

SOFTWARE TOOL DEVELOPMENT FOR THE AUTOMATED CONFIGURATION OF
FLEXRAY

NETWORKS FOR IN-VEHICLE COMMUNICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CAN ÖZTÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2013

Approval of the thesis:

SOFTWARE TOOL DEVELOPMENT FOR THE AUTOMATED CONFIGURATION OF

FLEXRAY NETWORKS FOR IN-VEHICLE COMMUNICATION

Submitted by CAN ÖZTÜRK in partial fulfillment of the requirements for the degree of Master
of Science in Electrical and Electronics Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Şenan Ece Schmidt
Supervisor, Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt
Co-supervisor, Mechatronics Engineering Dept., Çankaya University

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Şenan Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

M.Sc.Vakkas Çelik
TÜBİTAK UZAY

 Date:

iv

I hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. I also declare that, as required by these
rules and conduct, I have fully cited and referenced all material and results that are not
original to this work.

 Name, Last name : Can ÖZTÜRK

 Signature :

v

ABSTRACT

SOFTWARE TOOL DEVELOPMENT FOR THE AUTOMATED CONFIGURATION OF

FLEXRAY
NETWORKS FOR IN-VEHICLE COMMUNICATION

Öztürk, Can
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Şenan Ece Schmidt
Co-supervisor: Assoc. Prof. Dr. Klaus Werner Schmidt

January 2013, 58 pages

The increasing use of electronic components in today’s automobiles demands more powerful in-
vehicle network communication protocols. FlexRay protocol, which is expected to be the de-facto
standard in the near future, is a deterministic, fault tolerant and fast protocol designed for in
vehicle communication. For proper operation of a FlexRay network the communication schedule
needs to be computed and the nodes need to be configured before startup. Current software tools
that are geared towards FlexRay only deal with the configuration process. The schedule needs to
be computed by a network designer manually and it is necessary to input the designed schedule
and the configurable parameters by hand. This thesis improves upon a previous scheduling
software to automatically compute the network schedule, and then generate a universally
acceptable FIBEX file that can be imported to available software tools to produce the necessary
FlexRay node configuration files.

Keywords: In vehicle communication, FlexRay, automatic configuration, tool chain

vi

ÖZ

ARAÇ İÇİ İLETİŞİMDE FLEXRAY AĞLARININ OTOMATİK OLARAK
YAPILANDIRILMASI İÇİN YAZILIM ARACI GELİŞTİRİLMESİ

Öztürk, Can
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Şenan Ece Schmidt
Ortak Tez Yöneticisi: Doç. Dr. Klaus Werner Schmidt

Ocak 2013, 58 sayfa

Günümüz otomobillerinde artan elektronik birim kullanımı daha güçlü araba içi haberlesme
protokollerine olan ihtiyacı doğurmaktadır. FlexRay protokolü ortaya çıkan bu ihtiyacı
karsılayabilecek özelliklere sahip, gerekirci, hatalara dayanıklı ve hızlı bir haberlesme
protokolüdür. FlexRay ağlarının doğru şekilde çalışabilmesi için çalıştırılma aşamasından önce
ağın iletişim çizelgesinin hesaplanması ve FlexRay birimlerinin yapılandırılması gerekmektedir.
FlexRay ağlarına yönelik var olan yazılımlar sadece yapılandırma görevini yerine
getirebilmektedirler. Zaman çizelgesinin ağ tasarımcısı tarafından el ile hesaplanması ve
oluşturulan çizelge ile hesaplanan ağ parametrelerinin el ile bu yazılımlara girilmesi
gerekmektedir. Bu tez çalışmasında önceden var olan bir çizelge oluşturma yazılımı üstünde
geliştirmeler yapılarak ağ çizelgesini otomatik olarak oluşturan ve bütün ağ yapılandırmasını diğer
yazılımlara yüklenebilen bir FIBEX dosyası derleyen bir yazılım aracı geliştirilmektedir.

Anahtar Kelimeler: Araç içi haberleşme, FlexRay, otomatik yapılandırma, araç zinciri

vii

 ACKNOWLEDGMENTS

I wish to thank, first and foremost, to my supervisor Assoc. Prof. Dr. Şenan Ece Schmidt for her
immensely considerate supervision, unerring suggestions and mainly for keeping my spirits high.

I thank my co-supervisor Assoc. Prof. Dr. Klaus Werner Schmidt for guiding me through the path
of the programmer, and teach me the trade secrets of writing a thesis work.

I would also like to thank my parents for carrying whatever burden they could during this process
to make it unfold as smooth and less painful as possible.

viii

TABLE OF CONTENTS

ABSTRACT ... v
ÖZ ... vi
ACKNOWLEDGMENTS .. vii
TABLE OF CONTENTS .. viii
LIST OF TABLES ... x
LIST OF FIGURES .. xi

CHAPTERS
1.INTRODUCTION .. 1

2.RELATED WORK ... 3
2.1 In Vehicle Networking ... 3
2.2 FlexRay Standard ... 5
2.2.1 Protocol Specific Parameters ... 9
2.2.2 Schedule Specific Input Parameters ... 12
2.2.3 Schedule Dependent Parameters .. 14
2.3 Configuration of FlexRay ... 15
2.4 File and Software Standards ... 17
2.5 Current FlexRay Configuration Tools ... 18
2.6 Shortcomings of the Current Design Workflow ... 18

3.AUTOMATED CONFIGURATION TOOL CHAIN DEVELOPMENT 21
3.1 The Tool-Chain Workflow ... 21
3.2 The Scheduler .. 23
3.2.1 The Existing Infrastructure .. 23
3.2.2 Improvements and Additions ... 23
3.3 The FIBEX Project ... 27
3.3.1 GUID References ..30
3.3.2 Creation of Network Elements ... 31
3.3.3 Creating Frame Triggerings (Timings) ... 36
3.3.4 Writing the FIBEX File ... 42

 4.TESTS AND EVALUATION .. 45
4.1 Experiment Setups and Parameters ... 45
4.2 Experiment with Three FlexRay Nodes... 45
4.3 Experiment with One Removed ECU ... 52

5.CONCLUSION AND FUTURE WORK .. 55

REFERENCES .. 57

ix

LIST OF TABLES

TABLES

 Table 2-1: FlexRay Protocol constants [3]. ... 9
Table 2-2: Configurable parameters that are unrelated to schedule computation, that are
considered fixed for our study [3]. .. 12
Table 2-3: FlexRay parameters that are dependent on the application and are configured by user
input [3]. .. 13
Table 2-4: Parameters that are computed by the scheduler [3]. .. 14
Table 4-1: Schedule specific input parameter values used in the experiments. 44
Table 4-2: The signal set used in the first experiment. ... 46
Table 4-3: Table depicting the static schedule as computed by ComputeScheduleForFibex.. 48
Table 4-4: The signal set used in the second experiment. .. 53

x

LIST OF TABLES

TABLES

 Table 2-1: FlexRay Protocol constants [3]. ... 9
Table 2-2: Configurable parameters that are unrelated to schedule computation, that are
considered fixed for our study [3]. .. 12
Table 2-3: FlexRay parameters that are dependent on the application and are configured by user
input [3]. .. 13
Table 2-4: Parameters that are computed by the scheduler [3]. .. 14
Table 4-1: Schedule specific input parameter values used in the experiments. 44
Table 4-2: The signal set used in the first experiment. ... 46
Table 4-3: Table depicting the static schedule as computed by ComputeScheduleForFibex.. 48
Table 4-4: The signal set used in the second experiment. .. 53

file:///C:/Users/Can/Desktop/tez/CanTez-penultimate.docx%23_Toc346538618

1

CHAPTER 1

INTRODUCTION

The electronic systems used in automobiles need to exchange information among each other.
These systems are made up of Electronic Control Units (ECU) transmitting data signals that are
packed into messages [1]. Messages can be periodic or sporadic. Periodic messages are generated
at fixed generation time periods where sporadic messages are generated during certain events, such
as pushing a button. The exchange of these messages among ECUs is governed by in vehicle
networks rather than point to point links. The amount of increasing ECUs and the number of
exchanged messages signify the importance of in vehicle networking, as direct links mean more
cabling, physical weight, cost and complexity as opposed to a shared medium network [1].

In-vehicle networks can be classified in two types: Event triggered networks and time triggered
networks. Controller Area Network (CAN) [2] is an event triggered network standard, which is
currently the most widely used network in current automobiles [1]. FlexRay [3], however, is a
standard that employs both event and time triggered networking, and is gradually replacing CAN
as a widespread network type due to its support of deterministic network access and a higher data
rate than CAN.

In vehicle networks as well as ECUs need to be configured in the vehicle design phase. That is, no
further configuration change can be performed after startup. The configuration depends on the
chosen network and the required signal transmissions and is usually performed manually by an
experienced network designer. The result of this configuration is denoted as the schedule and is
then implemented on the ECU by configuring the relevant registers and setting the desired
transmission times. In the process from specifying the signal set to be transmitted on the in-vehicle
network to implementing the network configuration on the ECUs, the following steps have to be
carried out in the network design workflow.

1. Packing signals into message frames according to the network specification. The result
of this step is a set of messages to be transmitted on the network

2. Computing a schedule for the message set. As the result of this step, all configuration
parameters of the network are found.

3. Translating the configuration parameters into a format that can be used to implement
the network configuration on the ECU hardware. The result of this step is a network that
should operate as designed.

4. Verifying the correct operation of the configured network

There are several tools available to help configuring ECUs [10,11,12,13,14]. Such tools are
provided with the assumption that the schedule and related configuration parameters are already
determined by a human network designer. That is, the support of such tools starts from step 3. of
the network design workflow with manually entering each configuration parameter. In addition,
errors and warnings are given by such tools in case wrong parameters are entered or recommended

2

settings are not met. These tools are then able to carry out step 3. of the network design workflow
by generating a standardized file which can then be used in the compilation of machine code to be
loaded on the ECUs.

It is readily observed that, although available configuration tools aid the network designer in
implementing the network configuration, the main design task of finding a message schedule and
determining the relevent configuration parameters is not automated. In addition, even if a message
schedule is found, it has to be manually entered into one of the configuration tools. Considering
the increasing amount of signal data to be transmitted on in-vehicle networks, this manual aspect
of the configuration becomes very time consuming and is very much prone to error.

In order to address the issues discussed above, this thesis contributes a tool chain that automates
the most combersome part of the FlexRay configuration process – the schedule computation and
parameter input into available configuration tools. That is, our tool performs step 1. and 2. of the
network design workflow and additionally replaces the manual input of configuration parameters.
Our tool builds on the open scheduling software by Klaus W. Schmidt [5], which takes the
network topology and the signal set to pack signals into messages and compute the necessary
network parameter. Our tool then takes the calculated values from this software to generate the
other necessary network parameters and assigns the message timing. At the end of the automated
process, we create a single configuration file in FIBEX (Fieldbus Exchange Format) which can be
imported to any existing software tool. As a result, the need for manually entering configuration
parameters is mitigated. We further verify the validity of the tool chain by testing with example
laboratory setups.

The main original contributions of this thesis can be summarized as follows.

1. Improvement of the scheduling software in [5]. As a result, the software now meets all
details of the FlexRay specification [3]. In addition, algorithms for the computation of
implementable schedules are added to this software package

2. Automated conversion of the network configuration parameters to a standardized
(FIBEX) format. As a result, the automatically computed configuration parameters can be
imported into any configuration tool.

3. Development of test cases that illustrate the benefits of the developed tool chain. These
correctness of the test results is verified by importing the computed configuration
parameters in the configuration tool FlexConfig [13] and by conducting hardware
experiments.

The remainder of this thesis is organized as follows. In CHAPTER 2 of this thesis, we give the
necessary background for in vehicle networking and the FlexRay standard, with the calculation of
the parameters we use and the general configuration workflow. In CHAPTER 3, we describe our
workflow for the automated configuration process and the details of our developed tool chain. In
CHAPTER 4 we verify correct operation of the tool chain by setting up tests with ECU networks.
CHAPTER 5 gives conclusions and suggestions for future work.

