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ABSTRACT 
 
 
 
 

SEISMIC PERFORMANCE EVALUATION OF REINFORCED CONCRETE FRAMES 
INFILLED WITH AUTOCLAVE AERATED CONCRETE MASONRY 

 

 
Siddiqui, Umair Ahmed 

M.Sc., Earthquake Engineering and Engineering Seismology 
Supervisor: Prof. Dr. Haluk Sucuoğlu 
Co-Supervisor: Prof. Dr. Ahmet Yakut 

March 2013, 119 pages 
 
 
Seismic risk reduction requires detailed assessment and rehabilitation of vulnerable buildings to avoid 
significant property and life losses. Several reinforced concrete buildings are deficiently designed and 
constructed and also contain non-engineered unreinforced masonry infill panels which dominate the 
seismic response and impart excessive lateral forces for which they are not designed for. Therefore, 
seismic performance assessment procedures recommended in guidelines and codes needs detailed 
examination through rigorous experimental and analytical research to ensure the adequacy of 
suggested provisions and modelling parameters. 

This study investigates the seismic behaviour of four reinforced concrete frames, constructed in the 
Structural Dynamics Laboratory at Middle East Technical University and tested by the pseudo-
dynamic testing procedure. These four specimens are investigated in pairs of two: the “Non-
conforming” with material and detailing deficiencies, and the “Code-conforming” compliant with 
Turkish Earthquake Code 2007. Each pair contains one bare frame while another frame infilled with 
autoclave aerated concrete (AAC) block masonry. The focus of this study is to experimentally 
investigate the influence of AAC masonry infill panels on the seismic response of RC frames in both 
configurations. Numerical modelling of frames is conducted on the OpenSees platform following 
guidelines of TEC-2007 and ASCE/SEI 41-06.Models, calibrated with experiments using time-history 
results, are used for assessment using pushover and time-history methods in accordance with the 
procedures of TEC-2007 and ASCE/SEI 41-06. 

The presence of AAC infills is found to considerably influence deformation pattern, damage 
distribution and failure modes in deficient frames whereas in code-conforming frames the effect is not 
significant. 

Calibrating the models of deficient frames by using reduced nominal strengths and modified joint-
offsets in order to predict accurate seismic response and damage distribution, is not efficient. To 
capture the deformation pattern on local scale, joint flexibility and frame-infill interaction needs to be 
explicitly accounted. 

The assessment of damage in members bounding the infill panels with ASCE/SEI 41-06 provisions 
gives accurate predictions of observed damages whereas TEC-2007 under estimates the damages for 
those members. 
 
 
Keywords: Pseudo-dynamic Testing, Autoclave Aerated Concrete, Unreinforced Masonry Infill, 
Equivalent Strut, Performance Evaluation. 
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ÖZ 
 

 

SEISMIC PERFORMANCE EVALUATION OF REINFORCED CONCRETE FRAMES 
INFILLED WITH AUTOCLAVE AERATED CONCRETE MASONRY 

 
 

Siddiqui, Umair Ahmed 
Yüksek Lisans, Deprem Mühendisliği ve Mühendislik Sismoloji 

Tez Yöneticisi: Prof. Dr. Haluk Sucuoğlu 
Ortak Tez Yöneticisi: Prof. Dr. Ahmet Yakut 

Mart 2013, 119 sayfa 
 

Sismik riskin azaltılması aynı zamanda can ve mal kaybını da önleyecek olan zayıf binalarının detaylı 
olarak incelenmesi ve güçlendirilmesini gerekli kılar. Bazı betonarme binalar, yapısal olmayan dolgu 
duvar panelleri ile yetersiz olarak tasarlanmakta ve inşa edilmektedir. Dolgu duvarlar bu tür yapıların 
davranışını önemli ölçüde etkilemekte olup, yapıya artan deprem yüklerinin etki etmesine yol 
açmaktadır. Dolayısıyla, şartname ve kılavuzlarda önerilen sismik performans değerlendirme 
yöntemlerinin deneysel ve analitik araştırmalarla ayrıntılı olarak irdelenerek yapılan önerilerin ve 
modelleme parametrelerinin yeterlilikleri konusunda değerlendirmeler yapılmalıdır.  

Bu çalışmada, Orta Doğu Teknik Üniversitesi, Yapı Mekaniği Laboratuvarında inşa edilen ve dinamik 
benzeri yöntemle test edilen dört adet betonarme çerçevenin sismik davranışı incelenmiştir. Bu dört 
numune iki ayrı çift olarak incelenmiştir: malzeme ve detaylandıma açısından “Yönetmelik 
Uyumsuz”, ve Deprem Bölgelerinde Yapılan Binalar Hakkında Yönetmelik (DBYBHY 2007) Uyan 
“Yönetmelik Uyumlu”. Her çerçeve çifti bir adet yalın çerçeve ile aynı çerçevenin gaz beton (AAC) 
ile doldurulmuş numunesinden oluşmaktadır. Bu çalışmanın odak noktası her iki şekilde inşa edilmiş 
sistemde, AAC Kağir panellerin betonarme çerçevelerin sismik davranışı üzerindeki etkisini deneysel 
olarak irdelemektir. Çerçevelerin analitik modelleri DBYBHY 2007 ve ASCE/SEI 41-06 önerilerine 
uygun olarak OpenSees bilgisayar programı platformunda hazırlanmıştır. Deneysel sonuçlar ile 
kalibre edilen modellerin performans değerlendirmeleri itme analizi ve zaman tanım alanında yapılan 
analizler ile DBYBHY 2007 ve ASCE/SEI 41-06 yöntemlerine göre yapılmıştır.  

AAC dolgu duvarlarının yetersiz çerçeveli sistemin deformasyon şekline, hasar dağılımına ve göçme 
moduna önemli etkisi olduğu ancak Yönetmelik Uyumlu çerçevelere etkisinin çok belirgin olmadığı 
görülmüştür.   

Yetersiz çerçeve modellerinin daha iyi hasar dağılımı ve davranış elde etmek için nominal dayanım 
azaltılması ve birleşim bölgesi revize modeli ile kalibrasyonu etkin olmamıştır. Lokal düzeydeki 
deformasyon şeklinin elde edilebilmesi için birleşim esnekliği ve çerçeve-dolgu duvar etkileşiminin 
dikkate alınması gerekir. 

Dolgu duvar çevresindeki elemanların hasarlarının tespiti için kullanılan kriterlerde ASCE/SEI 41-
06’nın yeterli tahminler verdiği ancak DBYBHY 2007nin hasarları daha düşük verdiği görülmüştür.   
 
 
Anahtar Kelimeler: Dinamik-Benzeri Deney, Gaz Beton Kağir, Donatısız Yığma Dolgu Duvar, 
Eşdeğer Çubuk, Performans Değerlendirmesi. 
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CHAPTER 1 
 
 
 

INTRODUCTION 

 

 
1.1 General 

Several reinforced concrete buildings around the world are inadequately designed and/or constructed 
according to the regulations of present seismic codes and best practices. In order to reduce the seismic 
risk posed by these vulnerable buildings, proper assessment and strengthening techniques are 
required. In the recent past, absence of sufficient knowledge and experience resulted in nonexistence 
of technical standards for risk reduction process. 

The recent devastating earthquakes in Turkey as well as other seismically active countries in the 
World, which caused significant economic and human loss, have grown concerns about the 
performance evaluation of these deficient buildings. Preliminary seismic performance assessments 
funded by the government of Turkey has revealed that a significant number of reinforced concrete 
(RC) buildings have concerning deficiencies for the seismic zone they are situated in. Studies 
conducted by Sucuoğlu et al. (2007) have shown that commonly observed deficiencies are: plan 
irregularities, presence of heavy overhangs, low material strengths, inadequate member sizes, use of 
plain reinforcement, poor detailing in structural members and joint regions etc. Seismic performance 
of building is affected differently for each individual deficiency and therefore, should be separately 
studied. 

In addition to these deficiencies, another important factor which affects the seismic performance 
evaluation, and is generally neglected, is the interaction of non-engineered masonry infill panels with 
the primary structural elements in resisting seismic loads. Sizeable analytical and experimental 
research has concluded that the stiffness and strength properties of the frame system are considerably 
altered by the integral action of frame-infill assemblage. Neglecting the interaction of infills can 
underestimate the amount of forces and result in brittle failures. It is of utmost importance to 
rehabilitate and retrofit the buildings at risk before a major earthquake strike since many populated 
cities in Turkey and generally in the World are located near active faults. 

In the light of masonry infilled frame construction, the use of Autoclaved Aerated Concrete (AAC) 
masonry has gained familiarity due to its light weight and excellent fire resistant and thermal 
insulation capabilities which are ideal for seismic design and risk reduction. Because of these 
advantages, the utilization of AAC material for infill panels in areas of high seismicity have also 
gained popularity, for both new as well as rehabilitation of existing construction hence, signifying the 
need of sufficient experimental and analytical research to study the seismic response of AAC masonry 
infilled RC construction. 

The current seismic building code in Turkey, the Turkish Earthquake Code (TEC), was released in 
2007 and provides evaluation procedures and performance criteria for the design of building. For the 
first time in design code history, the Ministry of Construction and Resettlement in Turkey added a 
section regarding the assessment and strengthening of existing buildings to the TEC 2007 in order to 
address this issue. To address the reliability of these newly proposed additions experimental research 
is essential for validation, future revisions and improvements on the current code. 

The Scientific and Technological Research Council of Turkey (TÜBİTAK) took this responsibility 
and approved funding for a comprehensive research project for the verification of these new additions 
in TEC 2007 through experimental testing on various concrete frames exhibiting existing construction 
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practises in Turkey. The title of this project is “Developing Performance-Based Evaluation Procedures 
and Strengthening Methods for the Turkish Seismic Code through Experimental and Analytical 
Research” with project number 108G034. The current thesis utilizes part of this overall experimental 
outcome to study the response of infilled frame systems under code-conforming and deficient 
construction. 

1.2 Problem Statement 

In Turkey, the general building stock is characterized by the presence of reinforced concrete (RC) 
frames infilled with non-structured unreinforced masonry wall panels which are, according to the 
current construction practices, completely in contact with the bounding frame (i.e. without separation 
joints) thereby interact considerably with the primary structural elements. These non-ductile infill 
panels can cause varying modifications in the seismic response of the building, both at the global as 
well as local scale, depending on their mechanical properties, geometric distribution and interaction 
with structural elements.  

The Turkish Earthquake Code 2007 generally considers unreinforced masonry infill panels as non-
structural component. The existing construction consists of non-engineered infill panels with no 
separation between the infill panel and the bounding frame. In addition, these panels lack either 
specific devices such as ties, belts, posts, shear connectors etc., as in the case of new construction, or 
retrofitting techniques such as bandaging in the case of existing structures, which are essential for 
integral interaction with the frame as well as prevention of expulsion or collapse. In TEC 2007 
(section 7.5.2.4 and 7.6.4.6) effect of masonry infill panels is stated to be accounted in developing 
simulation models but limited to only those infill panels which are retrofitted with the techniques 
stated in Annex-7F of the code. However, other than strengthened masonry infill panels, there are no 
definite performance assessment provisions for the cases which reflect the existing construction. 
Further experimental and analytical research on the cases reflecting the existing construction is 
therefore necessary to adequately evaluate the performance of the composite assembly of frame-infill 
system. 

The newly outlined procedures in the TEC 2007 for the assessment and strengthening of existing 
buildings are the first to be employed in engineering practice around the globe. Leading earthquake 
engineering countries such as the USA and Japan do not have legal documents regarding this matter 
rendering comparative analyses impossible. The procedures outlined in the code are loosely based off 
of ASCE/SEI 41-06 but differ slightly in defining the member acceptance criteria. Due to the urgent 
situation in Turkey regarding amount of rehabilitation needed, the validation of newly proposed 
additions in TEC 2007 through experiments and analyses is inherently necessary in order to ensure 
that modelling parameters are adequate and comprehensive enough for accurate seismic assessment 
and rehabilitation of existing structures. 

1.3 Literature Review  

1.3.1 Provisions for Seismic Assessment of Reinforced Concrete Frames 

During a ground excitation, lateral loads imposed on a conventional reinforced concrete frame due to 
ground shaking are resisted by the gravity load-bearing columns of the structure. Thus, these columns 
need to be adequately designed in order to have the sufficient strength and ductility required from the 
force and displacement demands of an earthquake. Therefore, in designing of a reinforced concrete 
structure, the accurate estimation of column ductility is very vital because it is one of the main 
governing factors of its seismic performance and failure mechanisms.  

In performance-based assessments, individual structural members are classified according to their 
failure modes based on their nonlinear deformation capacities.  These classifications are then used to 
determine modelling parameters and deformation limits for a pre-defined performance level. 

Released in 1997, FEMA 273 (Guidelines for the Seismic Rehabilitation of Buildings) was one of the 
leading global comprehensive documents which proposed various technical requirements for the 
seismic rehabilitations of existing buildings. 
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Soon after, in 2000, FEMA 356 (Pre-standard and Commentary for the Seismic Rehabilitation of 
Buildings) replaced FEMA 273 and became the new benchmark document. Methods outlined in 
FEMA 356 served as a basis for future developments and research topics of many codes and 
regulations around the globe. As this document was revised and improved over time, it was replaced 
by ASCE/SEI 41-06 in 2006. In 2007, a document titled ASCE/SEI-41 Supplement-1, based on 
research on the proposed effective stiffness models, modelling parameters and acceptance criteria, was 
released. This supplement to the original ASCE/SEI 41 contained provisions related to rehabilitation 
of existing reinforced concrete buildings.  ASCE/SEI 41-13 is scheduled to be released in 2013, but 
there are virtually no changes for the reinforced concrete provisions outlined in the first supplement. 

In ASCE/SEI 41-06, concrete provision for modelling parameters and numerical acceptance criteria 
are classified based on flexure failure, shear failure, flexure-shear failure, or inadequate lap splicing.  
However, it is stated in EERI/PEER (2006) that the original proposed acceptance criteria from 
ASCE/SEI 41-06 yield conservative results. Furthermore, studies conducted by Sezen and Moehle 
(2006) demonstrated the existence of limited plastic deformation capacities of columns due to flexural 
yielding prior to shear failure, commonly known as flexure-shear failure.  Thus, a revision of 
ASCE/SEI 41-06’s deformation limits was required in order to improve future estimations. 

Classifications of columns for determining modelling parameters were revised and published in 
ASCE/SEI-41 Supplement-1, which included the flexure-shear failure mode.  In this supplement, 
three conditions are defined and classification of columns is obtained through its shear 
capacity/demand ratio and the transverse reinforcements of critical sections. Once classified, 
modelling parameters and acceptance criteria can be obtained for each type of failure mode: flexure, 
flexure-shear, and shear. 

In Chapter 7 (Seismic Assessment and Retrofit Design of Existing Buildings) of the TEC 2007, the 
failure of structural members is classified into either ductile or brittle failure, which respectively 
corresponds to flexure and shear failure as defined in FEMA 356. However, the TEC 2007 has yet to 
incorporate the flexure-shear mode in its classification procedures, which is essential in order to 
accurately estimate member modelling parameters and acceptance criteria. 

The TEC 2007 provides a strain-based procedure for nonlinear performance assessment of existing 
buildings. Both pushover and time-history analysis methods are based on modelling with lumped 
plasticity elements. The nonlinear moment-rotation behaviour of members is modelled using 
rotational springs defined at the member ends. 

Through this approach, deformation demands are calculated in terms of plastic rotations, whereas the 
classification procedures are defined in terms of strain limits, for both concrete and longitudinal 
reinforcement. These plastic rotation demands are then converted to their equivalent strain demands 
through individual member moment curvature analysis. 

The strain values obtained are then used to determine the damage regions at member ends. This strain-
based performance evaluation method yields more realistic results when compared to using the 
rotation demands. However, it is a tedious process which requires individual member cross-sectional 
analyses, an intermediate step which contains sensitive assumptions that may decrease the overall 
accuracy of the method. 

It is essential in both linear and nonlinear modelling that joint strength and flexibility capacities are 
captured as accurately as possible. Earthquake-induced deformations in moment resisting frames 
cause moment reversals at joints of columns and beams which lead to high shear demands in these 
regions. If improperly modelled, frame stiffness reduction and/or premature strength loss will not be 
captured correctly. 

Before the onset of plasticity, the elastic portion of a beam-column joint’s behaviour can be modelled 
as rigid offsets of different lengths at element ends, representing the joint flexibility through the 
connecting beam-column elements. 
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In FEMA 356, the simple approach of setting rigid offsets equivalent to the joint dimensions of the 
beam and column is recommended. ASCE/SEI 41-06 improved on this, setting rigid offset lengths 
which are a function of the flexural strength proportions of connected beam-column joints.  In the case 
of a strong column-weak beam system, rigid offsets are only required for columns, whereas in a strong 
beam-weak column system, rigid offsets are only recommended for beams. For intermediate cases, 
half the length of the joint dimension is modelled as the rigid offset length for columns and beams at 
the joint. The TEC 2007 (section 7.4.12) states to define infinitely rigid offsets for both columns and 
beams. In the current thesis, rigid joint offsets are defined in the model using ASCE/SEI 41-06 
recommendations which are later modified as per experimental observations for the purpose of 
calibration. 

In a recent study by Birely et al. (2012), recommended procedures from FEMA 356 and ASCE/SEI 
41-06 for rigid offsets were evaluated through 45 models. The findings were that defining rigid offsets 
as per FEMA 356 resulted in overly stiff models and using ASCE/SEI 41-06 resulted in more realistic 
values. FEMA 356 predicts an overly stiff model which inaccurately predicts the initial yield 
displacements, while ASCE/SEI 41-06’s predictions are generally good, except for in the case of 
joints which did not satisfy the requirements of ACI 318-08. Thus, it was recommended that an 
alternative definition of rigid offsets be set for joint compliance/non-compliance with ACI 318-08, in 
order to improve the estimation of initial yield displacements. 

The behaviour of beam-column joints have been an extensively researched topic in the past, resulting 
in the general conclusion that joints experience high shear deformations prior to the yielding of 
longitudinal reinforcement. Once beam-column joints enter the plastic region, properly modelling 
their nonlinear behaviour becomes an important factor in accurate simulations. 

1.3.2 Seismic Response of Unreinforced Masonry (URM) Infilled Frames 

The behaviour of reinforced concrete frames infilled with masonry panels is a complex phenomenon 
and has been the topic of research since past several decades. Despite the differences in observations, 
hypotheses and methodologies claimed among the researchers and scientists, it is a well establish 
consensus that the stiffness, strength and energy dissipation characteristics are greatly altered by the 
integral action of the frame and the infill. The frame intends to transfer the lateral loads to the infill 
and the infills contribute to the overall stiffness depending on the manner the load is distributed to it 
and, in doing so, the lateral load response of the frame is greatly affected by the reaction of the infills. 

