KC5i256 l-o SA -1.1851 2.0614 48.254764 48.254769 48.254795 1.87
KC5i256 l-o EA -1.1859 2.0605 48.254764 48.254764 48.254764 1.87
KC5i256 l-o PSO -1.1860 2.0605 48.254764 48.254764 48.254764 1.87
KC5i256 l-50 SA -0.7043 1.0789 47.526394 47.526399 47.526406 0.34
KC5i256 l-50 EA -0.7033 1.0790 47.526394 47.526394 47.526396 0.34
KC5i256 l-50 PSO -0.7034 1.0788 47.526394 47.526394 47.526394 0.34
KC5i256 l-25 SA -0.3883 0.5626 47.386173 47.386180 47.386194 0.04
KC5i256 l-25 EA -0.3882 0.5623 47.386173 47.386175 47.386195 0.04
KC5i256 l-25 PSO -0.3882 0.5623 47.386173 47.386173 47.386173 0.04
KC5i256 FR-o SA 0.1744 1.9922 47.608074 47.608074 47.608075 0.51
KC5i256 FR-o EA 0.1751 1.9922 47.608074 47.608074 47.608075 0.51
KC5i256 FR-o PSO 0.1755 1.9921 47.608074 47.608074 47.608074 0.51
KC5i256 FR-50 SA -0.0308 0.9995 47.391551 47.391551 47.391551 0.05
KC5i256 FR-50 EA -0.0303 0.9995 47.391551 47.391551 47.391551 0.05
KC5i256 FR-50 PSO -0.0304 0.9995 47.391551 47.391551 47.391551 0.05
KC5i256 FR-25 SA -0.0923 0.5401 47.367374 47.367375 47.367376 0.00
KC5i256 FR-25 EA -0.0924 0.5408 47.367374 47.367375 47.367376 0.00
KC5i256 FR-25 PSO -0.0922 0.5407 47.367374 47.367375 47.367380 0.00
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Table A.21: Solution results for KC5i512

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC5i512 O SA -1.1859 2.0604 48.254802 48.254805 48.254812 1.87
KC5i512 O EA -1.1860 2.0605 48.254802 48.254802 48.254803 1.87
KC5i512 O PSO -1.1866 2.0600 48.254802 48.254802 48.254802 1.87
KC5i512 BR-50 SA -0.7041 1.0789 47.526399 47.526400 47.526405 0.34
KC5i512 BR-50 EA -0.7032 1.0790 47.526399 47.526402 47.526410 0.34
KC5i512 BR-50 PSO -0.7037 1.0793 47.526399 47.526400 47.526411 0.34
KC5i512 BR-25 SA -0.3881 0.5630 47.386174 47.386183 47.386208 0.04
KC5i512 BR-25 EA -0.3880 0.5624 47.386174 47.386176 47.386194 0.04
KC5i512 BR-25 PSO -0.3880 0.5623 47.386174 47.386174 47.386175 0.04
KC5i512 h-o SA -1.1851 2.0612 48.254802 48.254803 48.254807 1.87
KC5i512 h-o EA -1.1860 2.0605 48.254802 48.254802 48.254802 1.87
KC5i512 h-o PSO -1.1861 2.0605 48.254802 48.254802 48.254803 1.87
KC5i512 h-50 SA -0.7041 1.0789 47.526399 47.526402 47.526408 0.34
KC5i512 h-50 EA -0.7032 1.0790 47.526399 47.526399 47.526399 0.34
KC5i512 h-50 PSO -0.7033 1.0790 47.526399 47.526400 47.526408 0.34
KC5i512 h-25 SA -0.3881 0.5629 47.386174 47.386182 47.386197 0.04
KC5i512 h-25 EA -0.3882 0.5623 47.386174 47.386174 47.386174 0.04
KC5i512 h-25 PSO -0.3885 0.5619 47.386174 47.386174 47.386176 0.04
KC5i512 l-o SA -1.1850 2.0612 48.254802 48.254804 48.254808 1.87
KC5i512 l-o EA -1.1860 2.0605 48.254802 48.254802 48.254804 1.87
KC5i512 l-o PSO -1.1862 2.0604 48.254802 48.254802 48.254804 1.87
KC5i512 l-50 SA -0.7034 1.0792 47.526399 47.526403 47.526422 0.34
KC5i512 l-50 EA -0.7033 1.0783 47.526399 47.526399 47.526399 0.34
KC5i512 l-50 PSO -0.7033 1.0791 47.526399 47.526399 47.526399 0.34
KC5i512 l-25 SA -0.3873 0.5623 47.386175 47.386186 47.386208 0.04
KC5i512 l-25 EA -0.3882 0.5624 47.386174 47.386175 47.386188 0.04
KC5i512 l-25 PSO -0.3881 0.5621 47.386174 47.386175 47.386179 0.04
KC5i512 FR-o SA 0.1817 1.9917 47.608110 47.608110 47.608111 0.51
KC5i512 FR-o EA 0.1806 1.9918 47.608110 47.608110 47.608110 0.51
KC5i512 FR-o PSO 0.1811 1.9917 47.608110 47.608110 47.608110 0.51
KC5i512 FR-50 SA -0.0291 0.9995 47.391553 47.391553 47.391553 0.05
KC5i512 FR-50 EA -0.0292 0.9995 47.391553 47.391553 47.391553 0.05
KC5i512 FR-50 PSO -0.0292 0.9995 47.391553 47.391553 47.391554 0.05
KC5i512 FR-25 SA -0.0919 0.5411 47.367374 47.367375 47.367379 0.00
KC5i512 FR-25 EA -0.0923 0.5408 47.367374 47.367374 47.367375 0.00
KC5i512 FR-25 PSO -0.0922 0.5412 47.367374 47.367374 47.367376 0.00
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Table A.22: Solution results for KC10c16 and KC10U

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC10c16 O SA 3.3247 -0.0855 88.468917 88.468921 88.468927 5.50
KC10c16 O EA 3.3246 -0.0856 88.468917 88.468921 88.468946 5.50
KC10c16 O PSO 3.3247 -0.0852 88.468917 88.468920 88.468931 5.50
KC10c16 BR-50 SA 1.8635 -0.0327 84.691801 84.691805 84.691819 1.00
KC10c16 BR-50 EA 1.8636 -0.0328 84.691801 84.691802 84.691807 1.00
KC10c16 BR-50 PSO 1.8636 -0.0326 84.691801 84.691805 84.691818 1.00
KC10c16 BR-25 SA 0.9940 -0.0109 83.952812 83.952824 83.952870 0.11
KC10c16 BR-25 EA 0.9938 -0.0107 83.952812 83.952823 83.952904 0.11
KC10c16 BR-25 PSO 0.9939 -0.0107 83.952812 83.952816 83.952848 0.11
KC10c16 h-o SA 3.3246 -0.0842 88.468918 88.468921 88.468925 5.50
KC10c16 h-o EA 3.3247 -0.0856 88.468918 88.468924 88.468955 5.50
KC10c16 h-o PSO 3.3248 -0.0857 88.468918 88.468919 88.468925 5.50
KC10c16 h-50 SA 1.8628 -0.0336 84.691802 84.691810 84.691824 1.00
KC10c16 h-50 EA 1.8635 -0.0328 84.691801 84.691801 84.691803 1.00
KC10c16 h-50 PSO 1.8631 -0.0331 84.691801 84.691811 84.691857 1.00
KC10c16 h-25 SA 0.9938 -0.0110 83.952812 83.952818 83.952827 0.11
KC10c16 h-25 EA 0.9938 -0.0108 83.952812 83.952817 83.952854 0.11
KC10c16 h-25 PSO 0.9936 -0.0106 83.952812 83.952813 83.952819 0.11
KC10c16 l-o SA 3.2894 -0.1020 88.470573 88.480271 88.501641 5.51
KC10c16 l-o EA 3.3248 -0.0862 88.468918 88.468918 88.468919 5.50
KC10c16 l-o PSO 3.3247 -0.0849 88.468918 88.468918 88.468920 5.50
KC10c16 l-50 SA 1.8634 -0.0324 84.691801 84.691810 84.691836 1.00
KC10c16 l-50 EA 1.8635 -0.0328 84.691801 84.691802 84.691805 1.00
KC10c16 l-50 PSO 1.8638 -0.0329 84.691801 84.691801 84.691803 1.00
KC10c16 l-25 SA 0.9938 -0.0111 83.952812 83.952816 83.952822 0.11
KC10c16 l-25 EA 0.9938 -0.0108 83.952812 83.952814 83.952830 0.11
KC10c16 l-25 PSO 0.9936 -0.0111 83.952812 83.952818 83.952857 0.11
KC10c16 FR-o SA 2.3029 1.9397 85.617491 85.617492 85.617493 2.10
KC10c16 FR-o EA 2.3032 1.9394 85.617491 85.617495 85.617522 2.10
KC10c16 FR-o PSO 2.3031 1.9396 85.617490 85.617491 85.617492 2.10
KC10c16 FR-50 SA 1.3913 0.5608 84.145983 84.145983 84.145983 0.34
KC10c16 FR-50 EA 1.3912 0.5611 84.145982 84.145982 84.145983 0.34
KC10c16 FR-50 PSO 1.3912 0.5609 84.145982 84.145982 84.145983 0.34
KC10c16 FR-25 SA 0.7500 0.0630 83.873630 83.873631 83.873631 0.02
KC10c16 FR-25 EA 0.7500 0.0632 83.873630 83.873664 83.873972 0.02
KC10c16 FR-25 PSO 0.7500 0.0633 83.873630 83.873630 83.873632 0.02
KC10 U SA 0.5260 0.0197 83.856913 83.856915 83.856924 0.00
KC10 U EA 0.5159 0.0105 83.856962 83.866423 83.914454 0.01
KC10 U PSO 0.5278 0.0182 83.856915 83.857273 83.858100 0.00
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Table A.23: Solution results for KC10c128

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC10c128 O SA 3.2674 -0.0576 88.328089 88.341839 88.393078 5.35
KC10c128 O EA 3.3071 -0.0672 88.325075 88.325075 88.325075 5.33
KC10c128 O PSO 3.3074 -0.0674 88.325075 88.325075 88.325075 5.33
KC10c128 BR-50 SA 1.8336 -0.0335 84.666962 84.666965 84.666973 0.97
KC10c128 BR-50 EA 1.8329 -0.0334 84.666961 84.666961 84.666961 0.97
KC10c128 BR-50 PSO 1.8329 -0.0328 84.666961 84.666961 84.666962 0.97
KC10c128 BR-25 SA 0.9829 -0.0112 83.950485 83.950488 83.950493 0.11
KC10c128 BR-25 EA 0.9829 -0.0112 83.950485 83.950486 83.950494 0.11
KC10c128 BR-25 PSO 0.9829 -0.0112 83.950485 83.950485 83.950486 0.11
KC10c128 h-o SA 3.3068 -0.0673 88.325075 88.325078 88.325084 5.33
KC10c128 h-o EA 3.3071 -0.0672 88.325075 88.325076 88.325084 5.33
KC10c128 h-o PSO 3.3072 -0.0670 88.325075 88.325076 88.325081 5.33
KC10c128 h-50 SA 1.8321 -0.0346 84.666963 84.666966 84.666977 0.97
KC10c128 h-50 EA 1.8331 -0.0335 84.666961 84.666961 84.666961 0.97
KC10c128 h-50 PSO 1.8329 -0.0330 84.666961 84.666961 84.666964 0.97
KC10c128 h-25 SA 0.9833 -0.0106 83.950485 83.950489 83.950494 0.11
KC10c128 h-25 EA 0.9829 -0.0112 83.950485 83.950487 83.950501 0.11
KC10c128 h-25 PSO 0.9829 -0.0112 83.950485 83.950485 83.950486 0.11
KC10c128 l-o SA 3.3066 -0.0666 88.325075 88.325081 88.325090 5.33
KC10c128 l-o EA 3.3071 -0.0672 88.325075 88.325075 88.325078 5.33
KC10c128 l-o PSO 3.3071 -0.0672 88.325075 88.325075 88.325077 5.33
KC10c128 l-50 SA 1.8326 -0.0328 84.666961 84.666965 84.666978 0.97
KC10c128 l-50 EA 1.8329 -0.0330 84.666961 84.666961 84.666961 0.97
KC10c128 l-50 PSO 1.8329 -0.0330 84.666961 84.666961 84.666961 0.97
KC10c128 l-25 SA 0.9828 -0.0112 83.950485 83.950490 83.950506 0.11
KC10c128 l-25 EA 0.9829 -0.0112 83.950485 83.950485 83.950485 0.11
KC10c128 l-25 PSO 0.9829 -0.0109 83.950485 83.950485 83.950487 0.11
KC10c128 FR-o SA 2.4845 1.6815 85.586560 85.586561 85.586562 2.06
KC10c128 FR-o EA 2.4849 1.6810 85.586559 85.586560 85.586560 2.06
KC10c128 FR-o PSO 2.4857 1.6797 85.586553 85.586559 85.586560 2.06
KC10c128 FR-50 SA 1.3913 0.5608 84.145974 84.145975 84.145977 0.34
KC10c128 FR-50 EA 1.3911 0.5613 84.145974 84.145981 84.146036 0.34
KC10c128 FR-50 PSO 1.3909 0.5617 84.145974 84.145974 84.145974 0.34
KC10c128 FR-25 SA 0.7437 0.0976 83.873080 83.873080 83.873081 0.02
KC10c128 FR-25 EA 0.7437 0.0977 83.873080 83.873080 83.873082 0.02
KC10c128 FR-25 PSO 0.7437 0.0977 83.873080 83.873080 83.873081 0.02
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Table A.24: Solution results for KC10i16

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC10i16 O SA 3.3033 -0.0630 88.249042 88.249045 88.249055 5.24
KC10i16 O EA 3.3035 -0.0623 88.249042 88.249277 88.251136 5.24
KC10i16 O PSO 3.3034 -0.0615 88.249042 88.249044 88.249057 5.24
KC10i16 BR-50 SA 1.8099 -0.0390 84.657198 84.657204 84.657224 0.95
KC10i16 BR-50 EA 1.8091 -0.0391 84.657197 84.657197 84.657198 0.95
KC10i16 BR-50 PSO 1.8092 -0.0394 84.657197 84.657198 84.657200 0.95
KC10i16 BR-25 SA 0.9800 -0.0117 83.950113 83.950118 83.950127 0.11
KC10i16 BR-25 EA 0.9799 -0.0117 83.950113 83.950145 83.950406 0.11
KC10i16 BR-25 PSO 0.9799 -0.0116 83.950113 83.950126 83.950174 0.11
KC10i16 h-o SA 3.3035 -0.0620 88.249042 88.249044 88.249048 5.24
KC10i16 h-o EA 3.3036 -0.0622 88.249042 88.249048 88.249084 5.24
KC10i16 h-o PSO 3.3035 -0.0622 88.249042 88.249043 88.249048 5.24
KC10i16 h-50 SA 1.8095 -0.0384 84.657198 84.657199 84.657202 0.95
KC10i16 h-50 EA 1.8091 -0.0391 84.657197 84.657199 84.657209 0.95
KC10i16 h-50 PSO 1.8088 -0.0389 84.657197 84.657213 84.657278 0.95
KC10i16 h-25 SA 0.9795 -0.0126 83.950114 83.950120 83.950128 0.11
KC10i16 h-25 EA 0.9801 -0.0116 83.950113 83.950117 83.950145 0.11
KC10i16 h-25 PSO 0.9799 -0.0117 83.950113 83.950117 83.950135 0.11
KC10i16 l-o SA 3.3032 -0.0623 88.249042 88.249046 88.249053 5.24
KC10i16 l-o EA 3.3034 -0.0622 88.249042 88.249052 88.249096 5.24
KC10i16 l-o PSO 3.3033 -0.0623 88.249042 88.249043 88.249044 5.24
KC10i16 l-50 SA 1.8094 -0.0395 84.657198 84.657203 84.657225 0.95
KC10i16 l-50 EA 1.8090 -0.0391 84.657197 84.657211 84.657337 0.95
KC10i16 l-50 PSO 1.8090 -0.0390 84.657197 84.657199 84.657209 0.95
KC10i16 l-25 SA 0.9806 -0.0108 83.950114 83.950121 83.950143 0.11
KC10i16 l-25 EA 0.9800 -0.0117 83.950113 83.950113 83.950114 0.11
KC10i16 l-25 PSO 0.9800 -0.0117 83.950113 83.950114 83.950119 0.11
KC10i16 FR-o SA 2.4404 1.6438 85.510639 85.510640 85.510641 1.97
KC10i16 FR-o EA 2.4404 1.6437 85.510638 85.510639 85.510639 1.97
KC10i16 FR-o PSO 2.4404 1.6438 85.510638 85.510639 85.510639 1.97
KC10i16 FR-50 SA 1.4228 0.3878 84.134557 84.134557 84.134558 0.33
KC10i16 FR-50 EA 1.4229 0.3873 84.134556 84.134557 84.134561 0.33
KC10i16 FR-50 PSO 1.4229 0.3875 84.134556 84.134557 84.134557 0.33
KC10i16 FR-25 SA 0.7293 0.1042 83.871273 83.871273 83.871274 0.02
KC10i16 FR-25 EA 0.7294 0.1036 83.871273 83.871274 83.871279 0.02
KC10i16 FR-25 PSO 0.7292 0.1046 83.871273 83.871273 83.871274 0.02
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Table A.25: Solution results for KC10i128

