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ABSTRACT 

COMPARISON OF FIVE REGULARIZATION METHODS FOR THE 

SOLUTION OF INVERSE ELECTROCARDIOGRAPHY PROBLEM 

Güçlü, Alperen 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz 

 

 

September 2012, 84 pages 

 

 

 

 

Understanding heart’s electrical activity is very important because coronary problems -such as heart 

attacks, arrhythmia and stroke- are the leading cause of death in the world. Forward and inverse 

problems of electrocardiography (ECG) are methods that provide detailed information about the 

electrical activity of the heart. Forward problem of electrocardiography is the estimation of body 

surface potentials from equivalent cardiac sources. Inverse problem of electrocardiography can be 

described as estimation of the electrical sources in the heart using the potential measurements 

obtained from the body surface. Due to spatial smoothing and attenuation that occur within the 

thorax, inverse ECG problem is ill-posed and the transfer matrix is ill-conditioned. Thus, 

regularization is needed to find a stable and accurate solution. In this thesis, epicardial potentials 

used as equivalent cardiac sources to represent electrical activity of the heart and performances of 

five different regularization methods are compared. These regularization methods are Tikhonov 

regularization, truncated singular value decomposition, least squares QR factorization, truncated 

total least squares, and Lanczos truncated total least squares. Results are assessed qualitatively using 

correlation coefficient (CC) and relative difference measurement star (RDMS) measures. In addition, 

real and reconstructed surface potential distributions are compared qualitatively. Body surface 

potential measurements are simulated with different levels of measurement noise. Geometric errors 

are also included by changing the size and the location of the heart in the mathematical torso model. 

According to our test results, the performances of the regularization methods in solving the inverse 

ECG problem depend on the form and amount of the noise. 

 

Keywords: Inverse electrocardiography problem, regularization 
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ÖZ 

TERS ELEKTROKARDİYOGRAFİ PROBLEMİNİN ÇÖZÜMÜNDE BEŞ DEĞİŞİK 

DÜZENLİLEŞTİRME YÖNTEMİNİN KARŞILAŞTIRILMASI 

Güçlü, Alperen 

Yüksek Lisans, Elektrik ve Elektronik Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Serinağaoğlu Doğrusöz 

 

 

Eylül 2012, 84 sayfa 

 

 

 

 

 Kalp krizi, aritmi ve felç gibi koroner problemlerin dünyada önde gelen ölüm sebeplerinden olması 

nedeniyle kalbin elektriksel aktivitesinin anlaşılması çok önemlidir. İleri ve ters elektrokardiyografi 

(EKG) problemleri, kalbin elektriksel aktivitesi hakkında detaylı bilgi veren metotlardır. İleri EKG 

problemi, vücut yüzey potansiyellerinin eşdeğerli kardiyak kaynaklarından tahmin edilmesidir. Ters 

elektrokardiyografi problemi ise kalpteki elektriksel kaynakların tahmini için vücut yüzeyinden elde 

edilen potansiyel ölçümlerinin kullanılması olarak tanımlanabilir. Göğüs kafesinde meydana gelen 

yumuşama ve zayıflamadan dolayı, ters EKG problemi kötü konumlanmıştır ve transfer matrisi kötü 

durumdadır. Bundan dolayı sabit ve doğru bir çözüm bulmak için düzenlileştirme gerekmektedir. Bu 

tezde kalbin elektriksel aktivitesini temsil etmek için epikardiyal potansiyeller eşdeğer kardiyak 

kaynakları olarak kullanılmıştır ve beş farklı düzenlileştirme metodunun performansları 

karşılaştırılmıştır. Bunlar; TSVD, LSQR, TTLS, Lanczos TTLS ve Tikhonov düzenlileştirme 

metotlarıdır. Sonuçlar ilinti sayısı ve RDMS ölçümleri kullanılarak niteliksel olarak incelenmiştir. 

Ek olarak gerçek ve yeniden düzenlenmiş yüzey potansiyel dağılımları niteliksel olarak 

karşılaştırılmıştır. Vücut yüzey potansiyel ölçümleri değişik seviyedeki ölçüm gürültüleri ile simule 

edilmiştir. Ayrıca geometrik hata olarak, kalbin şekli ve matematiksel gövde modelindeki yeri 

değiştirilmiştir. Test sonuçlarımıza göre, ters EKG probleminin çözümünde, düzenlileştirme 

metotlarının performansları gürültünün şekline ve miktarına göre değişmektedir. 

 

 

Anahtar Kelimeler: Ters elektrokardiyografi problemi, düzenlileştirme metotları  
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CHAPTER 1 

INTRODUCTION 

Heart is one of the most vital organs in our body; any disorder in heart functioning -such as heart 

attacks, stroke and arrhythmia- can result in death. According to World Health Organization (WHO) 

statistics, in middle-income and high-income countries heart diseases are the primary cause of death; 

in low-income countries, heart diseases ranked as the fourth most important reason of death [1]. All 

over the world, heart diseases are the main cause of death with 12.8% prevalence [1]. Thus, early 

diagnosis and treatment of heart diseases is very crucial. 

 

A normal heart functions as a result of well-organized electrical activity, and pathologies of the heart 

result in deviations from this behavior. Thus, knowledge about the electrical activity of the heart is 

very essential for diagnosing heart disorders. Classical 12-lead electrocardiography (ECG) is one of 

the mostly used diagnostic tools for measuring the electrical activity of the heart. Cardiologists use 

features such as the rate of the measured signal and its shape to assess the electrical activity of the 

heart and to diagnose different cardiac illnesses. The main problems with this method are the Brody 

and respiration effects [2], smoothing and attenuation of cardiac signals due to inhomogeneities 

within the thorax and the low spatial resolution of cardiac electrical source projections recorded on 

the body surface by this method [3]. Thus, 12-lead ECG may result in incorrect or insufficient 

assessment of the electrical activity of the heart. To decrease these effects, catheters inserted into the 

cardiac veins or through the torso may be used to measure the electrical activity of the heart, but 

usage of catheters are limited due to highly invasive nature of this method.  

 

An alternative method to overcome the low resolution weakness of the 12 lead ECG is the Body 

Surface Potential Mapping (BSPM) method [4]. BSPM uses 64 to 256 electrodes to measure the 

cardiac electrical activity on a larger part of torso than that covered by the 12 lead ECG method; thus 

providing a better representation of the electrical activity of the heart on the body surface. As a 

result, one major advantage of BSPM is that the entire chest surface is explored. Another advantage 

is that BSPM is more sensitive in detecting local electrical events [5]. However attenuation and 

smoothing effects are also present in the BSPM. To overcome this difficulty, researchers have 

pursued estimating cardiac electrical sources from the body surface potential maps (BSPMs). This 

problem can be studied in two main categories, the forward problem in which the body surface 

potentials resulting from equivalent cardiac sources are calculated. This yields a mathematical model 

of the relationship between the cardiac sources and the BSPMs. On the other hand, inverse problem 

of ECG is the estimation of equivalent cardiac sources from recorded BSPMs; the objective is to 

obtain high resolution images of heart’s electrical activity.  

 

The cardiac electrical activity can be modeled in terms of various equivalent source models; some of 

these equivalent sources are fixed dipole, moving dipole, multiple dipoles, multipoles, epicardial 

potential distributions, heart-surface activation isochrones, and the transmembrane potential 

distributions in the 3 dimensional myocardium. In this study, we focus on the inverse ECG problem 

in terms of epicardial potential distribution. 

 

The inverse problem of electrocardiography is ill-posed which means that even small perturbations 

lead to serious errors in the solutions. Because of this ill-posedness, inverse ECG problem needs a 

regularization process in order to estimate the preferred solution. There are many different 

regularization and statistical estimation methods in literature used to solve the inverse ECG problem 

and to reconstruct the desired epicardial source distribution. Some of these regularization methods 

are Tikhonov regularization [6, 7, 8], Truncated Singular Value Decomposition (TSVD) [7, 9], Least 

Square-QR (LSQR) [10, 11], Truncated Total Least Squares (TTLS) [12, 13], Lanczos TTLS [13], 
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Multiple constraints approach [14], State space models [15, 16, 17, 18, 19], Bayesian Maximum a 

Posteriori (MAP) estimation [20, 21]and model based approaches [22, 23]. In this thesis, we have 

implemented the first four of these methods proposed in literature for inverse ECG solution. In 

addition to those methods, Lanczos TTLS method is also applied as a regularization method for 

inverse ECG problem and performance of Lanczos TTLS is compared with other methods. In 

literature, TTLS and LSQR are only compared with Tikhonov regularization or TSVD for the 

solution of Inverse ECG problem. The main motivation of this thesis is to compare performances of 

all of the five regularization methods that solve the inverse ECG problem by arranging and ignoring 

singular values of the transfer matrix. 

 

1.1. Scope of the Thesis 

In this thesis, performances of Tikhonov regularization, TSVD, TTLS, LSQR and Lanczos TTLS 

methods are compared under various noise scenarios that one can run into in clinical studies. Among 

these methods, LSQR, TTLS and Lanczos TTLS are implemented in MATLAB. These methods are 

compared with TSVD and Tikhonov regularization methods, which have already been implemented 

by Per Christian Hansen in his Regularization toolbox [24].  

 

The noise conditions we have considered are the measurement noise and the geometric noise. 

Measurement noise is characterized as different levels of independent and identically distributed 

Gaussian noise and geometric errors are implemented as the shift in heart’s location and change in 

the heart’s size.  

 

Each method has a ‘regularization parameter’ that needs to be optimized for best results. Therefore, 

we have implemented various regularization parameter selection methods to assess which parameter 

selection method should be preferred in each application. The regularization parameter selection 

methods we have implemented are maximum correlation coefficient approach, the L-curve method 

[88], the generalized cross validation (GCV) method [25, 26] and the composite residual smoothing 

operator (CRESO) [6, 27, 28]. 

 

Performances of the regularization methods and regularization parameter selection methods are 

compared quantitatively using  Relative Difference Measurement Star (RDMS), and Correlation 

Coefficient (CC), And qualitatively using a scientific visualization application named Map3d 

developed by Utah Nora Eccles Harrison Cardiovascular Research and Training Institute [29]. 

1.2. Contributions of the Thesis 

 The methods implemented and compared in this thesis are all based on arranging and ignoring 

singular values of the transfer matrix. They have been compared in literature in mostly pairs and 

sometimes triplets; however they have not been rigorously tested and compared under the same 

conditions. In this thesis, we achieve this goal by applying each method to data simulated under 

the same conditions and we assess strengths, weaknesses and limitations of each method.  

 TTLS have been used to solve the inverse ECG problem before, however Lanczos TTLS, which 

is a computationally more efficient and less time consuming algorithm than TTLS, has not been 

applied to this problem.  

 There have been studies for Tikhonov regularization that assess different regularization 

parameter selection algorithms [25, 26, 27, 30], however for the more recent methods such as 

the LSQR and the TTLS methods, there is no such evaluation. In this thesis, we include this 

comparison. 

 

1.3. Outline of the Thesis 

 

In this thesis, second chapter contains the background information about the electrocardiography and 

the methods evaluated in this thesis. In that chapter, first anatomy and physiology of the heart is 

given. Then, the forward and inverse problems of ECG are defined along with a literature survey on 

these topics. 
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In the third chapter, we present the definition of inverse problem of ECG. Then the theories of the 

methods included in our study are represented. These methods are Tikhonov regularization, TSVD, 

LSQR Method, TTLS and Lanczos TTLS. 

 

The fourth chapter of this thesis is devoted to results and discussions. The performances of 

parameter selection methods, CRESO, GCV, L-curve and max CC methods are compared for the 

regularization methods. Then, Tikhonov regularization, TTLS, LSQR, Lanczos TTLS, TSVD 

methods are compared with each other for different noise levels.  

 

In the last chapter, conclusions of this study and future work will be given. 



 

4 

 

 

 4 

 

 

  



 

5 

 

 

 5 

 

 

CHAPTER 2 

BACKGROUND INFORMATION 

According to statistics, heart diseases are the main cause of death all over the world [5]. Fom this 

reason, understanding the heart’s functions is an important research topic for engineering and 

medicine areas. In this chapter, we present the background and literature search on the heart’s 

electrophysiology and understanding and obtaining its electrical source distribution. First,anatomy 

and electrophysiological properties of the heart will be explained, and then action potential 

generation and electrocardiography will be discussed. The source models representing electrical 

activity of heart will be considered. In the last part, the forward and inverse problems of ECG will be 

presented along with a detailed summary of past research carried out in these areas. 

2.1. Anatomy of the Heart 

The heart is the electro mechanical pump of the body, which pumps oxygen and nutrition rich blood 

to every part of the body. In a normal person, it weights between 250 – 350 g. It is located anterior to 

the vertebral column and posterior to sternum. The heart is in a sac called pericardium. The 

pericardium has a double walled structure, which protects the heart and prevents overfilling with 

blood [31, 32]. 

 

Besides pericardium, the heart’s outer wall has three layers: 

 Epicardium is the outer layer of the heart wall and covers the heart. The potentials on 

epicardium are called epicardial potentials and generally used for modeling the electrical 

activity of the heart in the inverse and forward problems of electrocardiography. 

 Myocardium is the muscular middle layer of the heart wall. Contraction of the myocardium 

pumps blood from the ventricles and relaxation of the myocardium helps the ventricles to 

receive the blood. The main aim of three dimensional electrocardiographical imaging is to 

determine the myocardial electrical activity. 

 Endocardium is the inner layer of the heart wall. Since it is in contact with blood, 

endocaridum has a smooth surface to help blood flow. Endocardial potentials are also used 

as cardiac sources for electrocardiographical imaging. 

 

The heart is mainly divided into four parts: 

 Right ventricle is the lower right part of the heart, which receives blood from the right atria 

and pumps the blood to the lungs by main pulmonary artery. It is separated from the left 

ventricle by the ventricular septum. 

 Left ventricle is the lower left part of the heart receiving blood from the left atria and pumps 

the blood to the whole body by aorta. 

 Right atrium receives de-oxygenated blood from the body by superior and inferior venae. It 

is separated from the left atrium by the atrial septum. 

 Left atrium is the upper left part of the heart, which receives oxygen rich blood from the 

lungs by pulmonary veins. 

 

 

The heart has four valves to prevent backflow of blood: 

 Aortic valve is located between the left ventricle and the aorta. 

 Pulmonary valve is located between the right ventricle and the pulmonary artery. 

 The mitral valve is between the left ventricle and the left atrium. 

 The tricuspid valve is between the right ventricle and the right atrium. 
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Figure 2.1: The anatomy of the heart and vessels [33]  

 

These valves work only in one direction. The aortic and pulmonary valves prevent the backflow of 

blood from arteries to ventricles. The mitral and tricuspid valves permits blood to move from atria to 

ventricles but prevents flow in the opposite direction. 

The heart works as a blood pump in the body. The right ventricle pumps oxygen poor blood to the 

lungs, then oxygenated blood returns to the left atrium from the lungs. This movement of blood is 

called pulmonary circulation. In systemic circulation, oxygen and nutrition rich blood is pumped 

from the left ventricle to the whole body and the de-oxygenated blood returns to the right atrium. 

Since in the systemic circulation the left heart sends blood to the whole body, left part of the heart 

wall is thicker and has a stronger muscular structure than the right part.  

2.2. Action Potential Generation 

Every cell in our body has mainly three parts: cytoplasm is a semi fluid part containing organelles, 

nucleus is the control center of the cell and the cell membrane is the outer boundary of cell. Cell 

membrane controls the entrance and exit of some materials. Cell membrane also allows ions to pass 

from different ion channels. Since ions are charged materials, cell membrane has an electrical 

potential. The cell membrane maintains a stable negative potential at rest and thus the cell membrane 

can be thought as a small battery. The transmembrane potential (TMP), which is the potential 

difference across the cell membrane, is given as:  

 

                  (2.1) 
 

where   , and    are the intracellular and the extracellular potentials, respectively. 

 

Some cells in our body can reverse the negative potential across their cell membrane; these cells are 

called the excitable cells. This potential change is established by change of membrane permeability 

to certain ions and the corresponding change in potential is called the action potential. Muscle cells, 

heart cells and nerve cells are the excitable cells in our body. Different parts of heart muscles have 
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different action potential characteristics. Figure 2.2 shows the action potential characteristic of a 

ventricular myocyte [34]. 

 

The cardiac action potential has five phases [34, 35].  

 

 Phase 4 is the period during which the cell remains at resting cell membrane potential. In 

this phase the heart is in the diastole period. Phase 4 ends when the cell is stimulated by an 

external electrical stimulus such as the adjacent cell. Some cells have the ability to 

depolarize spontaneously without external stimulus. They are called the pacemaker cells 

which are located at the Sinoatrial Node. 

 Phase 0 is the rapid depolarization phase. When the stimulus reaches a threshold value, cell 

membrane opens fast sodium channels, so the sodium conductance in cell membrane 

increases. Because of inflow of the sodium ions, the cell membrane has a positive voltage. 

 Phase 1 is the period during which fast sodium ion channels begin to close. At the same 

time, the cell loses potassium and chloride ions, and this loss causes the small downward 

deflection in the action potential. 

 Phase 2 is the plateau phase. At plateau stage there is a balance between inward movement 

of calcium ions and outward movement of potassium ions. 

 Phase 3 is the rapid repolarization phase. At this stage fast calcium channels are closed and 

there is an outward current because of the movement of potassium ions, causing negative 

membrane potential.  

