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ABSTRACT

AUTOMATIC MULTI-SCALE SEGMENTATION OF HIGH SPATIAL RESOLUTION
SATELLITE IMAGES USING WATERSHEDS

Sahin, Kerem
M.S., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Ilkay Ulusoy

January 2013, 77 pages

Useful information extraction from satellite images for the use of other higher level applications
such as road network extraction and update, city planning etc. is a very important and active research
area. It is seen that pixel-based techniques becomes insufficient for this task with increasing spatial
resolution of satellite imaging sensors day by day. Therefore, the use of object-based techniques
becomes indispensable and the segmentation method selection is very crucial for object-based
techniques. In this thesis, various segmentation algorithms applied in remote sensing literature are
presented and a segmentation process that is based on watersheds and multi-scale segmentation is
proposed to use as the segmentation step of an object-based classifier. For every step of the proposed
segmentation process, qualitative and quantitative comparisons with alternative approaches are done.
The ones which provide best performance are incorporated into the proposed algorithm. Also, an
unsupervised segmentation accuracy metric to determine all parameters of the algorithm is proposed.
By this way, the proposed segmentation algorithm has become a fully automatic approach.
Experiments that are done on a database formed with images taken from Google Earth® software
provide promising results.

Keywords: Watershed segmentation, multi-scale segmentation, automatic segmentation, high spatial
resolution satellite images, object-based classification
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YUKSEK UZAYSAL COZUNURLUKLU UYDU GORUNTULERININ WATERSHED
KULLANILARAK COK OLCEKLI OTOMATIK BOLUTLENMESI

Sahin, Kerem
Yiiksek Lisans, Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. llkay Ulusoy

Ocak 2013, 77 sayfa

Yol ag1 ¢cikarimi ve giincellenmesi, sehir planlama v.b. gibi yiiksek seviye uygulamalarin kullanimi
icin uydu goriintiilerinden ise yarar bilgi ¢ikarimi ¢cok onemli ve aktif bir arastirma alanidir. Uydu
goriintiileme algilayicilarinin giinden giine artan uzaysal ¢cozuniirliigii ile, piksel tabanli yontemlerin
bu is i¢in yetersiz kaldig1 goriilmistiir. Bu yiizden, nesne tabanli yontemlerin kullanimi kaginilmaz
hale gelmistir ve boliitleme yontemi se¢imi, nesne-tabanli yontemler icin ¢ok kritiktir. Bu tezde,
uzaktan algilama literatiirinde uygulanmis cesitli boliitleme algoritmalari sunuldu ve bir nesne
tabanli siiflandiricinin béliitleme adimi olarak kullanabilecegi watershed ve ¢ok 6lgekli boliitleme
tabanli bir béliitleme yontemi 6nerildi. Onerilen boliitleme yonteminin her adimi igin, alternatif
yaklagimlarla niteliksel ve niceliksel karsilagtirmalar yapildi. En iyi performansi saglayanlar,
onerilen algoritmaya dahil edildi. Ayrica, algoritmanin tiim parametrelerine karar vermek igin bir
denetlenmeyen béliitleme dogruluk metrigi Onerildi. Bu sayede, Onerilen boliitleme algoritmasi
tamamen otomatik bir yaklasim haline geldi. Google Earth® yazilimindan alinan goriintiilerle
olusturulan veritabani iizerinde gerceklestirilen deneyler gelecek vaat eden sonuglar sagladi.

Anahtar Kelimeler: Watershed boliitlemesi, ¢ok o6lgekli boliitleme, otomatik boliitleme, yiiksek
uzaysal ¢oziiniirliikli uydu goriintiileri, nesne tabanli siniflandirma
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CHAPTER 1

INTRODUCTION

Image segmentation can be defined as partitioning an image into non-overlapping, homogenous
segments/objects such that combination of any two adjacent segments/objects is heterogonous. The
aim to incorporate a segmentation method to an image processing framework could be very distinct
depending on the problem domain Image segmentation is seen as an auxiliary process to landscape
change detection and land use/ land cover classification in remote sensing problems [6]. Especially,
it is crucial for object-oriented classification methodology that is heavily used in remote sensing
image processing field. In object-oriented classification, objects found after an initial segmentation
step are classified rather than pixels [8].

High spatial resolution satellite image classification is a highly complex and challenging task
because of two reasons. Firstly, the increase in spatial resolution of satellite sensors makes pixel-
based classification techniques inefficient because of the growing intra-class spectral variability of
different classes. The huge amount of spatial details present in those images necessitates a different
look at the problem compared with low or middle resolution satellite images. Some of very popular
high spatial resolution satellite imaging sensors and their spatial resolutions and launch dates are
shown in Table 1-1. Second major problem of high spatial resolution satellite image classification is
the inadequacy of spectral resolution. There is an inverse relation between spatial resolution and
spectral resolution of imaging sensors [7]. Considering these two reasons, it can be easily said that a
classification method that only takes spectral values of individual pixels into account will be
insufficient. Therefore, object-based methods that consider both spectral and spatial properties of
pixels by using segments would be more appropriate for high spatial resolution satellite image
classification problem.

Table 1-1 Some of very popular high spatial resolution satellite sensors and their features

Satellite Spatial Resolution Launch Date
IKONOS 4m/multi-spectral, 1m/panchromatic 1999
QuickBird 2.4m/multi-spectral, 0.6m/panchromatic 2001
GeoEye-1 1.65m/multi-spectral, 0.41m/panchromatic 2008

WorldView-2 | 1.8m/multi-spectral, 0.46m/panchromatic 2009

Object-based classification is built on the observation that important semantic information is
included in image objects rather than pixels [1]. Pixel-based classification methods do not take into
account contextual information which is very important in high spatial resolution satellite image
classification. In object-based classification, after the creation of segments, there will be so many
features such as spectral, spatial, structural, textural etc. to use for classification. A successful
classification result needs feature values that represent the class type well and this implicitly needs
segments that represent the specific objects. Therefore, the success of an object-based classification
system heavily depends on its segmentation step.



In this thesis, a segmentation method for high spatial resolution satellite images that can be used as
an initial segmentation step of an object-based classifier is aimed with minimal user input, maximal
segmentation accuracy and maximal execution speed. For this purpose, firstly, the segmentation
algorithms that are applied in remote sensing literature are presented in a categorized way. Then, we
decide to apply a hybrid segmentation algorithm that goes into both watershed model and multi-
resolution model of segmentation categories by considering the design goals of this thesis. After
deciding the main category of segmentation algorithm, we present the alternative approaches for
different steps of the algorithm and we decide on an alternative approach for every step of the
algorithm by applying qualitative and quantitative analyzes. Finally, after constructing the proposed
algorithm, we propose a method that is based on an unsupervised segmentation accuracy evaluation
metric to make proposed segmentation approach fully automatic.

The contributions of this thesis can be listed as below:

® A new region merging procedure that is a hybrid form of two different region merging
algorithms is proposed to use as the multi-scale segmentation algorithm part of the
proposed algorithm.

e A procedure that is based on an unsupervised segmentation accuracy evaluation metric is
proposed to make the segmentation approach fully automatic.

This thesis is composed of five chapters excluding this chapter.

e In Chapter 2, generally used segmentation methods and trends in remote sensing literature
are presented.

e In Chapter 3, pre-processing methods, watershed segmentation methods, multi-scale
segmentation methods and segmentation accuracy and performance measures that are
evaluated in this thesis are presented.

e In Chapter 4, the proposed approach is presented by putting example results of the
implementation using the database images 1-3.

e In Chapter 5, the experiments are presented. Strategies and concerns while choosing the
right algorithm from the set of alternative approaches for the specific purpose of the thesis
is explained in detail. Also, the comparison of proposed approach of this thesis with similar
algorithms in the previous literature is done.

e In Chapter 6, the whole thesis is summarized and possible future works are proposed.



CHAPTER 2

A SURVEY OF SEGMENTATION TECHNIQUES USED IN REMOTE SENSING

In this chapter of the thesis, generally used segmentation algorithms in the remote sensing literature
are examined.

Image segmentation can be defined as partitioning an image into non-overlapping, homogenous on
its own (with respect to preferred homogeneity criterion) segments/objects such that combination of
any two adjacent segments/objects is heterogonous (with respect to the same homogeneity criterion).

[9] gives a formal definition of the segmentation problem. If we suppose that a true image T is
corrupted by a noise factor of N, observed image O could be formulated as in Formula 2-1.

O(p)=Tpm) + N(p),peC 2-D

C={(xy):1 <x <L,1 <y < L,}denotes the spatial coordinates of a pixel where L, is the
row count and L. is the column count. Also, presuming the piecewise constantness of T, we can
write the ideal segmentation of C as in Formula 2-2.

Ag(C) = {Ry, Ry, ..., R} such that C = UX_, R 2-2)
where:
e R,NR,=0,Ymne{l.2,..,K}form=n,
e R, vme{12,..,K},is connected,
e T(p)= Z,, ifp € Ry, Vm € {1,2,...,K}, where Z,, is a constant, and
e 7Zm * Zy, if R, and R, are adjacent.

After applying a segmentation algorithm to the observed image, if the resulting count of segments K|
is greater than K, the ideal segment count, the segmentation result is called as over-segmented,
otherwise, under-segmented. The over-segmentation case is a minor one comparing with the under-
segmentation case because over-segmentation can be recovered using region merging and
classification steps [7].

Segmentation algorithms can be grouped by various ways. While [7] groups segmentation
algorithms by the level of operations applied, [6] categorizes them by considering the image analysis
approach models.

2.1 Methods Categorized by the Level of Operations

[7] divides segmentation algorithms into four different categories as below:
e Point-based algorithms: pixel level operations
e FEdge-based algorithms: edge level operations
e Region-based algorithms: region level operations

e Combined(hybrid) algorithms



2.1.1 Point-based Segmentation Approaches

These approaches are also called as histogram-based segmentation methods. Because, in these
methods, one or more than one global threshold is found looking at the histogram of the image and
partitions are obtained after applying this/these threshold/thresholds. In this type of methods,
because of using global information and discarding local information, contextual information could
not be used in the segmentation. Therefore, it is necessary to use a complementary algorithm to
incorporate contextual information following segmentation.

In [9], histogram is described as a Gaussian mixture pdf (probability density function) and
segmentation problem is defined as finding parameters of mixture components and assigning pixels
to corresponding components.

Point-based approaches are not much appropriate for high spatial resolution remote sensing image
segmentation because intra-class variance of objects in high spatial resolution is very high. This
impropriety can be clarified with an example segmentation taken from [7] that is shown in Figure
2-1. Also, this class of methods needs supervision about the number of segments beforehand and this
is a major drawback of these approaches.

I g 2R BLrL 5
(a) Original Image (b) Point-based seg. result (c) Contours

Figure 2-1 An example satellite image (a), its segmentation result with four classes (b) with a point-
based segmentation method, contours found (c) for edge-based segmentation [7]

2.1.2 Edge-based Segmentation Approaches

This type of methods is used for boundary extraction of objects in the image. After boundary
extraction, segments can be generated by filling the areas whose boundaries are known.

There are two steps of object boundary extraction as below:
1. Edge detection
2. Generation of closed contours

First, edges of image are extracted using discontinuity property by edge detection algorithms (Sobel,
Prewitt etc. are the most known). After edge detection step, obtained contours are not closed most of
the time [4]. To attain closed object boundaries, an auxiliary approach of contour closing is
necessary.

In [4], the optimal edge detector algorithm which is an edge-based segmentation method is used.
This method includes three main steps. First, the image is filtered by the Canny-Deriche operator to
obtain the gradient image. Second, to keep the consistent boundaries, a hysteresis thresholding is
applied. Eventually, contours in the image are closed in the way that gives best count. The count in a
way is computed by summing the gradient values on this way.

Also, the watershed segmentation that is based on image morphology can be put in the category of
edge-based segmentation approaches [4].

High susceptibility to noise and the lack of successful generation of closed and one-pixel wide
contours [9] are the main drawbacks of edge-based segmentation algorithms that prevent their use in
remote sensing field. An example result of contour generation with an edge-based segmentation



method can be seen in Figure 2-1. We can easily observe the high density of edges that will be
resulted in over-segmentation afterwards in textured regions like forest area.

2.1.3 Region-based Segmentation Approaches

In this type of techniques, regions which are defined as spatially connected sets of pixels and
homogenous with respect to a predefined homogeneity measure are found. There are three main
region-based segmentation methods as shown below:

® Region growing/merging
e Splitting
e Split and merge

In region growing and merging techniques, segments at hand (found after an initial segmentation
step) are merged with spatially neighboring and similar segments, with respect to the homogeneity
measure. These segments could be one pixel segments. In splitting techniques, whole image is taken
as one heterogeneous region at first. Then, until all fragments are homogenous with respect to
chosen homogeneity criterion, every heterogeneous image region is tessellated into four pieces in a
rectangular manner. In split and merge type methods, different from splitting techniques, when the
splitting process is over, a merging process is started to merge similar neighboring regions. The main
drawback of splitting and split and merge methods is the boundary corruption. They always tend to
produce rectangular shaped boundaries. The most critical point in the techniques described above is
a good homogeneity measure [9].

2.1.4 Hybrid Segmentation Approaches

Combining previously discussed segmentation approaches to eliminate their deficiencies while using
on their own and trying to present an advanced solution to the segmentation problem is common in
the literature. Most of the time, edge and region-based segmentation techniques are used in
conjunction [9].

In [11], after initial partitioning of the input image with morphological watershed transformation, a
fast region merging algorithm that uses region adjacency graph for handling similarity and spatial

neighborhood of segments is applied to get the final result. [11, 12, 40, 14] also use a similar hybrid
segmentation technique which is based on watershed transform and region merging.

2.2 Methods Categorized by the Image Analysis Approach
[6] classifies segmentation algorithms as shown below:

o Object-Background Model

o Markov Random Field (MRF) Model

o Fuzzy Model

o Neural Model

o Multi-resolution Model

o Watershed Model

In general, approaches in the literature are using combination of two or more models to decrease the
shortcomings of each other and obtain a superior result.

