DEVELOPMENT OF A MOBILE ROBOT PLATFORM TO BE USED IN MOBILE ROBOT
RESEARCH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHAMMET KASIM GONULLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
MECHANICAL ENGINEERING

FEBRUARY 2013

Approval of the thesis:

DEVELOPMENT OF A MOBILE ROBOT PLATFORM TO BE USED IN MOBILE ROBOT

RESEARCH

submitted by MUHAMMET KASIM GONULLU in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Ozgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral

Head of the Department, Mechanical Engineering

Asst. Prof. Dr. A. Bugra Koku

Supervisor, Mechanical Engineering Dept., METU

Assoc. Prof. Dr. E. Ilhan Konukseven

Co-Supervisor, Mechanical Engineering Dept., METU
Examining Committee Members:

Prof. Dr. Tuna Balkan

Mechanical Engineering Dept., METU

Asst. Prof. Dr. A. Bugra Koku

Mechanical Engineering Dept., METU

Assoc. Prof. Dr. E. ilhan Konukseven

Mechanical Engineering Dept., METU

Asst. Prof. Dr. Yigit Yazicioglu

Mechanical Engineering Dept., METU

Dr. Refik TOKSOZ

Industrial Design Dept., METU

Date:

February 1th, 2013

I hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. | also declare that, as required by these
rules and conduct, I have fully cited and referenced all material and results that are not original

to this work.
Name, Last name : Muhammet Kasim Goniilli

Signature

ABSTRACT

DEVELOPMENT OF A MOBILE ROBOT PLATFORM TO BE USED IN MOBILE ROBOT
RESEARCH

Goniilli, Muhammet Kasim
M.Sc., Department of Mechanical Engineering
Supervisor : Asst. Prof. Dr. A. Bugra Koku

Co-Supervisor : Assoc. Prof. Dr. E. Ilhan Konukseven

February 2013, 143 pages

Robotics is an interdisciplinary subject and combines mechanical, computer and electrical engineering
components together to solve different kinds of problems. In order to build robotic systems, these
disciplines should be integrated. Therefore, mobile robots can be used as a tool in education for
teaching engineering concepts. They can be employed to be used in undergraduate, graduate and
doctorate research. Hands on experience on a mobile robot increase motivation of the students on the
topic and give them precious practical knowledge. It also delivers students new skills like teamwork,
problem solving, creativity, by executing robotic exercises. To be able to fulfill these outcomes,
universities and research centers need mobile robot platforms that are modular, easy to build, cheap
and flexible. However it should be also powerful and capable of being used in different research
studies and hence be customizable depending on the requirements of these topics.

This thesis aims at building an indoor mobile robot that can be used as a platform for developing
algorithms involving various sensors incorporated onto a mobile platform. More precisely, it can be
used as a base for indoor navigation and localization algorithms, as well as it can be used as platform
for developing algorithms for larger autonomous mobile robots. The thesis work involves the design
and manufacturing of a mobile robot platform that can potentially facilitate mobile robotics research
that involves use of various hardware to develop and test different perception and navigation
algorithms.

Keywords: Modular Mobile Robotic Platform, Educational Robotics, Autonomous Mobile Robots,
Robot Toolboxes and Kits, Robot Platforms, Localization, Navigation.

0z

MOBIL ROBOT ARASTIRMALARINDA KULLANILMAK UZERE BiR MOBIL ROBOT
PLATFORMU GELISTIRMESI

GoOniilli, Muhammet Kasim
Yiiksek Lisans, Makine Miihendisligi Bolimii
Tez yoneticisi : Yrd. Dog. Dr. A. Bugra Koku

Ortak tez yoneticisi : Dog. Dr. E. Ilhan Konukseven

Subat 2013, 143 sayfa

Robotik disiplinler arast bir konudur. Mekanik, bilgisayar ve elektrik miithendisligi parcalarindan bir
araya gelerek farkli soru tiirlerinin ¢éziilmesini saglar. Robotik sistemi insa etmek i¢in, bu disiplinler
birlestirilmig(entegre) olmalidir. Bu yiizden, mobil robotlar miihendis kavramlarini 6gretmeye yarayan
egitim araci olarak kullanilabilir, lisans, yiiksek lisans ve doktora arastirma konular1 kullanilmak tizere
istihdam edilebilir. Mobil robot iizerinde teoriden ziyade pratik bazi caligmalarla tecriilbe edinen
ogrencilerin konu tizerindeki motivasyonlar1 daha da articak ve 6nemli bilgi ediniceklerdir. Ayrica
robotik egzersizleri uygulamak; arastirmacilara takim galigmasi, problem ¢dzme, ve yaraticilik gibi
yeni beceriler sunar. Bunun igin, {iniversiteler ve arastirma merkezlerinin kolay elde edilebilir, ucuz,
esnek ve modiiler mobil robot platformlarina ihtiyact bulunmaktadir. Ancak bu platform arastirma
konularinin gerekliliklerine gore de giiglii ve farkli aragtirma konularini yiiriitebilecek ve
Ozellestirilebilir olmalidir.

Bu tez, akademik aragtirmalarda algoritma gelistirmek icin kullanilabilen, c¢esitli sensorlerden
faydalanan bir mobil robot gelistirmeyi amaclar. Bir bagka deyisle, gelistirilecek robot platformu i¢
ortam lokalizasyon ve navigasyon problemlerinin ¢dziimiinde algoritma gelistirme i¢in kullanilabilir,
bunun yanisira daha biiyiik otonom mobil robotlara algoritma gelistirmek i¢in bir platform olarak
degerlendirilebilir. Bu tez c¢esitli donanimlart kullanarak degisik algilama ve navigasyon
algoritmalarimin gelistirilmesi ve testlerini igeren robotik arastirmalari kolaylastiracak bir mobil robot
platformunun tasarimini ve tiretilmesini igerir.

Anahtar Kelimeler: Modiiler Robotik Mobil Platformu, Egitsel Robotik, Otonom Mobil Robot,
Robot Takim ve Kitleri, Robot Platformu, Lokalizasyon, Navigasyon.

Vi

To My Lovely Family

vii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere appreciation to my supervisors Asst. Prof. Dr. A. Bugra
Koku and Assoc. Prof. Dr. E. Ilhan Konukseven for their invaluable guidance, advice, and criticism
and support that made this study possible.

I would like to thank my colleagues for their support and help.

Also, I would like to thank my lovely family, especially my father Ahmet Goniilli, for his invaluable
efforts when | felt hopeless and weak in solving problems.

Finally, I would like to send my special thanks to my love and wife Betiil for her understanding, help,
encouragement and faith in me.

viii

TABLE OF CONTENTS

ABSTRACT ..ottt bbbt b bbbt h e £ e bbb bbbttt bbbt v
OZ oottt vi
ACKNOWLEDGEMENTS ...ttt ettt viii
TABLE OF CONTENTS ..ottt bbbttt bbbt ix
LIST OF TABLES ...ttt bbbttt bbbttt eb bt Xi
LIST OF FIGURES......c.oiitititeteteteieie ettt bbbttt bbb s ettt e bbbt enenas Xiv
CHAPTERS
INTRODUCTION. ...ttt bbbttt bbb bbbt b bttt bbbt 1
STATE OF THE ART ..ottt bbb b bbbttt bbbt 3
DESIGN PROCEDUREooitiitieitee ettt sttt st ste e sbe ettt sse e st e nbeenbeenteeneeas 11
3.1 MOAUIAK FIame DESINviveieiiitiiieiiete ettt sttt sttt sr et sb e b nr et sr et nnas 12
B L1 MOTUIAITEY «. vt bbbttt bbb 14
3.2 MOVING MECNANISMS.eiviiiii ettt ettt te e s e e s e e steesteenteenbeeneennee e 14
3.2.1 Traction MECRANISIMc.cciiiiiiiiie e 14
31202 SNAFT. .ttt 14
KB O 11 o] 11T SR 15
3.2.4 BEANNG HOUSEccuvieieiieie ettt sttt e st e s te et e e aeenneeneennee e 15
BB HAITWANE. ...ttt r e et r e bR r et R e et 16
3.3.1 Power Requirement CalCUIAtIONScccceevveiieiieiicsic s 16
BLBL2 IMIOTOK ..t E e Rt r e 18
333 ENEIGY SUPPIY ettt 19
3.3A MICTOCONIIONIET ... bbb 20
3.3.6 MOLOr DFIVEF BOAIMc.ciuiiiiiiiiitiiciistee et bbbt 21
3.3.7 Ultrasonic RaNging MOUUIE...........cuiiiiiiiiiiiecees e 22
BLBLB KINBCT .ttt bbb 23
3.3.9 Digital COMPASSvevitieeetirteieiert ettt bbbttt b ettt nb 23
ROBOT PLATFORM CONFIGURATION AND DESIGN PARAMETERS........c.cccoviiiieiieeens 27
CONTROL ARCHITECTURE DESIGNcocuiiiiiiiiininiiiieie ettt 31
5.1 DAtA FOMMAL ..ot st r e e r e 33
5.1.1 PC Side COMMANGS ..ottt bbbttt nb s 35
5.1.2 Microcontroller Side COMMANGS.........ooiiririiireere e 47
5.2 The Serial Packet Handling AIGOrthmccooiiiiiiiiiiee e 58
5.3 High LEVEI FUNCLIONS.ciiitiieiiite ettt sttt sttt st sn et e 58
5.3.1 St LINEAI SPEEU.......cuiitiiitiriiieiirie ettt bbb 58
5.3.2 TUMN ANGIE (POINE TUIM) vttt bbbt see 59
5.3.3 SEE DISTANCE ...ttt bbbt bbbt e 62

5.4 KINECT LIDFANY ...ttt bbbttt bbbttt 62

5.5 RODOT LIDIANY ..ottt bbbt 63
RESULTS AND DISCUSSIONS ...t nne s 67
6.1 SEt LINEAr SPEEU TSiveieiiistisieeeeee it ste st e et e et e st eere e e e ae st e besteesaese et e seesrenrenneaneas 69
LT W AN g o[- =T PSP PRPS 78
6.3 TUIM TO ANGIE TS ..uiiiiicieieste ettt ettt et e eete e s e e e e testesbesbeenaese e e eeeseesrenreanens 79
6.4 St DISLANCE TSvivieireiieiei ettt r ettt 81
6.5 Obstacle Avoidance IMPIEMENTAtioNccoiiiiiiiiiree s 83
SUMMARY, CONCLUSIONS AND FUTURE WORKc.cooiiiiiie ettt 87
REFERENCES ...ttt ettt b e bbbt b e a e eb b e eb e bt e bt e beebbesbeesbeenbeenas 89
APPENDICES
SERIAL PORT HANDLING ALGORITHMoiiiiiiiiiiese et 93
SPEED TEST CALCULATION TABLEoiiic e 95
LIBRARY REFERENCE (EDUROB.NAMESPACE)cccoitiiiiaieiee st 97
EVENES ..o 97
IMIBENOUSt r et 97
ENUMErations and CONSLANTSeviiriiiiiirieiecsee et ne 98
Example Usage OF the LIDIary. ... 99
LIDIAINY COOE ...ttt b e et b et b et b et nr e b 102
MiICTOCONIOIIET COUE ...ttt ere e 124

LIST OF TABLES

TABLES

Table 1 — Comparison of SIMilar RODOLS.........c.oiiiiiiiiie s 9
Table 2 - Estimated coefficient of rolling resistance table [20]...........ccccoveriiiiniiineieee, 17
Table 3 - Encoder Cable FUNCLIONScviiiieiiieie ettt et 19
Table 4 - PC Side COMMANTSccoiiiiiiiieie ittt sttt see st se e e st e besbesteene e 33
Table 5 - Microcontroller Side COMMANGSc..evierieiierieie e 34
Table 6 - Data Packet fromM PC.........oiiiieieiie ettt 34
Table 7 - Data Packet from MiCrOCONIOIIENocceiieiiiiciie e 34
Table 8 - Set Direction Command (PC SIE)civivieiieieiere e 35
Table 9 - Example Set Direction Data Packet (PC SIdE)cccecevvevrieeiieiesesese s 35
Table 10 - Get Direction Command (PC SIte)ccoeiiirieiiierieiese e 36
Table 11 - Example Get Direction Data Packet (PC Side)........ccccovveriiireniiiieiecseree e 36
Table 12 - Set PWM Command (PC SitE)........coeiiiriiienieiesie ettt 36
Table 13 - Example Set PWM Data Packet (PC SIde)cceivvereiirerieiseneeseee e 37
Table 14 - Get PWM Command (PC SIE)eoveiiirieirieieesie et 37
Table 15 - Example Get PWM Data Packet (PC SIAE)eevvevuieciiiiisie e 37
Table 16 - Get Encoder Command (PC SIUE)vcviieeiieiie e st 38
Table 17 - Example Get Encoder Data Packet (PC Side).......ccccvecviiiiieiiciiececce e 38
Table 18 - Get Current Command (PC SIAE)vveviiieiieiee et 38
Table 19 - Example Get Current Data Packet (PC SId€).......cccvevuiiiiiieiieie e 38
Table 20 - Get Sonar Data Command (PC SIAE)ccevierieiiierieesie et 39
Table 21 - Example Get Sonar Data PaCketccooviiiiiiiiiie e 39
Table 22 — Set Emergency Stop Command (PC SIde)oovvvvreieiinieieie e 39
Table 23 - Example Set Emergency Stop Data PACKEL...........ccooeiiiiriiiieneenee e 39
Table 24 — Reset Encoder Command (PC SIAE)ovveiiierieiiierieisie et 40
Table 25 - Example Reset Encoder Data Packetccccoveiviiiiii i 40
Table 26 - Set RPM Command (PC SIUE)cuueiuieiiiieiie ettt snee e 40
Table 27 - Example Set RPM Data Packet (PC Side)ccevvevieiiiiiiiic e 40
Table 28 - Get RPM Command (PC SIUE)vouieiiiie ettt st 41
Table 29 - Example Get RPM Data Packet (PC SIUE)ceevveviieciiiiesiesee e 41
Table 30 - Get Heading Command (PC Site)coerieiiiiiiiieriee et 41
Table 31 - Example Get Accelerometer Data Packet (PC SId€)ccoeveverieiiieneiiienese e, 41
Table 32 - Get Accelerometer Command (PC SIR)ooeiierieiiienei e 42
Table 33 - Example Get Accelerometer Data Packet (PC SIde)ccoeveverviineneiiienecseneeee, 42
Table 34 — Heartbeat Command (PC SIAE)cc.eiveiiirieiieiee e 42
Table 35 - Example Heartbeat Data PaCKEL...........c.cccveiiiiiiieie e 42
Table 36 - Motor Encoder Update Command (PC Side).......ccccveceiiiiieiieie e 43
Table 37 - Example Motor Encoder Update Data Packet (PC Side)cccovveveiieiiieiiie i 43
Table 38 - Motor RPM Update Command (PC Side)ccoiiriieiiieiiiieree e 43
Table 39 - Example Motor RPM Update Data Packet (PC Side)........cccceverereieninieie e 44
Table 40 - Motor Current Update Command (PC SIde)........ccccereirireiiierieineree e 44
Table 41 - Example Motor Current Update Data Packet (PC Sid€)ccocoveirereieieneenenecsenieeeen, 44
Table 42 - Sonar Update Command (PC SIUE)cooeiiireiiienee e 45
Table 43 - Example Sonar Update Data Packet (PC SIdE).......ccovvvrereiieneinenee e 45
Table 44 - Heading Update Command (PC SIE)couierieiiereineieesie e 45
Table 45 - Example Heading Update Data Packet (PC Side)........ccocureriieierineniniiiee e 45

Xi

Table 46 - Accelerometer Update Command (PC Side)cceivvveiiii s 46

Table 47 - Example Accelerometer Update Data Packet (PC Side)........cocevvveveiviiesieierienesesieseaneas 46
Table 48 — Set Heartbeat Interval Command (PC Side)........cccceveiiiviieiieieie e 47
Table 49 - Example — Set Heartbeat Interval Data Packet (PC Sid€).......cccccevevvvviiveiieieiieiesesieseaneas 47
Table 50 - Get Direction Command (Microcontroller Side)coeveiieiiiineiiireeeese e 47
Table 51 - Example Get Direction Data Packet (Microcontroller Side)ccocoovviveiiincinincicnnne, 48
Table 52 - Get PWM Command (Microcontroller Side).........ccoeiiireiiiiieiiineseees e 48
Table 53 - Example Get PWM Data Packet (Microcontroller Side)cccooveiiineiiincininceiees 48
Table 54 - Get Encoder Command (Microcontroller Side)coovieiiiieiinineisreseese e 49
Table 55 - Example Get Encoder Data Packet (Microcontroller Side)ccccvvvvviiveieieneie s 49
Table 56 - Get Current Command (Microcontroller Side)cocvvviviieiiereie s 50
Table 57 - Example Get Current Data Packet (Microcontroller Side)cccocevvvvviivieeiencie e 50
Table 58 - Get Sonar Data Command (Microcontroller Side)cooveveieveiieve s 51
Table 59 - Get Sonar Data Packet (Microcontroller Side)cocvviviieieicie s 51
Table 60 - Get RPM Command (Microcontroller Side)..........coeviiieiiiicininesese e 52
Table 61 - Example Get RPM Data Packet (Microcontroller Side)c.ccoveveiiiineiiinciicnceiens 52
Table 62 - Get Heading Command (Microcontroller Side)..........ccovveiiireiinineiiisese e 52
Table 63 - Example Get Heading Data Packet (Microcontroller Side)ccccovivvireiicniisincicene, 53
Table 64 - Get Accelerometer Command (Microcontroller Side).........ccovevvvireiiiineiiicsecsees 53
Table 65 - Example Get Accelerometer Data Packet (Microcontroller Side)ccoccvevvviviieeieesinennn. 53
Table 66 — Heartbeat Command (Microcontroller Side).........ccovvevviviiiiiiie i 54
Table 67 - Example Heartbeat Data Packet (Microcontroller Side)........c.ccccevvevveiieieiie s, 54
Table 68 - Motor Encoder Update Command (Microcontroller Side)c.ccccevvvevvevviiciic v, 54
Table 69 - Example Motor Encoder Update Data Packet (Microcontroller Side)..........cccoovvvvevverinnen. 54
Table 70 - Motor RPM Update Command (Microcontroller Side)cooeovireinineiiiiciicnciees 55
Table 71 - Example Motor RPM Update Data Packet (Microcontroller Side)ccoceovveiiiiniinnnnn. 55
Table 72 - Motor Current Update Command (Microcontroller Side)cccooeveivineinineininciiees 55
Table 73 - Example Motor Current Update Data Packet (Microcontroller Side)..........ccccoevveniiinennn. 55
Table 74 - Sonar Update Command (Microcontroller Side)ccoeviireiniiniiinires e 56
Table 75 - Example Sonar Update Data Packet (Microcontroller Side)ccccccvevvevviie i i, 56
Table 76 - Heading Update Command (Microcontroller Side).........cccvovvvvievievieiiicieee e 56
Table 77 - Example Heading Update Data Packet (Microcontroller Side)ccccovevveveiiciieevncninenen. 56
Table 78 - Accelerometer Update Command (Microcontroller Side)ccccovevvevieieiie i scee e, 57
Table 79 - Example Accelerometer Update Data Packet (Microcontroller Side)cccoocevvvevvennnnen. 57
Table 80 - LOW LEVEI FUNCLIONScciiiieieieeie sttt st e e seeneesneeneas 58
Table 81 - SPEEU TSt L = 0.2 IM/S...iuiieiieeiieieiee sttt et ettt eneeseestestesreeseeseenseneeseesseaneanens 69
Table 82 - SPEEU TESE 2 = 0.2 IM/S...cuiiiiieeeieieee sttt ee e et ste s e neeseeseesbesreaseeseeneeneeseessesneeneas 70
Table 83 - SPEEU TSt 3 = 0.2 IM/S...cuiieiieeieieiee sttt ree et te et e e e teseestesreeseeseensenaeseesreaneeneas 70
Table 84 - 0.2 M/S TESE RESUILSooiieiieeieiee ettt st se et esaesresreaneeneas 71
Table 85 - SPEEA TESE 4 = 0.4 IM/S....cceiiieceecte ettt et e te e s e e e saeenaeenas 71
Table 86 - SPEEA TESE D = 0.4 IM/S....cceiiieciece ettt et et te e e e e sreenaeenas 72
Table 87 - SPEed TESE 6 = 0.4 IM/S.....ceiiieceeci ettt e be e e e e sreenaeenas 72
Table 88 - 0.4 M/S TESE RESUILSouiitiiiiieee ettt bbb eneas 73
Table 89 - SPEEA TESE 7 = 0.6 IM/S.....uiitiiieiieiieeie ettt bbbttt e e b e b sneeneas 73
Table 90 - SPEEA TESE 8 = 0.6 IM/S...cuiiiieeieieiee et se ettt re e e e seesre e ssaeseeseaesaesseaneenens 74
Table 91 - SPEEA TESE D = 0.6 IM/S...cuiiiieeieieiee ettt ettt s e st reeseese e e saesaesresneeneas 74
Table 92 - 0.6 M/S TESE RESUILS......eieiiiieeieieee sttt ettt ena s e e e saesaesreaneeneas 75
Table 93 - SPeed TSt 10 = 0.8 M/S....iiiiiiieieere sttt se st et e e see st resse e e e s e saesaesreaneeneas 75
Table 94 - SPEEA TSt 11 - 0.8 M/S...uiiiiieiieieieie sttt ee e et e e seesbe e sseesee e naesaesreaneenens 76
Table 95 - SPEEd TSt 12 = 0.8 M/S.. .ttt ettt bbbttt be e b sneeneas 76

Xii

Table 96 - 0.8 M/S TESE RESUILSoiiviiieii ettt sb e s be e s ba e s sba e sreas 77

Table 97 - SPEEA TSt RESUIL........cciie ittt e besresreane e 78
Table 98 — Turn Angle Test (90 degrees) RESUILSccvcveieiirieie e ste s 79
Table 99 — Turn Angle Test (45 degrees) RESUILSccveveieiireie e 79
Table 100 — Turn to Angle Test (Turn To 20 degree) RESUILScooeeieriineieeneree e, 80
Table 101 — Turn to Angle Test (Turn To 100 degree) RESUILScoeeierieiieneeseee e 80
Table 102 — Turn to Angle Test (Turn To 100 degree) RESUILSooevrerieiieneeneseesee e 81
Table 103 - Set Distance Test (1 M) RESUIScoviiiieiiiiieiiere e 82
Table 104 - Set Distance Test (1 M) RESUIScoviiiiiiiieiiee e 83
Table 105 - Set Distance Test (1 M) RESUISc..coi i 83
Table 106 - Speed Calculation TabIEcccoeiiiiie s 95
TADIE 107 = EVENES ..ottt n s 97
Table 108 - MENOUS ...ttt n et 97

Xiii

LIST OF FIGURES

FIGURES

o =T e o T =T g AN I 1 R 3
o U =T o T 1 - T 24 3
o U I T - LT A 1 S 3
Figure 4 - Parallax Eddie RObOt P1atform [4]ocvereiieee e 4
Figure 5 - Calliope iRobot Create Netbook Development Platform [5]........ccocvevviniinieneneiieneee, 4
Figure 6 - Nexus Robot 4WD Mecanum ROBOL [B]coervviriiniiiiiieieee e 5
Figure 7 - Dr. Robot Sentinel3 Wi-Fi Mobile Development Platform [7] ..o, 5
Figure 8 - Dr. Robot Jaguar Tracked Mobile PIatform [8]........cccccveiiininiiiieseeeeee e, 6
Figure 9 - InspectorBots Mega Bot Wireless 4WD Robot Platform [9] ..o, 6
Figure 10 - CoroWare CoroBot CB-W Robot Development Platform [10].......cccccoovevvevvveievnnnsrene, 7
FIGUPE 11 - SEEKUF JF [LL] 1ovvreieiieiie ettt sttt te et e s te e steeste et e sneeanaesteentaeseeennenneens 7
Figure 12 - Tetra-DS 1V Mobile Robot PIatform [12]ccovveiiiiiiie e 7
FIGUrE 13 — VOIKSDOL [13] ...eieiiiieiieiie ettt sttt ettt et te e ste et e et e aneesnsesteesteebeenaenreens 8
Figure 14 - MoRob Scalable Processing BOX [14]......ccveiieiieieiie e sieeseeseesteeste e see s e stae e stae e e 8
Figure 15 - Chassis designed with aluminum profiles ... 13
Figure 16 - Chassis designed with sheet metal.............cccooiiiiiiiii s 13
Figure 17 - Chassis designed with Sigma eXtruSiONS...........cccveriiriiiineneeses s 14
Figure 18 — MOtOr SHaft DESIGN.......eiiiriiiitirieicre bbb 15
FIQUIE 19 — COUPIING ..ottt b bbbt bbb 15
FIgure 20 - PilIOW BEAINGciiiiee ettt ettt et e et et e te e beesaeenaesnaesneenreennas 15
FIGUPE 21 - WHEEI BIOCKeiivieiie ettt ettt e te e teana e esreenneeneas 15
Figure 22 - Forces acting on the RObot PIatformccvoiiiii i 16
Figure 23 - Pololu 37D 100rpm DC MOLOF [15] ..vvevvieiieiicie et 18
Figure 24 - 37D 64 CPR ENCOUEN [15]...uiiviiieiiiiiecte ettt ste sttt te e sneesne e 19
Figure 25 - 12V dry @CCUMUIBLOTc.oouiiiiiitiitiiitcitee bbbt 20
Figure 26 - Arduino Mega MOdUIE [16]ccoviiiiriiiiieeiriee s 21
Figure 27 - Rover 5 Motor Driver Board [17].......ccocoiiiriiiieieireesieeese s 22
Figure 28 - HC - SR04 Ultrasonic Ranging Module [18] ...t 23
Figure 29 - KINECE SENSOI [19] ... ccviiviiitirieieiirteet ettt bbb 23
Figure 30 - Roll, Pitch and Heading angles [21]ccveoveieiiieiiie e 24
Figure 31 - Heading angle Calculation [21]........cccvooieiiiiiie et 24
Figure 32 - Tilted POSItION [21] . .cieeieeieeie sttt et te e ena e sne e sne e e 25
Figure 33 - LSM303 Tilt Compensated COMPASS [22] ...cvevveieeiiieieeie e e sie st se e 25
Figure 34 — Block diagram of electronic compass SyStem [21]c.cccevveveiiiiieiieceece e 25
Figure 35 - LSM303 Calibration Process SCreenShotccceoiiriiiinieniiinienscsieeee e 26
Figure 36 - 2 wheeled CONfIQUIAtION ..ot 27
Figure 37 - 4 wheeled CONfIQUIAtION ..ot 27
Figure 38 - 6 wheeled CONfIQUIAtION ..ot 28
Figure 39 - A mainboard configuration with a laser and ultrasonic SENSOr...........ccoevrvrereiineerernenennn, 28
Figure 40 - A notebook configuration with Kinect and ultrasonic SENSOrSceoveieriereneseseneenns 29
Figure 41 - Motor Controller and Microcontroller SChematiccccooeiiriiiiiiiicce e 31
Figure 42 - Functional BIOCK DIagramcccooiiiiiiiiieie et 32
Figure 43 - Motor Setpoint Data FIOWooiiiiiiiiie e e 57
Figure 44 - Differential Drive KINEMALICS [23]ooueiieiiieie et s 59
Figure 45 - Forward Kinematics for Differential RODOLcccccviiiiiiniii 60
Figure 46 — Robot User Control in the Toolbox of MS Visual Studio...........cccoovivvniininniinccnn, 63

Xiv

Figure 47 - User Control SCrEENSNOL..........cccviiiiiieieieie et sa e sre s reane e 64

Figure 48 - Property Window of the User CONtrol...........ccccvvviiiieeiieiescse e 65
Figure 49 - Example Usage of the User CONtrolcccocviiieiiiiecicicsc e 66
1o U RS O = (o] oTo] B d - x (o] 1 ISP 67
Figure 51 - Inside 0f the RODOLciiiiiiiiice s 68
FIQUre 52 - USEE INTEITACEvieeiiitiieciicti ettt ettt et r ettt nn e ene e 68
Figure 53 - Test Setup 0f the SPEEd TStciiiiiieiiee e 69
Figure 54 - SPeed TESE L - 0.2 IM/S .o.eiiiiiiieiite ettt ettt b bt b e nr b nn e ene e 70
Figure 55 - SPeed TESE 2 = 0.2 IM/S ..o.viiiiiiiiiiie ettt b bbb sr e ene e 70
Figure 56 - SPeed TeSt 3 - 0.2 M/S ...cviiiiieiieiiiie st eeeie ettt st et steeteese et e e e srestesbeereaneens 71
Figure 57 - SPEed TeSE 4 - 0.4 M/S ...cvveiiieie ittt st teate e et e e e saesbesbesreeneens 72
Figure 58 - SPeed TeSE 5 = 0.4 M/S ...cuviiiiiieciie ettt st te e te et e e e e e besbesreanens 72
Figure 59 - SPeed TeSt 6 = 0.4 M/S ...c.veiiiieieiiie et st teete e et e e e e e resresreeneens 73
Figure 60 - SPeed TeSt 7 - 0.6 M/S ...c.veviiiiiie ettt st te et et e e srestesbesreeneens 74
Figure 61 - SPeed TESE 8 = 0.6 IM/Soiiiiiieiiieiieeit ettt eb e ene e 74
Figure 62 - SPeed TESE 9 = 0.6 M/S ..ottt b et eb e ene e 75
Figure 63 - Speed TeSt 10 - 0.8 M/S ..cuiiiiieiiiiieet ettt ettt eb e ene e 76
Figure 64 - Speed TSt 11 - 0.8 M/S ..ottt ettt b et ene s 76
Figure 65 - SPeed TSt 12 - 0.8 M/S ...cuiiiiieiiiieeeie ettt sttt et eb e ene e 77
Figure 66 - Sample Screenshot 0f SPEEd TESt.......cccviiiiiiiieceee e 77
Figure 67 - Sample Screenshot of Angle Before The TeSt.......cccvevvviiiiieiiee v 78
Figure 68 - Sample Screenshot of Angle After The TeSt......cccvveiiiie i 78
Figure 69 - Schematic Of TUMNANGIE TESES ...cueiiiie ettt e e sae e 79
Figure 70 - Sample Screenshot of Angle Before The TurnTOANGIE TeSt.....oevvevveciviiievieieesee e 80
Figure 71 - Sample Screenshot of Angle After The TurnTOANGIE TStccvviriiiiiriiiiireceeeen 80
Figure 72 - Sample SetDistance 1 m Test SCreenShot........ccccvviiiiiiiies e 81
Figure 73 - Sample SetDistance 2 m Test SCreenShot ..ot 82
Figure 74 - Sample SetDistance 3 m Test SCreenShot ..o 82
Figure 75 - Obstacle Avoidance Setup on the RODOLcccoiiiiiiiiii e 83
Figure 76 - Depth Map Divided into Three WINQOWS..........ccveiveiiiieiie i ese et se e 84
Figure 77 - Sample Obstacle Avoidance SCreeNSNOLS..........cccveiveiieieiie s 85
Figure 78 - Serial Port Handling AIGOrithMccooiiiiiiic e 93

XV

XVi

CHAPTER 1

INTRODUCTION

From the invention of robots to present day, robots have been involved increasingly in our daily life.
As a result of accelerated development of technology in the past several years, the use of robot
increased exponentially and even more it will increase to a greater extent in the future.

Robots are used in a wide variety of fields. Robots are used in industry in every area since they are
accurate, fast and productive, for example automotive industry. Also in medical industry, robots that
can perform surgery are used greatly because in some surgery a small amount of hand shake will risk
the patient. In addition, robots are used for removing landmines, defusing bombs, exploring dangerous
areas where human life cannot be risked. Even more, robots are used in space, for example Moon and
Mars, where humans cannot work or cannot work for long time. On the other hand, robots can also be
used for simple tasks. To give an example, floor cleaning or vacuuming robots are this type of robots.
Also, there are robot hobbyists where the only purpose is entertainment and fun. So, robots are in
everywhere now in our life.

One of the hot topics in robotics is autonomous mobile robotics where robot is working without
requiring human supervision. In this field, solutions for navigation, planning, localization, and similar
problems are sought.

