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ABSTRACT 
 
 

SOLUTION APPROACHES FOR  

FLEXIBLE JOB SHOP SCHEDULING PROBLEMS 
 

Balci, Şerife Aytuğ 

M.Sc., Department of Industrial Engineering 

                 Supervisor  : Prof. Dr. Meral Azizoğlu 

                 Co-Supervisor : Dr. Cemal Berk Oğuzsoy 

  

  

 Jan 2013, 96 pages 

 

 
In this thesis, we consider a flexible job shop scheduling problem existing in 
discrete parts manufacturing industries. We are motivated by the production 
environment of Roketsan Missiles Industries Incorporation, operating at Turkish 
defense industry. Our objective is to minimize the total weighted completion 
times of the jobs in the system. 

 

We formulate the problem as a mixed integer linear program and find that our 
model could find optimal solutions only to small sized problem instances.  For 
medium and large sized problem instances, we develop heuristic algorithms with 
high quality approximate solutions in reasonable solution time.   

 

Our proposed heuristic algorithm has hierarchical approach and benefits from 
optimization models and priority rules.  We improve the heuristic method via 
best move with non-blocking strategy and design several experiments to test the 
performances. Our computational results have revealed that proposed heuristic 
algorithm can find high quality solutions to large sized instances very quickly. 

 

Keywords: Flexible Job Shops, Total Weighted Completion Time, Heuristic 
Approaches  
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ÖZ 

 

 

ESNEK TİPLİ ATÖLYE ÇİZELGELEME PROBLEMLERİ 

İÇİN ÇÖZÜM YAKLAŞIMLAR 

 
Balci, Şerife Aytuğ 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi            : Prof. Dr. Meral Azizoğlu 

Ortak Tez Yöneticisi    : Dr. Cemal Berk Oğuzsoy 

 

Ocak 2013, 96 Sayfa 

 

 

Bu çalışmada, kesikli üretim sistemlerinde karşılaşılan Esnek Tipli Atölye 
Çizelgeleme Problemi ele alınmıştır.  Türk savunma sanayisinde faaliyet gösteren 
Roketsan Roket Sanayi ve Ticaret A.Ş. tarafından  motive edildik. 
Amacımız,toplam ağırlandırılmış iş bitiş sürelerini enazlamaktır. 

 

Problemi karışık tamsayılı dorusal problem olarak formüle ettik ve modelin 
sadece küçük ölçekli problem örnekleri için optimal sonuç verebildiğini bulduk. 
Orta ve büyük ölçekli problem örnekleri için, makul çözüm süresinde yüksek 
kaliteye sahip yaklaşık çözümler veren sezgisel yöntemler geliştirdik. 

 

Önerdiğimiz sezgisel algoritma hiyerarşik yaklaşıma sahiptir ve optimizasyon 
modelleri ve öncelik kurallarından yararlanmaktadır. Sezgisel metodu en iyi 
hareket yolu ve blokları kaldırma stratejisi ile geliştirdik ve performansını test 
etmek için birçok deney tasarladık. Deneylerimizin sonuçları önerdiğimiz sezgisel 
algoritmanın kısa sürede yüksek kaliteli sonuçlar verdiğini göstermiştir.  

 

 
Anahtar kelimeler: Esnek Tipli Atölyeler, Toplam Ağırlıklandırılmış Bitiş 

Zamanları, Sezgisel Yaklaşımlar
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CHAPTER 1  
 
 

INTRODUCTION 
 
 

In today competitive business environment, the companies aim to increase their 
profits by producing high quality products at low cost and high speed.  Investing 
in assets, e.g. labor, tooling, machine, material and equipment, and employing 
these assets efficiently to satisfy the customer needs is the only way to stay in 
the market in long term at high profit levels.  

Operating the company assets efficiently in the short-term by prescribing when 
and where to perform each operation required to manufacture the product is 
called production scheduling.  The main goal of production scheduling is to 
sequence operations on production resources and define their start time and 
completion times on each resource. 
 
The production scheduling system of a company can be categorized as one-stage 
or multi-stage. If all jobs have a single operation, the production scheduling is 
referred to as one-stage; otherwise it is a multi-stage system.  In one-stage 
problems all operations are performed by a single machine, hence there is no 
resource allocation problem.  In multi-stage systems a route, that is a processing 
sequence of operations for each job, is specified. 
 
According to the operation sequence of the jobs, the multi-stage production 
scheduling are categorized as flow shops, job shops and open shops.  Assume a 
manufacturing environment with n jobs and m machines.  In a flow shop 
environment each of the n jobs must be processed through the m machines in 
the same order, i.e., all jobs have identical routes and each job is processed 
exactly once on each machine. (Nahmias, 2005). A job shop scheduling differs 
from a flow shop in that not all jobs are assumed to require exactly m operations 
and some jobs may require multiple operations on a single machine. 
Furthermore, in a job shop each job may have a different required sequencing of 
operations, i.e., the routes are arbitrary (Nahmias, 2005). Open shop schedule is 
different from flow shop and job shop schedules as there are no restrictions 
placed on the sequence of the operations. The operations of the job can be 
processed at any order and finding the processing sequence is an additional 
problem. 
 
The multi-stage scheduling also differs according to the machine flexibility for 
the operation to be performed. A machine may have the flexible capability to be 
set up to process more than one type of operations. (Fattahi, 2007).   
 
For the long term survival in the rapidly changing market, the manufacturing 
environments have to become more adaptive, hence flexible, supported by the 
multi functional alternative machines to perform each operation.  The flexible job 
shop scheduling problem (FJSP) is an extension of the job shop scheduling 
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problem where operations are allowed to be processed on the multiple capable 
machines. The flexible job shop scheduling problem is formed by assigning each 
operation to a machine out of a set of capable machines and sequencing the 
assigned operations on each machine in order to obtain a feasible schedule by 
considering a predefined objective function. 
 
FJSP problems assume that each machine can process only one operation at a 
given time. Each operation is assigned to one of its capable machines and is 
processed on its assigned machine without interruption. There are precedence 
constraints that indicate the processing order between operations of a job. The 
operation cannot be performed before all its predecessor operations are finished.  
In this study, we also use ready time constraints and initial machine available 
time constraints. The ready time constraints exist when the jobs enter into 
production system at different times from the start of the scheduling horizon due 
to their arbitrary delivery times from the suppliers or subparts of the job 
continuing to be processed in other production departments.  The initial machine 
available time constraints exist as the machines may become available at 
different times due to the maintenances required to start the batch of the 
scheduling horizon or due to the operations pending from the previous 
scheduling horizon. 
 
By considering all constraints, the FJSP problem finds the sequencing of the 
operations on each machine so as to optimize a specified performance measure.  
Makespan is the time needed to complete all jobs, and is most commonly used 
performance measure.  In the literature some machine-related objective 
functions like minimizing total machine idle time, minimizing total workload and 
minimizing the maximum workload to allocate jobs to machines are also used.  
Minimizing total completion time (equivalently total flow time) and minimizing 
total weighted completion time (equivalently total weighted flow time) are two 
important objective functions in real world scheduling applications.  Flow time of 
a job is the time it spends in the system hence is an indicator of the work in 
process inventory level.  The weighted flow time reflects the relative importance 
of keeping in the inventory hence considers the value of the work in process 
inventory.  The relative importance might also define the priority of the jobs’ 
customers.   The more prestigious customer would receive higher weight; hence 
his order would be delivered earlier under total weighted flow time objective.  
Despite their practical importance, on flexible job shops there is a unique study 
by Lee et al. (2012) that considers total flow time objective and no study on the 
total weighted completion time objective.  Recognizing this gap in the literature, 
we consider total weighted completion time as the objective function of our 
flexible job shop scheduling problem. If the job has higher weight due to the 
customer or production needs, the model attempts to finish this job earlier. A 
higher weight may be used as an indicator of lower customer due date as well.  
 
In the literature two types of the FJSP are mentioned according the speed of the 
capable machines. For type I FJSP, jobs can have alternative identical machines 
for each operation. The problem is to assign each operation to one of its identical 
capable machines and to find the sequence of operations on each machine. For 
type II FJSP, operations can have non-identical capable machines to be 
performed at. The problem is to assign each operation to one of its non-identical 
capable machines and arrange assigned operations at each machine.  
 
In this study we consider the type II FJSP where the operations have non-
identical machines to be performed at.  We assume that there are at most two 
operations having the flexibility to exchange their places at the route. Hence we 
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consider a special case of a mixed job where all operations, except two, follow 
job shop structure and two operations reflect open shop nature.   
 
A practical application that we take our motivation from is a defense industry 
company, ROKETSAN Missiles Industries Incorporation. ROKETSAN is one of the 
defense castles of Turkey with rocket systems, air defense programs, antitank 
missiles, precision guided munitions and airbag productions; space and satellite 
projects, electronic warfare support center studies.  Due to the characteristics of 
production, the company uses some special machines. The performance and 
capacity of entire system is limited by these special machines, hence to increase 
the performance of the overall production system, efficient use of the bottleneck 
machines is needed. The scheduling problem the company defines and thereafter 
we formalize in the study was assigning operations to one of its available 
machines and sequencing assigned operations at each machine at a week-period 
basis with the aim of finishing the jobs as early as possible. The schedule 
program takes production plan as an input and gives a weekly schedule for each 
machine as an output. 
 
The flexible job-shop scheduling problem is a strongly NP-hard problem, since it 
is a generalization of the job shop scheduling problem that has been proven to 
be strongly NP-hard (Garey et al. 1976). Owing to this combinatorial complexity, 
all FJSPs propose polynomial time heuristic procedures to handle medium sized 
problem instances. 
 
In this study, we first give the mathematical programming model of our problem 
and show that the model is capable of solving small sized problem instances.  
For medium and large sized problem instances we propose heuristic procedures 
that run in two steps: allocation and scheduling.     

The rest of the thesis is organized as follows. In Chapter 2, we review the 
literature on the Flexible Job Shop Scheduling problems. In Chapter 3, we 
present the motivating case of the study. In Chapter 4, problem definition is 
given. In Chapter 5, we discuss solution approaches to find approximate 
solutions at different size problems. An illustrative example from the motivating 
company ROKETSAN is given in Chapter 6. We report the results of our 
computational experiments in Chapter 7. The study with our main findings and 
future research suggestions are concluded in Chapter 8. 
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CHAPTER 2  
 
 

LITERATURE SURVEY 
 
 
 
The flexible job-shop scheduling problem (FJSP) is an extension of the classical 
job shop scheduling problem (JSP) that assigns each operation to one of its 
capable machines and sequences the assigned operations on each machine.   
 
In this chapter we first present the solution approaches used to solve the FJSP 
and then review the literature based on the objective functions used in the 
studies. 
 

2.1. Solution Approaches 
 
Garey et al. (1976) show that the job shop scheduling problem is strongly NP-
hard, so is the flexible job shop scheduling problem.   
 
For flexible job shop scheduling problems several different solution approaches 
have been proposed.  The reported approaches can be classified into main 
groups as optimization methods and heuristic methods.  
 
Due to the complexity of the problem, the optimization methods require 
enormous computational time to reach the optimal solution.  
The solution times increase exponentially with the increases in the problem size, 
hence they are usually inapplicable to real life instances.  The approximation 
methods aim to find a high quality solution in reasonable time.  The returned 
solutions do not have any guarantee of optimality however have greater 
application chance due to their reasonable computational time requirements.   
 
In the following, we briefly overview the most commonly used optimization and 
heuristic techniques to solve the FJSP. 
 

2.1.1. Optimization Techniques 
 
Mixed Integer Linear Programming 
 
Mixed Integer Linear programming is an optimization technique used to solve 
many combinatorial optimization problems.  The flexible job shop scheduling 
problems can be formulated as mixed integer linear programs; however their 
solutions are limited only to small-sized problem instances due to the 
exponential number of integer decision variables. 
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Implicit Enumeration Techniques 
  
Branch and bound algorithms and dynamic programming algorithms are implicit 
enumeration techniques used for solving combinatorial optimization problems.  
Dynamic programming algorithms are not used to solve the FJSP due to their 
high memory requirements. Branch and bound techniques have an advantage of 
using less memory, however at an expense of high solution times.  The 
technique partitions the problem into sub-problems and evaluates each sub-
problem by lower and upper bounds.  It guarantees optimality, generally runs 
quicker than the mathematical models, however still in exponential time.   
 

2.1.2. Heuristic Methods 
 
For the FSJP, the optimization methods cannot return solutions for the large-
sized problem instances in reasonable times; hence the heuristic techniques that 
produce approximate solutions are needed.  The time of reaching an 
approximate solution is usually much less than that of reaching the optimal 
solution. This is the fundamental basis of accepting the heuristic methods.  
Moreover in many real life FSJP instances, an optimal solution is not essential 
and a high quality approximate solution may be satisfactory.  The emphasis is 
now placed by many researchers on developing heuristic algorithms that return 
solutions closest to the optimal solutions in the shortest possible time.  
Detailed explanations of the most common heuristic techniques, machine 
assignment rules, dispatching rules and search procedures for the FJSS are given 
below. 
 

2.1.2.1. Machine Assignment Rules 
 
Machine assignment rules are simple procedures to assign an operation to one of 
its capable machines for the FJSP. They do not reside any iteration routine.  
Their choice basically depends on the objective function used.   
 
Below is the most commonly used machine assignment rules excerpted from 
Urlings et al.(2010).  
 
Random Assignment Rule:  For every operation, a machine is selected randomly 
from a set of candidate machines. The main advantage is its computational 
simplicity whereas the disadvantage is the resulting poor machine workload 
balance. 
 
Minimum Processing Time Rule: For every operation, the machine with minimum 
processing time in the candidate machine set is selected.  This rule helps to 
reduce the total processing load over all machines and the completion time 
 
Earliest Completion Time (ECT): For every operation, the machine that can 
complete the operation earliest is selected. The rule helps to reduce the 
makespan and total completion time. 
 
Earliest Preparation Next Stage (EPNS): The machine that can prepare the job 
earliest to the next operation is chosen. Therefore time lags between the current 
and the next operation are taken into account.  This rule uses more information 
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about the continuation of the job than the previous rules, by focusing on the 
machines of the succeeding operations. 
 

2.1.2.2. Operation Sequencing (Dispatching) Rules 
 
Dispatching rules select a job from the set of jobs waiting for processing, 
whenever a machine is freed. The following is the most commonly used 
dispatching rules for the FSJP.  
 
Service in Random Order (SIRO) Rule: Sequence the jobs randomly. No attempt 
is used to minimize any objective. 
 
Job Slack (S): Give priority to the job with the least slack time where the slack 
time is the difference between the due date and remaining processing 
requirement.  The rule tends to minimize the customer, usually lateness related 
objectives. 
 
Earliest Due Date: Sequence the jobs according to their non decreasing order of 
due dates.  The rule tends to minimize the customer, usually the lateness related 
objectives. 
 
Earliest Release Date First (ERD) Rule: First-come job is processed first. This rule 
tends to minimize the variation in waiting time of the jobs. 
 
Shortest Processing Time First (SPT) Rule: Process the jobs in non decreasing 
order of their total processing times. The rule tends to minimize the sum of total 
completion time of jobs. 
 
Longest Processing Time First (LPT) Rule: Process the jobs in non increasing 
order of their total processing times. The rule tends to balance the workload over 
the machines. 
 
Shortest Setup Time First (SST) Rule: Select the job with minimum setup time. 
This rule tends to minimize the total processing load. 
 
Least Flexible Job First (LFJ) Rule: Select the job with minimum processing 
alternatives. The aim is to give a priority to the job having less chance for 
assignment, hence relaxing the future decisions. 
 

2.1.2.3. Local (Neighborhood) Search Methods 
 
Local search techniques attempt to find an acceptable near optimal solution in a 
large solution space generated by the FJSP.  The quality of the algorithms is 
heavily dependent on the initial solutions and neighborhood structures. 
Heuristics or simple rules are used to get initial solutions. The neighborhood 
structure describes the relationship between neighbors. The search procedure 
starts with finding an initial solution and making small changes, so called moves, 
in the neighborhood of the current solution in an iterative manner. Each iteration 
makes an improvement on the objective function, so called fitness, value.     
The main problem with simple search techniques is to become trapped in a local 
optimal solution in the neighborhood which may be too far from the optimal 
solution.   
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i.  Random Search 

 
Random search is a basic method which explores the search space by randomly 
selecting solutions and evaluating its fitness value.  It never gets stuck in a local 
optimum as the next solution is selected randomly, not in a defined 
neighborhood.  The procedure is likely to produce satisfactory solutions if a big 
number of iterations that explores the search space is performed.  However, for 
most problems, exploring the whole search space requires too much computation 
effort and it is far from being practical. 
We next discuss the solution approaches that select the moves from the current 
solution in a defined neighborhood, hence in an efficient way. 
  
ii. Simulated Annealing 

 
Threshold algorithms accept inferior schedules as possible moves if the 
deterioration in the objective function is less than some threshold value. Hence 
the threshold values determine whether a schedule can be disregarded or not.   
The simulated annealing algorithms use the idea of thresholds and vary the 
thresholds over the execution of the algorithms’.  The basic steps in simulated 
annealing method can be stated as follows (Brandimarte, Villa, 1995). 
 
1. Choose an initial solution and define a neighborhood structure. 
2. Choose a new solution randomly in the neighborhood and compute the 
fitness value. 
3. Calculate the acceptance probability (P). 
4. Accept the new solution with probability of P. If the solution is accepted, 
replace with the old one. 
5. If the termination condition is met, stop the algorithm, otherwise update 
the parameters and go to step 2. 
 
iii. Tabu Search Algorithms 

 
Tabu search is a local search technique that is characterized by its use of 
adaptive memory.  The technique relies on the memory structures (describing 
the recently visited solutions, so called tabu moves) to avoid local minima and 
achieves an effective balance of intensification (reinforcing the attributes 
historically found good) and diversification (driving the search into new regions).  
At each iteration, the fitness value of each non tabu move is evaluated and the 
best move is accepted as the current solution. The mechanism used to escape 
from the local minima may lead to different problems.  For example the increase 
in the size of the tabu list (that resides the tabu moves) increases the solution 
time and the decrease in the size of the tabu list may lead to an infinite loop, 
hence cannot lead to an improved solution.  The tabu list size that well catches 
the tradeoff between the quality and speed of the solutions are generally based 
on empirical results. 
 
   iv. Genetic Algorithms 
 
A genetic algorithm is a local search technique that mimics the natural process of 
evolution. The process analyses the fitness of a species in their particular 
environment.  From one generation to the next, it preserves good characteristics 
and eliminates the poor ones.  Analogous to this, genetic algorithms use 
strategies to decide which part of the solutions to retain and which ones to 
discard. These strategies are defined by a set of functions called genetic 
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operators, the most common of which are selection, crossover and mutation.  
The aim of selection operator is to discriminate between good and bad schedules 
and produce more solutions from good solutions with favorable fitness values. 
The crossover operator takes two parents from the selection step and uses these 
solutions to generate new ones. The mutation operator tries to diversify the 
search by jumping into new neighborhoods and hence avoids for converging the 
local minima. 
 
