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ABSTRACT 

 

ANALYTICAL MODELING AND STABILITY ANAYLSIS OF SPINDLE-HOLDER-TOOL 

ASSEMBLY BY USING SPINNING AND NON-SPINNING TIMOSHENKO BEAM THEORIES 

 

 

 
YILMAZ, Hasan 

 

M. S., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Ender CİĞEROĞLU 

 

January 2013, 75 pages 

 

 

Chatter in high speed machining is an important problem which affects the product quality and the 

manufacturing time. In order to determine the optimum cutting parameters such as depth of cut, feed 

rate, spinning speed etc., dynamic characteristics of the spindle-holder-tool assembly should be 

modeled accurately. To determine optimum depth of cut and operating speed, frequency response 

function (FRF) of the tool point is required. However, in high speed machining, due to high rotational 

speeds, dynamic characteristics are affected by the spinning speed of the spindle. In this thesis, in 

order to include the effect of spinning speed into the dynamic analysis of the assembly, a spinning 

Timoshenko Beam Model is used. Spindle-holder-tool assembly is considered to be composed of 

several free-free beams having different cross-sections, which are coupled with each other by utilizing 

FRF coupling method. In the assembly, bearings are modeled as a spring and damper combination and 

structural modification method is used to include their effects. The developed method is verified by 

comparing the results for zero spinning speed and also the results obtained by FEM. Variation of the 

natural frequencies and FRF of an example spindle-holder-tool assembly for different spinning speeds 

are obtained. For non-spinning case, tool point FRF of the assembly is also obtained by using 

Rayleigh-Ritz method and results of which are compared with coupled system solution.  Finally, 

stability lobes are obtained for different spin speeds and the effect of gyroscopic forces are studied.  

Keywords: Spinning Timoshenko Beam Model, Chatter, Frequency Response Function, Receptance 

Coupling, Rayleigh-Ritz. 
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ÖZ 

 

DÖNEN VE DÖNMEYEN TİMOSHENKO KİRİŞ TEORİLERİNİ KULLANARAK MİL-

TUTUCU-UÇ TAKIMININ ANALİTİK MODELLENMESİ VE KARARLILIK ANALİZİ 

  
 

 

YILMAZ, Hasan 

 

Yüksek Lisans, Makina Mühendisliği Bölümü 

TezYöneticisi: Yrd. Doç. Dr. Ender CİĞEROĞLU 

 

Ocak 2013, 75 sayfa 

 

 

 

Tırlama yüksek hızlı talaşlı imalatta ürün kalitesini ve üretim zamanını etkileyen önemli bir 

problemdir. Kesme derinliği, besleme hızı, dönüş hızı gibi ideal kesme parametrelerinin belirlenmesi 

için mil-tutucu-uç birleşiminin dinamik sistem karakteristiği hassas bir şekilde modellenmelidir. 

Optimum kesme derinliği ve operasyon hızının bulunması için uç nokta frekans tepki fonksiyonu 

(FTF) bulunmalıdır. Ancak yüksek hızlı talaşlı imalatta sistem dinamiği dönüş hızına bağlı olarak 

etkilenmektedir. Bu tezde dönüş hızının sisteme etkisini modellemek için dönen Timoshenko kiriş 

modeli kullanılmıştır. Serbest-serbest sınır durumuna sahip farklı çap ve büyüklükteki kirişler 

birbirlerine FTF birleştirme yöntemi kullanılarak mil-tutucu-uç takımı oluşturulması için 

birleştirilmişlerdir. Bu takımda rulmanlar, yay ve damper olarak modellenmiş ve sisteme yapısal 

değişiklik (modifikasyon) yöntemiyle eklenmişlerdir. Geliştirilen model sıfır dönüş hızlı çözümlerle 

ve sonlu eleman analizleriyle doğrulanmıştır. Farklı dönüş hızlarına göre örnek yapının doğal frekans 

ve FTF değişimleri bulunmuştur. Dönüş hızının sıfır olduğu durum için Rayleigh-Ritz metodu 

kullanılarak uç nokta FTF’si bulunmuş ve sonuçları birleştirme yöntemininkilerle kıyaslanmıştır. 

Sonuç olarak yapının farklı dönüş hızlarına göre kararlılık bölgeleri belirlenmiş ve bunların dönüş 

hızına göre değişimleri incelenmiştir.  

Anahtar Kelimeler: Dönen Timoshenko Kiriş Yöntemi, Tırlama, Frekans Tepki Fonksiyonu, 

Reseptans Birleştirme, Rayleigh-Ritz. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Literature Review  

As the countries become more industrialized, demand for the equipment produced by the industry 

increases accordingly. Moreover manufacturers try to reach higher production rates day by day. 

Machining is one of the most commonly used manufacturing methods, which can be described as a 

controlled material removal from the work piece. In order to supply demanded amount of production, 

high speed machining is commonly utilized. 

In milling and turning operations, high-speed rotation is used to decrease operation time and the 

manufacturing cost. In addition to the higher speed, depth of cut can also be increased, nevertheless 

those might cause an unexpected vibration problem called chatter. Chatter is a phenomenon, which 

results in poor surface quality due to unstable machining operation. When chatter starts chip thickness 

is not stable anymore and it leaves wavy, undesired surface finish. Not only negative effect of chatter 

might be seen on the work piece but also tool and structure life could be degraded. In order to 

maximize economical gain, operating speed should be increased and negative effects of chatter on the 

work piece surface needs to be eliminated. Therefore, it is absolutely necessary that stable and 

unstable operating areas should be determined for the working machine. In Figure 1.1 example of a 

stability lobe diagram is shown. 

 

 

Figure 1.1 Example Stability Lobe Diagram 

 

Regenerative chatter in orthogonal cutting was first explained by Tobias and Fishwick [1] and Tlusty 

and Polacek [2]. Merritt [3] proposed stability lobe calculations considering orthogonal cutting 

conditions. Orthogonal cutting is a time invariant process and limiting depth of cut in orthogonal 

cutting depends on Frequency Response Functions (FRF) of the tool point and cutting coefficient. 

Altintas [4] explained construction of stability lobes for orthogonal cutting operations using acquired 

FRF in detail. 
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Milling stability analysis is different than orthogonal cutting process. It includes time dependent 

geometry and variables. Tool contains a certain number of teeth and cutting forces also change with 

respect to rotation of the tool. Firstly, Tlusty and Koenigsberger [5] used orthogonal cutting formula 

assuming average cutting direction and average cutting teeth in order to simulate milling stability 

lobes. Sridhar [6] came up with an improved milling model described by differential equations with 

periodic coefficients. Minis and Yanushevsky [7] applied Fourier series expansion to the Floquet’s 

theorem and obtained milling stability model. Altıntaş and Budak [8] developed an analytical stability 

method for milling process. In their study frequency domain is used and very fast and accurate results 

are obtained. Directional coefficients are related with immersion angles which depend on the type of 

milling. Altıntaş [4] also mentioned about this technique and showed some numerical examples. In 

this thesis for milling stability lobes equations given by reference [8] are used.  

Excessive vibrations are observed when the exciting frequency of the structure is close to the chatter 

frequency. Dynamics of structure has a direct effect on the stability lobes. In order to construct 

reliable stability lobes, structural vibration information belonging to the real operating condition is 

required. This information could be obtained by impact hammer test in which an accelerometer is 

placed on the tool tip and system is excited by impact hammer in order to measure the response of the 

system. After analyzing harvested data, required tool point FRF is utilized in stability lobe 

calculations. On the other hand, experimental methods might not give accurate results, as it depends 

heavily on the accuracy of the experimental set-up. In addition, operational conditions such as 

rotational effects are hard to include into the results as it requires operational testing. Furthermore, if 

any change is required on the spindle-holder-tool assembly, tremendous time is needed for each 

iteration on the system. Therefore, before going deep into the experimental analysis, analytical model 

results are very helpful for the verification of the process.  

Milling machine assembly is composed of spindle, holder and tool subassemblies. Spindle 

subassembly consists of main shaft and bearings that connect shaft to the main housing. Spindle shaft, 

holder and tool subassemblies are composed of several numbers of beams. Therefore, beam theories 

are to be investigated deeply. There are different beam theories in the literature. Euler beam theory is 

the simplest beam theory, which is also known as the classical beam theory and neglects shear 

deformation and rotary inertia. In Rayleigh beam theory, rotary inertia is added on top of the Euler 

beam model. The most commonly used model is Timoshenko beam model [9]. Since rotary inertia 

and shear deformation is included in Timoshenko beam model, it is very useful for modeling thick 

beams. Zu [10] added spinning effect to the Timoshenko beam model and obtained mode shapes for 

different boundary conditions. 

On the other hand, shear correction factor should be defined in Timoshenko beam model. Cowper [11] 

advised shear correction factors considering different cross sections. Hutchinson [12] derived 

improved shear correction factors for Timoshenko beam model. Instead of Timoshenko’s model, 

Levinson [13] proposed a higher order beam model (HOBM) which no longer needs shear correction 

factor. Eisenberger [14] compared HOBM and Timoshenko beam model considering different shear 

correction factors. Soldatos [15] derived characteristic equations and mode shapes for HOBM 

considering generally known boundary conditions. 

In order to construct spindle shaft, beams can be coupled together using receptance coupling method. 

Schmitz [16] proposed receptance coupling method which is used in this thesis. Although it consumes 

longer time, impedance coupling method can be used as well.  

Bearings are mounted on the main shaft in order to support it from various locations. Two sets of 

bearings are usually placed as front and rear bearings. Aim of the bearing is to resist axial and radial 

cutting forces. Preload is applied to the bearings in order to make them work stable in the operating 

conditions. Angular contact ball bearings are commonly used in order to withstand axial and radial 

forces. Analytically, bearings are modeled as a spring and damper combination. Arakere [17] 

proposed spring and damping coefficients for the spindle bearings. Özgüvens’s structural modification 

method [18] is used to add bearings to the system.  

Not only bearings but also interfaces between spindle-holder and holder-tool are modeled as a spring 

and damper combination. Schmitz’s method [16] can be used in flexible connections as well. Namazi 

[19] studied contact parameters between spindle and tool holder connection. Cao [20] and Schmitz 

[21] investigated second generation contacts extensively. In their work, contact parameters are 
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measured with respect to different overhang tool lengths and they are fitted into the analytical model 

accordingly. Özşahin [22] applied neural network analysis to the measured contact parameters in order 

to predict those parameters considering different cases.  

Whole assembly can be constructed by analytical model or using FEM. Movahhedy [23] outlined 

FEM of the full assembly including gyroscopic effects. It is claimed in this work that gyroscopic 

effects lower the axial depth of cut. Altintaş and Cao [24] showed spindle-bearing model and 

investigated the effect of preload force on the natural frequencies of the assembly. In addition, 

forward and backward natural frequencies are expressed in detail. Ertürk [25] constructed analytical 

model of spindle-holder-tool assembly. In his work, natural frequencies of the system are identified 

and effect of change in bearing and contact parameters are observed for the assembly extensively. 

Kılıç [26] used a nonlinear bearing model and examined the effect of nonlinearity on the stability 

lobes. Nonlinear bearing model is an important research topic as bearing itself is a nonlinear model. 