Many research institutions, universities and industry are investing a lot of resources and time on
research in this field. They are trying to attract students and researchers to study in this field because
of the potentials and they know the importance of the topic.

A typical observation was that various robotic applications always start from scratch. That is
remarkable since most of the projects deal with similar problems. The development of mobile robotic
systems is a demanding task regarding its complexity, required resources and skills in multiple fields
such as software development, artificial intelligence, mechanical design, electrical engineering, signal
processing, sensor technology or control theory. Current mobile robot systems often are monolithic,
highly integrated prototypes that took long time to develop, they are costly and hard to maintain. Also
robots tend to grow old quite quickly when used frequently or used under highly physical stress or
when the robots hardware simply gets outdated after a few years. Fluctuation of people combined with
long training times for new team members and loss of knowledge are other difficulties we frequently
experienced.

The aim of this thesis is to cope with such diverse difficulties by using modular, component-oriented
design approaches for mobile robot prototyping. The approach should enable developers to focus on
their specific domain, still being able to have a clear comprehension of the entire system by help of
different levels of abstraction and well defined interfaces to hardware and software modules.
Furthermore, (re-usability) should be maximized by having well documented, system components of
manageable size.

1.1 Problem Description

Most universities and other academic institutions use low-cost and commercially available robot
platforms to introduce their students to robotics and to perform on them simple robot applications.
These robot platforms are also the type usually purchased by private robot enthusiasts due to their low
cost, ease of use, and availability. The main problem with these robot platforms is that they cannot be
used for advanced robot applications, because they do not fulfill requirements such as:

* Processing power — needed for processing-intensive applications such as running algorithms in the
field of machine learning, and image recognition.

 Flexibility

* Extendibility

» Power consumption — important for mobile robots, since they usually get their power supply from
batteries.

Because of these restrictions, low-cost robot platforms are mostly only used for robotic introductory
courses and in simple robotic applications by the academics, and by robotic enthusiasts who can
afford them because of their low cost. A popular low-cost and commercially available robot platform
that is widely used in the academics is the LEGO™ Mindstorms. For more advanced robotics
applications, different classes of robot platforms are used. There are not many types of these platforms
available commercially, or at least they are not easily available. This is probably due to the high cost
connected with purchasing them, they often do not fulfill the specific requirements wanted, and
because universities and other academic institutions usually want to gain new experiences and
knowledge by designing and building their own robot platform. However, developing a new robot
platform costs a lot of time and money, and besides the actual designing and implementing, the
documentation has to be created, bugs and upgrades have to be continuously be made to it. Therefore,
developing your own robot platform is an interesting choice when it is going to be reproduced in a
large quantity, or if new experiences and know-how should be gained.

1.2 Thesis Objectives

The aim of this thesis is to build a mobile robot platform to be used for mobile robot research. The
platform should enable securely mounting / carrying of different sensors and hardware. Also, the robot
should safely navigate over common indoor obstacles such as carpets, doorsteps etc. And the robot
should have odometry as well as a digital compass as basic sensors.

Basic sensors and actuators should be accessible to other platforms on the robot (such as a laptop,
tablet pc etc.) through a standardized interface. Hence, basic communication protocols should be
defined and implemented.

1.3 Overview of Thesis

The outline of the thesis is as follows. The next chapter “Literature Survey” is presented performed on
the related subjects and robot platforms. After the literature survey, in chapter 3, the overall design
procedure of the thesis is described. In chapter 4 “Robot Platform Configuration and Design
Parameters”, the overall design configuration and parameters are introduced and described. Later, the
control system design is described in chapter 5. The performance of the robot platform is tested in the
chapter 6 “Results and Discussion”. And in the last chapter, chapter 7 “Conclusion and Future
Works”, the conclusion and possible future work is studied.

CHAPTER 2

STATE OF THE ART

In this chapter the results of conducted literature survey are presented. Survey is based on the
requirements and objectives stated at the introduction which revealed platforms for education and
research. Several example platforms, found at the survey, are analyzed.

In the survey, Pioneer 3-AT robot is the first wheeled small sized mobile robot. Mobile Robots Inc.
developed the Pioneer 3-AT robot which can be seen in Figure 1. It costs about $4,000. The robot’s
locomotion system is formed as four wheel differential drive. This platform is able to move with
speed up to 1.2m/s and able to climb up to 20° slopes. Its dimensions are 50cm by 49cm by 26¢cm. The
platform can operate up to 4 hours on a single charge.

Figure 1 - Pioneer 3-AT [1]

Koala Il is another popular wheeled robot platform (Figure 2). The K-TEAM Corporation developed
the robot. Koala Il is able to climb up to 43°. Also, the robot’s maximum speed is 0.6m/s. In addition,
base weight of the robot is 4kg with the batteries; maximum payload capacity is 3kg which can be
mounted to the robot such as custom built accessories can be used in expansion modules. It consists of
32cm by 32cm by 20cm dimensions. It can operate about 4 hours.

Figure 2 - Koala Il [2]

Another robot found within the scope of our survey is Gaia-2 (Figure 3). AAl Canada Inc. produces
the robot. The robot’s highest speed is 0.8m/s. Base weight of the robot is 40kg, also it can carry 20kg.
Its dimensions are 49cm by 53cm by 26.5cm dimensions. It has ability to go over 15cm high
obstacles. It can operate about 5 hours.

Figure 3 - Gaia 2 [3]

A laptop and a Microsoft Kinect sensor are used together on the Eddie robot platform in Figure 4. The
laptop helps to control main unit of the robot, while Kinect is a robot sensing input device. Two 12
VDC electric motors energize the platform, each actuating a single wheel and blind spots are
prevented by the IR and ultrasonic distance sensors which are not covered by the Kinect sensor.

The USB interface connects the platform and the laptop which is the only probable connection. The
Parallax’s own Propeller P8X32A microcontroller is the controller of the platform, which has 8 32-bit
cores. It has an 8-channel 10-bit ADC and numerous 1/O ports. 12V, and 14,4 AH gel-cell batteries
create power, to sustain up to 7 hours activity the kit includes a charger. It costs approximately
$1.200.

Figure 4 - Parallax Eddie Robot Platform [4]

Carnegie Mellon University has developed the Tekkotsu-based robot. The robot is designed to have
several developing application such as real-time motion control, forward and inverse kinematics,
remote monitoring, teleoperation and localization. iRobot Create 4400 platform carries on Asus Eee
PC 1000-series netbook which is essential kit for the Calliope iRobot seen in Figure 5. Its price tag is
around $1.000.

The Ubuntu Linux and the Tekkotsu software suite are pre-installed in the laptop. Written C++ it also
makes use of third party libraries such as NEWMAT, libjpeg, libpng, libxmI2 or zlib. An extensive set
of commands and the documentation are being readily available. With the help of a USB, a 3 Ah
NiMH battery and a charger connect the laptop and the platform’s communication.

Figure 5 - Calliope iRobot Create Netbook Development Platform [5]

Nexus 4WD Mecanum robot (Figure 6) is an Omni wheeled 4- wheel drive robot platform. Its control
is based on Arduino microcontroller.

Swedish wheel type has been quite useful for this platform because it enables the robot to move
holonomically, i.e., the platform can move backward, forward, sideways or turn around itself where
the speed and rotation direction of each wheel can be separately controlled. Its sturdy platform is
made of aluminum alloy which is around 4 kilograms. There is a pivoting suspension mechanism in it
to guarantee effective surface contact of each wheel.

Four 12V DC motors with encoders actuates the wheels, 4 ultrasonic sensors, 4 IR sensors and an
Arduino 1/0 expansion board are presented. There is also a NiMh battery and a charger in it. The
robot is nearly $1.500.

Q\

Figure 6 - Nexus Robot 4WD Mecanum Robot [6]

The Dr. Robot Sentinel3 has several features such as navigation, recharging itself, and teleoperation.
The Dr. Robot Sentinel3 base, which can be seen in Figure 7, weights 6kg, has a sturdy aluminum
chassis and can lift up to 15 kg. Twin 12 VDC motors and integrated optical encoders actuate the
platform. It has ability to connect to a standard 802.11b/g Wi-Fi network.

It has a 704x480 resolution camera, 3 ultrasonic sensors and 2 pyro electric sensors. It has 2 12 V 3.8
Ah NiMH batteries. It has a joystick for teleoperation and software for monitoring. The value for this
platform is 12.000 USD.

Figure 7 - Dr. Robot Sentinel3 Wi-Fi Mobile Development Platform [7]

The Jaguar mobile platform (Figure 8) is the product of Dr. Robot; it is suitable for such condition
such as extreme terrains. It has tracked rolling chassis with two 360 degree articulated arms,
independent, and depending on customer specification, with the help of these features, the platform
becomes versatile. In order to actuate the traction system 24VDC motors is used, it helps to climb
slopes up to 45 degrees, and also it can surpass stairs and can reach the top speed of 7 km/h.

The robot has an extremely sturdy chassis; the base weight of the robot is around 22kg. The robot has
ability to navigate autonomously and it can also connect to 802.11G/N Wi-Fi network. It has wide
variety of sensors such as camera, IMU, GPS. This platform has a complete SDK with data protocols,

sample codes and support for MRDS, MS Visual Studio, and Matlab etc. It is powered by 22.2 V 10
Ah LiPo and the price for this robot is 11.000 USD.

Figure 8 - Dr. Robot Jaguar Tracked Mobile Platform [8]

A more affordable, yet sturdy and customizable platform are available from InspectorBots, in the form
of the MegaBot 4WD robotic platform (Figure 9). It can operate indoor as well as outdoor and can be
fitted with a wide range of auxiliary equipment. This is a heavy-duty platform, equipped with hi-
torque electric motors that provide a 900 kg towing capacity and can even carry a human. It can be
used for entertainment purposes as well in rescue or security applications. The platform has a weight
of about 80 kg and can tackle slopes up to 30 degrees. The chassis is made of steel and is water
resistant.

It is a modular platform so that any hardware can be installed onto it, according to the requirements
and applications. It has a price tag of around 7.000 US dollars.

Figure 9 - InspectorBots Mega Bot Wireless 4WD Robot Platform [9]

The CoroWare CoroBot CB-W Robot Development Platform is a capable, expandable and affordable
robotic platform that comes fully assembled with an application to teleoperate right out of the box.
The teleoperation software allows the user to remotely control the robot and read sensors. Complete
source code is included.

CoroBot (Figure 10) was created to minimize the complexity of robot development. By combining a
powerful PC-class platform with a robust, object-oriented software development system, the CoroBot
is ready to rapidly deploy and develop robotics solutions. The CoroBot also assists the hardware
developer with additional physical mounting space, ports, sensors and communication devices.

Figure 10 - CoroWare CoroBot CB-W Robot Development Platform [10]

Seekur Jr (Figure 11) is a skid steer, all-weather robot platform for research, security and inspection
use. Seekur Jr's powerful drive motors allow movement up steep slopes and over rough terrain.
Manipulation, sensing, additional computing and wireless communication can be added to fit any
application.

Seekur Jr brings the advanced technology architecture of the larger Seekur robot to into smaller and
more affordable package, and provides a much more robust and capable option than the Pioneer AT.

Figure 11 - Seekur Jr [11]

The Tetra-DS 1V Mobile Robot Platform (Figure 12) is an advanced indoor robot platform used for
developing and testing autonomous robot locomotion technology and programming. It is composed of
the body and control boards. Modular design of the control boards allow for easy maintenance and
future upgrade.

Use of differential drive and high performance AC servo motor provides superior speed and payload
handling to the platform. Mounting holes are provided at top of the platform to conveniently attach
various sensors and devices utilized for developing autonomous movement software.

Figure 12 - Tetra-DS IV Mobile Robot Platform [12]

The comparison of similar robots in the literature is given in Table 1.

So far the analyzed robot platforms are not modular as this thesis indicates. There are two examples in
the literature where the objectives of this thesis are in parallel. They are described below.

First one, the Volksbot robot which is a flexible component based mobile robot system. Volksbot is a
flexible and modular mobile robot construction kit. The component based approach offers a plug-in
architecture with open interfaces in mechanics, electronic hardware and software. Quick integration of
own modules combined with reuse of existing ones foster application-specific but effective system
development.

Figure 13 — Volksbot [13]

The VolksBot construction kit addresses the rising demand for reusability in software, electronic
hardware and mechanics by offering open and clearly defined interfaces as well as standardized
components in all three fields.

The second one is MoRob toolbox. The core of MoRab is the Scalable Processing Box (SPB), a
standardized processing platform for easy experimentation with any kind of robotic platform. Key
characteristics are scalable performance, modular setup to facilitate tailoring to individual courses,
flexible interfaces and easy configuration. Furthermore, MoRob aims to provide a standard set of
control modules and teaching units, with a particular focus on project-based learning.

Figure 14 - MoRob Scalable Processing Box [14]

It is possible to rearrange SPBs in a similar way to Lego building blocks to fit different scenarios. The
software architecture (Linux Real-time Environment - LiRE) offers a real time framework for easy use
of interfaces and algorithms. All software is publicly available on a website (open source approach);
therefore the toolbox is open for extensions and improvements by the educators and robotics
community, as well as students.

Table 1 — Comparison of Similar Robots

Mobile Robots Pioneer 3DX [

Pioneer 3-AT

Dongbu Robot Tetra-D5 111 &

Dimensions

2 2 22 2
(LeWxH) [mm] 430x400x245 500x490%260 522x456%295
Weight [kg] 12 12 =20
Battery 12V, 7Ah 12V, 7Ah 24V 20Ah Li-PB
RunTime (hour) 8 (max.) 8 [max.) 8 [max.)
Charging Time [saat] |2,4-12 24-12 1,5
Driving System 2 wheel differential drive, one 4WD 2 wheel differential drive, one
- caster at rear caster at rear
Wheel Dia [mm)] 200 200 240
4x Geared DC Motor, 100 PPR
Drives 2 x Geared DC Motor Fare orer 2 x Servo Motor
Encoder
Max. Speed [m/s] 1,2 0.8 1,5
Max. Tilt Angle [%] |25 33 -
Max. Payload 23 (diiz yiizey) 15 80
Capacity[kg] 14 (9513 efim)
8 ultrasonic range finders at rear 7 adet ultrasonic
.) and front
Sensors g L;]t;'asotmc range finders at rear Laser scanner IR Sensor
and from DGPS
Laser scanner Gripper Laser scanner

6DOF IMU Stereo Range Finders GPS
Optional Sensor GPS Compass Pan/Tilt camera
Camera Sterovision camera
Gyroscope
EEBX Form Factor EBX Form Factor Nano ITX Form Factor
3 PC/104+ can be inserted 3 PC/104+ can be inserted Via EPIA N20O
Mainboard Versalogic Cobra SBC Versalogic Cobra SBC 32G:55D
Motion Control Button Emergency Button
Ch: tatus led
Ek ozellikler Motion Control Button arge status e
Speaker
?;;::;fo frrare Linux/Windows Linux/Windows Linux Ubuntu
Fiyat 10500 § 10500 § 135008

Table 1 (continued) - Comparison of Similar Robots

L o

Dr. Robot 190 P

Dr. Robot Jaguar el

Seekur Jr, Mobile Robots

Dimensions
2
(LxWH) [mm] 380x430x300 570x530x233 1198x835x404
Weight [kg] 5 19,5 77
Battery 2 x 3800mAh 22,2V 10Ah LiPo 3x24V NiMMH
RunTime (hour) 3 (max.) 2 (max.) 3.5 (max.)
Charging Time [=aat] |- - 3
2 wheel differential drive,
Driving System phee CHerennal anve one lawp 4WD
- caster at rear
Wheel Dia [mm] 178 - 406
. 2x 12V Geared DC Motor, 800
Drives PPR Encoder 4 x DC motor
Max, Speed [m/s] 0,73 4,15 1,2
Max, Tilt Angle [%] |- 45 75
Max. Payload 15 30 (tasima) 40
Capacity[kg] 50 (gekme)
740480, 30 fps 10x dijital 640x480, 30 fps color camera Phytec MPC-565
Z00m camera
Sensors 2 Pyroelectric Human Sensor | 3Hz GPS Laser Range Finders
3 sonar sensor QDOF IMU Stereo Vision
7 IR range sensor temperature sensor 6DOF IMU
RFID Robotic Arm
Accelerometer GPS
Optional Sensor Laser scanner Laser scanner
Temperature sensor
Mainboard - -
Water and dust proof
Resists 1.2 m fall P54
Ek zellikler 320x240 Touchscreen —
Operating Microsoft Robotic Studio Microsoft Robotic Studio ARIA
System/Software
Fiyat 63003 20008 80003

To sum up, although example robot platforms so far observed during the literature survey can carry
different kinds of payload with respect to the different missions and even can change its locomotion
type, they cannot be qualified as truly modular in the context of this thesis due to their lack of ability
to have a flexible design capacity for the size and shape of their bodies which is one of the goals of the
robot platform described in this thesis.

10

CHAPTER 3

DESIGN PROCEDURE

With the aim to develop an approach for multi-purpose robot prototyping, several design goals in
hardware and software can be defined which are illustrated in the following. The goals are labeled in
brackets (G1-G12) for later reference.

One of the major goals is to reduce costs, time and resources needed to conduct mobile robotic
projects (G1). This should motivate more research groups from various backgrounds to start or
continue activities related to mobile robotics in education and research. Also it should help to generate
interest and open the market for new robot applications with more companies being willing to invest
in robot technology and prototyping projects.

The complexity of recent robotic systems grows constantly with the complexity of the applications
they are designed for. Modern mobile robots usually require a variety of different sensors, actuators
and controllers but also algorithms and methods for signal processing, sensor data fusion, planning,
localization, navigation and control of the robot, especially when being used in real world
environments. The approach therefore should support the developers to manage this constantly
growing system complexity (G2).

The system should allow the exchange and reuse of existing components in hardware and software
(G3). For example it should not be necessary to start a system development from scratch every time a
new robot needs to be built.

Also, an already existing robot platform should be easily reconfigurable and extendable by use of
these hardware and software components (G4).

Reconfiguration and maintenance of the platform should be efficient and should not require special
tools or machinery (G5). This way, developers are independent from having access to special facilities
and experts and have more time to spend on research and development.

Often, groups already have worked in the domain of mobile robotics in the past. Therefore they should
be able to efficiently integrate already existing technology into the system (G6).

The approach should help to foster the exchange and distribution of knowledge (G7). The design of
such systems usually requires the interplay of many different individual skills which are distributed
over a group or multiple groups of people.

The mechanics of the kit should be robust and scalable and allow for high payloads and high
dynamics (G8).

To offer a wide range of possible applications, the kit should allow for diverse robot variants for
different scenarios (G9).

The training periods for new users should be short (G10), so that they can produce results more
quickly.

Here is a summarization of the design goals:

G1. Reduce costs, time and resources in mobile robotics projects
G2. Be able to manage system complexity

G3. Allow exchange and reuse of existing components

G4. Allow easy reconfiguration and extension of the systems
G5. Allow simple and efficient maintenance

G6. Allow efficient integration of existing technology

G7. Foster exchange of knowledge

11

G8. Robust and scalable mechanical design
G9. Allow for a wide range of robot variants and applications
G10.Allow for short training periods of new users

From these goals, we derived various design criteria for the construction kit in hardware, software and
mechanics.

To reduce the costs and efforts for manufacturing and design of special components, standardized,
available industrial components should be used if applicable (D1).

To keep the system complexity low and to be able to maintain the construction kit, the amount of
components should be kept minimal, yet offering a high grade of re-configurability. (D2)

Components should possess a fine granularity and should be universal to ensure reuse (D3).

A comprehensive mechanical component library should be built up using standard CAD software
tools (D4). Before actually building the robot, a complete design and simulation should be done in
CAD avoiding major design errors and allowing fast iterations during the design phase.

The same holds true for software development, where a software library should be built up using
state-of-the-art software development standards regarding architecture, documentation and coding
conventions (D5).

Besides development of own software, existing software and frameworks should be used and
integrated into the approach (D6).

When developing a component in hardware or software, documentation standards for developers and
users should be applied (D7).

Different layers of abstraction should be provided during system integration and development in
hardware and software (D8). This should help to reduce training times and allow a wide range of
people from different technical background to work with the system. Clear interface definitions for
hardware and software components have to be defined and maintained (D9).

Furthermore to keep the number of possible variants high and the system complexity low,
dependencies between components should be avoided (D10).

Here is a summarization of the design criteria:

D1. Extensive use of standardized, industrial components

D2. Small number of different components with high reconfigurability
D3. Fine granularity of modules to ensure reuse

D4. Build up mechanical component library in CAD

D5. Build up software library with documentation and coding standards
D6. Use and integrate existing software and frameworks

D7. Apply documentation standards for components

D8. Introduce multiple abstraction layers

D9. Clear interface definitions for hardware and software components
D10. Avoid dependencies between components

3.1 Modular Frame Design

Several ways to produce the chassis is compared in this section. In order to meet the design
requirements aluminum material has to be used in the robot chassis because of its weight advantage
over steel.

Aluminum is the best option for chassis material because of its low density with respect to steel and
ease of machining. However, steel is also seems an appropriate choice but its density is about three

12

times aluminum so it increases the weight of the robot. Other polymeric materials are not appropriate
because of their low flexibility, low ductility and inferior machinability. Additionally, to access non-
metallic materials is more difficult than metals. To sum up, after all considerations, aluminum will be
the right choice.

Using aluminum profiles and welding a chassis can be constructed. An example construction is given
in Figure 15. This technique can be used by using standard square aluminum profiles. Then, after
constructing the frame the profiles should be welded to build the chassis. This construct is rigid,
however, since the design requirements states that the platform should be modular, low cost and easy
to use this technique is eliminated. Because welding process is high cost and time consuming.

Figure 15 - Chassis designed with aluminum profiles

Another technique to construct the chassis is using sheet metals. The design is done using sheet
metals. Than the parts are produced using laser cutters. After that, the parts should be bend according
to designs. And later, the assembly of the chassis is realized. An example design is given in Figure 16.
Just like the previous example, this technique is also not suitable for our design requirements.

Figure 16 - Chassis designed with sheet metal

On the other hand, it is decided to use standard aluminum sigma extrusions (X-beams). They provide
high rigidity, are light weight and offer a variety of different connections. Also, all the surface of these
profiles can be used as connection surface. This feature is very important for our robot platform and
design requirements because it satisfies and gives us the opportunity to be modular. An example
design is given in Figure 17.

Size and shape of the robot’s main frame can be adapted individually to the needs by simple
mechanical processing, i.e. cutting and screwing. By using pluggable t-nut-connectors, it is possible to
establish new connections without having to decompose the frame. All sides of the X-beams can be
used to connect to additional elements. In our design, all hardware components are connected to the
main-frame. Therefore only geometrical dependencies between the component and the main-frame
occur, not between the components themselves. All components like batteries, motor controller, drive
units and sensors are connected to a rectangular single layered main frame. With this, the
repositioning of components and scaling of the platform can be easily done.

13

Figure 17 - Chassis designed with sigma extrusions

3.1.1 Modularity

We decide to separate the robot into two parts. The lower part of the robot which will become the
mechanical platform and is worked out further in this chapter. This part will include the chassis and
basic components of the platform, like motor, motor driver, battery, and controller. The upper part of
the robot will be the platform which can contain the equipment needed to fulfill a desired robot task.
In this way modularity is introduced in the design phase. The upper platform holds the computer,
sensors and specific electronics and is mechanically coupled to the chassis.

3.2 Moving Mechanisms

The motor block of the robot is intended to be modular so that it can be separated from one platform
and can be mounted to another combination of a platform. Therefore the analysis and the design are
done accordingly.

3.2.1 Traction Mechanism

Pallet provides better traction performance in rough surfaces, but they have higher cost and harder to
assemble. Wheels are easier to assemble but their traction is less than the pallet’s. However, we plan
to use the robot in indoor environment mostly. Therefore, we will use wheels because of its ease of
assemble and low cost. In addition since the platform is modular, pallet can also be used according to
the needs.

In design requirements it is specified that the robot should be modular and can be configurable
according to the needs of the problem. Therefore, the driving unit should be designed accordingly.
Whether wheel or pallet is used, it should work directly, without depending on another module.
Therefore, it is not necessary to specify a number of wheels for the robot. It is defined by the problem
that robot will be used for. So, a standard bearing housing is used as a connection to the chassis. The
main structural element of the driving unit will be this bearing housing. It can be selected also
according to the needs of the problem. After selecting it, one part —shaft- should be produced in order
to connect the motor and the wheels. This part should be designed and manufactured. However, this
part can also be designed modular so that different motors can be used. Only the coupling between the
shaft and the motor should be selected accordingly. On the other side, the wheel size and diameter
also can be selected differently and shaft should be designed so that the different diameter wheels can
be used.

3.2.2 Shaft

The motor shaft which holds the wheel one side and motor other side is one part that is machined. It is
designed to be used with different dimension wheel and different types of motors (however in this
thesis we use one type of motor). The shaft is designed for wheel to be threaded to it, so that it can be
used with different wheel dimension. This way the machining process is also decreased. The wheel
will be secured by using contra nuts. The bearing is also secured with nuts. The coupling is mounted
to connect to motor. In Figure 18, the design motor shaft can be seen.

14

Figure 18 — Motor Shaft Design
3.2.3 Coupling

The coupling (Figure 19) will be the part that will connect the shaft to the motor. It is selected as a
flexible coupling so that different types of motor can be used.

Figure 19 — Coupling
3.2.4 Bearing House

The bearing house (Figure 20) is also selected from the market, not designed and produced. The
pillow bearing is suitable for our application. Different dimensions can be selected according to the
needs of the application. We have selected the housing with the diameter of the bearing is 12mm.

Figure 20 - Pillow Bearing

Therefore, after the design and production the motor block of the platform is assembled and can be
seen in Figure 21.

Figure 21 - Wheel Block

15

3.3 Hardware

In this section, we will explain the details about the hardware elements of the prototype. All of the
hardware is selected so that it will be cost efficient and easy to get.

First minimum power required for this robot platform is calculated, then by using this value an
appropriate motor and battery is selected, and then detailed design of the wheel motor system and
main body is presented.

3.3.1 Power Requirement Calculations

For calculation of the minimum required power, maximum estimated total force and the maximum
desired speed must be known. The maximum estimated total force is equal to the sum of gradient
resistance force, air drag force (which can be assumed as zero), rolling resistance force and inertial
force, which is equal to mass times acceleration.

Frotat = Fgragient + Fair T Frotting + Mm X Qnax (3.1)
Where:
Frotal : Maximum estimated total force
Fyragient : Gradient resistance force
Fuir . Air resistance force
Froliing : Rolling resistance force
M, : Total mass of the robot paltform
Amax : Maximum acceleration of the robot platform
damax

Figure 22 - Forces acting on the Robot Platform

The maximum total force calculation is performed for a four wheel configuration. The forces acting
on the robot platform is shown in Figure 22. Calculations regarding these forces can be seen at below.

The first component that is calculated is the Gradient resistance force. Gradient resistance force is the
component of the weight of the module that is parallel to the road. Maximum gradient force occurs
when the robot module climbs a slope with the maximum designated angle which is determined

as20 ° . The formula of the gradient resistance is:

16

Fgradient = Mm X sina X) (32)
Where:

a : Angle of the slope that robot module is climbing up

The result of the (3.2) for 15 kilograms of estimated robot platform mass and 20 ° slope (because the
robot will be mainly used indoor) is:

Fyragient = 15 X sin 20 ° x9.81=5033N (3.3)

The third component, rolling resistance occurs mainly due to the deformation on the road and the tire
surfaces and it can be calculated with the formula below:

Froning = fr X W (3.4)
W =M, XcosaxXg (3.5
Where:

fr : Coefficient of rolling resistance

w : Platform tire load

Maximum estimated total force is assumed to be occurring at robot moving on a slope and indoor. For
this reason £, is chosen as 0.020 from Table 2. By using this at formula (3.4) for a robot platform with
15 kg mass, the estimated rolling resistance is calculated as:

Froning = fy XW = f,, X M, X cosa X g = 0.020 X 15 X cos 20° x 9.81 = 2.77 N (3.6)

Table 2 - Estimated coefficient of rolling resistance table [20]

Road Surface fr

Very good concrete 0.008-0.010
Average concrete 0.010-0.015
Concrete in poor condition 0.020

Very good tarmac 0.010-0.0125
Average tarmac 0.018
Tarmac in poor condition 0.023

Very good macadam 0.013-0.016
Average macadam 0.018-0.023
Dusty macadam 0.023-0.028
Good Stone paving 0.033-0.055
Stone paving in poor condition 0.033-0.055
Snow(50mm layer) 0.025
Snow(100mm layer) 0.037
Unmaintained natural road 0.080-0.160
Sand 0.150-0.300

17

The last component of the estimated total force comes from the acceleration. It is assumed that the
robot has an acceleration of 0.5 m/s? at the maximum power need conditions. The estimated
maximum total force can be found when the results of the equations (3.3), (3.6) and the maximum
acceleration and determined mass of the module are put into the equation (3.1).

Frotar = Fyragient + Fair + Frotting + My X Gmax = 50.33 + 0 + 2.77 + 15 x 0.5

Frotas = 60.60 N (3.7)

After the calculation of the maximum total force, minimum required power output of the motor can be
calculated by multiplying the maximum total force with the desired maximum operational speed.
From here the power is calculated as:

Py = Frotar X Vinax (3.8)
Where:

Py : Minimum required power output of the motor

Viax : Determined maximum speed of the robot platform

Maximum desired speed for the robot platform is determined to be in the range of 0.6 to 1.2 m/s. For
this calculation maximum speed is assumed to be 1.2 m/s. By putting the values of the variables of
equation (3.8) minimum required power is found as:

Py = Frotar X Vnax = 60.60 X 1.2 = 72.72 W (3.9)

It should be noted that calculated minimum estimated power requirement is for 4 wheeled robot
platforms the power requirement of a single wheel is 18.18 W. When criteria such as procurement
time, size, power output, price and aftermarket are taken into consideration, most eligible and
affordable motor will be the Pololu 37D 12 V motors. The 100 rpm selection of this motor will give us
roughly 23 W of power and this satisfies our power requirement.

3.3.2 Motor

This 2.71" x 1.45" x 1.45" gear motor is a powerful 12V brushed DC motor with a 102.083:1 metal
gearbox and an integrated quadrature encoder that provides a resolution of 64 counts per revolution of
the motor shaft, which corresponds to 6533 counts per revolution of the gearbox’s output shaft. These
units have a 0.61"-long, 6 mm-diameter D-shaped output shaft. Key specs at 12 V: 100 RPM and 300
mA free-run, 220 oz.-in (16 kg-cm) and 5 A stall. The dimensions of the motor is given in Figure 23.

The face plate has six mounting holes evenly spaced around the outer edge threaded for M3 screws.
These mounting holes form a regular hexagon and the centers of neighboring holes are 15.5 mm apart.

M3 Tapped Hole

www.pololu.com

Figure 23 - Pololu 37D 100rpm DC Motor [15]

A two-channel Hall Effect encoder (Figure 24) is used to sense the rotation of a magnetic disk on a
rear protrusion of the motor shaft. The quadrature encoder provides a resolution of 64 counts per

18

revolution of the motor shaft. To compute the counts per revolution of the gearbox output, multiply
the gear ratio by 64. The motor/encoder has six color-coded, 11" (28 cm) leads:

Figure 24 - 37D 64 CPR Encoder [15]
The cabling of the motor and encoder is given in Table 3.

Table 3 - Encoder Cable Functions

Color Function

Red Motor power (connects to one motor terminal)
Motor power (connects to the other motor

Black .
terminal)

Green Encoder GND

Blue Encoder Vcc (3.5 - 20 V)

Yellow Encoder A output

White Encoder B output

The Hall sensor requires an input voltage, Vcc, between 3.5 and 20 V and draws a maximum of 10
mA. The A and B outputs are square waves from 0 V to Vce approximately 90° out of phase. The
frequency of the transitions tells you the speed of the motor, and the order of the transitions tells you
the direction.

By counting both the rising and falling edges of both the A and B outputs, it is possible to get 64
counts per revolution of the motor shaft. Using just a single edge of one channel results in 16 counts
per revolution of the motor shaft, so the frequency of the A output in the above oscilloscope capture is
16 times the motor rotation frequency.

