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ABSTRACT

ANALYTICAL MODELING AND STABILITY ANAYLSIS OF SPINDLE-HOLDER-TOOL
ASSEMBLY BY USING SPINNING AND NON-SPINNING TIMOSHENKO BEAM THEORIES

YILMAZ, Hasan

M. S., Department of Mechanical Engineering
Supervisor: Assist. Prof. Dr. Ender CIGEROGLU

January 2013, 75 pages

Chatter in high speed machining is an important problem which affects the product quality and the
manufacturing time. In order to determine the optimum cutting parameters such as depth of cut, feed
rate, spinning speed etc., dynamic characteristics of the spindle-holder-tool assembly should be
modeled accurately. To determine optimum depth of cut and operating speed, frequency response
function (FRF) of the tool point is required. However, in high speed machining, due to high rotational
speeds, dynamic characteristics are affected by the spinning speed of the spindle. In this thesis, in
order to include the effect of spinning speed into the dynamic analysis of the assembly, a spinning
Timoshenko Beam Model is used. Spindle-holder-tool assembly is considered to be composed of
several free-free beams having different cross-sections, which are coupled with each other by utilizing
FRF coupling method. In the assembly, bearings are modeled as a spring and damper combination and
structural modification method is used to include their effects. The developed method is verified by
comparing the results for zero spinning speed and also the results obtained by FEM. Variation of the
natural frequencies and FRF of an example spindle-holder-tool assembly for different spinning speeds
are obtained. For non-spinning case, tool point FRF of the assembly is also obtained by using
Rayleigh-Ritz method and results of which are compared with coupled system solution. Finally,
stability lobes are obtained for different spin speeds and the effect of gyroscopic forces are studied.

Keywords: Spinning Timoshenko Beam Model, Chatter, Frequency Response Function, Receptance
Coupling, Rayleigh-Ritz.
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DONEN VE DONMEYEN TIMOSHENKO KiRiS TEORILERINI KULLANARAK MIiL-
TUTUCU-UC TAKIMININ ANALITIK MODELLENMESI VE KARARLILIK ANALIZi

YILMAZ, Hasan

Yiiksek Lisans, Makina Miihendisligi Boliimii
TezY 6neticisi: Yrd. Dog. Dr. Ender CIGEROGLU

Ocak 2013, 75 sayfa

Tirlama yiiksek hizli talasli imalatta iriin kalitesini ve iretim zamanini etkileyen 6nemli bir
problemdir. Kesme derinligi, besleme hizi, doniis hiz1 gibi ideal kesme parametrelerinin belirlenmesi
icin mil-tutucu-u¢ birlesiminin dinamik sistem karakteristigi hassas bir sekilde modellenmelidir.
Optimum kesme derinligi ve operasyon hizinin bulunmasi i¢in ug¢ nokta frekans tepki fonksiyonu
(FTF) bulunmalidir. Ancak yiiksek hizli talagli imalatta sistem dinamigi doniis hizina bagl olarak
etkilenmektedir. Bu tezde doniis hizinin sisteme etkisini modellemek i¢in donen Timoshenko kiris
modeli kullanilmigtir. Serbest-serbest sinir durumuna sahip farkli ¢ap ve biyiikliikteki kirisler
birbirlerine FTF birlestirme yontemi kullanilarak mil-tutucu-u¢ takimi olugturulmasi igin
birlestirilmiglerdir. Bu takimda rulmanlar, yay ve damper olarak modellenmis ve sisteme yapisal
degisiklik (modifikasyon) yontemiyle eklenmislerdir. Gelistirilen model sifir doniis hizli ¢oziimlerle
ve sonlu eleman analizleriyle dogrulanmstir. Farkli doniis hizlarina gére 6rnek yapinin dogal frekans
ve FTF degisimleri bulunmustur. Donlis hizimin sifir oldugu durum i¢in Rayleigh-Ritz metodu
kullanilarak ug¢ nokta FTF’si bulunmus ve sonuglart birlestirme ydntemininkilerle kiyaslanmustir.
Sonug olarak yapinin farkli doniis hizlarina gore kararlilik bolgeleri belirlenmis ve bunlarin doniis
hizina gore degisimleri incelenmistir.

Anahtar Kelimeler: Donen Timoshenko Kiris Yontemi, Tirlama, Frekans Tepki Fonksiyonu,
Reseptans Birlestirme, Rayleigh-Ritz.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

As the countries become more industrialized, demand for the equipment produced by the industry
increases accordingly. Moreover manufacturers try to reach higher production rates day by day.
Machining is one of the most commonly used manufacturing methods, which can be described as a
controlled material removal from the work piece. In order to supply demanded amount of production,
high speed machining is commonly utilized.

In milling and turning operations, high-speed rotation is used to decrease operation time and the
manufacturing cost. In addition to the higher speed, depth of cut can also be increased, nevertheless
those might cause an unexpected vibration problem called chatter. Chatter is a phenomenon, which
results in poor surface quality due to unstable machining operation. When chatter starts chip thickness
is not stable anymore and it leaves wavy, undesired surface finish. Not only negative effect of chatter
might be seen on the work piece but also tool and structure life could be degraded. In order to
maximize economical gain, operating speed should be increased and negative effects of chatter on the
work piece surface needs to be eliminated. Therefore, it is absolutely necessary that stable and
unstable operating areas should be determined for the working machine. In Figure 1.1 example of a
stability lobe diagram is shown.
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Figure 1.1 Example Stability Lobe Diagram

Regenerative chatter in orthogonal cutting was first explained by Tobias and Fishwick [1] and Tlusty
and Polacek [2]. Merritt [3] proposed stability lobe calculations considering orthogonal cutting
conditions. Orthogonal cutting is a time invariant process and limiting depth of cut in orthogonal
cutting depends on Frequency Response Functions (FRF) of the tool point and cutting coefficient.
Altintas [4] explained construction of stability lobes for orthogonal cutting operations using acquired
FRF in detail.



Milling stability analysis is different than orthogonal cutting process. It includes time dependent
geometry and variables. Tool contains a certain number of teeth and cutting forces also change with
respect to rotation of the tool. Firstly, Tlusty and Koenigsberger [5] used orthogonal cutting formula
assuming average cutting direction and average cutting teeth in order to simulate milling stability
lobes. Sridhar [6] came up with an improved milling model described by differential equations with
periodic coefficients. Minis and Yanushevsky [7] applied Fourier series expansion to the Floquet’s
theorem and obtained milling stability model. Altintas and Budak [8] developed an analytical stability
method for milling process. In their study frequency domain is used and very fast and accurate results
are obtained. Directional coefficients are related with immersion angles which depend on the type of
milling. Altintag [4] also mentioned about this technique and showed some numerical examples. In
this thesis for milling stability lobes equations given by reference [8] are used.

Excessive vibrations are observed when the exciting frequency of the structure is close to the chatter
frequency. Dynamics of structure has a direct effect on the stability lobes. In order to construct
reliable stability lobes, structural vibration information belonging to the real operating condition is
required. This information could be obtained by impact hammer test in which an accelerometer is
placed on the tool tip and system is excited by impact hammer in order to measure the response of the
system. After analyzing harvested data, required tool point FRF is utilized in stability lobe
calculations. On the other hand, experimental methods might not give accurate results, as it depends
heavily on the accuracy of the experimental set-up. In addition, operational conditions such as
rotational effects are hard to include into the results as it requires operational testing. Furthermore, if
any change is required on the spindle-holder-tool assembly, tremendous time is needed for each
iteration on the system. Therefore, before going deep into the experimental analysis, analytical model
results are very helpful for the verification of the process.

Milling machine assembly is composed of spindle, holder and tool subassemblies. Spindle
subassembly consists of main shaft and bearings that connect shaft to the main housing. Spindle shaft,
holder and tool subassemblies are composed of several numbers of beams. Therefore, beam theories
are to be investigated deeply. There are different beam theories in the literature. Euler beam theory is
the simplest beam theory, which is also known as the classical beam theory and neglects shear
deformation and rotary inertia. In Rayleigh beam theory, rotary inertia is added on top of the Euler
beam model. The most commonly used model is Timoshenko beam model [9]. Since rotary inertia
and shear deformation is included in Timoshenko beam model, it is very useful for modeling thick
beams. Zu [10] added spinning effect to the Timoshenko beam model and obtained mode shapes for
different boundary conditions.

On the other hand, shear correction factor should be defined in Timoshenko beam model. Cowper [11]
advised shear correction factors considering different cross sections. Hutchinson [12] derived
improved shear correction factors for Timoshenko beam model. Instead of Timoshenko’s model,
Levinson [13] proposed a higher order beam model (HOBM) which no longer needs shear correction
factor. Eisenberger [14] compared HOBM and Timoshenko beam model considering different shear
correction factors. Soldatos [15] derived characteristic equations and mode shapes for HOBM
considering generally known boundary conditions.

In order to construct spindle shaft, beams can be coupled together using receptance coupling method.
Schmitz [16] proposed receptance coupling method which is used in this thesis. Although it consumes
longer time, impedance coupling method can be used as well.

Bearings are mounted on the main shaft in order to support it from various locations. Two sets of
bearings are usually placed as front and rear bearings. Aim of the bearing is to resist axial and radial
cutting forces. Preload is applied to the bearings in order to make them work stable in the operating
conditions. Angular contact ball bearings are commonly used in order to withstand axial and radial
forces. Analytically, bearings are modeled as a spring and damper combination. Arakere [17]
proposed spring and damping coefficients for the spindle bearings. Ozgiivens’s structural modification
method [18] is used to add bearings to the system.

Not only bearings but also interfaces between spindle-holder and holder-tool are modeled as a spring
and damper combination. Schmitz’s method [16] can be used in flexible connections as well. Namazi
[19] studied contact parameters between spindle and tool holder connection. Cao [20] and Schmitz
[21] investigated second generation contacts extensively. In their work, contact parameters are



measured with respect to different overhang tool lengths and they are fitted into the analytical model
accordingly. Ozsahin [22] applied neural network analysis to the measured contact parameters in order
to predict those parameters considering different cases.

Whole assembly can be constructed by analytical model or using FEM. Movahhedy [23] outlined
FEM of the full assembly including gyroscopic effects. It is claimed in this work that gyroscopic
effects lower the axial depth of cut. Altintas and Cao [24] showed spindle-bearing model and
investigated the effect of preload force on the natural frequencies of the assembly. In addition,
forward and backward natural frequencies are expressed in detail. Ertiirk [25] constructed analytical
model of spindle-holder-tool assembly. In his work, natural frequencies of the system are identified
and effect of change in bearing and contact parameters are observed for the assembly extensively.
Kilig [26] used a nonlinear bearing model and examined the effect of nonlinearity on the stability
lobes. Nonlinear bearing model is an important research topic as bearing itself is a nonlinear model.
Hence balls of bearings makes a point touch with the inner and outer races of the bearing. Stiffness of
bearing changes with respect to spindle speed. Another uncertainty source for the bearings is
temperature. After long period of operation, temperature of bearings may be increased. Inevitably,
stiffness properties of bearings are affected by temperature changes.

1.2 Objective

The aim of this study is to obtain chatter free operating range for the milling machines considering
different spindle speeds. Effect of spinning speed is included using spinning Timoshenko beam model
in the calculations. Different case studies are obtained in order to investigate the change in the tool
point FRF and stability lobes with respect to spinning speed. In addition, it is aimed to utilize
Rayleigh-Ritz method in construction process of spindle-holder-tool assembly as an alternative to
coupling of beams. Results of two methods are compared using different case studies.

1.3 Scope of the Thesis

The outline of the thesis is given as follows:

In Chapter 2, Spinning Timoshenko Beam model is explained in order to obtain dynamic
characteristics of a simple beam component. Natural frequencies and mode shapes are obtained for
simple beam under free-free end conditions. Besides, Eigenfunction expansion method is applied to
find the receptance of the beam. Bickford HOBM is detailed and natural frequency equations for free-
free end conditions are given. Also, rigid beam coupling and impedance coupling is described in order
to obtain the end point receptances of rigidly coupled beams. Afterwards, structural modification
method is presented which is used to add bearing properties on to the spindle assembly. In addition,
elastic coupling method is considered for the connection of the holder and tool subassemblies.
Rayleigh Ritz method for Timoshenko beam model is presented in order to find approximate natural
frequencies and mode shapes of the spindle assembly. Also, FEM of the assembly is briefly explained.

In Chapter 3, cutting geometry and force equations for orthogonal cutting are explained. Limiting
depth of cut equation for orthogonal cutting is obtained. For milling operation, related directional
cutting coefficients are studied and limiting depth of cut equation is given.

In Chapter 4, using spindle geometry and other related design parameters, tool point FRF of the
system is obtained. Case studies are performed with changing the spindle speed of the assembly.
Using the obtained FRF information, stability lobes are constructed and they are compared with each
other in order to find the effect of spinning speed. Timoshenko and higher order beam models are
compared in order to observe the effect of shear coefficient in the model. In addition, approximate
Rayleigh-Ritz solution is compared with coupled system solution and FEM solution for zero spin
speed. Recommendations are given according to these results in order to obtain chatter free operating
range.

In Chapter 5, conclusions are made considering results of Chapter 4 and suggestions for the future
work are proposed.

Conference papers related with this thesis are given in the Appendices.






CHAPTER 2

MODELING OF SPINDLE ASSEMBLY

2.1 Beam Models

In literature, there exist several beam theories which are used to obtain structural and modal
characteristics of beams. First beam theory is Euler beam theory. It neglects shear deformation and
rotary inertia. If thin beams (high slenderness ratio) are considered, it is seen that shear deformation
and rotary inertia have less impact on the beam characteristic. As a result, Euler beam model gives
acceptable results for these types of beams. In Rayleigh beam theory, rotary inertia is added on to the
Euler beam theory. Rayleigh beam model is more precise than Euler’s theory. Later, Timoshenko [9]
added both shear deformation and rotary inertia on to the Euler beam model. If thick beams are
considered, shear deformation has more important role in beam dynamics. Thus, Timoshenko’s model
gives more accurate results with respect to Euler’s and Rayleigh’s beam models. Comparison of those
beam theories are given by [27] in detail.

In order to compare dynamics of rotating structure with the nonrotating one, spinning Timoshenko
beam model is used in this study. Analytical solution for the spinning Timoshenko beam model for
various boundary conditions is given by Zu [10]. Separation in natural frequencies which are known
as forward and backward natural frequencies is observed in spinning beam model solution. It is seen
that amount of separation of natural frequencies depends on the spinning speed.

One deficiency of Timoshenko beam model is that shear correction factor should be defined for the
beam model. Cowper [11] recommended applicable shear correction factors considering different
cross sections of beams, for example circular and hollow cross sections.

In HOBM model, deformed plane can have both shear rotation and warping in addition to the
Timoshenko beam model. Thus, HOBM eliminates the shear correction factor requirement in
equations as it includes warping function.

In this thesis Spinning Timoshenko beam model and HOBM are used in beam modeling. Results of
these two models are compared with nonrotating Timoshenko beam results. In the next section,
spinning Timoshenko beam model and HOBM are explained in detail.

2.1.1 Spinning Timoshenko Beam Model
In this model, to simulate each beam segment, spinning Timoshenko beam model with free-free

boundary conditions is used. Coordinate frame and rotation axis for a finite length free- free beam is
shown in Figure 2.1.