The interactive behaviour of frame and infill is the governing factor for strength of the composite 
assemblage. Masonry infill material is non-ductile which fails in brittle fashion due to diagonal 
tension. However, once confined by the bounding frame, it is capable of resisting high compressive 
forces until a crushing failure is reached. This capability of resisting compressive forces depends on 
the properties of the confining frame as well as the infill itself. 

The mechanism of load transfer between the frame and the infill during a seismic event is very 
important to be understood. When the lateral load is applied to the infilled frame, initially it is resisted 
solely by the frame until the motion is strong enough to mobilize the composite action of wall/frame 
system without any visible damage. This means that the induced displacements are sufficient enough 
to overcome the lack of fit between the wall and frame as well as the shrinkage of the masonry infill 
panel as demonstrated by Mosalam (1996). Once the composite action is mobilized, the tensile 
stresses starts to build up due to the distortions in the panel geometry causing the separation between 
the infill and the frame, except at the loaded corners, when the tensile strengths exceeds the bond 
strength of frame-infill interface. At this stage, the infilled frame exhibits a diagonally braced RC 
frame system. The similar behaviour is observed on both reversed and forward cyclic motion. With 
the increasing magnitude of lateral forces, the masonry panel cracks in a diagonal X-pattern when the 
tensile strength of the infill material is reached. Upon cracking of infill the stiffness of the composite 
system decreases. Further increase in the lateral forces causes further cracking parallel to the loaded 
diagonal. The composite assemblage can thus be represented with a frame system braced diagonally 
by means an ‘equivalent compression strut’ with a degrading stiffness. The failure of the system is 
governed by the compression crushing of these struts or the brittle failure in the confining elements. 
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An enormous quantity of experimental and analytical research has been conducted to study the effects 
of masonry infills on the response of infilled frames. A good up-to-date review of the corresponding 
experimental research can be found in the PhD dissertation of Koutromanos I. (2011). Some of the 
research studies related to the current thesis are discussed here in brief. 

Klingner and Bertero (1978) conducted a series of tests on 1/3-scaled single bay three and half storey 
masonry infilled RC frames to investigate the cyclic behaviour of engineered infilled frames under 
seismic action. The infills contained reinforcement and the frames were designed to show ductile 
response causing no shear failures. The bare frame was tested with strong column-weak beam 
configuration which was later infilled with masonry panels of hollow clay blocks and concrete block 
and test is carried out again. Initially, the cracks show the pattern consistent with deep beam stress 
orientation. After the frame infill separation occurred, the infill panels behaved like diagonal struts. In 
the end, crushing of infills led to the strength degradation and formation of soft-storey in every 
specimen tested. Important to note is that soft storey formed in the second storey for the specimen 
infilled with concrete blocks. They concluded that the performance of infilled frames was much better 
than bare frame with improvements in strength and stiffness of 2 and 6 times respectively which 
covers more than well the increased demand caused by period shortening. The energy dissipation 
capacity of frames was also better which was attributed to the distributed cracking of infills and 
prevention of deterioration of beam-column joints. The engineered panels achieved the desired 
performance preventing excessive permanent deformation reducing the secondary forces caused by P-
delta effects. 

Bertero and Brokken (1983) conducted the test in the similar type of specimens as Klingner and 
Bertero (1978) several types of masonry infills namely unreinforced hollow clay panels, reinforced 
concrete block panels, solid brick panels with welded-wire reinforcement and a stucco (mortar) cover, 
and lightweight concrete panels. The test results indicated that the strength of an infilled frame is not 
merely the sum of the strengths of the infill panel and the bounding frame, because the latter may not 
reach its capacity simultaneously with the infill. Depending on the type of the infill, the lateral 
stiffness was 5.3 to 11.7 times that of the bare frame. They also performed analytical studies using an 
equivalent strut model calibrated with their test results on the eleven storey prototype. They concluded 
that infills tends to fail in explosive (brittle) fashion and the strength, stiffness and deformational 
capacities of masonry infills are very sensitive to material and workmanship quality. They also 
indicated that majority of infilled specimen failed with soft-storey mechanism. 

Kahn and Hanson (1979) investigated the importance of seismic detailing as well as infill to frame 
strength ratio on the structural response of infilled frames. They have found that the infill transfers 
shear stresses to the columns causing them to fail in brittle manner. They concluded that providing the 
separation between the bounding columns and infill panels and improving the transfer of shear from 
infill to the columns by providing adequate confinement reinforcement can prevent brittle failure of 
columns and hence enhance overall ductility.  

Mehrabi et al. (1996) conducted the tests on fourteen 1/2  scaled frame specimens for monotonic and 
cyclic loads to investigate the strength increase as well as the impact of panel aspect ratio, strength of 
infill, magnitude of vertical stress and lateral load history on the structural performance of infilled 
frames. They found that the cyclic loads tend to cause reduction in peak strength as well as faster 
strength degradation of the frames as compared to monotonic loads. They also investigated that for the 
case of infill with solid units, the damage pattern was different for a non-conforming frame than for a 
code-conforming frame. For a weak frame the damage pattern included brittle shear failures in the 
columns, while for a strong frame, damage occurred in the form of crushing in the infill panel 
masonry in the diagonal compression strut and at the corners. 

Another study conducted by Hobbs and Samai (1985) was aimed at investigating the effect of relative 
stiffness of infill with respect to the frame. They have also reached a conclusion that a weak infill give 
a smooth behaviour close to an ideal-elastic perfectly plastic while a stronger infill results in brittle 
response due to shear failure in the members. 
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The presence of openings is also an important factor causing an alteration in the response of infill 
panels. Mosalam et al. (1998) tested a 1/4-scale, two-story, two-bay, masonry-infilled steel frame with 
pseudo-dynamic test apparatus with a series of simulated ground motions. The second storey infills 
were provided with openings and thus the first cracks occurred at the second rather than the bottom 
story. However, the final damage was more extensive and concentrated at the bottom story based on 
the crack pattern obtained. In a similar study but with non-conforming concrete frames, Buonopane 
and White (1999) reported the similar behaviour as Mosalam et al. (1998).  

Pujol and Fich (2010) tested a full-scale flat slab building consisted of two parallel planar three-story, 
two-bay frames. Six actuators were used to apply the lateral loads following a triangular distribution. 
The frame represents the non-conforming construction designed only for gravity loads. The infills 
were made of standard modular cored clay bricks. The bare frame was initially tested until punching 
shear cracks occurred at a column-slab connection on the third floor at a drift level of 3%. Later, one 
bay of each story for each frame was infilled and testing resumed. Considerable damage occurred in 
the infills in the form of diagonal-sliding cracks and corner crushing, with the latter even resulting in 
partial collapse of several infill panels. They found out that in general, the infills significantly 
increased the strength and stiffness of the structure, while the obtained drift capacity was deemed 
satisfactory. They concluded that infills would be able to improve the behaviour of non-conforming 
construction. 

1.3.3 Autoclave Aerated Concrete Masonry Walls and Infill Panels 

Autoclave aerated concrete (AAC) is a mortar mix of cement, lime, water and sand in which air voids 
are entrapped by adding suitable aerating agent, usually aluminium powder. The chemical reaction 
between aerating agent and concrete causes expansion as high as up to five times its initial volume. 
Masonry blocks formed using this cellular concrete material are later cured in pressurized chamber 
called autoclaves. A good review of structure and properties of aerated concrete is presented by 
Narayanan and Ramamurthy (2000). 

The use of AAC blocks for both structural and non-structural purposes is increasing rapidly. The main 
advantage of using AAC masonry infill panels in RC framed structures is its lightness, which reduces 
the seismic inertial forces eventually economising the design of supporting structure and foundation as 
well as considerable savings in material due to porous nature. In addition, it has excellent thermal 
insulation and fire resistant properties which are crucial in risk reduction during a seismic event. 
These advantages validate the increasing interest for AAC masonry infills in areas of high seismicity 
and thus justify the need of analytical and experimental assessment.  

The research already conducted for the seismic performance of AAC masonry is mainly concentrated 
on the evaluation of the performance of load bearing AAC masonry buildings. Costa et al. (2011) 
conducted the experimental and analytical research to test the seismic performance of AAC load-
bearing masonry. They cyclically tested two unreinforced AAC masonry wall piers each of 1.5 meter 
length and 3 and 4.5 meters height to investigate the influence of vertical stress and slenderness ratio 
on the mechanical properties as well as the cyclic response of AAC masonry piers. Later this data is 
used to calibrate numerical model for the simulation of load bearing masonry building response. They 
concluded the maximum ultimate drift for AAC shear walls can safely be taken as 0.35% while 0.5% 
for walls failing in flexure. They also reported good correlation of experimental results with Euro code 
strength criteria for AAC load-bearing masonry walls. 

The current study is unique in its sense that it provides useful data on the seismic performance of 
reinforced concrete frames that are infilled with AAC non-load bearing masonry by means of both the 
experimental and analytical research. 

1.3.4 Analytical Modelling of Unreinforced Masonry Infill Panels 

Several researchers have studied the effects of masonry infill panels on the RC frames over the past 50 
years or more, proposing various approaches to incorporate and validate the contribution of infill 
panels to the local and global response of structures. These approaches can broadly be classified in to 
two classes. The first among them, described as “micro-modelling approach”, is a rigorous approach 
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in which the RC frame, the integrated masonry and their mutual connections are separately modelled 
by defining appropriate constitutive laws. The second approach includes “macro-modelling 
approach”, which is most widely used and involves the application of straightforward heuristic 
models in order to incorporate infill panels’ contribution. By far, the most popular among these is the 
method of “equivalent strut”, which is based on the experimental and field observations that the load 
path within the infill panel follows a diagonal pattern through the compression region, so called the 
equivalent compression strut. 

In the current study, the equivalent strut model with single compression strut is utilized to incorporate 
the response contribution of masonry infill panels because of its practicality and flexibility of use for 
nonlinear dynamic seismic analysis which is not the case in micro modelling approach. Polyakov 
(1960) was the first to propose the use of a diagonal strut to model the effect of an infill. Given the 
simplicity of use and application, equivalent strut model is sensitive to; 

 the determination of mechanical properties of masonry infill panel and of the bounding 
frame; 

 extent of contact of infill with the frame (e.g. completely or partially infilled); 
 definition of the width of equivalent strut bw; 
 connection of equivalent strut with the frame (e.g. concentric or eccentric); 
 presence and location of opening (e.g. door, window etc.) within a panel. 

Literature provides a wide range of propositions for the choice of strut section. The thickness of strut 
is usually kept similar as that of panel while there are several proposals for the definition of width bw. 
Among the earliest work for determination of bw relates it to the diagonal length of the panel. Later, in 
order to account for the variability in determination of mechanical parameter for the infill, Smith and 
Carter (1969) introduced the stiffness parameter λ expressing the relation between stiffness of 
bounding frame and of panel. Klinger and Bertero (1976) also worked in the same direction with a 
different expression for bw as function of λ. Durrani and Luo (1994) modified the formulation of 
stiffness parameter taking into account the effect of geometry of the frame. Kadir M.R.A. (1974) and 
Dawe and Seah (1989) accounts the influence of not only adjacent columns of frame, but also the top 
beam,  and thence split stiffness parameter in to λP and λTfor columns and beams respectively, 
although earlier it has been demonstrated by Stafford Smith (1967) that lateral stiffness is independent 
of beam stiffness. 

The performance and calibration of equivalent strut model is largely dependent on factors such as 
width (bw) of the strut, constitutive relationship of the panel, damage level attained by the panels and 
number of equivalent struts used; as demonstrated by G. Uva et.al (2012). Calibration of global and 
local responses is sensitive to the use of single or multiple struts respectively as demonstrated also by 
Fiore, A., Netti, A., and Monaco, P. (2012). Fundamental period is largely dependent on the definition 
employed to calculate the width of equivalent compression strut which affects the rigidity of the 
frame. Choice of a wider section of compression strut to model the infill panel tends to increase the 
strength but shows brittle behaviour whereas using thin section for equivalent strut exhibits ductile 
behaviour of the modelled structure. G. Uva et.al also demonstrated that constitutive relationship has a 
direct impact on the strength and stiffness of the panel but is indirectly dependant on the influence of 
failure mechanism affecting the panel. They added that damage to panel on the other hand, increases 
with growing magnitude of lateral force and renders the response of the system highly nonlinear and 
complex which these macro-models are unable to capture properly. A good review over the analytical 
modelling of masonry infill is presented by Crisafulli et al (2000) 

1.4 Objective and Scope 

In the light of aforementioned problem statement, The Scientific and Technological Research Council 
of Turkey (TÜBİTAK) has approved funding for verification and validation of the new additions in 
the TEC 2007 through analyzing and comparing various concrete frames using physical and 
simulation models. The project is entitled: “Developing Performance-Based Evaluation Procedures 
and Strengthening Methods for the Turkish Seismic Code through Experimental and Analytical 
Research” and is officially documented as “TÜBİTAK 1007” (Project # 108G034). The project has 
duration of 36 months and commenced on February 15, 2010. 



8 
 

The project frames of interest for the current thesis are as follows: 

- Specimen #5 (hereinafter referred to as Specimen #1) Non code conforming deficient bare 
frame. 
 

- Specimen #8 (hereinafter referred to as Specimen #2) Non code conforming deficient frame 
infilled with AAC blocks. 
 

- Specimen #10 (hereinafter referred to as Specimen #3) Code conforming bare frame. 
 

- Specimen #11 (hereinafter referred to as Specimen #4) Code conforming frame infilled with 
AAC blocks. 

Each physical test frame constructed in the laboratory is essentially a ½ scale 3-storey and 3-bay 
frame of the project’s prototype reinforced concrete frame, but varies with respect to code 
conformations and deficiencies. In addition, two out of four specimens are infilled with AAC masonry 
blocks in the entire middle bay of the frame. The ½ scaling is based on principles of equal stresses, 
leading to results that are half the displacements of the prototype frame but equal inter-storey drifts. 
The frames are subjected to pseudo-dynamic loads. The analytical modelling of the frames will be 
performed by the author on OpenSees software. Modelling of Unreinforced Masonry (URM) Infill 
walls is based on single equivalent strut methodology proposed by Smith and Carter (1969). 
Mechanical properties of AAC infill material are acquired by compression testing of masonry prisms. 

The following objectives are set forth in this thesis: 

 Processing the data from the Pseudo-Dynamic Testing of four reinforced-concrete frame 
specimens, including two bare frames and two frames infilled with AAC masonry panels; 

 Acquisition of basic mechanical properties of AAC infill material by compression testing of 
masonry prisms; 

 Investigating the effects of AAC infill panels on the response of code conforming and 
substandard reinforced concrete frames; 

 Investigating the effect of additional shear imposed by the infill panel on the boundary 
columns; 

 Development and calibration of numerical simulation models; 

 Testing the accuracy of equivalent strut model for representing the AAC infill panels; and 

 Evaluation of strain-based nonlinear performance assessment procedures as outlined in the 
TEC 2007 in light of experimental observations. 

Chapter 2 briefly presents an overview of the experimental setup and their results. Experimental 
investigation of AAC masonry infill effects on RC frame response is presented in Chapter 3 by means 
of both, the damage observations as well as the time histories of global and local responses measured 
during the pseudo dynamic testing. Numerical simulations of bare and infilled specimens are 
presented in Chapter 4 in comparison with experimental results and observations. In addition to the 
examination of certain global responses, selected beams and columns will be examined in detail on a 
local scale. Chapter 5 includes performance assessment of test specimens using the experimental and 
analytical results as well as comparison with observed damages during the tests. Chapter 6 presents 
the main conclusions of this thesis with future recommendations.  
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CHAPTER 2 
 
 
 

EXPERIMENTAL TESTING 
 
 
 
 
2.1 General 

In this chapter, discussion about the pseudo-dynamic testing procedure is presented along with the 
summary of experimental results and observations. Four reinforced concrete frame specimens were 
constructed and tested by the team of research assistants and PhD students of department of Civil 
Engineering at the Structural Mechanics Laboratory of METU as part of TÜBITAK1007 project on 
performance-based design and assessment of reinforced concrete buildings.  

Two out of four specimens are deficient frames, hereinafter referred as “Non-Conforming” frames, as 
they are not compliant according to the standards of the Turkish Earthquake Code 2007 [TEC 2007]. 
Deficiencies include the use of low concrete strength, plain reinforcing steel, minimum flexure 
reinforcement, insufficient confinement, and insufficient shear strength. These frames are sufficient to 
resist gravity loads. Among the Non-conforming frames, the second specimen (hereinafter referred to 
as Specimen #2 or Infilled Frame) is essentially the same as the first specimen (hereinafter referred to 
as Specimen #1 or Bare Frame), but with the presence of Aerated Concrete Masonry infill walls in the 
entire middle bay of the frame. 

The other two specimens (hereinafter referred to as Specimen #3 or Bare Frame and Specimen #4 or 
Infilled frame) have essentially the same configuration with the only difference is that they both are 
code-conforming as they are compliant with the provisions of TEC 2007 and TS 500 (2000).  Their 
design is sufficient to resist both gravity and applied seismic loads. 

Usually in designing of structures the presence of unreinforced masonry infills are neglected by 
considering them as non-structural components. Only their weights are accounted for in calculating 
the gravity loads. However their impact on the global seismic response of structure is now widely 
accepted. Therefore it is of utmost importance to study the effect of masonry infills on the overall 
performance of structure as well as individual components and to incorporate them in the analysis and 
design using simple and practically applicable procedures. 

The strength and deformation response of a structure is highly affected by the presence and 
contribution of infill walls. Infill walls increase the lateral strength of the frame initially, until they 
sustain damage. Then this strength increase is removed suddenly as the strength of the infill is 
eventually lost with the accumulation of damage. This removal is usually quiet sudden since the 
response of unreinforced masonry infills is brittle. 

Each test frame constructed in the laboratory is essentially a ½ scale 3-storey and 3-bay frame of the 
prototype reinforced concrete frame building which was designed according to the regulations of TEC 
2007 for a residential building located in the first seismic zone on Z3 (highly weathered soft 
metamorphic rock, medium dense sand and gravel, stiff clay and silty clay) soil type. 