 

 

 

 
Figure 2.2: Action potential generated by a heart tissue [34] 

2.3. Electrical Activity of the Heart 

Heart has specialized cells which are capable of initiating electrical activity without another nerve 

supply. The electrical activity of the heart depends on a series of specialized cardiac cells as shown 

in Figure 2.3 [10]:  

 

 

 Sinoatrial Node has self excitatory cells which are situated at the wall of the right atrium, 

close to the superior vena cava. Since SA cells determine the heart rate, they are called the 

heart’s pacemakers. Contraction of heart starts by electrical activity of the SA node. The 

stimulation caused by the SA node is transferred to nearby cells and action potential is 
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generated at each cell. By this way, stimulation spreads through the right and the left atria, 

causing them to contract. 

 Atrioventricular node is located between the right atrium and the right ventricle. Wave of 

electrical activity spreading from SA node reaches to the Atrioventricular node. Here, the 

speed of conduction decreases, so the transmission between atria and ventricles is delayed. 

This delay helps atria to finish its contraction before the ventricles are activated and most of 

the blood in the atria fills the ventricles. 

 Bundle of His is a special conduction system between the AV node and the ventricles. 

 Left and Right Bundle branches transmit impulses from the Bundle of His to the 

ventricles; transmission velocity increases here. 

 Purkinje fibers spread cardiac electrical activity to ventricular myocytes and the heart’s 

electrical conduction path finishes here. The velocity of propagation is higher at bundle 

branches and the Purkinje fibers to ensure that the electrical activity spreads immediately 

over the ventricles. 

 

AV node and Purkinje fibers also have the ability to initiate APs, but the heart rate of a healthy heart 

is determined by the SA node.   

 

 

 
Figure 2.3: Cardiac Conduction System 1) Sinoatrial node (Pacemaker) 2) Atrioventricular node 3) 

Atrioventricular Bundle (Bundle of His) 4) Left & Right Bundle branches 5) Purkinje Fibers [35] 

 

2.4. Electrocardiography 

While describing the formation and the properties of the action potential, we concentrated on the 

cellular electrical activity of the heart muscle cells. In practice, this activity cannot be clinically 

measured from humans; only in-vitro laboratory experiments on tissue samples makes it possible to 

measure and study the action potentials. The electrical activity of all heart cells are recorded from 

body surface by a method called electrocardiography [36]. The most commonly used method is the 

classical 12-lead electrocardiography. The positions of the ten electrodes used in the 12-lead 

electrocardiography method are shown in Figure 2.4. 

 

The recording produced by electrocardiography method is called electrocardiogram. A typical 

electrocardiogram is shown in Figure 2.5. Electrocardiogram is the superposition of electrical 

activity of different specialized cardiac cells as shown in Figure 2.6. 
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The electrocardiogram is composed of mainly three parts: 

 

 P wave reflects the depolarization of left and right atriums. The depolarization of atria is 

triggered by the electrical activity of SA node. Atrial abnormalities cause changes in 

duration, amplitude or frequency of the P wave. In atrial fibrillation, the P wave disappears 

and replaced with an improper wave. The duration from the beginning of the P wave to start 

of QRS complex is called PR interval. This interval reflects the time for the atriums to 

depolarize and the impulse to conduct to ventricles. This interval is 200 milliseconds at a 

normal person, the longer interval means AV block at the heart.  

 

 

 QRS interval reflects the ventricular depolarization and atrial repolarization. Since the left 

ventricle has more muscle cells, the majority of QRS signal reflects left ventricular 

depolarization. The first negative deflection is called the Q wave, the first positive 

deflection is the R wave and the second negative deflection is called S wave. Since the 

conduction velocity in the bundle of His and the Purkinje fibers is large, the QRS complex 

looks sharp rather than rounded like P wave. The major causes of duration change in the 

QRS complex are cardiac arrhythmias, conduction abnormalities, ventricular hypertrophy, 

myocardial infarction and infra nodal conduction abnormalities. 

 

 T wave period reflects the repolarization of ventricles. From the beginning of the QRS 

complex to the peak of the T wave is referred to as the absolute refractory period. The last 

half of the T wave is referred to as the relative refractory period. The normal QT interval, 

which is defined as the time between the beginning of the Q wave and the end of the T 

wave, is approximately 0.45 seconds. Prolongation of the QT interval may be a cause of 

sudden cardiac death. 

 

 

 

 
Figure 2.4: Position of 10 electrodes used for 12 Lead ECG [37] 
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Figure 2.5: The normal Electrocardiogram [34] 

 

 

 
 

Figure 2.6: Different Forms of Cardiac Action Potential [38] 

file:///C:/Users/ASUS/Desktop/Figure%202.7:%20http:/www.pharmacology2000.com/Cardio/Cardio_risk/adult_cardiac_procedures/physiol1.htm
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2.5. Forward Problem of Electrocardiography 

 

The current generated by the electrical activity of the heart propagates through our body and reaches 

the body surface. Forward problem of ECG studies the relationship between cardiac sources and 

body surface potentials. The potentials generated on the body surface are affected by the electrical 

and geometrical properties of the torso. The forward ECG takes into account different properties of 

torso, while estimating body surface potentials generated from the heart potentials. 

 

Different application areas of Forward ECG are [39]:  

 

 Simulation of ECG with computer heart models: First a propagation algorithm is selected 

and activation times of all model points are calculated. Then equivalent source 

representations are used to calculate the ECG.  

 Finding effects of torso inhomogeneities on ECG: The effects of materials with different 

conductivities are investigated, such as Brody effect, in which the effect of high 

conductivity blood in ventricular cavities is searched.  

 Simulation of defibrillation currents: Different defibrillation simulations can be done to 

observe their effects. 

There are three stages for finding a transfer matrix that relates torso potentials to heart surface 

potentials. These are defining an equivalent model for the heart’s electrical activity, obtaining 

geometrical information and numerical solution of the forward problem. 

2.5.1. Defining heart’s electrical activity 

Different simplified equivalent models are used to represent heart’s electrical activity. These models 

can be grouped as: 

 Current source models: 

o Fixed Dipole [40, 41], 

o Moving Dipole [40, 41], 

o Multipole [41, 42]. 

 Surface Source Models: 

o The Uniform Double Layer Model [41], 

o The Equivalent Double Layer Model [41, 43], 

o Epicardial and Endocardial Potential Models [44, 45, 46], 

o Transmembrane potential model [47], 

o Activation time based models [43]. 

 

2.5.1.1. The Dipole 

Dipole is a current source which has two monopoles separated by a small distance. Dipole potential 

is infinity near the source, therefore dipole model can be used to define potentials away from the 

actual cardiac sources [40]. Dipole can only model the electrical activity restricted to a small part of 

the myocardium [41].  

 

The dipole is characterized by six parameters: three for its location and three for its vector strength. 

For defining electrical activity of the heart, fixed and moving dipoles are used. Fixed dipoles have a 

fixed location; therefore they are only characterized by three vector strength parameters. The 

accuracy of modeling increases with number of parameters, but computational difficulty also 

increases.  

 

The dipole can be used as a current generator during the whole QRS cycle. The body surface 

potentials can be modeled 80% accurately by a single dipole. The accuracy of this model can be 

increased by using multiple dipoles [41].  

 

2.5.1.2. The Multipole 

Heart may be modeled by using multipole current sources which have more than two magnetic 

poles. Different types of multipoles are: quadrupoles which have four poles and octupoles with eight 
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poles. The multipole representation can be expressed as a sum of multiple poles located at a common 

origin. The multipole model involves totally eleven parameters; three position parameters for the 

entire multipole system, three for dipole elements and five for quadrupole elements. This model was 

tested as a cardiac source model by Arthur [48] and the accuracy of the model is measured as 95% 

with the quadrupole elements. Because of the increasing parameter number, the computation gets 

more difficult which leads to decrease in the usage of multipole model [41, 42].  

 

 2.5.1.3. The Uniform Double Layer 

The uniform double layer model represents heart’s electrical activity by elementary current dipoles 

located on the myocardium. The propagation of surface current dipoles through myocardium 

represents depolarization wavefronts [41]. Since it is not easy to measure the potentials on the 

myocardium, the equivalent double layer method is mostly preferred [43].  

 

2.5.1.4. The Equivalent Double Layer Model 

The equivalent double layer model represents the electrical activity of the heart as double layer 

current dipole source sheets located on the heart layers endocaridum and epicardium, surrounding 

the myocardium. By using the solid angle theorem, the equivalent double layers located on the 

endocaridum and the epicardium are equal to uniform double layer located on the myocardium [41, 

43].  

 

2.5.1.5. Epicardial and Endocardial Potential Models 

Epicardial and endocardial potential models are the widely used model for representing electrical 

activity of the heart. Since potentials are represented on the surface of the epicardium and 

endocardium layer, these equivalent sources are also called as surface potential maps.  

 

Advantages of using surface potential model are [44, 45, 46]: 

 

 Epicardial potentials can be measured by sock electrodes and endocardial potentials can be 

measured by catheter measurements, therefore solutions can be verified [49, 50]. 

 The solution of the problem is unique, because cardiac sources are located on the epicardial 

or endocardial layer. 

 The effects of blood masses are avoided, because epicardium is the outer layer of the heart. 

 The problem can be represented linearly. 

 

The disadvantages of surface potential model are: 

 

 The problem becomes higly ill-posed, because of smoothing and discretization effects in the 

thorax. To overcome ill-posedness, different regularization or statistical methods are used 

and different filters are applied. 

 Epicardial potentials are given in terms of the transmembrane potentials of the whole heart 

instead of only neighbor nodes; therefore it has a more complicated structure [49]. 

 Surface potential models are less tolerated to geometrical errors [51, 52].  

 

2.5.1.6. Transmembrane Potential Model 

The voltage difference between interior and exterior of the cell membrane is called as 

transmembrane potential. In this method, the cardiac is modeled as the transmembrane potentials at 

the myocardium. Transmembrane potential model become popular because the problem can be 

formulated as a linear problem, but the obtained solution is not unique; therefore additional 

constraints are needed [47]. 

2.5.1.7. Activation Time Based Models  

There is a potential difference between activated and inactive tissues during the propagation of 

activation in the heart. Some researchers modeled inverse problem by using this wavefront [43]. 
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These models try to find activation time of tissues therefore deals with less parameter than surface 

models and this method is better posed than surface models. However, the solutions cannot be 

verified by measurements different than surface models. Other disadvantages are more complex 

calculations are needed because of non- linearity of the problem and the isotropy assumptions for 

myocardium causes some limitations for solution [39, 50].  

2.5.2. Obtaining the Geometrical Information 

Geometric information of cardiac and torso tissues should be determined first to solve the forward 

problem of electrocardiography. The mostly used methods for obtaining anatomical information of 

tissues are Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). Drawbacks of 

these methods are, the equipments used are heavy and it is not easy to carry these equipments. Also 

these imaging systems are expensive [44]. Another method for obtaining the geometrical properties 

of body is electrical impedance tomography (EIT) which is cheaper and more mobile method when 

compared with CT and MRI. EIT measures the conductivities of tissues, but the major drawbacks of 

the EIT are the decrease in resolution when used for thicker tissues and it is not clinically used [53]. 

Cheng et al.used ultrasound to obtain the heart model and a hand held laser scanner to obtain the 

outer structures [54]. 

2.5.3. Numerical Solution of the Forward Problem 

Numerical methods to solve the Forward problem of ECG can be separated into two classes: surface 

methods and volume methods.  In surface methods, the torso is divided into regions with isotropic 

conductivity and only the boundaries of these regions are considered. Surface methods are also 

named the Boundary Element Method. In volume methods, the torso is separated into simple 3D 

volume elements or represented by three dimensional grids of discrete point elements. Volume 

methods are better in dealing with anisotropies in the torso. Volume methods include finite-

difference, finite-element, and finite-volume methods. 

 

2.5.3.1. Boundary Element Method (BEM) 

Boundary element Method (BEM) uses surface integrals to calculate torso potentials generated by 

the electrical activity of the heart. Different from the volume methods, for BEM only the boundaries 

between regions with different conductivities should be modeled [39]. The advantage of BEM is the 

decrease in the number of unknown parameters and computational load. Especially, the decrease in 

the computational load made BEM a popular Forward solution method and commonly used in ECG, 

electroensephalography (EEG) and magnetoencephalography (MEG) [55]. On the other hand, BEM 

is not a suitable method for dealing with anisotropic regions [56]. 

 

Quality of meshes generated for modeling the region of interest is important to have accurate results, 

therefore scientists tried to use mesh elements with different size and type. Scientists also 

implemented adaptive methods such as h-adaptive BEM to increase accuracy, in these adaptive 

methods the meshes are regenerated to get better results during the calculation [55, 56].  

 

2.5.3.2. Finite Difference Method (FDM) 

In this method, torso geometry is represented as a three dimensional resistive network modeling 

body’s geometric and conductivity properties. This system is composed of 3D grid of node points, 

resistor element values connecting these nodes are selected according to conductivity and geometry 

values of tissues between these nodes. Linear difference equations are established by using Ohm’s 

and Kirchhoff’s laws. These equations are solved iteratively and the potential distribution at each 

point is obtained [57]. The FDM was firstly used by Walker and Kilpatrick for defining 

electrocardiographic problems. 

 

The FDM easily models complicated structures in the body, and an important property of FDM is 

that, accurate information about every element in the model is obtained, so the fields may be 

investigated in detail [57]. The disadvantage of FDM is its computational difficulty and large storage 

requirements, because of the large number of computational elements [39]. 
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2.5.3.3. Finite Element Method (FEM) 

In this method, torso is divided into volume elements; the most widely used volume elements are 

tetrahedra and hexahedra [39]. FEM is a suitable method for dealing with complex geometries and 

inhomogeneities in the torso. However the volume elements should be simple and easy to analyze. 

To handle the inhomogeneities and complex geometry of the torso, a large number of simple volume 

elements should be used, which increases the computational complexity of the problem [58]. 

 

A modified type of FEM is meshless FEM. The fundamental difference between meshless FEM and 

traditional FEM is the construction of shape functions. Meshless FEM uses only the node 

distribution, but conventional FEM uses both node distribution and connection between the nodes. 

Simulations show that meshless FEM shows a slightly better performance than conventional FEM in 

terms of accuracy, convergence and stability [59]. 

 

2.5.3.4. Finite Volume Method (FVM) 

FVM is very similar to FDM; the difference between these two methods is that instead of using 

differential equations, surface integrals are discretized in FVM [60]. 

 

2.6. Inverse Problem of Electrocardiography 

Inverse problem is obtaining information about an object or a system of interest, by using observed 

measurements. Solutions for these inverse problems are used in many areas of science and 

mathematics such as astronomy, physics, statistics, geophysics, computer vision and medical 

imaging. 

 

Inverse problem of electrocardiography (ECG) is obtaining and understanding heart’s electrical 

activity, by using measured torso potentials. To obtain an inverse ECG solution, patient’s body 

anatomy and physical properties should also be known. Inverse solution of ECG is very important 

because, it gives information about possible cardiac abnormalities, effects of drugs may be 

monitored by using inverse ECG solutions.  

 

The main difficulty in inverse problems is their ill-posed nature, which means there is not a unique 

solution for the inverse problem, because different solutions can be obtained for different source 

models. For this reason, obtaining a solution is not a very easy task. To overcome non-uniqueness of 

inverse ECG problem, simplified cardiac models are used. As explained before these cardiac source 

models are fixed dipole, multipole, moving dipole, the equivalent double layer model, the uniform 

double layer model, epicardial potential model, endocardial potential model, transmembrane 

potential model, activation time based models.  According to the selected source model, different 

implicit constraints are applied for determination of model parameters from body surface potentials 

[86, 87]. Among these models, epicardial potential distribution is the most popular one and in this 

thesis, epicardial potential distribution is used to define heart’s electrical activity. By using epicardial 

potential distribution, there is a unique model for solution of inverse ECG problem; however, ill-

posedness still exists. There are always geometrical and measurement errors in the inverse ECG 

system. In case of small error in the system, the solution becomes unstable and oscillates in an 

unknown way. To overcome this ill-posedness, different regularization methods are used. Some of 

these methods use both spatial and temporal properties of the problem and others are not interested 

with temporal properties of the problem and only implement spatial constraints. In this thesis, we 

will focus on spatial methods that try to decrease the effect of singular values and arrange the 

condition number of the transfer matrix. 

2.6.1. Spatio-Temporal Methods 

Cardiac sources are correlated both in time and space, thus inverse ECG methods using both spatial 

and temporal properties would be more appropriate to solve the problem. These methods are usually 

referred to as the spatio-temporal methods. Their goal is to use more prior information by adding 

temporal constraints to the problem to decrease reconstruction error. In this section, spatio-temporal 

approaches will be investigated. 
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2.6.1.1. Multiple Constraints Approach 

Brooks et al. [14] imposed multiple constraints instead of using single constraint for the solution of 

inverse ECG problem. In their study, they used an extra constraint within the standard Tikhonov 

regularization setting. They combined two spatial constraints and they also used one spatial and one 

temporal constraint which they call joint time/space (JTS) regularization. They also defined a new 

regularization parameter selection method called the L-surface for simultaneously selecting two 

optimum regularization parameters for both constraints. They validated their results by simulations 

using dipole sources and measured epicardial potentials. Their results show that JTS regularization 

give better solutions than using only spatial constraints and applying two spatial constraints decrease 

dependence to on a particular constraint and smaller regularization parameters are enough.  

 

Gavgani et al. [61] used genetic algorithm to estimate multiple regularization parameter for 

Tikhonov regularization. They validated their results by using a realistic heart torso model and 

obtained that performance of Tikhonov regularization is improved by using genetic algorithm based 

multiple constraints. 

