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ABSTRACT 

H2/H∞ MIXED ROBUST CONTROLLER SYNTHESIS FOR A FIN ACTUATION SYSTEM 

 

 

 

Ölçer, Tuncay Uğurlu 

 M.S., Department of Mechanical Engineering 

 Supervisor  : Prof. Dr. R. Tuna BALKAN 

 Co-Supervisor :  Prof. Dr. Bülent E. PLATİN 

January 2013, 99 pages 

In fin actuation systems, the performance of classical linear control systems is not 

satisfactory due to uncertainty of the system parameters and disturbances of the working medium. For 

this reason, sliding mode, H2 or H∞ robust controllers are widely used in literature for such systems. 

However, use of such controllers results in very conservative system responses. Based on this fact, in 

this thesis, development of a more effective robust controller is aimed via integration of the optimum 

properties of the existent pure H2 and H∞ type robust controllers. To achieve this, during the 

controller synthesizing procedure, some of the optimization parameters are weighted according to H2 

norm minimization, and parameter uncertainties and other variables are weighted according to H∞ 

theorem. First, the system set up to be controlled is physically constructed and performed system 

identification processes. Then, two different types of robust controllers H2 and H∞ controllers are 

designed and tested over both the real system and simulation. Finally an H2/H∞ mixed type controller 

synthesized and the results are compared with the outputs of the robust controllers of the previous 

step. 

Keywords: Fin actuation systems, robust control, H2/H∞ mixed robust control, system identification, 

h2hinfsyn 
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ÖZ 

BİR KANAT TAHRİK SİSTEMİ İÇİN H2/H∞ TÜMLEŞİK GÜRBÜZ KONTROLCÜ SENTEZİ 

 

 

 

Ölçer, Tuncay Uğurlu 

 Yüksek Lisans, Makina Mühendisliği Bölümü 

 Tez Yöneticisi  : Prof. Dr. R. Tuna BALKAN 

 Ortak Tez Yöneticisi  :  Prof. Dr. Bülent E. PLATİN 

Ocak 2013, 99 sayfa 

Kanat tahrik sistemlerinde, sistem değişkenlerindeki belirsizlikler, bozucu etkiler ve ortamda 

var olan gürültüler sebebiyle, klasik doğrusal kontrol sistemlerinin başarımı yeterli olmamaktadır. Bu 

sebeple, bu sistemlerde, kayan kipli, H2 veya H∞ tipi gürbüz kontrolcüler yaygın olarak 

kullanılmaktadır. Ancak bu kontrolcü mekanizmalarının kullanımı aşırı ihtiyatlı sistem cevapları 

ortaya çıkarmaktadır. Bundan dolayı bu çalışmada, var olan H2 ve H∞ tipi gürbüz kontrolcülerin en iyi 

özelliklerinin ayrı ayrı alınarak tümleştirilmesi ve daha verimli bir kontrol sistemi geliştirilmesi 

amaçlanmıştır. Bu amaçla, kontrolcü tasarım çalışmalarında, birtakım eniyileme değişkenleri H2 

normu üzerinden ağırlıklandırılarak ele alınırken, diğer değişkenler ile sistem değişkenlerindeki 

belirsizlikler H∞ teoremleri kullanılarak ağırlıklandırılmıştır. İlk olarak denetimi yapılacak sistem 

fiziksel olarak oluşturulmuş ve üretilip çalıştırılan bu sistem üzerinden sistem tanımlama çalışmaları 

gerçekleştirilmiştir. Daha sonra, H2 ve H∞ olmak üzere iki tip gürbüz kontrolcü tasarlanarak hem 

gerçek sistem hem de benzetimler üzerinde denenmiştir. Son aşamada ise H2/H∞ tümleşik tip gürbüz 

kontrolcü sentezi yapılarak elde edilen sonuçlar bir önceki aşamada denenen kontrolcü çıktıları ile 

karşılaştırılmıştır. 

Anahtar kelimeler: Kanat tahrik sistemleri, gürbüz kontrol, H2/H∞ tümleşik gürbüz kontrol, sistem 

tanımlama, h2hinfsyn 
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  CHAPTER 1.

INTRODUCTION 

1.1. AIM OF THE STUDY 

Guided ammunition is a weapon system that can reach a distance away from the launching platform 

and hit a specific target precisely such that only the target is damaged. These types of systems are 

generally use aerodynamic principles to orient their route and movements. The most frequent 

method for creation of aerodynamic forces on a flying system is to make moving surfaces on the 

outer surface. Motion of the aerodynamic surfaces in a flying object induces forces on different 

axes. These aerodynamic surfaces can be placed on the tail, body or the nose part of the system. 

These aerodynamic surfaces are defined as fins and they are mechanically actuated by fin actuation 

systems.  

In guided ammunition, the orientation of the fins is critical and must always be in the true angle such 

that the weapon could be oriented in the space at the desired position. Therefore, the positions of the 

fins always should be stable; the fins should follow the references and the response of the 

mechanical fin actuation system should not be affected by the external conditions. To be able to 

have all of these properties, the fin actuation system must be controlled and the controlled system 

should be robust against external perturbations. Also, in a mechanical system, inaccuracies in the 

mathematical models always exist due to manufacturing tolerances, nonlinearities and many other 

unpredicted effects. Since the task of the fin actuation system is very critical, these types of 

uncertainties should be handled. All of these requirements lead to a system that is properly 

controlled, precise and well performing. These kinds of problems require more powerful control 

techniques than classical and modern control. Robust control is a tool to attempt such problems and 

includes    and    techniques. 

In this thesis, it is intended to design an       mixed type robust controller for a fin actuation 

system of guided ammunition such that the closed loop system is stable and responses occur in a 

manner as defined previously. The fin actuation system used here is an electromechanically actuated 

4-link mechanism together with an encoder for position measurement. The actuated fins are 

positioned on the tail. 

1.2. DESCRIPTION OF PROBLEM AND SCOPE OF THE THESIS 

The issued fin actuation in this text is placed inside of a tail controlled guided ammunition. The 

schematic drawing of such kind of system is given in Figure 1. In a guided platform, the autopilot 

gathers positions and accelerations data of the missile body from the inertial navigation units and 

any other available sensors and according to the planned route, it calculates the required angles that 

must be achieved via fin actuation system and then creates the position commands for actuators [1]. 

The task of the mechanical system behind the fins is to create the angle required by the autopilot 

according to a previously defined closed loop behavior. To achieve this, the mechanical system 

should overcome the all external loads and not be unstable under the effect of noise and 

perturbations. 

In this thesis, the fin actuation system is modeled and identified to obtain the mathematical model of 

the plant. Using this mathematical model, three types of robust controllers are synthesized:   ,    

and       mixed using MATLAB
®
 and SIMULINK

®
 tools. The controller models are uploaded to 
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a real system via an experimental setup. Then the outputs of the closed loop systems are analyzed 

and compared. In this manner, the studies of this paper are outlined below  

 

Figure 1. Tail controlled guided ammunition [1] 

In Chapter 1, the general definition of the system and the aim of this text are given briefly. After that 

some basic concepts and required background information in modern and robust control theory is 

given. In the last part of this chapter, the literature about       mixed type control is abstracted.  

In Chapter 2, the mechanical system to be controlled is explained in detail. Then the subcomponents 

of the mechanical system are introduced. All of the parts are mathematically modeled; then required 

formulations and transfer functions of the system are obtained. After that the block diagram of the 

overall system is created. In the second section of this chapter, the frequency domain system 

identification work done on the real system is shown by comparing the results with time domain 

responses and real data. Finally using these experimental results, the uncertainties of the parameters 

and the disturbances are described 

In Chapter 3, the three types of robust controllers are designed and they are uploaded to the 

experimental setup. The performances of the closed loop systems, under an external load and plant 

uncertainties, is both measured and simulated. All of the obtained data are presented here. 

In Chapter 4, the results are compared, the study is summarized and related future works are given. 

1.3. BACKGROUND AND BASIC CONCEPTS  

1.3.1. A Brief History of the Control Theory 

Since the beginning of the use of mechanisms, people started to use control techniques. Throughout 

the last two hundred years, technological developments have been growing and all of the machines 

have been becoming more complex and capable. To govern and utilize this complexity and 

capability, the machines must be fully controlled by a human or automatically. To achieve this, 

among the history, control theory is developed and this development have been still continuing. 

The first examples of the automatic control arose in the last of the eighteenth century in parallel to 

development of huge spectacular mechanical systems, like the steam engine invention of James 

Watt. In nineteenth century, new mathematical tools had been developed and application of these 

theories to the mechanical area created big leaps in the human life.  

The significant works in control theory were done especially in the late 1800s and earliest years of 

the twentieth century, by starting from Lyapunov; Minorsky, Hazen, Bode, Evans, Nyquist and 

many others. In 1892 Lyapunov gave a mathematical statement for the stability of the dynamic 

systems. In 1922, Minorsky developed automatic control systems for steering of the ships, via 

describing stability from the differential equations of the system. In 1932, Nyquist worked on a 

simpler method for deciding the stability of the closed loop systems using the frequency response 

characteristics of the open loop systems. In 1934 Hazen defined servomechanism term for position 

control of the mechanical systems. During the decade of the 1940s, with the effects of the war 
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technology due to 2
nd

 World War, control system theory has found new wide application areas in the 

real systems especially for the aerospace applications. In this period, thanks to frequency response 

methods due to Bode, engineers become capable to design well performed closed loop systems. In 

following years, root locus method is found by Evans [2]. 

All of these frequency response and root locus methods are called the ‘classical control theory’ 

today. Using these classical control theory methods, it is possible to have stabilized and 

satisfactorily performed closed loop systems in the case of single input, single output (SISO) linear 

systems. However, these methods do not give optimized controllers and applicable only in SISO 

systems. After the last 1950s, the main aim in the control theory field was to reach optimal 

controllers and control multi input multi output (MIMO) systems  

The space race during the 1960s was a very motivating ambition for the control engineers. The 

automatization of the manufacturing processes started in these years, as well as computer technology 

become available for complex calculations. In this decade, the ‘modern control theory’ was 

developed and widely used in many industrial areas. The studies on optimal control and modern 

control approaches become widespread all over the industry, but the most advanced techniques and 

new methodologies were particularly encouraged by the applications in the space. In 1960, Kalman 

made one of the most important contributions to control area by introducing state space technique 

[3]. 

Since the late 1960s and up to the end of 1980s, the studies emphasized over the optimal theory for 

both linear and non-linear systems in addition to stochastic systems. Since the complexity of the 

systems raised, determinability of the systems decreased. This situation created new requirements 

that can be solved by using adaptive and robust techniques. 

From 1990s to the present, the achievements in modern and optimal control theory, made 

researchers to focus on robust,   , fuzzy logic and similar techniques to deal with the uncertainties 

in mathematical models and perturbations in the systems. Also, since the computers are easily 

accessible devices, the applications in the control theory, now, can be easily projected into the daily 

life and spread to new areas.  

1.3.2. Basic Concepts in Robust Control 

Most of the control engineering problems can be solved by using classical control theory. It is 

possible to obtain perfectly satisfactory solution in both frequency and time domains by using just 

proportional-integral-derivative (PID) type controllers, especially when the system is almost linear 

and its mathematical model is well-defined. Difficulties arise when the plant is complex, non-linear, 

poorly modeled, has external disturbances or/and the required performance specifications are very 

stringent. To solve these types of control problems, the designer needs more powerful tool than 

“classical” ones. The robust control theory is developed in this context as an extension to optimal 

and modern control methods. The aim in a robust controller synthesis problem is that the controlled 

closed loop system can give the satisfactorily “well” responses under the pre-defined “worst case” 

scenarios. [4]. In the following pages the basic concepts used in robust controller synthesis are 

provided. 

1.3.2.1. Feedback Loop and Generalized Plant 

A feedback control system is a closed structure including inputs, internal signals and outputs. There 

are three main components: plant, controller and sensor. A diagram of a feedback system is given in 

Figure 2. In this diagram,   is ‘reference or command input’,   is ‘sensor output’,   is ‘actuating 

signal, controller output or input to plant’,   is ‘external disturbance’,   is ‘plant output and 

measured signal’ and finally   is ‘noise to sensor’. Here, the three signals from outside (       are 

called as exogenous inputs. 

The performance of a closed loop system is best when the output   can follow   in a prescribed 

manner under the effects of noise, disturbances and plant uncertainties. Another performance 
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criterion is related with the actuator signal  . The controller should minimize the size of    All of 

these objectives creates an optimization problem. To solve such a problem, engineers developed 

new methods and notations. One of these concepts is generalized plant approach and widely used in 

robust control theory. 

 

Figure 2. Basic classical feedback control system 

The most general block diagram of a control system is shown in Figure 3. This schematic consists of 

everything that is required for the design and problem definition. P denotes the generalized plant 

matrix such that it includes all of the fixed and well-modeled physical properties of the real system 

to be controlled. In this matrix P, mathematical parameters of all subcomponents (actuators that 

generate inputs to the plant, dynamics of sensors, the plant itself and etc.) are placed in an 

appropriate manner. K denotes the linear controller to be synthesized and will be defined as a system 

matrix form that includes the controller properties. In real life, K is a controller device that may be 

an electrical circuit, computer software, PLC or any other device and it constitutes the output of the 

design procedure. The signal branches  ,  ,   and   are vector-valued functions of time. Here   

carries all of the exogenous inputs (sensor noises, references, disturbances and so on) in its 

components. The vector   is called as ‘performance variables’ and contains all of the signals that 

would be controlled and penalized. These signals may be tracking errors between reference and 

plant outputs, limited actuator movements etc. The components of   are the outputs of the all 

sensors and feedback devices. Finally entries of   are the controlled inputs to the generalized plant 

[5]. 

 

Figure 3. Generalized plant control system  
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1.3.2.1. Stability and Internal Stability 

It is not possible to obtain an exact mathematical model of a physical system; therefore the control 

engineer always must be aware of how modeling errors and unpredictable factors might affect the 

performance of a closed loop system. Robustness of a system is parallel to its stability. So, to check 

the robustness of a system, the stability characteristics of the system should be examined.  

Stability means, the system output   must not grow without bound due to a bounded input, initial 

condition or unwanted disturbance. For a linear time invariant (LTI) system, this is possible when 

there is no pole with positive real part i.e. there should be no poles (or eigenvalues) on the right half 

s-plane.  

An LTI system is internally stable if all of the transfer functions from all internal signals to all 

exogenous outputs are stable.  

1.3.2.2. Norms of Signals and Systems 

The measure for the closed loop performance used in robust control is directly related with the norm 

of the system matrix of the closed loop transfer function from   to  . The general aim of the robust 

control is to minimize the norm of the signals and functions against all exogenous signals that have 

some limiting conditions. The controller design problem then becomes, find a controller   such that  

   
             

(   ‖   ‖ ) 

is minimized. Here     denotes ‘greatest lower bound’,     denotes ‘lowest upper bound’,   is the 

norm base. The widely used norms for robust control are   and  -norms. Also 1-norm of a signal is 

mathematically defined. These definitions of different norms for both signals and systems are given 

in Table 1 [5]. 

Table 1. Norm definitions for signals and systems 

 Norms of signal      Norms of system        

1 - Norm ‖ ‖   ∫ |    |    
  

  

 –  

2 - Norm ‖ ‖   (∫         
  

  

)

   

 ‖ ‖   (
 

  
∫ |     |    

  

  

)

   

 

∞ - Norm ‖ ‖     
 

|    | ‖ ‖     
 

|     |  

As seen from Table 1,  -norm of a signal or a function is the total area (energy) under its Bode 

magnitude plot and ∞-norm of a signal is the peak (maximum response) point of the Bode 

magnitude plot of the system (Figure 4 and Figure 5). 