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

KC10i128 O SA 3.2938 -0.1017 88.322511 88.335796 88.349756 5.34
KC10i128 O EA 3.3060 -0.0677 88.321938 88.321939 88.321941 5.32
KC10i128 O PSO 3.3059 -0.0678 88.321938 88.321938 88.321939 5.32
KC10i128 BR-50 SA 1.8326 -0.0348 84.666280 84.666285 84.666298 0.97
KC10i128 BR-50 EA 1.8327 -0.0329 84.666277 84.666277 84.666279 0.97
KC10i128 BR-50 PSO 1.8327 -0.0330 84.666277 84.666277 84.666279 0.97
KC10i128 BR-25 SA 0.9824 -0.0106 83.950414 83.950417 83.950425 0.11
KC10i128 BR-25 EA 0.9826 -0.0110 83.950414 83.950415 83.950419 0.11
KC10i128 BR-25 PSO 0.9828 -0.0108 83.950414 83.950415 83.950417 0.11
KC10i128 h-o SA 3.3358 -0.0328 88.323573 88.333176 88.343879 5.34
KC10i128 h-o EA 3.3059 -0.0677 88.321938 88.321938 88.321939 5.32
KC10i128 h-o PSO 3.3060 -0.0682 88.321938 88.321938 88.321938 5.32
KC10i128 h-50 SA 1.8329 -0.0332 84.666277 84.666282 84.666288 0.97
KC10i128 h-50 EA 1.8327 -0.0329 84.666277 84.666277 84.666277 0.97
KC10i128 h-50 PSO 1.8327 -0.0326 84.666277 84.666278 84.666279 0.97
KC10i128 h-25 SA 0.9828 -0.0118 83.950415 83.950419 83.950433 0.11
KC10i128 h-25 EA 0.9826 -0.0110 83.950414 83.950414 83.950414 0.11
KC10i128 h-25 PSO 0.9826 -0.0110 83.950414 83.950414 83.950415 0.11
KC10i128 l-o SA 2.3395 1.8777 87.037288 87.037984 87.038785 3.79
KC10i128 l-o EA 2.3282 1.8914 87.037127 87.037196 87.037512 3.79
KC10i128 l-o PSO 2.3288 1.8907 87.037131 87.037138 87.037145 3.79
KC10i128 l-50 SA 1.8327 -0.0331 84.666277 84.666280 84.666291 0.97
KC10i128 l-50 EA 1.8327 -0.0329 84.666277 84.666277 84.666278 0.97
KC10i128 l-50 PSO 1.8326 -0.0327 84.666277 84.666277 84.666280 0.97
KC10i128 l-25 SA 0.9827 -0.0116 83.950415 83.950421 83.950437 0.11
KC10i128 l-25 EA 0.9826 -0.0110 83.950414 83.950414 83.950414 0.11
KC10i128 l-25 PSO 0.9830 -0.0107 83.950414 83.950414 83.950416 0.11
KC10i128 FR-o SA 2.4613 1.7137 85.585339 85.585340 85.585342 2.06
KC10i128 FR-o EA 2.4614 1.7135 85.585336 85.585339 85.585339 2.06
KC10i128 FR-o PSO 2.4609 1.7142 85.585314 85.585335 85.585339 2.06
KC10i128 FR-50 SA 1.3985 0.5411 84.145626 84.145626 84.145627 0.34
KC10i128 FR-50 EA 1.3984 0.5414 84.145626 84.145626 84.145626 0.34
KC10i128 FR-50 PSO 1.3984 0.5414 84.145625 84.145626 84.145626 0.34
KC10i128 FR-25 SA 0.7442 0.0914 83.873027 83.873027 83.873027 0.02
KC10i128 FR-25 EA 0.7441 0.0920 83.873027 83.873027 83.873029 0.02
KC10i128 FR-25 PSO 0.7441 0.0921 83.873027 83.873027 83.873027 0.02
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Table A.26: Solution results for C600

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U
C600 PR SA 159.3546 150.8110 68447.395586 68467.293764 68486.611355 8.39
C600 PR EA 159.0532 150.9916 68447.120020 68447.120021 68447.120024 8.36
C600 PR PSO 159.0530 150.9917 68447.120020 68447.120022 68447.120027 8.36
C600 LR SA 149.9124 141.2108 66209.058878 66221.993020 66256.751125 4.84
C600 LR EA 149.8277 140.0098 66206.276295 66206.276298 66206.276320 4.81
C600 LR PSO 149.8276 140.0096 66206.276295 66206.276296 66206.276299 4.81
C600 U SA 147.1092 137.4711 63167.955303 63183.741020 63213.171621 0.03
C600 U EA 146.2022 138.3442 63165.196719 63165.196721 63165.196731 0.00
C600 U PSO 146.2022 138.3443 63165.196719 63165.196721 63165.196724 0.00

Table A.27: Solution results for R800

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U
R800 PR SA 204.6092 221.8558 143599.422942 143628.855257 143680.758402 15.69
R800 PR EA 203.2698 221.2940 143596.148950 143596.148954 143596.148970 15.67
R800 PR PSO 203.2697 221.2940 143596.148950 143596.148967 143596.149031 15.67
R800 LR SA 150.0992 198.7629 129745.000868 130061.722669 130464.976894 4.76
R800 LR EA 172.5945 200.0000 126345.170674 129048.867862 129665.329561 3.95
R800 LR PSO 200.0000 200.0000 124757.257460 128701.370479 129665.325797 3.67
R800 U SA 202.5701 190.9705 124148.723017 124165.913930 124204.640343 0.02
R800 U EA 203.1676 191.7661 124146.985175 124146.985181 124146.985237 0.00
R800 U PSO 203.1677 191.7664 124146.985175 124146.985182 124146.985216 0.00

Table A.28: Solution results for RC800

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

RC800 PR SA 210.8576 216.2635 125528.500741 125571.852243 125624.482724 3.34
RC800 PR EA 212.7191 214.9645 125521.684081 125521.684081 125521.684082 3.29
RC800 PR PSO 212.7189 214.9645 125521.684081 125521.684095 125521.684147 3.29
RC800 LR SA 203.0977 210.9984 131813.287388 131837.205524 131888.019708 8.49
RC800 LR EA 202.1087 211.5063 131812.250702 131812.250891 131812.252561 8.47
RC800 LR PSO 202.1081 211.5065 131812.250703 131812.250748 131812.251022 8.47
RC800 U SA 213.2664 211.7665 121518.849072 121544.994086 121582.708161 0.02
RC800 U EA 212.7780 211.5238 121518.369525 121518.369525 121518.369526 0.00
RC800 U PSO 212.7781 211.5237 121518.369525 121518.369534 121518.369568 0.00
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Table A.29: Solution results for R1000

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

R1000 PR SA 246.0102 241.8248 197750.217133 197783.877526 197858.155498 2.82
R1000 PR EA 245.0167 242.6992 197746.767258 197746.767283 197746.767505 2.80
R1000 PR PSO 245.0167 242.6992 197746.767258 197746.767437 197746.769025 2.80
R1000 LR SA 248.8401 244.0818 197514.862499 197530.387251 197588.535537 2.69
R1000 LR EA 250.1162 244.5198 197512.424796 197512.424799 197512.424814 2.68
R1000 LR PSO 250.1161 244.5199 197512.424797 197512.424810 197512.424839 2.68
R1000 U SA 248.3364 248.8844 192369.777626 192389.794606 192440.489227 0.01
R1000 U EA 247.4621 247.4064 192364.285938 192364.285950 192364.286007 0.00
R1000 U PSO 247.4623 247.4067 192364.285938 192364.285954 192364.286038 0.00

Table A.30: Solution results for RC1000

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

RC1000 PR SA 337.0140 190.9632 225597.555074 225659.307091 225823.069607 14.45
RC1000 PR EA 338.2353 192.6926 225592.144136 225592.144145 225592.144226 14.42
RC1000 PR PSO 338.2354 192.6930 225592.144136 225592.144157 225592.144221 14.42
RC1000 LR SA 273.3606 235.4182 207341.729687 207384.903640 207494.410223 5.18
RC1000 LR EA 272.8082 235.8678 207340.765485 207340.765516 207340.765786 5.16
RC1000 LR PSO 272.8079 235.8678 207340.765485 207340.765493 207340.765533 5.16
RC1000 U SA 267.8947 242.6387 197167.616542 197227.248665 197322.787867 0.03
RC1000 U EA 268.0093 241.8427 197166.314828 197166.314830 197166.314837 0.00
RC1000 U PSO 268.0094 241.8427 197166.314828 197166.314859 197166.315028 0.00

Table A.31: Solution results for u2319

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

u2319 PR SA 6621.4048 4293.6270 5039431.975201 5040871.065195 5043393.817839 14.57
u2319 PR EA 6616.6572 4307.2119 5039373.022379 5039373.025059 5039373.048520 14.53
u2319 PR PSO 6616.6558 4307.2090 5039373.022386 5039373.023690 5039373.032034 14.53
u2319 LR SA 5781.1431 4281.2759 4594089.958745 4594708.257487 4595925.573494 4.43
u2319 LR EA 5790.4399 4282.9072 4594048.482312 4594048.482356 4594048.482730 4.41
u2319 LR PSO 5790.4399 4282.9092 4594048.482314 4594048.482581 4594048.483338 4.41
u2319 U SA 5942.8789 4408.8320 4400240.904198 4401272.299239 4403091.360358 0.03
u2319 U EA 5954.6729 4381.2471 4399857.061474 4399857.061511 4399857.061831 0.00
u2319 U PSO 5954.6738 4381.2490 4399857.061476 4399857.061644 4399857.062915 0.00
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Table A.32: Solution results for fnl4461

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

fnl4461 PR SA 7108.054 7439.100 6972635.3952 6974076.3058 6976375.0031 13.99
fnl4461 PR EA 7103.300 7434.924 6972442.4372 6972442.4382 6972442.4469 13.96
fnl4461 PR PSO 7103.300 7434.923 6972442.4372 6972442.4463 6972442.4859 13.96
fnl4461 LR SA 7362.708 7668.590 7042386.7917 7043671.6135 7046458.7310 15.13
fnl4461 LR EA 7360.406 7665.550 7042372.2581 7042372.2588 7042372.2640 15.11
fnl4461 LR PSO 7360.406 7665.550 7042372.2580 7042372.2583 7042372.2595 15.11
fnl4461 U SA 7375.443 7657.929 6118235.2705 6119888.6883 6122392.3573 0.03
fnl4461 U EA 7381.071 7658.548 6118196.3481 6118196.3482 6118196.3490 0.00
fnl4461 U PSO 7381.0701 7658.548 6118196.3481 6118196.3508 6118196.3718 0.00

Table A.33: Solution results for pla7397

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

pla7397 PR SA 209914.797 279007.313 2402159312.4905 2402460471.4661 2402851997.8214 7.70
pla7397 PR EA 211135.594 278710.094 2402153411.0584 2402153411.1236 2402153411.5210 7.68
pla7397 PR PSO 211136.406 278710.406 2402153411.0628 2402153411.6552 2402153413.4557 7.68
pla7397 LR SA 262762.313 276539.906 2491340823.4622 2491530913.0554 2491759211.4848 11.69
pla7397 LR EA 262784.906 278156.906 2491316004.7726 2491316010.0631 2491316057.3263 11.68
pla7397 LR PSO 262783.688 278156.406 2491316004.7792 2491316005.1669 2491316005.8747 11.68
pla7397 U SA 270926.000 278983.500 2230777473.3308 2230988239.9437 2231482174.5602 0.01
pla7397 U EA 272463.688 278059.594 2230761223.4886 2230761223.5795 2230761224.2159 0.00
pla7397 U PSO 272464.000 278059.594 2230761223.4888 2230761225.3240 2230761235.9436 0.00

Table A.34: Solution results for usa13509

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

usa13509 PR SA 404704.316 879876.875 1633641736.6751 1634456545.8128 1636581830.2728 8.38
usa13509 PR EA 404127.688 879543.375 1633609539.2599 1633609539.2602 1633609539.2625 8.33
usa13509 PR PSO 404127.688 879543.375 1633609539.2599 1633609539.4479 1633609541.0152 8.33
usa13509 LR SA 402383.188 875497.625 1808547271.5773 1809337329.7138 1811579116.0556 19.98
usa13509 LR EA 402110.813 875633.813 1808542200.9146 1808542200.9341 1808542201.0110 19.93
usa13509 LR PSO 402111.000 875633.688 1808542200.9156 1808542201.0435 1808542201.3938 19.93
usa13509 U SA 388922.406 877223.875 1508084318.6475 1509071369.8034 1512810720.5106 0.07
usa13509 U EA 388922.406 877223.875 1508040777.8456 1508040777.8561 1508040777.9080 0.00
usa13509 U PSO 388922.500 877224.125 1508040777.8468 1508040777.9556 1508040778.5498 0.00

Table A.35: Solution results for pla33810

Avg.
Inst. Pattern Alg. x y Min. OFV Avg. OFV Max. OFV %Gap U

pla33810 PR SA 335262.906 292148.688 7345821677.8468 7347739401.2874 7349455574.3430 6.65
pla33810 PR EA 336061.594 291743.313 7345795236.9079 7345795237.6735 7345795243.1184 6.62
pla33810 PR PSO 336061.594 291743.313 7345795236.9079 7345795237.3489 7345795239.1268 6.62
pla33810 LR SA 337941.406 310350.500 7661962405.5517 7664321066.0807 7669805236.8895 11.25
pla33810 LR EA 339548.500 308993.188 7661708978.6298 7661708978.6344 7661708978.6573 11.21
pla33810 LR PSO 339548.500 308993.188 7661708978.6301 7661708981.1509 7661708992.1780 11.21
pla33810 U SA 337381.188 307836.188 6889595345.8628 6890496084.1618 6893945518.1842 0.01
pla33810 U EA 337478.906 308525.406 6889564892.4200 6889564892.4491 6889564892.6278 0.00
pla33810 U PSO 337478.813 308525.406 6889564892.4200 6889564892.7574 6889564893.5646 0.00
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APPENDIX B

TABLES OF META-HEURISTICS PERFORMANCES FOR ALL PROBLEM INSTANCES

In this appendix, information about the performance of the algorithms on all instances and their pat-
terns is provided. The information given in Tables B.1 to B.35 contains:

• The instance name and its pattern in the first and second column.
• The applied meta-heuristic algorithm in the ‘Alg.’ column.
• ‘%Imp.’ that shows how the meta-heuristic algorithms were able to improve their initial solu-

tions. To be more specific, we focus on three values indication different improvements, consid-
ering 10 replications of each meta-heuristic:

– ‘Min. %Imp.’ showing that on average how much the algorithms could improve (in
percent) the best individual of initial population before termination.

– ‘Avg. %Imp.’ denoting how much on average the algorithm could improve the initial
population to the final population.

– ‘Max. %Imp.’ which shows the average percent improvement on the worst solution in
the initial population.

• ‘%DV’ that indicates the percent deviation of final solutions from the BSol:
– ‘Min. %DV’ shows the percent deviation of the best objective function found in 10

replications from BSol.
– ‘Avg. %DV.’ is the average percent deviation of 10 final solutions from BSol.

• ‘BSol Hits’ showing the number of times the algorithm generated final solution with the same
objective function value as BSol running in 10 replications.