Figure 2.1 Reference Frame for Spinning Shaft

In order to derive equations of motion, kinetic and potential energy equations are obtained and then
Hamilton’s Principle is applied. Non-dimensional partial differential equations of motion are given as
follows by Zu [10]:
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where U is the transverse displacement,  is the bending angle of the beam, F is the applied
transverse force, p is density, | is transverse moment of inertia, J, is polar mass moment of inertia,
E is Young's modulus, G is shear modulus, A is area, Q is spin speed x is shear correction
coefficient and £ is the non-dimensional axial position which is equal to z/l . z is axial position on
the beam and 1| is total length of the beam. Cowper [11] recommended shear factor coefficient for
hollow circular cross sections as follows,

o 6(1.+v)(12+2(di/d0)2)2 — 23)
(7/6v)(L+ (di / do)?)? + (20+12v)(di / do)

where di and do are inner and outer diameters of beams and v is Poisson ratio of beam. Uncoupled
equations of motion for the spinning Timoshenko beam with F =0 is obtained using Egs. (2.1) and
(2.2) as follows,

2 4 3 2 4 3 4
p_lc'}_tj_iQp_Jza_tlerA@_g_p_zl[HEj_azu 5 +i ‘]—21 82u +E—4I 0 Lj =0, (2.4)
kG ot kG ot ot | kG Jod ot 1= o0g%t 1" o

2 4 3 2 4 3 4
e e ok e o e ) @)
kG ot kG ot ot 1 kG J o ot 1= oc%t 1" o¢
In Egs. (2.1), (2.2), (2.4) and (2.5),
u=u, +iu,, (2.6)



Y=y, +iy,, (2.7)

where u, and u, are the deflections of the beam in X and y directions, respectively. Similarly, y,
and y, are the corresponding bending angles in X and y directions. Boundary conditions for the
free-free beam can be given as follows,

y'(S,,1)=0, &,=01

2.8
%u'(g“o,t)—w@o,w:o, £, =01. @8

The following forms of solutions satisfy the partial differential equations given by Egs. (2.4) and (2.5)
u(g,t) =U,e'ce, (2.9)
w(l,t) =W, e, (2.10)

where U, and ¥, are complex amplitudes and @ is the natural frequency. It should be noted that,

there is no damping in the free-free system. Substituting Eqgs. (2.9) and (2.10) into Egs. (2.4) and (2.5),
the following relations are obtained,

ak,*—bk’+c=0, (2.11)
ak,'—bk,?+c=0. (2.12)

In these equations k, and k, indicate the normal modes of the solution. Coefficients of these
equations are given as

J
a= 4EI : b:zL(lq-ijz—?‘]z o c= Ll gt s 2 (2.13)
I oA 12al” «G 12 pA KAG  KAG

Since the constants of Egs. (2.11) and (2.12) are the same, their solutions are also same as well and
both depends on @. Two different forms of solutions are obtained for x/bz —4ac >b and
x/bz —4ac <b. For the former case the solution becomes,

k , =is;, *s, (2.14)

where

—b++/b? —4ac
5, = | Db —dac (2.15)
2a
b++/b? —4ac
S (2.16)

Using Egs. (2.15) and (2.16) normal modes of U and y can be obtained as follows,

U($) = A, cosh(s,{)+ A,sinh(s,$) + A, cos(s,6)+ A, sin(s,8) (2.17)

W(&) = A/ sinh(s,$)+A, cosh(s )+ A, sin(s,&)+ A, cos(s,¢), (2.18)

where,

A =cA, A =cA, A'=cA, A =-=CA, (2.19)
_i LI 2 _ i+1:|_. 2 i

C _Si[KGa) +(-1) S j i=12. (2.20)



or x}bz —4ac <D, the solution becomes,

k., =4s/,%s,, (2.21)

where,

, b—+/b? —4ac

= 2.22

s o (2.22)
Using Egs. (2.16) and (2.22) normal modes of u and y can be found as follows

U($) = A, cos(s, &)+ A,sin(s,$)+ A, cos(s,&)+ A, sin(s,¢), (2.23)
W(&)=A/'sin(s/ &)+ A, cos(s/ &)+ A, sin(s,&)+ A, cos(s,<), (2.24)
where ,

A =c/A, A =—'A, A =CA, A =-=CA, (2.25)
% :i(ﬂw%}sfj. (2.26)

31’ xG |

In order to obtain the solution, free-free end boundary conditions given in Eq. (2.8) are applied to Egs.
(2.17), (2.18), (2.23) and (2.24). Then the characteristic equations and the mode shapes for free-free

boundary condition are obtained. For the case of Jb? —dac >b, they are given as,

(o) [ j[cosh(s) cos(sz)] [clslsinh(sl)— :1?: :Lzl c,S, sin(sz)]

, (2.27)
J1 0 e cs (1 . _
KI S, cljsmh(sl)+ o, (I S, +c2jsm(sz)}
u()=U, {cosh(slg)— d sinh(s,¢)— G5 cos(s,&) + sin(szg)} , (2.28)
51/ -G C,S, 2 2
()=, {cl sinh(s£)— - /Ol'cl o osh(56)— sm(szn— : /| cos(sx:)} (2.29)
where,
[Ilsl —cljsinh(sl)Jr G (Il S, +c2jsin(sz)
d= G5, _ (2.30)

cosh(s,) —cos(s,)

For the case of vb” —4ac <D, the characteristic equation and the mode shapes become as follows,

c's, ( s, +01j[cos(sl’)—cos(sz)f+[cl'sl’sin(sl) Sl?: c,S, sm(sz)J

(2.31)
*[Gsl’Jrcl']sin(s )— Clsl (I s, +C jsin(sz)}:o,
U(©)=U, | cos(s/0)+—sin(5¢) - &% cos(s,¢) - sins0) | (232)
Sl/|—ClI C,S, 2/'



W)=, {c; sin(s/ &)~ — 8 cos(s;£)~ S sin(s,0) + 0
s/ /1+¢,

cos(s,<) |, (2.33)
S, s,/l+c,

(Ilsl' +cl’)sin(sl') —Clsl(ll S, +cz)sin(sz)
d'= Co5, . (2.34)
cos(s,’) —cos(s,)

Natural frequencies of the beam can be found by searching roots of Egs. (2.27) and (2.31). If obtained
natural frequencies are put into Egs. (2.28), (2.29), (2.32) and (2.33), related mode shapes can be
found. Interesting point in spinning beam model is that dynamic characteristics of rotating beams
change with respect to the spinning speed. Natural frequencies split as backward and forward natural
frequencies. As spinning speed increases, difference between backward and forward natural
frequencies increases as well. Example of natural frequency split will be explained in the following
sections. There are translational and rotational rigid body modes for free-free beam which are given as
follows,

U, (D =A

¥, (£)=0,

U (€)= A (1-112),
Yo (§) = Aq-

If mass normalization is applied to rigid body modes, A, and A, are obtained as follows,

(2.35)

1

Ar:\ml

1 (2.36)

A ST
P
I+
T

Since the Egs. (2.1) and (2.2) are not orthogonal, in order to find the response of the beam to an
applied force and moment, state space representations of Egs. (2.1) and (2.2) are formed.

MW (D} -[KW (D} ={F}, (2.37)
Wi={Ug.n UEY ¥y v} (239)
{F}={o F o0}, (2.39)
where [M ] and [K] matrices are given as follows
A0 0 o]
0 pA O 0 0 @6_2 0 _KAG 0
[M]= poA 8 8 ,:I KI= : oag2 ol I0 - (2.40)
0 0 pl -iQJ, 0 KAGi 0 E o? _AG
| I o¢ I 8¢?

In state space representation matrix size is increased from 2x2 to 4x4 and consequently Eq. (2.37)
becomes orthogonal. Using the modal expansion theorem, solution of this system can be written in
terms of its mode shapes as



N

W= 2 zOW, )} (2.41)

r=—N

where z, is the modal coefficient of the r" mode. Multiplying each side of Eq.(2.37) by {WS}T,

integrating over the length and using the orthogonality conditions, the following equation of motion is
obtained;

M,z (t)-K,z () =Q (1), (2.42)

where M, K, and Q, (t)=U, (¢, )F(t) are the modal mass, modal stiffness and the modal forcing
for the r" mode, respectively. Solution of this uncoupled differential equation for a harmonic forcing
of F(t)=Fe'" applied at ¢ = ¢, becomes as follows

_ U, (g )Fe™

"M Go-2)

(2.43)
where 4. is iw, and , is natural frequency at r" mode. U, (¢,) and @, values can be directly taken
from Eqgs. (2.28),(2.32), (2.27) and (2.31). Total response of the beam becomes as follows,

N, Ur (é«k)Feiwt

W= 2

2 o W) (2.44)

where N, is the number of modes used in the modal expansion. Using the mass normalized
eigenfunctions, receptances of the end points of the free-free beam can be obtained for a transverse
forcing applied on the beam. Receptance functions are denoted as H;,N;,L;,P,. H; and L;
represent linear displacement receptance of point j due to a unit force and moment applied at point
k , respectively. Similarly, N, and P, represent angular displacement receptance of point j due to

a force and moment applied at point k , respectively. Small structural damping is assumed as (1+iy).

Following a similar procedure, receptance for an applied moment can be obtained and all these
receptances can be defined as follows,

8 U (€U s WG
M= 2o Aty T2 Ay

U (€)Y (&) L)) o

where y is the loss factor for structural damping, which is assumed to be a very small value (0.002)
in the case studies considered.

2.1.2 Higher Order Beam Model
Deformed plane cross-sections for Euler, Timoshenko and higher order beams are given in Figure 2.2.
HOBM is firstly explained by [13, 28, 33] and it allows rotation and warping of deformed cross

section which can be seen in Figure 2.2.c. In other words, it has shear distribution over the cross
section and the need for a shear correction factor is eliminated.

10



(c) Sj/

Figure 2.2 Cross-section Displacements in Different Beam Theories: (a) Bernoulli-Euler Beam; (b)
Timoshenko Beam; and (c) High Order Beam Theory [14]

Natural frequencies and mode shapes of rectangular beams with different boundary conditions are
given by Soldatos [15] in detail. Uncoupled equations of motion for transverse deflection and shear
rotation are given below,

o°u

o +(2A +A1 +(AA* —kAA*)U =0, (2.46)
L Gren +(A+A2)A2) Y s (A —KAA?)y =0, (2.47)
where
_ AL PoPel’
A= A’Dcn7 A = A’pz 7
(2.48)

poPd =PPe Pl . ol

P22 P D%,

Terms in Eq. (2.48) include rigidity and elastic stiffness terms which are given below;

h/2 h/2

A= [ Qs[#@]dz, D= [ Qu2°dz,
—-h/2 —h/2 249
h/2 : h/2 : 42 ( )
- j bpz'dz, p, = jbpz [4(2)] dz ¢(z)_z{1—§j

Here, b is the width of the beam, h is the height of beam and p is the density. If isotropic beams are
considered, Q,, is equal to E and Q. is equal to G. ¢(z) is the shape function which introduces
warping effect into the plane section of the deformed beam as shown in Figure 2.2.c. Egs. (2.46) and

11



(2.47) are 6™ order differential equations and both have the same solution. In order to solve these
differential equations, Egs. (2.46) and (2.47) are converted into the following form,

AP+ QAT+ AN+ (A +(A+A)AD A + (AN —KAA®) =0. (2.50)

Eq.(2.50) is actually third order polynomial in terms of A and the resulting six roots can be obtained
exactly as follows,

A= -5 @A+ A), (2.50)
where

= _{WTG cos {% tan™ (§j+%},

#2:_[@} cos{%tanl(éj—%] (2.52)
;@z{#} cosEtanl(éﬂ,

2 e 1 2 2\ A2 2 2
r=3«/§{E(A+ZA ) —§(A1+2A )(A+ A +A%)A?+ (AN KA )A } (2.53)
? :4{%(2A2+A&)2—(A+AZ+AZ)A2} —r’, (2.54)

Having obtained roots the ( 4, ) of Eq.(2.50), general solution of Eqgs. (2.46) and (2.47) can be obtained
as well. There are two different cases in the solution. In the first case, non-dimensional natural
frequency is smaller than pure shear frequency. However in the second case, it is bigger than pure
shear frequency. Non-dimensional natural frequency and pure shear frequency are given as follows,

(2.55)

For the case @ <, general solution is given below,

U (&) =C, cos(4,¢) +C,sin(4,¢) +C, cosh(A,¢) +C, sinh(4,¢) + C, cosh(4,£ )+ C, sinh(4,0),  (2.56)
W(¢) = D, cos(4,4)+ D,sin(4,¢) + D, cosh(4,£) + D, sinh(A,£) + D, cosh(4,4) + D, sinh(4,¢). (2.57)
If @>n,,

U (&) = E, cos(4¢) + E,sin(4,&) + E; cos(4,4) + E, sin(4,&) + E; cosh(4,4) + E; sinh(4,8), (2.58)
W(¢) = F cos(A4) + F,sin(4,8) + F, cos(4,0) + F, sin(4,¢) + F, cosh(4,0) + F, sinh(4,0), (2.59)

where 2,” is equal to —4,% in the second case. C,, D,, E, and F,’s are arbitrary constants. Desired

boundary conditions can be applied to the general solution in order to obtain the characteristic
equation. Shear force, bending moment and higher order moment terms are used to obtain the
boundary conditions. In higher order beam theory, there are three constraints for each end. In total,
there are six equations and six unknowns. On the contrary, in Timoshenko beam model, two boundary
conditions for each end are enough as the order of differential equation is four. Characteristic

12



equations for different sets of boundary conditions and related mode shapes are given in [15].
Characteristic equations considering free-free end conditioned beam is given below.

For the case @ <77,

/:222 sin(4,)(1—cosh(4,) cosh(4;)) - ;ZZ sinh(4,)(1—cosh(4,) cosh(4,))

o (2.60)
'iﬂiA+%jsin(zl)sinh(/12)sinh(ﬂg)=0

+ %sinh(ﬂg)(l— cos(4,)cosh(4,)) + %K_ IS

where

P =4 (4" - A)(Wa* -124°)(h’@* +124,7 +1247),

P, = L, (4° + A2)(h*a” +124,7)(h*@° 1247 +122.%), (2.61)
P, = 442+ L) (W°@° +124.2) (" @* —1247 +124,7).

For the case @ > 7y,

2551 c0s(,) c0s(A) 2% (- Cos(4)eosh( )

4

()1 c0s() os(2,) (2.62)

1 S12 S_ZZ_S_32 i i i =
o3 S S ancaysingasinnce <o

where

S, =442 + 27 (0°a° —122°)(W&° —124, +1247),

S, = 4,(A4° + A7) (W@® -124,7)(h*@* —1247 +1247), (2.63)
S; = 4 (4" - A1) (°d* +1227)(h* @ ~124° ~12,%).

2.2 Spindle-Holder-Tool Modeling

The aim of constructing spindle-holder-tool assembly is to obtain tool point FRF of the assembly.
Effect of each component should be included in the tool point FRF. Firstly, main shaft of spindle
which is composed of several beams which are rigidly attached to each other is constructed. Then
bearings are added on to the main shaft. In order to simulate the bearings, connected spindle shaft at
various locations, spring and damper elements are used in the model. There is also holder and tool in
front of the main shaft. Both the holder and the tool are as well composed of several beams. Similarly,
beams are rigidly connected to each other in order to form holder and tool. Holder and tool are
attached to each other using elastic connection and there is also elastic connection between holder and
spindle assembly. Details of the coupling methods are explained in the following sections.

2.2.1 Rigid Beam Coupling

Having obtained receptances of each beam element with sufficient number of modes, beams are
coupled to each other in order to obtain the combined receptance information. After the coupling
operation, receptance data of the connection points is lost and only the end point FRF information is
acquired. Figure 2.3 shows connection points before and after coupling operation. It should be noted
that, in the receptance coupling of the beam elements, only inverse of 2x2 matrices is needed.

