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ABSTRACT

FINITE-HORIZON ONLINE ENERGY-EFFICIENT TRANSMISSION SCHEDULING
SCHEMES FOR COMMUNICATION LINKS

Bacınoğlu, Baran Tan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Elif Uysal-Bıyıkoğlu

January 2013, 45 pages

The proliferation of embedded systems, mobile devices, wireless sensor applications and in-

creasing global demand for energy directed research attention toward self-sustainable and

environmentally friendly systems. In the field of communications, this new trend pointed

out the need for study of energy constrained communication and networking. Particularly, in

the literature, energy efficient transmission schemes have been well studied for various cases.

However, fundamental results have been obtained mostly for offline problems which are not

applicable to practical implementations. In contrast, this thesis focuses on online counterparts

of offline transmission scheduling problems and provides a theoretical background for energy

efficient online transmission schemes. The proposed heuristics, Expected Threshold and Ex-

pected Water Level policies, promise an adequate solution which can adapt to short-time-scale

dynamics while being computationally efficient.

Keywords: Packet scheduling, energy harvesting, energy-efficient scheduling, online policy,

throughput maximization
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ÖZ

İLETİŞİM BAĞLANTILARI İÇİN SONLU UFUKLU ÇEVRİMİÇİ ENERJİ-VERİMLİ
GÖNDERİM ÇİZELGELEME ŞEMALARI

Bacınoğlu, Baran Tan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Prof. Dr. Elif Uysal Bıyıkoğlu

Ocak 2013, 45 sayfa

Gömülü sistemlerin, mobil cihazların, kablosuz sensör uygulamalarının yaygınlaşması ve ar-

tan küresel enerji ihtiyacı, araştırma ilgi alanını kendi-kendine yeterli ve çevre dostu sistem-

lere yöneltmiştir. Telekomünikasyon alanında ise, bu yeni eğilim enerji kısıtlı iletişim ve ağ

kurma araştırma çalışmalarının yapılması gerekliliğini vurgulamıştır. Özellikle, literatürde,

çeşit senaryolar için enerji verimli gönderim şemaları konusu iyi bir şekilde çalışılmıştır. Ne

var ki, temel sonuçlar daha çok pratik uygulamalara uygulanabilir olmayan çevrimdışı prob-

lemler için elde edilmiştir. Bunun aksine, bu tez çalışması çevrimdışı gönderim çizelgeleme

problemlerinin çevrimiçi karşılıklarına odaklanıyor ve enerji verimli çevrimiçi gönderim şemaları

için teorik bir altyapı sunuyor. Önerilen buluşsal yöntemler, Beklenen Eşikdeğer ve Bek-

lenene Su Seviyesi politikaları, işlemsel verimli olarak kısa-zaman -ölçekli dinamiklere uyum

sağlayabilen uygun bir çözüm vaat ediyor.

Anahtar Kelimeler: Paket çizelgeleme, enerji harmanlama, enerji-verimli çizelgeleme, çevrimiçi

politıka, çıktı enyükseltme
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CHAPTER 1

INTRODUCTION

It’s easy to play any musical instrument:

all you have to do is touch the right key

at the right time and the instrument will

play itself.

Johannes Sebastian Bach

With the worlwide increase in energy demand, energy renewable resources have become the

center of attention and energy efficiency has gained greater priority as a design challenge in

almost all technological areas. On the other hand, the developments in wireless technologies

have provided mobility and freedom in many applications while eliminating wiring costs

but at the same time, energy availabilities of wireless devices, have been limited as they

can no longer be powered by cables. Typical examples of these applications are wireless

sensor networks (WSNs) where energy consumption is a significant problem. In fact, energy

consumption concerns in WSNs are a lot more important than in other wireless applications.

Unlike mobile phones or some other wireless devices, wireless sensor nodes are not always

under control of human users. For example, wireless sensor nodes can be spread across a vast

geographical area in environment monitoring applications. In this case, if they are depleted,

recharging or changing batteries of sensor nodes can become a hard task which needs to be

repeated over time.

The first approach to deal with this case is to prolong battery life of sensor nodes by minimiz-

ing energy expenditures and the corresponding problem is named as network lifetime problem

[2]. For point-to-point communication, transmission power control schemes have been stud-

ied as a solution to the network lifetime problem in wireless settings. The study in [3], can
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be seen as one of pioneering research efforts that formulates and solves an energy efficient

packet transmission scheduling problem.

An alternative solution has come up with the advancements in energy harvesting technologies

that enable the construction of various kinds of energy harvesters in small packages, which

may be integrated with wireless devices in small size. The integration of energy harvesters

into wireless nodes, can make them practically self-sustainable by providing almost perpetual

energy. However, exploiting this energy introduces challenges for the design of transmission

schemes, in particular the allocation of transmission power and rate across time, due to the

unsteady or nondeterministic availability of ambient energy sources. Due to this nature of

energy harvesting, transmission schedules schemes are required to be reconsidered for energy

harvesting systems. In an early work [4], an optimization problem for maximizing a trans-

mission reward on a solar energy harvesting satellite has been considered. In related work

for point-to-point communication, throughput optimal scheduling policies for a single energy

harvesting sensor node have been developed (e.g., [5]). The transmission completion time

minimization problem on an energy harvesting communication link has been formulated and

solved in [6]. A dynamic programming solution is proposed for a finite-horizon throughput

maximization problem over a fading channel with an energy harvesting transmitter in [7].

In [8], a similar problem is considered, and addressed through stochastic dynamic program-

ming, followed by the proposal of several suboptimal adaptive transmission policies. In [9],

a throughput maximization problem over a Gilbert-Elliot channel with an energy harvesting

source is formulated as a Markov decision problem with “transmit” and “defer” actions and it

is proved that a threshold-type policy is optimal over this set of actions. For fading channels,

the outage probability of an energy harvesting node is examined in [10] where the energy

profile is modeled as a discrete Markov process. Some practical battery limitations such

as battery size and constant battery leakage are considered and offline optimal transmission

schemes under these limitations are investigated in [11].

The optimization problems in the related work can be separated into two groups depending

on the information available to the transmitter before or during transmission period, offline

and online transmission scheduling problems. In offline transmission scheduling problems,

all external processes affecting transmission are assumed to be deterministically available

prior to transmission. These external processes can be channel conditions, packet arrivals or

energy harvests. The aim of studies on offline problems is to characterize the structure of

2



the optimal solutions by disregarding the causality of information availability . On the other

hand, in practical systems, side-information about external processes is reavealed causally

and accordingly offline problems do not correspond to practical scenarios in general. For

this reason, online problems which assume causal information can be seen as more realistic.

In online transmission scheduling problems, external processes are assumed as stochastic or

simply unknown before they are observed.

In the related literature, although there are valuable results for offline transmission scheduling

problems, there is a serious gap for their online counterparts. With the aim to fill this gap, this

thesis investigates online transmission scheduling problems and presents both optimal and

heuristic solutions which can be a base for future studies.

This thesis includes 6 chapters. In the next two chapters, energy harvesting systems and some

offline transmission policies are reviewed. The main contributions are presented in Chapter 4

and 5.

Chapter 2 provides information about practical energy harvesting systems and theoretical

modeling and classification of harvesting dynamics. Although the information here is princi-

pally valid for any type of energy harvesting system, it is mainly focused on energy harvesting

wireless sensor nodes (EH-WSNs).

Chapter 3 addresses some energy efficient offline scheduling problems and algorithms in the

literature and gives background information about commonly used observations and mathe-

matical methods.