• ‘CT’ which refers to CPU time. CPU time is the computational time the algorithm required to
return a solution. The values regarding average computational time of 10 runs is given in ‘CT’
column.
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Table B.1: Performance results for AP25

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP25 BR-o SA 9.98 N/A N/A 0.00 0.00 3 1.87
AP25 BR-o EA 3.96 8.62 15.85 0.00 0.00 6 0.48
AP25 BR-o PSO 3.87 8.82 16.16 0.00 0.00 3 0.64
AP25 BR-50 SA 6.20 N/A N/A 0.00 0.00 2 1.90
AP25 BR-50 EA 2.36 6.76 14.57 0.00 0.00 5 0.52
AP25 BR-50 PSO 2.26 7.18 14.56 0.00 0.00 2 0.60
AP25 BR-25 SA 6.67 N/A N/A 0.00 0.00 7 1.97
AP25 BR-25 EA 1.11 5.13 14.69 0.00 0.00 9 0.46
AP25 BR-25 PSO 1.10 3.97 11.81 0.00 0.00 7 0.57
AP25 h-o SA 9.53 N/A N/A 0.00 0.00 4 1.88
AP25 h-o EA 4.00 8.99 15.54 0.00 0.00 7 0.43
AP25 h-o PSO 3.99 9.28 16.15 0.00 0.00 6 0.58
AP25 h-50 SA 6.91 N/A N/A 0.00 0.00 0 1.89
AP25 h-50 EA 2.16 6.47 14.56 0.00 0.00 5 0.49
AP25 h-50 PSO 2.26 6.85 14.56 0.00 0.00 4 0.73
AP25 h-25 SA 3.48 N/A N/A 0.00 0.00 9 1.96
AP25 h-25 EA 1.14 4.63 14.69 0.00 0.00 8 0.43
AP25 h-25 PSO 1.17 4.44 12.76 0.00 0.00 8 0.67
AP25 l-o SA 6.40 N/A N/A 0.00 0.00 6 1.87
AP25 l-o EA 1.46 5.61 11.66 0.00 0.00 8 0.52
AP25 l-o PSO 1.67 5.73 12.96 0.00 0.00 3 0.58
AP25 l-50 SA 5.49 N/A N/A 0.00 0.00 0 1.89
AP25 l-50 EA 2.17 5.89 14.57 0.00 0.00 6 0.47
AP25 l-50 PSO 2.30 5.82 14.56 0.00 0.00 0 0.55
AP25 l-25 SA 7.41 N/A N/A 0.00 0.00 6 1.96
AP25 l-25 EA 1.14 4.94 14.69 0.00 0.00 4 0.34
AP25 l-25 PSO 1.10 4.42 13.73 0.00 0.00 5 0.56
AP25 O SA 4.38 N/A N/A 0.00 0.00 10 1.86
AP25 O EA 0.17 5.59 14.66 0.00 0.00 10 0.52
AP25 O PSO 0.29 5.14 14.65 0.00 0.00 10 0.69
AP25 FR-50 SA 4.30 N/A N/A 0.00 0.00 10 1.87
AP25 FR-50 EA 0.24 3.84 14.68 0.00 0.00 7 0.36
AP25 FR-50 PSO 0.27 3.40 13.47 0.00 0.00 5 0.56
AP25 FR-25 SA 0.67 N/A N/A 0.00 0.00 8 1.97
AP25 FR-25 EA 0.36 3.60 13.37 0.00 0.00 6 0.38
AP25 FR-25 PSO 0.36 3.03 14.69 0.00 0.00 1 0.48
AP25 U SA 14.71 N/A N/A 0.00 0.00 8 0.02
AP25 U EA 13.99 14.00 14.00 0.76 0.83 0 0.00
AP25 U PSO 14.66 14.68 14.69 0.01 0.02 0 0.00
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Table B.2: Performance results for AP70

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP70 O SA 26.62 N/A N/A 0.00 0.00 1 12.55
AP70 O EA 3.61 29.42 45.99 0.00 0.00 10 5.20
AP70 O PSO 2.22 29.12 46.51 0.00 0.00 9 8.16
AP70 BR-50 SA 23.12 N/A N/A 0.00 0.00 4 12.60
AP70 BR-50 EA 3.79 27.77 44.51 0.00 0.00 9 5.04
AP70 BR-50 PSO 5.43 28.36 46.92 0.00 0.00 6 7.59
AP70 BR-25 SA 21.68 N/A N/A 0.00 0.00 2 10.40
AP70 BR-25 EA 5.77 26.82 46.48 0.00 0.00 10 5.15
AP70 BR-25 PSO 3.02 25.20 46.10 0.00 0.00 5 6.02
AP70 h-o SA 26.05 N/A N/A 0.00 0.00 1 12.57
AP70 h-o EA 3.60 29.92 47.01 0.00 0.00 10 6.55
AP70 h-o PSO 3.67 28.58 45.96 0.00 0.00 9 8.40
AP70 h-50 SA 22.85 N/A N/A 0.00 0.00 0 12.57
AP70 h-50 EA 5.97 27.41 46.42 0.00 0.00 7 4.82
AP70 h-50 PSO 3.95 27.09 46.31 0.00 0.00 7 7.39
AP70 h-25 SA 24.82 N/A N/A 0.00 0.00 2 10.41
AP70 h-25 EA 3.83 24.49 42.66 0.00 0.00 9 4.07
AP70 h-25 PSO 3.55 24.76 46.18 0.00 0.00 10 6.24
AP70 l-o SA 26.77 N/A N/A 0.00 0.00 1 12.53
AP70 l-o EA 2.02 28.63 45.72 0.00 0.00 10 5.68
AP70 l-o PSO 4.54 29.89 46.02 0.00 0.00 5 8.51
AP70 l-50 SA 27.21 N/A N/A 0.00 0.00 1 12.63
AP70 l-50 EA 3.72 25.42 42.64 0.00 0.00 9 5.65
AP70 l-50 PSO 3.59 25.80 45.40 0.00 0.00 6 6.79
AP70 l-25 SA 27.48 N/A N/A 0.00 0.00 0 10.40
AP70 l-25 EA 4.27 25.85 44.77 0.00 0.00 9 4.10
AP70 l-25 PSO 5.62 25.73 43.86 0.00 0.00 8 6.24
AP70 FR-o SA 27.23 N/A N/A 0.00 0.00 3 12.63
AP70 FR-o EA 1.91 26.32 44.84 0.00 0.00 10 5.73
AP70 FR-o PSO 2.53 27.00 47.64 0.00 0.00 6 6.75
AP70 FR-50 SA 22.29 N/A N/A 0.00 0.00 4 12.64
AP70 FR-50 EA 3.70 25.69 44.90 0.00 0.00 10 5.78
AP70 FR-50 PSO 3.37 26.60 44.85 0.00 0.00 7 7.28
AP70 FR-25 SA 27.80 N/A N/A 0.00 0.00 4 10.42
AP70 FR-25 EA 3.04 25.24 46.79 0.00 0.00 10 4.65
AP70 FR-25 PSO 3.45 25.01 45.25 0.00 0.00 6 6.11
AP70 U SA 23.17 N/A N/A 0.00 0.00 1 0.04
AP70 U EA 3.84 26.65 43.11 0.00 0.00 2 0.01
AP70 U PSO 4.45 26.03 42.40 0.00 0.00 1 0.01
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Table B.3: Performance results for AP70R10

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP70R10 O SA 23.49 N/A N/A 0.00 0.00 2 10.74
AP70R10 O EA 2.47 27.53 46.52 0.00 0.00 10 4.72
AP70R10 O PSO 3.12 28.09 47.27 0.00 0.00 9 7.30
AP70R10 BR-50 SA 18.77 N/A N/A 0.00 0.00 2 10.82
AP70R10 BR-50 EA 4.96 25.78 41.20 0.00 0.00 8 4.63
AP70R10 BR-50 PSO 4.33 25.52 43.73 0.00 0.00 5 6.66
AP70R10 BR-25 SA 22.26 N/A N/A 0.00 0.00 1 8.78
AP70R10 BR-25 EA 2.78 23.68 42.85 0.00 0.00 10 4.01
AP70R10 BR-25 PSO 4.40 23.83 43.37 0.00 0.00 7 4.67
AP70R10 h-o SA 30.95 N/A N/A 0.00 0.00 2 10.74
AP70R10 h-o EA 2.75 27.90 45.51 0.00 0.00 10 6.26
AP70R10 h-o PSO 3.39 27.56 45.88 0.00 0.00 10 7.00
AP70R10 h-50 SA 25.61 N/A N/A 0.00 0.00 1 10.80
AP70R10 h-50 EA 3.17 25.75 46.66 0.00 0.00 7 4.89
AP70R10 h-50 PSO 4.94 25.48 44.45 0.00 0.00 4 5.86
AP70R10 h-25 SA 22.08 N/A N/A 0.00 0.00 0 8.80
AP70R10 h-25 EA 4.09 23.59 43.20 0.00 0.00 10 4.07
AP70R10 h-25 PSO 4.45 23.93 42.77 0.00 0.00 8 5.48
AP70R10 l-o SA 23.24 N/A N/A 0.00 0.00 1 10.72
AP70R10 l-o EA 3.03 27.98 47.56 0.00 0.00 9 4.85
AP70R10 l-o PSO 3.36 26.25 44.15 0.00 0.00 9 7.18
AP70R10 l-50 SA 21.36 N/A N/A 0.00 0.00 2 10.80
AP70R10 l-50 EA 3.88 25.12 41.61 0.00 0.00 9 4.90
AP70R10 l-50 PSO 4.73 25.45 39.61 0.00 0.00 7 6.78
AP70R10 l-25 SA 17.68 N/A N/A 0.00 0.00 1 8.82
AP70R10 l-25 EA 4.74 24.00 40.32 0.00 0.00 7 3.23
AP70R10 l-25 PSO 3.80 23.55 44.62 0.00 0.00 9 5.54
AP70R10 FR-o SA 14.70 N/A N/A 0.00 0.00 5 10.81
AP70R10 FR-o EA 1.59 25.09 43.63 0.00 0.00 9 4.96
AP70R10 FR-o PSO 2.88 27.18 42.98 0.00 0.00 9 6.96
AP70R10 FR-50 SA 19.11 N/A N/A 0.00 0.00 0 10.82
AP70R10 FR-50 EA 4.39 25.82 44.89 0.00 0.00 10 5.05
AP70R10 FR-50 PSO 4.47 23.93 38.03 0.00 0.00 6 6.08
AP70R10 FR-25 SA 23.63 N/A N/A 0.00 0.00 4 8.77
AP70R10 FR-25 EA 4.61 22.77 39.29 0.00 0.00 9 3.93
AP70R10 FR-25 PSO 3.56 23.83 42.42 0.00 0.00 8 4.97
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Table B.4: Performance results for AP70R8

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP70R8 O SA 23.28 N/A N/A 0.00 0.00 1 7.83
AP70R8 O EA 3.12 26.97 46.32 0.00 0.00 8 3.75
AP70R8 O PSO 2.53 27.70 45.91 0.00 0.00 7 5.10
AP70R8 BR-50 SA 22.77 N/A N/A 0.00 0.00 0 7.91
AP70R8 BR-50 EA 2.99 25.26 41.11 0.00 0.00 8 3.32
AP70R8 BR-50 PSO 4.66 26.06 42.22 0.00 0.00 2 4.29
AP70R8 BR-25 SA 21.01 N/A N/A 0.00 0.00 2 6.17
AP70R8 BR-25 EA 3.36 23.41 41.78 0.00 0.00 10 2.52
AP70R8 BR-25 PSO 3.07 23.51 43.45 0.00 0.00 9 3.66
AP70R8 h-o SA 19.02 N/A N/A 0.00 0.00 1 7.85
AP70R8 h-o EA 3.72 27.93 45.66 0.00 0.00 8 3.57
AP70R8 h-o PSO 2.59 25.59 43.55 0.00 0.00 3 5.18
AP70R8 h-50 SA 25.93 N/A N/A 0.00 0.00 0 7.89
AP70R8 h-50 EA 3.34 24.91 43.79 0.00 0.00 10 3.68
AP70R8 h-50 PSO 2.97 24.41 41.03 0.00 0.00 4 4.92
AP70R8 h-25 SA 16.44 N/A N/A 0.00 0.00 0 6.16
AP70R8 h-25 EA 3.89 24.14 43.81 0.00 0.00 10 3.20
AP70R8 h-25 PSO 3.45 23.46 41.18 0.00 0.00 7 3.68
AP70R8 l-o SA 23.35 N/A N/A 0.00 0.00 1 7.86
AP70R8 l-o EA 3.93 28.42 46.41 0.00 0.00 9 3.49
AP70R8 l-o PSO 2.27 27.61 45.42 0.00 0.00 8 5.21
AP70R8 l-50 SA 22.83 N/A N/A 0.00 0.00 0 7.89
AP70R8 l-50 EA 2.47 25.58 41.86 0.00 0.00 9 3.32
AP70R8 l-50 PSO 4.57 25.03 42.44 0.00 0.00 5 4.84
AP70R8 l-25 SA 25.73 N/A N/A 0.00 0.00 3 6.17
AP70R8 l-25 EA 4.23 24.35 44.03 0.00 0.00 9 3.01
AP70R8 l-25 PSO 4.55 22.97 41.88 0.00 0.00 9 3.82
AP70R8 FR-o SA 25.04 N/A N/A 0.00 0.00 2 7.91
AP70R8 FR-o EA 2.15 26.18 43.78 0.00 0.00 9 3.26
AP70R8 FR-o PSO 1.77 25.05 45.20 0.00 0.00 9 4.39
AP70R8 FR-50 SA 22.35 N/A N/A 0.00 0.00 2 7.91
AP70R8 FR-50 EA 2.89 24.93 45.42 0.00 0.00 9 3.33
AP70R8 FR-50 PSO 3.70 25.10 45.53 0.00 0.00 10 4.57
AP70R8 FR-25 SA 16.51 N/A N/A 0.00 0.00 1 6.18
AP70R8 FR-25 EA 3.21 23.79 45.60 0.00 0.00 6 2.29
AP70R8 FR-25 PSO 2.15 22.91 41.76 0.00 0.00 9 3.93
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Table B.5: Performance results for AP70R6

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP70R6 O SA 30.98 N/A N/A 0.00 0.00 1 4.62
AP70R6 O EA 3.47 27.81 45.85 0.00 0.00 10 2.21
AP70R6 O PSO 4.05 28.47 47.28 0.00 0.00 8 2.65
AP70R6 BR-50 SA 28.55 N/A N/A 0.00 0.00 2 4.60
AP70R6 BR-50 EA 3.00 26.23 44.45 0.00 0.00 10 2.11
AP70R6 BR-50 PSO 3.43 26.21 45.01 0.00 0.00 9 2.89
AP70R6 BR-25 SA 22.64 N/A N/A 0.00 0.00 0 3.30
AP70R6 BR-25 EA 2.26 25.22 43.90 0.00 0.00 7 1.57
AP70R6 BR-25 PSO 2.72 25.46 43.47 0.00 0.00 1 1.72
AP70R6 h-o SA 20.21 N/A N/A 0.00 0.00 2 4.61
AP70R6 h-o EA 1.01 27.33 44.83 0.00 0.00 7 1.88
AP70R6 h-o PSO 2.82 28.13 46.65 0.00 0.00 5 2.55
AP70R6 h-50 SA 28.55 N/A N/A 0.00 0.00 1 4.61
AP70R6 h-50 EA 3.61 26.90 45.44 0.00 0.00 6 1.61
AP70R6 h-50 PSO 3.69 26.45 43.81 0.00 0.00 7 2.88
AP70R6 h-25 SA 18.66 N/A N/A 0.00 0.00 0 3.29
AP70R6 h-25 EA 2.95 25.50 45.85 0.00 0.00 7 1.46
AP70R6 h-25 PSO 3.16 25.49 41.42 0.00 0.00 4 2.02
AP70R6 l-o SA 24.34 N/A N/A 0.00 0.00 0 4.62
AP70R6 l-o EA 2.46 27.03 45.33 0.00 0.00 9 2.06
AP70R6 l-o PSO 2.30 27.78 46.17 0.00 0.00 5 2.81
AP70R6 l-50 SA 24.16 N/A N/A 0.00 0.00 1 4.61
AP70R6 l-50 EA 2.42 26.47 43.73 0.00 0.00 10 1.95
AP70R6 l-50 PSO 3.02 26.67 45.90 0.00 0.00 9 2.74
AP70R6 l-25 SA 19.15 N/A N/A 0.00 0.00 0 3.30
AP70R6 l-25 EA 2.40 26.00 46.31 0.00 0.00 9 1.58
AP70R6 l-25 PSO 2.30 25.21 43.48 0.00 0.00 4 1.99
AP70R6 FR-o SA 25.86 N/A N/A 0.00 0.00 3 4.61
AP70R6 FR-o EA 2.38 26.97 44.77 0.00 0.00 9 2.08
AP70R6 FR-o PSO 2.91 27.25 45.42 0.00 0.00 9 2.87
AP70R6 FR-50 SA 26.02 N/A N/A 0.00 0.00 3 4.59
AP70R6 FR-50 EA 3.22 25.85 43.29 0.00 0.00 10 1.85
AP70R6 FR-50 PSO 2.61 26.21 44.88 0.00 0.00 7 2.62
AP70R6 FR-25 SA 17.03 N/A N/A 0.00 0.00 4 3.29
AP70R6 FR-25 EA 2.34 24.32 42.30 0.00 0.00 9 1.47
AP70R6 FR-25 PSO 3.42 26.53 46.83 0.00 0.00 9 1.99
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Table B.6: Performance results for AP70R4