Hence balls of bearings makes a point touch with the inner and outer races of the bearing. Stiffness of 

bearing changes with respect to spindle speed. Another uncertainty source for the bearings is 

temperature. After long period of operation, temperature of bearings may be increased. Inevitably, 

stiffness properties of bearings are affected by temperature changes. 

1.2 Objective  

The aim of this study is to obtain chatter free operating range for the milling machines considering 

different spindle speeds. Effect of spinning speed is included using spinning Timoshenko beam model 

in the calculations. Different case studies are obtained in order to investigate the change in the tool 

point FRF and stability lobes with respect to spinning speed. In addition, it is aimed to utilize 

Rayleigh-Ritz method in construction process of spindle-holder-tool assembly as an alternative to 

coupling of beams. Results of two methods are compared using different case studies. 

1.3 Scope of the Thesis  

The outline of the thesis is given as follows: 

In Chapter 2, Spinning Timoshenko Beam model is explained in order to obtain dynamic 

characteristics of a simple beam component. Natural frequencies and mode shapes are obtained for 

simple beam under free-free end conditions. Besides, Eigenfunction expansion method is applied to 

find the receptance of the beam. Bickford HOBM is detailed and natural frequency equations for free-

free end conditions are given. Also, rigid beam coupling and impedance coupling is described in order 

to obtain the end point receptances of rigidly coupled beams. Afterwards, structural modification 

method is presented which is used to add bearing properties on to the spindle assembly. In addition, 

elastic coupling method is considered for the connection of the holder and tool subassemblies. 

Rayleigh Ritz method for Timoshenko beam model is presented in order to find approximate natural 

frequencies and mode shapes of the spindle assembly. Also, FEM of the assembly is briefly explained. 

In Chapter 3, cutting geometry and force equations for orthogonal cutting are explained. Limiting 

depth of cut equation for orthogonal cutting is obtained. For milling operation, related directional 

cutting coefficients are studied and limiting depth of cut equation is given.   

In Chapter 4, using spindle geometry and other related design parameters, tool point FRF of the 

system is obtained. Case studies are performed with changing the spindle speed of the assembly. 

Using the obtained FRF information, stability lobes are constructed and they are compared with each 

other in order to find the effect of spinning speed. Timoshenko and higher order beam models are 

compared in order to observe the effect of shear coefficient in the model. In addition, approximate 

Rayleigh-Ritz solution is compared with coupled system solution and FEM solution for zero spin 

speed. Recommendations are given according to these results in order to obtain chatter free operating 

range.   

In Chapter 5, conclusions are made considering results of Chapter 4 and suggestions for the future 

work are proposed.  

Conference papers related with this thesis are given in the Appendices. 
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CHAPTER 2  

 

MODELING OF SPINDLE ASSEMBLY 

2.1 Beam Models 

In literature, there exist several beam theories which are used to obtain structural and modal 

characteristics of beams. First beam theory is Euler beam theory. It neglects shear deformation and 

rotary inertia. If thin beams (high slenderness ratio) are considered, it is seen that shear deformation 

and rotary inertia have less impact on the beam characteristic. As a result, Euler beam model gives 

acceptable results for these types of beams. In Rayleigh beam theory, rotary inertia is added on to the 

Euler beam theory. Rayleigh beam model is more precise than Euler’s theory. Later, Timoshenko [9] 

added both shear deformation and rotary inertia on to the Euler beam model. If thick beams are 

considered, shear deformation has more important role in beam dynamics. Thus, Timoshenko’s model 

gives more accurate results with respect to Euler’s and Rayleigh’s beam models. Comparison of those 

beam theories are given by [27] in detail. 

In order to compare dynamics of rotating structure with the nonrotating one, spinning Timoshenko 

beam model is used in this study. Analytical solution for the spinning Timoshenko beam model for 

various boundary conditions is given by Zu [10]. Separation in natural frequencies which are known 

as forward and backward natural frequencies is observed in spinning beam model solution. It is seen 

that amount of separation of natural frequencies depends on the spinning speed.  

One deficiency of Timoshenko beam model is that shear correction factor should be defined for the 

beam model. Cowper [11] recommended applicable shear correction factors considering different 

cross sections of beams, for example circular and hollow cross sections.  

In HOBM model, deformed plane can have both shear rotation and warping in addition to the 

Timoshenko beam model. Thus, HOBM eliminates the shear correction factor requirement in 

equations as it includes warping function.  

In this thesis Spinning Timoshenko beam model and HOBM are used in beam modeling. Results of 

these two models are compared with nonrotating Timoshenko beam results. In the next section, 

spinning Timoshenko beam model and HOBM are explained in detail. 

2.1.1 Spinning Timoshenko Beam Model 

In this model, to simulate each beam segment, spinning Timoshenko beam model with free-free 

boundary conditions is used. Coordinate frame and rotation axis for a finite length free- free beam is 

shown in Figure 2.1. 
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Figure 2.1 Reference Frame for Spinning Shaft 

 

In order to derive equations of motion, kinetic and potential energy equations are obtained and then 

Hamilton’s Principle is applied. Non-dimensional partial differential equations of motion are given as 

follows by Zu [10]:  

2 2

2 2 2
,
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l F

t l
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     (2.1)
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i l
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,  (2.2) 

where u  is the transverse displacement,   is the bending angle of the beam, F  is the applied 

transverse force,   is density, I  is transverse moment of inertia, 
zJ  is polar mass moment of inertia, 

E  is Young`s modulus, G  is shear modulus, A  is area,   is spin speed   is shear correction 

coefficient and   is the non-dimensional axial position which is equal to z l . z  is axial position on 

the beam and l  is total length of the beam. Cowper [11] recommended shear factor coefficient for 

hollow circular cross sections as follows, 

2 2

2 2 2

6(1 )(1 ( / ) )
,

(7 / 6 )(1 ( / ) ) (20 12 )( / )

di do

v di do di do






 


  
   (2.3) 

where di  and do  are inner and outer diameters of beams and   is Poisson ratio of beam. Uncoupled 

equations of motion for the spinning Timoshenko beam with 0F   is obtained using Eqs. (2.1) and 

(2.2) as follows, 

2 4 3 2 4 3 4

4 3 2 2 2 2 2 2 4 4
1 0,z z

K K K

J JI u u u I E u u EI u
i A i

G G Gt t t l t l t l

 


  

      
         

        
   (2.4) 

2 4 3 2 4 3 4

4 3 2 2 2 2 2 2 4 4
1 0z z

K K K

J JI I E EI
i A i

G G Gt t t l t l t l

       


  

      
         

        
. (2.5) 

In Eqs. (2.1), (2.2), (2.4) and (2.5), 

x yu u iu  ,  (2.6) 

y

z

x



l

o

0 1
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x yi    ,  (2.7) 

where 
xu  and 

yu  are the deflections of the beam in x  and y  directions, respectively. Similarly, 
x  

and y  are the corresponding bending angles in x  and y  directions. Boundary conditions for the 

free-free beam can be given as follows, 

0 0

0 0 0

( , ) 0,    0,1

1
( , ) ( , ) 0,    0,1.

t

u t t
l

  

   

  

   
  (2.8) 

The following forms of solutions satisfy the partial differential equations given by Eqs. (2.4) and (2.5) 

0( , ) uik i tu t U e e
   ,  (2.9) 

0( , )
ik i tt e e     ,  (2.10) 

where 
0U  and 

0  are complex amplitudes and   is the natural frequency. It should be noted that, 

there is no damping in the free-free system. Substituting Eqs. (2.9) and (2.10) into Eqs. (2.4) and (2.5), 

the following relations are obtained, 

4 2 0u uak bk c   ,  (2.11) 

4 2 0ak bk c    .  (2.12) 

In these equations 
uk  and k  indicate the normal modes of the solution. Coefficients of these 

equations are given as 

2 4 3 2

4 2 2
,    1 ,    z zJ JEI I E I

a b c
G G Gl l l


    

   

  
       

    
. (2.13) 

Since the constants of Eqs. (2.11) and (2.12) are the same, their solutions are also same as well and 

both depends on  . Two different forms of solutions are obtained for 
2 4b ac b   and 

2 4b ac b  . For the former case the solution becomes, 

1,2 1 2,k is s     (2.14)  

where  

2

1

4

2

b b ac
s

a

  
 ,  (2.15) 

2

2

4

2

b b ac
s

a

 
 .  (2.16) 

Using Eqs. (2.15) and (2.16) normal modes of u  and   can be obtained as follows, 

1 1 2 1 3 2 4 2( cosh( ( cos( sin(U s sinh s s s           , (2.17) 

1 1 2 1 3 2 4 2( sinh( cos ( sin( cos(s h s s s               , (2.18) 

where, 

1 1 1 2 1 2 3 2 3 4 2 4,    ,    ,    A c A A c A A c A A c A        ,  (2.19) 

 
12 21 1

1 ,    1,2
i

i i

i

l
c s i

s G l






 
    

 
.  (2.20) 
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For 
2 4b ac b  , the solution becomes, 

1,2 1 2, ,k s s                                        (2.21) 

where, 

2

1

4

2

b b ac
s

a

 
  .                       (2.22) 

Using Eqs. (2.16) and (2.22) normal modes of u  and   can be found as follows 

1 1 2 1 3 2 4 2( cos( ( cos( sin(U s sin s s s            , (2.23) 

1 1 2 1 3 2 4 2( sin( cos( sin( cos(s s s s                 , (2.24) 

where , 

1 1 1 2 1 2 3 2 3 4 2 4,   ,   ,   A c A A c A A c A A c A           ,  (2.25) 

22

1 1

1

1 1l
c s

G ls






    
  

.  (2.26) 

In order to obtain the solution, free-free end boundary conditions given in Eq. (2.8) are applied to Eqs. 

(2.17), (2.18), (2.23) and (2.24). Then the characteristic equations and the mode shapes for free-free 

boundary condition are obtained. For the case of 
2 4b ac b  , they are given as, 

 
2 1 1

1 1 1 1 1 2 1 1 1 2 2 2

2 2

1 1

1 1 1 2 2 2

2 2

1
cosh( ) cos( ) sinh( ) sin( )

1 1
* sinh( ) sin( ) 0

s l c
c s s c s s c s s c s s

l s l c

c s
s c s s c s

l c s l

  
     

   

    
       

    

, (2.27) 

1 1

0 1 1 2 2

1 1 2 2 2 2

( cosh( sinh( cos( ) sin(
c sd d

U U s s s s
s l c c s s l c

    
 

        
  

, (2.28) 

1 1 1 2

0 1 1 1 2 2

1 1 2 2 2

( sinh( cosh( sin( ) cos(
dc c s dc

c s s s s
s l c s s l c

    
 

        
  

, (2.29) 

where, 

1 1
1 1 1 2 2 2

2 2

1 2

1 1
sinh( ) sin( )

cosh( ) cos( )

c s
s c s s c s

l c s l
d

s s

   
     

   



 . (2.30) 

For the case of 
2 4b ac b  , the characteristic equation and the mode shapes become as follows, 

2
1 1

1 1 1 1 1 2 1 1 1 2 2 2

2 2

1 1

1 1 1 2 2 2

2 2

1
cos( ) cos( ) sin( ) sin( )

1 1
* sin( ) sin( ) 0,

s l c
c s s c s s c s s c s s

l s l c

c s
s c s s c s

l c s l

                        

              
     

                (2.31)  

1 1

0 1 1 2 2

2 2 2 21 1

( cos( sin( cos( ) sin(
'

c sd d
U U s s s s

c s s l cs l c
    

   
         

  

,  (2.32) 
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1 1 1 2

0 1 1 1 2 2

2 2 21 1

( sin( cos( sin( ) cos(
d c c s d c

c s s s s
s s l cs l c

    
    
          

   

, (2.33) 

1 1
1 1 1 2 2 2

2 2

1 2

1 1
sin( ) sin( )

cos( ) cos( )

c s
s c s s c s

l c s l
d

s s

           
   

 
 

.  (2.34) 

Natural frequencies of the beam can be found by searching roots of Eqs. (2.27) and (2.31). If obtained 

natural frequencies are put into Eqs. (2.28), (2.29), (2.32) and (2.33), related mode shapes can be 

found. Interesting point in spinning beam model is that dynamic characteristics of rotating beams 

change with respect to the spinning speed. Natural frequencies split as backward and forward natural 

frequencies. As spinning speed increases, difference between backward and forward natural 

frequencies increases as well. Example of natural frequency split will be explained in the following 

sections. There are translational and rotational rigid body modes for free-free beam which are given as 

follows, 

( ,

( 0,

( ( / 2),

( .

tr tr

tr

rot rot

rot rot

U A

U A l l

A





 



 

  

  

  

   (2.35) 

If mass normalization is applied to rigid body modes, 
trA  and 

rotA  are obtained as follows, 

3

1
,

1
.