The plan view of the prototype structure is presented in Figure 2.1. Detailed description of the 
specimens can be found in the following sections. 
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Table 2.1: Concrete compressive strengths of test specimens 

Specimen Mean cylinder compressive strength (fc mean) [MPa] 

# 1 [Non-conforming Bare Frame] 11.9 

# 2 [Non-conforming Infilled Frame] 14.6 

# 3 [Code conforming Bare Frame] 27.5 

# 4 [Code conforming Infilled Frame] 27.5 

 

Table 2.2: Reinforcement strength of test specimens 

 Reinforcement Strength 

Specimen #1 and #2 
(Non-Conforming) 

Specimen #3 and #4 
(Code-Conforming) 

Longitudinal 
Transverse 

Longitudinal 
Transverse 

Columns Beams Columns Beams 
Yield 

Strength (Fy) 
[MPa] 

320 355 240 480 480 240 

Ultimate 
Strength (Fu) 

[MPa] 
460 555 - 750 750 - 

Remarks 
8 mm 

diameter 
plain bars 

10 mm 
diameter 
plain bars 

4 mm 
diameter 
plain bars 
for both 

columns and 
beams 

10 mm 
diameter 
deformed 

bars 

10 mm and 
8 mm 

diameter 
deformed 

bars 

4 mm 
diameter 

plain bars for 
both 

columns and 
beams 

 

In addition to the above described material and geometric properties of the test frames, the non-
conforming specimens (#1 and #2) were deliberately provided with deficiencies commonly observed 
in the buildings within Turkey. These include deficient material strengths, reinforcement amounts, 
reinforcement details and joint details in order to obtained insufficient capacities.  

The properties of the non-conforming test specimens (Specimen #1 and #2) are as follows: 

 The column longitudinal reinforcement was approximately 1.3%; 
 Plain reinforcement bars with 8 mm and 10 mm diameters were used instead of deformed 

bars for both columns and beams, respectively; 
 The yield strength of the 8 mm and 10 mm diameter bars were 320 MPa and 355 MPa, 

respectively; 
 The ultimate strengths of these bars were 460 MPa and 555 MPa, respectively; 
 The 4 mm plain reinforcement bars used as transverse reinforcement have the yield strength 

of 240 MPa; 
 The mean value of uniaxial compressive strengths of concrete for both specimens were 

determined from standard cylinder tests and were well below the value required by the TEC 
2007; 
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 The flexural and shear capacity of the beams and columns were designed to be sufficient for 
gravity loads; 

 The conventional strong-column weak-beam requirement was violated in these specimens; 
 The spacing of transverse reinforcement of the columns was kept constant throughout the 

column height, which resulted in unconfined zones at potential plastic hinge regions of the 
element; and 

 Lateral reinforcements from the column members did not continue in-to the joints, reflecting 
joint shear deficiencies. 

The properties of the code-conforming test specimens (Specimen #3 and #4) include: 

 The column longitudinal reinforcement was approximately 2.1%; 
 Deformed reinforcement bars were used with 10 mm diameter for columns and 8 mm and 10 

mm diameter for beams at bottom and top respectively; 
 The yield and ultimate strength of longitudinal bars were 460 MPa and 750 MPa 

respectively; 
 The ultimate strengths of these bars were 460 MPa and 555 MPa, respectively; 
 The 4 mm plain reinforcement bars used as transverse reinforcement have the yield strength 

of 240 MPa; 
 The mean value of uniaxial compressive strengths of concrete for both specimens were 

determined from standard cylinder tests and were well above the minimum value required by 
the TEC 2007; 

 The flexural and shear capacity of the beams and columns were designed to be sufficient for 
gravity and seismic loads; 

 The conventional strong-column weak-beam requirement was satisfied in these specimens; 
 The spacing of transverse reinforcement of the columns was reduced near the supports as per 

TEC 2007 provisions to provide proper confinement at the potential plastic hinge regions of 
the element; 

The condition of insufficient shear capacity (Vr<Ve) corresponds to a flexure-shear failure mode as 
defined by ASCE/SEI 41-06. According to ASCE/SEI 41-06, the flexure-shear failure mode (referred 
as ‘condition (ii)’ is considered when member is expected to experience yielding in flexure prior to 
failing in shear. In the TEC, there is no intermediate failure mode between shear and flexure failure 
defined and as such, this condition would be classified as shear failure. In the TEC 2007, the shear 
force demand on a column (Ve = (Mt+Mb)/ln) is determined by using the top and bottom moment 
values (Mt and Mb) of the columns, for a weak column-strong beam system. For the bottom ends of 
the base columns, the plastic moment capacities Mp were taken as the bottom end moments (Mb). A 
weak column-strong beam system is defined in the TEC 2007 (Section 3.3.5.1) when the plastic 
moments of the columns are less than 1.2 times the plastic moments of the beams connecting into a 
joint, which is the case for non-conforming frames (specimen #1 and #2) (see Mp values in Table 2.3 
and Table 2.4).  Most joints in the non-conforming specimens (#1 and #2) satisfy this condition for a 
weak column-strong beam joint, with the exception being the exterior joints at the 1st and 2nd storey. 
For code conforming specimens (#3 and #4), the condition of strong column-weak beam is satisfied 
for all the joints. Table 2.5 presents the shear capacities and capacity/demand ratios of the columns, 
calculated using the nominal strength values (without safety factors) for all the four frames according 
to TS-500 (2000). Note that label ‘NC’ corresponds to “Non-conforming” while ‘CC’ corresponds to 
“Code-conforming” specimens in the entire text. 
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Table 2.3: Reinforcement details and moment capacities of columns 

Specimen Column 
Reinforcement Details Moment Capacity

[kN-m] 

Longitudinal Transverse (plain) Yield Plastic 
Middle Ends My Mp 

# 1 
[Bare Frame – NC] 

Outer 
8Ø8(pl.) 2xØ4/100mm 2xØ4/100mm 

13.0 14.1 

Inner 13.4 14.8 

# 2 
[Infilled Frame – NC] 

Outer 
8Ø8 (pl.) 2xØ4/100mm 2xØ4/100mm 

13.2 14.8 

Inner 13.6 15.4 

# 3 
[Bare Frame – CC] 

Outer 
8Ø10 (def.) 3xØ4/75mm 3xØ4/50mm 

23.8 27.3 

Inner 24.7 28.1 

# 4 
[Infilled Frame – CC] 

Outer 
8Ø10 (def.) 3xØ4/75mm 3xØ4/50mm 

24.0 27.6 

Inner 24.4 28.0 

 

Table 2.4: Reinforcement details and moment capacities of beams 

Specimen 

Reinforcement Details Moment Capacity 
[kN-m] 

Longitudinal Transverse (plain) Yield Plastic 

Span (a) Support 
(b) Span (a) Support

(b) My
a
 My

b Mp
a
 Mp

b

# 1 
[Bare Frame – NC] 

4Ø10+3Ø10 2Ø10+3Ø10 Ø4/80mm Ø4/50mm 17.8 12.7 20.7 16.8

# 2 
[Infilled Frame – NC] 

4Ø10+3Ø10 2Ø10+3Ø10 Ø4/80mm Ø4/50mm 18.0 12.9 21.0 17.0

# 3 
[Bare Frame – CC] 

4Ø10+3Ø8 2Ø10+3Ø8 Ø4/80mm Ø4/50mm 23.3 10.2 26.6 15.3

# 4 
[Infilled Frame – CC] 

4Ø10+3Ø8 2Ø10+3Ø8 Ø4/80mm Ø4/50mm 23.3 10.2 26.6 15.3

 

Table 2.5: Columns shear capacity and capacity/demand ratio 

Specimen Shear Capacity 
Vr [kN] 

Shear Demand Capacity/Demand 
ratio 

Ve [kN] Vr/Ve 
# 1 

[Bare Frame – NC] 
26.6 18.4 1.45 

# 2 
[Infilled Frame – NC] 

28.4 18.6 1.53 

# 3 
[Bare Frame – CC] 

55.7 37.73 1.48 

# 4 
[Infilled Frame – CC] 

55.7 37.73 1.48 
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2.3 Pseudo-Dynamic Testing and Instrumentation 

The dead and super-imposed live loads of prototype building were used to calculate the mass and 
gravity load acting on the test specimens. The floor mass and gravity loads were consistent throughout 
each Pseudo dynamic test. Solid steel blocks were used to replicate the calculated dead plus live loads 
on the test specimens as shown in Figure2.2. In case of infilled test frames (Specimen # 2 and #4), due 
to the presence of masonry infill walls, the load blocks were shifted to adjacent bays and top in a way 
that the total weight of blocks in all the test specimens remains the same. The blocks were arranged 
such that the ratio of axial load (N) to the axial load carrying capacity of the columns (No) is similar to 
the prototype frame.  The axial load ratios of first storey columns under gravity loads are presented in 
Table 2.6. 

Table 2.6: Concrete strength and axial load ratios of columns 

Specimen Concrete strength 
fc mean [MPa] 

N/No (%) in first storey 
Interior Column Exterior Column 

# 1 
[Bare Frame – NC] 

11.9 25.77 15.48 

# 2 
[Infilled Frame – NC] 

14.6 18.96 15.36 

# 3 
[Bare Frame – CC] 

27.5 11.15 6.70 

# 4 
[Infilled Frame – CC] 

27.5 10.10 8.18 

N = axial load due to steel blocks; No = Axial load carrying capacity of columns, No = fc mean x Ac 

Pseudo-dynamic testing (also referred to as the online computer controlled testing) is a hybrid 
earthquake simulation technique which enables to numerically model part of the dynamic structural 
properties while rest of the structure is physically tested in parallel with computations, as often 
demonstrated (Mahin and Shing (1985), Nakashima (1985), Takanashi et. al. (1975)). 

This testing method came out as an alternative to the more advanced testing method such as shake 
table testing and introduced greater accuracy providing the simplicity of conventional methods like 
quasi-static testing. It enables economical, convenient and realistic testing of large scale structures 
under seismic loading. Other attributes are the ability to observe general response and resulting 
damage formation in structure during the test because the seismic loading is applied in prolonged time 
or “pseudo-time” rather than in real time. The experiment can be hold at any pseudo time step to 
monitor the response closely and for necessary evaluations. 

The main difference between pseudo-dynamic test and conventional dynamic tests is that at each 
pseudo time step, the computed structural displacements are actually applied to the structure and the 
resulting restoring forces are measured experimentally by the load cells. This removes the uncertainty 
linked with the analytical modelling of restoring forces of the structure. The measured restoring forces 
along with pre-defined ground motion and analytically computed inertia and damping characteristics 
would serve as an input for computing the displacement for the next time step. Servo-controlled 
hydraulic actuators are used to apply the computed displacement to the degrees of freedom of the test 
structure. The typical elevations for bare and infilled frames and schematic view of testing are shown 
in Figure 2.4 for the test specimens having three translational degrees of freedom. 
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Point A – Initiation and propagation of diagonal cracks in masonry panels at 1st and 2nd storey 

 

Point B –Diagonal cracks in masonry panels at 1st and 2nd storey in opposite direction 

 

 
Point B –Diagonal cracks at the top of 1st storey column-102 of infilled bay and cracks in flanges 

of exterior beams at support 

Figure 2.12: Roof displacement time-history and observed damages (SP#2) 
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Point C – Flexural cracks at the bottom of 

interior column 

 
Point D – Flexural cracks at the bottom of 

exterior column 
 

 
Point E –Diagonal cracks at the bottom of infilled bay column-102 and widening of flexural cracks 

at the bottom of column-103 while shear cracking at the top of the same column. 
 

 
Point E –Formation of plastic hinge and permanent deformation of exterior column and overall 

damage to infill panels 

Cont’d; Figure 2.12: Roof displacement time-history and observed damages (SP#2) 
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Point F –Corner crushing of masonry infill blocks and diagonal cracks in masonry 

 

 
Point G – Spalling of concrete and reinforcement buckling in column 103 at top and widening of 

flexural cracks in beams 111 and 114 

Cont’d; Figure 2.12: Roof displacement time-history and observed damages (SP#2) 

 
Under the last ground motion D3, the visible flexural cracks at the bottom ends of base columns and 
flexure and shear cracks in the exterior beams of the first and second storey continued to spread and 
widen. Damages in the columns were followed by the spread of inclined crack in the first storey joint 
regions. Widening of cracks in the masonry infill of the first and second storey resulted in spalling of 
block’s corners and at the same time diagonal cracks initiate in third storey masonry infill panel. 
Diagonal shear cracks are observed in exterior base column and shear cracks are observed in the 
interior beam of first and second storey beams. At the peak acceleration of ground motion, spalling of 
concrete and buckling of reinforcing steel is observed at the top end of first storey interior column 
after severe shear cracking. The first storey drift ratio increased to a maximum value of 3.2% and the 
roof displacement reached a maximum value of 93.0 mm. Inter-storey drift ratios of the second and 
third storeys were 1.9% and 1.14% respectively. The successively decreasing storey drift ratios from 
first to top storey is a result of damage pattern in infill panels where the most severe damage occurring 
in the bottom storey and moderate damage to the masonry in top storey restricting the drift to lower 
values. These peak deformations resulted in high damages and shear cracking in structural columns 
and fairly large residual displacement at the end of pseudo-dynamic test which is also clear in both 
drift and roof displacement response histories. Large shear cracks and spalling of concrete from the 
interior column’s end region can be attributed to large shear stresses transferred through masonry 
infill, whereas the columns are unable to resist due to lack in confinements. In the same region, the 
buckling of reinforcing bar is also affiliated with deficient confinements. Considering these 
observations, Specimen # 2 is severely damaged at the end of ground motion D3. 



 

Shear for
presented
degradati
carrying c

 

rce vs. inter-s
d in Figure 
ion and a so
capacity.  

F

torey drift rat
2.14. The b
ftening respo

Figure 2.13: I

tio for each st
ase shear vs

onse, implying

Inter-storey d

28 

torey and bas
s. roof displa

ng that the sp

drift ratio tim

 

se shear vs. ro
acement plot
pecimen lost 

me-history (SP

oof displacem
shows nota

considerable 

P#2) 

ment plots are 
able strength 

lateral load 

 

 

 



 

 

 

2.4.3 Specim

The roof dis
with the pic
inter-storey 
no noticeabl
for each stor
no residual d

Under the s
the maximu
diagonal cra
tiny flexura
imply that f
light damag

Fig

men #3 [Code

splacement re
ctures of dam
drift ratio resp
le damage wa
rey and the m
displacement 

second ground
m roof displa

acks in the joi
l cracks also 

first and secon
e state after D

gure 2.14: Sto

e-Conforming

esponse history
mages observed

ponse history 
as observed on
aximum roof 
and no damag

d motion D2, 
cement was 4
nts and flexur
appear at the

nd storeys exp
D2. 

29

 

 

ory shear forc

g Bare Fram

ry from the ex
d at selected 
 is presented i
n the test spec
displacement

ge at the end o

the maximum
49.9 mm. The 
ral cracks at th
e bottom of th
perienced min

9 

 

ce vs. drift re

e] 

xperimental te
deformation p
in Figure 2.17
cimen. The in
t was 9.4 mm.
of ground mot

m inter-storey
damages obs
he beam ends
he 1ststorey ex
nor inelastic d

sponse (SP#2

est is presente
peaks present
7.  Under the f
nter-storey dri

The frame re
tion D1. 

y drift ratio re
erved during D

s of the 1stand 
xterior colum

deformations a

2) 

ed in Figure 2
ted in Figure 
first ground m
ift ratio limits
esponse was el

ecorded was 1
D2 include in

d 2ndstoreys. In
mns. These ob
and the structu

 

 

.15, along 
2.16. The 

motion D1, 
s to 0.27% 
lastic with 

1.36% and 
nitiation of 
n addition, 
servations 
ure is in a 



 

Poin

Point C –

nt A & B – Init

–Initiation of 

Figure 2.16

Figure 2.15

tiation of diag
propa

diagonal crack
cracks

6: Roof displ

: Roof displa

gonal cracks in
agation of crac

ks in 1st and 2
s in the 1st stor

acement time

30 

acement time-

 

 
n joints of 1st

cks in flanges 

 

2nd storey colu
rey beams 11

e-history and

-history (SP#

and 2nd storey
of beams 

umns 101, 104
1 and 113 

d observed da

#3) 

y interior colum

4, 201 and 204

amages (SP#3

 

 
mns and 

 

4 and flexure 

3) 



31 
 

 

Point D – Joint diagonal cracking Point E – Flexure cracks at bottom of column 101 
and 104 

 
Point  F –Flexural cracks at the bottom of 

column 102 and 103 

 
Point G – Widening of interior joint cracks. 

Distribution of flexural cracks in 1st and 2nd storey 
exterior columns. 

 
Point H – Bond slip cracks in column 104 Point I – Overall damage in interior joint region 

Cont’d; Figure 2.16: Roof displacement time-history and observed damages (SP#3) 
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Point D – Diagonal cracking at 2nd storey interior 

joints 
Point D – Flexure cracks at 1st storey exterior 

beams  

 
Point  E – Cracking at top of 1st storey interior 
columns 

Point F – Shear cracks in 1st and 2nd storey 
interior columns  

  
Point G – Distribution of diagonal cracks in 1st 

storey interior columns 
Point G – Flexure shear cracks at bottom of 1st 

storey columns 

Cont’d; Figure 2.20: Roof displacement time-history and observed damages (SP#4) 
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Point H – Overall damage to infill panel and diagonal cracks in 1st and 2nd storey joints.  

Cont’d; Figure 2.20: Roof displacement time-history and observed damages (SP#4) 

 
Under the second ground motion D2, the maximum inter-storey drift ratio recorded was 1.13% and 
the maximum roof displacement was 44.3 mm. The visible damage during D2 was first started with 
diagonal cracks in the infill panels of first and second storey. Other notable damages include initiation 
of diagonal cracks in the joints and flexural cracks at the beam ends of first and second storeys and 
flexural cracks at the bottom of first storey exterior columns. These observations imply that first and 
second storeys experienced minor inelastic deformations and the structure suffers slight damage after 
D2. 

During the last ground motion D3, the visible diagonal cracks at the first and second storey infill 
panels continue to grow along with opening of mortar joints. Flexural cracks in the beams and flexure 
shear cracks in the exterior columns of first and second storey spread and widens while flexure 
cracking at the bottom of interior columns initiates. Shear cracks in the interior columns of first and 
second storey initiates and distributed along the entire length. The source of these cracks is the shear 
stresses transmitted through the compression strut of masonry infill panels as observed in specimen 
#2. The first storey drift ratio increased to a maximum value of 2.0% and the roof displacement 
reached a maximum value of 82.0 mm. Inter-storey drift ratios of the second and third storeys were 
2.2% and 0.87% respectively. The above mentioned observed damages imply that the specimen #4 is 
in the moderate damage state at the end of ground motion D3.  