In Chapter 4, a finite-horizon online throughput maximization problem over a point-to-point

link with an energy harvesting transmitter is considered, similarly to [7] and [8]. As opposed

to previous studies [5]-[8], transmission power decisions are restricted to a discrete set, mo-

tivated by practical implementation constraints. A Markovian energy harvesting process and

static channel conditions are assumed. Contrary to the study in [11], a simple battery model

is assumed where it behaves as an energy buffer with unlimited capacity. In this respect, this

study is perhaps closest to the work in [12] which also solved a Markov decision problem (in

a Gilbert-Elliot channel) with a discrete set of transmission decisions. However, while the

action set [12] in was limited to “transmit” and “defer” actions and nonlinearity in power-rate

relation was not taken into account, one of the contributions of this work is the structure of the

3



optimal online policy for a general discrete transmission set, when power is a convex func-

tion of data rate. The second and main contribution is a low complexity online heuristic that

exploits the optimal offline solution and approaches the performance of the optimal online

solution. While similar dynamic programming solutions have been proposed in [5],[6]-[12],

this scheduling heuristic and the approach for deriving it can be considered to be novel. An-

other contribution of this thesis is a comparison with the infinite-horizon optimal scheduling

policy, which points to interesting future directions. Then, the problem is extended to address

the time-varying case, and a policy which dynamically computes an expected water level is

proposed for this case.

In Chapter 5, an online version of lazy scheduling problem is defined via dynamic program-

ming approach which, in fact , provides an optimal solution by definition. In addition, a

suboptimal policy which uses the same approach as in previous heuristic for the problem in

Chapter 4, is described.
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CHAPTER 2

A REVIEW ON ENERGY HARVESTING AND ENERGY

HARVESTING SYSTEMS

Give a man a fish and you feed him for a

day. Teach a man to fish and you feed

him for a lifetime.

Chinese Proverb

The capability of energy harvesting from environmental sources can make wireless devices

self-sustainable in terms of energy [13]. In today’s technology, power provided by small en-

ergy harvesters can match energy expenditure of low-power wireless devices [14]. However,

due to the dependence on ambient sources, energy harverters can supply power usually in a

discontinuous way. As a result, to customize an energy harvesting system, it is necessary to

characterize its energy availability.

Fundamentally, energy availability in an energy harvesting device relies on both its energy

storage capability (i.e., battery) and the energy harvesting process. In the following two sec-

tions, theoretical treatments of these factors are described.

2.1 ENERGY STORAGE

Energy harvesting systems do not instantly consume the energy harvested from the environ-

ment and hence they need an energy storage device. This device can be a rechargeble battery

or a supercapacitor. In some applications, the storage device charged by harvesting energy

works as an auxiliary power source to the main battery which keeps the system operating.
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Otherwise, it is required to wait until the output voltage of the storage device reaches to a cer-

tain voltage level which is sufficient for minimum operation [15] . The figure below illustrates

the voltage evolution curve of the storage device for such a system.

Voltage

Sensing

Battery Voltage

V
0

Time

Figure 2.1: The battery voltage evolution curve of an energy harvesting system

On the other hand , in most theoretical works, energy storage device in an energy harvesting

system is considered as an energy buffer. The simplest model of energy dynamics used in

theoretical works for a time-slotted energy harvesting system is as follows:

ek+1 = (ek − ck) + hk; ck ≤ ek (2.1)

where ek denotes the available energy in energy buffer at the beginning of the kth time slot, ck

and hk are consumed and harvested energy amounts during the same time slot.

In a practical system, energy consumption and harvesting can be done in separate time frames

within the same time slot. The storage model in 2.1, can be employed to simulate such a case

where the harvested energy is only available after the time slot at which it is harvested. Some

other models include harvested energy during a time slot in available energy of that time slot.

In this case, the difference ck − hk, if it is positive, corresponds to the energy drawn from the

energy storage device or , if the harvested energy is not fully consumed, the remaining part

charges the energy storage device.

ek+1 = ek − (ck − hk); ck ≤ ek + hk (2.2)

More realistic models take into account inefficiencies like energy leakage or harvesting inef-

6



ficiency.

ek+1 = ((ek − ck) − βl)+ + βhhk; ck ≤ ek (2.3)

where βl is energy leakage and βh is harvesting inefficiency.

In general, the capacity of the energy storage device is assumed to be unlimited since it can

be much higher than the harvested and consumed energy amounts but an even more realistic

model considers the storage capacity emax as in the following:

ek+1 = min {emax, ((ek − ck) − βl)+ + βhhk} ; ck ≤ ek (2.4)

Besides these, even sampling the output voltage of the storage device requires some energy

and the sampling rate can be optimized accordingly [15] but this energy loss is ignored in

existing theoretical models.

2.2 ENERGY HARVESTING PROCESS

Finding theoretical models for the energy harvesting process is problematic since its charac-

teristics may vary from application to application. Furthermore, it is not always controllable

or predictable, largely depending on the source of energy and the mobility of energy harvester

[16]. To deal with this ambiguity, several classifications have been made in studies on energy

harvesters.

In [13], energy harvesting processes are classified into following subcategories: Uncontrol-

lable but predictable, uncontrollable and unpredictable, fully controllable and partially con-

trollable.

The classification in [16], focuses only on the predictability considering predictable, partially

predictable and stochastic energy harvesting processes. Also in [16], the effect of the mobility

is underlined. For example, outdoor solar energy harvesting can be considered to be partially

predictable for a static solar cell, but rather stochastic on a mobile device.

When the energy harvesting process under consideration is regarded as a stochastic process,

frequenty Markovian models are preferred. In some research efforts, the validity of Markovian

7



models has been tested. As an example, in [17], a generalized Markov (GM) model (see

Figure 2.2), using a scenario paramater, is introduced to model energy harvesting processes

where stationary Markov models do not suffice. Particularly, it is shown that the proposed

GM model fits better for piezoelectric energy harvesting.

(a)

E1 E2

(b)

E1 E2

S1 S2

Figure 2.2: (a) The stationary Markov model where E1, E2, ...... are harvested energy levels
(b) The generalized where S 1, S 2, ...... are additional scenario parameters.
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CHAPTER 3

A REVIEW ON ENERGY EFFICIENT OFFLINE

SCHEDULING ALGORITHMS

Man plans and God laughs.

Yiddish Proverb

3.1 ENERGY EFFICIENT OFFLINE SCHEDULING PROBLEMS

In offline problems, it is assumed that all the necessary information about events within the

time window under consideration is known prior to the determinations of actions to be taken.

In the related literature, what is meant by offline scheduling problems is meant offline opti-

mization problems dealing with transmission schemes. Accordingly, actions in these offline

problems usually correspond to transmission power or rate adaptations.

3.1.1 Offline Energy Minimization with Packet Arrival and Delay Constraints

The formulation of an energy efficient packet transmission problem dates back to the year

2001 [3]. The problem defined in [3] concerns the minimization of energy consumed to

transmit packets having a common deadline but arbitrary sizes and arrival times which are

known beforehand. The solution is characterized by offlines schedules that determine trans-

mission intervals of packets. The basic observation on which this formulation relies is that

a considerable amount of energy can be saved by transmitting packets over longer periods

with lower power levels. It has been proved that, in optimal schedules which are named lazy

schedules, transmission power should be constant between packet arrivals and nondecreasing

9



as deadline approaches. An online schedule which suggets using expected values of trans-

mission times is also proposed in [3]. In [18], the problem is generalized for broadcast and

fading channels and an algorithm finding optimal offline schedule, the FlowRight algorithm,

is introduced. Another version of the problem allowing packets to have individual deadlines

is considered in [19].

3.1.2 Offline Throughput Maximization with Energy Arrival Constraints

The approach taken for energy efficient offline packet transmission scheduling problems, was

adapted to offline transmission scheduling problems over energy harvesting links which in

fact have a direct relation. In the problems with energy harvesting, harvesting events can be

treated as packets arrivals and constraints related to energy consumption can be considered

assuming an energy buffer similar to a data buffer that receives energy “packets” instead of

data packets.

