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submitted by NAGEHAN ALSOY-AKGÜN in partial fulfillment of the requirements for the
degree of Philosophy of Doctorate in Mathematics Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
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ABSTRACT

THE DUAL RECIPROCITY BOUNDARY ELEMENT SOLUTION OF
HELMHOLTZ-TYPE EQUATIONS IN FLUID DYNAMICS

ALSOY-AKGÜN, NAGEHAN

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Münevver Tezer-Sezgin

February 2013, 173 pages

In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems
governed by partial differential equations are solved by using dual reciprocity boundary ele-
ment method (DRBEM). First, the governing equations are transformed to the inhomogeneous
modified Helmholtz equations, and then the fundamental solution of modified Helmholtz
equation is used for obtaining boundary element method (BEM) formulation. Thus, all the
terms in the equation except the modified Helmholtz operator are considered as inhomogene-
ity. All the inhomogeneity terms are approximated by using suitable radial basis functions,
and corresponding particular solutions are derived by using the annihilator method. Trans-
forming time dependent partial differential equations to the form of inhomogeneous modified
Helmholtz equations in DRBEM application enables us to use more information from the
original governing equation. These are the main original parts of the thesis. In order to obtain
modified Helmholtz equation for the time dependent partial differential equations, the time
derivatives are approximated at two time levels by using forward finite difference method.
This also eliminates the need of another time integration scheme, and diminishes stability
problems.

Stream function-vorticity formulations are adopted in physical fluid dynamics problems in
DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity
flow and results are obtained for Reynolds number values up to 2000. The natural convec-
tion flow is solved for Rayleigh numbers between 103 to 106 when the energy equation is
added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem
defined in three different physical domains is solved by using the same procedure. Results
are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios.
Behind these, DRBEM is used for the solution of natural convection flow under a magnetic
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field by using two different radial basis functions for both vorticity transport and energy equa-
tions. The same problem is also solved with differential quadrature method using the form
of Poisson type stream function and modified Helmholtz type vorticity and energy equations.
DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up
to 106 and 300, respectively, and are compared in terms of accuracy and computational cost.
Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic
field using the results of direct problem for the missing boundary conditions.

Keywords: DRBEM, DQM, Navier-Stokes equations, natural and mixed convection, inverse

problems.
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ÖZ

HELMHOLTZ TİPİNDEKİ AKIŞKANLAR MEKANİĞİ DENKLEMLERİNİN
KARŞILIKLI SINIR ELEMANLARI YÖNTEMİ İLE ÇÖZÜMÜ

ALSOY-AKGÜN, NAGEHAN

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Münevver Tezer-Sezgin

Şubat 2013, 173 sayfa

Bu tezde, kısmi diferansiyel deklemlerle tanımlanmış iki boyutlu, zamana bağlı, katmanlı ve
sıkıştırılamayan akışkan problemleri, karşılıklı sınır elemanları yöntemi ile çözülmüştür. İlk
önce, deklemler homojen olmayan modifiye edilmiş Helmholtz denklemlemine dönüştürül-
müş ve sonra sınır elemanları yöntemi formülasyonu modifiye edilmiş Helmholtz denklem-
inin temel çözümü kullanılarak elde edilmiştir. Böylece, modifiye edilmiş Helmholtz op-
eratörü dışındaki bütün terimler sağ taraf terimi olarak değerlendirilmiştir. Bütün homojen ol-
mayan terimler uygun radyal kökenli fonksiyonlar kullanılarak yaklaşık olarak hesaplanmıştır,
ve buna bağlı özel çözümler annihilatör yöntemi kullanılarak elde edilmiştir. Karşılıklı sınır
elemanları metodu uygulamasında, zamana bağlı kısmi diferansiyel denklemlerin homojen ol-
mayan modifiye edilmiş Helmholtz denklemlerine dönüştürülmesi, orijinal dekleme ait daha
fazla bilginin kullanılma- sını sağlamıştır. Bu çalışmalar bu tezin orijinal bölümünü oluştur-
maktadır. Zamana bağlı kısmi diferansiyel deklemler yerine modifiye edimiş Helmholtz dek-
lemlerini elde etmek için, denklemin zaman türevleri ileri sonlu farklar yöntemi kullanılarak
iki zaman düzeyinde açıl- mıştır. Bu yöntem ayrıca zaman türevi için farklı bir yöntem kul-
lanma ve buna bağlı olarak sayısal kararlılık analizi yapma gereksinimini ortadan kaldırmıştır.