Shear force vs. inter-storey drift ratio for each storey and base shear vs. roof displacement plots are 
presented in Figure2.22. The base shear vs. roof displacement plot shows no notable strength 
degradation indicating that specimen has not reached failure. 
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2.5 AAC Masonry Prism Compression Test 

The compression tests on three masonry prisms were conducted to investigate the stress-strain 
response of the AAC masonry. The size of all the specimens was kept same, except the width, as 
shown in Figure 2.23. The width of the masonry prism is selected based on the approximate width of 
diagonal compression strut observed during the pseudo dynamic test of infilled frame specimens as 
shown in Figure 2.24.  

 

Figure 2.23: AAC masonry test prism 

 

 
Specimen #2 

 
Specimen #4 

Figure 2.24: Width of diagonal compression strut observed during the test 
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CHAPTER 3 
 
 
 

THE EFFECT OF AAC INFILLS ON THE RESPONSE OF RC FRAMES:  
EXPERIMENTAL COMPARISONS 

 

 
 
3.1 General 

This chapter focuses on the effect of AAC masonry infill on the seismic performance of reinforced 
concrete frames, based on comparative evaluation. The results from pseudo dynamic testing of all four 
specimens are compared in terms of global responses, such as roof displacement, inter-storey drifts, 
storey shears and time variation of fundamental period (T1). In addition to the global responses, local 
response, such as end rotations are also compared for the first and second storey beams and columns.  
The fundamental periods were determined by the procedures as demonstrated by Molina et. al [1999], 
where the experimental displacements uT(n), velocities vT(n), and restoring forces’ rT(n) during the 
pseudo-dynamic testing, are related to each other using the relation: 

      1  .                                                            3.1  

where K and C are the secant stiffness and viscous equivalent damping matrices, respectively. o is a 
constant force offset term.  The equation contains “2.ndof2 + ndof” unknowns and the number of 
available equations is “N.ndof”, for N time intervals. By satisfying the condition that N>2.ndof+1 and 
estimating K and C by a least mean squares algorithm, the complex Eigen-frequencies and mode 
shapes can be determined by solving the generalized Eigen value equation: 

0
0

0 0                                                            3.2  

whereM is the theoretical mass matrix, w contains the eigenvectors, and s is the conjugate couples of 
Eigen values. 

The investigation for the response of AAC masonry infilled frames with respect to bare frames is 
carried out separately for two different set of specimens, i.e. non-conforming frames (Specimen #1 vs. 
Specimen #2) and code-conforming frames (Specimen #3 vs. Specimen#4). Initially the performance 
is evaluated on the basis of observed damages during the test and the failure mode or primary source 
of plastic deformation in the specimen. Peak global and local responses are then compared during 
each ground motion and the differences are tabulated in percentage. Some of the peak global response 
parameters are also presented graphically. The chapter ends with the comments based on these 
observations.  

It is important to note here that the main difference between the two specimens of each set is the 
presence of unreinforced AAC masonry infill panels in the entire middle bay which are provided after 
the test on bare frame has been conducted, except for the case of Specimen #1 which was very 
severely damaged and abandoned and therefore Specimen #2 is created from another non-conforming 
specimen which was already tested having moderate damage. However, the responses of the 
specimens are also affected to the second degree by various inherent factors such as construction 
methods and material strengths etc. Therefore, the discussions presented here focus on the main 
differences and the results are interpreted accordingly without going into a detailed comparison 
considering these inherent factors. 
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3.2 Comparative Evaluation of the Performances of AAC Infilled and Bare Non-conforming RC 
Frames  
(Specimen #1 vs. Specimen #2) 

This section consist of the comparison of pseudo-dynamic test results between two non-conforming 
R.C. frames i.e. Specimen #1 and Specimen #2 in order to evaluate the effect of AAC infill on the 
response of RC frames. Figure 3.1 and Figure 3.2 presents the pictorial presentation of the major 
damages in Specimen #1 and Specimen #2 respectively, which are observed in the structural members 
during three successive ground motions. Table 3.1 summarizes the observed damages with reference 
to the pictures. The global response time histories including, inter-storey drift, storey shears and 
fundamental period variation are presented in Figures 3.3 to 3.5. Figures 3.6 and 3.7 contain the 
member end rotation time histories for columns and beams respectively. 

3.2.1 Performance Evaluation through Damage Observation and Failure Mode 

3.2.1.1 Specimen #1 [Bare Frame – NC] 

Specimen #1 is non-conforming and not designed to resist seismic loads and hence depict older 
deficient construction. The observation of damage pattern at several instants of peaks during the test is 
presented in section 2.4.1 along with damage pictures in Figure 2.8 of Chapter 2. During the ground 
motion D1 with return period of 72 years (50% probability of exceedance in 50 years) the behaviour 
of the frame is nearly elastic with no visible damage to the structural elements. During ground motion 
D2 with return period of 475 years on rock strata (10% probability of exceedance in 50 years), the 
beams and columns suffered visible flexural cracking. In addition, the diagonal cracks in joints 
appeared before the flexural cracking in connecting beams and columns. Overall the specimen was in 
moderate damage state after the ground motion D2 with no apparent failure in any structural member. 
During D3 ground motion with return period of 475 years on soft soil profile (10% probability of 
exceedance in 50 years), wide flexural cracks in the bottom and top storey columns at potential plastic 
hinge regions results in permanent deformations. Flexure and shear-flexure cracks in beams grow 
wider and excessive diagonal cracking occurs in the joint region. The beams fail in flexure with the 
flexural cracks observed at the bottom prior to the cracks at the top as expected since the amount of 
reinforcement at the bottom is less as compared to the top reinforcement. The absence of confinement 
reinforcement in the joints could be the cause of joint shear cracking. Permanent deformation of the 
frame, especially first storey columns is observed.  

3.2.1.2 Specimen #2 [Infilled Frame – NC] 

Specimen #2 comprises of non-conforming deficient RC frame infilled with AAC block masonry in 
the entire middle bay. The observation of the damage pattern at several instants of peaks during the 
test is presented in section 2.4.2 along with damage pictures in Figure 2.13 of Chapter 2. During the 
first ground motion D1, no apparent damage was noted in any of the structural members of the 
specimen. In addition none of the masonry panels suffered visible damage except minor separation 
cracks along the boundary of the panel and boundary frame at first storey. The specimen was at the 
minor damage state at the end of ground motion D1. During D2, flexural cracking in the beams occurs 
with the diagonal cracks in the joints. Diagonal cracks in the masonry panels of first and second storey 
occur indicating the limit of cracking of the panels. As the test progresses, further diagonal cracks 
appeared parallel to the loaded diagonal which verified the equivalent diagonal strut action being 
representative of the infill response.  The masonry diagonal stresses caused the diagonal cracks from 
the masonry to penetrate into the 1st storey bounding columns resulting in shear cracking at the top. At 
the bottom of these columns flexural cracking occurs and spread along the potential plastic hinge 
region. Exterior columns show flexural cracks at the bottom. Damage was mostly concentrated in the 
1st storey. Overall the specimen receives inelastic deformations and is at a moderate damage state after 
D2.  

During the last ground motion, severe damage occurs to the bounding columns in the form of diagonal 
crack in the top and bottom resulting in their brittle shear failure. The wide flexural cracking in 
exterior columns also caused them to fail in a brittle manner. Cracks in joints and beam ends grow 
wider. The masonry panels reached failure due to extensive diagonal cracking with cracks wide 
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enough to see through. The brittle failure of columns resulted in the apparent permanent deformation 
of the entire frame. The specimen suffered severe damage with the failure of first storey columns.  

a b  c

d e f 

g h i 

Legends:   

a & c Flexural cracks at 1st storey columns bottom end – D2 b Diagonal cracks at 1st storey interior joints – D2 
d Shear cracks at 1st storey exterior beams ends – D2 e Diagonal cracks at 3rd storey exterior joints – D3 
f Shear cracks at 3rd storey exterior beams ends – D3 g Diagonal cracks at 1st storey interior joints – D3 
h Flexural cracks at 3rd storey columns top end – D3 i Flexural cracks at 1st storey columns bottom end – D3 

Figure 3.1: Major damages observed during D2 and D3 (SP#1) 

 

3.2.1.3 Failure Mode 

From the observations above, it is apparent that both of the specimens suffered severe damage at the 
end of ground motion D3. These damages resulted in large plastic deformations in both specimens. 
However, the dominant cause of plastic deformations for both specimens differs greatly from each 
other. 

Specimen #1 failed because of the flexure failure at the bottom ends of first storey column and top 
ends of 2nd and 3rd storey columns but the failure was abrupt with sudden increase of inter-storey 
drifts. Although some ductility was present but the ample warning usually associated with the flexural 
failure was absent in this specimen. However, it was as expected because the frame elements were not 
designed and detailed to resist seismic loads. 



44 
 

The failure of Specimen # 2 was also governed by the failure of first storey columns however the 
failure mode of columns differs from each other. The exterior columns depicts flexure failure at the 
bottom but the failure was abrupt with sudden increase of inter-storey drifts which is similar to the one 
observed in bare frame (Specimen #1). On the other hand, the failure of interior columns surrounding 
the infill panel was brittle caused by excessive diagonal shear cracking at the column tops. The 
cracking thereby resulted in spalling of concrete and buckling of reinforcement. The primary mode of 
failure of the first and second storey infill panels is diagonal cracking. The ratio of mean compressive 
strength of frame to the infill is as high as 4.5 indicating the strong frame-weak infill system and given 
that, the masonry panel behaved as expected, however the excessive diagonal cracking and shear 
failure in the bounding columns is unusual for this system. The main cause of such failure is the 
transfer of shear stress from the loaded diagonal of the infill panel and the absence of adequate 
confinement reinforcement to resist these stresses signifying the impact of poor seismic detailing.  
 

a b c

d e f g

h i  j k 

Legends:   

a Diagonal crack at 1st and 2nd storey infill Panel – D2 b Diagonal cracks at 1st storey bounding column top – D2 
c Flexure cracks at 1st storey exterior beams end – D2 d Flexure cracks at 1st storey bounding column bottom – D2 
e Diagonal cracks in 1st storey exterior joints – D2 f Flexure cracks at 1st storey bounding column bottom – D3 
g Diagonal cracks at 1st storey bounding column top – D3 h Diagonal cracks at 1st storey bounding column bottom– D2 
i Overall Failure of 1st and 2nd storey infill Panel – D3 j Flexure cracks at 1st storey exterior column bottom –D3 
k Reinforcement buckling at 1st storey bounding column 

D3 
  

Figure 3.2: Major damages observed during D2 and D3 (SP#2) 
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Table 3.1: Summary of observed performance of non-conforming specimens 

Ground 
Motion Observation 

Specimen #1 – Non-conforming Bare Frame 

D1 • No visible damage 

D2 
• Flexure cracks at columns (Figure 3.1 a & c) 
• Shear and shear-flexure cracks in beams (Figure 3.1 d) 
• Diagonal cracking of 1st storey joints (Figure 3.1 b) 

D3 
• Abrupt flexure failure of columns (Figure 3.1 h &i) 
• Wide shear-flexure cracks in beams (Figure 3.1 f) 
• Extensive diagonal cracks in joints (Figure 3.1 e& g) 

Specimen #2 – Non-conforming Infilled Frame 

D1 • No apparent damage 

D2 

• Shear and flexure cracks at bounding columns top and bottom respectively 
(Figure 3.2 b and d) 

• Flexure cracks in exterior columns 
• Flexure cracks in beams (Figure 3.2 c) 
• Diagonal cracks in joints (Figure 3.2 e) 
• Multiple diagonal cracks at 1st and 2nd storey AAC masonry panel (Figure 3.2 a) 

D3 

• Brittle shear failure of bounding columns at 1st storey (Figure 3.2 g, h and k) 
• Abrupt flexure failure of exterior columns of 1st storey (Figure 3.2 j) 
• Extensive flexure cracking in bounding columns (Figure 3.2 f) 
• Extensive flexure cracking in beams and diagonal cracks in joints 
• Failure of 1st and 2nd storey masonry panel due to wide diagonal tension cracks 

(Figure 3.2 i) 
 

 

 

3.2.2 Global Responses  

This section evaluates the performance of frames on the basis of time histories of global responses 
obtained after pseudo-dynamic testing as well as from the comparison of peak responses during each 
ground motion given in Table 3.2. The inter-storey drift responses (Figure 3.3) for infilled and bare 
frames during D1 indicates that AAC infills does not reduce the peak drift response of the 1st storey 
significantly while the drifts of the 2nd and 3rd storeys were contained very successfully without any 
visible damage to the masonry panel or structure. This is attributed to the fact that Specimen #2 was 
already cracked when tested with most of the cracking already present and concentrated in the first 
storey and the ground motion was not strong enough to overcome the initial cracking and to cause 
infill to contribute fully.  
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Table 3.2: Comparison of peak global responses between Bare and Infilled frames (NC) 

Response 
Parameter 

"N" 

Ground 
Motion 

SPECIMEN Difference [%] * 

#1 
Bare - NC 

#2 
Infilled - NC 

# #

#
 

Roof 
Displacement [m] 

D1 0.0091 0.0069 -24.46 
D2 0.0484 0.0443 -8.36 

D3 0.2056 0.0929 -54.81 

1st storey/Base 
shear [kN] 

D1 36.3 41.4 14.02 
D2 68.6 107.1 56.01 

D3 75.2 130.4 73.36 

2nd storey shear 
[kN] 

D1 24.5 30.9 26.34 
D2 48.0 95.5 99.07 

D3 62.0 97.9 57.89 

3rd  storey shear 
[kN] 

D1 21.0 27.7 32.25 
D2 39.7 45.7 15.04 

D3 38.1 58.6 53.57 

1st storey 
drift ratio [%] 

D1 0.20 0.18 -10.67 
D2 1.20 1.41 17.81 

D3 4.13 3.22 -21.96 

2nd storey  drift 
ratio [%] 

D1 0.23 0.17 -27.52 
D2 1.28 1.26 -1.57 

D3 5.29 1.90 -64.08 

3rd storey 
drift ratio [%] 

D1 0.26 0.12 -54.20 
D2 1.30 0.65 -50.04 

D3 5.23 1.14 -78.19 

Base shear ratio 
(V/W) 

D1 0.12 0.14 

D2 0.23 0.36 

D3 0.25 0.44 
NC = Non-conforming;  
*: Positive values indicate increase while negative values indicate decrease. 
W = Total seismic weight of the specimens = 298 kN; V = Peak base shear 
 
 

The storey shear response histories of both specimens are also presented in Figure 3.4. During several 
peaks of D1, as compared to the bare frame, the increase in the 1st storey shear of infilled frame as 
compared to bare frame is the least due to strength contributed by the AAC infills while this increase 
is higher in the2nd and 3rd storeys (Table 3.2). This observation also provides an overall confidence on 
the hypothesis of drift responses during D1 that infills at the 1st storey are not fully mobilized in the 
infill-frame composite response.  
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3.2.3 Local Responses  

In addition to the previously discussed global responses, certain columns and beams are also 
compared for end-rotations and are shown in Figures 3.6 and 3.7. Since most of the damage is 
concentrated at the first storey of both specimens, end rotations of one exterior and one interior 
member at the 1st storey are chosen for comparison for columns and beams both.  

End rotations of exterior column (101) of 1st storey (Figure 3.6 a) indicates that infilled frame has 
similar response as the bare frame during D1 because of the absence of frame-infill composite action. 
It is important to note that although Column 101 is not bounding the infill panels, the local response is 
indirectly altered due to the alterations in overall global responses. During D2, due to the flexural 
cracking in columns bottom end, some residual rotations appear in bare frame which are well 
contained by the infills in the case of infilled frame. During ground motion D3, the peak rotations of 
both frames are essentially the same because of the failure of infill panels. However, the infill notably 
reduces the residual rotations as also evident from the global responses.  

End rotations of 1st storey interior column (102) which is bounding the infill panel are shown in 
Figure-3.6 (b). During ground motion D1, the response of both frames is quiet similar. The point at 
which cracking of 1st storey infill initiates during D2 is marked in Figure-3.6 (b) with black arrow. 
The peak rotation of infilled frame column just before the cracking of infill is much smaller as 
compared to bare frame. However, at the instant of first diagonal crack in the infill panel, the rotation 
(both top and bottom) of infilled frame are significantly greater than bare frame probably because of 
the sudden reduction in the overall stiffness contributed by infills prior to cracking. The similar is also 
observed in the end rotation plots of column 101 in Figure 3.6 (a). Cracking and damage at the top of 
column 102 is also responsible for residual rotations in column 102 at the top in the infilled frame at 
the end of D2. During D3, the peaks as well as residual rotations of infilled frame are significantly 
smaller as compared to bare frame due to flexure failure of Column 102 of bare frame in an abrupt 
manner resulting in large drifts thereby causing large permanent deformation. 

The end rotations of exterior beam (111) of 1st storey are shown in Figure-3.7 (a). It is to note that in 
the infilled specimen, Beam-111 is not bounding the infill panel rather it is connecting to the Beam-
112 which bounds the infill panel at 1st storey. The rotation response at both ends indicates a 
significant increase in peak rotations of Beam-111 in infilled frame as compared to bare frame during 
both D2 and D3 ground motions. This can be attributed to the fact that Beam-111 is connecting to the 
middle bay of the frame which is much stiffer due to the presence of infill panels thereby causing 
larger deformations. 

The end rotations of 1st storey interior beam (112) are shown in Figure 3.7 (b). In infilled frame, 
comparison of the j-end rotation of Beam-111 with i-end rotation of Beam-112 clarifies that due to 
infill panel the rotations of Beam-112 is smaller than Beam-111 at the opposite ends of the same joint. 
During D2, the peak rotation of infilled frame at i-end in Beam-112 is greater than the bare frame at 
the point of first diagonal crack in the infill panel, which is analogous to the observation in columns. 
At the j-end, during D3, the peak rotation of infilled frame is greater than the bare frame possibly 
because of the extreme damage and buckling of reinforcement in Column 103 as shown in Figure 2.12 
Point-G. 
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3.3 Comparative Evaluation of the Performances of AAC Infilled and Bare Code-conforming 
RC Frames  
(Specimen #3 vs. Specimen #4) 

This section consist of the comparison of pseudo-dynamic test results between two code-conforming 
R.C. frames i.e. Specimen #3 and Specimen #4 in order to evaluate the effect of AAC infill on the 
response of RC frames. Figure 3.8 and Figure-3.9 presents the pictorial presentation of the major 
damages in Specimen #3 and Specimen #4 respectively, which are observed in the structural members 
during the three successive ground motions. Table 3.4 summarizes the observed damages with 
reference to these damage pictures. The global response time histories including, inter-storey drift, 
storey shears and fundamental period variation are presented in Figures 3.10 to 3.12. Figures 3.13 and 
3.14 contain the member end rotation time histories for columns and beams respectively. 