One of the early works on offline transmission scheduling for energy harvesting systems [6]

considers the transmission completion time minimization problem which is a dual problem of

throughput maximization problem. In [7], a discrete-time finite-horizon thoughput maximiz-

ing transmission scheduling problem is examined for fading point-to-point communication

links with energy harvesters and an optimal solution making use of dynamic programming is

proposed. While considering both offline and online cases, only the optimal offline solution

is specified and by using KKT conditions, it is proved that the optimal offline power allo-

cation with water filling is non-decreasing over time slots. similar optimality conditions are

shown in [20], where optimal offline schedules are considered for throughput maximization

and transmission completion time minimization over continuous time. Based on optimality

conditions, a directional water-filling algorithm which computes the optimal offline schedule

is introduced. For energy harvesting broadcast links, the transmission completion time min-

imization problem is solved and the structure of the optimal offline schedule is characterized

in [21]. An extension of the transmission completion time minimization problem that al-

lows packet arrivals during transmission over a point-to-point link, is considered and iterative

techniques are proposed for the offline solution in [6].
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3.2 OBSERVATIONS AND METHODS

3.2.1 Equalization

In related works to energy-efficient transmission scheduling, an observation named equal-

ization, is frequently noted. It is based on the fact that transmission power can be assumed

as a convex function of throughput and transmission rate in most high performance coding

schemes. In addition, usually power-rate relation is assumed to be time-invariant for slow

flow fading or static channel cases so that applying a certain power or rate has the same value

over time.

Equalization characterizes the key property of the optimal solution of both related energy

minimizing and throughput maximizing optimization problems. This property suggests the

following: Unless causality contraints set by packet ( or energy) arrivals are violated, trans-

mission rates ( or power) of different time intervals should be equalized to lower total energy

consumption ( or higher total thoughput). The theorem below summarizes this property:

Theorem 3.2.1 Let us denote transmission power (or rate) during a time interval ωi as w(r)

(g(ρ)) being a convex (or concave) function of rate (or power) r (or ρ) and let lωi be the length

of the time interval ωi. For any pair of time intervals ω1 and ω2, the sum lω1w(r1) + lω2w(r2)(

or lω1g(ρ1) + lω2g(ρ2)) is minimized (or maximized) when transmission rates (or powers) are

equalized by transferring some amount of data ( or energy) from the interval having higher

rate (or power) to the one having lower rate ( or power) .

Proof. Assume r1 > r2. While conserving the total amount of data, transmission rates can

be equalized at the level of
lω1 r1+lω2 r2

lω1 +lω2
. From the convexity of the function w(r), the summa-

tion of total energy consumption for equalized levels becomes less than the summation of

unequalized case:

(lω1 + lω2)w
(
lω1r1 + lω2r2

lω1 + lω2

)
≤ lω1w(r1) + lω2w(r2) (3.1)

Since one can always find an equilibrium level for any pair of unequalized rates, equalization

minimizes the sum of energy comsumption on corresponding time intervals. �
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In offline scheduling, equalization can be applied to distinct time intervals only when there is

no causality constraint such as an arrival event between these intervals. Usually, in the related

literature, time intervals between arrival events are called epochs. According to Theorem

3.2.1, transmission rate ( or power) within an epoch should be constant for any optimal offline

schedule. Moreover, it also shows that transmission rate ( or power) should be nondecreasing

otherwise more equalization can be performed by moving data from previous time intervals

to next ones.

3.2.2 Stretched String Method

The optimality property in Theorem 3.2.1 and its results, can be restated by making a geomet-

rical interpretation of the optimal offline schedule. Let us consider the departure curve D(t)

which is the cumulative function of transmitted data ( or consumed energy). Due to causal-

ity constraints, the departure curve D(t) should be always below the arrival curve A(t) which

represents the cumulative of data arrivals ( or energy harvests). Its slope gives instantaneous

transmission rate ( or power) and accordingly joining any two points on the departure curve

corresponds performing an equalization. On the other hand, from Theorem 3.2.1, it is known

that an offline schedule can be improved by equalization and hence an equalization cannot

performed on an optimal offline schedule. Also, to transmit all of the received packets ( or

consume all of the harvested energy), the optimal departure should reach the arrival curve at

the end of transmission. Therefore, the optimal departure curve D∗(t) can be defined as the

departure curve that connects the starting and ending points of the arrival curve and does not

contain any two points which can be joined without violating constraints. In other words,

the optimal departure curve follows the shortest path from the beginning of transmission to

the deadline constraint. Since it has similar mathematical description, the optimal departure

curve visually resembles a stretches string attached to the end points of a staircase. The figure

in 3.1.a, captures this visualization.

An algebraic expression for the derivative of the optimal departure curve D∗(t) can be the

following:

dD∗(t)
dt

= min
τ∈(t,T )

A(τ) − D∗(t)
τ − t

(3.2)
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(a)

Data (or Energy)

Time

(b)

Data (or Energy)

Time

Figure 3.1: The visualization of the Stretched String Method with (a) arrival constraints, (b)
arrival and departure constraints
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where the time T is the end of transmission.

By using Eq. 3.2, one can compute the instantaneous optimal transmission rate ( or power)

which is the slope of the optimal departure curve given the present value of the optimal de-

parture D∗(t).

In addition to arrival constraints, departure constraints can be also taken into account to model

individual deadline and buffer contraints. In this case, a feasible departure curve should be

between arrival curve A(t) and minimum departure curve Dmin(t) which determines departure

constraints. The optimality property still applies but this time, the departure curve is also

restricted by the minimum departure. Accordingly, the optimal offline schedule can be visu-

alized as a stretched string between arrival and minimum departure curves in Figure 3.1.b.

Despite this ease of visualization, the structure of the optimal offline schedule for this case,

needs to be expressed mathematically in a more complicated way than for the previous case.

Yet, a general expression for optimal offline schedules can be derived as in below:

dD∗(t)
dt

= arg max
s

(
min

{
τ ∈ (t,T ) | (A(τ) = D∗(t) + s(τ − t)) ∨ (Dmin(τ) = D∗(t) + s(τ − t))

})
(3.3)

Alternatively, Eq. 3.2 and Eq. 3.3 can be employed to define algorithms which give the

optimal offline schedule by recursively computing the derivative of the optimal departure

curve.

A detailed study of this method, namely Stretched String , has been presented in [19] , [22]

and [23], but Eq. 3.2 and Eq. 3.3 have been obtained for this chapter.
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CHAPTER 4

ONLINE THROUGHPUT MAXIMIZATION PROBLEM FOR

AN ENERGY HARVESTING TRANSMITTER

The greatest challenge to any thinker is

stating the problem in a way that will

allow a solution.

Bertrand Russell

4.1 PROBLEM DEFINITION

Consider a point-to-point communication link with an energy harvesting transmitter. The

transmitter has sufficient data to send at the beginning of the time period under consideration,

and the goal is to maximize the amount of data transmitted (equivalently, throughput) over

this finite horizon, by adjusting transmission rate and power in time judiciously in response to

the energy harvested. The amount of data in the data buffer is assumed to be so large that data

buffer cannot be emptied even the hightest transmission rate is continuously applied until the

end of the transmission period. This is a reasonable assumption if the system is considered as

a highly loaded queue and in the case that maximizing the throughput is a solution to stabilize

the queue. Communication rate is assumed to be a concave, monotone increasing function of

transmit power, hence, energy can be more efficiently spent by communicating at low rate.

Time is slotted into intervals of a certain duration such that a power/rate decision will be made

dynamically at the beginning of each slot. Let ρ be the energy consumption per slot when the

transmission rate is chosen as r = g(ρ), g(ρ) is assumed to be strictly concave and increasing

in ρ ( [5]-[8]).
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The function gr(e, ρ) below provides the number of bits delivered during a slot duration when

e is the energy available for transmission at the begining of the slot. Note that this expression

allows for the event that the energy e reserved for transmission is too low for transmitting at ρ

for a whole slot, and in that case the transmitter will be active during part of the slot and idle

in the remainder of the slot.

gr(e, ρ) = g(ρ) min
(

e
ρ
, 1

)
(4.1)

The slots are numbered backwards in time from the deadline such that slot 1 is the slot closest

to the deadline, and slot N < ∞ represents the beginning of the time period. Let en be the

stored energy at the beginning of slot n and ρn the transmission power level decision for this

slot. The power level decision ρn can be picked from a finite discrete set U. Any collec-

tion of decisions ρN , ......., ρ1 is a transmission trajectory, and hence there are |U|N possible

trajectories.