 
Figure 4. Bode magnitude plot and 2-norm of a system  

|𝐺 𝑗𝜔 | 

𝜔 

𝐻  𝑛𝑜𝑟𝑚 𝑜𝑓 𝐺 𝑗𝜔    
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Figure 5. Bode magnitude plot and ∞-norm of a system 

1.3.2.3. Sensitivity, Robustness and Disturbance Rejection 

Assume a unity feedback loop given in Figure 6. Define      as loop transfer function. Here and 

all over the text, ‘  ’ is the definition operator. Then, the transfer function from reference input   to 

  is called as the sensitivity function and given in equation (1.1) as, 

 
  

 

   
 (1.1) 

The closed loop transfer function of a system is the transfer function from   to  . Let   denote this 

function. Its formula is given by equation (1.2). 

 
  

 

   
 (1.2) 

Note that closed loop transfer function   also specifies how the output   is affected by the sensor 

noise  . Similarly, sensitivity function   also includes the effect of the disturbance input   in output 

 . [6] 

 

Figure 6. Unity feedback loop  

|𝐺 𝑗𝜔 | 

𝜔 

𝐻  𝑛𝑜𝑟𝑚 𝑜𝑓 𝐺 𝑗𝜔    
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The term ‘sensitivity’ comes from the idea that how much closed loop transfer function   changes 

from the variations in plant transfer function  . Take   and   as a variable and function 

respectively, and calculate the change of   for an infinitesimal change in  , i.e. :  

 
   
    

    

    
 

  

  
 
 

 
 (1.3) 

One can easily see that the right hand side of the equation (1.3) is equal to function   given in 

equation (1.1) [5]. Thus, the robustness of a function can be measured using function  . Another 

important relation about   and   function is that:  

       (1.4) 

Therefore the function   is also called complementary sensitivity function.  

The requirements in a controller synthesis problem include stability, good command following, 

rejection of disturbances, attenuation of noises, robustness to modeling errors and minimization of 

control signal energy. For good command following and disturbance rejection, minimization of   is 

required and to reduce control sensitivity and increase robustness minimization of   is required (for 

more details please refer to [6]). Because of equation (1.4) is always must be satisfied, it is not 

possible to get both   and   near to zero over the whole frequency range. This tradeoff converts 

robust controller design problem to an optimization problem.  

1.3.2.4. Plant Uncertainty and Small Gain Theorem 

To define “robustness” term in a mathematical manner, let first define a plant transfer function   is 

always member of a set   which is a set of possible transfer functions. For example      such 

that; 

 
  {

 

        
                           (1.5) 

This   is a structured set and it is parametrized by a finite number of parameters. But structured 

uncertainty is not necessarily parametrized explicitly. It may also be a discrete set of plants. 

However, unstructured sets are more important for control engineers, because it is not possible to 

have an “exact mathematical model” for complex real dynamic systems especially for high 

frequency dynamics [5]. There are some mathematical methods to analyze unstructured plant 

uncertainty and these makes possible to find solutions to controller synthesis problems with 

multiplicative disk uncertainty (a disk around any point of the Nyquist curve in s-plane). The 

robustness with respect to a characteristic of a plant is that; a controller   is robust to the selected 

characteristic of the plant for every plant selected from  . The most important robustness 

characteristic is stability. A controller   provides robust stability, if it internally stabilizes all plants 

in  . 

To model plant uncertainty, the generalized plant control system in Figure 3 can be extended with an 

extra connection. This is given in Figure 7. Here,   is an uncertainty model,   is nominal plant 

(modeled plant dynamics) and   is controller. Let   be the nominal closed loop system model.  

Assume nominal closed loop system   is stable (check the eigenvalues of   ). If  

‖ ‖  ‖ ‖      

is satisfied, then the feedback interconnection is stable. This case yields, 
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 ̅    

 

 ̅   
 (1.6) 

In (1.6),  ̅ is the maximum singular value of the matrix and equals to    norm of the transfer 

function matrix. The given theorem in (1.6) is very important in robust control theory and known as 

small gain theorem [7]. 

 

Figure 7. Generalized plant with plant uncertainty 

1.3.3. Problem Definitions and Solutions in State Space Form 

The general notation for widely used robust control spaces is standard. The Hardy space    is the 

space consists of square-integrable functions on the imaginary axis with the analytic continuation 

into the right-half-plane. The Hardy space    consists of bounded functions with analytic 

continuation into the right-half-plane [8]. 

For an LTI system given in Figure 3, the transfer function matrix can be shown as in equation (1.7). 

      (
  
  

)                (1.7) 

Here the capital letters show the matrices and small letters are used to denote vectors. To give the 

problem definitions, let first introduce the notation. The system equations for a generalized plant 

   given in Figure 3 are given below in a state space form referring to notation of chapter 1.3.2.1 : 

  ̇             
                
                

(1.8) 

The picking matrices   and  , for the generalized system and controller, respectively are: 

 

   (

[ ] [     ]

[
  

  
] [

      

      
]
)                                             (

    

    
) (1.9) 
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Using the notations in equation (1.9), the closed loop system matrix     and picked matrix for closed 

loop system     can be easily given as: 

 
    (

            

      
) 

    (
[
            

      

] [
          

     

]

[               ] [            ]

) 

(1.10) 

To have a simpler controller synthesis problem,       is assumed to have a strictly proper transfer 

function       .       is assumed in order to guarantee that the    and    problem is properly 

posed and finite [9].  

1.3.3.1. H2 Optimization Problem Definition 

The    control problem is to find an admissible controller   (as in the form given in (1.9)) which 

internally stabilizes the plant   and minimizes the energy of the controlled output   . This is equal to 

minimizing the 2-norm of the closed loop transfer function      

     
            

‖ ‖     
            

‖   ‖  (1.11) 

The controller   is unique and the order of it is equal to the order of the nominal plant plus the order 

of weights. To have an admissible controller, in addition to assumptions at chapter 1.3.3 the 

following assumptions are required. 

i.        is stabilizable and        is detectable. 

ii.    
     is full rank;    

     is full rank. 

iii. [
       

     
] has full column rank for all    . 

iv. [
       

     
] has full column rank for all    . 

For existence of a stabilizing controller, assumption (i) is required. (ii) must be satisfied to avoid 

singularities. The last two conditions guarantee the existence of stabilizing solutions to the algebraic 

Riccati equation that are used for the solution of    problem [10]. 

1.3.3.2. H∞ Optimization Problem Definition 

Similar to the    case, the    control problem is to find an admissible controller   (as in the form 

given in (1.9)) which internally stabilizes the plant   and minimizes the peak of the frequency 

response of the closed loop transfer function. In this condition,   is under the effect of a 

deterministic disturbance signal with bounded but unknown energy. This is equal to minimizing the 

∞-norm of the closed loop transfer function     from error   to disturbance signal  . (Please refer to 

Figure 6.)  

    
            

   
‖ ‖   

‖ ‖     
            

‖   ‖  (1.12) 

The optimal controller   yields ‖   ‖    and is not unique.   is a member of a family of 

suboptimal controllers such that ‖   ‖    can be defined,     . The order of controller   is 

equal to the order of the nominal plant plus the order of weights. To have an admissible controller, 

in addition to assumptions at chapter 1.3.3 the following assumptions are required. 
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i.        is stabilizable and        is detectable. 

ii.    
     is full rank;    

     is full rank. 

iii. [
       

     
] has full column rank for all    . 

iv. [
       

     
] has full column rank for all    . 

For existence of a stabilizing controller, assumption (i) is required. (ii) must be satisfied to avoid 

singularities. The last two conditions guarantee that the solutions exist for the    problem [10]. 

1.3.3.3. H2/H∞ Mixed Optimization Problem Definition 

In standard    or    problems, the objective is to design a controller   such that    or    norm of 

the closed loop transfer function is minimized as mentioned in previous sections. In combined    

and    optimization technique, the exogenous inputs   and performance variables   are separated 

according to their optimization condition. In this manner, generalized plant in Figure 3 is extended 

as in Figure 8 and the state space equations (1.8), (1.9) and (1.10) are revised as following. 

 

Figure 8. Extended generalized plant for mixed controller synthesis 

  ̇            
                
                
               

(1.13) 

The picking matrices   and   for the generalized system in Figure 8 and controller respectively: 

 

  

(

 

[ ] [   ]

[

  

  

  

] [

     

     

     

]

)

  

  (
    

    
) 

(1.14) 

𝑤 𝑧  
𝑧  

𝑦 𝑢 

P 

K

P 
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Using the notations in equation (1.9) and (1.14), the closed loop state space equations are given 

below: 

    ̇              
                 
                 

(1.15) 

Let    is closed loop transfer function from   to    and    is closed loop transfer function from 

  to    of plant   in Figure 8. Then the mixed   /   problem definition is to find an output 

feedback controller      such that it internally stabilizes the plant   and maintains following 

conditions [10], [11]: 

i. ‖  ‖     and ‖  ‖              

ii. Minimizes the tradeoff criterion  

  ‖    ‖
 

 
  ‖    ‖  

 
   with       (1.16) 

To have an optimal or sub-optimal stabilizing multi-objective       mixed controller  , the 

discrete    and    problems must be solvable. Therefore, to have an admissible mixed type 

controller, the conditions for    and    problems are combined and the following statements arise 

as necessities [10], [12].  

i. To have finite ‖  ‖         

ii. Since all real systems are proper       . 

iii.    and    problems must be independent.  

iv.        is stabilizable and        is detectable. 

v.    
     is full rank and      

  is full rank. 

vi.    
     is full rank. 

vii. [
       

     
] and [

       

     
]  has full column rank for all      

viii. [
      

    
] has full row rank for all    . 

1.3.3.4. Solutions to Standard H2/H∞ Mixed Robust Control Problems  

In output feedback case, the controller has its own dynamics and states. Let   denote states of the 

controller  . Then, the state space equations for the controller becomes; 

          

         

̇
 (1.17) 

The solution procedure for both    and    problems are firstly given by Doyle et. al. in [8] at 1989. 

Then, many other methods are developed based on this paper and using Riccati equations. 

Additionally there are many textbooks to find solutions and method for different type of    and    

problems (For further details, refer to the textbooks [3], [4], [5], [13]). 

Regarding the solution for multiobjective type    problems (i.e. mixed       problem) there is 

not many methods. The approach used in this study is the method proposed by Mathworks 

Corporation in MATLAB
®
 software. This software tool uses linear matrix inequalities (LMI) 
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approach for the solution as summarized below. The detail of the algorithm and theory behind the 

application can be found on [12]. Also other theoretical approaches and applications of 

multiobjective type robust control are given in the subsequent section of this chapter. 

For an output feedback controller case as in equation (1.18), in LMI technique, mixed       type 

problem is formulated as two parts that have    and    performance bounds and these two 

problems are given as inequalities. Then, these two inequalities generate a convex optimization 

problem and the solution can be obtained via simultaneous solution of two distinct constraints.  

    Performance  

The closed loop root mean square (RMS) gain for    does not exceed   if and only if there exist as 

symmetric matrix    such that: 

 

[

           
          

 

    
       

 

              

]    

     

(1.18) 

    Performance  

The closed loop   -norm of    where  ‖  ‖ 
                 

    does not exceed   if and only if 

       there exist two symmetric matrices      and   such that: 

 
[
           

     

    
   

]    

[
       

      
   

]                    

(1.19) 

If            (simultaneous solution of inequalities (1.18) and (1.19) ) give solution to 

multiobjective optimality problem in equation (1.16). In (1.16) if, 

i.          yields an    problem 

ii.          yields an    problem 

iii.              yields       mixed problem. 

The method mentioned here is quoted from [12]. In MATLAB
®
 software, ‘hinfmix’ (replaced by 

‘h2hinfsyn’ in r2012a) command runs this algorithm.  

1.4. REVIEW OF THE LITERATURE ON H2/H∞ MIXED CONTROL 

Starting from the late 1970s, there have been many developments on control theory area in parallel 

to developments on numerical solution techniques. Numerical methods provide an invaluable tool 

for treating difficult mathematical problems, especially for differential equations and matrix type 

inequalities. The question arose in robust controller synthesis are also an application area for the 

numerical techniques.  

As previously mentioned, robust controller problems generally include    and    type problems. 

The theory behind these question techniques is very detailed and can be found in textbooks and 

lecture notes related with robust control theory. Some examples are [3], [4], [5], [7] and [14]. In this 

section, the theoretical approaches and applications related with mixed type       synthesis 

problems will be summarized using studies and descriptions from literature. 
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1.4.1. Literatures on Theory of H2/H∞ Mixed Robust Control 

In a MIMO feedback system, the controller can work using state feedback data or only output 

feedback data. The first techniques in robust control attempted to state feedback case, because of its 

relative simplicity. After the state space techniques become available, in 1989 Doyle et. al. created a 

basic theory for the solution of both standard    and    type control problems in state space [8]. In 

this paper, they separated robust control problems as full information, full control, disturbance feed-

forward and output estimation. All of the following solution methods in robust control are based on 

this theory. They use generalized plant approach and the solutions are based on the algebraic Riccati 

equation in (1.20). 

                (1.20) 

As previously mentioned; the    criterion corresponds to design for the worst exogenous signal that 

has a deterministic disturbance model with bounded power and unknown spectrum. Similarly, 

   optimization is based on a stochastic noise disturbance model with fixed spectral density. Use of 

LQG (    technique utilizes quadratic cost problem while    theory seeks to minimize the worst 

case attenuation. 

In many real-world applications, standard H∞ synthesis cannot adequately capture all design 

specifications. Noise attenuation or regulations against random disturbances are more naturally 

expressed in LQG terms. Similarly, pure H∞ synthesis only enforces closed loop stability and does 

not allow for direct placement of the closed loop poles in more specific regions of the left-half plane. 

Since the pole location is related to the time response and transient behavior of the feedback system, 

it is often desirable to impose additional damping and clustering constraints on the closed loop 

dynamics. This makes multi-objective synthesis highly desirable in practice [12]. Therefore the 

mixed       control problem has attracted much attention in recent years. There is an abstract of 

the some related works from the literature in the next paragraphs. 

In 1989, Bernstein and Haddad developed the first Riccati based method for the mixed       

problem using    - constrained LQG control problem in state feedback case [15]. They also give 

illustrative examples using numerical methods in the same study.  

In 1990, Zhou et. al. published a paper that the first time use of “mixed      ” term. In this work, 

they introduce a theory that directly handles both    and    performance objectives at the same 

time. They also state that, in a mixed robust control problem    objective usually makes more sense 

for performance and    is better for robustness to plant perturbations [16]. Projecting this fact to a 

general plant with structured plant uncertainty, they generate the first mixed control problem 

statement by considering the general plant provided in Figure 8. Given the plant  , a constant  , find 

a controller   such that it provides internal stability and is the solution of the (1.21). 

    
            

    
    

{‖ ‖ 
   ‖  ‖ 

 } (1.21) 

Using this problem definition, Zhou et. al. designed a mixed      type controller using numerical 

techniques and drew the Bode plot of the closed loop system to compare the results with the pure 

   and    controllers as given in Figure 9. 
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Figure 9. Comparison of H2, H∞ and H2/H∞  mixed performances [16] 

Although the problem stated, there was no generic analytical solution until the work of Rotea and 

Khargonekar at 1991. They have not only developed a new problem definition as    optimal control 

with an    constraint but also introduced an analytical solution method for state feedback case. In 

this document, they also separate mixed controller problem to two types: Problem A: Minimal    

norm subject to an    constraint and Problem B: Simultaneous       optimal control [17]. These 

two forms are given below in (1.22), (1.23). 

Problem A:    {‖     ‖                   ‖     ‖   } (1.22) 

Problem B:    {‖     ‖              }               ‖     ‖    (1.23) 

Problem A is very similar to the Bernstein and Haddad problem (see [15]). However, Rotea and 

Khargonekar give analytic solution as an improvement to previous numerical methods by using 

small gain theorem and matrix based Riccati equation. Problem B is an    unconstrained version of 

problem A. Rotea et. al. give necessary and sufficient conditions for the existence of a solution to 

problem B. Since problem B is generalized form of A, the requirements for the existence of a 

solution to problem A becomes also available [17]. 