3.3.3 Energy Supply

This platform needs an energy supply to be able to perform tasks autonomously. Choosing a battery
configuration is a key feature in the design process. Actually this is an iterative process. The
dimensions, voltage, weight and recharge method of the battery configuration form restrictions on the
entire design process and determine directly the autonomy of the robot.

To achieve our requirements on energy supply we decide to use dry accumulator (Figure 25). The
choices were lithium polymer batteries, dry accumulator or battery packs. In terms of weight, the dry
accumulator is the heaviest one amongst these types. However, we would like our robot to be suitable
for self-charging - yet this thesis work does not need to demonstrate autonomous self-charging.
Therefore, choosing a lithium polymer battery would increase the difficulty of the self-charging
process since the charging method for those batteries needs proper care and a special control unit is
required. Charging, discharging, and storage all affect the lifespan of batteries. Also, LiPo batteries
are still expensive compared to NiCad and NiMH, but coming down in price all the time. In addition,
LiPo’s don’t last that long, perhaps only 300-400 charge cycles. Therefore, we eliminate the LiPo
batteries.

19

On the other hand, a battery pack is a set of any number of (preferably) identical batteries or
individual battery cells. They may be configured in a series, parallel or a mixture of both to deliver the
desired voltage, capacity, or power density. An advantage of a battery pack is the ease with which it
can be swapped into or out of a device. This allows multiple packs to deliver extended runtimes,
freeing up the device for continued use while charging the removed pack separately. However, we
want our platform suitable for self-charging and this choice is also not proper for the job. Also,
compared to dry accumulator they are expensive.

Figure 25 - 12V dry accumulator

Nowadays a popular voltage seems to be 12V, because most of the popular electronics use 12V as
power input.

The Robot will have output sockets for 12V and 5V.

3.3.4 Microcontroller

Arduino has become a popular open-source single-board microcontroller among electronic hobbyists,
and it is gaining acceptance as a quick prototyping tool for engineering and educational projects also.

Suitable for educational purpose because;

e Low cost: The components must be affordable.

e Easy to assembly due to the constitution of the modules.

e Able to run on different platforms: the overall system can operate in different operating
systems.

e Open hardware and open source: This means that the hardware and the software used has a
public access. Anyone can use it and improve it.

Arduino offers several models with different characteristics. The main differences between the
modules are the number of inputs and outputs, the type of microcontroller and the capacity of the
Flash memory. Taking into account the requirements, the best option is the Mega module because it
has the most input output pins.

As it can see in Figure 26, the Mega module provides different inputs and outputs, either analogs or
digitals. Moreover, also provides PWM outputs. The main features of the Mega module are the
following:

e Microcontroller : ATmega2560

e Operating Voltage : 5V

e Input Voltage (recommended) : 7-12V

e Input Voltage (limits) : 6-20V

e Digital I/O Pins : 54 (of which 15 provide PWM output)
e Analog Input Pins : 16

e DC Current per 1/0 Pin : 40 mA

e DC Current for 3.3V Pin : 50 mA

e Flash Memory : 256 KB of which 8 KB used by boot loader
e SRAM : 8 KB

e EEPROM : 4 KB

20

e Clock Speed : 16 MHz

Figure 26 - Arduino Mega module [16]

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54
digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTS
(hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header,
and a reset button. It contains everything needed to support the microcontroller; simply connect it to a
computer with a USB cable or power it with an AC-to-DC adapter or battery to get started. The Mega
is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

There are many other microcontrollers and microcontroller platforms available for physical
computing. Parallax Basic Stamp, Netmedia's BX-24, Phidgets, MIT's Handyboard, and many others
offer similar functionality. All of these tools take the messy details of microcontroller programming
and wrap it up in an easy-to-use package. Arduino also simplifies the process of working with
microcontrollers, but it offers some advantage for teachers, students, and interested amateurs over
other systems:

e Inexpensive - Arduino boards are relatively inexpensive compared to other microcontroller
platforms. The least expensive version of the Arduino module can be assembled by hand, and
even the pre-assembled Arduino modules cost less than $50

e Cross-platform - The Arduino software runs on Windows, Macintosh OSX, and Linux
operating systems. Most microcontroller systems are limited to Windows.

e Simple, clear programming environment - The Arduino programming environment is easy-
to-use for beginners, yet flexible enough for advanced users to take advantage of as well. For
teachers, it's conveniently based on the Processing programming environment, so students
learning to program in that environment will be familiar with the look and feel of Arduino

e Open source and extensible software- The Arduino software is published as open source
tools, available for extension by experienced programmers. The language can be expanded
through C++ libraries, and people wanting to understand the technical details can make the
leap from Arduino to the AVR C programming language on which it's based.

Some example shields for Arduino are as follows:
Wireless communication shield (Xbee)

Motor Driver Shields

LCD Shield

Ethernet Shield, etc.

3.3.6 Motor Driver Board

Rover 5 Motor Driver Board (Figure 27) is ideal for any small 4-wheel drive robotic vehicle. With
four motor outputs, four encoder inputs and current sensing for each motor.

21

Figure 27 - Rover 5 Motor Driver Board [17]

The motor drivers can be controlled by simply applying logic 0 or 1 to the direction pin for that motor
and a PWM signal to the speed pin. In this way, the speed and direction of four separate motors can be
controlled independently from only 8 GPIO pins. The encoder inputs on the driver board mix each
pair of encoder inputs using an XOR gate making it possible to read both inputs from a quadrature
encoder using only one interrupt pin.

Reading the current sensor output is easy, each current sensor pin will output about 1V for each Amp
of current drawn by the associated motor up to 5V. Connect the current sensor pin to the analog input
of your controller and you'll be able to detect stalls and other motor problems.

There are two power connectors on board. One is for 5V logic and the other is the motor supply. Be
sure to turn on your logic supply before applying the power source for your motors. The board is rated
for a maximum motor supply voltage of 12V.

Features:
e 4 x Low Resistance FET “H” Bridges

e Each Channel Rated for 4A Stall Current

e Easy-to-Use Control Logic

e Current Monitoring for Each Channel.

e Quadrature Encoder Mixing Circuitry
Includes:

e 4 Channel Motor Driver Board
e Mounting Hardware

3.3.7 Ultrasonic Ranging Module

Ultrasonic ranging module HC - SR04 (Figure 28) provides 2cm - 400cm non-contact measurement
function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters,
receiver and control circuit. The basic principle of work:

(1) Using 10 trigger for at least 10us high level signal,

(2) The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.

(3) IF the signal back, through high level , time of high output 10 duration is the time from sending
ultrasonic to returning.

Test distance = (high level time x velocity of sound (340M/S) / 2,

Wire connecting direct as following:

5V Supply

Trigger Pulse Input

Echo Pulse Output

0V Ground

22

Figure 28 - HC - SR04 Ultrasonic Ranging Module [18]

Electric Parameter

e Working Voltage : DC5V
e Working Current : 15mA
e Working Frequency : 40Hz
e Max Range : 4m
e Min Range : 2cm
e Measuring Angle : 15 degree
e Trigger Input Signal : 10uS TTL pulse
e Echo Output Signal Input : TTL lever signal and the range in proportion
e Dimension : 45*20*15mm
3.3.8 Kinect

Kinect is based on software technology developed internally by Rare, a subsidiary of Microsoft Game
Studios owned by Microsoft, and on range camera technology by PrimeSense, which interprets 3D
scene information from a continuously projected infrared structured light. The Kinect is equipped with
two sensors - a near infra-red camera used for depth detection, and a color camera. The depth sensor
consists of an infrared laser projector combined with a monochrome CMQOS sensor, which captures
video data in 3D under any ambient light conditions.

The Kinect sensor (Figure 29) outputs video at a frame rate of 30 Hz. The RGB video stream uses 8-
bit VGA resolution (640 x 480 pixels) with a Bayer color filter, while the monochrome depth sensing
video stream is in VGA resolution (640 x 480 pixels) with 11-bit depth, which provides 2,048 levels
of sensitivity. The sensor has an angular field of view of 57 horizontally and 43 vertically. The Kinect
sensor has a practical ranging limit of 1.2 - 3.5 m distance when used with the Xbox software. Figure
11 shows the device and some annotation indicating the cameras and projector.

Figure 29 - Kinect Sensor [19]

3.3.9 Digital Compass

The robot will have a digital compass to be able to get its heading angle. The strength of the earth's
magnetic field is about 0.5 to 0.6 gauss and has a component parallel to the earth's surface that always
points toward the magnetic north pole. In the northern hemisphere, this field points down. At the
equator, it points horizontally and in the southern hemisphere, it points up. This angle between the

23

earth’s magnetic field and the horizontal plane is defined as an inclination angle. Another angle
between the earth's magnetic north and geographic north is defined as a declination angle in the range
of + 20° depending on the geographic location.

A tilt compensated electronic compass system requires a 3-axis magnetic sensor and a 3-axis
accelerometer sensor. The accelerometer is used to measure the tilt angles of pitch and roll for tilt
compensation. And the magnetic sensor is used to measure the earth’s magnetic field and then to
determine the heading angle with respect to the magnetic north (Figure 30). If the heading with
respect to the geographic north is required, the declination angle at the current geographic location
should be compensated to the magnetic heading.

Pitch H»?au:m_)

Figure 30 - Roll, Pitch and Heading angles [21]

We will be using heading angle mostly in our robot platform.

When the device is at a leveled position, pitch and roll angles are 0°. Then the heading angle can be
determined as shown in Figure 31.

H Local earth magnetic field

Figure 31 - Heading angle Calculation [21]

Local earth magnetic field H has a fixed component H,, on the horizontal plane pointing to the earth’s
magnetic north. This component can be measured by the magnetic sensor sensing axes X,, and Y, that
are named as X, and Y},. Then the heading angle is calculated as:

Heading = arctan(yh/Xh)

In Figure 31, when the device body X, axis is parallel to H;, which is pointing to the magnetic north,
then X;, = max and ¥}, = 0 so that heading = 0°. Rotating the device clockwise on the horizontal plane,
the heading increases. When X, = 0 and ¥}, = min, then heading = 90°. Keep rotating until X;, = min
and Y, = 0, then heading = 180°. And so on. After a full round 360° rotation, the user sees a centered
circle if plotting X;, and Y;, values coming from the magnetic sensor measurements.

If the handheld device is tilted, then the pitch and roll angles are not equal to 0° as shown in Figure
32, where the pitch and roll can be measured by a 3-axis accelerometer. Therefore, the magnetic

24

sensor measurements X,,, Y,, and Z,, need to be compensated to obtain X, and Y, as shown in
Equation 2. And then apply Equation 1 for the heading calculation.

Fxc:u::elerometer

5- Pltch

Figure 32 - Tilted Position [21]

Horzontal plane

Xy = Xy cos(Pitch) + Zy, sin(Pitch)
Y, = Xy sin(Roll) sin(Pitch) + Y, cos(Roll) — Z,; sin(Roll) cos(Pitch)
Where X,,, Yy, and Z,, are magnetic sensor measurements.

We will use LSM303 Breakout Board - Tilt Compensated Compass (Figure 33) for this purpose. This
board is cost effective compared to other products and has tilt compensation on it.

Figure 33 - LSM303 Tilt Compensated Compass [22]

Figure 34 below shows the block diagram of an electronic compass system. Arduino is used to collect
the 3-axis accelerometer raw data for the pitch and roll calculation and collect the 3-axis magnetic
sensor raw data for the heading calculation. The following is the procedure for building a working
electronic compass system.

e Hardware design to make sure the MCU can get clean raw data from the accelerometer and
the magnetic sensor

e Accelerometer calibration to obtain parameters to convert accelerometer raw data to
normalized values for pitch and roll calculation

e Magnetic sensor calibration to obtain parameters to convert magnetic sensor raw data to
normalized values for the heading calculation

e Test the performance of the electronic compass system.

Pitch
3-axis -
accelerpmeter |
Analog to
9 Roll
digital ::> Microcontroller >
3-axis I converter Heading
magnetic sensor [—

Figure 34 — Block diagram of electronic compass system [21]

25

Therefore, after implementing this compass to the system we will have a heading angle of our robot
platform.

The calibration is run on the Arduino and the results for the calibration are given below. The
calibration is done using the open source calibration library of the LSM303 Compass.

{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

d min X: -489 ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

{ min X: -489 Y: -233 Z: -366 M max X: 30 ¥: 273 Z: -256

{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256 -
{ min X: -489% ¥: -233 Z: -366 M max X: 30 ¥: 273 Z: -256 i
< [b
[¥] Autoscroll :No line ending v: :115200 baud v:

\

Figure 35 - LSM303 Calibration Process Screenshot

The calibration process prints a running minimum and maximum of the readings from each
magnetometer axis. The final values for the minimum and maximum values are obtained and will be
used in calculating the heading after moving the LSM303 through every possible orientation.

With all these sensors and hardware, most of the robotic research algorithms can be run on the
developed robot platform. The next section will describe the control system, and communication
protocols of the robot, and how to start developing an algorithm.

26

CHAPTER 4

ROBOT PLATFORM CONFIGURATION AND DESIGN PARAMETERS

In chapter 3, the aluminum sigma profiles are chosen to build the robot platform chasis. It was stated
that the sigma profiles are modular, easy to assemble and the production time of the profiles are very
little compared to other methods. In this chapter some possible configuration of the robot platform
will be shown using this sigma profiles.

The simplest robot configuration is a two wheeled differential drive platform, which is illustrated in
Figure 36. The stability of the robot platform can be maintained by using internal balancing systems
or simply mounting caster wheel to the front and back of the robot platform.

Figure 36 - 2 wheeled configuration

Another configuration for the robot is 4 wheeled which will be the prototype we will be producing can
be seen in Figure 37.

Figure 37 - 4 wheeled configuration

27

Another configuration for the robot is 6 wheeled (Figure 38). This and any other configuration is
made only by defining the length, width and height of the robot and producing the chassis according
to these values. It is a very easy process because the sigma profiles are produced only by giving the
lengths. After that the assembly is done by just connecting the profiles with special connection parts.
Then the chassis is ready. After this the number of motor block should be decided and they also
connected to the chassis by 2 screws. Then the configuration is ready.

Figure 38 - 6 wheeled configuration

The dimensions and the motor number of the robot platform can be selected like mentioned above.
The sensors of the platform should also be selected to the specific needs. First of the brain of the robot
should be selected. A mainboard can be selected to be the processing unit of the robot as well as a
laptop can also be selected. A configuration with mainboard and a laser scanner is given in Figure 39.

Figure 39 - A mainboard configuration with a laser and ultrasonic sensor

Another alternative for the sensors, which we will be constructing for demo prototype, is given in
Figure 40.

28

Figure 40 - A notebook configuration with Kinect and ultrasonic sensors

The top and bottom layer of the robot is produced by using Plexiglas. The reason for that is firstly, its
production is easy. Secondly, after the production the manipulation of the Plexiglas is easy, if you
need additional mounting holes, it is very easy to operate on it. Thirdly, it is not conductive so there is
no risk of short circuits at the bottom part. Lastly, it will give a nice looking because it is transparent.

The ultrasonic sensor for both configurations will be used for blind spots where Kinect cannot get
readings.

As it can be seen from previous configurations a robot platform for specific needs can be constructed
very easily. A toolbox for the sigma profiles can be prepared for a lab and students can construct their
robots using this toolbox. The toolbox will be their standard components and everyone can construct
different dimension robots and can use different type of sensor for their research.

29

30

CHAPTER 5

CONTROL ARCHITECTURE DESIGN

In the scope of this thesis a simple controller system for the lower part of the robot platform is
implemented in order to perform low level actions like move forward, backward of turn.

The control architecture mainly consists of 2 microcontroller cards namely Arduino Mega and motor
controller card (Rover 5 Motor Controller Card). The motor controller card can drive up to 4 motor
simultaneously. The schematic of the microcontroller card and motor controller is given in Figure 41.
One Arduino will be used to control the motor and other sensor implementation while one Arduino
will be used just for reading the ultrasonic sensors. This is because of that the robot platform has 10
ultrasonic sensors.If there is no obstacle in front of a sensor (this means that the sensor will read a
maximum distance) the reading will approximately take 30 milliseconds to ber performed. Therefore
10 ultrasonic sensor means a maximum of 300 ms in reading. The test for just using one
microcontroller for all of the work done in low level will not suitable due to the explained reasons.
The other microcontroller card takes the encoder inputs of the motors into the system and drives them
by giving PWM to the motor controller card. The motor controller card also takes direction input and
gives current output of the motors. This way the currents of the motors are monitored and the power
consumption can be calculated as well as current limitations can be done.

Encoder Motor Controller < Encoder

7 \
/ \
/ \
. . / E 0 A\
Direction / \ Current
/ A\
/ \

Microcontroller

RS232

Figure 41 - Motor Controller and Microcontroller Schematic

The information exchange with the computer is accomplished through RS232 protocol. The
microcontroller card can be connected to the computer via USB. Since we plan to use laptop on the
robot platform for our test and demos, we will use this connection. However, Arduino boards can
easily be adapted to Xbee Pro modules which can manage wireless transmission. These modules can
also be used if it is necessary. Therefore the microcontroller unit is the low level controller for the

31

robot platform. It waits commands from a high level controller. A functional block diagram is also
shown in Figure 42.

RS232
Communication

Main Controller
Board —Arduino
Mega

RS232 Digital Compass
Communication

Input/]
Outputs 10 x Ultrasonic
Sensor

PID Controller

Motor Controller
Rover 5

Right
Front Back
Motor Motor
Right Right
Front Back
Wheel Wheel
Actuators Feedback
Sensors

Figure 42 - Functional Block Diagram
A serial protocol is designed and implemented. In this part, this protocol is explained in detail.
The serial RS232 communication protocol was developed for transmitting and receiving data over the

RS232 serial port of the Arduino microcontroller. The protocol is defined for a point-to-point
communication based on the EIA-RS232 standard.

32

The protocol can be used to implement the command set defined for the Arduino. For a high degree of
reliability in an electrically noisy environment it is designed with a checksum.

Before going into detail in the serial protocol, the heartbeat and broadcasting features of the robot is
explained.

The heartbeat is a signal for the robot to continue its operations. The robot waits for the heartbeat
signal to start to operate. If no heartbeat signal is received, the robot will not move. So, to use the
robot a heartbeat signal should send to the robot in an interval. The interval can also be customizable.
While receiving the heartbeat, the robot will operate as the user wants. If the communication is lost
between the robot and PC the heartbeat signal will also be lost. Therefore, when the robot did not
receive a heartbeat signal, it will immediately stop its operation and wait for a new heartbeat signal.

The broadcasting features of the robot incudes all the sensors on the robot. When a user wants a
sensor data from the robot, the broadcasting mode of the related sensor should be first activated. From
the PC side, the user should specify which sensor to be broadcasted and the user should also set the
interval of the update. Therefore, the user will only receive the sensor updates that he/she wanted.

The detailed use and explanation of the functions are explained in the next parts.

5.1 Data Format

Data is transmitted in an asynchronous way, that means each data packet is transmitted individually
with its own start and stop bit.

First the number of commands and their data lengths is defined. We define the commands for use with
the sensors we have, however we developed the data packet format as it can be used with any other
sensor.

The commands and data lengths of the pc side is created and given in Table 4, they will explained in
detail in the later of this chapter:

Table 4 - PC Side Commands

COMMAND NAME DATA LENGTH
SET DIRECTION 4 bytes
GET DIRECTION ;

SET PWM 4 bytes
GET PWM -

GET ENCODER ;

GET CURRENT -

GET SONAR DATA ;
EMERGENCY STOP -
RESET ENCODER -

SET RPM 4 bytes
GET RPM -

GET HEADING -

GET ACCELEROMETER -
HEARTBEAT -
MOTOR ENCODER UPDATE 2 bytes
MOTOR RPM UPDATE 2 bytes
MOTOR CURRENT UPDATE 2 bytes
SONAR UPDATE 2 bytes
HEADING UPDATE 2 bytes
ACCELEROMETER UPDATE 2 bytes

33

The commands and data lengths of the microcontroller side are created and given in Table 5:

Table 5 - Microcontroller Side Commands

COMMAND NAME DATA LENGTH
GET DIRECTION 4 bytes
GET PWM 4 bytes
GET ENCODER 16 bytes
GET CURRENT 8 bytes
GET SONAR DATA 8 bytes
GET RPM 4 bytes
GET HEADING 4 bytes
GET ACCELEROMETER 12 bytes
HEARTBEAT -
MOTOR ENCODER UPDATE -
MOTOR RPM UPDATE -
MOTOR CURRENT UPDATE -
SONAR UPDATE -
HEADING UPDATE -
ACCELEROMETER UPDATE -

The data packet will include a start of text byte, a command byte, data bytes, a block check character
byte and an end of text bytes. With all these concatenated the data packet is formed.

A command packet for the pc side is defined and given in Table 6:

Table 6 - Data Packet from PC

1 byte 1 byte 1 byte n bytes 1 byte 1 byte

STX CMD DATA LENGTH DATA BCC ETX

and for microcontroller side it is given in Table 7:

Table 7 - Data Packet from Microcontroller

1 byte 1 byte 1 byte n bytes 1 byte 1 byte
STX CMD DATA LENGTH DATA BCC ETX
Where:

STX: Start of Text Byte

CMD: A unique command byte assigned to commands
DATA LENGTH: The length of the data in bytes
DATA: The data of the the packet

BCC: Block Check Character of the data

ETX: End of Text Byte

The STX byte of the data packet will be constant in all packets and it will be 0x02.

34

The ETX byte of the data packet will also be constant in all packets and it will be 0x03. These two
bytes will be defining the start and end of the data packet and will help the algorithm to find a data
packet in a buffer. Therefore no packet will be escape.

The BCC is added to the data packet because by implementing this we will secure our packet from
electrical noises, and if the BCC is different we will discard that packet. The BCC function is both
sides is the same and by starting the command byte, it subtracts the next byte and it iterates to the end
of the data bytes of the packets. It does not use STX and ETX bytes of the data packet because they
are constants in all packets. By this method, it calculates the BCC byte and both sides use the same
function and check when a packet arrives.

By implementing a robust serial protocol the data packets are received and transmitted very
efficiently. The algorithm will be explained later in this chapter.

At the PC side a class for controlling the robot is created by using visual studio and high level control
functions that runs the commands for the microcontroller is implemented. The corresponding function
and its example use will be explained in the specified command detail below.

There is no front or back in this robot platform since it is symmetrical, however, for the sake of
simplicity in the protocol, the side where the electronic cards (microcontroller and motor controller
boards) are located is considered as the front side of the robot platform.

5.1.1 PC Side Commands
In this part the PC Side Commands of the protocol is described.

1. SET DIRECTION
The description and details of the command is given in Table 8.

Table 8 - Set Direction Command (PC Side)

Command Name SET DIRECTION

This command sets the direction of the

Description individual motors in the robot platform

Command Byte 0x41

The data packet of this command is 4 bytes.
Each byte will set the direction of individual
motors in the robot platform. The order of the
bytes corresponding to motors in our

Data configuration are:

1st byte : Left Front Motor

2nd byte: Left Back Motor

3rd byte: Right Front Motor

4th byte: Right Back Motor

Packet Size 9 bytes

An example data packet for this command is (which gives forward direction for all motors) given in
Table 9:

Table 9 - Example Set Direction Data Packet (PC Side)

STX CMD DL DATA1 | DATA2 | DATA3 | DATA4 BCC ETX

0x02 0x41 0x04 0x49 0x49 0x49 0x49 0x41 0x03

35

This command will return GET DIRECTION command for the microcontroller side automatically.
This will ensure that the data packet is received at the microcontroller side and immediately returns
the set values. Therefore, this feature is just like a handshake.

The function and example use in the pc side for this command is given below.

SetDirection(int directionLF, int directionLB, int directionRF, int directionRB);

Two constants are defined at the top of the class for directions. These are;

Forward Direction:

MOTOR_DIRECTION_FRONT ="l

Backward Direction:

MOTOR_DIRECTION_BACK ='G';

Therefore an example command for forward direction of all motors will be:

SetDirection(MOTOR_DIRECTION_FRONT, MOTOR_DIRECTION_FRONT,
MOTOR_DIRECTION_FRONT, MOTOR_DIRECTION_FRONT);

2. GET DIRECTION
The description and details of the command is given in Table 10.

Table 10 - Get Direction Command (PC Side)

Command Name GET DIRECTION

Description This command gets the current direction of the
individual motors in the robot platform

Command Byte 0x42

Data No data packet for the get commands.

Packet Size 5 bytes

An example data packet for this command is given in Table 11:

Table 11 - Example Get Direction Data Packet (PC Side)

STX CMD DL BCC ETX

0x02 0x42 0x00 0x42 0x03

The function and example use in the pc side for this command is given below.
GetDirection();

The return for this function is the current directions of the motor. The packet of the return will be
explained in the microcontroller command section.

3. SET PWM
The description and details of the command is given in Table 12

Table 12 - Set PWM Command (PC Side)

Command Name SET PWM
Description This command sets the pwm of the individual
motors in the robot platform

36

Command Byte

0x43

Data

The data packet of this command is 4 bytes.
Each byte will set the pwm of individual motors
in the robot platform. The order of the bytes
corresponding to motors are:

1st byte : Left Front Motor

2nd byte: Left Back Motor

3rd byte: Right Front Motor

4th byte: Right Back Motor

Packet Size

9 bytes

An example data packet for this command is (which gives 100 pwm value for all motors) is given in

Table 13:
Table 13 - Example Set PWM Data Packet (PC Side)
STX CMD DL DATA1l | DATA2 | DATA3 DATA 4 BCC ETX
0x02 0x43 0x04 0x64 0x64 0x64 0x64 0x43 0x03

This command will return GET PWM command for the microcontroller side automatically. This will
ensure that the data packet is received at the microcontroller side and immediately returns the set
values. Therefore, this feature is just like a handshake.

The function and example use in the pc side for this command is given below.

SetPWM(int pwmMotorLF, int pwmMotorLB, int pwmMotorRF, int pwmMotorRB)

Therefore an example command for forward direction of all motors will be:

SetPWM(100, 100, 100, 100);

4. GET PWM

The description and details of the command is given in Table 14

Table 14 - Get PWM Command (PC Side)

Command Name

GET PWM

Description

This command gets the current pwm of the
individual motors in the robot platform

Command Byte

0x44

Data

No data packet for the get commands.

Packet Size

5 bytes

An example data packet for this command is given in Table 15:

Table 15 - Example Get PWM Data Packet (PC Side)

STX

CMD

DL

BCC ETX

0x02

0x44

0x00

0x44 0x03

The function and example use in the pc side for this command is given below.

GetPWM();

37

The return for this function is the current pwms of the motors. The packet of the return will be
explained in the microcontroller command section.

5. GET ENCODER
The description and details of the command is given in Table 16

Table 16 - Get Encoder Command (PC Side)

Command Name GET ENCODER

Description This command gets the current encoder ticks of
the individual motors in the robot platform

Command Byte 0x46

Data No data packet for the get commands.

Packet Size 5 bytes

An example data packet for this command is given in Table 17:

Table 17 - Example Get Encoder Data Packet (PC Side)

STX CMD DL BCC ETX
0x02 0x46 0x00 0x46 0x03

The function and example use in the pc side for this command is given below.

GetEncoder();

The return for this function is the current encoder ticks of the motors. The packet of the return will be
explained in the microcontroller command section.

6. GET CURRENT
The description and details of the command is given in Table 18.

Table 18 - Get Current Command (PC Side)

Command Name GET CURRENT

Description This command gets the current currents of the
individual motors in the robot platform

Command Byte 0x47

Data No data packet for the get commands.

Packet Size 5 bytes

An example data packet for this command is given in Table 19:

Table 19 - Example Get Current Data Packet (PC Side)

STX CMD DL BCC ETX
0x02 0x47 0x00 0x47 0x03

The function and example use in the pc side for this command is given below.

GetCurrent();

The return for this function is the current currents of the motors. The packet of the return will be
explained in the microcontroller command section.

38

7. GET SONAR DATA
The description and details of the command is given in Table 20.

Table 20 - Get Sonar Data Command (PC Side)

Command Name GET SONAR DATA

Description This command gets the current sonar data of the
sonar sensors in the robot platform

Command Byte 0x45

Data No data packet for the get commands.

Packet Size 5 bytes

An example data packet for this command is given in Table 21:

Table 21 - Example Get Sonar Data Packet

STX CMD DL BCC ETX

0x02 0x45 0x00 0x45 0x03

The function and example use in the pc side for this command is given below.
GetSonarData();

The return for this function is the current sonar data of the sonar sensors. The packet of the return will
be explained in the microcontroller command section.

8. SET EMERGENCY STOP
The description and details of the command is given in Table 22.

Table 22 — Set Emergency Stop Command (PC Side)

Command Name SET EMERGENCY STOP

Description This command is used as the emergency stop.
The microcontroller does not evaluate any data
with this command. When it receives this
command, the motors are shut down

immediately.
Command Byte 0x48
Data No data packet for the command
Packet Size 5 bytes

An example data packet for this command is given in Table 23:

Table 23 - Example Set Emergency Stop Data Packet

STX CMD DL BCC ETX

0x02 0x48 0x00 0x48 0x03

The function and example use in the pc side for this command is given below.
SetEmergencyStop();

The return for this function is the pwm values of the motors (GET PWM Command). The packet of
the return will be explained in the microcontroller command section.

39

9. RESET ENCODER
The description and details of the command is given in Table 24.

Table 24 — Reset Encoder Command (PC Side)

Command Name SET EMERGENCY STOP

Description This command resets the encoder ticks in the
microcontroller.

Command Byte 0x49

Data No data packet for the command

Packet Size 5 bytes

An example data packet for this command is given in Table 25:

Table 25 - Example Reset Encoder Data Packet

STX CMD DL BCC ETX

0x02 0x49 0x00 0x49 0x03

The function and example use in the pc side for this command is given below.
ResetEncoder();

The return for this function is the encoder values of the motors (GET ENCODER Command). The
packet of the return will be explained in the microcontroller command section.

10. SET RPM
The description and details of the command is given in Table 26.

Table 26 - Set RPM Command (PC Side)

Command Name SET RPM

Description This command sets the rpm of the individual
motors in the robot platform

Command Byte 0x51

Data The data packet of this command is 4 bytes.

Each byte will set the rpm of individual motors
in the robot platform. The order of the bytes
corresponding to motors are:

1st byte : Left Front Motor

2nd byte: Left Back Motor

3rd byte: Right Front Motor

4th byte: Right Back Motor

Packet Size 9 bytes

An example data packet for this command is (which gives 100 rpm value for all motors) given in
Table 27:

Table 27 - Example Set RPM Data Packet (PC Side)

STX CMD DL | DATAL | DATA2 | DATA3 | DATA4 | BCC ETX

0x02 0x50 0x04 0x64 0x64 0x64 0x64 0x50 0x03

40

This command will return GET RPM command for the microcontroller side automatically. This will
ensure that the data packet is received at the microcontroller side and immediately returns the set
values. Therefore, this feature is just like a handshake.

The function and example use in the pc side for this command is given below.

SetRPM(int romMotorLF, int rpmMotorLB, int rpmMotorRF, int rpmMotorRB)

Therefore an example command for forward direction of all motors will be:

SetRPM(100, 100, 100, 100);

11. GET RPM

The description and details of the command is given in Table 28.

Table 28 - Get RPM Command (PC Side)

Command Name GET RPM

Description This command gets the current rpm of the
individual motors in the robot platform

Command Byte 0x51

Data No data packet for the get commands.

Packet Size 5 bytes

An example data packet for this command is given in Table 29:

Table 29 - Example Get RPM Data Packet (PC Side)

STX CMD DL BCC ETX

0x02 0x51 0x00 0x51 0x03

The function and example use in the pc side for this command is given below.
GetRPM();

The return for this function is the current rpms of the motors. The packet of the return will be
explained in the microcontroller command section.

12. GET HEADING
The description and details of the command is given in Table 30.

Table 30 - Get Heading Command (PC Side)

Command Name GET HEADING

Description This command gets the current heading of the
robot platform

Command Byte 0x52

Data No data packet for the get commands.