The stored energy en is a function of the energy at the beginning of the previous slot, en+1, the

power decision ρn+1 and Hn, energy harvested during the previous slot:

en = (en+1 − ρn+1)+ + Hn (4.2)

Harvested energy will be modelled as a stochastic process {Hn}, n ≥ 1, with values coming

from a discrete state-space. Let Hm
n , m ≥ n denote the vector [Hn, ....,Hm]. Accordingly,

stored energy at time n is a discrete random variable depending on HN
n and the previous

power decisions, ρn+1 through ρN .

The objective function is the expectation of total throughput, over the statistics of the harvest

process. An online policy is one that produces a decision %n at each slot n with knowledge of

previous energy harvests HN
n and the current stored energy en. Then, an online transmission

policy %, is a collection %N , ......., %1 and an optimal online policy %∗ is one that maximizes the

expected throughput over N slots:

%∗ = arg max
%

N∑
n=1

E
[
gr(en, %n(HN

n , en))
]

(4.3)
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4.2 OPTIMAL SOLUTION WITH DYNAMIC PROGRAMMING

In the rest, we shall limit attention to {Hn}, n ≥ 1, that can be described as a first-order

Markov process, with transition probabilities qi j between harvest states hi and h j, such that:

qi j = P(Hn = h j|Hn+1 = hi). Let (e, h) be the combined state for stored energy level and

harvest state, and V∗n (e, h) be the maximum expected throughput for the next n slots till the

deadline. Then, the problem can be formulated using a dynamic programming equation as

below.

V∗n (e, h) = max
ρ∈U

Vn (e, hi, ρ) , n > 1, where (4.4)

Vn (e, hi, ρ) = gr(e, ρ) +
∑

j

qi jV∗n−1

(
(e − ρ)+ + h j, h j

)
V∗1 (e, hi) = max

ρ∈U
gr(e, ρ)

Note that, as the energy harvested during the last slot will not be used, V∗1 (e, hi), which rep-

resents the throughput in the last slot, does not depend on the hi. An explicit form of the

function V∗1 (e, hi) is provided in (4.5).

V∗1 (e, hi) =



g(ρ1)
(

e
ρ1

)
; e < ρ1

g(ρ1) ; ρ1 ≤ e < g(ρ1)
g(ρ2)ρ2

g(ρ2)
(

e
ρ2

)
; g(ρ1)

g(ρ2)ρ2 ≤ e < ρ2

g(ρ2) ; ρ2 ≤ e < g(ρ2)
g(ρ3)ρ3 .......

(4.5)

The function V∗n (e, hi) can be evaluated by backward induction starting from V∗1 (e, hi). An

optimal solution is a set of decision rules defined as:

%∗n (e, hi) = arg max
ρ∈U

Vn (e, hi, ρ) (4.6)

It should be noted that the value function exhibits relatively small dependence on the energy

state en and the harvest state hn than time. As example, Fig. 4.1 shows plots the variation of

the value function with respect to stored energy and the time (number of slots) until the end

of the horizon, for two extreme harvest states (the specific state spaces will be described in

Section 4.6).

17



Before addressing the structure of the solution, we make a final, technical assumption about

the set of power levels that prevents anomalous decision regions and deems threshold results

possible. It is possible to generate families of rates that do not satisfy this assumption, but it is

straightforward to show the existence of sets of power levels that satisfy this assumption-such

sets have been used in our numerical examples.

Assumption 1 Let ρ > ρ′ where (ρ, ρ′) ∈ U2, then if Vn (e, hi, ρ) > Vn (e, hi, ρ
′) for some

energy level e, then Vn (e + δ, hi, ρ) > Vn (e + δ, hi, ρ
′) for any δ > 0.

Roughly, the assumption states that for the set of rates, power levels, and harvest statistics

under consideration, if a higher power level is preferred over a lower one at some energy

level, it will continue to be preferred at an higher energy level. While this relationship may

intuitively appear to always hold, some situations where it does not hold have been observed.

The reason for this is the piecewise flatness of the value functions as seen in (4.5) for V∗1 (e, hi).

An example where the relationship does not hold is the following: Suppose that ρ > ρ′ and

V2 (e, hi, ρ) − V2 (e, hi, ρ
′) = ∆ > 0 for some energy level e > max(ρ, ρ′). Then, consider the

difference V2 (e + δ, hi, ρ) − V2 (e + δ, hi, ρ
′) where δ is a positive energy increment. For any

given discrete set of power levels, we can find positive probability mass function values h js

for energy harvesting process such that both e − ρ + h j and e + δ − ρ + h j are in the range

(ρm,
g(ρm)

g(ρm+1)ρm+1) for some m and sufficiently small δ. Hence, the value function V2 (e, hi, ρ)

remains constant for an energy increment δ. On the other hand, the value function V2 (e, hi, ρ
′)

does not have to remain constant for the same setting and can increase for the same energy

increment δ and this increase can be larger than ∆ > 0 since ∆ can be infinitely small inde-

pendent from δ. Therefore, the difference V2 (e + δ, hi, ρ) − V2 (e + δ, hi, ρ
′) can be negative

for some energy increment δ. However, such cases are rare and, ignoring them, we limit our

attention to problems that obey Assumption 1.

Theorem 4.2.1 Let ρmin be the minimum nonzero power decision in the set U. Then, when-

ever the stored energy e is less than ρmin, the optimal decision is ρmin.

Proof. From the concavity of the function g(ρ), it can be seen that gr(e, ρmin) gives the largest

one-slot throughput among the nonzero decisions in the set U. Also, when en < ρmin, en−1

is equal to Hn−1 for all nonzero decisions and en + Hn−1 for the decision of not transmitting
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during that slot (being idle). But since the channel is static and transmitting with ρmin is

always the most efficient way to consume energy in terms of throughput per energy, idling

during any slot is meaningless. Therefore, ρmin is the optimal decision for every slot where

e < ρmin. �

Now we are ready to show a set of threshold results for ρ∗n (e, hi).

Lemma 4.2.2 Let ρ > ρ′ where (ρ, ρ′) ∈ U2, then Vn (e, hi, ρ) > Vn (e, hi, ρ
′) when e >

(n − 1)ρmax + ρ for any n and hi where ρmax = max
ρ∈U

ρ.

Proof. Since g(ρmax) is the highest throughput for a slot duration, if e > (n− 1)ρmax + ρ , then

V∗n−1
(
(e − ρ)+ + h, h

)
and V∗n−1

(
(e − ρ′)+ + h, h

)
are both equal to (n−1)g(ρmax) for any h > 0.

Hence, Vn (e, hi, ρ) = g(ρ) + (n− 1)g(ρmax) is larger than Vn (e, hi, ρ
′) = g(ρ′) + (n− 1)g(ρmax).

�

Lemma 4.2.3 Let ρ > ρ′ where (ρ, ρ′) ∈ U2, then Vn (e, hi, ρ) ≤ Vn (e, hi, ρ
′) when e ≤ g(ρ′)

g(ρ) ρ

for any n and hi.

Proof. For e ≤ g(ρ′)
g(ρ) ρ, Vn (e, hi, ρ) = g(ρ) e

ρ +
∑

j

qi jV∗n−1

(
h j, h j

)
and Vn (e, hi, ρ

′) = gr(e, ρ′) +∑
j

qi jV∗n−1

((
e − ρ′

)
+ + h j, h j

)
. The value function is an nondecreasing function of energy,

thus V∗n−1

(
h j, h j

)
is smaller than or equal to V∗n−1

(
(e − ρ′)+ + h j, h j

)
for any h j. Also, g(ρ) e

ρ

cannot be larger than gr(e, ρ′) when e ≤ g(ρ′)
g(ρ) ρ. Therefore, Vn (e, hi, ρ

′) is larger than or equal

to Vn (e, hi, ρ) for any n and hi. �

Theorem 4.2.4 The decision rule ρ∗n (e, hi) is an increasing (piecewise constant) function of

e for any n and hi.