 

2.6.1.2. Admissible Solution Approach 

In literature, there are also methods trying to impose as many constraints as may be available. In this 

method, no regularization parameter is selected instead the nature and size of the constraints is 

defined. This method is suggested by Ghandi et al. [62] and they used multiple spatial constraints, 

temporal constraints and weighted constraints and tried to find a solution to meet collection of 

constraints set. For this purpose, an iterative algorithm is implemented which employs a constraint at 

every iteration.  They stated the advantages of the admissible solution as: 

 Regularization parameters are replaced with direct bounds which are easier to implement. 

 Large number of constraints can be implemented without changing solution method. 

 Since, method employs single constraints iteratively; effectiveness of each constraint on 

the solution can be examined. 

2.6.1.3. State Space Models 

State space models which is also known as the Kalman filter and the Kalman smoother use spatial 

and temporal properties of inverse ECG problem [15, 16, 17, 18, 19]. The spatio-temporal 

relationship between two consecutive time instants is defined by a matrix called the state transition 

matrix (STM). The main complexity in the Kalman filter approach is the determination of STM. In 

their study, Berrier et al. [15] used an identity matrix multiplied with a scalar as a STM relating only 

the next value of epicardial potential by the present value. Their study showed that Kalman filter 

gives better results than the spatial Tikhonov regularization and the temporal Twomey regularization 

methods. Goussard et al. used epicardial potentials to calculate the STM [16, 17]. They concluded 

that proper definition of STM is patient dependent and very important for Kalman filter approach, 

because Kalman filter can give better or worse results than Tikhonov or Twomey regularization 

methods depending on the STM choice. 

 

2.6.1.4. Bayesian Maximum A Posteriori (MAP) Estimation  

The Bayesian MAP estimation method needs prior information about the epicardial potentials to 

define the a priori probability density function (PDF) and maximizes the a posteriori PDF. Bayesian 

MAP approach can be solved separately for all time instants which makes it a spatial method [20] or, 

it can be used as a spatio-temporal method by taking advantage of the temporal correlations in 

addition to the spatial correlations of the epicardial potentials [21].  

2.6.2. Spatial Methods 

Spatial methods use only spatial properties of the ill-posed problem and does not interest with 

temporal properties. Some of the spatial methods in the literature are Tikhonov regularization [6, 7, 

8], TSVD [7, 9], LSQR [10, 11], TTLS [12, 13], Lanczos TTLS [13]. Some methods like Bayesian 

MAP can be used as both spatial and spatio-temporal method. Here, we will focus on the spatial 

methods that we used in this thesis, which eliminate singular values causing error in the solution of 

the inverse ECG problem or arrange condition number of the transfer matrix by modifying it to a 
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more suitable value. These methods do not need special a priori information such as the priori PDF, 

or the STM. They use well-defined spatial constraints to solve the problem. 

 

2.6.2.1. Tikhonov Method 

Tikhonov regularization is the most commonly used method for the solution of inverse ECG 

problem. Tikhonov regularization aims to minimize the cost function by imposing some constraints 

on the magnitude or derivatives of epicardial potentials. It is a method based on linear least squares, 

which deals with only measurement errors on the torso potentials and largely effected by geometric 

errors. 

 

Regularization parameter selection methods for Tikhonov method are inspected in different papers. 

Johnston et al. [6] compared performances of CRESO, L curve and their proposed method zero 

crossing method. Performances of these parameter selection algorithms were tested by concentric 

sphere model and realistic torso model. According to the results, all of the methods gave similar 

results, but estimation of the regularization parameter value using the zero crossing method is much 

simpler. In a study by Shou et al. [7], a concentric sphere model and a realistic heart-lung-torso 

model were used and torso meshes were obtained by h-adaptive BEM Method. By using these 

simulation environments, performances of parameter selection methods; GCV, L-curve and the 

discrepancy principle (DP) methods were compared. Simulations done for measurement error case 

and all methods gave similar results for small noises. With increasing noise, DP yielded better 

results, but it needed prior information about noise, therefore L-curve and GCV were more useful. 

Tikhonov method was used as a performance measurement criterion by Robert D. Throne et al. [8]. 

In this study, performance of Generalized Eigensystem (GES) technique was compared with 

Tikhonov regularization and TSVD methods. According to simulations made using a realistic heart 

torso model, GES gave better results than another in terms of the residual error. 

There is also a modified version of Tikhonov regularization which is called the Twomey 

regularization. Here, a priori information about the desired epicardial potentials is needed [63]. 

Therefore, Twomey method is not used as much as the Tikhonov method. 

 

2.6.2.2. Truncated Singular Value Decomposition 

TSVD is another most commonly used inverse ECG solution method. TSVD is based on truncation 

method, which means ignoring small singular values. Because of ignoring small singular values, 

high frequency components are ignored; therefore, the solution is smooth. TSVD is also a linear least 

squares based method and is effected by geometrical errors like other least squares based methods. 

Tikhonov and TSVD are usually used as reference methods for assessing the performances of 

different regularization methods. 

 

Performance of TSVD is compared with Tikhonov regularization and Truncated Total Least Squares 

by Shou et al. [9]. In their study, same real heart-torso model with previous study is used [7]; only 

the ventricular region of the heart is included and the electrical activity of the heart was represented 

by a radial current dipole source. The transfer matrix was obtained by BEM. GCV method was used 

for regularization parameter selection. For only the measurement error case, all methods have similar 

results, but with increasing noise Tikhonov regularization and TTLS gave slightly better results than 

the TSVD. In a second simulation, geometry error was also added; in this case TTLS gave better 

results, because it can also handle geometrical errors.  

2.6.2.3. Least-Squares QR Method 

LSQR is an iterative method based on Lanczos bidiagonalization and QR factorization, which is 

practical when transfer matrix A is large and sparse [10]. Performance of LSQR method is compared 

with different regularization methods. Jiang et al. [11] compared the performance of LSQR method 

with well-known regularization methods Tikhonov regularization and the TSVD method. Genetic 

algorithm was also used to optimize the LSQR based inverse ECG solutions. A realistic heart-torso 

model was used for simulation protocol. Epicardial potentials were modeled by a single dipole and 

different levels of Gaussian measurement errors were added to torso potentials. During computer 

simulation, iteration number of the LSQR method, the regularization parameter value of the 

Tikhonov regularization method and the truncation level of the TSVD method were selected by the 
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L-curve method. For different measurement and geometrical error values LSQR gave better results 

than the TSVD and Tikhonov regularization. By increasing the noise level, advantage of LSQR 

became clearer. It was also observed that combining LSQR with genetic algorithm gave better 

results. 

  

2.6.2.4. Truncated Total Least Squares 

TTLS method is similar to the TSVD method; the main difference is that in TTLS, singular values of 

(A,Y) matrix are found and small singular values are neglected in the reconstruction [13]. Since, 

singular values of (A,Y) are computed, TTLS method is effective for both measurement and 

geometrical errors. 

 

TTLS method was compared with the traditional regularization methods Tikhonov regularization 

and the TSVD method by Shou et al. [12]. To measure the performances of these algorithms, a 

realistic heart- lung-torso model was used and forward problem of ECG was solved by using h-

adaptive BEM method. The epicardial potentials were generated from a current dipole inside the 

heart and normalized to ±10 mV. GCV method was used for parameter selection for all 

regularization methods. Two different simulations were conducted for 30 dB and 50 dB 

measurement errors with no geometric error and with geometric error. In general, geometric error is 

simulated as moving heart in a direction and solving the inverse ECG problem for this situation, but 

in this article geometric error is characterized by adding a random error matrix to the transfer matrix.  

 

In the first simulation without the geometric error case, it was observed that with increasing error 

second order TSVD, TTLS and Tikhonov give worse results than zero and first order. It was also 

observed that all methods perform similarly, but TTLS and Tikhonov give slightly better results than 

TSVD. In the second simulation geometric error was also added to the system. It was observed that, 

TTLS gives better results than other two for different geometric error levels, especially in the no 

measurement error case. It was also stated that TTLS is a fast algorithm and applicable for real time 

applications. 

 

2.6.2.5. Lanczos TTLS 

Lanczos TTLS algorithm is a modified version of TTLS method. The complexity of SVD algorithm 

is O(mn
2
), therefore when the dimension of transfer matrix is large, it is computationally difficult to 

calculate the SVD of the transfer matrix. There are partial singular value computation algorithms 

[88] for calculating SVD of (A,Y) for a sufficiently large truncation parameter. However, sparsity 

and structure of the transfer matrix is lost by these algorithms. For these reasons, iterative methods 

based on Lanczos bidiagonalization, which do not change the transfer matrix, are considered. Thus, 

in this thesis we also included a Lanczos bidiagonalization based TTLS approach [13].  

 

This method has not been used to solve the inverse ECG problem, however applications in other 

inverse problems have been reported. For example, in [13], it was used to solve discretization of 

Phillips's test problem [64]. Fierro et al. compared performance of Lanczos TTLS with Tikhonov 

regularization and singular value decomposition based methods TTLS and TSVD. For simulations, a 

transfer matrix was used with size 64 32, based on Phillips problem [64]. Performances of three 

algorithms were compared for high and low level noises. For the high noise case, TTLS and Lanczos 

TTLS gave better results than others. The histograms obtained based on 1000 tests were very similar 

for TTLS and Lanczos TTLS. For the low level noise case, all methods gave similar results. Average 

number of flops for TTLS, Lanczos TTLS and full bidiagonalization were also compared. According 

to test results, it was observed that Lanczos TTLS is ten times faster than the TTLS for some cases. 

And for larger transfer matrices, this ratio increases according to sparsity and structure of the transfer 

matrix. Finally, they concluded that TTLS method has a filtering effect in discrete ill-posed 

problems and gives better results than TSVD for most cases. Lanczos bidiagonalization based 

iterative Lanczos TTLS method has more accurate results than TTLS for large sized sparse and 

structured matrices. 
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2.6.3. Other Methods 

 

2.6.3.1. Genetic Algorithm (GA) in the Solution of Inverse ECG Problem 

Studies in the literature show that GA cannot be used as a regularization method individually for 

solving the inverse ECG problem; however, it gives better results when combined with other 

regularization methods [65]. Jiang et al. [65] used GA to optimize results obtained by Tikhonov 

regularization method. They used a concentric sphere heart torso model in their simulations and they 

obtained better results with lower residual error and higher correlation coefficient. In another study 

by Jiang et al. [66], they both used TSVD and Tikhonov as additional constraints for the GA. A 

realistic heart torso model was used for their simulation and they concluded that genetic algorithm is 

helpful to improve the performances of TSVD and Tikhonov, especially at higher noise levels.  

Gavgani et al. [61] showed that GA can be used for determination of the regularization parameters in 

the multiple constraints approach. In other studies [67, 68] LSQR was also combined with the GA to 

improve the results. 

 

2.6.3.2. Model based Approaches 

 

Patient specific models are also used for inverse ECG problem. Farina et al. [22] used MRI images 

to obtain patient specific thorax model. Then a cellular automaton model was used to obtain the 

transmembrane potentials within the cardiac tissue by using an anatomical model of the patient’s 

heart generated from the MRI images. Then, the forward ECG problem was solved. The simulated 

transmembrane potentials were used as a priori information for Twomey and stochastic 

regularization methods in the solution of the inverse ECG problem. According to their results, 

stochastic regularization gave the best results, and Twomey was better than Tikhonov regularization. 

 

In another study, He et al. [23] proposed a new method to obtain cardiac transmembrane potentials 

by using an anisotropic heart model. They used CT and MRI images to obtain a realistic heart torso 

model. Then they simulated body surface potentials by using this realistic heart torso model. 

Simulated body surface potentials were compared with the measured ones and by assessing the error 

between these measured and simulated potentials, the source configuration was altered to obtain 

better solutions. By this way, they have developed a spatio-temporal approach to obtain cardiac 

transmembrane potentials on 3-D the myocardium. 

 

2.6.3.3. Other Approaches 

 

There are also different approaches for solving the inverse ECG problem. Three dimensional cardiac 

bioelectrical sources modeled by current dipoles can be estimated by using Laplacian weighted 

minimum norm method (LWMN) [69]. In that study the inverse solution was improved by using a 

recursive weighting strategy due to smoothing effects of the Laplacian operator. They also 

conducted computer simulations using realistic heart torso models to measure performance of the 

method. Results showed that this method can be used for localizing cardiac electrical activity in the 

3-D myocardium. 

 

Generalized eigensystem (GES) approach [70] was also used to solve the inverse ECG problem. This 

method uses finite element method to generate a truncated eigenvector expansion for stabilizing 

inversion. Throne et al. [71] also used the GES technique for the solution of inverse ECG and 

compared it with Tikhonov regularization and TSVD by using a realistic heart torso model. Their 

study showed that GES gives better solutions. The study carried out by Nash et al. [72] is important 

because they measured potentials from both the heart and the body surfaces of a pig simultaneously 

during an acute period of regional ventricular ischemia. They plan to use their database of recordings 

to validate the inverse ECG approach. 
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CHAPTER 3 

METHODS 

In this chapter, theory of inverse ECG problem and the methods used to find a solution will be 

explained. As explained before, inverse ECG is the determination of unknown electrical activity of 

the heart from measured body surface potentials. The inverse problem of ECG is ill posed, hence the 

forward transfer matrix is ill conditioned. Therefore, regularization methods are used to find a 

solution for inverse ECG problem. At this section, the details of Tikhonov, TSVD, LSQR, TTLS and 

Lanczos TTLS will be given. 

3.1. Problem Definition 

Epicardial potentials and body surface potentials are related by the following linear equation in the 

forward problem of ECG:  

 

           ,          (3.1) 

 

where         is the matrix of unknown epicardial potentials,         is the matrix of body 

surface potential measurements,         is the matrix representing Gaussian measurement errors 

and          is the forward transfer matrix. Here, we assume that there are m measurement 

electrodes on the body surface, n nodes on the epicardial surface, and the signals are measured at t 

different time instances. 

 

For a time instant, visual representations of epicardial and torso potentials are given in Figure 3.1. 

In our problem epicardial potentials are measured from 490 nodes on the heart and body surface 

potentials are measured from 771 nodes. 

 

Equation 3.1 can be also stated in vector notation for every time instance as: 

 

                                                ,     (3.2) 

 

where k represents each time instance and the solution is found for every time instances, but the 

notation that we are going to use in this section is in the matrix form as in Equation 3.1. 

 

 
Figure 3.1: Visual representation of epicardial and torso potentials for a time instance 
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3.2. Properties of the transfer matrix A 

The transfer matrix A is obtained as the solution of the forward problem of ECG. Boundary Element 

Method (BEM) is used for the solution of the forward problem [56].  

 

In our case, the transfer A matrix is not square, for this reason direct inverse cannot be obtained. For 

full rank non square matrix        , where    , the left inverse of A matrix is calculated as: 

               ,        (3.3) 

 

but transfer matrix A is not full rank at our problem, therefore Equation 3.3 is not applicable. Pseudo 

inverse of transfer matrix A can be obtained, but it may not give good results. This is related with 

condition number or singular values of transfer matrix. The condition number is another parameter 

for defining a matrix as an ill-conditioned or well-conditioned matrix. The condition number of the 

matrix A is defined as the multiplication of the norm of A and the norm of inverse of A: 

 

            .        (3.4) 

 

The norm of A is defined as: 

 

                   
 
    .       (3.5) 

 

Alternatively, it can be defined as ratio of largest singular value to the smallest singular value of A. 

The condition number of a matrix is greater than or equal to 1. When the condition number of matrix 

is close to 1, it means the matrix is well-conditioned and the inverse of matrix can be calculated 

accurately. Matrices with large condition number are called ill-posed matrices and their inverse 

cannot be calculated correctly.  When the condition number is infinity, it means that matrix is not 

invertible.  

 

Figure 3.2 shows the singular values of transfer matrix  A, when the figure is inspected  it is seen 

that the largest singular value of A matrix is 1.5 and the smallest one is near zero, therefore the 

condition number of our forward matrix A is equal to          , which means that A is an ill-

conditioned matrix.  

 

 
Figure 3.2: Singular values of A matrix 
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3.3. Inverse Solution Methods 

Due to this ill-posedness, any small noise causes large perturbation in the inverse solution making it 

unreliable and often meaningless. Since there is noise on the measurements, the transfer matrix is not 

error free. Different regularization methods have been used in literature to solve this problem.  In the 

rest of this chapter, we present some of the regularization methods that we used in our thesis study to 

find estimated epicardial potentials (Xest).  

3.3.1. Truncated Singular Value Decomposition (TSVD) 

The singular value decomposition (SVD) is a method for solving ill-posed linear problems. When 

singular value decomposition is used to define transfer matrix          
where    : 

 

               
  

      ,       (3.6) 

 

where   

                  
    and           , 

                  
    and           . 

 

The columns of U and V are left and right singular matrix respectively. S is a diagonal matrix 

containing singular values (s1 ,s2 ,…,sm) of A, and the off-diagonal elements are 0. 

 

     

 
 
 
 
 
 
      
      
     
     
      
      

 
 
 
 
 

    

 

The main idea behind SVD method is calculating the eigenvectors and eigenvalues of A
T
A and AA

T
. 

The columns of U consists eigenvectors of A
T
A and columns of V are the eigenvectors of AA

T
 

respectively. The square roots of A
T
A or AA

T
 are the singular values, where the diagonal matrix S 

consists of singular values s1 ≥ s2 ≥ … ≥ sn ≥ 0. 

 

TSVD is a commonly used method for solving the inverse ECG problem [39]. It is based on finding 

the singular value decomposition of the coefficient A matrix, and finding a regularized solution by 

ignoring small singular values.  