Up to this point, the referenced studies were about the “state feedback case” for controller and 

examined relatively “simple” problems. In July 1991, Khargonekar and Rotea gave a method to 

reduce the mixed       problem to a convex optimization problem over a bounded set of real 

matrices. The bounded subset include a     and      symmetric real matrices, where   is the 

dimension the control input and   is dimension of the states. Using this convex optimization 

approach, they deliver a global solution to general output feedback problem. To obtain a suboptimal 

controller,    estimation filter is used to convert output feedback problem to a state feedback 

problem. They also govern a theorem that there is always an output feedback controller solves the 

mixed type problem with dimension no larger than that of the generalized plant [18]. 

Since    and    robust controllers started to find new application areas in the beginning of 1990s, 

people wanted to know which controller synthesis method is better. To answer this question, Zhou 

has made a research to compare    and    controllers. In reference [9], he has shown that the 
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    performance ratio for the one block problem between an    controller and an    controller is 

bounded by the number of some subsystem right half plane zeros. Assume that, a generalized  -th 

order plant   that satisfies the conditions of    admissible controller (see chapter 1.3.3.2 and 

conditions i-iv of this thesis), and let    be the optimal    controller,    be the optimal    

controller and   denote the closed loop transfer function. Then, in document [9], Zhou proofs that: 

 
  

‖       ‖ 

‖       ‖ 

              

                

(1.24) 

In (1.24),     is the number of right half plane zeros of the transfer function between control signal 

and controlled output. Similarly     is the number of the right half plane zeros of the transfer 

function between disturbance and measurement. Note that the upper bound given in (1.24) is very 

conservative; Zhou shows that there are some plants that can actually have the ratio arbitrarily close 

to the upper bound. Also, this condition yields that for most practically motivated systems which 

have very few right half plane zeros, the performance ratio   will be relatively small. Although this 

result leads someone to think that for such kind of systems,    controller can perform as well as an 

   controller, it should be noted that    theory has not equal power with    to overcome the plant 

uncertainties [9]. Therefore the use of mixed type       technique may be required to obtain a 

simplified and well performed system between    and   . 

In August 1994, Zhou et. al. published two successive papers. In the first one they introduced 

methods for analysis of robust performance of mixed       controlled systems. The paper deals 

with the systems have disturbances in white noise or non-white noise form and structured and 

unstructured plant uncertainty. The method developed here is also valid for the systems that their 

mixed norms cannot be expressed explicitly (For further details see [19] ). 

The second document considers the analysis and synthesis of optimal mixed       controller. They 

collect the necessary and sufficient conditions to obtain mixed type optimal controller (given also in 

section 1.3.3.3 of this text) and gives the explicit state space formula for the optimal controller [20]. 

These two papers together with [18] create a guideline for mixed optimal controller design for 

further methods. Also the papers bring tools for testing the robustness and performance of the 

designed controller in mathematical manner. 

One of the most important studies on the mixed       controller synthesis is the paper of Chilali 

and Gahinet in March 1996. In this manuscript, they handle mixed control problem together with 

pole placement constraints and they serve an LMI based method to find the optimal output or state 

feedback control. The procedure is as follows: Firstly a convex region for poles is defined using 

performance properties and desired characteristics of the closed loop system. The clustering regions 

for pole are on the left half-plane and using transient response characteristic of a second order 

system with poles            with    is undamped natural frequency,   is damping ratio and 

   is damped natural frequency. One can put on the specific bounds on these characteristics to 

ensure a satisfactory transient response. Regions of pole clustering include an  -stability regions on 

the left half plan such that           vertical strips, disks, conic sectors or any convex geometry 

[21]. Another interest in region is          of complex numbers      such that: 

        |    |              | | (1.25) 

The region of equation (1.25) is given in Figure 10. If all of the closed loops are in the shaded 

region  , one can guarantee that a minimum decay rate is  , a minimum damping ratio is   
       and a maximum undamped natural frequency is             . It is known that these 

values bound the maximum percent overshoot, the frequency of the oscillatory modes in transient 

response, the delay time, the rise time and the settling time.  

After convex region          is defined, the mixed       problem can be easily formulated in 

LMI (linear-matrix-inequality) form [21]. Then the obtained problem can be solved extended 
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Lyapunov theorem. In this study, the main improvement according to preceding methods, it 

eliminates Riccati based approaches and proposes a simpler algorithm for computer programs. The 

theory behind the well-known MATLAB
®
 software LMI Control Toolbox (the toolbox includes 

hinfmix command) is this paper. Here, Chilali and Gahinet give the details of the solution for both 

state and output feedback controllers. They also apply the method to a benchmark problem in robust 

control and provide the results. For further details see [21]. Also document [12] of MATLAB
®

 

software includes details and algorithms of this LMI technique. 

 

Figure 10. Region          

In 2003, Wu and Lee examine the problems in mixed       control and they extend the previously 

developed methods, especially the technique of Chilali and Gahinet to the problems with non-

convex regional pole constraints using Kroenecker product and barrier method. They apply their 

procedure to a state feedback case. Additionally they state that the procedure is valid also for output 

feedback case. The closed loop pole region of an example problem is given in the paper and Figure 

11 [22]. Note that, the all of poles lie inside of a non-convex constraint region. 

The theories covered up until now handle the problems in linear-time-invariant systems. In 1995, 

Scherer proposes a solution to the mixed       problem for time varying systems and discusses 

various specializations to linear parametrically varying and time invariant systems. The theory in 

this text is also valid for pure    and    problems [23]. However, the theory is based on the state 

feedback case and the extension to the output feedback case for varying systems is still a hot topic.  

 

 

r 
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Figure 11. The location of the resultant closed loop poles of example of [22]. 

1.4.2. H2/H∞ Mixed Robust Control Applications from Literature  

Parallel to the developments on the theories and computational capabilities, mixed robust control 

techniques started to find application areas in early 1990s especially in aerospace and defense 

industries due to strict requirements on complex systems. Large portion of the applications found in 

literature include use of MATLAB
®
 software and/or advanced numerical methods. 

One of the first mixed controller application is the master thesis of Kusnierek in 1991. In this thesis, 

the author uses a numerical algorithm coded in Fortran to solve the matrix equations and use 

MATLAB
®
 to visualize the system responses. The purpose of the study is to demonstrate the use of 

mixed solution and compare the results with the pure    controller for firstly a single input single 

output (SISO) and a single input two outputs (SI2O). In the final part, an       mixed controller 

was designed and the controller was applied to a physical system with two inputs two outputs 

(2I2O). Here Kusnierek find a solution to a non-conservative optimization problem such that 2-norm 

of one transfer function subject to an   norm bound using the theory of Bernstein-Haddad. Then he 

obtains that the mixed controlled system response is    better in a specific SISO example,     

better in a specific 2I2O example compared to pure    controlled version of same examples [11]. 

Another outstanding study as a multiobjective robust controller application is the thesis of Ullauri in 

1994. In the document a general mixed       output feedback optimal controller with multiple    

constraints synthesized on two types of systems. One of the controlled plants is a SISO system that 

models the normal acceleration of an F-16 aircraft. The other system is a MIMO system which is the 

benchmark problem of MATLAB
®
; mathematical model of the longitudinal HIMAT aircraft 

example of NASA. To solve the multiobjective control problem, the author developed software 

using a special numerical method. After that, the method is validated over SISO system. Then mixed 

type controller for the MIMO plant is designed using same algorithm. The obtained results proofs 

that it is possible to obtain a nominal performance and robust stability simultaneously by using 

      mixed controller. Table 2 summarizes the results of the study [10]. 
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Table 2. Comparison of Different Control Law Designs [10] 

         (D-K) Mixed 

      

Handle white Gaussian Noise (WGN) x   x 

Robust Stability, Nominal Performance (RS,NP)  x x x 

Robust Performance   x  

Tradeoff between RS and NP freely    x 

WGN and RS, NP    x 

Reduced order controller    x 

In 1996, Nonami and Sivrioglu have made active vibration control of a flexible body model; using 

LMI based convex optimization technique of Chilali and Gahinet. They applied the theory both for 

state feedback and output feedback situations and compared the closed loop system response of 

mixed controlled system with the previously designed pure    and    controllers [24]. The aim of 

the study is to regulate and damp the external vibrations on the plant given in Figure 12. In this 

figure          is the mass, stiffness and damping of the body, respectively.    is the displacement 

of each mass and also the system states,   is control signal and   is the external disturbance. The 

physical system is non-linear. However to obtain a robust controller the system is linearized and the 

system matrices and norm constraints are given in reference [24]. Using these constraints and 

reference [21] as a guide, they obtain an optimal       mixed controller.  

The frequency and impulse responses of 4th mass with these three distinct types of controller are 

given in Figure 13, Figure 14 and Figure 15. The optimal controller for an LTI system is not unique. 

They obtain the optimal plant by using trial and error and iterative methods on    norm constraint   

and    norm constraint  . The design progress can be seen from the reference [24]. Note that the 

frequency response performance of the    control in Figure 13 is better than the performance of 

   in Figure 14 especially for low frequency range. Similarly, the time response performance of the 

   control in Figure 13 is better than the performance of    in Figure 14. Therefore one can take a 

tradeoff between these two controllers and can obtain a good closed loop response in both domains. 

Using LMI based       mixed controller synthesis, Nonami and Sivrioglu achieve a good result as 

given in Figure 15 [24]. 

 

Figure 12. Model of the control object [24]  
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Figure 13. Frequency and impulse response for H∞  control (γopt = 0.000356) [24] 

 

Figure 14. Frequency and impulse response for H2 control (ηopt = 0.016) [24] 

 

Figure 15. Frequency and impulse response for H2/H∞ control (γopt = 0.0004 ηopt = 0.038) [24]  
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In 2004 Yoo et. al. bring another approach to mixed type control systems other than       type. 

They want to control an electromechanical fin actuation system of a guided missile. In their study, 

they claim that the conventional systems using a linearized model do not guarantee the satisfactory 

performance for a fin actuation servo system, therefore they advise to use a robust controller. Use of 

   technique satisfies robust stability, however a degree of freedom on robust performance is also 

required. To achieve this, Yoo et. al. propose a two degree of freedom controller using    and a 

disturbance observer [25]. Here the controller structure used in paper is given in Figure 16. In feed 

forward path, they use an    controller to overcome robustness issues. The disturbance observer in 

feedback path includes three components: a time delay estimation algorithm part, an anti-filtering 

compensator part and a low pass filter part. The effectiveness of this design is shown in the 

document via both simulation and experiment. 

 

Figure 16. Controller structure of [25] 

In the last few years, some new approaches as an extension to LMI techniques to solve mixed 

      problem have been developed. One of the motivation of a such kind of search is that, since 

the optimal controller is not unique, sometimes, solution obtained via LMI method may not achieve 

best values for two norms. The algorithm may also fail to find a controller even if one solution 

exists. Popov attacked to this phenomenon and propose a new algorithm to find the optimal       

mixed controller especially in the base of the minimization of both norms. In the project [26] that 

presented at 2005, the problem formulation in LMI form for state and output feedback cases 

distinctly is given firstly. After that, the solutions for two cases of controllers (state feedback and 

output feedback) obtained in two different ways: via LMI toolbox of MATLAB
®
 and using a 

numerical method developed by the author that uses genetic algorithm approach. Finally, Popov 

shows that, the controllers created by genetic algorithm suggested in the study, provides better and 

less conservative results than “classical” LMI convex optimization method, especially for dynamic 

output feedback situation. Additionally, the algorithm can find a controller such that it has similar 

performance and less order than LMI output. However this method requires much more 

computational effort than LMI methods [26]. 

      mixed controllers find another application area in the load frequency control (LFC) of 

interconnected electrical power systems, because such systems have highly non-linear and hard to 

model dynamics. On the other hand, LFC system requirements are to minimize the transient errors 

of the frequency and tie-line power, and to ensure zero state errors of these quantities. Regarding 

these issues, Bensenouci and Ghany presented a paper on LMI based design of an output feedback 

control for multi-area load frequency control in 2007 [27]. As similar to the other works on 

literature, to solve the multiobjective design problem with regional pole constraint, they use 

embedded MATLAB
®
 functions to attempt to output feedback problem. The results of the 

simulations are summarized and can be seen in [27]. 
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As previously stated, LMI solvers do not guarantee the derived controller is the “best” in the 

optimization criteria. These common tools run a numerical algorithm. Although these methods are 

invaluable tools for the loop-shaping of complex systems, it is possible to obtain better closed loop 

responses and simpler controller architecture for some mixed control problems which can be solved 

explicitly. In this manner, Alazard et. al. suggest an analytical method to attempt multiobjective state 

feedback control problems related with mechanical systems used in aerospace engineering [28]. The 

linearized mechanical systems are generally described by a second order differential equation form: 

   ̈    ̇        (1.26) 

In (1.26),      is the vector of the   degrees of freedom,       are respectively the     mass, 

damping and stiffness matrices.      is the vector of the   control signals and   is the   
  input matrix. In this study, it is assumed the all of the states are measured and controller   is static 

state feedback controller. To obtain optimal mixed       controller, the acceleration sensitivity 

function   is weighted by a second order frequency-domain weighting function. Then the block 

diagram of the system is provided in Figure 17, where    is the performance variable to be 

minimized by    criterion and    is the performance variable to be minimized by    criterion.  

 

Figure 17. H2/H∞ standard problem for acceleration sensitivity control [28]  

After the problem definition is stated using an objective function for optimization, they obtain 

generalized plant and present a detailed analytical procedure to reach to the optimal mixed controller 

for state feedback (full information) case both in one degree of freedom and multi-variable 

situations. They compare their results with the outputs of the well-known “hinfmix” macro function 

of MATLAB
® 

(which uses LMI method) and underline that their analytical method gives better 

results in the terms objective function. For further details, see [28]. Although the analytical method 

gives the best controller, note that this method is available only for full information (state feedback) 

case. But in many real systems, it is not possible to measure all of the states.  

In 2009, Akbar et. al. applied a mixed       controller to a continuous time singularly perturbed 

system with linear state variable feedback [29]. The control law is derived using auxiliary cost 

minimization approach for continuous LTI singularly perturbed system. In this paper, the writers 

solve the       mixed type controller by using iteratively gain independent coupled Riccati 

equations method different than the previous LMI techniques. After mixed type controller, they also 

synthesize pure LQG (  ) and pure    controllers in 2
nd

, 3
rd

 and 4
th

 order. They compare the 

performance and robustness of these different control systems via using time response to a unit step 

input and analyzing phase and gain margins. These results are given in the paper and presented in 

Figure 18, Figure 19, Figure 20 and Table 3. The results in this paper indicate that the developed 

mixed       type controller performs fairly better than    and    based controllers in both time 

response and robustness measures [29].  
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The last research to be discussed in this chapter is the        mixed controller application to a case 

study on full vehicle suspension. The paper is published by Türkay and Akçay in 2011 [30]. In this 

work, the authors develop two procedures for multi-objective control of a full vehicle suspension 

model excited by random road disturbances. The schematic of the controlled plant is given in  

Figure 21. They formulate the control problem as in the form of        mixed synthesis and find 

the output feedback type controller using conventional LMI method for convex optimization. This 

method yields a controller that has the same order with the generalized plant.  To obtain a reduced 

order controller, they re-formulate the multi-objective control as a non-convex and non-smooth 

optimization problem. Next, they propose a solution method to new formulation via fixed-order 

optimization. The simulations using these two different methods show that, the lower order 

controllers can also have similar performance enhancement to LMI design. They also state that, both 

of the obtained controllers are good alternative to LQG based ones. 

The cited literatures show that the basic performance properties of the different types of control 

methods can be summarized as in Table 4. 