Proof. Lemma 1 shows that there is an energy level ehigh
(i, j) where the higher power decision

ρ(i) is more desirable than the lower power decision ρ( j) for every pair (ρ(i), ρ( j)) ∈ U2. Sim-

ilarly, Lemma 2 shows that there is an energy level elow
(i, j) where the lower power decision ρ( j)

is preferable to the higher power decision ρ(i) for every pair of decisions (ρ(i), ρ( j)) ∈ U2. Ac-

cording to assumption 1, if the higher power level ρ(i) is preferred at a certain energy level,

the higher power level will still be more desirable at a higher energy level. These imply that
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there is an energy level e(i, j) for every (ρ(i), ρ( j)) ∈ U2 such that below which the lower power

decision ρ( j) is more desirable and above which the higher power decision ρ(i) is more de-

sirable. Accordingly, there is an energy level e(i) = max
j,ρ( j)∈U

e(i, j) for every power decision ρ(i)

such that the value function of ρ(i) is larger than the value function of any ρ( j) lower than ρ(i).

Therefore, the optimal power level decisions increase in energy. �

(a)

(b)

Figure 4.1: Value function (a) V∗n (e, h0), (b) V∗n (e, h1) against stored energy en and number of
remaining slots n for burst arrival Markov model which has 2 states (h0 = 0 and h1 = 256mJ)
with transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5, q11 = 0.5.

Although the dynamic programming approach provides an optimal solution for the Marko-

vian case, its computational complexity is exponential in the time horizon N. To evaluate
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the value functions V∗n (e, hi), all possible transmission trajectories should be examined and

since there are |U|N possible transmission trajectories, a dynamic programming based algo-

rithm has a time complexity exponential in N. This complexity will not be a problem when

online computation can be substituted by a table look-up, from decision rules prepared before

transmission. However, in some cases statistical information on energy harvesting process

may need to be updated, which makes real-time computation a necessity. For these reasons,

low complexity online policies may be prefered.

4.3 SUBOPTIMAL SOLUTIONS

In this section, two suboptimal policies will be described. The Expected Threshold policy

is proposed as a computationally cost-effective suboptimal solution and is considered as a

contribution of this work. A Greedy policy is proposed for performance evaluation purposes.

4.3.1 Expected Threshold Policy

The Expected Threshold Policy is defined as the following:

%n(HN
n , ên) = max

{
ρ ∈ U|Ln(HN

n , ρ) ≤ ên
}

Ln(HN
n , ρ) = max

ρ, ρn −
n−1∑
l=1

E
[
Hl|HN

n

]
for ρ , ρmin ; Ln(HN

n , ρmin) = 0

In the above, Ln(HN
n , ρ) is the minimum energy level at which the power level ρ is chosen. We

refer to this as the “expected threshold” for the level ρ.

The computational complexity of the Expected Threshold policy is O((|U| − 1)N), as (|U| − 1)

threshold calculations, each of complexity O(N), are performed for each slot. It should be

added that, unlike the dynamic programming solution, it does not assume a first-order Markov

harvest process.
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4.3.1.1 Derivation of the policy

For a moment, let us consider the offline problem where information about energy harvest

amounts Hn is revealed before the start of transmission and power decision levels are picked

from a continuous set such as R. Optimal transmission power decisions can be obtained using

stretched string method(see Chapter 3) [6, 22]. This optimal solution dictates that constant

power transmission should be applied as long as possible with highest power levels. The

optimal power level ρ̃∗n should be less than en and satisfy the following inequality for all

a = 1, ...., (n − 1).

en +

n−1∑
l=a

Hl ≥ (n − a + 1)ρ̃∗n (4.7)

The optimal decision ρ̃∗n which is the highest power level satisfying this condition is given

below.

ρ̃∗n(en) = min
a=1,....,(n−1)

(en, ρ̃n(en, a)) , where

ρ̃n(en, a) =

en +

n−1∑
l=a

Hl

n − a + 1

Since ρ̃∗n ∈ R and U ⊂ R, offline optimal throughput values achieved with real-valued power

decisions ρ̃∗ns dominate any online solution for every realization of the energy harvesting

process.

Accordingly, an optimal online policy is one which minimizes the difference from the optimal

offline throughput:

%∗ = arg min
%

N∑
n=1

E
[
g(ρ̃∗n(en)) − gr(ên, %n)

]
(4.8)

Note that the stored energy process of the online policy % are represented with êns since

they are different than the stored energy process ens which depend on deterministic optimal

decisions.
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The online decision at slot n is informed by HN
n and ên. Therefore, by taking the offline rule

E
[
ρ̃∗n(ên)|HN

n

]
as reference we define the online decision rule at slot n for ên ≥ ρmin

1 as given

below:

%n(HN
n , ên) = max

{
ρ ∈ U|ρ ≤ E

[
ρ̃∗n(ên)|HN

n

]}
(4.9)

Applying the law of total expectation and Jensen’s inequality inside the summation in (4.8),

the difference between expected offline optimal throughput and the expected throughput of

the online policy % can be upperbounded as below.

N∑
n=1

E
[
g(ρ̃∗n(en))

]
−

N∑
n=1

E
[
g(%n(HN

n , ên))
]
≤

N∑
n=1

E
[
g(E

[
ρ̃∗n(en)|HN

n

]
) − g(%n(HN

n , ên))
]

In the above, the LHS is positive and gets smaller as the online decision %n(HN
n , ên) gets close

to E
[
ρ̃∗n(en)|HN

n

]
. The rule defined in (4.9) selects a decision close to E

[
ρ̃∗n(ên)|HN

n

]
guaran-

teeing that %n ≤ ên but the online energy level ên is different than the deterministic optimal

energy level en. However, minimizing the distance between power decisions corresponds to

minimizing the distance between energy levels when decisions are selected so that ρn ≤ en.

In this sense, the rule in (4.9) tracks deterministic optimal energy levels ens. In general, com-

puting the expectation E
[
ρ̃∗n(ên)|HN

n

]
involves a minimization over random variables. For the

sake of simplicity, the online decision can be based on only the expectation of ρ̃n(ên, 1) which

is the dominant term determining ρ̃∗n(ên) in most cases. Let us define such a decision rule

%n(HN
n , ên) for ên ≥ ρmin as follows:

%n(HN
n , ên) = max

{
ρ ∈ U|ρ ≤ min(ên, E

[
ρ̃n(ên, 1)|HN

n

]}
(4.10)

The decision rule in (4.10) is just an alternative expression of the Expected Threshold policy.

1 For ên < ρmin, %n(HN
n , ên) can be chosen as ρmin as it is the optimal decision by Theorem 4.2.1.
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4.3.2 Greedy Policy

The Greedy Policy is a simple policy that, at the beginning of any slot, sets the transmission

power to the highest level that can be used for the whole slot. In other words, ρn ≤ en.

Explicitly, Greedy is defined by the following decision rule:

%n(HN
n , ên) = max {ρ ∈ U|ρ ≤ ên} ; for ên ≥ ρmin

When harvest rate (power input) is large enough, the expected threshold Ln(HN
n , ρ) approaches

ρ and Greedy makes the same choice as the Expected Threshold policy does.

4.4 EXTENSION TO A TIME VARYING CHANNEL

For completeness of the treatment, in this section we extend the problem formulation to a

time-varying channel.

Provided that perfect channel state information is available at the transmitter, variation in

channel state introduces just another dimension to the state space of the problem. In principle,

this can be straightforwardly incorporated into the problem setup and solution method, as will

be shown in the rest of this section.