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP70R4 O SA 22.65 N/A N/A 0.00 0.00 1 2.40
AP70R4 O EA 1.31 27.52 46.58 0.00 0.00 9 1.01
AP70R4 O PSO 2.71 26.74 43.15 0.00 0.00 8 1.22
AP70R4 BR-50 SA 26.61 N/A N/A 0.00 0.00 2 2.38
AP70R4 BR-50 EA 3.72 27.63 44.82 0.00 0.00 6 0.76
AP70R4 BR-50 PSO 3.61 26.04 43.32 0.00 0.00 3 1.25
AP70R4 BR-25 SA 27.96 N/A N/A 0.00 0.00 0 2.37
AP70R4 BR-25 EA 4.06 26.75 45.44 0.00 0.00 6 0.96
AP70R4 BR-25 PSO 3.23 26.22 43.73 0.00 0.00 3 1.27
AP70R4 h-o SA 23.67 N/A N/A 0.00 0.00 2 2.39
AP70R4 h-o EA 2.23 27.69 46.62 0.00 0.00 9 0.98
AP70R4 h-o PSO 4.23 29.12 47.26 0.00 0.00 5 1.24
AP70R4 h-50 SA 22.45 N/A N/A 0.00 0.00 0 2.37
AP70R4 h-50 EA 2.97 26.56 43.65 0.00 0.00 6 0.82
AP70R4 h-50 PSO 3.26 27.63 45.56 0.00 0.00 3 1.25
AP70R4 h-25 SA 26.83 N/A N/A 0.00 0.00 1 2.37
AP70R4 h-25 EA 2.32 26.17 40.63 0.00 0.00 8 1.00
AP70R4 h-25 PSO 2.42 26.19 41.36 0.00 0.00 4 1.20
AP70R4 l-o SA 24.27 N/A N/A 0.00 0.00 3 2.40
AP70R4 l-o EA 3.46 27.06 43.92 0.00 0.00 10 0.95
AP70R4 l-o PSO 2.00 27.23 43.73 0.00 0.00 10 1.40
AP70R4 l-50 SA 24.68 N/A N/A 0.00 0.00 0 2.36
AP70R4 l-50 EA 1.58 26.60 43.08 0.00 0.00 8 1.13
AP70R4 l-50 PSO 3.72 26.86 43.50 0.00 0.00 7 1.30
AP70R4 l-25 SA 27.93 N/A N/A 0.00 0.00 0 2.37
AP70R4 l-25 EA 3.84 27.73 46.84 0.00 0.00 8 1.11
AP70R4 l-25 PSO 4.21 26.84 43.28 0.00 0.00 4 1.16
AP70R4 FR-o SA 33.98 N/A N/A 0.00 0.00 2 2.40
AP70R4 FR-o EA 3.50 27.34 46.32 0.00 0.00 10 0.97
AP70R4 FR-o PSO 3.25 28.03 46.47 0.00 0.00 6 1.22
AP70R4 FR-50 SA 20.52 N/A N/A 0.00 0.00 4 2.37
AP70R4 FR-50 EA 3.00 25.96 44.58 0.00 0.00 10 0.82
AP70R4 FR-50 PSO 3.67 28.23 48.25 0.00 0.00 10 1.32
AP70R4 FR-25 SA 24.97 N/A N/A 0.00 0.00 1 2.38
AP70R4 FR-25 EA 2.39 26.83 45.95 0.00 0.00 6 0.81
AP70R4 FR-25 PSO 4.49 27.12 44.17 0.00 0.00 7 1.21
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Table B.7: Performance results for AP70R2

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

AP70R2 O SA 26.15 N/A N/A 0.00 0.00 0 1.00
AP70R2 O EA 5.39 29.78 46.26 0.00 0.00 7 0.29
AP70R2 O PSO 4.27 28.68 46.08 0.00 0.00 3 0.38
AP70R2 BR-50 SA 30.84 N/A N/A 0.00 0.00 2 0.98
AP70R2 BR-50 EA 4.10 28.97 46.21 0.00 0.00 9 0.29
AP70R2 BR-50 PSO 1.72 26.72 41.80 0.00 0.00 3 0.36
AP70R2 BR-25 SA 21.09 N/A N/A 0.00 0.00 0 0.98
AP70R2 BR-25 EA 5.99 28.38 46.55 0.00 0.00 7 0.29
AP70R2 BR-25 PSO 6.71 28.27 44.89 0.00 0.00 2 0.42
AP70R2 h-o SA 27.41 N/A N/A 0.00 0.00 0 1.01
AP70R2 h-o EA 5.62 29.75 47.88 0.00 0.00 7 0.29
AP70R2 h-o PSO 4.76 29.63 47.27 0.00 0.00 3 0.39
AP70R2 h-50 SA 25.48 N/A N/A 0.00 0.00 1 0.98
AP70R2 h-50 EA 5.50 28.96 42.96 0.00 0.00 6 0.30
AP70R2 h-50 PSO 4.66 28.17 44.27 0.00 0.00 7 0.41
AP70R2 h-25 SA 31.25 N/A N/A 0.00 0.00 0 0.98
AP70R2 h-25 EA 1.55 26.30 42.48 0.00 0.00 6 0.29
AP70R2 h-25 PSO 4.43 28.54 46.84 0.00 0.00 3 0.41
AP70R2 l-o SA 36.14 N/A N/A 0.00 0.00 0 1.01
AP70R2 l-o EA 1.67 27.61 45.53 0.00 0.00 6 0.26
AP70R2 l-o PSO 4.82 28.91 47.22 0.00 0.00 3 0.38
AP70R2 l-50 SA 28.78 N/A N/A 0.00 0.00 2 0.98
AP70R2 l-50 EA 8.13 29.53 46.28 0.00 0.00 6 0.25
AP70R2 l-50 PSO 3.82 27.84 44.78 0.00 0.00 3 0.35
AP70R2 l-25 SA 20.66 N/A N/A 0.00 0.00 0 0.99
AP70R2 l-25 EA 1.44 26.17 40.38 0.00 0.00 6 0.28
AP70R2 l-25 PSO 2.24 28.00 45.09 0.00 0.00 1 0.40
AP70R2 FR-o SA 23.85 N/A N/A 0.00 0.00 6 1.01
AP70R2 FR-o EA 2.50 29.05 45.76 0.00 0.00 9 0.27
AP70R2 FR-o PSO 6.92 29.34 44.80 0.00 0.00 5 0.38
AP70R2 FR-50 SA 21.81 N/A N/A 0.00 0.00 2 0.98
AP70R2 FR-50 EA 3.43 27.93 45.53 0.00 0.00 9 0.32
AP70R2 FR-50 PSO 5.52 27.92 44.76 0.00 0.00 3 0.36
AP70R2 FR-25 SA 24.24 N/A N/A 0.00 0.00 2 0.99
AP70R2 FR-25 EA 2.39 27.98 44.89 0.00 0.00 8 0.26
AP70R2 FR-25 PSO 4.09 27.23 42.05 0.00 0.00 8 0.46
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Table B.8: Performance results for BC13

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

BC13 O SA 21.80 N/A N/A 0.00 0.00 5 0.53
BC13 O EA 2.36 22.74 43.26 0.00 0.01 2 0.06
BC13 O PSO 2.89 24.52 44.94 0.00 0.00 1 0.08
BC13 BR-50 SA 17.91 N/A N/A 0.00 0.00 8 0.53
BC13 BR-50 EA 4.39 18.56 32.87 0.00 0.00 1 0.07
BC13 BR-50 PSO 4.84 20.81 36.86 0.00 0.00 1 0.08
BC13 BR-25 SA 11.97 N/A N/A 0.00 0.00 5 0.54
BC13 BR-25 EA 4.69 17.37 33.06 0.00 0.00 2 0.06
BC13 BR-25 PSO 5.55 17.25 30.59 0.00 0.00 2 0.09
BC13 h-o SA 20.99 N/A N/A 0.00 0.00 5 0.54
BC13 h-o EA 2.03 22.28 42.54 0.00 0.00 2 0.07
BC13 h-o PSO 4.52 25.04 44.14 0.00 0.00 3 0.09
BC13 h-50 SA 15.71 N/A N/A 0.00 0.00 8 0.53
BC13 h-50 EA 4.74 18.38 33.11 0.00 0.00 3 0.07
BC13 h-50 PSO 4.73 18.75 35.65 0.00 0.00 0 0.08
BC13 h-25 SA 17.36 N/A N/A 0.00 0.00 7 0.55
BC13 h-25 EA 5.09 17.86 33.23 0.00 0.00 3 0.07
BC13 h-25 PSO 4.85 18.38 34.37 0.00 0.00 4 0.09
BC13 l-o SA 22.48 N/A N/A 0.00 0.00 4 0.53
BC13 l-o EA 2.09 22.16 39.08 0.00 0.00 0 0.07
BC13 l-o PSO 2.31 22.45 38.69 0.00 0.00 2 0.09
BC13 l-50 SA 18.36 N/A N/A 0.00 0.00 6 0.53
BC13 l-50 EA 3.69 19.92 36.15 0.00 0.00 0 0.05
BC13 l-50 PSO 4.49 19.66 35.50 0.00 0.00 3 0.09
BC13 l-25 SA 21.94 N/A N/A 0.00 0.00 7 0.54
BC13 l-25 EA 4.68 17.09 34.30 0.00 0.00 2 0.07
BC13 l-25 PSO 4.69 16.04 30.42 0.00 0.00 3 0.08
BC13 FR-o SA 22.57 N/A N/A 0.00 0.00 8 0.53
BC13 FR-o EA 4.23 22.39 38.78 0.00 0.00 2 0.07
BC13 FR-o PSO 4.48 22.21 40.18 0.00 0.00 2 0.09
BC13 FR-50 SA 14.87 N/A N/A 0.00 0.00 6 0.53
BC13 FR-50 EA 2.64 15.64 29.25 0.00 0.01 1 0.06
BC13 FR-50 PSO 2.83 16.78 31.61 0.00 0.00 3 0.09
BC13 FR-25 SA 14.15 N/A N/A 0.00 0.00 10 0.54
BC13 FR-25 EA 3.88 16.05 29.52 0.00 0.00 3 0.06
BC13 FR-25 PSO 3.94 15.48 28.33 0.00 0.00 6 0.10
BC13 U SA 22.43 N/A N/A 0.00 0.00 7 0.02
BC13 U EA 3.09 5.75 8.26 0.23 0.31 0 0.00
BC13 U PSO 8.55 17.87 25.47 0.00 0.01 0 0.00
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Table B.9: Performance results for D26

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT
D26 O SA 14.79 N/A N/A 0.00 0.00 5 2.25
D26 O EA 7.13 14.18 23.95 0.00 0.00 8 0.59
D26 O PSO 6.81 13.56 23.43 0.00 0.00 7 0.70
D26 BR-50 SA 13.52 N/A N/A 0.00 0.00 5 2.27
D26 BR-50 EA 8.08 14.41 22.97 0.00 0.00 8 0.57
D26 BR-50 PSO 7.95 14.11 26.05 0.00 0.00 8 0.72
D26 BR-25 SA 17.41 N/A N/A 0.00 0.00 6 2.28
D26 BR-25 EA 8.89 14.09 22.94 0.00 0.00 7 0.54
D26 BR-25 PSO 8.82 14.28 26.22 0.00 0.00 4 0.74
D26 h-o SA 12.79 N/A N/A 0.00 0.00 7 2.26
D26 h-o EA 6.53 13.83 23.85 0.00 0.00 8 0.60
D26 h-o PSO 6.17 14.33 26.06 0.00 0.00 7 0.71
D26 h-50 SA 16.30 N/A N/A 0.00 0.00 9 2.26
D26 h-50 EA 8.20 14.70 25.89 0.00 0.00 7 0.50
D26 h-50 PSO 7.98 14.49 25.79 0.00 0.00 6 0.69
D26 h-25 SA 14.95 N/A N/A 0.00 0.00 2 2.26
D26 h-25 EA 8.51 13.68 22.62 0.00 0.00 5 0.50
D26 h-25 PSO 8.44 14.19 24.99 0.00 0.00 3 0.74
D26 l-o SA 14.53 N/A N/A 0.00 0.00 4 2.26
D26 l-o EA 6.69 13.91 23.31 0.00 0.00 9 0.58
D26 l-o PSO 6.14 13.92 22.96 0.00 0.00 7 0.81
D26 l-50 SA 15.86 N/A N/A 0.00 0.00 8 2.27
D26 l-50 EA 7.65 14.16 24.38 0.00 0.00 7 0.52
D26 l-50 PSO 8.16 14.09 23.76 0.00 0.00 6 0.81
D26 l-25 SA 14.59 N/A N/A 0.00 0.00 6 2.27
D26 l-25 EA 8.74 14.15 23.67 0.00 0.00 8 0.53
D26 l-25 PSO 8.44 13.92 24.67 0.00 0.00 3 0.72
D26 FR-o SA 13.24 N/A N/A 0.00 0.00 6 2.26
D26 FR-o EA 7.77 14.67 25.75 0.00 0.00 8 0.58
D26 FR-o PSO 6.96 14.67 25.30 0.00 0.00 6 0.73
D26 FR-50 SA 14.66 N/A N/A 0.00 0.00 9 2.26
D26 FR-50 EA 8.21 14.01 25.10 0.00 0.00 9 0.61
D26 FR-50 PSO 8.59 14.62 25.23 0.00 0.00 9 0.76
D26 FR-25 SA 14.00 N/A N/A 0.00 0.00 7 2.26
D26 FR-25 EA 8.67 13.95 24.35 0.00 0.00 8 0.50
D26 FR-25 PSO 8.60 14.07 25.33 0.00 0.00 6 0.69
D26 U SA 16.65 N/A N/A 0.00 0.00 9 0.02
D26 U EA 11.59 19.18 26.54 0.00 0.01 0 0.00
D26 U PSO 13.37 20.46 27.21 0.00 0.00 0 0.00
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Table B.10: Performance results for KC5c16 and KC5U

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5c16 O SA 4.41 N/A N/A 0.00 0.00 5 1.20
KC5c16 O EA 0.78 6.21 25.60 0.00 0.00 5 0.28
KC5c16 O PSO 0.53 5.50 22.61 0.00 0.00 5 0.36
KC5c16 BR-50 SA 8.17 N/A N/A 0.00 0.00 0 1.23
KC5c16 BR-50 EA 0.37 7.30 29.07 0.00 0.00 2 0.21
KC5c16 BR-50 PSO 0.38 6.22 26.42 0.00 0.00 4 0.42
KC5c16 BR-25 SA 6.99 N/A N/A 0.00 0.00 1 1.28
KC5c16 BR-25 EA 0.21 6.31 28.50 0.00 0.00 6 0.28
KC5c16 BR-25 PSO 0.20 5.82 25.51 0.00 0.00 6 0.41
KC5c16 h-o SA 3.09 N/A N/A 0.00 0.00 8 1.19
KC5c16 h-o EA 0.68 5.86 23.61 0.00 0.00 3 0.24
KC5c16 h-o PSO 0.65 5.66 22.42 0.00 0.00 8 0.39
KC5c16 h-50 SA 4.37 N/A N/A 0.00 0.00 1 1.24
KC5c16 h-50 EA 0.40 7.86 29.49 0.00 0.00 3 0.23
KC5c16 h-50 PSO 0.35 5.82 23.36 0.00 0.00 5 0.39
KC5c16 h-25 SA 5.39 N/A N/A 0.00 0.00 1 1.26
KC5c16 h-25 EA 0.21 5.81 25.03 0.00 0.00 7 0.30
KC5c16 h-25 PSO 0.29 6.81 27.07 0.00 0.00 3 0.39
KC5c16 l-o SA 4.57 N/A N/A 0.00 0.00 3 1.20
KC5c16 l-o EA 0.45 5.73 22.75 0.00 0.00 8 0.31
KC5c16 l-o PSO 0.50 6.58 25.19 0.00 0.00 4 0.37
KC5c16 l-50 SA 5.46 N/A N/A 0.00 0.00 0 1.24
KC5c16 l-50 EA 0.32 6.03 23.36 0.00 0.00 6 0.26
KC5c16 l-50 PSO 0.26 5.45 23.66 0.00 0.00 4 0.38
KC5c16 l-25 SA 1.16 N/A N/A 0.00 0.00 2 1.27
KC5c16 l-25 EA 0.26 6.23 26.01 0.00 0.00 6 0.32
KC5c16 l-25 PSO 0.21 6.16 26.22 0.00 0.00 3 0.37
KC5c16 FR-o SA 4.46 N/A N/A 0.00 0.00 10 1.13
KC5c16 FR-o EA 0.07 6.42 26.31 0.00 0.00 9 0.22
KC5c16 FR-o PSO 0.08 7.46 28.58 0.00 0.00 9 0.33
KC5c16 FR-50 SA 0.84 N/A N/A 0.00 0.00 10 1.17
KC5c16 FR-50 EA 0.03 5.24 27.73 0.00 0.00 9 0.23
KC5c16 FR-50 PSO 0.02 6.34 28.13 0.00 0.00 7 0.33
KC5c16 FR-25 SA 3.26 N/A N/A 0.00 0.00 3 1.22
KC5c16 FR-25 EA 0.01 7.05 28.18 0.00 0.00 6 0.22
KC5c16 FR-25 PSO 0.01 6.16 27.75 0.00 0.00 2 0.31
KC5 U SA 17.55 N/A N/A 0.00 0.00 4 0.02
KC5 U EA 11.77 22.22 31.27 0.00 0.03 0 0.00
KC5 U PSO 8.04 19.43 31.29 0.00 0.01 0 0.00
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Table B.11: Performance results for KC5c32