12

tr

rot

A
l

A
Al

lI













   (2.36) 

Since the Eqs. (2.1) and (2.2) are not orthogonal, in order to find the response of the beam to an 

applied force and moment, state space representations of Eqs. (2.1) and (2.2) are formed.   

       ( , ) ( , ) ,M W t K W t F      (2.37) 

   ( , ) ( , ) ( , ) ( , ) ,
T

W U t U t t t         (2.38) 

   0 0 0 ,
T

F F    (2.39) 

where  M  and  K  matrices are given as follows  

   

2

2 2

2

2

0 0 0

0 0 0
0 0

0 0 0
, .

0 0 0 0 0 0

0 0
0 0

K K

Kz
K

A

A AG AG

A ll
M K

I I

I i J AG E
AG

l l





 

 



 

 
 

           
   
       

 
   

  (2.40) 

In state space representation matrix size is increased from 2x2 to 4x4 and consequently Eq. (2.37) 

becomes orthogonal. Using the modal expansion theorem, solution of this system can be written in 

terms of its mode shapes as 
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   ( , ) ( ) ( ) ,
m

m

N

r r

r N

W t z t W 


    (2.41) 

where 
rz  is the modal coefficient of the thr  mode. Multiplying each side of Eq.(2.37) by  

T

sW , 

integrating over the length and using the orthogonality conditions, the following equation of motion is 

obtained; 

 ( ) ( ) ,r r r r rM z t K z t Q t     (2.42) 

where 
rM , 

rK  and      r r kQ t U F t  are the modal mass, modal stiffness and the modal forcing 

for the thr  mode, respectively. Solution of this uncoupled differential equation for a harmonic forcing 

of   i tF t Fe   applied at 
k   becomes as follows 

( )
( )

( )

i t

r k

r

r r

U Fe
z t

M i



 



,  (2.43) 

where 
r  is 

ri  and 
r  is natural frequency at thr  mode. ( )r kU   and r  values can be directly taken 

from Eqs. (2.28),(2.32), (2.27) and (2.31). Total response of the beam becomes as follows, 

   
( )

( , ) ( )
( )

m

m

i tN

r k

r

r N r r

U Fe
W t W

M i


 

 




    (2.44) 

where 
mN  is the number of modes used in the modal expansion. Using the mass normalized 

eigenfunctions, receptances of the end points of the free-free beam can be obtained for a transverse 

forcing applied on the beam. Receptance functions are denoted as , , ,jk jk jk jkH N L P . jkH  and jkL  

represent linear displacement receptance of point j  due to a unit force and moment applied at point 

k , respectively. Similarly, jkN  and jkP  represent angular displacement receptance of point j due to 

a force and moment applied at point k , respectively. Small structural damping is assumed as (1 i  . 

Following a similar procedure, receptance for an applied moment can be obtained and all these 

receptances can be defined as follows, 

( ) ( ) ( ) ( )
,  ,

(1 (1

( ) ( ) ( ) ( )
, ,

(1 (1

m m

m m

m m

m m

N N
r j r k r j r k

jk jk

r N r Nr r

N N
r j r k r j r k

jk jk

r N r Nr r

U U U
H N

i i i i

U
L P

i i i i

   

     

   

     

 

 


 

     

  
 

     

 

 

 (2.45) 

where   is the loss factor for structural damping, which is assumed to be a very small value (0.002)  

in the case studies considered. 

2.1.2 Higher Order Beam Model  

Deformed plane cross-sections for Euler, Timoshenko and higher order beams are given in Figure 2.2. 

HOBM is firstly explained by [13, 28, 33] and it allows rotation and warping of deformed cross 

section which can be seen in Figure 2.2.c. In other words, it has shear distribution over the cross 

section and the need for a shear correction factor is eliminated.    
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Figure 2.2 Cross-section Displacements in Different Beam Theories: (a) Bernoulli-Euler Beam; (b) 

Timoshenko Beam; and (c) High Order Beam Theory [14]   

 

Natural frequencies and mode shapes of rectangular beams with different boundary conditions are 

given by Soldatos [15] in detail. Uncoupled equations of motion for transverse deflection and shear 

rotation are given below, 

6 4 2
2 4 2 4 2

1 1 2 2 16 4 2
(2 ) ( ( ) ) ( ) 0,

u u u
A A A A kA u

  

  
            

  
  (2.46) 

6 4 2
2 4 2 4 2

1 1 2 2 16 4 2
(2 ) ( ( ) ) ( ) 0,A A A A kA

  


  

  
            

  
  (2.47) 

where  

2 2

55 0 02

1 2 2

11 2

2 2 2 2

211 2 02 0 2

2

22 11

, ,

, , .

c

c

A L L
A A

A D A

L L
A k

D

 



     



 
 


    

  (2.48) 

Terms in Eq. (2.48) include rigidity and elastic stiffness terms which are given below; 

 

 

/2 /2
2 2

55 55 11 11

/2 /2

/2 /2 2

2

/2 /2

( ) , ,

4
, ( ) , ( ) 1 .

3

h h

c

h h

h h
ji i

i ij

h h

A Q z dz D Q z dz

z
b z dz b z z dz z z

h



     

 

 

 

 
    

 

 

 

  (2.49) 

Here, b  is the width of the beam, h  is the height of beam and   is the density. If isotropic beams are 

considered, 11Q  is equal to E  and 55Q  is equal to G . ( )z  is the shape function which introduces 

warping effect into the plane section of the deformed beam as shown in Figure 2.2.c. Eqs. (2.46) and 
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(2.47) are 6
th

 order differential equations and both have the same solution. In order to solve these 

differential equations, Eqs. (2.46) and (2.47) are converted into the following form, 

6 2 4 4 2 2 4 2

1 1 2 2 1(2 ) ( ( ) ) ( ) 0.A A A A kA                 (2.50) 

Eq.(2.50) is actually third order polynomial in terms of 2  and the resulting six roots can be obtained 

exactly as follows, 

2 2

1

1
(2 ),

3
i i A        (2.51) 

where  

1/6
2 2

1

1

1/6
2 2

1

2

1/6
2 2

1

3

16( ) 1
cos tan ,

27 3 3

16( ) 1
cos tan ,

27 3 3

16( ) 1
cos tan ,

27 3

r s s

r

r s s

r

r s s

r















    
      

   

    
      

   

    
     

   

   (2.52) 

      
3

2 2 2 2 2 2

1 1 1 2 2 1

2 1
3 3 2 2 ,

27 3
r A A A A A kA

 
             

 
  (2.53) 

   
3

2
2 2 2 2 2

1 1 2

1
4 2 .

3
s A A A r

 
        

 
   (2.54) 

Having obtained roots the (
i ) of Eq.(2.50), general solution of Eqs. (2.46) and (2.47) can be obtained 

as well. There are two different cases in the solution. In the first case, non-dimensional natural 

frequency is smaller than pure shear frequency. However in the second case, it is bigger than pure 

shear frequency. Non-dimensional natural frequency and pure shear frequency are given as follows, 

4

2 2 0

11

2

55

11

,

14
12 .

17

c

B

L

D

QL

h Q


 





 
  

 

   (2.55) 

For the case 
B   general solution is given below, 

1 1 2 1 3 2 4 2 5 3 6 3( cos( ( cosh( sinh( cosh( sinh( ,U C C sin C C C C                    (2.56) 

1 1 2 1 3 2 4 2 5 3 6 3( cos( ( cosh( sinh( cosh( sinh( .D D sin D D D D                     (2.57) 

If 
B  , 

1 1 2 1 3 4 4 4 5 3 6 3( cos( ( cos( sin( cosh( sinh( ,U E E sin E E E E                    (2.58) 

1 1 2 1 3 4 4 4 5 3 6 3( cos( ( cos( sin( cosh( sinh( ,F F sin F F F F                     (2.59) 

where 
2

4  is equal to 2

2  in the second case. 
iC , 

iD , 
iE  and 

iF ’s are arbitrary constants. Desired 

boundary conditions can be applied to the general solution in order to obtain the characteristic 

equation. Shear force, bending moment and higher order moment terms are used to obtain the 

boundary conditions. In higher order beam theory, there are three constraints for each end. In total, 

there are six equations and six unknowns. On the contrary, in Timoshenko beam model, two boundary 

conditions for each end are enough as the order of differential equation is four. Characteristic 
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equations for different sets of boundary conditions and related mode shapes are given in [15]. 

Characteristic equations considering free-free end conditioned beam is given below. 

For the case 
B   

2 3 1 3

1 2 3 2 1 32 2 2 2

2 3 1 3

22 2

31 2 1 2

3 1 2 1 2 32 2 4 4 4

1 2 1 2 3

sin( )(1 cosh( )cosh( )) sinh( )(1 cosh( )cosh( ))

1
sinh( )(1 cos( )cosh( )) sin( )sinh( )sinh( ) 0

2

P P PP

PPP P P

     
   

     
    

  

 
       

 

(2.60) 

where 

2 2 2 2 2 2 2 2 2

1 1 2 3 1 2 3

2 2 2 2 2 2 2 2 2

2 2 1 3 2 1 3

2 2 2 2 2 2 2 2 2

3 3 1 2 3 1 2

( )( 12 )( 12 12 ),

( )( 12 )( 12 12 ),

( )( 12 )( 12 12 ).

P h h

P h h

P h h

       

       

       

    

    

    

     (2.61) 

For the case 
B   

2 3 1 3

1 4 3 4 1 32 2 2 2

4 3 1 3

1 2

3 1 42 2

1 4

22 2

31 2

1 4 34 4 4

1 4 3

sin( )(1 cosh( )cosh( )) sin( )(1 cos( )cosh( ))

sinh( )(1 cos( )cos( ))

1
sin( )sin( )sinh( ) 0

2

S S S S

S S

SS S

     
   

  
 

  
  

  

 

 
    

 

  (2.62) 

where 

2 2 2 2 2 2 2 2 2

1 1 4 3 1 4 3

2 2 2 2 2 2 2 2 2

2 4 1 3 4 1 3

2 2 2 2 2 2 2 2 2

3 3 1 4 3 1 4

( )( 12 )( 12 12 ),

( )( 12 )( 12 12 ),

( )( 12 )( 12 12 ).