Genetic algorithms require a starting population, i.e., a set of initial solutions.  
These solutions can be generated randomly or produced intuitively by heuristics. 
Heuristic techniques use the specifics of the application, hence are likely to find 
more accurate solutions.  
 
 

2.2. Literature Review 
 
In this study we review the studies on the FJSP according to the objective 
functions.   
 

2.2.1. Single Objective (Criterion) Problems 
 
The majority of single criterion problems consider makespan as the objective 
function.  To the best of our knowledge there is only one study that considers 
total completion time and one study that considers total workload of the 
machines.  Below is detailed discussion of those studies. 
 
i. Makespan 

 
Bruker and Schlie (1990) are the first researchers that address the FJS 
makespan problem.  They develop a polynomial algorithm for solving the flexible 
job shop problem with two jobs. For solving the realistic case with more than two 
jobs, hierarchical approaches and integrated approaches are constructed. In 
their hierarchical approach, the allocation problem and sequencing problem are 
treated separately and in their integrated approaches the allocation and 
sequencing problems are solved simultaneously.  
 
Brandimarte (1993) uses TS algorithm to solve the FJSP in a hierarchical 
manner. He decomposes the problem into two sub problems as routing and 
scheduling problem which is obtained by assigning each operation of each job to 
one among the equivalent machines.  Information flow between the two 
hierarchical levels is two-way. He makes experimentations with two types of 
initial solutions as the first one generated by priority rule of shortest processing 
time and as the second one generated by priority rule of the minimum total 
weighted tardiness. The results show that there is a great potential of 
improvement with respect to the results of priority rules. T 
HE MINIMUM TOTAL WEIGHTED TARDINESS CAS with initial solutions  
Fattahi et al. (2007) develop a mathematical model and propose heuristic 
procedures. They report that their model is capable of solving small sized 
problem instances.  Their heuristic procedures are of two types: Integrated and 
hierarchical. In integrated approaches machine assignment and sequencing 
decisions are given simultaneously whereas these decisions are sequential in 
hierarchical approaches. In both types they employ tabu search and simulated 
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annealing (SA) heuristics. Their experimental results show the superiority of the 
hierarchical approach using the simulated annealing.  
 
Xing et al. (2007) propose a multi-population interactive co-evolutionary 
algorithm. In the proposed algorithm, the ant colony optimization and genetic 
algorithm with different configurations are applied to evolve each population 
independently. The performance of the algorithm has been improved largely by 
integrating the ant colony optimization with the genetic algorithm and 
constructing the interaction, competition and sharing mechanism among 
populations.  Using a set of benchmark instances taken from literature, they 
compare their approach with Temporal Decomposition, Controlled Genetic 
Algorithm, Approach by Localization, Approach by Localization combined with 
Controlled Genetic Algorithm, combination of Particle Swarm Optimization to 
assign operations on machines and Simulated Annealing to schedule operations 
and Tabu Search algorithm. The experimental results have shown that the 
proposed algorithm is a feasible and effective approach.  
 
Zhang et al. (2008) propose a genetic algorithm combined with local search of 
TS algorithm. Time-varying crossover probability and time varying maximum 
step size of search are used to control the local search and convergence to the 
optimal solution. The performance of the proposed algorithm is tested on various 
benchmark problems and compared with the optimal makespan if known, 
otherwise, the best lower and upper bound found to date and Ho&Tay approach 
which is proposed by Ho and Tay. The results indicate that the proposed 
algorithm outperforms Ho's approach in all problems and it is effective and 
efficient when compared with optimal makespan.  
 
Amiri et al. (2010) propose a variable neighborhood search (VNS) approaches. 
They present various neighborhood structures for machine selection and 
sequencing problem. They compare their findings with those of Kacem et al. 
(2002 a, 2002 b), Xia and Wu (2005), Zhang and Gen (2005) and Gen et al. 
(2008). Their results reveal that their algorithm performs compatible with the 
hybrid GA of Gen et al. and TS of Mastrollili and Gamberdella and better than the 
other methods compared.  
Al-Hinai et al. (2010) propose hybridized GA architecture.  By integrating it with 
an initial population generation algorithm and a local search method, the 
performance of the GA is improved. The proposed algorithm is compared with 
the GA proposed by Zribi et al. (2007), by Gao et al. (2008) and by Pezzella et 
al. (2008).The experimental results show that the proposed algorithm 
outperforms the GA proposed by Zribi et al. (2007) and the GA proposed by 
Pezzella et al. (2008) and produces a comparable quality to the algorithm 
proposed by Gao et al. (2008).  The advantage of the proposed hybridized GA is 
that the genetic operators of crossover and mutation do not require a repair 
process to obtain a feasible schedule.  
 
Li et al. (2011) present a novel hybrid TS algorithm with a fast public critical 
block neighborhood structure. They use three different approaches in the 
neighborhood structure for machine assignment and three insert and swap 
functions based on public critical blocks in the operation scheduling 
neighborhood structure. These approaches and functions are used to decrease 
the neighborhood size and eliminate unnecessary and infeasible moves.  The 
proposed algorithm is  compared with the AL+CGA approach proposed by Kacem 
et al. (2002), the PSO+SA presented by Xia et al. (2005), the PSO+TS 
developed by Zhang et al. (2009), the PVNS introduced by Yazdani et al. (2010), 
and the KBACO presented by Xing et al. (2010). The experimental results show 
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that the proposed hybrid algorithm is competitive to the compared algorithms in 
terms of solution quality and computational efficiency. 
 
Hama et al. (2011) present a real-time scheduling (RTS) heuristic model. The 
model selects and assigns a single job to the earliest available machines at each 
iteration. They formulated a binary IP model that includes machine compatibility 
constraints. They decompose the model into two phases: the first phase 
calculates a production target on each machine, and the second phase finds the 
schedule.  By setting the production target by each machine found by the first 
model, the RTS model seeks the local optimality by only considering the current 
state. At each iteration, the RTS heuristic assigns one job to the subset of 
machine group until there is no remaining job. The proposed algorithm is 
compared with the exact optimal model and it gives sufficient results. 
Chen et al. (2012) propose a genetic algorithm and a group genetic algorithm for 
the flexible job shop scheduling problem with reentrant process. Their procedure 
has two modules: machine selection and operation sequencing. Machine 
selection module selects a capable machine to each operation, and operation 
sequencing module finds the start time of each operation on its selected 
machine. They base their algorithm on a practical situation and show that their 
algorithm is superior to the existing methods. 
 
Wang et al. (2012) propose an artificial bee colony algorithm which considers the 
balance between global exploration and local exploitation. The initial solutions 
with certain quality and diversity are generated using combined strategies. The 
crossover and mutation operators are used to generate the new neighbor food 
sources for the employed bees for machine assignment and operation 
sequencing.  At last, a local search strategy based on critical path is developed in 
the searching framework. In addition, to transform a solution to an active 
schedule, a well-designed left-shift decoding scheme is employed.  The 
satisfactory performance of the proposed algorithm is revealed by simulation 
results and comparisons with some existing algorithms, based on benchmark 
instances. The performance of ABC algorithm is tested by comparing it with 
several algorithms including AL + CGA (Kacem et al., 2002), GENACE (Tay et al., 
2004), PSO + TS (Zhang et al., 2009), PVNS (Yazdani et al., 2012), KBACO 
(Xing et al., 2010) and TSPCB (Li et al., 2011). The proposed algorithm is 
competitive to the compared algorithms in terms of solution quality and 
computational efficiency. 
 
ii. Total completion time: 

 
To the best of our knowledge, there is only one study due to Lee et al. (2010) on 
minimizing total completion time objective.   
 
Lee et al. (2010) solve the FJSP with AND/OR relations between the operations. 
OR precedence relations imply at least one of the specified operations should be 
performed, to start an operation. They develop a MILP that is capable of solving 
small-sized problem instances. For larger sized instances they propose local 
search heuristics namely tabu search (TS) and genetic algorithms (GA). Their 
experimental results show that their algorithms provide high quality solutions in 
reasonable time. The proposed methods are compared with those of SEA 
(symbiotic evolutionary algorithm) by Kim et al. (2003) and HA (hybrid 
algorithm) by Li et al. (2010). The results of the proposed methods were 
superior to those of both SEA and HA. 
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iii. Maximum Workload 
 

The maximum workload among the machines objective is considered in a unique 
study by Ida et al. (2009). The study presents a new method of survival 
selection, a method of initial solution generation and mutation, and a method of 
escape to their genetic algorithm. They compare the proposed pGA with the 
algorithms proposed by Ho and Tay (GENACE) and Ong and colleagues 
(ClonaFLEX) in terms of early convergence. As indicated by the results, the 
performance of the proposed algorithm is equal to or better than the other 
algorithms except ClonaFLEX as it gives best. In order to verify the search 
performance of the proposed algorithm, they compare it with the algorithm 
proposed by Mastrolilli and Gambardella (TSopt) and pGA outperforms it in 
almost every case.  
 

2.2.2. Multi Criteria Optimization 
 
The multi criteria optimization studies for the flexible job shop scheduling 
problems consider any combination of makespan, total workload of the machines 
and maximum workload of the machines. 
 
Kacem et al. (2002 a) propose a two-step approach for flexible job-shop 
scheduling problem with makespan and the total workload of the machines 
criteria. This multi-objective optimization is done in a suitable search space 
determined by an assignment algorithm. The first step is to apply the localization 
approach to solve the resource allocation problem and generate the assignment 
schemata. The second step is to apply a controlled evolutionary algorithm.  The 
initial population constructs a starting point from the set of assignments found in 
the first stage. In such an approach, they apply advanced genetic manipulations 
in order to enhance the solution quality. They compare their proposed algorithm 
with the temporal decomposition, classic genetic algorithm and approach by 
localization. The proposed algorithm outperforms all of the compared algorithms. 
 
Kacem et al.(2002 b) consider makespan, the total workload of the machines 
and the maximum workload of the machines objectives and develop a Pareto-
optimality approach to solve the FJSP. Their approach is based on a fuzzy 
evolutionary optimization. The multi-objective solution quality is evaluated by a 
single fitness function that uses the lower-bound values on the optimal objective 
function values.  Although their approach does not guarantee optimality, such an 
approach provides good quality solutions in a reasonable time limit.  
 
Xing et al. (2008) propose a simulation model for the makespan, the total 
workload of the machines and the workload of the critical machine objectives. 
They use the weighted sum of the above three objective values as the objective 
function. The algorithm is compared with temporal decomposition (Kacem et al., 
2002 a), classical genetic algorithm (Kacem et al., 2002), approach by 
localization and AL + CGA (Kacem et al., 2002 b), PSO + SA (Xia et al., 2005). 
The results obtained from the computational study have shown that the 
proposed approach is a feasible and effective approach for the multi-objective 
flexible job shop scheduling problem. 
 
Shi-Jin et al. (2008) develop a new filtered-beam-search-based heuristic 
algorithm to solve the flexible job-shop scheduling problem with objectives of 
makespan, the total workload of the machines and the maximum workload of 
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the machines. The objective function is the weighted sum of these three 
objective criteria. In their proposed algorithm, they design a modified branching 
scheme and use different dispatching rule-based heuristics as local and global 
evaluation functions. The performance of the proposed algorithm is compared 
with the temporal decomposition proposed by F. Chetouane (Kacem et al. 2002a 
classical genetic algorithm (Kacem et al., 2002), approach by localization and AL 
+ CGA (Kacem et al., 2002 b), PSO + SA (Xia et al., 2005). The result of the 
proposed HFBS algorithm is better than those of temporal decomposition, 
Classical GA, AL and PSO + SA. 
 
Gao et al. (2008) propose a new approach hybridizing genetic algorithm with 
variable neighborhood descent to exploit the global search ability of the genetic 
algorithm and the local search ability of the variable neighborhood descent for 
solving multi objective flexible job shop scheduling problem. The objectives are 
makespan, the total workload of the machines and the maximum workload of 
the machines. Makespan is given the first importance, maximal machine 
workload is given the secondary importance, and total workload is given the 
least importance in the study. The proposed algorithm is compared with AL + 
CGA (Kacem et al., 2002 b) PSO + SA (Xia et al., 2005 and multistage-based 
genetic algorithm (Zhang et al., 2005). Their computational results based on 
various benchmark problems reveal that their algorithm gives better results than 
the compared methods at majority of the instances. 
 
Rajkumar et al. (2010) propose a greedy randomized adaptive search procedure 
(GRASP) algorithm to solve the multi-objective FJSP with maintenance 
constraints. The objectives are makespan, the total workload of the machines 
and the maximum workload of the machines. The weighted sum of the three 
objective values is taken as the combined objective function. The computational 
results based on four representative instances show the superior performance of 
the algorithm over the hybrid genetic algorithm. 
 
Rajkumar et al. (2011) consider the flexible job shop scheduling problem under 
resource constraints. They construct a nonlinear program with three objective 
functions as makespan, maximum workload and total workload. The objective 
function of the nonlinear mathematical model is the weighted sum of the 
objective function values. They also present a GRASP algorithm for the weighted 
sum objective.  They show that the GRASP gives better solutions than the GA 
with respect to the objective function value.  
 
Vilcotab et al. (2011) propose two tabu search algorithms for the bicriteria FJSP 
with makespan and the maximum lateness objectives. The aim is to offer to the 
decision maker Pareto optimal solutions or non-dominated solutions. The first 
algorithm is based on the constrained approach and the second one is based on 
the linear combination of the two criteria. The proposed methods are not very 
attractive in the case of a single makespan criterion.  For the two criteria, the 
method that is based on the linear combination of the two criteria produces 
higher quality solutions. 
 
They compare their proposed algorithms with the tabu search algorithm 
proposed in Dauzere-Peres and Paulli (1997). The proposed methods are not 
very competitive in the case of a single criterion objective function. For two 
criteria case, the method based on the linear combination of criteria is the best. 
Habib et al.(2012) propose a biogeography-based optimization (BBO) algorithm 
to solve  multi objective FSJP with three different objective functions: makespan, 
critical machine work load, and total work load of machines. They adjust the 
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operators of the BBO algorithm by including migration and mutation. They 
compare the proposed algorithm with a newly developed GA, which has similar 
operators, the GA of Ho et al., the TS of Brandimart and the GA of Zhang et al.  
In all comparisons, the BBO algorithm shows a superior performance.  
Chen et al. (2012) develop a scheduling algorithm for flexible job shop 
scheduling problem in reentrant process environment The objectives of the 
proposed algorithm are the minimization of multiple performance measures 
including total tardiness, total machine idle time, and makespan. The proposed 
algorithm includes machine selection module that selects and assigns operations 
to the machines and operation sequencing module that determines the 
processing sequence of operations on the machines considering the precedence 
relationships. To evaluate the performance of the proposed algorithm, they use a 
real weapon production factory as a case study. Simulation results demonstrate 
the combination of machine selection module using grouping genetic algorithm 
and operation sequencing module using genetic algorithm outperforms the 
current method used in the company.  
 
In this study, we consider an FJSP so as to minimize the total weighted 
completion time.  The most closely related study to ours is due to Lee et 
al.(2010) that considers the same environment, but total completion time 
criterion. 
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CHAPTER 3  

 
 

AN APPLICATION: ROKETSAN CASE 
 
 
 
In this study we concentrate on the flexible job shop scheduling problem of 
Roketsan Missiles Industries Incorporation.  We introduce Roketsan, define 
manufacturing system, production flow and scheduling operations.  
  

3.1. General Information About Roketsan 
 
Roketsan was established upon a decision by Defense Industry Executive 
Committee at 1988 as a leader of national missile and rocket programs.  To 
serve in the national defense sector, to contribute to the technologic 
infrastructure of Turkey are the missions of the company.  The visions are to 
become the leader organization at the rocket and missile technologies from 
under the sea to the space and to be at the first top 50 organization in the world 
with its indigenous design and high technology.    The company is specialized on 
the design and production of structural, thermal, mechanical systems; internal 
ballistics; guidance-control, weapon systems, aerodynamic, composite 
structures, propellant systems and warhead technologies.   
 
 
The main customer of the company is the Turkish Armed Forces, however today 
it is operating beyond our borders, participating in NATO programs with its 
expertise and offering products for the friendly armed forces. ROKETSAN is one 
of the defense castles of Turkey with its 107, 122 and 302 millimeters artillery 
rocket systems, air defense programs, antitank missiles, precision guided 
munitions and airbag productions; space and satellite projects, electronic 
warfare support center studies.  
 
Roketsan works on project, basis.  The orders are defined by the project 
contracts.  Aggregated capacity planning and feasibility analyses are conducted 
to see the attainability of the project master plan.  When the contract is signed 
the size and time of the deliveries are specified.  After receiving the orders, the 
company designs the operation sequence of each order, so called job, and define 
the processing specifications of each operation.  In doing so, the capable 
machines for each operation together with their processing time requirements 
are specified. Certainly, processing time of each operation depends on both the
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 complexity of the job and the capability of machine assigned as well as the 
batch size.  In missile manufacturing, the process is close to being standard; 
jobs have predetermined operation sequences that they have to follow strictly.   
 

3.2. The Manufacturing System 
 
Machine capabilities are specified by the number of machine axes. A machine 
can have maximum 6 axes that are named as X, Y, Z, A, B and C.   For the sake 
of completeness, below we give the function of each axis. 
 

 X Axis:  Relative to the part position, the tray moves through the 
x-axis represented by the arrow. 

 

 
Figure 1: X-Axis Motion 

 
 Y Axis:  Relative to the part position, the tray moves through the 
y-axis represented by the arrow. 

 
 

 
 

Figure 2: Y-Axis Motion 
 Z Axis: Relative to the part position, the tray moves through the z-
axis represented by the arrow. 

 

 
 

Figure 3: Z-Axis Motion 
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 C Axis: The part rotates around itself. 