3.3.1 Performance Evaluation through Damage Observation and Failure Mode  

3.3.1.1 Specimen #3 [Bare Frame – CC] 

Specimen #3 is code-conforming bare frame and designed to resist both gravity and seismic loads. 
The observation of damage pattern at several instants of peaks during the test is presented in the 
Section 2.4.3 along with damage pictures in Figure-2.16 of Chapter 2. During the ground motion D1, 
there was no visible damage reported and the response of the frame was elastic.  

During D2, diagonal cracking of joints occurred which was followed by visible flexure cracks in the 
1st storey exterior columns bottom. Minor flexure cracks also occurred in external beams. The 
specimen remains in a slight damage state.  

During D3 ground motion, cracking in the joints increases and grows wider. Flexure cracks in the 
columns of 1st storey widen and extend along the length of the column. Flexural and flexure shear 
cracks in the interior beams of first storey also appears. The damage was mostly concentrated in the 
columns, beams and joints of bottom storey which is as expected for a moment frame system, while 
top storey suffers very slight damage. The cracks and damage were reported in the 1st and 2nd storey 
joint region due to diagonal cracks which is unusual for a seismically designed frame. It can be 
attributed to the absence of confinement of the joints by the beams on the out of plane direction 
because in actual practice the joints are confined on all four or at least three sides. Permanent 
deformation in any member was not noted. Overall the specimen survived the earthquake efficiently 
with moderate damage. This also provides a general confidence on the design provisions of TEC 2007 
for the efficient seismic design.  

3.3.1.2 Specimen #4 [Infilled Frame – CC] 

Specimen #4 is similar to Specimen #3 except the addition of AAC infill panels. The observation of 
damage pattern at several instants of peaks during the test is presented in Section 2.4.4 along with 
damage pictures in Figure 2.20 of Chapter 2. During the ground motion D1, no damage was observed 
in any of the structural members and the AAC panel also did not suffered any visible damage.  

During the ground motion D2, the flexure cracks in the exterior columns and beams ends appears as 
well as the diagonal cracks in the joint region opened up from the previous test. Diagonal crack in the 
panel initiates in 1st and 2nd storey and continues to widen along the main compression diagonal. No 
secondary diagonal cracks or crushing was observed in the panel. The specimen was in a slight 
damage state after D2.  

During D3, further diagonal cracks appeared in the 1st and 2nd storey masonry panel parallel to the 
loaded diagonal leading to the failure by crushing. Bounding columns of 1st and 2nd storey receives 
shear cracking due to the shear stresses transferred through the compression strut. Flexure cracking of 
exterior columns spread along the length and diagonal cracks in joint region also widens. Overall the 
observation suggests moderate damage to the specimen without any sign of failure in RC members.  
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a b c 

d e f 

Legends:   

a Diagonal Crack at 1st storey joints – D2 b Flexure cracks at 1st storey column bottom  ends – D2 
c Flexure cracks at 1st storey exterior beams end – D2 d Diagonal Cracking at 1st storey joints – D3 
e Flexure cracks at 1st storey column bottom  ends – D3 f Overall damage to 1st storey  beam, column and  joint – D3 

Figure 3.8: Major damages observed during D2 and D3 (SP#3) 

3.3.1.3 Failure Mode  

From the observations above, it is apparent that both specimens suffered moderate damage to the RC 
members at the end of ground motion D3. These damages resulted in notable plastic deformations in 
both the specimens but the specimens did not collapse. However, the dominant cause of plastic 
deformations for both specimens is different from each other.  

In Specimen #3 the inelastic deformations both in columns and beams comprise mainly of flexural 
yielding. The cracking in the bottom storey columns were distributed along the length with wider 
cracks near the ends. No sign of brittle failure was observed. There were no notable 
permanent/residual deformations in any member. 

  



58 
 

 

a  b  c 

d e f

g h i 

Legends:   

a Flexure cracks at exterior column bottom  ends – D2 b Diagonal crack at 1st storey interior joints – D2 
c Flexure cracks at 1st storey exterior beams end – D2 d Diagonal crack at 1st and 2nd storey infill Panel – D2 
e Shear cracks at 1st storey bounding column  top  – D3 f Shear cracks at 1st storey bounding column  – D3 
g Crushing of infill panel at 1st and 2nd storey – D3 h Bond slip cracks at exterior column bottom  ends – D3 
i Shear-flexure cracks at 1st storey exterior beam – D3   

Figure 3.9: Major damages observed during D2 and D3 (SP#4) 
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Table 3.4: Summary of observed performance of code-conforming specimens 

Ground 
Motion Observation 

Specimen #3 – Code-conforming Bare Frame 

D1 • No visible damage  

D2 

• Minor flexure cracks in exterior columns (Figure 3.8 b) 
• Shear and shear-flexure cracks in beams (Figure 3.8 c) 
• Diagonal cracking of 1st storey joints (Figure 3.2 a) 

D3 

• Spread of flexure cracking at columns along the entire length (Figure 3.8 e) 
• Extensive diagonal cracks in joints (Figure 3.8 d) 
• Flexure cracks in beams (Figure 3.8 f) 

Specimen #4 – Code-conforming Infilled Frame 

D1 • No apparent damage 

D2 

• Minor flexure cracks in exterior columns (Figure 3.8 a) 
• Flexure cracks in beams (Figure 3.8 c) 
• Diagonal crack in joints in X-pattern (Figure 3.8 b) 
• Diagonal crack in AAC masonry panel along the compression strut (Figure 

3.8 d) 

D3 

• Shear cracks in 1st and 2nd storey bounding columns (Figure 3.8 e and f) 
• Bond slip crack at 1st storey exterior column (Figure 3.8 h) 
• Flexure and shear-flexure cracks in exterior columns (Figure 3.8 h) 
• Flexure cracks in beam widens (Figure 3.8 i) 
• Increase in diagonal cracking in joint regions   
• Multiple diagonal cracks in AAC panels leading to crushing failure of 

masonry at first and second storey (Figure 3.8 g) 

 

The Specimen #4 also did not suffer any severe damage to frame members leading to collapse but the 
main cause of inelastic deformations in the members is different from the one observed in Specimen 
#3. Due to the shear stresses conveyed by the masonry panel to the bounding columns, shear cracking 
was observed at the interior columns, although it cannot be said that it was severe enough to cause 
brittle failure in the member. The exterior columns and beams received flexure and flexure-shear 
cracks. The joints exhibit diagonal shear cracks in X – pattern. The masonry panels yielded with the 
diagonal cracking pattern observed in the Specimen #2 as well. The final failure of the masonry was 
however different from Specimen #2. As discussed earlier, the panels of Specimen #2 failed due to 
extensive diagonal cracking but in Specimen #4 AAC panels failed due to compression crushing after 
the diagonal cracking. The final failure mechanism of the specimen however cannot be predicted due 
to this blend of plastic deformations as the specimen was still in moderate damage state. 

3.3.2 Global Responses  

This section evaluates the performance of code-conforming frames on the basis of time histories of 
global responses obtained after the test as well as from the comparison of peak responses during each 
ground motion given in Table 3.5. 

The inter-storey drift responses (Figure 3.10) for infilled and bare frames during D1 indicates that 
AAC infills cause reduction in drift in all three storeys as compared to bare frame with least reduction 
in peak drift in the 1st storey and highest in the 3rd (Table 3.5), which is a similar observation as in 
Specimen #2. The storey shear response histories of both specimens, plotted in Figure 3.11, also 
indicate that the increase in storey shear of infilled frame as compared to bare frame in the 1st storey is 
the least due to strength contributed by the AAC infills while this increase is higher in the 2nd and 
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3rdstoreys. This difference is also observed for peak storey shears as shown in Table 3.5. As discussed 
earlier, this may be attributed to the fact that after cracking of members, the effectiveness of 
confinement of masonry infill provided by the frame is reduced resulting in the diminishing of integral 
frame-infill interaction in containing the drifts. 

The storey drifts plot during ground motion D2 are also plotted in Figure 3.10 with the panel cracking 
drift Δcr in both forward and reverse cyclic motion at the 1st and the 2ndstorey (the diagonal 
compression struts str_1, str_3 and str_2, str_4), is marked (Point-A and B in Figures 2.19 and 2.20). 

Table 3.5: Comparison of peak global responses between Bare and Infilled frames (CC) 

Response 
Parameter  

“N” 

Ground 
Motion 

SPECIMEN Difference [%] * 

#3 
Bare - CC 

#4 
Infilled - CC 

# #

#
 

Roof Displacement 
[m] 

D1 0.0094 0.0051 -46.09 
D2 0.0499 0.0443 -11.30 

D3 0.0858 0.0819 -4.52 

1st storey/Base 
shear [kN] 

D1 46.0 48.2 4.91 
D2 115.2 129.4 12.32 

D3 131.6 182.9 39.06 

2nd storey shear 
[kN] 

D1 39.8 42.0 5.35 
D2 101.7 111.6 9.78 

D3 128.6 173.6 35.01 

3rd  storey shear 
[kN] 

D1 27.8 23.8 -14.39 
D2 56.1 56.6 0.89 

D3 61.2 78.2 27.62 

1st storey  
drift ratio [%] 

D1 0.19 0.14 -28.99 
D2 1.16 1.07 -8.42 

D3 2.08 2.04 -1.96 

2nd storey  drift 
ratio [%] 

D1 0.27 0.18 -33.14 
D2 1.37 1.13 -16.94 

D3 2.34 2.20 -6.05 

3rd storey  
drift ratio [%] 

D1 0.19 0.05 -75.81 
D2 0.88 0.62 -30.04 

D3 1.44 0.87 -39.68 

Base shear ratio 
(V/W) 

D1 0.15 0.16 

D2 0.39 0.43 

D3 0.44 0.61 
CC = Code-conforming;  
*: Positive values indicate increase while negative values indicate decrease. 
W = Total seismic weight of the specimens = 298 kN; V = Peak base shear 
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An important observation relating to the damage in infill panels is that in code-conforming frame, the 
infill panels experience diagonal cracks and damage even in D2 ground motion while the design 
ground motion for Specimen #4 is D3. Therefore, it will only increase the economic safety if 
necessary separation is provided between the infill panel and the bounding frame to restrict the panel 
damage when the ground motion is stronger but less than the design ground motion. In case of non-
conforming infilled frame, this separation around the panel boundary would decrease the amount of 
shear forces attracted by the infill and transferred to the bounding members. 

In order to investigate the response of AAC infills in the overall load carrying capacity of infilled 
frame, peak masonry shear vs. frame shear ratio at the 1st storey is calculated at the synchronous peaks 
of bare and infilled frames during ground motions D2 and D3. Shear in the masonry is calculated by 
subtracting the base shears of bare and infilled frame. Ratio is calculated by dividing the masonry 
shear to the total base shear of corresponding infilled frame. Table 3.7 lists the values for all the 
frames. For the non-conforming infilled frame these ratios are as high as 60% and associated with the 
brittle failure in the column members. For code-conforming frame, the ratio progressively increases 
with the magnitude of ground motion to a maximum of 26%. 

Table 3.7: Infill panel shear ratio 

Peak base 
shear 

Ground 
Motion 

SPECIMEN Vinfill/Vtotal 

#1 
Bare NC

#2 
Infilled NC

#3 
Bare CC

#4 
Infilled CC

# #

#

Deficient 

# #

#

Code-conforming

V 
D2 43.2 107 119.298 129.206 0.598 0.077 

D3 75.226 130.41 135.652 182.746 0.423 0.258 
 

From the above comparative analysis of the effects of AAC infills on the response of bare and infilled 
frames with deficient and code-conforming configurations, the following main points can be 
concluded: 

• Frame and infill interaction is essentially through a diagonal compression strut once the ground 
motion is strong enough to mobilize infill-frame composite behaviour. 
 

• Failure of AAC infill panels differs for the two different configurations. In case of deficient 
frame, the infill panels failed with excessive diagonal cracking, while for code-conforming 
frames, they failed due to crushing near the cracked diagonal. 
 

• The drift corresponding to the cracking of AAC infill in both configurations of frames is found to 
be 0.5 %. The mean drift corresponding to crushing failure of infills in Specimen #4 is found to 
be0.8 %. The mean drift corresponding to severe damage and failure due to tension cracking is 
found to be approximately 1.4 %. 
 

• AAC infills have a detrimental effect on the response of deficient RC frames in the sense that 
they tend to stiffen the response resulting in attraction of additional shear forces. Therefore their 
consideration is necessary in the performance evaluation process. However the advantage of 
using AAC infills is that they reduce the residual drift of the frame considerably. 
 

• The use of AAC infills proved very beneficial in code-conforming frame as they do not tend to 
alter the response of the frame to a notable level while still contributing to some extent in the 
overall stiffness and strength. 
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• Analysis of AAC infill panel shear ratio indicates that in deficient construction the infill panel 
takeover most of the shear causing localized shear failure in bounding columns, whereas in code-
conforming construction the bounding frame causes crushing in the panel reducing the 
detrimental effects of masonry infills during strong shaking. 

• Presence of confinement reinforcement plays an important role in resisting the brittle failure of 
columns due to shear stresses transferred through the compression strut. The provision of 
adequate confinement reinforcement near the ends of columns does not guarantee the elimination 
of diagonal shear cracking however it may result in better performance of even the deficient RC 
frames once subjected to seismic loads. 
 

• Stiffness of the frame-infill assembly decreases greatly once the infill reaches cracking limit. This 
effect is more pronounced in the deficient frame as compared to code-conforming frame. After 
the crushing of infills the response of infilled and bare frame is essentially the same. 
 

• The provision of infill panels does not guarantee the reduction of peak deformations and drifts 
during a seismic event but greatly reduces the residual deformation during strong earthquake 
reducing the contribution of secondary forces on the columns generating from P-delta effects. 
 

• In code-conforming construction, the provision of necessary separation between infill panel and 
the bounding frame may reduce the damage to the infills under ground shaking lesser than the 
design earthquake, thus reducing the cost of repair for the panels. 
 

• Exterior columns i.e. columns that are not bounding the infill panels, receive most of the inelastic 
deformations by means of flexural yielding, however in deficient frame, this yielding is abrupt 
suddenly increasing the local as well as global deformations. 
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CHAPTER 4 
 
 
 

NUMERICAL SIMULATION AND CALIBRATION 
 
 
 
 
4.1 General 

Numerical models are developed in order to evaluate the seismic performance of the test frames using 
non-linear time history analysis in addition to the experimental observations and results. This chapter 
focuses on the brief description of modelling techniques employed, parameters used and the 
calibration and comparison of results with those of the experiment. 
The open source software OpenSees is used to create two dimensional planar structural models of the 
test frames. The modelling of the frame specimens is accomplished in two phases. In the initial phase, 
models are developed for two of the bare frames i.e. Specimen #1 and Specimen #3. Non-linear 
dynamic analysis or non-linear time history analysis is used to analyze and then compare the results 
with their corresponding experimental results. Global parameters are compared and the results from 
the simulation models are then calibrated with experimental observations and results by means of 
several parameters explained in the following sections. 

In the second phase, calibrated simulation models of the bare frames prepared earlier are used to 
develop the models of the two infilled frames i.e. Specimen #2 and Specimen #4. As explained in 
Chapter-2, the main difference between the infilled and the bare frame is the provision of AAC 
masonry infill panels in the middle bay of the frame. In order to account for the effects of infills, the 
equivalent strut approach is used as described earlier in the text. Time history analysis of the 
developed infilled frame models are then performed in order to assess the ability of strut model in 
representing the response of AAC masonry infill panels. The calibrated models of all the specimens 
are then used to carry out the performance evaluation by using time history and pushover analyses. 

4.2 Overview of the Numerical Model 

The OpenSees Simulation Platform was used for generating the model of each specimen to estimate 
the seismic response of the test frame through performing pushover analyses and time history 
analyses. 

Beams and columns in the OpenSees model were modelled using force-based elements defined by 
fibre sections at integration points.  Second order geometric nonlinearity effects, i.e. P-delta effects 
were also considered in columns. 

Formulation of the Nonlinear Beam Column Element follows the Euler-Bernoulli beam theory, which 
ignores shear deformations. For the joint regions, ASCE/SEI 41-06 provisions is applied where the 
rigid joint offsets are assigned to the members based on the ratio of plastic moments of columns to the 
beams connecting to a joint.  

The concrete material model used in the model is Concrete01, which is the uniaxial Kent-Scott-Park 
(1971) concrete material model with no tensile strength and degraded linear unloading/reloading 
stiffness as proposed by Karsan-Jirsa (1969). Through this material model, confinement effects of 
transverse reinforcement were accounted for by increasing the strength and strain capacities of the 
unconfined concrete in order to reflect the behaviour of the concrete in the confined zones. 
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In order to model the behaviour of steel reinforcement, a stress-strain relation was defined by using 
the uniaxial Material Reinforcing Steel command with 90% of the yield and ultimate strength values 
of the reinforcing steel obtained from material tests, to provide more realistic predictions of column 
strengths. An onset strain hardening value of 0.01 and an ultimate strain value of 0.1 was used, as 
suggested by TEC 2007.  The Reinforcing Steel material model in OpenSees is specifically created for 
simulating reinforcing steel in a fibre section. Perfect bond between concrete and steel was assumed 
because in case of Specimen #1 and #2 the reinforcements comprises of continuous bars while in 
Specimen #3 and #4 the lap splices are code-conforming. 

Rigid end zones in the columns and beams were provided as per the provisions of ASCE/ISE 41-06 
depending upon their configuration of either the joint satisfies weak column-strong beam condition or 
vice versa. Beam lengths are defined from centreline to centreline of the adjacent columns. Shear 
deformations at the beam-column connection regions are neglected in the fibre frame models.  

Dynamic properties of the specimens were modelled as lumped masses at the nodes with Rayleigh 
damping assumed for the time history analyses. 

The Static Pushover analysis feature in OpenSees is used to analyze the frame for nonlinear static 
response to the ground motions whereas Dynamic Ground-Motion analysis feature in OpenSees is 
used to perform non-linear dynamic response analysis of the frames. 

The resulting model contains 9 beam elements, 12 column elements, 16 nodes, and 48 degrees of 
freedom.  Figure 4.1 presents an overview of the modelling strategy. 

The OpenSees model completes one time history analysis in approximately 3 minutes on a standard 
personal laptop computer. Post-processing of the results were done by using MATLAB software and 
are fairly straight forward as the raw output files are in terms of curvatures, member forces and end 
displacements. 