 

The inverse of the transfer matrix A can be written as: 

 

         
  

  

 
    ,        (3.7) 

 

by using Singular Value Decomposition. Then, the solution of Equation (3.1) can be written as by 

multiplying both sides of equation with A
-1

: 

 

      
       

  

 
          

    

  

 
          

   

  

 
       .    (3.8) 

 

From (3.8), it can be seen that the effect of small singular values are large on the solution. For this 

purpose, an optimum truncation parameter k for every time instance is determined and the k-largest 

singular values are used in the solution:  

 

 

       
         

  
   ,  (k ≤ n) .    (3.9) 

 

When the truncation level k is chosen properly, the condition number of     matrix is small. 

Estimated solution Xest can be written as by truncating small singular values: 
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       .      (3.10) 

 

Truncating k singular values is equivalent to applying a filter fi to the solution found at (3.12), where 

fi is: 

 

                            , 

                                . 

 

By using filter factors,      can be written as: 

 

         
   

   

  

 
          

   
  

  

 
      .     (3.11) 

 

3.3.2 Tikhonov Regularization 

Tikhonov regularization is one of the most popular regularization methods to deal with the ill 

posed nature of the inverse ECG problem [73]. In this method, the solution is chosen to minimize 

the cost function consisting of the residual error norm and a constraint norm: 

                                                     (3.12) 

where λ is the regularization parameter controlling the relative weights of the residual and 

constraint norms,   λ  is the solution for a specific regularization parameter λ, and R is the 

regularization matrix defining the constraint to be used for regularization. For “zero order’’ 

Tikhonov regularization, R matrix is chosen as the identity matrix (R = I), for “first order” 

Tikhonov regularization, R is chosen as the surface gradient operator (R = G) and for “second 

order” Tikhonov regularization, it is the surface Laplacian operator (R = L). In this study, we use 

the zero-order Tikhonov regularization method, because it is more appropriate for solution of 

inverse ECG [74]. 

For Tikhonov problem (3.5), there are two alternative representations: 

                        ,       (3.13) 

     
 
  
    

 
 
  

 
 .       (3.14) 

From Equations (3.13) and (3.14), we see that there is a unique solution     , if the null space of A 

intersects with the null space of R (i.e.,                  in other words, the coefficient 

matrix has full rank [24].  

              ,         (3.15) 

where  

       
                 ,

 
   

   
(3.16) 

is the Tikhonov regularized inverse.  

 

Tikhonov method is equivalent to applying filter factors to singular value decomposition 

representation of X: 

      
  
 

  
     

  
  

  
  

 
    .       (3.17) 
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The first term        
  
 

  
     

 in Equation (3.17) is called the filter factor and it ignores the 

amplification of small singular values. By using this filter factor, Equation (3.11) is written as: 

        
  
  

  
  

 
      .        (3.18) 

From Equation (3.18), it is obvious that larger singular values have larger effect and the 

determination of regularization parameter λ is important. There are different ways to find an 

optimal regularization parameter; the L-Curve approach [30], Generalized Cross Validation (GCV) 

method [25, 26], Composite Residual and Smoothing Operator (CRESO) [27] and maximum 

correlation coefficient method [75]. These methods will be explained later. 

 

3.3.3. Least Squares QR (LSQR) Method 

Least Squares QR (LSQR) [11] is an iterative method for solving the linear systems as in Equation 

(3.1).  LSQR method iteratively produces X
(k)

 matrices for iteration number k = 1,2,3.. , after k 

iterations X
(k)

  approaches to optimal solution. If a stopping condition for k is not implemented a 

noise corrupted solution with high relative error is obtained.  Determination of correct 

regularization parameter k is an important stage at LSQR method solution. 

LSQR method starts with finding the lower bidiagonal form of A matrix by using Lanczos 

Bidiagonalization (LBD) procedure [76], which is an useful tool for finding decompositions of 

large sparse matrices. LBD computes vectors uj   IR
m 

, vj   IR
n 

which are different than vectors 

produced by SVD method and scalars αj, βj, which meets Bk = U
T
AV.  

Here, the columns of Uk+1 and Vk matrices are orthanormal vectors, if exact arithmetic is used: 

                       
          ,       

                ,   

                     
      ,      

          . 

    
         is a lower bidiagonal matrix: 

Bk =  

 
 
 
 
 
 
       
         
       
     
       
          

 
 
 
 
 

   

The algorithm for Lanczos Bidiagonalization is given below [76]: 

 Choose a starting vector        and let  

         ,       
 

  
 ,      and    

for i = 1, 2, …, k do 

                 

          

   
  

  
  

              
            

      
  

    
 

end 

For different k values, the uk+1, vk vectors, torso potential Y and bidiagonal Bk matrix are related by 
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                 ,       (3.19) 

            ,        (3.20) 

            
               

   ,     (3.21) 

where ek is the k
th

 unit vector. 

The relations obtained by Lanczos bidiagonalization can be used to solve the least-squares 

problem:  

            .        (3.22) 

Let the epicardial potential at k
th 

iteration: 

         
           .                     (3.23) 

The residual is defined as by using Equations (3.19) and (3.23): 

                        
         .        

(3.24) 

From Equation (3.20), the residual takes the following form: 

                   
           .             (3.25) 

To minimize residual r
(k)

, tk+1=  1e1 - Bky
(k)

 should be decreased because Uk+1 is bounded and 

orthanormal. Therefore, the least-squares problem changes to    

             
    

 
 ,       (3.26) 

which forms a basis for LSQR. 

QR decomposition is a popular method to solve the linear least squares problem [77]. When QR 

factorization of Bk is calculated, an orthogonal matrix    and an upper triangular matrix Rk are 

produced. 

Multiplication of   
 with [Bk  │   1e1] produces a (k+1) × (k+1) matrix, which consists of three 

parts: an upper triangular k × k matrix  Rk, a k × 1 vector     and a scalar     . 

  
                

    
     

     

 
 
 
 
 
 
 
         
         
      
       
        

          
 
 
 
 
 
 

  . 

The vectors y
(k) 

and tk+1 could then be calculated from: 

         
         ,           (3.27) 

        
 

    
    .        (3.28) 

  

By combining Equations (3.23) and (3.27), an estimated solution for k
th

 iteration found by LSQR 

method: 

http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
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      .       (3.29)  

LSQR is an iterative method, so stopping point must be chosen correctly to find an approximate 

solution X
(k) 

to true epicardial potential X. Correct stopping point k can be determined by different 

regularization parameter selection methods. 

3.3.4. Truncated Total Least squares (TTLS) 

The total least squares (TLS) method is based on least squares approximation, used for the case 

when coefficient matrix A and the right hand side matrix Y have error terms.  Truncated total least 

squares method is a modified TLS method, which filters the effect of small singular values [13, 78, 

79]. By this property TTLS seems similar to TSVD, but the main difference is while TTLS discards 

the redundant information at both A and Y matrices, TSVD only deals with coefficient matrix A. An 

important stage in the solution procedure is the selection of truncation level. The algorithm of TTLS 

method is given below [13]:  

 The singular value decomposititon of augmented matrix (A, Y) is calculated as explained 

before: 

                  
    

   
      ,      (3.30) 

where                           . 
 

 A truncation parameter k ≤ min (n, rank (A,Y)) is selected such as : 

                                                         

Selection of truncation parameter is accomplished by using different regularization parameter 

selection methods. 

 

 The V matrix is partitioned as: 

       (3.31) 

where q = n – k + 1 

 The minimum norm TTLS solution     is computed as: 

               
     

         
 

        
 .      (3.32)  

 

The pseudo inverse of      (    
 ) exists because the norm of      is not zero (          ). The norm 

of    is calculated as: 

 

                
        .       (3.33) 

 

The TLS residual is defined as: 

 

                 
 
       

          
      .     (3.34) 

 

     is the frobenius norm, which is the square root of the sum of the absolute squares of matrix 

elements,           are the error versions of coefficient and body surface potential distribution 

matrices respectively. 

It can be seen that norm of    increases with k while the residual decreases with k. 

 

When      is zero or near zero,    becomes very large, therefore it is appropriate to define a 

threshold value for     to limit the solution norm (    ).  

 

http://mathworld.wolfram.com/SquareRoot.html
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3.3.5. Lanczos Truncated Total Least Squares (LTTLS) 

When the coefficient matrix is small, SVD matrix can be calculated easily and for different values of 

truncation parameter (k) the solution may be tested. However when the coefficient matrix is large, 

the TSVD and TTLS methods  become unapplicable, because the SVD algorithm complexity is 

O(mn
2
) and tests for  large k values  are impractical. For these reasons, methods such as Lanczos 

bidiagonalization which minimizes size of the coefficient matrix without losing large singular values 

are used when solving discrete ill positioned problems. The combined version of Lanczos 

bidiagonalization and TTLS method is named as Lanczos TTLS method.  

 

The Lanczos TTLS method is defined below: 

As defined before at LSQR method, by using Lanczos bidiagonalization two matrices Uk = (u1 ,…, 

uk+1) and Vk = (v1 ,…, vk) and a (k+1)×k bidiagonal matrix Bk produced. Where: 

 

AVk = UkBk   and   Y =  1 u1   .       (3.35) 

 

When k is large enough to capture all singular values of A matrix, the TLS problem can be projected 

on the subspaces spanned by Uk and Vk.  

 

The TLS problem is applied to small sized matrix produced by Lanczos bidiagonalization to create a 

truncated TLS solution. To calculate TTLS solution SVD is applied to (Bk ,  1e1) matrix: 

 

(Bk,  1e1) =                  T
   .

       
(3.36) 

 

The       matrix is partitioned as:
 

       (3.37) 

The standard TLS solution yk is: 

 

           
        

         .        (3.38) 

 

Then the regularized Lanczos TTLS solution     is: 

  

                     
        

       .      (3.39) 

 

3.4. Regularization Parameter Selection Methods 

 

Regularization parameter is a positive scalar tying to find a balance point while minimizing the norm 

of solution and norm of residual. Regularization parameter is symbolized as λ      according to 

regularization parameter. Selecting small regularization parameter increases effects of high 

frequency elements of signal. This is called under regularization and no meaningful information 

about ECG signal is obtained. When large regularization parameter is selected, high frequency 

elements of signal is suppressed. This case is called over-regularization and causes a smoothing 

effect on the signal.  

For these reasons, selecting a correct regularization parameter is an important stage in the inverse 

solution of problems. In this section, some of the regularization parameter selection methods; 

CRESO, GCV, L-curve, MCC will be explained. 

3.4.1 .Composite Residual and Smoothing Operator 

Composite Residual and Smoothing Operator (CRESO) is a commonly used regularization 

parameter selection method, applicable for continuous methods such as Tikhonov regularization. 

CRESO is firstly suggested by Colli Franzone [27]. 
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The regularization parameter selected by CRESO tCRE is the smallest value of t>0 which is the 

maximum of the function C(t) [6, 28]:  

 

         
     

 

  
    

     ,       (3.40) 

 

where t is the λ parameter for Tikhonov method. 

 

 
Figure 3.3: CRESO Plot 

 

By using Singular value decomposition of transfer matrix A = USV
T
, where U and V are 

orthanormal vectors and the diagonal entries of S is the singular values of A matrix, the solution    
can be written as [6]: 

 

      
     

   
    

  
       ,       (3.41) 

 

where  

    are the diagonal elements of S matrix  

   is the scalar product of   
   

   and    are the columns of U and V matrices. 

Since the matrices U and V are orthanormal,     
  can be written as: 

 

    
    

   
   

 

       
   

 
      .        (3.42) 

 

By using (3.42), (3.40) can be written as: 

 

       
     

   
    

 
 

 
       

  

   
    

   .     (3.43) 
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For different values of t, the C(t) function calculated, when the values are plotted the maximum of 

the plot is the CRESO regularization parameter tcre. 

 

3.4.2. Generalized Cross-Validation 

Generalized cross-validation (GCV) is a mostly used, famous regularization parameter selection 

method, determining appropriate values of parameters such as the regularization parameters λ in 

Tikhonov regularization or truncation number k in truncated singular value decomposition and 

truncated total least squares. It is based on statistical considerations, such as a good regularization 

parameter converges to real data, and predicts missing data values. GCV is based on the idea that if a 

random element Yi of right hand side Y is skipped, then the calculated solution should guess this 

observation. The choice of regularization parameter should be free of orthogonal transformation of Y 

[25, 26]. 

 

 
Figure 3.4: GCV Plot 

 

GCV method looks for a regularization parameter value which minimizes mean square error 

                   value. Because the exact value of right hand side Y element is unknown, 

GCV methods use the following equation to predict correct regularization parameter: 

 

      
         

 

            
   

 ,      (3.44) 

 

where    
is the matrix that produces regularized solution         when multiplied with torso 

potentials Y (          
  ). Different from CRESO, GCV is defined for both discrete and 

continuous regularization parameters.  

 

The denominator can be written as: 
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                  ,   (3.45) 

 

where m and n are dimensions of transfer matrix, p is the number of filter factors and    is the filter 

factors. 

3.4.3. L-Curve Method 

L-curve is a well- known method, firstly introduced by Hansen [80] to find finest regularization 

parameter. L-curve is a log-log plot of norm of regularized solution      
   versus norm of the 

residual solution       
     for different values of regularization parameter (i) [88]. 

                     
                

     for   i = 1,2,….,p    ,  (3.46) 

where p is the number of regularized solutions. 

 

When a log-log scale the      
   values are plotted on ordinate against the       

      values on 

the abscissa, the graph looks like a ‘L’ letter. The correct regularization value (i) is found at the point 

of the maximal curvature of the L-curve which is the value at the vertex of L curve. The value at the 

vertex corresponds to best approximate solution of Equation (3.1). A typical L-curve is shown in the 

Figure 3.5 and the corner of the L-curve is marked with red lines: 

 

 
Figure 3.5: A typical L-curve plot  

 

The horizontal part of the L-curve is dominated by the regularization error, while the vertical part 

shows the sharp increase in the norm caused by propagation errors [88]. 

3.4.4. Maximum CC Method 

 

Maximum correlation coefficient (MCC) method is not a suitable method for clinical life usage, 

because it uses real epicardial potentials to determine regularization parameter. In this approach, first 
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the number of regularization number to be tried is decided then upper and lower limits of the 

regularization parameters also decided. Finally, for all of the regularization parameters, 

corresponding regularization method solutions are obtained. These results are compared with real 

epicardial potentials and the one giving maximum cc is selected as a regularization parameter. MCC 

is important to measure the performance of regularization methods by eliminating effects of the 

regularization parameter selection methods. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter, we first explain the simulation data used for solving the inverse problem, and then we 

give the reconstruction results of inverse ECG problem for different regularization methods.  

4.1. Experimental Data 

Body surface potentials used in this thesis are obtained from the QRS interval of measured epicardial 

potentials and a forward transfer matrix, which was conducted as a Tübitak research previously. 

 

The true epicardial potentials used for the simulation of body surface potentials were measured by R. 

S. MacLeod and his coworkers at the University of Utah, Nora Eccles Harrison Cardiovascular 

Research and Training Institute (CVRTI) [81, 82]. These epicardial potentials were obtained from an 

isolated dog heart using a nylon sock electrode with silver wires slipped over the ventricles. The 

epicardial potentials were measured from 490 points at a rate of 1000 samples per second. To obtain 

realistic results, a heart taken from a dog was perfused from circulatory system of another dog and 

placed into an electrolytic filled (500 Ωcm) adolescence human thorax-shaped fiberglass tank.  

 

During measurements, the heart was stimulated from the ventricles to simulate ventricular 

arrhythmias and the epicardial potentials are recorded for 97 time instants. In Figure 4.1, different 

time instants during QRS cycle are given and it can be seen that initial activation starts from the 

ventricle and propagates all over the epicardial surface during time. At time instant 2, most of the 

epicardial surface is at rest and measured voltages from most of the points are approximately zero. 

When time passes size of the activated region gets larger and at time instants 39, 51 and 63, most of 

the epicardial surface activated, therefore larger values are measured at epicardial points. After time 

instant 70, it can be seen that activation is propagated all over the epicardial surface; however 

measured voltage values at epicardial nodes start to decrease, because effect of the initial activation 

starts decreasing. 

 

The forward transfer matrix relating the measured epicardial potentials to the body surface potentials 

is calculated using BEM [56]. The thorax model used for simulation of the measurements consists of 

heart, lungs and thorax. The conductivity values of lungs and thorax are selected as reported in 

literature [83] and a transfer matrix relating torso potentials to epicardial potentials is formed.  

 

This forward transfer matrix calculated by BEM method is then used to obtain body surface potential 

recordings at 771 nodes on the body surface form epicardial potential measurements from 490 points 

on the heart surface. First, measured epicardial potentials are multiplied by the transfer matrix to 

obtain noiseless body surface potentials (torso potentials). Different levels of independent and 

identically distributed Gaussian noise are added to these noiseless torso potentials to obtain noisy 

body surface potentials used for simulations. The flowchart for simulating body surface potentials 

from the epicardial potentials is shown in Figure 4.2. 
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Figure 4.1: Propagation of initial activation on epicardial surface during time 
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Figure 4.2: Schematic representation of forward problem of ECG 

 

From Figure 4.2, noisy torso potential matrix   can be calculated as: 

 

          .        (4.1) 

 

By using Equation 4.1, Equation 3.1 can be written as: 

 

           ,        (4.2) 

 

where         is the transfer matrix,         is the measured epicardial potentials,        
      is the noiseless torso potentials,         is the white Gaussian noise and          is the 

noisy torso potentials. Here, we assume that there are m measurement electrodes on the body 

surface, n nodes on the epicardial surface, and the signals are measured at t different time 

instances. 