 
Figure 4: C-Axis Motion 

 
 B Axis:  The tray’s angle is changeable and by this way drilling can 
be done to part’s surface with angle different from right angle. 
 
 A Axis: The spindle’s angle is changeable and by this way different 
angled milling and drilling operations can be performed. 

 
The manufacturing setting consists of 8 bottleneck machine types, M1 through 
M8. M2 has two identical machines hence there are a total of 9 machines. The 
characteristics of the bottleneck machines are explained below: 
 
M1 Machine, CNC machining center: It has X, Y, Z, C and B axes and performs 
turning, milling and perforation and boring operations on the metal parts. 
 
M2 Machine: There are two identical M2 with X, Z and C axes. Each can be used 
for turning small and precision-bored parts, processing metal and composite 
parts. 
 
M3 Machine, Quality Control department: It performs precise operations at slow 
pace. 
 
M4 Machine, CNC turn bench: Using X, Z and C axes, it performs various inner 
and outer diameter turning processes and processes metal and composite parts. 
M5 Machine, CNC milling machine: Using 5-axes it performs various milling and 
drilling processes and processes metal and composite parts. 
 
M6 Machine, CNC milling machine:  Using X, Z and C axes, side and upper 
milling processes and various milling and drilling processes are performed and 
metal and composite parts are processed. 
 
M7 Machine, CNC milling machine: Using X, Y, Z, C and B axes, it performs 
various milling processes. 
 
M8 Machine: Using X, Y, Z and C axes various drilling especially angular drilling 
processes are performed and metal and composite parts are processed.  
The relative locations of the machines in the manufacturing shop are given in 
Figure 5. 
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Figure 5: Workshop Layout 

 
 
 

3.3. The Production Plan and Material Flow 
 
The production plan is issued at the beginning of each year considering the 
contracts. The plan includes the number of products to be produced at each 
month.  The monthly plans are revised to handle the deviations between the 
planned and realized production levels observed in the previous months. The 
production is done in batches.  
 
The production department publishes the work orders with specified batch sizes.  
If the order, so called job, is critical, there is a first inspection point that detects 
whether the job is critical or not.  After the batch passes the initial inspection, its 
first unit is processed.  The processed unit is checked by the quality control 
department. If the unit is processed properly, the remaining units in the batch 
are processed at the first critical machine. If the unit is not processed properly, 
the machine setup is changed and one unit is processed and sent to the quality 
inspection department to check whether the new setup is proper. The above 
procedure continues until the proper output is obtained.  
 
After all operations of job are finished, the batch is sent to quality the inspection 
area for final inspection after which the defectives units are scrapped. The 
qualified units are sent to the project depot if it is end product, else it is sent to 
the production depot. 
 
The flowchart in Figure 6 depicts the above discussed production and material 
flow.
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 Figure 6: Production Flow Diagram 
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3.4. Scheduling Decisions 
 
The scheduling problem faced by the company can be stated as allocating eight 
machine types with totally nine bottleneck machines to the operations and 
scheduling the assigned operations on each machine.  Almost all projects require 
these nine bottleneck machines; hence their efficient planning and operation are 
crucial for on time deliveries and allowing new contracts. 
 
The schedule plan is determined at the start of each week by production 
planning and production workshop departments and the scheduling is done in a 
rolling horizon basis.  Each week, the parts that pent from the previous week 
form the machine availability constraints.   
 
The objective is to schedule the bottleneck machines so as to finish each job as 
early as possible. 
 
The following assumptions are considered in the scheduling process: 
 
1. There is no material shortage; all resources are available when needed. 
 
2. The system is reliable, i.e., there are no machine breakdowns and unexpected 
job arrivals. 
 
3. The transfer times between the machines are not considered. 
 
4. A machine can only process one operation at a time, and an operation is 
processed continuously, with no interruptions and splitting. 
 
5. The batch sizes are set to one upon the request of the research and 
development department. The current scheduling policy that is determined by 
the chief engineer follows the below steps: 
 
• The operations are assigned to one of their capable machines according to the 
minimum processing time rule and the scheduling decisions are given by the 
FIFO rule.  
• If the deadline of a job is too close, it is started earlier than the other jobs in 
the cell. 
• The flexible routes are defined such that the smaller indexed operation is 
processed earlier. 
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CHAPTER 4  
 

 

A MIXED INTEGER LINEAR PROGRAMMING 
FORMULATION OF THE FLEXIBLE JOB SHOP 

SCHEDULING PROBLEM 
 
 
In this chapter, a mixed integer linear programming (MILP) formulation of the 
flexible job shop scheduling problems is given. Our model finds the optimum weekly 
schedule on each machine. We first state the problem description and then our 
assumptions some of which are based on our motivating case. 
 
The flexible job-shop scheduling problem consists of m machines and n jobs. The 
machine set is M = {M1, M2,... , Mm}.Unless stated otherwise, index i denotes a 
machine, index j denotes a job and index h denotes an operation. Machine i has an 
availability time to start processing which is denoted by avi. This parameter 
represents when machine i can start its first job. 
 
Our objective is to minimize the total weighted completion time over all jobs. We 
assume all jobs have different penalties for late completions. wi is the relative 
importance of job i. Our objective favors early completions of the jobs and gives 
higher priority to the more prestigious jobs. As the jobs leave the shop-floor once 
they are complete, the completion time of a job defines its work-in-process 
inventory levels. 
 
Job j enters the shop floor at time rj , hence rj  represents the ready time of job j. 
There are precedence relations between some job pairs, as some jobs cannot start 
before some others are completed. This may be due to the inherent assembly 
structure of the product. 
 
 
Job j has hj operations and follows a sequence of operation Oj,h , h = 1, . . . , hj ; 
where Oj, h is hth operation of job j. There are four types of operations in the 
system.  
 
Type 1. An operation is performed at specified machine with a specified sequence.  
We let S1 be the set of type 1 operations. 
 
Type 2. An operation can be performed on more than one machine, hence there are 
alternative machines for the operation, and there is a specified sequence. We let S2 
be the set of type 2 operations.
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Type 3. An operation can be performed at specified machine however at alternative 
sequences on its route. We let S3 be the set of type 3 operations. 
 
Type 4. An operation can be performed on more than one machine and at more 
than one sequence of its route.  We let S4 be the set of type 4 operations. 
 
Note that Type 2 and Type 4 operations are associated with flexible nature of the 
job shops whereas Type 3 and Type 4 operations do follow open-shop structure. 
 
In the absence of Type 2, 3 and 4 operations, we refer the problem as classical job 
shop. In the absence of Type 3 and 4 operations, we refer the problem as flexible 
job shop. In the presence of flexible routing structure in Type 3 and 4, our 
problems are open shop and flexible open shop problems, respectively. We assume 
the routing structure is for two specified operations of ordered h and h+k. 
 
The batch size of job j is Bj . Batch splitting is not allowed, hence all Bj units of job j 
move all together. We denote pi,j,h as the unit processing time of Oj,h on machine i 
and Si,j,h its setup time. Then the total processing time of job j’s operation h at 
machine i is calculated as 
TPi,j,h = Si,j,h + Bj * pi,j,h , where j ϵ Mj,h , Mj,h =set of machines that are eligible to 
process Oj,h 
We let pj,h be the processing time  of  Oj,h if Oj,h can be performed  by only one 
machine i.e. | Mj,h|=1 
 
For the flexible routes we define the processing times as a function of machines, 
but not operations. We let ri,j be processing time of the flexible operation of job j if 
performed by machine i. 
 
An instance of a flexible job shop problem is presented in Figure 7. This example 
describes a three jobs and three machines flexible job shop problem. The batch 
sizes, completion time weights and job ready times, machine available time, 
operations sequence, operation types, capable machines, waiting time between 
operations, unit processing times and setup times are shown in Figure 7. 
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Figure 7: A Three Jobs-Three Machines Problem Instance 

 
The MILP of the flexible job shop scheduling problem addresses the weekly 
schedule of the machines at the production cell.  We adopt the model discussed in 
Fattahi et al. (2007) to our problem. Fattahi et al. (2007) aim to minimize 
makespan in flexible job shops. Our aim is to find an optimal weekly schedule that 
minimizes the total weighted flow time.   Moreover our model resides the following 
additional features: 

 flexibility in operation sequences 
 ready times for the jobs 
 available times for the machines 
 

This follows the constraint set of Fattahi et al. (2007) reduces to ours when the job 
ready times and machine available times are all zero and all operation sequences 
are fixed. 
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We use the following additional parameter: 
 
ai,j,h              ={1 if Oj,h can be performed on machine i and 0 otherwise} 

 

L = a big number 
 

 
Our decision variables are  
 
Xi,j,h,k = {1 if Oj,h  is performed on machine i at position k and 0 

otherwise  where | Mj,h|>1 } 
 

Yj,h,k = {1 if Oj,h  is performed on its capable machine at position k and 
0 otherwise  where | Mj,h|=1 } 
 

Cj completion time of job j 
 

tj,h start time of the processing of operation Oj,h 

 

Tmi,k  start of working time for machine i in position k 
 

Constraints 
 
Time Constraints 
 
Starting time of job j’s first operation must be greater than or equal to the ready 
time of job j. 
 

rt jj 
1,                 j   1  

 
Start of working time for machine i must be greater than or equal to the available 
time of machine i. 
 

avTm ii 1,             i  
 
 2  

                                                                                         
 
Assignment Constraints 
 
An operation can be assigned to a machine’s position k if there is a capable 
machine to perform it. 
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Type 1 operation Oj,h must be completely assigned to one of priorities of its capable 
machine. 
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All type 2, type3 and type4 operation Oj,h must be assigned to one of priorities of a 
machine at capable machines set. 
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Type 3 and 4 operation can be performed at one of its capable machines or its 
correlated Type 3 or 4 operation’s one of capable machines.  
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Operation Sequence (Routing) Constraints 
 
An operation can not start before the completion of its predecessor operations, 
implied by the route. This condition is handled by three constraints: first for Type 1 
operations, second for Type 2 operations, third for Type 3 and Type 4 operations. 
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Machine Position Constraints 
 
Machine position k represents the order of the job processed at machine i. At most 
one operation Oj,h can be assigned to  machine i’s position k. An operation Oj,h can 
be assigned to machine i’s position k+1 if another operation is assigned to machine 
i’s position k.To explain, position k+1 of machine i is open if position k is open and 
an operation is assigned at. The operation assigned to position (k+1) of machine i 
starts no earlier than the completion time of the operation assigned to the k th 
position of machine i. 
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Start Time of Operation’s and Machine’s Position Constraints 
 
The start time of operation Oj,h is the start of machine i’s position k. that is stated in 
(17), (18) for Type 1 operations, in (19), (20)for Type 2 operations,  (21), (22)for 
Type 3 and Type 4 operations.  
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Completion Time Constraints 
 
The completion time of each job j equals to the finish time of processing of last 
operation. 
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Binary Variables and Set Constraints 
 

y khj ,,
and x khji ,,,  are binary variables: 
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Temporal variables should be positive. 
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0
,
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Objective Function 
 
The objective function of the model is to minimize the total weighted completion 
times of all jobs (31).  
 
minimize  

j
jj Cw *            

where wj is the relative importance of job j                                                                    
                                                                   

 31  
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CHAPTER 5  

 
 

SOLUTION APPROACHES 
 
 
 
In this chapter, we present solution approaches for the flexible job shop scheduling 
problem that aims to minimize total weighted completion time.  Recall that our 
problem is strongly NP-hard. So a small-sized problem can be solved by an 
optimization model and to solve medium and large-sized problems, heuristic 
approaches are needed. 
 
For the FJSP there are basically two types of heuristic approaches: hierarchical 
approaches and integrated approaches.  Hierarchical approaches are based on the 
idea of decomposing the original problem in order to reduce its complexity by 
separating the machine assignment and operation sequencing decisions.  On the 
other hand, in integrated approaches, assignment and sequencing are not 
differentiated, hence are given simultaneously.  
 
Our heuristic procedures make allocation and sequencing decisions sequentially. In 
doing so, we sacrifice from solution quality, with the hope of obtaining a quick 
solution. 
 
Our hierarchical heuristic approach has two-phases as construction and 
improvement. In the construction phase, an initial assignment of the operations to 
one of the capable machines and sequence of the assigned operations at each 
machine are done. In the improvement phase, the solution built at the construction 
phase is improved to get a better solution in terms of the total flow time value. 

 

5.1. Construction Phase 
 
In the construction phase, we use hierarchical approach to generate a feasible 
solution for the FJSP. The output of allocation decision is the input of sequencing 
decision. The construction phase has two main steps as allocation and sequencing, 
sequencing step takes the machine assignment decisions of the allocation step as 
an input.
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5.1.1. Allocation Decisions 
 
We use two approaches to assign operations to one of their capable machines as 
assignment model and allocation rules. 
 

5.1.1.1. Mathematical Model 
 
Our mathematical model, so called machine assignment (allocation) model, assigns 
the flexible operations to one of their capable machines while ignoring the 
sequencing decisions.  The model aims to allocate the workload between the 
machines as evenly as possible.  In doing so, we aim to minimize the maximum 
workload primarily and minimize total workload secondarily.  Hence we seek for a 
minimum total machine workload allocation among the solutions that give the 
smallest maximum workload. 
 
The variables that explain our decisions are  
 

Xi,j,h = {1 if Oj,h  is assigned to machine i and 
     0 otherwise  where | Mj,h|>1 } 

Yj,h = {1 if Oj,h  is assigned to its capable machine and 
     0 otherwise  where | Mj,h|=1 } 

 

Z = maximum of all machine workloads 
 

TTi = workload of machine i 

 
There are two constraint sets: assignment constraints and machine workload 
relations. 
 
Assignment Constraints 
 
Type 1 operation Oj,h must be completely assigned to its capable machine.  
 

1
,
y hj

                        1
,
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All type 2, type3 and type 4 operations Oj,h must be assigned to one of its capable 
machines. 
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Type 3 and 4 operation can be performed at one of its capable machines or its 
correlated Type 3 or 4 operation’s one of capable machines.  
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Maximum Machine Workload Relations  
 
The workload of a machine is the sum of the processing times of the operations 
assigned to that machine plus its initial available time which reflects its workload 
pending from previous week.  
 
The following expression defines the workload of a particular machine i. 
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Z gives the maximum of the machine workloads. 
 

iZ TTi                                                                                                                           7  

 
 
Objective Function 
 
The objective of the assignment model is to minimize 
 


i

iTTZ *     

where   is a very small positive constant. 
                                                                 

 8  

 
The primary objective Z aims to balance the workload by minimizing the maximum 
machine workload.  Note that among the solutions having the smallest maximum 
machine workload we select the one having the total workload.   
 
Our machine assignment is strongly NP-hard as it reduces to the well known NP-
hard single stage parallel machines makespan problem (Blazewicz et al., 1994). 
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Owing to this complexity, we set a termination limit of 20 minutes that can be 
accepted by many practical applications.  
 

5.1.1.2. SPT and Improved SPT Allocation Rule 
 
We use the shortest processing time rule to assign the flexible operation.  In doing 
so, we assign the flexible operations to their smallest processing time machines.  
This selection minimizes the total processing time.  The disadvantage is that if a 
machine is favored by many operations due to its high speed then the resulting 
solution will have poor workload balance among all machines. 
 
Recognizing this disadvantage, we improve the allocations by shifting the 
operations from its current machine to one of the alternate machines.  In doing so, 
we pay attention that the load of the alternate machine after the shift is smaller 
than that of load of the current machine.  Such a shift would balance the load of 
two machines at an expense of increases in the total processing time.  We start 
from the first machine and make a shift whenever we observe that an operation 
when shifted to an alternate machine would help to a reduction in the machine load 
balance.  Below is the stepwise description of our improved SPT heuristic 
procedure. 
 
We use the following notation to describe our procedure 
 
m = number of machines that reside flexible operations  

)(iTT load of machine i 
),( jip processing time of operation j on machine i 

  )(iFO set of flexible operations on machine i 
  )( jFF set of alternate machines for flexible operation j 
 
 
Procedure:   Improved SPT Allocation Rule 
 
 
Step 0.  Assign all operations to their minimum processing time machines,  
i.e.,  use SPT rule to assign operations to their flexible machines. 
i = 0 
 
Step 1. Let  i  =  i + 1 
r  = 0 
If  i  = m + 1 then stop, else go to step 2. 
 
Step 2. Let  j = 1 
If  r is the last machine in )( jFF then go to Step 1 
r = r + 1 
Step 3. Take the jth operation from set )(iFO and load it to the rth machine in  
set )( jFF . 
 
If  TT(r) + ),( jrp  <  TT(i)  then 
TT(r) = TT(r) + ),( jrp  
TT(i) = TT(i) - ),( jip  



 33 
 

 
 

)(iFO )/()( jiFO  
 )(rFO )()( jrFO      

)( jFF = )( jFF / i )(r  
 
If  j is the last operation in )(iFO then go to Step 2 
 
Step 4. Let    j = j+1 
Go to Step 3. 
   

5.1.2. Sequencing Decisions 
 
Two approaches, a mathematical model and priority rules, are used to sequence the 
operations at their assigned machines.  
 

5.1.2.1. Mathematical Model (MILP-S) 
 
Given the machine assignment decisions, our problem reduces to the classical job 
shop model. The basic decision is to assign each operation to a position on each 
machine. The objective function of the model is minimizing the total weighted 
completion times, as in the original model.  The only distinction from the original 
model is the absence of flexible operations.  In this model, we assume there are no 
flexible operations, hence Set S2 is empty.  
 
The resulting JSP problem still has exponential complexity however much easier as 
it ignores the allocation decisions. Moreover we give a termination limit of 20 
minutes for the JSP model and hence control its processing speed. If no integer 
solution is returned at the termination limit, we use only priority rules for 
sequencing. 

5.1.2.2. Priority Rules 
 
We use four priority rules to sequence operations at their assigned machines. All 
priority rules favor our objective of minimizing total weighted completion time by 
giving higher priority to the operations having higher weight and lower processing 
time.  
    
Priority Rule 1:  In each machine, the job having the maximum weight is listed 
first.  
 
Priority Rule 2: The operations are sequenced in non increasing order of the ratio 
of the weight of the corresponding job/total processing time of the corresponding 
job. 
 
Priority Rule 3: The operations are sequenced in non decreasing order of the total 
processing time of the corresponding job. 
 