13



B2 B BL A2 A | A1

c2 | c1

Figure 2.3 Coupling Operation

Receptance matrices of beam A and B can be written as follows

A ) ==lia el

[A,] is given as an example below,
[Au] _ Hun  Lan . (2.65)
NAlAl PAlAl

Remaining submatrices of [A] and [B] can be obtained similarly. End points of the new coupled

structure are represented by points C, and C,. After writing proper displacement and force relations at

connection point for which details are given in [25], receptance matrix of the new structure, C can be
given as follows

[C]= {[C“] [C“]] (2.66)

€] [Ca)
where
[Cul=[A:]- [Au [[Ax]+[Bu]] [As
[C.]=[A][[A [Bn] [Bo
[Cal=[Bal[[A2]+[Bu]] [Ba
[Cx]=[Bx]-[ 21][[A22]+[ 11]} [Be]

Alternatively, impedance coupling method can also be applied. Drawback of impedance coupling is
that it requires inverse of higher order matrices. It requires more time with respect to receptance

coupling method. In impedance coupling method, inverse of [A] and [B] matrices are obtained and

) (2.67)
]

then two matrices are added together. Inverses of [A] and [B] matrices are given below,

H L H L
ZAlAl ZAlAl ZAlAZ ZAlAZ
N P N P
[Z ]_ ZAlAl ZAlAl ZAlAZ ZAlAZ (2 68)
AT gt " z- '
A2A1 A2AL A2A2 A2A2
N P N P
ZAZAl ZAZAI ZA2A2 ZA2A2

14



H L H L
ZBlBl ZBlBl ZBlBZ ZBlBZ
N P N P
_ ZBlBl ZBlBl ZB].BZ ZBlBZ 269
Z;|= (2.69)
® zH - zH z-
B2B1 B2B1 B2B2 B2B2
N P N P
ZBZBl ZBZBl ZBZBZ ZBZBZ

Adding operation is applied to only common nodes.

[zc]=[2.]®[2] (2.70)
[ H L H L
ZAlAl zAlAl ZAlAZ ZAlAZ 0 0
N P N P
Iy Zmm Zpiaz Zpipaz 0 0
H L H H L L H L
_ ZA2A1 ZA2A1 ZAZAZ + ZBlBl ZAZAZ + ZBlBl ZBlBZ ZBlBZ 2 71
[ZC]_ ZN ZP ZN ZN ZP ZP ZN ZP ( . )
A2AL A2AL a2a2 T Zgip1 a2a2 T Zgips B1B2 B1B2
H L H L
0 0 Zg5p1 Zg7m1 Zg58; Zg582
N P N P
L 0 0 ZBZBl ZBZB]. 23232 ZBZBZ_

Eqg. (2.71) explains logic of impedance coupling. Only impedances of z,,,, and z,, points are
added because point A2 is common with point B1. Matrix size is also increased to 6x6 since there are
unshared nodes in the matrix. Then, inverse of [z, | matrix is taken to get the final receptance [C]

matrix. Receptance matrix [C] is given below,

HClCl LClCl HClcom LClcom HC].CZ LC1C2

N Cic1 PClCl NClcom PClcom N Cic2 PCJ.C 2
[C] — H comC1 LcomCl H comcom Lcomcom H comC2 LcomC 2 (2 72)
N comC1 I?:c)mCl N comcom Pcomcom N comC2 Pt:omC 2
HC2C1 LCZCl HCZcom LC2com HCZCZ LC2C2
NCZCl PCZCl NCZcom PCZcom NCZCZ PCZCZ i

where -com* refers to connection point of beams. It is seen that impedance coupling process stores
receptance of the connection point. If it is not required, common point receptances can be deleted and
matrix size could be reduced to 4x4.

In order to construct different cross sectioned continuous beams, both techniques can be performed
iteratively. Although both methods can be implemented, the first method is preferred in the
calculations as it is faster.

2.2.2 Structural Modification Method

In order to support the spindle, bearings are used at different locations. Effect of bearings are included
into the model as spring and damper elements by using Ozgiiven's structural modification method
[18]. Figure 2.4 shows structural modification method schema for adding bearings. After adding
bearing to pointC,, rigid beam coupling operation is proceeded from point C, in order to construct

remaining parts of spindle shaft.
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//

Figure 2.4 Connection of Bearing Using Structural Modification

Including the effects of bearings, the receptance of the structure can be written as follows

-1
[a]=[[1]+[e][D]] [e]. (2.73)
Hc1c1 Lc1c1 Hc1c2 L<:1c2
N P N P
[ac] _ cic1 cic1 cic2 cicz , (2.74)
chc1 chc1 Hc2c2 chcz
N P N P

c2C1 Cc2C1 cac2 c2c2

In Eq. (2.73) effect of bearing is included in [D] matrix and [1] is unit matrix. If bearing is located at
C, in Figure 2.4, dynamic stiffness matrix of bearing can be written as follows,

00 0 0
00 0 0

[D]= . . (2.75)
00 ky+|a)cy 0

00 0 k, +iac,

Where (ky,cy) and (kg,cg) are translational and rotational stiffness and damping coefficients of the

bearings, respectively. Computational effort in the calculation of Eq. (2.73) can be decreased by
reordering matrices such that the connection degrees of freedoms are grouped at the upper left corner.
The reordered dynamic stiffness matrix can be written in the following form,

[D]z{[DOu] 8}’ [Dn]z[kyﬂa)cy 0 } 276

0 k, +iac,

In addition to this, [ac] is rearranged in the same manner. Reordering these matrices as described

above, size of the inverted matrix decreases from 4x4 to 2x2. Therefore, the receptance matrix of the
coupled system including the bearings can obtained as follows
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o]+ 0] (]
o] ] -[a2 000 T[], e
%) [7]fa [0 [

The receptances obtained by Eq. (2.77) should be reordered back to the original form in order to get
similar submatrices as before. Instead of structural modification method, impedance coupling method
can also be used as explained before. Firstly, inverse of Eq. (2.74) is taken and Eq. (2.75) is added to
proper nodes of Eq. (2.74). Then, inverse of newly composed matrix gives coupled receptance of the
system. In the calculations first method is preferred concerning time efficiency.

2.2.3 Elastically Coupling of Beams

Up to here spindle beams are rigidly connected to each other and bearings are added using structural
modification method. Yet, if holder and tool are rigidly connected to the spindle, real operating
conditions are not represented because relative movement is observed between spindle-holder and
holder-tool subassemblies. Therefore, for the coupling of these elements, flexible receptance coupling
is needed on the contrary to the rigid beam coupling. Elastic elements are placed in between required
parts shown in Figure 2.5.

Figure 2.5 Elastic Beam Coupling

Formulation of flexible receptance coupling includes spring and damper elements between two beam
segments (A and B). The coupling stiffness matrix can be written in the following form

k,*® +ic, " 0
Kel=l" v , 2.78
[ AB] |: 0 kgAB +ia)C€AB:| ( )
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where k,"* and k,"® are translational and rotational stiffnesses, and, ¢,"® and c,*® are translational

and rotational damping coefficients of the flexible connection. In flexible receptance coupling, force
and displacement relations are written at the connection point where stiffness and damping elements
are as well included in equations. The resulting equations for the receptance are given as follows,

Col = [Au]-[Ae ][] +[Kia ] +[B2]] [Au].

[
[C.]= [Aiz][[ ] +[K AB]_ +[Bu” [By].

(2.79)
[
[

Cy]= [Bﬂ][[ ]+[KAB]71+[BMH_ [B.1].
C,]=[B, ]_[821][[A22]+[KAB]_1+[Bu]]1[812]'

It is noticed that resulting equations are very similar to Eq. (2.67). Only difference between them is
that [K,,]" terms added into the summation of [A,]+[By] in Eq. (2.67). If [K,s] term goes to

infinity eventually rigid coupling equations are obtained because [KAB ]’1 goes to zero.

The other alternative way is to use impedance coupling method for elastic coupling. As explained
before, impedances of [A] and [B] are obtained by taking inverses of each matrices. Later, three
stiffness matrices are added together as shown below.

[Zc] :[ZA]®[ZB]®[KAB]' (2.80)
2.3 Approximate Methods for Spindle Holder Tool Assembly

In Section 2.1, analytical solution for spinning Timoshenko beam and HOBM is obtained. After
getting the analytical solution, natural frequency and mode shape information are utilized to obtain
repectance of a single beam. In order to perform accurate coupling operation, huge amount of natural
frequency and mode shape data should be stored in the memory for each beam. As the slenderness
ratio of beam gets smaller and smaller, natural frequencies of the beam increases to very large
numbers. Then characteristic equation of the beam should be searched up to very high frequencies.
Frequencies which satisfy characteristic equation are stored as the natural frequencies and they are
obtained by iteratively increasing frequency. As a result solution time for natural frequencies increases
dramatically as huge number of iterations are required for the low slenderness ratio beam. In the
spindle assembly, several low slenderness ratio-beams must be coupled together. Coupling operations
are repeated for each frequency step increment; as a result, all these operations require high amount of
mathematical operations. In order to reduce the calculation time, approximate methods is to be utilized
in the modeling.

Firstly, Rayleigh’s Quotient Method is used to estimate the lowest eigenvalue. Estimation result is
highly dependent on the chosen trial function. Estimated eigenvalue is larger than the lowest
eigenvalue, unless the chosen trial function is equal to the exact eigenfunction. Rayleigh-Ritz method
estimates not only the lowest frequency but also the desired number of lowest frequencies. Any
number of trial functions could be used in Rayleigh-Ritz method. Again all natural frequencies
obtained are larger than the exact natural frequencies unless exact eigenfunctions are used. Meirovitch
[29] explains Rayleigh-Ritz method for an Euler beam. Mode shapes are obtained as follows,

Y(X) =D ad (%), (2.81)
i=1
where a ’s are undetermined coefficients and ¢ ’s are the trial functions. According to Rayleigh’s

quotient, lowest eigenvalue is the ratio of the maximum potential energy to the reference kinetic
energy as shown below,
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7 = Vo (2.82)

szu LI (2.83)

'—1 j=1
;;mu 8 (2.84)

k; and my are stiffness and mass coefficient matrices for the given system. Finally eigenvalues are

obtained by Eq. (2.82). Kinetic and potential energy for Timoshenko beam are given by Zhou [30] as
follows

U :%HEI [%} +KGA{W(x,t)—¥} }dx,

) D , D , (2.85)
1 ou(x,t ow(x,t
T== Al ——=| +pl| —/——= X.
I o[
In Eq. (2.85) transverse deflection and rotation angle can be denoted as follows;
u(x,t) =U(x)e'"*, w(x,t)=¥(x)e. (2.86)
Lagrangian function can be written,
| 2 2
L=U,, -T, = lj El [M} +KGA{‘P(X)—M} X
29 dx dx
(2.87)

_%wzi[pAUZ(prl‘Pz(x)]dx

If Timoshenko beam theory is considered, Eq. (2.81) is not sufficient because there are two uncoupled
differential equations which are transverse deflection and rotation angle. Two sets of trial functions
are described as below,

U(x)= iaiui (%), (2.88)
P = Y0¥, (), (2.89)

where a; and b; unknown coefficients and U;(x) and ‘¥;(x) are trial functions. If Rayleigh-Ritz
method (o6L/da, =0 and JoL/db, =0) is applied to Eq. (2.87) the following eigenvalue problem is

obtained
[ o] of o) Lo a1-(9
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where

dU (x)

1 du, (x) dU. (x)
[Ki)=[roA=) =g 9% j =P (9
[K.]= j KGAY_(x )dU ) g j hd (X) i) + KGAY, ()W (x) (d
[Mna]=ijUn(X)Uﬁ(X)dx, [Mnﬂ=[Mmﬁ]=0, (2.91)

Mo ]= jpl ¥, ()W (x)dx,

{A} =[a,,8,...ay], {B} =[b.,b,...by]

m,n,m,n=12...,N.

Natural frequencies and related coefficients of trial functions can be obtained by solving Eq.(2.90).
Mass normalization is applied to the coefficients of trial functions and mass normalization coefficient
m" for the r'" mode can be found as follows;

1
r A’ ! [Mnﬁ} [Mnﬁj A ’
m" = . ) (2.92)
B [Mmﬁ] [Mmﬁ} B
Important point is to obtain proper trial functions for desired boundary conditions. Main focus is to
find proper trial functions for spindle shaft, holder and tool of the spindle. Instead of partitioned

structure, an average diameter shaft is assumed for spindle, holder and tool assemblies in order to
obtain simple trial functions, example shown in Figure 2.6.

Figure 2.6 Partitioned and Average Diameter Shaft

Then, average diameter shaft is modeled using equations in Section 2.1.1 and related mode shapes are
directly used as trial functions in Rayleigh-Ritz solution.

Another method is to use polynomials as a trial function. x"* type polynomials or orthogonal

polynomials such as Legendre, Chebyshev polynomials, can be used for both transverse deflection
and bending rotation trial functions. Kocatiirk [31] explained Rayleigh Ritz Method with Timoshenko
beam model using X" type trial functions in the solution. In addition, spring can be added at various
locations of the beam in order to simulate bearings by using the following potential energy expression
given below,
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KU, (U () (2.93)

where K is the stiffness coefficient. Eq. (2.93) is directly added to the [Knﬁ} value in Eq. (2.91). As

a final step, holder and tool assemblies can be added using elastic coupling method to the end of the
spindle shaft. Now system is ready for tool point FRF calculations.

2.4 FEM of Spindle Holder Tool Assembly

In order to compare results of current work with FEM software, ANSYS 11.0 is employed to
construct finite element model of the spindle-holder-tool assembly. In the software BEAM188
element type which is based on Timoshenko Beam Theory is used to model beam elements. It is
suitable for moderately thick beam types. BEAM188 includes shear deformation and rotary inertia.
Also, this element type has two nodes and each node has six degrees of freedoms. Non-required
degrees of freedoms are constrained in order to match both analytical and FEM. Irrelevant modes such
as axial and torsional modes are suppressed. COMBIN14 element is used in order to implement spring
and damper characteristics in to the assembly. It allows both longitudinal and rotational springs and
damper properties. Bearing and flexible connection requirements are fulfilled by COMBIN14
element.

Same geometry and material properties are utilized in both analytical and FEM. In order to include the
spinning effect into the FEM, Coriolis effects are enabled and rotational velocity is assigned. In order
to observe the effect of spinning on modal analysis results, QR Damped Mode Extraction Method
should be employed and complex eigenvectors should be calculated. Also, the same geometry is
modelled using 3D solid element. Results of 3D solid element model are presented for only the non-
spinning case.

Comparison of ANSYS and analytical results are given in the results and comparison chapter.
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CHAPTER 3

STABILITY LOBE CONSTRUCTION

Excessive machine tool vibration which is called chatter may cause undesired surface finish on the
work piece. During the cutting operation, wavy surface may be left on the work piece because of each
tool pass. Generated wavy surface roughness depends on phase shift between each successive cutting.
If the cutting frequency is close to chatter frequency, surface finish becomes very rough. Therefore,
stability lobe diagram gives useful information about whether there will be chatter or not. As turning
is an orthogonal cutting process; nevertheless milling is not, turning and milling stability lobe
calculations are different from each other. Milling stability analysis includes time dependent geometry
and variables. Derivations for turning and milling stability lobes are given below.