2.2.1 Object-Background Model

[6] asserts that the methods in this category are using the conjecture of uniformness of background
and spectrally well-separated objects on this background. Because of considering only individual
pixels, these methods are mostly using spectral features in the image. A histogram is used to show
spectral distribution. Therefore, the algorithms that belong to this category generally use a histogram
thresholding approach.



2.2.2 Markov Random Field (MRF) Model

In this model, it is assumed that the observed image is the degraded version of the true image that
can be modeled with a Markov or Gibbs random field and the aim is to estimate the true image using
an optimality criterion [9]. Maximum a Posteriori (MAP) Probability criterion is the most known and
used criterion of optimality when estimating the true image in this type of approaches [24] and there
are 3 generally used estimation algorithms which are Expectation Maximization (EM), Stochastic
Expectation Maximization (SEM) and Iterated Conditional Modes (ICM) [10].

[24] uses a segmentation approach that incorporates Markov Random Field model for color textured
images. First, it extracts textural features of regions belonging to different classes selected by the
user using Gray Level Co-occurrence Matrix (GLCM) method and finds the statistical mean feature
as the most useful one by examining the class separability. Then, it accepts the feature matrix of the
image as a degraded version of the true image and models it as a Markov Random Field to estimate
the unknown image labels (true image). Estimation step employs ICM algorithm using MAP
criterion.

The reason that makes MRF model a charming approach in high spatial resolution satellite image
analysis is its ability to use the contextual information in the image. However, it is not appropriate
for the applications that require low execution times and automaticity. It uses complex calculations
that need high execution times [6] and needs prior information about the true image [9].

2.2.3 Fuzzy Model

Fuzzy model utilizes fuzzy clustering for segmentation. In traditional clustering, each point is
belonging to a specific cluster. On the other hand, in fuzzy clustering, each point could belong to
more than one cluster with a certain probability value corresponding to each cluster. These
probabilities are called point's cluster coefficients. Most fuzzy segmentation methods present in the
literature are based on Fuzzy Center Means (or Fuzzy C-Means or FCM) clustering and fuzzy
thresholding [19].

[18] defines steps of FCM clustering approach as shown below:
1. Determine the cluster count.
2. Assign each point's cluster coefficients in a random manner.

3. Calculate the centroid of each cluster and recalculate cluster coefficients of each point using
newly found centroids.

4. Tterate step 3 until convergence (successive coefficient change is no more than a specified
threshold).

In [15], a supervised fuzzy logic system is applied with the aim of improving object-oriented
classification results. In this paper, first, an initial segmentation in a fine scale is performed and
primitive segments are obtained. Next, this segmentation results (primitive segments) are used to
train the fuzzy logic system to procure the best segmentation parameters.

In [16], FCM clustering approach is used to group segments into clusters as a final step of a hybrid
multi-scale segmentation algorithm. First, a coarse scale version of original image is partitioned to
initial coarse regions. Next, those coarse regions' equivalents are found in the original image and
these equivalents are segmented again on their own. Finally, achieved segmentation results are
clustered using FCM.

In [17], FCM is used to segment texture feature images obtained with different sized local windows
(3*3, 5*5 and 7*7 neighborhoods).

The main drawbacks of this method are its complexity and the need of cluster count information (by
considering the FCM case).

2.2.4 Neural Model

In computer vision algorithms, robustness to random noise and producing real time response are the
most important properties and neural networks provide us both [19]. Neural networks try to simulate



human learning process. In other words, depending on the inputs, it models a system and learns to
produce meaningful outputs after training stage. Because of training, neural networks are known as
supervised approaches most of the time. However, there are unsupervised ones like Self-Organizing
Maps (SOM) [6].

In [20], the feed-forward back-propagation multi-layer perceptron (MLP) is stated as the most used
neural network method in the remote sensing literature.

In [21], SOM learning is incorporated in an unsupervised color image segmentation system. This
system is composed of two steps. First, color levels of pixels in the image are projected to a selected
set of prototypes using SOM learning, this step is called color reduction. Then, in second step called
color clustering, using prototypes found in previous step, optimal clusters are searched by Simulated
Annealing (SA).

[22, 23] make use of Pulse-Coupled Neural Network (PCNN) method. This method is an
unsupervised neural network approach and embodies spatial neighborhood information [6]. [23]
improves traditional PCNN algorithm that [22] uses, applies this method on IKONOS imagery for
image segmentation and obtains superior results.

2.2.5 Multi-resolution Model

In the remote sensing field, every object has its own scale [3]. This model puts forward the claim
that an object could be segmented best in its own scale.

There are two different strategies of multi-scale image segmentation [16]. Bottom-up approach starts
with fine scale image and moves up to coarser levels. On the other hand, top-down approach starts
with coarse scale image and goes to finer levels.

[16] employs a top-down multi-scale segmentation approach and uses two scale levels of an image
obtained by wavelet decomposition with a Daubechies's wavelet. First, the coarse resolution image is
segmented by clustering the sub-images obtained after wavelet decomposition. Then, segments
found are projected to original image level and corresponding regions are again segmented in their
own using a region growing approach.

In [25], a bottom-up multi-scale segmentation approach is employed using region merging. At the
finest scale (original image), every pixel is considered as a different segment. This approach is the
same with the one of commercial remote sensing image analysis software eCognition® by Trimble
Navigation Ltd. [3]. Homogeneity criteria used in region merging step is also same with [3].

[13] applies a multi-resolution model based technique using wavelet decomposition. After
decomposing the original image into selected scale level, approximation image is segmented by the
watershed transform, then; this segmented image is projected to zero level.

2.2.6 Watershed Model

In this model, the image is first converted to the gradient image. Next, gradient image is interpreted
as a topographical surface in which intensity values of pixels show elevations of corresponding
points. Then, depending on the used watershed transform, this surface is filled with water that is
either effusing out from lowest altitude [26] or pouring from highest altitude [27].

Watershed segmentation generally gives over-segmented results and because of this, it is not used
alone in a general image segmentation system. An auxiliary method along with watershed
segmentation is used either as a pre-processing step or as a post-processing step. There is a
considerable texture in high spatial resolution satellite images. These high textured images make the
over-segmentation problem worse. Noise is an increasing factor, too. As a solution, smoothing
methods and/or region merging methods are generally used in literature as a pre-processing and/or
post-processing, respectively.

For decreasing the over-segmentation effect of classical watershed approach, [12] operates on a
floating point based rainfalling watershed algorithm [27]. Also, it applies a non-linear peer group
filtering method to smooth the original image as a pre-processing step for the same purpose and a
fast multiscale region merging method as a post-processing step.



[13] applies watershed segmentation to an approximation image of a lower resolution obtained by
wavelet transform. Therefore, the low-pass filtering inherent in wavelet decomposition is a bit
decreasing the extreme values in the gradient image. Also, it performs an adaptive thresholding
operation on the gradient image.

Although watershed segmentation is a well-known and popular approach, it is relatively new in
remote sensed image segmentation field compared to other models and it is promising when used
along with multi-resolution model because it produces over-segmented results [6].



CHAPTER 3

BACKGROUND METHODS

In this part of the thesis, the algorithms found in the literature that are evaluated during the
construction of proposed approach of this thesis are described in detail.

3.1 Pre-processing

The watershed segmentation algorithm that constitutes one of the major blocks in this thesis
generally leads over-segmentation due to noise and high texture in the images. It is necessary to use
one or more pre-processing steps to decrease noise and to smooth high textured regions in the image.

[12] states that the uniform application of filters such as median and Gaussian filters throughout the
whole image is the main reason behind their erroneous results. Therefore, Chen et al. [12] and Feng
et al. [31] use a non-linear peer group noise filter proposed by [30] as a pre-processing method
before watershed segmentation. This method is detailed in Section 3.1.1. Besides peer group
filtering, we also evaluate edge preserved smoothing filter. This algorithm is detailed in Section
3.1.2. Giving intensity gradient of the input image as input to the watershed algorithm is very
common. Jing et al. [37] propose a different approach called homogeneity image (H-image) to
overcome the shortcomings of intensity gradient image. These two different types of pre-processing
method are detailed in Sections 3.1.3 and 3.1.4, respectively.

3.1.1 Peer Group Filter

This filter is a color image impulse noise reduction and smoothing filter. In this method, every
pixel's corresponding peer group pixels within a window are found by calculating color distances.
Then, pixel's color value is changed with a weighted average of color values of its peer group pixels.
If the pixel is found to be an impulse noise, then the true peer group is found by using remaining
pixels. Instead of averaging over all window pixels, incorporating a peer group is the source of
success of this algorithm. Deng et al. [30] states that the algorithm is composed of two major parts
which are classification of peer group pixels and replacement.

In the first step, peer group elements in a square window centered on the pixel which is at the image
position n are classified. Thinking of the x4(n) as the color vector of the pixel, the color distances
between this pixel and the other pixels in the window can be calculated by using Euclidean distance
as in Equation 3-1.

d;(n) = |lxo(n) — x;(n)|| wherei =0,.. ,w?—1 (3-1)

In Equation 3-1, w shows the width of the window and i shows the pixel numbers that are assigned
in an order of ascending distance. The peer group of pixel n, p(n), could be represented as in
Equation 3-2.

p(n) = {x;(n)}wherei=0,..,s(n) —1 (3-2)

In Equation 3-2, s(n) represents the peer group size of the pixel positioned at n. It is necessary to
find a proper s(n) that is adaptive to local statistics for every pixel. For this purpose, Fisher's linear
discriminant is incorporated into the algorithm. Fisher's linear discriminant tries to minimize intra-
class distance while maximizing inter-class distance in a two-class situation. However, the pixels in
the window could constitute more than two classes. By supposing peer group elements and non-peer
group elements as constituting two classes, the problem at hand is converted to a two-class problem.



By making use of Euclidean color distances found, Fisher's criterion is calculated for every possible
peer group size and the peer group size that gives maximum value is found to be as optimal s(n) as
shown in Equation 3-3.

s(n) = argmax; J(i) (3-3)

In this equation, J (i) shows the Fisher's criterion for s(n) = i that can be formulated as in Equations
3-4, 3-5 and 3-6. In Fisher's criterion formula, nominator represents inter-class distance and
denominator represents intra-class variance.

. las(D)—az ()12 .
J() = —asl%(li)+a52%(li) , where i =1,... ,w? (3-4
. i— . i— ~ |2
(i) = T XiZhd;(n) and s(0) = Tid|d;(n) — a, ()] (3-5)
. — . — |2
0 () = == di(n) and s3(D) = T d;(m) — @, (D) (3-6)

Before the classification of peer group elements, pixels are analyzed to eliminate impulse noise
effects by incorporating first order differences of color distances, d;(n), as formulated in Equation
3-7.

fitn) =di. (n) — d;(n) 3-7

To check for impulse noise existence within a window, first and last m (half of window size) f;(n)s
are compared with a pre-defined threshold t. If the color difference f; (n) at a sequence k exceeds
the threshold ¢, the pixels that correspond to i < k when k is in first m or i > k when k is in last m
are discarded and the remaining pixels are used for peer group estimation.

The second step of this algorithm is replacement of pixel color value. Using peer group p(n), pixel
color value at a position n is changed with the new value found with the Formula 3-8.
Zfi’?,)_l wipi(n)

s(n)—-1
2[’:0 wi

Xnew (M) = (3-8)

In Formula 3-8, w; is the standard Gaussian (mean O and standard deviation 1) weight of each peer
group member i depending on its position in the window.

3.1.2 Edge Preserved Smoothing Filter

In edge preserved smoothing filter (EPSF), also called as adaptive mean filter, the smoothing amount
of every pixel is determined using local statistics of the corresponding pixel as in peer group filtering
approach. In this thesis, we evaluate the EPSF which is proposed by [32]. Nikolaou et al. [43]
applies this method in the area of document image processing.

The format of a 3*3 EPSF can be seen in Equation 3-9.

G G C3
EPSF = —* ,[cz; 0 Cs] (3-9)
e

To overcome the impulse noise, center pixel of filter is set to 0. The filter coefficients, c;, are found
using Equation 3-10.

c; = (1—d;)Swheres >1 (3-10)

d; in Equation 3-10 is the Manhattan color distance between corresponding pixel and the center pixel
that can be calculated using Equation 3-11. With increasing color distance d; between corresponding
pixel and center pixel, corresponding filter coefficient c; decreases. Therefore, the effect of
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corresponding pixel on the result decreases. s in Equation 3-10 is the scale factor that controls the
amount of smoothing. With increasing s, the effect of low color distant pixels on the result increase
while the effect of high color distant pixels decrease and hence, smoothing decreases.

d = |Rac=Ray| + |Gac=Gay| + |Bac=Ea,]
L 3%255

(3-11)

Equation 3-11 is for the example case of 8-bit RGB color images. The denominator of this equation
is for normalization purpose and d; takes values between 0 and 1.

This filter can be extended to any window size and multi-spectral images.
3.1.3 Multi-spectral Image Gradient

Watershed transform interprets its input (generally an edge map) as a topographical relief and tries to
find the local maximums (watershed lines) of this relief. Therefore, it is common to obtain gradient
magnitude image of the input image before applying watershed transform. For a grayscale image I,
gradient images in x and y directions and gradient magnitude image could be acquired as in

Equations 3-12 and 3-13, respectively.
ar
— (&)= (1
Vi = ( a_’,‘) = (%) (3-12)

In= JIZ+12 (3-13)

In these formulas, I, corresponds to the gradient image in the direction of x, I,, corresponds to the
gradient image in the direction of y and I,,, represents the gradient magnitude image. In grayscale
images, gradient magnitude value of a point shows the strongest intensity change at that point.

Multi-spectral image gradient algorithm is always used with a Sobel filter in this thesis to find
horizontal and vertical edges. Sobel filter is shown as in Equation 3-14.