S h h

S h h

S h h

       

       

       

    

    

    

   (2.63) 

2.2 Spindle-Holder-Tool Modeling 

The aim of constructing spindle-holder-tool assembly is to obtain tool point FRF of the assembly. 

Effect of each component should be included in the tool point FRF. Firstly, main shaft of spindle 

which is composed of several beams which are rigidly attached to each other is constructed. Then 

bearings are added on to the main shaft. In order to simulate the bearings, connected spindle shaft at 

various locations, spring and damper elements are used in the model. There is also holder and tool in 

front of the main shaft. Both the holder and the tool are as well composed of several beams. Similarly, 

beams are rigidly connected to each other in order to form holder and tool.  Holder and tool are 

attached to each other using elastic connection and there is also elastic connection between holder and 

spindle assembly. Details of the coupling methods are explained in the following sections. 

2.2.1 Rigid Beam Coupling 

Having obtained receptances of each beam element with sufficient number of modes, beams are 

coupled to each other in order to obtain the combined receptance information. After the coupling 

operation, receptance data of the connection points is lost and only the end point FRF information is 

acquired. Figure 2.3 shows connection points before and after coupling operation. It should be noted 

that, in the receptance coupling of the beam elements, only inverse of 2x2 matrices is needed.  
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Figure 2.3 Coupling Operation  

 

Receptance matrices of beam A and B can be written as follows 

 
   
   

 
   
   

11 12 11 12

21 22 21 22

,    
A A B B

A B
A A B B

   
    
   

.  (2.64) 

 11A  is given as an example  below, 

  1 1 1 1

11

1 1 1 1

A A A A

A A A A

H L
A

N P

 
  
 

.  (2.65) 

Remaining submatrices of  A  and  B  can be obtained similarly. End points of the new coupled 

structure are represented by points 
1C  and 

2C . After writing proper displacement and force relations at 

connection point for which details are given in [25], receptance matrix of the new structure, C  can be 

given as follows 

 
   
   

11 12

21 22

C C
C

C C

 
  
 

,  (2.66) 

where 

           

         

         

           

1

11 11 12 22 11 21

1

12 12 22 11 12

1

21 21 22 11 21

1

22 22 21 22 11 12

,

,

,

.

C A A A B A

C A A B B

C B A B B

C B B A B B









    

   

   

    

  (2.67) 

Alternatively, impedance coupling method can also be applied. Drawback of impedance coupling is 

that it requires inverse of higher order matrices. It requires more time with respect to receptance 

coupling method. In impedance coupling method, inverse of  A  and  B  matrices are obtained and 

then two matrices are added together. Inverses of  A  and  B  matrices are given below, 

 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

H L H L

A A A A A A A A

N P N P

A A A A A A A A

A H L H L

A A A A A A A A

N P N P

A A A A A A A A

z z z z

z z z z
z

z z z z

z z z z

 
 
 
 
 
  

   (2.68) 

A2B1B2

C1

A1

C2

AB

C
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 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

H L H L

B B B B B B B B

N P N P

B B B B B B B B

B H L H L

B B B B B B B B

N P N P

B B B B B B B B

z z z z

z z z z
z

z z z z

z z z z

 
 
 
 
 
  

   (2.69) 

Adding operation is applied to only common nodes.  

     C A Bz z z     (2.70) 

 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

1 2 1 22 1 2 1 2 2 1 1 2 2 1 1

1 2 1 22 1 2 1 2 2 1 1 2 2 1 1

2 1 2 1 2 2 2 2

2 1 2 1 2 2

0 0

0 0

0 0

0 0

H L H L

A A A A A A A A

N P N P

A A A A A A A A

H LH L H H L L
B B B BA A A A A A B B A A B B

N PC N P N N P P
B B B BA A A A A A B B A A B B

H L H L

B B B B B B B B

N P

B B B B B B

z z z z

z z z z

z zz z z z z z
z

z zz z z z z z

z z z z

z z z

 


 

2 2

N P

B Bz

 
 
 
 
 
 
 
 
  

  (2.71) 

Eq. (2.71) explains logic of impedance coupling. Only impedances of 
2 2A Az  and 

1 1B Bz  points are 

added because point A2 is common with point B1. Matrix size is also increased to 6x6 since there are 

unshared nodes in the matrix. Then, inverse of  Cz  matrix is taken to get the final receptance  C

matrix. Receptance matrix  C  is given below, 

 

1 1 1 1 1 1 1 2 1 2

1 1 1 1 1 1 1 2 1 2

1 1 2 2

1 1 2 2

2 1 2 1 2 2 2 2 2 2

2 1 2 1 2 2 2

C C C C C com C com C C C C

C C C C C com C com C C C C

comC comC comcom comcom comC comC

comC comC comcom comcom comC comC

C C C C C com C com C C C C

C C C C C com C com C C

H L H L H L

N P N P N P

H L H L H L
C

N P N P N P

H L H L H L

N P N P N



2 2 2C CP

 
 
 
 
 
 
 
 
  

  (2.72) 

where " "com  refers to connection point of beams. It is seen that impedance coupling process stores 

receptance of the connection point. If it is not required, common point receptances can be deleted and 

matrix size could be reduced to 4x4. 

In order to construct different cross sectioned continuous beams, both techniques can be performed 

iteratively. Although both methods can be implemented, the first method is preferred in the 

calculations as it is faster. 

2.2.2 Structural Modification Method 

In order to support the spindle, bearings are used at different locations. Effect of bearings are included 

into the model as spring and damper elements by using Özgüven`s structural modification method 

[18]. Figure 2.4 shows structural modification method schema for adding bearings. After adding 

bearing to point
2C , rigid beam coupling operation is proceeded from point 

2C   in order to construct 

remaining parts of spindle shaft.    
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Figure 2.4 Connection of Bearing Using Structural Modification 

 

Including the effects of bearings, the receptance of the structure can be written as follows 

        
1

c c cI D  


     ,  (2.73) 

 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

C C C C C C C C

C C C C C C C C

c

C C C C C C C C

C C C C C C C C

H L H L

N P N P

H L H L

N P N P



 
 
 
 
 
 

,  (2.74) 

In Eq. (2.73) effect of bearing is included in  D  matrix and  I  is unit matrix. If bearing is located at 

2C  in Figure 2.4, dynamic stiffness matrix of bearing can be written as follows,  

 

0 0 0 0

0 0 0 0

0 0 0

0 0 0

y y

D
k i c

k i c 





 
 
 
 
 

 

.  (2.75) 

Where  ,y yk c  and  ,k c   are translational and rotational stiffness and damping coefficients of the 

bearings, respectively. Computational effort in the calculation of Eq. (2.73) can be decreased by 

reordering matrices such that the connection degrees of freedoms are grouped at the upper left corner. 

The reordered dynamic stiffness matrix can be written in the following form, 

 
 

 11

11

00
,   .

00 0

y yk i cD
D D

k i c 





   
    

  
  (2.76)  

In addition to this,  c  is rearranged in the same manner. Reordering these matrices as described 

above, size of the inverted matrix decreases from 4x4 to 2x2. Therefore, the receptance matrix of the 

coupled system including the bearings can obtained as follows 

        

  
  

ky  cy 
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cy 
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C  
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 

 

1
11 11 11 11

'

12 21 21 11 11

' ' '

22 22 21 11 12

' '

,

,

.

c c c

T

c c c c

c c c c

I D

I D

D

  

   

   



                 

                      

                   

  (2.77) 

The receptances obtained by Eq. (2.77) should be reordered back to the original form in order to get 

similar submatrices as before. Instead of structural modification method, impedance coupling method 

can also be used as explained before. Firstly, inverse of Eq. (2.74) is taken and Eq. (2.75) is added to 

proper nodes of Eq. (2.74). Then, inverse of newly composed matrix gives coupled receptance of the 

system. In the calculations first method is preferred concerning time efficiency. 

2.2.3 Elastically Coupling of Beams 

Up to here spindle beams are rigidly connected to each other and bearings are added using structural 

modification method. Yet, if holder and tool are rigidly connected to the spindle, real operating 

conditions are not represented because relative movement is observed between spindle-holder and 

holder-tool subassemblies. Therefore, for the coupling of these elements, flexible receptance coupling 

is needed on the contrary to the rigid beam coupling. Elastic elements are placed in between required 

parts shown in Figure 2.5.  

 

 

Figure 2.5 Elastic Beam Coupling 

 

Formulation of flexible receptance coupling includes spring and damper elements between two beam 

segments (A and B). The coupling stiffness matrix can be written in the following form 

 
0

0

AB AB

y y

AB AB AB

k i c
K

k i c 





 
  

 
,                                (2.78) 
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where 
AB

yk  and ABk are translational and rotational stiffnesses, and, 
AB

yc  and ABc  are translational 

and rotational damping coefficients of the flexible connection. In flexible receptance coupling, force 

and displacement relations are written at the connection point where stiffness and damping elements 

are as well included in equations. The resulting equations for the receptance are given as follows, 

             

           

           

             

1
1

11 11 12 22 11 21

1
1

12 12 22 11 12

1
1

21 21 22 11 21

1
1

22 22 21 22 11 12

,

,

,

.

AB

AB

AB

AB

C A A A K B A

C A A K B B

C B A K B B

C B B A K B B













    
 

   
 

   
 

    
 

   (2.79) 

It is noticed that resulting equations are very similar to Eq. (2.67). Only difference between them is 

that  
1

ABK


 terms added into the summation of    22 11A B  in Eq. (2.67). If  ABK  term goes to 

infinity eventually rigid coupling equations are obtained because  
1

ABK


 goes to zero.  

The other alternative way is to use impedance coupling method for elastic coupling. As explained 

before, impedances of  A  and  B  are obtained by taking inverses of each matrices. Later, three 

stiffness matrices are added together as shown below. 

       .C A B ABz z z K      (2.80) 

2.3 Approximate Methods for Spindle Holder Tool Assembly 

In Section 2.1, analytical solution for spinning Timoshenko beam and HOBM is obtained. After 

getting the analytical solution, natural frequency and mode shape information are utilized to obtain 

repectance of a single beam. In order to perform accurate coupling operation, huge amount of natural 

frequency and mode shape data should be stored in the memory for each beam. As the slenderness 

ratio of beam gets smaller and smaller, natural frequencies of the beam increases to very large 

numbers. Then characteristic equation of the beam should be searched up to very high frequencies. 

Frequencies which satisfy characteristic equation are stored as the natural frequencies and they are 

obtained by iteratively increasing frequency. As a result solution time for natural frequencies increases 

dramatically as huge number of iterations are required for the low slenderness ratio beam. In the 

spindle assembly, several low slenderness ratio-beams must be coupled together. Coupling operations 

are repeated for each frequency step increment; as a result, all these operations require high amount of 

mathematical operations. In order to reduce the calculation time, approximate methods is to be utilized 

in the modeling.  