3.1 Turning Stability Lobes
In orthogonal cutting, fed direction is assumed perpendicular to the axis of the workpiece. Orthogonal

cutting condition is shown in Figure 3.1. Feeding force causes the system to vibrate. Chip thickness
changes with respect to vibration frequency of the system.

chip too] €——

—> workpiece

Figure 3.1 Cutting Instance for Orthogonal Cutting

Cutting force is proportional to the cutting area which is written as follows,
F(t) =K,a(x(t—-T)—x(t)), (3.1)

where K, is the cutting constant in the feed direction, a is the depth of cut and x(t—T)—x(t) is the

dynamic chip thickness produced in one period, which is shown as T . Total structure is excited by
the cutting force. Therefore force equilibrium can be written considering a one degree of freedom
system and feed force as follows,
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mX +cx+kx = F(t). (3.2)

Eq. (3.2) can be solved in Laplace domain and after proper operations [4] characteristic equation
including real and complex part of FRF is obtained as

{1+K 3, [G, (1—cos(e,T) -G, sin(@,T) ]} + j{K, &, [G, sin(@,T) + G, (1—cos(@,T))]} =0, (3.3)

where G, is real and G, is imaginary part of FRF. w, is chatter frequency which is very close to the
natural frequency of the structure. If the imaginary part of Eq.(3.3) is equated to zero following
equations are obtained,

G, sin(w,T)+G,(1—-cos(w,T)) =0,

G, sin(o,T) (3.4)

tan f=—"X= ,
p G, 1-cos(wT)

r

where £ is the phase shift of the FRF of the structure. After some trigonometric manipulations phase
shift can be related to the spindle speed n as given below,

o,T =¢+2kr,

e=3r+2p,
_ —1Gc(a)c) 35
pn G ()’ 49
60
n=—,
T

where ¢ is the phase shift between inner and outer modulations, k is the corresponding vibration
waves within one period.

Limiting depth of cut in order to avoid chatter is obtained by equating the real part of Eq.(3.3) to zero
and for G, is eliminated by using (3.4). Limiting depth of cut is given below,

1

Qi = m (3.6)

where G, (w,) is the real part of transfer function or tool point FRF. Only negative values of G, (w,)
is employed in Eq. (3.6) in order to have positive depth of cut.

3.2 Milling Stability Lobes

The analytical formulation for milling operation is obtained by Budak [32]. In the milling dynamics,
two orthogonal degrees of freedom are assumed in the cutting operation as shown in Figure 3.2.
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iy,

Figure 3.2 Cross Sectional View of an End Mill Showing Differential Forces [32]

Equation of motion for milling is given below as,

(Flem =%aKt {Z ny}[G(iwc)]{F}ei’”ﬂt, (3.7)

yX XX

where a is axial depth of cut, K, is cutting force coefficient, [a] is the matrix of average directional

cutting coefficients and [G(ie,)] is the summation of tool point FRF and work piece FRF matrices
identified in the orthogonal cutting directions. For simplicity only tool point FRF matrices is used in
this formulations and work piece is assumed as a rigid. [G(ie,)] and ] is given as

_ G(i@,), Glim,),
[Gliw,)] ={G(iwc)yx G(ia)c)yy}’ .
a, = %[cos 2¢-2K ¢ +K sin 2¢]Z[ ’
ST
2 ; (3.9)

1, . o
a, = E[—sm 20+2¢+K, cosZ¢]¢S‘ ,
a, = %[—cos 262K, ¢~ K, sin2¢]".
Average directional cutting factors depend on K, , ¢, and ¢, which are radial cutting constant, entry

angle and exit angle, respectively. Entry and exit angles are related to the cutting type (e.g. end
milling, down milling and up milling). Eq.(3.7) has a non-trivial solution if

det[[1]+(A)([A][G(@,)]) | =0, (3.10)
where

Nt i T _ﬁ Oy axv
A== aK (d-e™), [%]—27[{% } (3.11)
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For orthogonal cutting condition off-diagonal terms G(iw,),, and G(i@,),, can be taken as zero.
Then, using Eq. (3.10) eigenvalue A can be found as

A:_L(aiiM), (3.12)

23,
where

a = G(ia)c)xxG(ia)c)yy(axxayy _axyayx)7

. . (3.13)
a =0a,G(im,),, +aWG(la)c)yy.

FRFs at the tool point have complex values; hence, A is a complex number. Since depth of cut must
be a real value, A is decomposed into real and imaginary components as A = A +iA, . After some
manipulations, to get only real valued depth of cut, real and imaginary part of A should have the
following proportion

A sinw, T
g=2u o Sl (3.14)
A 1-cosa,T

where T is spindle period and @, is chatter frequency. Eq. (3.14) can be related with the spindle
speed n as follows [32],

o,T =&+ 2Kk,

e=m—2p,
B=tan"Y, (3.15)
n=20

N, T

¢ is the phase shift between inner and outer modulations, k is the corresponding vibration waves
with in period, and N, is the tooth number. Finally stable limiting depth of cut is found from
Eq.(3.11) as,
27A )
a,. =-— 1+.9%). 3.16
lim N K ( ) ( )

tht

Egs. (3.16) and (3.15) can be utilized to find the related spindle speed for a given depth of cut or
limiting depth of cut for a given spindle speed.
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CHAPTER 4

NUMERICAL RESULTS AND COMPARISON

4.1 Spindle Geometry and Related Parameters

The spindle-holder-tool model given by Ertiirk [25] is used in this study. Figure 4.1 shows the spindle,
holder and tool parts and their final shape. There are ten rigidly coupled beams in the spindle shaft and
there are bearings at four points which are shown as black discs in Figure 4.1. Holder has six rigidly
coupled beams and tool has only two. Spindle, holder and tool dimensions starting from the right

ends, shown in Figure 4.1, are given in the Table 4.1 to 4.3. The first three segments of the spindle
subassembly have the same diameter with the last three segments of the holder subassembly.
Therefore, the holder subassembly is clamped to the front end of the spindle subassembly by using
three common diameter segments. Similarly tool is mounted inside of the first segment of the holder
subassembly. Therefore tool is mounted to the holder subassembly such that final length of the
overhang tool is 85 mm. As explained before there are flexible connections between the spindle-
holder and the holder-tool. They are assumed to exist at the points shown in Figure 4.2.

/ 467

1473
107

Figure 4.1 Spindle Components and Total Assembly [25]
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Elastic Connection Points

Figure 4.2 Elastic Connection Locations

Table 4.1 Spindle Dimensions [25]

Segment Number 1 2 3 4 5 6 7 8 9 10
Length [mm] 26 26 26 38 100 66 75 30 40 40
Outer Diameter [mm] 66 66 66 66 76 70 62 58 58 58
Inner Diameter [mm] 54 48 40 32 32 32 32 32 32 32

Table 4.2 Holder Dimensions [25]

Segment Number 1 2 3 4 5 6
Length [mm] 22 19 24 26 26 26
Outer Diameter [nm] 72 60 70 54 48 40
Inner Diameter [nm] 16 16 16 16 16 16

Table 4.3 Tool Dimensions [25]

Segment Number 1 2
Length [mm] 50 57
Outer Diameter [mm] 14 16
Inner Diameter [nm] 0 O

Steel is assigned to all materials in the assembly. Very little loss factor (0.002) is assumed in the
model in order to get finite peaks in the tool point FRF. Related material properties are given in Table
4.4,

Table 4.4 Material Properties [25]

p (Density) 7800 kg/m"3

v (Poisson Ratio) 0.3
E (Young's Modulus) 200 GPa

For stiffness and damping coefficients, the same values of Arakere [17] are used to simulate the
bearings. For elastic connection coefficients the same values given in [16] are used. Table 4.5 gives
used bearing and interface properties. Four bearing locations starting from the first segment of the
spindle shaft are given in Table 4.6.
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Table 4.5 Bearing and Interface Properties [25]

Translational Stiffness Rotational Stiffness

[N/m] [N.m/rad]
Front Bearings 5 i
(for each) 7.5x10
Rear Bearings 6 )
(for each) &340
Spindle Holder 5 107 15 x10°
Interface
RIS e 2 x10 1.5 x10°
Interface

Table 4.6 Bearing Locations [25]

Bearing No Bearingl Bearing2 Bearing3 Bearing 4
Distance [mm] 26 78 387 427

4.2 Tool Point FRF Results

Before going to the complete assembly results, end point FRF of a single example beam is
investigated in order to show effect of spinning clearly. It is expressed before that with respect to
spinning speed natural frequencies are separated as forward and backward natural frequencies. In
order to examine forward and backward frequencies, a steel cylinder of 1 m length and 0.2 m diameter
is studied. First, considering non-spinning case natural frequencies are obtained. Taking the first
natural frequency of the non-spinning case as a reference (@, =841.9 Hz), spinning speed is
increased to @, and 2, respectively. The first three natural frequencies of three different cases are
given in Table 4.7. It is observed that at higher modes the difference between the forward and
backward frequencies increases. In addition to natural frequencies, end point receptance of the free-
free beam is obtained for Q=0 and Q =@, spin speeds, which are given in Figure 4.3. It is
observed, single modes split into two modes having natural frequencies lower and larger than the zero
spin case as predicted by the natural frequencies. Moreover, there is an additional mode at a very low
frequency (49 Hz) for the case including gyroscopic effects. This frequency is not presented in Table
4.7 for easy comparison.

Table 4.7 Natural Frequencies 0, @, and 2@, Hz

Q=w, Q=20
% Diff. % Diff. % Diff. % Diff.
Q=0 | FWD wrt BWD wrt FWD wrt BWD wrt
Q=0 Q=0 Q=0 Q=0

1. Mode | 841.9 | 923.9 9.7 762.7 9.4 1010.2| 20.0 690.4 18.0
2. Mode | 2032.4 |2159.6 6.3 1904.0 6.3 2286.6| 125 |1780.3| 124
3. Mode | 3466.4 |3615.5 4.3 3311.9 4.5 3761.1 8.5 3159.5 8.9
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Figure 4.3 Comparison of Forward and Backward Natural Frequencies at 841.9 and 0 Hz

After constructing the total assembly using the coupling method, natural frequencies and tool point
FRF of the spindle assembly is obtained. 0.1 Hz frequency increments are applied in FRF
calculations; hence, the resolution of the system is 0.1 Hz. Very small loss factor 0.002 is considered
in the analysis. The first 100 modes for each component are employed in the tool point FRF
calculations in order to reduce truncation errors. In the first case, 0 and 10000 rpm spindle speeds are
obtained and the comparison of them is presented in Figure 4.4. It can be seen that results of both
FRF’s are nearly coincident and difference is not clear. However, if natural frequency points are
zoomed in, forward and backward separations can be observed.

0 :
—0rpm
~2-10000 rpm

5
- A

FRF Amplitude [m/N]

'15 7‘ Yf' - Y& At
-250 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency [Hz]

Figure 4.4 Comparison of Tool Point FRF at 0 and 10000 rpm
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Forward

and backward frequencies are shown in Figure 4.5 to 4.7 for the 3", the 4™ and the 5" modes.

The effect of separation of forward and backward frequencies on the FRF is only dominant around the
natural frequencies; whereas, other parts of the FRFs are quite similar to the zero spin speed case.

FRF Amplitude [m/N]

9 :
---10000 rpm

-10 N\ —0rpm

£ 7Y

:-11 /. .“ :.' \
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Figure 4.5 Forward and Backward Frequencies around 3™ Mode
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Figure 4.6 Forward and Backward Frequencies around 4" Mode
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Figure 4.7 Forward and Backward Frequencies around 5" Mode

In Table 4.8 natural frequencies of the system for 0 and 10000 rpm are given. In the coupled model
solution, the first two modes do not change, since they correspond to the rigid body modes of the
spindle dominated by bearings. However, finite element solution splits them as forward and backward
modes as presented in Table 4.9.

Table 4.8 Coupled Model Results for 0 and 10000 rpm Spindle Speed

1780

0 rpm 10000 rpm
Natural Backward Natural Forward Natural
Frequencies [Hz] Frequencies [Hz] Frequencies [Hz]
71.6 71.6 716
193.8 193.8 193.8
870.2 868.8 871.6
1430.9 1429.2 14325
1763.5 1758.8 1768.4
3465.5 3457.3 3474.6
3648.1 3644.1 3652.7
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Table 4.9 ANSYS Results for 0 and 10000 rpm Spindle Speed

0 rpm 10000 rpm
Natural Backward Natural Forward Natural
Frequencies [Hz] Frequencies [Hz] Frequencies [Hz]

71.6 71.0 72.3
193.9 192.0 195.7
867.5 865.2 869.7
1424.0 1423.1 1424.9
1752.1 1743.5 1760.8
34413 3414.6 3467.0
3634.3 3629.3 3639.7

If the elastic modes starting with the third mode are considered, analytical solution also splits as
backward and forward modes and their comparison with FEM results give a maximum error less than
1%. Good agreement is obtained at elastic modes.

If spindle speed is further increased to 20000 and 30000 rpm, separation between forward and
backward frequencies increases slightly in elastic modes whereas the first two natural frequencies are

constant as before. Model and ANSY'S simulation results at 20000 and 30000 rpm are given in Table
4.10 and Table 4.11. Again, good agreement is obtained at elastic modes for both 20000 and 30000

rpm.

Table 4.10 Forward and Backward Natural Frequencies at 20000 rpm

20000 rpm 20000 rpm
Ansys Backward [Hz] | Ansys Forward [Hz] | Model Backward [Hz] | Model Forward [HZz]

70.3 72.9 71.6 71.6

190.2 197.7 193.8 193.8
862.9 872.0 867.6 872.8
1422.2 1425.8 1428 1433.7
1734.9 1769.5 1754.2 1773.1
3386.9 3491.4 3449.1 3483.2
3624.6 3645.8 3640.5 3656.8

It is observed that at higher natural frequencies difference between forward and backward frequencies
increases; nevertheless, it is not significant. FRF of spinning case is nearly identical to FRF of non-
spinning case. Clearly spinning has very limited effect on the tool point FRF of the spindle-holder-
tool assembly, in addition spinning effect on the stability lobes will be discussed in the coming

sections.
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Table 4.11 Forward and Backward Natural Frequencies at 30000 rpm

30000 rpm 30000 rpm
Ansys Backward [Hz] | Ansys Forward [Hz] | Model Backward [Hz] | Model Forward [Hz]
69.6 73.6 71.6 71.6
188.5 199.7 193.8 193.8
860.7 874.2 866.3 874.1
1421.3 1426.7 1426.7 1435.1
1726.4 1778.2 1749.4 1777.8
33584 3514.5 3440.8 3490.2
3620.2 3652.7 3636.8 3660.8

Change in the bearing and connection parameters of the assembly is as well investigated by changing
the original stiffness and damping values used in the analysis. In Figure 4.8 both front and rear
stiffness values are multiplied and divided by two at 20000 rpm. It is seen from Figure 4.8 that
bearing stiffness values mostly effect the first two natural frequencies of the system which are rigid
body modes constrained by the bearings. Stiffer bearings shift the first two modes of the system to
higher natural frequencies and vice versa. It is observed that higher modes are not significantly
affected by bearing parameters.