Packet Size 5 bytes

An example data packet for this command is given in Table 31:

Table 31 - Example Get Accelerometer Data Packet (PC Side)

STX CMD DL BCC ETX

0x02 0x52 0x00 0x52 0x03

4

The function and example use in the pc side for this command is given below.

GetHeading();

The return for this function is the current heading of the robot platform. The packet of the return will
be explained in the microcontroller command section.

13. GET ACCELEROMETER
The description and details of the command is given in Table 32.

Table 32 - Get Accelerometer Command (PC Side)

Command Name GET ACCELEROMETER
Description This command gets the current x\y,z
accelerometer data of the robot platform
Command Byte 0x53
Data No data packet for the get commands.
Packet Size 5 bytes
An example data packet for this command is given in Table 33:
Table 33 - Example Get Accelerometer Data Packet (PC Side)
STX CMD DL BCC ETX
0x02 0x53 0x00 0x53 0x03

The function and example use in the pc side for this command is given below.

GetAccelerometer();

The return for this function is the current x,y,z accelerometer data of the robot platform. The packet of
the return will be explained in the microcontroller command section.

14. HEARTBEAT
The description and details of the command is given in Table 34.

Table 34 — Heartbeat Command (PC Side)

Command Name HEARTBEAT

Description This command sends a heartbeat to the
microcontroller

Command Byte 0x54

Data No data packet for the command

Packet Size 5 bytes

An example data packet for this command is given in Table 35:

Table 35 - Example Heartbeat Data Packet

STX CMD DL

BCC ETX

0x02 0x54 0x00

0x54

0x03

This command is connected to a timer in the PC side. It is configured before the connection to the
microcontroller by setting the interval time of the timer. After that in every timer tick the heartbeat
command is sent to the microcontroller. This is for not losing the control over the robot if the PC is

42

crashes or the serial communication is lost. If it happens the PC will not send a heartbeat in the timer
therefore the microcontroller will understand that the communication is lost and it will shut down the
motor. The microcontroller will begin to wait for a new heartbeat to continue operation.

The return for this function is also a heartbeat. This will ensure that the microcontroller is responding
to the heartbeat. The packet of the return will be explained in the microcontroller command section.

15. MOTOR ENCODER UPDATE
The description and details of the command is given in Table 36.

Table 36 - Motor Encoder Update Command (PC Side)

Command Name MOTOR ENCODER UPDATE

Description This command sets if the user wants the motor
encoder data to be broadcasted and the update
interval for the motor encoder data.

Command Byte 0x55

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters

2" and 3" byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 37:

Table 37 - Example Motor Encoder Update Data Packet (PC Side)

STX CMD DL DATA1 DATA 2 DATA3 BCC ETX

0x02 0x55 0x03 0x01 0x00 0x64 Ox3F 0x03

The function and example use in the pc side for this command is given below.

SetUpdateParameterinterval(EduRobot.UpdateParameter.MotorEncoderUpdate,
EduRobot.UpdateResponse. YES, 100);

This will make the robot to send the motor encoder parameters in every 100 ms.

The return for this function is a data packet with the same command but with no data. The packet of
the return will be explained in the microcontroller command section.

16. MOTOR RPM UPDATE
The description and details of the command is given in Table 38.

Table 38 - Motor RPM Update Command (PC Side)

Command Name MOTOR RPM UPDATE

Description This command sets if the user wants the motor
rpm data to be broadcasted and the update
interval for the motor rpm data.

Command Byte 0x56

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters

2" and 3™ byte: The update interval in
milliseconds

Packet Size 8 bytes

43

An example data packet for this command is given in Table 39:

Table 39 - Example Motor RPM Update Data Packet (PC Side)

STX CMD DL DATA1 DATA 2 DATA3 BCC

ETX

0x02 0x56 0x03 0x01 0x00 0x64 Ox3F

0x03

The function and example use in the pc side for this command is given below.

SetUpdateParameterInterval(EduRobot.UpdateParameter. MotorRPMUpdate,
EduRobot.UpdateResponse. YES, 100);

This will make the robot to send the motor rpm parameters in every 100 ms.

The return for this function is a data packet with the same command but with no data. The packet of

the return will be explained in the microcontroller command section.
17. MOTOR CURRENT UPDATE
The description and details of the command is given in Table 40.

Table 40 - Motor Current Update Command (PC Side)

Command Name MOTOR CURRENT UPDATE
Description This command sets if the user wants the motor
current data to be broadcasted and the update
interval for the motor current data.
Command Byte 0x57
Data 1% byte: Sets a Boolean value for whether or not
to send the parameters
2" and 3 byte: The update interval in
milliseconds
Packet Size 8 bytes
An example data packet for this command is given in Table 41:
Table 41 - Example Motor Current Update Data Packet (PC Side)
STX CMD DL DATA1 DATA 2 DATA 3 BCC ETX
0x02 0x57 0x03 0x01 0x00 0x64 Ox3F 0x03

The function and example use in the pc side for this command is given below.

SetUpdateParameterinterval(EduRobot.UpdateParameter.MotorCurrentUpdate,
EduRobot.UpdateResponse. YES, 100);

This will make the robot to send the motor current parameters in every 100 ms.

The return for this function is a data packet with the same command but with no data. The packet of

the return will be explained in the microcontroller command section.

44

18. SONAR UPDATE
The description and details of the command is given in Table 42.

Table 42 - Sonar Update Command (PC Side)

Command Name SONAR UPDATE

Description This command sets if the user wants the sonar
data to be broadcasted and the update interval for
the sonar data.

Command Byte 0x58

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters
2" and 3™ byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 43:

Table 43 - Example Sonar Update Data Packet (PC Side)

STX CMD DL DATA1 DATA 2 DATA3 BCC ETX

0x02 0x58 0x03 0x01 0x00 0x64 Ox3F 0x03

The function and example use in the pc side for this command is given below.

SetUpdateParameterinterval(EduRobot.UpdateParameter.SonarUpdate,
EduRobot.UpdateResponse.YES, 100);

This will make the robot to send the sonar parameters in every 100 ms.

The return for this function is a data packet with the same command but with no data. The packet of
the return will be explained in the microcontroller command section.

19. HEADING UPDATE
The description and details of the command is given in Table 44.

Table 44 - Heading Update Command (PC Side)

Command Name HEADING UPDATE

Description This command sets if the user wants the heading
data to be broadcasted and the update interval for
the heading data.

Command Byte 0x59

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters
2" and 39 byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 45:

Table 45 - Example Heading Update Data Packet (PC Side)

STX

CMD

DL

DATA1

DATA?2

DATA3

BCC

ETX

0x02

0x59

0x03

0x01

0x00

0x64

Ox3F

0x03

45

The function and example use in the pc side for this command is given below.

SetUpdateParameterinterval(EduRobot.UpdateParameter.HeadingUpdate,
EduRobot.UpdateResponse. YES, 100);

This will make the robot to send the heading parameter in every 100 ms.

The return for this function is a data packet with the same command but with no data. The packet of
the return will be explained in the microcontroller command section.

20. ACCELEROMETER UPDATE
The description and details of the command is given in Table 46.

Table 46 - Accelerometer Update Command (PC Side)

Command Name ACCELEROMETER UPDATE

Description This command sets if the user wants the
accelerometer data to be broadcasted and the
update interval for the accelerometer data.

Command Byte 0x60

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters

2" and 3 byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 47:

Table 47 - Example Accelerometer Update Data Packet (PC Side)

STX CMD DL DATA1 DATA?2 DATA3 BCC ETX

0x02 0x60 0x03 0x01 0x00 0x64 0x3F 0x03

The function and example use in the pc side for this command is given below.

SetUpdateParameterinterval(EduRobot.UpdateParameter.AccelerometerUpdate,
EduRobot.UpdateResponse.YES, 100);

This will make the robot to send the accelerometer parameters in every 100 ms.

The return for this function is a data packet with the same command but with no data. The packet of
the return will be explained in the microcontroller command section.

46

21. SET HEARTBEAT INTERVAL
The description and details of the command is given in Table 48.

Table 48 — Set Heartbeat Interval Command (PC Side)

Command Name ACCELEROMETER UPDATE

Description This command sets the heartbeat interval of the
microcontroller.

Command Byte 0x61

Data 1% and 2" byte: The heartbeat interval in
milliseconds

Packet Size 7 bytes

An example data packet for this command is given in Table 49:

Table 49 - Example — Set Heartbeat Interval Data Packet (PC Side)

STX CMD DL DATA1 DATA 2 BCC ETX

0x02 0x61 0x03 0x00 0x64 O0x3F 0x03

The function and example use in the pc side for this command is given below.
SetHeartBeat(2000)
This will set the heartbeat interval of the robot to 2000 ms.

The return for this function is a heartbeat. The packet of the return will be explained in the
microcontroller command section.

5.1.2 Microcontroller Side Commands

In this part the Microcontroller Side Commands of the protocol is described.
1. GET DIRECTION
The description and details of the command is given in Table 50.

Table 50 - Get Direction Command (Microcontroller Side)

Command Name GET DIRECTION

Description This command sends the current direction of the
individual motors in the robot platform to the pc

Command Byte 0x42

Data The data packet of this command is 4 bytes.

Each byte will send the direction of individual
motors in the robot platform. The order of the
bytes corresponding to motors are:

1st byte : Left Front Motor

2nd byte: Left Back Motor

3rd byte: Right Front Motor

4th byte: Right Back Motor

Packet Size 9 bytes

The direction information of the motor can be represented as 1 byte so the data is 4 bytes.

47

An example data packet for this command is given in Table 51:

Table 51 - Example Get Direction Data Packet (Microcontroller Side)

STX

CMD

DL

DATA1

DATA?2

DATA3 | DATA4 BCC ETX

0x02

0x42

0x04

0x49

0x49 0x49 0x49 0x42 0x03

The function and example use in the pc side for this command is given below.

GetDirection();

The return for this function is the current directions of the motors.

2. GET PWM

The description and details of the command is given in Table 52.

Table 52 - Get PWM Command (Microcontroller Side)

Command Name

GET PWM

Description

This command sends the current pwms of the
individual motors in the robot platform to the pc

Command Byte

0x44

Data

The data packet of this command is 4 bytes.
Each byte will send the pwm of individual
motors in the robot platform. The order of the
bytes corresponding to motors are:

1st byte : Left Front Motor

2nd byte: Left Back Motor

3rd byte: Right Front Motor

4th byte: Right Back Motor

Packet Size

9 bytes

The pwm information of the motor (0 to 255) can be represented as 1 byte so the data is 4 bytes.

An example data packet for this command is given in Table 53:

Table 53 - Example Get PWM Data Packet (Microcontroller Side)

STX

CMD

DL

DATA1

DATA?2

DATA3

DATA 4

BCC

ETX

0x02

0x42

0x04

0x64

0x64

0x64

0x64

0x42

0x03

The function and example use in the pc side for this command is given below.
GetPWM();

The return for this function is the current pwms of the motors.

48

3. GET ENCODER

The description and details of the command is given in Table 54.

Table 54 - Get Encoder Command (Microcontroller Side)

Command Name

GET ENCODER

Description This command sends the current encoder ticks of
the individual motors in the robot platform to the
pc

Command Byte 0x46

Data

The data packet of this command is 16 bytes.
Each 4 byte will send the encoder ticks of
individual motors in the robot platform. The
order of the bytes corresponding to motors are:
1-4 byte : Left Front Motor

5-8 byte: Left Back Motor

9-12 byte: Right Front Motor

13-16 byte: Right Back Motor

Packet Size

21 bytes

The encoder information of the motor is a long int number (32 bit) therefore 4 byte is needed to
represent each encoder data. So, the data is 16 bytes.

An example data packet for this command is given in Table 55:

Table 55 - Example Get Encoder Data Packet (Microcontroller Side)

STX cMD DL DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA
1 2 3 4 5 6 7 8
0x02 Ox46 | Ox15 | 0x00 0x04 0x0b 0x13 0x00 0x03 Ox4f 0xf6
DATA DATA | DATA | DATA | DATA | DATA | DATA
9 DATA 10 11 12 13 14 15 16 BCC ETX
0x00 0x03 0xe0 0x52 0x00 0x03 0Oxcb 0x2a 0xb3 0x03

The corresponding encoder ticks for example:
Encoder LF: 0x00040b13 = 264979
Encoder LB: 0x00034ff6 = 217078
Encoder RF: 0x0003e052 = 254034

Encoder RB: 0x0003ch2a = 248618

The function and example use in the pc side for this command is given below.

GetEncoder();

The return for this function is the current encoder ticks of the motors.

49

4. GET CURRENT
The description and details of the command is given in Table 56.

Table 56 - Get Current Command (Microcontroller Side)

Command Name GET CURRENT

Description This command sends the current currents of the
individual motors in the robot platform to the pc

Command Byte 0x47

Data The data packet of this command is 8 bytes.

Each 2 byte will send the currents of individual
motors in the robot platform. The order of the
bytes corresponding to motors are:

1-2 byte : Left Front Motor

3-4 byte: Left Back Motor

5-6 byte: Right Front Motor

7-8 byte: Right Back Motor

Packet Size 13 bytes

The current information of the motor is an int number and can take values up to ~5000 therefore 2
byte is needed to represent each current data. So, the data is 8 bytes.

An example data packet for this command is given in Table 57:

Table 57 - Example Get Current Data Packet (Microcontroller Side)

STX cMD DL DATA DATA DATA 3 DATA | DATA | DATA | DATA

1 2 4 5 6 7
0x02 0x47 0x08 0x00 0x93 0x00 0x96 0x00 Oxaf 0x00
DA8TA BCC | ETX

0x94 0x79 0x03

The corresponding currents for example:

Current LF: 147

Current LB: 150

Current RF: 175

Current RB: 148

The function and example use in the pc side for this command is given below.
GetCurrent();

The return for this function is the current currents of the motors.

50

5. GET SONAR DATA

The description and details of the command is given in Table 58.

Table 58 - Get Sonar Data Command (Microcontroller Side)

Command Name

GET SONAR DATA

Description

This command sends the current sonar data of
the sonar sensors in the robot platform to the pc

Command Byte

0x45

Data

The data packet of this command is 8 bytes.
Each 2 byte will send the sonar data of individual
sonar sensors in the robot platform. The order of
the bytes corresponding to sensors are:

1-2 byte : Front Left Sensor

3-4 byte: Front Right Sensor

5-6 byte: Back Left Sensor

7-8 byte: Back Right Sensor

Packet Size

13 bytes

The sonar data information of the sonar sensors is an int number and can take values up to ~500
therefore 2 byte is needed to represent each sonar data. So, the data is 8 bytes.

An example data packet for this command is given in Table 59:

Table 59 - Get Sonar Data Packet (Microcontroller Side)

STX cMD DL DATA DATA DATA 3 DATA | DATA | DATA | DATA
1 2 4 5 6 7
0x02 0x45 0x08 0x00 0x16 0x00 0x18 0x00 0x87 0x00
DA8TA BCC | ETX
0x00 Oxcc 0x03

The corresponding sonar data for example:

Sonar Data FL: 22
Sonar Data FR: 24
Sonar Data BL: 135

Sonar Data BR: 0

The function and example use in the pc side for this command is given below.

GetSonarData();

The return for this function is the current sonar data of the sonar sensors.

51

6. GET RPM
The description and details of the command is given in Table 60.

Table 60 - Get RPM Command (Microcontroller Side)

Command Name GET PWM

Description This command sends the current rpms of the
individual motors in the robot platform to the pc

Command Byte 0x51

Data The data packet of this command is 4 bytes.

Each byte will send the rpm of individual motors
in the robot platform. The order of the bytes
corresponding to motors are:

1st byte : Left Front Motor

2nd byte: Left Back Motor

3rd byte: Right Front Motor

4th byte: Right Back Motor

Packet Size 9 bytes

The pwm information of the motor (0 to 255) can be represented as 1 byte so the data is 4 bytes.
An example data packet for this command is given in Table 61:

Table 61 - Example Get RPM Data Packet (Microcontroller Side)

STX | CMD DL | DATAL | DATA2 | DATA3 | DATA4 | BCC ETX

0x02 0x51 0x04 0x64 0x64 0x64 0x64 0x51 0x03

The function and example use in the pc side for this command is given below.
GetRPM();

The return for this function is the current rpms of the motors.

7. GET HEADING

The description and details of the command is given in Table 62.

Table 62 - Get Heading Command (Microcontroller Side)

Command Name GET HEADING

Description This command sends the current heading of the
robot platform to the pc

Command Byte 0x52

Data The data packet of this command is 4 bytes since

the heading of the robot is a float number and
can be represented by 4 bytes in the
microcontroller side.

Packet Size 9 bytes

52

An example data packet for this command is given in Table 63:

Table 63 - Example Get Heading Data Packet (Microcontroller Side)

STX CMD

DL

DATA1

DATA2 | DATA3 | DATAA4 BCC ETX

0x02 0x52

0x04

0x64

0x64 0x64 0x64 0x52 0x03

The function and example use in the pc side for this command is given below.

GetHeading();

The return for this function is the current heading of the robot platform.

8. GET ACCELEROMETER

The description and details of the command is given in Table 64.

Table 64 - Get Accelerometer Command (Microcontroller Side)

Command Name

GET ACCELEROMETER

Description This command sends the current Xx,y,z
accelerometer data of the robot platform to the
pc.

Command Byte 0x53

Data

The data packet of this command is 12 bytes
since the each accelerometer data of the robot is
a float number and can be represented as 4 bytes
in the microcontroller side.

Packet Size

17 bytes

An example data packet for this command is given in Table 65:

Table 65 - Example Get Accelerometer Data Packet (Microcontroller Side)

STX CMD DL DATA DATA DATA DATA | DATA | DATA | DATA
1 2 3 4 5 6 7

0x02 0x46 0x0c 0x00 0x04 0x0b 0x13 0x00 0x03 Ox4f

DATA | DATA DATA DATA

8 9 10 11 BCC ETX

0x00 0x03 0xe0 0x52 0xb3 0x03

The function and example use in the pc side for this command is given below.

GetAccelerometer();

The return for this function is the current x,y,z accelerometer data of the robot platform.

53

9. HEARTBEAT
The description and details of the command is given in Table 66.

Table 66 — Heartbeat Command (Microcontroller Side)

Command Name HEARTBEAT

Description This command sends a heartbeat to the PC
Command Byte 0x54

Data No data packet for the command

Packet Size 5 bytes

An example data packet for this command is given in Table 67:

Table 67 - Example Heartbeat Data Packet (Microcontroller Side)

STX CMD DL BCC ETX

0x02 0x54 0x00 0x54 0x03

This packet is created when a heartbeat from the PC is received as explained in the PC side.

10. MOTOR ENCODER UPDATE
The description and details of the command is given in Table 68.

Table 68 - Motor Encoder Update Command (Microcontroller Side)

Command Name MOTOR ENCODER UPDATE

Description This command sends a data packet to inform the
PC that the microcontroller received the update
information.

Command Byte 0x55

Data -

Packet Size 5 bytes

An example data packet for this command is given in Table 69:

Table 69 - Example Motor Encoder Update Data Packet (Microcontroller Side)

STX CMD DL BCC ETX

0x02 0x55 0x00 0x55 0x03

54

11. MOTOR RPM UPDATE

The description and details of the command is given in Table 70.

Table 70 - Motor RPM Update Command (Microcontroller Side)

Command Name

MOTOR RPM UPDATE

Description

This command sends a data packet to inform the
PC that the microcontroller received the update
information.

Command Byte 0x56
Data -
Packet Size 5bytes

An example data packet for this command is given in Table 71:

Table 71 - Example Motor RPM Update Data Packet (Microcontroller Side)

STX

CMD

DL

BCC ETX

0x02

0x56

0x00

0x56 0x03

12. MOTOR CURRENT UPDATE

The description and details of the command is given in Table 72.

Table 72 - Motor Current Update Command (Microcontroller Side)

Command Name

MOTOR CURRENT UPDATE

Description

This command sends a data packet to inform the
PC that the microcontroller received the update
information.

Command Byte

0x57

Data

1% byte: Sets a Boolean value for whether or not
to send the parameters

2" and 39 byte: The update interval in
milliseconds

Packet Size

8 bytes

An example data packet for this command is given in Table 73:

Table 73 - Example Motor Current Update Data Packet (Microcontroller Side)

STX

CMD

DL

BCC ETX

0x02

0x57

0x00

0x57 0x03

55

13. SONAR UPDATE

The description and details of the command is given in Table 74.

Table 74 - Sonar Update Command (Microcontroller Side)

Command Name

SONAR UPDATE

Description

This command sends a data packet to inform the
PC that the microcontroller received the update
information.

Command Byte

0x58

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters
2" and 3™ byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 75:

Table 75 - Example Sonar Update Data Packet (Microcontroller Side)

STX

CMD

DL

BCC ETX

0x02

0x58

0x00

0x58 0x03

14. HEADING UPDATE

The description and details of the command is given in Table 76.

Table 76 - Heading Update Command (Microcontroller Side)

Command Name

HEADING UPDATE

Description

This command sends a data packet to inform the
PC that the microcontroller received the update
information.

Command Byte

0x59

Data 1% byte: Sets a Boolean value for whether or not
to send the parameters
2" and 3" byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 77:

Table 77 - Example Heading Update Data Packet (Microcontroller Side)

STX

CMD

DL

BCC ETX

0x02

0x59

0x00

0x59 0x03

56

15. ACCELEROMETER UPDATE
The description and details of the command is given in Table 78.

Table 78 - Accelerometer Update Command (Microcontroller Side)

Command Name ACCELEROMETER UPDATE

Description This command sends a data packet to inform the
PC that the microcontroller received the update
information.

Command Byte 0x60

Data 1% byte: Sets a Boolean value for whether or not

to send the parameters
2" and 3™ byte: The update interval in
milliseconds

Packet Size 8 bytes

An example data packet for this command is given in Table 79:

Table 79 - Example Accelerometer Update Data Packet (Microcontroller Side)

STX CMD DL BCC ETX

0x02 0x60 0x00 0x60 0x03

An example motor set point data flow schematic is given in Figure 43.

Motor Setpoint from PC

Microcontroller

PID Controller

4 Output

Encoder 4 | PWM,
Direction

v
Encoder

Motor Controller

PWM

Figure 43 - Motor Setpoint Data Flow

The commands for both sides can be added if there is a need for new one. It is just needed to satisfy
the data packet rules, using STX, CMD, DATA LENGTH, DATA, BCC, ETX bytes. And you should
only implement the software what to do with the new packet.

57

5.2 The Serial Packet Handling Algorithm

In both PC and microcontroller the same algorithm runs for the serial packet handling. This is a robust
serial handling. This algorithm ensures that every packet is evaluated. The code for the algorithm is
given below.

After the packet is constructed byte by byte, it is sent to another method that evaluates this packet. It
looks for the command byte for which command this packet is sent from and extracts the data from
the packet. After that, the data is ready to use.

The codes for the serial packet handling algorithm can be found at Appendix A. In Appendix A the
serial protocol and the algorithm is explained via the comment lines. Also, below the library functions
for driving the robot platform is explained.

The list of the function in the library which is explained in the previous part is given in Table 80.

Table 80 - Low Level Functions

FUNCTION NAME

SetDirection(int directionLF, int directionLB, int directionRF, int directionRB);

GetDirection();

SetPWM(int pwmMotorLF, int pwmMotorLB, int pwmMotorRF, int pwmMotorRB);

GetPWM();

GetEncoder();

GetCurrent();

GetSonarData();

SetEmergencyStop();

ResetEncoder();

SetRPM(int rpmMotorLF, int rpmMotorLB, int rpmMotorRF, int rpmMotorRB);

5.3 High Level Functions

These are the primitive function to drive the robot platform. However, we implemented some high
level function to drive the robot. This is for simplifying the use of the robot. One of the functions is
for driving the robot with a linear velocity. This method can take different parameters like rpm, rps or
m/s. Another method is giving a robot an angular velocity. Since the robot is a differential driven
robot, this method is used for turning the robot for a specific heading. This method also can take
degrees to turn. Another method is driving the robot with some distance value. These functions will
use the same commands explained above, however they will have some algorithms in their function
blocks and translate the high level functions to low level functions.

A robust motor controller algorithm is implemented to the microcontroller side. This algorithm takes
the set values of the motors (rpms) and controls the motor automatically inside the microcontroller.
There is no need to track this in the pc side of the software.

In this part we divide the motors into 2 sides, Left side and Right Side. Therefore we can have
different speed for different sides.

5.3.1 Set Linear Speed

The linear speed of the robot can be set by using this method. The function gets the direction of the
motion and the speed for this motion. The motor rpm values are calculated as given below;

X 60

RPM = 4
T mxD

where

RPM : The revolution per minute value for motors

58

\% : The linear velocity
D : Diameter of the wheels

By using this equation the motor rpms are calculated and the command for setting direction and rpm
values for left and right sides are given to microcontroller.

5.3.2 Turn Angle (Point Turn)

The angular velocity of the robot can be set by using this method. The function gets the direction of
the turn and the angle to be turned.

However, in order to understand the algorithm first we should look at the kinematics of the differential
drive. While we can vary the velocity of each wheel, for the robot to perform rolling motion, the robot
must rotate about a point that lies along their common left and right wheel axis. The point that the
robot rotates about is known as the ICC - Instantaneous Center of Curvature (see Figure 44).

PRV

Figure 44 - Differential Drive kinematics [23]

By varying the velocities of the two wheels, we can vary the trajectories that the robot takes. Because
the rate of rotation w about the ICC must be the same for both wheels, we can write the following
equations:

wR+1/2) =V, 1)
wR=1/2) =V,)

where [is the distance between the centers of the two wheels, ;. and V; are the right and left wheel
velocities along the ground , and R is the signed distance from the ICC to the midpoint between the
wheels. At any instance in time we can solve for R and w:

LVi+V, V=V
= and w=x—" (3)
2V=V; l

There are three interesting cases with these kinds of drives.

1. If V; = V., then we have forward linear motion in a straight line. R becomes infinite, and there is
effectively no rotation, means w is zero.

59

2.1fV; = =V, then R = 0, and we have rotation about the midpoint of the wheel axis - we rotate in
place.
3. If V; = 0, then we have rotation about the left wheel. In this case R = é Same is true if 1. = 0.

Note that a differential drive robot cannot move in the direction along the axis - this is a singularity.
Differential drive vehicles are very sensitive to slight changes in velocity in each of the wheels. Small
errors in the relative velocities between the wheels can affect the robot trajectory.

Forward Kinematics for Differential Drive Robots

In Figure 44, assume the robot is at some position (x, y), headed in a direction making an angle 6 with
X axis. We assume the robot is centered at a point midway along the wheel axle. By manipulating the
control parameters V;, V. , we can get the robot to move to different positions and orientations.

Knowing velocities V;, V. and using equation 3, we can find the ICC location:
ICC = [x — Rsin(8),y + Rcos(6)] 4

And at time t + &t the robot’s pose will be:

x' cos(wdt) —sin(wdt) 0][x —ICC, ICC,
y’] = [sin(wét) cos(w(St) l [—ICC,| + |ICC, (5)
6’ 0 wbt

This equation simply describes the motion of a robot rotating a distance R about its ICC with an
angular velocity of w.

Another way to understand this is that the motion of the robot is equivalent to 1) translating the ICC to
the origin of the coordinate system, 2) rotating about the origin by an angular amount wdt, and 3)
translating back to the ICC. Refer to Figure 45

ICC

P(t+dt)

P(t)

Figure 45 - Forward Kinematics for Differential Robot

60

Inverse Kinematics of a Mobile Robot

In general, we can describe the position of a robot capable of moving in a particular direction 9, at a
given velocity V (t) as:

x(t) = [, V(t)cos[B(t)]dt (6)
y(®) = J; V(©)sin[6()]dt (7)
(t) = [, w(t)dt (8)

For our robot platform the equations become;

x() = = [v (8) + v, ()] cos[6(t)dt 9)
() = 2 [; [0 (®) + vy (D)]sin[0(t)]dt (10)
o) =7 [[v(6) — v ()]dt (11)

A related question is: How can we control the robot to reach a given configuration (x,y, 8) — this is
known as the inverse kinematics problem.

Unfortunately, a differential drive robot imposes what are called non-holonomic constraints on
establishing its position. For example, the robot cannot move laterally along its axle. A similar
nonholonomic constraint is a car that can only turn its front wheels. It cannot move directly sidewise,
as parallel parking a car requires a more complicated set of steering maneuvers. So we cannot simply
specify an arbitrary robot pose (x,y, 8) and find the velocities that will get us there.

For the special cases of v, = v; = v (robot moving in a straight line) the motion equations become:

x' x + vcos(6)dt

y'l =|y+ vsin(@)dt] (12)
o' 0

If v, = —v; = v, then the robot rotates in place and the equations become:

x' x

y'l = y l (13)
g’ 0+ 2vét/l

This motivates a strategy of moving the robot in a straight line, then rotating for a turn in place, and
then moving straight again as a navigation strategy for differential drive robots.

We define the following terms: r,,,.0;: Wheel radius. D,op,:: length of the differential drive wheel
axle. V,,neer: Magnitude of wheel velocity measured in rpm.

To calculate an angular rotation @ of the robot, we need to find an equation for the amount of time we
need to turn the robot an angle of @ degrees using a wheel velocity of V... In this example, we
assume that the wheels are turning in the opposite direction at the same velocity (robot is turning in
place).

Given a time, the wheel will turn:

61

Distanceypeer = Viwneet X Twheet X t (14)

To determine the time to turn the robot a specified angle in place, we note that the entire

circumference C of the robot when it turns 360 is D,p,:. We can turn an angle of @ in time ¢
using the equation [24]:

Distanceypeel __ i (15)
Cc 21
Vwheel XTwheel Xt — 9 (16)
C 21
@C
p=— 2 17
21XV wheel XTwheel

where @ in radians.

Therefore, by tracking one of the parameters, distance or time, one can turn the robot by a specific
angle. Also the digital compass in the robot can be used in the turning algorithm.

By using these equations the time or distance for the motor turns are calculated and the command for
setting direction and rpm values are given to microcontroller.

5.3.3 Set Distance

The distance to move the robot can be set by using this method. The function gets the direction of the
motion and distance to move and velocity of the motion. The equation for distance is;

Distancepeer = Viwneet X Twheet X t
where
Viwneet - The angular velocity of the wheels
Twheet - The radius of the wheels
t : Time of motion

Therefore, by tracking one of the parameters, distance (calculated by encoder tics) or time, one can
move the robot with the specified distance value.

By using this equation the time for motion is calculated and the command for setting direction and
rpm values are given to microcontroller.

The microcontroller will return a done message for this function, in order to give us a feedback for the
motion.

5.4 Kinect Library

Another library for Microsoft Kinect is also prepared for the robot platform. The RGB and Depth
sensor data of the Microsoft Kinect is extracted by using Kinect for Windows SDK 1.5 and ready for
user as Bitmaps with the following variables:

_bitmapRGB for RGB Sensor Data

_bitmapDepth for Depth Sensor Data

These variables are global variables in the library and they are connected to events that are fired as the
RGB and Depths Sensor Frames are updated. This is approximately ~30fps.

62

At this point, a researcher can take the robot platform and start developing algorithms. Since, he/she
has the library to drive the robot and a robust serial protocol; the user can focus and gives all attention
to develop robotic algorithms.

Actions done so far can be summarized as the realization steps of the robot platform. In this chapter
required motor, battery and gearbox for this platform is selected, and then detailed design of the
chassis and the body of the robot is described and finally the schematics of the control system
explained. Low level and high level functions of the robot is explained in detail with the help of the
serial protocol. The robot platform is manufactured with respect to the defined specification at this
chapter and test results of this platform are discussed at the next chapter.

5.5 Raobot Library

A class is constructed for the high and low level functions of the robot. The user will use this class to
reach to the robot. With this class, the robot will be an object to the user and the high level functions
of the robot will be the functions of the class. The architecture of this class will be explained in this
part. First the low level functions and necessary implementation for communication are constructed.
These are the serial port handling, the low level functions explained in the previous parts and sensor
update events. The serial port handling algorithm is also explained in the previous part and is
embedded in this library. The sensor update events are for users to be informed if a new sensor data is
received. Every sensor in the robot has an event that user can sign up to. Therefore, if a user wants a
sensor data, first the broadcasting mode for that sensor should be opened. Then, the user should
register to the related event for the sensor. After that, the user will receive the event in every new
sensor data which was broadcasted from the robot with the user specified interval.