Firstly, Rayleigh’s Quotient Method is used to estimate the lowest eigenvalue. Estimation result is 

highly dependent on the chosen trial function. Estimated eigenvalue is larger than the lowest 

eigenvalue, unless the chosen trial function is equal to the exact eigenfunction. Rayleigh-Ritz method 

estimates not only the lowest frequency but also the desired number of lowest frequencies. Any 

number of trial functions could be used in Rayleigh-Ritz method. Again all natural frequencies 

obtained are larger than the exact natural frequencies unless exact eigenfunctions are used. Meirovitch 

[29] explains Rayleigh-Ritz method for an Euler beam. Mode shapes are obtained as follows, 

1

( ) ( ),
n

i i

i

Y x a x


    (2.81) 

where ia ’s are undetermined coefficients and i ’s are the trial functions. According to Rayleigh’s 

quotient, lowest eigenvalue is the ratio of the maximum potential energy to the reference kinetic 

energy as shown below, 



19 

max ,
ref

V

T
     (2.82) 

where 

max

1 1

1
,

2

n n

ij i j

i j

V k a a
 

     (2.83) 

1 1

1
,

2

n n

ref ij i j

i j

T m a a
 

     (2.84) 

ijk  and ijm  are stiffness and mass coefficient matrices for the given system. Finally eigenvalues are 

obtained by Eq. (2.82). Kinetic and potential energy for Timoshenko beam are given by Zhou [30] as 

follows 
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In Eq. (2.85) transverse deflection and rotation angle can be denoted as follows; 

( , ) ( ) , ( , ) ( ) .i t i tu x t U x e x t x e       (2.86) 

Lagrangian function can be written, 
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If Timoshenko beam theory is considered, Eq. (2.81) is not sufficient because there are two uncoupled 

differential equations which are transverse deflection and rotation angle.  Two sets of trial functions 

are described as below, 
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where ia  and jb  unknown coefficients and ( )iU x  and ( )j x  are trial functions. If Rayleigh-Ritz 

method ( / 0nL a    and / 0nL b   ) is applied to Eq. (2.87) the following eigenvalue problem is 

obtained 
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Natural frequencies and related coefficients of trial functions can be obtained by solving Eq.(2.90). 

Mass normalization is applied to the coefficients of trial functions and mass normalization coefficient 
rm  for the thr  mode can be found as follows; 
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   (2.92) 

Important point is to obtain proper trial functions for desired boundary conditions. Main focus is to 

find proper trial functions for spindle shaft, holder and tool of the spindle. Instead of partitioned 

structure, an average diameter shaft is assumed for spindle, holder and tool assemblies in order to 

obtain simple trial functions, example shown in Figure 2.6.  

 

Figure 2.6 Partitioned and Average Diameter Shaft  

 

Then, average diameter shaft is modeled using equations in Section 2.1.1 and related mode shapes are 

directly used as trial functions in Rayleigh-Ritz solution.  

Another method is to use polynomials as a trial function. 1rx   type polynomials or orthogonal 

polynomials such as Legendre, Chebyshev polynomials, can be used for both transverse deflection 

and bending rotation trial functions. Kocatürk [31] explained Rayleigh Ritz Method with Timoshenko 

beam model using 
1rx 
 type trial functions in the solution. In addition, spring can be added at various 

locations of the beam in order to simulate bearings by using the following potential energy expression 

given below, 

        1 2 3 4 5 

1 
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( ) ( )i n n
K U U     (2.93) 

where  
iK  is the stiffness coefficient. Eq. (2.93) is directly added to the 

nn
K    value in Eq. (2.91). As 

a final step, holder and tool assemblies can be added using elastic coupling method to the end of the 

spindle shaft. Now system is ready for tool point FRF calculations. 

2.4 FEM of Spindle Holder Tool Assembly  

In order to compare results of current work with FEM software, ANSYS 11.0 is employed to 

construct finite element model of the spindle-holder-tool assembly. In the software BEAM188 

element type which is based on Timoshenko Beam Theory is used to model beam elements. It is 

suitable for moderately thick beam types. BEAM188 includes shear deformation and rotary inertia. 

Also, this element type has two nodes and each node has six degrees of freedoms. Non-required 

degrees of freedoms are constrained in order to match both analytical and FEM. Irrelevant modes such 

as axial and torsional modes are suppressed. COMBIN14 element is used in order to implement spring 

and damper characteristics in to the assembly. It allows both longitudinal and rotational springs and 

damper properties. Bearing and flexible connection requirements are fulfilled by COMBIN14 

element.  

Same geometry and material properties are utilized in both analytical and FEM. In order to include the 

spinning effect into the FEM, Coriolis effects are enabled and rotational velocity is assigned. In order 

to observe the effect of spinning on modal analysis results, QR Damped Mode Extraction Method 

should be employed and complex eigenvectors should be calculated. Also, the same geometry is 

modelled using 3D solid element. Results of 3D solid element model are presented for only the non-

spinning case.  

Comparison of ANSYS and analytical results are given in the results and comparison chapter. 
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CHAPTER 3  

 

STABILITY LOBE CONSTRUCTION 

Excessive machine tool vibration which is called chatter may cause undesired surface finish on the 

work piece. During the cutting operation, wavy surface may be left on the work piece because of each 

tool pass. Generated wavy surface roughness depends on phase shift between each successive cutting. 

If the cutting frequency is close to chatter frequency, surface finish becomes very rough. Therefore, 

stability lobe diagram gives useful information about whether there will be chatter or not. As turning 

is an orthogonal cutting process; nevertheless milling is not, turning and milling stability lobe 

calculations are different from each other. Milling stability analysis includes time dependent geometry 

and variables. Derivations for turning and milling stability lobes are given below. 

3.1 Turning Stability Lobes  

In orthogonal cutting, fed direction is assumed perpendicular to the axis of the workpiece. Orthogonal 

cutting condition is shown in Figure 3.1. Feeding force causes the system to vibrate. Chip thickness 

changes with respect to vibration frequency of the system.  

  

 

Figure 3.1 Cutting Instance for Orthogonal Cutting 

 

Cutting force is proportional to the cutting area which is written as follows, 

( ) ( ( ) ( )),fF t K a x t T x t      (3.1) 

where fK  is the cutting constant in the feed direction, a  is the depth of cut and ( ) ( )x t T x t   is the 

dynamic chip thickness produced in one period, which is shown as T . Total structure is excited by 

the cutting force. Therefore force equilibrium can be written considering a one degree of freedom 

system and feed force as follows, 

tool chip 

workpiece 
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( ).mx cx kx F t      (3.2) 

Eq. (3.2) can be solved in Laplace domain and after proper operations [4] characteristic equation 

including real and complex part of FRF is obtained as 

     lim lim1 (1 cos( ) sin( ) sin( ) (1 cos( )) 0,f r c c c f r c c cK a G T G T j K a G T G T            (3.3) 

where 
rG  is real and 

cG  is imaginary part of FRF. 
cw  is chatter frequency which is very close to the 

natural frequency of the structure. If the imaginary part of Eq.(3.3) is equated to zero following 

equations are obtained, 
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where   is the phase shift of the FRF of the structure. After some trigonometric manipulations phase 

shift can be related to the spindle speed n  as given below, 
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   (3.5) 

where   is the phase shift between inner and outer modulations, k  is the corresponding vibration 

waves within one period. 

Limiting depth of cut in order to avoid chatter is obtained by equating the real part of Eq.(3.3) to zero 

and for 
cG  is eliminated by using (3.4). Limiting depth of cut is given below, 

lim

1
,

2 ( )f r c

a
K G w


    (3.6) 

where ( )r cG w  is the real part of transfer function or tool point FRF. Only negative values of ( )r cG w  

is employed in Eq. (3.6) in order to have positive depth of cut.  

3.2 Milling Stability Lobes 

The analytical formulation for milling operation is obtained by Budak [32]. In the milling dynamics, 

two orthogonal degrees of freedom are assumed in the cutting operation as shown in Figure 3.2.  
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Figure 3.2 Cross Sectional View of an End Mill Showing Differential Forces [32] 

 

Equation of motion for milling is given below as, 
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where a  is axial depth of cut, 
tK  is cutting force coefficient,    is the matrix of average directional 

cutting coefficients and  ( )cG i  is the summation of tool point FRF and work piece FRF matrices 

identified in the orthogonal cutting directions. For simplicity only tool point FRF matrices is used in 

this formulations and work piece is assumed as a rigid.  ( )cG i  and    is given as 
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Average directional cutting factors depend on rK , ex  and st  which are radial cutting constant, entry 

angle and exit angle, respectively. Entry and exit angles are related to the cutting type (e.g. end 

milling, down milling and up milling). Eq.(3.7) has a non-trivial solution if 

     0det ( ) ( ) 0,cI A G i                                 (3.10) 
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For orthogonal cutting condition off-diagonal terms ( )c yxG i  and ( )c xyG i  can be taken as zero. 

Then, using Eq. (3.10) eigenvalue   can be found as  
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2
a a a
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FRFs at the tool point have complex values; hence,   is a complex number. Since depth of cut must 

be a real value,   is decomposed into real and imaginary components as 
R Ii     . After some 

manipulations, to get only real valued depth of cut, real and imaginary part of   should have the 

following proportion 
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   (3.14) 

where T  is spindle period and 
c  is chatter frequency. Eq. (3.14) can be related with the spindle 

speed n as follows [32], 
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  is the phase shift between inner and outer modulations, k  is the corresponding vibration waves 

with in period, and 
tN  is the tooth number. Finally stable limiting depth of cut is found from 

Eq.(3.11) as, 

2

lim

2
(1 ).R

t t

a
N K





     (3.16) 

Eqs. (3.16) and (3.15) can be utilized to find the related spindle speed for a given depth of cut or 

limiting depth of cut for a given spindle speed. 
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CHAPTER 4  

 

NUMERICAL RESULTS AND COMPARISON 

4.1 Spindle Geometry and Related Parameters 

The spindle-holder-tool model given by Ertürk [25] is used in this study. Figure 4.1 shows the spindle, 

holder and tool parts and their final shape. There are ten rigidly coupled beams in the spindle shaft and 

there are bearings at four points which are shown as black discs in Figure 4.1. Holder has six rigidly 

coupled beams and tool has only two. Spindle, holder and tool dimensions starting from the right 

ends, shown in Figure 4.1, are given in the Table 4.1 to 4.3. The first three segments of the spindle 

subassembly have the same diameter with the last three segments of the holder subassembly. 

Therefore, the holder subassembly is clamped to the front end of the spindle subassembly by using 

three common diameter segments. Similarly tool is mounted inside of the first segment of the holder 

subassembly. Therefore tool is mounted to the holder subassembly such that final length of the 

overhang tool is 85 mm. As explained before there are flexible connections between the spindle-

holder and the holder-tool. They are assumed to exist at the points shown in Figure 4.2.  

 

 

Figure 4.1 Spindle Components and Total Assembly [25] 
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Figure 4.2 Elastic Connection Locations 

 

 Table 4.1 Spindle Dimensions [25] 

 

Segment Number 1 2 3 4 5 6 7 8 9 10 

Length [mm] 26 26 26 38 100 66 75 30 40 40 

Outer Diameter [mm] 66 66 66 66 76 70 62 58 58 58 

Inner Diameter [mm] 54 48 40 32 32 32 32 32 32 32 

 

Table 4.2 Holder Dimensions [25] 

 

Segment Number 1 2 3 4 5 6 

Length [mm] 22 19 24 26 26 26 

Outer Diameter [mm] 72 60 70 54 48 40 

Inner Diameter [mm] 16 16 16 16 16 16 

 

Table 4.3 Tool Dimensions [25] 

 

Segment Number 1 2 

Length [mm] 50 57 

Outer Diameter [mm] 14 16 

Inner Diameter [mm] 0 0 

 

Steel is assigned to all materials in the assembly. Very little loss factor (0.002) is assumed in the 

model in order to get finite peaks in the tool point FRF. Related material properties are given in Table 

4.4. 