Priority Rule 4: The operations are sequenced in non decreasing order of their 
processing time on that machine. 
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Each rule defines a sequence list on each machine.  The resulting schedules are 
formed by scheduling the first feasible operation of the list whenever a machine 
becomes idle.  An operation is feasible if all its predecessors are already assigned. 
 

5.2. Improvement Phase 
 
 The solutions that are returned by our priority rules are subjected to an 
improvement process.   The improvement requires a solution representation 
scheme, neighborhood structure given in Figure 8. 
 
To represent the solutions, we use the sequencing list provided by Kacem et al. 
(2002a), in which a string embodies scheduling operations. Each operation in the 
solution string is represented by a triple (i, j, a(i,j)), where i represents an 
operation of job j and a(i,j) indicates the machine assigned to that operation. The 
length of the string is equal to the total number of operations of jobs.  
 
We take a neighborhood structure, Se1, defined by Amiri et al. (2010). Se1 changes 
the sequence of operations while preserving the precedence order between the 
operations and retaining the assignment of operations on the machines.  In doing 
so, one operation among the existing operations in the current solution is selected; 
and if the move is precedence feasible, the operation is substituted for the 
operation of its preceding operation at the machine. Otherwise, the selected 
operation is substituted for the operation of its succeeding operation at the 
machine. Furthermore, it is possible that the selected operation would not be 
replaced with its preceding and succeeding operations at corresponding machine.  
 
Consider the following schedule taken from the paper of Amiri et al. (2010) and 
depicted in Figure 8. S1 is the current solution’s string from which one cell is 
selected at random.  Suppose the second cell including operation O2,1 is selected 
and is substituted at cell one and S1’ is accepted as the new string. 
 
 
 
S1: (3,1,1) (2,1,4) (1,1,2) (2,2,3) (1,2,1) (1,3,3) (4,1,4) (4,2,2) (3,2,1) 

 
 
 
 

S1': (2,1,4) (3,1,1) (1,1,2) (2,2,3) (1,2,1) (1,3,3) (4,1,4) (4,2,2) (3,2,1) 
 

Figure 8: Example for neighborhood structure Se1 
 
 
In the neighborhood we define a move by changing the sequence of two 
consecutive operations. We select a move that improves the total weighted flow 
time, by the maximum amount.   
 
To guide the search, we define two strategies as best improving move and best 
move.   
Best improving move strategy selects only improving moves and stops whenever 
the current solution cannot be improved by realizing the moves in our 
neighborhood or the specified iteration limit is reached.   If there is no improving 
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move in the neighborhood then the resulting local optimal.  In such a case a better 
solution can be obtained only by allowing non-improving moves.  
 
Best move recognizes this fact and continues over the best improving move by 
allowing the moves that deteriorate the objective function value.  In order not to 
repeat the previously visited schedules we prevent the moves that are realized on 
the last three iterations on each machine. 
The solution procedure for FJSP is summarized in Figure 9. 
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Figure 9 : Solution Procedure for FJSP Problem 
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CHAPTER 6  

 
 

AN ILLUSTRATIVE EXAMPLE FROM ROKETSAN 
COMPANY 

 
 
To illustrate the proposed MILP and constructive heuristic approaches, we collect 4-
week data from Roketsan’s production workshop.  In this chapter we study week 
3’s case in detail. Weeks 1, 2 and 4’s data and their schedules used by Roketsan 
production planning department, found by optimization model and heuristic 
methods are given in appendices. 
Jobs’ operations, capable machines and processing times of week 3 are reported in 
Table 1. 
 

Table 1: One-Week Production System Instance 
 

JOB OPER. CAPABLE M/C S 

TOTAL 
PROCESSING 

TIME AT 
CAPABLE 
MACHS’ 

(minutes) 

OPER1 MAC6 2370 

OPER2 MAC4 480 JOB1 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 305 

OPER1 MAC7 960 

OPER2 MAC8 820 

OPER3 MAC6 3180 

OPER4 MAC7 1380 

JOB2 

OPER5 MAC6 960 
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Table 1 Continued 
 

OPER6 MAC6 600 
JOB2 

OPER7 MAC5,MAC19,MAC20,MAC21,MAC22 250 

OPER1 MAC10,MAC15 90 

OPER2 MAC10,MAC15 120 

OPER3 MAC10,MAC15 150 

OPER4 MAC10,MAC15 140 

JOB3 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 25 

OPER1 MAC10,MAC15 270 

OPER2 MAC10,MAC15 150 JOB4 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 30 

OPER1 MAC16 690 

OPER2 MAC3 2010 

OPER3 MAC16 2700 

OPER4 MAC23 780 

JOB5 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 230 

OPER1 MAC10,MAC15 150 
JOB6 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 15 

OPER1 MAC10,MAC15 270 
JOB7 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 15 

OPER1 MAC9 80 

OPER2 MAC2 320 JOB8 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 25 

OPER1 MAC2 1640 

OPER2 MAC3 630 JOB9 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 310 

OPER1 MAC12 1030 

OPER2 MAC1 510 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 255 

OPER4 MAC12 505 

JOB10 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 1010 
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Table 1 Continued 
 

OPER1 MAC10,MAC15 6030 
JOB11 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 255 

OPER1 MAC10,MAC15 4830 
JOB12 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 205 

OPER1 MAC10,MAC13,MAC15 1830 
JOB13 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 410 

OPER1 MAC10,MAC13,MAC15 1520 
JOB14 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 380 

OPER1 MAC9 435 

OPER2 MAC9 435 JOB15 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 510 

OPER1 MAC10,MAC15 315 
JOB16 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 40 

OPER1 MAC10,MAC15 730 
JOB17 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 125 

OPER1 MAC14 120 
JOB18 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 30 

 
 
In our example, last operation(s) of each job is flexible as the last operation(s) is 
inspection related and the company has five operators to inspect whether the part 
is produced correctly or not.  
 
The machines’ availability times and the jobs’ ready times are given in Table 2 and 
Table 3, respectively. The completion times of the jobs are important criteria to 
define the availability times of the machines for the next week schedule. If the job 
does not complete at the current week, it continues to its processing at the next 
week. Hence the schedule has a rolling horizon aspect. 
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Table 2: Machine Availability Times 
 

MACHINES 
MACHINE 

AVAILABILITY 
TIME (minutes) 

MAC2, MAC3, MAC6, MAC7, MAC19, MAC23 0 

MAC12 300 

MAC16 360 

MAC20 480 

MAC1, MAC5, MAC8, MAC10, MAC15, MAC21 720 

MAC9, MAC13 960 

MAC14, MAC22 1440 

 
 

Table 3: Jobs’ Ready Times 
 

 
JOBS 

READY 
TIME 
(min.) 

 
JOB1,JOB5,JOB7,JOB9,JOB13,JOB14, 

JOB17,JOB18 
0 

JOB3 240 

JOB6,JOB11 360 

JOB16 600 

JOB8 900 

JOB2,JOB4,JOB15 960 

JOB12 1080 

JOB10 2160 
 
Jobs 13 and 14 are relatively important; hence each is given a completion time 
weight 3.  The weights of the other jobs are set to 1.  
 
In section 6.1 the MILP model solution of the instance is given whereas section 6.2 
reports on the heuristic solutions and 6.3 include the schedule implemented by 
Roketsan.  Section 6.4 summarizes the completion times and calculates the 
objective function values of all solutions. 
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6.1. MILP Solutions: 
 
We set a termination limit of 4 hours and see that the mixed integer linear 
programming model could not return an optimal solution.  We discuss the best 
feasible solution returned by the model at the termination time.  The job sequences 
are given in Table 4.  

 
Table 4: The sequence returned by the MILP at the end of 4 hours 

 
  Positions 

Machines 1 2 3 4 5 6 7 

1 J10.O2             

2 J8.O2 J9.O1           

3 J5.O2 J9.O2           

4 J1.O2             

5 J16.O2 J13.O2 J10.O3 J2.O7       

6 J1.O1 J2.O3 J2.O5 J2.O6       

7 J2.O1 J2.O4           

8 J2.O2             

9 J8.O1 J15.O1 J15.O2         

10 J3.O1 J3.O2 J3.O3 J3.O4 J14.O1 J12.O1   

12 J10.O1 J10.O4           

13 J13.O1             

14 J18.O1             

15 J6.O1 J7.O1 J16.01 J4.O1 J4.O2 J17.O1 J11.O1 

16 J5.O1 J5.O3           

19 J6.O2 J3.O5 J8.O3 J18.O2 J4.O3 J14.O2 J9.03 

20 J7.O2 J5.O5           

21 J15.O3 J10.O5 J11.O2         

22 J17.O2 J1.O3 J12.O2         

23 J5.O4             
 
 
As can be observed from Table 4, Machines 15 and 19 are most heavily loaded by 
seven operations.  
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6.2. Heuristic Solutions: 
 
The construction phase has two decisions as allocation and sequencing.  
 
Allocation Decision Stage: To assign each operation to one of its capable 
machines we use two approaches: machine assignment model and improved 
shortest processing time priority rule and report the results on Table 5. 
 

Table 5: Allocation Results 
 

Job Flexible 
Operation 

Assignment Model 
Allocations 

ISPT 
Allocations 

JOB1 OPER3 MAC19 MAC20 
JOB2 OPER7 MAC19 MAC22 

OPER1 MAC15 MAC10 
OPER2 MAC10 MAC10 
OPER3 MAC15 MAC10 
OPER4 MAC15 MAC10 

JOB3 

OPER5 MAC19 MAC21 
OPER1 MAC15 MAC10 
OPER2 MAC15 MAC15 JOB4 
OPER3 MAC19 MAC21 

JOB5 OPER5 MAC19 MAC22 
OPER1 MAC10 MAC15 JOB6 
OPER2 MAC19 MAC21 
OPER1 MAC15 MAC15 

JOB7 
OPER2 MAC19 MAC21 

JOB8 OPER3 MAC19 MAC21 
JOB9 OPER3 MAC19 MAC19 

OPER3 MAC19 MAC19 JOB10 
OPER5 MAC19 MAC5 
OPER1 MAC10 MAC15 JOB11 
OPER2 MAC19 MAC5 
OPER1 MAC15 MAC10 JOB12 
OPER2 MAC19 MAC5 
OPER1 MAC13 MAC13 JOB13 
OPER2 MAC19 MAC5 
OPER1 MAC13 MAC13 JOB14 
OPER2 MAC19 MAC5 

JOB15 OPER3 MAC19 MAC5 
JOB16 OPER1 MAC10 MAC10 

 OPER2 MAC19 MAC19 
JOB17 OPER1 MAC10 MAC10 

 OPER2 MAC19 MAC5 
JOB18 OPER2 MAC19 MAC21 
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Sequencing Stage: For each allocation solution, we sequence the operations in 
two ways: mixed integer linear model and priority rules.  
 
 
Mixed Integer Linear Sequencing Model (MILP-S) 
 
We set a termination limit of 1 hour to our MILP-S model.  The sequences returned 
by the model that use the assignment model and improved SPT for allocation stage 
are reported in Tables 6 and 7, respectively.  
 

 
Table 6: The Sequence Returned By MILP-S with Assignment Model 

 
  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 
1 J10.O2                   
2 J8.O2 J9.O1                 
3 J5.O2 J9.O2                 
4 J1.O2                   
5                     
6 J1.O1 J2.O3 J2.O5 J2.O6             
7 J2.O1 J2.O4                 
8 J2.O2                   
9 J8.O1 J15.O1 J15.O2               

10 J6.O1 J16.O1 J17.O1 J3.O2 J11.O1           
12 J10.O1 J10.O4                 
13 J14.O1 J13.O1                 
14 J18.O1                   
15 J7.O1 J4.O1 J4.O2 J3.O1 J12.O1 J3.O3 J3.O4       
16 J5.O1 J5.O3                 
19 J6.O2 J7.O2 J16.O2 J8.O3 J4.O3 J18.O2 J17.O2 J15.O3 J14.O2 J1.O3 
23 J5.O4                   

 
  Positions 

Mach.s 11 12 13 14 15 16 17 18 19 
19 J9.O3 J10.O3 J13.O2 J10.O5 J3.O5 J5.O5 J11.O2 J2.O7 J5.O5 

 
 

Table 7: The Sequence Returned By MILP-S with ISPT Rule 
 

  Positions 

Mach.s 1 2 3 4 5 6 7 8 
1 J10.O2               
2 J9.O1 J8.O2             
3 J5.O2 J9.O2             
4 J1.O2               
5 J14.O2 J17.O2 J15.O3 J13.O2 J10.O5 J12.O2 J11.O2   
6 J1.O1 J2.O3 J2.O5 J2.O6         
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Table 7 Continued 
 

7 J2.O1 J2.O4             
8 J2.O2               
9 J8.O1 J15.O1 J15.O2           

10 J16.O1 J3.O1 J3.O2 J3.O3 J3.O4 J4.O1 J17.O1 J12.01 
12 J10.O1 J10.O4             
13 J14.O1 J13.O1             
14 J18.O1               
15 J6.O1 J7.O1 J4.O2 J11.O1         
16 J5.O1 J5.O3             
19 J16.O2 J9.O3 J10.O3           
20 J1.O3               
21 J7.O2 J8.O3 J4.O3 J6.O2 J3.O5 J18.O2     
22 J5.O5 J2.O7             
23 J5.O4               

 
 
Priority Rules  
 
Priority Rule 1:  In each machine, the job having the maximum weight is listed 
first.  The list is 13-14-1-2-3-4-5-6-7-8-9-10-11-12-15-16-17-18 as jobs 13 and 14 
have weight 3 and the weights of other jobs are one.  
 
Priority Rule 2: The jobs are sequenced in non increasing order of the weight and 
total processing time ratio.  
 
The ratios of the jobs 1 through 18 are 0.0003, 0.0001, 0.0019, 0.0022, 0.0002, 
0.0061, 0.0035, 0.0024, 0.0004, 0.0003, 0.0002, 0.0002, 0.0013, 0.0016, 0.0007, 
0.0028, 0.0012 and 0.0067.  Hence the order is 18, 6, 7, 16, 8, 4, 3, 14, 13, 17, 
15, 9, 1, 10, 12, 11, 5 and 2.  
 
Priority Rule 3: The operations are sequenced in non-decreasing order of the total 
processing time of the corresponding job.   
 
The total processing times of the jobs 1 through 18 are found as 3155, 8150, 525, 
450, 6410, 165, 285, 425, 2580, 3310, 6285, 5035, 2240, 1900, 1380, 355, 855 
and 150 minutes. The corresponding order is 18, 6, 7, 16, 8, 4, 3, 17, 15, 14, 13, 
9, 1, 10, 12, 11, 5 and 2. 
 
Priority Rule 4: The operations are sequenced in non decreasing order of their 
processing time.  
 
We find that the best priority rule is the third for both allocation rules.  Table 8 and 
Table 9 report the sequences returned by priority rule 3 that use allocations by the 
assignment model and improved ISPT rule, respectively. 
 
 
 
 
 
 



 

45 
 

 
 

Table 8:   The Sequence Returned By Priority Rule 3 with Assignment 
Model 

 
  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 

1 J10.O2                   

2 J8.O2 J9.O1                 

3 J9.O2 J5.O2                 

4 J1.O2                   

5                     

6 J1.O1 J2.O3 J2.O5 J2.O6             

7 J2.O1 J2.O4                 

8 J2.O2                   

9 J8.O1 J15.O1 J15.O2               

10 J6.O1 J16.O1 J3.O2 J17.O1 J11.O1      

12 J10.O1 J10.O4         

13 J14.O1 J13.O1            

14 J18.O1                   

15 J7.O1 J4.O1 J4.O2 J3.O1 J3.O3 J3.O4 J12.O1       

16 J5.O1 J5.O3                 

19 J18.O2 J6.O2 J7.O2 J16.O2 J8.O3 J4.O3 J3.O5 J17.O2 J15.O3 J14.O2 

23 J5.O4                   
 

  Positions 
Mach.s 11 12 13 14 15 16 17 18 19 

19 J13.O2 J9.O3 J1.O3 J10.O3 J10.O5 J12.O2 J11.O2 J5.O5 J2.O7 
 

Table 9: The Sequence Returned By Priority Rule 3 with ISPT Rule 
 

  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 

1 J10.O2                   

2 J8.O2 J9.O1                 

3 J9.O2 J5.O2                 

4 J1.O2                   

5 J17.O2 J15.O3 J14.O2 J13.O2 J10.O5 J12.O2 J11.O2       

6 J1.O1 J2.O3 J2.O5 J2.O6             

7 J2.O1 J2.O4                 
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Table 9 Continued 
 

8 J2.O2                   

9 J8.O1 J15.O1 J15.O2               

10 J16.O1 J4.O1 J3.O1 J3.O2 J3.O3 J3.O4 J17.O1 J12.O1     

12 J10.O1 J10.O4                 

13 J14.O1 J13.O1                 

14 J18.O1                   

15 J6.O1 J7.O1 J4.O2 J11.O1             

16 J5.O1 J5.O3                 

19 J16.O2 J9.O3 J10.O3               

20 J1.O3                   

21 J18.O2 J6.O2 J7.O2 J8.O3 J4.O3 J3.O5         

22 J5.O5 J2.O7                 

23 J5.O4                   
 
Improvement Phase 
 
The best of the priority rules, i.e., Priority Rule 3, with allocations by the 
assignment model and ISPT rule are fed into improvement phase.  The sequences 
generated by the best improving move are reported in Tables 10 and 11.  We use 
an iteration limit of 100 iterations for best improving move strategy.  The 
sequences generated by best move with non-blocking strategy with 400 iterations 
are reported at Table 12 and 13. 
 