Fiziksel akışkanlar mekaniği problemlerinin sabit elemanların kullanıldığı karşılıklı sınır ele-
manları metodu uygulamasında stream fonksiyon-vortisite formülasyonu kullanılmıştır. İlk
önce bu yöntem hareketli kapaklı kanal akımları için kullanılmış ve sonuçlar Reynolds sayısı
2000’e kadar elde edilmiş- tir. Enerji denkleminin Navier-Stokes denklemlerine eklenmesi
ile oluşan doğal konveksiyon akım problemi, 103’den 106’a kadarki Rayleigh sayısıları için
çözülmüştür. Daha sonra üç farklı fiziksel bölgede tanımlanmış çift difüzyonlu karışık kon-
veksiyon problemi aynı yöntem kullanılarak çözülmüştür. Sonuçlar çeşitli Richardson ve
Reynolds sayıları, ve hareketlilik oranları için verilmiştir. Bunun yanı sıra, aynı method
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manyetik alana maruz bırakılmış doğal konveksiyon probleminin çözümünde, vortisite taşıma
ve enerji denklemlerinin her ikisi için de iki farklı radyal kökenli fonksiyonlar kullanılarak
uygulanmıştır. Poisson tipi stream fonksion ve modifiye edilmiş Helmholtz tipi vortisite ve
enerji denklemleri formundaki aynı problem diferansiyel kareleme yöntemi ile de çözülmüştür.
Sonuçlar her iki yöntem ile Rayleigh ve Hartmann sayıları için sırasıyla 106’ya ve 300’e kadar
elde edilmiştir. İki yöntemin mukayesesi elde edilen sonuçların doğruluğu ve hesaplama be-
deli karşılaştırılarak yapılmıştır. Son olarak, karşılıklı sınır elemanları yöntemi, manyetik
alana maruz bırakılmış, doğal konveksiyon probleminin ters çözümünde kullanılmıştır. Eksik
olan sınır koşulları direkt problemin çözümlerinden elde edilmiştir.

Anahtar Kelimeler: Karşılıklı sınır elemanları yöntemi, diferansiyel kareleme yöntemi, Navier-

Stokes denklemleri, doğal ve karışık konveksiyon, ters problemler.
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CHAPTER 1

INTRODUCTION

The mathematical model of physical or engineering problems can be represented by using
partially differential equations (PDEs) with suitable boundary conditions. Generally, to obtain
the close-form solution of these equations cannot be possible. Therefore, the approximate
solutions can be obtained by using different numerical methods. There are several numerical
solution techniques such as finite difference method (FDM), finite element method (FEM),
differential quadrature method (DQM), boundary element method (BEM) and dual reciprocity
boundary element method (DRBEM). The differences of the methods occur with the type
of the approximation of the variables, and with the discretization of the domain where the
problems are defined.

Finite difference method describes the derivative of the unknowns by using the truncated
Taylor series expansions. Replacing the derivatives of the governing equations with the finite
differences and using the boundary conditions, one can obtain a system of algebraic equations.
Finite difference approximations can be used easily for the internal discretization but main
difficulties of the method are caused by the curve boundaries and insertion of the boundary
conditions. Also, for the regular boundaries, fictitious external points should be used for the
boundary conditions which contain derivatives. Since, finite difference codes require a simple
procedure to obtain an algebraic equation, it is still preferred for the solution of many fluid
dynamic problems.

In contrast to the finite difference method, finite element method gives a better representation
of the geometry of the domain and facilitates the insertion of the boundary conditions. This
method divides the domain into small parts which are called elements. Then, the variables of
the governing equations are approximated using the polynomial interpolation functions over
the small parts of the domain. So, for each element, the influence matrices which contain
the properties of each elements are obtained. After assembling these influence matrices by
considering the properties of continuum, a global matrix is obtained for the equations. The
insertion of boundary conditions can be done by evaluating the boundary integrals. This is
easier way for the insertion of boundary conditions than the finite difference method. Behind
this, for the discretization of the domain in the FEM it is necessary to use large amount of
information. So, the size of the system increases and this causes high computational cost.
Also, the method is not suitable for the problems which are defined in an infinite region or
having moving boundaries.