4.2. Evaluation Criteria 

The quantitative comparisons of the reconstructed potentials obtained by different inverse EGC 

methods are achieved by Relative Difference Measurement Star (RDMS), and Correlation 

Coefficient (CC): 

 

          
         

      
       

   

  
      

   
       

   

 ,     (4.3)  

 

       
              

                              
 
   

              
           

                     
 ,     (4.4) 

where, k is the time instant, n is the number of epicardial nodes,      is the estimated solution by 

regularization methods,   is the real epicardial potentials,       is the mean of the estimated solution 

and    is the mean of the real epicardial potentials. From these formulations, it is obvious that higher 

CC or lower RDMS values mean that the method performs better.  

 

Another measure to assess the performance of an inverse solution method is to compare the 

reconstructed activation wavefront to the original one. Since RDMS and CC do not give information 

about the quality of the wavefront reconstruction, a visual evaluation method is needed. For this 

purpose a scientific visualization application named Map3d written by Utah Nora Eccles Harrison 
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Cardiovascular Research and Training Institute is used [29].  By using Map3d program, three-

dimensional geometric models and time-based data associated with those models can be displayed 

and edited. 

 

In Figure 4.3, epicardial potential distribution (left) and the corresponding body surface potential 

map for a single time instant are shown. In the epicardial potential map, blue regions represent the 

activated regions, and red regions represent the regions that have not been activated yet. The 

transition region between those two is the activation wavefront. While visually comparing Map3d 

figures, two important characteristics are considered: 

 

1. The solution’s ability to follow the wavefront without dispersing it much. The dispersion in the 

wavefront is due to smoothing effects of the regularization methods. 

 

1. The solution’s ability to separate the activated or inactivated regions. 

 

 

 
Figure 4.3: Epicardial potential distribution and body surface potential map 

 

Another performance measurement for regularization methods is the process time, faster methods are 

more preferable. 

 4.3. Simulations 

In this section, we first assess the performances of the regularization parameter selection methods. 

Applicable regularization parameter selection methods are implemented for each of our 

regularization methods: Tikhonov, TSVD, LSQR, TTLS and LTTLS. Performance comparison is 

done for the following parameter selection methods: 

 L –curve, 

 GCV, 

 CRESO, 

 Max CC. 

According to performances of regularization parameter selection methods, the most appropriate 

regularization parameter selection method is selected for each regularization method. Among these 

regularization methods, CRESO is only applicable for continuous methods; therefore it is tested only 

for Tikhonov method. 
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Next, performance comparison is done for the following methods: 

 

 Tikhonov Regularization, 

 Truncated Singular Value Decomposition Method, 

 Least Square – QR Method, 

 Truncated Total Least Squares  Method, 

 Lanczos Truncated Total Least Squares Method. 

 

Each of these methods are compared, 

 

a) by using a regularization parameter determined by the maximum CC method, 

b) by using the regularization parameter estimated by the most appropriate parameter selection 

method for each regularization method. Here, “the most appropriate parameter selection 

method” means that it was chosen as the method that yields the best results in the first 

study. 

 

While comparing the performances of our regularization methods, different levels of measurement 

noise are applied. Measurement noise is simulated as independent and identically distributed (i.i.d.) 

white Gaussian noise, and the noise level is defined according to average amplitude of noise (  ). 

For our simulations, two different    values are applied: 15 µV and 150 µV, which correspond to 30 

dB and 10 dB SNR levels, respectively. 

 

The effects of geometric errors are also important in inverse ECG problem. Studies show that 

incorrect geometric interpretations are more significant than the conductivity errors in the torso 

model [52, 84]. For these reasons, the effects of incorrect geometric interpretations of the torso 

model will be examined in this thesis.  

 

To include geometrical errors in our model, first body surface potential measurements were 

simulated as shown in Figure 4.4, by using the real transfer matrix, i.e., the matrix found by using 

the heart-lung-torso model. 15 µV measurement noise was also added to the data. During inverse 

calculations, a geometric error added transfer matrix is used. To add geometric error to the transfer 

matrix, a faulty torso mesh is used. We considered two different ways to obtain a faulty mesh: 

 Changing the location of the heart in the torso. 

 Changing the size of the heart. 

 

These two conditions occur during the movement of the heart while measuring torso potentials from 

the body surface in real life.  

 

When the effects of a change in the heart’s location are examined, the heart is shifted from its 

original location by 6 to 15 mm in the x, y or z directions.  In this study, x-axis points from right to 

left (of the body), y-axis points from front to back and z-axis points from down to up as seen in 

Figure 4.3. Then, this faulty mesh is used to calculate the transfer matrix for inverse solution.  

 

The size changes of the heart are simulated by multiplying the heart’s real coordinates by a scalar 

value in a range of 0.6 to 1.4 and this faulty mesh is used to calculate the transfer matrix. For 

example, multiplying the heart’s size by 0.9 means, 10 % decrease in the size of the heart, and 

multiplication by 1.1 means 10 % increase in the size of the heart. Finally these errors are combined 

and both the heart’s size and the location are changed simultaneously. The geometric error 

simulation procedure is shown in Figure 4.4. 
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Figure 4.4: The schematic representation of the simulation procedure to study geometric errors 

 

4.4. Performances of Regularization Parameter Selection Methods 

In this section, regularization parameter selection methods L-curve, GCV and max CC have been 

used to determine the appropriate parameter for each regularization method. The aim of this study is 

to determine the best regularization selection approach for each method. In addition, CRESO has 

been included in the parameter selection methods for Tikhonov regularization; CRESO is a 

continuous function of the regularization parameter, and cannot be used for methods that have 

integer regularization parameters.  

4.4.1. Performances of Regularization Parameter Selection Methods for Tikhonov 

Regularization  

In this section, lambda ( ) value of Tikhonov regularization method is selected by different 

regularization methods for different noise levels. These methods are L-curve, GCV, CRESO and 

max CC methods. For comparison of performances of these methods, 15 µV (~30 dB SNR) and 150 

µV (~10 dB SNR) Gaussian white noise is added to torso data and inverse ECG problem is solved 

using Tikhonov regularization method. 
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In Figure 4.5, average lambda values for different noise levels are illustrated. This figure shows that 

average lambda values found by L-curve and CRESO methods are larger than other methods. These 

methods fail when the solution is smooth especially first time instants when the excitation has just 

started. This problem of L-curve has also been reported in the literature [25]. Among these methods, 

GCV finds similar lambda values to max CC method especially at 15 µV case. These values are also 

given in Table 4.1 for 15 µV and 150 µV cases. 

 

 

Figure 4.5: Average Lambda Values with respect to Amplitude of noise graph of four regularization 

parameter selection methods for Tikhonov Method 

 

 

Table 4.1: Mean and standard deviation values of lambda, CC and RDMS values of different 

regularization parameter selection methods at 15 and 150 µV measurement noise 

 Methods Avg. Lambda values CC Values RDMS 

15 µV 

measurement 

noise 

L-curve 0.0303 ± 0.08 0.77 ± 0.20 0.60 ± 0.21 

GCV 0.0065 ± 0.01 0.78 ± 0.15 0.60 ± 0.18 

Max CC 0.0086 ± 0.01 0.80 ± 0.14 0.58 ± 0.17 

CRESO 0.0287 ± 0.11 0.78 ± 0.19 0.60 ± 0.20 

150 µV 

measurement 

noise 

L-curve 0.1450 ± 0.18 0.58 ± 0.29 0.82 ± 0.26 

GCV 0.0476 ± 0.04 0.64 ± 0.22 0.77 ± 0.22 

Max CC 0.0573 ± 0.10 0.67 ± 0.20 0.75 ± 0.21 

CRESO 0.1187 ± 0.18 0.62 ± 0.26 0.80 ± 0.26 
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a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

Figure 4.6: a) Average Correlation Coefficient vs Amplitude of noise graph of four regularization 

parameter selection methods for Tikhonov Method b) Average RDMS vs Amplitude of noise graph 

of four regularization parameter selection methods for Tikhonov Method 
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a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 

 
Figure 4.7: Lambda value selected by GCV method at a) time instant 60 ms b) time instant 55 ms. 

 

Figure 4.6.a and Figure 4.6.b show the average CC and RDMS values for the regularization 

parameter selection methods. When Figure 4.6.a and Figure 4.6.b are inspected, it is seen that GCV, 

CRESO and L-curve have similar results, and these results are comparable to max CC method. 

Average and standard deviation values of CC and RDMS values are also given in Table 4.1. 

According to this table, average CC values for GCV is slightly larger than those obtained for the L-
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curve and CRESO methods, because of the failures of the latter methods at initial time instants. 

Similar results are also obtained when RDMS values are inspected. Among these methods, max CC 

method gives the best results as we have expected; however it is not applicable in real cases, and 

only here for comparison purposes. The GCV results reported here have been obtained using a 

modified GCV approach as explained in the following paragraphs. 

 

Normally, GCV method may cause some spikes (i.e., sudden drops to low CC values) at a few time 

instants. The reason of this problem is the small lambda value selection of GCV method at some 

time instants, therefore; at these time instants RDMS values increase and CC values decrease. It is 

observed that the largest spike occurred at 60 ms after excitation, for this reason GCV function vs. 

lambda graphs used for lambda selection at 60 ms (problematic case) and at 55 ms (a normal case) 

are given Figure 4.7.  

 

When Figure 4.7.a is inspected, lambda value selected by the GCV method at this time instant is 

4.17x10
-4

, but according to Figure 4.7.b normal lambda values are 10 times greater than this value. 

In Figure 4.7.a, it is seen that GCV function has similar values for lambda values larger than 10
-5

; 

therefore when there is a flat region near the minimum value of GCV function, the largest lambda 

value as shown in Figure 4.8 is selected and better results are obtained by this way; the CC value has 

been 0.37 with the GCV method (lambda = 4.17x10
-4

), it has been increased to 0.81 with the 

modified GCV method (lambda = 3.24x10
-3

). 

 

 

Figure 4.8: Lambda value selected by modified GCV method at time instant 60 ms 

 

4.4.1.1. Discussion on results of regularization parameter selection methods for Tikhonov 

regularization  

When all of the information about performances of regularization parameter selection methods is 

considered, the best results are obtained by max CC method; however it is not applicable in real 

cases because epicardial potentials are not known. L-curve and CRESO methods have some 

problems at initial time instants when the solution is very smooth. CRESO is also applicable for only 

continuous method, for these reason it is not a widely used method. Among these methods, the 
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modified GCV is a robust method for determination of lambda value for Tikhonov regularization. It 

is also given that, GCV and L-curve give very similar average relative error values, but GCV has 

larger maximum relative errors, when the minimum of GCV curve is very flat [75], by modified 

GCV this problem is overcomed.  

 

4.4.2. Performances of Regularization Parameter Selection Methods for the LSQR Method 

In this section, optimum iteration number for LSQR method is selected by different parameter 

estimation methods (L-curve, GCV and max CC method), and for different noise levels. For 

comparison of performances of these methods, 15 µV (30 dB SNR) and 150 µV (10 dB SNR) 

Gaussian white noise is added to torso data and inverse ECG problem is solved using the LSQR 

method. 

 

Figure 4.9: Average Iteration Number with respect to Amplitude of noise graph of four 

regularization parameter selection methods for LSQR Method 
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a) 

 
 

 

 

 

 

 

 

 

 

 

 

 

b) 

 

Figure 4.10: a) Average Correlation Coefficient vs Amplitude of noise graph of three regularization 

parameter selection methods for the LSQR Method b) Average RDMS vs Amplitude of noise graph 

of three regularization parameter selection methods for the LSQR Method. 
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In Figure 4.9, average iteration numbers for different noise levels are illustrated. Since non-integer 

iteration number is meaningless, these averages are rounded to the nearest integer. In this figure, it is 

seen that average iteration numbers found by the L-curve are larger than those estimated by the GCV 

method, because similar to Tikhonov case, L-curve fails when the solution is smooth (especially at 

the first time instants when the excitation has just started and the last time instants at the end of the 

excitation). Selection of larger iteration numbers causes under smoothing of the solution. Among 

these methods, GCV finds similar lambda values to max CC method, especially at 150 µV case. 

These values are also presented at Table 4.2 for the 15 µV and 150 µV cases. 

 

Figure 4.10.a and Figure 4.10.b show the average CC and RDMS values of regularization parameter 

selection methods. When Figure 4.10.a and Figure 4.10.b are inspected, it is seen that GCV and L-

curve have similar results for the 15 µV measurement error case. Averages and standard deviations 

of CC and RDMS values are also given in Table 4.2. According to this table, average CC values for 

GCV are larger than those of the L-curve method for the 150 µV case. The L-curve method has 

especially poor performance at the initial time instants and at some other times when the L-curve 

does not have a distinctive corner as expected from the L-curve method (for example, see Figure 

4.11). Similar results are also obtained when the RDMS values are inspected. Among these methods, 

max CC method again gives the best results. 

 

Table 4.2: Mean and standard deviation values of iteration number, CC and RDMS values of 

different regularization parameter selection methods for 15 and 150 µV measurement noise 

 Methods Avg. Iteration Num. CC Values RDMS 

15 µV 

measurement 

noise 

L-curve 18 ± 2 0.77 ± 0.20 0.61 ± 0.23 

GCV 17 ± 5 0.80 ± 0.14 0.58 ± 0.17 

Max CC 18 ± 5 0.80 ± 0.14 0.58 ± 0.17 

150 µV 

measurement 

noise 

L-curve 11 ± 8 0.56 ± 0.29 0.86 ± 0.31 

GCV 6 ±  2 0.65 ± 0.20 0.77 ± 0.21 

Max CC 6 ± 2 0.67 ± 0.19 0.75 ± 0.20 

 

LSQR is an iterative method; therefore calculation of filter factors is not possible. For this reason, it 

is not easy to obtain the denominator of the GCV function given in Equation 3.44. For these cases, 

sum of the filter factors can be approximated as the number of converged Ritz values [75] and GCV 

function can be written as: 

      
         

 

    
        (4.5) 

where,    is the number of converged Ritz values. Since iteration number is very small when 

compared to m, the approximated GCV function can be written as: 

       
         

 

   
        (4.6) 

where k is the number of iteration. The GCV function for LSQR, TSVD, TTLS and Lanczos TTLS 

methods is calculated as given in Equation 4.6. 
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a) 

 
 

 

 

 

 

 

 

 

 

 

 

b) 

 
Figure 4.11: a) L-curve plot at time instant 2 for 15 µV case b) L-curve plot at time instant 21 for 

150 µV case 

 

 

Determination of the corner of the L-curve is another difficulty for discrete-parameter methods when 

compared with the continuous-parameter methods like Tikhonov, because in continuous methods 

calculation of the derivative of the curve is easy and the curvature of L-curve can be easily 

computed. For discrete L-curves, corner of the L-curve can be found by different methods such as: 

spline curve method [85], triangle method [85] and adaptive pruning algorithm [85]. Among these 
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methods, triangle method is used for determination of the corner of the L-curve, because it gives 

better results than the spline curve method in most cases and implementation is easier among these 

methods [85]. The key point of the triangle method is to define three points on the curve and select 

the one with minimum angle. If all angles are smaller than - π/8, the left point is selected. Selected 

three points are as follows: 

(Pj ;Pk;Pn)   where  j = 1; … ; n – 2  and    k = j + 1; … ; n - 1 

The triangle method’s algorithm is given below: 

 Remove points with zero norm 

 Initialize cmax = -2 

 for k = 1,…, n- 2 

 for j = k + 1; : : : ; n – 1 

o Compute vectors: v1 = Pk - Pj and v2 = Pj - Pn 

o Compute:   
   

   

          
 

o Compute: w = det([  ;   ]) 

o if c > cos(7*π/8) and c >      and w < 0 

 Set: corner = j and      = c 

o end 

 end 

 end 

 

The main problem of the triangle method is increased complexity of the algorithm because of the 

two for loops which increases complexity to O(n
2
). 

 

4.4.2.1. Discussion on results of regularization parameter selection methods for LSQR Method           

When all of the information about performances of regularization parameter selection methods is 

considered, best results are obtained by the max CC method; however it is not applicable in real 

cases because epicardial potentials are not known. L-curve method has some problems at initial time 

instants when the solution is very smooth. Furthermore, smooth L-curves with no distinctive corners 

yield incorrect corner estimates at some of the time instants, especially for the high-noise data. GCV 

also have some problems when the minimum region is flat, however selecting rightmost point (i.e., 

the modified GCV method) gives good results. For these reasons, among these methods, the 

modified GCV is a robust method for determination of the iteration number for the LSQR method. 

 

 

4.4.3. Performances of Regularization Parameter Selection Methods for TSVD Method  

In this section, truncation number for the TSVD method is selected by different regularization 

parameter estimation methods (L-curve, GCV and max CC method) for different noise levels. For 

comparison of performances of these methods, 15 µV (30 dB SNR) and 150 µV (10 dB SNR) 

Gaussian white noise is added to torso data and inverse ECG problem is solved using the TSVD 

method. 
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Figure 4.12: Average Truncation Number with respect to Amplitude of noise graph of three 

regularization parameter selection methods for TSVD Method 

In Figure 4.12, average truncation numbers for different noise levels are illustrated, since non-integer 

truncation number is meaningless, they are rounded to the nearest integer. In this figure, it is seen 

that for 15 µV case average truncation numbers found by L-curve and GCV are comparable, but 

when the amplitude of noise is increased to 150 µV, it is seen that different average truncation 

numbers are obtained. At 150 µV case, the under smoothing effect of L-curve (larger truncation 

numbers) and over smoothing property of GCV (smaller truncation numbers) is seen. These values 

are also given in Table 4.3 for the 15 µV and 150 µV cases. 