1 2 1
SobelFilter=10 0 0 (3-14)
-1 -2 -1

On the other hand, we can't directly apply gradient operator to the multi-spectral images, because
gradient operator is applied to the scalar functions. In multi-spectral images, every pixel is a vector
that contains spectral values of different bands. In [41], it is explained and proved that the gradient
magnitude image of a multi-spectral image could be found from maximum eigenvalues of JT]
matrix where J is the Jacobian matrix of the input image. Jacobian matrix for an m-band multi-
spectral image I can be seen in Equation 3-15 and corresponding J7] matrix can be seen in Equation

3-16.
oo
[ax 6y] [1x Ily

J=1: = : (3-15)
LI T B A
dx ady
J7) = [ Ii® + o+ LD (Lx* Ly + ot Ly * my)] 316
(Iix * Ly + ot Ly * Iyy) (hy? + o + I;y®)
For the special case of RGB images, /7] matrix looks like as in Equation 3-17.
7y = [ (R* + G¢* + B,?) (Ry * Ry + Gy * Gy + By By)] 317
(Ry * Ry + G, * Gy, + B, * B)) (R,* +G,* + B,?)
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JTJ matrix has two eigenvalues for every point in the input image and larger of those eigenvalues
corresponds to the strongest spectral change and the square of gradient magnitude [41]. If we
express JT] matrix as shown in Equation 3-18, maximum eigenvalue of this matrix can be calculated
with the Equation 3-19.

A A ]
T 11 12
= 3-18
] ] A21 A22 ( )

(A11+422) + J(A11+A22)2 - 4%(A11%Az2 — A12%A21)

Ay = - (3-19)

3.1.4 Homogeneity Image (H-image)

In this method [37], homogeneity level of local windows is extracted using a homogeneity criterion.
These homogeneity levels constitute the H-Image. While a high value corresponds to a region
boundary (less homogeneous), a low value corresponds to a region interior (more homogenous).

To extract the homogeneity level of a window, the spectral differences of individual pixels with
respect to the central pixel are incorporated. If we call the center pixel as p. = (x.,Y.) and another
pixel in the window as p; = (x;,y;), we can define the vector directed from p, to p; as in Equation
3-20.

Peoi = (Xi — X0, ¥i — Vo) (3-20)

If we add the spectral difference into consideration, we can define a new vector that reflects the
spectral change in a specific direction independent from the spatial distance as in Equation 3-21.

di= (i = 1) =5 (3-21)

In Equation 3-21, I; shows the intensity value of pixel p; and I, shows the intensity value of center
pixel, p.. If we sum all d;s over a local window as shown in Equation 3-22, we can get an idea about
the total spectral variation or texture in that window.

d= Zi di (3_22)

Finally, by changing the center pixel of the window with ||d||, we get the H value of that pixel. The
image that is composed of H values is called H-image. In above formulas, we present the H-image
computation for a gray-scale image. However, the n-band multi-spectral extension of this method is
straightforward by combining H-images resulted from different spectral bands as shown in Equation
3-23.

H = \/H? + -+ H? (3-23)

3.2 Watershed Segmentation

Watershed segmentation is a morphological edge-based image segmentation method. It has been
used in various segmentation problems and it has multiple versions in the literature.

[35] divides watershed segmentation algorithms into two major groups which are flooding
(immersion) simulation based and rainfalling simulation based by their approach to extract
watershed lines. The most popular example of flooding type watershed segmentation algorithms is
the one proposed by Vincent and Soille [26]. [9, 40] incorporate this algorithm in their method. [27,
35] which are proposed by De Smet et al. are the two examples of rainfalling watershed
segmentation algorithms. In [35], it is stated that the algorithms of [27] and [35] are theoretically the
same except for the additional connected component labeling step in [35] to merge individual pixels
of plateau regions. However, the algorithm in [35] is shown to be faster than the one in [27].
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As a result, we use and evaluate two prominent methods which are Vincent-Soille flooding
watershed algorithm [26] and the fast rainfalling watershed algorithm [35] in this thesis.

3.2.1 Vincent-Soille Flooding Watershed Algorithm

In this algorithm, as for the other flooding based watershed algorithms, the progressive immersion of
the topographic relief into the water is simulated. By the application of this immersion, relief starts
to fill with water from the minimum altitude points. Based from the local minimums of the relief,
ponds start to appear with the progressive flooding. When two or more ponds start to intersect, a dam
(watershed) between them is generated. The pixels that belong to a specific pond are the catchment
basin of the corresponding minimum. The dam pixels form the watershed lines. In Figure 3-1, the
progressive flooding (from left to right) and watershed pixel creation mechanism of this algorithm is
depicted on a topographical relief. Vertical lines correspond to watershed pixels in this figure.

N \/

Figure 3-1 Progressive flooding and creation of watersheds in Vincent-Soille [35]

Looking from the implementation side, the algorithm contains two steps that are sorting and
flooding. Sorting of image pixels with respect to their intensities is done first. Then, a hash table
whose entries are intensity levels of the image and which returns the locations of pixels at the
specified intensity level (entry) is formed by scanning the image. In the flooding step, by scanning
intensity sorted image pixels and by considering neighborhood information of the same intensity
level pixels, catchment basins are constructed.

3.2.2 Fast Rainfalling Watershed Algorithm by De Smet et al.

Topographical relief that is immersed with water in the case of flooding type watershed algorithms is
exposed to the rain in the case of rainfalling type watershed algorithms. Rain drops that are
accumulated at the same local minimum form a segment in this type of watershed algorithms.
Therefore, steepest descent of a point (pixel) determines its segment. This phenomenon is shown in
Figure 3-2 [35]. By using a drowning threshold, small local maximums that are corresponding to the
weak edges could be eliminated. Instead of drowning threshold, relative drowning threshold which is
drowning threshold divided by maximum value in the input image could also be applied.

|
/N

Figure 3-2 Rains follow the path of steepest descent [35]

Implementation of the rainfalling watershed algorithm proposed by [35], also used in this thesis, can
be divided into five major steps as detailed below:
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0. Initially, two data structures that represent label image which represents the respective
segment of each pixel and local minima image which indicates the local minima pixels are
created. While L denotes the label image, M denotes the local minima image. Label of
every pixel is initialized with the video scanning order of it (left to right, top to bottom). M
is initialized with all 1s. Also, drowning threshold, DT, and neighborhood size (4 or 8 for
two-dimensional images), NS, are initialized.

1. In the first step, all pixels in the input image are visited in the order of left to right and top
to bottom. At every pixel, steepest descent direction check is applied depending on DT.
There are three different cases for each pixel in this step and these are shown in Equation
3-24. In this formula I shows the input image, i shows the current pixel and igy shows the
label of the pixel that is neighbor to the current pixel in the direction of the steepest descent.

i,if 1(i) < DT
L(i) = {i,if I(i) = DT and no steep.desc. (local min.) (3-24)
isy,M(i) = 0,if I(i) = DT and a steep. desc.

2. The label image is traversed in the video scanning order to find the local minimum that
corresponds to each pixel. At every pixel i, by tracking L(i)s (steepest descents) iteratively,
the corresponding local minimum (M (j) =1) is found and L() is changed as L(i) = j. This
step actually simulates the rainfalling behavior.

3. A connected component labeling algorithm with the neighborhood size given by DT is
performed on the local minima image M. This step is added into this algorithm to remove a
major shortcoming of over-segmented plateau regions in the method proposed by [27].

4. A once more traversal of the label image to carry the newly found local minima information
in step 3 is performed. For every pixel i, L(i) is updated as M (L(i)).

3.3 Multi-scale Segmentation

In a high spatial resolution satellite image, while cars, individual trees, narrow roads and small-sized
buildings etc. could be classified as micro-objects, parking lots, forests, main roads and big-sized
buildings etc. could be classified as macro-objects. According to [3], every object has its own scale
in remote sensing images that it is best extracted. Keeping this in mind, we can say that micro-
objects are best extracted in higher scales and macro-objects are best extracted in lower scales if the
original image is accepted as the highest scale image. Macro-objects are more related with the aim of
this study because we are interested in land cover types.

There are mainly two types of multi-scale segmentation algorithms in the literature which are
wavelet based and region merging based. While wavelet-based algorithms can be labeled as coarse-
to-fine type, region merging-based ones are fine-to-coarse type multi-scale segmentation algorithms.
In general, wavelet based algorithms perform segmentation at a lower scale and project the
segmentation result to the original image scale while trying to preserve object boundaries. In region
merging based algorithms, regions found after an initial segmentation are iteratively merged trying
to reach to the desired scale level. On the other side, wavelet-based algorithms are computationally
less complex than region merging based algorithms at the possible expense of corrupted object
boundaries.

In this thesis, we evaluate two wavelet based [13, 11] and two region merging based [12, 14] multi-
scale segmentation algorithms for best results.

3.3.1 Multi-scale Segmentation based on Wavelet Decomposition

In this type of techniques, input image is analyzed at multiple resolutions by using wavelet
decomposition. General flow of this type of algorithms can be seen in Figure 3-3. First, the
segmentation scale at which segmentation algorithm is applied is selected. Then, by using wavelet
transform (WT), the lower scale version of the original image is obtained and segmented. Finally,
the segmented image is projected to the original image scale, mostly by using Inverse Wavelet
Transform (IWT).
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Figure 3-3 General flow of MSS algorithms that are based on wavelet decomposition

Wavelet decomposition which is proposed by [38], unlike other multi-resolution decomposition
techniques like Gaussian and Laplacian pyramids, is a complete representation in that the original
image can be reconstructed without a loss [11]. In Figure 3-4, wavelet decomposition process for a
two-dimensional image can be seen.
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Figure 3-4 The flow of wavelet decomposition for a two-dimensional image

In Figure 3-4, the process starts with level i = 0 where A, corresponds to the original image. At each
level i, the input image 4; is first convolved with low-pass (LPF_Hor) and high-pass (HPF_Hor)
filters in horizontal direction and a column-wise down-sampling (DS_Cols) is applied to filtered
images. Then, these images are convolved with low-pass (LPF_Ver) and high-pass (HPF _Ver)
filters in vertical direction and a row-wise down-sampling (DS_Rows) is applied to filtered images.
At the output of this process, there are four different images, DD; ., VD;,1, HD;, and 4;,, that are
half-sized with respect to 4;. Each output image contains details (high frequency parts) of input
image A; in different directions. DD;,; contains diagonal details, VD;,, contains vertical details,
HD; 4 contains horizontal details and A;,; which is also called as the approximation image is the
low-pass filtered version of the input image A; and contains no details.

In wavelet decomposition, HPF_Hor and LPF_Hor are transposed versions of HPF_Ver and
LPF Ver, respectively and these filters are associated with a mother wavelet [38]. Both wavelet-
based multi-scale segmentation algorithms [13, 11] that are evaluated in this thesis incorporate Haar
wavelet as the mother wavelet. It is also a good choice considering the aims of this study because of
its low computational complexity [13]. The high-pass and low-pass filter definitions associated with
the Haar wavelet are shown in Equation 3-25.

HPF_Hor = [i —i] (3-25)

V2 V2,

[13] and [11] that go in this category of multi-scale segmentation techniques are evaluated in this
thesis. They mainly differ in their application of projection to return back to the original image scale
which is the last step of Figure 3-3.

LPF_Hor = [% %]

15



3.3.1.1 Projection Method of Kim & Kim [11]

In [11], the coarsest scale image (segmentation level s is manually selected) is segmented by marker-
controlled watershed algorithm. Then, a region merging algorithm that benefits from wavelet
coefficients is performed on the segmented image. Finally, the region merged image M is projected
as shown in Figure 3-5. We are only interested in the projection step of the algorithm of [11].

DD,—»
VD 2-D Bound
- ' oundary |
IWT Sia Refinement
HD,—»
Si >

Simplify

B;

*

Figure 3-5 The flow diagram of projection algorithm proposed in [11]

As can be seen in Figure 3-5, the projection method is based on the application of 2-D IWT. It is an
iterative approach where boundaries are refined at every iteration (scale level i). First, the region
merged image A4; is simplified using the watershed line image B; where i = s(segmentation scale) at
start. B; contains a different label for each region. Simplified image S; is obtained by averaging the
intensity values of A; over the corresponding region in B; and setting intensity value of each pixel in
the corresponding region to this average. After this operation, except for watershed lines, S; is piece-
wise constant. For pixels corresponding to the watershed lines, the intensity values of 4; are directly
copied to S;. Then, a 2-D IWT is applied by incorporating the detail images DD;, VD;, HD; and the
simplified image S; and the result is the finer scale simplified image S;_,. Finally, by utilizing S;_;,
watershed line image of scale level i —1, B;_;, which is the segmentation result of A;_;
(approximation image of scale level i — 1) and upsampled watershed line image of scale level i,
UB;_,, boundaries and labels of the simplified image are refined as follows:

0. UB;_4 represents for possible labels of the image S;_,. However, at the watershed lines
which are not anymore one-pixel wide, there could be mis-segmented pixels.

1. Find the label that has maximum count in the portions of image UB;_, corresponding to
each segment of image B;_.

2. Assign the label found in step 1 to the corresponding region of B;_; and obtain RB;_;.
RB;_, is mainly an image whose boundaries are sourced from B;_; and labels are sourced
from UB;_;.

3. RB;_; has more segments than B;_;, however, the label count is same. Adjacent regions
that have same label could be merged.

After refinement of boundaries, this whole process presented above is iterated as refined labels
image RB;_ is the new labels image.