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5c32 O SA 2.23 N/A N/A 0.00 0.00 4 3.93
KC5c32 O EA 0.39 4.74 25.95 0.00 0.00 9 1.47
KC5c32 O PSO 0.36 4.73 25.32 0.00 0.00 9 2.39
KC5c32 BR-50 SA 0.83 N/A N/A 0.00 0.00 1 4.04
KC5c32 BR-50 EA 0.28 3.55 22.12 0.00 0.00 9 1.44
KC5c32 BR-50 PSO 0.33 3.95 25.65 0.00 0.00 8 2.33
KC5c32 BR-25 SA 3.68 N/A N/A 0.00 0.00 3 4.14
KC5c32 BR-25 EA 0.17 2.99 22.24 0.00 0.00 9 1.45
KC5c32 BR-25 PSO 0.18 3.24 25.44 0.00 0.00 8 2.41
KC5c32 h-o SA 3.64 N/A N/A 0.00 0.00 1 3.93
KC5c32 h-o EA 0.41 3.51 20.97 0.00 0.00 8 1.43
KC5c32 h-o PSO 0.46 4.08 22.43 0.00 0.00 9 2.57
KC5c32 h-50 SA 2.06 N/A N/A 0.00 0.00 1 4.05
KC5c32 h-50 EA 0.26 3.96 26.31 0.00 0.00 6 1.39
KC5c32 h-50 PSO 0.25 4.07 26.43 0.00 0.00 8 2.40
KC5c32 h-25 SA 3.43 N/A N/A 0.00 0.00 0 4.18
KC5c32 h-25 EA 0.16 3.62 25.23 0.00 0.00 8 1.42
KC5c32 h-25 PSO 0.20 3.83 27.42 0.00 0.00 8 2.50
KC5c32 l-o SA 5.77 N/A N/A 0.00 0.00 5 3.92
KC5c32 l-o EA 0.42 4.17 22.23 0.00 0.00 7 1.75
KC5c32 l-o PSO 0.33 3.60 20.84 0.00 0.00 7 2.21
KC5c32 l-50 SA 4.55 N/A N/A 0.00 0.00 0 4.05
KC5c32 l-50 EA 0.25 3.30 23.56 0.00 0.00 10 1.78
KC5c32 l-50 PSO 0.24 4.40 26.57 0.00 0.00 7 2.35
KC5c32 l-25 SA 0.59 N/A N/A 0.00 0.00 2 4.17
KC5c32 l-25 EA 0.19 3.83 26.30 0.00 0.00 8 1.57
KC5c32 l-25 PSO 0.19 3.00 22.57 0.00 0.00 7 2.51
KC5c32 FR-o SA 2.39 N/A N/A 0.00 0.00 10 3.66
KC5c32 FR-o EA 0.02 4.13 25.47 0.00 0.00 10 1.70
KC5c32 FR-o PSO 0.01 3.45 25.70 0.00 0.00 10 2.05
KC5c32 FR-50 SA 0.33 N/A N/A 0.00 0.00 10 3.77
KC5c32 FR-50 EA 0.01 4.11 27.37 0.00 0.00 10 1.37
KC5c32 FR-50 PSO 0.01 2.82 23.11 0.00 0.00 10 2.10
KC5c32 FR-25 SA 1.42 N/A N/A 0.00 0.00 5 3.98
KC5c32 FR-25 EA 0.00 2.30 21.84 0.00 0.00 8 1.14
KC5c32 FR-25 PSO 0.00 3.78 28.18 0.00 0.00 5 1.80
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Table B.12: Performance results for KC5c64

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5c64 O SA 4.16 N/A N/A 0.00 0.00 3 14.00
KC5c64 O EA 0.34 3.34 19.50 0.00 0.00 8 4.92
KC5c64 O PSO 0.34 3.60 19.55 0.00 0.00 9 8.77
KC5c64 BR-50 SA 1.12 N/A N/A 0.00 0.00 2 14.38
KC5c64 BR-50 EA 0.28 2.02 14.97 0.00 0.00 10 6.42
KC5c64 BR-50 PSO 0.27 2.24 19.10 0.00 0.00 8 9.11
KC5c64 BR-25 SA 0.59 N/A N/A 0.00 0.00 2 14.71
KC5c64 BR-25 EA 0.16 1.80 15.07 0.00 0.00 6 6.58
KC5c64 BR-25 PSO 0.18 2.54 20.36 0.00 0.00 9 9.18
KC5c64 h-o SA 2.23 N/A N/A 0.00 0.00 2 13.97
KC5c64 h-o EA 0.39 3.19 20.41 0.00 0.00 10 6.29
KC5c64 h-o PSO 0.40 2.95 16.48 0.00 0.00 9 9.18
KC5c64 h-50 SA 1.01 N/A N/A 0.00 0.00 2 14.58
KC5c64 h-50 EA 0.30 2.92 22.46 0.00 0.00 9 5.71
KC5c64 h-50 PSO 0.30 2.60 17.17 0.00 0.00 9 8.84
KC5c64 h-25 SA 1.20 N/A N/A 0.00 0.00 0 14.90
KC5c64 h-25 EA 0.22 2.15 19.19 0.00 0.00 9 5.85
KC5c64 h-25 PSO 0.16 2.05 19.03 0.00 0.00 9 8.80
KC5c64 l-o SA 1.63 N/A N/A 0.00 0.00 3 13.94
KC5c64 l-o EA 0.43 3.06 17.63 0.00 0.00 7 5.42
KC5c64 l-o PSO 0.44 3.10 17.86 0.00 0.00 10 9.16
KC5c64 l-50 SA 1.08 N/A N/A 0.00 0.00 0 14.51
KC5c64 l-50 EA 0.36 2.38 16.14 0.00 0.00 10 6.46
KC5c64 l-50 PSO 0.26 2.06 14.39 0.00 0.00 10 8.81
KC5c64 l-25 SA 3.64 N/A N/A 0.00 0.00 1 14.85
KC5c64 l-25 EA 0.16 1.44 12.62 0.00 0.00 10 6.65
KC5c64 l-25 PSO 0.17 3.31 26.65 0.00 0.00 6 8.84
KC5c64 FR-o SA 6.31 N/A N/A 0.00 0.00 2 12.97
KC5c64 FR-o EA 0.02 2.00 15.62 0.00 0.00 10 5.19
KC5c64 FR-o PSO 0.02 3.12 22.76 0.00 0.00 10 7.55
KC5c64 FR-50 SA 0.50 N/A N/A 0.00 0.00 10 13.45
KC5c64 FR-50 EA 0.02 2.03 20.12 0.00 0.00 10 5.00
KC5c64 FR-50 PSO 0.01 1.72 19.69 0.00 0.00 9 7.30
KC5c64 FR-25 SA 0.85 N/A N/A 0.00 0.00 2 14.12
KC5c64 FR-25 EA 0.00 2.16 22.62 0.00 0.00 8 5.60
KC5c64 FR-25 PSO 0.01 1.57 18.08 0.00 0.00 6 7.21
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Table B.13: Performance results for KC5c128

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5c128 O SA 1.73 N/A N/A 0.00 0.00 1 52.85
KC5c128 O EA 0.44 2.48 10.80 0.00 0.00 8 22.01
KC5c128 O PSO 0.46 2.67 14.58 0.00 0.00 8 32.83
KC5c128 BR-50 SA 0.92 N/A N/A 0.00 0.00 0 54.77
KC5c128 BR-50 EA 0.27 2.19 14.67 0.00 0.00 9 23.82
KC5c128 BR-50 PSO 0.26 1.87 12.48 0.00 0.00 9 32.85
KC5c128 BR-25 SA 0.59 N/A N/A 0.00 0.00 1 55.81
KC5c128 BR-25 EA 0.21 1.17 9.62 0.00 0.00 5 15.62
KC5c128 BR-25 PSO 0.19 1.17 9.19 0.00 0.00 8 31.11
KC5c128 h-o SA 5.47 N/A N/A 0.00 0.00 1 52.79
KC5c128 h-o EA 0.33 2.90 18.30 0.00 0.00 9 23.25
KC5c128 h-o PSO 0.37 2.59 13.33 0.00 0.00 10 34.15
KC5c128 h-50 SA 2.90 N/A N/A 0.00 0.00 0 54.21
KC5c128 h-50 EA 0.26 1.82 10.67 0.00 0.00 8 22.87
KC5c128 h-50 PSO 0.26 1.50 9.38 0.00 0.00 9 38.13
KC5c128 h-25 SA 1.81 N/A N/A 0.00 0.00 0 55.59
KC5c128 h-25 EA 0.15 1.61 16.32 0.00 0.00 9 22.38
KC5c128 h-25 PSO 0.16 1.51 15.27 0.00 0.00 10 33.42
KC5c128 l-o SA 1.78 N/A N/A 0.00 0.00 1 52.80
KC5c128 l-o EA 0.45 2.87 15.15 0.00 0.00 9 26.39
KC5c128 l-o PSO 0.34 2.56 12.56 0.00 0.00 9 33.32
KC5c128 l-50 SA 0.84 N/A N/A 0.00 0.00 0 54.25
KC5c128 l-50 EA 0.29 1.82 11.61 0.00 0.00 7 20.02
KC5c128 l-50 PSO 0.31 1.46 7.70 0.00 0.00 7 33.59
KC5c128 l-25 SA 0.49 N/A N/A 0.00 0.00 1 55.47
KC5c128 l-25 EA 0.19 1.97 19.01 0.00 0.00 10 23.75
KC5c128 l-25 PSO 0.16 1.62 15.50 0.00 0.00 9 33.63
KC5c128 FR-o SA 0.97 N/A N/A 0.00 0.00 2 48.12
KC5c128 FR-o EA 0.01 1.98 18.40 0.00 0.00 10 18.95
KC5c128 FR-o PSO 0.02 1.54 11.75 0.00 0.00 9 27.68
KC5c128 FR-50 SA 0.37 N/A N/A 0.00 0.00 10 50.39
KC5c128 FR-50 EA 0.00 0.88 8.28 0.00 0.00 10 15.04
KC5c128 FR-50 PSO 0.01 0.54 4.43 0.00 0.00 10 26.27
KC5c128 FR-25 SA 1.40 N/A N/A 0.00 0.00 4 53.10
KC5c128 FR-25 EA 0.01 1.01 12.72 0.00 0.00 8 16.25
KC5c128 FR-25 PSO 0.01 1.84 19.83 0.00 0.00 7 27.86
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Table B.14: Performance results for KC5c256

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5c256 O SA 1.82 N/A N/A 0.00 0.00 2 203.04
KC5c256 O EA 0.37 1.83 5.61 0.00 0.00 9 90.33
KC5c256 O PSO 0.33 2.13 9.08 0.00 0.00 8 119.74
KC5c256 BR-50 SA 0.99 N/A N/A 0.00 0.00 0 210.86
KC5c256 BR-50 EA 0.33 1.16 4.27 0.00 0.00 10 89.03
KC5c256 BR-50 PSO 0.26 1.61 1N/A 0.00 0.00 10 144.59
KC5c256 BR-25 SA 0.57 N/A N/A 0.00 0.00 1 216.53
KC5c256 BR-25 EA 0.17 1.29 10.19 0.00 0.00 9 90.86
KC5c256 BR-25 PSO 0.19 1.12 10.19 0.00 0.00 8 128.74
KC5c256 h-o SA 4.06 N/A N/A 0.00 0.00 3 204.31
KC5c256 h-o EA 0.46 2.10 9.41 0.00 0.00 9 92.64
KC5c256 h-o PSO 0.38 2.41 11.38 0.00 0.00 10 124.75
KC5c256 h-50 SA 1.27 N/A N/A 0.00 0.00 5 208.86
KC5c256 h-50 EA 0.25 1.47 8.18 0.00 0.00 9 72.99
KC5c256 h-50 PSO 0.31 1.17 3.76 0.00 0.00 8 118.50
KC5c256 h-25 SA 0.48 N/A N/A 0.00 0.00 2 214.43
KC5c256 h-25 EA 0.19 0.93 6.74 0.00 0.00 9 82.74
KC5c256 h-25 PSO 0.17 1.20 8.74 0.00 0.00 8 120.18
KC5c256 l-o SA 1.42 N/A N/A 0.00 0.00 2 208.37
KC5c256 l-o EA 0.44 1.66 5.72 0.00 0.00 10 93.40
KC5c256 l-o PSO 0.39 2.10 12.18 0.00 0.00 9 133.83
KC5c256 l-50 SA 0.99 N/A N/A 0.00 0.00 6 209.08
KC5c256 l-50 EA 0.25 1.38 7.24 0.00 0.00 9 67.52
KC5c256 l-50 PSO 0.30 2.08 13.15 0.00 0.00 9 126.01
KC5c256 l-25 SA 0.57 N/A N/A 0.00 0.00 3 214.96
KC5c256 l-25 EA 0.17 1.27 11.62 0.00 0.00 9 78.88
KC5c256 l-25 PSO 0.18 0.94 6.75 0.00 0.00 10 139.72
KC5c256 FR-o SA 0.90 N/A N/A 0.00 0.00 4 183.75
KC5c256 FR-o EA 0.02 1.16 5.82 0.00 0.00 10 66.74
KC5c256 FR-o PSO 0.01 1.26 7.78 0.00 0.00 10 105.96
KC5c256 FR-50 SA 0.48 N/A N/A 0.00 0.00 10 195.33
KC5c256 FR-50 EA 0.01 0.89 6.84 0.00 0.00 10 70.28
KC5c256 FR-50 PSO 0.01 0.83 7.45 0.00 0.00 10 116.89
KC5c256 FR-25 SA 0.19 N/A N/A 0.00 0.00 4 206.80
KC5c256 FR-25 EA 0.00 0.85 8.22 0.00 0.00 6 56.88
KC5c256 FR-25 PSO 0.00 0.36 3.47 0.00 0.00 8 103.90
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Table B.15: Performance results for KC5c512

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5c512 O SA 1.45 N/A N/A 0.00 0.00 2 801.96
KC5c512 O EA 0.43 2.20 8.74 0.00 0.00 9 368.05
KC5c512 O PSO 0.42 1.82 4.34 0.00 0.00 10 580.15
KC5c512 BR-50 SA 1.06 N/A N/A 0.00 0.00 3 847.22
KC5c512 BR-50 EA 0.26 0.99 1.62 0.00 0.00 7 319.76
KC5c512 BR-50 PSO 0.25 1.00 2.09 0.00 0.00 7 515.19
KC5c512 BR-25 SA 0.59 N/A N/A 0.00 0.00 2 862.75
KC5c512 BR-25 EA 0.19 1.22 10.61 0.00 0.00 8 258.19
KC5c512 BR-25 PSO 0.16 0.92 6.53 0.00 0.00 9 513.13
KC5c512 h-o SA 1.56 N/A N/A 0.00 0.00 0 811.07
KC5c512 h-o EA 0.45 1.90 5.52 0.00 0.00 9 316.93
KC5c512 h-o PSO 0.40 2.00 6.68 0.00 0.00 9 531.77
KC5c512 h-50 SA 1.30 N/A N/A 0.00 0.00 1 821.35
KC5c512 h-50 EA 0.27 1.12 3.43 0.00 0.00 9 357.94
KC5c512 h-50 PSO 0.25 1.13 3.79 0.00 0.00 7 515.28
KC5c512 h-25 SA 0.64 N/A N/A 0.00 0.00 3 842.34
KC5c512 h-25 EA 0.20 0.78 3.88 0.00 0.00 8 288.42
KC5c512 h-25 PSO 0.17 1.02 7.22 0.00 0.00 8 487.22
KC5c512 l-o SA 1.24 N/A N/A 0.00 0.00 1 767.62
KC5c512 l-o EA 0.24 1.37 6.79 0.00 0.00 8 359.93
KC5c512 l-o PSO 0.15 1.24 6.00 0.00 0.00 10 493.07
KC5c512 l-50 SA 0.67 N/A N/A 0.00 0.00 2 816.75
KC5c512 l-50 EA 0.25 0.69 1.17 0.00 0.00 7 269.46
KC5c512 l-50 PSO 0.27 0.79 2.35 0.00 0.00 7 457.34
KC5c512 l-25 SA 0.45 N/A N/A 0.00 0.00 1 843.97
KC5c512 l-25 EA 0.18 0.58 1.43 0.00 0.00 9 285.27
KC5c512 l-25 PSO 0.16 0.54 0.84 0.00 0.00 9 501.72
KC5c512 FR-o SA 0.91 N/A N/A 0.03 0.03 0 720.48
KC5c512 FR-o EA 0.08 0.92 2.94 0.00 0.02 1 237.95
KC5c512 FR-o PSO 0.01 0.91 2.89 0.03 0.03 0 411.49
KC5c512 FR-50 SA 0.41 N/A N/A 0.00 0.00 0 762.15
KC5c512 FR-50 EA 0.01 0.52 3.01 0.00 0.00 8 254.68
KC5c512 FR-50 PSO 0.01 0.52 3.58 0.00 0.00 4 399.58
KC5c512 FR-25 SA 0.13 N/A N/A 0.00 0.00 5 807.46
KC5c512 FR-25 EA 0.00 0.15 0.32 0.00 0.00 6 187.75
KC5c512 FR-25 PSO 0.01 0.30 2.63 0.00 0.00 6 408.54
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Table B.16: Performance results for KC5i16