 

Table 4.4 Material Properties [25] 

 

  (Density) 7800 kg/m^3 

  (Poisson Ratio) 0.3 

E (Young's Modulus) 200 GPa 

 

For stiffness and damping coefficients, the same values of Arakere [17] are used to simulate the 

bearings. For elastic connection coefficients the same values given in [16] are used. Table 4.5 gives 

used bearing and interface properties. Four bearing locations starting from the first segment of the 

spindle shaft are given in Table 4.6. 

  

Elastic Connection Points 

  



29 

 

Table 4.5 Bearing and Interface Properties [25] 

 

 Translational Stiffness 

[N/m] 

Rotational Stiffness 

[N.m/rad] 

Front Bearings  

(for each) 
7.5 x10

5
 - 

Rear Bearings 

(for each) 
2.5 x10

6
 - 

Spindle Holder 

Interface 
5 x10

7
 1.5 x10

6
 

Holder Tool 

Interface 
2 x10

7
 1.5 x10

6
 

 

Table 4.6 Bearing Locations [25] 

 

Bearing No Bearing 1 Bearing 2 Bearing 3 Bearing 4 

Distance [mm] 26 78 387 427 

 

4.2 Tool Point FRF Results 

Before going to the complete assembly results, end point FRF of a single example beam is 

investigated in order to show effect of spinning clearly. It is expressed before that with respect to 

spinning speed natural frequencies are separated as forward and backward natural frequencies. In 

order to examine forward and backward frequencies, a steel cylinder of 1 m length and 0.2 m diameter 

is studied. First, considering non-spinning case natural frequencies are obtained. Taking the first 

natural frequency of the non-spinning case as a reference (
1 841.9 Hz  ), spinning speed is 

increased to 
1  and 

12  respectively. The first three natural frequencies of three different cases are 

given in Table 4.7. It is observed that at higher modes the difference between the forward and 

backward frequencies increases. In addition to natural frequencies, end point receptance of the free-

free beam is obtained for 0   and 
1   spin speeds, which are given in Figure 4.3. It is 

observed, single modes split into two modes having natural frequencies lower and larger than the zero 

spin case as predicted by the natural frequencies. Moreover, there is an additional mode at a very low 

frequency (49 Hz) for the case including gyroscopic effects. This frequency is not presented in Table 

4.7 for easy comparison. 

 

Table 4.7 Natural Frequencies 0 , 
1  and 

12  Hz 

                               
1                              

12   

   0   FWD 

% Diff.          

wrt BWD 

% Diff. 

wrt FWD 

% Diff. 

wrt BWD 

% Diff. 

wrt 

   0      0      0      0   

1. Mode 841.9 923.9 9.7 762.7 9.4 1010.2 20.0 690.4 18.0 

2. Mode 2032.4 2159.6 6.3 1904.0 6.3 2286.6 12.5 1780.3 12.4 

3. Mode 3466.4 3615.5 4.3 3311.9 4.5 3761.1 8.5 3159.5 8.9 
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Figure 4.3 Comparison of Forward and Backward Natural Frequencies at 841.9 and 0 Hz  

 

After constructing the total assembly using the coupling method, natural frequencies and tool point 

FRF of the spindle assembly is obtained. 0.1 Hz frequency increments are applied in FRF 

calculations; hence, the resolution of the system is 0.1 Hz. Very small loss factor 0.002 is considered 

in the analysis. The first 100 modes for each component are employed in the tool point FRF 

calculations in order to reduce truncation errors. In the first case, 0 and 10000 rpm spindle speeds are 

obtained and the comparison of them is presented in Figure 4.4. It can be seen that results of both 

FRF’s are nearly coincident and difference is not clear. However, if natural frequency points are 

zoomed in, forward and backward separations can be observed.  

 

 

Figure 4.4 Comparison of Tool Point FRF at 0 and 10000 rpm 
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Forward and backward frequencies are shown in Figure 4.5 to 4.7 for the 3
rd

, the 4
th

 and the 5
th

 modes. 

The effect of separation of forward and backward frequencies on the FRF is only dominant around the 

natural frequencies; whereas, other parts of the FRFs are quite similar to the zero spin speed case. 

 

 

Figure 4.5 Forward and Backward Frequencies around 3
rd

 Mode 

 

 

Figure 4.6 Forward and Backward Frequencies around 4
th

 Mode 
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Figure 4.7 Forward and Backward Frequencies around 5
th

 Mode 

 

In Table 4.8 natural frequencies of the system for 0 and 10000 rpm are given. In the coupled model 

solution, the first two modes do not change, since they correspond to the rigid body modes of the 

spindle dominated by bearings. However, finite element solution splits them as forward and backward 

modes as presented in Table 4.9.  

 

Table 4.8 Coupled Model Results for 0 and 10000 rpm Spindle Speed 

0 rpm  10000 rpm 

Natural 

Frequencies [Hz] 

Backward Natural 

Frequencies [Hz] 

Forward Natural 

Frequencies [Hz] 

71.6 71.6 71.6 

193.8 193.8 193.8 

870.2 868.8 871.6 

1430.9 1429.2 1432.5 

1763.5 1758.8 1768.4 

3465.5 3457.3 3474.6 

3648.1 3644.1 3652.7 
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Table 4.9 ANSYS Results for 0 and 10000 rpm Spindle Speed 

0 rpm 10000 rpm 

Natural 

Frequencies [Hz] 

Backward Natural 

Frequencies [Hz] 

Forward Natural 

Frequencies [Hz] 

71.6 71.0 72.3 

193.9 192.0 195.7 

867.5 865.2 869.7 

1424.0 1423.1 1424.9 

1752.1 1743.5 1760.8 

3441.3 3414.6 3467.0 

3634.3 3629.3 3639.7 

 

If the elastic modes starting with the third mode are considered, analytical solution also splits as 

backward and forward modes and their comparison with FEM results give a maximum error less than 

1%. Good agreement is obtained at elastic modes. 

If spindle speed is further increased to 20000 and 30000 rpm, separation between forward and 

backward frequencies increases slightly in elastic modes whereas the first two natural frequencies are 

constant as before. Model and ANSYS simulation results at 20000 and 30000 rpm are given in Table 

4.10 and Table 4.11. Again, good agreement is obtained at elastic modes for both 20000 and 30000 

rpm.  

 

Table 4.10 Forward and Backward Natural Frequencies at 20000 rpm 

20000 rpm 20000 rpm 

Ansys Backward [Hz] Ansys Forward [Hz] Model Backward [Hz] Model Forward [Hz] 

70.3 72.9 71.6 71.6 

190.2 197.7 193.8 193.8 

862.9 872.0 867.6 872.8 

1422.2 1425.8 1428 1433.7 

1734.9 1769.5 1754.2 1773.1 

3386.9 3491.4 3449.1 3483.2 

3624.6 3645.8 3640.5 3656.8 

 

It is observed that at higher natural frequencies difference between forward and backward frequencies 

increases; nevertheless, it is not significant. FRF of spinning case is nearly identical to FRF of non-

spinning case. Clearly spinning has very limited effect on the tool point FRF of the spindle-holder-

tool assembly, in addition spinning effect on the stability lobes will be discussed in the coming 

sections. 
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Table 4.11 Forward and Backward Natural Frequencies at 30000 rpm 

30000 rpm 30000 rpm 

Ansys Backward [Hz] Ansys Forward [Hz] Model Backward [Hz] Model Forward [Hz] 

69.6 73.6 71.6 71.6 

188.5 199.7 193.8 193.8 

860.7 874.2 866.3 874.1 

1421.3 1426.7 1426.7 1435.1 

1726.4 1778.2 1749.4 1777.8 

3358.4 3514.5 3440.8 3490.2 

3620.2 3652.7 3636.8 3660.8 

 

Change in the bearing and connection parameters of the assembly is as well investigated by changing 

the original stiffness and damping values used in the analysis. In Figure 4.8 both front and rear 

stiffness values are multiplied and divided by two at 20000 rpm. It is seen from Figure 4.8 that 

bearing stiffness values mostly effect the first two natural frequencies of the system which are rigid 

body modes constrained by the bearings. Stiffer bearings shift the first two modes of the system to 

higher natural frequencies and vice versa. It is observed that higher modes are not significantly 

affected by bearing parameters.  

 

 

Figure 4.8 Effect of front and rear bearings parameters on the tool point FRF 

 

Another case is to change the contact parameters between spindle-holder and holder-tool 

subassemblies. Again considering 20000 rpm spin speed, contact values are halved and doubled as in 

the previous case. It is observed in Figure 4.9 that first two modes are not affected due to the change 

in the elastic elements; however, higher modes are affected significantly. Increase in the stiffness of 

the connection parameters resulted in an increase in the natural frequencies of the modes higher or 

equal to 3. If elastic modes of the spindle assembly are considered, interface connection parameters 

are more important rather than bearing parameters.  
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Figure 4.9 Effect of elastic connection elements on the tool point FRF 

 

If micromachining is considered, spindle speeds could reach very high speeds. As an example, 50000 

rpm is tried on the existing system and FRF of the tool point is observed with respect to different 

contact parameters given in Figure 4.10. In addition to the 20000 rpm results separation between 

forward and backward natural frequencies clearly increases as the connection parameters get stiffer at 

50000 rpm. Green line which has the stiffest connection in Figure 4.10 has the biggest difference 

between forward and backward natural frequencies. This result shows that realistic connection 

parameter modeling is crucial for the accurate determination of the system dynamics. Yet in order to 

get more realistic results for micromachining, geometry and related bearing and connection 

parameters should be updated for specified micro milling machine. 

 

 

Figure 4.10 Effect of elastic connection elements on the tool point FRF at 50000 rpm 
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4.3  Higher Order Beam Theory Results 

Bickford’s higher order beam theory is used in modeling as described in Section 2.1.2. HOBM 

includes shape function coefficient in order to eliminate shear correction factor requirement. Although 

different shape functions can be employed, 
2

2

4
( ) 1

3

z
z z

h


 
  

 
 is taken as a shape function in 

calculations. In literature, HOBM derivation is obtained considering only rectangular cross sections, 

thus only solutions of rectangular cross-sections are given in this section. HOBM results are compared 

with Timoshenko beam results considering different shear correction factors in calculations.  

First, free-free beams are considered in calculations. Material properties are taken from Table 4.4. In 

the first case 1 m length beam with 0.05 m height and 0.1 m width is taken. For rectangular cross-

sections width has no effect on natural frequencies as it is cancelled out in equations. Commonly 

recommended two different shear correction factors ( 5 / 6   and 14 /17  ) are used in 

Timoshenko beam calculations. HOBM and Timoshenko beam results for the first case are given in 

Table 4.12. 