3.3.1.2 Projection Method of Jung [17]

In [17], after manual selection of segmentation scale s, the approximation image at that scale, Ay, is
obtained using Haar wavelet decomposition. Then, the gradient magnitude image of A which is
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acquired using Prewitt edge detector is exposed to an adaptive thresholding algorithm proposed by
[17]. Finally, watershed transform is applied to the thresholded gradient magnitude image and
segmented image is projected to the original scale using the algorithm shown in Figure 3-6.
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Figure 3-6 The flow diagram of projection algorithm proposed in [17]

In this projection method, the approximation image is tried to be projected to the original resolution
iteratively using IWT. At every level of wavelet reconstruction, boundaries of objects (which are
possible to be corrupted during IWT) are corrected using corresponding level’s approximation
image. Firstly, the approximation image A4; at the segmentation scale (i = s) is simplified using the
segmentation result Seg. The same approach used in projection method of Kim&Kim [11] is
followed for obtaining the simplified result IS from A; and Seg. DD;, VD;, HD; and IS are
incorporated to obtain one upper scale approximation image by using 2-D IWT. However, to prevent
filtered details throughout the region interiors to be involved back in, detail images are multiplied
with a mask image WL. WL is a binary image that takes value of 1 on watershed lines and 0
otherwise. A modified approximation image at level i — 1, MA;_,, that is piece-wise constant except
for the upsampled watershed lines UM;_,. These pixels are called lost pixels and we can be sure that
their locations are defined by UM;_; because the support of Haar wavelet is 2 and every detail
coefficient influences a 2*2 window in the upper scale image [17]. In lost pixel correction step of
Figure 3-6, every lost pixel’s neighbors in an 8-connected manner are searched and lost pixel’s
intensity value is updated with the one that minimizes intensity difference. The output of this step,
LC;_4, is a true piece-wise constant image. Finally, to retain the true boundary information, the pixels
that are belong to the object boundaries (B;_;) are updated with the corresponding ones in true
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approximation image A;_, in the boundary correction step. Now, simplified and corrected result of
the level i — 1, BC;_,, is at hand. To arrive at the original image resolution, this whole process
should be repeated until i = 0 as shown in Figure 3-6.

3.3.2 Multi-scale Segmentation based on Region Merging

We use and evaluate two different region merging algorithms in this thesis. They mainly differ in
their order of merging and stopping criterion.

In both region merging algorithms, a region adjacency graph (RAG) is generated to hold the
segmentation information at any scale. This graph holds the neighborhood information of segments
found after watershed segmentation and is mainly composed of nodes, N, edges, E, and distances, D.
An example segmentation and the corresponding RAG is shown in Figure 3-7. Nodes, N, correspond
to segments in our case. Edges, E, are present between adjacent segments (nodes) and distances, D,
represent the distances between adjacent nodes. In our case, a distance corresponds to the merging
cost of two adjacent segments and is calculated by the Equations 3-26 to 3-30 for both of the
algorithms.

/

|

[
S )\ :

(@) (b)

Figure 3-7 An example segmentation and its RAG (a) Segmentation with region labels (b) RAG
corresponding to (a) [11]

The merging cost that these two algorithms incorporate is the one which is also used in eCognition®
software [3] and its formulation is as follows:

f = Wspectralhspectral + (1 - Wspectral)hshape (3‘26)
hspectral = Zi w; (nmam,i - (nlo-l,i + nZO-Z,i)) (3-27)
hshape = Wcompactnesshcompactness + (1- Wcompactness)hsmoothness (3-28)
L L I
hsmoothness = T bﬂ - (nq e +ny b (3-29)
m 1 2
h =My 2 — (1, 2 (3-30)
compactness m 1y 2 s

The merging cost, f, is a mixed score that takes both spectral heterogeneity change, hgpectrq;, and
shape heterogeneity change, Rgpqpe, into account in a region merge operation. The parameters of the
Equations 3-26 to 3-30 are as follows:

¢ In Equation 3-26, fis the merging cost of two regions, region 1 and region 2. hgpecrq; and
hsnape are the spectral heterogeneity change and the shape heterogeneity change resulting
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from the merge operation, respectively. Wgpecerqr is the weight of Ag,ecrrq When combining
hspectrar and Rgpgpe for the merging cost calculation.

e In Equation 3-27, the difference of the standard deviation of merged region and the total
standard deviation of constituting regions for each spectral band, i, are summed for the
calculation of Rgpecerqr- Wi shows the weight of band i. n,,, n, and n, represent the areas of
merged region, region 1 and region 2, respectively. g,,;, 01; and o,; are the standard
deviations of merged region, region 1 and region 2, respectively, for band i.

e In Equation 3-28, two shape heterogeneity change metrics are combined by linear
weighting to form hgpape. Acompactness ad Rgmootnness are the segment compactness and
boundary smoothness changes resulting from the merge operation, respectively.
Weompactness is the weight of hcompactness when combining hcompactness and RAsmoothness
for the hgpgp calculation.

e In Equations 3-29 and 3-30, n,,, n, and n, represent the areas of merged region, region 1
and region 2, respectively. l,,,, [; and [, show the perimeters of merged region, region 1 and
region 2, respectively. b,,, b; and b, show bounding box perimeters of merged region,
region 1 and region 2, respectively.

3.3.2.1 First Algorithm [12]

After the generation of RAG for a watershed segmented image, first algorithm [12] searches the
nodes (segments) which have the minimum area throughout the image and after that, it examines the
edges connected to these regions to find the one that has minimum distance. Then, it merges the
regions that are at a distance of that minimum to each other and updates its data structures. This
procedure iterates until the minimum segment area in the image exceeds the size threshold. The
flowchart of this algorithm can be seen in Figure 3-8. In this flowchart, C,,;;, shows the current
minimum segment area in the image and SizeThr is the stopping criterion of the algorithm. As a
result, it can be said that this algorithm merges the most similar segments that have areas smaller
than SizeThr.

Input
Initialize N Search N Calculate
(G, " regions " heterogeneity
N Merge
regions

y Adjust
RAG

Figure 3-8 The flow chart of the first region merging based multi-scale segmentation algorithm [12]

3.3.2.2 Second Algorithm [14]

On the other hand, second algorithm [14] does not consider segment sizes as in the first algorithm
and searches for the edge that has minimum distance throughout the image. Then, it merges the
corresponding regions that are at a distance of that minimum to each other and updates its data
structures. This procedure iterates until the minimum merging cost in the image exceeds a threshold.
The flowchart of this algorithm can be seen in Figure 3-9. In this flowchart, Scale threshold is the
stopping criterion of the algorithm. As a result, it can be said that this algorithm merges the most
similar segments that have similarity smaller than Scale threshold.
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Figure 3-9 The flow chart of the second region merging based multi-scale segmentation algorithm
[14]

v(x,y) = max (3-31)

3.4 Segmentation Accuracy and Performance Measures

Segmentation accuracy can be assessed by qualitatively (visual analysis) or quantitatively.
Qualitative assessment methods need an expert look at the segmentation results to decide the
truthfulness of outputs. Quantitative assessment methods (empirical methods as called in [4]), on the
other hand, evaluates segmentation results by using some statistical measurements. Quantitative
assessment methods can be divided into two categories as supervised and unsupervised. In
supervised methods, a ground truth image obtained at a pre-segmentation step is used as reference to
evaluate the segmentation accuracy. In unsupervised methods, measures that simulate human
approach of evaluation of segmentation correctness such as correct segment boundaries, intra-
segment homogeneousness etc. could be used to assess segmentation accuracy. Carleer et al. [4]
name supervised category of quantitative analysis as empirical discrepancy methods and
unsupervised category as empirical goodness methods and prefer to use empirical discrepancy
methods in their case. Kim and Kim [11], Sun et al. [2] and Johnson et al. [39], on the other hand,
evaluate their segmentation results by performing empirical goodness methods. We are using both
empirical discrepancy and empirical goodness methods in this thesis.

3.4.1 Unsupervised Measures

Empirical goodness function that is proposed by [33] and incorporated in [11] can be seen in
Formula 3-32. The lower the output of this function, the better the segmentation accuracy is.

F() = VN x (Sl ) x 2 (332

In Formula 3-32:
e [ isthe input image.
e N is the segment count obtained after segmentation.

e D, is the sum of Euclidean distances between spectral vectors of pixels of k™ region of
segmented image and corresponding region of simplified image. Simplified image, as
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discussed in Section 3.3.1.1, is obtained by averaging the intensity values of input image
over each segment and setting intensity value of each pixel in a segment to intensity
average of that segment.

e A, is the pixel count or area of K" region.
e  Sis the size of the input image I.

This function evaluates segmentation results in local and global level at the same time. v/N punishes
global over-segmentation, DZ and /A, encourage intra-segment homogeneity and big-sized regions,

. 1 . o
respectively. 5 termis here for normalization.

Kim and Kim [11] apply measures such as the segment count, PSNR (Peak Signal to Noise Ratio)
and computation time beside the goodness measure. PSNR is a parameter calculated between two
images and is mainly used in image compression field as a compression efficiency measure. If it is
high, the loss in compression is low and it means that the similarity between the compressed image
and the original image is high. After converting segmented image to simplified version, PSNR value
can be used as an accuracy measure of segmentation. The Mean Square Error (MSE) that is an
inversely proportional parameter with PSNR can be formulated as in Formula 3-33.

MSE = — (ZE23 Z5261 () = L, 1) (3-33)

In Formula 3-33:
e 7 and c show row and column count of the image, respectively.
e [ and I represent original and simplified image, respectively.

In the formula of MSE, |I(x,y) — I;(x,y)| difference is an absolute intensity difference in the case
of grayscale images and a Euclidean distance of color vectors in the case of multispectral images.
MSE is a quantitative representation of total squared error between two images. PSNR, on the other
hand, is an indicator of peak error in decibel units. Formula 3-34 represents PSNR equation.

PSNR = 10log;, () (3-34)

In Formula 3-34, F stands for the maximum achievable difference that can be obtained by using
[1(x,y) — Is(x,y)|. For example, it is 255 in the case of 8-bit gray-scale images.

Sun et al. [2] incorporate spatial autocorrelation analysis and intra-segment variance for the selection
of optimum segmentation scale in their multiscale segmentation method. In this thesis, they are used
as a segmentation accuracy evaluation method. Spatial autocorrelation analysis supplies information
about the intersegment autocorrelation or seperability of segments. To obtain intersegment
autocorrelation, [2] handles Moran’s I index which is proposed by [34]. Its formula can be seen in
Formula 3-35.

N N 2 wi-X)(X-X)

I= =
N Z?Llwij N X-%)?

(3-35)

In Formula 3-35:
e N is the segment count.

®  w;; shows the spatial weight of ijth region pair. In [2], it is used as an adjacency measure. If
regions are adjacent w;; is 1, otherwise 0. When i and j are equal, w;; is 0.

e X represents the selected feature of segments. In [2], the spectral means of segments are
selected. X, and X represents the mean color of region k and the mean color of whole
image, respectively. X; — X difference is calculated by simple scalar difference in the case
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of grayscale images and by Euclidean distance of color vectors in the case of multispectral
images.

Moran’s I index represents the level of separation between adjacent segments’ means. A high
Moran’s I index value corresponds to high spatial autocorrelation, in another say, a bad
segmentation.

[2] also makes use of a measure that reveals intrasegment variance or homogeneity. The formulation
of this measure can be seen in Formula 3-36.

_ Thea(Akvi) )
V= P (3-36)

In Formula 3-36:
e A, shows the area of kth segment.
® v, shows the variance of kth segment.

The intra-segment variance, V, formulated as above is the average of variances of each segment that
are weighted with segment sizes. By this way, the effects of small-sized segments on the result are
decreased and a more stable result is obtained. By the way, a better segmentation result produces
lower intrasegment variance.

In [2], it is stated that while Moran’s I index decreases, intra-segment variance increases with
increasing segmentation scale. Therefore, the optimum segmentation scale is found from a set of
different scale values by combining these two measures.

Johnson et al. [39] also incorporate Moran’s I and intra-segment variance for the selection of
optimum segmentation scale in their multiscale segmentation method as with Sun et al. [2]. In [39],
after Moran’s I and intra-segment variance are calculated independently for all spectral bands by
employing the previous equations, a goodness measure that incorporates both is proposed. First, to
evaluate both Moran’s I and intra-segment variance equally, they are normalized to 0-1 range as in
Equation 3-37.

_ _Xbi~ Xminb
Xnormalized,b,i ~ X X (3-37)
max,b min,b

In Equation 3-37, min and max values of corresponding measure X (Moran’s I or intra-segment
variance) are found from a set of values (for different is) as X, and X4 p, respectively where b
stands for spectral band. This set of values in the case of [39] is the set of measurements found after
region merging segmentation with different scale thresholds i. Then, to be able to benefit from both
measures, they are combined in the way as seen in Equation 3-38 and the result is called as Global
Score (GSp, ;) for spectral band b and scale threshold i.

GSb,i = Vnormalized,b,i + Mlnormalized,b,i (3-38)

In Equation 3-38, V,,rmaiizeap,i Shows the normalized value of intra-segment variance and
ML, ormatizea,p,i Shows the normalized value of Moran’s I for spectral band b and scale threshold i.
Finally, global scores of each band are averaged as shown in Equation 3-39 and an average global
score that collects information of different spectral bands, GS;, is formed for scale threshold i.

GS; = —= X THL, (GSy) (3-39)

After finding GS; for every scale level i, Johnson et al. [39] choose the i that has minimum GS; as the
best segmentation scale. Because, low Moran’s I and intra-segment variance values that are
properties of a good segmentation produce lower global scores.
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Chabrier et al.[42] also propose an unsupervised segmentation evaluation metric called Zeboudj's
contrast (Zeb contrast) based on the internal and external contrasts of the regions calculated around
the pixels. Chabrier et al. define the internal contrast (I;) and external contrast (E;) of a region i (R;)
as shown in Equations 3-40 and 3-41.

I = % X Yser,max {c(s,t),t € W(s) N R} (3-40)
E = %x Yoer,max {c(s,t),t € W(s),t & R} (3-41)

In these equations, W (s) shows the neighborhood of a pixel s. A; and [; show the area and perimeter
length of R;, respectively. F; corresponds to the pixels at the border of R;. c¢ represents the contrast
operator for corresponding pixels.

By using I; and E;, the contrast of R; is calculated as in Equation 3-42. Finally, the Zeb contrast of a
segmented image is calculated as in Equation 3-43.

1-Lif0< I <E
C(Ry) = E,if ;=0 (3-42)
0, otherwise

C, = 2 X TiAC(R) (3-43)

Zeb contrast metric measures the homogeneity of segment interiors by the internal contrast (I;) and
the heterogeneity between segments by the external contrast (E;). Finally, higher values of Zeb
contrast correspond to better segmentation results.

Another unsupervised segmentation evaluation metric proposed by Zhang et al. [43] is based on the
entropy. Entropy of a segment represents the level of disorder within the corresponding segment.
The entropy of a region R; is formulated as in Equation 3-44.