The high level functions are also accessible to the user. The user can use these high level functions to
control the robot. If a user wants to move the robot with a specified speed, the user will only use the
necessary function with the necessary parameters, and the library will manage the rest.

The library reference and example use of the library can be found in the Appendix C.

In addition to this robot library, a simple user control for the robot is created. This will allow a new
user to just drag and drop the robot control from the toolbox of the Visual Studio (Figure 46) and
simply adjust some properties like serial port name and sensor parameter update interval. Then the
user will have 3 outputs from robot shown in the form (ultrasonic sensors, speed and heading angle)
and the user will see the heartbeat of the robot and can control the robot using the virtual joystick.
This will allow the user just by simply adding the control to a new project, the robot will be accessibly
and can be easily teleoperated to see that it works well.

Figure 46 — Robot User Control in the Toolbox of MS Visual Studio

By using the user control just drag and drop the robot control to the newly created project. And the
user control will include the connect button, the robot’s picture from top and a virtual joystick in the
center, heading sensor gauge, speed gauge, heartbeat led, and ultrasonic sensor readings will be drawn
to the control when new reading is obtained. After dropping the control to the newly created project a
sample screenshot is given in Figure 47.

63

Heading () — Speed (mm/s)

Figure 47 - User Control Screenshot

The properties window will look like Figure 48. The user can change the properties as needed and
should set the communication ports to the robot’s Arduino cards. The robot port property will set the
Arduino port which will be the main controller of the robot. The robot port sonar property will set the
Arduino port which is the ultrasonic sensor microcontroller card.

The robot control sample screenshot while in use is shown in Figure 49. In this screenshot the front of
the robot is clear, and the other sides are not clear. In this configuration for example robot should be
moved to forward. As it can be seen from the Figure 49, the robot can easily be teleopareted by using
this user control.

64

b

b

(ApplicationSettings)
(DataBindings)

(Marne) robotl
AccessibleDescription
AccessibleMName

AccessibleRole Default
AllowDrop False
Anchor Top, Left
AutoScroll False
AutcScrollMargin 0:0
AutoScrollMinSize 0:0
AutoSize False
AutoSizeMode GrowOnly
AutoValidate EnablePreventFocusChange
BackColaor |:| Control
Backgroundlmage |:| (none)
BackgroundImagelayout Tile
BorderStyle Mone
BroadcastHeading True
BroadcastingInterval 250
BroadcastSpeed True

BroadcastUltrasonicsenso True

CauszesValidation
ContextMenuStrip
Cursor

Dock

Enabled

Font

ForeColor

GenerateMember
ImeMode
Location
Locked
Margin
Maximum&ize
Minimum5Size
Modifiers
Padding
RightToleft
RobotPort

RobotPortSonar
Size

TablIndex
Tab5top

Tag

True

(none)

Default

MNone

True

Microsoft Sans Serif; 8,25pt
- ControlText
True

MoControl
12:12

False

3333

0:0

0:0

Private

0:0:0:0

779:-779
2
True

Figure 48 - Property Window of the User Control

65

Heading (%)

Speed (mm/s)

Figure 49 - Example Usage of the User Control

In the next chapter, performed tests and their results can be found.

66

CHAPTER 6
RESULTS AND DISCUSSIONS
In this chapter the test of the manufactured robot platform is discussed. The tests are done with the

manufactured robot platform according to specified design configuration. A sample picture of the
manufactured robot platform can be seen in Figure 50.

Figure 50 - Robot Platform

We will use a laptop as the brain of the robot. The manufactured robot has 4 wheels and each one has
a motor as described in the previous part. The microcontroller and the motor driver board are
implemented on the robot. All the other hardware mentioned in the previous part is implemented. The
robot has 10 ultrasonic sensors on it. The front and back side (We will refer to the part of where the
microcontroller and motor driver board is close as the front side of the robot for simplicity, however
there is no front or back side in the robot platform as it is symmetrical) of the robot has 3 sensors and
the sides has 2 sensors. The tilt compensated heading sensor is also implemented. The top view (inside
view) of the robot platform can be seen in Figure 51.

67

Figure 51 - Inside of the Robot

A user interface is prepared for seeing the low level implementation, the sensor outputs and give
commands to the robot (Figure 52).

Motor Curent LF Motor Curert L8 Motor Cusrert RF otor Cusert RB

Motcr RPMLF Motor RPMLB Motor RPMRF Motor RPM RE

Figure 52 - User Interface

68

The tests will include the high level functions. We will test how the robot will react to those functions
and the accuracy that we have in the robot.

6.1 Set Linear Speed Test

First test is the set linear speed. We will give the robot some test value speeds and drive it. After the
robot start to move and the speed of the robot become constant, it will pass the first proximity sensor
which will start a timer. The test setup will have 4 proximity sensors, and the distance between 1* and
2" sensor is 33 cm. The distance between 1% and 3 one is 100 cm and the distance between 3™ and
4" one is 33 cm also. The sketch of the test setup is given in the Figure 53. An algorithm for the test is
developed such that all proximity sensors will save 2 values, the first entering of the robot in the
sensor field and leaving of the sensor. Therefore, in each test we will have 8 time values, from which
we will calculate the speed values. After getting the time values and calculating the speed, it will be
compared with the given speed.

Proximity Sensors

100 cm

- 33cm 33cm
< > 25 =1

Figure 53 - Test Setup of the Speed Test

Therefore, after completion of the test we will calculate 7 speed value from the test results. First, the
speed is calculated between 1% and 2" proximity sensor time elapsed and from their distance. Also,
every proximity in and out time values are used to calculate the speed by using the robot length 50 cm.
The table for calculating speed values is given in Appendix B.

For speed tests 4 different speed values are used. These are 0.2 m/s, 0.4 m/s, 0.6 m/s and 0.8 m/s. In
every speed 3 tests are run and their average value is calculated. The test results for 0.2 m/s is given
below.

Table 81 - Speed Test 1 - 0.2 m/s

Test 1: 0.2 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 1786 ms 1786 0,18
[1]Out: 2720 ms 2720 0,18
[2]0ut: 4370 ms 4370 0,19
[3]In: 5168 ms 5168 0,19
[4]In: 6908 ms 6908 0,19
[3]0ut: 7858 ms 7858 0,19
[4]0ut: 9528 ms 9528 0,19
Avarage 0,19

69

Speed vs. Time (ms)

0,25 |
0,15
0,10 // 9—Seriesl
0,05
0,00 /
0 2000 4000 6000 8000 10000 12000
Figure 54 - Speed Test 1 - 0.2 m/s
The second test results are given below.
Table 82 - Speed Test 2 - 0.2 m/s
Test 2: 0.2 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 1680 ms 1680 0,20
[1]Out: 2554 ms 2554 0,20
[2]Out: 4128 ms 4128 0,20
[3]In: 4928 ms 4928 0,20
[4]In: 6532 ms 6532 0,21
[3]Out: 7486 ms 7486 0,20
[4]0Out: 9112 ms 9112 0,19
Avarage 0,20
Speed vs. Time (ms)
0,25
0,20 '#***ﬁ_
0,15
0,10 // ¥—Seriesl
0,05
0,00 /
0 2000 4000 6000 8000 10000
Figure 55 - Speed Test 2 - 0.2 m/s
The third test results are given below.
Table 83 - Speed Test 3 - 0.2 m/s
Test 3: 0.2 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00

70

[2]In: 1646 ms 1646 0,20
[1]0ut: 2512 ms 2512 0,20
[2]0Out: 4062 ms 4062 0,21
[3]In: 4836 ms 4836 0,21
[4]In: 6416 ms 6416 0,21
[3]0ut: 7358 ms 7358 0,20
[4]0ut: 8956 ms 8956 0,20
Avarage 0,20
Speed vs. Time (ms)
0,25
0,20 _ﬁ-_‘_%@ <&
0,15 /
0,10 / Seriesl
0,05
0,00 /
0 2000 4000 6000 8000 10000
Figure 56 - Speed Test 3 - 0.2 m/s
The average of the 3 tests is given below.
Table 84 - 0.2 m/s Test Results
Test 1 0,19
Test 2 0,20
Test 3 0,20
Avarage 0,20
The result is very satisfactory.
The test results for 0.4 m/s is given below.
Table 85 - Speed Test 4 - 0.4 m/s
Test 4: 0.4 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 738 ms 738 0,45
[1]Out: 1156 ms 1156 0,43
[2]Out: 1882 ms 1882 0,44
[3]In: 2204 ms 2204 0,45
[4]In: 2900 ms 2900 0,47
[3]0Out: 3362 ms 3362 0,43
[4]0ut: 4090 ms 4090 0,42
Avarage 0,44

71

Speed vs. Time (ms)

0,50 >
0,30

0,20 /

/ ¥—Seriesl
0,10
0,00 /
0 1000 2000 3000 4000 5000
Figure 57 - Speed Test 4 - 0.4 m/s
The second test results are given below.
Table 86 - Speed Test 5 - 0.4 m/s
Test 5: 0.4 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 788 ms 788 0,42
[1]Out: 1210 ms 1210 0,41
[2]Out: 1958 ms 1958 0,43
[3]In: 2318 ms 2318 0,43
[4]In: 3086 ms 3086 0,43
[3]Out: 3546 ms 3546 0,41
[4]0ut: 4324 ms 4324 0,40
Avarage 0,42
Speed vs. Time (ms)
0,50
0,30 /
0,20 / 9—Seriesl
0,10
0,00 /
0 1000 2000 3000 4000 5000
Figure 58 - Speed Test 5 - 0.4 m/s
The third test results are given below.
Table 87 - Speed Test 6 - 0.4 m/s
Test 6: 0.4 m/s
Time Value (ms) Speed (m/s)
[1]In: O ms 0 0,00
[2]In: 820 ms 820 0,40
[1]Out: 1250 ms 1250 0,40

72

[2]Out: 2016 ms 2016 0,42
[3]In: 2390 ms 2390 0,42
[4]In: 3172 ms 3172 0,42
[3]0ut: 3634 ms 3634 0,40
[4]0ut: 4440 ms 4440 0,39
Avarage 0,41
Speed vs. Time (ms)
0,50
0,40 - .*.*— —
0,30
0,20 Seriesl
0,10
0,00
2000 3000 4000 5000
Figure 59 - Speed Test 6 - 0.4 m/s
The average of the 3 tests is given below.
Table 88 - 0.4 m/s Test Results
Test 1 0,44
Test 2 0,42
Test 3 0,41
Avarage 0,42
The result is very satisfactory.
The test results for 0.6 m/s is given below.
Table 89 - Speed Test 7 - 0.6 m/s
Test 7: 0.6 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 580 ms 580 0,57
[1]Out: 878 ms 878 0,57
[2]Out: 1434 ms 1434 0,59
[3]In: 1706 ms 1706 0,59
[4]In: 2274 ms 2274 0,58
[3]0ut: 2578 ms 2578 0,57
[4]0ut: 3136 ms 3136 0,58
Avarage 0,58

73

Speed vs. Time (ms)

0,80
> T=¢—o==¢===¢7
0,40 .
/ = Seriesl
0,20
0,00 /
0 1000 2000 3000 4000
Figure 60 - Speed Test 7 - 0.6 m/s
The second test results are given below.
Table 90 - Speed Test 8 - 0.6 m/s
Test 8: 0.6 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 588 ms 588 0,56
[1]Out: 892 ms 892 0,56
[2]0ut: 1444 ms 1444 0,58
[3]In: 1724 ms 1724 0,58
[4]In: 2302 ms 2302 0,57
[3]0ut: 2620 ms 2620 0,56
[4]0ut: 3186 ms 3186 0,57
Avarage 0,57
Speed vs. Time (ms)
0,80
0,60 ' o *ﬁ_._-‘
0,40 .
/ =¢=—>Seriesl
0,20
0,00 /
0 1000 2000 3000 4000
Figure 61 - Speed Test 8 - 0.6 m/s
The third test results are given below.
Table 91 - Speed Test 9 - 0.6 m/s
Test 9: 0.6 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 590 ms 590 0,56
[1]Out: 898 ms 898 0,56

74

[2]0ut: 1460 ms 1460 0,57
[3]In: 1738 ms 1738 0,58
[4]In: 2304 ms 2304 0,58
[3]0ut: 2640 ms 2640 0,55
[4]0ut: 3206 ms 3206 0,55
Avarage 0,57
Speed vs. Time (ms)
0,80
0,60 /_‘.—FF*__‘
0,40 .
/ =¢=—"Seriesl
0,20
0,00 /
0 1000 2000 3000 4000
Figure 62 - Speed Test 9 - 0.6 m/s
The average of the 3 tests is given below.
Table 92 - 0.6 m/s Test Results
Test 1 0,58
Test 2 0,57
Test 3 0,57
Avarage 0,57
The result is very satisfactory.
The test results for 0.8 m/s is given below.
Table 93 - Speed Test 10 - 0.8 m/s
Test 10: 0.8 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 450 ms 450 0,73
[1]Out: 684 ms 684 0,73
[2]Out: 1116 ms 1116 0,75
[3]In: 1326 ms 1326 0,75
[4]In: 1768 ms 1768 0,75
[3]0ut: 2014 ms 2014 0,73
[4]0ut: 2452 ms 2452 0,73
Avarage 0,74

75

Speed vs. Time (ms)

0,80
f—r—- ————¢
0,60 /
0,40
/ = Seriesl
0,20
0,00 /
0 500 1000 1500 2000 2500 3000
Figure 63 - Speed Test 10 - 0.8 m/s
The second test results are given below.
Table 94 - Speed Test 11 - 0.8 m/s
Test 11: 0.8 m/s
Time Value (ms) Speed (m/s)
[1]In: 0 ms 0 0,00
[2]In: 454 ms 454 0,73
[1]0ut: 696 ms 696 0,72
[2]0ut: 1130 ms 1130 0,74
[3]In: 1344 ms 1344 0,74
[4]In: 1774 ms 1774 0,77
[3]0ut: 2044 ms 2044 0,71
[4]0ut: 2484 ms 2484 0,70
Avarage 0,73
Speed vs. Time (ms)
1,00
0,80
’ ’—.‘_*—*———N_‘
0,60 /
0,40 / ¥—Seriesl
0,20
0,00 /
0 500 1000 1500 2000 2500 3000

Figure 64 - Speed Test 11 - 0.8 m/s

The third test results are given below.

Table 95 - Speed Test 12 - 0.8 m/s

Test 12: 0.8 m/s

Time Value (ms)

Speed (m/s)

[1]In: 0 ms 0 0,00
[2]In: 456 ms 456 0,72
[1]Out: 698 ms 698 0,72

76

[2]Out: 1128 ms 1128 0,74
n: ms)

3]In: 1342 1342 0,75
n: ms)

4]In: 1784 1784 0,75

[3]0ut: 2044 ms 2044 0,71

[4]0ut: 2486 ms 2486 0,71

Avarage 0,73

Speed vs. Time (ms)
0,80 —0——0 :

0,60 /
0,40 .
/ —@—Seriesl
0,20

0,00 /

0 500 1000 1500 2000 2500 3000

Figure 65 - Speed Test 12 - 0.8 m/s
The average of the 3 tests is given below.

Table 96 - 0.8 m/s Test Results

Test 1 0,74
Test 2 0,73
Test 3 0,73
Avarage 0,73

In this test it can be seen that the robot has difficulty to reach the setpoint. It is seen that the results are
the top speed of the robot.

A screenshot from one of the tests is given in Figure 66.

Figure 66 - Sample Screenshot of Speed Test

77

In conclusion, the results for the speed test are given in Table 97.

Table 97 - Speed Test Result

0.2 m/s Speed Test 0,20
0.4 m/s Speed Test 0,42
0.6 m/s Speed Test 0,57
0.8 m/s Speed Test 0,73

6.2 Turn Angle Test

The second test is the Turn Angle (Point Turn). We will give the robot some test value angles and
drive it. The angle from the start of the test (Figure 67) and the angle at the end of the test (Figure 68)
is measured using an iPhone digital compass. The robot will use the heading sensor to turn an angle.
Then we will compare the results.

Figure 68 - Sample Screenshot of Angle After The Test

2 different angles have been given to the robot for this test. The schematic of the test can be seen in
Figure 69. The robot TurnAngle function is tested. The robot will turn the given angle with a given
turn direction from its position.

78

45 degrees

N

90 degrees

N

/

1st test 2nd test

N\ S

Figure 69 - Schematic of TurnAngle Tests

The test results for 90 degree test are given below. The test is conducted 5 times.

Table 98 — Turn Angle Test (90 degrees) Results

Start Angle End Angle Angle Turned
90 181 91
258 352 94
99 188 89
188 268 80
101 193 92

The test results for 45 degree test are given below. The test is conducted 5 times.

Table 99 — Turn Angle Test (45 degrees) Results

Start Angle End Angle Angle Turned
348 28 40
28 73 45
73 123 50
123 169 46
169 214 45

In conclusion, the turn angle test is satisfactory. It can be seen that the robot is turned with the desired
angle in an approximately %3-4 error. This result is normal considering the heading sensor error.

6.3 Turn To Angle Test

The third test is the Turn to Angle function. We will give the robot some test value angles and drive it.
An iPhone digital compass is used to obtain the start (Figure 70) and end angle (Figure 71) of the
robot during the test. The robot will use the heading sensor to turn an angle. Then we will compare the
results.

79

Figure 71 - Sample Screenshot of Angle After The TurnToAngle Test

3 different angles have been given to the robot for this test. The robot TurnToAngle function is tested.

The robot will turn to the given angle with a given turn direction from its position.

The test results for 20 degree test are given below. The test is conducted 2 times.

Table 100 — Turn to Angle Test (Turn To 20 degree) Results

Start Angle End Angle
193 19
288 19

The test results for 100 degree test are given below. The test is conducted 2 times.

Table 101 — Turn to Angle Test (Turn To 100 degree) Results

Start Angle End Angle
21 105
250 102

80

The test results for 250 degree test are given below. The test is conducted 2 times.

Table 102 — Turn to Angle Test (Turn To 100 degree) Results

Start Angle End Angle
127 245
345 248

In conclusion, the turn to angle test is satisfactory. It can be seen that the robot is turned with the
desired angle in an approximately %3-4 error. This result is normal considering the heading sensor
error.

6.4 Set Distance Test

The last test is the set distance. We will give the robot some test value distance and drive it. Then we
will measure the distance that the robot travelled with a meter (Figure 72, Figure 73, Figure 74). Then
we will compare the results with the given set point.

Figure 72 - Sample SetDistance 1 m Test Screenshot

81

Figure 73 - Sample SetDistance 2 m Test Screenshot

Figure 74 - Sample SetDistance 3 m Test Screenshot

3 different distance have been given to the robot for this test. The robot SetDistance function is tested.
The robot will move to the specified distance with 0.2 m/s speed.

The test results for 1 m test are given below. The test is conducted 4 times.

Table 103 - Set Distance Test (1 m) Results

107
103
104
104

The test results for 2 m test are given below. The test is conducted 4 times.

82

Table 104 - Set Distance Test (1 m) Results

Measured Distance From The Start Point

205

206

208

204

The test results for 2 m test are given below. The test is conducted 4 times.

Table 105 - Set Distance Test (1 m) Results

Measured Distance From The Start Point

307

301

307

306

It can be seen that the robot moved all the distance with a maximum of %3-4 error. This result is very
satisfactory.

6.5 Obstacle Avoidance Implementation

After these test, we implemented some basic robotic algorithms to show that the developed robot
platform is capable of running robotic algorithms. For this purpose, an obstacle avoidance algorithm is
implemented using Kinect. The picture of the robot platform with the Kinect is given in Figure 75.

Figure 75 - Obstacle Avoidance Setup on the Robot

83

The Kinect depth map is used in the navigation of the robot. A complex obstacle avoidance alogirtm
can be implemented however, the purpose of implementing the obstacle avoidance is to show that the
developed robot platform can run robotic reseach algorithm. Therefore, we implement a simple
decision making algorithm that focuses on computational efficiency and simple. The goal of this
algorithm is to find the most appropriate direction from the possible directions of movement, i.e.
forward, left, and right. In order to achive that, the depth map of the Kinect is divided in to three
equally sized window as shown in the Figure 76.

Figure 76 - Depth Map Divided into Three Windows

The boundary regions of the depth map are exculuded in constructing because such regions are often
problematic. In each window, the pixels whose depth value is greater than a defined threshold are
enumerated. Then the enumeration results are normalized toward the window’s pixels population and
then examined. The smaller value points out that the direction is the most appropriate direction to
move. If all of the values are greater than some predefined threshold value, the robot will move
backward to obtain a wide angle. The sample screenshot from one of the obstacle avoidance algorithm
test is given in Figure 77.

84

Figure 77 - Sample Obstacle Avoidance Screenshots

The performed tests show that the developed robot platform, control architecture and robot library is
fulfills the design requirements and tasks. By implementing the obstacle avoidance algorithm, it is
shown that this platform can be ready to be used for developing robotic algorithms. A user can easily
get started to develep such tasks and concentrate on algorithm development.

85

86

CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE WORK

In this thesis, a modular and cost efficient robot platform for educational research purposes is
designed and manufactured. The robot base is designed so that it can be configured as the specific
application needs, so that the motor number or dimension or the sensors that the robot has can be
changed. Electronic infrastructure of the robot platform is designed and implemented. 2 Arduino
Mega microcontroller are used to control the robot platform. One is only for reading the ultrasonic
readings and the other one is used for motor controller and other jobs. A serial communication
protocol is developed and implemented to both PC and microcontroller side. In addition, code is
developed for reading the digital compass, and also a pid controller is implemented to drive the
motors. On the other hand, a library is created in Microsoft Visual Studio using C#. This library is
used to communicate with the robot platform and to use it. In addition to the library, a user control is
created to quickly attach to the robot platform and start to use it. The modular structure of the robot
allows the user to attach any kind of sensor to the platform. At design stage, the expected performance
of the robot is configured, and at the test the modularity is shown. A researcher will no longer spend
time on low level implementation of the modules. He/She will use the implemented serial protocol
and high level function library and spend time on developing robotic algorithms.

The high level functions of the robot platform is tested. These tests include speed test, turn angle test,
turn to angle test and distance test. All of the test results are satisfactory. Also, a simple obstacle
avoidance algorithm is implemented on the robot platform. The high level functions are used in this
algorithm. It has shown that the developed robot platform is capable of running robotic algorithms and
suitable for developing research algoritms.

In the near future, a self-charging algorithm for the robot will be implemented. This will allow the
robot for continuous operation. Also, a suspension system will be implemented to the wheels so that
the robot platform can also be used at outdoor use. It is also intended that several of these robots can
be connected with each other for specific tasks.

87

88

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

Mobile Robots Company product datasheet web page, Last accessed in January, 2013
[Online]. http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-P3AT-
RevA.sflb.ashx.

K-TEAM corporation Koala 11 robot specifications web page, Last accessed in January, 2013
[Online]. http://www.k-team.com/mobile-robotics-products/koala

AAI Canada Inc. Gaia-2 robot platform product web page, Last accessed in January, 2013
[Online]. http://www.aai.ca/robots/gaia_2.html.

Parallax Eddie robot platform product web page, Last accessed in January, 2013 [Online].
http://www.parallax.com/eddie

RoPro Design Calliope iRobot Create Netbook Development Platform product web page,
Last accessed in January, 2013 [Online]. http://chiara-robot.org/Calliope/

Nexus Robot 4WD Mecanum robot product web page, Last accessed in January, 2013
[Online]. http://www.nexusrobot.com/product.php?id_product=67

Dr. Robot Sentinel3 WiFi mobile development platform product web page, Last accessed in
January, 2013 [Online]. http://www.drrobot.com/products_item.asp?itemNumber=sentinel3

Dr. Robot Jaguar tracked mobile platform product web page, Last accessed in January, 2013
[Online]. http://jaguar.drrobot.com/specification_lite.asp

InspectorBots Mega Bot wireless 4WD robot platform product web page, Last accessed in
January, 2013 [Online]. http://www.inspectorbots.com/Mega_Bot.html

CoroWare CoroBot CB-W Robot Development Platform product user guide, Last accessed
in January, 2013 [Online]. http://www.robotshop.com/PDF/corobot-user-guide.pdf

Seekur Jr robot platform product web page, Last accessed in January, 2013 [Online].
http://www.mobilerobots.com/ResearchRobots/SeekurJr.aspx

Dongbu Robot Tetra-DS IV Mobile Robot Platform product web page, Last accessed in
January, 2013 [Online]. http://www.dongburobot.com/jsp/cms/view.jsp?code=100792

Wisspeintner, Thomas, and Abheek Bose. "The VolksBot Concept — Rapid Prototyping for
Real-life Applications in Mobile Robotics (Das VolksBot Konzept — Ein Baukastensystem
Fiir Anwendungsnahes Rapid-Prototyping Mobiler Roboter)." It - Information Technology,
vol. 47, pp. 274-281, May 2005.

Gerecke, U. ,Hohmann, P. , Wagner, B., “Solutions to Meet the Requirements of Educational
Robotics”, International Conference on Engineering Education and Research “Progress
Through Partnership”, VSB-TUQ, Ostrava, 2004.

Pololu 37D 100 rpm Motor Product Page, Last accessed in January, 2013 [Online].
http://www.pololu.com/catalog/product/1446

Arduino Mega Product Page, Last accessed in January, 2013 [Online].
http://arduino.cc/en/Main/arduinoBoardMega

Rover 5 Motor Driver Board Product Page, Last accessed in January, 2013 [Online].
https://www.sparkfun.com/products/11593?

89

18.

19.

20.
21.

22,

23.

24,

25,

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

HC-SR04 Ultrasonic Sensor Distance Measuring Module Product Page, Last accessed in
January, 2013 [Online]. http://dx.com/p/hc-sr04-ultrasonic-sensor-distance-measuring-
module-133696

Microsoft Kinect Product Page, Last accessed in January, 2013 [Online].
http://www.xbox.com/en-US/KINECT

Genta, G., Motor Vehicle Dynamics, World Scientific, 1997.

LSM303DLH Tilt Compensated Electronic Compass Application Notes, Last accessed in
January, 2013 [Online].
http://www.sparkfun.com/datasheets/Sensors/Magneto/Tilt%20Compensated%20Compass.p
df

LSM303DLH Tilt Compensated Electronic Compass Product Web Page, Last accessed in
January, 2013 [Online]. https://www.sparkfun.com/products/9810

Dudek, G., Michael, J., Computational Principles of Mobile Robotics. New York: Cambridge
UP, 2010.

Differential Drive Kinematics, Last accessed in January, 2013 [Online].
http://chess.eecs.berkeley.edu/eecs149/documentation/differential Drive.pdf

Al-Eryani, J., “A Biologically Inspired Modular Autonomous Mobile Robot Platform”,
Artificial Life and Robotics, vol. 13, Issue 1, pp 22-26, December 2008.

Bayar, G., Koku, A. B., Konukseven, E. 1., “Design of a Configurable All Terrain Mobile
Robot Platform”. International Journal Of Mathematical Models And Methods In Applied
Sciences, vol. 3, Issue 4, 2009.

Csaba, G. and Vamossy, Z. “Fuzzy Based Obstacle Avoidance for Mobil Robots with Kinect
Sensor”, 4th IEEE International Symposium on Logistics and Industrial Informatics, 2012.

Gerecke, U., Wagner B., Hohmann P., “A Modular Educational Robotic Toolbox to Support
University Teaching Efforts in Engineering”, International Conference on Engineering
Education, 2003.

Goris, K., “Autonomous Mobile Robot Mechanical Design”, Master’s Thesis, Vrije
Universiteit Brissel, 2005.

Hacinecipoglu, A., “Development Of Electrical And Control System Of An Unmanned
Ground Vehicle For Force Feedback Teleoperation”, Master’s Thesis, Middle East Technical
University, 2012.

Hofbaur, M. and Jantscher, S., “Modular Re-Configurable Robot Drives”, Robotics
Automation and Mechatronics, 2010.

Jeong, H. and Kim, S. “Development of Autonomous Robot System for Indoor Messy
Environments”, ICROS-SICE International Joint Conference, 2009.

Bayar, G., “Configurable Robot Base Design for Mixed Terrain Applications”, Master’s
Thesis, Middle East Technical University, 2005.

Kucsera, P., “Industrial Component-based Sample Mobile Robot System”, Acta Polytechnica
Hungarica, vol.4, 2007.

Kul, M. “Design, Development And Manufacturing Of An All Terrain Modular Robot
Platform”, Master’s Thesis, Middle East Technical University, 2010.

90

http://chess.eecs.berkeley.edu/eecs149/documentation/differentialDrive.pdf

36.

37.

38.

39.

40.

Nalpantidis, L., Gasteratos, A., “Stereovision-Based Fuzzy Obstacle Avoidance Method”,
International Journal Of Humanoid Robotics, vol.8, 2011.

Granado Navarro, M. A., “Arduino Based Acquisition System For Control Applications.”,
Master’s Thesis, Universitat Politécnica De Catalunya, 2012.

Rusu, C., Birou, I., “Obstacle Avoidance Fuzzy System For Mobile Robot With Ir Sensors”,
10th International Conference On Development And Application Systems, 2010.

Surmann, H., Bredenfeld, A., “The Volksbot”, International Conference On Simulation,
Modeling And Programming For Autonomous Robots, 2008.

Winchenbach, S., Segee, D., “Cost-Effective Mobile Robot Platform Using Commercially
Available Components”, Journal Of Computer And Information Technology, vol.1, 2011.

91

92

APPENDIX A

SERIAL PORT HANDLING ALGORITHM

vold getSerial()

{
int numberlfBytes = spArduino.BytesToRead; //Get number of bytes to read
if (number0fBytes == @) F/IF number of bytes is @ return
return;

while (numberOfBytes !=8) //While there is bytes to read, loop through
i
myR5232_Data.readValue =
Convert.ToByte{spaArduino.ReadByte()}; //Read one byte
numberfBytes--;

if (myR5232 Data.packetState == doWaitSTX) //Whether we wait

{ /fthe first byte of a packet
myR5232_Data.length = @; SfInitialize the lenght of the data
if (myR5232_Data.readValue != 5TX) //If the byte is not a stx continue
1 [/ to get the bytes

continue;
H

myR5232_Data.buff[ADR_STX] = S5TX; S/LF STX put this into buffer array
myR5232 Data.packetState = doWaitData; //5o the next bytes are data packst

myR5232_Data.length = 1; S/The data packet length is now 1
continue;

¥

else if (myRS232 Data.packetState == doWaitData) //Mext byte comes to this

1

myR5232 Data.buff[myR5232 Data.length++] =
myR5232_Data.readValue; [/Take byte

if {myR5232 Data.length < 2@) Sfand put it to buffer array

1{ Sfuntil the buffer array size is 28
continue;

H

if (myR5232 Data.buff[myR5232_Data.length - 2] !=
calculateBCC(myRS232_Data.buff, 1, myR5232_Data.length - 3))

1 /f Check for BCC wvalues in the packet
myR5232_Data.packetstate = doWaitsTx; s/ If it iz corrupt packet
myR5232 Data.length = @; //discard this packet and wait for the next one
break;

H

RobotResponse(}; //Packet is valid. Evaluate the Packet

break; S/Continue if serial port buffer has bytes to read.

T

else

i
myR5232 Data.packetState = dobaitsTx;
continue;

H

Figure 78 - Serial Port Handling Algorithm

93

94

APPENDIX B

SPEED TEST CALCULATION TABLE

Table 106 - Speed Calculation Table

Test Point Test Time Speed Calculation
Proximity 1 In to -

Proximity 2 In t 0.33/(t; — ty)
Proximity 1 Out t, 0.50/(t, — tg)
Proximity 2 Out ts 0.50/(t; — t)
Proximity 3 In ty 1.00/(ty, — ty)
Proximity 4 In te 0.33/(ts — ty)
Proximity 3 Out te 0.50/(ts — t4)
Proximity 4 Out t, 0.50/(t; — t5)

95

96

APPENDIX C

LIBRARY REFERENCE (EDUROB.NAMESPACE)

In this section the library of the robot will be described.

Events

The events are used for new data delegates. All of the events explained below are raised when new
data is received. The user can register to an event to monitor the robot properties.