3

CHAPTER 2

RELATED WORK

From their invention until the 1970s, automobiles have been composed of purely mechanical
components. The developments in electronics, however, discouraged this trend as electrical
systems are more efficient, maintainable, cheap and safer than their mechanical counterparts. Since
the communications between these electrical systems need to be achieved by integrating a way of
networking, several in vehicle networks have been developed. In this section, a background for
these in vehicle networks and their configurations is established. Among these network standards,
FlexRay, is expected to be dominant in the future. Because of this reason, a detailed description of
FlexRay is given, including its protocol and scheduling parameters, its configuration workflow and
the file and software standard specifics [1].

2.1 In Vehicle Networking

When electronic systems were introduced into cars, separate ECUs (Electronic Control Units)
were used for each separate function of the car. The data exchange between these ECUs was
maintained by point to point links. As the use of electrical systems in cars increased, so did the
number of ECUs needed to manage the added functions. With huge numbers of ECUs in cars,
point to point links would not continue to be a viable option due to the immense increase in
properties such as cost, complexity, power consumption, space allocation and weight. This
problem was then solved by using dedicated shared-medium communication networks and several
standard protocols for such networks were founded [1].

4

Figure 2-1: A sample ECU network [21].

The smallest data item in a network is called a signal. Signals in an in vehicle ECU network
contain information such as data from sensors or actuators. These signal data are exchanged
among the ECUs during the network operation. The signal data are transmitted in the form of
messages, which can comprise one or more of these signals. The messages to be sent also need to
be encapsulated with header and trailer segments as required by the used protocol. These protocol
data units are then called frames, where the payload of a frame is the sent message.

The links between ECU nodes are established by communication channels. Channels define the
medium through which the communication signals are conveyed. That is, signals generated by
ECUs are packed into frames and transmitted via these channels.

It has to be noted that the performance requirements for the respective communication network
depend on the particular applications running on the connected ECUs. Applications that are lenient
such as mirrors, heating and other comfort functions can be handled by a cheap solution such as
LIN (Local Interconnect Network) [1] [6]. Applications that need high bandwidth and security are
connected by the MOST (Media Oriented System Transport) for most car brands [7]. The
currently most widely standards is the CAN (Controller Area Network) bus due to its low cost,
low power consumption and relatively higher speed rates. However, CAN is gradually being
replaced or supplemented by the FlexRay standard due to several advantages such as higher data
rate and support of hard real-time safety critical applications [1].

When choosing a bus for a specific application, the timing behaviors of the sent messages need to
be considered. Regarding timings, messages can either be periodic or sporadic. Periodic messages
are generated at fixed periods of time. Sporadic messages are generated as a response to certain
events and do not have fixed generation times. As for the network types, there are two forms of
message transmission: time or event triggered. Time triggered networks allocate time slots for
each message for a predetermined time interval to avoid collisions on the shared medium. This
timing scheme is called TDMA (Time Division Multiple Access) and is most suitable for

5

transmission of periodic messages. In a TDMA based network, when one node has a message to be
sent at the allocated time slot, the other nodes wait until their allocated time slot. This causes a
decrease in bandwidth utilization, but on the other hand the periodic nature of the scheduling
makes properties such as delay and jitter predictable. Event triggered processes differ from the
time triggered variant as when a message is sent in a reaction to an event immediately. During
simultaneous events the nodes have to contend for the bus. CAN is an event triggered protocol
where these contenders are assigned priorities and the ones with higher priority have precedence.
Event triggered protocols are better suited for transmission of sporadic messages due to the
emergency of an immediate reaction. Even though utilization is also increased by negating the
needless periodic waiting time for time slots, the timing behavior is not predictable and messages
may be lost in case of high collisions for a low priority message [1], [2].

FlexRay is a special type of protocol which can use both event and time triggered messaging,
simultaneously if needed. In addition to this flexibility, its high data rate (up to 10Mbps compared
to CAN’s 1Mbps) and redundancy that employs two channels makes it a better choice for safety
critical applications [1]. The advantages of FlexRay over other protocols are currently swaying
most car brands in its direction. It is expected that FlexRay will be the dominant in vehicle
network protocol in the future.

Embedded networks are configured ahead of time and do not change after the assembly. This
reduces cost and increases reliability by removing the necessity of network discovery and
configuration during runtime. In addition to this, for TDMA schemes like FlexRay to work
correctly, each of the nodes of the network should be configured correctly. Apart from the protocol
parameters, the time instants when a node is entitled to use the shared medium for transmitting a
certain message is also preconfigured, which is called message scheduling. The schedule for each
message needs to be computed beforehand to meet its transmission requirements such a periodicity
or deadlines.

2.2 FlexRay Standard

The FlexRay protocol incorporates both time triggered and event triggered frames within a
predetermined FlexRay cycle. All FlexRay nodes within the same network cluster are
synchronized to the same cycle length and cycle count. FlexRay cycles are composed of four main
parts. The static segment is where the time triggered frames are allocated within the cycle. Event
triggered events are handled in the dynamic segment which can transmit messages of different
length as opposed to the static segment, where all messages have the same length. The symbol
window (SW) is where network management occurs within the cycle. Network idle time (NIT) is a
preset idle time used to maintain synchronization between the nodes. The succession of these parts
of the cycle can be observed in Figure 2-2.

6

Figure 2-2: A communication cycle in FlexRay as depicted in the specifications [3].

The time representation within the FlexRay cycle is based on so-called macroticks and microticks.
Each cycle is composed of an integer number of macroticks, which are composed of an integer
number of microticks. Each node in the cluster is synchronized to have identical macroticks.
Microticks, on the other hand, are computed from the controllers’ oscillators and hence can be
different among nodes depending on the controller. Thus, the number of microticks per macrotick
may be different among nodes within the same cluster [3]. A visual representation of the timing
hierarchy is given in Figure 2-3.

Figure 2-3: The timing hierarchy of a FlexRay cycle [3].

The static segment of the FlexRay cycle is composed of static slots that have an identical,
predefined length; which is measured in macroticks. The number of static slots for every node in
the same cluster is the same, which is referred as gNumberOfStaticSlots in the specifications. Each
node has a slot counter for each channel to keep track of the occurring static slots. Only the frame
that has been allocated to the slot indicated by the slot counter can be sent at that time. Even
though the slot counters operate the same way in both channels, the slot allocation per channel

7

may be different. Slot counters are incremented after each slot time until the final static slot for
that cycle is reached. FlexRay cycles always have a static segment as startup frames are sent in this
segment for synchronization between nodes. A depiction of the static slot and the mentioned
operations can be seen in Figure 2-4.

Figure 2-4: The static segment structure [3].

The timings of each frame are represented by three values: FID (Frame Identifier), repetition and
offset. FID indicates which static slot in the segment the frame is allocated. A frame can only be
transmitted during the slot where its FID corresponds to the slot counter. Repetition is the period
of the allocation of the frame to that static slot, in terms of how many FlexRay cycles are in
between each repeated frame. Offset is the base cycle where the first instance of that frame is sent.
Using appropriate offsets according to each frames’ repetition allows for multiplexing several
frames of the same node in the same static slot. To clarify, the allocation of four periodic frames in
two FIDs is depicted in Figure 2-5 over the course of 8 FlexRay cycles. The first frame depicted,
Frame A, has a repetition value of 2. In our example its offset is 0 so the very first slot is allocated
to this frame (slot number 0). Since its repetition is 2, every other slot after slot 0 is also allocated
to this frame: Slot numbers 0, 2, 4 and 6. Then remains 4 empty slots out of the total 8 that can still
be allocated to other frames. Both frames B and C have repetitions of 4 so they can be allocated 2
slots each, and can be fitted in these empty slots with the proper offsets. Here we assign frame B
an offset of 1 so every fourth slot beginning from 1 is allocated. Frame C can then be assigned an
offset of 3 which fills up the remaining free slots. Since there are no vacant slots in FID 1 for the
final frame, Frame D, it is allocated in FID 2.

8

Figure 2-5: The slot allocation of four periodic frames in a static segment for 2 slots over the
course of 8 cycles. The frames are color coded to represent their allocated time slots.

Unlike the static segment, a cycle may or may not have a dynamic segment. It is composed of a
number of dynamic slots, which are composed of minislots that are made up of the same number
of macroticks. Like the static segment, each node makes use of a slot counter to keep track of the
current dynamic slot. Frames are allocated to these dynamic slots with FIDs. The number of
minislots in the dynamic segment is the same for each node in the same cluster. The dynamic slots
composed of minislots, however, may change depending on whether or not a frame is being sent.
As seen in Figure 2-6, when a frame is being transmitted for one channel, the slot counter stops
increasing until the transmission is complete. After the transmission, the counter is incremented by
one. If there is no transmission, the dynamic slot only consists of one minislot and the slot counter
is incremented after the minislot period.

Figure 2-6: Dynamic segment structure [3].

9

Several parameters for each FlexRay node have to be appropriately configured according to the
FlexRay specifications and the application requirements. For our purposes we separate these
parameters in three categories: Protocol specific parameters, schedule specific input parameters
and schedule parameters. The parameters for each category are explained in the following
subsections.

2.2.1 Protocol Specific Parameters

The parameters we deem protocol specific are a collection of two types of FlexRay parameters.
The first are named system parameters in the specifications and consist of constants that are
related to the current FlexRay standard, such as fixed register values, bit durations of header or
trailer sequences and maximum values for certain parameters allowed by FlexRay. Table 2-1
depicts the protocol constants are used in the computation of another parameter or are limiting
factors for such a parameter.

Name Description Value

cChannelIdleDelimiter Duration of the channel idle
delimiter.

11 gdBit

cClockDeviationMax Maximum clock frequency
deviation, equivalent to 1500 ppm
(1500ppm = 500/1000000 =
0.0015).

0.0015

cCycleCountMax Maximum cycle counter value in
any cluster.

63

cPayloadLengthMax Maximum length of the payload
segment of a frame.

127 two-byte
words

cPropagationDelayMax Maximum allowable propagation
delay arising from the physical layer
and analog effects inherent in the
FlexRay
CC's involved in the transmission
and reception of a communication
element.

2.5 μs

cSlotIDMax Highest slot ID number. 2047
cStaticSlotIDMax Highest static slot ID number. 1023
cdCycleMax Maximum cycle length. 16000 μs
cdBSS Duration of the Byte Start Sequence. 2 gdBit
cdFES Duration of the Frame End

Sequence.
2 gdBit

cdFSS Duration of the Frame Start
Sequence.

1 gdBit

cdWakeupTxActive Duration of the LOW phase of a
transmitted wakeup symbol
and the active

6 μs

cdWakeupTxIdle Duration of the idle phase between
two low phases inside
a wakeup pattern.

18 μs

Table 2-1: FlexRay Protocol constants [3].

10

The second collection of parameters we regard as protocol specific are non-constant configurable
parameters. However, these parameters are fixed for each application. Hence, we consider them as
constant as they are unrelated to the schedule computation. We set these parameters to default
values within their configurable ranges. It should also be noted that configurable parameters are
either global parameters that are the same for all nodes in a cluster, or node parameters that are
configured separately for each node. Global parameters appear with ‘g’ or ‘gd’ prefixes and node
parameters appear with ‘p’ or ‘pd’ prefixes in the FlexRay specifications [3].

Name Description Value

pdAcceptedStartup-Range Expanded range of measured
clock deviation allowed for
startup frames during
integration.

29 - 2743 μT

pdListenTimeout Value for the startup listen
timeout and wakeup listen
timeout. Although this is a
node local parameter, the real
time equivalent of this value
should be the same
for all nodes in the cluster.

1926 - 2567692
μT

gClusterDriftDamping The cluster drift damping
factor, based on the longest
microtick adMicrotickMax

used in the cluster. Used to
compute the local cluster
drift damping factor
pClusterDriftDamping.

0 - 5 μT

pClusterDriftDamping Local cluster drift damping
factor used for rate
correction.

0 - 10 μT

pDecodingCorrection Value used by the receiver to
calculate the difference
between primary time
reference point and
secondary time reference
point.

12 - 136 μT

pDelayCompensation[A],

pDelayCompensation[B]

Value used to compensate
for reception delays on the
indicated channel.

4 - 211 μT

pMacroInitialOffset[A],

pMacroInitialOffset[B]

Integer number of macroticks
between the static slot
boundary and the following
macrotick boundary of the
secondary time reference
point based on the nominal
macrotick duration.

2 - 68 MT

Table 2-2: Configurable parameters that are unrelated to schedule computation, that are
 considered fixed for our study [3].

11

pOffsetCorrectionStart Start of the offset correction
phase within the NIT,
expressed as the number of
macroticks from the start
of cycle.