-6
8
g0 i |
® ] :! “\
%- | | ’;-;‘4_..»#’ A N -
214 - Tl
< \ 4 T
L _
o 16 I — k7510 k=2510°
JE7:) N 11 5 A N A A kF37510°k=12510° |,
k1510 k=5 10°
'200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency [Hz]

Figure 4.8 Effect of front and rear bearings parameters on the tool point FRF

Another case is to change the contact parameters between spindle-holder and holder-tool
subassemblies. Again considering 20000 rpm spin speed, contact values are halved and doubled as in
the previous case. It is observed in Figure 4.9 that first two modes are not affected due to the change
in the elastic elements; however, higher modes are affected significantly. Increase in the stiffness of
the connection parameters resulted in an increase in the natural frequencies of the modes higher or
equal to 3. If elastic modes of the spindle assembly are considered, interface connection parameters
are more important rather than bearing parameters.
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Figure 4.9 Effect of elastic connection elements on the tool point FRF

If micromachining is considered, spindle speeds could reach very high speeds. As an example, 50000
rpm is tried on the existing system and FRF of the tool point is observed with respect to different
contact parameters given in Figure 4.10. In addition to the 20000 rpm results separation between
forward and backward natural frequencies clearly increases as the connection parameters get stiffer at
50000 rpm. Green line which has the stiffest connection in Figure 4.10 has the biggest difference
between forward and backward natural frequencies. This result shows that realistic connection
parameter modeling is crucial for the accurate determination of the system dynamics. Yet in order to
get more realistic results for micromachining, geometry and related bearing and connection
parameters should be updated for specified micro milling machine.
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Figure 4.10 Effect of elastic connection elements on the tool point FRF at 50000 rpm
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4.3 Higher Order Beam Theory Results

Bickford’s higher order beam theory is used in modeling as described in Section 2.1.2. HOBM
includes shape function coefficient in order to eliminate shear correction factor requirement. Although
. . 47°) . L
different shape functions can be employed, ¢(Z):Z[1_W] is taken as a shape function in
calculations. In literature, HOBM derivation is obtained considering only rectangular cross sections,
thus only solutions of rectangular cross-sections are given in this section. HOBM results are compared

with Timoshenko beam results considering different shear correction factors in calculations.

First, free-free beams are considered in calculations. Material properties are taken from Table 4.4. In
the first case 1 m length beam with 0.05 m height and 0.1 m width is taken. For rectangular cross-
sections width has no effect on natural frequencies as it is cancelled out in equations. Commonly
recommended two different shear correction factors (x=5/6 and x=14/17) are used in
Timoshenko beam calculations. HOBM and Timoshenko beam results for the first case are given in
Table 4.12.

Table 4.12 Natural Frequencies of for 0.05 m Height

Mode H[?_E]M ;1“50 /srger[1|l_<|cz)] KET;?E?”FSZ] % difference % difference
1 0 0 0 0 0
2 259.0 257.9 257.9 0.4 0.4
3 704.5 699.4 699.2 0.7 0.8
4 1353.9 1340.0 1339.6 1.0 11
5 2181.1 2152.7 2151.6 1.3 1.4
6 3160.4 31115 3109.1 1.5 1.6
7 4266.3 4191.0 4186.7 1.8 19
8 5475.8 5368.7 5361.9 2.0 2.1
9 6768.7 6625.2 6615.3 2.1 2.3
10 8128.5 7944.4 7930.6 2.3 2.4

According to Table 4.12, HOBM and Timoshenko results are very close to each other and error is
below 2.5 % for the first ten modes. Both shear correction factors give very close results for
Timoshenko beam model. In the second case, height of beam is increased to 0.1 m. Results of the
second case are given in Table 4.13. It is seen that differences increase as the thickness of the beam is
increased. Errors could go up to nearly 5%. However, both shear correction factors give close results
with respect to each other. HOBM results are higher than Timoshenko results all the time. It is
observed that Timoshenko beam results are more conservative than the HOBM solution.
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Table 4.13 Natural Frequencies of for 0.1 m Height

Mode H[(I)_E]I\/I Zf‘; 726?:_(8] KT:'Tffrl]sanZ] % difference | % difference
1 0 0 0 0 0
2 510.6 502.7 502.6 15 1.6
3 1339.9 1307.6 1306.9 2.4 2.5
4 2458.4 2385.2 2382.8 3.0 3.1
5 3765.3 3639.5 3634.1 3.3 3.5
6 5190.9 5005.5 4995.9 3.6 3.8
7 6688.5 6438.4 6423.5 3.7 4.0
8 8287.7 7908.6 7887.4 4.6 4.8
9 9788.1 9395.3 9367.2 4.0 4.3
10 | 113524 10882.9 10847.1 4.1 45

In the final case study, height is increased to 0.2 m. Results are given at Table 4.14. According to
results of Table 4.14, difference between HOBM and Timoshenko beam model increases dramatically
after 8. mode. Again both shear correction factor gives close results. It is observed that as the
slenderness ratio of the beam becomes smaller and smaller difference between HOBM and
Timoshenko beam model increases considerably, vice versa. Timoshenko beam theory is again more
conservative than the HOBM. It is also expected that for very high slenderness ratios, HOBM and

Timoshenko beam solutions are similar to the Euler beam solutions.

Table 4.14 Natural Frequencies of for 0.2 m Height

Mode H[(|)_|I§]I\/I ’ITSO /sger[lll_(g] KTZITE/stnI[(gz] % difference | % difference
1 0 0 0 0 0
2 967.3 921.2 920.7 4.8 4.8
3 2284.0 2153.2 2150.0 5.7 5.9
4 3801.4 3581.0 3573.1 5.8 6.0
5 5346.2 5041.7 5026.9 5.7 6.0
6 6837.6 6472.3 6449.6 53 5.7
7 7790.6 7642.8 7606.8 1.9 24
8 9598.3 8553.5 8513.0 10.9 11.3
9 10975.2 8672.0 8629.3 21.0 214
10 12712.6 10050.6 10004.3 20.9 21.3
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4.4 Approximate Method Results

In Rayleigh-Ritz solution, x" type polynomials are directly used as trial functions. The spindle
geometry is constructed step by step in order to investigate the efficiency of Rayleigh-Ritz method for
different cases. In Rayleigh-Ritz solution maximum 16 trial functions can be used, on the other hand
first 100 natural frequencies and mode shapes are used in the coupled model.

For the first case, spindle shaft given in Table 4.1 is modeled without bearings and natural frequencies
of Rayleigh-Ritz solution are compared with the model using receptance coupling. Results of these
two different methods are shown in Table 4.15. In Figure 4.11 FRF of the two solutions are given.
According to natural frequencies and FRF results, Rayleigh-Ritz and coupled system solutions are
very close to each other.

For the next step bearings are added onto the specified locations of the spindle shaft. In Rayleigh-Ritz
method, bearings are employed just adding stiffness and damping terms into the related equations of
stiffness matrices as explained in previous chapter. Spindle natural frequencies and tip point FRF
comparisons are given in Table 4.16 and Figure 4.12. Natural frequencies are very close to each other
and also coupled model and Rayleigh-Ritz FRFs match on top of each other very well.

Table 4.15 Spindle Shaft Free-Free Natural Frequencies

Rayleigh-Ritz [Hz] Coupled System [Hz]
0 0
1529.1 1529.1
3558.6 3563.3
6036.4 6041.5
8745.9 8762.0

—Coupléd Sol.
~+-Rayleigh Sol.

1
SA}

N
o

A

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency [Hz]

FRF Amplitude [m/N]
LN
o1

Figure 4.11 Free-Free BC Spindle Tip Point FRF for Rayleigh and Coupled Solution
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Table 4.16 Spindle Shaft with Spring Natural Frequencies

Rayleigh [Hz] | Coupled System [Hz]
91.1 91.0
210.5 210.3
1537.6 1536.5
3568.8 3565.4
6036.6 6043.0
8744.4 8765.7
-10 : :
—Coupled Sol.
-+-Rayleigh Sol.
Z-15 |
E
: \ A
220 M e / ,
<
LL
x 25 !
_300 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency [Hz]
Figure 4.12 Spindle Tip Point FRF for Rayleigh and Coupled Solution with Added Bearings

Natural frequencies obtained by Rayleigh Ritz method must be always larger than the exact
frequencies unless the exact eigenfunctions are used in that case they are equal to the exact solutions
[29, 34]. However, in results shown in Table 4.15 and Table 4.16 some of the Rayleigh natural
frequencies are smaller than the coupled system solution. Main cause of this result is that coupled
solution is not an exact solution. It is not possible to include all natural frequencies and mode shapes
into the coupling calculations because of the required memory and time for the process. Truncation
error is added onto the coupled system solution and it can be said that if Rayleigh-Ritz solution is
lower than coupled solution, Rayleigh-Ritz results at this natural frequency is better than coupled
solution. The effect of truncation error on the tool point FRF of the system is studied in Figure 4.13.
As the number of modes utilized in the coupling decreases towards 25, especially higher modes shift
rightward and this explains why some of the coupled natural frequencies are higher than Rayleigh-
Ritz solution.
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Figure 4.13 Effect of Taken Number of Modes on the Tool Point FRF of Coupled Solution

Similarly, FRF comparison is made for holder and tool parts and the natural frequencies obtained by
Rayleigh-Ritz method are again very close to the coupled model solution. FRF’s of the holder and tool
calculated by Rayleigh-Ritz method and coupling solution is presented in Figure 4.14 and Figure 4.15.
Both solutions are in good agreement in both cases.

0 !
| —Coupled Sol.
_ 5 ~~-Rayleigh Sol. ||
<
£.10
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©
=]
=-15
o
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x o &%& " 7%
'300 0.5 1 15 2 2.5 3 35 4
Frequency [Hz] x 10"

Figure 4.14 Free-Free Holder Tip Point FRF for Rayleigh and Coupled Solution
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Figure 4.15 Free-Free Tool Tip Point FRF for Rayleigh and Coupled Solution

Having obtained receptances of spindle, holder and tool pieces, they are elastically coupled together
using described connection parameters presented in Section 4.2. Natural frequencies of the spindle-
holder-tool assembly considering Rayleigh-Ritz method, coupling method and two different ANSY'S
models are given in Table 4.17. Natural frequencies are very close to each other, largest error is at the
4™ mode, where ANSY'S 3D Solid Element solution is nearly 3% smaller than the other results.

Table 4.17 Tool Point Natural Frequencies

Rayleigh-Ritz [Hz] | Coupled System [Hz] ABE&?;SE&Z%S?FH“? ARSYS rf’tD“f;’]“d
717 716 716 713
194.0 1938 1939 1930
871.9 870.2 867.5 867.7
1442.2 14309 1424.0 1387.4
17635 17635 1752.1 1752.3

Tool point FRF’s of the coupled and Rayleigh-Ritz solutions are also quite similar to each other as

shown in Figure 4.16.
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Figure 4.16 Tool Tip Point FRF for Rayleigh and Coupled Solution

Number of trial functions used in Rayleigh-Ritz method has important effect on the results. As the
number of trial functions increases, convergence of the solution also increases. Figure 4.17 shows the
results of tool point FRF with respect to different number of trial functions utilized. 10 and 16 trial
functions are not much different from each other; however, if 5 trial functions are used, higher modes

shifts towards right remarkably.

TR e———
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g,
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FRF Amplitude [m/N]
R
ol

16 Trial Function |
10 Trial Function
-5 Trial Function

0 500 1000 1500

2000
Frequency [Hz]

3000 3500 4000

Figure 4.17 Convergence of Rayleigh-Ritz Method with respect to Number of Trial Functions Used

In addition to polynomials, mode shapes of free-free average diameter beam are also used as trial
functions in Rayleigh-Ritz model. Maximum 9 free-free mode shapes can be used in the solution. In
16 polynomials are compared in Figure 4.18. They are in good agreement in general. Free-free trial

functions give slightly higher natural frequencies at higher modes.
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Figure 4.18 Comparison of FRFs Obtained by Polynomials and Free-Free Trial Functions

Convergence of free-free mode shapes is investigated in Figure 4.19. When the number of trial
functions used is decreased to 5, higher deviations are observed at higher modes. Better convergence
is obtained using 9 trial functions.

5 : : :
—9 Free-Free Trial Functions
---------- 5 Free-Free Trial Functions
z
£
S
>
£ .15
o
£ §
< [
L
@ -20
_250 500 1000 1500 2000 2500 3000 3500 4000

Frequency [Hz]

Figure 4.19 Comparison of 9 and 5 Free-Free Mode Shape Trial Functions

If elastic connection between spindle-holder and holder-tool subassemblies is assumed as rigidly
connected to each other, dynamic response of total assembly can be obtained without using elastic
coupling operation. If FRF of tool tip point is investigated, Figure 4.20, it is seen that the first two
natural frequencies, which are due to shifted rigid body modes, match well yet other natural
frequencies are not close enough. Especially Rayleigh-Ritz natural frequencies at higher modes are
much larger than the coupled solution.
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Figure 4.20 Rigidly Connected Tool Tip Point FRF

If mode shapes of rigidly connected system are investigated in FEM solution, it is seen that higher
mode shapes are dominated by tool itself at the 4™ mode at 1721 Hz as shown in

Figure 4.21. Mode shape of the 5™ mode at 2749 Hz is shown in Figure 4.22. It can be said that trial
functions used in Rayleigh-Ritz method cannot represent the exact mode shapes accurately at the
given modes and solution stays far away from the exact values.

NODAL SOLUTION

STEP=1
SUB =9

RFRO=0
IFRQ=1721

MODE Imag. part
Uy (AVG)
RSYS=0

DMX =.410E-17
SMN =-.247E-18
SMX =.410E-17

k S .

I
-.247E-18 .719E-18 .168E-17 .265E-17 .362E-17
.236E-18 .120E-17 .217E-17 .313E-17 .410E-17

Figure 4.21 Tool Dominant Mode Shape at the 4" Mode
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Figure 4.22 Tool Dominant Mode Shape at the 5" Mode

Then tool is removed from the assembly in order to understand the effect of tool related mode shapes.
Results are given in Figure 4.23 and very good match is obtained between both solutions without tool.
As a result trial functions used in Rayleigh-Ritz method should represent the systems exact mode
shapes as closely as possible in order to converge to a good solution and if there is a significant
difference in the diameters of the beam segments that portion should be modeled separately in order to
attain good accuracy.

-5 T
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| -+-Rayleigh Sol.
Z -10
E
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=-15 l
2 |
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%'20 &g\Y/ % ) %
'250 500 1000 1500 2000 2500 3000 3500 4000
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Figure 4.23 Rigidly Connected Tip Point FRF without Tool

45



As it is seen from the results, Rayleigh-Ritz method gives very accurate and reliable results, if used
trial functions resemble the exact mode shapes.

Another advantage of Rayleigh-Ritz method is that it is very fast with respect to coupling operation.
For the analysis performed on a computer with Intel i5 2.5 GHz processor and 4 GB Ram with 0.5 Hz
increments in FRF construction from 0 to 2000 Hz, tool point FRF calculation takes 7.4 seconds if
Rayleigh-Ritz method is used; however, coupling method takes 18 seconds. Rayleigh Ritz method is
nearly 2.5 times faster than coupling method in tool point FRF calculations. This operation also
includes flexible coupling. If rigid coupling is considered between spindle-holder and holder-tool,
Rayleigh-Ritz method just takes 2 seconds, yet coupling takes 14.3 seconds. It is 7 times faster than
the coupling method. Rayleigh-Ritz method saves a huge amount of time in calculations and also
preparation time spend on the assembly is less than the coupling model.

4.5 Stability Lobes Results

Tool point FRF results obtained in Section 4.2 are used in order to construct stability lobes. In stability
lobe construction process Budak’s [32] milling stability equations are used. Stability lobes constructed
considering different spindle speeds. Entry and exit angles are assumed as 0 and 90 degrees. K, and

K, are taken as 796 MPa and 0.212 MPa [4]. The cutter is assumed to have 4 teeth. For the first case,

stability lobes for 0 and 10000 rpm speeds are constructed as shown in Figure 4.24. Depth of cut at
10000 rpm is slightly higher than zero spindle speed condition. If other parts of stability lobe diagram
are investigated, higher spindle speed results slightly higher depth of cut in general. Depth of cut
increases from point A to point B as shown in the figure for 10000 rpm. Stability lobe diagram for
10000 rpm is only valid at point B because tool point FRF depends on spindle speed. Stability lobes
for other desired speeds should be drawn separately.