H(Rj) = - ZmEVJ-

Li(m) Lj(m)
log =A™
Sj Sj

(3-44)

In this equation, m shows a specific luminance value throughout all possible luminance values (V})
in the region j. L;(m) represents the count of pixels that have luminance value m in region j and S;
shows the total pixel count (area) of region j. By using the entropy of a region found before, the
expected region entropy of an image / can be formulated as in Equation 3-45.

H (D) = T (D) HCR) (3-45)

Expected region entropy serves as a measure of intra-segment homogeneity of a segmentation. Low
expected region entropy corresponds to better intra-segment uniformness. Because expected region
entropy has a bias towards over-segmentation, a balancing factor that is called as layout entropy is
proposed by Zhang et al. [43] whose formulation is in Equation 3-46.

S Sj
H() = ~Z); Llog (3-46)

Finally, these two entropy evaluations are combined as in Equation 3-47 for achieving an optimum
segmentation result. Because one term (H,.(I)) has a bias towards over-segmentation and the other
term has a bias towards under-segmentation (H;(I)), E produce optimum values when these two
terms are balanced as in the formulation. This formulation of total entropy produces lower values for
better segmentation results.
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E= H.()+H(®) (3-47)

In this thesis, F, GS, Zeb contrast and E metrics are used during the performance comparison of the
proposed approach with the similar approaches in the literature by using the test images that do not
have ground truths. Also, we use and evaluate F and GS metrics as automatic parameter selection
mechanisms for our proposed segmentation approach and call them Goodness1 (G1) and Goodness2
(G2). In [2], [11] and [39], these metrics are used for the determination of best segmentation scale or
resolution. However, we evaluate the usefulness of these parameters when determining all
parameters of the algorithms that are included in the proposed segmentation approach.

3.4.2 Supervised Measures

Supervised accuracy evaluation metrics produce results by comparing segmentation results with
manually segmented results (ground truths). An example of this evaluation is shown in Figure 3-10.
In Figure 3-10c, wrongly segmented pixels are shown as shaded.

" Ly
L o
I
(a)

Figure 3-10 Example of a supervised segmentation evaluation (a) true segmentation result, (b) found
segmentation result, (c) mis-segmented pixels [4]

We apply supervised segmentation accuracy evaluation metrics proposed by [4] as shown in
Equations 3-48 and 3-49.

N N N

[(zi:ffzj:rff Cij)‘ Zk:if Ckk]
Evl = Nrer Nrep X 100 (3-48)

21‘:1 Z:j=1 Cij
Nref
Nyef <Ei=1 Ci}')‘cfj

iy <—"jref X100

Ev2 = (3-49)
N‘ref

In Equations 3-48 and 3-49, N, and n;,.f are the true segment count of the image and the pixel
count of true segment j found from ground truth, respectively and c;; is the ijth element of the
confusion matrix C.

An example of a confusion matrix for four true segments case can be seen in Table 3-1. Confusion
matrix has a size of Nyor X Ny.or where Ny is the true segment count. An element of a confusion
matrix, Nyy, shows the number of pixels that have true segment label Y and found segment label X.
Before generating confusion matrix of a found segmentation result, a conversion is applied to the
segmentation result such that its segment count and segment labels are the same with its ground
truth. Due to the difficulty of having an ideal segmentation result, found segment count mostly
differs from the true segment count. Therefore, the label of the true segment that is included most by
a found segment becomes the new label of the corresponding found segment. As a result of this
approach, it is obvious that the segmentation error will only be sourced from the segments that
include the boundaries of true segments.
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Table 3-1 Confusion matrix for a segmentation having true segment count of 4

True Segment Label

Naa Nap Nac  Nap
Found Nga Ngg Ngc Ngp
Segment

Label Nea Neg Neeo Nep

NDA NDB NDC NDD

In the light of above discussions, it can be easily said that Ev1 is a global measure of pixel
segmentation error throughout the whole image. However, it is insufficient for providing an object-
based segmentation error. For this reason, [4] proposes Ev2 measure which is simply an average of
pixel segmentation errors of all segments in the image.

25






CHAPTER 4

PROPOSED APPROACH

In this chapter, the proposed method of this thesis for segmentation of high spatial resolution satellite
images is expressed in detail. In the following sections, a detailed and comparative analysis about the
reason behind choosing the corresponding method used in each step of the algorithm and the effects
on the result could be found. The steps of proposed segmentation method in this thesis can be seen in
Figure 4-1. The rest of this chapter will contain these parts in detail.

Pre-
processing

Watershed

Smoothing by
edge preserving
smoothing filter

segmentation by
Vincent-Soille

Region merging
type MSS

algorithm

Generation of
homogeneity

Figure 4-1 Steps of proposed segmentation method in this thesis

In Section 4.1, the way we obtain satellite imagery from a specific satellite at a specific resolution
and at a specific time using Google Earth® software of Google Inc. is explained in detail. In Section
4.2, the watershed-based region merging type MSS (multi-scale segmentation) approach that we
propose is described. In Section 4.6, the unsupervised segmentation accuracy evaluation metric for
parameter selection of the algorithm that we propose is described.

4.1 Input Image Selection

Today, high spatial resolution satellite images are abundant with many satellites and many sensors
on these satellites; however, they are not easily accessible by research community. Images taken
from satellites are at a price. DigitalGlobe Inc. which is the owner of QuickBird and WorldView 1-2
satellites and GeoEye Inc. which is the owner of IKONOS, OrbView 2-3 and GeoEye 1-2 satellites
are the major vendors in high spatial resolution satellite imagery industry.

In year 2005, freely available software Google Earth® created by Google Inc. started to provide
satellite imagery at no cost but reduced spatial and spectral resolutions and without the infrared band
[29]. Google Earth® database is composed of images taken at different times and supplied from
many different satellite and aerial image vendors including but not limited to DigitalGlobe Inc. and
GeoEye Inc. Because of this multi-source and multi-temporal environment, Google Earth® obviously
applies geo-registration to images for unifying them. In this way, Google Earth® allows analysis of
everywhere on the earth in a continuity. However, this process could not give best results all the
time. Examples of geo-registration errors found in Google Earth® that are taken from [29] can be
seen in Figure 4-2.
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This type of errors is easily discernible by following linear objects like roads. While geo-registration
problems seen in Figure 4-2a-b-c are owed to multi-temporal images taken from same satellite, the
one in Figure 4-2d is because of two different satellites (The left half is taken with QuickBird and
the right half is taken with Landsat) [29].

(@) (b) (©) (d)
Figure 4-2 Examples of Google Earth® geo-registration errors [29]

Considering deficiencies of Google Earth® stated above, a scene that includes image taken from only
one satellite and at only one time should be searched. Actually, with enhanced database of Google
Earth® from 2005 till today, it is not a hard task to find a scene that meets these criteria. By enough
zooming and positioning, we could easily obtain a scene that is taken from only one satellite at only
one time. However, the necessary zoom level (Google Earth® calls this as "Eye Alt") corresponding
to the spatial resolution of the scene is still an unknown. Although vendor and time tag of source
image are available in Google Earth®, Google Inc. chooses not to share spatial and spectral
resolution of the source images [29].

Finally, by encountering "GeoEye Featured Image Gallery" of Google Earth®, we are also becoming
able to get rid of spatial resolution uncertainty. Selected set of interesting places on earth are
included in "GeoEye Featured Image Gallery". These places are not abundant but the set is
continually growing. The scenes in this gallery carry satellite source, time tag and spatial resolution
information.

4.2 Segmentation Model Selection

To solve remote sensing image segmentation problem, numerous segmentation methods are
employed in the literature. These methods are grouped into different classes from two different
perspectives in Chapter 2. In the following paragraphs, we try to decide the best segmentation model
considering the design goals stated in Chapter 1.

From the operation level perspective, there are four categories of segmentation algorithms which are
point-based, edge-based, region-based and hybrid algorithms. Point-based approaches are applied to
an image globally by discarding the local information and they need supervision about the segment
count of the image beforehand. Therefore, edge-based and region-based methods are more preferable
over point-based methods. However, edge-based segmentation methods are very susceptible to noise
because of their working principle that is based on intensity gradient and region-based segmentation
methods, especially splitting techniques, produce corrupted (rectangular-like) boundaries. Hence, a
hybrid approach that combines edge-based and region-based techniques to overcome their individual
deficiencies is necessary.

From the image analysis approach perspective, there are six types of segmentation algorithms which
are object-background model, MRF model, fuzzy model, neural model, multi-resolution model and
watershed model. Object-background model is actually corresponding to point-based approaches in
the previous perspective. MRF model incorporates an assumption that the observed image is the
corrupted version of the true image and tries to estimate the true image using optimization
techniques. However, it suffers from extensive computation times and has the disadvantage of the
necessity of supervision about the true image. Fuzzy model performs fuzzy clustering for
segmentation. FCM is the most known and applied fuzzy clustering method [19], however; its
computational burden and supervised nature (cluster count information) makes it a bad choice for us.
Neural networks (neural model) try to model a system simulating human learning activity. Because
of the required training stage, they contradict our design goals. Multi-resolution models (multi-scale)
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try to provide the segmentation of objects in their intrinsic scale. Because every object has its own
scale in remote sensing images [3], the inclusion of multi-resolution models into proposed method of
this thesis may be reasonable. Watershed models tackle the segmentation problem using watershed
algorithm. Watershed algorithm is an unsupervised and fast approach. This algorithm is an edge-
based segmentation method and therefore, it produces over-segmented results. However, it is
generally used along with other segmentation models.

By the light of above comparisons, it appears that we need a hybrid (edge and region-based) and a
multi-scale segmentation approach. Combining watershed and multi-scale models would be a good
selection towards satisfying our design goals. However, the over-segmentation problem caused from
watershed model should be handled with pre-processing or post-processing approaches.

As a result, the flow that we will be following in the rest of this section can be seen in Figure 4-3.
This figure shows the construction phases of our watershed-based multi-scale segmentation
approach. At every phase, we compare two or more methods for that step in qualitative and
quantitative manners. Quantitative comparison uses the accuracy and performance measures that are
introduced in Section 3.4. After the evaluation of comparison results, the best method for that phase
is selected. By using this step-wise optimal approach, we find a sub-optimal set of algorithms that
constitute our proposed segmentation method.

Finding Optimal

Finding Optimal Pre- Finding Optimal Multiscale
processing Methods WatershedMethod Segmentation
Method

Figure 4-3 Phases of the construction of the proposed algorithm of this thesis
4.3 Pre-processing

Direct gradient magnitude image input to watershed in natural images always results in over-
segmentation. This is because of noisy and textured nature of those images. Therefore, smoothing of
the input image before watershed application becomes a must.

4.3.1 Pre-filtering by EPSF

We evaluate the effect of the use of PGF [30] and EPSF [32] smoothing/de-noising filters before
watershed on the segmentation accuracy and performance in Section 5.2. In that section, it is shown
that although the segmentation accuracy resulted from these two algorithms is more or less the same,
EPSF is better than PGF in terms of the over-segmentation handling capability and computational
complexity. Hence, we incorporate EPSF algorithm to our proposed approach; however, we made a
little modification on the filter coefficients as shown in Equation 4-1 for a 3*3 filter example. While
Nikolaou et al. [32] propose to use O for center pixel to remove impulse noise; we choose to use 1 for
center pixel with the assumption that high spatial resolution satellite images are free of impulse
noise.

€1 G €3
1
EPSF = ——————|cs 1 CS] -1
(Bimre+t [56 C7; Cg

Also, the smoothing parameter,s, of EPSF algorithm is found to have an inconsiderable effect on the
segmentation accuracy except for the very low values of it. Therefore, we propose to use a constant
s = 10 for all test images as also proposed by Nikolaou et al. [32]. From the experiments done on
Section 5.2, we come up with a window size,w, of 5 for test images 1 to 3. We present the watershed
segmentation results of test images 1 to 3 after the application of EPSF with corresponding window
sizes and the watershed segmentation results of images without preprocessing applied in Figure 4-4.
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Figure 4-4 The effect of EPSF on the segmentation results (a) Original test images, (b) Segmentation
of (a), (c) EPSF applied results of (a), (d) Segmentation of (c)

From the visual results shown in Figure 4-4c, the success of EPSF is apparent in smoothing the
region interiors and preserving the boundaries. Comparing Figure 4-4b with Figure 4-4d, it can also
be seen that over-segmentation is reduced a little by the application of EPSF. Because of still high
over-segmentation, it is hard to assess the change in the segmentation accuracy from Figure 4-4b to
Figure 4-4d.

4.3.2 Homogeneity Image Generation

H-Image method [37] which is an alternative approach to gradient magnitude image is evaluated and
compared with MSGM method [41] in Section 5.3. In that section, H-Image method is found as
superior of MSGM in the sense that it decreases over-segmentation while preserving real object
boundaries as with MSGM with the expense of computational complexity. It is also shown in that
section that although MSGM and H-Image produce nearly same results for test images 1 and 2, H-
Image gives superior results for test image 3. While MSGM algorithm looks for sequential intensity
change of pixels throughout the image, H-Image looks for the homogeneity of windows centred
around the considered pixel. Therefore, while MSGM produces extensive number of edges in for
example forestry regions, H-Image handles these regions well and reduces the over-segmentation as
seen from the results of test image 3 in Section 5.3. In Section 5.3, optimum window sizes of H-
Image method are found as w = 3 for test images 1 and 2 and w = 7 for test image 3. H-Images and
their corresponding segmentation results are shown in Figure 4-5.
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Figure 4-5 H-Images and their segmentation results (a) H-Images of test images 1 to 3 (b)
Segmentation results of (a)

From the visual results shown in Figure 4-5b, no big change can be discernible except for the test
image 3 by comparing the results with the ones in Figure 4-4d which are found by using MSGM.

4.4 Watershed Segmentation

We evaluate two different watershed algorithms from two different classes in this thesis. These are
Vincent-Soille’s algorithm [26] which is a flooding type watershed algorithm and De Smet et al.’s
algorithm [35] which is a rainfalling type watershed algorithm. We compare the segmentation results
of these two algorithms in Section 5.1 for test images 1 to 8 and found that Vincent-Soille’s
algorithm is superior to De Smet et al.’s algorithm in terms of segmentation accuracy. Actually, De
Smet et al.’s algorithm is highly successful in reducing the over-segmentation in the results by its
relative drowning threshold,rdt, however, it is not good at preserving object boundaries and
segmentation accuracy.