7 - 15999 MT

pOffsetCorrectionOut Magnitude of the maximum
permissible offset correction
value.

15 - 16082 μT

pRateCorrectionOut Magnitude of the maximum
permissible rate correction
value and the maximum drift
offset between two nodes
operating with non-
synchronized clocks for one
communication cycle.

3 - 3846 μT

pSamplesPerMicrotick Number of samples per
microtick.

[1, 2]

pWakeupPattern Number of repetitions of the
wakeup symbol that are
combined to form a wakeup
pattern when the node enters
the POC:wakeup send state.

0 – 63a

gColdstartAttempts Maximum number of times a
node in the cluster is
permitted to attempt to start
the cluster by initiating
schedule synchronization.

2 - 31

gdBit Nominal bit time. [0.1, 0.2, 0.4] μs
gdCASRxLowMax Upper limit of the CAS

acceptance window.
28 - 254 gdBit

gdWakeupRxIdle Number of bits used by the
node to test the duration of
the 'idle' or HIGH phase of a
received wakeup.

8 - 59 gdBit

gdWakeupRxLow Number of bits used by the
node to test the duration of
the LOW phase of a received
wakeup.

8 - 59 gdBit

gdWakeupRxWindow The size of the window,
expressed in bits, used to
detect wakeups.

76 - 485 gdBit

gdWakeupTxActive Number of bits used by the
node to transmit the LOW
phase of a wakeup symbol.

15 - 60 gdBit

gdWakeupTxIdle Number of bits used by the
node to transmit the 'idle'
part of a wakeup symbol.

45 - 180 gdBit

of noise.

gListenNoise Upper limit for the startup
listen timeout and wakeup
listen timeout in the presence

2 - 16

Table 2-2 (Cont'd)

12

gMaxWithoutClockCorrectionFatal Threshold used for testing
the vClockCorrectionFailed

counter.

1 - 15 even/odd
cycle pairs

gMaxWithoutClockCorrectionPassive Threshold used for testing
the vClockCorrectionFailed

counter.

1 - 15 even/odd
cycle pairs

gNetworkManagementVectorLength Length of the Network
Management vector in a
cluster.

0 - 12 bytes

gClusterDriftDamping The cluster drift damping
factor, based on the longest
microtick adMicrotickMax

used in the cluster.

0 - 5 μT

2.2.2 Schedule Specific Input Parameters

These parameters are configurable over a range of values that depend on the application and are
regarded as input to the tool chain. These are the parameters that define the specifics of a certain
application and the schedules change when parameters are configured differently. Table 2-3 lists
the configurable range of these parameters that should be defined when the network is being
designed.

Name Description Value

gPayloadLengthStatic Payload length of a static
frame.

0 - cPayload-

LengthMax twobyte
words

gdDynamicSlotIdlePhase Duration of the idle phase
within a dynamic slot.

0 - 2 Minislot

gdMinislotActionPointOffset Number of macroticks the
minislot action point is
offset from the beginning of
a minislot.

1 - 31 MT

gdActionPointOffset Number of macroticks the
action point is offset from
the beginning of a static slot.

1 - 63 MT

gdCycle Length of the cycle. 24 μs -cdCycleMax
gdSymbolWindow Duration of the symbol

window.
0 - 162 MT

gdMacrotick Duration of the cluster wide
nominal macrotick.

1 - 6 μs

gdMinislot Duration of a minislot. 2 - 63 MT
gdTSSTransmitter Number of bits in the

Transmission Start
Sequence.

1 - 15 gdBit

pChannels Channels to which the node [A, B, A&B]

Table 2-2 (Cont'd)

Table 2-3: FlexRay parameters that are dependent on the application and are configured by user
input [3].

13

is connected.
pMicroPerCycle Nominal number of

microticks in the
communication cycle of the
local node. If nodes have
different microtick
durations this number will
differ from node to node.

960 - 1280000
μT

pdMicrotick Duration of a microtick. [0.0125, 0.025,
0.05] μs

Every static frame has a set payload length called gPayloadLengthStatic. Each of these frames are
sent a number of macroticks after the beginning of the static slot. This amount is called
gdActionPointOffset and configured the same for all nodes in a cluster. A depiction of these offsets
can be seen in Figure 2-7.

Figure 2-7: A depiction of the timings and the action point offset of static slots [3].

Similarly for the dynamic segment, every dynamic frame is offset by gdMinislotActionPointOffset

for each minislot as seen in Figure 2-8.

Table 2-3 (Cont'd)

14

Figure 2-8: A depiction of the timings and the action point offset of minislots [3].

2.2.3 Schedule Dependent Parameters

The schedule dependent parameters are FlexRay parameters that are computed by the scheduler
using the constraints present in the FlexRay specifications and the properties of the message set to
be transmitted on the bus. Depending on the other configurable parameters and the message set,
we compute these parameters to come up with a viable schedule before setting them. Table 2-4
lists these parameters that we compute in the scheduler automatically.

Name Description Value

gMacroPerCycle Number of macroticks in a
communication cycle.

8 - 16000 MT

gNumberOfMinislots Number of minislots in the
dynamic segment.

0 - 7988

gNumberOfStaticSlots Number of static slots in the
static segment.

2 - cStatic

SlotIDMax
gdNIT Duration of the Network Idle

Time.
2 - 15978 MT

gdStaticSlot Duration of a static slot. 3 - 664 MT
pLatestTx Number of the last minislot

in which a frame
transmission can start in the
dynamic segment.

0 - 7988 Minislot

gMacroPerCycle is computed by dividing gdCycle by gdMacrotick, both of which should have
been previously set by the designer to define the network.

gNumberOfMinislots and gNumberOfStaticSlots are parameters that relate to the schedule, as in
the number of minislots and static slots respectively in each cycle. Both of these parameters are

Table 2-4: Parameters that are computed by the scheduler [3].

15

calculated by the scheduler to allow for the needed amount of static and dynamic slots. The
specifics for coming up with feasible values for these parameters can be found in [16] and [17].

gdNIT is the communication free period of a cycle. This period is used for various computations
for the communication cycle and clock synchronization. It is computed as the remaining number
of macroticks from the static segment, dynamic segment, and symbol window.

In order to compute the static slot duration, gdStaticSlot, first the static framelength should be
computed. Each frame consists of gdTSSTransmitter, cdFSS, 80 gdBit of header and trailer, the
payload and cdFES. The static frame payload is called gPayloadLengthStatic and counted in two-
byte words, where each payload byte consists of 8 bits plus cdBSS (2 bits). Therefore each two-
byte payload is 20 bits. Then the final equation for the framenegth, which is called aFrameLength
is

aFrameLength[gdBit] = gdTSSTransmitter[gdBit] + cdFSS[gdBit] + 80 gdBit +
aPayloadLength[two-byte word] * 20 gdBit / two-byte word + cdFES[gdBit] (1)

where substituting gPayloadLengthStatic with aPayloadLength yields the static frame length,
aFrameLengthStatic. gdTSSTransmitter is a configurable parameter where cdFSS and cdFES are
protocol constants (1 and 2 bits respectively).

Once aFrameLengthStatic is known, a minimum number for gdStaticSlot can be computed using
the formula given in the specifications:

gdStaticSlot[MT] >=

2 * gdActionPointOffset[MT] +
ceil(((aFrameLengthStatic[gdBit] - 0.5 * cdFES[gdBit] +
cChannelIdleDelimiter[gdBit]) * adBitMax[μs/gdBit] +
adPropagationDelayMin[μs] + adPropagationDelayMax[μs] +
adMaxIdleDetectionDelayAfterHIGH[μs]) /
(gdMacrotick[μs/MT] / (1 + ClockDeviationMax))) (2)

Another parameter computed by the scheduler is pLatestTx, which is the last allowed transmission
slot in the dynamic segment for each node. This parameter is calculated according to the largest
sporadic message sent by that node. It is configured to be a value so that there is enough of a time
frame before pLatestTx for any of the dynamic frames to be transmitted successfully. It is
calculated after the calculation of gNumberOfMinislots by subtracting from this number the
amount needed to transmit the maxmimum payload dynamic frame as follows:

pLatestTx[Minislot] <=

floor(gNumberOfMinislots[Minislot] –
(((aFrameLengthDynamic[gdBit] +
adDTSLowMin[gdBit]) * adBitMax[μs/gdBit] + adMicrotickDistError[μs]) /

((gdMacrotick[μs/MT] /
(1 + gClockDeviationMax)) * gdMinislot[MT/Minislot])) -gdDynamicSlotIdlePhase[Minislot])

 (3)

2.3 Configuration of FlexRay

The FlexRay configuration workflow is the sequence of processes that use the signal set as input to
compile the necessary ECU files to be loaded for proper operation. The signal set is the set of

16

signals that will be sent when the network is operational. It contains for each signal the sender and
receiver nodes, signal IDs, signal types (periodic or sporadic), size, period, deadline and
generation time. The goal is to configure all FlexRay nodes within the cluster using this set to meet
the deadlines. The processes involved in the configuration of a FlexRay network are depicted in
Figure 2-9.

Figure 2-9: The FlexRay configuration workflow.

The configuration workflow starts with signal packaging. Signals are the main input of the whole
system. They are generated when an ECU needs to communicate in the network. Packaging is
necessary to form the messages that can be scheduled using the available standards. For example
for the static segment of a FlexRay cycle, multiple signals can be fit into a message, which can
then be fit into static slots if the sizes are adequate. This part of the workflow deals with the
generation of a suitable message set from the input signal set, which includes information
necessary for the scheduler such as IDs, sizes, periods and destinations.

The resulting messages then need to be scheduled with their proper timings of transmission. For
message scheduling in FlexRay, periodic messages are allocated in the proper static slots and the
sporadic messages are allocated in the dynamic slots. A viable schedule is acquired when all the
messages in the message set are allocated in the time slots so that the defined requirements are set,
such as message deadlines.

17

After acquiring the schedule, the configuration files of each node need to be created. This is
generally done by manually entering the schedule and the necessary parameters into a
configuration tool. There are several commercially available such tools, some of which will be
explained in Section 2.5. Using these tools, the configuration files for each ECU can be generated.
The generated files from these tools are called controller host interface (CHI) files. The controller
host interface manages the data exchange between the FlexRay protocol engine and the host
processor [3]. The chi file containing this information can then be used to compile the actual
binary data that needs to be uploaded per ECU. Once the ECUs are loaded and the network is
booted up, no further configuration takes place.

2.4 File and Software Standards

The different processes forming the configuration workflow need to be handled by several tools in
sequence, forming a tool chain. The data flow between these tools needs some sort of
compatibility in order to establish data exchange. The ASAM organization (Association for
Standardisation of Automation and Measuring Systems) was founded to develop and maintain
interface standards for vehicle electronics. For our approach in configuration, to forward the data
from the Message Scheduler to any standardised configuration tool, we use the ASAM developed
FIBEX (Fieldbus Exchange Format) standard [15]. FIBEX is an XML based data exchange
format. It is a standard that is used to exchange data with multiple protocols in message oriented
networks. Since it was developed by ASAM, the FIBEX format is compatible for conversion
between most standard tools. It supports several in-vehicle transmission protocols and is the
established exchange format for FlexRay. FIBEX shares many principles with AUTOSAR
(Automotive Open System Architecture), another standard for automotive software. This fact
indicates that FIBEX tools are appropriate for many applications since many automotive and
electronics are affiliated with AUTOSAR [18], [19].

A FIBEX file consists of several objects that define the aspects of the network to be configured.
Network topology is defined in cluster objects, where the ECUs and the channels connecting them
are configured. The timing parameters of communication objects are configured in the channels.
The communication objects that can be configured this way are signals, frames and PDUs
(Protocol Data Units). Signals are grouped into PDUs, which belong to the Interaction Layer.
PDUs are then grouped into frames which belong to the Data Link layer (FIBEX versions below
3.0 do not support PDUs; signals are directly grouped into frames). The physical aspects of the
signals are stored as ‘codings’ which are separate data objects. Codings include information such
as bit length and computation method. FIBEX also allows the configuration of Gateway objects as
an interface to other bus systems [15].