Table 107 - Events

Event Name Description

GetDirectionData This event is raised when new direction data is received.

GetSonarData This event is raised when new sonar data is received.

GetPWMData This event is raised when new pwm data is received.

GetEncoderData This event is raised when new encoder data is received.

GetCurrentData This event is raised when new current data is received.

GetRPMData This event is raised when new rpm data is received.

GetHeadingData This event is raised when new heading data is received.

GetAccelerometerData | This event is raised when new accelerometer data is received.

HeartBeat This event is raised when new heartbeat is received.

MotorEncoderUpdate This event is raised when new motor encoder update response is
received.

MotorRPMUpdate This event is raised when new motor rpm update response is received.

MotorCurrentUpdate This event is raised when new motor current update response is
received.

SonarUpdate This event is raised when new sonar update response is received.

HeadingUpdate This event is raised when new heading update response is received.

AccelerometerUpdate This event is raised when new accelerometer update response is
received.

Methods

The methods are explained below.

Table 108 - Methods

Method Name

Description

SetHeartBeat(Intl6 heartBeat)

This function sets the heartbeat interval for
the robot. The function takes interval as
milliseconds. Default heartbeat interval is
2000 ms.

SerialConnect(string serialPortName)

This function opens a connection to robot
with the given port name. Returns the value
indicating the open or closed value of the
serial port.

CheckSerialConnection()

This function returns the value indicating the
open or closed value of the serial port.

SerialDisconnect()

This function closes the connection of the
robot. Returns the value indicating the open
or closed value of the serial port.

SetDirection(int directionLF, int

This function sets the direction of the

97

directionLB, int directionRF, int
directionRB)

individual motors in the robot platform.

SetRPM(int rpmMotorLF, int rpmMotorLB, int
rpmMotorRF, int rpmMotorRB)

This function sets the rpm of the individual
motors in the robot platform.

GetSonar() This function sends a command to robot
platform for getting the ultrasonic sensor
data.

GetEncoder() This function sends a command to robot
platform for getting the encoder data.

GetMotorDirection() This function sends a command to robot
platform for getting the motor direction
values.

GetHeading() This function sends a command to robot
platform for getting the heading data.

GetAccelerometer() This function sends a command to robot

platform for getting the accelerometer data.

SetPWM(int pwmMotorLF, int pwmMotorLB, int
pwmMotorRF, int pwmMotorRB)

This function sets the pwm of the individual
motors in the robot platform.

GetRPM() This function sends a command to robot
platform for getting the rpm data.

GetPWM() This function sends a command to robot
platform for getting the pwm data.

GetCurrent() This function sends a command to robot

platform for getting the current data.

SetRPS(double rpsLF, double rpsLB, double
rpsRF, double rpsRB)

This function sets the rps of the individual
motors in the robot platform.

SetSpeed(double speed)

This function sets the speed of the robot
platform.

SetDistance(double distance, double speed)

This function drives the robot platform to
specified distance with the specified speed.

TurnAngle(int angle, RotationDirection
direction)

This function rotates the robot platform with
specified angle and the specified direction.

TurnToAngle(int angle, RotationDirection
direction)

This function rotates the robot platform to
the specified angle with the specified
direction.

ResetEncoder()

This function resets the encoder ticks of the
motors.

SetUpdateParameterInterval(UpdateParameter
parameter, UpdateResponse response, Intlé6
UpdateInterval)

This function sets which parameter to be
updated. Updatelnterval is in milliseconds.

Enumerations and Constants

Enumerations and constants are given below.

public enum UpdateResponse : int
{

YES = 1,

NO = 0
}

98

public enum UpdateParameter : int

{
Sonar,
Heading,
Accelerometer,
MotorEncoder,
MotorRPM,
MotorCurrent
}
public enum RotationDirection : int
{
Right,
Left
}
public static class MotorDirection
{
public const int Forward = 'I';
public const int Backward = 'G';
}

Example Usage of the Library

First determine the serial port to connect to the robot. This can be through USB cable to Arduino or a
wireless serial communication can also be used by using XBEE modules. In the code first add the
EduRob.dll to the project. Then, insert the below code to the using statements of the project.

using EduRob;

This will allow the user to create and use the EduRob Library.

Create a new instance of the library.

EduRobot myRobot = new EduRobot();

Then first thing is to connect to the robot.

myRobot.SerialConnect("COM1");

This function will also start the heartbeat of the robot. Then the user should specify the update
intervals of the sensors that are going to be used. Note that if no sensor update interval is specified the

robot will not broadcast any sensor data. The robot will only broadcast if the user sends the command
to the robot.

myRobot.SetUpdateParameterInterval (EduRobot.UpdateParameter.Heading,
EduRobot.UpdateResponse.YES, 100);

myRobot.SetUpdateParameterInterval (EduRobot.UpdateParameter.Sonar,
EduRobot.UpdateResponse.YES, 200);

myRobot.SetUpdateParameterInterval (EduRobot.UpdateParameter.MotorEncoder,
EduRobot.UpdateResponse.YES, 100);

myRobot.SetUpdateParameterInterval (EduRobot.UpdateParameter.MotorCurrent,
EduRobot.UpdateResponse.YES, 100);

In this code, heading sensor, ultrasonic sensors, motor encoders and motor currents are demanded
from the robot with the specified intervals.

99

Then, the user should register to the related events to get updated when new data comes.

myRobot.GetHeadingData += new EduRobot.delGetHeading(myRobot_GetHeadingData);
myRobot.GetSonarData += new EduRobot.delGetSonar(myRobot_GetSonarData);

myRobot.GetEncoderData += new EduRobot.delGetEncoder(myRobot_GetEncoderData);
myRobot.GetCurrentData += new EduRobot.delGetCurrent(myRobot_GetCurrentData);

The events are registered. Then the methods for the events should be implemented. In the below

functions the new data from robot is written to the related global variables and they are ready for later
use.

void myRobot_GetHeadingData(int heading)
{
this.heading = heading;
headingDataRecieved = true;

}

void myRobot_GetSonarData(int sonarFrontLeftInCm, int sonarFrontMiddleInCm,
int sonarFrontRightInCm, int sonarRightFrontInCm, int sonarRightBackInCm, int
sonarBackRightInCm, int sonarBackMiddleInCm, int sonarBackLeftInCm, int
sonarLeftBackInCm, int sonarLeftFrontInCm)

{
this.sonarFrontLeftInCm = sonarFrontLeftInCm;
this.sonarFrontMiddleInCm = sonarFrontMiddleInCm;
this.sonarFrontRightInCm = sonarFrontRightInCm;
this.sonarRightFrontInCm = sonarRightFrontInCm;
this.sonarRightBackInCm = sonarRightBackInCm;
this.sonarBackRightInCm = sonarBackRightInCm;
this.sonarBackMiddleInCm = sonarBackMiddleInCm;
this.sonarBackLeftInCm = sonarBackLeftInCm;
this.sonarLeftBackInCm = sonarLeftBackInCm;
this.sonarLeftFrontInCm = sonarLeftFrontInCm;
sonarDataRecieved = true;

}

void myRobot_GetEncoderData(int positionForEncoderLF, int

positionForEncoderLB, int positionForEncoderRF, int positionForEncoderRB)

{
this.positionForEncoderLF = positionForEncoderlLF;
this.positionForEncoderLB = positionForEncoderlLB;
this.positionForEncoderRF = positionForEncoderRF;
this.positionForEncoderRB = positionForEncoderRB;
encoderDataRecieved = true;

void myRobot_GetCurrentData(int currentMotorLF, int currentMotorLB, int
currentMotorRF, int currentMotorRB)

{
this.currentMotorLF = currentMotorLF;
this.currentMotorLB = currentMotorlLB;
this.currentMotorRF = currentMotorRF;
this.currentMotorRB = currentMotorRB;
currentDataRecieved = true;

}

Now we have global variables for the specified sensors. We can use this data in an algorithm and use

the high level functions. The example for this is given below. But first the example usages of the
functions are given.

100

myRobot.SetDirection(EduRobot.MotorDirection.Forward,
EduRobot.MotorDirection.Forward, EduRobot.MotorDirection.Forward,
EduRobot.MotorDirection.Forward);

myRobot.SetRPM(30, 30, 30, 30);

First the directions of the motors are set and then rpm values are given for the motors.
myRobot.GetSonar();

myRobot.GetEncoder();

myRobot.GetMotorDirection();

myRobot.GetHeading();

myRobot.GetAccelerometer();

These methods are used for getting the data for just one time. To get the data in an interval
(broadcasting mode) the interval for the specified sensor should be set just like mentioned in the
previous page.

myRobot.SetSpeed(0.2);

This line sets the speed of the robot 0.2 m/s.

myRobot.SetDistance(1l, 0.2);

This line moves the robot 1 m with a speed of 0.2 m/s.

myRobot.TurnAngle (90, EduRobot.RotationDirection.Right);

This line turns the robot in the right direction (Clockwise) by 90 degrees.
myRobot.TurnToAngle (20, EduRobot.RotationDirection.Right);

This line turns the robot to 20 degrees relative to Magnetic North in the right direction (Clockwise).
myRobot.ResetEncoder();

This line will reset the encoder variable in the microcontroller side.

The below lines of code is a simple wandering algorithm. The robot will move forward if there is no
obstacle in front. If an obstacle in the front, the robot will first look right, turn if right is empty. If not,
the robot will turn left, if left is empty. If all the ways are closed, the robot will move backwards.

if (depthTotalCenter > forwardThreshold)

{
if (depthTotalRight < sideThreshold)
myRobot.TurnAngle (10, EduRobot.RotationDirection.Left);
else if (depthTotalLeft < sideThreshold)
myRobot.TurnAngle (10, EduRobot.RotationDirection.Right);
else
myRobot.SetSpeed(0.2);
}
else if (depthTotalRight > forwardThreshold)
{

myRobot.TurnAngle(10, EduRobot.RotationDirection.Right);?}
else if (depthTotalLeft > forwardThreshold)
{

}

else

{

myRobot.TurnAngle(10, EduRobot.RotationDirection.Left);

101

myRobot.SetDirection(EduRobot.MotorDirection.Backward,
EduRobot.MotorDirection. Backward, EduRobot.MotorDirection. Backward,
EduRobot.MotorDirection. Backward);

myRobot.SetSpeed(0.2);

Library Code

The whole code of the library is given below. The code includes the serial port algorithm and private
functions sets to handle the high level functions.

using System;

using System.Collections.Generic;
using System.Linqg;

using System.Text;

using System.IO.Ports;

using System.Timers;

namespace EduRob
{
public partial class EduRobot
{
public delegate void delGetDirection(int motorDirectionLF, int motorDirectionLB, int
motorDirectionRF, int motorDirectionRB);
/// <summary>
/// This event is raised when new direction data is recieved.
/// </summary>
public event delGetDirection GetDirectionData;

public delegate void delGetSonar(int sonarFrontLeftInCm, int sonarFrontMiddleInCm,

int sonarFrontRightInCm, int sonarRightFrontInCm,
int sonarRightBackInCm, int sonarBackRightInCm, int

sonarBackMiddleInCm, int sonarBackLeftInCm, int sonarLeftBackInCm, int sonarLeftFrontInCm);

/// <summary>

/// This event is raised when new sonar data is recieved.

/// </summary>

public event delGetSonar GetSonarData;

public delegate void delGetPWM(int pwmLF, int pwmLB, int pwmRF, int pwmRB);
/// <summary>

/// This event is raised when new pwm data is recieved.

/// </summary>

public event delGetPWM GetPWMData;

public delegate void delGetEncoder(int positionForEncoderLF, int
positionForEncoderLB, int positionForEncoderRF, int positionForEncoderRB);

/// <summary>

/// This event is raised when new encoder data is recieved.

/// </summary>

public event delGetEncoder GetEncoderData;

public delegate void delGetCurrent(int currentMotorLF, int currentMotorLB, int
currentMotorRF, int currentMotorRB);

/// <summary>

/// This event is raised when new current data is recieved.

/// </summary>

public event delGetCurrent GetCurrentData;

public delegate void delGetRPM(int rpmLF, int rpmLB, int rpmRF, int rpmRB);
/// <summary>

/// This event is raised when new rpm data is recieved.

/// </summary>

public event delGetRPM GetRPMData;

public delegate void delGetHeading(int heading);
/// <summary>

102

/// This event is raised when new heading data is recieved.
/// </summary>
public event delGetHeading GetHeadingData;

public delegate void delGetAccelerometer(float accelerometerX, float accelerometery,
float accelerometerz);

/// <summary>

/// This event is raised when new accelerometer data is recieved.

/// </summary>

public event delGetAccelerometer GetAccelerometerData;

public delegate void delHeartBeat(bool heartBeat);

/// <summary>

/// This event is raised when new heartbeat is recieved.
/// </summary>

public event delHeartBeat HeartBeat;

public delegate void delMotorEncoderUpdate(bool motorEncoderUpdate);

/// <summary>

/// This event is raised when new motor encoder update response is recieved.
/// </summary>

public event delMotorEncoderUpdate MotorEncoderUpdate;

public delegate void delMotorRPMUpdate(bool motorRPMUpdate);

/// <summary>

/// This event is raised when new motor rpm update response is recieved.
/// </summary>

public event delMotorRPMUpdate MotorRPMUpdate;

public delegate void delMotorCurrentUpdate(bool motorCurrentUpdate);

/// <summary>

/// This event is raised when new motor current update response is recieved.
/// </summary>

public event delMotorCurrentUpdate MotorCurrentUpdate;

public delegate void delSonarUpdate(bool sonarUpdate);

/// <summary>

/// This event is raised when new sonar update response is recieved.
/// </summary>

public event delSonarUpdate SonarUpdate;

public delegate void delHeadingUpdate(bool headingUpdate);

/// <summary>

/// This event is raised when new heading update response is recieved.
/// </summary>

public event delHeadingUpdate HeadingUpdate;

public delegate void delAccelerometerUpdate(bool accelerometerUpdate);

/// <summary>

/// This event is raised when new accelerometer update response is recieved.
/// </summary>

public event delAccelerometerUpdate AccelerometerUpdate;

private SerialPort spArduino;

private int motorDirectionLF;
private int motorDirectionLB;
private int motorDirectionRF;
private int motorDirectionRB;

private int responseMotorDirectionlLF;
private int responseMotorDirectionlB;
private int responseMotorDirectionRF;
private int responseMotorDirectionRB;

private int pwmLF
private int pwmLB
private int pwmRF
private int pwmRB

n
P

[}
[OIGIOGR]
e e w

private int responsePwmLF = 9;

103

private
private
private

private
private
private
private

private
private
private
private

private
private
private
private
private
private
private
private
private
private

private
private
private
private

private
private
private
private

private
private

private
private

int responsePwmlLB = 0;
int responsePwmRF = 0;
int responsePwmRB = 0;

int positionForEncoderLF;
int positionForEncoderLB;
int positionForEncoderRF;
int positionForEncoderRB;

int currentMotorLF;
int currentMotorlLB;
int currentMotorRF;
int currentMotorRB;

int sonarFrontLeftInCm;
int sonarFrontMiddleInCm;
int sonarFrontRightInCm;
int sonarRightFrontInCm;
int sonarRightBackInCm;
int sonarBackRightInCm;
int sonarBackMiddleInCm;

int sonarBackLeftInCm;

int sonarLeftBackInCm;
int sonarLeftFrontInCm;
int rpmLF = 0;

int rpmLB = 0;

int rpmRF = 0;

int rpmRB = 0;

int responseRpmLF =

. e

int responseRpmLB
int responseRpmRF
int responseRpmRB

U}
.

[GEN)
-

int heading;

float accelerometerX;
float accelerometerY;
float accelerometerz;

struct myRS232_Data

{

public static byte[] buff
public static int length;
public static byte readValue;

public static byte packetState;

1

public static byte[] sendBuffer

//For SetDistance Method

private
private
private

private
private
private
private

private

DateTime testTime;
double timeSeconds;
Timer timerDistance;

new byte[32];

= new byte[32];

int distanceStartEncoderLF;
int distanceStartEncoderlLB;
int distanceStartEncoderRF;
int distanceStartEncoderRB;

int distanceEncoderTicks;

//For TurnAngle Method

private
private
private
private

private

Timer timerRotation;
int angleToTurn;
int angleResolution =

2;

bool robotStartedHeadingUpdate =

Timer timerHeartBeat;

104

false;

private int sendSonar =
private int sendEncoder
private int sendRPM = 0;
private int sendHeading = ©;

private int sendAccelerometer = 9;

private int sendCurrent = 0;

private Intl6 motorEncoderUpdateInterval = 0;
private Intl6 motorRPMUpdateInterval = 0;
private Intl6 motorCurrentUpdateInterval = 0;
private Intl6 sonarUpdateInterval = 0;

private Intl6 headingUpdateInterval = 0;
private Intl6 accelerometerUpdateInterval = 0;

e;
= 0;

private Timer timerTurnToAngle;
private int firstAngleTurn;
private Intl6 heartBeat = 2000;

/// <summary>
/// This function opens a connection to robot with the given port name.
/// Returns the value indicating the open or closed value of the serial port.
/// </summary>
public bool SerialConnect(string serialPortName)
{

spArduino = new SerialPort();

spArduino.DataBits = 8;

spArduino.DiscardNull = false;

spArduino.DtrEnable = false;

spArduino.Handshake = Handshake.None;

spArduino.Parity = Parity.None;

spArduino.ReadTimeout = -1;

spArduino.ReceivedBytesThreshold = 1;

spArduino.RtsEnable = false;

spArduino.StopBits = StopBits.One;

spArduino.PortName = serialPortName;
spArduino.BaudRate = 115200;

if (spArduino.IsOpen == false)
spArduino.Open();

spArduino.DataReceived += new
SerialDataReceivedEventHandler (spArduino_DataReceived);

timerHeartBeat = new Timer();

timerHeartBeat.Interval = heartBeat;

timerHeartBeat.Elapsed += new ElapsedEventHandler(timerHeartBeat_Elapsed);
timerHeartBeat.Enabled = true;

InitializeParameters();

return spArduino.IsOpen;

}

/// <summary>

/// This function sets the heartbeat interval for the robot. The function takes
interval as milliseconds

/// Default heartbeat interval is 2000 ms.

/// </summary>

public void SetHeartBeat(Intl6 heartBeat)

{
this.heartBeat = heartBeat;
SendCMD (Commands . SETHEARTBEATINTERVAL) ;
}
void timerHeartBeat_Elapsed(object sender, ElapsedEventArgs e)
{
SendCMD (Commands .HEARTBEAT) ;
}

void spArduino_DataReceived(object sender, SerialDataReceivedEventArgs e)

{

105

getSerial();

}

private void getSerial()

{
int numberOfBytes = spArduino.BytesToRead; //Get number of bytes to read
if (numberOfBytes == 0) //If number of bytes is @ return

return;

while (numberOfBytes != 0) //While there is bytes to read, loop through
{

myRS232_Data.readValue =
Convert.ToByte(spArduino.ReadByte()); //Read one byte
numberOfBytes--;

if (myRS232 Data.packetState == SerialRecieveConstants.doWaitSTX) //Whether
we wait
{ //the first byte of a packet
myRS232_Data.length = 0; //Initialize the lenght of the data
if (myRS232 Data.readValue != ByteConstants.STX) //If the byte is not a
stx continue
{ // to get the bytes
continue;

myRS232_Data.buff[SerialAddressConstants.STX] = ByteConstants.STX; //1f
STX put this into buffer array

myRS232_Data.packetState = SerialRecieveConstants.doWaitDatalLength; //So
the next bytes are data packet

myRS232_Data.length = 1; //The data packet length is now 1

continue;

else if (myRS232_Data.packetState == SerialRecieveConstants.doWaitDataLength)

myRS232_Data.buff[myRS232_Data.length++] = myRS232 Data.readValue; //Take
command byte

myRS232_Data.packetState = SerialRecieveConstants.doWaitData;

continue;

else if (myRS232_Data.packetState == SerialRecieveConstants.doWaitData)
//Next byte comes to this

myRS232_Data.buff[myRS232_Data.length++] = myRS232 Data.readValue;
//Take data length byte

if (myRS232_Data.length < (myRS232_Data.buff[2] + 5)) //and put
it to buffer array
{ //until the buffer array size is 20
continue;
}

if (myRS232_Data.buff[myRS232 Data.length - 2] I=
calculateBCC(myRS232_Data.buff, 1, myRS232_Data.length - 3))
{ // Check for BCC values in the packet
myRS232_Data.packetState = SerialRecieveConstants.doWaitSTX; // If
it is corrupt packet
myRS232_Data.length = @; //discard this packet and wait for the next

one
break;
}
RobotResponse(); //Packet is valid. Evaluate the Packet
break; //Continue if serial port buffer has bytes to read.
}
else
{
myRS232_Data.packetState = SerialRecieveConstants.doWaitSTX;
continue;
}

106

private byte calculateBCC(byte[] buffer, int startIndex, int stopIndex)

{
byte tempByte;
int tempBytelIndex;
tempByte = buffer[startIndex];
for (tempByteIndex = startIndex + 1; tempByteIndex <= stopIndex; tempByteIndex++)
tempByte "= buffer[tempByteIndex];
}
return tempByte;
}
private void RobotResponse()
{
switch (myRS232 Data.buff[SerialAddressConstants.CMD])
{ // ASCII
[== m e
case 0x00:
break;
[== m e

case Commands.GETDIRECTION:
responseMotorDirectionLF
myRS232 Data.buff[SerialAddressConstants.DATA];
responseMotorDirectionLB = myRS232 Data.buff[SerialAddressConstants.DATA

+ 17;

responseMotorDirectionRF = myRS232 Data.buff[SerialAddressConstants.DATA
+ 2];

responseMotorDirectionRB = myRS232 Data.buff[SerialAddressConstants.DATA
+ 31;

if (GetDirectionData != null)

GetDirectionData(responseMotorDirectionLF, responseMotorDirectionlLB,
responseMotorDirectionRF, responseMotorDirectionRB);

case Commands.GETSONARDATA:

sonarFrontLeftInCm = 0;

sonarFrontLeftInCm = myRS232_Data.buff[SerialAddressConstants.DATA];

sonarFrontLeftInCm = (sonarFrontLeftInCm << 8);

sonarFrontLeftInCm = sonarFrontLeftInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 1];

0:

sonarfFrontMiddleInCm = ©@;
myRS232_Data.buff[SerialAddressConstants.DATA +

sonarFrontMiddleInCm

2];
sonarFrontMiddleInCm
sonarFrontMiddleInCm

= (sonarFrontMiddleInCm << 8);
= sonarFrontMiddleInCm |

myRS232_Data.buff[SerialAddressConstants.DATA + 3];

sonarFrontRightInCm = ©;

sonarFrontRightInCm = myRS232_Data.buff[SerialAddressConstants.DATA + 4];

sonarFrontRightInCm = (sonarFrontRightInCm << 8);

sonarFrontRightInCm = sonarFrontRightInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 5];

sonarRightFrontInCm = 0;

sonarRightFrontInCm = myRS232 Data.buff[SerialAddressConstants.DATA + 6];

sonarRightFrontInCm = (sonarRightFrontInCm << 8);

sonarRightFrontInCm = sonarRightFrontInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 7];

sonarRightBackInCm = 0;

sonarRightBackInCm = myRS232 Data.buff[SerialAddressConstants.DATA + 8];

sonarRightBackInCm = (sonarRightBackInCm << 8);

sonarRightBackInCm = sonarRightBackInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 9];

107

sonarBackRightInCm = 0;

sonarBackRightInCm = myRS232 Data.buff[SerialAddressConstants.DATA + 10];

sonarBackRightInCm = (sonarBackRightInCm << 8);

sonarBackRightInCm = sonarBackRightInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 11];

sonarBackMiddleInCm = 0;
sonarBackMiddleInCm = myRS232 Data.buff[SerialAddressConstants.DATA +

12];

sonarBackMiddleInCm = (sonarBackMiddleInCm << 8);
sonarBackMiddleInCm = sonarBackMiddleInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 13];

sonarBackLeftInCm = 0;

sonarBackLeftInCm = myRS232 Data.buff[SerialAddressConstants.DATA + 14];

sonarBackLeftInCm = (sonarBackLeftInCm << 8);

sonarBackLeftInCm = sonarBackLeftInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 15];

sonarLeftBackInCm = 0;
sonarLeftBackInCm = myRS232 Data.buff[SerialAddressConstants.DATA + 16];
sonarLeftBackInCm = (sonarLeftBackInCm << 8);
sonarLeftBackInCm = sonarLeftBackInCm |
myRS232 Data.buff[SerialAddressConstants.DATA + 17];

sonarLeftFrontInCm = 0;

sonarLeftFrontInCm = myRS232 Data.buff[SerialAddressConstants.DATA + 18];

sonarLeftFrontInCm = (sonarLeftFrontInCm << 8);

sonarLeftFrontInCm = sonarLeftFrontInCm |
myRS232_Data.buff[SerialAddressConstants.DATA + 19];

if (GetSonarData != null)

GetSonarData(sonarFrontLeftInCm, sonarFrontMiddleInCm,
sonarFrontRightInCm, sonarRightFrontInCm, sonarRightBackInCm, sonarBackRightInCm,
sonarBackMiddleInCm, sonarBackLeftInCm, sonarLeftBackInCm, sonarLeftFrontInCm);

case Commands.GETPWM:

responsePwmLF = myRS232 Data.buff[SerialAddressConstants.DATA];

responsePwmlLB = myRS232_Data.buff[SerialAddressConstants.DATA + 1];
responsePwmRF = myRS232_Data.buff[SerialAddressConstants.DATA + 2];
responsePwmRB = myRS232 Data.buff[SerialAddressConstants.DATA + 3];

if (GetPWMData != null)

GetPWMData(responsePwmLF, responsePwmLB, responsePwmRF,
responsePwmRB) ;

case Commands.GETENCODER:

positionForEncoderLF = ©;
positionForEncoderLF = myRS232 Data.buff[SerialAddressConstants.DATA];
positionForEncoderLF = (positionForEncoderLF << 8);
positionForEncoderLF = positionForEncoderLF |
myRS232_Data.buff[SerialAddressConstants.DATA + 1];
positionForEncoderLF = (positionForEncoderLF << 8);
positionForEncoderLF = positionForEncoderLF |
myRS232_Data.buff[SerialAddressConstants.DATA + 2];
positionForEncoderLF = (positionForEncoderLF << 8);
positionForEncoderLF = positionForEncoderLF |
myRS232_Data.buff[SerialAddressConstants.DATA + 3];

positionForEncoderLB = 9;

108

positionForEncoderLB = myRS232 Data.buff[SerialAddressConstants.DATA +
4];
positionForEncoderLB = (positionForEncoderlLB << 8);
positionForEncoderlLB = positionForEncoderlB |
myRS232_Data.buff[SerialAddressConstants.DATA + 5];
positionForEncoderLB = (positionForEncoderlLB << 8);
positionForEncoderlLB = positionForEncoderlB |
myRS232_Data.buff[SerialAddressConstants.DATA + 6];
positionForEncoderLB = (positionForEncoderLB << 8);
positionForEncoderlLB = positionForEncoderlB |
myRS232_Data.buff[SerialAddressConstants.DATA + 7];

positionForEncoderRF = 0;

positionForEncoderRF = myRS232 Data.buff[SerialAddressConstants.DATA +
81;

positionForEncoderRF = (positionForEncoderRF << 8);

positionForEncoderRF = positionForEncoderRF |
myRS232_Data.buff[SerialAddressConstants.DATA + 9];

positionForEncoderRF = (positionForEncoderRF << 8);

positionForEncoderRF = positionForEncoderRF |
myRS232 Data.buff[SerialAddressConstants.DATA + 10];

positionForEncoderRF = (positionForEncoderRF << 8);

positionForEncoderRF = positionForEncoderRF |
myRS232 Data.buff[SerialAddressConstants.DATA + 11];

positionForEncoderRB = 9;

positionForEncoderRB = myRS232 Data.buff[SerialAddressConstants.DATA +
12];

positionForEncoderRB = (positionForEncoderRB << 8);

positionForEncoderRB = positionForEncoderRB |
myRS232_Data.buff[SerialAddressConstants.DATA + 13];

positionForEncoderRB = (positionForEncoderRB << 8);

positionForEncoderRB = positionForEncoderRB |
myRS232_Data.buff[SerialAddressConstants.DATA + 14];

positionForEncoderRB = (positionForEncoderRB << 8);

positionForEncoderRB = positionForEncoderRB |
myRS232_Data.buff[SerialAddressConstants.DATA + 15];

if (GetEncoderData != null)

GetEncoderData(positionForEncoderLF, positionForEncoderLB,
positionForEncoderRF, positionForEncoderRB);

}

break;
[/ == e eeooooeeeoooooooo-o-
case Commands.GETCURRENT:

currentMotorLF = 0;

currentMotorLF = myRS232 Data.buff[SerialAddressConstants.DATA];

currentMotorLF = (currentMotorLF << 8);
currentMotorLF = currentMotorLF
myRS232_Data.buff[SerialAddressConstants.DATA + 1];

currentMotorLB 0;

currentMotorLB = myRS232 Data.buff[SerialAddressConstants.DATA + 2];

currentMotorLB = (currentMotorLB << 8);

currentMotorLB = currentMotorLB
myRS232_Data.buff[SerialAddressConstants.DATA + 3];

currentMotorRF 0;

currentMotorRF = myRS232 Data.buff[SerialAddressConstants.DATA + 4];

currentMotorRF = (currentMotorRF << 8);

currentMotorRF = currentMotorRF
myRS232_Data.buff[SerialAddressConstants.DATA + 5];

currentMotorRB 0;

currentMotorRB = myRS232_Data.buff[SerialAddressConstants.DATA + 6];

currentMotorRB = (currentMotorRB << 8);

currentMotorRB = currentMotorRB
myRS232_Data.buff[SerialAddressConstants.DATA + 7];

109

if (GetCurrentData != null)

{
GetCurrentData(currentMotorLF, currentMotorLB, currentMotorRF,
currentMotorRB);
}
break;

case Commands.GETRPM:

responseRpmLF = myRS232 Data.buff[SerialAddressConstants.DATA];

responseRpmLB = myRS232 Data.buff[SerialAddressConstants.DATA + 1];
responseRpmRF = myRS232 Data.buff[SerialAddressConstants.DATA + 2];
responseRpmRB = myRS232 Data.buff[SerialAddressConstants.DATA + 3];

if (GetRPMData != null)

{
GetRPMData(responseRpmLF, responseRpmLB, responseRpmRF,
responseRpmRB) ;
}
break;

case Commands.GETHEADING:

//heading = System.BitConverter.ToSingle(myRS232_Data.buff,
SerialAddressConstants.DATA);

heading = 0;

heading = myRS232_Data.buff[SerialAddressConstants.DATA];

heading = (heading << 8);

heading = heading | myRS232_Data.buff[SerialAddressConstants.DATA + 1];

if (GetHeadingData != null)

GetHeadingData(heading);

case Commands.GETACCELEROMETER:

accelerometerX = System.BitConverter.ToSingle(myRS232_Data.buff,
SerialAddressConstants.DATA);

accelerometerY = System.BitConverter.ToSingle(myRS232_Data.buff,
SerialAddressConstants.DATA + 4);

accelerometerZ = System.BitConverter.ToSingle(myRS232_Data.buff,
SerialAddressConstants.DATA + 8);

if (GetAccelerometerData != null)

GetAccelerometerData(accelerometerX, accelerometerY, accelerometerz);

case Commands.HEARTBEAT:
if (HeartBeat != null)

HeartBeat(true);

case Commands.MOTORCURRENTUPDATE:

if (MotorCurrentUpdate != null)
{

110

MotorCurrentUpdate(true);

case Commands.MOTORENCODERUPDATE:

if (MotorEncoderUpdate != null)

{

MotorEncoderUpdate(true);
}
break;

case Commands.MOTORRPMUPDATE :

if (MotorRPMUpdate != null)

{

MotorRPMUpdate(true);
¥
break;

case Commands.SONARUPDATE:

if (SonarUpdate != null)

{

SonarUpdate(true);
¥
break;

case Commands.HEADINGUPDATE:
if (HeadingUpdate != null)

HeadingUpdate(true);

case Commands.ACCELEROMETERUPDATE:

if (AccelerometerUpdate != null)

{
AccelerometerUpdate(true);
¥
break;
[= mmmm e eeooooooooo -
default:
break;

myRS232_Data.packetState = SerialRecieveConstants.doWaitSTX;
}

/// <summary>

/// This function returns the value indicating the open or closed value of the serial
port.