4.5 Multi-scale Segmentation by Region Merging

In Sections 5.4, 5.5 and 5.6, we compare and evaluate different approaches to multi-scale
segmentation (MSS) and conclude that second region merging based MSS algorithm [12] provides
better results than first region merging based MSS algorithm [14]. In both of the region merging
algorithms that we evaluate, we apply the heterogeneity criterion that is also incorporated in
eCognition® software [3]. This criterion measures spectral and structural heterogeneity change
resulted from merging of two regions and structural part of this criterion considers smoothness of
segment boundaries and compactness of the segments. As found in Section 5.5, inclusion of
structural part of the criterion doesn’t change the results so much possibly because of extreme over-
segmentation present in the results. Therefore, we prefer not to include structural part of the criterion
to the heterogeneity criterion. The heterogeneity criterion that we incorporate in this thesis turns out
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to be a criterion as shown in Equation 4-2. The parameters in this formula are explained in Section
3.3.2 in detail.

f=2iwi(MmOm; — (01, +120,,)) 4-2)

The two algorithms differ in their merging order and stopping criterion. First method arranges
merging list in the increasing order of segment size and merging cost. In other words, merging
occurs from small-sized segments to large-sized segments and the priority of merging at the same-
sized segments is the one with lower merging cost. Second method, on the other hand, arranges
merging list in the increasing order of merging cost by not considering segment sizes.

Considering accuracy and performance results obtained in Section 5.5, we realize that those two
region merging algorithms are not sufficient in their own. While first one incorporates only a size-
based stopping criterion, second one incorporates only a heterogeneity-based stopping criterion.
While first one achieves a segmentation result in that minimum segment size is the stopping
criterion, second one achieves a segmentation in that any two segments are different from each other
at least as the stopping criterion. However, in an ideal segmentation, we need both of these
properties. Therefore, we propose a hybrid region merging method that uses these two region
merging algorithms in a cascaded form as shown in Figure 4-6. In other words, first, we apply first
region merging algorithm and give the output to second region merging algorithm as input.

Size-based region merging Heterogeneity-based region

[21] merging[16]

Figure 4-6 The process flow of proposed region merging algorithm in this thesis

The segmentation results with no region merging applied, with first region merging applied, with
second merging applied and with proposed region merging applied cases are shown in Figure 4-7 for
test images 1 to 3 by applying the parameters found in Section 5.5.
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Figure 4-7 Segmentation results of different region merging algorithms for test images 1-3 (a) No
region merging, (b) First region merging, (c) Second region merging, (d) Proposed region merging

As discussed in Section 5.5 and as shown in Figure 4-7, newly proposed hybrid algorithm improves
over-segmentation handling capability of RM1 and RM2, and it has lower computational complexity
than other two region merging algorithms; however, its segmentation quality is slightly less than the
others. Because of the similarity of the results of RM2 and RM3, we may think that first region
merging that is incorporated in RM3 is unnecessary. Let's think a situation like that there exist a
parking lot and cars parked in it. Actually, an optimum segmentation of this scene is dependent on
the application. If the segmentation of individual cars in the parking lot is necessary, the
segmentation approach must handle a lower minimum segment size. Otherwise, if the segmentation
of the parking lot as a whole is necessary, the segmentation algorithm must handle a higher
minimum segment size. Because we want to deal with macro objects in the image (not a car but a
parking lot, not a tree but a forest), a pre-merging of segments that have sizes lower than a threshold
is necessary. First region merging of the proposed algorithm provides us the application of this
threshold. By labeling the ground truth image according to our needs (e.g. segments are major
objects in our case) and analyzing the best results of evaluation measures, this threshold is found
heuristically.

4.6 Automatization of the Segmentation

Up to this point, we selected parameters of every algorithm in an attempt to maximize segmentation
accuracy obtained with segmentation accuracy evaluation metrics (Ev1 and Ev2) and minimize the
over-segmentation. Actually, application of supervised evaluation measures to natural images is
problematic because of the deficiency of being sure about the true class of each pixel. This is
eminently observed when generating ground truth images that are made use of in this thesis.

For this reason, two unsupervised goodness measures are compared and evaluated in 5.7. First
goodness measure which is specified in Equation 3-32 evaluates the segment count and intra-
segment variance of the segmentation with the assumption that an ideal segmentation has minimum
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segment count and homogenous segments. Second goodness measure tries to find the optimum point
in that sum of Moran's I and intra-segment variance of the segmentation is lowest. Moran's I is also
an unsupervised measure that reflects inter-segment correlation and therefore, its lowness means the
non-existence of over-segmentation. It also could mean under-segmentation; however, the intra-
segment variance is here to balance this.

In Figure 4-8, the segmentation results obtained by following different segmentation accuracy
measures are shown. From these visual comparisons, an apparent advantage of G2 measure over G1
stands out. It produces nearer results to manual segmentations at the expense of a decrease in
segmentation accuracy. For the segmentation of test image 3, G2 produces almost the same result
with the manual segmentation; however, G1 produces a high over-segmented result because of its
nature of favoring spectrally homogeneous regions and high texture content of forest. This over-
segmentation effect of G2 could be seen in all three test images. On the other hand, G1 is prone to
under-segmentation in spectrally similar regions as in test image 1. Because the color of roof and soil

are similar, it gives under-segmented outcomes.
] i I i
| ! I i
g 1 B g 1

(a) Manual (b) G1 (c) G2

Figure 4-8 Segmentation results obtained by following different measures

As a result, although the under-segmentation effect of it, incorporating G2 measure with the purpose
of determining segmentation parameters to our proposed approach is fair enough considering the
quantitative results found in Section 5.7. By this way, our proposed segmentation approach becomes
a fully automatic one.
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CHAPTER 5

EXPERIMENTS

In this chapter, experimental works that are done to decide best method for each step of the
segmentation approach shown in Figure 5-1, to decide best unsupervised segmentation goodness
metric that makes segmentation approach fully automatic, to determine the quality of this approach
and to compare it with other approaches present in the literature are presented.

Step2:

Stepl: Pre- Watershed iz

Watershed
Segmentation

Step4: Multi-

Scale
Segmentation

Filtering Input
Generation

Figure 5-1 The flow of segmentation approach proposed in this thesis

For these experiments, a database as shown in Table 5-1 is constructed. All images in the database
are taken from Google Earth® software. The test images 1-8 are relatively less complex and
composed of less segments than test images 9-20. The ground truths of test images 1-8 are generated
manually but they are only used for performance evaluation and comparison purposes. Ground truth
generation for remaining test images (test images 9-20) is omitted because of the unreliable behavior
of manual ground truth generation process at the segment boundaries in such complex images. Those
images are used for visual segmentation quality assessment of the proposed approach. All
experiments are done on MATLAB® 7.10 software.

Table 5-1 Satellite image database that is constructed and used in this thesis

Image Size | Image Count Image No  Ground Truth
128*128 3 1-3 Available
256*256 5 4-8 Available
512*512 2 9-10 Not Available

1024*1024 10 11-20 Not Available

Total 20 1-20 -

This chapter can be divided into three parts:

e In Sections 5.1 to 5.6, we try to find the best alternative method for each step of the
segmentation approach by using supervised segmentation accuracy evaluation metrics and
performance metrics such as segment count, computation time and PSNR. At the end of this
part, the proposed segmentation approach is constructed.

e After deciding the best alternative methods for each step in the first part, all input
parameters of the proposed segmentation approach are found by using unsupervised
segmentation accuracy evaluation metrics in Section 5.7. Also, the segmentation results
found in a supervised manner in the first part are compared with the fully automatic
segmentation results and then; the best unsupervised segmentation accuracy evaluation
metric is decided in this section. At that point, decided metric becomes a part of the
proposed segmentation approach and the proposed approach becomes a fully automatic one.

e Finally, in Section 5.8, the proposed segmentation approach is compared with the similar
approaches present in the literature.
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5.1 Comparison of Watershed Algorithms

In this section, we evaluate two different watershed algorithms by following the steps shown in
Figure 5-2. In this figure, RF stands for rainfalling watershed algorithm detailed in Section 3.2.2 and
VS stands for Vincent-Soille flooding watershed algorithm detailed in Section 3.2.1. First, we apply
the gradient magnitude operation on the input image using the Multi-Spectral Image Gradient
algorithm detailed in Section 3.1.3 that incorporates Sobel filter. Then, watershed algorithms are
applied and segmentation results are compared by using both visual analysis and the accuracy and
performance measurements. For both watershed algorithms, we apply 8-neighborhood.

MS *RF o
Grad. VS -

Figure 5-2 The method applied for finding the best watershed algorithm

While RF has one input parameter (relative drowning threshold parameter), VS has none. Therefore,
we have to find the input parameter that provides best RF result before comparing RF with VS. We
begin with finding the best rdt(relative drowning threshold) parameter for the RF algorithm which is
discussed in Section 3.2.2 in detail. With increasing rdt, more local minimums become drowned.
This means, for our case, that small gradients become discarded. This can be called in a way as
region merging; however, instead of regions' properties, just the edge magnitude between
corresponding regions is considered. To be able to observe the effect of increasing rdt on the RF
segmentation result, we apply RF to test images 1-3 with 16 different rdts that are extending from 0
to 0.15 with steps of 0.01. Visual results for rdts 0.00, 0.05, 0.10 and 0.15 for these test images
could be seen in Figure 5-3. Also, the supervised accuracy evaluation measurements obtained for all
rdts are shown in Figure 5-4. The direct consequence of increasing rdt is decreasing segment count
and computational complexity because of less local minimums. By not considering accuracy
measurements, the results in Figure 5-3 look quite appealing indeed. One can think that increasing
rdt improves visual segmentation quality by pretty much decreasing the over-segmentation.
Although this opinion is correct until some point (this point differs for different test images), the
increase of rdt beyond that point decreases segmentation accuracy as seen from accuracy
measurements in Figure 5-4. These points are rdt = 0.02 for test image 1, rdt = 0.03 for test image
2 and rdt = 0.05 for test image 3. While Ev1 measurements remain constant up to these points and
therefore segmentation accuracies are preserved, the over-segmentation effects are reduced. Ev2
measurements are parallel with the Ev1’s except for the test image 3. However, the variations in
Ev1 and Ev2 measurements in the case of the test image 3 are very low and this inconsistency could
be negligible.
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Figure 5-3 RF segmentation results of test images 1-3 obtained for shown rdts
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Figure 5-4 Ev1 and Ev2 measurements of RF segmentation results of test images 1-3 for rdts 0.00
to 0.15 with steps of 0.01

After finding the optimal rdts for test images 1-3, we are now able to compare VS and RF
segmentation algorithms. The visual comparison of these two algorithms by the test images 1-3 can
be seen in Figure 5-5. In this figure, simplified images, as discussed in Section 3.3.1.1, are obtained
by averaging the intensity values of input image over each segment and setting intensity value of
each pixel in a segment to intensity average of that segment. Because of the extreme over-
segmentation present in the segmentation results, it is quite hard to decide which algorithm has better
segmentation quality from segmented and simplified images. However, in simplified form of test
image 1 by RF, the corruption in the boundaries of buildings draws attention and this obviously
shows us the existence of a problem of co-location of RF segment boundaries with the real object
boundaries.
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Figure 5-5 Visual comparison of the results of RF and VS algorithms for test images 1-3 (a) RF
segmented results with optimal rdts, (b) VS segmented results, (c) Simplified image of (a), (d)
Simplified image of (b)

To compare the segmentation results in a more objective manner, we make use of the accuracy and
performance measures and the results of these analyses are shown in Table 5-2 for test images 1-3.
In this table, better accuracy results are shown in bold. As seen in this table, supervised accuracy
evaluation measurements (Ev1l and Ev2) show an apparent advantage of VS over RF. PSNR
measurements reflect the better intra-segment homogeneity in VS results and this supports our visual
findings of corrupted boundaries in RF results previously. VS is seen as slightly less computationally
complex; however, this contradicts with the findings of [35]. This contradiction may be due to the
optimized implementation of VS in MATLAB® software. While RF is our own implementation, VS
is directly performed with the built-in function of MATLAB® software.

Table 5-2 Quantitative comparison of the results of RF and VS segmentations for test images 1-3

Test Image | Algorithm  Seg. Cnt. Time (sec) PSNR (dB) Evl Ev2
1 VS 1220 0.04 31.92 0.61 0.73

RF 552 0.09 26.90 2.64 5.16

) VS 1562 0.04 32.87 0.58 1.69

RF 1029 0.10 29.70 1.73 577

3 A 1541 0.04 25.86 0.32 0.31

RF 1246 0.11 22.79 0.50 0.50

Finally, to support our previous findings about the superiority of VS over RF, we measure the
accuracy of segmentation results of test images 4-8 in the database and share the results in Figure
5-6. For these test images, optimum rdt values are found by using the same procedure explained
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previously. The accuracy measurements obtained from every test image show that VS is superior to
RF.

1 2 3 P 5 5 7 8 1 p s . 5 6 7 8
Test Image No Test Image No

(a) Ev1 vs. Test Image No (b) Ev2 vs. Test Image No
Figure 5-6 Quantitative comparison of the results of RF and VS segmentations for test images 1-8

As a result, although RF reduces the over-segmentation enormously, VS comes into prominence for
the optimal watershed algorithm from the perspective of quantitative segmentation accuracy.

5.2 Comparison of Smoothing/De-Noising Filters

In this section, we evaluate the effect of two different noise removing/smoothing filters which are
Peer Group Filter (PGF) and Edge Preserved Smoothing Filter (EPSF) on the segmentation results.

In the first part of this section, each filter's input parameters that give best segmentation results
according to both qualitative and quantitative analysis are found. Then, best results offered from the
two filters are compared. Throughout these comparisons, VS watershed algorithm and Multi-
Spectral Image Gradient algorithm that incorporates Sobel filter are applied. This process could be
seen in Figure 5-7.