The interfacing of the protocol configuration of FlexRay and the message schedule to the hardware
are handled by .chi (Controller Host Interface) files for each node in the network. These files can
be generated by the use of commercially available FlexRay configuration tools. Such
configuration tools allow the user to define a network, set the protocol parameters and enter a
schedule to create the .chi files for the defined nodes. Once the necessary .chi files are created,
these need to be converted into a hex file format that can be loaded to the hardware using software
specific to the hardware vendors. This final hex file to be loaded can be of different formats
depending on the vendor. The software to be used to generate these files from the .chi files also are
specific to the model of the boards used.

18

There are several configuration tools that can be used for FlexRay Networks. One is EB Tresos
Designer by the company Elektrobit. This tool can be used to plan the signals and the network
schedule for FlexRay, as well as CAN and LIN. The parameters are checked for interdependencies
during the design. This software also allows user created AUTOSAR compliant software
components to be linked with Tresos projects [10].

FlexRay Configuration Package by dSpace provides a configuration tool for simulating FlexRay
nodes on dSpace hardware. This software also supports Protocol Data Units (PDU) as described
by AUTOSAR. By entering the signal set and the schedule, the communication code and the node
configurations are generated. This data can then be used to create MATLAB®/Simulink® models
using the RTI FlexRay Configuration Blockset, which can then be used in the applications [11].

The Network Designer FlexRay by Vector is a tool where schedules can be generated and both
cluster and node parameters can be configured. Vector exclusively uses the FIBEX format to
exchange information with other tools such as Network Designer CAN. The configuration files
generated by the design tools (and possible other Vector tools) are then as a whole diagnosed by
the next software Vector’s design tool chain, CANoe, for ECU operation. The final ECU files can
then be loaded by using Vector Bus Interfaces for specific nodes [12].

TTXPlan by TTTech is a FlexRay configuration tool with the added application of automatically
mapping signals to frames and generating a schedule for time-triggered networks. The empty slots
in the schedule can then be modified by the user without disrupting the frames allocated by the
previous schedule [14].

FlexConfig by Eberspächer is the FlexRay configuration tool we use in this study. It allows the
configuration of FlexRay and CAN nodes along with gateways between different nodes.
FlexConfig also simulates wakeup and startup signals, CRC algorithms and network management.
The controller register values that appear in the .chi files can also directly be changed, if the user is
able [13].

All of these tools are AUTOSAR compliant and projects can be exported to other software as long
as they use the same exchange standards. Since all these tools support the FIBEX exchange
format, FIBEX files can be imported or exported with any of these software tools.

2.6 Shortcomings of the Current Design Workflow

Even though the current workflow is adequate for configuring FlexRay nodes, some shortcomings
still need to be pointed out. One such liability is that configuration tools do not support any
scheduling. The tools only take whatever schedule is entered to create the configuration files,
possibly giving out errors and warnings in the case of a schedule that does not meet the
specifications of the used standard. The schedule itself, however, needs to be computed by the
engineer to be entered in to the configuration tool. This brings us to a second problem, the
schedule has to be manually entered in to the tool, as in defining the all the frames and their
timings by hand. The scheduling parameters also need to be entered manually by looking at the
computed schedule. Manual entry by an engineer takes effort and time, in addition to being prone
to human errors.

For the message packing and scheduling parts of the workflow, there are no commercial tools
available. There is an open-source scheduling tool by Klaus W. Schmidt [5], which analyses a
given signal set and comes up with a viable schedule, but the resulting schedule still needs to be
entered to a configuration tool manually as the tool does not provide a compatible output for
commercial configuration tools.

2.5 Current FlexRay Configuration Tools

19

In this thesis, we try to automate as many of the processes of the current design workflow as
possible to deal with these shortcomings. Here we design a tool to create a file that includes both
the schedule and all the configuration parameters that can be imported to all commercial tools
following the same standard (FIBEX xml format). We also make alterations to the work
previously done in [5] so that the computed schedule can be automatically integrated into the tool
chain. Thus, once the signal set and the ECUs are introduced to the tool chain, the signal packing,
scheduling and configuration processes are sequentially done by the tool chain automatically. The
resulting file can then be imported to any standard commercial tool to generate the chi files.

20

21

CHAPTER 3

AUTOMATED CONFIGURATION TOOL CHAIN DEVELOPMENT

We describe our tool chain for the automated FlexRay configuration process from a given network
topology and signal set, to the generation of the .chi files in this chapter. We begin by describing
our workflow and the tasks performed by each working block. Then we describe the first block,
the scheduler, which is mostly previous work and explain the additions to the previous work and
why they are added. After that, we go into the details of the writing of the FIBEX xml file from the
output of the scheduler. This part contains the generation of the network topology in the file,
inserting the configuration parameters and the message timings, in addition to some specifics
related to the FIBEX file format.

3.1 The Tool-Chain Workflow

The overall configuration process we employ can be summarized in three main blocks. The first
block is the scheduler, where the signal set is packed into messages and scheduled using a
scheduling algorithm. This part is handled by an API developed by Klaus W. Schmidt [5]. We
make some improvements and adjustments to the previous API to make it usable by the next set of
tools. The second block is the FIBEX file scheme we have developed. This part uses the schedule
and the parameters obtained from the scheduler to create the single FIBEX file (xml extension)
which represents the whole FlexRay network. The conversion from the computed schedule to the
configured FIBEX file is automatic, as opposed to current configuration schemes where the
schedule and the configuration has to be manually entered to an available tool. In our method, the
universal FIBEX file is created automatically which can be exported to all the professional tools
that use this standard. The final block of the whole setup makes use of FlexConfig as such
commercially available tool. This part deals with the generation of the loadable hex files for the
hardware from the configuration file. An overview of the tool chain is given in figure 3-1.

22

Figure 3-1: An overview of our workflow.

The input to the system is the signal set, along with the schedule specific input parameters defined
in Section 2.2.2 and the ECUs. The signal set is the set of signals that will be sent throughout the
network during operation. The signal set includes information such as signal type (periodic or
sporadic), size, generation time, deadline, sending and receiving nodes per signal. The parameters
input to the system are the schedule specific parameters that were mentioned previously in chapter
2.2.2. We introduce the ECUs into the system as separate objects called node items, where the
configuration parameters and schedules for each ECU are kept.

The collection of inputs is first subject to the signal packing process of the scheduler API. Signals
that are viable to be sent simultaneously are grouped into a single message. Each sporadic signal
constitutes a single message. As for periodic signals, signals being sent from the same ECU can be
packed into a message, according to their receivers and deadlines. The API groups the periodic
signals and sets the static slot duration using an algorithm to minimize the bandwidth utilization
[8].

The outcome of the signal packaging block is the message set. The message set is the set of
messages and their relevant parameters that will be scheduled in the network. The message set is
then run through the scheduler where we compute the schedule. The schedule for each message in
the message set is represented in terms of their FIDs, offset, and repetitions. This representation is
the same for both periodic and sporadic messages; where we set the offset and repetition of all
messages scheduled in the dynamic segment as 0 and 1 respectively. Several network parameters
are also adjusted for schedulability during the computation. The final output of the scheduler is
then, these parameters and the overall FlexRay schedule.

Conventionally, this generated schedule and the necessary parameters are then manually entered to
an existing network design tool manually so that the configuration files can be generated. The

23

FIBEX generator project we developed, on the other hand, generates a universal xml file that can
be imported to such design tools. Therefore, manually entering the parameters and the schedule
into the tools is now not needed. The automatically generated xml file can be imported to any
network design tool that uses the FIBEX standard (which most do), from where the chi (Controller
Host Interface) files for each ECU can be generated.

For our case, we use FlexConfig™ Developer for the generation of chi files. Once we import the
FIBEX file we generate into FlexConfig, we can observe the parameters and the schedule in the
FlexConfig interface as if we had manually registered all the necessary values. From here, we use
the export functionality to generate the .chi file for each node. The final step is to convert these
.chi files into machine code (hex files) and load them to the network nodes. It should be noted that
we do not fully automate the processes of importing/exporting with FlexConfig and conversion of
the exported .chi files to machine code. Even though automating FIBEX import and .chi export
processes of the FlexConfig could provide some convenience, the time and effort used is
insignificant compared to the previous processes. Furthermore, automating this process as is would
limit our tool chain with specifically integrating FlexConfig, whereas now any configuration
software employing the same standard can be substituted with ease. The same reasoning applies to
the conversion of files to the machine codes as well since automation of this process too would
restrict us to using the same file formats and hardware for all applications.

3.2 The Scheduler

3.2.1The Existing Infrastructure

The scheduler code is where we define the nodes and insert the signals. These signals are then
packed into messages and the schedule is obtained from these messages using a scheduling
algorithm. For scheduling and message packing purposes, we use tools readily available in [5]. In
this network scheduling API, ECUs are represented by objects called node items
(FXNodeItem). The information stored in these objects is used both in the message packing
and scheduling processes. Signals that are generated by the ECUs are represented by Signal
objects and are stored in the mSignalVector vector of their respective FXNodeItem objects.
The Signal objects contain the parameters needed to define a signal: type (periodic or sporadic),
period, deadline, size, generation time etc. The Message objects that represent the frames that
these signals will be grouped into also have the same attributes. For each specific network, a
scheduler object of the class FXScheduler is created, which is where the methods that are used
to pack frames and compute the schedule are held. This scheduler operates on the set of defined
node items. The node items to be used need to be inserted into the scheduler objects node item
vector (FXNodeItemVector) to be included in the network.

After defining the network and the signal set, the schedule is computed using the computation
functions. The packed messages for each scheduled node are stored in the mOptimalMessages
vector of each FXNodeItem. The FID numbers and the maximum repetition allowed for each
node is stored in the map mFIDAssignmentMap. For the dynamic segment the number of
minislots needed are computed and the scheduled dynamic messages are displayed in the output
with their message IDs and response times.

3.2.2 Improvements and Additions

For incorporating this tool into our automated configuration tool chain, we make several
improvements due to several missing features of [5] that are needed for our case. One such
improvement is that the previous version did not take into account the receivers of each inserted

24

signal, since only the senders were needed to come up with a viable schedule. When node
configuration comes into play however, each node has to be configured to know when they are in
the receiving end. Therefore, we change the signal objects to include the receiving node in terms
of an integer node ID (we also do the same for the message objects). When we then pack these
signals into messages, we also include the destinations for each signal packed within the message.
The destination for each message is then the union of the destinations of all the packed signals. We
also updated the correct formulas for the computation of frame lengths according to the equation
(1) given in 2.2.3.

A bulk of the changes added are the computation of the necessary information that were not
present before and interface all the output to the next block. We accomplish these functionalities
using the ComputeScheduleForFibex method for each node. In this method we first extract
the contents of the mFIDAssignmentMap, which holds the FIDs and their maximum available
repetitions. We also extract the mOptimalMessages vector of messages, which will be placed
in these FIDs according to the schedule. The FIDs and repetitions were already assigned in the
previous scheduler, from where we added the computation of the offsets for the extraction.

A pseudocode for the general flow of this method is given below:

FIDRep = Map of FIDs to maximum repetitions
While FIDRep still has an entry
 Get one FID and maximum repetition from FIDRep
 Loop over all messages
 Get repetition of current message
 Set offset = 0
 Set FreeSlotNotFoundFlag = true
While offset < message repetition and FreeSlotNotFoundFlag = true and message
repetition <= maximum repetition
Check if the current message is viable for assignment to this FID with its repetition and current
offset
If viable do the assignment and remove the message
Else increase offset by 1
 Remove the current FIDRep entry

What we do here is taking all available FIDs according to their maximum repetitions and filling
available slots with the sent messages. For each FID, we first take one of the messages and see if it
can be allocated to this FID. We consider all available offsets while checking, which is an integer
between 0 and the message repetition. If the message is available with one of the counted offset
values, the allocation takes place and we mark the corresponding slots as occupied. We also
remove the message from this process by setting its repetition as 0, so that it does not go into the
while loop for the subsequent FIDs. Once we check all of the messages for one FID, all of the
possible messages would have been allocated so we discard this FID from this process (by deleting
the FIDRep map entry) and move on to the next FID. If all the message repetitions and FIDs that
are computed by the scheduler are indeed correct, no message is left out at this block.