Table 3. Gain and Phase Margins [29] 

System 2
nd

 order 2
nd

 order (uncert.) 3
rd

 order 4
th

 order 

       
GM=∞ 

PM=∞ 

GM=∞ 

PM=∞ 

GM=∞ 

PM=95.8° 

GM=∞ 

PM=88.07° 

LQG 
GM=∞ 

PM=84.5° 

GM=∞ 

PM=81.4° 

GM=∞ 

PM=77.0° 

GM=∞ 

PM=61.01°∞ 

    
GM=∞ 

PM=95.1° 

GM=∞ 

PM=94.5° 

GM=∞ 

PM=103° 

GM=∞ 

PM=62.7° 

 

Figure 18. Step response of mixed H2/H∞, H∞, and H2 2
nd

 order system [29]  
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Figure 19. Step response of mixed H2/H∞, H∞, and H2  2
nd

 order system with uncertainty [29] 

 

Figure 20. Step response of mixed H2/H∞, H∞, and H2  3
rd

 and 4
th

 order system [29]   
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Figure 21. The full-car model of vehicle [30] 

Table 4. Performance and Robustness Comparison of Different Methods 

    (LQG) Controller    Controller        Mixed 

Transient Response 

Performance 
Very Good Moderate Good 

Robustness to Plant 

Uncertainty 
Moderate Very Good Very Good 

Robustness to 

Exogenous Noise  

Good for known 

frequency spectrum 

Good for known 

bounded power 

Good for both types 

of noises 
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  CHAPTER 2.

SYSTEM MODELING AND IDENTIFICATION 

2.1. MODELING OF THE SYSTEM 

The task of the fin actuation system in a guided aerial platform is to implement the required angular 

positional fin deflection that comes from the guidance autopilot. To satisfy position of the missile 

platform such that it precisely follows a route previously planned; angular fin deflection data are 

derived by guidance autopilot using aerodynamics principles and acceleration data read by gyros. To 

increase the precision level of the ammunition, other type of sensors, for example infrared imaging, 

laser distance measurers etc. can also be used. The instant data of the overall missile is obtained 

using inertial measurement units. The autopilot calculates required positional rates in yaw, pitch and 

roll rates of the body and converts this data to fin deflections in the light of the all sensor 

information. When the position command is generated by the autopilot, the mission of the fin 

actuation system (FAS) starts.  

2.1.1. Description of the Physical System 

The back side view of a missile and corresponding positive direction of force and moment vectors at 

each control surface are shown Figure 22. During the flight of the missile, forces and torques on the 

control surfaces occur due to aerodynamics of the system. The control surface should overcome 

these loads and conserve their orientation to make the required maneuver. All of the forces and 

torques other than hinge moment can be carried by the bearings of the fin shaft; the hinge moment 

   must be overwhelmed by FAS. To achieve this, use of a mechanism is inevitable. In this manner, 

an inverted slider crank mechanism is connected to the control surfaces. The explanation and 

detailed mathematical model of the mechanism is given in section 2.1.2.3.  

In this study, the handled fin actuation plant is an electromechanical system. In this plant, there are a 

brushless DC servo motor coupled to the outer fins of the missile via a transmission mechanism 

connected on the shaft and a sensor as a feedback element for to measure position. The output of the 

system is the actual fin deflection; however, due to physical restrictions of the missile, the position 

sensor cannot be placed to the fin, instead placed to the motor shaft. Nonetheless, since the 

mathematical model of the transmission can be well defined, one can easily derive the real fin angle 

using motor position. 
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Figure 22. Schematic backside view of an ammunition and coordinate frame for a fin 

2.1.2. Mathematical Models of the Subcomponents  

2.1.2.1. Motor  

Servo motor is a device that converts electrical energy to mechanical torque. The input to a servo 

motor is current and it produces torque directly related to the input current. The servo motor 

assumed to have a linear characteristics and the its constitutional equation is given in equation (2.1) 

where    is the total torque produced by the motor at the motor shaft,    is motor torque constant 

and   is the input current to the motor.  

         (2.1) 

The constant    is the characteristics of the motor and ideally it is defined as a constant in room 

temperature. According to the related technical documents of the component, the value can have 

small variations (less than 5%) in operating conditions. However, to hold the system linear during 

the modeling and control, this value will be assumed as constant.  

To identify the value of torque constant, a dynamometer set-up is used as a resistive load to test the 

motor. The dynamometer is directly coupled to motor shaft and the generated torque by motor is 

measured in static condition. The obtained data visualized in Figure 23 as in the form of torque 

versus current. Here the obtained linear fit to data by least square method indicates that the motor 

constant (the slope of the fitted curve) is about       
      

    
 with a coefficient of determination 

(R-squared) value of       However,    of the motor is given in the technical document of the motor 

as  

         
      

    
. This means there is    deviation in the value of torque constant as calculated 

in equation (2.2). This deviation is also provided in the datasheet of the motor as the same value. 

During the controller design and system identification procedure, the nominal value of torque 

constant will be assumed as in the datasheet of the motor.  

 
    

           

     
        (2.2) 

Another important point that can be observed from Figure 23 is that, the motor is able to start to 

generate mechanical torque after       . The source of this loss is the phenomenon of cogging. 
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Cogging torque in a brushless DC motor is the torque due to interaction between the permanent 

magnets on rotor and slots of the coils on the stator. The cogging phenomenon induces a dead zone 

dynamics. It is undesirable and can be seen on only “infinitesimal motion” of the shaft. Actually, the 

overall        loss in the current does not only originated by cogging; but also the frictional effects 

on the bearings of the motor shafts contributes to this value. The detailed modeling of this dead zone 

is another issue and is not covered in this thesis, because in this system the motor will bear against 

higher loads and also will make relatively larger amplitude motions. Therefore, this torque loss due 

the cogging will be assumed to be as constant dead zone loss. This dynamics will be taken into 

consideration during calculations and simulations. Using equation (2.1), one can obtain the 

corresponding total torque loss is              as shown in equation (2.3). 

 

Figure 23. Data from the motor characteristic test 

                              (2.3) 

The net torque at the output of the motor shaft drives a mechanical rotational system that has a 

general equation of motion as in equation (2.4) [31].  

           ̈       ̇         (2.4) 

In equation (2.4),      is the total equivalent inertia at the motor side,    is the angular position of 

motor shaft,     is equivalent viscous damping coefficient and        is the external torques 

(aerodynamic hinge moments on fin) coming from outside of the body as disturbance. Here      is 

net torque output of the motor and given in (2.5). 

              (2.5) 

Other parameters and variables in equations (2.4) and (2.5) will be explained in detail in the 

following sections. 
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2.1.2.2. Sensor 

In a control system, the most critical component is the sensor that measures the plant output. In a 

FAS the output is the angular position of the fin as an aerodynamic control surface. As previously 

mentioned, in the FAS of this study, due to some geometrical, physical and financial limitations, an 

incremental encoder is used as a position sensor that measures the rotation of the motor shaft. The 

sensor used is a digital type sensor; therefore it is robust to noise in electrical signals.  The encoder 

works in 11-bit resolution. This means that the count of the signal increments             times 

for one revolution of the motor shaft. The data from the encoder are taken at 1 kHz. Although the 

system is digital, there may occur errors on digital reading values. The experiments show that in 

some noisy media, the last bit of the encoder data may have fault. This situation will be considered 

in the controller synthesis part as a criterion in weighting selection. 

2.1.2.3. Motion Transmission Mechanism and Calculation of Transmission Ratio 

The physical system behind the fin is an inverted slider crank mechanism as an example of 4-link 

mechanisms. The schematic diagram of the mechanism with positive directions is given in Figure 

24. The input to the mechanism is the stroke of the slider  . The output is fin deflection angle  .  The 

plant is shown at APPENDIX A.6 with a photo. 

 

Figure 24. Schematic diagram of the FAS as an inverted slider crank mechanism 

Sliding motion is obtained using a ballscrew directly connected to the motor shaft. Ballscrew is a 

mechanical component that can directly convert rotary motion to linear motion via a nut going on 

the screw path of the ballscrew shaft. The fins of the missile are directly connected to link    from 

the pivot point. 

To obtain mathematical model of the mechanism, let us first achieve the position analysis using loop 

closure equation (LCE), take point O as origin and positive directions as in Figure 24. 

                           (2.6) 

where   √   . Decompose equation (2.6) into   and   axes: 
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  - axis                           
(2.7) 

  - axis                          

Note that, in Figure 24 the rotation of the motor shaft is    and this rotation is converted to linear 

stroke   by a ballscrew. The ballscrew is a mechanical component that has a helical raceway for ball 

bearings can roll over it such that with an appropriate threaded nut assembled onto shaft; rotary 

motion of the screw can be converted to linear sliding motion. The pitch of the thread on the 

ballscrew forms mathematical relation between the motor revolution and stroke. The pitch of the 

ballscrew in this application is     mm per revolution. In this manner,   
 

  
       

  

   
 is the 

transmission ratio between motor rotation and linear movement  .  This is given in equation (2.8) 

where    is constant and the minimum value of stroke. 

           (2.8) 

Now, in this system, the output is the fin deflection  . As seen from Figure 24, the equation for fin 

deflection can be obtained as in equation (2.9).  

           (2.9) 

The FAS here is capable to deflect the control surfaces to       . This yields; 

              (2.10) 

Statement (2.10) indicates that     can be used as independent variable to calculate the mathematical 

model of the overall mechanism. The mechanism is a transmission device that increases torque by 

reducing the speed of the actuating source. The actuator is DC motor whose position is given by    

parameter. The transmission ratio ( ) between motor torque and hinge moment of control surface is 

equal to the ratio of the speed of the motor shaft and fin deflection. Since the parameter     is used 

as independent variable, one can obtain the transmission ratio    by using time derivatives of 

equations in (2.7) and (2.8). To simplify the calculations, first eliminate the parameter     which is 

also function of    . Rewriting of equations (2.7): 

                             

(2.11) 

                           

Take square of both equations in (2.11) and apply summation to each side, by using identity of 

                 ; 

      
                                        

  (2.12) 

Now, to obtain velocity relation, take time derivative of equation (2.12); 

      ̇                        ̇                       ̇  (2.13) 

Similarly time derivative of equation (2.8) returns; 

  ̇      ̇ (2.14) 

Replace  ̇ in equation (2.14) and   in equation (2.12) to equation (2.13). After simplification one can 

obtain the transmission ratio   as an explicit function of independent variable     as:  
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  ̇

   
̇
 

      

  
 

 

 
                          

 √  
                                        

 
 

(2.15) 

The values of the system parameters are given in Table 5. Substitution of these values into equation 

(2.15) gives the value of   for each     value. Since the fin deflection angle is system output, the 

function of   is plotted with respect to            and given in Figure 25.  

Table 5. Value of system parameters 

   100 mm 

   45 mm 

  0.32 
  

   
  

  43 mm 

 

Figure 25. Change of transmission ratio (N vs δ) 

As seen from the Figure 25, the transmission mechanism has nonlinear characteristics. The 

maximum and minimum values of the transmission ratio are 141.4 and 132.4 respectively. To be 

able to have a linearized system model, the transmission ratio will be assumed as constant. Since the 

system will generally work on the vicinity of 0° deflection angle,          will be used as the 

value of the function. However, after the linear model based controller is obtained, during the 

experiment and simulations, the actual value of   that depends on the fin deflection and provided in 

equation (2.15) will be used as a conversion factor both for motor position      to fin deflection     
and motor output torque      to hinge moment         . 

2.1.2.4. Calculation of Equivalent Moment of Inertia 

The differential equation of motion the FAS is given in equation (2.4). Here, note that all of the 

moving parts are considered that has the same angular speed with the motor,   ̇. The rotation axes 

of some components of mechanism are different than motor shaft. Therefore, to be able to have 

appropriate model, all of the moment of inertia must be projected onto rotary axis of motor shaft. 

Formula for the total equivalent moment of inertia is given in equation (2.16) 

          
  

                         
  

 (2.16) 
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In this assembly, the shaft of the ballscrew is directly connected to rotor of the motor and behaves 

like the motor shaft. The moment of inertia of the                        is given by 

manufacturer. The moment of inertia of the rotor of the motor                    is provided 

in the datasheet of the motor. In equation (2.16)    
      is the equivalent moment of inertia of the 

link    that is connected to aerodynamic control surfaces. The projected value of the inertia can be 

calculated by using transmission ratio of the mechanism. It is known that, in a mechanical system 

the ratio of the projected moment of inertia equals to square of the gear ratio. In this manner, the 

moment of inertia of the crank with respect to its own rotation axis (the pivot axis at point O of 

Figure 24) can be derived from the 3D model of the FAS as                    . Then using 

equation (2.17) 

 
      
  

 
      

  
 

     

      
             (2.17) 

The equivalent moment of inertia of the nut can be derived from kinetic energy equation for both 

frames, because it has translational motion. The velocity of the nut      is equal to  ̇,      
         is given by manufacturer and by using equation (2.14) 
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(2.18) 

Now, replace corresponding parameters in (2.16) with the equations (2.17) and (2.18): 

               

2.1.3. Creation of Block Diagram for Controller Synthesis 

In section 2.1.2, the required mathematical models are derived. Using equations (2.1), (2.4) and (2.5) 

one can draw the entire block diagram. To have a block diagram in a system, system should be taken 

as linear, to achieve this; the value of the function   in (2.15) will be taken constant as previously 

mentioned.  

2.1.3.1. External Loads and Disturbances 

The external loads on the system are        and      as torques due to aerodynamic effects and the 

total torques due to dry friction and cogging, respectively. The value of      is found to be as 

        experimentally as previously mentioned in section 2.1.2.1 and equation (2.3). The value 

of        is described from aerodynamic simulations and provided that at the fin side, the maximum 

possible value for total external aerodynamic load is         as a design requirement. Since all of 

the formulations and equations are defined on motor rotary axis (in terms of   ), using the 

linearized value of transmission ratio        , this magnitude can be projected onto motor rotary 

axis. In this manner; 

 
|      |  

      

     
 

|      |           

(2.19) 
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It is assumed that         randomly varies between the values described at (2.19) in a uniform 

manner. The absolute sign here is used to show that, the direction of the external torque also 

changes. 

On top of external torques, the system also has sensor noise as a disturbance entry as previously 

stated in section 2.1.2.2. 

2.1.3.2. System Parameters and Uncertainties 

The linearized model of the system can be obtained using the equations of the system given in (2.1), 

(2.4) and (2.5). Taking Laplace transform of differential equation (2.4) and simple manipulations 

yield the transfer function of the plant from control signal      to system output       as in (2.20). 

     

     
 

  

           
 (2.20) 

In equation (2.20),    is defined with its uncertainty in section 2.1.2.1 using technical documents 

and experiments. Value of     is derived in section 2.1.2.4. The only unknown parameter here is    . 

This parameter cannot be directly defined using mathematical methods and will be found 

experimentally via system identification techniques. 

2.1.3.3. Weighting Functions 

In robust controller design, weighting functions are used to shape the performance and robustness 

characteristics of a closed loop system. With the aid of the weighting functions, the robust control 

problem can be converted into an optimization problem. In this section, the required weighting 

functions and the notations will be introduced. The content and property of the weighting functions 

will be given in controller synthesis chapter in detail. 

In the system studied here, there are 3 disturbance signals introduced in section 2.1.3.1 and 

summarized here:    = external torques due to cogging effect,    = external torques due to 

aerodynamic loads    = disturbances due to sensor noise. Weighted disturbances will be used as 

loop shaping paradigms for robust controllers. 

There is 1 exogenous input other than disturbances, namely     = reference command for fin 

deflection. 

Required performance variables (costs) are    = the difference between the system output   and 

required idealized system behavior and    = the weighted value of controller output. In mixed 

controller design case. An additional    variable is defined to use in mixed       case as cost to 

the control signal in    manner. 