 

Table 4.12 Natural Frequencies of for 0.05 m Height 

Mode 
HOBM 

[Hz]  

Timoshenko 

5 / 6   [Hz] 

Timoshenko 

14 /17   [Hz] 
% difference % difference 

1 0 0 0 0 0 

2 259.0 257.9 257.9 0.4 0.4 

3 704.5 699.4 699.2 0.7 0.8 

4 1353.9 1340.0 1339.6 1.0 1.1 

5 2181.1 2152.7 2151.6 1.3 1.4 

6 3160.4 3111.5 3109.1 1.5 1.6 

7 4266.3 4191.0 4186.7 1.8 1.9 

8 5475.8 5368.7 5361.9 2.0 2.1 

9 6768.7 6625.2 6615.3 2.1 2.3 

10 8128.5 7944.4 7930.6 2.3 2.4 

 

According to Table 4.12, HOBM and Timoshenko results are very close to each other and error is 

below 2.5 % for the first ten modes. Both shear correction factors give very close results for 

Timoshenko beam model. In the second case, height of beam is increased to 0.1 m. Results of the 

second case are given in Table 4.13. It is seen that differences increase as the thickness of the beam is 

increased.  Errors could go up to nearly 5%. However, both shear correction factors give close results 

with respect to each other. HOBM results are higher than Timoshenko results all the time. It is 

observed that Timoshenko beam results are more conservative than the HOBM solution. 
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Table 4.13 Natural Frequencies of for 0.1 m Height 

Mode 
HOBM 

[Hz]  

Timoshenko 

5 / 6   [Hz] 

Timoshenko 

14 /17   [Hz] 
% difference % difference 

1 0 0 0 0 0 

2 510.6 502.7 502.6 1.5 1.6 

3 1339.9 1307.6 1306.9 2.4 2.5 

4 2458.4 2385.2 2382.8 3.0 3.1 

5 3765.3 3639.5 3634.1 3.3 3.5 

6 5190.9 5005.5 4995.9 3.6 3.8 

7 6688.5 6438.4 6423.5 3.7 4.0 

8 8287.7 7908.6 7887.4 4.6 4.8 

9 9788.1 9395.3 9367.2 4.0 4.3 

10 11352.4 10882.9 10847.1 4.1 4.5 

 

In the final case study, height is increased to 0.2 m. Results are given at Table 4.14. According to 

results of Table 4.14, difference between HOBM and Timoshenko beam model increases dramatically 

after 8. mode. Again both shear correction factor gives close results. It is observed that as the 

slenderness ratio of the beam becomes smaller and smaller difference between HOBM and 

Timoshenko beam model increases considerably, vice versa. Timoshenko beam theory is again more 

conservative than the HOBM. It is also expected that for very high slenderness ratios, HOBM and 

Timoshenko beam solutions are similar to the Euler beam solutions. 

 

Table 4.14 Natural Frequencies of for 0.2 m Height 

Mode 
HOBM 

[Hz] 

Timoshenko 

5 / 6   [Hz] 

Timoshenko 

14 /17   [Hz] 
% difference % difference 

1 0 0 0 0 0 

2 967.3 921.2 920.7 4.8 4.8 

3 2284.0 2153.2 2150.0 5.7 5.9 

4 3801.4 3581.0 3573.1 5.8 6.0 

5 5346.2 5041.7 5026.9 5.7 6.0 

6 6837.6 6472.3 6449.6 5.3 5.7 

7 7790.6 7642.8 7606.8 1.9 2.4 

8 9598.3 8553.5 8513.0 10.9 11.3 

9 10975.2 8672.0 8629.3 21.0 21.4 

10 12712.6 10050.6 10004.3 20.9 21.3 
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4.4 Approximate Method Results 

In Rayleigh-Ritz solution, 
rx  type polynomials are directly used as trial functions. The spindle 

geometry is constructed step by step in order to investigate the efficiency of Rayleigh-Ritz method for 

different cases. In Rayleigh-Ritz solution maximum 16 trial functions can be used, on the other hand 

first 100 natural frequencies and mode shapes are used in the coupled model.  

For the first case, spindle shaft given in Table 4.1 is modeled without bearings and natural frequencies 

of Rayleigh-Ritz solution are compared with the model using receptance coupling. Results of these 

two different methods are shown in Table 4.15. In Figure 4.11 FRF of the two solutions are given. 

According to natural frequencies and FRF results, Rayleigh-Ritz and coupled system solutions are 

very close to each other.  

For the next step bearings are added onto the specified locations of the spindle shaft. In Rayleigh-Ritz 

method, bearings are employed just adding stiffness and damping terms into the related equations of 

stiffness matrices as explained in previous chapter. Spindle natural frequencies and tip point FRF 

comparisons are given in Table 4.16 and Figure 4.12. Natural frequencies are very close to each other 

and also coupled model and Rayleigh-Ritz FRFs match on top of each other very well.   

 

Table 4.15 Spindle Shaft Free-Free Natural Frequencies  

Rayleigh-Ritz [Hz] Coupled System [Hz] 

0 0 

1529.1 1529.1 

3558.6 3563.3 

6036.4 6041.5 

8745.9 8762.0 

 

 

Figure 4.11 Free-Free BC Spindle Tip Point FRF for Rayleigh and Coupled Solution 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-30

-25

-20

-15

-10

-5

0

Frequency [Hz]

F
R

F
 A

m
p

li
tu

d
e
 [

m
/N

]

 

 

Coupled Sol.

Rayleigh Sol.



39 

Table 4.16 Spindle Shaft with Spring Natural Frequencies  

Rayleigh [Hz] Coupled System [Hz] 

91.1 91.0 

210.5 210.3 

1537.6 1536.5 

3568.8 3565.4 

6036.6 6043.0 

8744.4 8765.7 

 

 

Figure 4.12 Spindle Tip Point FRF for Rayleigh and Coupled Solution with Added Bearings  

 

Natural frequencies obtained by Rayleigh Ritz method must be always larger than the exact 

frequencies unless the exact eigenfunctions are used in that case they are equal to the exact solutions 

[29, 34]. However, in results shown in Table 4.15 and Table 4.16 some of the Rayleigh natural 

frequencies are smaller than the coupled system solution. Main cause of this result is that coupled 

solution is not an exact solution. It is not possible to include all natural frequencies and mode shapes 

into the coupling calculations because of the required memory and time for the process. Truncation 

error is added onto the coupled system solution and it can be said that if Rayleigh-Ritz solution is 

lower than coupled solution, Rayleigh-Ritz results at this natural frequency is better than coupled 

solution. The effect of truncation error on the tool point FRF of the system is studied in Figure 4.13. 

As the number of modes utilized in the coupling decreases towards 25, especially higher modes shift 

rightward and this explains why some of the coupled natural frequencies are higher than Rayleigh-

Ritz solution. 

 

 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-30

-25

-20

-15

-10

Frequency [Hz]

F
R

F
 A

m
p

li
tu

d
e
 [

m
/N

]

 

 

Coupled Sol.

Rayleigh Sol.



40 

 

Figure 4.13 Effect of Taken Number of Modes on the Tool Point FRF of Coupled Solution 

 

Similarly, FRF comparison is made for holder and tool parts and the natural frequencies obtained by 

Rayleigh-Ritz method are again very close to the coupled model solution. FRF’s of the holder and tool 

calculated by Rayleigh-Ritz method and coupling solution is presented in Figure 4.14 and Figure 4.15. 

Both solutions are in good agreement in both cases.  

 

 

Figure 4.14 Free-Free Holder Tip Point FRF for Rayleigh and Coupled Solution 
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Figure 4.15 Free-Free Tool Tip Point FRF for Rayleigh and Coupled Solution 

 

Having obtained receptances of spindle, holder and tool pieces, they are elastically coupled together 

using described connection parameters presented in Section 4.2. Natural frequencies of the spindle-

holder-tool assembly considering Rayleigh-Ritz method, coupling method and two different ANSYS 

models are given in Table 4.17. Natural frequencies are very close to each other, largest error is at the 

4
th

 mode, where ANSYS 3D Solid Element solution is nearly 3% smaller than the other results.  

 

Table 4.17 Tool Point Natural Frequencies 

Rayleigh-Ritz [Hz] Coupled System [Hz] 
ANSYS Timoshenko 

Beam Element [Hz] 

ANSYS 3D Solid 

Element [Hz] 

71.7 71.6 71.6 71.3 

194.0 193.8 193.9 193.0 

871.9 870.2 867.5 867.7 

1442.2 1430.9 1424.0 1387.4 

1763.5 1763.5 1752.1 1752.3 

 

Tool point FRF’s of the coupled and Rayleigh-Ritz solutions are also quite similar to each other as 

shown in Figure 4.16. 
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Figure 4.16 Tool Tip Point FRF for Rayleigh and Coupled Solution 

 

Number of trial functions used in Rayleigh-Ritz method has important effect on the results. As the 

number of trial functions increases, convergence of the solution also increases. Figure 4.17 shows the 

results of tool point FRF with respect to different number of trial functions utilized. 10 and 16 trial 

functions are not much different from each other; however, if 5 trial functions are used, higher modes 

shifts towards right remarkably.  

 

 

Figure 4.17 Convergence of Rayleigh-Ritz Method with respect to Number of Trial Functions Used 

 

In addition to polynomials, mode shapes of free-free average diameter beam are also used as trial 

functions in Rayleigh-Ritz model. Maximum 9 free-free mode shapes can be used in the solution. In 

16 polynomials are compared in Figure 4.18. They are in good agreement in general. Free-free trial 

functions give slightly higher natural frequencies at higher modes.  
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Figure 4.18 Comparison of FRFs Obtained by Polynomials and Free-Free Trial Functions  

 

Convergence of free-free mode shapes is investigated in Figure 4.19. When the number of trial 

functions used is decreased to 5, higher deviations are observed at higher modes. Better convergence 

is obtained using 9 trial functions. 

 

 

Figure 4.19 Comparison of 9 and 5 Free-Free Mode Shape Trial Functions 

 

If elastic connection between spindle-holder and holder-tool subassemblies is assumed as rigidly 

connected to each other, dynamic response of total assembly can be obtained without using elastic 

coupling operation. If FRF of tool tip point is investigated, Figure 4.20, it is seen that the first two 

natural frequencies, which are due to shifted rigid body modes, match well yet other natural 

frequencies are not close enough. Especially Rayleigh-Ritz natural frequencies at higher modes are 

much larger than the coupled solution.  

0 500 1000 1500 2000 2500 3000 3500 4000
-25

-20

-15

-10

-5

Frequency [Hz]

F
R

F
 A

m
p

li
tu

d
e
 [

m
/N

]

 

 

16 Polynomials Trial Func. 

9 Free-Free Trial Func. 

0 500 1000 1500 2000 2500 3000 3500 4000
-25

-20

-15

-10

-5

Frequency [Hz]

F
R

F
 A

m
p

li
tu

d
e
 [

m
/N

]

 

 

9 Free-Free Trial Functions

5 Free-Free Trial Functions



44 

 

Figure 4.20 Rigidly Connected Tool Tip Point FRF 

 

If mode shapes of rigidly connected system are investigated in FEM solution, it is seen that higher 

mode shapes are dominated by tool itself at the 4
th

 mode at 1721 Hz as shown in  

Figure 4.21. Mode shape of the 5
th

 mode at 2749 Hz is shown in Figure 4.22. It can be said that trial 

functions used in Rayleigh-Ritz method cannot represent the exact mode shapes accurately at the 

given modes and solution stays far away from the exact values.  