An example scenario for one node is given in Figure 3-2 for clarification. This part of the output
from the scheduler says that there are four FIDs for messages sent from that particular node and
seven different messages. The first rows of the output are the content of FIDRep matching FIDs
to their maximum repetitions. The rows below are for each message entry of the
mOptimalMessages vector and their repetitions. From this content, our algorithm first takes
FID 1 and loops through the seven messages to check if one of them fits with 0 offset.
Incidentally, the maximum repetition allowed in FID 1 is a repetition of 1, which is the repetition

25

of the first message so the allocation is done for this message and the message entry is removed
from the process. Since no other message can be allocated to FID 1, its entry is also removed from
FIDRep and the process continues for FID 2 with maximum repetition 2. From the remaining six
messages, three of them have repetitions of 2 so one of them is allocated to FID 2 with offset 0 and
its vector entry is removed. Then the algorithm checks the remaining 5 messages to find a message
that can be allocated to the remaining slots with offset 1. At this run one of the messages with
repetition 2 is allocated to the remaining slots with offset 1 and repetition 2. Afterwards since
further messages cannot be allocated to FID 2, this entry is removed from FIDRep and the
process continues for the remaining two FIDs and four messages.

Figure 3-2: A sample screenshot from the scheduler output. The FID to Max Repetition pairings
are the content of the FIDRep map structure. The following message repetitions are the entries of

mOptimalMessages vector, duplicate lines indicate different messages with the same
repetition.

 During the inspection of each message for this segment, we represent the static slots of the current
FID with an array called slotmap which keeps track of the availability of the slots. The size of
the array is the maximum repetition value as there are no slots beyond that. Whenever a message is
checked for viability, we compute the slots that are occupied by the message. If all the necessary
slots are available, then the message is assigned and all these slots are marked as unavailable. The
code segments that handle the checking and allocation parts are given below.

/* Checking for availability */
for(availableflag=true, j=offset; j<maxrep && availableflag;j=j+currentrep){

 if (slotmap[j] == false) availableflag= false;}

/* Marking the used up slots (if assignment takes place) */
for(j=offset;j<maxrep;j=j+currentrep){
 slotmap[j]=false; }

Figure 3-3 displays the output for a node with a single FID with maximum repetition 32 and 4
messages to be allocated. Since the maximum repetition is 32, the slotmap array also has 32
elements, which are all set to true initially.

26

Figure 3-3: A sample screenshot from the scheduler during message assignment to FID 3 when
there are four messages currently unassigned.

The algorithm again sets offset as 0 and begins checking the messages. The first message with
repetition 4 is suitable for allocation so the assignment is made, the message entry is removed
from the message vector and the slotmap elements representing the occupied slots are marked
as false. A visual representation of the marked array elements is given in Figure 3-4.

Figure 3-4: The slotmap elements marked as false for a message with offset 0 and
repetition 4.

Next, the remaining three messages are tried with offset 1. Since the messages are checked in the
order they are present in the mOptimalMessages vector, the first available message is the one
with repetition 16. After this message is assigned and the slotmap entries are marked, the
remaining messages are again tried for the array elements that are not yet marked as false. The
visual progression of the slotmap array elements for the remaining messages is given in Figure
3-5.

27

After computing the static segment frames, we extend both the static segment and the dynamic
segment to fill the entire cycle time. First we add two static slots to the current schedule as a
reservation for the two necessary synchronization frames. Then more static slots and minislots are
added. We add 100 minislots for each added static slot, mainly because minislots are generally
much smaller than static slots. We stop adding when the remaining time in the cycle is less than
the duration of 1 static slot and 100 minislots. At this point, the remaining time is added to the
NIT. After updating the slots, the dynamic frames in the mScheduledMessagesDynamic
vector are updated with their new FIDs starting with the new starting FID of the dynamic segment.

When we compute the schedule, we also store the information for each message for the uses in the
upcoming blocks. The information needed per message are FID, offset, repetition and the
destination nodes. These are stored in the ScheduledMessages vector. Each entry to this
vector represents each message. We use this vector as an interface of the schedule for the static
segment and the FIBEX block.

We pass on the dynamic schedule to the FIBEX block in a similar manner. The difference is that
there is a single mScheduledMessagesDynamic in the scheduler object as opposed to
separate ScheduledMessages vectors for each node item. As per the FIBEX standard, the
message parameters are namely the same. The FIDs are assigned to the dynamic messages in order
of precedence, where offsets are set to 0 and repetitions are set to 1. The needed minimum
duration for the dynamic segment is also calculated here, but not the needed amount of minislots
for each sporadic message.

These two message vectors, ScheduledMessages (for static messages) and
mScheduledMessagesDynamic, are the main input of the next block. These schedules along
with the necessary protocol and schedule parameters need to be entered to a network tool, so the
hardware compatible files can be produced. We make this process automatic in the next step by
generating a standardized FIBEX file that imports all necessary parameters to the tool for us.

3.3 The FIBEX Project

The FIBEX block in Figure 3-1 is where we create the xml file using the FIBEX format. XML
(Extensive Markup Language) is a format which is formed around data objects called elements and
their attributes. The content of these data objects are encapsulated within their start and end tags in
the file. Each file has to contain one root element, which is the element that does not occur as any
other elements’ content through the whole document. The elements can also have attributes which
are defined in the start tags. The start and end tags are encapsulated within < > characters and the
value stored (called declarations in xml) in that element is encapsulated by these tags. The FIBEX

Figure 3-5: The slotmap array visual representation for each run of the FID assignment process.
Darkened blocks depict elements that have been marked previously by preceding messages.
Blocks marked with X represent the slots taken by the current message at hand. From top to

bottom the three pictures represent the allocation of three messages in sequence: Offset 1
repetition 16, offset 2 repetition 32, offset 3 repetition 16.

28

standard also employs this standard and a valid file has to follow the XML definitions [9] [15]
[20]. A blank FIBEX file is given in Figure 3-6 to clarify the encasings of the elements and
document form of xml.

Figure 3-6: A blank FIBEX file as a sample xml file. Element tags are marked in blue, attribute
names in red, attribute values in purple and stored values in black.

The structure of the FIBEX block of our code is similar to the xml node hierarchy of the standard
FIBEX file. This hierarchy is given in Figure 3-7. Each block in the figure represents the entity
with the respective name and appears as xml node (tags) in the written file. How these tags are
written into the xml-file is elaborated on in the sequel.

29

Figure 3-7: The FIBEX standard structure [15].

30

We use the GNU library libxml2 to write an xml file. This library defines a specific type of pointer
called xml node pointer (xmlNodePtr) for the writing process. Each node pointer represents an
xml node (or tag) that should appear in the file. The created node pointers are related to each other
with a tree structure. As in the nature of xml files, each file has a root xml node which has one or
more children xml nodes which in return may or may not have children nodes and so forth. The
Write() function of the library then starts writing from the specified root node and goes down
the tree recursively, writing the proper tags and attributes for each node in the file [9].

As for creating the FIBEX files using this library, it is required to define all xml nodes. The
standard requires one main node with the fx:FIBEX tag with some attributes regarding the version
number as is shown in Figure 3-2. Then we create the nodes for each block appearing in Figure 3-
1. The children of these nodes then represent whatever entity they represent in the FIBEX file; for
example xml nodes that hold the attributes of signals are children of the fx:Signals node.

For each main xml node that should appear in the file, we define a C++-class that points to the
respective nod by an xml node pointer. Each object that is instantiated from such class contains the
configurable parameters. We name the main class FXFIBEX, which contains the xml node pointer
called fibex_node. Each FIBEX project has to have one FXFIBEX object as it contains the
root node of the xml file, which is fibex_node. The ‘elements’ and ‘processing information’
nodes are children of this fibex_node as seen in Figure 3-1. The children of the ‘elements’
node are the network elements: ‘Clusters’, ‘ECUs’, ‘channels’, ‘frames’, ‘PDUs’ and ‘signals’. For
each element in the network, we create the appropriate objects and then connect them to the main
FXFIBEX object. The connection is made by creating the xml node tree, where each xml node
pointer for each object is the child of the appropriate type. For example, for a network with 3
ECUs, 3 ECU objects are created, whose xml nodes are added as children of the ecus_node in
the FXFIBEX class so all these objects are written under the fx:ECUS tab. The ecus_node is the
child of the elements_node, so it appears under the fx:ELEMENTS tab, which is under the
main FIBEX tab.

We use two parameters for the constructor of the FXFIBEX class. The first is the version number
as our code supports both version 2.1 and 3.1. The other parameter is the scheduler object that we
used previously for computing the schedule. The FXFIBEX object contains the xml nodes where
the other objects are pointed so that they appear in their respective tabs. We also set the prefixes
that need to occur as xml properties in the fx:FIBEX tab according to the version number. Once
we create this object, the relations of the necessary xml nodes are automatically set. Then for every
other object created that needs to appear in this file, we add them using their respective methods.

The method to write the xml file is also included in the FXFIBEX class. What this method does is
to actually add the xml nodes contained in each object to their respective parents. Then the
information contained in these objects is written as the children xml nodes using the syntax that
should be used in FIBEX files.

3.3.1 GUID References

Most tags that occur in the FIBEX file format need to have unique identifiers which are stored as
attributes in the start tag. To keep track of these identifiers, we use a GUID (Global unique
identifier) set that is specific to the current FXFIBEX object. We create these unique identifiers by
appending a 32 byte random hex number to the identifier type. We create these unique random hex
numbers by adding four 8-digit hex numbers back to back. We check for uniqueness by comparing

31

the newly generated random ID with all the other IDs in the GUID set. The code segments
handling GUID operations are given below.

std::string GenerateGUID();

std::string GenerateGUID(){

int flag = 1;

int idno1, idno2, idno3, idno4;

stringstream ss;

while (flag){

 ss.str(std::string());

 ss.clear();

 idno1 = rand(), idno2 = rand(), idno3 = rand(), idno4 =

rand();

 ss << hex << idno1 << hex << idno2 << hex << idno3 << hex

<< idno4;

 if (FXFIBEX::GUIDset.count(ss.str()) == 0) flag = 0;

 }

FXFIBEX::GUIDset.insert(ss.str());

return ss.str();

}

These identifiers are used to identify each unique entity in the FIBEX file. When certain
connections need to be established between these entities, they are referred by using these unique
identifiers.

3.3.2 Creation of Network Elements

We represent each cluster by a FibexCluster object. For every cluster in the network, we
create a FibexCluster object. We add these cluster objects into the FXFIBEX object by
inserting the FibexCluster object into the Clusters vector in the FXFIBEX object. When
the Write() method is operated in the FXFIBEX object, it goes through this vector to write all
the present clusters one by one.

The FibexCluster object contains the global parameters necessary for the configuration of the
cluster. We migrate the schedule specific parameters that are present in the scheduler to created
FibexCluster objects by using the ConfigureFibexCluster method of FXFIBEX. The input
of this method is the FibexCluster object that needs to inherit the parameters. These
parameters are either variables in the created FXScheduler object, or static variables of the
FXNodeItem class. The following is an example for both of these kinds of variables configured
in this method.

Void FXFIBEX :: ConfigureFibexCluster (FibexCluster & Cluster){

 /** Variable from FXScheduler */

Cluster.SetCStaticSlot(FibexScheduler.GetmSSlotInMT());

…

 /** Static variable of FXNodeItem */

Cluster.SetCSWindow(FXNodeItem::GetSWDuration());

32

We also refer up to two channels that are connected to the cluster. ChannelRefVector in the
FibexCluster object is a vector of strings where we insert the channel GUIDs. When we write
the file, the tool goes through this vector to write the IDs of the channels under the fx:CHANNEL-
REFS tab.

Figure 3-8 depicts the fx:CLUSTERS segment written when we write the configured
FibexCluster object into the FIBEX file.

Figure 3-8: A screenshot of a FlexRay cluster as seen in a FIBEX file.

We create a FibexChannel object for each channel that occurs in the file and connect up to two
channels to a cluster. Each channel object created contains the unique FlexRayChannel ID
used to identify each channel object and the type (A or B). Adding a channel to a cluster means
that we add the IDs of the channels to the channel ID reference vector (ChannelRefVector) in
the cluster object.

The main configuration that takes place after the channel creation is the frame triggering section.
This is where the timings of each frame are defined. One example of a frame triggering instance in

33

a sample FIBEX xml file is given in figure 3-9. This is a block of the beginning of the fx:FRAME-
TRIGGERINGS tab under a fx:CHANNEL tab, which details the frame timing of a single frame
for that channel. Here we see the timing of a frame assigned to FID 4 with offset 0 and repetition
1, as computed by the scheduler. The fx:FRAME-TRIGGERING event itself has a unique ID
property as required by FIBEX. The frame that is linked to these timing parameters is referenced
with its GUID in the fx:FRAME-REF tag. ID references are made as an xml property in the xml
tag as ID-REF.