 

 

Figure 4.1: OpenSees model with force-based elements 
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4.3 Numerical Simulation and Model Calibration: 
Bare Frames [Specimen #1 and Specimen #3] 

Following the development of the general numerical model for the bare frames as per the description 
made in the earlier section, the OpenSees model was later calibrated separately for Specimen #1 and 
#3 based on the observed behaviour during pseudo-dynamic test earlier detailed in Chapter-3.   

4.3.1 Specimen #1 – Non-conforming Bare Frame 

The following global assumptions were made in order to calibrate the Specimen #1 model time history 
output to match the experimental results: 

• Storeys are modelled as rigid diaphragms; 

• Column rigid offsets are set as zero, except for the exterior joints at the 1st and 2nd storey 
where the full dimension is defined; 

• Beam rigid offsets are set as the full dimension, except for the exterior joints at the 1st and 2nd 
storey, where they are set as zero; 

• Concrete strengths at each floor are defined separately based on concrete cylindrical strength 
test results given in Table 2.1; 

• Longitudinal reinforcement steel behaviour are defined separately for beams and columns 
based on material strengths mentioned in Table 2.2; 

• Steel strengths in columns are 90% of the nominal values determined from the material tests; 

• The force-based beam and column elements have 5 Gauss-Lobatto integration points; 

• P-Delta effects are considered in the column elements; 

• Total load on the test specimen is applied as uniformly distributed load on the beams and 
calculated from the weight of steel blocks (which represents the live loads from slabs of 
prototype building, transverse beams and slab weight); 

• Nodal masses for dynamic analyses were assigned with a factor of 1.0, representative of the 
physical pseudo-dynamic test; and 

• The damping value is set at 2.50% for stability purposes (discussed later) 

The results obtained from the analysis of the calibrated model of Specimen #1 are compared with the 
pseudo-dynamic results and comments are made on the accuracies obtained as well as the limitations 
in capabilities of the numerical model.  

The initial fundamental period of Specimen #1 from OpenSees is 0.48 sec. The comparison of time 
histories for inter-storey drift ratio and storey shears are presented in Figures 4.2 and 4.3, respectively. 
Note that in Figure 4.2 the model results are unstable due to the collapse of the specimen after 
approximately 18.5 sec. and hence the limit of the drift plots is fixed at ±3 %.  

It is evident from the plots that during ground motion D1, the model does not capture the peak drifts 
in all three storeys. Comparing the initial 1st mode period from experiment and model suggests that 
model is slightly more flexible than the physical specimen during D1 and thereby over-predicts the 
peak inter-storey drifts. During D2 1st storey residual drift is captured accurately however model 
couldn’t predict the residuals accurately for 2nd and 3rd storeys while capturing some peaks better. 
During D3, the residuals and peak drift values are over-predicted for 1st storey while under-predicted 
for 2nd and 3rd storeys.  
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Initially the model appears to be more flexible than the actual specimen hence causing over-prediction 
of drifts during D1 as described earlier. During ground motion D2, the drift plots indicate the signs of 
a soft-storey mechanism in the model, which became more prominent during D3, with over-prediction 
of drifts in the first storey while under-prediction in the second and third storeys, which is contrary to 
the experimental results. However, the error during D2 is considerably less than that of D3 because of 
the damage concentration and storey-mechanism in the 1st storey of the model. 

The experimental observation indicates that joint regions in all three storeys of test specimen suffer 
shear cracking during D2 which later leads to severe damage during D3. In addition, no column 
mechanism usually associated with strong-beam weak column system was observed. This joint 
flexibility could have been a major cause of uniform drift observed in the test frame (Figure 2.9) since 
drift capacities are greatly influenced by the joint flexibility which in-turn is a function of the amount 
of transverse reinforcement, concrete strength, confinement of joint by members in all directions, 
shear stresses and axial loads. Thus the inability of numerical model to accurately simulate the inter-
storey drifts in the 2nd and 3rd storeys could mainly be attributed to the fact that the model lacks 
detailed non-linear joint elements at joints other than the fixed base nodes to accurately capture 
rotations. Use of reduced section properties and reduced material strengths in joint end-offsets to 
better simulate joint flexibility and drift responses does not prove efficient. For this purpose, a more 
detailed non-linear spring element for joint regions could be utilized to capture the damage and 
deformation pattern actually observed in the tests. 

Table 4.1: Peak inter-storey drift error (SP#1) 

Storey Ground 
Motion 

Maximum Inter-Storey Drift [%] 
Error [%] * Experiment OpenSees 

1st D1 0.20 0.36 + 80.0 
1st D2 1.20 1.61 + 34.2 
1st D3 0.86 1.19 + 38.4 
2nd D1 0.23 0.35 + 52.2 
2nd D2 1.28 1.21 - 5.46 
2nd D3 1.19 1.09 - 8.40 
3rd D1 0.26 0.43 + 65.4 
3rd D2 1.20 0.62 - 48.3 
3rd D3 1.27 0.44 - 65.3 

* Positive: Over-prediction, Negative: Under-prediction 

 
Table 4.2: Peak storey-shear error (SP#1) 

Storey Ground 
Motion 

Maximum Storey Shear [kN] 
Error [%] * Experiment OpenSees 

1st D1 36.5 51.2 + 40.3 
1st D2 68.5 70.8 + 3.36 
1st D3 66.6 74.6 + 12.0 
2nd D1 26.1 37.5 + 43.7 
2nd D2 47.9 51.3 + 7.09 
2nd D3 38.2 55.3 + 44.8 
3rd D1 18.8 27.9 + 48.4 
3rd D2 41.3 41.5 + 0.48 
3rd D3 31.3 27.1 + 13.4 

     
* Positive: Over-prediction, Negative: Under-prediction 

Another important factor influencing the predictions of drift responses is the effect of deficiencies 
present in the system. The material models listed in the software programs were developed for good 
quality materials with reliable mechanical properties and are unable to properly simulate the 
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4.3.2 Specimen #3 – Code-conforming Bare Frame 

The following global assumptions were made in order to calibrate the model time history output to 
match the experimental results: 

• Storeys are modelled as rigid diaphragms; 

• Rigid Joint offsets for column and beams at all joints are set to zero; 

• Longitudinal reinforcement steel behaviour for beams and columns are defined with steel 
strength set to 90 % of the nominal values determined from the material tests; 

• Concrete strengths at each floor are defined separately based on concrete cylindrical strength 
test results; 

• The force-based beam and column elements have 5 Gauss-Lobatto integration points; 

• P-Delta effects are considered in the column elements; 

• Total load on the test specimen is applied as uniformly distributed load on the beams and 
calculated from the weight of steel blocks (which represents the live loads from slabs of 
prototype building, transverse beams and slab weight); 

• Nodal masses for dynamic analyses were assigned with load factor of 1.0, representative of 
the physical pseudo-dynamic test; and 

• The damping value is set at 2.0% for stability purposes. 

Similar to Specimen #1, the results obtained from the analysis of the calibrated model of Specimen #3 
are also compared with the corresponding pseudo-dynamic test results and comments are made on the 
accuracies obtained as well as the limitations in capabilities of the numerical model.  

The initial fundamental period of Specimen #3 from OpenSees is 0.39 sec. The comparison of time 
histories for inter-storey drift ratio and storey shears are presented in Figures 4.5 and 4.6, respectively. 

It is evident from the plots that during ground motion D1, the model does not capture the peak drifts 
in all three storeys. Comparison of initial 1st mode period from experiment and model confirms that 
model is more flexible during D1, thus causing an over-prediction of drifts in all three storeys. 
Quantitative comparison of peak values, shown in Table 3.3, also suggests the same. However, as 
discussed earlier, the ground motion intensity for D1 is not significant enough to cause any non-
linearity in the dynamic behaviour as no damages were reported during test; therefore the results of 
ground motion D1 will not be used for performance evaluation later discussed in the forthcoming 
chapter. 

During D2 ground motion, the error in peak inter-storey drifts for all three storeys is less than 15%. In 
addition, it is important to note that experimental results indicate greater drift in 2nd storey compared 
to other storeys. The model is also able to capture similar response with acceptable accuracy. 

During D3, the drift of 1st storey is captured fairly well, although with slight under-prediction, but the 
drifts of 2nd and 3rd storeys are significantly under-predicted with successively increasing error. 
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Table 4.3: Peak inter-storey drift error (SP#3) 

Storey Ground 
Motion 

Maximum Inter-Storey Drift [%] 
Error [%] * Experiment OpenSees 

1st D1 0.19 0.24 + 26.3 
1st D2 1.16 1.20 + 3.4 
1st D3 2.03 1.87 - 7.9 
2nd D1 0.27 0.32 + 18.5 
2nd D2 1.38 1.51 + 9.4 
2nd D3 2.34 1.62 - 30.7 
3rd D1 0.19 0.29 + 52.6 
3rd D2 0.87 0.76 - 14.8 
3rd D3 1.44 0.66 - 54.2 

* Positive: Over-prediction, Negative: Under-prediction 

Table 4.4: Peak storey shear error (SP#3) 

Storey Ground 
Motion 

Maximum Storey Shear [kN] 
Error [%] * Experiment OpenSees 

1st D1 46.9 53.6 + 14.2 
1st D2 115.2 113.4 - 1.6 
1st D3 131.6 126.0 - 4.3 
2nd D1 39.8 42.4 + 6.5 
2nd D2 101.6 103.4 + 1.8 
2nd D3 126.6 107.9 - 14.8 
3rd D1 27.7 35.9 + 29.6 
3rd D2 56.2 61.4 + 9.3 
3rd D3 61.3 55.4 - 9.6 

* Positive: Over-prediction, Negative: Under-prediction 

It should be noted that Specimen #3 is a code conforming specimen with strong-column weak-beam 
configuration. However, experimental observations presented earlier suggest that 1st and 2nd storey 
joint regions suffer shear cracking during D2 and D3 and the flexural cracking was equally observed 
during the test both in beams as well as in columns, without any formation of beam mechanism 
usually associated with strong-column weak-beam system. Therefore, similar to the Specimen #1, the 
joint flexibility can be deemed responsible for the observed uniform drift at 1st and 2nd storeys. The 
use of zero joint offsets in the model in hope to achieve joint flexibility did not prove helpful in 
reducing the error of under-prediction of drifts during D3. Thus, the inability of numerical model to 
accurately simulate the inter-storey drifts in the 2nd and 3rd storeys could mainly be attributed to lack 
of detailed non-linear spring element in joint regions to capture the deformation and damage pattern.  

Comparison of error estimates between numerical models of Specimen #1 and Specimen #3 indicate 
significant improvement in capturing drift and storey forces in the model of Specimen #3. This gives 
an overall confidence on the hypothesis earlier made that complexity in capturing degradation and 
damages, associated with deficiencies due to sub-standard construction as well as modelling low 
quality material, are too high to be captured properly by the model. It is one of the important reasons 
that response of code-conforming specimen is better predicted. 

 

  



 

Non-linea
Specimen
roof disp
lesser cap
to the slo
analysis h

Figu

 
4.4 Num
Infilled F

Following
specimen
addition o
The com
conducted

4.4.1 Mo

Equivalen
panels in 
strength a
following
modelling

 

ar static push
n #3. Figure 4
placement plot
pacity compar
ope of base-sh
has captured t

ure 4.7: Spec

erical Simula
Frames [Spec

g the develop
ns, their respe
of compressio

mparison of nu
d later, follow

odelling of Au

nt strut metho
the infilled R

and stiffness 
g section pre
g. 

hover analysi
4.7 presents t
t. Similar to S
red to the expe
hear vs. roof d
he behaviour 

cimen #3 capa

ation and Mo
cimen #2 and 

ment of nume
ctive infilled 
on struts in th
umerical mod

wed by the erro

utoclave Aera

odology, earl
RC frame mod
properties pla

esents the ne

 

s was also p
the Capacity c
Specimen #1,
erimental obse

displacement p
accurately sin

acity curve an

odel Calibrati
Specimen #4

erical models 
counterparts w

he middle bay
dels and resp
or analysis.  

ated Concrete

lier discussed
dels of bare fr
ays vital role 
ecessary desc

84 

performed usi
curve super-im
 the capacity 
ervation. The 
plot during bo
nce it is a first 

nd base-shea

ion: 
4] 

for non-confo
will be simul

y of the frame
ective experim

e Masonry In

d in the litera
rames earlier 
in the perform

cription of th

ing the calibr
mposed on ex
curve from p
initial slope o

oth D2 and D3
mode domina

r vs. roof disp

orming and co
ated by using

es in order to 
ments in term

nfill Panels 

ture, is used 
developed. It 
mance of equ

he modelling 

rated OpenSe
xperimental b
pushover anal
of capacity cur
3, indicating t
ant structure. 

placement re

ode-conformin
g the same mo

simulate the 
ms of global 

to model the
is already kn

uivalent strut 
of AAC m

ees model of 
ase-shear vs. 
lysis predicts 
rve is similar 
that pushover 

 
esponse 

ng bare frame 
odel but with 
infill panels. 
responses is 

e AAC infill 
nown that the 
method. The 
asonry infill 



85 
 

4.4.1.1 Width of Equivalent Compression Strut 

With regards to strength, compression tests on masonry prisms are conducted to investigate the 
mechanical properties as earlier presented in Chapter-2. In terms of stiffness, the width of equivalent 
compression strut binf is estimated by using the provisions of ASCE-41/06 section 7.4 given below in 
Equation 4.1. It is based on the characteristic parameter λ (Equation 4.2) first proposed by Stafford 
Smith. Similar formulation is also adopted in TEC 2007 Annex-7F for strengthened masonry panels.  

0.175  .                                                                 4.1  

where;  

binf     =      Width of equivalent compression strut  
λ         =      Characteristic parameter calculated as;   

 
sin 2

4 

.

                                                                            4.2  

hinf = Height of infill panel = 1325 mm 
t inf = Thickness of infill = 150 mm 
d inf = Diagonal length of infill panel = 2039 mm 
θ = Inclination from horizontal to d inf = 0.707 rad. 
I col = Inertia of bounding column = 1x108 mm4 
E fr = Modulus of elasticity of frame [4780 ] ACI 318-08 
 - Specimen #2 = 18289 MPa 
 - Specimen #4 = 25066 MPa 
σcfr = Concrete compressive strength of frame    
E inf = Modulus of elasticity of infill [from prism test] = 1182 MPa 
 
Substituting the above values yields;  
 
λ = Characteristic Parameter  SP #2 = 0.00206 mm 
λ = Characteristic Parameter  SP #4 = 0.00191 mm 
binf = Width of Equivalent Strut SP #2 = 227 mm 
binf = Width of Equivalent Strut SP #4 = 234 mm 
 
The average width of strut b inf = 230 mm is used and thickness of strut is taken equal to the thickness 
of infill panel in the numerical models.  

4.4.1.2 Material Model  

Another important factor is the assignment of force-deformation (F-D) relationship for the masonry 
compression strut. Several relations are proposed in the literature, however, in this study; three 
material models are presented to represent the F-D relation of AAC masonry equivalent compression 
strut in the OpenSees models. The time history analysis results from the numerical model of both 
infilled frames using each of the three material models for equivalent strut are then compared with 
experimental results and errors are evaluated. The selected model is later used for performance 
evaluation using pushover analysis. A necessary description of each material model is given below. 
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First of these models utilizes the concrete material representation with zero tensile strength using the 
1D-Concrete material command in the OpenSees, hereinafter denoted as “1D-Concrete”. The initial 
slope for this material model is 2  

  . The crushing strength of infill is assumed equal to 
0.2 MPa for solution-convergence purpose. Strain at the crushing limit is calculated from the 
experimental observation of drift responses presented in Chapter-3. The drift at which the crushing of 
panel occurs is approximately equal to Δf = 0.8% as given in Table-3.6. From this observation, the 
strain at the crushing of infill panel is calculated using the Equation 4.3, shown below. 

 
Δ

100
cos

                                                                      4.3  

Figure 4.8 presents the “1D-Concrete” material model with input parameters involved are given 
below: 

σcinf = Compressive strength of infill = 2.6 MPa (from prism test, Figure 2.24) 
εcinf = Strain at maximum stress = 0.0022  (from prism test, Figure 2.24) 
σcrinf = Crushing stress of infill = 0.2 MPa (assumed) 
εcrinf = Strain at crushing stress = 0.0039  (from Equation-4.3) 
 
Second one of these material models is developed using one of the several F-D relationships already 
present in the literature and hereinafter referred as “Literature”. Assuming the diagonal compression 
failure, also observed in the experiments, the ultimate shear force Vu in the compression strut can be 
given by Equation-4.4 as suggested by Stafford Smith. 

 cos 68.2                                                                4.4  

The displacement Su at maximum force is given by Equation-4.5, proposed by Madan et al (1997). 

 cos 5.9                                                                           4.5  

It is worth noticing here that, the drift observed in Specimens #2 and #4 during experiments at the 
cracking of infill panel Δcr is approximately 0.5 %, which gives the maximum displacement in the 
infill  ∆ 100⁄ 6.6  which is quite close to the value of Su obtained from Equation-
4.5. 
The initial stiffness can now be obtained from Equation 4.6 as follows; 

2 23119 ⁄                                                                           4.6  

 
Using the post yield stiffness co-efficient α = 0.2, the shear force at yield can be calculated as follows; 

1 51.2                                                                       4.7  

The displacement at yield can be given by ⁄  2.2 mm. Assuming the residual shear force 
Vr equal to 0.1 x Vy and the displacement Sr = 3 x Su, we have Vr = 5.12 kN and Sr = 17.7 mm. The F-D 
relationship is converted to stress-strain using geometric and cross-section properties of equivalent 
strut obtained earlier and plotted also in Figure 4.8 with the parameter values given below; 

σcyinf = Yield stress = 2.0 MPa 
εcyinf = Yield strain = 0.00083  
σcuinf = Ultimate strength = 2.6 MPa 
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4.4.1.3 Modelling of Strut Members 

The definition of strut cross-section and its material model is followed by implementing the strut 
elements into the numerical models. The equivalent struts are modelled with diagonal axial force 
member using “truss” element in the OpenSees model. Two truss elements are connected node to node 
in the middle bay at each floor to represent the AAC infill panel with concentric struts active in each 
direction. Similar methodology is used for both infilled frames. 

In the forthcoming sections, the analysis results for the infilled frame specimens are presented in 
separate sections and compared with the experimental results. Three numerical models of each infilled 
frame specimen are prepared with the only difference between the three is the material model used to 
represent equivalent compression strut. 

4.4.2 Specimen #2 – Non-conforming Infilled Frame 

The results obtained from the analysis of the calibrated model of Specimen #2, which is developed 
using the model of Specimen #1 after modelling infills, are compared with the pseudo-dynamic results 
and comments are made on the accuracies obtained as well as the limitations in capabilities of the 
numerical model. Comparative analysis is also performed among the three material models used for 
masonry infill equivalent strut. 