Another finite domain discritization method is the differential quadrature method which is
introduced by Bellman et al. [21]. DQM describes the derivative of the function as a linear
weighted sum of the functional values at each mesh points. Shu [88] generalized all the cur-
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rent methods for determination of weighting coefficients by using the properties of a linear
vector space. Since DQM is based on interpolation of solution and its derivatives by poly-
nomials, it is quite simple. Although, DQM is preferred and found to be simple in terms of
computation, it is a domain discretization method where the domain must be rectangular.

The boundary element method is a numerical technique which has important advantages over
the domain discretization methods mentioned above. The main idea of the method is the
transformation of the differential equation defined in a domain to an integral equation defined
on its boundary. The boundary integral equation contains only the values of unknown and
their normal derivatives on the boundary. Since it needs just discretization of the boundary,
the problem becomes a one-dimensional problem and it gives a smaller system of equations.
After solving the system one can obtain all the unknown values and their normal derivatives
at the boundary. Also, using these boundary values, the solution at the interior nodes can be
obtained with a simple computation. Besides these, BEM can be used for the solution of the
problems which are defined in the infinite regions or having moving boundaries.

BEM was introduced by small group of researchers in the 1960’s. They studied on the ap-
plications of boundary integral equations to the potential flow and stress analysis. Later, the
method became a perfect alternative to the finite element method for the solution of problems.
The current form of the method was constructed by Brebbia in [22] and his research group
[23, 24]. BEM is an excellent numerical method if the fundamental solution of the governing
PDE is available. However, after obtaining the boundary integral equation there may be still
domain integrals due to some force and convection-reaction terms, and these require an extra
domain discretization. Thus, this extra discretization destroys the advantage of the method.
Nonhomogeneous and nonlinear terms of the governing equation also cause the domain inte-
gral and extra domain discretization for the solution. Therefore, it is necessary to use another
approach when the domain discretization is required. There are several methods proposed by
different persons such as analytical integration of the domain integrals, the use of Fourier ex-
pansions, Galerkin vector technique, the multiple reciprocity method and the dual reciprocity
boundary element method.

The dual reciprocity boundary element method is the main numerical solution procedure used
in this thesis. It was introduced by Nardini and Brebbia [69] and extended by Brebbia, Wrobel
and Partridge [72, 74]. DRBEM is a numerical technique which uses a fundamental solution
corresponding to a simpler equation, and to treat the remaining terms as an inhomogeneous
term of the differential equation. Thus, it is an efficient method for the solution of inhomo-
geneous, nonlinear and time-dependent problems. The important idea is to determine simpler
form of the differential equation where the corresponding fundamental solution is available.
Generally, when the DRBEM is used as a solution method, all the terms except the Laplacian
term of the differential equation are considered as inhomogeneity. Then, the fundamental
solution of Laplace equation can be used for the obtained Poisson equation. Also, it is im-
portant that, the inhomogeneous term of the governing equation should be kept as simple as
possible. Therefore, one can reduce the interpolation error to a minimum. An alternative is to
reduce the given PDE to an inhomogeneous modified Helmholtz equation, and then to use its
fundamental solution in DRBEM formulation.

DRBEM can be applied to the modified Helmholtz equation, since its fundamental solution
is available. In this case, on the left hand side of the equation, one will be left with more
terms than the Laplacian case. Thus, it is possible to use more information about the original
governing equation. By using some approximations for the time derivative, convection or
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reaction terms, a modified Helmholtz equation can be obtained for the differential equation
for which the fundamental solution is complicated to obtain in its original form. But, in
the DRBEM application to inhomogeneous modified Helmholtz equation the problem lies in
obtaining corresponding particular solutions for the radial basis function approximation of the
inhomogeneity. For some radial basis functions f j, corresponding particular solutions û j in
(∇2 − τ)̂u j = f j are available [28, 68]. In this thesis, a list of particular solutions are obtained
for radial basis functions in the form of polynomials, logarithmic functions and some of these
combinations. A general approach for obtaining particular solutions is provided.