 

 

Table 4.3: Mean and standard deviation values of truncation, CC and RDMS values of different 

regularization parameter selection methods for 15 and 150 µV measurement noise 

 Methods Avg. Truncation Num. CC Values RDMS 

15 µV 

measurement 

noise 

L-curve 27 ± 2 0.77 ± 0.18 0.62 ± 0.20 

GCV 26 ± 5 0.78 ± 0.15 0.60 ± 0.17 

Max CC 26 ± 5 0.79 ± 0.14 0.59 ± 0.17 

150 µV 

measurement 

noise 

L-curve 15 ± 2 0.62 ± 0.22 0.81 ± 0.23 

GCV 12 ± 4 0.64 ± 0.22 0.78 ± 0.21 

Max CC 13 ± 4 0.67 ± 0.18 0.75 ± 0.20 
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b) 

 

Figure 4.13: a) Average Correlation Coefficient vs Amplitude of noise graph of three regularization 

parameter selection methods for TSVD Method b) Average RDMS vs Amplitude of noise graph of 

three regularization parameter selection methods for TSVD Method 
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Figure 4.14: a) L-curve plot at time instant 8 for 150 µV case b) L-curve plot at time instant 63 for 

150 µV case 
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Figure 4.15: GCV plot at time instant 29 for 150 µV case 

 

 

Figure 4.13.a and Figure 4.13.b show the average CC and RDMS values of regularization parameter 

selection methods. When Figure 4.13.a and Figure 4.13.b are inspected, it is seen that GCV method 

is a bit better than L-curve method for 15 µV measurement error case. For 150 µV measurement 

error case, it is seen that the performance difference between GCV and L-curve is increased and 

GCV gave better results. Max CC method gives the best results as expected. Average and standard 

deviation of CC and RDMS values are also given in Table 4.3 for 15 µV and 150 µV cases.  

 

L-curve method produces some problematic curves when solution is very smooth as shown in Figure 

4.14.a, because y axis is defined by solution norm and increased noise has a large effect on the 

produced solutions. In Figure 4.14.b, a better shaped L-curve is seen, which is produced at time 

instant 63 for the 150 µV case. In Figure 4.15, a GCV plot is shown. Here, the rightmost point along 

the straight curve is selected to give good results.  

 

4.4.3.1. Discussion on results of regularization parameter selection methods for TSVD Method   

Among regularization parameter selection methods, all of the regularization parameter selection 

methods give very similar results when the 15 µV measurement noise is added to the data. The 

difference between methods is more significant when the noise level is increased to 150 µV. For the 

150 µV case, GCV gives better results for most cases and average value of the correlation coefficient 

is larger when compared to that obtained by the L-curve method. Previously reported problems with 

the L-curve are also present in the TSVD method when the solutions are very smooth and the noise 

level is high. For these reasons GCV seems more reasonable parameter selection method for TSVD. 

4.4.4. Performances of Regularization Parameter Selection Methods for TTLS Method     

In this section, truncation number for the TTLS method is selected by different regularization 

methods for different noise levels. These methods are L-curve, GCV and max CC method. For 
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comparison of performances of these methods, 15 µV (30 dB SNR) and 150 µV (10 dB SNR) 

Gaussian white noise is added to torso data and inverse ECG problem is solved using the TTLS 

method. 

 
Figure 4.16: Average Truncation Number with respect to Amplitude of noise graph of four 

regularization parameter selection methods for TTLS Method 

 

In Figure 4.16, average truncation numbers for different noise levels are illustrated. Again, since 

non-integer truncation number is meaningless, they are rounded to the nearest integer. In this figure, 

it is seen that for the 15 µV case, average truncation numbers found by the L-curve are much smaller 

than those found by the GCV method, which is different from the previously presented TSVD, 

Tikhonov and LSQR cases, because for the first time instants better shaped L-curves are obtained 

and better parameter values corresponding to the corner can be selected by the triangle algorithm. 

When noise level is increased to 150 µV, L-curve and GCV obtained smaller average truncation 

number than the max CC, which means solutions are over smoothed.  

In Figure 4.17.a and Figure 4.17.b, the average CC and RDMS graphs are given respectively for the 

TTLS method when the truncation number is calculated by the L-curve, GCV and max CC methods. 

From these graphs, it is seen that max CC gives better results than GCV and L-curve as expected and 

with increasing noise level the performance difference between the max CC method and the others 

became more significant. GCV and L-curve give poor performances at first 30 ms when average 

noise amplitude is 150 µV. There are some spikes at some later time instants for the L-curve method; 

GCV gives more robust results for 15 and 150 µV cases. Average and standard deviation values are 

also given in Table 4.4. From this table, it can be seen that the truncation numbers used for the TTLS 

are smaller than the iteration numbers obtained for the LSQR, and the truncation numbers used in the 

TSVD method. 
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b) 

 
Figure 4.17: a) Average Correlation Coefficient vs Amplitude of noise graph of three regularization 

parameter selection methods for TTLS Method b) Average RDMS vs Amplitude of noise graph of 

three regularization parameter selection methods for TTLS Method 
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Table 4.4: Mean and standard deviation values of truncation, CC and RDMS values of different 

regularization parameter selection methods at 15 µV measurement noise 

 Methods Avg. Truncation Num. CC Values RDMS 

15 µV 

measurement 

noise 

L-curve 12 ± 2 0.71 ± 0.17 0.71 ± 0.20 

GCV 15 ± 5 0.72 ± 0.17 0.68 ± 0.19 

Max CC 15 ± 4 0.73 ± 0.16 0.68 ± 0.19 

150 µV 

measurement 

noise 

L-curve 4 ± 2 0.53 ± 0.20 0.93 ± 0.20 

GCV 4 ± 3 0.54 ± 0.22 0.90 ± 0.21 

Max CC 5 ± 3 0.59 ± 0.16 0.87 ± 0.18 

 

 

 

In Figure 4.18, L-curve plot is given for the first time instant when the noise level is 15 µV. From 

this plot, it is seen that when TTLS method is used better L-curve plots are obtained at first time 

instants. However there is also a local corner, which may cause incorrect results. 

 

 
Figure 4.18: L-curve plot at time instant 1 for 15 µV case 
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4.4.4.1. Discussion on results of regularization parameter selection methods for TTLS Method   

According to test results, it is seen that when noise is increased, performance difference between 

max CC and other methods is also increased as expected. For 15 µV and 150 µV cases, GCV gave 

slightly better results than L-curve, because of the smooth L-curve characteristics. When average 

truncation number of TTLS is compared with the parameters of the TSVD and LSQR methods, it is 

seen that, best solutions are obtained in smaller regularization parameters in TTLS. 

 

4.4.5. Performances of Regularization Parameter Selection Methods for Lanczos TTLS 

Method  

In this section, truncation number for Lanczos TTLS method is selected by different regularization 

methods for different noise levels. These methods are L-curve, GCV and max CC method. For 

comparison of performances, 15 µV (30 dB SNR) and 150 µV (10 dB SNR) Gaussian white noise is 

added to torso data and inverse ECG problem is solved using Lanczos TTLS method. 

 
Figure 4.19: Average Truncation Number with respect to Amplitude of noise graph of four 

regularization parameter selection methods for Lanczos TTLS Method 

 

In Figure 4.19, average truncation numbers for 15 and 150 µV noise levels are illustrated, since non-

integer truncation number is meaningless, they are rounded to the nearest integer. In this figure, it is 

seen that for the 15 µV case average truncation numbers found by L-curve is similar to the max CC 

method and GCV obtained smaller average truncation numbers. When the noise level is increased to 

150 µV, GCV obtained the same average truncation number with the max CC, and the L-curve 

method has under-smoothing (larger truncation values) effect. Average and standard deviations of 

truncation numbers is also given in Table 4.5. 
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b) 

 
Figure 4.20: a) Average Correlation Coefficient vs Amplitude of noise graph of three regularization 

parameter selection methods for Lanczos TTLS Method b) Average RDMS vs Amplitude of noise 

graph of three regularization parameter selection methods for Lanczos TTLS Method 
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Table 4.5: Mean and standard deviation values of truncation number, CC and RDMS values of 

different regularization parameter selection methods at 15 and 150 µV measurement noise cases 

 Methods 
Avg. Truncation 

Num. 
CC Values RDMS 

15 µV 

measurement 

noise 

L-curve 11 ± 1 0.74 ± 0.18 0.66 ± 0.20 

GCV 10 ± 3 0.75 ± 0.17 0.65 ± 0.19 

Max CC 11 ± 3 0.77 ± 0.15 0.63 ± 0.20 

150 µV 

measurement 

noise 

L-curve 5 ± 2 0.55 ± 0.20 0.89 ± 0.21 

GCV 4 ± 1 0.57 ± 0.20 0.87 ± 0.20 

Max CC 4 ± 1 0.60 ± 0.17 0.85 ± 0.20 

 

 

In Figure 4.20.a and Figure 4.20.b, the average CC and RDMS graphs are given respectively for the 

Lanczos TTLS problem when the truncation numbers are calculated by L-curve, GCV and max CC 

methods. From these graphs, it is seen that max CC gives better results than GCV and L-curve as 

expected and with increased noise level, the performance difference became more significant. GCV 

and L-curve give poor performances at the first 30 ms when average noise amplitude is 150 µV. 

There are some spikes at some later time instants for L-curve method, GCV gave more robust results 

for 15 and 150 µV cases. Average and standard deviation values are also given in Table 4.5. From 

this table, it can be seen that Lanczos TTLS showed a similar characteristic with the TTLS method 

and obtained solutions at smaller truncation numbers than the iteration number of the LSQR method 

and the truncation number of the TSVD. Upon examining the results, we observed that modified 

GCV (selecting rightmost minimum value) improved solutions when compared with the GCV 

method; it increased the average CC values by 10% when 150 µV measurement noise is added to the 

data. 

 

4.4.5.1. Discussion on results of regularization parameter selection methods for Lanczos TTLS 

Method   

According to test results, it is seen that when noise level is increased, performance difference 

between max CC and other methods also increased as expected. For 15 µV and 150 µV cases, 

modified GCV obtained better results than L-curve. Lanczos TTLS is also obtained better solutions 

for smaller truncation numbers as in the TTLS method. Smaller truncation number means fewer 

iterations and faster runtime. 

 

 

 

4.5. Performances of Regularization Methods with Maximum CC Method 

In this section, performances of regularization methods LSQR, Tikhonov, TSVD, TTLS and 

Lanczos TTLS are compared for different levels of measurement and geometrical errors. In these 

comparisons, the regularization parameter for Tikhonov regularization method, the iteration number 

for the LSQR method, and the truncation level of TSVD, TTLS and Lanczos TTLS methods are 

selected by using the maximum CC method, so maximum correlation coefficient values are achieved 

for each method. The ranges of these parameters that we use to seek for the one yielding maximum 

correlation coefficient value are defined according to observations during tests for Tikhonov, TSVD, 

LSQR and Lanczos TTLS methods and maximum truncation value of TTLS is defined by the 

algorithm, these ranges are given in Table 4.6 for each of the implemented methods.   
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Table 4.6: Parameter values of regularization methods 

Methods Regularization Parameter Range 

LSQR k, iteration number k= 1,2,…,30 

Tikhonov λ, regularization parameter 10
-10

 to 1 (100 logarithmically spaced points) 

TSVD k, truncation number k= 1,2,…,40 

Lanczos TTLS k, truncation number k= 1,2,…,20 

TTLS k, truncation number 1≤ k ≤ min (n, rank (A,Y)) 

 

 

 

For comparison of the regularization methods, five different simulation noise scenarios are 

considered: 

1. 15 µV Gaussian white measurement noise is added to body surface potentials simulated 

from real epicardial potentials. Signal to noise ratio corresponding to this amount of noise is 

equal to 30 dB. 

2. 150 µV Gaussian white measurement noise is added to torso potentials simulated from 

epicardial potentials. Signal to noise ratio corresponding to this amount of noise is equal to 

10 dB, which represents a larger amount of noise than the 15 µV case, 

3. First type of geometric error is introduced into the model by assuming that the size of the 

heart geometry used in the forward matrix calculation is different from that used to simulate 

the body surface potential measurements. To simulate this noise, the coordinates of the 

heart geometry are multiplied by a scaling factor and an erroneous transfer matrix is 

obtained. Then, this transfer matrix is used for inverse solution. 15 µV measurement error is 

also added to torso potentials. To simulate this geometrical error, we used an extreme case, 

where the heart size very large when compared with the normal size and 1.4 is used as 

scaling factor. 

4. A second type of geometric error is introduced into the model by assuming that the location 

of the heart is incorrectly estimated. To simulate this noise, the heart geometry can be 

shifted in x, y or z direction by different amounts. Here, as an example the heart geometry is 

shifted by 10 mm in the positive x-direction and an erroneous transfer matrix is obtained. 

Then, similar to the scale error case, this erroneous transfer matrix is used for inverse 

solution. Again, 15 µV measurement error is also added to torso potentials.  

5. Both types of geometric errors, i.e., incorrect size of the heart geometry and shift in the 

heart axis, are combined. To combine the geometric errors used before, the heart is shifted 

by 10 mm in the positive x direction and the heart geometry coordinates are multiplied by a 

scaling factor of 1.4. The transfer matrix obtained using this erroneous geometry is then 

included in the inverse problem solutions. Similar to previous two cases, 15 µV 

measurement error is also added to torso potentials.  
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b) 

 
Figure 4.21: a) Average and standard deviations of CC values of five regularization methods for five 

different noise cases b) Average and standard deviations of RDMS values of five regularization 

methods for five different noise cases 

 

In Figure 4.21.a, and Figure 4.21.b, averages and standard deviations of CC values and RDMS 

values obtained from the reconstructions corresponding to five regularization methods; LSQR, 

Tikhonov, TSVD, Lanczos TTLS and TTLS are shown, respectively. The y-axis of these plots (i.e. 

each group of bar charts) corresponds to five different simulation noise scenarios. In order to obtain 

these plots, first the CC and the RDMS values are calculated at each of 97 time instants within the 

QRS region. Then, the average and the standard deviation of these parameters are found. The bars in 

the plots correspond to the average values, and the error bars show the standard deviation values. As 

explained in Section 4.1, epicardial potentials have low amplitudes and the depolarized region is 

restricted to a small area on the epicardium, the measurement noise is much larger in the earlier 
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times than mid-QRS interval, compared to signal contents. Thus, the measurement noise is dominant 

compared to heart signals and corresponding SNR values for these time instants are smaller 

compared to mid-QRS interval. When time passes, the amplitudes of epicardial potentials increase 

and the effect of noise decreases. After 60 ms, amplitudes of the potentials start to decrease and 

noise becomes dominant again. For these reasons CC values between 30 ms and 60 ms are larger 

than other time instants for all methods. 

The average and standard deviation values of CC and RDMS are also given in Table 4.7. Our 

observations on these results can be summarized as follows: 

 

 15 µV Gaussian white measurement noise case:  For this case, it can be seen that LSQR, 

Tikhonov and TSVD give very similar results, Lanczos TTLS is a little worse (by 3%) 

when compared to the other three methods and TTLS gives the poorest performance (by 

7%) among these methods. When performances at different time instants during the QRS 

cycle are considered, we observed that during the first 10 ms period after stimulation, all 

methods have poor performances, because epicardial voltage level is very low and effect of 

noise is dominant, but stimulation point is still visible as it can be seen in Figure 4.22. After 

10 ms, RDMS values decrease and CC values increase for all methods as expected because 

epicardial potential levels increase. For the 15 µV Gaussian white measurement noise case, 

LSQR, Tikhonov and TSVD give very similar results and Lanczos TTLS also gives similar 

performance during 40 ms – 70 ms period, TTLS gives the worst performance among these 

methods at all time instant, its CC values are worse than others by 5% during 40 ms – 70 

ms period and this difference increases up to 10% at other times.  

 

 150 µV Gaussian white measurement noise case:  It is observed that LSQR, Tikhonov and 

TSVD give very similar results. The TTLS and Lanczos TTLS give poorer performances 

compared to the other methods (by approximately 7% decrease in CC values). When 

compared to the previous case of 15 µV – noise, there is approximately 13% decrease in the 

CC values of Tikhonov, LSQR and TSVD, but Lanczos TTLS has 17% decrease and TTLS 

has 14% decrease, which means TTLS based algorithms are less tolerant to measurement 

noise, because TTLS uses singular values of (A,Y). Therefore, errors in the torso potentials 

have more effect on the solution. During the first 20 ms after stimulation, all methods have 

the same poor performances. After that time instant CC values increase and RDMS values 

decrease for all methods, but TTLS and Lanczos TTLS give worse performances when 

compared with the other methods.   

 

 1.4 scaling geometric error case with 15 µV Gaussian white measurement noise: It is seen 

that all methods give very similar results. Different from the measurement error cases, 

TTLS and Lanczos TTLS also showed similar performances to the other methods, because 

TSVD, LSQR and Tikhonov are not good methods for dealing with geometrical errors. 

When the results are examined in detail, we observed that all methods have similar results 

during the QRS cycle, especially between 30 and 70 ms. 

 

 10 mm shift geometric error case with 15 µV Gaussian white measurement noise: It is seen 

that all methods have similar average CC values, similar to the 1.4 scaling geometric error 

case. Again, this is consistent with observations reported in literature that TTLS based 

methods are less affected by geometrical errors. Detailed examination of the results during 

the QRS cycle shows that all methods have very similar performances. 