0.5

o o
w e
S
N~

‘= \ B, 10000 rpm /

Depth of Cut [mm]

o o
= ()
/

0 05 1 1.5
Spindle Speed [rpm] x 10"

Figure 4.24 Stability Lobe at 10000 and O rpm Spindle Speed

In the second case, spinning speed is increased to 20000 rpm. Comparison for 0 and 20000 rpm is
given in Figure 4.25. Depth of cut at 20000 rpm moves from point C to D and it is slightly increased.
If comparison is made with Figure 4.24, depth of cut at 20000 rpm is larger than 10000 rpm in
general. It can be said that increase in the spindle speed shifts stability lobes a little bit upward with
respect to 0 spinning speed case. In both figures, there are high depth of cut pockets around 0 and
5000 rpm. At these locations depth of cut goes to very high values. It can be noticed that there is also
such pocket towards 25000 rpm spindle speed. Although solutions for these two figures are only valid
for 10000 and 20000 rpm, rough estimation can be done about depth of cut just considering only 0
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rpm as they are slightly higher than 0 rpm results. In other words effect of spinning is limited on the
stability lobe diagrams.
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Figure 4.25 Stability Lobe at 20000 and 0 rpm Spindle Speed

However, if the exact value of depth of cut is required in one diagram, change in the tool point FRF
with respect to spindle speed should be considered in the stability calculations. Considering 15000-
20000 rpm spindle speeds, an example of exact stability lobe diagram is given in Figure 4.26. Green
line is for 15000 rpm which is only valid at 15000 rpm point and blue line is only valid at 20000 rpm.
Red line is drawn iteratively considering depth of cut at mid speeds. Red line is valid for all spindle
speeds between 15000 and 20000 rpm. Full stability diagram can be obtained applying a similar
procedure. However in real life situation, O rpm stability results are sufficient enough as the
differences are not considerable; moreover, they are conservative as well.

0.11
£ 009 ~
5 0.08
O 0.07
=
Z006F e
= R N R 15000 rpm
005 L™ 20000 rpm N
— Continuous rpm
0'0%.5 155 16 165 17 175 18 185 19 195 2

Spindle Speed [rpm] x 10*
Figure 4.26 Continuous Stability Lobe Between 15000 and 20000 rpm
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In Figure 4.27 stability lobe comparison for Rayleigh-Ritz model and coupled model is given. It is
observed that they are nearly identical.
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Figure 4.27 Stability Lobe Comparison for Rayleigh-Ritz and Coupled Model
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CHAPTER5

SUMMARY AND CONCLUSIONS

In this thesis, effects of spinning speed on the tool point FRF of the spindle-holder-tool assembly
which is the most important dynamic parameter for the chatter stability are presented. Previous study
is improved by including spinning into the Timoshenko beam model. Changes in the chatter stability
lobe diagrams are studied considering different spindle speeds. In addition, HOBM is applied to a
rectangular cross section beam and results are compared with Timoshenko beam model in order to
investigate the effect of shear correction factor on the beam characteristics and changes in the natural
frequencies especially for stub beams. As an alternative approach to a coupling operation, Rayleigh-
Ritz method is studied in modeling of the spindle-holder-tool assembly. Tool point FRF of the system
and chatter stability lobes are obtained by using Rayleigh-Ritz method as well.

5.1 Modeling of Spindle Assembly

Milling or turning machines can reach at very high rotational speeds, thus gyroscopic effects should
be taken into account. For this reason spinning Timoshenko beam theory is employed in the
continuous beam modeling.

Considering finite length beam, spinning Timoshenko beam solution is explained applying free-free
end boundary conditions. Characteristic equations and related mode shapes are obtained for two
different cases depending on frequency range. Since, the requirement of shear correction factor is
eliminated in HOBM,; it is superior with respect to Timoshenko beam theory. HOBM characteristic
equation for free-free end boundary conditions is explained using a previously defined shape function.

Spindle-holder-tool assembly is composed of multiple segmented beams, each one of them is modeled
as a free-free end uniform beam and those are rigidly coupled to each other using end point FRF
information obtained by spinning Timoshenko beam model. Only end point receptances of the
coupled structures are obtained as a result of rigid coupling operation; in other words, connection
point information is no longer available. Also, bearings are added using structural modification
method to the related points. In addition to this, there are flexible connections between spindle-holder
and holder-tool subassemblies. In order to represent flexible connection, elastic coupling method is
applied to those subassemblies. Although more time and effort is required, impedance coupling
method can also be used instead of all three described coupling methods (rigid coupling, elastic
coupling and structural modification methods). In impedance coupling technique, not only connection
point information but also information of all desired points can also be kept; as a result of this higher
order matrices should be dealt in calculations. In coupling operation, if high accuracy is desired, high
number of natural frequencies and related mode shapes should be calculated for each single beam
element of the assembly. Then, they are coupled together in the desired frequency range. Yet, this
range is scanned step by step frequency increments meaning very long and time consuming operation.
Furthermore, Rayleigh-Ritz method allows obtaining coupled response of the assembly without
needing coupling operation. Huge amount of time is saved as a result of Rayleigh-Ritz method. FEM
model is constructed using Timoshenko beam elements and combination elements. In addition to the
Timoshenko beam elements, the assembly is also analyzed using 3D solid elements in finite element
software.

5.2 Stability Lobe Construction
Stability lobes are determined in order to avoid chatter. Turning is an orthogonal cutting operation in

which feed direction is perpendicular to the cutting direction. Turning stability lobes are easy to
construct as it only needs cutting coefficient and real tool point FRF. However, milling is a more
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complicated process, milling geometry and related variables are time dependent. Analytical solution
for milling operation is explained which results in a very fast and accurate stability lobe construction.

5.3 Numerical Results and Comparison

Tool point FRF of the assembly is obtained using spinning Timoshenko beam considering different
spindle speeds. It is observed that, addition of the spindle speed to the model, natural frequencies of
the spindle split into two part as forward and backward natural frequencies. As the spindle speed
increases, difference between forward and backward natural frequencies increases as well. The same
assembly with similar spindle speeds is constructed in commercial finite element software. Other than
the first two natural frequencies, which are actually modification of the rigid body modes due to
bearing supports, the results obtained for the elastic modes are in good agreement with the finite
element solution. Difference between the finite element and analytical results are less than 1% for the
first 7 natural frequencies. It should be noted that amount of separation is not significant for practical
applications, as the forward and backward natural frequencies peaks are very close to each other. They
could not be detected separately because of the damping in the system.

For rectangular cross section free-free end condition beam, HOBM and Timoshenko beam model are
compared utilizing commonly advised shear correction factors. It is observed that commonly advised
shear correction factors taken from literature gives very close results for specified rectangular beam.
For the first case, beam with high slenderness ratio gives close results in both HOBM and
Timoshenko beam where the difference is less than 3%. However, as the slenderness ratio is
decreased, difference between HOBM and Timoshenko beam starts to increase which is dominant at
higher natural frequencies. Especially at the third case, differences at the highest natural frequencies
are more than 20%.

In this thesis, spindle-holder-tool assembly is constructed using Rayleigh-Ritz method and it is
compared with coupled system solution assuming zero spinning speed. Natural frequencies and FRF’s
of spindle shaft, holder and tool are in very good agreement for both of the solutions. Weak point of
Rayleigh-Ritz is observed when the rigid connection is assumed between spindle-holder and holder-
tool assemblies. If there is sharp change in the cross sections of the beams, used trial functions cannot
simulate exact mode shapes and Rayleigh-Ritz natural frequencies stay far above from the exact
natural frequencies. However, this deficiency is overcome by considering the assembly in two parts
for which Rayleigh-Ritz method is applied separately and the obtained results are coupled to each
other. It is observed that Rayleigh-Ritz method reduces computational time considerably with respect
to coupling operation. For elastically connected assembly and for rigidly connected assembly, it
requires 2.5 and 7 times less computational time, respectively.

Stability lobes are compared considering spinning and non-spinning cases for the coupled spindle-
holder-tool assembly. It is observed that spinning speed increases the limiting depth of cut to a
slightly. All stability lobes are shifted upward depending on the spinning speed. For practical
applications it can be expressed that amount of shift in stability lobes is not significant. Stability lobes
obtained by Rayleigh-Ritz and coupling methods are also compared and similar results are obtained.

5.4 Suggestions for Future Research

Bearing and contact parameters has an important role in the resultant tool point FRF. Stiffness and
damping parameters are related to the type of contact used in connection point and type of bearings.
Thus more realistic bearing and contact parameters can be applied to the model. Also, HOBM can be
extended to the circular cross sections. More realistic tool point FRF and stability lobe calculations
can be performed by using HOBM, since coupling model uses beam solutions for which the
slenderness ratio is very small and application of Timoshenko beam model to those beams may not
yield correct results.
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TOOL POINT FRF CALCULATION FOR SPINDLE-HOLDER-TOOL
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1. ABSTRACT

Chatter in high speed machining is an important problem which affects the product quality
and manufacturing time. In order to determine the optimum cutting parameters such as depth
of cut, feed rate, spinning speed etc., dynamic characteristics of the spindle-tool-holder
assembly should be modeled accurately. In order to determine optimum depth of cut and
operating speed, frequency response function (FRF) of the tool point is required. However, in
high speed machining, due to high rotational speeds, dynamic characteristics are
significantly affected by the spinning speed of spindle. In this paper, in order to include the
effect of spinning speed into the dynamic analysis of the assembly, a spinning Timoshenko
Beam Model is used. Spindle-holder tool assembly is considered to be composed of several
free-free beams having different cross-sections, which are coupled with each other by
utilizing FRF coupling method. In the assembly, bearings are modeled as a spring and
damper combination and structural modification method is used to include their effects. The
developed method is verified by comparing the results available in literature for zero spinning
speed. Variation of the natural frequencies of an example spindle-holder-tool assembly for
different spinning speed is obtained. Moreover, the tool point FRF including the spinning
effects is compared with the zero spinning speed case, where significant differences in
between both FRFs are observed.

Keywords: Spinning Timoshenko Beam, Chatter, High Speed Machining, Frequency

Response Function, Receptance Coupling
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2. INTRODUCTION

In milling and turning operations, high-speed rotation is used to decrease operation time and
cost. Chatter is a phenomenon, which results in poor surface quality due to unstable
machining operation. Depending on cutting speed and depth of cut, negative effect of chatter
might be seen on the workpiece. In order to maximize economical gain, operating speed
should be increased and negative effects of chattering on the workpiece surface needs to be
eliminated. Therefore, it is absolutely necessary that stable and unstable operating areas
should be determined for the working machine.

Regenerative chatter in orthogonal cutting was first explained by Tobias [1] and Tlustiy [2].
Altintas [3] developed an analytical solution for stability lobe diagram (plot of depth of cut vs.
cutting speed), which includes tool point frequency response function (FRF) and a cutting
constant. FRF of tool point can be either found by experimental means or analytical modeling
of the spindle-holder-tool assembly. Experimental methods require significant amount of time
and it is not practical to repeat the experiments considering the possible changes in the
elements of the system. Therefore, in this paper, in order to predict the tool point FRF, an
analytical model of the spindle-holder-tool assembly is constructed. In this model, the
spindle-holder-tool assembly is modeled by series of beams, each one of which is modeled
as a free-free spinning Timoshenko beam, and coupled by using FRF coupling method.
Analytical solution for the spinning Timoshenko beam model for various boundary conditions
is given by Zu [4]. Using the analytical natural frequencies and mode shapes of the free-free
beam given in [4], end point receptances of each segment are obtained which are coupled to
give the tool point FRF. In order to include the effects of bearings at various locations on the
spindle, springs and dampers are added to the model by utilizing Ozgiiven's structural
modification method [5]. Moreover, spindle-holder and holder-tool assemblies are coupled by

using elastic coupling elements.
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3. ANALYTICAL MODELING
Beam modeling:
In modeling of each beam segment, spinning Timoshenko beam model with free-free

boundary conditions is used. Coordinate frame and rotation axis for a finite length free- free
beam is shown in Fig. 1.

Figure 1: Reference frame for spinning shaft

Uncoupled equations of motion for the spinning Timoshenko beam obtained by Zu [4] can be
given as follows

Gor e P P

G

p_zlﬁ_igp_‘/szu_'_ Aazu_p_l[l E) o'u _J, Ou El &u

ER LS 1
ocor P olo I’ ol M

27 A4 3 2 4 3 4
pLdy el 0w, A@_W_P_I(HEJ O, 0l 0w El0w @

4 3 2 2 #2A.2 2 -2 4 4 - O’
¥G Ot G ot ot Ir G )os ot” IFocor I* 8¢
where p is density, / is transverse moment of inertia, /. is polar mass moment of inertia,
FE is Young's modulus, G is shear modulus, 4 is area, Q is spin speed x is shear

correction coefficient and ¢ is the non dimensional axial position which is equal to z//. In
Eqgs. (1) and (2)

=u +iu,, 3)

y=y, tiy,. (4)
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where «_and u, are the deflections of the beamin x and y directions, respectively.
Similarly, y, and y, are the corresponding bending angles in x and y directions.
Boundary conditions for the free-free beam can be given as follows:

Wi(G,:0=0. & =01

| . : ()
7“ (‘:oal)_(//(‘:ost)=0’ §0=0’l

The following form of solutions satisfy the partial differential equations given by Eqgs. (1) and
):
w0 =U,e"e™, ®)

(& =Y e e, @

where U, and ‘¥, are complex amplitudes and @ is the natural frequency. It should be

noted there is no damping in the system and complex amplitudes are used to differentiate
the motions perpendicular to each other as indicated by Eqgs. (3) and (4) Substituting Egs. (6)
and (7) into Egs. (1) and (2), the following relations are obtained

ak,' bk} +c=0, (8)
ak,' —bk,’ +c=0. 9)

In these equations k, and &, characterize the normal modes of the solution. Coefficients of

these equations are given as
pl ,

=~4i, =,L(l+~£)w2—7—’—a7, c= o' ——=0’ -0, (10)
I'pA A xG I"pA KAG KAG

a

Since the coefficients of Egs. (8) and (9) are the same, their solutions are as well the same
and depends on . Two different form of solutions are obtained for Jbz—4ac >b and

\/bz —4ac <b . For the former case the solution becomes

k,, =is, ¥s, (a1

where

—b++b* —4dac
5 R (12)
2a
b+/h* —4ac
g s “‘2a (13)
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Using Egs. (12) and (13) normal modes of # and  can be obtained as follows

U($)= A, cosh(5,4)+ A, sinh(s,8 )+ A, cos(s5,4 )+ A, sin(s,4) , (14)

W()=A, sinh(s,8)+A, cosh(s&)+ A, sin(s,$)+ A, cos(s,£), (15)

where

Al' = 1"41’ ‘42, =CIA‘." A:i' =CzA'3? A4, =_02A4' (16)
=L gl

c,_S:(K(;w +(-1) 5 J 1=1,2., (17)

For \]b2 —4ac < b , the solution becomes .

S A (18)
where
' b—~b* —4ac
s =f—— (19)
2a

Using Egs. (13) and (19) normal modes of # and y can be found as follows

U(S)= A, cos(s, &)+ A,sin(s/E )+ A, cos(s,8) + A, sin(s,8), (20)
Y()= Al' sin(sl'é’)+ AZ' cos(sl'g‘,’)+ Ag' sin(s,4)+ A/ cos(s5,$), (21)
where

Al' =Cl,Ap Agl S I,A'z’ A'JI =4, A4' =-¢,4,, (22)
e =i[ﬂaf+1sf). (23)

s \xG !