In this thesis, some fluid dynamics problems such as lid-driven cavity flow, natural convec-
tion flow in enclosures, double diffusive mixed convection flow and natural convection flow
under a magnetic field are solved by using DRBEM. All the governing equations are trans-
formed first to the form of inhomogeneous modified Helmholtz equations by discretizing time
derivative terms first. Since the governing equations of these physical problems are diffusion
or convection-diffusion-reaction equations type, this reduction to inhomogeneous modified
Helmholtz equation is performed on these equations first, and then generalized to the phys-
ical problems considered. Then, the DRBEM applications are carried with the fundamental
solution of modified Helmholtz equation. This forms the original core part of the thesis when
it is combined with the general derivation of particular solutions for some mostly used radial
basis functions in DRBEM. The obtained numerical results are deeply discussed in terms of
graphics with the physical behaviors of the problems concerned.

1.1 Diffusion Equation

The fundamental concept of the fluid mechanics is the diffusion which is the transport caused
by the random motions of the fluid particles from high concentration to low concentration.
The diffusion equation represents the change in the concentration of the fluid over time at a
point. The usual form of two-dimensional diffusion equation is

∇2u =
1
kx

∂u
∂t

0 < x, y < Lx, t > 0

u = 0 at x, y = 0, Lx

(1.1)

where kx is the dispersion coefficient. The exact solution of this diffusion problem is [73]

u(x, y, t) =
∞∑

n=1

∞∑
m=1

Anm sin
(
nπx
Lx

)
sin

(
nπy
Lx

)
exp

[
−

(
kxn2π2

Lx
2 +

kxm2π2

Lx
2

)
t
]

(1.2)

and
Anm =

4u0

nmπ2 [(−1)n − 1][(−1)m − 1] (1.3)

where Lx is the dimension of the square region, and u0 is the initial value of u.

Since this diffusion problem has the exact solution it can be used as a test problem to control
the efficiency of our method. For this aim, the diffusion equation should be written in the
form of a modified Helmholtz equation.

If the time derivative is approximated using forward finite difference, diffusion equation takes
the form

∇2u =
1
kx

(
u(n+1) − u(n)

∆t

)
(1.4)
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where u(n+1) and u(n) represent the values of u at the advance and current time levels, respec-
tively, and ∆t is the time increment. Relaxing the solution u also at these two time levels with
a parameter 0 < θ < 1

∇2
(
θu(n+1) + (1 − θ) u(n)

)
=

1
kx

(
u(n+1) − u(n)

∆t

)
(1.5)

it can be put in the form of modified Helmholtz equation for u(n+1)

∇2u(n+1) − 1
kx∆tθ

u(n+1) = −
(
1 − θ
θ

)
∇2u(n) − 1

kx∆tθ
u(n) (1.6)

in which the inhomogeneity contains u(n) from previous time level.

It is rewritten as

∇2u(n+1) − τ2u(n+1) = −
(
1 − θ
θ

)
∇2u(n) − τ2u(n) (1.7)

where τ2 =
1

kx∆tθ
.

Now, obtained inhomogeneous modified Helmholtz equation can be solved with any numeri-
cal method, iteratively in the time direction.

1.2 Convection-diffusion-reaction Equation

In the nature, the transport is occurred due to both the random and the bulk motion of the fluid.
Thus, the transport caused by the bulk fluid motion is called convection. Reaction is caused by
a term containing some powers of the solution. Therefore, the convection-diffusion-reaction
equation is used for the transport of the fluid particles due to both random and bulk motions.