However, it should be noted that the ease by which this formulation seems to handle a fading

channel is because of (quite standard) assumptions that are made about the channel state

process, and these assumptions may not always capture what happens in a realistic system.

In wireless channels, depending on the relative movement of scatterers and transceiver units,

channel fading may occur at different time scales. For example, in an indoor channel with a

long coherence time (on the order of half a second), channel gain may stay relatively constant

over tens of time slots (considering a slot length of about 10 ms). On the contrary, in an

outdoor scenario with high mobility, channel state may significantly change from one slot to

the next. Hence, the specific model for the channel state process highly depends on the choice

of slot length with respect to fading dynamics. Furthermore, feedback about the channel

state to the transmitter may in practice will not be perfect or timely. Acknowledging these

weaknesses of the model, within the scope of this paper, we proceed with the perfect channel

state information assumption.
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Accordingly, let the channel gain during slot k be given by γk, chosen from a discrete set

of values. According to our earlier definition, the communication rate rk is g(γkρ), and the

function gr may be extended as the following.

gr(e, γ, ρ) = g(γρ) min
(

e
ρ
, 1

)
(4.11)

Accordingly, we can define the optimal online policy %∗ for a time-varying channels as:

%∗ = arg max
%

N∑
n=1

E
[
gr(en, γn, %n(HN

n , γ
N
n , en))

]
(4.12)

where γN
n denotes the vector [γn, ...., γN].

Let us assume γn, n ≥ 1 as a first-order Markov process with transition probability fuv between

channel states γu and γv, such that fuv = P(γn = γv|γn+1 = γu). Then, the optimal solution for

time-varying channel case can be formulated with dynamic programming as in the following:

V∗n (e, h, γ) = max
ρ∈U

Vn (e, h, γ, ρ) , n > 1, where (4.13)

Vn (e, hi, γu, ρ) = gr(e, γu, ρ)+∑
j

∑
v

qi j fuvV∗n−1

(
(e − ρ)+ + h j, h j, γv

)
V∗1 (e, hi, γu) = max

ρ∈U
gr(e, γu, ρ)

Similar to (4.5), an explicit form for V∗1 (e, hi, γ) can be written as in below:

V∗1 (e, hi, γ) =



g(γρ1)
(

e
ρ1

)
; e < ρ1

g(γρ1) ; ρ1 ≤ e < g(γρ1)
g(γρ2)ρ2

g(γρ2)
(

e
ρ2

)
; g(γρ1)

g(γρ2)ρ2 ≤ e < ρ2

g(γρ2) ; ρ2 ≤ e < g(γρ2)
g(γρ3)ρ3 .......

(4.14)

Again by backward induction, the optimal online solution as a set of decision rules can be

obtained:

%∗n (e, hi, γ) = arg max
ρ∈U

Vn (e, hi, γ, ρ) (4.15)
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4.5 EXPECTED WATER LEVEL POLICY

The approach taken for developing the Expected Threshold policy can be extended to the fad-

ing channel formulation. Given that the present state and the history of channel and energy

harvesting process, the optimal offline power level ρ̃∗n may be considered as a stochastic pro-

cess. For the offline solution, it is known that the optimal offline power level ρ̃∗n is always

lower than the stored energy e. Thus, gr(e, γ, ρ) can be replaced with g(γρ), arriving at the

following inequality:

N∑
n=1

E
[
E

[
g(γnρ̃

∗
n)|γN

n ,H
N
n

]]
≤

N∑
n=1

E
[
g(γnE

[
ρ̃∗n|γ

N
n ,H

N
n

]
)
]

(4.16)

Hence, applying the Expected Threshold policy could still provide a fairly good average

throughput. However, because of the added dimensionality, the computation of the expected

value of the optimal offline power level is harder in the fading case than it was in the static

channel case. On the other hand, it was shown in [7] that, when power levels are continuous,

the finite-horizon throughput-optimal offline policy is a waterfilling policy where water levels

are nondecreasing as deadline approaches. Accordingly, the optimal power level for offline

solution is given by ρ̃∗n = (w̃n −
1
γn

)+ where w̃n is the water level of slot n.

A lower bound for expected offline power level ρ̃∗n can be found as E[ρ̃∗n] ≥ (E[w̃n] − 1
γn

)+ .

Then, a conservative online decision for discrete power level case can simply be the lowest

power level in the set U that is higher than (E[w̃n] − 1
γn

)+ We name this policy as “Expected

Water Level Policy”.

%n(HN
n , ên) = max

{
ρ ∈ U|Ln(HN

n , ρ) ≤ ên
}

Ln(HN
n , γ

N
n , ρ) = max (ρ, en)

for ρ > 0 ; Ln(HN
n , γ

N
n , 0) = 0

where E[w̃n(en)] = ρ +
1
γn

The minimum energy Ln(ρ) at which ρ is the selected power level can be set so that the

expected water level E[w̃n(en)] equals to ρ + 1
γn

. On the other hand, contrary to the previous

case, the channel can remain idle and Ln(0) can be considered as zero energy level.
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The computation of E[w̃n(en)] is explained in Appendix A.1.

4.6 EVALUATION

The throughput performances of the optimal online solution, expected threshold policy and

Greedy have been compared, along with that of a single power level policy, which is a static

reference policy whose transmit power is set to the maximum power in the set U lower than

the time average energy harvest rate whenever there is energy for transmission.

A first-order Markov model for the energy harvesting process is derived from an irradiance

trace (measured during a car-based roadtrip) which is available in the CRAWDAD repository

[1]. The time slot interval is taken as 30 s and harvested energy amounts are calculated

assuming that irradiance over a 43 cm2 area can be transformed into energy with a conversion

rate of 21%. Transmission power decisions (5, 10, 23, 26, 74, 100, 159, 256mW) are based on

single stream data rates (see Table 4.6 ) for 40MHz and short-guide interval (400s) in 802.11n

standard. To compute power levels correspoding to standard data rates, net bitrate is assumed

equal to Shannon capacity of an additive white Gaussian noise (AWGN) channel with a noise

spectral density 0.83 nW/Hz. Accordingly, the capacity formula of the AWGN channel is

used as the function g(ρ).

Harvested and consumed energy amounts are quantized in order to discretize the state space

where value functions and decision rules are evaluated for the optimal solution with dynamic

programming.

Table 4.1: Single stream data rates in 802.11n standard for 40MHz channel and short-guide
interval (400s)

Modulation Type Coding Rate Data Rate (Mbit/s)
BPSK 1/2 15.00
QPSK 1/2 30.00
QPSK 3/4 45.00
16-QAM 1/2 60.00
16-QAM 3/4 90.00
64-QAM 2/3 120.00
64-QAM 3/4 135.00
64-QAM 5/6 150.00
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Achieved throughput values are averaged over 104 random realizations of energy harvest pro-

files generated with the first-order Markov model and these values are divided by the length

of transmission time to find average throughput values.

In Fig. 4.3, it appears that even simple schemes such as greedy and constant suffice. However,

this performance depends on the dynamics of the energy harvesting process. To illustrate such

a case, policies are evaluated under another Markovian energy harvesting process assumption.

This time, the time slot interval is taken as 1s, energy harvesting Markov model is assumed

to have 2 states (h0 = 0 and h1 = 256mJ) with transition probabilities q00 = 0.9, q01 = 0.1,

q10 = 0.5, q11 = 0.5 to simulate a burst arrival case. Throughput performances for this

case (see Fig. 4.4) indicate that the simple schemes are limited to about half the optimal

online throughput, while the Expected Threshold Policy closely follows the optimal online

throughput.

Although it is proposed in [5] for stationary harvest processes and infinite horizon, throughput

optimal (TO) policy is also simulated in our context. The TO policy uses the power decision

equation below:

%TO
n (e) = min(e, E[H]) (4.17)

Note that since the energy level e and the average energy harvest rate E[H] are arbitrary,

usually the power decision %TO
n (e) is not in set U.