The initial fundamental period of Specimen #2 obtained from OpenSees using Calibrated, 1D-
Concrete and Literature material models are 0.29 seconds, 0.24 seconds and 0.24 seconds 
respectively. The comparison of time histories for inter-storey drift ratio and storey shears are 
presented in Figures 4.9 and 4.10, respectively. 

It is evident from the inter-storey drift plots that overall the model captures the response for first 
storey accurately however under-prediction of responses increase in the 2nd and 3rd storeys. The 
quantitative evaluation of the accuracy of model predictions in terms of peak inter-storey drifts and 
peak storey shears is shown in Table 4.5 and 4.6 respectively. It can be noted that during D1, the 
Calibrated material model over-predicts the storey drifts in all three storeys while 1D-Concrete and 
Literature material models predict the drifts accurately. The over-prediction of drifts in Calibrated 
model can be attributed to the fact that this model has much reduced initial stiffness of equivalent 
struts than the other two models. However, the results of ground motion D1 are insignificant as no 
observed damage was recorded in any member during the test and the specimen behaviour was nearly 
elastic. 
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Table 4.5: Peak inter-storey drift error (SP#2) 

Storey Ground 
Motion

Maximum Inter-Storey Drift [%] 
Error [%] * 

Experiment 
OpenSees 

Calibrated 
(a) 

1D-Concrete
(b) 

Literature 
(c) (a) (b) (c) 

1st D1 0.18 0.175 0.17 0.15 - 2.8 - 7.8 - 15.6 
1st D2 1.41 1.43 1.29 1.09 + 1.6 - 8.4 - 22.9 
1st D3 3.22 3.11 3.04 1.74 - 3.4 - 5.6 - 46.1 
2nd D1 0.17 0.24 0.19 0.17 + 42.4 + 16.2 + 0.04
2nd D2 1.26 1.14 0.69 0.61 - 9.3 - 45.3 - 51.6 
2nd D3 1.89 1.17 0.56 0.55 - 38.5 - 70.3 - 70.9 
3rd D1 0.12 0.21 0.15 0.14 + 78.2 + 29.5 + 21.9
3rd D2 0.65 0.44 0.37 0.28 - 32.2 - 43.5 - 57.4 
3rd D3 1.14 0.39 0.36 0.27 - 65.7 - 67.9 - 76.4 

* Positive = Over-prediction, Negative = Under-prediction 

Table 4.6: Peak storey shear error (SP#2) 

Storey Ground 
Motion

Maximum Storey Shear [kN] 
Error [%] * 

Experiment 
OpenSees 

Calibrated 
(a) 

1D-Concrete
(b) 

Literature 
(c) (a) (b) (c) 

1st D1 41.4 45.9 64.1 66.9 + 10.9 + 54.7 + 61.7
1st D2 107.1 119.2 117.3 119.7 + 11.3 + 9.6 + 11.8
1st D3 130.4 125.1 124.3 122.1 - 4.1 - 4.6 - 6.3 
2nd D1 30.9 40.3 53.3 53.4 + 30.1 + 72.3 + 72.6
2nd D2 95.5 97.4 99.6 100.6 + 2.1 + 4.3 + 5.3 
2nd D3 97.9 92.4 91.8 89.5 - 5.6 - 6.2 - 8.5 
3rd D1 27.7 30.1 36.9 44.1 + 8.3 + 33.2 + 62.1
3rd D2 45.7 52.6 67.7 63.4 + 15.0 + 48.1 + 38.7
3rd D3 58.6 51.9 68.8 48.6 - 11.3 + 17.5 - 17.0 

* Positive = Over-prediction, Negative = Under-prediction 

During ground motion D3, until approximately 18.5 seconds (Figure-4.9), the Calibrated material 
model captures the drift response at several peaks quite accurately, however, after that instant the 
results differ considerably for higher storeys, probably due to the brittle failure of columns at 1st 
storey. Table 4.5 also indicates that the peak drift for 1st storey is predicted accurately while for 2nd 
and 3rd storeys the drifts are successively under-predicted. This indicates that models for specimen #2 
are predicting first storey mechanism in D3 which was not observed explicitly in the experiments. 

This is the similar behaviour as observed in the results of Specimen #1 models, which again can be 
attributed to the similar reasons that the model is unable to capture damage distribution in a deficient 
specimen with sub-standard concrete material and plain reinforcing bars. In-addition, the inability of 
model to simulate joint flexibility observed in the experiment due to diagonal cracking in the joints is 
another cause of increasing errors in the upper storeys.   

The maximum storey shear response errors shown in Table-4.6 indicate that Calibrated model 
captures the peak storey shears in all three ground motion with acceptable accuracies within 15 % 
errors as compared to other two models, except in the case of D1 in the 2nd storey where the error is 
high probably because of the inability to capture micro-cracks.  

Non-linear static pushover analysis was also performed using Calibrated and 1D-concrete OpenSees 
models of Specimen #2. The resulting capacity curve along with base shear vs. roof displacement 
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CHAPTER 5 
 
 
 

PERFORMANCE EVALUATION 
 
 
 
 
5.1 General 

The evaluation of performance assessment procedures mentioned in TEC 2007 and ASCE-41/06 in 
the light of experimental data is the focus of this chapter as stated in the problem statement as well. In 
this regards, the performance evaluations of all four specimens is carried out. Numerical models 
earlier developed are used to evaluate the seismic performance of the test frames using non-linear 
static and non-linear time history analyses in addition to the experimental observations and results.  

5.2 Performance Evaluation of Specimens 

Performance evaluation of all four specimens is conducted using experimental measurements as well 
as the results of time history and pushover analysis in the OpenSees platform. The aim is to compare 
the non-linear assessment procedures of TEC 2007 and ASCE/SEI 41-06. Visual assessment of 
selected members during the tests is also used for comparison purposes. It should be noted that 
assessment is strictly focused on the column members and the effect of infills on the performance of 
frames since the infills mainly affected the response of column members as observed in the pseudo 
dynamic test. 

The assessment procedure of TEC 2007 comprises of strain-based performance limits while that of 
ASCE/SEI 41-06 is rotation-based performance limits. Three performance limit states for ductile 
members defined in TEC 2007 at member level are: Minimum Damage (MD), Safety Limit (SL), and 
Collapse Limit (CL). Similar performance limits defined in ASCE/SEI 41-06 for ductile members are: 
Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). In this text, the notation 
for performance limit states similar to ASCE/SEI 41-06 is used. The damage regions between these 
performance limits specified in both TEC 2007 and ASCE/SEI 41-06 are Minimum Damage (MD), 
Significant Damage (SD), Heavy Damage (HD), and Collapse (CP). Figure 5.1 shows the 
performance limits and the damage regions specified in both codes. 

 
Figure 5.1: Performance limits and damage states 
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The formulation for limit state strain values for longitudinal steel in tension and concrete in 
compression for columns of both code-conforming and non-conforming specimens is shown in Table 
5.1 in accordance with TEC 2007, Chapter #7. These performance limits depends on the ratio of the 
provided confinement reinforcement ratio “ρs” vs. required confinement reinforcement ratio “ρsm” 
with an upper bound of ratio ⁄  equal to 1. For columns of non-conforming frames, the ratio 

⁄  is 0.3 whereas for columns of code-conforming frames it is 0.95. Columns in all specimens 
satisfy the requirements of ductile behaviour. 

Table 5.1: TEC 2007 limiting strain values 

 Limiting strains 
MD SL CL 

Longitudinal 
Steel 0.01 0.04 0.06 

Concrete 
(compression) 0.0035 0.0035 0.01 ⁄  0.004 0.013 ⁄  

 
The limiting values of plastic rotations for column members given in ASCE/SEI 41-06 in Table 6-8 
are presented here in Table 5.2. These values are interpolated bi-linearly based on two parameters 
which are axial load ratio and confinement reinforcement ratio as calculated from Equations 5.1 and 
5.2 respectively. 

                                                                                         5.1  

                                                                                         5.2  

Table 5.2: ASCE/SEI 41-06 limiting values for plastic rotations 

Specimen Column Plastic rotations 
IO LS CP 

Specimen #1 
Bare Frame NC 

Exterior 0.0033 0.0063 0.0073 

Interior 0.0029 0.0057 0.0065 

Specimen #2 
Infilled Frame 

NC 

Exterior 0.0034 0.0064 0.0076 

Interior * * * 

Specimen #3 
Bare Frame CC 

Exterior 0.0049 0.024 0.032 

Interior 0.0048 0.022 0.030 

Specimen #4 
Infilled Frame 

CC 

Exterior 0.0047 0.016 0.020 

Interior * * * 

* Refer to Table 5.3 
 
These limits are applied to plastic rotations obtained at potential plastic hinge regions of members 
from experimental measurements as well as from OpenSees models assuming uniform strain 
distribution in these regions.  
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It should be noted that unlike TEC 2007, ASCE/SEI 41-06 provides separate performance limits for 
frame elements bounding the infill panels. These assessment limits are based on total strain 
(compression/tension) in the member and are provided in Table 6-16 of ASCE/SEI 41-06. The tensile 
strain limits are based on adequate/inadequate splicing whereas strain limits for concrete in 
compression depend on adequate/inadequate confinement. In our case, columns of Specimen #2 are 
inadequately confined whereas columns of Specimen #4 are properly confined. Table 5.3 presents the 
limiting strain values for bounding columns of the infilled frames. 

 
Table 5.3: ASCE/SEI 41-06 limiting strain values for RC members bounding the infill panel 

Specimen  Total Strain 
IO LS CP 

Specimen #2 
NC 

Tension 0.01 0.03 0.04 

Compression  0.002 0.002 0.003 

Specimen #4 
CC 

Tension 0.01 0.03 0.04 

Compression  0.003 0.015 0.02 

 

In case of infill panels, the performance limits are specified in both codes based on maximum inter-
storey drifts. The limiting values are indicated in Table 5.4 for TEC and ASCE guidelines. It should 
be noted that in TEC 2007, these limits are defined for strengthened infill panels. However, in 
ASCE/SEI 41-06 these limiting values are for unreinforced masonry infill panels. 
 

Table 5.4: Limiting drift values for infill panel 

Specimen  Limiting drifts (%) 
IO LS CP 

Specimen #2 
NC 

TEC 2007 0.15 0.35 - 

ASCE 41-06 - 0.3 - 

Specimen #4 
CC 

TEC 2007 0.15 0.35 - 

ASCE 41-06 - 0.6 - 

 
 
In addition to these limiting drift values for infill panels, ASCE/SEI 41-06 also defines the acceptance 
criteria based on observed damage which is as follows; for immediate-occupancy: significant visual 
cracking of an unreinforced infill panel occurs, for life-safety: substantial cracking of infill panel 
occurs and the potential is high for the panel, or some part of it, to drop out of the frame. In this study, 
this approach will be used to determine the performance based on the observations during 
experimental tests because the drift limits are not comparable due to difference in applicability.  
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5.2.1 Assessment using Non-linear Analysis Procedures 

Non-linear time history and non-linear static pushover analyses are performed on OpenSees models 
for the performance assessment of column members. Capacity curves obtained from pushover analysis 
and demand curves from response spectra of D2 and D3 ground motions are used to estimate the 
target displacements (inelastic deformations) in accordance with the procedure defined in TEC 2007.  
In this approach, the multi-degree of freedom system (MDOF) is reduced to an equivalent single-
degree of freedom system (SDOF).  

The procedure can be outlined as follows: 

 Using the pushover load-pattern based on the first mode response, obtain the capacity curve 
of the MDOF system 
 

 Bi-linearize the capacity curve and convert MDOF system to equivalent SDOF system 
 

 Convert the capacity curve to spectral acceleration-spectral displacement format 
 

 Convert the response spectrum to acceleration-displacement response spectrum (ADRS) to 
obtain the demand curve 
 

 Plot the demand and capacity curves in the ADRS format on the same graph and determine 
the inelastic displacement demand of the SDOF system at the control node 
 

 Convert the displacement demand of SDOF system to the global roof displacement (target 
displacement) of MDOF system at the control node. 
 

 Push the structure up to the target displacement and record member deformations.  

The fixed pushover load pattern which is based only on the first mode response may influence the 
reliability of this method. It is important to note that for ground motion D3, the evaluation based on 
pushover does not take into account prior damage to the specimen due to ground motions D1 and D2. 
It should also be noted that target displacement used in pushover analysis is calculated from the 
respective response spectrum of the ground motions and it may differ from the experimental target 
displacement. 

For the assessment using time history analysis, the peak values of strain and rotation time-histories 
recorded at member ends are used to compare with the limiting values mentioned above. Similar 
procedure is also adapted for experimental time histories.  

Evaluation procedures based on permanent residual displacements of structure from the analytical 
model have also been proposed by several researchers such as Dazio and Yazgan (2011). However, 
the developed simulation models are not sophisticated enough to accurately capture the residuals and 
therefore the only procedure applicable here for evaluation is based on peak responses during the 
response time history.  

In addition to the experimental and analytical performance evaluation using TEC 2007 and ASCE 41-
06 procedures, certain columns are also assessed through visual observations during the physical test. 
The judgement is purely objective with the aim to compare the methods of these codes with damages 
observed during the experiment. 

It should be reminded here again that evaluation is only performed for D2 and D3 ground motions and 
focus strictly on column members as well as infill panels. 
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5.3 Performance Assessment of Specimen #1 

Performance evaluation of Specimen #1 is conducted as explained above for experimental and 
numerical results using the procedures of TEC 2007 and ASCE 41-06 and the outcome is given in 
Figure 5.2 and Figure 5.3 under the ground motions D2 and D3 respectively. Assessment using 
experimental time histories from pseudo-dynamic test is referred hereinafter as “Experiment”, 
whereas assessment results using OpenSees time history and pushover analysis are referred hereinafter 
as “Time History” and “Pushover” respectively. 

Comparing the evaluation using experimental results, we observe that TEC 2007 procedure is 
conservative as compared to ASCE 41-06 evaluation under both D2 and D3. Among the time history 
and pushover evaluation, ASCE procedure gives conservative results compared TEC 2007 during both 
D2 and D3. 

Comparing the two analysis methods using OpenSees model, pushover procedure overestimates the 
damages in the members as compared to time history and indicate complete collapse after D2, which 
is contrary to the experimental evaluation by using any of the procedures. During D2 ground motion, 
where the response is stable, the assessment of OpenSees time history using TEC 2007 limit states 
compares fairly acceptable with the corresponding experimental evaluation outcome while evaluation 
using ASCE 41-06 over-predicts the damage. During D3, since the specimen reaches collapse 
rendering the response unstable, none of the model results are comparable due to the soft storey 
mechanism formed at the 1st storey in the analytical model, therefore the damages at higher stories are 
not predicted accurately by the model. 

As presented in Chapter 3 and Chapter 4, most of the damage is concentrated in the first storey. Model 
results also compare well with experimental results for the first storey, we therefore objectively 
compare first storey evaluation results from experimental, analytical time history and analytical 
pushover analysis of TEC 2007 and ASCE 41-06 with that of visually observed damages during the 
physical test. It is important to remind here that since the analytical model was not capable to 
accurately capture the response from experimental time histories, the comments here are focused on 
the experimental assessment results. The comparison for D2 and D3 ground motion is shown in 
Figure 5.4 and Figure 5.5 respectively. Using experimental data, TEC assessment compares quiet well 
with the observed damages while ASCE 41-06 mostly under-predicts the damages. The OpenSees 
time history and pushover assessment using ASCE procedure is conservative while that of TEC 2007 
compares good with observation during D2 while better than ASCE 41-06 during D3.  
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Figure 5.2: Specimen #1 performance assessment [D2] 

 
Figure 5.3: Specimen #1 performance assessment [D3] 
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Figure 5.4: Observed and evaluated damages - SP #1 [D2] 

 
Figure 5.5: Observed and evaluated damages - SP #1 [D3] 
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5.4 Performance Assessment of Specimen #2 

Performance evaluation of Specimen #2 is conducted similar to the Specimen #1and the outcome is 
given in Figure 5.6 and Figure 5.7 for ground motions D2 and D3 respectively. 

The assessment using experimental results indicates that for exterior columns, TEC 2007 procedure is 
conservative as compared to ASCE 41-06 as for the previous Specimen #1 while for bounding 
columns, i.e. columns bounding the infill panels, ASCE/SEI 41-06strain-limits conservatively predicts 
the damages as compared to TEC 2007 during both D2 and D3.  

The results of assessment using OpenSees model for both D2 and D3 do not comply with 
experimental evaluation specially for bounding column from any of the two procedures. The reason 
could be the inability of concentric strut model to capture local deformations and representing the 
damage caused by transfer of shear from the columns. For this purpose, a more detailed multi-strut 
model could be used.  

Similar to Specimen #1, the first storey assessment results are compared with observation and 
presented in Figure 5.8 and Figure 5.9 for D2 and D3 ground motions. During D2, TEC 2007 gives 
accurate prediction of observed damages in the exterior column while under-predicts the damages in 
the bounding column. On the other hand, ASCE 41-06 accurately predicts the damages in the 
bounding columns as compared to observation while under-predict the damages in exterior columns. 
The difference can be attributed to the fact that TEC 2007 provides general performance limits for 
both bounding and non-bounding RC frame members while ASCE 41-06 provides separate strain 
based limits for RC columns which are bounding the infill panel, treating them as tension and 
compression chords under lateral loads. These limits are significantly strict than TEC 2007 limits 
which general for all column elements. 
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Figure 5.6: Specimen #2 performance assessment [D2] 

 

 
Figure 5.7: Specimen #2 performance assessment [D3] 
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Figure 5.8: Observed and evaluated damages - SP #2 [D2] 

 
Figure 5.9: Observed and evaluated damages - SP #2 [D3] 
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Based on the limiting drift values given in Table 5.4, the infill panel already reached collapse point at 
the end of D2 according to both TEC and ASCE, however, since the limits in TEC are valid for 
strengthened infill walls; the evaluation criteria will not be consistent for both codes in order to 
perform comparison of two approaches. Therefore, the infill panel assessment is done, as explained 
earlier, based on the visual-observation acceptance criteria explained in the ASCE/SEI 41-06 and the 
results are tabulated below: 

Table 5.5: Performance evaluation of infill panels (SP#2) 

Ground 

motion 
Storey Damage 

Performance 

Level 

D2 

1 Significant multiple diagonal cracking LS 

2 Significant diagonal cracking LS 

3 No visible cracks IO 

D3 

1 Wide see-through cracks with spalling of fragments CP 

2 Wide see-through cracks with spalling of fragments CP 

3 Significant diagonal cracking LS 

 
 
Considering the performance of the AAC infill panels, comparison of the cracking and 
crushing/failure drift values of panel for Specimen #2 given in Table 3.3 with the limiting drift values 
of Table 5.4, it reveals that AAC infill panels performed much better than the expected response. 
According to TEC 2007, life-safety limit is assumed to be reached and the panel is considered in 
collapse range when inter-story drift reaches 0.35%, whereas during pseudo-dynamic test, the first 
visible diagonal crack appears at approximately 0.5% drift value. Similar comments can be made in 
the case of ASCE/SEI 41-06 limits. 