The output of the plant is   = angular position of motor and will be converted to fin deflection   

using transmission ratio   as previously stated. 

To tune the controller such that it meets the design requirements, the parameters should be shaped in 

design space. Following notations will be used for weighting functions. 

     : For reference command signal, related to      

     : For losses due to cogging torque     , related to    

      : For external aerodynamic loads       , related to    

      : For sensor noise, related to    

      : To penalize deviation from ideal closed loop system, related to     

     : To penalize controller output (actuation input to the plant), related to    

      : To penalize controller output (used in mixed controller case)  
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2.1.3.4. Block Diagram  

Using the derived equations and given functions up to here the block diagram of the system is drawn 

and provided in Figure 26. Here, all of the notations other than           that denotes the ideal 

closed loop response characteristics, are previously defined. The figure summarizes the system to be 

controlled. The controller      is shown as shaded and will be synthesized. The dashed lines are 

used to separate the uncertainty blocks. The uncertainty bound for    is previously gotten, the 

uncertainty bound of     will determined after system identification. In this diagram, the reference 

input to system is fin actuation angle in degrees; therefore it is converted to radians using conversion 

factor  
 

   
. 
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2.2. SYSTEM IDENTIFICATION 

System identification is the generation of dynamic system models from experimental data. The 

purpose of identification tests is to excite the plant and to collect relevant information about the 

process dynamics and its disturbances. The process inputs are generally random manipulating 

commands such that as many as possible modes of the dynamic system are stimulated.  

In section 2.1 the mathematical model of the system is derived and it is demonstrated that the system 

is a typical 2
nd

 order system with one integrator (type 1 system). System parameters are defined and 

the available values are provided. Since the system dynamics is known, the system identification 

will be made for a grey box model. The experimental data will be used to estimate the average value 

and uncertainty of    , which is the equivalent viscous damping coefficient of the FAS. Although 

the modeled system is 2
nd

 order, of course the real system has characteristics and modes in larger 

degree of freedom. The effects and influences of unmodeled dynamics will be inevitable in the 

output data of the identification experiments. However, the constraints for controller design states 

that, the closed loop transfer function should behave similar to a second order ideal system 

characteristic with    Hz bandwidth. As will be explained in further part of this section, the 

frequency content of the generated random input signals to the dynamic system can excite the 

system modes until    Hz. Therefore the system model up to    Hz can be obtained using these 

signals. In this manner, the higher frequency modes (    Hz) of the plant can be neglected and this 

lower order model of the system is sufficient to shape the closed control loop.  

2.2.1. Real Time Data  

The reference input and output of FAS is fin deflection angle. However, in this specific set-up the 

output of the system is the position of the motor shaft due to available position of the feedback 

element. Therefore, the inputs for identification are in terms of motor rotation. There are physical 

limits on the mechanical system. The angular rotation is saturated at      for fin deflection due to 

physical constraints. If the inputs to the motor shaft is large, system become saturated at these 

physical points. 

In this system identification experiments, a MATLAB
®
 equipped real time xPC Target

® 
module is 

used as signal generator and data collector. The generated signals are directly match the current 

input of the motor in terms of amperes. The collected output data are the angular position of the 

motor read by the incremental encoder in terms of radians. The all input and corresponding output 

sets are given graphically in APPENDIX A.3. 

2.2.1.1. Designation of Inputs 

The most commonly used signal types in system identification are PRBS (pseudorandom binary 

sequence) and white noise signals. The mean value of the all generated identification signals is tuned 

to be zero. A pseudorandom binary sequence is a signal that shifts between two levels in a certain 

fashion and is a periodic signal. When creating PRBS data as input to the system, the two shifting 

levels (gain of the signal), the period and switching time of the signal should be chosen by user. The 

switching time is the minimal number of sampling intervals after which the sequence is allowed to 

shift [32]. The main advantage of PRBS is that it can easily be generated by digital (discrete) 

systems.  

White noise is a sequence of independent and identically distributed random variables of zero mean. 

Theoretically, the frequency content of white noise signal covers all frequencies with equal power. 

But in real systems, this is impossible due to limited energy. Hence, the band limited white noises 

can only be realized. In this case, the signal contains some frequency components with high 

magnitude within a bandwidth. The main advantage of band limited white noise is that an ideal 

white noise signal makes possible to stimulate all modes of a system within the bandwidth of the 

signal. However, for digital systems there will be some loss in frequency content of the signal due to 

sampling [32]. 
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The PRBS and band limited white noise type inputs are used for excitation of the system. 

Meanwhile the system has saturation at     , some of the inputs induces flatness on the maximum 

or minimum positions of the system output. The mathematical model of the system is assumed to be 

linear and possible saturations annihilate the linearity. Saturation also occurs when the amplitude of 

the input signal is note large enough to overwhelm     . Note that PRBS and white noise input 

signals are created by software tools and the requirements for signal generation are the switch time, 

period and amplitude of the signal. The period of the signals are chosen to be as constant and to 

avoid nonlinearities, switch times and amplitudes of the signals are changed until obtain 

satisfactorily “well” outputs that have no saturation by a trial and error method. Finally 26 datasets 

are generated as input signals and two examples of these signals given in Figure 27 and Figure 28 as 

band limited white noise and PRBS. Using these inputs, the response of the system is saved as 

output for post processes. To see all of the datasets used in system identification, please refer to 

APPENDIX A.3. 

 

Figure 27. An input signal used in system identification as band limited white noise 

 

Figure 28. An input signal used in system identification as PRBS  

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

C
u
rr

e
n
t 

(A
)

Bandlimited White Noise

0 2 4 6 8 10 12 14 16 18 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
u
rr

e
n
t 

(A
)

PRBS

Time (s)



37 

Another motivation in system identification is that the input signals should excite as many possible 

modes as on the frequency response of the system. To get the most precise and correct mathematical 

model, the frequency content of the input data should be large enough to stimulate the frequencies 

larger than the interested region [33]. In Figure 29 the frequency content of the same input data are 

given by using a fast Fourier transform (FFT) algorithm. To see the additional spectrum of the all 

data please refer to APPENDIX A.4. The sampling frequency of the data is 1 kHz. Therefore the 

maximum frequency is limited at 500 Hz. As observed in Figure 29 and APPENDIX A.4, in the 

most of the signals, the amplitude of the frequency content decreases after 20 Hz and the signals also 

have large magnitude on 30-35 Hz.  After this frequency value; the excitement of the plant decreases 

rapidly. Nonetheless characteristic of the system up to 12 Hz is critical for controller design. 

Consequently, the stimulations on these inputs are sufficient to identify the low frequency dynamics 

to design a controller. 

 

Figure 29. Frequency spectrum of inputs in Figure 27 and Figure 28 

2.2.1.2. Evaluation of Outputs 

The individual input signals are supplied to the plant and corresponding outputs in terms of    are 

recorded in time domain. Two samples of these output (to the inputs shown in section 2.2.1.1) data 

are given in Figure 30. As explained in section 2.2.1.1, the inputs are tuned such that there is no 

saturation exists on the plant output. The mathematical model of the plant assumes that the system is 

linear; on the other hand a drift to one side occurs during excitation. This phenomenon can be seen 

in Figure 30. During the post process for system fitting procedure, to eliminate this drift, the mean of 

the data is subtracted from the actual values. Another point in the outputs is that, the data include 

effects of higher frequencies. So the time domain data are filtered before using in system 

identification algorithm by using a low-pass filter with    Hz cutoff frequency, because the 

dynamics of lower frequencies is more important as previously mentioned. 
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Figure 30. Output to inputs in Figure 27 and Figure 28 

2.2.2. Post Processing of Data in Time Domain 

In this section, the system fitting studies in time domain will be summarized. Although the data fed 

into system are produced to describe the frequency response characteristics of the system, the time 

domain processing will be achieved to have some predictions and make a simple first check for the 

goodness of the mathematical model obtained in section 2.1. All of the calculations, estimations and 

analyses are done using MATLAB
®
 r2012a software. 

The first available tool in MATLAB
®
 is the graphical user interface of system identification tool and 

can be run by using ‘ident’ command. However in this tool the algorithm works for previously 

defined grey box model. As described in section 2.1 and the system is a second order system with 

free integrator and the form is given equation (2.20). The most similar model available in 

MATLAB
®
 system identification tool is ‘Process Model’ that has the form given in (2.21).  

 
     

  

         
 (2.21) 

However, here, note that two fitting parameters    and    include the system parameters        and 

    in coupled form as in equation (2.22). Hence, it is not possible to search     directly.  

    
  

   
 and    

   

   
 (2.22) 

2.2.2.1. Time Domain Compatibility Comparison Using Parameter Estimation Method 

The parameter to be defined after system identification is    , however the graphical user interface 

of MATLAB
®
 system identification toolbox does not allow the isolated search for     as indicated 

previously. To overcome the coupling phenomenon that given in equation (2.24); “Parameter 

Estimation” tool of MATLAB
®
 SIMULINK

®
 is used for isolated search of    . The block diagram 

given in Figure 31 is drawn and the available values of          
      

    
and            

    are placed. Then the available experimental inputs and outputs are uploaded to model using 

the graphical user interface (GUI) of “Parameter Estimation” tool. The options for searching 

algorithms are set to their default value. The parameter to be estimated assigned as   and using least 

square error method, the software has found the appropriate values as presented in Table 6. Then 
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using the obtained     values for each individual sets, the outputs of simulation and the measured 

ones are tabulated in Figure 32. Note that the obtained average value for           
     

 
.  

Table 6. Obtained Beq values by parameter estimation in kg.mm/s 

Dataset     

DataY4 263.5 

DataY9 265.5 

Data9 130.1 

Ident5 246.6 

DataY6 268 

Average 234.7 

 

Figure 31. Block diagram in SIMULINK
®

 for parameter estimation 

 

Figure 32. Comparison of parameter estimation results with real outputs 
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similar and parallel to the experimental data, VAF criteria produces a result very near to 100%. 

However this case is not true for other statistical methods, for example normalized mean square 

error method or others. The expression for VAF criterion is given in (2.23) where   is the output of 

the real system (measured) is and    is the output of the model prediction. 

 
         (  

         

      
) (2.23) 

The calculation in equation (2.23) is achieved in MATLAB using the following script: 

VAF= diag(100*(eye(size(Y))-cov(Y-Ymodel)./cov(Y))); 

VAF criterion applied to both function fittings from system identification and parameter estimation. 

The VAF compatibility of the system identification toolbox functions are as follows: The simulated 

outputs of the datasets and functions of Table 6 are given in Figure 32. Note that the simulation 

outputs are very similar to the real outputs such that the VAF values vary between           . 

Although the calculated goodness values of the same function changes for different datasets, some 

of the data creates very compatible results, for example VAF values vary              for 

different     values and this similarity level is very sufficient for controller design. 

To analyze the goodness for the fits of parameter estimation look at Figure 32. Note that some 

simulations yields better results. The corresponding VAF compatibility values of these functions are 

given in Table 7 with consecutive     values in order from right to left and from upper to lower at 

Figure 32. 

Table 7. VAF values of the fittings via parameter estimation 

Dataset     VAF 

DataY4 263.5 94% 

DataY9 265.5 84.4% 

Data9 130.1 57.7% 

Ident5 246.6 94.7% 

DataY6 268 88.2% 

 

VAF calculations in this section are achieved using the MATLAB
®
 scripts provided above. The 

VAF compatibility values changes for different datasets and different functions. If the “quality” of 

the stimulating data is better, the excellence level of the parallel function fitting becomes much 

higher. 

2.2.3. Post Processing of Data in Frequency Domain 

Input to stimulate the system modes are fed into set-up in time domain and corresponding system 

outputs are collected. After that, some system identification methods are applied in time domain. 

According to these results, the system suits well to a second order continuous transfer function. The 

amount of the uncertainty in parameters cannot be obtained appropriately, because it is not possible 

to evaluate all time domain data together since the time domain characteristics of the inputs are 

different.  

One of the bad features of time domain identification is that, the output of the system is very 

dependent to initial conditions, besides the suitable initial conditions of fitting functions are not 

easily be predictable. Therefore, in some cases, even though the trends of both outputs (the modeled 

and measured) are the same, the quality of fitting may be bad due to initial condition differences. 

Another issue in time domain response is that, the simulation results of fitted function do not 

provide direct prudence for frequency response of the real system. But, generally the frequency 

response characteristics of the model is more important. Even if the fitted functions have satisfactory 

VAF values, to verify the quality of the functions especially in compatibility of frequency response, 
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fitting procedure in frequency domain is also necessary. The post processes and verification in 

frequency domain are presented in this section. 

Since there is not any direct frequency domain system identification tool, some algorithms are 

created and carried out by using the built-in functions of  MATLAB
®
. In this manner, all of the time 

domain data converted to frequency domain by using “tfestimate” built-in function of MATLAB
®. 

Using this script, the frequency response characteristics of the all experimental data are obtained 

together and plotted in Figure 33 as Bode diagram. Each colored solid line denotes the output of 

different dataset. 

Note that in Figure 33 all of the outputs show a general behavior and their general trend is the same. 

Another important observation is that, there are indistinguishable and randomized characteristics 

after about     rad/s (    Hz) for all datasets. This case is originated by the nonlinearities and 

higher modes of the system. As explained before, the excitation of the input signals rapidly 

decreases after    Hz (look at the figures of frequency spectrum of inputs in APPENDIX A.4); 

therefore the characteristics obtained at larger frequencies are not guaranteed to belong to real 

dynamic system.  Due to controller performance necessities, examination of the dynamics up to    

Hz will be enough. In the following sections, the identification procedures will be applied to      

Hz frequency range. Hence, these high frequency modes will be neglected, only the linear portion of 

the data will be taken into account. 

 

Figure 33. Frequency characteristics of the experimental outputs 

2.2.3.1. Bode Diagram Fitting with Least Square Error Method 

As seen from Figure 33, the Bode diagram of the experimental data is compatible to a second order 

system with free integrator as given in equation (2.20). Using this model an algorithm developed to 

find the unknown parameter    . The script is based on least square error method and the aim is to 

find the ‘best’ fitting curve in frequency domain data. Since the general trend of the data is known, 

    will be assigned as varying parameter and corresponding ‘best’ value will be recorded for each 
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algorithm finishes, not only the value of     for each dataset but also the limits for the unknown 

parameter will be found. Using this limits and the mean value of parameter, amount of uncertainty is 

determined. 

The scripts for transfer function fittings are created by using “lsqnonlin” built-in command of 

MATLAB
®
 to fit a second order function to experimental data in the form of 

  

     
       

. Firstly the 

frequency response of the initial transfer function is calculated and then changing the value of     

and taking the other parameters as constant, the results are compared until the nonlinear least square 

curve fitting problem is solved. The form of nonlinear curve fitting problem is given in equation 

(2.24). 

    
 

‖    ‖ 
     

 
      

       
        

   (2.24) 

In the algorithm generated here, the      in (2.24) is the frequency response of the estimated 

transfer function. These function fits are shown in Figure 34. Note that, all of the responses can be 

squeezed into a bound. The corresponding     values are listed as in the order of datasets given in 

APPENDIX A.3. 

    {                                                                               

                                                                              } 

 

Figure 34. Fitted transfer function fittings on Bode diagram 

These results will be evaluated at section 2.2.3.3 in quality manner. Corresponding equivalent 
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. The 

mean value is    
           

      

 
. These extremes create a band on the Bode diagram and this 

case is plotted in Figure 35.  
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Figure 35.     limits with frequency responses 

2.2.3.2. Experimental Creation of Bode Diagram 

In section 2.2.3.1, the time domain data are transferred into frequency domain and the Bode diagram 

fitting procedures are applied. The frequency response of the real system can be measured 

experimentally and these results can be used for the confirmation of the system identification told in 

previous sections. On this aim, the real system stimulated by sinusoidal inputs and corresponding 

sinusoidal outputs are saved. One example of these inputs-outputs is given in Figure 36. 