Table 10: The Sequence Returned From Improvement Phase with 
Assignment Model (Best Improving Strategy) 

 
  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 

1 J10.O2                   

2 J9.O1                   

3 J9.O2  J5.O2                 

4                     

5 J14.O2 J13.O2 J10.O5               

6 J2.O3 J2.O5 J2.O6               

7 J2.O4                   
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Table 10 Continued 
 

8                     

9 J8.O1 J15.O1 J15.O2               

10 J16.O1 J4.O1 J3.O1 J3.O3 J1.O1 J1.O2 J3.O4 J17.O1 J12.O1 J2.O1 

12 J10.O1 J10.O4                 

13 J14.O1 J13.O1                 

14 J18.O1                   

15 J6.O1 J7.O1 J11.O1               

16 J5.O1                   

19                     

20                     

21 J8.O3 J6.O2 J4.O3 J18.O2 J3.O5           

22 J8.O2 J7.O2 J4.O2 J16.O2 J3.O2 J1.O3 J15.O3 J17.O2 J9.O3 J10.O3 

23 J5.O4                   
 
 

  Positions 
Mach.s 11 12 13 14 15 16 17 18 19 

22 J5.O3 J5.O5 J11.O2 J12.O2 J2.O2 J2.O7       
 

Table 11: The Sequence Returned From Improvement Phase with ISPT 
Rule (Best Improving Strategy) 

 
  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 

1 J10.O2                   

2 J9.O1 J8.O2                 

3 J9.O2 J5.O2                 

4 J1.O2                   

5 J17.O2 J15.O3 J14.O2 J13.O2 J10.O5 J12.O2 J11.O2       

6 J1.O1 J2.O3 J2.O5 J2.O6             

7 J2.O1 J2.O4                 

8 J2.O2                   

9 J8.O1 J15.O1 J15.O2               

10 J16.O1 J17.O1 J4.O1 J3.O1 J3.O2 J3.O3 J3.O4 J12.O1     
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Table 11 Continued 
 

12 J10.O1 J10.O4                 

13 J14.O1 J13.O1                 

14 J18.O1                   

15 J6.O1 J7.O1 J4.O2 J11.O1             

16 J5.O1 J5.O3                 

19 J16.O2 J9.O3 J10.O3               

20 J1.O3                   

21 J18.O2 J6.O2 J7.O2 J8.O3 J4.O3 J3.O5         

22 J5.O5 J2.O7                 

23 J5.O4                   
 
 

Table 12: The Sequence Returned From Improvement Phase with 
Assignment Model (Best Move with Non-Blocking Strategy) 

 
 

  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 

1 J10.O2                   

2 J9.O1                   

3 J9.O2  J5.O2                 

4                     

5 J14.O2 J13.O2 J10.O5               

6 J2.O3 J2.O5 J2.O6               

7 J2.O4                   

8                     

9 J8.O1 J15.O1 J15.O2               

10 J16.O1 J4.O1 J2.O1 J1.O1 J1.O2 J17.O1 J3.O1 J3.O3 J3.O4 J12.O1 

12 J10.O1 J10.O4                 

13 J14.O1 J13.O1                 

14 J18.O1                   

15 J6.O1 J7.O1 J11.O1               

16 J5.O1                   
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Table 12 Continued 
 

19                     

20                 

21  J6.O2 J8.O3  J4.O3   J3.O5 J18.O2           

22 J8.O2 J7.O2 J4.O2 J16.O2 J2.O2 J1.O3 J17.O2 J3.O2 J15.O3 J9.O3 

23 J5.O4                   
 

  Positions 
Mach.s 11 12 13 14 15 16 17 18 19 

22 J10.O3 J5.O3 J5.O5 J11.O2 J12.O2 J2.O7       
 
 

Table 13: The Sequence Returned From Improvement Phase with ISPT 
Rule (Best Move with Non-Blocking Strategy) 

 
  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 

1 J10.O2                   

2 J9.O1 J8.O2                 

3 J9.O2 J5.O2                 

4 J1.O2                   

5 J15.O3 J14.O2 J17.O2 J13.O2 J10.O5 J12.O2 J11.O2       

6 J1.O1 J2.O3 J2.O5 J2.O6             

7 J2.O1 J2.O4                 

8 J2.O2                   

9 J8.O1 J15.O1 J15.O2               

10 J16.O1 J4.O1 J3.O1 J3.O2 J3.O3 J3.O4 J17.O1 J12.O1     

12 J10.O1 J10.O4                 

13 J14.O1 J13.O1                 

14 J18.O1                   

15 J6.O1 J7.O1 J4.O2 J11.O1             

16 J5.O1 J5.O3                 

19 J16.O2 J9.O3 J10.O3               

20 J1.O3                   

21 J6.O2 J7.O2 J4.O3 J18.O2 J3.O5 J8.O3         

22 J5.O5 J2.O7                 

23 J5.O4                   
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6.3. Schedule implemented in Roketsan: 
 
The schedule constructed by the production planning department and implemented 
in the shop floor is given at Table 14. 
 

Table 14: Real Schedule for Week 3 
 

  Positions 

Mach.s 1 2 3 4 5 6 7 8 9 10 
1 J10.O2                   
2 J8.O2 J9.O1                 
3 J5.O2 J9.O2                 
4 J1.O2                   
5 J1.O3 J6.O2 J10.O5 J15.O3             
6 J1.O1 J2.O3 J2.O5 J2.O6             
7 J2.O1 J2.O4                 
8 J2.O2                   
9 J8.O1 J15.O1 J15.O2               

10 J7.O1 J14.O1 J17.O1 J3.O1 J3.O2 J3.O3 J3.O4 J11.O1 J6.O1 J16.O1 
12 J10.O1 J10.O4                 
13 J13.O1                   
14 J18.O1                   
15                     
16 J5.O1 J5.O3                 
19 J2.O7 J7.O2 J11.O2 J16.O2             
20 J3.O5 J8.O3 J12.O2 J17.O2             
21 J4.O3 J9.O3 J13.O2 J18.O2             
22 J5.O5 J10.O3 J14.O2               
23 J5.O4                   

 
  Positions 

Mach.s 11 12 13 14 15 16 17 18 19 
10 J16.O1 J4.O1 J4.O2 J12.O1      

 
As can be observed from Table 12, Machine 10 is selected for many operations that 
have alternate machines and becomes the most heavily loaded machine by 
fourteen operations. 

 

6.4. Evaluation of All Solutions 
In this section we discuss the quality of the solutions generated by the MILP model, 
our heuristic procedures and the schedule implemented in Roketsan. The 
completion times of the schedules are reported in Table 15. 
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Table 15: Completion Times of Jobs Returned By the Solution Approaches 
 

MILPS Priority Rules 
Priority Rules with 

Best Improving 
Strategy 

Priority Rules with Best 
Move with Non-

Blocking Strategy Job MILP 

Assignment 
Model 

ISPT 
Rule 

Assignment 
Model 

ISPT 
Rule 

Assignment 
Model 

ISPT 
Rule 

Assignment 
Model ISPT Rule 

Solution 
Used in 

Roketsan 

JOB1 3155 3235 3155 3270 3155 1950 3155 1800 3155 3155 

JOB2 9110 9110 9110 9110 9110 14000 9110 7880 9110 9110 
JOB3 1470 6645 2055 2035 2560 1810 2560 2475 1830 3765 

JOB4 1895 1440 2015 1675 2215 1510 2215 1495 1485 10685 

JOB5 6770 6875 6770 6770 7990 5290 7990 5290 7990 6770 

JOB6 885 885 2030 1620 1605 1480 1605 885 885 9935 

JOB7 1005 1005 1155 1605 1620 1455 1620 1455 1155 9125 
JOB8 1385 1385 1985 1645 1985 1465 1985 1465 1985 3790 

JOB9 4000 4000 4000 4000 2580 2950 2580 2980 2580 10995 

JOB10 5470 5770 5770 5770 5730 5730 5730 5730 5730 10945 

JOB11 8880 8320 8240 8320 8470 7425 8470 7425 7825 10025 
JOB12 7775 6535 7570 7045 7570 7630 7570 7630 7570 15690 

JOB13 3200 4720 4720 4720 4720 4720 4720 4720 4720 11405 

JOB14 3130 2930 2860 2965 2860 2860 2860 2860 2860 7405 

JOB15 2420 2550 3495 2585 2420 2460 2420 2670 2420 11455 

JOB16 1345 1225 1075 2075 1075 1495 1075 1495 1075 10275 
JOB17 2730 2040 2985 1800 1890 2640 1890 2160 2985 15815 

JOB18 1590 1590 2085 1590 1590 1590 1590 1590 1590 11435 

 

         51 
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The objective function value, i.e., the total weighted completion time of the MILP 
solution is  
1*3155+1*9110+1*1470+…+3*3200+3*3130+1*2420+1*1345+1*2730+1*1590  
= 78875. 
 
The objective function value, i.e., the total weighted completion time of the best  
priority rules’ solution with best move with non-blocking strategy is 
1*1800+1*7880+1*2475+…+3*4720+3*2860+1*2670+1*1495+1*2160+1*1590 
= 77165. 
 
The objective function value, i.e., the total weighted completion time of the 
schedule implemented in Roketsan is  
1*3155+1*9110+1*3765+…+3*11405+3*3*7405+1*11455+1*110275+1*15815
+1*11435 = 209400. 
 
The total weighted completion times of all schedules and the CPU times spent to 
find them are tabulated in Table 16. 
 

Table 16: Total Weighted Flow Time Values of the Methods -- Week 3  
 

Scheduling 
Method 

Assignment 
Method 

Total Weighted 
Flow Time Value 

(minutes) 

Solution Time 
(CPU time) 

MILP 78875 4 hours 

ROKETSAN SCHEDULE 209400 ----------- 
Assignment Model 85560 1 hour 

MILP-S 
ISPT Rule 86235 1 hour 

Assignment Model 189220 < 1 minute Priority 
Rule 1 ISPT Rule 107885 < 1 minute 

Assignment Model 99655 < 1 minute Priority 
Rule2 ISPT Rule 91785 < 1 minute 

Assignment Model 93890 < 1 minute Priority 
Rule3 ISPT Rule 88850 < 1 minute 

Assignment Model 242410 < 1 minute Priority 
Rule4 ISPT Rule 140695 < 1 minute 

Assignment Model 83 620 < 5 minutes Improvement 
Phase With Best 

Improving Strategy ISPT Rule 84305 < 5 minutes 

Assignment Model 77165 < 15 minutes Improvement 
Phase With Best 
Move with Non-

Blocking Strategy ISPT Rule 82 110 < 15 minutes 

 
Note that the best solution generated by priority rule with best move with non-
blocking strategy with assignment model is superior to the best solution returned 
by all heuristic procedures and MILP. The best solution generated by priority rules’ 
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improvement phase with assignment model with an objective function value of 
77165 is superior to the solution obtained by the MILP model which is obtained at 
an expense of too high computation time of 4 hours. 
 
The objective function value of the schedule implemented in Roketsan is too high 
when compared to those of the heuristic solutions.   
 
The results for other three weeks are similar and reported in Tables 17, 18 and 19 
for weeks 1, 2 and 4 respectively. 
 
 

Table 17: Total Weighted Flow Time Values of the Methods -- Week 1 
 

Scheduling 
Method Assignment Method 

Total Weighted 
Flow Time Value 

(minutes) 

Solution Time 
(CPU time) 

MILP 134 026 4 hours 

Assignment Model 208 833 1 hour 

MILP-S 
ISPT Rule 167 263 1 hour 

Assignment Model 246 173 <5 minutes Priority 
Rule with Best 

Improving Strategy 
ISPT Rule 179 551 <5 minutes 

Assignment Model 194 323 <15 minutes Priority 
Rule with Best 
Move with Non-

Blocking Strategy ISPT Rule 158 999 <15 minutes 
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Table 18: Total Weighted Flow Time Values of the Methods -- Week 2 
 

Scheduling 
Method Assignment Method 

Total Weighted 
Flow Time Value 

(minutes) 

Solution Time 
(CPU time) 

MILP No solution 4 hours 

Assignment Model No solution 1 hour 
MILP-S 

ISPT Rule No solution 1 hour 

Assignment Model 221 100 <5 minutes Priority 
Rule with Best 

Improving 
Strategy ISPT Rule 177 545 <5 minutes 

Assignment Model 175 115 <15 minutes Priority 
Rule with Best 
Move with Non-

Blocking Strategy ISPT Rule 154 760 <15 minutes 

 
 

Table 19: Total Weighted Flow Time Values of the Methods -- Week 4 
 

Scheduling 
Method Assignment Method 

Total Weighted 
Flow Time Value 

(minutes) 

Solution Time 
(CPU time) 

MILP 137 570 4 hours 

Assignment Model No Solution 1 hour 

MILP-S 
ISPT Rule No Solution 1 hour 

Assignment Model 230 885 <5 minutes Priority 
Rule with Best 

Improving 
Strategy ISPT Rule 148 385 <5 minutes 

Assignment Model 168 200 <15 minutes Priority 
Rule with Best 
Move with Non-

Blocking Strategy ISPT Rule 124 445 <15 minutes 
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CHAPTER 7  
 
 

COMPUTATIONAL RESULTS 
 
 
In this chapter we report on the performance of our mixed integer linear 
programming model (MILP) and heuristic approaches on randomly generated 
problem instances.   
 
We generate our parameters from discrete uniform distributions whose ranges are 
reported in Table 20.    
 

Table 20: Parameter Values Used at Instances 
 

Parameter Name Distribution 

Ready Time for Each Job 
 

Uniform between 0 and 1200 
 

Available Time for Each Machine 
 

Uniform between 0 and 1200 
 

Process Time for Each Operation 
 

Uniform between 5 and 10 
 

Weight of Each Job 
 

Uniform between 1 and 3 
 

#  of Alternating Operations for 
Each Job 

 
0 or 2 
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We run the model at several problem sizes.  The number of jobs, n, is increased 
from 3 to 7 in unit increments.  For each n value, the number of operations and the 
number of machines and the number of alternative machines for each operation are 
set as in Table 21.  
 

Table 21: The Problem Sizes Used in Our Experiments 
 

# of Jobs 

# of Operations 
and # of M/C s 

Uniform 
Between 

# of Alternative M/C s 
for Each Operation 
Uniform Between 

2 and 4 1 and  2 

5 and 7 1 and 3 3, 4, 5, 6, 7 
10, 15, 20 

8 and 10 1 and 3 
 
 
7.1 Performance of the Mixed Integer Linear Model 
 
We use our model in the following three folds: 
 

1. To find optimal solutions (pure optimization)  
Owing to the complexity of the problem, the optimization model could return 
optimal solutions only to the small-sized problem instances.  
 
2. To find upper bounds by allowing 10 % relative gap from the optimal 

solution 
  
3. To find lower bounds by relaxing the integrality constraints (Linear 

Programming Relaxations) 
 

We solve the models with GAMS using CPLEX solver.  We conduct our experiments 
on a computer with Intel Core i7 CPU processor 2.13 GHz. 
 
We find that the relaxed model is solved very quickly.  However this is not true for 
the optimal solutions and 10% gap solutions.  The execution time limit for those 
cases is set to 1 hour as it is a tolerable solution time for real life instances.  
 
In Section 7.1 and Section 7.2 we report on the results of MILP with no gap and 
10% gap, respectively.  We find that the lower bounds found through linear 
programming relaxations are too far from the optimal objective function values and 
do not report on their performances. 
 

7.1.1 Pure Optimization (Finding Optimal Solutions) 
 
Our aim here is to find the problem sizes at which our model returns an optimal 
solution in our termination limit of one hour.  The CPU times and the number of 
unsolved instances in 1 hour are given in Table 22. The empty cells indicate that 
there are less than 5 optimal solutions within 10 instances. 
 

 
 



 

57 
 

 
 

Table 22: The CPU Times and Number of Unsolved Instances in 1 hour 
 
OPER 2-4 5-7 8-10 

JOBS AVG MAX 

No of 
unsolved 
instances AVG MAX 

No of 
unsolved 
instances AVG MAX 

No of 
unsolved 
instances 

3 0.7 3.28 0 434 3600 1 657 3600 1 
4 87.7 516.92 0 1903 3600 5       
5 1544 3600 4             
6 1280 3600 2             
7 2027 3600 5             

 
 
Note that the solution times increase considerably with increases in the number of 
jobs and number of operations.  Figure 10 depicts the increases in the average CPU 
times with increases in the number of jobs when the number of operations is 
between 2 and 4. 
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Figure 10: The Average CPU Times of Optimal Solutions - 2 and 4 
operations case 

 
 

7.1.2 Optimization Model with Gap 0.1 (Finding Upper Bounds) 
 
The gap for the MILP software is defined as the difference between the cost of the 
best solution and the cost of its optimal linear program as a ratio of the cost of its 
optimal linear program.  In our experiments, we use a relative gap 10% and solve 
the combinations where we get either an optimal solution or integer solution at our 
termination limit, to more than 4 optimal solutions within 10 instances in Section 
7.1.   
 
We observe the CPU times by 10% gap solutions are much smaller compared to the 
zero gap, i.e., optimal solutions.  We give the CPU times and number of unsolved 
instances with 10% gap in one hour in Table 23. 
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Table 23: The CPU Times and Number of Unsolved Instances with 10% gap 
 
OPER 2-4 5-7 8-10 

JOBS AVG MAX 
No of 

unsolved 
instances 

AVG MAX 
No of 

unsolved 
instances 

AVG MAX 
No of 

unsolved 
instances 

3 0.5 2.3 0 163.6 1448 0 158 482 0 
4 5.7 40.2 0 1201 3600 3    
5 502 3600 1       
6 792 3600 2       
7 1110 3600 2       

 
 
 
Figure 11 plots the average CPU times of the model with gap 10% for different 
values of n when the number of operations is between 2 and 4. 
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Figure 11: The Average CPU Times of 10% Gap Solutions-2 and 4 
operations case 

 
The deviations of integer solutions of model with 10% gap from the optimal 
solutions as a ratio of the optimal solutions and the number of compared instances 
are given in Table 24. 
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Table 24: The Deviations of 10% gap from the Optimal 
 

  OPER  2-4 OPER  5-7 OPER  8-10 

JOBS AVG MAX 

No of 
solved 

instances AVG MAX 

No of 
solved 

instances AVG MAX 

No of 
solved 

instances 
3 2.06 9.83 10 3.71 10.48 10 5.32 10.12 10 
4 1.81 6.21 10 3.82  9.01  7        
5 1.05 4.60 7             
6 3.12 10.63 8             
7 1.79 3.48 5             

 
As can be observed from the table the observed relative gaps are much smaller 
than preset gap value of 10%. 
 
 
7.2 Performance of the Heuristic Procedures 
 
We solve the sequencing and assignment model with GAMS using CPLEX solver and 
allocation rules and sequencing heuristic with Dev C++. 
 
7.2.1 Preliminary Runs 
 
Using the instances with 3 and 4 jobs, we perform a preliminary experiment, to 
select the allocation rules and number of iterations to be used for the best move 
improvement procedure, in the main runs. 
 
We first study the performances of the machine assignments made by the 
allocation rules. Table 25 gives the number of instances the assignment rule gives 
the same machine loads with the optimal solution’s machine loads. Table 26 reports 
the number of machine assignments that are identical with the optimal 
assignments, for each of the allocation rules.  Table 27 gives the associated 
percentages, i.e., the percentage of assignments that are identical to the optimal 
solutions as a ratio of the total number of machine assignments. 
 