/// </summary>

public bool CheckSerialConnection()

{
}

return spArduino.IsOpen;

/// <summary>

/// This function closes the connection of the robot.

/// Returns the value indicating the open or closed value of the serial port.
/// </summary>

public bool SerialDisconnect()

111

timerHeartBeat.Enabled = false;

spArduino.DataReceived -= new
System.IO.Ports.SerialDataReceivedEventHandler (spArduino_DataReceived);
spArduino.ReadExisting();

if (spArduino.IsOpen == true)
spArduino.Close();

return !spArduino.IsOpen;

}

/// <summary>

/// This function initializes the parameters for serial port, and motor controller.
/// </summary>

private void InitializeParameters()

{
myRS232_Data.packetState = SerialRecieveConstants.doWaitSTX;
pwmLF = O;
pwmLB = O;
pwmRF = O;
pwmRB = O;
motorDirectionLF = MotorDirection.Forward;
motorDirectionlLB = MotorDirection.Forward;
motorDirectionRF = MotorDirection.Forward;
motorDirectionRB = MotorDirection.Forward;
}

private void SendCMD(byte myCmd)
{

Array.Clear(sendBuffer, ©, sendBuffer.Length);

int ADR_BCC = ©;
int ADR_ETX = 0;

sendBuffer[SerialAddressConstants.STX] = ByteConstants.STX;
switch (myCmd)

case Commands.SETDIRECTION:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.SETDIRECTION;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] =
Convert.ToByte(motorDirectionLF); //Left Front

sendBuffer[SerialAddressConstants.DATA + 1]
Convert.ToByte(motorDirectionLB); //Left Back

sendBuffer[SerialAddressConstants.DATA + 2]
Convert.ToByte(motorDirectionRF); //Right Front

sendBuffer[SerialAddressConstants.DATA + 3]
Convert.ToByte(motorDirectionRB); //Right Back

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 9);
break;

case Commands.GETSONARDATA:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

112

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETSONARDATA;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.SETPWM:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.SETPWM;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(pwmLF); //Left
Front

sendBuffer[SerialAddressConstants.DATA + 1] = Convert.ToByte(pwmLB);
//Left Back

sendBuffer[SerialAddressConstants.DATA + 2] = Convert.ToByte(pwmRF);
//Right Front

sendBuffer[SerialAddressConstants.DATA + 3] = Convert.ToByte(pwmRB);
//Right Back

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 9);

break;
case Commands.GETENCODER:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETENCODER;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.GETDIRECTION:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETDIRECTION;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.GETPWM:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETPWM;

113

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.GETCURRENT:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETCURRENT;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.EMERGENCYSTOP:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.EMERGENCYSTOP;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.RESETENCODER:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.RESETENCODER;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.SETRPM:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.SETRPM;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(rpmLF); //Left
Front

sendBuffer[SerialAddressConstants.DATA + 1] = Convert.ToByte(rpmLB);
//Left Back

sendBuffer[SerialAddressConstants.DATA + 2] = Convert.ToByte(rpmRF);
//Right Front

114

sendBuffer[SerialAddressConstants.DATA + 3] = Convert.ToByte(rpmRB);
//Right Back

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 9);
break;

case Commands.GETRPM:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.GETRPM;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.GETHEADING:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETHEADING;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.GETACCELEROMETER:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.GETACCELEROMETER;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.HEARTBEAT:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.HEARTBEAT;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 5);
break;

case Commands.MOTORCURRENTUPDATE:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.MOTORCURRENTUPDATE;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

115

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(sendCurrent);

sendBuffer[SerialAddressConstants.DATA + 1] =
Convert.ToByte(motorCurrentUpdateInterval>>8);

sendBuffer[SerialAddressConstants.DATA + 2] =
Convert.ToByte(motorCurrentUpdateInterval);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 8);
break;

case Commands.MOTORENCODERUPDATE:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.MOTORENCODERUPDATE;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(sendEncoder);

sendBuffer[SerialAddressConstants.DATA + 1]
Convert.ToByte(motorEncoderUpdateInterval>>8);

sendBuffer[SerialAddressConstants.DATA + 2]
Convert.ToByte(motorEncoderUpdateInterval);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 8);
break;

case Commands.MOTORRPMUPDATE:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.MOTORRPMUPDATE;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(sendRPM);

sendBuffer[SerialAddressConstants.DATA + 1]
Convert.ToByte(motorRPMUpdateInterval>>8);

sendBuffer[SerialAddressConstants.DATA + 2]
Convert.ToByte(motorRPMUpdateInterval);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 8);
break;

case Commands.SONARUPDATE:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.SONARUPDATE;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(sendSonar);

116

sendBuffer[SerialAddressConstants.DATA + 1] =
Convert.ToByte(sonarUpdateInterval>>8);

sendBuffer[SerialAddressConstants.DATA + 2] =
Convert.ToByte(sonarUpdatelInterval);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 8);
break;

case Commands.HEADINGUPDATE:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.HEADINGUPDATE;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(sendHeading);

sendBuffer[SerialAddressConstants.DATA + 1]
Convert.ToByte(headingUpdateInterval>>8);

sendBuffer[SerialAddressConstants.DATA + 2]
Convert.ToByte(headingUpdateInterval);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 8);
break;

case Commands.ACCELEROMETERUPDATE:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = Datalengths.ACCELEROMETERUPDATE;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] =
Convert.ToByte(sendAccelerometer);

sendBuffer[SerialAddressConstants .DATA + 1]
Convert.ToByte(accelerometerUpdateInterval>>8);

sendBuffer[SerialAddressConstants.DATA + 2]
Convert.ToByte(accelerometerUpdateInterval);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

spArduino.Write(sendBuffer, 0, 8);
break;

case Commands.SETHEARTBEATINTERVAL:
sendBuffer[SerialAddressConstants.CMD] = myCmd;

sendBuffer[SerialAddressConstants.DL] = DatalLengths.SETHEARTBEATINTERVAL;

ADR_BCC = SerialAddressConstants.DL +
sendBuffer[SerialAddressConstants.DL] + 1;

ADR_ETX = ADR_BCC + 1;

sendBuffer[ADR_ETX] = ByteConstants.ETX;

sendBuffer[SerialAddressConstants.DATA] = Convert.ToByte(heartBeat >> 8);

sendBuffer[SerialAddressConstants.DATA + 1] = Convert.ToByte(heartBeat);

sendBuffer[ADR_BCC] = calculateBCC(sendBuffer, 1,
sendBuffer[SerialAddressConstants.DL] + 2);

117

spArduino.Write(sendBuffer, 0, 7);
break;

default:
break;

}

/// <summary>

/// This function sets the direction of the individual motors in the robot platform.
/// </summary>

public void SetDirection(int directionLF, int directionLB, int directionRF, int

directionRB)

data.

values.

{

motorDirectionLF = directionLF;
motorDirectionlLB = directionLB;
motorDirectionRF = directionRF;
motorDirectionRB = directionRB;

SendCMD (Commands .SETDIRECTION);
}

/// <summary>
/// This function sets the rpm of the individual motors in the robot platform.
/// </summary>
public void SetRPM(int rpmMotorLF, int rpmMotorLB, int rpmMotorRF, int rpmMotorRB)
{
rpmLF = rpmMotorLF;
rpmLB = rpmMotorlLB;
rpmRF = rpmMotorRF;
rpmRB = rpmMotorRB;

SendCMD (Commands .SETRPM) ;
}

/// <summary>
/// This function sends a command to robot platform for getting the ultrasonic sensor

/// </summary>
public void GetSonar()

SendCMD (Commands . GETSONARDATA) ;
}

/// <summary>

/// This function sends a command to robot platform for getting the encoder data.
/// </summary>

public void GetEncoder()

SendCMD (Commands .GETENCODER) ;
}

/// <summary>
/// This function sends a command to robot platform for getting the motor direction

/// </summary>
public void GetMotorDirection()

SendCMD (Commands .GETDIRECTION);
}

/// <summary>

/// This function sends a command to robot platform for getting the heading data.
/// </summary>

public void GetHeading()

{

}

SendCMD (Commands .GETHEADING) ;

118

/// <summary>
/// This function sends a command to robot platform for getting the accelerometer

data.
/// </summary>
public void GetAccelerometer()
{
SendCMD (Commands .GETACCELEROMETER) ;
¥
/// <summary>
/// This function sets the pwm of the individual motors in the robot platform.
/// </summary>
public void SetPWM(int pwmMotorLF, int pwmMotorLB, int pwmMotorRF, int pwmMotorRB)
{
pwmLF = pwmMotorLF;
pwmLB = pwmMotorLB;
pwmRF = pwmMotorRF;
pwmRB = pwmMotorRB;
SendCMD (Commands .SETPWM) ;
¥
/// <summary>
/// This function sends a command to robot platform for getting the rpm data.
/// </summary>
public void GetRPM()
SendCMD (Commands .GETRPM) ;
¥
/// <summary>
/// This function sends a command to robot platform for getting the pwm data.
/// </summary>
public void GetPwWM()
SendCMD (Commands .GETPWM) ;
¥
/// <summary>
/// This function sends a command to robot platform for getting the current data.
/// </summary>
public void GetCurrent()
SendCMD (Commands .GETCURRENT) ;
¥
/// <summary>
/// This function sets the rps of the individual motors in the robot platform.
/// </summary>
public void SetRPS(double rpsLF, double rpsLB, double rpsRF, double rpsRB)
SetRPM((int)(rpsLF * 60), (int)(rpsLB * 60), (int)(rpsRF * 60), (int)(rpsRB *
60));
}
/// <summary>
/// This function sets the speed of the robot platform.
/// </summary>
public void SetSpeed(double speed)
{
double oneTurn = 3.14 * 0.2; //bir turda hareket m
double rps = speed / oneTurn;
SetRPS(rps, rps, rps, rps);
}
/// <summary>
/// This function drives the robot platform to specified distance with the specified
speed.

/// </summary>
public void SetDistance(double distance, double speed)

119

testTime = DateTime.Now;

timeSeconds = distance / speed;

double oneTurn = 3.14 * 0.2; //bir turda hareket m
double howManyTurns = distance / oneTurn;
distanceEncoderTicks = (int)(howManyTurns * 6533);

if (sendEncoder == 1)

{
distanceStartEncoderLF = positionForEncoderLF;
distanceStartEncoderLB = positionForEncoderlLB;
distanceStartEncoderRF = positionForEncoderRF;
distanceStartEncoderRB = positionForEncoderRB;

}

SetSpeed(speed);

timerDistance = new Timer();
timerDistance.Interval = 100;
timerDistance.Elapsed += new ElapsedEventHandler(timerDistance_Elapsed);
timerDistance.Enabled = true;

}

void timerDistance_Elapsed(object sender, ElapsedEventArgs e)

{

if (sendEncoder == 1)

{

int avarageEncoderLF = Math.Abs(positionForEncoderLF -
distanceStartEncoderLF);

int avarageEncoderLB = Math.Abs(positionForEncoderLB -
distanceStartEncoderLB);

int avarageEncoderRF = Math.Abs(positionForEncoderRF
distanceStartEncoderRF);

int avarageEncoderRB = Math.Abs(positionForEncoderRB
distanceStartEncoderRB);

int avarageEncoder = (int)((avarageEncoderLF + avarageEncoderLB +
avarageEncoderRF + avarageEncoderRB) / 4);

if (avarageEncoder > distanceEncoderTicks)

SetRPM(0, 0, 0, 0);
timerDistance.Enabled = false;

¥
¥
else
{
TimeSpan elapsedTime = DateTime.Now.Subtract(testTime);
if (elapsedTime.Seconds > timeSeconds)
SetRPM(0, 0, 0, 9);
timerDistance.Enabled = false;
}
}

}

/// <summary>
/// This function sets which parameter to be updated.
/// UpdateInterval is in milliseconds. Example use;
/// SetUpdateParameterInterval(EduRobot.UpdateParameter.Heading,
EduRobot.UpdateResponse.YES, 100);
/// </summary>
public void SetUpdateParameterInterval(UpdateParameter parameter, UpdateResponse
response, Intl6 UpdateInterval)
{
switch (parameter)
{
case UpdateParameter.Accelerometer:
sendAccelerometer = (int)response;
accelerometerUpdateInterval = UpdateInterval;
SendCMD(Commands .ACCELEROMETERUPDATE) ;
break;
case UpdateParameter.Heading:
sendHeading = (int)response;

120

headingUpdateInterval = UpdateInterval;
SendCMD(Commands . HEADINGUPDATE) ;
break;

case UpdateParameter.MotorCurrent:
sendCurrent = (int)response;
motorCurrentUpdateInterval = UpdatelInterval;
SendCMD(Commands .MOTORCURRENTUPDATE) ;
break;

case UpdateParameter.MotorEncoder:
sendEncoder = (int)response;
motorEncoderUpdateInterval = UpdatelInterval;
SendCMD(Commands .MOTORENCODERUPDATE) ;
break;

case UpdateParameter.MotorRPM:
sendRPM = (int)response;
motorRPMUpdateInterval = UpdateInterval;
SendCMD(Commands .MOTORRPMUPDATE) ;
break;

case UpdateParameter.Sonar:
sendSonar = (int)response;
sonarUpdateInterval = UpdateInterval;
SendCMD(Commands . SONARUPDATE) ;
break;

default:
break;

}

/// <summary>
/// This function rotates the robot platform with specified angle and the specified
direction.
/// </summary>
public void TurnAngle(int angle, RotationDirection direction)
{
if (sendHeading == 1)
{
int angleFirst = heading;
timerRotation = new Timer();
timerRotation.Interval = 100;
timerRotation.Elapsed += new ElapsedEventHandler(timerRotation_Elapsed);
timerRotation.Enabled = true;

if (direction == RotationDirection.Left)
{
angleToTurn = angleFirst - angle;
if (angleToTurn < @)
angleToTurn = angleToTurn + 360;
SetDirection(MotorDirection.Backward, MotorDirection.Backward,
MotorDirection.Forward, MotorDirection.Forward);
SetRPM(20, 20, 20, 20);

else if (direction == RotationDirection.Right)

{
angleToTurn = angleFirst + angle;
if (angleToTurn > 359)

angleToTurn = angleToTurn - 360;
SetDirection(MotorDirection.Forward, MotorDirection.Forward,
MotorDirection.Backward, MotorDirection.Backward);

SetRPM(20, 20, 20, 20);

}

}

else
{
robotStartedHeadingUpdate = true;
GetHeading();
SetUpdateParameterInterval (EduRobot.UpdateParameter.Heading,
EduRobot.UpdateResponse.YES, 10);
TurnAngle(angle, direction);

}

121

void timerRotation_Elapsed(object sender, ElapsedEventArgs e)

{
if (heading < (angleToTurn + angleResolution) && heading > (angleToTurn -
angleResolution))

if (robotStartedHeadingUpdate)

{
SetUpdateParameterInterval (EduRobot.UpdateParameter.Heading,
EduRobot.UpdateResponse.NO, 10);
robotStartedHeadingUpdate = false;
}

SetRPM(0, 0, 0, 0);
timerRotation.Enabled = false;

}

/// <summary>

/// This function resets the encoder ticks of the motors.
/// </summary>

public void ResetEncoder()

{
}

SendCMD (Commands .RESETENCODER) ;

/// <summary>
/// This function rotates the robot platform to the specified angle with the
specified direction.
/// </summary>
public void TurnToAngle(int angle, RotationDirection direction)
{
if (sendHeading == 1)
{
firstAngleTurn = heading;
timerTurnToAngle = new Timer();
timerTurnToAngle.Interval = 100;
timerTurnToAngle.Elapsed += new
ElapsedEventHandler(timerTurnToAngle_Elapsed);
timerTurnToAngle.Enabled = true;

if (direction == RotationDirection.Left)

{

angleToTurn = angle;

SetDirection(MotorDirection.Backward, MotorDirection.Backward,
MotorDirection.Forward, MotorDirection.Forward);
SetRPM(20, 20, 20, 20);

else if (direction == RotationDirection.Right)

{

angleToTurn = angle;

SetDirection(MotorDirection.Forward, MotorDirection.Forward,
MotorDirection.Backward, MotorDirection.Backward);
SetRPM(20, 20, 20, 20);
b
b

else

robotStartedHeadingUpdate = true;
GetHeading();
SetUpdateParameterInterval(EduRobot.UpdateParameter.Heading,
EduRobot.UpdateResponse.YES, 10);
TurnAngle(angle, direction);
}
}

void timerTurnToAngle_Elapsed(object sender, ElapsedEventArgs e)

{
if (heading < (angleToTurn + angleResolution) && heading > (angleToTurn -
angleResolution))

{

122

if (robotStartedHeadingUpdate)
{
SetUpdateParameterInterval (EduRobot.UpdateParameter.Heading,
EduRobot.UpdateResponse.NO, 18);
robotStartedHeadingUpdate = false;
}

SetRPM(0, 0, 0, 0);
timerTurnToAngle.Enabled = false;

123

Microcontroller Code

#include
#include
#include
#include
#include
#include
#include
#include

LSM303 c

double S
double S
double S
double S

//For Ul
#define
sensor.
#define
#define
sensor.
#define
sensor.
#define
sensor.
#define
sensor.
#define
sensor.
#define
sensor.
#define
sensor.
#define
#define
sensor.
#define
#define
sensor.
#define
sensor.
#define
sensor.
#define
#define
sensor.
#define
#define
sensor.
#define

#define
sensor d
#define

unsigned
unsigned
uint8_t

NewPing
NewPing(
and maxi
NewPing(
pins and
NewPing(
pins and
NewPing(
pins and

"Arduino.h"
<HardwareSerial.h>
<QuadratureEncoder.h>
<NewPing.h>
<PID_v1.h>

<Wire.h>

<math.h>

<LSM303.h>

ompass;
etpointLF, InputLF, OutputLF;
etpointLB, InputLB, OutputLB;
etpointRF, InputRF, OutputRF;
etpointRB, InputRB, OutputRB;

trasonic Sensor
TRIGGER_PIN_FRONT_LEFT 30 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_FRONT_LEFT 31 // Arduino pin tied to echo pin on the ultrasonic sensor.
TRIGGER_PIN_FRONT_MIDDLE 24 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_FRONT_MIDDLE 25 // Arduino pin tied to echo pin on the ultrasonic
TRIGGER_PIN_FRONT_RIGHT 26 // Arduino pin tied to trigger pin on the ultrasonic
ECHO_PIN_FRONT_RIGHT 27 // Arduino pin tied to echo pin on the ultrasonic
TRIGGER_PIN_RIGHT_FRONT 36 // Arduino pin tied to trigger pin on the ultrasonic
ECHO_PIN_RIGHT_FRONT 37 // Arduino pin tied to echo pin on the ultrasonic
TRIGGER_PIN_RIGHT_BACK 38 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_RIGHT_BACK 39 // Arduino pin tied to echo pin on the ultrasonic sensor.
TRIGGER_PIN_BACK_RIGHT 28 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_BACK_RIGHT 29 // Arduino pin tied to echo pin on the ultrasonic sensor.
TRIGGER_PIN_BACK_MIDDLE 40 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_BACK_MIDDLE 41 // Arduino pin tied to echo pin on the ultrasonic
TRIGGER_PIN_BACK_LEFT 42 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_BACK_LEFT 43 // Arduino pin tied to echo pin on the ultrasonic sensor.
TRIGGER_PIN_LEFT_BACK 32 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_LEFT_BACK 33 // Arduino pin tied to echo pin on the ultrasonic sensor.
TRIGGER_PIN_LEFT_FRONT 34 // Arduino pin tied to trigger pin on the ultrasonic

ECHO_PIN_LEFT_FRONT 35 // Arduino pin tied to echo pin on the ultrasonic sensor.

MAX_DISTANCE 250 // Maximum distance we want to ping for (in centimeters). Maximum
istance is rated at 400-500cm.
PING_INTERVAL 33 // Milliseconds between pings

long pingTimer[10]; // When each pings.
int cm[10]; // Store ping distances.
currentSensor = @; // Which sensor is active.

sonar[10] = {

TRIGGER_PIN_FRONT_LEFT, ECHO_PIN_FRONT_LEFT, MAX_DISTANCE), // NewPing setup of pins
mum distance.

TRIGGER_PIN_FRONT_MIDDLE, ECHO_PIN_FRONT_MIDDLE, MAX_DISTANCE), // NewPing setup of
maximum distance.

TRIGGER_PIN_FRONT_RIGHT, ECHO_PIN_FRONT_RIGHT, MAX_DISTANCE), // NewPing setup of
maximum distance.

TRIGGER_PIN_RIGHT_FRONT, ECHO_PIN_RIGHT_FRONT, MAX_DISTANCE), // NewPing setup of
maximum distance.

124

NewPing(TRIGGER_PIN_RIGHT_BACK, ECHO_PIN_RIGHT_BACK, MAX_DISTANCE), // NewPing setup of pins
and maximum distance.

NewPing(TRIGGER_PIN_BACK_RIGHT, ECHO_PIN_BACK_RIGHT, MAX_DISTANCE), // NewPing setup of pins
and maximum distance.

NewPing(TRIGGER_PIN_BACK_MIDDLE, ECHO_PIN_BACK_MIDDLE, MAX_DISTANCE), // NewPing setup of
pins and maximum distance.

NewPing(TRIGGER_PIN_BACK_LEFT, ECHO_PIN_BACK_LEFT, MAX_DISTANCE), // NewPing setup of pins
and maximum distance.

NewPing(TRIGGER_PIN_LEFT_BACK, ECHO_PIN_LEFT_BACK, MAX_DISTANCE), // NewPing setup of pins
and maximum distance.

NewPing(TRIGGER_PIN_LEFT_FRONT, ECHO_PIN_LEFT_FRONT, MAX_DISTANCE) // NewPing setup of pins
and maximum distance.

3

int pwmOutPinMotorLB
int pwmOutPinMotorRB
int pwmOutPinMotorLF
int pwmOutPinMotorRF

non
.« e

[

N O U b
<

.

int directionPinMotorLB
int directionPinMotorRB
int directionPinMotorLF
int directionPinMotorRF

52;
50;
48;
46;

int currentReadPinMotorLB
int currentReadPinMotorRB
int currentReadPinMotorLF
int currentReadPinMotorRF

non
“e

. e

El

I}
O R, N W

E}

int encoderInterruptPinMotorLB = 1; //Pin 3
int encoderInterruptPinMotorRB = @; //Pin 2
int encoderInterruptPinMotorLF = 4; //Pin 19
int encoderInterruptPinMotorRF = 5; //Pin 18

bool encoderSetMotorLF;
bool encoderSetMotorlLB;
bool encoderSetMotorRF;
bool encoderSetMotorRB;

signed long int positionForEncoderLF;
signed long int positionForEncoderLB;
signed long int positionForEncoderRF;
signed long int positionForEncoderRB;

int heading;
float accX;
float accy;
float accz;

int pwmLF =
int pwmLB =
int pwmRF =
int pwmRB =

e we W

®®P®

“e

int rpmLF =
int rpmLB =
int rpmRF =
int rpmRB = 0;

int deneme = 0;

int actualRpmLF =
int actualRpmLB =
int actualRpmRF =
int actualRpmRB =

. e

E}

E}

(OGRS

. ..

Bl

[OCRORORG]
T

Bl

int motorDirectionLF;
int motorDirectionLB;
int motorDirectionRF;
int motorDirectionRB;

unsigned int sonarFrontLeftInCm;
unsigned int sonarFrontMiddleInCm;

125

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned

#define
#define

#define
#define
#define
#define
#define

#define
#define
//Addres

int
int
int
int
int
int
int
int

int
int
int
int

sonarFrontRightInCm;
sonarRightFrontInCm;
sonarRightBackInCm;
sonarBackRightInCm;
sonarBackMiddleInCm;
sonarBackLeftInCm;
sonarLeftBackInCm;
sonarLeftFrontInCm;

currentLF;
currentLB;
currentRF;
currentRB;

MotorDirectionToForward 1
MotorDirectionToBackward @

RS232_DATA_SIZE 32
RS232_SEND_SIZE 32
doWaitSTX @
doWaitDatalLength 1
doWaitData 2

STX
ETX
S

#define ADR_STX
#define ADR_CMD
#define ADR_DL

#define ADR_PAR

//Comman
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ds

CMD_SETDIRECTION ox41l
CMD_GETDIRECTION ox42
CMD_SETPWM

CMD_GETPWM

CMD_GETSONARDATA 0x45
CMD_GETENCODER
CMD_GETCURRENT
CMD_EMERGENCYSTOP
CMD_RESETENCODER 0x49
CMD_SETRPM

CMD_GETRPM

CMD_GETHEADING
CMD_GETACCELEROMETER 0x53
CMD_HEARTBEAT
CMD_MOTORENCODERUPDATE ©x55
CMD_MOTORRPMUPDATE
CMD_MOTORCURRENTUPDATE ©x57
CMD_SONARUPDATE
CMD_HEADINGUPDATE
CMD_ACCELEROMETERUPDATE ©x60
CMD_SETHEARTBEATINTERVAL@Ox61

DL_SETDIRECTION
DL_GETDIRECTION

DL_SETPWM

DL_GETPWM

DL_GETSONARDATA
DL_GETENCODER

DL_GETCURRENT
DL_EMERGENCYSTOP 0x00
DL_RESETENCODER

DL_SETRPM

DL_GETRPM

DL_GETHEADING
DL_GETACCELEROMETER
DL_HEARTBEAT
DL_MOTORENCODERUPDATE 0x00
DL_MOTORRPMUPDATE
DL_MOTORCURRENTUPDATE 0x00

ox46
ox47
ox48

0x52

ox54

0x56

0x58
0x59

ox04
ox04

ox14
ox10
0x08

0x00
0x02
ox0C

0x00

0x00

wWN R

ox43
ox44

ox50
0x51

ox04
ox04

0x04
0x04

126

0x02
0x03

#tdefine DL_SONARUPDATE
#tdefine DL_HEADINGUPDATE
#tdefine DL_ACCELEROMETERUPDATE

0x00
0x00
0x00

unsigned long lastHeartBeat
int heartBeatSeconds = 2500;

0;

unsigned long previousMilliseconds = 9;

unsigned long previousMillisecondsUpdate = 0;
signed long int positionForEncoderLFTemp = 0;
signed long int positionForEncoderLBTemp = 0;
signed long int positionForEncoderRFTemp = 0;
signed long int positionForEncoderRBTemp = 0;
int sendSonar = 0;

int sendEncoder = 0;

int sendRPM = 0;

int sendHeading = ©;

int sendAccelerometer = 0;

int sendCurrent = 0;

unsigned long motorEncoderUpdate = ©;
unsigned long motorRPMUpdate = 0;

unsigned long motorCurrentUpdate = ©;
unsigned long sonarUpdate = 0;

unsigned long headingUpdate = 0;

unsigned long accelerometerUpdate = 0;

long motorEncoderUpdateInterval = 250;

long motorRPMUpdateInterval = 250;

long motorCurrentUpdateInterval = 250;

long sonarUpdatelnterval = 750;

long headingUpdateInterval = 750;

long accelerometerUpdateInterval = 750;
struct{

unsigned char buff[RS232_DATA_SIZE];
unsigned char length;
signed int readValue;
unsigned char packetState;
} myRS232_Data;

struct{
unsigned char buff[RS232_SEND_SIZE];
} myRS232_Send;

void setup()

pwmLF
pwmLB
pwmRF
pwmRB

e e

“.

(OGNS

rpmLF
rpmLB
rpmRF = 0;
rpmRB = 0;

[CNG]

analogWrite(pwmOutPinMotorLF, pwmLF); // Stop the motor left 1

analogWrite(pwmOutPinMotorLB, pwmLB);
analogWrite(pwmOutPinMotorRF, pwmRF);
analogWrite(pwmOutPinMotorRB, pwmRB);

// Stop the motor left 1
// Stop the motor left 1
// Stop the motor left 1

pinMode(directionPinMotorLF, OUTPUT); // Motor Left 1 Direction Pin, Defined as Output
pinMode(directionPinMotorLB, OUTPUT); // Motor Left 1 Direction Pin, Defined as

Output

pinMode(directionPinMotorRF, OUTPUT); // Motor Left 1 Direction Pin, Defined as
Output

pinMode(directionPinMotorRB, OUTPUT); // Motor Left 1 Direction Pin, Defined as
Output

127

motorDirectionLF = MotorDirectionToForward;
motorDirectionlLB = MotorDirectionToForward;
motorDirectionRF = MotorDirectionToForward;
motorDirectionRB = MotorDirectionToForward;

digitalWrite(directionPinMotorLF, motorDirectionLF); // Set default direction for motor

left front

digitalWrite(directionPinMotorLB, motorDirectionLB); // Set default direction for
motor left back

digitalWrite(directionPinMotorRF, motorDirectionRF); // Set default direction for
motor right front

digitalWrite(directionPinMotorRB, motorDirectionRB); // Set default direction for
motor right back

pinMode(encoderInterruptPinMotorLF, INPUT); // sets pin A as input
pinMode(encoderInterruptPinMotorLB, INPUT); // sets pin A as input
pinMode(encoderInterruptPinMotorRF, INPUT); // sets pin A as input
pinMode(encoderInterruptPinMotorRB, INPUT); // sets pin A as input
encoderSetMotorLF = digitalRead(encoderInterruptPinMotorLF);

encoderSetMotorLB = digitalRead(encoderInterruptPinMotorLB);
encoderSetMotorRF = digitalRead(encoderInterruptPinMotorRF);
encoderSetMotorRB = digitalRead(encoderInterruptPinMotorRB);

positionForEncoderLF
positionForEncoderLB
positionForEncoderRF
positionForEncoderRB

I}
oy

oy

(OGN OR]
. o

E}

attachInterrupt(encoderInterruptPinMotorLF, HandleMotorLF, CHANGE); // Motor Left 1
Encoder interrupt A, Pin 2

attachInterrupt(encoderInterruptPinMotorLB, HandleMotorLB, CHANGE); // Motor Left 1
Encoder interrupt B, Pin 3

attachInterrupt(encoderInterruptPinMotorRF, HandleMotorRF, CHANGE); // Motor Left 1

Encoder interrupt A, Pin 2

attachInterrupt(encoderInterruptPinMotorRB, HandleMotorRB, CHANGE); // Motor Left 1
Encoder interrupt B, Pin 3

sonarFrontLeftInCm = 0;

sonarFrontMiddleInCm 0;
sonarFrontRightInCm = 0;
sonarRightFrontInCm = 0;
sonarRightBackInCm = 0;
sonarBackRightInCm = @;
sonarBackMiddleInCm = ©;
sonarBackLeftInCm = 0;
sonarLeftBackInCm = ©

5
sonarLeftFrontInCm = 0;

currentLF
currentlLB
currentRF
currentRB

I ou
P

(OO ORG]
-

InputLF = 0;
SetpointLF

1}
(]
..

InputlB = @
SetpointLB

“e

1}
(]
..