 

Figure 36. The input and corresponding output to find Bode plot of the real system  
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Note that in Figure 36, the output not only have amplitude and phase difference, but also there is 

drift; because of nonlinearity. However one can remove this trend via post process of data. Another 

important observation from the figure is that, there also exists some straightness on top of the 

sinusoidal responses. The reason for this saturation is cogging. Note that at these regions, the value 

of the incoming current is below than       . After the trend in the data is eliminated via post 

processing; the ratios between the amplitude of output and input at each frequency is recorded. Then 

using the same method with section 2.2.3.1, a curve that has the form of second order transfer 

function with free is fitted. The obtained results are shown graphically at Figure 37. 

 

Figure 37. Experimental frequency response data and fitted curve 

The slope of the fitted function starts from               and after a corner frequency the decay 

rate skips to              . This is the typical characteristics of 2
nd

 order type 1 continuous time 

system. This algorithm finds the best fitted function as (by taking                as constant): 

 
        

     

            
 (2.25) 

Goodness of this fit can be checked and this yields         . Note that the curve shown in 

Figure 37 is included by the interval shown on Figure 35. By this way, these identification models 

have become confirmed experimentally. 

2.2.3.3. Checking the “Goodness” of the Results Using VAF Method 

Inside the frequency domain system identification algorithm, after the end of frequency domain 

fitting, the goodness’ of the fits are also checked via calculation of VAF value of each individual fit. 

The detailed view of one data sample is presented in Figure 38. 
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Figure 38. Detailed view of a frequency domain curve fit 

The fitted continuous time transfer functions whose Bode diagram that shown in Figure 34 yields 

the following VAF values with the same order of the datasets given in APPENDIX A.3.This list is 

visualized on Figure 39. One can easily observe that the fittings are very good such that all of the 

compatibility values are larger than     and even larger than     except three datasets. The 

goodness values are consistent for different datasets in frequency domain. In the next section, the 

quality of these transfer function fittings will be tested in time domain by comparing the simulation 

outputs with the experimental ones. 

    {                                                                                 
                                                 } 

 

Figure 39. Overall view of goodness of fits 
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To measure the time domain performance of the fittings in frequency domain, the outputs of these 

models are compared with the real outputs. Each dataset simulated individually by using transfer 

functions have the form given in equation (2.26) with their corresponding     values of section 

2.2.3.1. The simulations are done by the help of built-in MATLAB function “lsim”.  
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 (2.26) 

One example of these simulations is provided in Figure 40. Here           
     

 
 and 

corresponding time domain VAF compatibility is found as 93.9%. This means that the frequency 

content of the input signal is good such that it can excite the distant modes of the system.  

 

Figure 40. Time domain comparison between real and estimated models 

Time domain simulation is done for all datasets. The corresponding results are plotted together with 

the real time domain outputs and provided in APPENDIX 0. Individual VAF quality is obtained by 

comparing simulated and experimental time domain outputs and displayed on every plot. According 

to these results, the datasets 3,13,16,18,19,20,21,22,23 and 25 show VAF compatibility larger than 

70% also in time domain. If the Fourier characteristics of these inputs are examined (see 

APPENDIX A.4.), one can see that these inputs can excite wider frequency range because they have 

larger magnitudes on frequency contents. These signals emphasized by light green color in plots of 

APPENDIX A.4. 

In the lights of these observations, one can claim that the applied system identification is successful 

and the unknown parameter     is defined.  

2.2.4. Estimating the Uncertainty of the System Parameters 

During section 2.2, the system identification to determine one unknown     which denotes the 

equivalent viscous friction and cannot be directly specified by experimental methods, is 

accomplished both in time and frequency domain. Finally the founded value for     can be 

summarized as    
           

     

 
 and                 . Reason for this uncertainty is 

that, the equivalent viscous friction can change according to environmental conditions, working 

duration of the real system, lubrication conditions etc. Therefore to have a satisfactory closed loop 

performance, this uncertainty can be regarded in controller synthesis. Using the given values of    , 
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the amount of uncertainty can be obtained as           and the calculation is given in equation 

(2.27). 

 
         

   (                            )

     
 

                       
     

 
 

(2.27) 

Another uncertain parameter in the system is the torque constant of DC motor   . This value can 

change according to load conditions and environmental issues. To identify the uncertainty of this 

parameter, all of the system identification in this chapter repeated by using two unknown parameters 

   and    . However, the fitting functions yielded worse performance than one parameter case 

according to VAF compatibility measure. Therefore the default value of    is not make changed; 

and used as told in section 2.1.2.1. Then the value of torque coefficient is repeated in equation (2.28) 

to finalize the system identification.  

 
                   

      

    
 (2.28) 
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  CHAPTER 3.

SYNTHESIS OF ROBUST CONTROLLERS  

3.1. REQUIREMENTS FOR THE CLOSED LOOP SYSTEM 

In the previous chapter, the linear system model for the plant has been obtained and the 

corresponding controller design structure has been built. This block diagram is given in Figure 26. 

As explained in the previous chapter, the system parameters have uncertainties and there are external 

disturbances as aerodynamic loads and sensor noise to the system. Apart from the modeling errors, 

(recall that the system modeled up to 30 Hz) system has some nonlinearity. In this system, there are 

three sources for nonlinear behaviors. The first one is the saturation limit on the physical system, the 

fin deflection angle cannot be larger than          Second nonlinearity source is that, the current 

input to the system cannot be larger than       which causes a saturation on the control signal. The 

final source is the previously mentioned cogging phenomenon. In the start of the motion from the 

zero speed, in the actuator the cogging torque              induces. This torque is always 

opposed to the motion regardless of the direction. Another important characteristic about the system 

is the limit on the angular speed. Due to capacity of the actuator, the system cannot reach to higher 

angular speed than        at the fin shaft | ̇|         . All of these conditions will be taken into 

account in controller design to define the required weighting functions.  

The plant is well defined up to this point. Now, the robust controller design procedure will be 

handled. The first step in the controller design procedure is to define the expected closed loop 

behavior of the system. It is desired that the low frequency response of the closed loop system at 

should be similar to an ideal transfer function given in equation (3.1) where          and 

       . The Bode plot of the ideal system is given in Figure 41. Additionally, the characteristics 

of the closed loop (while exposed to disturbances and uncertainties) should satisfy the conditions 

given in Table 8. Another important factor to be considered in the control design of a fin actuation is 

the minimization of control effort, because in an ammunition there is limited power supply and the 

total energy consumed by the plant is critical.  

 
          

  
 

           
 
 (3.1) 

Using these criteria the weighting functions and performance variables will be defined to use in 

controller synthesis. 

Table 8. Performance requirements for the closed loop system 

Maximum percent 

over shoot  
  % 

Settling Time  0.06 seconds 

Bandwidth for     
amplitude signal (due 

to speed restriction of 

the actuator) 

      
            

Steady state error       
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Figure 41. Bode diagram of the ideal closed loop system 

3.1.1. Motivation to H2/ H∞ Mixed Control for Fin Actuation Systems 

The main advantage of the        mixed controller is that, one can use distinct methods for 

optimization of distinct performance parameters. As mentioned in literature survey section of this 

text (section 1.4), to satisfy robustness and disturbance rejection, the performance variables related 

with the measured output should be penalized according to    criterion. Similarly to minimize the 

total energy of the performance parameters,    criterion can be used. Generally    performance is 

convenient to enforce robustness to model uncertainty. Recall that, according to small gain theorem 

(given at section 1.3.2.4) the system is stable for all uncertainties which satisfy the norm bound 

‖ ‖    if an only if the nominal closed loop transfer function   is stable and ‖ ‖   .  

   control is also useful to express frequency domain specifications such as bandwidth and low 

frequency gain. Additionally, some tracking performance can be best captured by    technique.    

criterion is useful to express noise insensitivity and energy optimization [35]. The performance and 

robustness requirements are described in previous section. Thanks to        mixed design 

methods, this multiobjective optimization problem becomes solvable. 

3.1.2. Selection of Weighting Functions 

The weighting functions are frequency dependent transfer functions to use the shape of the closed 

loop transfer functions in robust controller synthesis. These weightings should be tuned such that the 

feedback control system should be stable and additionally exhibit good command following, 

disturbance rejection, sensor noise attenuation, control sensitivity minimization and robustness to 

modeling errors. To achieve these statements, previously mentioned loop transfer function L and 

sensitivity function S (please refer to section 1.3.2.3) of the feedback system must have the 

predefined typical shapes in frequency response as given in Figure 42 and Figure 43 [6].  
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Figure 42. Typical shape of sensitivity function S [6] 

 

Figure 43. Typical shape of loop transfer function L [6] 

There is not any straight forward method to define the weighting functions. However, there are some 

rule of thumbs and these methods are available in literature (for examples [6] [5] [13] [36] [37]). 

One of the factors regarded in the weighting function tuning is the properties of the plant and the 

expected behavior of the closed loop system.  

Consider a generalized plant model at Figure 3. The controller synthesis block diagram of this thesis 

is given in Figure 26  can be projected into this generalized block diagram. The input and outputs of 

the system can be seen in Figure 44. The details of the variables are given in section 2.1.3.4. In 

robust controller design, all of the input and outputs of generalized plant are scaled to unity such that 

the robust controller K is calculated and optimized by regarding the inputs and outputs are unity 

[13]. By using this fact, the weighting functions at the input side should be shaped as the scaling up 
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and the output weightings (called as also‘cost functions’) should be shaped as the scaling down to 

penalize their inputs. Apart from this, the    controller search algorithm minimizes the RMS of the 

input and output signals in consistent with the weightings. Therefore the desired magnitudes of the 

frequency response of the weightings are also scaled down by a factor of √ . In the following 

section, the weighting functions will be given. The order of the synthesized robust controller 

      and        will be equal to total degree of each function used in design. 

 

Figure 44. The plant in generalized plant notation 

3.1.2.1. Weighting Function for Reference Signal Wref 

The reference command signal to the feedback system has a shape in frequency domain. According 

to the system requirements, the absolute value of system input      will be maximum     in static 

condition        and will be         at      . Using the previously stated RMS factor, the 

magnitude vs. frequency characteristics of the input signal is generated and stated in Figure 45. Note 

that the y-axis of the plot is the absolute magnitude and the unit is radians (not dB). The 0 Hz value 

is equal to  
    

    √ 
       . The weighting function selected to be as first order (to keep the order of 

the controller minimum) and defined in equation (3.2). The function is obtained using frequency 

response fitting built-in function ‘magshape’ of MATLAB
®
.   

 
        

                 

       
 (3.2) 

This function is related to the exogenous input     . 
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Figure 45. Magnitude plot of weighting function Wref(s) in frequency domain 

3.1.2.2. Weighting Function for Cogging Torque Wcog  

The cogging torque is changing its direction but its magnitude is constant and              as 

previously obtained in equation (2.3). During modeling, the unit for mass is kg, for angle rad, for 

current A and for length is mm. So,                
      

  
. Hence               is 

defined as weighting function. This function is related to exogenous input   .  

3.1.2.3. Weighting Function for Aerodynamic Loads  Waero  

The aerodynamic load on the system is the hinge moment        and changes its magnitude and 

direction during the flight. However, to be on the safe side and satisfy the required robustness, the 

load will be assumed to be constant through all frequencies and has its maximum value during the 

flight. This value is calculated in section 2.1.3.1 and given in equation (2.19) as |      |        

  . Hence,                 is defined. This function is related to disturbance   . 

3.1.2.4. Weighting Function for Sensor Noise Wsens 

As mentioned in section 2.1.2.2, there may be noise in sensor, and this may cause to fault in the 

position data. The margin for this error in angular position measurement is 
   

    
 rad. Hence, 

         
   

    
 is defined. 

3.1.2.5. Penalty for Deviation from Ideal System Wperf 

Cost functions are used to penalize the system outputs to obtain required performance in closed loop 

system. In literature, generally error, the difference between the measured output and reference 

signal is penalized. This yields a bit more conservative result, because in this case the transfer 

function between the reference and the output is forced to be unity. Since, the desired closed loop 
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system behavior is a second order function with    Hz bandwidth, optimization of deviation from 

this characteristic is more important. In this manner, the penalizing cost function is shaped as a 

transfer function that has higher gain at low frequencies and very low gain at negligible high 

frequencies. The function is obtained as a first order transfer function and given in equation (3.3) . 

Magnitude of the frequency response curve of the function is given in Figure 46. Note that the y-axis 

of the plot is the absolute magnitude (not dB). Here, the corner frequencies and the static gain values 

dominantly affect the shape of the sensitivity function of feedback system. The final values obtained 

after many trial and error methods. The effects of weighting functions to performance and 

robustness of the controller will be discussed in the last chapter of this text. 

 
         

           

        
 (3.3) 

This function is related to the performance variable   . 

 

Figure 46. Magnitude plot of cost function Wperf(s) in frequency domain 

3.1.2.6. Penalty for Controller Output Wact (for Pure H2  and H∞ Case) 

As mentioned in section 3.1, the controller signal must be limited, such that its magnitude must be 

lower than     . Since    algorithm minimizes the RMS value of the cost function, the penalty 

function for the controller signal is defined as constant at all frequencies         
√ 

  
. The inverse 

of the penalty function determines the allowed RMS gain for the control signal.  Output of this 

function defines the performance index   . In mixed controller design, this performance index is fed 

into    norm. 
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3.1.2.7. Penalty for Controller Output Wact2  (for Mixed H2/H∞ Case) 

The advantages of        mixed controller are previously discussed in section 1.4. The control 

system will be used in a mobile platform and the available energy for control effort is restricted. 

Therefore, the total energy of the control signal should be minimized. Although limiting of the 

maximum controller signal value also decreases the total energy, in mixed controller case an 

additional penalizing function can be defined. Using this function, it is possible to shape the control 

signal in frequency domain. In this manner, the allowable limits for current are defined to be low at 

more current demanding high frequencies and as three times higher in the unimportant low 

frequency region. The limiting value at high frequency is the same with      of section 3.1.2.6. 

These limits are shaped in frequency response and given in Figure 47. The reciprocal of this shape 

yields the desired weighting function and this transfer function is given in equation (3.4).  

 
         

             

      
 (3.4) 

 

Figure 47. Inverse of Wact2(s) weighting function 

Output of this function defines the performance index    and this weighting is used only in        
mixed controller design to minimize the required energy. This performance index is fed into    

norm.  

3.1.3. Creation of Generalized Plant 

The interconnections of the controller design scheme are given in Figure 26. After the determination 

of weighting functions in section 3.1.2, the generalized plant matrix   can be defined using 

MATLAB
®
 built-in function ‘sysic’. Meanwhile in mixed       condition an additional weighting 

function will be used, two generalized plant matrices are created. The outputs of the ‘sysic’ 
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command are given at APPENDIX A.1 in the form of generalized plant. The state space matrices of 

the generalized plant      in the case of pure    and    control problem are given below with 

corresponding variables. There are 6 state space variables which determine the order of the 

generalized plant and equal to degree of the all weightings. 

  = 

             

              

               

             

                              

         

                           

  

 

     

            

       

                         

       

             

       

       

  

 
 

     

             

            
                         
        
               

  

 

       

            

      
       
            
                 

  

Note that these matrices satisfy the necessary conditions for the solvability of corresponding    and 

   robust controller problems given in section 1.3.3.1and 1.3.3.2. 