- MS VS Anal
*EPSF Grad. Water. Y-

Figure 5-7 The method applied for finding the best smoothing/de-noising filter

We begin with finding the best parameter set for the PGF algorithm. PGF algorithm has two input
parameters which are window size, w, and impulse noise threshold, t. We make an assumption that
the input image is free of impulse noise. This assumption is logical in a sense that the high spatial
resolution satellite images are generally impulse noise free. This threshold may be useful in the case
of SAR images which are rich of speckle noise that is a type of impulse noise. Even in the case of
SAR images, handling of a constant threshold is a bit risky because its value should be dependent on
the level of noise present in the image. Therefore, adjusting the threshold needs an adaptive approach
which should be aware of the noise level in the image or needs supervision. As a result, we sett = 0
to discard impulse noise threshold.

In Figure 5-8, we try to show the effect of PGF window size on the accuracy and performance of the
segmentation results for ws extending from 3 to 15. Considering Figure 5-8a-b, it can be said that
window size of PGF has a minor effect on the segmentation accuracy. In PGF algorithm, a peer
group that is composed of spectrally similar pixels with respect to the central pixel of the window is
constructed for every pixel of the image. Then, the average of the intensity values of the pixels in the
peer group weighted by a standard 2D Gaussian becomes the filtered value of the corresponding
pixel. Therefore, while window size increases, even if the peer group starts to include the pixels that
are spatially distant to the central pixel, the effect of those pixels on the average will become
minimized because of Gaussian weights. As a result, the results in Figure 5-8a-b are expected. At

40



this point, we prefer choosing the window size that reduces the over-segmentation most. Therefore,
we come up with w = 15 for test images 1-3 as can be seen from Figure 5-8c.
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Figure 5-8 Ev1, Ev2, segment count and computation time measurements of PGF pre-processed
segmentation results of test images 1-3 for PGF's ws 3 to 15

We continue with finding the best parameter set for the EPSF algorithm. EPSF algorithm has two
input parameters which are window size, w, and scale or smoothing factor, s. EPSF is also called as
an adaptive mean filter. Different from a classical mean filter, the coefficients of the filter are not
unique throughout the image but depend on the local statistics. Spectrally similar pixels to the central
pixel in a window take more weight and s could be thought of a multiplier of these weights. With
increasing s, the weights of similar pixels increase more and more and smoothing of the image
decreases. In [32], it is seen that a fixed s = 10 gives a good performance on all tests. To check the
validity of this finding, we analyze the accuracy of segmentation results for s extending from 1 to 20
and w = 3 for test images 1-3. As seen from the results in Figure 5-9, despite the fluctuations in the
segmentation accuracy for low values of s, the results become stable and almost same for s bigger
than 8. Therefore, we also use 10 for s parameter. Now, we will find the best window size with s set
to 10.
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Figure 5-9 Ev1, Ev2 measurements of EPSF pre-processed segmentation results of test images 1-3
for EPSF's ss 1 to 20

In Figure 5-10, we see the effect of EPSF window size on the accuracy and performance of the
segmentation results for ws extending from 3 to 15. As seen from Figure 5-10a and b, there is no
trend of continuous increase or decrease with increasing window size for both Evl and Ev2
measures. Also, the change of segmentation accuracy measurements between different window sizes
is small and could be neglected as in the case of PGF. Therefore, we prefer choosing the optimum
window size regarding the segment count. It was observed that w = 5 is the optimum selection for
test images 1-3 as seen in Figure 5-10c.
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Figure 5-10 Ev1, Ev2, segment count and computation time measurements of EPSF pre-processed
segmentation results of test images 1-3 for EPSF's ws 3 to 15
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Finally, we make a comparison of PGF and EPSF pre-processed segmentation results with their
corresponding best parameter sets as in Figure 5-11 for test images 1-8. From these measurements, it
can be seen that best segmentation accuracy is achieved when no pre-processing applied. However,
the reduction of over-segmentation is at minimum for this case. Both PGF and EPSF give very close
results in terms of segmentation accuracy for each test image and there is no global dominant in any
of measures except for the segment count and computation time. Segment count and the
computational complexity of EPSF are much lower than PGF. Therefore, we choose EPSF because

of its superior handling of over-segmentation and lower time complexity.
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Figure 5-11 Quantitative comparison of the results of PGF and EPSF preprocessed segmentations for
test images 1-8

5.3 Comparison of Watershed Input Types
Watershed algorithm generally takes gradient magnitude image as input. In this section, Multi-

spectral Gradient Magnitude (MSGM) and H-Image methods are compared to find best watershed

input that provides the best segmentation accuracy and performance.
Prior to comparison of these two methods, H-Image method is evaluated for best result with different
window sizes, w. Then, best H-Image result is compared with MSGM result. The process followed

for this step could be seen in Figure 5-12.

*MSGM &

Figure 5-12 The method applied for deciding between MSGM and H-Image algorithms
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H-Image method is like a smoothing filter applied to the gradient magnitude image of an image and
this smoothing increases with window size. To see the effect of window size on H-Image algorithm,
the segmentation results of test images 1-3 for ws extending from 3 to 15 are analyzed. The H-
Images for w = 3 and w = 11 and their corresponding segmented images are presented for test
images 1-3 in Figure 5-13. In these results, increased smoothing is obvious with increasing window
size on the H-Image. As a result of this, the over-segmentation in the segmented image is extensively
reduced.

() (b) (© (d)

Figure 5-13 H-Images and segmentation results of test images 1-3 obtained for w = 3 and w = 11
(a) H-Image for w = 3, (b) segmentation of (a), (c) H-Image for w = 11, (d) segmentation of (b)

In Figure 5-14, we see the accuracy and performance measurements that are obtained with w = 3 to
w = 15 for the H-Image method with the test images 1-3. In these graphics, extensive segmentation
accuracy corruption especially for test image 1 and 2 that is not apparent in Figure 5-13 can be
observed. For test image 1 and 2, regarding the best Ev1 and Ev2 measurements, we come up with
the optimal w of 3 for test image 1 and optimal w of 9 for test image 2. On the other hand, for test
image 3, the variation in Ev1 and Ev2 measurements is negligible. Therefore, we go for w of 15 that
provides best over-segmentation handling.
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Figure 5-14 Ev1, Ev2, segment count and computation time measurements of H-Image pre-
processed segmentation results of test images 1-3 for H-Image's ws 3 to 15

Finally, we make a comparison between MSGM and H-Image methods as in Figure 5-15 for test
images 1-8. From this table, it is seen that both methods produce nearly equal results for all test
images in terms of segmentation accuracy metrics. However, the over-segmentation handling of H-
Image method is superior to MSGM method at the expense of time complexity. By considering these
results and adjustable window size property of H-Image, we opt for it rather than MSGM at the
expense of computational complexity.
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Figure 5-15 Quantitative comparison of the results of MSGM and H-Image preprocessed
segmentations for test images 1-8

5.4 Comparison of Wavelet Based MSS Approaches

In this section, we compare two different wavelet based multiscale segmentation algorithms. The
process that we follow could be seen in Figure 5-16. In both of the wavelet based algorithms, input
image is segmented at a lower resolution (scale). Low resolution version of the input image is
gathered by wavelet decomposition (step 2 in Figure 5-16). The two algorithms differ in their
projection scheme (step 5 in Figure 5-16). While Kim&Kim's algorithm (Projl) incorporates
watershed segmentation result of every scale during projection to update boundaries, Jung's
algorithm (Proj2) uses spectrally nearest neighbor pixels to correct boundaries. These projection
schemes are explained in detail in Sections 3.3.1.1 and 3.3.1.2.

Wave. H- VS * Projl
° sl Dec. Image Water. ° * Proj2 ° i

Figure 5-16 The method applied for finding the best wavelet based MSS algorithm

We begin with Jung's MSS algorithm that is explained in Section 3.3.1.2. This algorithm has only
one parameter which is the scale parameter, s that shows the resolution level that the original image
is decomposed to. In Figure 5-17, we see the supervised accuracy measurements that are obtained
with s = 1 to s = 3 for the test images 1-3. From these measurements, it can be seen that s = 1 for
test images 1-2 and s = 2 for test image 3 provide the best segmentation results amongst others. In
these results, significant degradation of segmentation accuracy with increasing s is apparent except

46



for the test image 3. Also, previously found parameters for EPSF and H-Image algorithms are used

for each test image.
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Figure 5-17 Ev1 and Ev2 measurements of the segmentation results of test images 1-3 with Jung's
algorithm for ss 1 to 3

We continue with Kim&Kim's MSS algorithm that is explained in Section 3.3.1.1. This algorithm is
similar to Jung’s MSS algorithm except for the projection scheme. This algorithm also has only one
parameter which is the scale parameter, s, that shows the resolution level that the original image is
decomposed to. In Figure 5-18, we see the supervised accuracy measurements that are obtained with
s =1tos = 3. From these measurements, it can be seen that s = 1 and s = 3 provide the best
segmentation results for test images 1-2 and for test image 3, respectively. As in Jung's algorithm,
high degradation of segmentation accuracies is present in the results.
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s s
Figure 5-18 Ev1 and Ev2 measurements of the segmentation results of test images 1-3 with
Kim&Kim's algorithm for ss 1 to 3

Finally, we make a comparison between Jung's and Kim&Kim's methods as in Figure 5-19. As
shown in this figure, Kim&Kim's method is seen to produce superior results for nearly all test
images in terms of the computational complexity and the segmentation accuracy while they produce
nearly equal segment count.
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Figure 5-19 Quantitative comparison of the results of Jung's and Kim&Kim's algorithms for test
images 1-8

5.5 Comparison of Region Merging Based MSS Approaches

In this section, we try to find the best region merging based multi-scale segmentation algorithm. The
process that we follow for this purpose could be seen in Figure 5-20.

- «RMI
EPSF . Vs «RM2 Analy.
g «RM3

Figure 5-20 The method applied for finding the best region merging based multi-scale segmentation
algorithm

We begin with first region merging based MSS algorithm (RM1) that is proposed by [12] and
explained in Section 3.3.2.1. The parameters of this algorithm are the scale threshold, s, as the
stopping criterion, spectral and smoothness heterogeneity weights (Wgpectrat, Wsmoothness) and the
weights of spectral bands (w;). We opt for using the same weights for each spectral band to benefit
equally from all spectral bands. For s, we evaluate 100 different values ranging from s = 1 to
s =100 with steps of 1 for test images 1-2 and 100 different values ranging from s = 50 to
s = 5000 with steps of 50 for test image 3. The reason for this difference in the resolution of
measurements lies in the objects that have different intrinsic scales in different test images. While
roads present in the test images 1-2 have lower intrinsic scales, forest and bare ground in the test
image 3 have higher intrinsic scales. In Figure 5-21, we can see the segmentation accuracy
evaluation measurements for test images 1-3 with changing s and Wgpecirq; = 1. Considering the
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results of Figure 5-21, s = 24 is selected for test image 1 because Ev2 measurements don't change
until this threshold while the increase in Evl is tolerable. s = 11 is selected for test image 2.
s = 3500 which is the optimum segmentation point is selected for test image 3.
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(c) Test Image 3

Figure 5-21 Ev1 and Ev2 measurements of first region merging segmentation results of test images
1-3

Now, we try to analyze the effect of Wepecerar and Wemoornness ON the accuracy of segmentation

results. For this purpose, Ev1 and Ev2 measurements are taken at s = 50 for test images 1-2 and at

s = 2500 for test image 3 ranging from 0.1 to 1 with the steps of 0.1 for both wgpecerq, and

Wsmoothness @ shown in Figure 5-22. From these measurements, it can be seen that Wepecirq has a
very small effect on the segmentation accuracy except for the very small values of it and Wgpootnness
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has almost no effect. Considering the results of Figure 5-22, we choose Wpecirgr = 1 for all test

1images.
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Figure 5-22 The effect of Wgpectrar and Wypmoothness On the accuracy of segmentation results of test
images 1-3

We continue with second region merging based MSS algorithm [14] (RM2). This algorithm is more
or less the same with the previous algorithm except for the ordering for merging and the stopping
criterion. Instead of a size threshold as in RM1, this algorithm incorporates a merging cost threshold
as the scale threshold. We use Wy ecirqr = 1 and equal spectral band weights, w;, as in RM1 because
the merging cost formulation is the same for both algorithms. For the scale threshold, we evaluate
100 different values ranging from s = 50 to s = 5000 with steps of 50 for test images 1-2 and 100
different values ranging from s = 250 to s = 25000 with steps of 250. This difference in the range
of values has the same reason with the one of RM1 and is explained previously. In Figure 5-23, we
can see the segmentation accuracy evaluation measurements for test images 1-3 with changing s.
s = 1000 and s = 2950 are selected for test image 1-2, respectively, because the change in Ev1 and
Ev2 measurements is tolerable up to these points. s = 12500 for test image 3 is selected by
considering the minimization of over-segmentation because the accuracy reduction is negligible.
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Figure 5-23 Ev1 and Ev2 measurements of second region merging segmentation results of test

images 1-3

As the last algorithm, we evaluate third region merging based MSS algorithm proposed in this thesis
(RM3) that is explained in detail in Section 4.5. This algorithm is the concatenation of first two
region merging methods in other words the application of RM2 after RM 1. Therefore, it incorporates
the same parameter values found for RM1 but needs new parameter values for RM2. For the scale
threshold, we evaluate 100 different values ranging from s = 50 to s = 5000 with steps of 50 for
test images 1-2 and 100 different values ranging from s = 250 to s = 25000 with steps of 250 as in
RM2 experiments. Now, in this case, scale thresholds of RM2 get smaller. Approaching to the best
parameter finding process as in other two region merging algorithms, s = 600, s = 3000 and s = 0

are selected for test image 1,2 and 3, respectively.
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In Figure 5-24, the accuracy and performance results of all region merging methods are presented for
test images 1 to 8. For the comparison purposes, the quantitative results of no region merging
applied case are also presented in Figure 5-24. For all test images 1 to 8, the advantage of RM2 over
RMI1 is apparent in terms of over-segmentation reduction at the expense of computational
complexity. If we look at the results of test image 5, even if RM2 reduces the over-segmentation
much higher than RMLI, it also provides better segmentation accuracy than RM1. RM3, which is the
combination of RM1 and RM2, provides segmentation results just similar to the RM2 in terms of
segmentation accuracy and segment count. However, because it incorporates RM1 as the initial step,
it is like a faster form of RM2 as apparently seen in the results of Figure 5-24d. As a result, we

choose RM3 as the most effective region merging based MSS algorithm.
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Figure 5-24 Quantitative comparison of the results of region merging algorithms for test images 1-8
5.6 Wavelet Based vs. Region Merging Based MSS

In Sections 5.4 and 5.5, we compare and evaluate two different algorithms for each category of MSS
which are wavelet based and region merging based. We also propose a hybrid region merging based
MSS algorithm. We come up with the best algorithms for each category by comparing the
algorithms with respect to the segmentation accuracy and performance for test images 1 to 8. Now,
in this section, we compare those best algorithms of each category which are Kim&Kim’s algorithm
and RM3 region merging algorithm. In Figure 5-25, accuracy and performance measurements of
these algorithms could be found for test images 1 to 8. In these results, very high computational
complexity and a little lower segmentation accuracy of proposed region merging algorithm are the
disadvantages. However, the over-segmentation handling capability of Kim&Kim's algorithm is
much deficient. The little lower segmentation accuracy of RM3 is probably having lower segment
count. Therefore, we opt for region merging based MSS rather than wavelet based MSS.
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Figure 5-25 Quantitative comparison of the results of Kim&Kim's and RM3 algorithms for test
images 1-8

5.7 Comparison of Unsupervised Goodness Metrics

At this point, the best algorithm for every step of the segmentation approach is defined as can be
seen in Figure 5-26. However, for a given remote sensed input image, the parameters of algorithms
need to be adjusted manually for best results. In this section, we evaluate the methods to automate
this segmentation approach.