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5i16 O SA 2.65 N/A N/A 0.00 0.00 4 1.21
KC5i16 O EA 0.50 6.66 27.64 0.00 0.00 7 0.30
KC5i16 O PSO 0.44 6.90 24.97 0.00 0.00 8 0.38
KC5i16 BR-50 SA 3.25 N/A N/A 0.00 0.00 1 1.23
KC5i16 BR-50 EA 0.36 6.33 26.32 0.00 0.00 7 0.28
KC5i16 BR-50 PSO 0.32 5.78 25.66 0.00 0.00 6 0.38
KC5i16 BR-25 SA 4.86 N/A N/A 0.00 0.00 0 1.26
KC5i16 BR-25 EA 0.22 7.17 29.28 0.00 0.00 4 0.26
KC5i16 BR-25 PSO 0.26 7.06 29.70 0.00 0.00 1 0.38
KC5i16 h-o SA 4.22 N/A N/A 0.00 0.00 6 1.19
KC5i16 h-o EA 0.72 6.09 24.57 0.00 0.00 7 0.28
KC5i16 h-o PSO 0.46 5.89 24.06 0.00 0.00 7 0.35
KC5i16 h-50 SA 9.15 N/A N/A 0.00 0.00 3 1.23
KC5i16 h-50 EA 0.31 6.27 24.17 0.00 0.00 6 0.27
KC5i16 h-50 PSO 0.36 6.93 26.08 0.00 0.00 8 0.42
KC5i16 h-25 SA 5.89 N/A N/A 0.00 0.00 0 1.27
KC5i16 h-25 EA 0.26 5.66 24.85 0.00 0.00 5 0.29
KC5i16 h-25 PSO 0.19 6.01 27.72 0.00 0.00 1 0.38
KC5i16 l-o SA 6.17 N/A N/A 0.00 0.00 2 1.19
KC5i16 l-o EA 0.44 6.62 26.55 0.00 0.00 9 0.25
KC5i16 l-o PSO 0.61 6.93 26.05 0.00 0.00 8 0.42
KC5i16 l-50 SA 3.18 N/A N/A 0.00 0.00 2 1.24
KC5i16 l-50 EA 0.39 5.95 27.09 0.00 0.00 6 0.24
KC5i16 l-50 PSO 0.35 6.75 29.07 0.00 0.00 4 0.37
KC5i16 l-25 SA 3.06 N/A N/A 0.00 0.00 0 1.27
KC5i16 l-25 EA 0.17 6.20 28.15 0.00 0.00 3 0.22
KC5i16 l-25 PSO 0.25 5.63 24.25 0.00 0.00 0 0.36
KC5i16 FR-o SA 4.95 N/A N/A 0.00 0.00 4 1.14
KC5i16 FR-o EA 0.12 5.80 24.94 0.00 0.00 4 0.20
KC5i16 FR-o PSO 0.16 4.78 21.87 0.00 0.00 7 0.31
KC5i16 FR-50 SA 3.99 N/A N/A 0.00 0.00 9 1.17
KC5i16 FR-50 EA 0.01 6.24 26.87 0.00 0.00 8 0.21
KC5i16 FR-50 PSO 0.02 5.27 24.53 0.00 0.00 6 0.31
KC5i16 FR-25 SA 2.17 N/A N/A 0.00 0.00 1 1.22
KC5i16 FR-25 EA 0.02 6.58 27.34 0.00 0.00 7 0.24
KC5i16 FR-25 PSO 0.01 4.61 24.70 0.00 0.00 4 0.35
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Table B.17: Performance results for KC5i32

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5i32 O SA 1.27 N/A N/A 0.00 0.00 3 3.97
KC5i32 O EA 0.42 3.91 19.95 0.00 0.00 9 1.53
KC5i32 O PSO 0.33 4.01 22.27 0.00 0.00 9 2.39
KC5i32 BR-50 SA 3.24 N/A N/A 0.00 0.00 2 4.04
KC5i32 BR-50 EA 0.25 3.29 23.15 0.00 0.00 10 1.59
KC5i32 BR-50 PSO 0.30 3.70 23.36 0.00 0.00 9 2.21
KC5i32 BR-25 SA 7.32 N/A N/A 0.00 0.00 0 4.14
KC5i32 BR-25 EA 0.16 3.55 27.72 0.00 0.00 7 1.54
KC5i32 BR-25 PSO 0.15 3.17 23.76 0.00 0.00 6 2.30
KC5i32 h-o SA 1.96 N/A N/A 0.00 0.00 2 3.92
KC5i32 h-o EA 0.38 4.12 22.90 0.00 0.00 8 1.73
KC5i32 h-o PSO 0.43 4.14 24.85 0.00 0.00 9 2.66
KC5i32 h-50 SA 1.72 N/A N/A 0.00 0.00 0 4.07
KC5i32 h-50 EA 0.28 3.32 25.06 0.00 0.00 6 1.24
KC5i32 h-50 PSO 0.26 3.62 24.81 0.00 0.00 10 2.37
KC5i32 h-25 SA 0.49 N/A N/A 0.00 0.00 1 4.18
KC5i32 h-25 EA 0.18 2.84 23.00 0.00 0.00 7 1.55
KC5i32 h-25 PSO 0.17 2.73 2N/A 0.00 0.00 7 2.42
KC5i32 l-o SA 1.37 N/A N/A 0.00 0.00 2 3.92
KC5i32 l-o EA 0.29 3.33 20.97 0.00 0.00 8 1.52
KC5i32 l-o PSO 0.28 3.99 27.23 0.00 0.00 9 2.26
KC5i32 l-50 SA 1.08 N/A N/A 0.00 0.00 3 4.07
KC5i32 l-50 EA 0.31 3.63 24.34 0.00 0.00 9 1.43
KC5i32 l-50 PSO 0.25 3.48 24.39 0.00 0.00 10 2.51
KC5i32 l-25 SA 2.80 N/A N/A 0.00 0.00 1 4.19
KC5i32 l-25 EA 0.20 3.95 28.15 0.00 0.00 7 1.63
KC5i32 l-25 PSO 0.17 3.30 23.60 0.00 0.00 9 2.65
KC5i32 FR-o SA 3.02 N/A N/A 0.00 0.00 10 3.67
KC5i32 FR-o EA 0.06 3.56 20.96 0.00 0.00 10 1.35
KC5i32 FR-o PSO 0.02 3.39 22.64 0.00 0.00 10 1.85
KC5i32 FR-50 SA 0.36 N/A N/A 0.00 0.00 10 3.79
KC5i32 FR-50 EA 0.00 3.14 26.10 0.00 0.00 10 1.29
KC5i32 FR-50 PSO 0.01 2.98 21.60 0.00 0.00 10 2.16
KC5i32 FR-25 SA 0.23 N/A N/A 0.00 0.00 3 3.98
KC5i32 FR-25 EA 0.00 3.00 23.46 0.00 0.00 8 0.94
KC5i32 FR-25 PSO 0.00 2.74 24.05 0.00 0.00 6 1.94
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Table B.18: Performance results for KC5i64

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5i64 O SA 1.34 N/A N/A 0.00 0.02 0 14.01
KC5i64 O EA 0.33 3.03 20.21 0.00 0.00 9 5.04
KC5i64 O PSO 0.39 2.76 15.57 0.00 0.00 9 10.03
KC5i64 BR-50 SA 2.90 N/A N/A 0.00 0.00 3 14.52
KC5i64 BR-50 EA 0.29 2.95 21.96 0.00 0.00 10 5.82
KC5i64 BR-50 PSO 0.30 2.36 16.57 0.00 0.00 9 8.82
KC5i64 BR-25 SA 1.26 N/A N/A 0.00 0.00 1 14.96
KC5i64 BR-25 EA 0.17 1.97 16.48 0.00 0.00 7 6.85
KC5i64 BR-25 PSO 0.17 2.14 16.93 0.00 0.00 7 8.66
KC5i64 h-o SA 5.11 N/A N/A 0.00 0.00 7 14.46
KC5i64 h-o EA 0.39 3.36 20.63 0.00 0.00 9 5.98
KC5i64 h-o PSO 0.44 3.35 18.99 0.00 0.00 9 8.16
KC5i64 h-50 SA 3.08 N/A N/A 0.00 0.10 1 14.40
KC5i64 h-50 EA 0.26 2.87 21.27 0.11 0.11 0 6.12
KC5i64 h-50 PSO 0.25 2.97 22.66 0.11 0.11 0 8.94
KC5i64 h-25 SA 0.55 N/A N/A 0.00 0.00 1 14.81
KC5i64 h-25 EA 0.18 2.26 19.80 0.00 0.00 8 5.80
KC5i64 h-25 PSO 0.17 2.41 18.54 0.00 0.00 7 8.17
KC5i64 l-o SA 4.02 N/A N/A 0.00 0.00 1 13.44
KC5i64 l-o EA 0.09 2.16 17.65 0.00 0.00 8 5.47
KC5i64 l-o PSO 0.15 2.70 18.98 0.00 0.00 7 7.99
KC5i64 l-50 SA 2.16 N/A N/A 0.00 0.00 2 14.48
KC5i64 l-50 EA 0.34 2.58 18.54 0.00 0.00 10 7.24
KC5i64 l-50 PSO 0.34 2.77 20.82 0.00 0.00 7 9.41
KC5i64 l-25 SA 3.62 N/A N/A 0.00 0.00 0 14.87
KC5i64 l-25 EA 0.19 2.67 22.19 0.00 0.00 8 5.66
KC5i64 l-25 PSO 0.17 2.22 19.82 0.00 0.00 10 8.63
KC5i64 FR-o SA 0.60 N/A N/A 0.00 0.00 10 12.81
KC5i64 FR-o EA 0.03 3.37 25.88 0.00 0.00 9 5.83
KC5i64 FR-o PSO 0.01 2.71 22.20 0.00 0.00 10 7.70
KC5i64 FR-50 SA 0.48 N/A N/A 0.00 0.00 9 13.48
KC5i64 FR-50 EA 0.01 0.94 7.87 0.00 0.00 10 4.68
KC5i64 FR-50 PSO 0.00 2.25 20.23 0.00 0.00 10 7.28
KC5i64 FR-25 SA 2.49 N/A N/A 0.00 0.00 5 14.24
KC5i64 FR-25 EA 0.00 2.38 21.48 0.00 0.00 8 4.13
KC5i64 FR-25 PSO 0.01 1.53 18.72 0.00 0.00 8 7.66
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Table B.19: Performance results for KC5i128

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5i128 O SA 1.37 N/A N/A 0.00 0.00 5 53.10
KC5i128 O EA 0.45 2.90 16.83 0.00 0.00 10 20.58
KC5i128 O PSO 0.42 2.76 14.80 0.00 0.00 7 31.35
KC5i128 BR-50 SA 0.96 N/A N/A 0.00 0.00 2 54.70
KC5i128 BR-50 EA 0.34 1.33 4.91 0.00 0.00 8 19.26
KC5i128 BR-50 PSO 0.25 2.23 17.52 0.00 0.00 10 37.70
KC5i128 BR-25 SA 0.58 N/A N/A 0.00 0.00 0 56.10
KC5i128 BR-25 EA 0.19 1.71 14.92 0.00 0.00 8 20.95
KC5i128 BR-25 PSO 0.21 1.78 15.30 0.00 0.00 9 35.72
KC5i128 h-o SA 2.00 N/A N/A 0.00 0.03 0 59.40
KC5i128 h-o EA 0.38 2.48 15.01 0.00 0.00 9 27.65
KC5i128 h-o PSO 0.49 2.56 12.96 0.00 0.00 10 34.47
KC5i128 h-50 SA 1.15 N/A N/A 0.00 0.00 2 54.86
KC5i128 h-50 EA 0.28 2.11 15.84 0.00 0.00 8 21.54
KC5i128 h-50 PSO 0.33 1.95 12.32 0.00 0.00 8 32.43
KC5i128 h-25 SA 0.50 N/A N/A 0.00 0.00 0 56.08
KC5i128 h-25 EA 0.17 1.42 11.64 0.00 0.00 10 24.01
KC5i128 h-25 PSO 0.17 1.25 10.27 0.00 0.00 7 31.95
KC5i128 l-o SA 1.03 N/A N/A 0.00 0.00 5 52.51
KC5i128 l-o EA 0.29 2.15 14.70 0.00 0.00 8 20.08
KC5i128 l-o PSO 0.29 1.81 10.41 0.00 0.00 9 30.42
KC5i128 l-50 SA 0.94 N/A N/A 0.00 0.00 4 54.72
KC5i128 l-50 EA 0.28 1.81 12.13 0.00 0.00 9 22.29
KC5i128 l-50 PSO 0.30 1.63 10.92 0.00 0.00 10 33.58
KC5i128 l-25 SA 5.50 N/A N/A 0.00 0.00 1 56.15
KC5i128 l-25 EA 0.16 1.38 11.83 0.00 0.00 8 21.68
KC5i128 l-25 PSO 0.16 2.03 18.97 0.00 0.00 8 35.16
KC5i128 FR-o SA 0.79 N/A N/A 0.00 0.00 5 48.23
KC5i128 FR-o EA 0.08 1.82 12.85 0.00 0.00 8 19.43
KC5i128 FR-o PSO 0.01 1.50 9.05 0.00 0.00 10 27.91
KC5i128 FR-50 SA 1.03 N/A N/A 0.00 0.00 10 50.61
KC5i128 FR-50 EA 0.01 1.64 15.69 0.00 0.00 10 20.55
KC5i128 FR-50 PSO 0.00 1.36 13.84 0.00 0.00 10 26.57
KC5i128 FR-25 SA 0.21 N/A N/A 0.00 0.00 2 53.70
KC5i128 FR-25 EA 0.01 1.30 15.54 0.00 0.00 7 15.81
KC5i128 FR-25 PSO 0.00 1.39 15.57 0.00 0.00 8 27.99

116



Table B.20: Performance results for KC5i256

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5i256 O SA 1.58 N/A N/A 0.00 0.00 7 204.22
KC5i256 O EA 0.50 2.19 9.40 0.00 0.00 10 83.57
KC5i256 O PSO 0.43 1.91 5.00 0.00 0.00 10 127.94
KC5i256 BR-50 SA 2.88 N/A N/A 0.00 0.00 2 210.86
KC5i256 BR-50 EA 0.32 1.06 2.11 0.00 0.00 9 77.25
KC5i256 BR-50 PSO 0.29 1.15 4.25 0.00 0.00 9 130.47
KC5i256 BR-25 SA 0.52 N/A N/A 0.00 0.00 3 216.80
KC5i256 BR-25 EA 0.20 0.83 5.11 0.00 0.00 8 75.09
KC5i256 BR-25 PSO 0.16 1.07 8.11 0.00 0.00 8 128.82
KC5i256 h-o SA 2.31 N/A N/A 0.00 0.00 2 202.98
KC5i256 h-o EA 0.41 1.76 4.43 0.00 0.00 10 99.72
KC5i256 h-o PSO 0.39 2.26 9.32 0.00 0.00 10 121.53
KC5i256 h-50 SA 3.93 N/A N/A 0.00 0.00 2 211.16
KC5i256 h-50 EA 0.31 2.17 14.78 0.00 0.00 10 84.49
KC5i256 h-50 PSO 0.24 1.23 5.91 0.00 0.00 10 123.59
KC5i256 h-25 SA 0.60 N/A N/A 0.00 0.00 2 215.74
KC5i256 h-25 EA 0.18 0.70 3.14 0.00 0.00 7 75.10
KC5i256 h-25 PSO 0.16 0.82 5.08 0.00 0.00 10 123.35
KC5i256 l-o SA 1.91 N/A N/A 0.00 0.00 4 202.98
KC5i256 l-o EA 0.59 1.77 3.25 0.00 0.00 10 90.03
KC5i256 l-o PSO 0.48 2.23 7.85 0.00 0.00 10 131.60
KC5i256 l-50 SA 1.18 N/A N/A 0.00 0.00 2 211.52
KC5i256 l-50 EA 0.24 1.39 8.35 0.00 0.00 9 72.13
KC5i256 l-50 PSO 0.29 1.70 11.71 0.00 0.00 10 131.41
KC5i256 l-25 SA 0.57 N/A N/A 0.00 0.00 1 216.32
KC5i256 l-25 EA 0.19 0.94 6.72 0.00 0.00 8 72.06
KC5i256 l-25 PSO 0.16 0.86 5.72 0.00 0.00 10 146.57
KC5i256 FR-o SA 1.22 N/A N/A 0.00 0.00 9 187.07
KC5i256 FR-o EA 0.01 1.03 4.60 0.00 0.00 9 70.16
KC5i256 FR-o PSO 0.03 1.06 4.59 0.00 0.00 10 114.43
KC5i256 FR-50 SA 0.38 N/A N/A 0.00 0.00 10 194.96
KC5i256 FR-50 EA 0.02 0.69 6.06 0.00 0.00 10 66.08
KC5i256 FR-50 PSO 0.01 0.81 6.05 0.00 0.00 10 105.35
KC5i256 FR-25 SA 0.19 N/A N/A 0.00 0.00 2 206.12
KC5i256 FR-25 EA 0.00 1.27 14.12 0.00 0.00 5 49.45
KC5i256 FR-25 PSO 0.00 0.45 4.66 0.00 0.00 5 107.04
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Table B.21: Performance results for KC5i512