In       mixed controller design step, since an additional weighting function is defined from first 

order, the corresponding transfer functions are changed. Therefore the updated state space matrices 

of the generalized plant for mixed robust controller synthesis are given below with corresponding 

variables. There are 7 state space variables which determine the order of the generalized plant and 

equal to degree of the all weightings. Note that due to weighting         , now the order of the 

plant is one time higher. 
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To compare and simulate the controller responses, the overall plant with nonlinearities is modeled 

using SIMULINK
®
 to tune the weightings used in the controller synthesis. According to the 

simulation results, weightings are updated and the controllers are revised. This procedure ended 

when the performance of the controller become satisfactory. The simulation block diagram used in 

the software is shown in Figure 49. The subsystems are expanded in Figure 48 and Figure 50. Here 

the response of the closed loop under the effect of uncertainties is compared with the ideal system 

response in time domain. The applied external torque to system is fed to plant as constant and hold 

at its maximum during the simulation. Also an artificial sensor noise is generated as a random binary 

signal. 

 

Figure 48. Subsystem to simulate the mechanism and calculation of gear ratio N  
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Figure 49. Outermost block diagram used in simulation 

 

Figure 50. Expansion of subsystem in Figure 49, the fin actuation system plant  

3.2. SYNTHESIS OF PURE ROBUST CONTROLLERS 

When the generalized plant matrices are obtained, the controller design achieved using built-in 

functions of MATLAB
®
. To be able design a robust controller, the plant matrix should be constant 

and cannot include any uncertain parameter. The plant uncertainties are examined after the design of 

controller. 

3.2.1. H∞ Controller Synthesis 

Using built-in command ‘hinfsyn’, the corresponding    robust controller has been synthesized. 

Actually there is not a straightforward method to find the ‘best’ controller and optimization of 

controller is another research topic. The selection of the parameters on the weighting functions is 
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critical and affects the performance of the closed loop system. In this study, the weightings are not 

optimized and it is possible to obtain a controller that yields better performance and robustness. This 

condition will be evaluated on the final chapter of this text. Here, using the defined weightings, a 

stabilizing and robust controller is obtained by using Riccati equation method via the built-in 

command ‘hinfsyn’.  

[Kinf,CLinf,GAM,INFO]= hinfsyn(Pfas,1,1,'METHOD','ric','DISPLAY','on'); 

The obtained    controller in continuous time domain is given in equation (3.5). 

       

 
                                                                      

                                                                        
 
(3.5) 

Corresponding    norm for the closed loop system is            Note that this value is lower 

than 1, according to small gain theorem the closed loop system robustly stable to uncertainties and 

disturbances that has defined via weighting functions.  

Since the controller is obtained, now someone can check the ‘quality’ of the controller effort. Recall 

that, after some mathematical modeling effort the transfer function of the plant is obtained as given 

in equation (3.6) with                  with     uncertainty and           with     

uncertainty. 

 
     

  

           
 (3.6) 

To evaluate robust characteristics and robust performance of the feedback system, singular values 

and characteristics of the open loop gain        , sensitivity function     
 

    
 and closed 

loop transfer function    
  

    
 can be checked, where   is the nominal transfer function of the 

plant given in equation (3.6). The singular values of    and    are given in Figure 52 and Figure 

51. Note that the general shapes of these plots are well-matched with the typical functions that 

shown in Figure 42 and Figure 43. However, in both of the functions there is a peak at frequency    

rad/s. This means that, a disturbance near to this frequency region can have dramatic effects at the 

closed response of the system.  

 

Figure 51. Singular value plot of the sensitivity function in H∞ controlled case without uncertainty  
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Figure 52. Singular value plot of the open loop gain in    controlled case without uncertainty 

Recall that the expected bandwidth of the closed loop system is should be at least    Hz. This 

performance can be observed by looking Bode magnitude plot of   . As shown in Figure 53, the 

bandwidth of the feedback system is      Hz and this confirms that the required performance is 

satisfied. Another important observation from this figure is that, the closed loop behavior of the 

system is very similar to a typical second order system and this was the aim at the beginning of the 

design.  

 

Figure 53. Bode plot of the closed loop response and corresponding bandwidth   
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The robustness and performance of the nominal plant is assessed for    controlled system until 

here. However, the system has parameter uncertainties and the effects of the variation of parameters 

should also be considered. The uncertainties are defined by using ‘ureal’ command. The effect of 

the parameter uncertainty to the robustness characteristics can be seen in Figure 54. As seen from 

the figure, higher frequency dynamics are not affected by the uncertainties. The uncertainties are 

dominant on lower frequency response of the feedback system but these effects are not dramatic, the 

singular values change only     . 

 

Figure 54. Effect of uncertainty to singular value plots 

As a final analyze on the performance of the controller, the time domain characteristics of the plant 

with uncertainties can be checked to compare the results with the restrictions given in Table 8 by 

using the step response of the feedback system. By looking at Figure 55, it can be seen that settling 

time is about 0.11 seconds and the maximum percent over shoot is larger than 25%. In this manner 

the controller looks not to be good. On the contrary, the steady state error is minimized and near to 

0. 

 

Figure 55. Step response of the closed loop system including parameter uncertainties  
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3.2.1.1. Simulation Results 

The robustness of the controller is validated by using available analytical tools. Now, by using 

simulations; the effect of disturbances, especially the effect of aerodynamic loads, can be seen. Also 

it is possible to examine the changes in the control signal and the response of the closed loop system 

to different reference signals that has diverse magnitude and frequencies. Remember that the 

minimization of the control effort is also a consideration in the controller design problem. The 

simulations are achieved using the block diagrams given in section 3.1.3.  

The simulation result of the controlled plant with        external torque and the previously 

mentioned sensor noise is given in Figure 56. Note that the reference step signal is shaped as a ramp. 

Because the fin actuation system cannot move faster than        and this is simulated by the ‘Rate 

Limiter’ block (see Figure 49). As seen from the figure, the closed loop system can successfully 

follow the reference signal which also includes a   Hz sine. The external aerodynamic load is 

applied at       until            These effect can be observed from the deviations at       and  
       sec. In Figure 57 the most critical section of the response is zoomed. Here there is an 

overshoot less than         which is much less than theoretical step response that given in Figure 

55. Actually the reference signal here is ramp not an ideal step and the external load applied to the 

system decreases the amplitude of the overshoot. Also note that there exists a low frequency 

oscillation around the steady state value. The reason of this phenomenon is the cogging torque that 

described in section 2.1.3.2.  

The characteristics of the control signal can be observed from Figure 58. Note that the control signal 

reaches to its maximum as      at       where the torque is opposite to direction of fin deflection. 

Note that the maximum value is smaller than      as desired.  

The simulated response of the feedback system to    Hz sinusoidal signal with amplitude     is 
shown in Figure 59. The simulation achieved under the effect of external torque disturbance and 

sensor noise. Note that the feedback system performs well to follow the high frequency reference 

signal. 

 

Figure 56. Simulation response of the feedback system under external 40 N.m disturbance  
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Figure 57. Zooming of Figure 56 

 

Figure 58. Command generated by the H∞ controller 
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Figure 59. Simulated response of    controlled plant to 12 Hz sinusoidal reference signal 

3.2.2. H2 Controller Synthesis 

In previous section    controller is designed. To compare the performance and robustness 

characteristics, an    controller is also defined by using the same weightings and generalized plant 

off section 3.2.1. The controller is designed by using MATLAB
®
 command ‘h2syn’. 

[K2,CL2,GAM2,INFO2] = h2syn(Pfas,1,1); 

The obtained    controller in continuous time domain is given in equation (3.7) 

       
                                                                      

                                                                         
 (3.7) 

Corresponding minimized    norm of the closed loop system is         

To evaluate robust characteristics and robust performance of the feedback system, singular values 

and characteristics of the open loop gain        , sensitivity function    
 

    
 and closed loop 

transfer function    
  

    
 can be checked, where   is the nominal transfer function of the plant 

given in equation (3.6). The singular values of    and    are given in Figure 60 and Figure 61. Note 

that the general shapes of these plots are well-matched with the typical functions that shown in  

Figure 42 and Figure 43. At a first glance, the clearest difference from    case is that the peaks in 

the plot are removed. 
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Figure 60. Singular value plot of the sensitivity function in    controlled case without uncertainty 

 

Figure 61. Singular value plot of the open loop gain in    controlled case without uncertainty 
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Figure 62. Bode plot of the closed loop response and corresponding bandwidth 

Robustness to uncertainties can be evaluated over Figure 63 . Similar to    case, higher frequency 

dynamics are not affected by the uncertainties. The uncertainties are dominant on lower frequency 

response of the feedback system but these effects are not dramatic, the singular values change 

only    . 

 

Figure 63. Effect of uncertainty to singular value plots  
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Analysis in time domain can be achieved via the step response of the feedback system with 

parameter uncertainties. By looking at Figure 64, it can be seen that settling time is about 0.18 

seconds which is larger than    curve and the maximum percent over shoot is larger than 35%. In 

this manner, this controller is even worse than the predesigned     controller. Similar to     case, 

the steady state error is minimized and near to 0. 

 

Figure 64. Step response of the closed loop system including parameter uncertainties 

3.2.2.1. Simulation Results 

Using the same conditions of section 3.2.1.1,    controlled system is simulated. The simulated 

response to the same reference signal is given in Figure 65. As seen from the figure, although the 

closed loop system can successfully follow the reference signal the performance is worse than    

case. In Figure 66, the most critical section of the response is zoomed. Here there is an over shoot 

more than          which is much higher than    controlled case. The effect of cogging can 

also be seen in this figure. Note that the amplitudes of oscillations are much higher than the previous 

controller. 

According to response outputs, one can easily claim that    controller is worse than    case. 

Therefore the use of    is not a good choice in performance manner. Although this comment is true, 

the main advantage of the    method is that; it minimizes the energy of the control signal. To 

observe this, the current drained from the source and fed into plant by controller is plotted on Figure 

67. The maximum value of the current is smaller than     and the peaks on the current are removed. 

Also note that the control signal is smoother than    case. 

The simulated response of the feedback system to       sinusoidal signal with amplitude     is 

shown in Figure 68. Here the feedback system cannot track the high frequency reference signal, 

because the bandwidth of the system is low as shown in Figure 62. 
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Figure 65. Simulation response of the feedback system under external 40 N.m disturbance 

 

Figure 66. Zooming of Figure 65 

 

Figure 67. Command generated by the    controller  
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Figure 68. Simulated response of    controlled plant to 12 Hz sinusoidal reference signal 

3.3. H2/H∞ MIXED CONTROLLER SYNTHESIS 

In section 3.2, pure    and    controller are designed. According to simulations,    controller is 

good at performance and robustness,    controller is good at minimizing the consumed energy for 

control effort. By synthesizing        mixed controller, one can combine the best properties of 

these two methods. In this context, using an additional weight          and defining the generalized 

plant, the mixed controller can be designed by using built-in function ‘h2hinfsyn’.  

For problem definition of       mixed control, please refer to equation (1.16). To have a stable 

and robust closed loop characteristics,    norm of the mixed controller should be less than  , i.e. 

    . The tradeoff criteria       and       are selected. It is possible assign different values 

for these factors. These parameters define the ‘mixing ratio’ of two controllers. The sum of the ratios 

are not to be       . If this sum differ from  , the algorithm scales the factors to  . Similar to 

selection of weightings, the relevant values were not achieved immediately. Initially they assigned 

as       and further configured during the controller design process by the help of examination 

of simulations and analysis. 

The mixed controller is generated by using the following command: 

h2hinfsyn(MIXP,1,1,1,[0.1 0.9],'Display','On','DKMAX',0,'HINFMAX',0.99) 

Here to obtain a strictly proper controller, option ‘DKMAX’ assigned to zero. Maximum allowable 

value for    norm of the closed loop system is defined as      . The obtained    controller in 

continuous time domain is given in equation     (3.8). Note that the order of the controller is one 

times greater than the previous controllers due to additional order of         . 

         
                                                                                   

                                                                                       
     (3.8) 

The characteristics of this controller will be evaluated at section 4.1 by comparing its robustness and 

performance characteristics with previously generated controllers. Corresponding minimized    

norm of the closed loop system is      which is higher than pure    case. Since the solution 

restricted to obtain          , the reached    norm of the closed loop system is     .If this value 

is less than   , system is robust and it should be near to   to guarantee performance.  
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The features of mixed controller will be given in the final chapter of this text by comparing with the 

previously obtained controllers. The step response of the controlled system with uncertainty is given 

in Figure 69. As seen from the figure, in the worst case, the maximum percent overshoot value is 

less than    and the settling time is      s. Here the settling time value is better than    case and 

the maximum over shoot value is the best of all. 

 

Figure 69. Step response of the closed loop system including parameter uncertainties 
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  CHAPTER 4.

DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

A lot of control methods are available at the present time. In this work, the objective is to compare 

the mixed        type controllers with pure    and    type controllers and confirming the 

theoretical results on a physical system. To design a controller, after the identification of system is 

accomplished, first the requirements of the feedback system are defined. Then three different types 

of robust controllers are synthesized using the same weighting functions. Although the experiments 

show that none of the designed controllers can exactly meet the initial performance specifications; 

the performance of mixed        type controller shows the best performance in the manner of both 

minimization of the energy of the control signal and tracking of the reference signal under 

disturbances. This case is attained from the discussions presented in the following section.  

4.1. COMPARISON OF THE CONTROLLERS 

4.1.1. Comparison via Analytical Methods 

Generated    and    controllers are discussed in section 3.2. In this part the performance and 

robustness properties of the simple controllers are compared with the       mixed controller using 

the available analysis methods. The responses are also compared by the ideal second order system 

determined in equation (3.1).  

The nominal sensitivity functions of three different systems are given in Figure 70. It is obvious that 

the       mixed controlled plant has a sensitivity function behavior that passes through between 

   and   controlled systems and obviously satisfies the required robustness shape that given in 

Figure 42. 

 

Figure 70. Comparison of sensitivity functions  
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The open loop characteristics are compared on Figure 71. As seen from the figure, the characteristic 

of the       mixed controlled plant is similar to    control in low frequency region and similar to 

   control in high frequency region. This property makes possible to remove the peaks that appear 

on    control case. Since the higher frequency region is very similar to    case, the robustness of 

the mixed controller to sensor noise and unmodeled dynamics is better than    case.  

 

Figure 71. Comparison of open loop transfer functions 

The singular value plots of the three different controllers are given in Figure 72. Note that, the 

      mixed controller converges to    at low frequency and to    at high frequency region.  

 

Figure 72. Comparison of controllers  
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To evaluate the effect of uncertainties, singular value plot of uncertain closed loop transfer functions 

(i.e. complementary sensitivity functions) are plotted in Figure 73. If the singular value is less than 

 , the system is robustly stable (bounded input to system generates bounded output). Although there 

are some regions where the singular value are larger than  , according to the figure,       mixed 

type controller has the best robustness property among of all controllers covered. Because in the 

other type of controllers, the areas where singular value are higher than   is wider. Also the hump 

over to value   reaches much higher values in    and    case. Generally, in a closed loop system 

response, if the singular value is away from  , the tracking performance of the system decreases.  

 

Figure 73. Comparison of complementary singular values 

In Figure 74, the Bode plot of closed loop transfer functions are given together with the ideal 

function. Note that the bandwidth of the       mixed controller is      Hz and larger than the 

previous controllers. 

To evaluate the time domain performance of the systems, the step response of the nominal plants are 

plotted together and given in Figure 75. It is obvious that, all of the robust controlled systems are 

faster than ideal system in rise time manner. All of the closed loop systems have zero steady state 

error. The least overshoot occurs in       mixed controller case and the amount of overshoot is 
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Figure 74. Bode plot of closed loop transfer functions with corresponding bandwidth  

 

Figure 75. Comparative step response characteristics 

According to the requirements given in section 3.1, the closed loop system should be able to follow 

    sinusoidal reference signal at      . This case is tested using uncertain transfer functions and 

the results are provided in Figure 76. As seen from the figure, the requirement is best achieved by 

mixed controller. In       mixed controller case, the uncertainties in the plant causes less 

deviations from the nominal plant relative to other type of controllers. 
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Figure 76. Frequency response comparison 

Until this point, the characteristics that can be shown by graphics are analyzed. As a final step, the 

comparisons related to numerical values are considered. The poles of the nominal closed loop 

transfer functions are listed below. All of the poles have negative real parts, therefore the systems 

are stable. The most dominant poles (the pole nearest to imaginary axis) determine the relative 

stability of the systems. Hence,       controlled system has the best dominant pole characteristics. 