Figure 3-9: A screenshot of a single frame triggering under an fx:CHANNEL tab.

We assign each triggering a GUID which is set as a property of the fx:FRAME-TRIGGERING
named ID. This ID is later referenced in the creation of the related ECU ports. We extract the data
to be filled in the timing section from the ScheduledFrames vector in the scheduler. We use
the information in this vector extract the FID, offset and repetition for each frame, and add them to
FrameTriggerMap of the related FibexChannel object. FrameTriggerMap is a map of
strings containing the frame triggering IDs to a vector of integers containing the FID, offset and
repetition. The contents of the vector for each triggering is written under the fx:SLOT-ID,
fx:BASE-CYCLE and fx:CYCLE-REPETITION tabs respectively, for each triggering instance.

There are two parts to the configuration of each ECU in the cluster. The first is the ‘controller’ part
where the node parameters for the ECU are configured under the fx:CONTROLLERS tag. The
second is the ‘connectors’ part where virtual input and output ports are configured for each frame
timing occurring in the network, tagged fx:CONNECTORS in FIBEX. We handle this part at the
same time when the frame triggering is created for each channel. When we create a new
FibexECU object representing each FlexRay node in the cluster, the unique ECU GUID for the
object, ECU name and the controller parameters are also configured.

We record the ECU GUID, name and controller parameters in their respective data structures in
the FibexECU objects. When we use this data to write the xml file, this part is shaped as in the
following FIBEX sample. These parameters should be configured to reflect the properties of the
used boards and the application at hand. Figure 3-10 shows the content of the fx:CONTROLLER
tab for an ECU in a sample FIBEX file.

34

Figure 3-10: A screenshot of the ECU controller parameters as seen in a FIBEX file.

We configure the connectors part once the frames to be sent are introduced, after the creation of
FibexECU objects. This part will be discussed in section 3.3.3.

The creation of the FIBEX data units, namely frames, PDUs and signals, are handled
automatically during the extraction of the schedule. This process will also be explained in section
3.3.3 although the data structures that are used need to be defined beforehand.

The data units have a different hierarchy for different versions of FIBEX. For v2 signals are
packed in frames and PDUs are not supported. For v3 and higher, signals are packed into PDUs,
which are then packed into frames. We call every sub data unit that is packed into another an
instance. To determine which unit is packed into which, their GUIDs are used when defining the
instances.

The FibexFrame objects have lengths as parameters and automatically assigned frame names.
Each FibexFrame has a vector of objects we defined as SubInstance. SubInstance
objects contain the GUIDs of the PDUs packed into this frame and the bit position indicating the
place where the PDU is located (the SubInstance objects contain signal information instead of
PDUs for versions lower than 3.0). These SubInstance objects also have their own GUIDs as
required by the FIBEX standard. The final view of a frame appearing in a sample FIBEX file with
two PDUs is given in Figure 3-11. This example is an 8 byte frame named Frame1 and contains
two PDUs. Each PDU is placed under an fx:PDU-INSTANCE tag. The fx:PDU-REF tag has an

35

ID-REF property which holds the GUID for the fx:PDU tag representing the PDU related to that
instance.

Figure 3-11: A screenshot of a single frame with two PDUs assigned to it in a FIBEX file.

PDUs have a similar format to frames. Therefore we have defined the FibexPDU objects in a
similar way to the FibexFrame objects. One difference is an extra parameter, PDU type, which
we added into the data structure. The instances are instead signal instances that appear as
SubInstance objects that contain signal information. Figure 3-12 is an example view of an 8
byte PDU with a single signal assigned to it. The only difference to the structure of a FIBEX
frame, apart from the signal instances, is the addition of fx:PDU-TYPE. We set the PDU type as
the default APPLICATION type, since although the type is mandatory to be set in the FIBEX
standard, it is an irrelevant parameter for our test cases.

Figure 3-12: A screenshot of a single PDU with a single signal assigned in a FIBEX file.

Signals in the FIBEX standard have a different structure than the other data units. Signals are
defined under the elements tab but the coding schemes of the signals are defined as coding objects,

36

which are not network elements. The codings are instead defined under the fx:PROCESSING-
INFORMATION tab as opposed to the fx:ELEMENTS tab which we write for all the network
elements. The codings are then associated to the signals using the GUID of the coding object.

The parameters included in the FibexSignal object are the signal GUID, signal name and a
string which holds the GUID of the selected FibexCoding object. The codings in FIBEX define
many schemes and computation methods but most are optional. For our purposes the
FibexCoding objects contain the coding GUID and the bit length, which defines the signal
length for the signals which select this coding. We then write the information as in the FIBEX
sample given in Figure 3-13. As with all GUID references, the coding ID should match the related
coding reference ID-REF.

Figure 3-13: A screenshot depicting both a signal and its related coding in a FIBEX file. The
relation is established by referring to the coding ID as highlighted.

When we use the FXFIBEX.Write() method, the code goes through all the created objects and
the contained information in order. After setting up the network by creating the necessary objects
and establishing their connections, we then extract the schedule form the scheduler code and insert
the information into the appropriate objects.

3.3.3 Creating Frame Triggerings (Timings)

The timing of each frame in the network has to be configured for the configuration to be complete.
For the static segment, we use a function in the FXFIBEX object called CreateTriggeringsA
for timings involving channel A and CreateTriggeringsB for channel B. The tasks handled
by these functions are as follows:

1. Extract the static schedule for one node item (Get the ScheduledFrames vector).
2. Create a frame triggering entity with its own GUID.

37

3. Insert the timing of this entity into the channel (With frame triggering GUID, FID, offset
and repetition)

4. Add an output port for the ECU from where this frame is set, link the GUID of this port with
the frame triggering GUID.

5. Add an input port for each destination ECU and link the GUIDs.
6. Create a frame and a PDU instance to this frame (no PDUs are needed for versions lower than
 3.0)
7. Create the signals and their respective codings using the size information in

the ScheduledFrames vector. Link the signals to the frame by creating signal
instances in the PDU belonging to that frame.

The function takes one FXNodeItem object from the scheduler and a FibexEcu object from the
FIBEX part to establish that these items represent the same sender node. The function also takes a
FibexChannel object to operate on. FibexChannel objects of type A should be input to
CreateTriggeringsA function and type B for its own function.

Since this function links a FXNodeItem with a FibexEcu, we compute the EcuLatestTX
parameter here even though it is related to the dynamic segment. We compute LatestTx by
subtracting the duration of the longest sporadic message for that node (in minislots) from the total
total minislot number as in equation (3) in section 2.3.3.

The complete configuration information for each scheduled message is gathered in three different
places in the FIBEX file. The first is the FibexChannel where the timing parameters per frame
triggers are set. The second is the connectors tab of FibexECUs where the triggers are associated
with the virtual input and output ports of the nodes according to their delivery. The final is the
FibexFrame object carrying the message parameters and the grouped signals, which is linked to
the frame triggering. This three-way-linkage via GUID referrals is depicted in the following
figures. Figure 3-14 shows the view of a frame triggering event as an example.

Figure 3-14: A screenshot of a single frame triggering event in a complete FIBEX file sample.
The frame triggering ID in question is highlighted.

38

When we create a frame triggering, we also create the relevant FibexFrame object and the
ECU input and output ports simultaneously. FIBEX requires ECUs to have an output port for each
sent frame with its unique ID. Under these fx:OUTPUT-PORT tags, we enter the ID of the
triggering event in the fx:FRAME-TRIGGERING-REF tag. Figure 3-15 shows this referencing for
the sender of the frame described in Figure 3-14.

Figure 3-15: A screenshot of the fx:CONNECTORS tab of the ECU sending the frame described
in Figure 3-14. The fx:INPUTS tag has been collapsed to simplify the view. The highlighted ID-

REF matches the unique ID of the frame triggering event given in Figure 3-14.

We also do the same referencing for the input ports of the receiving ECUs. The input port of the
ECU receiving our example frame can be seen in Figure 3-16.

39

Figure 3-16: A screenshot of the fx:CONNECTORS tab of the ECU receiving the frame sent in
Figure 3-14. The highlighted ID-REF matches the unique ID of the frame triggering event given in

Figure 3-14.

Figure 3-17 shows the actual frame in the FIBEX file that we use in this example. The ID of the
frame is the same in the ID-REF property of the fx:FRAME-REF in Figure 3-14.

Figure 3-17: A screenshot of a sample frame in a FIBEX file. The highlighted frame is referred in
the triggering event described in Figure 3-14 and the unique ID here matches the frame ID-REF in

said figure.

40

As previously mentioned, each frame, PDU, signal and signal coding object have to have a unique
ID and a short-name which need not be unique. We use static integers to number the consequently
created objects to avoid confusion. These integers are stored in the FXFIBEX object as
framecount, signalcount, pducount and codingcount which are all initialized as
zero. When the objects are created in one of the CreateTriggerings functions, these
incremented integers are appended to the short-name text. For example created frames go
Frame1, Frame2 and so on. When we run the CreateDynamicTriggerings function the
naming continues from where the previous function left off.

Both CreateTriggerings functions need three inputs to operate. The first is the
FXNodeItem object representing the node from where the static frames are sent called
sendernode in the function. The second input is the FibexEcu object to be associated with
that particular FXNodeItem called senderecu. The last is the respective FibexChannel
object as in the channel object that represents channel A is the input to the
CreateTriggeringsA function and is named fchannel.

The function loops through all the Message objects that are present in the
ScheduledMessages vector of the input NodeItem. For each message we create a frame
triggering identifier with its GUID. We then make an entry in the output port of the senderecu
object with the following lines.

std::string FrameTrig ="FrameTriggering_";

FrameTrig.append(GenerateGUID());

senderecu.InsertOutputA(FrameTrig);

The InsertOutputA function creates a new port entry for each entered unique frame trigger
and pairs the port ID and the trigger ID in the EcuOutputsA set. We use sets to store that
information so that we can check if any frame triggering ID has already been assigned a port, to
avoid duplicates.

void FibexEcu::InsertOutputA(std::string ftrig){

std::string ecuport = "EcuPort_";

ecuport.append(GenerateGUID());

if (CurrentFrames.count(ftrig)==0)

EcuOutputsA.insert (pair<std::string, std::string> (ecuport,

ftrig));

CurrentFrames.insert(ftrig);

}

After this we create the PDU where the signals belonging to the current frame are to be grouped.
We group the signals into this PDU by adding them back to back considering their bit-lengths. In
FIBEX the signals are placed in a PDU by setting its bit position. For each signal grouped in the
current message, we create the FibexSignal object with its short-name and GUID and the
FibexCoding object with the same required identifiers and the signal length in bits. We give the
first signal the bit position 0 (stored in the integer signalbits). We then add the signal size to
determine the next bit position. The AssignSignal method of the FibexPDU class sets the
signal object in the PDU object with the entered bit position.

codingcount++;

FibexCoding aCode("Coding" + boost::lexical_cast<string>(

codingcount), SignalIt->GetSize());

Codings.push_back(aCode);

41

signalcount++;

FibexSignal aSignal("Signal" + boost::lexical_cast<string>(

signalcount));

aSignal.SelectCoding(aCode);

Signals.push_back(aSignal);

aPDU.AssignSignal(aSignal, signalbits, "false");

signalbits = signalbits + SignalIt->GetSize();

The destinations of the signals are also extracted during this process. We utilize a set called
DestinationSet in the CreateTriggerings function where every new destination node
number that occurs is inserted. Therefore the final content is the union of the destinations of all the
signals in the message. The frame encapsulating this message should be sent to all the destinations
in this set. We specify this by entering the current triggering GUID into the EcuInputsA (or B)
vectors of the FibexEcu objects belonging to those destinations. We again use the set scheme
here to eliminate duplicates.

if (DestinationSet.count(SignalIt->GetDestinationId()) == 0) {

 Ecus.at((SignalIt->GetDestinationId()) - 1)-

>InsertInputA(FrameTrig);

 }

DestinationSet.insert (SignalIt->GetDestinationId());

After grouping the signals and determining the destinations, we finally create the FibexFrame
object and group everything together. Both the frame and the PDU objects are set the same length
in bytes according to the size of the current message. The AssignPDU method then assigns the
PDU into the created frame. We then add the frame and PDU objects into their relevant vectors in
the FXFIBEX object to be used in the Write function in the end.