 

 1.4 scaling and 10 mm shift geometric error case with 15 µV Gaussian white measurement 

noise: It is seen that all methods give very similar results, but TTLS and TSVD are slightly 

better. During the QRS cycle, there are small performance differences at different time 

instants, but in average all methods obtained similar results. 
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Table 4.7: Averages and standard deviations of CC and RDMS values over time corresponding 

to five different simulation noise scenarios. 

 Methods CC Values RDMS 

15 µV 

measurement 

noise 

LSQR 0.80 ± 0.14 0.58 ± 0.17 

Tikhonov 0.80 ± 0.14 0.58 ± 0.17 

TSVD 0.79 ± 0.14 0.59 ± 0.17 

Lanczos TTLS 0.77 ± 0.15 0.63 ± 0.20 

TTLS 0.73 ± 0.16 0.68 ± 0.19 

150 µV 

measurement 

noise 

LSQR 0.67 ± 0.19 0.75 ± 0.20 

Tikhonov 0.67 ± 0.20 0.75 ± 0.21 

TSVD 0.67 ± 0.18 0.75 ± 0.20 

Lanczos TTLS 0.60 ± 0.17 0.85 ± 0.20 

TTLS 0.59 ± 0.16 0.87 ± 0.18 

15 µV meas. 

noise + 1.4 

scaling Factor 

LSQR 0.74 ± 0.14 0.69 ± 0.15 

Tikhonov 0.74 ± 0.15 0.70 ± 0.16 

TSVD 0.75 ± 0.13 0.68 ± 0.14 

Lanczos TTLS 0.75 ± 0.14 0.68 ± 0.14 

TTLS 0.73 ± 0.14 0.69 ± 0.15 

15 µV meas. 

noise + 10 mm 

shift 

LSQR 0.70 ± 0.13 0.73 ± 0.14 

Tikhonov 0.70 ± 0.13 0.73 ± 0.15 

TSVD 0.70 ± 0.13 0.73 ± 0.13 

Lanczos TTLS 0.70 ± 0.12 0.73 ± 0.15 

TTLS 0.69 ± 0.14 0.74 ± 0.15 

15 µV meas. 

noise + 1.4 

scaling Factor + 

10 mm shift 

LSQR 0.67 ± 0.14 0.79 ± 0.16 

Tikhonov 0.67 ± 0.16 0.78 ± 0.17 

TSVD 0.68 ± 0.14 0.77 ± 0.16 

Lanczos TTLS 0.67 ± 0.14 0.78 ± 0.15 

TTLS 0.67 ± 0.12 0.78 ± 0.14 
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Here, the performances of regularization methods will be visually evaluated. For this purpose, the 

quality and shape of the waveform will be evaluated by using the figures obtained with MAP3D. 

 

Figure 4.22 and Figure 4.23 show the Map3d images of real and reconstructed epicardial potentials 

for the “15 µV – measurement noise” case at 6 ms and 50 ms after stimulation, respectively. The 

initial stimulation site (i.e., the ectopic focus) can be seen in the real epicardial potentials at 6 ms. 

LSQR, Tikhonov and TSVD methods detected the ventricular ectopic focus, but wavefront is 

smoother than the original. At this time instant, Lanczos TTLS and TTLS also detected the ectopic 

focus, but there are also some artifacts (regions that also appear to be stimulation sites). At 50 ms, 

the activation wavefront has propagated through most of the epicardial surface. All methods 

constructed similar epicardial potential maps and detected the depolarized regions and the general 

pattern of the wavefront correctly but the reconstructed wavefronts are smoother than the original, 

especially for TTLS and Lanczos TTLS solutions. It is also observed that after 34 ms, all methods 

produce similar wavefronts. 

 

 

 
Figure 4.22: Epicardial Potential Maps of reconstructed solutions for 15 µV noisy data: a) Real 

Potential Distribution at the 6 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution 

 

 
Figure 4.23: Epicardial Potential Maps of reconstructed solutions for 15 µV noisy data: a) Real 

Potential Distribution at the 50 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution 
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Figure 4.24 and Figure 4.25 show the Map3d images of real and reconstructed epicardial potentials 

for “150 µV – measurement noise” case at 40 ms and 50 ms after stimulation, respectively. For this 

case, stimulation site cannot be observed during the earlier time instants; therefore we look at later 

time instants. Figure 4.24 shows that LSQR, Tikhonov and TSVD find the depolarized region; 

however, LSQR and Tikhonov regularization reconstruct smoother waveforms. At this time instant, 

Lanczos TTLS and TTLS are unable to detect the region correctly. The general form of the solution 

looks similar with TTLS and Lanczos TTLS; the depolarized and resting regions and the wavefront 

have a similar spatial pattern, but the amplitudes of epicardial potentials are approximately 7, and 6 

times higher by TTLS Lanczos TTLS, respectively, than the true potentials. This means that the 

effect of high noise cannot be suppressed. This amplification is observed during the first 45 and the 

last 10 ms, where the effective signal to noise ratio is much smaller than the overall signal to noise 

ratio. At 50 ms, excitation wavefront has propagated through most of the epicardial surface. All 

methods have produced similar smooth wavefronts, when compared with the previous 15 µV case. 

 

 

 
Figure 4.24: Epicardial Potential Maps of reconstructed solutions for 150 µV noisy data: a) Real 

Potential Distribution at the 40 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution 

 

 

Figure 4.25: Epicardial Potential Maps of reconstructed solutions for 150 µV noisy data: a) Real 

Potential Distribution at the 50 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution 
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Figure 4.26, Figure 4.27and Figure 4.28 show the Map3d images of real and reconstructed epicardial 

potentials for the “15 µV – measurement noise and 1.4 scaling geometric error” case at 4 ms, 18 ms 

and 50 ms after stimulation, respectively. In Figure 4.26, initial activation point is seen on the 

epicardial surface. At this time instant, TTLS and Lanczos TTLS have detected the initial 

stimulation site, although it is smoothed. LSQR, TSVD and Tikhonov are unable to detect the initial 

activation at this early time instant. Between 12 and 25 ms, TTLS and Lanczos TTLS reconstruct 

wavefronts better than the other methods. In Figure 4.27, we observe that the wavefront has started 

to propagate over the epicardial surface. At this time instant, TTLS and Lanczos TTLS have better 

fidelity to the true potentials than other methods. After 25 ms, all methods start to give similar results 

as illustrated in Figure 4.28, but when compared with 15 µV measurement error case, the waveform 

is smoother but it is better than 15 µV measurement noise case. 

 

 

 
Figure 4.26: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 1.4 scaling geometric error: a) Real Potential Distribution at the 4 ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 

 

 

 

Figure 4.27: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 1.4 scaling geometric error: a) Real Potential Distribution at the 18 ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 
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Figure 4.28: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 1.4 scaling geometric error: a) Real Potential Distribution at the 50 ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 

 

 

Figure 4.29 and Figure 4.30 show the Map3d images of real and reconstructed epicardial potentials 

for the “15 µV – measurement noise and 10 mm shift geometric error” case at 6 ms and 50 ms after 

excitation respectively. At 6 ms, the initial activation site can be observed in the real epicardial 

potential distribution. LSQR, Tikhonov, TSVD and Lanczos TTLS methods detect the ventricular 

ectopic focus at this time instant, but wavefront is smoother than the original and the “15 µV – 

measurement noise” case. TTLS also detected the ectopic focus, but there are also some artifacts 

(regions that also appear to be stimulation sites). In Figure 4.30, it is seen that wavefront propagated 

through most of the ventricular region and there is only a small inactivated part. All of the methods 

detected the activated and the resting regions, but wavefronts are smoother compared to real 

epicardial distributions. For this time instant, the wavefronts are reconstructed better than the 150 µV 

measurement noise case and similar with 15 µV – measurement noise and 1.4 scaling geometric 

error case. It is also seen that, there is not much difference with 15 µV measurement noise case for 

this time instant. 

 

 

 
 

Figure 4.29: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 10 mm shift geometric error: a) Real Potential Distribution at the 6th ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 
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Figure 4.30: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 10 mm shift geometric error: a) Real Potential Distribution at the 50 ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 

 

Figure 4.31 and Figure 4.32 show the Map3d images of real and reconstructed epicardial potentials 

for the “15 µV – measurement noise, 1.4 scaling and 10 mm shift geometric error” case at 6 ms and 

50 ms after excitation, respectively. In Figure 4.31, initial activation is seen on the epicardial surface. 

At this time instant, all methods detect the initial activation, but Lanczos TTLS and TTLS obtained 

better results than others. When compared with the 15 µV measurement error and 15 µV 

measurement noise with 10 mm shift geometric error cases, we do not observe artifacts such as sites 

appearing as false stimulation sites with TTLS and Lanczos TTLS solutions for this error case and 

these waveforms look better however they are very smooth and CC values of five regularization 

methods for this time instant is smaller than other two noise cases. This means larger CC does not 

mean better waveforms at very rare situations. When Figure 4.32 is also inspected, we observe that 

activation has propagated through most of the epicardial surface. At this time instant, all methods 

produce similar waveforms. These waveforms are very smooth when compared with the real 

epicardial potentials and they are also smoother than the measurement error and geometrical error 

cases.  

 

 
Figure 4.31: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 1.4 scaling and 10 mm shift geometric error: a) Real Potential Distribution at 6 ms 

b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS 

Solution 
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Figure 4.32: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 1.4 scaling and 10 mm shift geometric error: a) Real Potential Distribution at 50 ms 

b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS 

Solution 

 

4.6. Performances of Regularization Methods by using Results of Regularization Parameter 

Selection Methods  

This section is organized as in the previous section; performances of regularization methods: LSQR, 

Tikhonov, TSVD, TTLS and Lanczos TTLS are compared for different levels of measurement and 

geometrical errors. The difference between this section and the previous one is that here the 

regularization parameters for each inverse solver are selected by using the most appropriate 

regularization parameter selection method, i.e., the modified GCV method, as proposed in Section 

4.4. For obtaining the GCV curve, the same ranges of parameters given in Table 4.6 are used. 

For comparison of five regularization methods, five different noise simulation cases are inspected; 

two different levels of measurement noise and three different types of geometrical errors are added 

to the system. These are the same noise levels used while testing performances of the regularization 

methods by using max CC method: 

 15 µV Gaussian white measurement noise, 

 150 µV Gaussian white measurement noise, 

 1.4 scaling geometric error case with 15 µV Gaussian white measurement noise, 

 10 mm shift geometric error case with 15 µV Gaussian white measurement noise, 

 1.4 scaling and 10 mm shift geometric error case with 15 µV Gaussian white measurement 

noise. 

In Figure 4.33.a, and Figure 4.33.b, averages and standard deviations of CC and RDMS values 

obtained from the reconstructions corresponding to five regularization methods; LSQR, Tikhonov, 

TSVD, Lanczos TTLS and TTLS are shown, respectively. These values are calculated as explained 

in Section 4.5. The average and standard deviation values of CC and RDMS are also given atTable 

4.8. Our observations on these results can be summarized as follows: 

 15 µV Gaussian white measurement noise:  For this case, it can be seen that LSQR gives 

best performance among the five regularization methods. Tikhonov and TSVD give very 

similar results, Lanczos TTLS is a little worse when compared with the other three methods 

and TTLS gives the poorest performance among these methods. When performances during 

the whole QRS cycle are considered, at the start of the QRS cycle Lanczos TTLS gives  the 

poorest performance, but after 25 ms, it obtains similar results with Tikhonov, TSVD and 

LSQR, especially between 40 and 60 ms. TTLS gives the worst performance among these 

methods after 15 ms. For this noise level, selecting the iteration number of LSQR by the 
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GCV method did not cause any difference from the max CC case in terms of average CC 

and average RDMS values, but for other methods, 2% decrease occurred in the average CC 

and average RDMS results. 

 

 150 µV Gaussian white measurement noise: LSQR gives the best performance among all 

methods at all time instants during the QRS cycle. Similar to most cases, Tikhonov and 

TSVD give very similar results and they are slightly worse than LSQR by only 1% for this 

case. The TTLS and Lanczos TTLS give poorer performances when compared with the 

other methods and they also give worst results among all test conditions. According to the 

results, similar to the max CC case, TTLS and Lanczos TTLS are more affected by 

increased measurement error. The average CC values of TTLS and Lanczos TTLS dropped 

by 18% with respect to the “15 µV – measurement noise” case and the average CC values 

of LSQR decreased by 15%. For the remaining methods (Tikhonov and TSVD), this drop is 

14%. For this noise level, selecting the iteration number of TTLS by the GCV method 

caused the biggest drop in the average CC values (by 5%) when compared with the max CC 

case, but for other methods, 2% or 3% decrease occurred in the results. 

 

 1.4 scaling geometric error case with 15 µV Gaussian white measurement noise: It is seen 

that LSQR, TSVD and Lanczos TTLS are a slightly better than Tikhonov and TTLS in 

terms of the average CC and RDMS values. TTLS gives worst performance according to 

the average RDMS values by 75%. Different from “only measurement error” cases, TTLS 

and Lanczos TTLS also show the similar performance with the other methods, because 

TSVD, LSQR and Tikhonov are affected more from geometrical errors. All methods have 

similar results during the entire QRS cycle. When compared with the max CC case, there is 

approximately 4% decrease in the average CC values and 4% increase in the RDMS values. 

 

 

 10 mm shift geometric error case with 15 µV Gaussian white measurement noise:  It is seen 

that, LSQR, Tikhonov and TSVD methods are obtained best results for the 10 mm shift 

case, they are still better than Lanczos TTLS by 1% and TTLS by 2%. However, 

performance difference is decreased between TTLS and Lanczos TTLS methods and others 

when compared with “only measurement error” cases. This is consistent with observations 

that TTLS based methods are affected less by geometrical errors. When compared with the 

max CC case, there is 3% decrease in the average CC values for Tikhonov, TSVD and 

LSQR and 4% decrease for TTLS and Lanczos TTLS, because TTLS based methods have 

smaller regularization parameters when compared with the others and small changes in the 

truncation number causes more differences in the results.  

 

 1.4 scaling and 10 mm shift geometric error case with 15 µV Gaussian white measurement 

noise: It is seen that all methods give very similar results, but Tikhonov is slightly worse 

than the other methods for this case. During the QRS cycle, TTLS is the best method during 

the first 40 ms but it is worse than the others between 60 ms and 90 ms. Tikhonov is the 

worst method during the first 40 ms. When compared with the max CC case, there are 2% 

or 3% decreases in the average CC values. 
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b) 

 

Figure 4.33: a) Average and standard deviations of CC values of five regularization methods for five 

different noise cases b) Average and standard deviations of RDMS values of five regularization 

methods for five different noise cases 
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Table 4.8: Mean and standard deviation values of iteration, CC and RDMS values of different 

regularization parameter selection methods for five different noise cases 

 Methods CC Values RDMS 

15 µV 

measurement 

noise 

LSQR 0.80 ± 0.14 0.58 ± 0.17 

Tikhonov 0.78 ± 0.15 0.60 ± 0.17 

TSVD 0.78 ± 0.15 0.60 ± 0.17 

Lanczos TTLS 0.75 ± 0.17 0.65 ± 0.19 

TTLS 0.72 ± 0.17 0.68 ± 0.19 

150 µV 

measurement 

noise 

LSQR 0.65 ± 0.20 0.77 ± 0.21 

Tikhonov 0.64 ± 0.22 0.77 ± 0.22 

TSVD 0.64 ± 0.22 0.78 ± 0.21 

Lanczos TTLS 0.57 ± 0.20 0.87 ± 0.20 

TTLS 0.54 ± 0.22 0.90 ± 0.21 

15 µV meas. 

noise + 1.4 

scaling Factor 

LSQR 0.70 ± 0.17 0.73 ± 0.16 

Tikhonov 0.69 ± 0.18 0.74 ± 0.16 

TSVD 0.70 ± 0.16 0.73 ± 0.15 

Lanczos TTLS 0.70 ± 0.18 0.73 ± 0.15 

TTLS 0.69 ± 0.18 0.75 ± 0.16 

15 µV meas. 

noise + 10 mm 

shift 

LSQR 0.67 ± 0.12 0.76 ± 0.13 

Tikhonov 0.67 ± 0.14 0.77 ± 0.15 

TSVD 0.67 ± 0.13 0.76 ± 0.12 

Lanczos TTLS 0.66 ± 0.15 0.77 ± 0.15 

TTLS 0.65 ± 0.15 0.78 ± 0.16 

15 µV meas. 

noise + 1.4 

scaling Factor + 

10 mm shift 

LSQR 0.63 ± 0.17 0.82 ± 0.17 

Tikhonov 0.62 ± 0.18 0.84 ± 0.19 

TSVD 0.63 ± 0.14 0.81 ± 0.16 

Lanczos TTLS 0.63 ± 0.16 0.82 ± 0.16 

TTLS 0.63 ± 0.14 0.83 ± 0.15 
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Here, the performances of regularization methods will be visually evaluated. For this purpose, the 

quality and shape of the waveform will be evaluated by using the figures obtained with MAP3D. 

 

Figure 4.34 and Figure 4.35 show the Map3d images of real and reconstructed epicardial potentials 

for the “15 µV – measurement noise” case at 6 ms and 50 ms after excitation, respectively. The 

initial stimulation site can be seen in the real epicardial potentials at 6 ms. LSQR, Tikhonov and 

TSVD detected this ventricular ectopic focus, but wavefront is smoother than the original. At this 

time instant, TTLS also detected the ectopic focus, but there are also regions that also appear to be 

stimulation sites. However, different from the max CC case, at this time instant Lanczos TTLS could 

not detect the activated region. In Figure 4.35, activation has propagated through most of the 

epicardial surface at 50 ms after excitation. At this time instant, similar results are obtained with the 

max CC case; all methods have constructed similar epicardial potential maps and have detected 

activated and wavefront regions correctly, but wavefronts are smoother in the reconstructions than 

the original, especially for the TTLS and Lanczos TTLS solutions. 