1

In order to obtain the solution, free-free end boundary conditions given in Eq. (5) are applied
to Egs. (14), (15), (20) and (21). Then the characteristic equation and the mode shapes for

free-free boundary condition are obtained and for \/bZ —4ac > b, they are given as

&g (% 55— )[cosh(s1 )—cos(s, )]2 —(cls1 sinh(s,)— S'/l—_c‘clsz sin(s, )]

s, /l+c, 24
*[(lsl —cl)sinh(sl)+ GL [lsz +cz)sin(sz):|=0
l eu AL
U)=U,| cosh(s,& —L inh(s,)—-221 L i 25
- 3 (5,5) sinh(s,) c0s(s5,8) +— sin(s,¢) |, (25)
5, /l—¢ 8, s,/l+c,
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PEI=F| eustitita ) ———coilita = M gt . (26)
sfl—¢ % s,/l+c, -
where
1 ; gs (1 ;
Esl—c1 smh(sl)+cs 7sz-i>c2 sin(s, )
d= 2% . @n

cosh(s, )—cos(s,)

For \/b2 —4ac < b , the characteristic equation and the mode shapes become as follows

v/, ’
. & — / 3 vty 5 P :
Qs [Is, +¢ J[cos(sl )—cos(s, ):I +[c1 5, sin(s, )—W—czs2 sm(sz)]
2/" 2
, (28)
*1,,.,cl'sl'l .
-5 +¢ [sin(s, )— -5, +¢, |sin(s,) [=0
l e W
” 15 d oo g Ol 5 b s
U(G)=U,| cos(s, &) +———sin(s, &) — cos(s,5)— 7 sin(s,&) |, (29)
s, /l—c" 252 5/l+e
. P 5 b d'cl' , cl'sl’ ; dc,
W)=Y, ¢, sin(s, é’)—ﬁcos(sl ¢)——+sin(s,5)+ cos(s,8) |, (30)
8 / /+c1 Sz 52 /+02

272 l

cos(s, ) —cos(s,)

(%sli +c‘1'Jsin(sl')—cc‘l z' (lsz +cljsin(sz)
d'= ‘ (31)

U, and ¥, are the mass normalized eigenfunctions which are obtained as follows
[f {Us(x)}’ [pA 0 ] {U,m} . {1 for s=r -
> ['P.(x) 0 pl||W,(x) 0 for s#r

In addition to the elastic modes, there exist translational and rotational rigid body modes of

the beam due to the free-free boundary condition, which can be given as

1

D, =—, (33)
,/pA/
1

(Drot s (34)

PAF | i

+
12 ¥

Using the mass normalized eigenfunctions, receptances of the end points of the free-free

beam can be obtained. Receptance functions are denotedas // ,.N ,.L,.P, . H, and L,
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represent linear displacement receptance of point j due to a force and moment applied at

point K, respectively. Similarly, N, and P, represent angular displacement receptance of

J
point j due to a force and moment applied at point K, respectively. These receptances can
be defined as

= GoXhes) .. _ & Bl

Hy=Y o Va=2

ZA+iyye’ -ot HA+ipyo? -

A Ay A\ (35)
I = & U (x)Y,(x,) p =i pr(X])Pr(xk).
o E+inet-0t Y Za+in)e’-o

where y is the loss factor for structural damping, which is assumed to be a very small value.
Substituting Egs. (29), (30), (34) and (35) into Eq. (36), end point receptances can be

obtained. For instance, /,, linear displacement receptance of the end point due to a force

11?

applied at that point, is given as

_0,0,+0,0, 3 UOUOD
- S (1+iy)o* —a*'

H (38)

1
where other receptances can be obtained in a similar manner.

Coupling of beams

Having obtained receptances of each beam element with sufficient number of modes, these
beams are coupled to each other in order to obtain the combined receptance information.
After this coupling operation, receptance information of the connection points is lost and only
the end point FRF information is retained. It should be noted that, in the receptance coupling

of these beam elements, only inverse of 2x2 matrices is needed.

B2 B B1 A2 A | A1

c2 | c1

Figure 2: Coupling of beams
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Receptance matrices of beam A and B can be written as follows

g e el gl

[A“] is given as an example

H L
[A.“] _ |: an Laam ] (38)
NAL“ PA!AI

remaining submatrices of [A] and [B] can be obtained similarly. End points of the new
coupled structure are represented by points C, and C,. After writing proper displacement

and force relations at connection point, receptance matrix of the new structure, C' can be

given as follows

WFFH[Qq' -

[Ca] [Ca]
where,
[Cul =[]~ [4a] ([ 4]+ (B 1] [4a).
[Cal=[4:][[4a ]+ [Bu]] ' [B.]-
[Cal=[Bul[[4a]+[Bu]] [Ba):
[Co]=[Ba ]~ [Bal[[4n]+ BT [Ba]

It should be noted that, in order to support the spindle, bearings are used at different

(40)

locations. Effect of bearings are included into the model as spring and damper elements by
using Ozgiiven's structural modification method [5]. Including the effects of bearings, the

receptance of the structure can be written as follows
-1
[e.]=[[1]+[e][P]] [e], 1)
L

HClCl c1c1 HCICZ
[aC] = }\f(‘lCl PClCl N(’lCl PCICZ i

HC’ZCI NC'ZCl HC'ZC'Z LCZCZ

N, N, N

cc cacl c2c2

(42)

In Eqn. (41) effect of bearing is included in [D] matrix. If bearing is located at [C,] in

Fig. 2, dynamic stiffness matrix of bearing can be written as follows,
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00 0 0
00 0 0
[p]= _ (43)
0 0 k +iwc, 0
00 0 k,+ioc,

Where (ky,cy) and (k,.c,) are translational and rotational stiffness and damping

coefficients of the bearings, respectively. Computational effort in the calculation of Eq. (41)
can be decreased if the matrices are reordered such that connection degrees of freedoms
are grouped at the upper left corner. The reordered dynamic stiffness matrix can be written in
the following form,

[D]=|:[13“] g] [D“]=[k-v+(;“’cy ’ } (44)

ky+icc,

In addition to this, [0‘:] is rearranged in the same manner. Reordering these matrices as

described above, size of the inverted matrix decreases from 4 to 2. Therefore, the

receptance matrix of the coupled system including the bearings can obtained as follows

n7_ 11 TRl 11
[ =i+ 2] )

1277 _ n7_ 21 1 1
[2.2] =[w]=[[11-[2" [ ]] “)
()= - )" "]
The receptances obtained by Eq. (45) should be reordered back to the original form in order
to get similar submatrices as before. For the coupling of tool holder to the spindle assembly,
flexible receptance coupling is needed on the contrary to rigid receptance coupling.
Formulation of flexible receptance coupling includes spring and damper elements between
two beam segments (A and B). The coupling stiffness matrix can be written in the following
form

k,* +iwe,* 0

[KAE] =|: 7 "

i s | 46
0 k% +ioc,” )

B

where k,*" and k,*are translational and rotational stiffnesses, and, ¢,*" and c,”” are

translational and rotational damping coefficients of the flexible connection. In flexible
receptance coupling, force and displacement relations are written at the connection point
similar to rigid coupling where equations for the stiffness and damping elements areas well

included in equations. The resulting equations for the receptance is given as follows.
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[Cul= [l [Aa][[Aa] +HE T #1801] T4
[Col=[Aa)[[Aa ]+ (KT +[B] [Bul:
[Cul=[Bu][[Aa ]+ (K] +[B]] 8]
[Coa] = [Ba]- [Bul[ [ ]+ [T + (8] [Bis]

(47)

Verification of the model

For a case study, the spindle-holder-tool model given by Erturk [6, 7] and shown in Fig. 3 is
used in this study. The results given by Erturk [6, 7] are for zero spinning speed and they are
used here in order to verify the developed model. The material and geometrical properties of
the spindle-holder-tool assembly are given in Table 1. At 4 locations, springs are added to
simulate bearings. Location of each bearing and the corresponding stiffness values are given
in Table 2.

Figure 3: Spindle assembly [6]

Table 1a: Spindle Dimensions [6]
Segment Number 112 |3 |4 5 6|7 |8| 9|10

Length (mm) 26 (26|26 |38 |100| 66 | 75|30 | 40 | 40

Outer Diameter (mm) 66 |66 |66 |66 | 76 | 70 | 62 | 58 | 58 | 58

Inner Diameter (mm) 54148140 (32| 32 |32 (3232|3232
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Table 1b: Holder Dimensions [6]
Segment Number 1 2 3 14|65 6

Length (mm) 22|19 |24 |26 |26 | 26

Outer Diameter (mm) 72160 |70 | 54 | 48 | 40

Inner Diameter (mm) 16|16 (16 |16 | 16 | 16
Table 1c: Tool Dimensions [6
Segment Number 1 2
Length (mm) 50 | 57
Outer Diameter (mm) 14 | 26
Inner Diameter (mm) 0 0

Table 1d: Material Properties [6]

p (density) 7800 kg/m"3
v (poisson ratio) 0.3
v (damping factor) 0.003
E (Young's Modulus) 200 Gpa
Table 2a: Bearing and Interface Properties [6]
T’a“s'a‘(ﬁ;:r'n?tm“ess Rotational Stiffness (N/mm)
Front Bearings (for each) 7.5x10"5 -
Rear Bearings (for each) 2.5x10%6 -
Spindle Holder Interface 5x10°7 1.5 x10"6
Holder Tool Interface 2x10"8 1.5 x10"6

Table 2b: Bearing Locations [6]
Bearing No Bearing 1 Bearing 2 Bearing 3 Bearing 4
Distance (mm) 26 78 387 427

Table 3 gives the comparison of natural frequencies obtained by the current method and the
method developed by Ertirk et al. [7]. Natural frequencies are obtained from frequency
response function which is determined by using 0.1 Hz increments. Since damping included
in the system is very small resonance frequencies in the FRF corresponds to the natural
frequencies of the spindle-holder-tool assembly with an error of £ 0.1 Hz. It is observed that
the results for zero spinning speed are very close to the results obtained from the literature.
It should be noted that the maximum error compared to Ansys is less than 3% in the first
seven modes. Additionally, receptance of tool point is given in Fig. 4 which is identical to the
one givenin [7]
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Table 3: Natural Frequencies and comparison with previous work
oy | o1 | ansys | % Offrence wr [ % DFErce
Mode 1 72 71,7 71,6 0,42 0,56
Mode 2 1951 195 193,8 0,05 0,67
Mode 3 881,5 877.8 867,5 0,42 1,61
Mode 4 14523 1438,3 14243 0,96 1,97
Mode § 1793,1 1819,5 1752,6 1,47 2,31
Mode6 | 35095 3639,3 34425 3,11 2,53
Mode7 | 36986 38125 3634,8 3,08 1,76

Receptance [m/N]
>

s |
18 Y,

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

Figure 4: Tool point FRF results of current work

Effect of spinning on free-free end conditioned beam

Dynamic characteristics of rotating beams change with respect to spinning speed. Natural
frequencies split as backward and forward natural frequencies. As spinning speed increases,
difference between backward and forward natural frequencies increases as well. In order to
examine the difference, a steel cylinder of 1 m length and 0.2 m diameter is studied. First, for
zero spinning speed , natural frequencies are obtained and taking the first natural frequency
as a reference (@, =5290 rad/ s), spinning speed of, and 2w, are considered. The first
three natural frequencies obtained for the three cases are given in Table 4. It is observed
that for higher modes the difference between the forward and backward frequencies
increases. In addition to natural frequencies, end point receptance of the free-free beam is
obtained for =0 and Q=,, which are given in Figure 5. It is observed, single modes
split in to two modes having natural frequencies lower and larger than the zero spin case as

predicted by the natural frequencies. Moreover, there is an additional mode at a very low
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frequency (49 Hz) for the case including gyroscopic effects. This frequency is not presented
in Table 4 for easy comparison.

Table 4: Natural frequencies rad/s at 0, o, and 2,

Q=0 Q=2
% Diff. % Diff. % Dff. % Diff.
Q=0 FWD wrt BWD wit FWD wrt BWD wirt
Q=0 Q=0 Q=0 Q=0
1. Nat.

Freq 5290 5805 97 4792 9.4 6346 20,0 4338 18,0
zi,xaq" 12770 | 13569 63 11963 6,3 14367 125 11186 12,4
3", Nat: 21780 | 22717 43 20809 45 23631 85 19852 8.9

req
-10
| === ()=5290
-12 —C=0
14
Z -16
£
‘9 -18 ! | |
53 i \ » g 1
% 20 \§ AN \ ;l‘\ H
2 H
S AN AN
TN N TN
o
24 I‘ H \F
-26 '
-28
2 0 500 1000 1500 2000 2500 3000 3500 4000

Frequency [HZ]

Figure 5: Forward and backward natural frequencies at @,

4. CONCLUSIONS

In this paper, spindle-holder-tool assembly is constructed employing receptance coupling of
several free free beams. Spinning Timoshenko beam model is used to model the free free
beam segments. Springs are utilized at different locations to simulate bearings and small
damping, which does not affect the natural frequencies, is assumed in the connections. The
results of present work is verified by comparing the results available in literature for zero
spinning speed, which are determined to be very close to each other.

In order to investigate the effects of spinning speed natural frequencies of a free-free beam

are obtained for different spinning speeds. It is observed that natural frequencies split into
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forward and backward natural frequencies and the amount of separation increases as the
spinning speed of the beam increases. The same results also observed for the end point
FRF of the free beam; hence, this will have significant effects on the stability lobe diagrams.
Therefore, for high speed machining, in order to obtain optimum cutting parameters
accurately, gyroscopic effects should as well be included into the model of the spindle-
holder-tool assembly. As a future work, the developed model will be used to obtain the tool
point FRF and the corresponding stability lobe diagram of the spindle-holder-tool assembly
and the effect of variation of spindle speed will be studied.
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ABSTRACT

In milling and turning processes high speed rotation is used to decrease operation time: as a result, the cost of machining
operation is as well reduced. In order to estimate the stability lobes and determine optimum cutting conditions, tool point
Frequency Response Function (FRF) is required. Euler and Timoshenko beam models are employed in literature in order to
obtain tool point FRF of spindle-holder-tool assemblies. However, due to the high speed rotation of spindle, it is also
necessary to consider gyroscopic effects for the determination of tool point FRF. In this paper, spindle-holder-tool assembly
is modeled by Timoshenko beam theory considering gyroscopic effects as well. Considering the analytical modal solution
available in literature and structural coupling methods, FRF of the tool point is obtained. A case study is performed on an
example of spindle-holder-tool assembly, which is as well modeled by finite elements in order to verify the results obtained
by the continuous model. Next, using the continuous model, stability lobes are obtained for different spin speeds and the
effect of gyroscopic forces are studied.