Another observation from the poles is that, although the locations of farthermost poles are different, 

the lower order dynamics of the different systems are similar, because the locations of the poles with 

smaller real values are near. 

    {                                                           } 
    {                                                         } 

     {                                                                 } 

The robust stability of the uncertain closed loop systems can be checked via the built-in function 

‘robuststab’ of MATLAB
® 

. The function can be run using the following script. 

[stabmarg,destabunc,Report] = robuststab(sys) 

The function returns the structure ‘stabmarg’ with the fields given in Table 9. 

Table 9. Stabmarg fields descriptions 

Field Description 

LowerBound Lower bound on stability margin, positive scalar. If greater than 1, then 

the uncertain system is guaranteed stable for all values of the modeled 

uncertainty. If the nominal value of the uncertain system is unstable, 

then stabmarg.UpperBound and stabmarg.LowerBound both  are equal 

to 0. 

UpperBound Upper bound on stability margin, positive scalar. If less than 1, the 

uncertain system is not stable for all values of the modeled uncertainty. 

DestabilizingFrequency The critical value of frequency at which instability occurs, with 

uncertain elements closest to their nominal values. At a particular 

value of uncertain elements (see destabunc below), the poles migrate 

across the stability boundary (imaginary-axis in continuous-time 

systems, unit-disk in discrete-time systems) at the frequency given by 

DestabilizingFrequency. 
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If the robust stability margin exceeds  , the uncertain system is stable for all values of its model 

uncertainty [38]. The returned parameter ‘report’ describes the output of the script as text.  

For these three different cases, the obtained results on the ‘stabmarg’ are the same except numerical 

differences at the order of     . The function generates that: 

LowerBound: 3.644 

UpperBound: 3.644 

DestabilizingFrequency: 0 rad/s 

 

The lower and upper bounds here states that the closed loop system can tolerate up to 364.4% of the 

modeled uncertainty. The destabilizing combination occurs near to 0 rad/s. Here, stability robustness 

margins are greater than  , therefore the uncertain system is robustly stable to modeled uncertainty.  

Although the stability robustness margins are the same for three different cases, the sensitivities with 

respect to uncertain elements are different. The output argument ‘report’ gives the following results:  

 The sensitivity of    controlled plant with respect to uncertain element     is      

and    is       This means increasing     by     leads to a     decrease in the margin 

and increasing    by     leads to     decrease in the margin. 

 The sensitivity of    controlled plant with respect to uncertain element     is      and    

is      This means increasing     by     leads to a     decrease in the margin and 

increasing    do not lead to any change in the margin. 

 The sensitivity of       controlled plant with respect to uncertain element     is      

and    is       This means increasing     by     leads to a     decrease in the margin 

and increasing    by     leads to     decrease in the margin. This characteristic is the 

same with   . 

The results obtained in this part shows that, the       mixed robust controller can perform better 

than pure controllers and it is also robust to defined uncertainties at least as    controller. The 

performance and robustness of the controllers under the disturbances and external effects will be 

analyzed by using simulations in the next section.  

4.1.2. Comparison via Simulation Results 

There are available tools to analyze the disturbance rejection and noise suppression characteristics of 

the closed loop systems. However, since the simulation of model is built, the effects of the external 

disturbances can be checked by using this more easily. Using the simulation model and conditions 

covered in previous chapters, the response of three different feedback systems are drawn together in 

Figure 77. Due to the frequency responses characteristics can be separated well at higher order 

frequencies, the reference command includes a sine signal with     at    Hz.  

At a first glance to Figure 77, one can obviously see that the amount of maximum overshoot is the 

lowest in       mixed controller case. The detailed view of the response to     rise is shown on 

Figure 78 and it is clear that the overshoot of the mixed controller is lower and rise times are almost 

the same. In Figure 79, response to    Hz sinusoidal input is zoomed. As seen in the plot, the 

performance of    controller is better than others and       mixed controller shows better 

performance than    controller. 
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Figure 77. Simulated response of closed loop systems. 

 

Figure 78. Detailed view of responses to ramp input 

 

Figure 79. Detailed view to sinusoidal input  
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4.1.3. Experimental Results 

Up to this point the synthesized controllers are analyzed and calculations have been achieved. The 

generated controller matrices are discretized using ‘zero order hold’ method and uploaded to a real 

time experimental system using MATLAB
®
 xPC Target module. There is an active controlled 

torque applying system connected onto fin shaft as an experimental set-up. This experimental set-up 

can be seen on the figure at APPENDIX A.6. Using this torque generating system, a constant 

       load is applied in positive direction and the performances of the controllers are tested. Two 

types of reference commands are fed into system. The fırst type of signal includes a high 

amplitude        sine with   Hz frequency and second one includes a high frequency (   Hz) with 

    amplitude.  

The responses of the real system for three different types of controllers are plotted together in  

Figure 80 and Figure 82. The most critical sections of the responses are zoomed to show details in 

Figure 81 and Figure 83. In the light of these experiments, one can claim that, the       mixed 

type controller has the best tracking performance among of all. Because, as seen from Figure 81, the 

      mixed type controller has the least overshoot value. Another important observation from the 

same figure is that,    controller has got a steady state error however the others have not. In Figure 

80, it can be seen that all of the controllers can follow the sinusoidal input at   Hz. However,    

controller yields some overshoots. To see the overshoots and prevent saturations on positions, the 

geometric limits on the mechanism are removed, during the experiments. So, the fin deflection 

capability is higher than     . 

 

Figure 80. Command tracking performance of real system  

In Figure 82, responses to a reference signal that has    Hz sinusoidal components are shown. The 

detailed view on Figure 83 shows that, all of the controllers are unsuccessful at the following of a 

fast sine. The    controlled system even cannot create a remarkable deflection at the fin. In spite of 

the generated deflection are not large enough to follow an    reference, the       mixed controller 

acquires the best response and reaches to      and      . 
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Figure 81. Detailed view of Figure 80 

 

Figure 82. Response to higher frequency input of real system  
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Figure 83. Detailed view of Figure 82 

Some important observations about the controllers can be obtained by inspection of the controller 

commands. The generated signals by the controllers are the currents to the motor and given in 

Figure 84 and Figure 86. At a first glance, one can see that the current consumed by the       

mixed controller is less than pure    and higher than   . The detailed view on Figure 85 shows 

that, while the other controllers cause to a saturation on the current to follow step input,       

mixed controller does not create any saturation and the maximum level of the current is lower than 

    . Due to this saturation, pure controllers cause more overshoot and settling time. 

 

Figure 84. Controller command during the reference tracking given in Figure 80 
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Figure 85. Detailed view of Figure 84 

Another important feature about the command signals can be observed from Figure 87. In the case 

of high frequency reference tracking,    controller consumes less power than others, but the 

consumed power is not enough to generate required deflection. The same figure also shows that the 

current commands of       mixed and pure    are slightly differs, however their tracking 

performances differ in observable amount, as previously mentioned. 

 

Figure 86. Controller command during the reference tracking given in Figure 82  
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Figure 87. Detailed view of Figure 86 

4.2. CONCLUSION  

The obtained results in section 4.1 shows that the robustness of the        type multiobjective 

controller is as good as    controller and performs better than a pure    and    controller. Because 

it ensures wider bandwidth, less overshoot and better command tracking. These properties are 

summarized in Table 10. 

Table 10. Summary of comparison of controllers 

Closed Loop 

Performances 
    

Controlled 
    

Controlled 
       

Controlled 

   norm                
   norm                
Bandwidth     Hz      Hz      Hz 
Overshoot             

Settling Time      sec      sec      sec 

Using this       mixed robust control technique it is possible to obtain a closed loop performance 

that resides between the frequency response characteristic of the pure    controlled and    

controlled systems. In this study, the plant is a specially designed fin actuation system and the 

general behavior of this system is not far away from a linear system due to its geometry and design. 

Here the robust controller techniques are preferred especially to overcome plant uncertainties and 

external disturbances rather than the nonlinearities. Although none of the synthesized controllers do 

not yields the required performance, it is shown that implementation of an       type mixed 

controller creates substantial gain especially in performance. One can easily comment that; in the 

case of a highly nonlinear plant and existence of modeling errors due to neglected higher order 

dynamics, the influence of an       mixed controller will be more valuable. According to results 

of this study; it is possible to remove ‘peaky’ regions in the frequency response characteristics via 

mixed controller. Hence, the       mixed control technique will be more contributing in control of 

plants which have some resonant and humped regions in their frequency responses. In this manner, 

though the plant of this thesis is not a good example to see these contributions of the       mixed 

control, nonetheless it is obvious that this technique causes some advantages in performance and 

robustness behavior of the closed loop system. 
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In contrast to mentioned advantages, design of a mixed controller requires much more effort than 

pure robust controller. Because, the mixed controller synthesis procedure includes more 

configuration parameters than pure robust controller case. Additionally, the characteristic and 

performance of        mixed controller is more sensitive to selection of weighting functions. 

Another issue about the mixed controller is that, it is implementation for simulation and experiments 

is a bit harder due to calculation of large numbers in state space matrices. The main observation is 

that, the simulations of mixed controllers take more time than pure    and    cases. 

In robust controller design, maybe the most important point is the selection and definition of 

weightings. For example, the order of weightings describes the order of controllers and if the order 

of the controller increases, the applicability of controller to real system decreases. The frequency 

response shape of the weightings is important to tune the properties and performance of the closed 

loop system. However, for precisely tuning of the closed loop characteristics the higher order 

weighting functions may be required. Another important point about the weightings is that, their 

characteristics should be a projection of the real system and these characteristics are strictly 

dependent to the system parameters. Therefore, in some situations the degree of freedom on the 

change of the weighting parameters can be very narrow due to restrictions on the system. For 

example, some criteria on the controller performance may require higher order weighting functions 

and at the same time the order of the controller is wanted to be small. In such conditions, design of 

an       mixed type controller can be a good alternative.  

In conclusion, the       mixed type controller is a good alternative method to obtain robust and 

well performed controller, especially when the system has peaks on its frequency response and the 

weightings cannot be optimized due to strict restrictions on the plant. Although, the fin actuation 

system of this thesis do not exactly have these properties, use of       mixed controller still 

creates enhancements on the closed loop performance and robustness properties of pure robust 

controllers. 

4.3. FUTURE WORKS 

In this work, although some remarkable performance developments are obtained using        
controllers, one can claim that it is possible to find a pure    or other type of robust controller for 

this system. In this point, an important point about the controller is that, the final values of 

weightings and design parameters used here are not the ‘optimized’ values. For example the tradeoff 

criteria of equation (1.16) (i.e. the mixing ratios   and  ) are selected by applying some trial and 

error methods. Similarly the used weightings are selected to be as first order and the parameters 

inside the functions are configured in this manner (1.17). Optimization of the design parameters is 

another topic and may be achieved as a further work. Another issue about        mixed type of 

controllers is that, their performance and robustness characteristic strictly depends on the weightings 

and optimization techniques used. If the compared    and    controllers are optimized such that 

they yield very similar closed loop behavior, the design of mixed        controller become 

infeasible. Because, mixed        technique produces a closed loop behavior such that it passes 

between two pure robust controllers. In this manner, for this plant, one can obtain a ‘better’ 

controller using the weightings provided in APPENDIX A.2 as MATLAB
®
 scripts. 

The experiments covered in this study are limited to some special case and also the torque 

disturbance to the system applied as constant. However in a real system, a fin actuation system is 

exposed to random torque and wind gust disturbances. As a future experimental study, the system 

performance can be tested against random torque. 
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APPENDIX 

A.1. State Space Matrices of Generalized Plants  

Pfas = 

  

  A =  

            x1       x2       x3       x4       x5       x6 

   x1   -5.368        0        0        0        0        0 

   x2        0   -45.02        0        0        0        0 

   x3        0   0.4348        0        0        0        0 

   x4    10.57        0        0   -106.6   -88.83        0 

   x5        0        0        0       64        0        0 

   x6        0        0   0.1085        0   -170.4  -0.6283 

  

  B =  

              d1         d2         d3       dref          u 

   x1          0          0          0          1          0 

   x2      -8500  1.414e+05          0          0    2.4e+04 

   x3          0          0          0          0          0 

   x4          0          0          0    0.00742          0 

   x5          0          0          0          0          0 

   x6          0          0          0          0          0 

  

  C =  

               x1        x2        x3        x4        x5        x6 

   dRad         0         0  0.007072         0         0         0 

   z1           0         0  0.001414         0    -2.221     12.28 

   z2           0         0         0         0         0         0 

   y        186.8         0        -1         0         0         0 

  

  D =  

                d1         d2         d3       dref          u 

   dRad          0          0          0          0          0 

   z1            0          0          0          0          0 

   z2            0          0          0          0    0.09428 

   y             0          0  -0.003068     0.1311          0 

 

MIXP = 

  

A =  

         x1       x2       x3       x4       x5       x6       x7 

x1   -5.368        0        0        0        0        0        0 

x2        0    -4243        0        0        0        0        0 

x3        0        0   -45.02        0        0        0        0 

x4        0        0   0.4348        0        0        0        0 

x5    10.57        0        0        0   -106.6   -88.83        0 

x6        0        0        0        0       64        0        0 

x7        0        0        0   0.1085        0   -170.4  -0.6283 

 

B =  

           d1         d2         d3       dref          u 

x1          0          0          0          1          0 

x2          0          0          0          0         16 

x3      -8500  1.414e+05          0          0    2.4e+04 

x4          0          0          0          0          0 
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x5          0          0          0    0.00742          0 

x6          0          0          0          0          0 

x7          0          0          0          0          0 

  

C =  

x1        x2        x3        x4        x5        x6        x7 

dRad   0         0         0  0.007072         0         0         0 

z1     0         0         0  0.001414         0    -2.221     12.28 

z2     0         0         0         0         0         0         0 

z3     0    -18.75         0         0         0         0         0 

y     186.8      0         0        -1         0         0         0 

 

D =  

             d1         d2         d3       dref          u 

dRad          0          0          0          0          0 

z1            0          0          0          0          0 

z2            0          0          0          0    0.09428 

z3            0          0          0          0    0.09428 

y             0          0  -0.003068     0.1311          0 

A.2. Alternative Weightings to Generate Better Controller 

%Reference signal shape - Wref 

Kref=(20*pi)/(180*sqrt(2)); %max 20 deg 

wcref=0.01*2*pi;               %decrease after 0.1 Hz 

Wref=zpk([],-wcref,Kref*wcref);   %first order TF  

 

%Penalty for deviation from ideal system - Wperf 

Kp=0.2;                      %penalty for large frequencies 

w2p=350*2*pi/Kp;             %w_o=.5 Hz 

w1p=100*2*pi*0.001;           %penalty for small frequencies 

Wperf=zpk(-w2p,-w1p,Kp); 

 

%Penalty for control signal - Wact 

A=sqrt(2)/15; 

Ka=A/5; 

w2a=10*2*pi*A; 

w1a=10*2*pi*Ka; 

Wact=zpk(-w2a,-w1a,Ka);  
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A.3. System Identification Input-Outputs in Time Domain 
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Figure 88. System identifiation of input-outputs in time domain 

A.4. Frequency Spectrum of Input Signals 

Frequency domain transfer function fits to all data sets yields VAF compatibility greater than 90% 

.The green-colored datasets give VAF compatibility larger than 70% in time domain at the same time. 
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Figure 89. Frequency spectrum of input signals. 
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A.5. Time Domain Comparison of Bode Estimations 
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Figure 90. Time domain comparison of estimation results. 

A.6. Photo of the System 

 

Figure 91. Photo of the experimental set up including the plant 
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