 
 
Table 25: Number of Instances the Assignment Rule’s Machine Loads Same 

with Optimal Solution’s Machine Loads 
 

Job 
Number 

Operation 
Number 

Number of 
Instances 
Compared SPT ISPT 

Assignment 
Model 

OPER 8-10 9 4 1 3 
OPER 5-7 9 4 1 4 3 JOB 
OPER 2-4 10 8 8 8 

7 JOB OPER 2-4 5 2 2 2 
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Table 26:  Number of Optimal Machine Assignments with Allocation Rules   
 

 
Number of 

Flexible 
Oper.s 

SPT Rule  ISPT Rule  Assignment 
Model  

Jobs Number 
of Oper.s Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

8-10 7.9 6 9 4.1 1 9 4.4 1 9 5.9 5 9 
5-7 7.7 6 9 3.2 0 8 3.3 0 8 5.2 2 9 3 
2-4 4.7 2 8 2.0 1 4 2.1 1 4 2.4 0 6 

4 2-4 9.1 8 12 3.7 0 6 4.6 0 8 7.4 7 9 
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Table 27: Percentage of Optimal Machine Assignments with Allocation Rules 
 
 

  Number of 
Flexible Oper.s SPT Rule  ISPT Rule  Assignment Model  

Number 
of Jobs 

Number 
of 

Oper.s 
Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

8-10 7.9 6 9 56.90 14.29 100.00 61.22 14.29 100.00 83.66 62.50 100.00 

5-7 7.7 6 9 40.43 0 88.89 42.02 0 88.89 69.05 22.22 100.00 

3 

2-4 4.7 2 8 47.76 14.29 100 54.90 14.29 100.00 57.24 0.00 100.00 

4 2-4 9.1 8 12 41.78 0 75 52.50 0 100.00 82.25 44.44 100.00 

 
 
 
 
 
 

    61 

 



 

62 
 

 
 

As can be observed from Table 26, compared to the SPT rule, the improved SPT 
rule results in machine assignments that are closer to the optimal machine 
assignments.  Note that when there are 4 jobs and between 2 and 4 operations, on 
average 3.7 assignments made by SPT rule are identical with the optimal 
assignments, and 4.6 assignments made by improved SPT rule are identical with 
those of the optimal assignments.  Using improved SPT rule increases the number 
of identical assignments by 10% over the SPT rule.  The tables indicate the 
assignments made by the assignment model are very close to the optimal 
assignments for all tested problem sizes.  Note that when there are 4 jobs and 
between 2 and 4 operations, on average 82.25% of the assignments made by the 
optimal solution and assignment model are identical.  At worst case about 45% of 
those assignments are identical.   
 
After analyzing the assignments made by all assignment procedures, we select the 
improved SPT rule and assignment model, and ignore the SPT rule.  We keep the 
improved SPT rule, as this requires polynomial effort as opposed to the exponential 
effort required by the assignment rule. 
 
We next study the performance of the heuristic procedures on the test instances.  
Table 28 reports the percent deviation of the heuristic solution from the optimal 
solution as a percentage of the optimal solution for the following heuristic 
procedures. 
 

1. MILPS Schedule using Assignment Model for Allocation: The assignment 
model solution is used to assign flexible operations to one of its candidate 
machines and schedule the operations at their assigned machines by using 
job shop scheduling model. 

 
2. MILPS Schedule using ISPT Rule for Allocation: The improved shortest 

processing time rule is used to assign flexible operations to one of its 
candidate machines and schedule the operations at their assigned machines 
by using job shop scheduling model. 

 
 
3. Priority Rule Schedule with best improving strategy using Assignment Model 

for Allocation: The assignment model solution for assigning flexible 
operations to one of its candidate machines is used. The best improving 
strategy by searching better solution than previous iteration solution and 
blocking the changed operations at each iteration and non-blocking all the 
blocked operations if the solution quality is better than the previous solution 
quality is used as a scheduling strategy. The heuristic ends when there is no 
better solution than previous iteration’s solution. 

 
4. Priority Rule Schedule with best improving strategy using ISPT Rule for 

Allocation: The improved shortest processing time rule is used to assign 
flexible operations to one of its candidate machines. The best improving 
strategy explained previously is used. 

 
5. Priority Rule Schedule with best move strategy using Assignment Model for 

Allocation - 50 improvement steps:  Assignment model solution is used to 
assign operations into one of their capable machines. At each iteration, the 
first feasible operations’ interchange is taken and implemented into the 
previous iteration solution. In this strategy, worse solution is allowed due to 
the fact that better solution can possibly be generated from a worse 
solution. Iteration limit 50 is used. 

 



 

63 
 

 
 

 
6. Priority Rule Schedule with best move strategy using ISPT Rule for Allocation 

- 50 improvement steps: The improved shortest processing time rule is used 
to assign flexible operations to one of its candidate machines. The best 
move strategy explained previously with 50 iterations limit is used. 

 
7. Priority Rule Schedule with best move strategy using Assignment Model for 

Allocation -- 100 improvement steps:  Assignment model solution to assign 
operations into machines and best move strategy with iterations limit 100 
are used. 

 
8. Priority Rule Schedule with best move strategy using ISPT Rule for Allocation 

-- 100 improvement steps: ISPT rule to assign operations into machines and 
best move strategy with iterations limit 100 are used. 

 
9. Priority Rule Schedule with combination of best move and non-blocking 

strategies using Assignment Model for Allocation -- 100 improvement steps: 
Assignment model solution is used to convert the problem from flexible job 
shop scheduling to job shop scheduling. In best move improvement 
procedures, there is a possibility that the new solutions are very close to the 
previously visited ones. To reduce the chance of finding such a case, we use 
a similar idea that is used in tabu search algorithms.  We block an inter-
change, hence define it as tabu, if it is one of the last k realized 
interchanges on any one of the machines. This is kind of setting a tabure 
tenure of k on each machine. In preliminary runs, we try different values for 
k, set it to 3, 5 and 10. We find that a value of 10 returns higher quality 
solutions. Moreover, we remove all blocks, hence tabu moves, whenever we 
find a solution that replaces the current best solution. 100 iterations limit is 
used for the strategy. 

 
10. Priority Rule Schedule with combination of best move and non-blocking 

strategies using ISPT Rule for Allocation -- 100 improvement steps:  ISPT 
Rule to assign and priority rule schedule with best move and non-blocking 
strategies with 100 iterations limit is used. 

 
Table 28 reports the average and worst case (maximum) deviations from the 
optimal solution. Table 29 gives the maximum and average CPU times for each of 
the heuristic procedures. 
 
 
Table 28: Percent Deviation of the Heuristic Procedures from the Optimal 

Solutions 
 

MILP-S 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 0.188 1.57 0.074 0.32 

OPER 5-7 0.05 0.184 0.05 0.184 3 JOB 

OPER 2-4 0.053 0.21 0.053 0.21 

4JOB OPER 2-4 0.003 0.025 0.003 0.025 
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Table 28 Continued 

Priority Rules(Best Improving) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 1.789 6.75 1.994 7.67 
OPER 5-7 1.768 8.23 1.77 8.25 3 JOB 
OPER 2-4 3.204 13.479 3.204 13.479 

4JOB OPER 2-4 2.92 10.451 2.92 10.451 
Priority Rules(Best Move- 50 iterations) 

Assignment 
Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 1.811 6.69 1.811 6.69 
OPER 5-7 1.725 8.7 1.689 8.7 3 JOB 
OPER 2-4 2.901 13.479 2.901 13.479 

4JOB OPER 2-4 1.848 6.241 1.848 6.241 
Priority Rules (Best Move- 100 

iterations) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 1.811 6.69 1.811 6.69 
OPER 5-7 1.689 8.7 1.689 8.7 3 JOB 
OPER 2-4 2.901 13.479 2.901 13.479 

4JOB OPER 2-4 1.827 6.241 1.827 6.241 
Priority Rules (Best Move with Non-

blocking Strategy) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
3 JOB OPER 8-10 1.811 6.69 1.811 6.69 

 OPER 5-7 1.689 8.7 1.689 8.7 
 OPER 2-4 2.901 13.479 2.901 13.479 

4JOB OPER 2-4 1.827 6.241 1.827 6.241 
 

Table 29: The CPU times (seconds) of the Heuristic Procedures 
 

MILP-S 
 

Assignment 
Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 6.34 23.15 5.02 10.3 
OPER 5-7 1.62 4.36 1.66 4.43 3 

JOB 
OPER 2-4 0.47 3.11 0.46 3.65 

4JOB OPER 2-4 3.01 1.58 3.01 1.58 
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Table 29 Continued 
 

Priority Rules(Best Improving) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 19 28.2 16 22.5 
OPER 5-7 9.9 14.3 10.9 16.2 3 

JOB 
OPER 2-4 4.81 8.8 4.81 8.8 

4JOB OPER 2-4 6.74 13.1 6.2 11.5 
Priority Rules(Best Move- 50 

iterations) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 44 50.4 42.3 47 
OPER 5-7 34.76 40.3 35.1 40 3 

JOB 
OPER 2-4 23 24.2 25.7 27 

4JOB OPER 2-4 23.7 26.3 23.9 27 
Priority Rules(Best Move- 100 

iterations) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 70 76.4 68.28 72.7 
OPER 5-7 59.76 65.3 60.09 65.2 3 

JOB 
OPER 2-4 44.97 46.2 47.67 49.1 

4JOB OPER 2-4 47.72 50.3 47.93 50.7 
Priority Rules (Best Move with Non-
blocking Strategy- 100 iterations) 
Assignment 

Model ISPT Rule  

AVG MAX AVG MAX 
OPER 8-10 70 76.4 68.28 72.7 
OPER 5-7 59.76 65.3 60.09 65.2 3 

JOB 
OPER 2-4 44.97 46.2 47.67 49.1 

4JOB OPER 2-4 47.72 50.3 47.93 50.7 
 
As can be observed from the tables, the quality of the solutions returned by the 
MILP-S scheduling rule outperforms the others.  However those solutions are 
obtained at an expense of extremely higher CPU times. Note that priority rule 
schedules with best move strategy and 100 iterations and with combination of best 
move, non-blocking strategies with 100 iterations give higher quality solutions than 
other priority rule schedules. Combination of best move, non-blocking strategies 
with 100 iterations is selected for priority rule schedule as it non-blocks operations’ 
changes by using the history of changes at each machine or finding a solution 
better than the best solution found at previous iterations. This strategy helps to 
escape from local optima. 
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7.2.2 Main Runs 
 
To test the performance of the heuristic methods, we generate larger sized problem 
instances.  We first evaluate the performance of the MILP-S models. In Table 30, 
the number of instances (out of 10), the MILP-S model gives the optimal solution is 
given. We give a termination limit of 1 hour for the MILP-S model and find that the 
optimal solutions cannot be found in this limit if there are 7 jobs and more than 7 
operations and 10 jobs and more than 4 operations.   
 

Table 30:  Number of Optimal Solution Given By MILP-S Model 
 

 Assignment 
Model ISPT Model 

OPER 2-4 8 8 
7 JOB 

OPER 5-7 4 4 
10 JOB OPER 2-4 3 3 

 
In our main runs, we test the performances of the MILP-S with assignment model, 
MILP-S with ISPT rule, the priority rules schedule with best move and non-blocking 
strategy.  In Table 31, the number of instances each heuristic method gives the 
best solution is given.  In Table 32, the average and maximum deviations of each 
heuristic from the best heuristic value are given. The empty cells indicate that 
MILP-S model does not give any optimal solution within the termination limit of one 
hour.  In Table 33, the CPU times of the heuristic methods at different problem 
sizes are given. 
 

Table 31: The Number of Best Solution by the Heuristic Methods 
 

MILP-S Priority Rules 
 Assignment 

Model 
ISPT 
Rule 

Assignment 
Model 

ISPT 
Rule 

OPER 2-4 8 8 2 2 
OPER 5-7 4 4 6 6 7 JOBS 
OPER 8-10   7 7 
OPER 2-4 3 3 7 6 
OPER 5-7   5 5 10 JOBS 
OPER 8-10   5 6 
OPER 2-4   10 10 
OPER 5-7   6 5 15 JOBS 
OPER 8-10   5 6 
OPER 2-4   10 10 
OPER 5-7   10 10 20 JOBS 
OPER 8-10   10 10 
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Table 32: Percent Deviation of Heuristic Methods from the Best Value 
 

MILP-S Priority Rules 

Assignment 
Model ISPT Rule Assignment 

Model ISPT Rule Deviation from 
Best 

AVG MAX AVG MAX AVG MAX AVG MAX 

OPER 2-4 1.26 12.52 1.16 11.49 6.81 23.71 4.59 23.74 

OPER 5-7 0.00 0.00 0.00 0.00 7.76 36.05 5.39 13.99 
7 

JOB 
OPER 8-10     2.46 11.2 0.61 4.02 
OPER 2-4 0.00 0.00 0.00 0.00 6.22 39.55 6.17 39.55 
OPER 5-7     1.90 12.76 2.80 13.59 

10 
JOBS 

OPER 8-10     0.01 0.05 1.62 4.37 
OPER 2-4     0.00 0.00 0.00 0.00 

OPER 5-7     0.00 0.00 0.00 0.00 15 
JOBS 

OPER 8-10     0.00 0.00 0.00 0.00 

OPER 2-4     0.00 0.00 0.00 0.00 

OPER 5-7     0.00 0.00 0.00 0.00 20 
JOBS 

OPER 8-10     0.00 0.00 0.00 0.00 

 
Note from Tables 32 and 33 if the MILP-S returns a solution in one hour, it 

gives the best solution at all times.  This is due to the fact that it finds the optimal 
schedule for the given machine assignment and the improvements made on the 
priority rules never catch this value.  We also find that the solutions found by the 
priority rules are almost identical.  This is due to the fact that the machine 
assignments made by the assignment model and ISPT rule are almost identical. 
 

Table 33: The CPU times of the Heuristic Methods 
 

MILP-S Priority Rules 
Assignment 

Model ISPT Rule Assignment 
Model ISPT Rule  

AVG MAX AVG MAX AVG MAX AVG MAX 
OPER 2-4 244.6 1441.0 243.8 1449.4 81.6 102.3 80.4 103.5 
OPER 5-7 967.6 2158.0 959.8 2144.9 92.5 106.7 91.8 105.3 7 

JOBS 
OPER 8-10     96.0 108.4 97.5 109.8 
OPER 2-4 206.1 352.0 204.4 350.3 95.5 107.0 95.5 108.6 
OPER 5-7     99.6 108.9 98.5 105.8 10 

JOBS 
OPER 8-10     109.0 111.7 106.0 114.5 
OPER 2-4     97.1 108.5 96.3 109.2 
OPER 5-7     112.6 131.5 108.5 126.3 15 

JOBS 
OPER 8-10     126.7 140.8 122.3 134.6 
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Table 33 Continued 
 

OPER 2-4     108.8 124.0 103.7 116.5 
OPER 5-7     120.5 138.3 116.7 130.5 20 

JOBS 
OPER 8-10     160.8 182.5 149.5 167.3 

 
 
Table 33 shows that the effort spent to find solutions by the MILP-S rule is 
considerably more compared to that of the priority rules after improvement.  This is 
due to the fact that MILP-S requires an exponential effort as opposed to the 
polynomial effort required by the improvement procedures.  Hence a better solution 
is always achieved at an expense of higher computational effort. 
 
Figure 12 below, compares the effects of the assignment model and ISPT rule on 
the performance of the priority rules after the improvement. 
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Figure 12: CPU Times of Priority Rules  
 
As can be observed from the above figure, the CPU times increase linearly as the 
number of jobs and number of operations increase.  Moreover any difference 
between the machine assignment rules on the solution times could not be 
observed.   
 
To test the effect of the number of iterations on the performances of the 
improvement procedures, we perform runs using 200 and 400 iterations, on 
instances with 7 jobs and 2 to 4 operations.  The percent deviations from the 
optimal solution and the CPU times are reported on Table 34 and Table 35, 
respectively. 
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Table 34:  Deviations for the Improvement Procedures – 7 Jobs, 2-4 
Operations 

 

Priority Rules(100 
iterations) 

Priority Rules(200 
iterations) 

Priority Rules(400 
iterations) 

Assignment 
Model ISPT Rule 

Assignment 
Model ISPT Rule 

Assignment 
Model ISPT Rule 

AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX 

6.81 23.71 4.59 23.74 6.81 23.71 4.59 23.74 6.54 23.71 4.17 23.74 
 

 
Table 35: CPU times for the Improvement Procedures – 7 Jobs, 2-4 

Operations 
 

Priority Rules(100 
iterations) 

Priority Rules(200 
iterations) 

Priority Rules(400 
iterations) 

Assignment 
Model ISPT Rule 

Assignment 
Model ISPT Rule 

Assignment 
Model ISPT Rule 

AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX 

81.6 102.3 80.4 103.5 110.6 136.3 109.4 134.5 139.9 168.3 138.4 164.6 
 
 
Note from Table 34 that the performances slightly improve as the number of 
iterations increases.  When the number of iterations increases from 100 to 200, 
there is no change in the performance.  When the number of iterations increases 
from 200 to 400, the average deviations on the assignment model decreases from 
6.81% to 6.54%.  From Table 35 we see that the CPU times increase linearly with 
the increases in the number of iterations. 
 
Finally, we look to the effect of the number of iterations on the performances using 
larger sized problem instances.   Table 36 gives percent improvements made by 
200 and 400 iterations on the deviations over 100 iterations.   The table also 
includes the CPU times spent by performing 200 and 400 iterations. 
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Table 36: % Improvement in the Best Value over 100 iterations 
 

 
% improvement 

over 100 
iterations 

CPU Times 

Number 
of Jobs 

Number of 
Operations 

Iteration 
Number Avg Max Avg Max 

200 0.21 0.99 182 212 
5-7 

400 0.39 1.80 350 415 
200 0.49 2.59 186 220 

7 
8-10 

400 0.50 2.71 365 410 
200 0.00 0.00 184.5 207 

2-4 
400 0.00 0.00 361 398 
200 0.53 5.26 198 210 

5-7 
400 0.70 5.91 394 402 
200 0.08 0.79 212 229 

10 

8-10 
400 0.18 0.96 410 445 
200 0.92 6.35 189 214 

2-4 
400 1.88 6.80 385 432 
200 0.14 1.40 220 261 

15 
5-7 

400 0.14 1.40 414 515 
 
Note from Table 36 that the objective function values reduce by at most 1% on 
average, when 100 more iterations are performed.  When 200 more iterations, 
hence 400 iterations are performed there is an additional 1% improvement.  We 
observe that the CPU times increase linearly, they double whenever the number of 
iterations doubles, i.e. increases from 200 to 400. 
 