Keywords: Spinning, Timoshenko beam, Chatter, Vibrations, Gyroscopic effects, High speed machining, Stability lobes

INTRODUCTION

High speed machining is employed in milling or turning operation in order to decrease machining time as well as the cost of
the operation. As a result of this dynamics of the spinning system is crucial to satisfy design requirements, especially for
mass production. Inaccurate modeling of spindle-holder-tool dynamics may cause chatter which results in poor surface
quality in the work piece. Regenerative chatter in orthogonal cutting was first explained by Tobias [1] and Tlusty [2]. Milling
stability analysis is different than orthogonal cutting process which includes time dependent geometry and variables. Budak
[3, 4] developed an analytical solution for milling stability lobe diagram. Altintas [5] explained constructing stability lobes
for both orthogonal and milling cutting operations using specified Frequency Response Functions (FRF). Tool point FRF of
the system is required to construct milling stability lobe diagrams. FRF of the tool point can be either found by experiments
or analytical modeling of the spindle-holder-tool assembly. Experimental methods require significant amount of time and it is
not practical to repeat the experiments considering the possible changes in the elements of the system. Therefore, in this
paper, in order to predict the tool point FRF, an analytical model of the spindle-holder-tool assembly is constructed. In this
model, the spindle-holder-tool assembly is modeled by series of beams, each one of which is modeled as a free-free spinning
Timoshenko beam, and coupled by using FRF coupling method. Analytical solution for the spinning Timoshenko beam
model for various boundary conditions is given by Zu [6]. Using the analytical natural frequencies and mode shapes of the
free-free beam given by Zu [6], end point receptances of each segment are obtained which are coupled to give the tool point
FRF. In order to include the effects of bearings at various locations on the spindle, springs and dampers are added to the

67



IMAC A Confe and Exposition on al D, ics 11-14 February 2013 California USA

model by utilizing Ozgiiven's structural modification method [7]. Moreover, spindle-holder and holder-tool assemblies are
coupled by using elastic coupling elements.

ANALYTICAL MODEL

Spinning Timoshenko Beam Model

In the modeling of spindle, a spinning Timoshenko beam model having free-free boundary conditions is employed. Non-
dimensional partial differential equations of motion are given as follows [6]:

o'u n G [161;/ a‘uj

o plPflac act)

A\ o o M
2 2
DY RV T O MOy, s @
ot pl ot plPac  pll ¢

where u is the transverse displacement, y is the rotation of the cross-section and F is the applied transverse force. In these
equations, / is beam length, p is density, / is transverse moment of inertia, J, is polar mass moment of inertia, E is
Young's modulus, G is shear modulus, 4 is cross-sectional area, Q is spin speed, x is shear correction factor and & is the
non-dimensional axial position. Solution of Egs. (1) and (2) can be written in the following form [6]

U(E) = A, cosh(s, &)+ A,sinh(s, &)+ Aq cos(s,)+ A, sin(s, ), 3
W(&)=Asinh(s,$)+ A, cosb(s,$)+ Ay sin(s,& )+ A, cos(s,4), @
where A, ., A/, s and s, are related parameters which are given in [6] in detail. Using free-free boundary conditions and

substituting Eqgs. (3) and (4) into Egs. (1) and (2), natural frequencies and mode shapes of free-free spinning beam is
obtained. Solutions for this BC’s and other desired BC’s are given in [6].

Egs. (1) and (2) can be written in matrix form as follows

[M) 0= [K )7 (0 = {F}, ©)
W= U0 UG o) o) ©®
{Fy={o F 0 0}", )
where [A/] and [K | matrices are given as follows
pA 0 0 0
0 p4 0 0 o HG & o _HMGa
lpa 0 0 0 - Fact 1o
[Mm]= 0o 0 0 pI i [K]= 0 0 pl 0 i ®
0 0 pI iV, 0 G 0 0 E.a_z.u).KAG
1 o 1 as?

Using the modal expansion theorem, solution of this system can be written in terms of its mode shapes as
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Ny
Wnl= 3 5O} ©
el

where z, is the modal coefficient of the #”* mode. Multiplying each side of Eq.(5) by {Ws}r, integrating over the length and
using the orthogonality conditions, the following equation of motion is obtained,

M,z (-K,z,(0)=0,(1) (10)

where M, K, and O (¢)=U, (x, )F(t) are the modal mass and modal stiffness and the modal forcing for the * mode.

Solution of this uncoupled differential equation for a harmonic forcing of 7 (#)=Fe'™ applied at x = x, becomes as follows

U, (x,)Fe™

)= . 11
e an
Total response of the beam becomes as follows,

N, U 3 F i@
weeny= Y M{W,(x)} (12)

A5 M (10— 4,)

where N, is the number of modes used in the modal expansion. Using the mass normalized eigenfunctions, receptances of
the end points of the free-free beam can be obtained for a transverse forcing applied on the beam. Receptance functions are
denoted as H,,N,.L,.P,. H, and L, represent linear displacement receptance of point ; due to a unit force and

moment applied at point & , respectively. Similarly, N, and P, represent angular displacement receptance of point j due to
a force and moment applied at point &, respectively. If small structural damping is assumed as (1+iy). Following a similar
procedure, receptance for an applied moment can be obtained all these receptances can be defined as

_ e L) = M W (x,)U,(x,)
S io- A,y F

P ACHLECVI I ACH) ) a3

H . ok = T eI 2 S : )
S iw— A, (1+iy) S ie—AQ+iy) T S ie—- A (1+iy)

i3

where 7 is the loss factor for structural damping, which is assumed to be a very small value in the case studies considered.
Coupling of Beams

After obtaining the receptances of each beam element utilizing sufficient number of modes, these beams are coupled to each
other in order to obtain the combined receptance of the tool point. Fig. 1 shows coupling of two beamsegments. Receptance
matrices for beams A and B can be found utilizing Eq. (13) at the two extreme points. The coupled structure is represented as
beam C.

Fig. 1 Coupling of Beams

Receptance matrix of the coupled structure can be found as follows [8]:
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[Cu]= [An]_[An][[Azzl"'[Bn]]-‘ [4.].
[Cm ] = [Aw][[Azz]*'[Bu]T [Bu]’

o (14)
[C21]: [BZI][[A22]+[BXI]:[ [le]»
[C.]=[B..]-[B. ][[An]*[BuH-I [B.].
where [ 4,,] is givenas follows
il 5z

and [B,| can be found in a similar fashion. It should be noted that, in order to support the spindle, bearings are used at

different locations. Effect of bearings are included into the model as translational/rotational spring and damper elements by
using Ozgiiven's structural modification method [7]. Although impedance coupling can as well be used to include spring and
damper elements, it is computationally expensive due to inversion of higher order matrices. In addition to the bearing, elastic
elements can as well be added to various locations, especially between holder and tool connections. In order to include these
elastic elements the following equations are used

[Cul= [ (e [ [ ]+ [T (B ] [

[Co )= [ ][ [ ]+ [ ] (B ] B, o
[Cal = [Bul[[Ae] (K (8] [Ba):

[Cel= B ]~ [Ba [ [ 1+ (KT + (B ] [B.

k% +iwe, 0
K,.]=l" 4 " 17
(K] { 0 ! ol +iwcg'"’} an

where [K 45| is composed of translation and rotational stiffness and damping elements. ky“ and k,* are translational and

rotational stiffnesses, and, cy” and ¢, are translational and rotational damping coefficients of the flexible connection. It

can be seen that Eq. (16) is very similar to Eq. (14) where the only difference is due to [K ;| term added into the equations.

Stability Lobes

The first analytical formulation for milling operation is obtained by Budak [3, 4] . In the milling dynamics. two orthogonal
degrees of freedom are assumed in the cutting operation as shown in Fig. 2. Equation of motion for milling is given below as,

1 o, o

e =L | % % g Fle®

O e L as
where a is axial depth of cut, X, is cutting force coefficient, [c] is the matrix of average directional cutting coefficients and
|Glie,)] is the summation of tool point FRF and workpiece FRF matrices identified in the orthogonal cutting directions. For
simplicity only tool point FRF matrices is used in this paper and workpiece is assumed as a rigid. [G(iw,)| and || is given
as

Glin,), Glim,), ] a9

[Gliw)]= I:G("“’c ), Glia),
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1 . ¢

a, = E[cos 20-2K g+ K, sm2¢]’“ »
Li o for

a, = E[—smw -24+K, cosz¢]h N
: (20)

. ex
a, = E[—stg} +2¢+K, cos 2¢>]¢u ;

a, = %[— cos24 — 2K, ¢ — K, sin 2¢]:“ ;

Average directional cutting factors depend on X,, 4, and ¢, which are radial cutting constant, entry angle and exit angle,
respectively. Entry and exit angles are related to the cutting type (e.g. end milling, down milling and up milling).

Fig. 2 Cross Sectional View of an End Mill Showing Differential Forces [4]

Eq.(18) has a non-trivial solution if

det[[ ]+ @)([4][6Ga)]) | =0, @en
where

__N T N | % %
A=—TtaK (=), 4] 2,{% aj. @)

For orthogonal cutting condition off-diagonal terms G(iw,), and G(iw,), can be taken as zero. Then, using Eq. (21)
eigenvalue A can be found as

PO S P remrvn | (3)

2a,
where

a =G(ia,)  Glim),, (@@, - a,a,),

; " 24)
a = a,Glia,), +a,G(ia,),,
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Y

FRFs at the tool point have complex values; hence, A is a complex number. Since depth of cut must be a real value, A is
decomposed into real and imaginary components as A = A +iA . After some manipulations, to get only real valued depth
of cut, real and imaginary part of A should have the following proportion

K:ﬁ: sinw, T i ©s)
Ay l-cosaT

where T is spindle period and @, is chatter frequency. Eq. (25) can be related with the spindle speed as follows [4],

@.T =¢+2kn,

e=r-2y,

W= tan" K, (26)

=80

NT'

& is the phase shift between inner and outer modulations, & is the corresponding vibration waves with in period, and N, is
the tooth number. Finally stabile limiting depth of cut is found from Eq.(22) as,

270 4 2
=——=(1+«"). 27
s N:Kl ( ) ( )
Eqgs. (27) and (26) can be employed to find the related spindle speed for a given depth of cut or limiting depth of cut for a

given spindle speed..

Spindle Geometry

For a case study, the spindle-holder-tool model given by Erturk [8, 9] is used in this study. The material and geometrical
properties of the spindle-holder-tool assembly are given in Table 1. At four locations, springs and dampers are added to
simulate bearings. Location of each bearing and the corresponding stiffness values are given in Table 2.

Table 1a Spindle Dimensions [9]
Segment Number i R S ey R ey IS, SR i S )
Length (mm) 26 26 26 38 100 66 75 30 40 40
Outer Diameter (mm) 66 66 66 66 76 70 62 58 58 58

Inner Diameter (mm) 54 48 40 32 32 32 32 32 32 32

Table 1b Holder Dimensions [9]
Segment Number 2 Ty A SR, O~ IS
Length (mm) 22 19 24 2 26 26
Outer Diameter (mm) 72 60 70 54 48 40
Inner Diameter (mm) 16 16 16 16 16 16

Table 1c Tool Dijllemions [9] Table 1d M aten'_a_lmﬁes [9]
Segment Number ] P (density) 7800 kg/m3
Length (mm) 50 57 v (poisson ratio) 03
Outer Diameter (mm) 14 26 ¥ (damping factor) 0.003
Inner Diameter (mm) 0 0 E (Young's Modulus) 200 Gpa

Table 2a Bearing and Interface Properties [9]
Translational Stiffness (N/mm) Rotational Stiffness (N/mm)

Front Bearings (for each) 7.5 x10° -
Rear Bearings (for each) 2.5x10° <
Spindle Holder Interface 5x107 1.5x10°
Holder Tool Interface 2x107 1.5 x10°
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Table 2b Bearing Locations [9]
Bearing No Bearing1 Bearing2 Bearing3 Bearing4
Distance (mm) 26 78 387 427

RESULTS

After constructing the spindle-holder-tool assembly for specified geometrical and connection parameters, case study is
performed considering different spindle speeds. First, spindle speed is taken as zero and corresponding natural frequencies
and FRF of the tool point is obtained using the analytical model. Then spindle speed is increased to 20000 rpm and
comparison is made with respect to zero spin speed. Stability lobes are constructed for both cases and change in the depth of
cut is observed between two cases. In addition, finite element model (FEM) of the system is constructed in ANSYS and the
results obtained are compared with results of the analytical model. In ANSYS, beam 188 element which uses Timoshenko
beam model is used to model the spindle and combin 14 element is used to model bearing stiffness and damping.

Table 3 gives the comparison of natural frequencies obtained by the analytical method and FEM for zero spin speed.. Natural
frequencies are obtained from the frequency response function which is determined by using 0.1 Hz increments in the finite
element software. It is observed that the results for zero spinning speed are very close to the results obtained from the FEM.
It should be noted that the maximum error compared to FEM is less than 1% in the first five modes.

Table 3 Comparison of Natural Frequencies for Zero Spin Speed
Analytical Model ANSYS % Difference wrt FEM

Mode 1 71.6 71.6 0.0
Mode 2 193.8 1938 0.0
Mode 3 870.3 867.5 0.3
Mode 4 1430 14243 0.4
Mode 5 1764 1752.6 0.6

Dynamic characteristics of rotating beams change with respect to spinning speed. Natural frequencies split as backward and
forward natural frequencies. As spinning speed increases, difference between backward and forward natural frequencies
increases as well. In Table 4, comparison of natural frequencies between analytical method and FEM at 20000 rpm spin
speed is given. In the analytical solution, the first two modes do not change, since they correspond to the rigid body modes of
the spindle around bearings. In contrast, finite element solution splits them as forward and backward modes. If the elastic
modes starting with the third mode are considered, analytical solutions also splits as backward and forward modes and their
comparison with results of the FEM gives a maximum error less than 1% . Comparison of tool point FRF at 20000 rpm and 0
rpm, calculated by the analytical method, is given in Fig. 3. It can be seen that two FRFs are very close to the each other in
general. If close investigation is done on the natural frequencies, forward and backward separation can be observed as shown
in Fig. 4. The effect of separation of forward and backward frequencies on FRF is dominant only around the natural
frequencies; whereas, other parts of the FRF are similar to the zero spin speed case.

Table 4 Comparison of Forward and Backward Natural Freq

Backward Forward Backward Forward % Dif. % Dif.

Analytical  Analytical FEM FEM Forward Backward
Mode 1 71.3 71.3 70.3 72.9 1.4 2.2
Mode 2 193.8 1938 190.2 197.7 1.9 2.0
Mode 3 867.5 872.7 862.9 871 0.5 0.2
Mode 4 1428 1433.8 14222 14258 0.4 0.6
Mode 5 1751.5 17743 1734.9 1769.5 0.9 0.3
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Fig. 3 Comparison of Tool Point FRF at 20000 rpm and O rpm
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Fig. 4 Separation of Forward and Backward Modes

Stability lobe for the case study given is constructed by considering the rotational speed of the tool. The spindle speed is
20000 rpm; hence depth of cut at 20000 rpm is the main focus point in the stability lobe diagram. Depth of cut at 20000 rpm
is investigated for by including and excluding the effects of the spin speed. Cutting parameters are taken from [5]. The results
obtained are given in Fig. 5. It is observed that depth of cut increases from 10% at 20000 rpm spindle speed if spin speed
effects are included. As a result of this, depth of cut can be increased this also increases the material removal rate.

CONCLUSIONS

Effect of spindle speed on the dynamics of milling operation is investigated in this paper. A Timoshenko beam model is used
to model different cross sectioned beams and receptance coupling method is employed to construct the complete spindle
model. Spring and dampers are added to various locations using structural modification method in order to include the effect
of bearings used. It is observed that, addition of spindle speed into the model, natural frequencies of the spindle split into two
parts forward and backward natural frequencies. The results obtained for the elastic modes are in good agreement with the
finite element solution. Using the analytical model developed stability lobes are obtained for spin speed of O rpm and 20000
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rpm which are compared with each other. It is observed that 10% increase in depth of cut is obtained by including the
gyroscopic effects into the formulation.

05
04 /
/
<03 :
E \
z \ F
= \ p
502
E \\ B, 20000 rpm
ol \ [™~A, zero pm
: T =
| \ =
/ ——me .
o
0 0.5 1 1.5 2 2.5
Spindle Speed RPM x10°

Fig. 5 Comparison of stability Lobes at Zero and 20000 rpm
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