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC5i512 O SA 1.93 N/A N/A 0.00 0.00 2 798.88
KC5i512 O EA 0.32 1.93 6.25 0.00 0.00 9 421.88
KC5i512 O PSO 0.45 1.83 3.79 0.00 0.00 10 527.56
KC5i512 BR-50 SA 1.19 N/A N/A 0.00 0.00 4 827.93
KC5i512 BR-50 EA 0.26 1.49 6.69 0.00 0.00 6 273.43
KC5i512 BR-50 PSO 0.26 1.14 4.25 0.00 0.00 9 504.24
KC5i512 BR-25 SA 0.58 N/A N/A 0.00 0.00 1 852.94
KC5i512 BR-25 EA 0.18 0.70 3.15 0.00 0.00 9 294.86
KC5i512 BR-25 PSO 0.17 0.56 0.85 0.00 0.00 9 536.70
KC5i512 h-o SA 1.62 N/A N/A 0.00 0.00 5 802.57
KC5i512 h-o EA 0.44 1.95 5.96 0.00 0.00 10 348.04
KC5i512 h-o PSO 0.36 2.00 6.43 0.00 0.00 9 535.77
KC5i512 h-50 SA 1.04 N/A N/A 0.00 0.00 2 826.95
KC5i512 h-50 EA 0.25 0.99 1.59 0.00 0.00 10 303.10
KC5i512 h-50 PSO 0.34 1.01 1.58 0.00 0.00 9 520.88
KC5i512 h-25 SA 0.54 N/A N/A 0.00 0.00 3 847.16
KC5i512 h-25 EA 0.19 0.77 4.31 0.00 0.00 10 355.09
KC5i512 h-25 PSO 0.17 0.78 3.88 0.00 0.00 6 511.01
KC5i512 l-o SA 1.42 N/A N/A 0.00 0.00 1 800.26
KC5i512 l-o EA 0.38 2.14 9.15 0.00 0.00 6 285.36
KC5i512 l-o PSO 0.43 1.92 4.46 0.00 0.00 9 528.28
KC5i512 l-50 SA 0.96 N/A N/A 0.00 0.00 2 826.82
KC5i512 l-50 EA 0.29 1.33 6.05 0.00 0.00 10 338.38
KC5i512 l-50 PSO 0.31 1.19 3.79 0.00 0.00 10 506.86
KC5i512 l-25 SA 0.54 N/A N/A 0.00 0.00 0 850.77
KC5i512 l-25 EA 0.21 1.06 8.01 0.00 0.00 9 331.34
KC5i512 l-25 PSO 0.20 0.57 0.87 0.00 0.00 7 516.46
KC5i512 FR-o SA 0.52 N/A N/A 0.00 0.00 8 730.78
KC5i512 FR-o EA 0.02 1.05 4.42 0.00 0.00 10 272.60
KC5i512 FR-o PSO 0.03 0.85 2.31 0.00 0.00 10 454.37
KC5i512 FR-50 SA 0.31 N/A N/A 0.00 0.00 10 757.20
KC5i512 FR-50 EA 0.03 0.44 1.94 0.00 0.00 10 233.82
KC5i512 FR-50 PSO 0.01 0.63 4.96 0.00 0.00 9 438.09
KC5i512 FR-25 SA 0.16 N/A N/A 0.00 0.00 2 798.32
KC5i512 FR-25 EA 0.00 0.39 3.41 0.00 0.00 6 212.24
KC5i512 FR-25 PSO 0.01 0.33 2.86 0.00 0.00 8 424.72
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Table B.22: Performance results for KC10c16 and KC10U

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC10c16 O SA 9.39 N/A N/A 0.00 0.00 3 1.53
KC10c16 O EA 0.78 9.49 29.42 0.00 0.00 7 0.37
KC10c16 O PSO 0.46 9.75 30.20 0.00 0.00 7 0.55
KC10c16 BR-50 SA 6.66 N/A N/A 0.00 0.00 1 1.51
KC10c16 BR-50 EA 0.59 9.07 30.59 0.00 0.00 9 0.47
KC10c16 BR-50 PSO 0.57 9.77 30.43 0.00 0.00 4 0.53
KC10c16 BR-25 SA 6.51 N/A N/A 0.00 0.00 1 1.52
KC10c16 BR-25 EA 0.30 10.27 32.80 0.00 0.00 5 0.43
KC10c16 BR-25 PSO 0.36 10.21 33.59 0.00 0.00 5 0.62
KC10c16 h-o SA 10.28 N/A N/A 0.00 0.00 2 1.52
KC10c16 h-o EA 0.78 10.57 29.14 0.00 0.00 7 0.39
KC10c16 h-o PSO 0.92 10.46 30.03 0.00 0.00 8 0.59
KC10c16 h-50 SA 9.05 N/A N/A 0.00 0.00 0 1.51
KC10c16 h-50 EA 0.57 10.43 31.51 0.00 0.00 9 0.43
KC10c16 h-50 PSO 0.50 10.62 32.74 0.00 0.00 3 0.54
KC10c16 h-25 SA 15.95 N/A N/A 0.00 0.00 1 1.53
KC10c16 h-25 EA 0.30 9.53 29.28 0.00 0.00 7 0.41
KC10c16 h-25 PSO 0.34 11.85 32.54 0.00 0.00 3 0.61
KC10c16 l-o SA 10.83 N/A N/A 0.00 0.01 0 1.49
KC10c16 l-o EA 0.35 8.54 28.12 0.00 0.00 9 0.37
KC10c16 l-o PSO 0.34 9.38 29.26 0.00 0.00 8 0.62
KC10c16 l-50 SA 17.05 N/A N/A 0.00 0.00 1 1.51
KC10c16 l-50 EA 0.62 9.39 30.61 0.00 0.00 7 0.40
KC10c16 l-50 PSO 0.64 11.01 33.08 0.00 0.00 8 0.66
KC10c16 l-25 SA 5.70 N/A N/A 0.00 0.00 3 1.52
KC10c16 l-25 EA 0.33 10.47 34.02 0.00 0.00 8 0.49
KC10c16 l-25 PSO 0.29 9.75 31.05 0.00 0.00 5 0.59
KC10c16 FR-o SA 6.73 N/A N/A 0.00 0.00 0 1.19
KC10c16 FR-o EA 0.25 9.24 30.52 0.00 0.00 0 0.34
KC10c16 FR-o PSO 0.29 8.58 30.43 0.00 0.00 1 0.49
KC10c16 FR-50 SA 5.08 N/A N/A 0.00 0.00 0 1.27
KC10c16 FR-50 EA 0.04 10.08 33.49 0.00 0.00 6 0.32
KC10c16 FR-50 PSO 0.09 8.61 29.52 0.00 0.00 5 0.47
KC10c16 FR-25 SA 5.34 N/A N/A 0.00 0.00 4 1.49
KC10c16 FR-25 EA 0.02 11.14 34.06 0.00 0.00 9 0.39
KC10c16 FR-25 PSO 0.02 8.98 32.82 0.00 0.00 9 0.54
KC10 U SA 22.72 N/A N/A 0.00 0.00 2 0.02
KC10 U EA 9.83 23.55 33.71 0.00 0.01 0 0.00
KC10 U PSO 10.56 21.52 33.88 0.00 0.00 0 0.00
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Table B.23: Performance results for KC10c128

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC10c128 O SA 3.75 N/A N/A 0.00 0.02 0 52.26
KC10c128 O EA 0.57 4.26 19.92 0.00 0.00 10 24.29
KC10c128 O PSO 0.59 4.17 18.79 0.00 0.00 10 46.20
KC10c128 BR-50 SA 3.22 N/A N/A 0.00 0.00 0 59.31
KC10c128 BR-50 EA 0.40 3.66 21.81 0.00 0.00 10 27.67
KC10c128 BR-50 PSO 0.45 2.64 12.25 0.00 0.00 9 38.31
KC10c128 BR-25 SA 0.75 N/A N/A 0.00 0.00 4 60.00
KC10c128 BR-25 EA 0.35 2.35 17.85 0.00 0.00 8 28.61
KC10c128 BR-25 PSO 0.29 2.06 14.62 0.00 0.00 8 36.09
KC10c128 h-o SA 2.24 N/A N/A 0.00 0.00 2 59.18
KC10c128 h-o EA 0.37 3.95 19.95 0.00 0.00 9 22.78
KC10c128 h-o PSO 0.40 3.60 13.15 0.00 0.00 8 36.26
KC10c128 h-50 SA 2.33 N/A N/A 0.00 0.00 0 59.00
KC10c128 h-50 EA 0.65 3.64 20.15 0.00 0.00 10 25.60
KC10c128 h-50 PSO 0.39 3.65 21.86 0.00 0.00 8 38.13
KC10c128 h-25 SA 0.93 N/A N/A 0.00 0.00 1 59.50
KC10c128 h-25 EA 0.31 2.96 20.98 0.00 0.00 8 26.93
KC10c128 h-25 PSO 0.34 2.97 22.90 0.00 0.00 9 39.99
KC10c128 l-o SA 2.85 N/A N/A 0.00 0.00 3 58.72
KC10c128 l-o EA 0.47 3.87 17.46 0.00 0.00 8 24.20
KC10c128 l-o PSO 0.53 3.98 16.25 0.00 0.00 8 38.51
KC10c128 l-50 SA 1.41 N/A N/A 0.00 0.00 3 58.65
KC10c128 l-50 EA 0.60 3.42 18.49 0.00 0.00 10 27.89
KC10c128 l-50 PSO 0.43 3.10 16.62 0.00 0.00 10 38.89
KC10c128 l-25 SA 0.99 N/A N/A 0.00 0.00 1 59.45
KC10c128 l-25 EA 0.31 3.12 23.68 0.00 0.00 10 29.79
KC10c128 l-25 PSO 0.30 3.23 20.58 0.00 0.00 8 36.25
KC10c128 FR-o SA 1.24 N/A N/A 0.00 0.00 0 44.73
KC10c128 FR-o EA 0.01 3.28 22.41 0.00 0.00 0 23.28
KC10c128 FR-o PSO 0.07 3.48 22.41 0.00 0.00 1 33.67
KC10c128 FR-50 SA 1.44 N/A N/A 0.00 0.00 2 47.81
KC10c128 FR-50 EA 0.01 2.75 23.48 0.00 0.00 8 15.42
KC10c128 FR-50 PSO 0.01 2.21 19.45 0.00 0.00 10 30.36
KC10c128 FR-25 SA 0.42 N/A N/A 0.00 0.00 9 53.84
KC10c128 FR-25 EA 0.00 1.80 18.51 0.00 0.00 8 15.24
KC10c128 FR-25 PSO 0.00 1.47 13.59 0.00 0.00 9 31.24

120



Table B.24: Performance results for KC10i16

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC10i16 O SA 7.27 N/A N/A 0.00 0.00 1 1.41
KC10i16 O EA 0.83 10.86 30.24 0.00 0.00 5 0.30
KC10i16 O PSO 0.78 9.46 29.08 0.00 0.00 7 0.57
KC10i16 BR-50 SA 6.09 N/A N/A 0.00 0.00 0 1.43
KC10i16 BR-50 EA 0.52 10.57 32.88 0.00 0.00 9 0.37
KC10i16 BR-50 PSO 0.61 9.04 30.79 0.00 0.00 5 0.61
KC10i16 BR-25 SA 12.21 N/A N/A 0.00 0.00 2 1.46
KC10i16 BR-25 EA 0.42 10.52 33.03 0.00 0.00 4 0.34
KC10i16 BR-25 PSO 0.34 11.05 34.28 0.00 0.00 2 0.52
KC10i16 h-o SA 7.36 N/A N/A 0.00 0.00 3 1.40
KC10i16 h-o EA 0.67 11.02 30.67 0.00 0.00 6 0.34
KC10i16 h-o PSO 0.88 9.46 31.29 0.00 0.00 5 0.58
KC10i16 h-50 SA 5.05 N/A N/A 0.00 0.00 0 1.44
KC10i16 h-50 EA 0.43 10.80 33.45 0.00 0.00 5 0.35
KC10i16 h-50 PSO 0.50 12.03 33.70 0.00 0.00 5 0.55
KC10i16 h-25 SA 12.05 N/A N/A 0.00 0.00 0 1.47
KC10i16 h-25 EA 0.39 9.96 32.38 0.00 0.00 6 0.43
KC10i16 h-25 PSO 0.36 9.23 31.21 0.00 0.00 2 0.55
KC10i16 l-o SA 8.45 N/A N/A 0.00 0.00 1 1.40
KC10i16 l-o EA 0.70 10.67 32.17 0.00 0.00 6 0.34
KC10i16 l-o PSO 0.95 10.89 30.06 0.00 0.00 5 0.57
KC10i16 l-50 SA 8.13 N/A N/A 0.00 0.00 0 1.44
KC10i16 l-50 EA 0.60 11.12 31.56 0.00 0.00 8 0.42
KC10i16 l-50 PSO 0.56 9.36 30.67 0.00 0.00 2 0.53
KC10i16 l-25 SA 8.78 N/A N/A 0.00 0.00 0 1.47
KC10i16 l-25 EA 0.33 10.31 33.83 0.00 0.00 8 0.42
KC10i16 l-25 PSO 0.36 10.40 33.69 0.00 0.00 4 0.61
KC10i16 FR-o SA 9.02 N/A N/A 0.00 0.00 0 1.18
KC10i16 FR-o EA 0.39 9.09 31.24 0.00 0.00 1 0.37
KC10i16 FR-o PSO 0.20 8.90 28.95 0.00 0.00 1 0.61
KC10i16 FR-50 SA 3.15 N/A N/A 0.00 0.00 0 1.25
KC10i16 FR-50 EA 0.08 10.18 32.84 0.00 0.00 2 0.38
KC10i16 FR-50 PSO 0.06 10.43 33.20 0.00 0.00 2 0.50
KC10i16 FR-25 SA 3.62 N/A N/A 0.00 0.00 9 1.34
KC10i16 FR-25 EA 0.02 9.18 33.90 0.00 0.00 9 0.32
KC10i16 FR-25 PSO 0.02 8.21 29.38 0.00 0.00 9 0.50
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Table B.25: Performance results for KC10i128

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

KC10i128 O SA 2.48 N/A N/A 0.00 0.02 0 60.75
KC10i128 O EA 0.49 4.46 21.52 0.00 0.00 6 21.73
KC10i128 O PSO 0.45 4.40 22.71 0.00 0.00 9 41.95
KC10i128 BR-50 SA 3.36 N/A N/A 0.00 0.00 0 58.57
KC10i128 BR-50 EA 0.52 3.71 18.27 0.00 0.00 8 25.50
KC10i128 BR-50 PSO 0.52 3.74 19.36 0.00 0.00 9 40.61
KC10i128 BR-25 SA 1.10 N/A N/A 0.00 0.00 2 59.47
KC10i128 BR-25 EA 0.30 2.69 21.82 0.00 0.00 8 27.23
KC10i128 BR-25 PSO 0.34 2.79 21.50 0.00 0.00 7 36.28
KC10i128 h-o SA 3.86 N/A N/A 0.00 0.01 0 60.67
KC10i128 h-o EA 0.42 4.75 23.55 0.00 0.00 8 25.44
KC10i128 h-o PSO 0.55 4.27 20.42 0.00 0.00 10 39.65
KC10i128 h-50 SA 3.98 N/A N/A 0.00 0.00 1 58.16
KC10i128 h-50 EA 0.40 3.41 18.45 0.00 0.00 10 25.28
KC10i128 h-50 PSO 0.46 3.42 20.33 0.00 0.00 7 34.88
KC10i128 h-25 SA 6.43 N/A N/A 0.00 0.00 0 58.75
KC10i128 h-25 EA 0.32 2.60 17.23 0.00 0.00 10 23.85
KC10i128 h-25 PSO 0.32 2.16 15.50 0.00 0.00 9 37.79
KC10i128 l-o SA 2.62 N/A N/A 0.00 0.00 0 54.46
KC10i128 l-o EA 0.11 3.56 21.46 0.00 0.00 1 48.26
KC10i128 l-o PSO 0.18 2.44 11.44 0.00 0.00 0 62.79
KC10i128 l-50 SA 3.67 N/A N/A 0.00 0.00 3 57.95
KC10i128 l-50 EA 0.51 2.80 18.35 0.00 0.00 9 27.87
KC10i128 l-50 PSO 0.42 2.59 18.33 0.00 0.00 8 35.79
KC10i128 l-25 SA 0.99 N/A N/A 0.00 0.00 0 58.94
KC10i128 l-25 EA 0.38 2.60 18.72 0.00 0.00 10 25.08
KC10i128 l-25 PSO 0.30 2.95 21.55 0.00 0.00 9 38.46
KC10i128 FR-o SA 1.55 N/A N/A 0.00 0.00 0 44.53
KC10i128 FR-o EA 0.13 3.30 22.60 0.00 0.00 0 24.03
KC10i128 FR-o PSO 0.12 2.63 17.59 0.00 0.00 1 33.76
KC10i128 FR-50 SA 0.53 N/A N/A 0.00 0.00 0 47.60
KC10i128 FR-50 EA 0.05 4.11 28.23 0.00 0.00 0 19.58
KC10i128 FR-50 PSO 0.01 2.26 18.99 0.00 0.00 1 31.14
KC10i128 FR-25 SA 1.78 N/A N/A 0.00 0.00 10 53.75
KC10i128 FR-25 EA 0.00 2.31 21.55 0.00 0.00 8 17.64
KC10i128 FR-25 PSO 0.01 1.76 14.27 0.00 0.00 10 30.55
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Table B.26: Performance results for C600

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT
C600 PR SA 32.95 N/A N/A 0.00 0.03 0 13.12
C600 PR EA 2.62 25.80 45.73 0.00 0.00 8 11.12
C600 PR PSO 1.66 25.81 45.13 0.00 0.00 3 17.06
C600 LR SA 23.72 N/A N/A 0.00 0.02 0 11.09
C600 LR EA 2.29 27.48 46.21 0.00 0.00 9 10.38
C600 LR PSO 2.20 25.96 46.11 0.00 0.00 7 14.95
C600 U SA 21.21 N/A N/A 0.00 0.03 0 0.85
C600 U EA 1.78 25.84 44.90 0.00 0.00 6 0.84
C600 U PSO 2.13 26.07 45.53 0.00 0.00 1 1.16