InputRF = 0;
SetpointRF

-

1}
(]
-

InputRB = 0@;
SetpointRB

0;
myRS232_Data.packetState = doWaitSTX;
Serial.begin(115200);

Wire.begin();

128

compass.init();
compass.enableDefault();

// Calibration values. Use the Calibrate example program to get the values for
// your compass.

compass.m_min.x = -471; compass.m_min.y = -259; compass.m_min.z = -549;
compass.m_max.x = +108; compass.m_max.y = +258; compass.m_max.z = -481;

pingTimer[@] = millis() + 75; // First ping start in ms.
for (uint8_t i = 1; i < 10; i++)
pingTimer[i] = pingTimer[i - 1] + PING_INTERVAL;

}
void HandleMotorLF()
{
if(motorDirectionLF == MotorDirectionToForward)
positionForEncoderLF++;
else if(motorDirectionLF == MotorDirectionToBackward)
positionForEncoderLF--;
}
void HandleMotorLB()
{
if(motorDirectionLB == MotorDirectionToForward)
positionForEncoderLB++;
else if(motorDirectionLB == MotorDirectionToBackward)
positionForEncoderLB--;
}

void HandleMotorRF()

if(motorDirectionRF == MotorDirectionToForward)
positionForEncoderRF++;

else if(motorDirectionRF == MotorDirectionToBackward)
positionForEncoderRF--;

}
void HandleMotorRB()
if(motorDirectionRB == MotorDirectionToForward)
positionForEncoderRB++;
else if(motorDirectionRB == MotorDirectionToBackward)

positionForEncoderRB--;

}

void getSerial()
{

int numberOfBytes = Serial.available();

if(numberOfBytes == @)
return;

while(numberOfBytes){
// count @ olana degin
myRS232_Data.readValue = Serial.read();
// bir bayt veriyi al
numberOfBytes--;

if(myRS232_Data.readValue == -1)
return;

if(myRS232_Data.packetState == doWaitSTX){
myRS232_Data.length = 0;
if(myRS232_Data.readValue != STX){

continue;
¥
myRS232_Data.buff[ADR_STX] = STX;
myRS232_Data.packetState= doWaitDatalLength;
myRS232_Data.length =1;
continue;

129

else if(myRS232_Data.packetState == doWaitDatalLength)

{
myRS232_Data.buff[myRS232_Data.length++] = myRS232_Data.readValue;
myRS232_Data.packetState = doWaitData;

else if(myRS232_Data.packetState == doWaitData){
myRS232_Data.buff[myRS232_Data.length++] = myRS232_Data.readValue;
if(myRS232_Data.length < (myRS232_Data.buff[2] + 5)){ //
paket tamamlanmadi
continue;

}

if(myRS232_Data.buff[myRS232_Data.length-2] 1=
fnCalcBCC(myRS232_Data.buff,1,myRS232_Data.length-3)){//Paket BCC degeri bozuk ise
myRS232_Data.packetState= doWaitSTX;

myRS232_Data.length = 0;
break;
¥
fnPCSoftware();
// Paket BCC OK, her seferde tek bir
paket process edelim
break;
}
else{
myRS232_Data.packetState = doWaitSTX;
continue;
}
}
}
[== m oo oooooooooo-ooo-

// islev Adi: fnCalcBCC(...)
// Tanimi: Gonderilen bir dizinin BCC degerinin hesaplanmasi

// Girdiler: myBCCArray : Verilerin tutuldugu dizin

// chStartPnt : Baslangi¢ noktasi

// chStopPnt : Bitis noktasi

// Donilis Degeri: BCC degeri
it

unsigned char fnCalcBCC(unsigned char myBCCArray[], unsigned char chStartPnt, unsigned char
chStopPnt){

unsigned char chTempBCC, chTempIndex;

chTempBCC = myBCCArray[chStartPnt];

for(chTempIndex=chStartPnt+l; chTempIndex<=chStopPnt; chTempIndex++){
chTempBCC ~= myBCCArray[chTempIndex];

return chTempBCC;

// Islev fnPCSoftware() :
// Aldigi veri

// Dondugu veri :

void fnPCSoftware(){

switch(myRS232_Data.buff[ADR_CMD]){

// ASCII
F R e i T e T e E
case 0x00:

break;

e OREEETTEEEFREE
case CMD_SETDIRECTION:

if(myRS232_Data.buff[ADR_PAR] == 'I')

motorDirectionLF = MotorDirectionToForward;
else if(myRS232_Data.buff[ADR_PAR] == 'G')

motorDirectionLF = MotorDirectionToBackward;

130

direction

direction

direction

direction

to

to

to

to

1023,

1023,

1023,

1023,

digitalWrite(directionPinMotorLF, motorDirectionLF);

for motor left front
if(myRS232_Data.buff[ADR_PAR + 1] == 'I")
motorDirectionlLB = MotorDirectionToForward;
else if(myRS232_Data.buff[ADR_PAR + 1] == 'G")

motorDirectionlLB = MotorDirectionToBackward;
digitalWrite(directionPinMotorLB, motorDirectionLB);

for motor left back
if(myRS232_Data.buff[ADR_PAR + 2] == 'I")
motorDirectionRF = MotorDirectionToForward;
else if(myRS232_Data.buff[ADR_PAR + 2] == 'G")

motorDirectionRF = MotorDirectionToBackward;
digitalWrite(directionPinMotorRF, motorDirectionRF);

for motor right front
if(myRS232_Data.buff[ADR_PAR + 3] == 'I'")
motorDirectionRB = MotorDirectionToForward;
else if(myRS232_Data.buff[ADR_PAR + 3] == 'G")

motorDirectionRB = MotorDirectionToBackward;
digitalWrite(directionPinMotorRB, motorDirectionRB);
for motor right back

fnSendCmd (CMD_GETDIRECTION);

case CMD_GETSONARDATA:
fnSendCmd (CMD_GETSONARDATA) ;

case CMD_SETPWM:
pwmLF = myRS232_Data.buff[ADR_PAR];
analogWrite(pwmOutPinMotorLF, pwmLF); // analogRead
analogWrite values from © to 255

pwmLB = myRS232_Data.buff[ADR_PAR + 1];
analogWrite(pwmOutPinMotorLB, pwmLB); // analogRead
analogWrite values from © to 255

pwmRF = myRS232_Data.buff[ADR_PAR + 2];

analogWrite(pwmOutPinMotorRF, pwmRF); // analogRead
analogWrite values from @ to 255

pwmRB = myRS232_Data.buff[ADR_PAR + 3];

analogWrite(pwmOutPinMotorRB, pwmRB); // analogRead
analogWrite values from © to 255

fnSendCmd (CMD_GETPWM) ;

case CMD_GETENCODER:
fnSendCmd (CMD_GETENCODER) ;

case CMD_GETDIRECTION:
fnSendCmd (CMD_GETDIRECTION);

case CMD_GETPWM:
fnSendCmd (CMD_GETPWM) ;

case CMD_GETCURRENT:
fnSendCmd (CMD_GETCURRENT) ;

case CMD_EMERGENCYSTOP:
pwmLF = 0;

131

// Set

// Set

// Set

// Set

values

values

values

values

default

default

default

default

go from

go from

go from

go from

to 1023,

to 1023,

to 1023,

to 1023,

0 to

0 to

0 to

0 to

1023,

1023,

1023,

1023,

analogWrite(pwmOutPinMotorLF, pwmLF);

analogWrite values from © to 255

pwmLB = 0;
analogWrite(pwmOutPinMotorLB, pwmLB);

analogWrite values from © to 255

pwmRF = 0;
analogWrite(pwmOutPinMotorRF, pwmRF);

analogWrite values from © to 255

pwmRB = 0;
analogWrite(pwmOutPinMotorRB, pwmRB);

analogWrite values from © to 255

fnSendCmd (CMD_GETPWM) ;

case CMD_RESETENCODER:

positionForEncoderLF = 9;
positionForEncoderLB =
positionForEncoderRF = 0;
positionForEncoderRB = 0;
positionForEncoderLFTemp
positionForEncoderLBTemp
positionForEncoderRFTemp
positionForEncoderRBTemp
fnSendCmd (CMD_GETENCODER) ;

|
o
“e

nmouwonon
OO0
e we W

“.

case CMD_SETRPM:

analoghrite

analoghrite

analoghrite

analoghrite

rpmLF = myRS232_Data.buff[ADR_PAR];
SetpointLF = rpmLF;

//analogWrite(pwmOutPinMotorLF, rpmLF);
values from @ to 255

rpmLB = myRS232_Data.buff[ADR_PAR + 1];

SetpointLB = rpmLB;

//analogWrite(pwmOutPinMotorLB, rpmLB);
values from @ to 255

rpmRF = myRS232_Data.buff[ADR_PAR + 2];

SetpointRF = rpmRF;

//analogWrite(pwmOutPinMotorRF, rpmRF);
values from @ to 255

rpmRB = myRS232_Data.buff[ADR_PAR + 3];

SetpointRB = rpmRB;

//analogWrite(pwmOutPinMotorRB, rpmRB);
values from @ to 255

fnSendCmd (CMD_GETRPM) ;

case CMD_GETRPM:

fnSendCmd (CMD_GETRPM) ;

case CMD_GETHEADING:

fnSendCmd (CMD_GETHEADING) ;

case CMD_GETACCELEROMETER:

fnSendCmd (CMD_GETACCELEROMETER) ;

case CMD_HEARTBEAT:

break;

lastHeartBeat = millis();
fnSendCmd (CMD_HEARTBEAT) ;

132

//

//

//

//

analogRead values go

analogRead values go

analogRead values go

analogRead values go

//

//

//

//

analogRead values

analogRead values

analogRead values

analogRead values

from @

from @

from @

from @

g0

go

from

from

from

from

case CMD_MOTORENCODERUPDATE:
sendEncoder = myRS232_Data.buff[ADR_PAR];
motorEncoderUpdateInterval = myRS232_Data.buff[ADR_PAR + 1];
motorEncoderUpdateInterval = (motorEncoderUpdatelInterval<<8);
motorEncoderUpdateInterval = motorEncoderUpdateInterval |
myRS232_Data.buff[ADR_PAR + 2];

fnSendCmd (CMD_MOTORENCODERUPDATE) ;

case CMD_MOTORRPMUPDATE:
sendRPM = myRS232_Data.buff[ADR_PAR];
motorRPMUpdateInterval = myRS232 Data.buff[ADR_PAR + 1];
motorRPMUpdateInterval = (motorRPMUpdateInterval<<8);
motorRPMUpdateInterval = motorRPMUpdateInterval |
myRS232_Data.buff[ADR_PAR + 2];

fnSendCmd (CMD_MOTORRPMUPDATE) ;

case CMD_MOTORCURRENTUPDATE:
sendCurrent = myRS232_Data.buff[ADR_PAR];
motorCurrentUpdateInterval = myRS232_Data.buff[ADR_PAR + 1];
motorCurrentUpdateInterval = (motorCurrentUpdateInterval<<8);
motorCurrentUpdateInterval = motorCurrentUpdateInterval |
myRS232_Data.buff[ADR_PAR + 2];

fnSendCmd (CMD_MOTORCURRENTUPDATE) ;

case CMD_SONARUPDATE:
sendSonar = myRS232_Data.buff[ADR_PAR];
sonarUpdateInterval = myRS232_Data.buff[ADR_PAR + 1];
sonarUpdateInterval = (sonarUpdateInterval<<8);
sonarUpdateInterval = sonarUpdateInterval |
myRS232_Data.buff[ADR_PAR + 2];

fnSendCmd (CMD_SONARUPDATE) ;

case CMD_HEADINGUPDATE:
sendHeading = myRS232_Data.buff[ADR_PAR];
headingUpdateInterval = myRS232_Data.buff[ADR_PAR + 1];
headingUpdateInterval = (headingUpdateInterval<<8);
headingUpdateInterval = headingUpdateInterval |
myRS232_Data.buff[ADR_PAR + 2];

fnSendCmd (CMD_HEADINGUPDATE) ;

case CMD_ACCELEROMETERUPDATE:
sendAccelerometer = myRS232_Data.buff[ADR_PAR];
accelerometerUpdateInterval = myRS232_Data.buff[ADR_PAR + 1];
accelerometerUpdateInterval = (accelerometerUpdateInterval<<8);
accelerometerUpdateInterval = accelerometerUpdateInterval |
myRS232_Data.buff[ADR_PAR + 2];

fnSendCmd (CMD_ACCELEROMETERUPDATE) ;

case CMD_SETHEARTBEATINTERVAL:
heartBeatSeconds = myRS232_Data.buff[ADR_PAR];
heartBeatSeconds = (heartBeatSeconds<<8);
heartBeatSeconds = heartBeatSeconds | myRS232_Data.buff[ADR_PAR +
1];

fnSendCmd (CMD_HEARTBEAT) ;
break;

default:

133

break;

}

myRS232_Data.packetState = doWaitSTX;

// 1Islev fnSendBinary() :
// Aldigi veri : ---
// Dondugi veri : ---

//

void fnSendCmd(unsigned char myCmd){
memset (myRS232_Send.buff, 0x00, RS232 SEND_SIZE);
myRS232_Send.buff[ADR_STX] = STX;

byte * bX = 0;

byte * by = 0;

byte * bz = 0;

byte * b = 9;

int ADR_BCC = 9;

int ADR_ETX = 0;

switch(myCmd){

e b

case CMD_GETDIRECTION:
myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_GETDIRECTION;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

if(motorDirectionLF == MotorDirectionToForward)
myRS232_Send.buff[ADR_PAR] = 'I';

else if(motorDirectionLF == MotorDirectionToBackward)
myRS232_Send.buff[ADR_PAR] = 'G';

if(motorDirectionLB == MotorDirectionToForward)
myRS232_Send.buff[ADR_PAR + 1] = 'I';

else if(motorDirectionLB == MotorDirectionToBackward)
myRS232_Send.buff[ADR_PAR + 1] = 'G";

if(motorDirectionRF == MotorDirectionToForward)
myRS232_Send.buff[ADR_PAR + 2] = 'I';

else if(motorDirectionRF == MotorDirectionToBackward)
myRS232_Send.buff[ADR_PAR + 2] = 'G';

if(motorDirectionRB == MotorDirectionToForward)
myRS232_Send.buff[ADR_PAR + 3] = 'I';

else if(motorDirectionRB == MotorDirectionToBackward)
myRS232_Send.buff[ADR_PAR + 3] = 'G';

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

break;
F R e i
case CMD_GETSONARDATA:
/*sonarFrontLeftInCm = sonarFrontLeft.ping_cm();
sonarFrontMiddleInCm = sonarFrontMiddle.ping cm();

sonarFrontRightInCm = sonarFrontRight.ping_cm();
sonarRightFrontInCm = sonarRightFront.ping_cm();
sonarRightBackInCm = sonarRightBack.ping_cm();
sonarBackRightInCm = sonarBackRight.ping_cm();
sonarBackMiddleInCm = sonarBackMiddle.ping_cm();
sonarBackLeftInCm = sonarBackLeft.ping cm();
sonarLeftBackInCm = sonarLeftBack.ping cm();

134

ADR_BCC =
ADR_ETX =

sonarLeftFrontInCm =
myRS232_Send.

myRS232_Send.
ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] =

myRS232_Send.
myRS232_Send.

buff[ADR_CMD]

buff[ADR_DL]

ETX;

sonarLeftFront.ping_cm();*/

myCmd ;

DL_GETSONARDATA;

buff[ADR_PAR] = (sonarFrontLeftInCm >> 8);
buff[ADR_PAR + 1]

sonarFrontLeftInCm;

myRS232_Send.buff[ADR_PAR + 2] = (sonarFrontMiddleInCm >> 8);
myRS232_Send.buff[ADR_PAR + 3] = sonarFrontMiddleInCm;
myRS232_Send.buff[ADR_PAR + 4] = (sonarFrontRightInCm >> 8);
myRS232_Send.buff[ADR_PAR + 5] = sonarFrontRightInCm;
myRS232_Send.buff[ADR_PAR + 6] = (sonarRightFrontInCm >> 8);
myRS232_Send.buff[ADR_PAR + 7] = sonarRightFrontInCm;
myRS232_Send.buff[ADR_PAR + 8] = (sonarRightBackInCm >> 8);
myRS232_Send.buff[ADR_PAR + 9] = sonarRightBackInCm;
myRS232_Send.buff[ADR_PAR + 10] (sonarBackRightInCm >> 8);

myRS232_Send.

myRS232_Send.
myRS232_Send.

myRS232_Send.
myRS232_Send.

myRS232_Send.
.buff[ADR_PAR

myRS232_Send

myRS232_Send.
myRS232_Send.

myRS232_Send.

myRS232_Send.buff[ADR_DL] + 2);

buff[ADR_PAR

buff[ADR_PAR
buff[ADR_PAR

buff[ADR_PAR
buff[ADR_PAR

buff[ADR_PAR
buff[ADR_PAR
buff[ADR_PAR

buff[ADR_BCC]

11]

12]
13]

14]
15]

16]
17]

18]
19]

sonarBackRightInCm;

(sonarBackMiddleInCm >> 8);
sonarBackMiddleInCm;

(sonarBackLeftInCm >> 8);
sonarBackLeftInCm;

(sonarLeftBackInCm >> 8);
sonarLeftBackInCm;

(sonarLeftFrontInCm >> 8);
sonarLeftFrontInCm;

fnCalcBCC(myRS232_Send.buff, 1,

case CMD_GETPWM:
myRS232_Send

.buff[ADR_CMD] myCmd;
myRS232_Send.buff[ADR_DL] = DL_GETPWM;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] =

ETX;

myRS232_Send.buff[ADR_PAR] = pwmLF;

myRS232_Send.buff[ADR_PAR + 1] = pwmLB;
myRS232_Send.buff[ADR_PAR + 2] = pwmRF;
myRS232_Send.buff[ADR_PAR + 3] = pwmRB;

myRS232_Send.buff[ADR_BCC]
myRS232_Send.buff[ADR_DL] + 2);

fnCalcBCC(myRS232_Send.buff, 1,

case CMD_GETENCODER:

myRS232_Send.buff[ADR_CMD]

myCmd;

myRS232_Send.buff[ADR_DL] = DL_GETENCODER;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;

myRS232_Send.buff[ADR_ETX] = ETX;

135

myRS232_Send.buff[ADR_PAR] = (positionForEncoderLF >> 24);
myRS232_Send.buff[ADR_PAR + 1] = (positionForEncoderLF >> 16);
myRS232_Send.buff[ADR_PAR + 2] = (positionForEncoderLF >> 8);

myRS232_Send.buff[ADR_PAR + 3] = positionForEncoderLF;
myRS232_Send.buff[ADR_PAR + 4] = (positionForEncoderLB >> 24);
myRS232_Send.buff[ADR_PAR + 5] = (positionForEncoderLB >> 16);
myRS232_Send.buff[ADR_PAR + 6] = (positionForEncoderLB >> 8);
myRS232_Send.buff[ADR_PAR + 7] = positionForEncoderlLB;
myRS232_Send.buff[ADR_PAR + 8] = (positionForEncoderRF >> 24);
myRS232_Send.buff[ADR_PAR + 9] = (positionForEncoderRF >> 16);
myRS232_Send.buff[ADR_PAR + 10] = (positionForEncoderRF >> 8);
myRS232_Send.buff[ADR_PAR + 11] = positionForEncoderRF;
myRS232_Send.buff[ADR_PAR + 12] = (positionForEncoderRB >> 24);
myRS232_Send.buff[ADR_PAR + 13] = (positionForEncoderRB >> 16);
myRS232_Send.buff[ADR_PAR + 14] = (positionForEncoderRB >> 8);
myRS232_Send.buff[ADR_PAR + 15] = positionForEncoderRB;

myRS232_Send.
myRS232_Send.buff[ADR_DL] + 2);

buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,

case CMD_GETCURRENT:

currentLF = analogRead(currentReadPinMotorLF);
currentLB = analogRead(currentReadPinMotorlLB);
currentRF = analogRead(currentReadPinMotorRF);
currentRB = analogRead(currentReadPinMotorRB);

myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_GETENCODER;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] =

ETX;

myRS232_Send.buff[ADR_PAR] = (currentLF >> 8);

myRS232_Send.buff[ADR_PAR + 1] = currentLF;
myRS232_Send.buff[ADR_PAR + 2] = (currentLB >> 8);
myRS232_Send.buff[ADR_PAR + 3] = currentLB;
myRS232_Send.buff[ADR_PAR + 4] = (currentRF >> 8);
myRS232_Send.buff[ADR_PAR + 5] = currentRF;
myRS232_Send.buff[ADR_PAR + 6] = (currentRB >> 8);
myRS232_Send.buff[ADR_PAR + 7] = currentRB;

myRS232_Send.

myRS232_Send.buff[ADR_DL] + 2);

case CMD_GETRPM:

myRS232_Send.

buff[ADR_BCC]

buff[ADR_CMD]

fnCalcBCC(myRS232_Send.buff,

myCmd ;

myRS232_Send.buff[ADR_DL] = DL_GETRPM;

ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.

buff[ADR_PAR]

actualRpmLF;

myRS232_Send.buff[ADR_PAR + 1] = actualRpmLB;
myRS232_Send.buff[ADR_PAR + 2] = actualRpmRF;
myRS232_Send.buff[ADR_PAR + 3] = actualRpmRB;

136

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

case CMD_GETHEADING:
compass.read();
heading = compass.heading((LSM303::vector){0,-1,0});

myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_GETHEADING;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_PAR] = (heading >> 8);
myRS232_Send.buff[ADR_PAR + 1] = heading;

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

case CMD_GETACCELEROMETER:
compass.read();

accX = compass.a.X;
accY = compass.a.y;
accZ = compass.a.z;

bX = (byte *) &accX;
by = (byte *) &accy;
bz = (byte *) &accZ;

myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_GETACCELEROMETER;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_PAR] = bX[0O];
myRS232_Send.buff[ADR_PAR + 1] = bX[1];
myRS232_Send.buff[ADR_PAR + 2] = bX[2];
myRS232_Send.buff[ADR_PAR + 3] = bX[3];

myRS232_Send.buff[ADR_PAR + 4] = bY[@];
myRS232_Send.buff[ADR_PAR + 5] = bY[1];
myRS232_Send.buff[ADR_PAR + 6] = bY[2];
myRS232_Send.buff[ADR_PAR + 7] = bY[3];
myRS232_Send.buff[ADR_PAR + 8] = bZ[@];
myRS232_Send.buff[ADR_PAR + 9] = bZ[1];
myRS232_Send.buff[ADR_PAR + 10] = bZ[2];
myRS232_Send.buff[ADR_PAR + 11] = bZ[3];

myRS232_Send.buff[ADR_BCC]
myRS232_Send.buff[ADR_DL] + 2);

fnCalcBCC(myRS232_Send.buff, 1,

case CMD_HEARTBEAT:
myRS232_Send.buff[ADR_CMD]

myCmd;

myRS232_Send.buff[ADR_DL] = DL_HEARTBEAT;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

137

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

case CMD_MOTORENCODERUPDATE:
myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_MOTORENCODERUPDATE;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

case CMD_MOTORRPMUPDATE:
myRS232_Send.buff[ADR_CMD]

myCmd ;

myRS232_Send.buff[ADR_DL] = DL_MOTORRPMUPDATE;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

case CMD_MOTORCURRENTUPDATE:
myRS232_Send.buff[ADR_CMD]

myCmd ;

myRS232_Send.buff[ADR_DL] = DL_MOTORCURRENTUPDATE;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_BCC]
myRS232_Send.buff[ADR_DL] + 2);

fnCalcBCC(myRS232_Send.buff, 1,

case CMD_SONARUPDATE:
myRS232_Send.buff[ADR_CMD]

myCmd ;

myRS232_Send.buff[ADR_DL] = DL_SONARUPDATE;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_BCC]
myRS232_Send.buff[ADR_DL] + 2);

fnCalcBCC(myRS232_Send.buff, 1,

case CMD_HEADINGUPDATE:

myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_HEADINGUPDATE;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

case CMD_ACCELEROMETERUPDATE:

138

myRS232_Send.buff[ADR_CMD] = myCmd;

myRS232_Send.buff[ADR_DL] = DL_ACCELEROMETERUPDATE;
ADR_BCC = ADR_DL + myRS232_Send.buff[ADR_DL] + 1;
ADR_ETX = ADR_BCC + 1;
myRS232_Send.buff[ADR_ETX] = ETX;

myRS232_Send.buff[ADR_BCC] = fnCalcBCC(myRS232_Send.buff, 1,
myRS232_Send.buff[ADR_DL] + 2);

break;
F e
default:
break;
¥
Serial.write(myRS232_Send.buff, myRS232_Send.buff[ADR_DL] + 5);
}
int i = 0;
void loop()
{

getSerial();
unsigned long currentLoopMillis = millis();

if((currentLoopMillis - lastHeartBeat) > heartBeatSeconds)

{
SetpointLF = ©;
SetpointLB = ©;
SetpointRF = ©;
SetpointRB = 0;
}

if((currentLoopMillis - motorEncoderUpdate) > motorEncoderUpdateInterval)

motorEncoderUpdate = currentLoopMillis;

if(sendEncoder)
{
fnSendCmd (CMD_GETENCODER) ;
¥
}
if((currentLoopMillis - motorRPMUpdate) > motorRPMUpdateInterval)
{
motorRPMUpdate = currentlLoopMillis;
if(sendRPM)
{
fnSendCmd (CMD_GETRPM) ;
}
if((currentLoopMillis - motorCurrentUpdate) > motorCurrentUpdateInterval)
{
motorCurrentUpdate = currentLoopMillis;
if(sendCurrent)
{
fnSendCmd (CMD_GETCURRENT) ;
}
if((currentLoopMillis - sonarUpdate) > sonarUpdateInterval)
{
sonarUpdate = currentLoopMillis;
if(sendSonar)
{
fnSendCmd (CMD_GETSONARDATA) ;
}
if((currentLoopMillis - headingUpdate) > headingUpdateInterval)
{
headingUpdate = currentlLoopMillis;
if(sendHeading)
{

fnSendCmd (CMD_GETHEADING) ;

139

}

if((currentLoopMillis - accelerometerUpdate) > accelerometerUpdateInterval)

{
accelerometerUpdate = currentLoopMillis;
if(sendAccelerometer)
{
fnSendCmd (CMD_GETACCELEROMETER) ;
}
}

if (currentLoopMillis >= pingTimer[i]) {

pingTimer[i] += PING_INTERVAL * 10;
sonar[currentSensor].timer_stop();
currentSensor = i;
sonar[currentSensor].ping_timer(echoCheck);
i++
if(i == 10)

i=0;

}

pid();
}

void echoCheck() { // If ping echo, set distance to array.
if (sonar[currentSensor].check_timer())

{

cm[currentSensor] = sonar[currentSensor].ping_result / US_ROUNDTRIP_CM;

if(currentSensor == 0)

sonarFrontLeftInCm = cm[currentSensor];
else if(currentSensor == 1)

sonarFrontMiddleInCm = cm[currentSensor];
else if(currentSensor == 2)

sonarFrontRightInCm = cm[currentSensor];
else if(currentSensor == 3)

sonarRightFrontInCm = cm[currentSensor];
else if(currentSensor == 4)
sonarRightBackInCm = cm[currentSensor];

else if(currentSensor == 5)

sonarBackRightInCm = cm[currentSensor];
else if(currentSensor == 6)

sonarBackMiddleInCm = cm[currentSensor];
else if(currentSensor == 7)

sonarBackLeftInCm = cm[currentSensor];
else if(currentSensor == 8)

sonarLeftBackInCm = cm[currentSensor];
else if(currentSensor == 9)

sonarLeftFrontInCm = cm[currentSensor];

}
}

void oneSensorCycle() { // Do something with the results.
for (uint8_t i = 0; i < 10; i++) {
Serial.print(i);
Serial.print("=");
Serial.print(cm[i]);
Serial.print("cm ");
}
Serial.println();

}

double kP = 85;

double kI = 0.005;

double kD = 5;

double errSumLF,errSumLB,errSumRF,errSumRB;

double lastErrLF, lastErrLB, lastErrRF, lastErrRB;
void pid()

unsigned long currentMilliseconds = millis();
unsigned long milliSecsSincelLastUpdate = currentMilliseconds - previousMilliseconds;

140

if(milliSecsSincelLastUpdate > 5)

float fActualRpmLF = ((((float)positionForEncoderLF-

(float)positionForEncoderLFTemp)/(float)milliSecsSincelLastUpdate)/(float)6533)*(float)1000*(f

loat)60;

InputLF = abs((double) fActualRpmLF);
actualRpmLF = (int) InputLF;

double errorLF = SetpointLF - InputLF;
errSumLF += (errorLF * milliSecsSincelastUpdate);
double dErrLF = (errorLF - lastErrLF) / milliSecsSincelLastUpdate;

/*Compute PID Output*/
OutputLF = kP * errorLF + kI * errSumLF + kD * dErrLF;
if(OutputLF > 255)
OutputLF = 255;
if(OutputLF < @)
OutputLF = 0;

currentLF = analogRead(currentReadPinMotorLF);
if(currentLF>3500)
{

}
/*Remember some variables for next time*/
lastErrLF = errorlLF;

OutputLF = OutputLF/2;

//PIDLF.Compute();
int pwmLFOutput =(int) (OutputLF);
if(SetpointLF != 9)
analogWrite(pwmOutPinMotorLF, pwmLFOutput);
}
else

{
}

positionForEncoderLFTemp = positionForEncoderLF;

analogWrite(pwmOutPinMotorLF, ©);

float fActualRpmLB = ((((float)positionForEncoderlLB-

(float)positionForEncoderLBTemp)/(float)milliSecsSincelLastUpdate)/(float)6533)*(float)1000*(f

loat)60;

InputLB = abs((double) fActualRpmLB);
actualRpmLB = (int) InputLB;
//PIDLB.Compute();

double errorLB = SetpointLB - InputLB;
errSumLB += (errorLB * milliSecsSincelastUpdate);
double dErrLB = (errorLB - lastErrLB) / milliSecsSincelLastUpdate;

/*Compute PID Output*/
OutputLB = kP * errorLB + kI * errSumLB + kD * dErrLB;
if(OutputLB > 255)
OutputlLB = 255;
if(OutputLB < @)
OutputlB = 0;

currentLB = analogRead(currentReadPinMotorlLB);
if(currentLB>3500)

{
}

/*Remember some variables for next time*/
lastErrLB = errorlLB;

OutputLB = OutputLB/2;

141

int pwmLBOutput =(int) (OutputLB);
if(SetpointLB != 0)

{
analogWrite(pwmOutPinMotorlLB, pwmLBOutput);
}
else
{
analogWrite(pwmOutPinMotorlLB, 0);
}

positionForEncoderLBTemp = positionForEncoderlLB;

float fActualRpmRF = ((((float)positionForEncoderRF-

(float)positionForEncoderRFTemp)/(float)milliSecsSincelLastUpdate)/(float)6533)*(float)1000*(f

loat)60;

InputRF = abs((double) fActualRpmRF);
actualRpmRF = (int) InputRF;

double errorRF = SetpointRF - InputRF;
errSuUmRF += (errorRF * milliSecsSincelLastUpdate);
double dErrRF = (errorRF - lastErrRF) / milliSecsSincelLastUpdate;

/*Compute PID Output*/
OutputRF = kP * errorRF + kI * errSumRF + kD * dErrRF;
if(OutputRF > 255)
OutputRF = 255;
if(OutputRF < 0)
OutputRF = 0;

currentRF = analogRead(currentReadPinMotorRF);
if(currentRF>3500)

{
}

/*Remember some variables for next time*/
lastErrRF = errorRF;

OutputRF = OutputRF/2;

//PIDRF.Compute();

int pwmRFOutput =(int) (OutputRF);
deneme = pwmRFOutput;
if(SetpointRF != 0)

{
analogWrite(pwmOutPinMotorRF, pwmRFOutput);
}
else
{
analogWrite(pwmOutPinMotorRF, @);
}

positionForEncoderRFTemp = positionForEncoderRF;

float fActualRpmRB = ((((float)positionForEncoderRB-

(float)positionForEncoderRBTemp)/(float)milliSecsSincelLastUpdate)/(float)6533)*(float)1000*(f

loat)60;

InputRB = abs((double) fActualRpmRB);
actualRpmRB = (int) InputRB;
//PIDRB.Compute();

double errorRB = SetpointRB - InputRB;
errSumRB += (errorRB * milliSecsSincelLastUpdate);
double dErrRB = (errorRB - lastErrRB) / milliSecsSincelLastUpdate;

/*Compute PID Output*/
OutputRB = kP * errorRB + kI * errSumRB + kD * dErrRB;
if(OutputRB > 255)
OutputRB = 255;
if(OutputRB < 0)
OutputRB = 0O;

142

currentRB = analogRead(currentReadPinMotorRB);
if(currentRB>3500)

{
}

/*Remember some variables for next time*/
lastErrRB = errorRB;

OutputRB = OutputRB/2;

int pwmRBOutput =(int) (OutputRB);
if(SetpointRB != @)

{
analogWrite(pwmOutPinMotorRB, pwmRBOutput);
}
else
{
analogWrite(pwmOutPinMotorRB, 0);
}

positionForEncoderRBTemp = positionForEncoderRB;

previousMilliseconds = currentMilliseconds;

143