7.3 Summary of the Computational Experiments 
 
We first measure the performance of the MILP model in 1 hour termination limit. 
The termination limit is selected as 1 hour because it is tolerable for our real life 
application. Number of optimal solutions within 10 instances is reported for several 
problem sizes. The model is relaxed by relaxing the integrality constraints and it is 
found that the solution quality is worse for such problems. In addition the model is 
executed with gap value 10% and the solution quality is compared with the optimal 
solutions.  It is found that many problems remain unsolved even with 10% gap.  
 
We suggest a heuristic solution procedure for medium and large size problems. We 
study the flexible job shop scheduling problem as two sub-problems: machine 
assignment problem and job shop scheduling problem. For machine assignment 
problem, we compare three methods: SPT rule, ISPT rule and assignment model. 
We improve shortest processing time rule as SPT rule is likely to over-allocate some 
machines.  In ISPT, we try to balance the workload among the machines by 
reallocating some operations.  The assignment performances of the SPT rule. ISPT 
rule and assignment model are measured relative to the optimal assignments. We 
observe that ISPT rule dominates SPT rule and we eliminate SPT rule.  The 
performances of the ISPT rule and assignment model are observed to be similar 
and both procedures are used in the main runs.  
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To schedule the operations on their assigned machines, two methods are used: 
mixed integer linear scheduling model and priority rules. The execution limit for the 
scheduling model is set to 1 hour. 4 priority rules used at the second method and 
the best of them is subjected to the improvement procedures. The improvement 
methods are best improving best move with 50 iterations, best move with 100 
iterations and best move with non-blocking strategy and 100 iterations.  Best move 
with non-blocking strategy and 100 iterations is found superior due to its better 
quality and ability to escape from local optima and hence used as an improving 
method in the main runs. 
 
The performances of the heuristic methods are compared relative to the optimal 
solutions for small size problems.  On those instances, the scheduling model 
dominates the priority rule solutions. However, for medium and large size 
problems, the scheduling model could not return optimal solutions in our 
termination limit of 1 hour, whereas the priority rule solutions give very quick 
solutions.  
 
We observe that the number of the iterations slightly affect the performance of the 
improvement procedures at an expense of slightly higher solution times.   
 
 
7.4 A Guide for the Selection of the Heuristics 
 
Our experimental results have revealed that the number of jobs and the number of 
operations per job are the main factors that define the problem complexity and the 
solution methods used to solve the flexible job shop scheduling problem is selected 
based on these factors.   
 
The optimization models need GAMS solver whereas the allocation and priority rules 
need Dev C++.  If the company does not have a license to use GAMS, we propose to 
use the combination of allocation rule and priority rule to arrive at a feasible solution. 
Otherwise, in Table 37, we propose the following solution methods together with their 
resource (software) requirements as a function of the number of jobs and the number of 
operations per job. 
 

Table 37: Solution Methods and Resource Requirements as a Function of 
the Problem Size 

 

Number of Jobs 
Number of 

Operations per 
Job 

Solution Method Software 
Requirement 

less than 4 less than 8 MILP Model GAMS 

less than 4 between 8 and 10 

Best of Scheduling 
Model and Improved 

Priority Rules’ Solutions 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 
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Table 37 Continued 

 

less than 4 more than 10 

Best of Improved 
Priority Rules’ Solution 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 

between 4 and 7 between 1 and 7 

Best of Scheduling 
Model and Improved 

Priority Rules’ Solutions 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 

between 4 and 7 more than 7 

Best of Improved 
Priority Rules’ Solution 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 

between 8 and 
10 between 1 and 4 

Best of Scheduling 
Model and Improved 

Priority Rules’ Solutions 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 

between 8 and 
10 more than 4 

Best of Improved 
Priority Rules’ Solution 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 

more than 10 more than 1 

Best of Improved 
Priority Rules’ Solution 
with Assignment Model 

and ISPT Rule 

GAMS and Dev 
C++ 
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CHAPTER 8  

 
 

CONCLUSIONS AND FURTHER RESEARCH 
DIRECTIONS 

 
 
In this thesis we consider a multi-stage flexible job shop production scheduling 
problem existing in discrete parts manufacturing industries.  We assume there are 
flexible operations that can be performed on one of the specified machines and 
flexible routes for at most two specified operations per job.  Our objective is to 
minimize the total weighted completion times of the jobs; hence we promote early 
completions of the jobs. 
 
We take our motivation from the production environment of Roketsan Missiles 
Industries Incorporation, operating at Turkish defense industry.   
 
We model our flexible job shop scheduling problem (FJSP), as a mixed integer 
linear program (MILP). We find that the number of jobs and the number of 
operations are dominant factors in defining the complexity of the model. Owing to 
the complexity of our problem, the MILP model gives optimal solutions for small-
sized problems with up to 3 jobs when the number of operations is between 8 and 
10 per job and up to 5 jobs when the number of operations is between 2 and 4 per 
job in our plausible limit of 1 hour.  Our optimization model could not return 
optimal solutions in 4 hours, for the real data taken from Roketsan over four weeks 
period, residing 18 through 23 jobs.   
 
To solve medium and large sized problem instances, we develop heuristic 
algorithms.  Our aim is to generate high quality approximate solutions in 
reasonable solution time.  Our proposed heuristic has two phases as construction 
phase and improvement phase.  In the construction phase, we use a hierarchical 
approach that first assigns the operations to one of its candidate machines 
(machine assignment step) and then finds the start and finish times of the 
operations at their assigned machines (scheduling step).  In machine assignment 
step, we use a mixed integer assignment linear model that aims to balance the 
machine workloads and improved shortest processing time assignment rule.  The 
workload balance problem is strongly NP-hard; however, it runs faster than the 
original MILP model.   
 
In scheduling step, we use a pure job shop scheduling model and priority rules.  
The pure job shop scheduling model is strongly NP-hard and needs high 
computational time for medium-sized problems.  
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The solutions that are returned by the priority rules are subjected to the 
improvement process.  The improvement phase takes the best of the priority rules 
to start with and uses appropriate neighborhood search structures to generate new, 
hopefully improved, solutions. We perform empirical analysis to fine tune the 
design parameters of the improvement procedures. 
 
Our experimental results have revealed that our heuristic procedures return high 
quality approximate solutions.  For the small sized problems, we find optimal 
solutions in majority of the instances.  Medium sized problem instances with up to 
20 jobs are solved in few minutes.  Our observation is that when the scheduling 
step is solved by the mathematical model to optimality, the solutions have higher 
quality however at an expense of higher computational effort.    
 
To the best of our knowledge our study is the first attempt to solve flexible job shop 
scheduling problem with total weighted completion time objective. We hope our 
results stimulate further research in the flexible job shop scheduling literature. 
Some noteworthy extensions of our work can be listed as: 
 Defining appropriate batch sizes for the jobs 
 Incorporating stochastic aspects of the parameters. For example, the 
processing times of the operations may decrease and increase as time progresses, 
due to the learning effect and fatigue factor, respectively. 
 Handling the sequence dependent setup times 
 Incorporating preventive maintenance decisions 
 Defining rescheduling processes to handle unexpected breakdowns 
 Using more involved procedures like shifting bottleneck procedure can be used 
in place of priority rules can be used to schedule operations at their assigned 
machines.  
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APPENDICES 
 
 

Table 38: Week 1 Production System Instance 
 

JOB OPER. CAPABLE M/Cs 

TOTAL 
PROCESSING 

TIME AT 
ALTERNATIVE 

CAPABLE MACHS’ 
(minutes) 

 
OPER1 MAC7 1170 
OPER2 MAC8 1000 
OPER3 MAC6 3945 
OPER4 MAC7 1710 
OPER5 MAC6 1170 
OPER6 MAC6 720 

JOB1 

OPER7 MAC5,MAC19,MAC20,MAC21,MAC22 460 
OPER1 MAC6 2370 
OPER2 MAC4 480 JOB2 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 305 
OPER1 MAC10,MAC15 270 
OPER2 MAC10,MAC15 150 JOB3 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 20 
OPER1 MAC13 103 
OPER2 MAC13 225 
OPER3 MAC13 90 

JOB4 

OPER4 MAC5,MAC19,MAC20,MAC21,MAC22 30 
OPER1 MAC13 850 JOB5 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 35 
OPER1 MAC11 480 
OPER2 MAC11 480 JOB6 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 80 
OPER1 MAC11 330 
OPER2 MAC11 630 
OPER3 MAC11 480 

JOB7 

OPER4 MAC5,MAC19,MAC20,MAC21,MAC22 110 
OPER1 MAC9 140 
OPER2 MAC2 440 JOB8 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 65 
OPER1 MAC10,MAC15 150 JOB9 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 25 
OPER1 MAC2 1640 
OPER2 MAC3 630 JOB10 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 610 
OPER1 MAC10,MAC15 2430 JOB11 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 405 
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Table 38 Continued 
 

OPER1 MAC10,MAC15 4530 JOB12 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 760 
OPER1 MAC12 2560 
OPER2 MAC12 1510 JOB13 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 505 
OPER1 MAC10,MAC15 3020 JOB14 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 505 
OPER1 MAC12 1030 
OPER2 MAC1 510 
OPER3 MAC5 255 
OPER4 MAC12 505 

JOB15 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 1010 
OPER1 MAC12 1030 
OPER2 MAC1 510 
OPER3 MAC5 255 
OPER4 MAC12 510 

JOB16 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 505 
OPER1 MAC2 3040 
OPER2 MAC2 1090 JOB17 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 810 

OPER1 MAC10,MAC15 930 
OPER2 MAC14 320 JOB18 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 160 
OPER1 MAC10,MAC15 1230 JOB19 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 160 
OPER1 MAC10,MAC15 4030 JOB20 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 505 
OPER1 MAC12 1030 
OPER2 MAC1 1270 
OPER3 MAC5 505 
OPER4 MAC12 505 

JOB21 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 255 
OPER1 MAC10,MAC15,MAC13 2370 
OPER2 MAC10,MAC15,MAC13 1590 JOB22 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 200 
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Table 39: Week1-Machine Availability Times 
 

 
MACHINE 

 
 

MACHINE 
AVAILABILITY 

TIME 
(minutes) 

 
MAC1, MAC3, MAC4, MAC6, MAC7, 

MAC8,MAC13, MAC15,MAC20, MAC21 0 

MAC11, MAC19, MAC22 240 

MAC2, MAC12 480 

MAC5, MAC9 720 

MAC10,MAC14 1440 
 
 

Table 40:  Week 1-Jobs’ Ready Times 
 

 
JOB 

 
 

JOB’S 
READY TIME 

(minutes) 
 

JOB1, JOB2, JOB5,JOB6, JOB9, JOB10, 
JOB11, JOB17, JOB18,  JOB21 0 

JOB7 240 

JOB19 360 

JOB12 480 

JOB13, JOB20 720 

JOB6, JOB16 960 

JOB3, JOB4, JOB8, JOB14, JOB22 1440 

JOB15 1920 

 
Table 41:  Week 1-Jobs’ Weights 

 

JOB WEIGHT 

JOB6, JOB7, JOB15,  JOB16, JOB18, JOB19 3 

JOB8 2 

JOB1, JOB2, JOB3, JOB4, JOB5,JOB9,JOB10, JOB11, 
JOB12, JOB13, JOB14, JOB17, JOB20, JOB21, JOB22 1 
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Table 42: Week1-The sequence returned by the MILP at the end of 4 hours 
 

 Positions 

Machines 1 2 3 4 5 6 7 8 

1 J21.O2 J16.O2 J15.O2      
2 J10.O1 J8.O2 J17.O1 J17.O2     
3 J10.O2        
4 J2.O2        
5 J7.O4 J3.O3 J6.O3 J3.O3 J16.O3 J21.O3 J16.O5 J15.O4 
6 J2.O1 J1.O3 J1.O5 J1.O6     
7 J1.O1 J1.O4       
8 J1.O2        
9 J8.O1        

10 J3.O1 J11.O1 J12.O1      
11 J7.O1 J7.O2 J7.O3 J6.O1 J6.O2    
12 J21.O1 J16.O1 J15.O1 J16.O4 J15.O3 J21.O4 J13.O1  
13 J5.O1 J4.O1 J4.O2 J4.O3 J22.O1 J22.O2   
14 J18.O2        
15 J9.O1 J19.O1 J3.O2 J14.O1 J20.O1 J18.O1   
19 J5.O2 J10.O3 J11.O2 J21.O5     
20 J9.O2        
21 J19.O2 J4.O4 J8.O3 J15.O5 J12.O2 J1.O7   
22 J20.O2        

 
 Positions 

Machines 9 10 11 12 13 
5 J14.O2 J22.O3 J17.O3 J13.O3 J18.O3 

 
Table 43: Week1-Completion times of jobs for MILP model 

 

Job Completion Time 
(minutes) 

JOB1 10375 

JOB2 3155 

JOB3 1880 

JOB4 1888 

JOB5 885 

JOB6 2720 

JOB7 1790 

JOB8 2625 

JOB9 175 

JOB10 3360 
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Table 43 Continued 
 

JOB11 4545 

JOB12 9430 

JOB13 9665 

JOB14 5385 

JOB15 5850 

JOB16 4585 

JOB17 6690 

JOB18 160 

JOB19 1750 

JOB20 9415 

JOB21 5345 

JOB22 6018 
 

Table 44:  Week1-Allocation Results 
 

Job Flexible Oper. Assignment Model  ISPT Rule 
 

JOB1 OPER7 MAC20 MAC22 
JOB2 OPER3 MAC21 MAC22 

OPER1 MAC15 MAC15 
OPER2 MAC15 MAC15 JOB3 
OPER3 MAC21 MAC21 

JOB4 OPER4 MAC21 MAC21 
JOB5 OPER2 MAC21 MAC21 
JOB6 OPER3 MAC21 MAC22 
JOB7 OPER4 MAC21 MAC22 
JOB8 OPER3 MAC21 MAC22 

OPER1 MAC15 MAC15 
JOB9 

OPER2 MAC21 MAC21 
JOB10 OPER3 MAC20 MAC22 

OPER1 MAC15 MAC10 
JOB11 

OPER2 MAC21 MAC20 
OPER1 MAC15 MAC15 

JOB12 
OPER2 MAC21 MAC5 

JOB13 OPER3 MAC21 MAC5 
OPER1 MAC15 MAC15 

JOB14 
OPER2 MAC21 MAC5 

JOB15 OPER5 MAC21 MAC5 
JOB16 OPER5 MAC21 MAC5 
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Table 44 Continued 
 

JOB17 OPER3 MAC21 MAC5 
OPER1 MAC10 MAC15 

JOB18 
OPER3 MAC21 MAC5 
OPER1 MAC10 MAC10 

JOB19 
OPER2 MAC21 MAC5 
OPER1 MAC10 MAC10 

JOB20 
OPER2 MAC21 MAC5 

JOB21 OPER5 MAC20 MAC5 
OPER1 MAC13 MAC13 
OPER2 MAC13 MAC13 JOB22 
OPER3 MAC20 MAC5 

 
Table 45: Week1-The Sequence Returned By MILP-S with Assignment 

Model 
 

 Positions 

Machines 1 2 3 4 5 6 7 8 
1 J16.O2 J21.O2 J15.O2      
2 J8.O2 J10.O1 J17.O1 J17.O2     
3 J10.O2        
4 J2.O2        
5 J5.O2 J7.O4 J4.O4 J8.O3 J6.O3 J18.O3 J2.O3 J16.O3 
6 J2.O1 J1.O3 J1.O5 J1.O6     
7 J1.O1 J1.O4       
8 J1.O2        
9 J8.O1        

10 J18.O1 J19.O1 J9.O1 J11.O1 J22.O1 J22.O2 J14.O1 J3.O1 
11 J7.O1 J7.O2 J7.O3 J6.O1 J6.O2    
12 J21.O1 J16.O1 J15.O1 J16.O4 J21.O4 J15.O4 J13.O1 J13.O2 
13 J5.O1 J4.O1 J4.O2 J4.O3     
14 J18.O2        

 Positions 

Machines 9 10 11 12 13 14 15 16 
5 J19.O2 J9.O2 J16.O5 J21.O3 J15.O3 J10.O3 J21.O5 J15.O5 

10 J3.O2 J20.O1 J12.O1      
         

 
 Positions 

Machine 17 18 19 20 21 22 23 24 25 

5 J11.O2 J17.O3 J1.O7 J22.O3 J13.O3 J14.O2 J3.O3 J20.O2 J12.O2 
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Table 46: Week1-The Sequence Returned By MILP-S with ISPT Rule 

 
 Positions 

Machines 1 2 3 4 5 6 7 8 

1 J16.O2 J15.O2 J21.O2      
2 J8.O2 J17.O1 J17.O2 J10.O1     
3 J10.O2        

4 J2.O2        
5 J18.O3 J16.O3 J19.O2 J15.O3 J16.O5 J14.O2 J22.O3 J21.O3 
6 J2.O1 J1.O3 J1.O5 J1.O6     
7 J1.O1 J1.O4       

8 J1.O2        
9 J8.O1        

10 J19.O1 J11.O1 J20.O1      
11 J7.O1 J7.O2 J7.O3 J6.O1 J6.O2    

12 J21.O1 J16.O1 J15.O1 J16.O4 J13.O1 J15.O4 J13.O2 J21.O4 
13 J5.O1 J4.O1 J4.O2 J4.O3 J22.O1 J22.O2   
14 J18.O2        
15 J9.O1 J18.O1 J3.O1 J3.O2 J14.O1 J12.O1   

19         
20 J11.O2        
21 J9.O2 J5.O2 J3.O3 J4.O4     
22 J7.O4 J8.O3 J6.O3 J2.O3 J1.O7 J10.O3   

 
 

Positions 

Machine 9 10 11 12 13 14 

5 J15.O5 J17.O3 J13.O3 J21.O5 J20.O2 J12.O2 
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Table 47: Week1-Completion Times of Jobs Returned By MILP-S with ISPT 
Rule 