H- \E

Figure 5-26 The flow of segmentation approach proposed in this thesis

To evaluate the effectiveness of the two unsupervised goodness metrics (G1 and G2) described in
Section 3.4.1, we select the parameters of all algorithms that are previously found in a supervised
manner with these metrics and compare the results. From the results presented in Figure 5-27, it is
seen that G1 measure produces the best results in terms of segmentation accuracy. However, G1is
highly unsatisfactory in handling over-segmentation problem. To keep segmentation accuracy at
maximum, G1 applies less smoothing by filters and lower scale thresholds by region merging. On the
other hand, G2 generates superior segmentation results from the over-segmentation reduction
perspective at the expense of decreasing segmentation accuracy. However, it is seen that G2
produces more similar visual results to supervised results than G1. Therefore, we incorporate G2
metric to our proposed segmentation flow and make the approach a fully automatic one.
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Figure 5-27 Comparison of the segmentation results produced by following manually set parameters
and parameters set by G1 and G2

Overall accuracy and performance results of the proposed approach when applied manually and
automatically (with G2 metric) for the test images 1-8 can be seen in Table 5-3.

Table 5-3 Final results of the proposed approach for the test images 1-8 when applied manually and

automatic

Test Image | Algorithm  Seg. Cnt. Evl  Ev2
1 Manual 42 1.23  2.86
Automatic 32 3.21 19.08

’ Manual 16 1.08 5.01
Automatic 55 1.57 5.64

3 Manual 2 0.57 0.50
Automatic 2 0.86 0.56

4 Manual 121 5.62 10.15
Automatic 67 8.51 21.05

5 Manual 148 3.21 6.35
Automatic 311 3.04 6.21

6 Manual 111 2.14 425
Automatic 120 342 19.32

7 Manual 16 4.05 541
Automatic 8 7.59 16.75

3 Manual 210 6.83  9.90
Automatic 396 548 7.83
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5.8 Comparison with Previous Literature

In this section, we compare the performance of the proposed approach in this thesis with the
performances of two similar approaches in the previous literature. We measure the performances of
all approaches by using test images 1-8 that have ground truth images and by using test images 9-20
that do not have. During the comparison by using test images 1-8, we compare the results generated
by supervised segmentation evaluation metrics, on the other hand, while comparing the algorithms
by using test images 9-20, we compare the results generated by unsupervised segmentation
evaluation metrics. In this section, first, we present the comparison results for test images 1-8 and
then, we present the comparison results for test images 9-20.

One of the approaches to compare [12] is using a segmentation process flow as shown in Figure
5-28. Actually, the gradient magnitude computation algorithm is not clearly specified in the paper
but we used MSGM algorithm for that step. The region merging algorithm used in this paper is
corresponding to our first region merging algorithm coded as RM1.

RF
‘ PGF ‘MSGM ‘ W G RM1

Figure 5-28 The flow of segmentation approach proposed by [12]

The second approach for comparison [14] is using a segmentation process flow as shown in Figure
5-29. No pre-filtering step is incorporated in this paper. The region merging algorithm used in this
paper is corresponding to our second region merging algorithm coded as RM2.

H- RF
‘ Image ° Water. ° -

Figure 5-29 The flow of segmentation approach proposed by [14]

In Figure 5-30, accuracy and performance comparison of proposed approach (manual and auto), the
method proposed by [12] (called as 'Comparedl’) and the method proposed by [14] (called as
'‘Compared2’) for test images 1-8 could be seen. As can be seen from these graphics, proposed
method with manually adjusted parameters provides the best segmentation results in terms of
segmentation accuracy in nearly all test images. Average of segmentation accuracies weighted by
image size for all test images could be seen in Table 5-4. Also, over-segmentation handling of
proposed approach when used manually is more successful than [12]. However, [14] is the most
successful one in reduction of over-segmentation at the expense of lower accuracy. From the
computational complexity perspective, proposed method is unsatisfactory by considering opponent
methods. Lastly, although proposed method when used by automatic adjustment of parameters
produces lower accuracy, it provides visually acceptable results as shown in Figure 5-31 to Figure
5-34. Computation time of proposed approach in automatic mode is not presented because all
possible selections of all parameters are evaluated in this mode.
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Figure 5-30 Quantitative comparison of the results of proposed approach and similar approaches in
the literature for test images 1-8

Table 5-4 Average segmentation accuracies of the results of proposed approach and similar
approaches in the literature for test images 1-8

Algorithm Avg Evl  Avg Ev2

[12] (Compared1) %4.97 %10.92
[14] (Compared2) 9%6.50 %13.49
Proposed(Manual) % 3.92 % 6.64
Proposed(Automatic) %5.12 913.47
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(a) Database image 1 and its ground truth

(b) Segmentation results of database image 1
a1l

—
e —

(c) Database image 2 and its ground truth
2l il

(d) Segmentation results of database image 2

Figure 5-31 Test images 1 and 2 of database and their visual segmentation results; 1* column shows
the result by [12], 2" column shows the result by [14], 3 column shows the result by proposed
approach (manual) and 4™ column shows the result by proposed approach (automatic) for (b) and (d)
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(a) Database image 3 and its ground truth

(d) Segmentation results of database image 4

Figure 5-32 Test images 3 and 4 of database and their visual segmentation results; 1** column shows
the result by [12], 2™ column shows the result by [14], 3" column shows the result by proposed
approach (manual) and 4™ column shows the result by proposed approach (automatic) for (b) and (d)
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(a) Database image 5 and its ground truth

(b) Segmentation results of database image 5

(c) Database image 6 and its ground truth

(d) Segmentation results of database image 6

Figure 5-33 Test images 5 and 6 of database and their visual segmentation results; 1* column shows
the result by [12], 2" column shows the result by [14], 3 column shows the result by proposed
approach (manual) and 4™ column shows the result by proposed approach (automatic) for (b) and (d)
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(a) Database image 7 and its ground truth

(b) Segmentation results of database image 7

(d) Segmentation results of database image 8

Figure 5-34 Test images 7 and 8 of database and their visual segmentation results; 1** column shows
the result by [12], 2™ column shows the result by [14], 3 column shows the result by proposed
approach (manual) and 4™ column shows the result by proposed approach (automatic) for (b) and (d)

In Figure 5-35, accuracy and performance comparison of proposed approach (manual and auto), the
method proposed by [12] (called as 'Comparedl’) and the method proposed by [14] (called as
'Compared2') provided by four unsupervised segmentation evaluation metrics for test images 9-20
could be seen. Average of segmentation accuracies weighted by image size for all test images could
be seen in Table 5-5. Except for the Zeb contrast metric, all metrics produce lower values for better
segmentations. All metrics try to balance over and under segmentation and try to get an optimum
segmentation result. Although the segmentation performance of the algorithms changes from image
to image, proposed method with its manual and automatic settings produces better results than the
other two opponent algorithms in the literature at the average as seen in Table 5-5.
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Figure 5-35 Quantitative comparison of the results of proposed approach and similar approaches in
the literature for test images 9-20

Table 5-5 Average segmentation accuracies of the results of proposed approach and similar
approaches in the literature for test images 9-20

Algorithm Avg. E  Avg. Zeb Avg. Goodnessl Avg. Goodness2
[12] (Compared]) 1.81 0.32 118.59 1.17
[14] (Compared2) 1.82 0.34 52.29 1.15
Proposed(Manual) 1.61 0.44 10.41 1.08
Proposed(Automatic) 1.60 0.39 10.22 0.72

Finally, the segmentation results which are generated by applying our proposed segmentation
algorithm with automatic parameter selection to our database images 9-20 are shown in Figure 5-36
to Figure 5-47. The results of images 11-20 are obtained by directly segmenting the corresponding
input image as with images 9-10. However, when the results are put in one piece for the images 11-
20, it is seen that the segment boundaries look as if they are corrupted. Therefore, the segmentation
results of the images 11-20 are divided into two pieces and presented in that way.
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Figure 5-37 Test image 10 and its segmentation result
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Figure 5-38 Test image 11 and its segmentation result
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Figure 5-39 Test image 12 and its segmentation result
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Figure 5-40 Test image 13 and its segmentation result
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Figure 5-41 Test image 14 and its segmentation result
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Figure 5-42 Test image 15 and its segmentation result
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Figure 5-43 Test image 16 and its segmentation result
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Figure 5-44 Test image 17 and its segmentation result
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Figure 5-45 Test image 18 and its segmentation result
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Figure 5-46 Test image 19 and its segmentation result
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Figure 5-47 Test image 20 and its segmentation result
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CHAPTER 6

CONCLUSION

6.1 Summary and Conclusions

In this thesis work, a fully automatic unsupervised segmentation method is proposed for high spatial
resolution satellite images.

In the literature, the classification approach to any image classification problem can be divided into
two groups as pixel-based and object-based. After observing the deficiency of pixel-based
approaches in high spatial resolution satellite images, researchers tend to apply object-based
approaches for classification. Object-based approaches contain two sequential steps which are
segmentation and classification. The segmentation method which is based on watersheds and multi-
scale segmentation in this thesis is a very good candidate to use in an object-based classification
system.

We evaluate two different watershed algorithms which are immersion simulation type and rainfalling
simulation type. Although, rainfalling type watershed algorithm are more successful with its
drowning threshold parameter, it damages to segmentation accuracy by not successfully preserving
the segment boundaries. Therefore, Vincent-Soille's watershed segmentation algorithm which is an
immersion type watershed algorithm is incorporated in this thesis. Also, to decrease the over-
segmentation resulted from watershed segmentation, a pre-processing smoothing filter and an
alternative approach to gradient magnitude image which is homogeneity gradient image (H-Image)
is used.

We classify multi-scale segmentation algorithms in the literature as wavelet based and region
merging based. We evaluate both types and find region merging based approaches more useful for
our problem. The possible reason for this is the corruption of the boundaries of segments in the input
image that is exposed to a strong smoothing inherent in wavelet decomposition. We evaluate two
different algorithms and propose another one that is the hybrid form of the other two algorithms for
region merging based multi-scale segmentation algorithms category. After qualitative and
quantitative comparisons, we find that this new one overwhelms others.

We realize that the effect of a parameter change of an algorithm on the segmentation results is very
hard to understand by examining visual results only because of the excessive over-segmentation in
the results. Therefore, when we compare alternative approaches throughout all the experiments, for
finding the optimum parameters of an algorithm for a specific segmentation, we benefit from two
supervised segmentation accuracy evaluation metrics and some auxiliary performance metrics.
While one of the supervised segmentation accuracy metrics measures the global segmentation
accuracy, the other one measures the segment based accuracy. These metrics compare the
segmentation result with a manually segmented ground truth to measure the segmentation accuracy.

Because of the need for a ground truth of supervised accuracy evaluation metrics, the ground truths
of the images 1-8 in the database, which is composed of 20 images, are extracted. The database
images 1-8 are smaller in size and less complex than the remaining images. Therefore, ground truth
extraction is more reliable in these images. These ground truths are used for performance evaluation
and parameter selection of alternative approaches throughout the thesis, and also used for comparing
the proposed approach with the two similar approaches in the previous literature.

However, finding a ground truth image may not always be possible for an image segmentation
possible. Even if it is possible, the correctness of ground truth may not be certain, especially for
images that have complex contents as in the database images 9-20. Because of these reasons, we
evaluate two unsupervised segmentation accuracy evaluation metrics for selection of optimum
parameters of the algorithms.
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Experiments that are done on the database images 1-8 show that second metric produces closer
results to manually found results than first metric. Even, by incorporating this metric to our proposed
segmentation algorithm, our algorithm gains fully automatic property.

Comparisons with similar approaches in the previous literature and the segmentation results on
complex images show the success of proposed automatic method of this thesis.

6.2 Future Work

One possible future work of the proposed approach could be to use the segmentation results for
classification purposes. By this way, instead of labeling many pixels, labeling a small amount of
segments could increase the speed and reliability of a classification.

Also, region merging algorithms, including the proposed one, are found to be computationally too
complex during the experiments. Computational complexity of the region merging step should be
improved for real time uses of the proposed approach.

Lastly, automatic extension of the proposed approach needs to scan all the values in a pre-defined
interval of values for an optimum parameter selection. Depending on the input image set
characteristics, the adjustment of the intervals to reduce the possible number of values to scan may
provide excessive speed-ups. However, this process would need an expert and hence it is supervised.
The techniques to automate this process could be searched for the future.
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