5.5 Performance Assessment of Specimen #3 

For Specimen #3, performance assessment outcomes are presented in Figure 5.10 and Figure 5.11 for 
ground motions D2 and D3 respectively. 

For evaluation using experimental results, similar to Specimen #1, TEC 2007 procedure yields 
conservative assessment of damage compared to ASCE/SEI 41-06 during both D2 and D3. 

The assessment using OpenSees model indicates that during D2, TEC and ASCE assess similar 
damage distribution in time history and pushover analysis with pushover being conservative and 
indicate significant damage in some column ends. During D3, the evaluation using time history and 
pushover analysis through ASCE procedure yields similar results with the corresponding experimental 
evaluation. However; using the TEC 2007 procedure the damages are mostly under-predicted 
compared to corresponding assessment using experimental results. 

Comparing the first storey assessment results with observed damages presented in Figure 5.12 and 
Figure 5.13 for D2 and D3 respectively indicate that during D2, evaluation using ASCE from 
experimental and analytical data predicts minimum damage in all columns as observed while TEC 
2007 experimental evaluation indicate some members to be in significant damage region contrary to 
observation. During D3, similar to D2, experimental evaluation from ASCE 41-06 procedure matches 
accurately with observation while TEC procedure results in over-prediction of damage.  

It is evident that time history analysis seems to work better in predicting the observed performance 
compared to pushover however the difference among them is insignificant.  

 



108 
 

 
Figure 5.10: Specimen #3 performance assessment [D2] 

 

 
Figure 5.11: Specimen #3 performance assessment [D3] 
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Figure 5.12: Observed and evaluated damages - SP #3 [D2] 

 
Figure 5.13: Observed and evaluated damages - SP #3 [D3] 
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5.6 Performance Assessment of Specimen #4 

The results of performance evaluation for Specimen #4 are presented in Figure 5.14 and Figure 5.15 
for ground motions D2 and D3 respectively. 

 
Figure 5.14: Specimen #4 performance assessment [D2] 

 
Figure 5.15: Specimen #4 performance assessment [D3] 
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Figure 5.17: Observed and evaluated damages - SP #4 [D3] 

 

Similar to Specimen #2, the assessment of the infill panels of Specimen #4 is performed as explained 
before, and the outcome is presented in Table 5.6. 

Table 5.6: Performance evaluation of infill panels (SP#4) 

Ground 
motion 

Storey Damage 
Performance 

Level 

D2 

1 Visible crack along the primary diagonal IO 
2 Visible crack along the primary diagonal IO 
3 No visible cracks IO 

D3 

1 Significant diagonal cracking and crushing LS 

2 Significant diagonal cracking and crushing LS 

3 Visible crack along the primary diagonal IO 

 

The performance of AAC infills are assessed by comparing the cracking and crushing/failure drift 
values of panel for Specimen #4 given in Table 3.6 with the limiting drift values of Table 5.4. Once 
again it is confirmed that AAC infill panels performed much better than expected. The life-safety limit 
is assumed to be reached and the panel is considered in collapse range when inter-story drift reaches: 
0.35% as per TEC 2007, whereas 0.6% as per ASCE 41-06. However, the first visible diagonal crack 
appears at approximately 0.5% drift value while the specimen reached crushing at about 0.8% drift 
during Pseudo-dynamic test which is clearly greater than either of the limits. 
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5.7 Comments 

From the results obtained for several test specimens the following comments can be made:  

• The performance evaluation limits of TEC 2007 are more conservative in all specimens as 
compared to ASCE 41-06 limits for all column members not bounded by infills. For columns 
bounding the infill panels (interior columns of Specimen #2 and #4), ASCE limits are more 
conservative than the TEC 2007 limits. 
 

• For bounding columns, ASCE‘s separate provisions accurately assess the observed damage  in 
both infilled frames while TEC’s generalized provisions failed to predict performance for 
bounding columns and under-predict their damage. 
 

• For non-conforming specimens (Specimen #1 and #2), TEC limits accurately predict the damages 
in exterior columns while ASCE results in under-prediction. For bounding columns, ASCE 
provisions works accurate while TEC limits under-predicts the damages. 
 

• For code conforming specimens (Specimen #3 and #4), ASCE performance evaluation limits 
accurately predicts the damage in exterior and interior columns while TEC performance limits 
over-predicts the damage in exterior column while under-predict for bounding columns. 
 

• For bare specimens, the analytical model of Specimen #1 is unable to capture the damage in 
columns due to instability and formation of first storey mechanism while it predicts damage state 
fairly accurately for Specimen #3 as compared to observation and experimental measurement. 
 

• For infilled specimen, the models for both specimens are unable to capture the damage 
distribution and damage state in the column members due to limitation of strut model in capturing 
local responses.   
 

• AAC infill panel of both infilled specimens performed significantly better than the expected 
performance based on limiting inter-storey drifts specified in both codes. 
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CHAPTER 6 
 
 
 

CONCLUSIONS 
 
 

 
Investigation of the influence of autoclave aerated concrete masonry infills on the seismic response of 
3-storey, 3-bay RC frames tested by pseudo-dynamic testing procedure is presented in this thesis. The 
investigation on the frames is carried out in pairs of two: the Non-conforming frames with material 
and detailing deficiencies; and the “Code-conforming” frames compliant with TEC 2007. Each of 
these pairs contains one bare frame while another frame infilled with AAC masonry panels in the 
entire middle bay. The comparison is made between the bare frame and the corresponding infilled 
frame using experimental test results in terms of primary failure mode, global responses such as inter-
storey drifts and storey shears and local responses such as end-rotations. Numerical modelling of the 
frames is conducted on the OpenSees platform following guidelines of TEC-2007 and ASCE/SEI 41-
06. Models, calibrated with experiments using time-history results, are used for assessment using 
pushover and time-history methods in accordance with procedures of TEC-2007 and ASCE/SEI 41-
06. 

The comparative analysis indicates that AAC infills detrimentally influence the response of deficient 
RC frames by stiffening the structure thereby attracting additional shear force which is on average 
twice as high as the column shear capacity, resulting in localized shear failure in bounding columns. 
The infills cause overall increase in the capacity of the system, however; after the failure of infills, the 
capacity of infilled frame reduces significantly. This drop in capacity is abrupt in deficient frames as 
compared to code-conforming frame which causes sudden increase in lateral deformation causing 
abrupt flexure failure in non-bounding columns. In code conforming specimens, the AAC infill panels 
does not tend to dominate the response in a detrimental manner and during strong shaking the 
bounding frame causes crushing of the panel after which frame behaves similar to the bare frame. This 
leads to the conclusion that providing adequate confinement reinforcement may result in better 
performance of even the deficient RC frames infilled with AAC masonry. In addition, AAC masonry 
infills may prove advantageous in code-complaint new construction which is designed by neglecting 
the influence of masonry infills. 

Modelling and calibration of deficient systems, which constitutes majority of existing building stock 
in major cities, using reduced nominal material strengths and modified joint-offsets, in order to predict 
accurate seismic response and damage distribution, is not very efficient. To capture the deformation 
pattern on local scale, joint flexibility and frame-infill interaction needs to be explicitly accounted for 
using detailed joint-elements and eccentric strut models respectively. In terms of global response of 
infilled frames, modelling of AAC masonry material using “Calibrated” material model proposed in 
this study appears to work better than using either the concrete material representation or the force-
deformation relationships already proposed in the literature. 

Performance evaluation of frames using strain-based limits of TEC 2007 generally results in more 
conservative evaluation of damage as compared to rotation-based limits of ASCE/SEI 41-06. In 
deficient frames, TEC evaluates the damages accurately whereas ASCE under-predicts the damages 
whereas in code-conforming frames; ASCE evaluates the damages accurately while TEC 
overestimates.  

In particular to the columns bounding the infill panels, the separate strain-based provisions of ASCE 
accurately assess the observed damages in both infilled frames while the general strain-based limits of 
TEC failed to predict performance for bounding columns and under-predict their damage. This leads 
to the conclusion that strain-based limits in TEC 2007, which are general for all RC members 
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regardless of the presence of infills, do not capture the damage state in bounding members thus 
addition of separate provisions in TEC 2007 for frame members bounding the unretrofitted masonry 
infills is necessary to accurately estimate the level of damage. 

With regards to the performance of masonry infill panels in both frames, the AAC masonry infill 
panels perform considerably better than the expected performance level in accordance with both 
codes, although TEC 2007 does not provide specific criteria for unretrofitted masonry infills. The 
observed performance and damage state at code specified limiting drifts were significantly better than 
that predicted by codes. 

  



117 
 

 
 
 

REFERENCES 
 
 

 

Al-Chaar, G., Issa, M., Sweeney, S., “Behaviour of masonry- infilled non-ductile reinforced concrete 
frames”, Journal of Structural Engineering (ASCE): 2002, Vol. 128, No. 8, pp. 1055-1063. 

Alexandre, A. C., Andrea, P., Guido, M., “Seismic performance of Autoclave Aerated Concrete 
(AAC) masonry: From experimental testing of the in-plane capacity of walls to building response 
simulation”, Journal of Earthquake Engineering:2011, 15: pp. 1-31. 

American Concrete Institute, “Building Code Requirements for Structural Concrete and Commentary” 
,ACI 318-08: 2008, Farmington Hills, Mich., 465 pp. 

American Society of Civil Engineers, “Seismic Rehabilitation of Existing Buildings”, ASCE/SEI 
41:2006, Reston, Virginia. 

American Society of Civil Engineers, “Seismic Rehabilitation of Existing Buildings: Supplement #1”, 
ASCE/SEI 41-06: 2007, Reston, Virginia. 

Bertero, V., Brokken, S., “Infills in seismic resistant building”, Journal of Structural Engineering 
(ASCE): 1983, Vol. 109, No. 6, pp. 1337-1361. 

Birely, A. C., Lowes, L. N., Lehman, D. E., “Linear Analysis of Concrete Frames Considering Joint 
Flexibility”, ACI Structural Journal: 2012, Vol. 109, No. 3. 

Buonopane, S.G., White, R.N., “Pseudo-dynamic testing of masonry infilled reinforced concrete 
frame,” Journal of Structural Engineering (ASCE): 1999,Vol. 125, No. 6, pp. 578-589. 

Canbay, E., Ersoy, U., Ozcebe, G., “Contribution of Reinforced Concrete Infills to Seismic Behaviour 
of Structural Systems”, ACI Structural Journal: 2003, Vol. 100, No. 5, pp. 637-643.  

Chopra, A.K., and Goel, R.K., “A Modal Pushover Analysis Procedure for Estimating Seismic 
Demands for Buildings”, Earthquake Engineering and Structural Dynamics: 2002, Vol. 31, pp. 561-
582.  

Coleman, J. and Spacone, E., “Localization Issues in Force-Based Frame Elements”, Journal of 
Structural Engineering(ASCE): 2001, Vol. 127, No. 11, pp. 1257-1265.  

Crisafulli, F. J., Carr, A. J., Park, R., “Analytical modelling of infilled frame structures – A general 
review”, Bull. of the New Zealand Society for Earthquake Engineering: 2000, Vol. 33, No. 1. 

Dawe, J. L., Seah, C. K., “Analysis of concrete masonry infilled steel frames subjected to in-plane 
loads”, Proceeding of the 5th Canadian Masonry Symposium: 1989, Vancouver, pp. 329–40 

Dazio, A. and Yazgan, U., “Simulating Maximum and Residual Displacements of RC Structures”, 
Earthquake Spectra: 2011, Vol. 27, No. 4, pp. 1182-1218.  

Durrani, A. J., Luo, Y. H., “Seismic retrofit of flat-slab buildings with masonry infills”, Proceeding 
from the NCEER workshop on seismic response of masonry infills, Report NCEER-94-0004: 1994, pp. 
1/3–8. 



118 
 

EERI/PEER, “New Information on the Seismic Performance of Existing Concrete Buildings”, 
Seminar Notes: 2006, Earthquake Engineering Research Institute, Oakland, California.  

Fardis, M. N., Panagiotakos, T. B., “Seismic design and response of bare and masonry-infilled 
reinforced concrete buildings, Part II: Infilled structures”, Journal of Earthquake Engineering: 1997, 
1 _3_, pp. 475–503. 

Federal Emergency Management Agency, “Guidelines for the Seismic Rehabilitation of Buildings”, 
Report No. FEMA-273, Oct. 1997.  

Federal Emergency Management Agency, “Prestandard and Commentary for the Seismic 
Rehabilitation of Buildings”, FEMA (Series) 356: 2000, Washington, D.C. 

Fiore, A., Netti, A., and Monaco, P., “The influence of masonry infill on the seismic behaviour of RC 
frame buildings”, Engineering Structures: 2012, 42, pp. 133-145. 

Kadir, M. R. A.,“The structural behaviour of masonry infill panels in framed structures”, PhD Thesis: 
University of Edinburgh;1974. Print. 

Karsan, I. D., and Jirsa, J. O., “Behaviour of Concrete under Compressive Loading”, Journal of the 
Structural Division (ASCE): 1969, Vol.  95, ST 12, pp. 2543-2563. 

Kent, D. C., and Park R., “Flexural Members with Confined Concrete”, Journal of the Structural 
Division (ASCE): 1971, Vol. 97, ST 7, pp. 1969-1990.  

Klingner, R.E., Bertero, V.V., “Infilled frames in earthquake-resistant construction” Report EERC/76-
3: 1976, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. 

Klingner, R.E., Bertero, V.V., “Earthquake resistance of infilled frames”, Journal of the Structural 
Division (ASCE):1978, Vol. 104, No. 6,pp. 973–989. 

Kose, M. M., “Parameters affecting the fundamental period of RC buildings with infill walls”, 
Engineering Structures: 2009, 31, pp. 93-102. 

Koutromanos, I., “Numerical Analysis of Masonry-Infilled Reinforced Concrete Frames Subjected to 
Seismic Loads and Experimental Evaluation of Retrofit Techniques”, PhD Thesis: University of 
California, San Diego, 2011. Print. 

Lynn, A. C., Moehle, J. P., Mahin, S. A., and Holmes, W. T., “Seismic Evaluation of Existing 
Reinforced Concrete Building Columns”, Earthquake Spectra: 1996, Vol. 12, No. 4, pp. 715-739.  

Mahin, S. A., Shing, P. B., “Pseudo-dynamic Method for Seismic Testing”, Journal of Structural 
Engineering (ASCE):1985, Vol. 111, No. 7, pp. 1482-1503.  

Mazzoni et al., “OpenSees Command Language Manual”, Pacific Earthquake Engineering Research 
Center, 2007. 

Mehrabi, A.B., Shing, P.B., Schuller, M.P., Noland, J.L., “Experimental evaluation of masonry-
infilled RC frames”,Journal of Structural Engineering (ASCE):1996, Vol. 122, No. 3, pp. 228–237. 

Middle East Technical University. “108G084 Tübitak Project Progress Report #1”. Aug. 5, 2010. 
Print. 

Ministry of Public Works and Settlements, “Turkish code for buildings in seismic zones”, Turkish 
Earthquake Code: 2007, Ankara, Turkey, 159 pp. 



119 
 

Ministry of Public Works and Settlement, “Requirements for Design and Construction of Reinforced 
Concrete Structures”, Turkish Standards Institution, TS 500: 2000, Ankara, Turkey. 

Molina, F. J., Pegon, P., Verzeletti, G., “Time-domain identification from seismic pseudo-dynamic 
test results on civil engineering specimens”, 2nd International Conference on Identification in 
Engineering Systems: 1999, Cromwell Press, Wiltshire, UK. 

Mosalam, K. M. A., “Experimental and computational strategies for the seismic behaviour evaluation 
of frames with infill walls”, PhD Thesis: Cornell University-NY,1996.Print. 

Mosalam, K.M.A., White, R.N., Ayala, G., “Response of infilled frames using pseudo-dynamic 
experimentation”, Earthquake Engineering and Structural Dynamics: 1998,Vol. 27, No. 6,pp. 589-
608. 

Mutlu, M.B., “Numerical Simulations of Reinforced Concrete Frames Tested using Pseudo-Dynamic 
Method”, Graduate Thesis: Middle East Technical University: 2012. Print.  

Narayanan, N., Ramamurthy, K., “Structure and properties of aerated concrete – a review”, Cement 
and Concrete Composites: 2000, Vol. 22, pp. 321-329. 

Polyakov, S.V., “On the interaction between masonry filler walls and enclosing frame when loaded in 
the plane of the wall,” Earthquake Engineering, EERI: 1960, San Francisco, pp. 36-42. 

Pujol, S., Fich, D., “The test of a full-scale three-story RC structure with masonry infill walls,” 
Engineering Structures: 1979,Vol. 32, No. 10, pp. 3112-3121. 

Stafford Smith, B. “Behaviour of square infilled frames”, Journal of the Structural Division 
(ASCE):1966, Vol. 92, No. 1, pp. 381–403. 

Stafford Smith, B., and Carter, C., “A method of analysis for Infilled Frames”, Institution of Civil 
Engineers: 1969, Vol. 44. 

Stafford Smith, B., “Methods of predicting the lateral stiffness and strength of Multi-storey Infilled 
frames”, Building Science: 1967, Vol. 2, pp 247-257. 

Sucuoğlu, H., Yazgan, U., Yakut, A., “A Screening Procedure for Seismic Risk Assessment in Urban 
Building Stocks,” Earthquake Spectra: 2007, Vol. 23, No. 2, pp. 441-458. 

Takanashi, K., Udagawa, K., Seki, M., Okada, T., and Tanaka H. “Nonlinear earthquake response 
analysis of structures by a computer-actuator on-line system” Bulletin of Earthquake Resistant 
Structure Research Center 8: 1975, Institute of Industrial Science, University of Tokyo, Japan. 

Uva, G., Raffaele, D., Porco, F., Fiore, A., “On the role of equivalent strut models in the seismic 
assessment of infilled RC buildings”, Engineering Structures: 2012, 42, pp. 83-94. 


	11.pdf
	22.pdf
	33.pdf
	44.pdf