 

 

Figure 4.21 Tool Dominant Mode Shape at the 4
th

 Mode  
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 Figure 4.22 Tool Dominant Mode Shape at the 5
th

 Mode  

 

Then tool is removed from the assembly in order to understand the effect of tool related mode shapes. 

Results are given in Figure 4.23 and very good match is obtained between both solutions without tool. 

As a result trial functions used in Rayleigh-Ritz method should represent the systems exact mode 

shapes as closely as possible in order to converge to a good solution and if there is a significant 

difference in the diameters of the beam segments that portion should be modeled separately in order to 

attain good accuracy. 

 

 

Figure 4.23 Rigidly Connected Tip Point FRF without Tool 
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As it is seen from the results, Rayleigh-Ritz method gives very accurate and reliable results, if used 

trial functions resemble the exact mode shapes.  

Another advantage of Rayleigh-Ritz method is that it is very fast with respect to coupling operation. 

For the analysis performed on a computer with Intel i5 2.5 GHz processor and 4 GB Ram with 0.5 Hz 

increments in FRF construction from 0 to 2000 Hz, tool point FRF calculation takes 7.4 seconds if 

Rayleigh-Ritz method is used; however, coupling method takes 18 seconds. Rayleigh Ritz method is 

nearly 2.5 times faster than coupling method in tool point FRF calculations. This operation also 

includes flexible coupling. If rigid coupling is considered between spindle-holder and holder-tool, 

Rayleigh-Ritz method just takes 2 seconds, yet coupling takes 14.3 seconds. It is 7 times faster than 

the coupling method. Rayleigh-Ritz method saves a huge amount of time in calculations and also 

preparation time spend on the assembly is less than the coupling model.  

4.5  Stability Lobes Results  

Tool point FRF results obtained in Section 4.2 are used in order to construct stability lobes. In stability 

lobe construction process Budak’s [32] milling stability equations are used. Stability lobes constructed 

considering different spindle speeds. Entry and exit angles are assumed as 0 and 90 degrees. 
tK  and 

rK  are taken as 796 MPa and 0.212 MPa [4]. The cutter is assumed to have 4 teeth. For the first case, 

stability lobes for 0 and 10000 rpm speeds are constructed as shown in Figure 4.24. Depth of cut at 

10000 rpm is slightly higher than zero spindle speed condition. If other parts of stability lobe diagram 

are investigated, higher spindle speed results slightly higher depth of cut in general. Depth of cut 

increases from point A to point B as shown in the figure for 10000 rpm. Stability lobe diagram for 

10000 rpm is only valid at point B because tool point FRF depends on spindle speed. Stability lobes 

for other desired speeds should be drawn separately.  

  

 

Figure 4.24 Stability Lobe at 10000 and 0 rpm Spindle Speed 

 

In the second case, spinning speed is increased to 20000 rpm. Comparison for 0 and 20000 rpm is 

given in Figure 4.25. Depth of cut at 20000 rpm moves from point C to D and it is slightly increased. 

If comparison is made with Figure 4.24, depth of cut at 20000 rpm is larger than 10000 rpm in 

general. It can be said that increase in the spindle speed shifts stability lobes a little bit upward with 

respect to 0 spinning speed case. In both figures, there are high depth of cut pockets around 0 and 

5000 rpm. At these locations depth of cut goes to very high values. It can be noticed that there is also 

such pocket towards 25000 rpm spindle speed. Although solutions for these two figures are only valid 

for 10000 and 20000 rpm, rough estimation can be done about depth of cut just considering only 0 
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rpm as they are slightly higher than 0 rpm results. In other words effect of spinning is limited on the 

stability lobe diagrams. 

 

 

Figure 4.25 Stability Lobe at 20000 and 0 rpm Spindle Speed 

 

However, if the exact value of depth of cut is required in one diagram, change in the tool point FRF 

with respect to spindle speed should be considered in the stability calculations. Considering 15000-

20000 rpm spindle speeds, an example of exact stability lobe diagram is given in Figure 4.26. Green 

line is for 15000 rpm which is only valid at 15000 rpm point and blue line is only valid at 20000 rpm. 

Red line is drawn iteratively considering depth of cut at mid speeds. Red line is valid for all spindle 

speeds between 15000 and 20000 rpm. Full stability diagram can be obtained applying a similar 

procedure. However in real life situation, 0 rpm stability results are sufficient enough as the 

differences are not considerable; moreover, they are conservative as well. 

 

 

Figure 4.26 Continuous Stability Lobe Between 15000 and 20000 rpm 
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In Figure 4.27 stability lobe comparison for Rayleigh-Ritz model and coupled model is given. It is 

observed that they are nearly identical.  

 

 

Figure 4.27 Stability Lobe Comparison for Rayleigh-Ritz and Coupled Model 
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CHAPTER 5  

 

SUMMARY AND CONCLUSIONS  

In this thesis, effects of spinning speed on the tool point FRF of the spindle-holder-tool assembly 

which is the most important dynamic parameter for the chatter stability are presented. Previous study 

is improved by including spinning into the Timoshenko beam model. Changes in the chatter stability 

lobe diagrams are studied considering different spindle speeds. In addition, HOBM is applied to a 

rectangular cross section beam and results are compared with Timoshenko beam model in order to 

investigate the effect of shear correction factor on the beam characteristics and changes in the natural 

frequencies especially for stub beams. As an alternative approach to a coupling operation, Rayleigh-

Ritz method is studied in modeling of the spindle-holder-tool assembly. Tool point FRF of the system 

and chatter stability lobes are obtained by using Rayleigh-Ritz method as well.  

5.1 Modeling of Spindle Assembly 

Milling or turning machines can reach at very high rotational speeds, thus gyroscopic effects should 

be taken into account. For this reason spinning Timoshenko beam theory is employed in the 

continuous beam modeling. 

Considering finite length beam, spinning Timoshenko beam solution is explained applying free-free 

end boundary conditions. Characteristic equations and related mode shapes are obtained for two 

different cases depending on frequency range. Since, the requirement of shear correction factor is 

eliminated in HOBM; it is superior with respect to Timoshenko beam theory. HOBM characteristic 

equation for free-free end boundary conditions is explained using a previously defined shape function. 

Spindle-holder-tool assembly is composed of multiple segmented beams, each one of them is modeled 

as a free-free end uniform beam and those are rigidly coupled to each other using end point FRF 

information obtained by spinning Timoshenko beam model. Only end point receptances of the 

coupled structures are obtained as a result of rigid coupling operation; in other words, connection 

point information is no longer available. Also, bearings are added using structural modification 

method to the related points. In addition to this, there are flexible connections between spindle-holder 

and holder-tool subassemblies. In order to represent flexible connection, elastic coupling method is 

applied to those subassemblies. Although more time and effort is required, impedance coupling 

method can also be used instead of all three described coupling methods (rigid coupling, elastic 

coupling and structural modification methods). In impedance coupling technique, not only connection 

point information but also information of all desired points can also be kept; as a result of this higher 

order matrices should be dealt in calculations. In coupling operation, if high accuracy is desired, high 

number of natural frequencies and related mode shapes should be calculated for each single beam 

element of the assembly. Then, they are coupled together in the desired frequency range. Yet, this 

range is scanned step by step frequency increments meaning very long and time consuming operation. 

Furthermore, Rayleigh-Ritz method allows obtaining coupled response of the assembly without 

needing coupling operation. Huge amount of time is saved as a result of Rayleigh-Ritz method. FEM 

model is constructed using Timoshenko beam elements and combination elements. In addition to the 

Timoshenko beam elements, the assembly is also analyzed using 3D solid elements in finite element 

software.    

5.2 Stability Lobe Construction   

Stability lobes are determined in order to avoid chatter. Turning is an orthogonal cutting operation in 

which feed direction is perpendicular to the cutting direction. Turning stability lobes are easy to 

construct as it only needs cutting coefficient and real tool point FRF. However, milling is a more 
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complicated process, milling geometry and related variables are time dependent. Analytical solution 

for milling operation is explained which results in a very fast and accurate stability lobe construction. 

5.3 Numerical Results and Comparison 

Tool point FRF of the assembly is obtained using spinning Timoshenko beam considering different 

spindle speeds. It is observed that, addition of the spindle speed to the model, natural frequencies of 

the spindle split into two part as forward and backward natural frequencies. As the spindle speed 

increases, difference between forward and backward natural frequencies increases as well.  The same 

assembly with similar spindle speeds is constructed in commercial finite element software. Other than 

the first two natural frequencies, which are actually modification of the rigid body modes due to 

bearing supports, the results obtained for the elastic modes are in good agreement with the finite 

element solution. Difference between the finite element and analytical results are less than 1% for the 

first 7 natural frequencies. It should be noted that amount of separation is not significant for practical 

applications, as the forward and backward natural frequencies peaks are very close to each other. They 

could not be detected separately because of the damping in the system. 

For rectangular cross section free-free end condition beam, HOBM and Timoshenko beam model are 

compared utilizing commonly advised shear correction factors. It is observed that commonly advised 

shear correction factors taken from literature gives very close results for specified rectangular beam. 

For the first case, beam with high slenderness ratio gives close results in both HOBM and 

Timoshenko beam where the difference is less than 3%. However, as the slenderness ratio is 

decreased, difference between HOBM and Timoshenko beam starts to increase which is dominant at 

higher natural frequencies. Especially at the third case, differences at the highest natural frequencies 

are more than 20%. 

In this thesis, spindle-holder-tool assembly is constructed using Rayleigh-Ritz method and it is 

compared with coupled system solution assuming zero spinning speed. Natural frequencies and FRF’s 

of spindle shaft, holder and tool are in very good agreement for both of the solutions. Weak point of 

Rayleigh-Ritz is observed when the rigid connection is assumed between spindle-holder and holder-

tool assemblies. If there is sharp change in the cross sections of the beams, used trial functions cannot 

simulate exact mode shapes and Rayleigh-Ritz natural frequencies stay far above from the exact 

natural frequencies. However, this deficiency is overcome by considering the assembly in two parts 

for which Rayleigh-Ritz method is applied separately and the obtained results are coupled to each 

other. It is observed that Rayleigh-Ritz method reduces computational time considerably with respect 

to coupling operation. For elastically connected assembly and for rigidly connected assembly, it 

requires 2.5 and 7 times less computational time, respectively.  

Stability lobes are compared considering spinning and non-spinning cases for the coupled spindle-

holder-tool assembly. It is observed that spinning speed increases the limiting depth of cut to a 

slightly. All stability lobes are shifted upward depending on the spinning speed. For practical 

applications it can be expressed that amount of shift in stability lobes is not significant. Stability lobes 

obtained by Rayleigh-Ritz and coupling methods are also compared and similar results are obtained.  

5.4 Suggestions for Future Research  

Bearing and contact parameters has an important role in the resultant tool point FRF. Stiffness and 

damping parameters are related to the type of contact used in connection point and type of bearings. 

Thus more realistic bearing and contact parameters can be applied to the model. Also, HOBM can be 

extended to the circular cross sections. More realistic tool point FRF and stability lobe calculations 

can be performed by using HOBM, since coupling model uses beam solutions for which the 

slenderness ratio is very small and application of Timoshenko beam model to those beams may not 

yield correct results. 
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