A two-dimensional convection-diffusion-reaction equation is governed by

∇2u =
1

Kx

(
∂u
∂t
+ cx

∂u
∂x
+ cy

∂u
∂y
+ du

)
, (1.8)

and some suitable boundary conditions as

u(0, y, t) = 300 u(1, y, t) = 10,
q(x, 0, t) = 0 q(x, 1, t) = 0

(1.9)

with the values
Kx = 1,
cy = 0,

cx = dx + log
10

300
− d

2

(1.10)

may be given. u is the concentration of the physical quantities, cx and cy are the velocity
components, Kx is the dispersion coefficient and d is the coefficient of the chemical reactor.
The exact solution of this convection-diffusion-reaction equation is [75]

u(x, y, t) = 300 exp
(
d
2

x2 + log
10

300
x − d

2
x
)
. (1.11)
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Using the similar idea with the diffusion equation, the time derivative is approximated by
using forward finite difference

∂u
∂t
=

u(n+1) − u(n)

∆t
(1.12)

and the solution u in the Laplace term is approximated with a relaxation parameter θ between
zero and one, as

u(n+1) = θu(n+1) + (1 − θ)u(n). (1.13)

Substituting these approximations (1.12) and (1.13) into the equation (1.8), and taking all the
terms at n−th time level to the right hand side, a modified Helmholtz equation is obtained as

∇2u(n+1) − τ2u(n+1) = −
(
1 − θ
θ

)
∇2u(n) − τ2u(n) +

1
Kxθ

(
cx
∂u(n)

∂x
+ cy

∂u(n)

∂y
+ du(n)

)
(1.14)

where the wave number is τ2 =
1

Kxθ∆t
, and the inhomogeneity contains previous solution

u(n).

1.3 Navier-Stokes Equations

The Navier-Stokes equations are the basic governing equations describing the motion of New-
tonian or non-Newtonian fluid particles (liquids like water and gases like air). Using these
equations, the modeling of many engineering problems such as industrial channel flow and
ocean currents can be done. Navier-Stokes equations considered here are the two-dimensional
vector equations which are obtained under the assumption of constant density and constant
viscosity. They give the relations between the velocity, pressure and density of a moving fluid.
The continuity equation (mass conservation) and the momentum equations (Newton’s second
law) are coupled through these variables. Momentum equations are coupled nonlinear partial
differential equations, and their nonlinearity is caused by the convective acceleration. Thus,
numerical methods have to be used for obtaining solution of Navier-Stokes equations.

The Navier-Stokes equations are usually written using different dependent variables such as
velocity-pressure formulation (primitive variables formulation), vorticity-stream function for-
mulation and fourth-order stream function equation. In the primitive variables formulation,
the governing equations have three dependent variables which are velocity components u,
v and the pressure p. Also, there is no boundary condition for the pressure. However, in
the stream function-vorticity formulation of the two-dimensional problem, we can eliminate
the pressure term introducing the stream function variable. Therefore, final system have two
dependent variables which are the stream function ψ and vorticity w. Unknown boundary
conditions for the vorticity must be derived using another numerical approach. In this thesis,
stream function-vorticity formulation is used in all the computations and the derivation of this
formulation is given.

1.3.1 Primitive Variable Formulation (u, v, p)

The vector form of the Navier-Stokes equations can be written as [96]

∇V = 0 (1.15)
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and
ρ̂
∂V
∂t
+ ρ̂V · ∇V = −∇p + µ∇2V (1.16)

with continuity and momentum equations, respectively. Here, V is the velocity vector, ρ̂ is
the fluid density, p is the pressure and µ is the dynamic viscosity.

In two-dimensions, the Navier-Stokes equations in non-dimensional form become

∂u
∂x
+
∂v
∂y
= 0 (1.17)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= −∂p

∂x
+

1
Re

(
∂2u
∂x2 +

∂2u
∂y2

)
∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
= −∂p

∂y
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

) (1.18)

where the dimensionless parameter

Re =
ρ̂UL0

µ

is the Reynolds number which changes the characteristic behavior of the fluid [96], and V =
(u, v). Re gives the ratio between the fluid inertial forces caused by the fluid density to the
viscous forces. When the Reynolds number takes low values (Re ≤ 2100), the viscous force
dominates the system and the fluid is called laminar flow. In this case, the fluid motion can
be described as smooth and constant. When the Reynolds number takes high values, the fluid
inertial force dominates the system and the fluid is called turbulent flow. In this case, the fluid
has the chaotic behavior.