As seen in Fig. 4.2.a, the expected threshold policy performs better than TO policy in terms of

average throughput. In addition, the mean delay performance of the expected threshold policy

is compared against TO in Fig. 4.2.b although both policies do not consider mean delay as an

optimization criterion. Mean delay is computed by time averaging over the delay values seen

by each transmitted bit as in the following expression:

Mean Delay =

N∑
n=1

(N − n + 1)gr(en, %n)

N∑
n=1

gr(en, %n)

(4.18)

Then, using the same burst arrival Markov model for energy harvesting, the expected water
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level policy is tested under Rayleigh and Nakagami fading channel assumptions in Fig.4.5 and

Fig. 4.6. Rayleigh and Nakagami channels are simulated as discrete channel gain processes

with 7 levels ranging from 0.1 to 1.9.
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Figure 4.2: Average Throughput versus (a) Transmission Time , (b) Mean Delay for Expected
Threshold and TO policies assuming burst arrival Markov model which has 2 states (h0 = 0
and h1 = 256mJ) with transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5, q11 = 0.5.
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Figure 4.3: Average Throughput versus Transmission Time for single power, greedy, optimal
and Expected Threshold policies assuming irradiance trace Markov model derived from an
irradiance trace (measured during a car-based roadtrip) which is available in the CRAWDAD
repository [1].
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Figure 4.4: Average Throughput versus Total Transmission Duration for single power, greedy,
optimal and Expected Threshold policies assuming burst arrival Markov model which has 2
states (h0 = 0 and h1 = 256mJ) with transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5,
q11 = 0.5 under static channel.
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Figure 4.5: Average Throughput versus Total Transmission Duration for single power, greedy,
optimal and Expected Threshold policies assuming burst arrival Markov model which has 2
states (h0 = 0 and h1 = 256mJ) with transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5,
q11 = 0.5 under Rayleigh fading.
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Figure 4.6: Average Throughput versus Total Transmission Duration for single power, greedy,
optimal and Expected Threshold policies assuming burst arrival Markov model which has 2
states (h0 = 0 and h1 = 256mJ) with transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5,
q11 = 0.5 under Nakagami fading.
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CHAPTER 5

ONLINE LAZY SCHEDULING

Take time for all things: great haste

makes great waste.

Benjamin Franklin

5.1 PROBLEM DEFINITION

Consider a network node receiving variable-size packets that need to be sent within a finite

time interval. It transmits received packets through a point-to-point link while changing its

transmission rate adaptively. The problem to be considered here is to find a transmission

policy that minimizes the expected total energy consumption. Let us define a slot duration as

the minimum time interval that sender node can modify its transmission rate. We will consider

a finite-horizon period of T slots. In other words, the slot T is the last slot that sender node

can deliver its packets. However, delivering all received packets within this period may not

be guaranteed by any policy. Therefore, a cost in terms of energy should be assumed for

backlogging received packets at the end of the slot T .

Let n be the present number of remaining slots to the deadline and b be the present number

bits stored in the sender mode’s buffer. Sender node consumes w(b, r) per slot time when the

transmission rate r (in bits/slot) is selected.

w(b, r) = ε(r) min
(
b
r
, 1

)
(5.1)

where ε(r) is a convex function increasing in r.
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Assume that the packet arrival process is a Discrete time Markov chain (DTMC) which is

known beforehand. Let i be the packet arrival state and l(i) be the function that returns the

corresponding packet lenght when the packet arrival state is i. Then, the present state of the

system can be determined by the vector (b(n), i(n)) when there are n slots to the deadline. It

also is assumed that the sender’s buffer has an infinite capacity, meaning that can store all

packets received during a period of T slots.

Given that the system state is (b, i), let Jn (b, i) be the minimum expected total energy cons-

tumption for the next n slots. Then, the problem can be formulated using a stochastic dynamic

programming equation as below.

Jn (b, i) = min
r

w(b, r) +
∑

j

Ai jJn−1 ((b − r)+ + l( j), j)

 (5.2)

where Ai j is the transition probability between packet arrival states i and j.

The optimal solution can be identified by minimizing rates r∗n’s :

r∗n = arg min
r

w(b, r) +
∑

j

Ai jJn−1 ((b − r)+ + l( j), j)

 (5.3)

The cost function Jn (b, i) and minimizing rates r∗n’s can be computed by backward induction

starting from the last slot. The function J0 (b, i) can be interpreted as a penalty function which

corresponds to the cost of maintaining bits of packets not delivered until the deadline. Let

J0 (b, i) be defined as below.

J0 (b, i) = C (b − l(i)) (5.4)

where C (b) is monotone nondecreasing cost function of b and equals to zero at b = 0.

In practical systems, selectable transmission rates are limited and, to model this restriction,

transmission rates rn’s can be assumed to be chosen from a discrete set V.

The dynamic programming formulation of the problem in Eq. 5.2, already provides an optimal

solution using backward induction. Yet, this solution has a high computational complexity

which is exponential over the number of states. Moreover, practically, if the optimal solution

is computed by the transmitter node, then the extra energy required for computation may
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exceed the energy saving of the optimal solution. Accordingly, it would be useful to focus on

simpler but efficient transmission policies.

5.2 SUBOPTIMAL SOLUTIONS

This section describes some possible suboptimal solutions that require relatively less compu-

tational power compared to the optimal solution by dynamic programming.

5.2.1 Laziest Scheduling Policy

A naive transmission policy, laziest scheduling policy, which does not change transmission

rate, is to transmit always with the lowest transmission rate independently from the sysytem

state (b, i). In other words, this policy sets the transmission rate to the minimum transmission

rate rmin in the set V.

rmin = min {r ∈ V} (5.5)

It can be expected that laziest scheduling policy becomes closer to the optimal policy as the

cost function C (b) gets closer to zero. Because, for a bounded and small cost function C (b),

the optimal policy tends to transmit with lower transmission rates in order to minimize total

energy consumption while ignoring backlogged data.

5.2.2 Hastiest Scheduling Policy

The opposite of laziest scheduling is selecting always the highest possible transmission rate

rmax in the set V. Let us name this policy as hastiest scheduling policy.

rmax = max {r ∈ V} (5.6)

Hastiest scheduling policy is likely to perform better if the cost function C (b) is steeply in-

creasing in b. On the other hand, the optimality of this policy is arguable since some other

36



policies that can transmit all received packets within the transmission period may consume

less energy by following optimality properties.

5.2.3 Hasty Scheduling Policy

A simple rate adapting policy can be a modification on hastiest scheduling. If the amount of

backlogged data is smaller than the amount of data which can be transmitted within one slot

duration with the transmission rate rmax, then transmitting with rmax is inefficient in terms of

energy since a lower transmission rate requires less energy for transmitting the same amount

of data. Accordingly, hastiest policy can be modified into a rate adapting policy, hastiest

scheduling policy, which controls transmission rate rhasty(b) to be less than b.

rhasty(b) = max {r ∈ V|r < b} (5.7)

5.2.4 Expected Threshold Lazy Scheduling Policy

The heuristic approach in Chapter 4 can be applied to the online lazy scheduling problem. To

do this, let us first reconsider the offline solution where transmission rates are not restricted to

a discrete set.

The stretched string method described in Chapter 3 can be employed to find optimal offline

transmission rates since optimal departure curve still follows the shortest path. But, depend-

ing on the cost function C (b), the optimal offline solution does not have to be the one that

transmits all recieved bits until the end of transmission period. Instead, the optimal offline

solution may allow some part of the received information remain in exchange for minimizing

total energy consumption. Thus, transmission period virtually can be assumed to be extended

to the point where data buffer is emptied with the transmission rate selected at the last time

slot. Accordingly, the optimal offline rate r̃∗n can be expressed as in below:

r̃∗n = min
a=1,....,(n−1)

(bn, r̃n(bn, a)) , where
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r̃n(bn, a) =

bn +

n−1∑
l=a

Bl

n + α − a + 1

where Bn represents the size of the packet arriving at the slot n and α is a paramater that

depends on the cost function C (b) and determines the extended time.