 
Job Number Completion Time 

(minutes) 
JOB1 10375 

JOB2 3155 

JOB3 1880 

JOB4 1910 

JOB5 885 

JOB6 2720 

JOB7 1790 

JOB8 2085 

JOB9 175 

JOB10 10985 

JOB11 5505 

JOB12 10990 

JOB13 9470 

JOB14 5385 

JOB15 8155 

JOB16 4590 

JOB17 8965 

JOB18 1760 

JOB19 3465 

JOB20 10230 

JOB21 9725 

JOB22 6018 
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Table 48: Completion Times of Jobs Returned By MILP-S with Assignment 
Model 

 
Job Number Completion Time 

(minutes) 
JOB1 10375 
JOB2 3185 
JOB3 13685 
JOB4 1888 
JOB5 885 
JOB6 2720 
JOB7 1790 
JOB8 2085 
JOB9 3785 
JOB10 5705 
JOB11 7375 
JOB12 22900 
JOB13 11080 
JOB14 13665 
JOB15 6970 
JOB16 4335 
JOB17 8600 
JOB18 2720 
JOB19 3760 
JOB20 18115 
JOB21 5960 
JOB22 10575 

 
Table 49: Week 2 Production System Instance 

 
 
 

Job 
 

Oper.s 
 

Capable M/c, S 

Total Processing Time 
At Alternative Capable 

Machs’ (Min.s) 

OPER1 MAC10,MAC15,MAC13 1200 

OPER2 MAC10,MAC15,MAC13 810 JOB1 

OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 135 

OPER1 MAC10,MAC15 1830 
JOB2 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 460 

OPER1 MAC10,MAC13,MAC15 2730 
JOB3 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 155 
OPER1 MAC10,MAC15 4030 

JOB4 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 255 
OPER1 MAC8 660 
OPER2 MAC2 480 JOB5 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 305 
OPER1 MAC11 480 JOB6 
OPER2 MAC11 480 
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Table 49 Continued 
 

OPER3 MAC17 325 
OPER4 MAC17 285 
OPER5 MAC11 210 
OPER6 MAC11 390 
OPER7 MAC11 390 
OPER8 MAC11 390 
OPER9 MAC11 480 

JOB6 

OPER10 MAC5,MAC19,MAC20,MAC21,MAC22 100 
OPER1 MAC11 570 
OPER2 MAC11 570 
OPER3 MAC17 325 
OPER4 MAC17 285 
OPER5 MAC11 70 
OPER6 MAC5,MAC19,MAC20,MAC21,MAC22 50 
OPER7 MAC11 480 
OPER8 MAC11 70 
OPER9 MAC11 660 

JOB7 

OPER10 MAC5,MAC19,MAC20,MAC21,MAC22 100 
OPER1 MAC16 480 
OPER2 MAC16 240 
OPER3 MAC16 480 
OPER4 MAC16 240 
OPER5 MAC16 240 
OPER6 MAC16 240 
OPER7 MAC16 480 
OPER8 MAC16 300 
OPER9 MAC16 300 

OPER10 MAC16 300 

JOB8 

OPER11 MAC5,MAC19,MAC20,MAC21,MAC22 60 
OPER1 MAC9 55 
OPER2 MAC2 260 JOB9 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 40 
OPER1 MAC2 3040 
OPER2 MAC3 1230 JOB10 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 1210 
OPER1 MAC12 1030 JOB11 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 260 
OPER1 MAC10,MAC15 1830 

JOB12 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 155 
OPER1 MAC12 1030 
OPER2 MAC1 510 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 255 
OPER4 MAC12 510 

JOB13 

OPER5 MAC5,MAC19,MAC20,MAC21,MAC22 760 
OPER1 MAC18 600 
OPER2 MAC11 1230 JOB14 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 210 
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Table 49 Continued 
 

OPER1 MAC18 900 
OPER2 MAC11 2430 JOB15 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 310 
OPER1 MAC2 870 

JOB16 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 130 
OPER1 MAC2 420 

JOB17 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 55 

OPER1 MAC12 365 
OPER2 MAC12 1010 
OPER3 MAC12 255 JOB18 

OPER4 MAC5,MAC19,MAC20,MAC21,MAC22 1005 
OPER1 MAC9 240 
OPER2 MAC9 1350 JOB19 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 170 
OPER1 MAC2 870 

JOB20 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 510 

OPER1 MAC2 540 
JOB21 

OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 430 
OPER1 MAC9 405 
OPER2 MAC9 405 JOB22 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 470 
OPER1 MAC9 1185 
OPER2 MAC9 1185 JOB23 
OPER3 MAC5,MAC19,MAC20,MAC21,MAC22 1510 
OPER1 MAC10,MAC15 520 

JOB24 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 55 
OPER1 MAC10,MAC15 520 

JOB25 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 55 
OPER1 MAC10,MAC15 310 

JOB26 
OPER2 MAC5,MAC19,MAC20,MAC21,MAC22 80 

 
Table 50: Week 2- Machine Availability Times 

 

Machines Machine Availability 
Time (min.s) 

MAC3, MAC9, MAC13, MAC16, MAC17, 
MAC18, MAC22 0 
MAC8, MAC11 240 
MAC2, MAC10 360 

MAC21 480 
MAC1 720 
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Table 50 Continued 
 

MAC5 1200 
MAC19 1440 
MAC15 1920 
MAC20 2400 
MAC12 2880 

 
Table 51: Week 2- Jobs’ Ready Times 

 

Job Job’s Ready Time 
(min.s) 

JOB5, JOB6, JOB8, JOB10, JOB14, 
JOB16, JOB19, JOB20, JOB22, JOB26 0 

JOB23, JOB24 240 
JOB2, JOB7 480 

JOB25 600 
JOB12 720 

JOB1, JOB9, JOB13, JOB15, JOB17 960 
JOB11 1080 

JOB3, JOB4, JOB21 1440 
JOB18 1920 

 
Table 52: Week2- Allocation Results 

 

Job Flexible 
Operation 

Assignment 
Model 

Allocations 

ISPT Rule 
Allocations 

JOB1 OPER1 MAC10 MAC15 

JOB1 OPER2 MAC10 MAC13 
JOB1 OPER3 MAC22 MAC5 
JOB2 OPER1 MAC10 MAC15 
JOB2 OPER2 MAC22 MAC22 

JOB3 OPER1 MAC10 MAC13 

JOB3 OPER2 MAC22 MAC22 
JOB4 OPER1 MAC10 MAC10 
JOB4 OPER2 MAC22 MAC22 
JOB5 OPER3 MAC22 MAC22 
JOB6 OPER10 MAC22 MAC22 
JOB7 OPER6 MAC22 MAC22 
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Table 52 Continued 
 

JOB7 OPER10 MAC22 MAC22 
JOB8 OPER11 MAC22 MAC22 
JOB9 OPER3 MAC22 MAC22 
JOB10 OPER3 MAC22 MAC5 
JOB11 OPER2 MAC22 MAC22 
JOB12 OPER1 MAC10 MAC10 
JOB12 OPER2 MAC22 MAC22 
JOB13 OPER3 MAC22 MAC22 
JOB13 OPER5 MAC22 MAC5 
JOB14 OPER3 MAC22 MAC22 
JOB15 OPER3 MAC22 MAC5 
JOB16 OPER2 MAC22 MAC22 
JOB17 OPER2 MAC22 MAC5 
JOB18 OPER4 MAC22 MAC5 
JOB19 OPER3 MAC22 MAC5 
JOB20 OPER2 MAC22 MAC5 
JOB21 OPER2 MAC22 MAC5 
JOB22 OPER3 MAC22 MAC5 
JOB23 OPER3 MAC22 MAC5 
JOB24 OPER1 MAC10 MAC15 
JOB24 OPER2 MAC22 MAC5 
JOB25 OPER1 MAC10 MAC10 
JOB25 OPER2 MAC22 MAC5 
JOB26 OPER1 MAC10 MAC10 
JOB26 OPER2 MAC22 MAC5 

 
 
 
Mixed Integer Linear Sequencing Model (MILP-S) 
 

1. Assignment Model Solution 
The assignment solution generated by assignment model solution is entered into 
MILP-S. The model terminates at its termination limit of 1 hour. Resource limit is 
exceeded and no integer solution is found. 
  

2. ISPT Rule Solution 
The assignment solution of improved shortest processing time rule is sequenced by 
scheduling linear programming model. The model terminates at its termination limit 
of 1 hour. Resource limit is exceeded and no integer solution is found. 
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Table 53: Week 4 Production System Instance 
 

 
Job  

Oper. 
 

Capable Machines 
Total Processing Time at 

Alt. Capable Mach.s 

OPER1 MAC10,MAC15 270 
OPER2 MAC10,MAC15 150 

JOB1 
OPER3 MAC5,MAC19,MAC20, 

MAC21,MAC22 20 

OPER1 MAC7 1170 
OPER2 MAC8 1000 
OPER3 MAC6 3945 
OPER4 MAC7 1710 
OPER5 MAC6 1170 
OPER6 MAC6 720 

JOB2 

OPER7 MAC5,MAC19,MAC20, 
MAC21,MAC22 310 

OPER1 MAC16 480 
OPER2 MAC16 240 
OPER3 MAC16 480 
OPER4 MAC16 240 

JOB3 

OPER5 MAC16 240 
OPER6 MAC16 240 
OPER7 MAC16 480 
OPER8 MAC16 300 
OPER9 MAC16 300 
OPER10 MAC16 300 

JOB3 

OPER11 MAC5,MAC19,MAC20, 
MAC21,MAC22 20 

OPER1 MAC10,MAC15 90 
JOB4 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 10 

OPER1 MAC9 55 
OPER2 MAC9,MAC12 420 
OPER3 MAC18 350 
OPER4 MAC18 500 
OPER5 MAC9 170 

JOB5 

OPER6 MAC5,MAC19,MAC20, 
MAC21,MAC22 110 

OPER1 MAC10,MAC15 3630 
JOB6 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 80 

OPER1 MAC12 1230 
OPER2 MAC1 610 

OPER3 MAC5,MAC19,MAC20, 
MAC21,MAC22 305 

OPER4 MAC12 605 
JOB7 

OPER5 MAC5,MAC19,MAC20, 
MAC21,MAC22 910 
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Table 53 Continued 
 

OPER1 MAC12 1030 
OPER2 MAC1 510 

OPER3 MAC5,MAC19,MAC20, 
MAC21,MAC22 255 

OPER4 MAC12 510 
JOB8 

OPER5 MAC5,MAC19,MAC20, 
MAC21,MAC22 505 

OPER1 MAC10,MAC15 1830 
JOB9 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 155 

OPER1 MAC10,MAC15 2430 
JOB10 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 205 

OPER1 MAC10,MAC15 4830 
JOB11 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 810 

OPER1 MAC10,MAC15 1230 
JOB12 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 55 

OPER1 MAC12 1030 
OPER2 MAC1 1270 

OPER3 MAC5,MAC19,MAC20, 
MAC21,MAC22 505 

OPER4 MAC12 505 
JOB13 

OPER5 MAC5,MAC19,MAC20, 
MAC21,MAC22 255 

OPER1 MAC1 330 
JOB14 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 165 

OPER1 MAC10,MAC15,MAC13 2730 
JOB15 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 155 

OPER1 MAC10,MAC15,MAC13 930 
JOB16 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 105 

OPER1 MAC18 425 
OPER2 MAC18 135 
OPER3 MAC9 405 
OPER4 MAC9 405 JOB17 

OPER5 MAC5,MAC19,MAC20, 
MAC21,MAC22 260 

OPER1 MAC10,MAC15,MAC13 830 
OPER2 MAC10,MAC15,MAC13 830 JOB18 
OPER3 MAC5,MAC19,MAC20, 

MAC21,MAC22 205 

OPER1 MAC10,MAC15,MAC13 1030 
OPER2 MAC10,MAC15,MAC13 1030 JOB19 
OPER3 MAC5,MAC19,MAC20, 

MAC21,MAC22 255 
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Table 53 Continued 
 

OPER1 MAC10,MAC15,MAC13 830 
OPER2 MAC10,MAC15,MAC13 830 JOB20 
OPER3 MAC5,MAC19,MAC20, 

MAC21,MAC22 205 

OPER1 MAC2 1620 
JOB21 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 255 

OPER1 MAC2 870 
JOB22 

OPER2 MAC5,MAC19,MAC20, 
MAC21,MAC22 510 

 
Table 54: Week 4- Machine Availability Times 

 

Machine 

Machine 
Availability 

Time 
(minutes) 

MAC1, MAC8, MAC9, MAC12, 
MAC13, MAC18, MAC22 0 

MAC10, MAC16 480 
MAC2 600 

MAC5, MAC7, MAC19 960 
MAC6 1440 
MAC15 1920 

MAC20, MAC21 2400 
 

Table 55: Week 4- Jobs’ Ready Times 
 

Job 

Job’s 
Ready 
Time 

(minutes) 

JOB2, JOB3, JOB11, JOB14, 
JOB17, JOB18, JOB20, JOB21, 

JOB22 0 
JOB13 360 
JOB19 480 

JOB1, JOB9, JOB12 720 
JOB6, JOB8, JOB16 1200 

JOB4, JOB10 1440 
JOB15 1680 

JOB5, JOB7 1920 
 

 
 
 



 91 

Table 56: Week 4- Jobs’ Weights 
 

Job Weight 

JOB7, JOB14 3 
JOB18, JOB20 2 

JOB1, JOB2, JOB3, JOB4, JOB5, 
JOB6,  JOB8, JOB9, JOB10, JOB11, 

JOB12, JOB13, JOB15, JOB16, 
JOB17, JOB19, JOB21, JOB22 

1 

 
Table 57: Week 4-The sequence returned by the MILP at the end of 4 hours 

 

 Positions 

Machines 1 2 3 4 5 6 7 8 9 10 

MAC1 J14.O1 J13.O2 J7.O3 J8.O2       

MAC2 J22.O1 J22.O2         

MAC5 J22.O2 J4.O2 J5.O6 J10.O2 J15.O2 J8.O3 J12.O2 J8.O5 J9.O2 J19.O3 

MAC6 J2.O3 J2.O5 J2.O6        

MAC7 J2.O1 J2.O4         

MAC8 J2.O2          

MAC9 J17.O3 J17.O4 J5.O1 J5.O5       

MAC10 J11.O1 J4.O1 J12.O1 J6.O1       

MAC12 J13.O1 J7.O1 J13.O4 J5.O2 J7.O4 J8.O1 J8.O4    

MAC13 J18.O1 J18.O2 J16.O1 J15.O1 J19.O1      

MAC15 J20.O1 J20.O2 J1.O1 J1.O2 J10.O1 J9.O1 J19.O2    

MAC16 J3.O1 J3.O2 J3.O3 J3.O4 J3.O5 J3.O6 J3.O7 J3.O8 J3.O9 J3.O10 

MAC18 J17.O1 J17.O2 J5.O3 J5.O4       

MAC19 J20.O3 J3.O11 J13.O5 J7.O5 J3.O11      

MAC20 J1.O3          

MAC21 J11.O2          

MAC22 J14.O2 J17.O5 J18.O3 J13.O3 J7.O2 J21.O2 J16.O2 J6.O2   
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Table 58: Week 4-Completion times of jobs for MILP model 
 

JOB 
 

COMPLETION  TIME 
(minutes) 

 
JOB1 4020 
JOB2 10985 
JOB3 3805 
JOB4 5410 
JOB5 5520 
JOB6 10340 
JOB7 5605 
JOB8 8060 
JOB9 8415 
JOB10 6635 
JOB11 6120 
JOB12 7100 
JOB13 4060 
JOB14 495 
JOB15 6790 
JOB16 3830 
JOB17 1630 
JOB18 1865 
JOB19 9545 
JOB20 3785 
JOB21 3725 
JOB22 1980 

 
 

Table 59: Week4-Allocation Results 
 

Job Flexible 
Operation 

Assignment Model 
Allocations 

ISPT Rule 
Allocations 

OPER1 MAC10 MAC10 
OPER2 MAC10 MAC10 JOB1 
OPER3 MAC22 MAC5 

JOB2 OPER7 MAC22 MAC22 
JOB3 OPER11 MAC22 MAC22 

OPER1 MAC10 MAC10 
JOB4 

OPER2 MAC22 MAC22 
OPER2 MAC9 MAC9 

JOB5 
OPER6 MAC22 MAC22 
OPER1 MAC10 MAC10 

JOB6 
OPER2 MAC22 MAC22 
OPER3 MAC22 MAC22 

JOB7 
OPER5 MAC22 MAC22 
OPER3 MAC22 MAC22 

JOB8 
OPER5 MAC22 MAC5 
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Table 59 Continued 
 

OPER1 MAC15 MAC10 
JOB9 

OPER2 MAC22 MAC5 
OPER1 MAC10 MAC15 

JOB10 
OPER2 MAC22 MAC5 
OPER1 MAC15 MAC15 

JOB11 
OPER2 MAC22 MAC5 
OPER1 MAC10 MAC10 

JOB12 
OPER2 MAC22 MAC22 
OPER3 MAC22 MAC5 

JOB13 
OPER5 MAC22 MAC5 

JOB14 OPER2 MAC22 MAC5 
OPER1 MAC10 MAC13 

JOB15 
OPER2 MAC22 MAC5 
OPER1 MAC10 MAC13 

JOB16 
OPER2 MAC22 MAC5 

JOB17 OPER5 MAC22 MAC5 
OPER1 MAC10 MAC13 
OPER2 MAC10 MAC13 JOB18 

OPER3 MAC22 MAC5 

OPER1 MAC10 MAC13 
OPER2 MAC10 MAC13 JOB19 
OPER3 MAC22 MAC5 
OPER1 MAC10 MAC13 
OPER2 MAC10 MAC10 JOB20 
OPER3 MAC22 MAC5 

JOB21 OPER2 MAC22 MAC5 
JOB22 OPER2 MAC22 MAC5 

 
 
Mixed Integer Linear Sequencing Model (MILP-S) 
 

1. Assignment Model Solution 
The assignment solution generated by assignment model solution is sequenced by 
MILP-S. The model terminates at its termination limit of 1 hour and returns no 
solution.  Resource limit is exceeded and no integer solution is found. 
 

2. ISPT Rule Solution 
The assignment solution of improved shortest processing time rule is sequenced by 
scheduling linear programming model. The model terminates at its termination limit 
of 1 hour and returns no solution.  Resource limit is exceeded and no integer 
solution is found.
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