The last line creates the triggering under the channel object using all the needed parameters for the
FibexChannel::InsertFrameTriggering method: Frame triggering ID, FID, repetition,
offset and the ID of the related FibexFrame object.

To finalize the static segment configuration, we configure the synchronization frames that should
be exchanged. We use the FXFIBEX::ConfigureStartup method to automatically generate
two synchronization frames that are transmitted between ECUs at the first two elements of the
FXFIBEX.Ecus vector. A single FibexFrame is created to represent both synchronization
frames. The frame is configured as a periodic frame with 0 offset and 1 repetition. We
automatically set the FIDs of these frames as the last and the second to last slots of the static
segment. We configure the timings of these frames in the FibexChannel objects in the
Channels vector of FXFIBEX with the same FibexChannel::

InsertFrameTriggering method as before.

The configuration of the triggerings of the dynamic segment is much simpler than its static
counterpart. This process is handled by the CreateDynamicTriggerings function. This
function takes each entry in the mScheduledMessagesDynamic and creates a frame
triggering entry with its own GUID as before. It then creates an output port for the node sending
that message where the GUID is referred. In the same manner input ports for each receiving node
are also created with the same referral. The frame and PDU objects are also created in the same
manners as before and timing information is input to the related FibexChannel objects.

42

3.3.4 Writing the FIBEX File

After we configure every necessary entity in the network, the data has to be translated into a
configuration tool for the generation of the configuration files for each node. While normally this
data is entered by hand to the configuration tool, we instead generate the standard FIBEX file
which can be imported to all configuration tools.

In order to generate the FIBEX file which is of .xml format, we use the tree structure of the
libxml2 free library [9]. The library works by assigning a document pointer to the file to be
created. Then the root nodes are defined as xml pointers of type xmlNodePtr, which is a
property of this library. The children of these nodes are then created and added as necessary, again
as xmlNodePtr types. After all nodes are entered to according to their parents, the
xmlSaveFormatFileEnc function is run, using a file name, coding standard and the document
pointer. This function recursively goes through each xmlNodePtr and its children to write out
the xml file using the standard xml format.

In our project, when we create a new FXFIBEX object, the document pointer and the main
xmlNodePtr pointers are automatically created. Whenever we introduce a new network element
as a new Fibex object in the code, we store the configured parameters as data entries in this object.
When at the end before we write the file, we enter all the data in all the present objects in their
respective nodes in the xml tree.

To provide an example, code segments that we use to configure the cluster are given below.

/* fx_fibex.h */

class FXFIBEX {

…

/** Node Pointers to be used during the writing operations */

xmlNodePtr root_node, node, node1, node2, node3, node4;

/** Node Pointers for the main nodes occurring in a FIBEX file */

xmlNodePtr fibex_node;

xmlNodePtr clusters_node;

/** document pointer for the libxml2 project */

xmlDocPtr fibexdoc;

/** Method to write the document in the specified xml file */

void Write();

}

/* fx_fibex.cpp */

/* Fibex object constructor */

FXFIBEX::FXFIBEX(float fVersion, FXScheduler sced){

…

fibexdoc = xmlNewDoc(BAD_CAST "1.0");

fibex_node = xmlNewNode(NULL, BAD_CAST "fx:FIBEX");

…

/* fibex_node is set as the root node of the project */

xmlDocSetRootElement(fibexdoc, fibex_node);

…

/* Elements is a child of Fibex, Clusters is a child of Elements

*/

elements_node = xmlNewNode(NULL,BAD_CAST "fx:ELEMENTS");

43

xmlAddChild(fibex_node, elements_node);

clusters_node = xmlNewNode(NULL,BAD_CAST "fx:CLUSTERS");

xmlAddChild(elements_node, clusters_node);

…

}

/* The Write() method is run at the end */

void FXFIBEX::Write(){

…

/* An iterator named It goes through all clusters in the FXFIBEX

object */

for(; It != EndIt; It++){

root_node = xmlNewChild(clusters_node, NULL, BAD_CAST

"fx:CLUSTER", NULL);

xmlNewProp(root_node, BAD_CAST "xsi:type", BAD_CAST

"flexray:CLUSTER-TYPE");

xmlNewProp(root_node, BAD_CAST "ID", BAD_CAST (*It)-

>GetCID().c_str());

xmlNewChild(root_node, NULL, BAD_CAST "ho:SHORT-NAME",

 BAD_CAST (*It)->GetCName().c_str());

xmlNewChild(root_node, NULL, BAD_CAST "fx:SPEED",

BAD_CAST (boost::lexical_cast<string> ((*It)->GetCSpeed())

).c_str());

…

As seen in the cluster example, the parameter values stored in the relevant FibexCluster
object are acquired using the appropriate Get functions. We then enter these values into their
respective nodes in the xml tree as properties, with the appropriate FIBEX tags. The other network
elements are also configured and then entered into the document in the same manner. We then run
the method which creates the xml file using the following command.

xmlSaveFormatFileEnc(FibexName.c_str(), fibexdoc, "utf-8",1);

The parameters are the file name, document pointer, encoding and formatting spaces. This
command begins by adding the set prefixes to the xml file and writing the contents of the root
node, which we had set as fibex_node. Then the three children of this node are written
project_node, elements_node and processinfo_node. Afterwards the next level of
children is written until the leafes of the tree structure are reached. A sample view of the final
result is given in Figure 3-17. This sample file configures a cluster with two channels and six
ECUs. The configuration parameters and the data unit configuration are not given to have a better
look at the xml tree.

44

Figure 3-18: The final overview of a complete FIBEX file. The content of the main xml tags have
been collapsed so only the network elements are seen.

To summarize the entirety of this project, we first provide the network nodes, schedule specific
input parameters and the signal set as the input to the scheduler. The scheduler then packs the
signals into messages and computes the schedule. We then use the data structures resulting from
the scheduler code to come up with the exact slot allocations for each frame. The remaining
necessary parameters are then computed and entered into their respective Fibex code objects.
Fibex objects for the data units and their timings are also created here. Finally the Fibex code uses
the resulting data structure to generate the text file using the xml library. The resulting xml file is a
proper FIBEX file that contains all the necessary information needed to represent the network and
the schedule and is compatible with any FlexRay configuration software.

45

CHAPTER 4

TESTS AND EVALUATION

4.1 Experiment Setups and Parameters

For our first experiment we use a FlexRay network with 3 ECUs. We will refer to these nodes as
ECU 1, 2 and 3 from now on, in addition to naming the related software objects with the same
numbering. To define our network, we first create three FXNodeItem objects to represent the
ECUs and set the input parameters using their respective set functions in the scheduler. We use the
same set of input parameter values in the upcoming experiments, which can be seen in Table 4-1.

Name Value

gPayloadLengthStatic 12 two byte
words

gdDynamicSlotIdlePhase 1 Minislot
gdMinislotActionPointOffset 1 MT
gdActionPointOffset 5 MT
gdCycle 5000 μs
gdSymbolWindow 52 MT
gdMacrotick 1 μs
gdMinislot 3 MT
gdTSSTransmitter 7 gdBit
pChannels A&B
pMicroPerCycle (node parameter; is set the
same for all nodes)

400000 μT

pdMicrotick (node parameter; is set the same
for all nodes)

0.0125 μs

For the second experiment, we remove ECU 3 from the system and add more signals to the signal
set to see the changes in the schedule, in addition to displaying the convenience of the automatic
configuration process.

4.2 Experiment with Three FlexRay Nodes

Having defined the network as such, we input the signal set to be used in the communication. The
signal set provides the following information: Signal type (periodic / sporadic), sending and

Table 4-1: Schedule specific input parameter values used in the experiments.

46

receiving node ID, signal ID, size, period and deadline. The signal ID is a unique number
representing the signal. The sending and receiving node IDs are for the numbers representing the
ECUs, which are ECU number 1, 2 and 3 as mentioned before. Both periodic and sporadic signals
are represented with the same parameters although period has a different meaning for both. For
periodic signals the period is the fixed amount of time between each generation of that particular
signal. For sporadic signals, the period value is the minimum time taken between two consequent
generations of a sporadic signal. The deadlines are the timing requirements of each signal and the
signals must reach their receivers within that time limit. The existing scheduler also takes into
account these deadlines when performing signal packing. The signals set we used for the
experiment is given in Table 4-2.

Signal ID Signal

Type
Sending
Node

Receiving
Node

Size (Bits) Repetition
(μs)

Deadline
(μs)

1 Periodic 2 1 64 10 10
2 Periodic 2 1 64 5 5
3 Periodic 2 1 64 20 20
4 Periodic 2 1 64 10 10
5 Periodic 1 3 64 10 10
6 Periodic 2 1 64 10 10
7 Periodic 1 3 64 10 10
8 Periodic 1 3 64 10 10
9 Periodic 2 1 64 10 10
10 Periodic 2 1 64 10 10
11 Periodic 2 1 64 10 10
12 Periodic 2 1 64 20 20
13 Periodic 2 1 64 10 10
14 Periodic 2 1 64 20 20
15 Periodic 2 1 64 10 10
16 Periodic 1 3 64 10 10
17 Periodic 1 3 64 10 10
18 Periodic 1 3 32 10 10
19 Periodic 1 2 64 100 100
20 Periodic 1 2 64 50 50
21 Periodic 2 1 16 100 100
22 Periodic 2 3 64 100 100
23 Periodic 2 3 64 100 100
24 Periodic 3 1 16 250 250
25 Periodic 3 1 8 500 500
26 Periodic 1 2 24 250 250
27 Periodic 2 3 64 10 10
28 Periodic 1 2 32 100 100
29 Periodic 1 2 32 100 100
30 Periodic 1 2 32 100 100
31 Periodic 1 2 64 2000 2000
32 Periodic 1 3 64 2000 2000
33 Periodic 1 3 48 1000 1000
34 Periodic 1 3 16 1000 1000
35 Periodic 3 2 64 20 20
36 Periodic 1 3 64 2000 2000
37 Periodic 1 3 64 2000 2000
38 Periodic 2 3 64 2000 2000

Table 4-2: The signal set used in the first experiment.

47

39 Periodic 2 3 64 2000 2000
40 Periodic 3 2 64 2000 2000
41 Periodic 1 3 64 100 100
65 Sporadic 1 2 80 10 5
66 Sporadic 1 2 40 10 10
67 Sporadic 2 3 64 20 15
68 Sporadic 2 1 96 20 15
69 Sporadic 3 2 32 20 20
70 Sporadic 3 1 64 20 20

After providing the necessary inputs we now run the program. Even though both the scheduler and
the Fibex code blocks work automatically in quick succession, we can still observe the output of
the scheduler from the console output. Regarding the dynamic segment, the scheduler displays the
minimum number of minislots needed as 25 and also tells the respective receivers for each
sporadic message. For the static segment, we are interested in the output of the
ComputeScheduleForFibex function, which acts as the interface for the Fibex code block.
A view of this output which was partly mentioned previously in Section 3.2.2 is given in Figure 4-
1. In the figure, we see that the scheduler computes 2 FIDs, one with maximum repetition 2 and
the other with maximum repetition 64 for Node 1. We also see that the signals sent from Node 1
are packed into 9 messages with their repetitions calculated. We also see the allocation of the first
two messages with repetition 2 into FID 1, one with offset 0 and the other one with offset 1
(named base cycle in the figure). The destination nodes of each signal packed into the messages
are examined to determine the set of destinations for the frame (as the union of the destinations of
all signals). The size of each signal is considered to allow the calculation of bit positions of each
packed signal in a frame at the next code block.

Table 4-2 (Cont'd)

48

Figure 4-1: A sample from the console output of ComputeScheduleForFibex.

By examining the remaining parts of the output given in Figure 4-1, the schedule for the static
segment and the signal content of each frame can be deduced. In Table 4-3, we summarize this
information in tabular form.