It can be noted the parameter α goes to zero as the cost function C (b) goes to infinity for any

value of b.

As it is done in Chapter 4 for ET policy, online lazy scheduling transmission rates can be

based on the expectation values of transmission rates obtained for offline solutions. Again,

for the sake of simplicity, E[r̃∗n] can be approximated and the following expression for online

decisions can be derived:

rn = max
{
ρ ∈ V|ρ ≤ min(bn, E

[
r̃n(bn, 1)|BT

n

]}
(5.8)

Or alternatively:

rn = max
{
ρ ∈ V|Ln(BT

n , r) ≤ bn
}

Ln(BT
n , r) = max

r, rn + rα −
n−1∑
l=1

E
[
Bl|BT

n

]
for r , rmin ; Ln(HN

n , rmin) = 0

where BT
n is the vector of packet sizes [Bn...BT ] and Ln(BT

n , r) is the minimum data buffer

level for selecting transmission rate r.

5.3 EVALUATION

A simulation experiment is performed to evaluate energy efficiencies of laziest, hastiest, hasty

scheduling policies and expected threshold lazy scheduling (ETLS) policy against optimal

policy using dynamic programming. For packet arrival process, a stream of 10kB packets is

assumed and modeled by a Markov model having two states (l(0) = 0 and l(1) = 10kB) with
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transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5, q11 = 0.5 where slot duration is 1ms.

The same set of transmission rate and corresponding power levels used in the evaluation part

of Chapter 4 (Section4.6) is assumed.

The cost function C (b) is chosen as w(b) and parameter α of ETLS policy is set to 0. For

this setting, average power requirements of optimal and suboptimal scheduling policies are

obtained and the comparison over varying total transmission duration T is shown in Figure

5.1. Due to the cost function, laziest scheduling policy, which backlogs large amount of

data, has a much higher energy consumption compared to hastiest policy and it is excluded in

Figure 5.1.
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Figure 5.1: Average Power versus Total Transmission Duration for single hasty, hastiest,
optimal and ETLS assuming Markov model having two states (l(0) = 0 and l(1) = 10kB)
with transition probabilities q00 = 0.9, q01 = 0.1, q10 = 0.5, q11 = 0.5.
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CHAPTER 6

CONCLUSIONS

It is not the strongest of the species that

survives, nor the most intelligent that

survives. It is the one that is the most

adaptable to change.

Charles Darwin

In this thesis, a finite-horizon online throughput-maximizing scheduling problem with a dis-

crete set of transmission actions has been formulated. The structure of the optimal solution

of this problem has been studied through stochastic dynamic programming. Based on the

observation of a threshold structure in the optimal policy, a low complexity heuristic solu-

tion, Expected Threshold Policy, has been proposed. The optimal and heuristic solutions are

extended taking into account time-varying channels and these more general solutions are eval-

uated under ergodic fading. The Expected Water Level Policy, which is the proposed heuristic

for the fading case, as well as the Expected Threshold Policy in the static channel case, were

both observed to achieve close to optimal throughput in detailed numerical studies, signifi-

cantly outperforming simple policies such as using a constant rate, or greedily spending the

energy at hand. Moreover, as expected, the gap between the simple policies and the heuristic

proposal widens as the energy harvesting process diverges from stationarity.

The comparison of the Expected Threshold (ET) Policy with the TO policy of [5] is partic-

ularly interesting. The TO policy is throughput-optimal in the infinite-horizon case for sta-

tionary energy harvest processes. The simulation results indicate that the Expected Threshold

Policy provides higher throughput than the TO policy for any given mean delay value. The ET

policy has a better average throughput performance against transmission time especially for

40



short horizon lengths. These observations indicate that an expected threshold computation,

while having a much lower complexity than computing the optimal dynamic programming

solution, reaps strong benefits in terms of performance and thus such adaptation seems to be

worth undertaking for dynamic energy harvesting processes in short time scales, as opposed

to a time-invariant policy. Furthermore, in the considered problem, it has been seen that the

performace depence on present energy level is weaker and less critical than the performance

dependence on time and energy harvesting process.

This opens up an array of questions about the performance difference between stationary and

time-varying policies in relation to the statistics of the energy arrival process. It is quite

reasonable to believe that the design of low complexity policies that can exhibit close to

optimal performance for bounded delay will be informed by and benefit from such analysis.

this view of the problem should be generalized to attempt this analysis in future work.

Likewise, a finite-horizon online scheduling problem has been also formulated with this un-

derstanding. For this problem setting, an adaptation of the ET policy, the ETLS policy, has

been introduced. By a simulation experiment, it has been shown that the ETLS policy can

achieve close-to-optimal performance as the ET policy. One distinction from the ET policy is

that the ETLS policy has an additional parameter for adjusting according to the cost of violat-

ing the transmission deadline. The relationship between this parameter and the cost function

has not been investigated and hence it has been left as a future work.

The insight gained in this study can be a basis for a more generic consideration of finite-

horizon online scheduling problems. Together with this, the comparison of finite-horizon

scheduling solutions against infinite-horizon scheduling solutions might produce substantial

results that contribute both theoretical and practical treatment of related online scheduling

problems.
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APPENDIX A

APPENDIX HEADING

A.1 Computing the expected water level E[w̃n(en)]

Water levels w̃n are only constrainted by energy harvesting process and energy constraints can

be written as:

n∑
k=a

(w̃k −
1
γk

)+ ≤ en +

n−1∑
k=a

Hk where a ∈ [1, n − 1] and w̃n ≤ en + 1
γn

Since w̃n ≤ w̃n−1,

n∑
k=a

(w̃n −
1
γk

)+ ≤ en +

n−1∑
k=a

Hk ⇒

n∑
k=a

(w̃n −
1
γk

) ≤ en +

n−1∑
k=a

Hk −

n∑
k=a

(
1
γk
− w̃n)+

⇒ (n − a + 1)w̃n −
1
γn
−

n∑
k=a

1
γk
≤ en +

n−1∑
k=a

Hk −

n∑
k=a

(
1
γk
− w̃n)+

⇒ w̃n ≤

en + 1
γn

+

n−1∑
k=a

(Hk +
1
γk

) −
n∑

k=a

(
1
γk
− w̃n)+

n − a + 1
for a ∈ [1, n − 1] and w̃n ≤ en + 1

γn

⇒ w̃n ≤ min
a∈[1,n]

en + 1
γn

+

n−1∑
k=a

(Hk +
1
γk

) −
n∑

k=a

(
1
γk
− w̃n)+

n − a + 1

The inequality above is an equivalent to all constraints on w̃n and power level ρ̃∗n can be

independently maximized by maximizing w̃n, hence w̃n can be the maximum value which

equals to the right-hand side:
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w̃n = min
a∈[1,n]

en + 1
γn

+

n−1∑
k=a

(Hk +
1
γk

) −
n∑

k=a

(
1
γk
− w̃n)+

n − a + 1

The above expression can be thought as a minimization of a running average where the terms

en and 1
γn

are independent from the index a. Hence, the average is usually minimized when

a = 1 and w̃n can be approximated as in the following equation:

w̃n '

en + 1
γn

+

n−1∑
k=1

(Hk +
1
γk

) −
n∑

k=1

(
1
γk
− w̃n)+

n

Then, the following approximation for the expected water level E[w̃n(en)] can be used:

E[w̃n(en)] '

en + 1
γn

+

n−1∑
k=1

(E[Hk] + E[
1
γk

]) −
n∑

k=1

E[(
1
γk
− w̃n(en))+]

n

Assuming E[( 1
γk
− w̃n)+] ' (E[ 1

γk
] − E[w̃n])+, a further simplification can be made:

E[w̃n(en)] '

en + 1
γn

+

n−1∑
k=1

(E[Hk] + E[
1
γk

]) −
n∑

k=1

(E[
1
γk

] − E[w̃n(en)])+

n
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