Table B.27: Performance results for R800

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT
R800 PR SA 19.58 N/A N/A 0.00 0.02 0 18.33
R800 PR EA 2.10 20.53 37.98 0.00 20.63 6 16.92
R800 PR PSO 1.09 20.07 39.62 0.00 20.63 2 34.44
R800 LR SA 24.80 N/A N/A 4.00 4.25 0 14.93
R800 LR EA 1.94 26.25 43.78 1.27 3.44 0 24.90
R800 LR PSO 1.45 24.19 41.17 0.00 3.16 1 28.33
R800 U SA 17.71 N/A N/A 0.00 0.02 0 1.15
R800 U EA 1.65 27.43 45.00 0.00 0.00 7 1.00
R800 U PSO 2.39 26.95 44.57 0.00 0.00 2 1.50

Table B.28: Performance results for RC800

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

RC800 PR SA 24.84 N/A N/A 0.01 0.04 0 22.16
RC800 PR EA 0.72 26.91 44.98 0.00 0.00 8 21.79
RC800 PR PSO 1.77 26.55 44.89 0.00 0.00 2 25.67
RC800 LR SA 28.47 N/A N/A 0.00 0.02 0 9.82
RC800 LR EA 2.34 24.86 44.68 0.00 0.00 6 8.91
RC800 LR PSO 1.49 25.71 43.27 0.00 0.00 0 12.56
RC800 U SA 27.30 N/A N/A 0.00 0.02 0 1.14
RC800 U EA 1.95 25.99 45.16 0.00 0.00 9 1.10
RC800 U PSO 1.90 27.02 45.12 0.00 0.00 2 1.44
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Table B.29: Performance results for R1000

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

R1000 PR SA 24.61 N/A N/A 0.00 0.02 0 33.50
R1000 PR EA 1.97 28.21 44.91 0.00 0.00 8 28.61
R1000 PR PSO 1.64 27.49 45.17 0.00 0.00 4 46.50
R1000 LR SA 23.13 N/A N/A 0.00 0.01 0 24.62
R1000 LR EA 0.81 25.70 44.98 0.00 0.00 4 20.17
R1000 LR PSO 1.47 25.76 45.22 0.00 0.00 0 29.71
R1000 U SA 23.95 N/A N/A 0.00 0.01 0 1.42
R1000 U EA 1.81 25.97 44.64 0.00 0.00 8 1.21
R1000 U PSO 0.95 26.24 44.23 0.00 0.00 4 1.96

Table B.30: Performance results for RC1000

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

RC1000 PR SA 14.79 N/A N/A 0.00 0.03 0 19.44
RC1000 PR EA 1.40 21.08 38.96 0.00 0.00 7 22.22
RC1000 PR PSO 1.24 20.17 39.41 0.00 0.00 5 31.25
RC1000 LR SA 26.05 N/A N/A 0.00 0.02 0 17.88
RC1000 LR EA 0.94 26.81 44.16 0.00 0.00 8 15.34
RC1000 LR PSO 1.06 25.75 45.55 0.00 0.00 5 22.66
RC1000 U SA 24.76 N/A N/A 0.00 0.02 0 1.42
RC1000 U EA 2.01 27.25 45.42 0.00 0.00 7 1.36
RC1000 U PSO 2.05 25.44 45.08 0.00 0.00 1 1.82

Table B.31: Performance results for u2319

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

u2319 PR SA 19.18 N/A N/A 0.00 0.03 0 22.84
u2319 PR EA 0.68 21.16 39.76 0.00 0.00 4 22.85
u2319 PR PSO 0.70 20.39 38.92 0.00 0.00 0 41.53
u2319 LR SA 27.20 N/A N/A 0.00 0.01 0 27.53
u2319 LR EA 1.94 26.93 46.90 0.00 0.00 4 24.26
u2319 LR PSO 1.35 26.89 46.32 0.00 0.00 0 34.68
u2319 U SA 26.90 N/A N/A 0.01 0.03 0 3.22
u2319 U EA 1.65 26.69 45.48 0.00 0.00 6 3.18
u2319 U PSO 2.21 27.60 46.23 0.00 0.00 0 4.58
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Table B.32: Performance results for fnl4461

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

fnl4461 PR SA 24.99 N/A N/A 0.00 0.02 0 71.60
fnl4461 PR EA 1.44 21.68 43.33 0.00 0.00 7 71.57
fnl4461 PR PSO 0.96 22.48 46.17 0.00 0.00 0 87.10
fnl4461 LR SA 18.84 N/A N/A 0.00 0.02 0 50.27
fnl4461 LR EA 1.80 27.32 48.39 0.00 0.00 4 41.46
fnl4461 LR PSO 1.61 26.17 49.34 0.00 0.00 2 66.37
fnl4461 U SA 20.56 N/A N/A 0.00 0.02 0 6.19
fnl4461 U EA 2.05 26.12 48.70 0.00 0.00 7 5.99
fnl4461 U PSO 1.73 25.28 46.68 0.00 0.00 1 8.04

Table B.33: Performance results for pla7397

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

pla7397 PR SA 16.32 N/A N/A 0.00 0.01 0 210.54
pla7397 PR EA 3.20 17.55 29.53 0.00 0.00 3 188.24
pla7397 PR PSO 2.96 16.95 29.72 0.00 0.00 0 247.21
pla7397 LR SA 22.68 N/A N/A 0.00 0.01 0 79.87
pla7397 LR EA 3.20 18.75 30.23 0.00 0.00 3 68.08
pla7397 LR PSO 3.41 18.45 30.21 0.00 0.00 0 87.09
pla7397 U SA 16.17 N/A N/A 0.00 0.01 0 10.23
pla7397 U EA 3.89 19.74 33.11 0.00 0.00 4 10.54
pla7397 U PSO 2.96 19.55 32.88 0.00 0.00 0 11.42

Table B.34: Performance results for usa13509

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

usa13509 PR SA 20.31 N/A N/A 0.00 0.05 0 317.18
usa13509 PR EA 0.46 29.03 64.38 0.00 0.00 6 305.78
usa13509 PR PSO 0.86 30.09 65.03 0.00 0.00 1 470.23
usa13509 LR SA 30.77 N/A N/A 0.00 0.04 0 221.64
usa13509 LR EA 0.43 27.26 66.48 0.00 0.00 1 172.31
usa13509 LR PSO 0.61 30.15 66.79 0.00 0.00 0 297.79
usa13509 U SA 24.39 N/A N/A 0.00 0.05 0 18.60
usa13509 U EA 0.89 31.07 66.60 0.00 0.00 5 17.84
usa13509 U PSO 0.91 29.88 66.71 0.00 0.00 0 27.04
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Table B.35: Performance results for pla33810

%Imp. %DV BSol
Inst. Pattern Alg. Min. Avg. Max. Min. Avg. Hits CT

pla33810 PR SA 18.63 N/A N/A 0.00 0.03 0 619.40
pla33810 PR EA 2.00 26.35 46.01 0.00 0.00 0 487.44
pla33810 PR PSO 1.19 26.35 46.23 0.00 0.00 1 821.69
pla33810 LR SA 19.63 N/A N/A 0.00 0.03 0 404.82
pla33810 LR EA 1.41 28.25 54.63 0.00 0.00 4 411.82
pla33810 LR PSO 1.17 28.63 53.97 0.00 0.00 0 508.29
pla33810 U SA 26.37 N/A N/A 0.00 0.01 0 46.66
pla33810 U EA 1.54 28.28 47.70 0.00 0.00 4 47.60
pla33810 U PSO 1.29 26.42 46.42 0.00 0.00 0 65.32
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APPENDIX C

STOCHASTIC ANALYSIS OF TEST PROBLEM INSTANCES

This appendix is about stochastic Analysis for two problem instances AP70R10 with pattern h-50 and
KC5c16 with pattern BR-o as examples. The interaction plots of the algorithms parameter settings for
both problems is given in Section C.1. The interaction plots are used to derive best parameter settings
for each meta-heuristic algorithm. In Section C.2 we illustrate the convergence of all meta-heuristic
algorithms under the best parameter settings for the same problems.

C.1 Interaction Plots

This section provides all three algorithms’ parameters effect plots for two problem instances AP70R10
with pattern h-50 and KC5c16 with pattern BR-o.

(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.1: Main effect plots of SA parameters for AP70R10. The effect of each parameter level on
the objective function value and CPU time is shown in (a) and (b) respectively.

C.2 Algorithms Convergence

In this section we graphically show the how objective function values converge to the best objective
function value through time. The information is given for all three meta-heuristics considering two
problem instances AP70R10 with pattern h-50 and KC5c16 with pattern BR-o as examples.
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(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.2: Interaction plots of SA parameters for AP70R10. The effect of the parameters interactions
on the objective function value and CPU time is shown in (a) and (b) respectively.

(a) Effects on the objective function value (b) Effects on the CPU time

(c) Effects on the objective function value (d) Effects on the CPU time

Figure C.3: Main effect plots of EA parameters for AP70R10. The effect of each parameter level on
the objective function value and CPU time is shown in (a) and (b) respectively. (c) and (d) show the
effect of different selection pressure levels on the objective function value and CPU time respectively.
when other parameters are set to their best values.
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(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.4: Interaction plots of EA parameters for AP70R10. The effect of the parameters interactions
on the objective function value and CPU time is shown in (a) and (b) respectively.

(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.5: Main effect plots of PSO parameters for AP70R10. The effect of each parameter level on
the objective function value and CPU time is shown in (a) and (b) respectively.

(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.6: Interaction plots of PSO parameters for AP70R10. The effect of the parameters interac-
tions on the objective function value and CPU time is shown in (a) and (b) respectively.

129



(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.7: Main effect plots of SA parameters for KC5c16. The effect of each parameter level on the
objective function value and CPU time is shown in (a) and (b) respectively.

(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.8: Interaction plots of SA parameters for KC5c16. The effect of the parameters interactions
on the objective function value and CPU time is shown in (a) and (b) respectively.
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(a) Effects on the objective function value (b) Effects on the CPU time

(c) Effects on the objective function value (d) Effects on the CPU time

Figure C.9: Main effect plots of EA parameters for KC5c16. The effect of each parameter level on
the objective function value and CPU time is shown in (a) and (b) respectively. (c) and (d) show the
effect of different selection pressure levels on the objective function value and CPU time respectively.
when other parameters are set to their best values.

(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.10: Interaction plots of EA parameters for KC5c16. The effect of the parameters interactions
on the objective function value and CPU time is shown in (a) and (b) respectively.
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(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.11: Main effect plots of PSO parameters for KC5c16. The effect of each parameter level on
the objective function value and CPU time is shown in (a) and (b) respectively.

(a) Effects on the objective function value (b) Effects on the CPU time

Figure C.12: Interaction plots of PSO parameters for KC5c16. The effect of the parameters interac-
tions on the objective function value and CPU time is shown in (a) and (b) respectively.
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(a) SA’s convergence

(b) EA’s convergence

(c) PSO’s convergence

Figure C.13: Convergence of different meta-heuristics to the BSol for AP70R10 instance.
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(a) SA’s convergence

(b) EA’s convergence

(c) PSO’s convergence

Figure C.14: Convergence of different meta-heuristics to the BSol for KC5c16 instance.
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APPENDIX D

USER MANUAL FOR THE SOFTWARE PACKAGE

In this appendix an instruction for using the developed software package is provided. The software
is written in MS Visual Studio 2010 environment using visual basic language with .Net framework
technology (VB.Net). The program is executable on MS Windows XP or later having .Net framework
4.0 (or later) installed.

Figure D.1: A snapshot of the application’s main window.

Figure D.1 displays the main window of the program.

The numbered objects in the window indicate:
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1. Opening a problem instance file. If more than one file is selected, the programs considers them
as a batch. Any text file can be opened as long as has the compatible format. Each line of the
text corresponds to a point in the instance. All points are indexed starting from 0. Point data are
separated by a ’tab’ character.
The data of a region vertex should be entered as follows. The region number t̂ the vertex number
t̂ the x-coordinate t̂ the y-coordinate t̂ the fixed cost of the region. The vertex 0 is the first vertex
followed by next adjacent vertex and so on. The last vertex is the other adjacent vertex of vertex
0. Where t̂ is the tab character. Providing information about number of the region and its cost in
data line of the first vertex is necessary.
For instance, the data first region of the D26 instance is entered in the instance file as follows
(the header row provides information for the reader and it is not needed in the text file).

Region No. Vertex No. x y Fixed Cost
0 0 10 39 14

1 20 40
2 20 42
3 10 43

The demand points are entered like: the demand number t̂ its x-coordinate t̂ its y-coordinate t̂ its
weight. For example the first two demand points in D26 are entered as:

Demand No. x y Weight
0 47 4 0.15
1 50 33 0.15

2. Save a problem instance. When changes on an instance is made, it can be saved as an instance
file. The saved file contains data of the instance points and regions and information about in-
stance at the end of the file. This in formation contains the minimum, maximum and range of
x and ycoordinates, the distance between two farthest points in the instance (called diameter),
the scale of the instance, total number of vertices (|V |) and total number of points in the instance
(|N |), the area of the convex hull of instance points, total area of the regions, and the percentage
area of the instance occupied by the regions.

3. Refresh the panel. Clears the generated solutions on the panel, facility location and pathways.
Any changes made on the instance can also be undone using this button.

4. Select an algorithm to run. The user can select some or all of three meta-heuristics to be imple-
mented on the problem instance. Simulated annealing (SA), evolutionary algorithm (EA) and
particle swarm optimization (PSO) are available heuristic algorithms to run.

5. Manage the settings of the runs and/or meta-heuristics. The user can adjust the settings for
runs, like setting the number of replications, enabling or disabling variable neighborhood search
(VNS) or repairing features, deciding whether or not to save log files regarding the generated
solutions, setting the decimal precision for in calculations. Log files contain the details of gen-
erated solutions, parameter details of the applied meta-heuristic and computational times.
Moreover, the user can access the parameter settings of the meta-heuristics and change the pa-
rameter values as needed. Meta-heuristics have different behaviors under different parameter
adjustments. More than one level for each parameter can also be set. The algorithms run for all
combinations of parameter levels (batch run).

6. Run the algorithm(s). The selected algorithm(s) can be applied if with this button.
7. Stop the currently running procedure.
8. The name of the problem instance is displayed in this box. Other available instances in the same
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directory are also listed here.
9. Open the text file of the instance. The information of the instance points are available in that

file, so the user can see or change the instance data.
10. A ruler for vertical axis. The minimum and maximum y coordinate values and the scale of the

problem can be using the ruler.
11. Main Panel. Instance file is visualized in the panel. In Figure D.1, D26 instance is opened

and shown in the panel. Demand points are shown by filled circles. The larger the circle, the
more weight the demand has. Congested regions are the polygons with linear edges and circular
vertices. Regions with thicker edges have higher fixed traveling costs.
The user can select any object in this panel, i.e. a demand point, a vertex or an edge. The user
can also selet a facility location after it is generated to see its coordinate and objective function
value. For every selected object, the related information is displayed in the box at the bottom
tool bar (numbered 13 in Figure D.1).
Moreover, any object, like demand point or a region, can be deleted by selecting the object in
the panel and pressing Delete button.

12. Shows which object is selected by user. The attributes of the selected object whose data is
shown in the data box are also given. For example, in Figure D.1 it shows that demand point 1 is
selected and the data box contains the information about its x coordinate, y coordinate, weight.

13. Data box. It shows the data of the selected object or generated final solution by the algorithms.
If a demand point is selected this data contains its x coordinate t̂ y coordinate t̂ weight. If a
region vertex is selected it shows x coordinate t̂ y coordinate t̂ the traveling cost of the region. If
a region edge is seleted the region traveling cost is displayed. If a facility location is selected,
its x coordinate t̂ y coordinate t̂ objective function value is give. When no object is selected data
box shows x coordinate t̂ y coordinate of the cursor moving through the panel.
The user can change any value shown in the data box. In Figure D.1 the data for demand point
1 is shown. If the user changes the x attribute of that point from 50 to, for example, 100 in the
data box, the demand point 1 changes and moves from (50, 33) to (100, 33).

14. Options. Some options in this menu are graphical options like changing the display colors of
the objects, or showing/hiding the generated solutions or facility locations and paths. Another
options is Testing a location for a facility. When this option is selected, the programs waits for
the user to click a position on the panel. Then, the program calculates the objective function
value as if a facility is located at that position. Selecting a zone to start or restart algorithms is
another options. With a rectangular zone, the user can limit the algorithms to generate solutions
only in that zone. It is useful when the user wants to investigate a particular area for better
solutions.
This menu also contains options to change the instance. For instance, the user can remove all the
demand points and distribute new demand points. In addition, the user can change the congested
region traveling costs or sizes. There is also an option to replace non-convex regions by convex
hull of them. The user can also change the scale of the instance by entering a number as the
scale. All point location in the instance is then scaled between 0 and the entered number.
Finally, in the Options menu, the type of the problem can be chosen as 1-median (minisum
objective function) or 1-center (minimax objective function).

The software is developed for the context of this thesis. Although it can handle working on all the
problems studied here, it is still under development for adding more features as well as considering the
extensions to the problem discussed in Chapter 6.
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