Node 1
FID 1 Maximum Repetition 2
Frame Repetition Offset Size of Contained Signals

(Bits)
Destinations

Frame 1 2 0 64, 64, 64 3
Frame 2 2 1 64, 64, 32 3
FID 2 Maximum Repetition 64
Frame 3 8 0 32 2
Frame 4 4 1 64, 32, 32, 32 2
Frame 5 4 2 64 3
Frame 6 16 3 24 2
Frame 7 64 4 48, 16 3
Frame 8 16 7 64, 64, 64 2, 3
Frame 9 16 11 64 3
Node 2
FID 1 Maximum Repetition 1

Table 4-3: Table depicting the static schedule as computed by ComputeScheduleForFibex.

49

Frame 10 1 1 64 1
FID 2 Maximum Repetition 2
Frame 11 2 0 64, 64, 64 1
Frame 12 2 1 64, 64, 64 1
FID 3 Maximum Repetition 4
Frame 13 2 0 64, 64, 64 1, 3
Frame 14 4 1 64, 64, 64 1
Frame 15 4 3 16, 64, 64 1, 3
FID 4 Maximum Repetition 16
Frame 16 16 0 64, 64 3
Node 3
FID 1 Maximum Repetition 32
Frame 17 4 0 64 2
Frame 18 16 1 16 1
Frame 19 32 2 8 1
Frame 20 16 3 64 2

Finally at the end of ComputeScheduleForFibex, more static and dynamic slots are added to
the calculated minimum values, as described in Section 3.2. We observe the resulting parameters
as seen in Figure 4-2.

Figure 4-2: The two sequent output displays during the extension of the FlexRay segments. The
parameters and their acronyms are: Minislot number, Minislot duration (macrotick), Dynamic

Segment duration (DS, in macroticks), Static slot number, Static Segment duration (SS, in
macroticks), Symbol Window (SW, in macroticks, NIT (macrotick) and Cycle time (μs).

It has to be noted that the scheduler output is only an intermediate result in order to assess the
resulting schedule. It is automatically converted to the FIBEX file format by the Fibex code block.
The FIBEX file contains all the information that is required for import into the FlexConfig
Developer for testing. Figure 4-3 shows the resulting cluster view imported from this file. The
figure shows a collection of fixed, input or schedule computed global parameters. Figure 4-4
shows the same parameter overview tool of FlexConfig to display the configuration of the three
nodes. Since we compute the parameters according to their constraints and interdependencies,
FlexConfig does not display any errors or warnings when we import the file.

Table 4-3 (Cont'd)

50

Figure 4-3: Cluster parameters from the imported FIBEX file, observed in the parameter overview
function of FlexConfig.

51

Figure 4-4: The parameter overview of the three FlexRay nodes used in our experiment, imported
from a generated FIBEX file to FlexConfig.

52

We check the correctness of the schedule in the schedule view of FlexConfig. In the several
screenshots depicted in Figure 4-5, we see the schedule is the same as described in Table 4-3 with
the addition of two static synchronization frames and the dynamic frames. We also see the correct
receivers and senders marked with Rx and Tx. The startup/synchronization frames at slots 18 and
19 have a special flag SU;SY.

Figure 4-5: Screenshots of the schedule view of the imported FIBEX file. Static slots are marked
as blue, dynamic slots as red. The ECUs send frames at the slots that they are marked with Tx

where the ECUs receiving those frames are marked with Rx. The coloring of the Tx blocks
represent the utilization, more fully colored blocks with less empty slots for that FID.

We also see that each frame created for the FlexRay schedule also has a PDU of the same size
attached to it. In addition, we observe the signals appearing in the signal set packed into these
PDUs with appropriate bit positions. Furthermore, each signal is assigned to a coding where its
bitlength is defined. All in all, a complete configuration project for FlexConfig is created and the
chi files generated from this project are used to operate the hardware without any problems.

4.3 Experiment with One Removed ECU

For the second experiment we remove ECU 3 and the related items in the software. We slightly
alter the same signal set we used before to account for the signals whose destination node was
ECU 3. We also add more signals to the system to further demonstrate the changes in the schedule.
The new signal set is given in Table 4-4.

53

Signal ID Signal

Type
Sending
Node

Receiving
Node

Size (Bits) Repetition
(μs)

Deadline
(μs)

1 Periodic 2 1 64 10 10
2 Periodic 2 1 64 5 5
3 Periodic 2 1 64 20 20
4 Periodic 2 1 64 10 10
5 Periodic 1 2 64 10 10
6 Periodic 2 1 64 10 10
7 Periodic 1 2 64 10 10
8 Periodic 1 2 64 10 10
9 Periodic 2 1 64 10 10
10 Periodic 2 1 64 10 10
11 Periodic 2 1 64 10 10
12 Periodic 2 1 64 20 20
13 Periodic 2 1 64 10 10
14 Periodic 2 1 64 20 20
15 Periodic 2 1 64 10 10
16 Periodic 1 2 64 10 10
17 Periodic 1 2 64 10 10
18 Periodic 1 2 32 10 10
19 Periodic 1 2 64 100 100
20 Periodic 1 2 64 50 50
21 Periodic 2 1 16 100 100
22 Periodic 2 1 64 100 100
23 Periodic 2 1 64 100 100
26 Periodic 1 2 24 250 250
27 Periodic 2 1 64 10 10
28 Periodic 1 2 32 100 100
29 Periodic 1 2 32 100 100
30 Periodic 1 2 32 100 100
31 Periodic 1 2 64 2000 2000
32 Periodic 1 2 64 2000 2000
33 Periodic 1 2 48 1000 1000
34 Periodic 1 2 16 1000 1000
36 Periodic 1 2 64 2000 2000
37 Periodic 1 2 64 2000 2000
38 Periodic 2 1 64 2000 2000
39 Periodic 2 1 64 2000 2000
41 Periodic 1 2 64 100 100
65 Sporadic 1 2 80 10 5
66 Sporadic 1 2 40 10 10
67 Sporadic 2 1 64 20 15
68 Sporadic 2 1 96 20 15
80 Periodic 1 2 16 100 100
81 Periodic 1 2 64 250 250
82 Periodic 1 2 32 1000 1000
83 Periodic 1 2 64 2000 2000
69 Sporadic 1 2 32 20 20
84 Periodic 2 1 16 10 10
85 Periodic 2 1 32 100 100

Table 4-4: The signal set used in the second experiment.

54

86 Periodic 2 1 64 2000 2000
70 Sporadic 2 1 64 10 10
71 Sporadic 2 1 32 15 15

Removing an ECU and introducing a different signal set results in a different configuration setting.
For our case, both the dynamic and static segments have different durations than before. The
changes in the schedule can be observed in Figure 4-6. As seen in the figure the dynamic segment
has a smaller starting FID since the static segment is shorter. The dynamic frames are
automatically configured with this new starting FID and the new dynamic frames are added. The
startup frames still appear in the two static slots before the dynamic segment, this time at slots 17
and 18. This relocation as with all the other changes to the network configuration was achieved
automatically without any manual interference.

Figure 4-6: The Schedule view of the second generated FIBEX file, as seen in FlexConfig.

It has to be emphasized that the amount of manual input in a non-automated workflow would be
considerably higher with respect to our workflow. Specifically, when the topology or the signal set
changes, a new FlexConfig (or other software) project would need to be created manually and all
data of the new schedule would have to be entered. With our automated tool chain, on the other
hand, we only make the changes to the topology and the signal set and the new project is created
automatically. The new configuration parameters and the schedule are configured effortlessly
without any errors as well as the startup nodes needed for proper operation.

Table 4-4 (Cont'd)

55

CHAPTER 5

CONCLUSION AND FUTURE WORK

The subject of this thesis is the network configuration of electronic control units (ECUs) that
communicate on the FlexRay network. The design workflow of this configuration requires both
the computation of all relevant configuration parameters and the generation of machine code from
standardized configuration files.

In this thesis, we have developed a tool chain that automates the FlexRay network configuration
process. Its input is the network topology and the signal set to be transmitted on the network. Its
output is a standardized configuration file in the FIBEX format that can be imported to any
commercial configuration tool in order to generate the necessary input files for the hardware
implementation in the form of machine code. The required steps between input and output -
signals, schedule optimization, slot allocation of message frames and computation of schedule
related parameters are all done automatically. In particular, the developed tool chain improves on
an existing software package for FlexRay in order to perform signal packing and message
scheduling. Moreover, the resulting schedules are converted into a standardized file format
(FIBEX) that can be imported into any software tool for machine code generation. The main
advantage of the developed tool chain is that it automates processes such as schedule computation
and entering data into existing configuration tools that were performed manually in the previous
workflow. Hence, design time and error-proneness of the network configuration design workflow
are effectively reduced. The developed method is successfully applied to several test cases
including experiments on real hardware.

It has to be noted that the focus of this thesis is the FlexRay network. For future work CAN nodes
and Gateways between CAN and FlexRay networks can also be incorporated into the developed
tool-chain. Since FIBEX also supports CAN and Gateway nodes, our tool-chain can be enhanced
with the ability to choose among these types of networks. For including CAN in our tool-chain,
CAN scheduler of [5] can also be used in the scheduler block of our workflow.

56

57

REFERENCES

[1] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in automotive communication
systems,” Proceedings of the IEEE, vol.93, no.6, pp. 1204-1223, June 2005.

[2] CAN Specificaiton 2.0 http://www.can-cia.org/

[3] The FlexRay Communications System Specifications, Ver. 3.1 Available:
www.flexray.com

[4] A. Demirci, "Performance Evaluation of Flexray Networks for In-Vehicle
Communication," Master Thesis, Ankara, Nov. 2009.

[5] K.W. Schmidt, Automotive Simulator C++ Api. 2007

[6] Local Interconnect Network Specification, 2.2 Rev A Available:
http://www.lin-subbus.org/.

[7] Media Oriented System Transport Cooperation http://www.mostcooperation.com

[8] K. Schmidt and E. G. Schmidt, “Message scheduling for the FlexRay protocol: The static
segment,” Vehicular Technology, IEEE Transactions on, vol. 58, no. 5, pp. 2160–2169, 2009.

[9] http://xmlsoft.org/

[10] EB Tresos Designer (Elektrobit). URL:
http://ww.automotive.elektrobit.com/home/ecu-software/autosar/eb-tresos-product-line/ecu-
design-and-configuration-tools.html

[11] dSPACE FlexRay Configuration Package (dSpace). URL:

http://www.dspace.com/en/inc/home/products/sw/impsw/rtiflxray.cfm

[12] Network Designer FlexRay (Vector). URL:

www.vector.com/vi_networkdesigner_flexray_en.html

[13] FlexConfig RBS/Gateway (Eberspächer). URL:

http://www.eberspaecher-electronics.com/en/products/flexconfig-rbsgateway.html

[14] TTXPlan (TTTech). URL:

http://www.theautochannel.com/news/2006/06/01/009329.html

http://www.flexray.com/
http://www.lin-subbus.org/
http://www.mostcooperation.com/
http://xmlsoft.org/
http://ww.automotive.elektrobit.com/home/ecu-software/autosar/eb-tresos-product-line/ecu-design-and-configuration-tools.html
http://ww.automotive.elektrobit.com/home/ecu-software/autosar/eb-tresos-product-line/ecu-design-and-configuration-tools.html
http://www.dspace.com/en/inc/home/products/sw/impsw/rtiflxray.cfm
http://www.vector.com/vi_networkdesigner_flexray_en.html
http://www.eberspaecher-electronics.com/en/products/flexconfig-rbsgateway.html

58

[15] ASAM e.V.: FIBEX - Field Bus Exchange Format

[16] Klaus Schmidt,Ece G. Schmidt, "Optimal Message Scheduling for the Static Segment of
FlexRay", in 72nd IEEE Vehicular Technology conference Fall (VTC 2010-Fall), 2010.

[17] K. Schmidt and E. G. Schmidt. Schedulability analysis and message schedule computation for
the dynamic segment of FlexRay. In Vehicular Technology Conference, 2010.

[18] AUTOSAR Release 4.0, http://www.autosar.org/

[19] Association of Standardization of Automation and Measuring Systems, http://www.asam.net/

[20] Extensible Markup Language (XML) 1.0 (Fifth Edition), http://www.w3.org/TR/xml/

[21] G. Leen, D. Heffernan, “Expanding automotive electronic systems,” IEE
Proc.-Comput. Digit. Tech, vol.35, No.1, pp. 88-93, January 2002.

http://www.theautochannel.com/news/2006/06/01/009329.html
http://www.autosar.org/
http://www.w3.org/TR/xml/

	Untitled