 

 

 
 

Figure 4.34: Epicardial Potential Maps of reconstructed solutions for 15 µV noisy data: a) Real 

Potential Distribution at the 6 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution  

 

 
Figure 4.35: Epicardial Potential Maps of reconstructed solutions for 15 µV noisy data: a) Real 

Potential Distribution at the 50 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution 
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Figure 4.36 shows the Map3d images of real and reconstructed epicardial potentials for the “150 µV 

– measurement noise” case at 40 ms after excitation.  From Figure 4.36, it is observed that similar 

results are obtained with the max CC case. LSQR, Tikhonov and TSVD find the excited region; 

among these, LSQR and Tikhonov construct smoother waveforms. At this time instant, Lanczos 

TTLS and TTLS are unable to detect the excited region correctly. When epicardial potentials are 

inspected for this time instant, these values are amplified 4 times by TTLS and 5 times by Lanczos 

TTLS. Different form the max CC case, TTLS has less amplification of estimated voltages, because 

smaller truncation number is selected by the GCV method for this time instant. This seems 

inconsistent with max CC approach, because the voltages amplified more at max CC case, but at CC 

computation the mean of the estimated potential is subtracted from itself. Therefore the effect of 

high voltage values is decreased. 

 

 
Figure 4.36: Epicardial Potential Maps of reconstructed solutions for 150 µV noisy data: a) Real 

Potential Distribution at the 40 ms b) LSQR Solution c) Tikhonov Solution d) TSVD Solution e) 

Lanczos TTLS Solution f) TTLS Solution 

 

 
Figure 4.37: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 1.4 scaling geometric error: a) Real Potential Distribution at the 4 ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 

 

Figure 4.37 shows the Map3d images of real and reconstructed epicardial potentials for the “15 µV 

measurement noise and 1.4 scaling geometric error” case at 4 ms after excitation. In this figure, 

initial activation point can be observed on the real epicardial potential map. However, only Lanczos 

TTLS has detected this initial activation, although it is smoothed. LSQR, TSVD, TTLS and 

Tikhonov are unable to detect the initial activation. Different from the max CC case, TTLS could not 
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detect the initial activation region, which is caused by selection of a smaller truncation number. For 

later time instants, similar waveforms are observed with the max CC case. 

 

Figure 4.38 shows the Map3d images of real and reconstructed epicardial potentials for the “15 µV - 

measurement noise and 10 mm shift geometric error” case at 6 ms after excitation. In this figure, 

initial activation is seen in the real epicardial potential. All methods detect the initial activation, but 

LSQR, TSVD, Lanczos TTLS and Tikhonov give smoother results than TTLS. TTLS focus to the 

activated site better than the others for this time instant. When compared with the max CC case, the 

wavefront generated by TTLS and Lanczos TTLS are smoother. At later time instants, there are not 

important differences with the max CC case. 

 

 

 
Figure 4.38: Epicardial Potential Maps of reconstructed solutions for 15 µV measurement noise 

added data with 10 mm shift geometric error: a) Real Potential Distribution at the 10th ms b) LSQR 

Solution c) Tikhonov Solution d) TSVD Solution e) Lanczos TTLS Solution f) TTLS Solution 

 

4.7. Run Time Analysis of Regularization Methods 

 

In this section, run time comparison of regularization methods is given. Run times are compared by 

using a computer with 2.7 GHz i7 processor and 4 GB RAM. To make a fair comparison between 

methods, 20 different lambda values are used by Tikhonov regularization method; maximum 

truncation numbers used by TSVD, TTLS and Lanczos TTLS are selected as 20; and LSQR is 

iterated 20 times and regularization parameter is selected by GCV method. The results obtained by 

this analysis are given in Figure 4.39 for one time instant during the QRS cycle. As it can be seen 

from this figure, regularization methods using SVD such as Tikhonov regularization, TSVD and 

TTLS take longer time than the other two. However, Lanczos bidiagonalization based methods 

LSQR and Lanczos TTLS take shorter time when compared with other three regularization methods. 

Lanczos TTLS also uses singular value decomposition but with this method, only the SVD of the 

smaller sized matrix obtained by Lanczos bidiagonalization is calculated.  The reason for the time 

difference is that Lanczos bidiagonalization method is computationally more efficient than SVD 

when transfer matrix is large or sparse.  
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Figure 4.39: Average and Standard deviation of run time of five regularization methods  

 

Total run times of these algorithms during QRS cycle (97 time instants) are also given in Table 4.9. 

During this test, 20 parameters are tried for all of the regularization methods as explained before. 

According to this table, Lanczos TTLS and LSQR are the fastest methods among these 

regularization methods, whereas Tikhonov regularization and TTLS are the slowest ones.  

 

Note that, for this comparison, 20 iteration number or lambda samples are used. However, 

appropriate truncation or iteration number, or the lambda value yielding the maximum CC value is 

different for all methods and noise levels. As, we have found before Lanczos TTLS finds its best 

solutions with smaller truncation numbers when compared with other methods. Therefore, we can 

say Lanczos TTLS is the fastest regularization method among LSQR, TTLS, TSVD and Tikhonov 

regularization. 

 

 

 

Table 4.9: Total run time of regularization methods 

Methods Total Run Time (s) 

LSQR 21 

Tikhonov 60 

TSVD 51 

Lanczos TTLS 20 

TTLS 61 
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CHAPTER 5 

CONCLUSION 

In this study, we have used five different methods for solving the inverse problem of ECG. These 

methods are Tikhonov regularization, Least Squares QR method, Truncated Singular Value 

Decomposition, Truncated Total Least Squares method and Lanczos Truncated Total Least Squares 

method. The reconstructed solutions of these methods are compared with each other and with the 

real epicardial potentials. In these comparisons, the regularization parameters are selected by using 

the maximum correlation coefficient method and most preferable regularization parameter selection 

method. 

 

In our results, we observe that TSVD and Tikhonov regularization methods produced very similar 

results, because as explained in the theory section, the filter factors used by each method to decrease 

error in the system are very similar; Tikhonov regularization adds a damping factor to the SVD 

components and thus filters the effect of smaller singular values. On the other hand, TSVD ignores 

the components related with the smaller singular values. In other words, TSVD has a sharper filter 

and Tikhonov has a smoother filter. The consequence of the difference between these filter factors is 

that the Tikhonov regularization yields smoother inverse solutions than the TSVD. Moreover, TSVD 

result changes significantly with every truncation parameter change, however Tikhonov is a 

continuous method and smoothly converges to the estimated epicardial potentials. When Tikhonov 

regularization and TSVD are compared in terms of run time, it is seem that TSVD is a bit faster than 

Tikhonov because, it directly truncates smaller singular values but Tikhonov adds a damping factor 

to all singular values as explained before. 

 

TSVD and TTLS algorithms work similarly, they both try to neglect the effects of smaller singular 

values and try to obtain a better posed matrix. The main difference between these methods is that 

TTLS algorithm tries to make changes in the transfer matrix and in the body surface potentials but 

TSVD only uses the transfer matrix. For this reason, TTLS is proposed as a good method for dealing 

with geometrical errors in the system. In our simulations with using real epicardial potentials and 

realistic torso model, in the case with only the measurement error, TTLS gives worse results than the 

other approaches. When geometric error is also added to the system, the performance of TTLS is 

comparable to the other methods. Thus, TTLS may only be a good method for the solution of inverse 

ECG problem when there is geometrical error but not a large amount of measurement noise in the 

system. In terms of run time, TTLS gives similar result with SVD based methods such as TSVD and 

Tikhonov regularization. 

 

The LSQR algorithm is an iterative method based on the bidiagonalization procedure by using 

Krylov subspace, which can be used as the regularization method for the solution of inverse 

electrocardiography problem at early iterations. Bidiagonalization procedure used by LSQR 

algorithm does not change the transfer matrix, it only multiplies the transfer matrix by itself and/or 

its transpose, therefore sparsity of the transfer matrix is not destroyed. However, matrix factorization 

such as SVD used by Tikhonov regularization, TSVD or TTLS destroys the sparsity of the transfer 

matrix. For this reason, LSQR is faster than the SVD based methods as shown in run time 

comparisons. When the performance of LSQR is compared with other methods, it can produce better 

or the same results for all of the error types. Therefore it seems to be the best method among the 

compared methods. 

 

Lanczos TTLS is a modified version of the TTLS method. Like the LSQR method, Lanczos 

bidiagonalization procedure is used instead of SVD. For this reason, it is computationally more 

efficient than the TTLS, because SVD takes longer time, especially when transfer matrix is large as 

explained before. When the performance of Lanczos TTLS is compared with other methods for the 
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max CC case, it is seen that CC values of Lanczos TTLS is 2% smaller than those obtained by 

TSVD method, and 3% smaller than those obtained by Tikhonov regularization and LSQR methods 

when only “15 µV – measurement error” is considered. For the “150 µV – measurement error” case, 

Lanczos TTLS’s performance is 7% worse than Tikhonov regularization, TSVD and LSQR 

methods. For the geometric error cases, there is not much difference from other methods. By using 

run time comparisons, it is seen that Lanczos TTLS is one of the fastest regularization methods along 

with LSQR, and it gives better results than TTLS in most cases, therefore it can be an alternative 

method for solving the inverse ECG problem, especially when there is geometric error in the system. 

 

All of the regularization methods have their own advantages or disadvantages, but regularization 

process is not complete without selecting a regularization parameter selection method. The accuracy 

of the regularization methods directly depend on the determination of correct regularization 

parameter. Some methods such as Tikhonov regularization method needs continuous regularization 

parameter like lambda to control the trade-off between the residual error and the constraint norm. 

Others, such as TSVD, TTLS and Lanczos TTLS methods need a discrete regularization parameter 

to decrease the effects of noise by truncating smaller singular values. LSQR method needs a discrete 

optimum iteration number to find the estimated solutions. For these reasons, the performances of 

regularization parameter selection methods; L-curve method, generalized cross-validation and 

maximum correlation coefficient are compared for all of the regularization methods. In addition, 

composite residual and smoothing operator is also tested for only Tikhonov method, because it is 

applicable for only continuous methods. These methods give similar results at low noise levels, but 

when noise level is high, GCV method becomes more stable than the others. L-curve method also 

needs to detect the corner of the curve, so it increases computational work, but it is observed that 

GCV gives good results by selecting the rightmost low value on the curve. CRESO does not have a 

wide usage area because most of the regularization methods are not continuous; for this reason it is 

not preferable.  

5.1. Future Work 

 

 We implemented spatial methods to solve Inverse ECG problem and compared their 

performances. These methods can be compared with spatio-temporal regularization 

methods. 

 Some optimization techniques such as the genetic algorithm can also be used to determine 

the regularization parameter for the regularization methods used here. 
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APPENDIX A 

MEASUREMENT OF EPICARDIAL POTENTIALS AND DETERMINATION OF BODY 

SURFACE POTENTIALS 

 

The true epicardial potentials used for simulation of the body surface potentials and for validation of 

reconstructed solution of the inverse problem were measured from an isolated dog heart. The 

measurements were taken by a team at University of Utah Nora Eccles Harrison Cardiovascular 

Research and Training Institute (CVRTI) [81, 82]. The isolated dog heart was suspended in an 

electrolytic filled human thorax shaped fiberglass tank, and perfused by the circulatory system of a 

second dog under anesthesia. To place an appropriate electric load on the isolated heart, the 

electrolyte was a mixture of isotonic saline and sucrose with a bulk resistivity of 500 Ω-cm, similar 

to the human thorax. The epicardial potentials were recorded from 490 points with 1000 samples/s 

sampling rate using a nylon sock electrode with silver wires, slipped over the ventricles. During 

measurements, the heart was stimulated from the ventricles to simulate ventricular arrhythmias and 

the epicardial potentials were recorded for 97 time instants. These recordings contain measurement 

errors, however during this study; measurements obtained by sock electrode are accepted as real and 

performance of regularization methods are compared with these measured epicardial potentials. 

 

The forward transfer matrix relating the measured epicardial potentials to the body surface potentials 

was calculated using BEM [56]. The code was developed previously in our laboratory as part of a 

research project funded by TÜBİTAK (Grant number: 105E070). Theoretical derivation of the 

forward transfer matrix is presented in the rest of this chapter. 

 

To solve the forward problem of ECG in an inhomogeneous torso model, a similar approach with 

Stanley et al. [89] is used.  In this study, potentials on the heart are represented by epicardial 

potentials.  

 
Figure A.1: Torso model used in Forward solution  

 

Torso model used in forward solution is shown in Figure A.1. Here, tissues and organs included in 

the model are the heart (outer surface: SH), the lungs (outer surface: SL), the spine (outer surface: 
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SSP), the sternum (outer surface: SST), inside of torso surface surrounding these organs (SB), and 

muscle tissue at outside of torso surface (SM). Muscle tissue is defined as the outer surface of the 

body. BEM formulation is done by using this torso model and fat tissue is not included in 

formulation. 

 

By using Green’s second identity, a relationship between position dependent scalars A and B can be 

written as:  

 

    
VS

dVABBAdSABBA 22n ,               (A.1) 

 

Here, n is the unit normal vector defined in the outward direction from surface S. For forward 

problem formulation, A can be defined as 1/r (r: distance from observation point to any point on 

surface S), B can be written as   ( : conductivity at the observation point,  : potential at the 

observation point), then Equation A.1 can be written as: 
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Since there is no current source between epicardium and torso surface, Equation A.2 can be 

simplified as:  
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The surface integral at the left side of Equation A.3 can be written by using surfaces defined in the 

torso model: 
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Here, rOX defines distance from observation point O to surface X. Since there is only air at the 

outside of the torso and its conductivity can be assumed as 0 ( Mair   ), following boundary 

conditions can be written: 
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Here, r is the unit vector pointing from the source point to the observation point. Then,  
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is an element of solid angle subtended at an observation point of i'th location on surface “e” by an 

area element on surface “f”). By using boundary conditions and given equations o can be written 

for an observation point inside the torso volume as: 
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When the observation point is selected on only defined surfaces at the torso model, we obtain 

equations to solve the forward problem. For these surfaces, Equation A.6 can be written as: 
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(A.7.f) 

 

By solving integral equations given in Equation A.7, potential on the heart surface ( H ) can be 

defined by potentials on body surface ( M ). Analytical solution of these equations is possible for 

spherical or cylindrical torso model, but it is not possible for a realistic torso model. Therefore, 

integrals in Equation A.7 should be discretized, and ultimately, M can be written as: 

 

HM A                   (A.8) 

 

where A is the forward transfer matrix that we want to calculate. To find this relationship between 

H  and M , surface elements should be defined on all of the surfaces represented in Equation A.7 

and these surface integrals should be written in terms of summations. For BEM solution, we need 

geometrical models of organs and tissues. For all of the defined surfaces SH, SL, SSP, SST, SB and SM, 

number of the nodes on these surfaces are NH, NL, NSP, NST, NB and NM respectively and triangular 

surface elements are used. Below, the discretization process is given for Equation A.7.a, and similar 

approach is used for other equations in Equation A.7. 
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Here j defines the node index; for the heart it starts from 1 and changes up to NH and i is node index 

on the observation surface. 
i
H  used in Equation A.9 is the gradient value of 

i
H . Equation A.7.a 

can be written in matrix form as: 

 

0PPPPPGP MHMBHBSPHSPSTHSTLHLHHHHHH                     (A.10.a) 

 

When the same process is used for other equations in a.7, they can be written as: 

 

0PPPPPGP MLMBLBSPLSPSTLSTLLLHLHHLH                     (A.10.b) 

0PPPPPGP MSTMBSTBSPSTSPSTSTSTLSTLHSTHHSTH        (A.10.c) 

0PPPPPGP MSPMBSPBSPSPSPSTSPTLSPLHSPHHSPH        (A.10.d) 

0PPPPPGP MBMBBBSPBSPSTBSTLBLHBHHBH        (A.10.e) 

0PPPPPGP MMMBMBSPMSPSTMSTLMLHMHHMH        (A.10.f) 

 

These matrices can then be combined into a single matrix equation: 
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        (A.11) 

 

Since, we are trying to obtain a relationship between 
H  and 

M , L , ST , SP  and B  can 

be combined as a single vector T and Equation A.11 can be written as: 
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Finally, H can be written in terms of T , H and M  and a single equation is obtained: 
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     (A.13) 

 

When Equation A.8 and Equation A.13 are compared, it is seen that A matrix is equal to the matrix 

multiplying H . When this equation and Equation A.9 are carefully inspected, it can be seen that A 

is only dependent on torso geometry and conductivity values and it is independent of potentials on 

the heart surface. Thus, it can be used to relate epicardial potentials and potentials on the body 

surface. The torso geometry can be obtained by using CT and MRI images [90]. The conductivity 

values of lungs and thorax are selected as reported in literature [83]. The part of the torso volume not 

occupied by the heart and lungs was assigned an average conductivity of 0.002 Ω
-1

cm
-1 

and average 

lung conductivity is selected as 0.005 Ω
-1

cm
-1

. By using these conductivity values, transfer matrix 

relating torso potentials to epicardial potentials is formed. This forward transfer matrix obtains body 

surface potential recordings at 771 nodes on the body surface form epicardial potential 

measurements taken from 490 points on the heart surface. 

 

 