1.3.2 Stream Function-Voricity Formulation (ψ-w)

In this section, we will give stream function-voricity formulation of the two-dimensional
Navier Stokes equations. The idea is to eliminate the pressure and introduce an equation
for vorticity. Time-dependent stream function ψ(t, x, y) is defined by [96]

∂ψ

∂x
= −v

∂ψ

∂y
= u (1.19)

satisfying the continuity equation automatically.

The fluid vorticity is obtained taking the curl of two-dimensional velocity vector as

w =
∂v
∂x
− ∂u
∂y

(1.20)

which is related to the stream function by the Poisson equation

w = −∇2ψ. (1.21)

Differentiating x−momentum equation with respect to y and y−momentum equation with re-
spect to x, and subtracting one can arrive at vorticity transport equation as

1
Re
∇2w =

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
. (1.22)

6



Finally, the stream function-vorticity form of the Navier Stokes equations are

∇2ψ = −w (1.23)

1
Re
∇2w =

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y

(1.24)

and time-dependent vorticity equation now can be transformed to modified Helmholtz equa-
tion.

The time derivative in the vorticity transport equation is approximated using the forward dif-
ference approximation

∂w
∂t
=

w(n+1) − w(n)

∆t
(1.25)

where w(n) = w(x, y, tn), tn = n∆t, ∆t is the time step and the solution w in the Laplace term is
also approximated using relaxation parameter, 0 < θw < 1 as

w(n+1) = θww(n+1) + (1 − θw)w(n) (1.26)

which smooths the values of vorticity between two consecutive time levels. Inserting the
equations (1.25), (1.26) and (1.19) into the equation (1.24) and rearranging one can obtain
an inhomogeneous modified Helmholtz equation for the vorticity. The iterative form of the
governing equations are

∇2ψ(n+1) = −wn (1.27)

∇2w(n+1) − τw
2w(n+1) = − (1 − θw)

θw
∇2w(n) − τw

2w(n) +
Re
θw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)
(1.28)

where τw
2 =

Re
θw∆t

, and n represents the iteration number. These coupled equations now are

going to be solved by using DRBEM.

1.4 Natural Convection Flow

Heat transfer is a fundamental subject in the fluid dynamic problems. The importance of the
heat transfer is caused by the usage of it in many areas of the industry. The mathematical
modeling is done by adding the energy equation to the Navier-Stokes equations. The energy
equation comes from the conservation of the energy which is called the first law of thermo-
dynamics [52].

The heat transfer between the fluid molecules is called convection heat transfer or briefly
convection, and it can be produced by two different mechanisms. If the energy transfer oc-
curs with random molecular motion and there is no bulk motion, then the convection is called
conduction (diffusion). The conduction generally is caused by the temperature difference be-
tween the fluid molecules. In the conduction, energy transfer occurs from the more energetic
molecules to the low energetic ones [52]. If the energy transfer is caused by the bulk motion,
in this case, the convection is called advection. Therefore convection term represents the heat
transfer caused by both the bulk motion and random molecular motion [52].

There are two types of convection which are called forced and natural (free) convections.
If the convection occurs when external forces effect the system then it is called forced con-
vection. As an example, the fans which are used for cooling the electronic items make an
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external force for the system. Although there is not any external force on the system, still
heat convection can occur due to the temperature difference of the fluid medium. As a result
of the temperature difference, the density gradient occurs in the fluid. Then, the buoyancy
forces caused by the density gradient effect the system and produce fluid motion in the sys-
tem. Therefore, since it naturally occurs it is called natural or free convection. If these two
types of convection occur at the same time, then it is called mixed convection [52].

The vector form of the governing equations for the natural convection flow are given with
continuity, momentum and energy equation [96]

∇V = 0 (1.29)

ρ̂
∂V
∂t
+ ρ̂V · ∇V = −∇p + µ∇2V + ρ̂F̂ (1.30)

ρ̂c
∂T
∂t
+ ρ̂cV · ∇T = k∇2T. (1.31)

Here, F̂ is the body force, c is the specific heat, T is the temperature and k is the coefficient
of the thermal conductivity.

Nondimensional natural convection flow equations in two-dimensional Cartesian coordinates
are

∂u
∂x
+
∂v
∂y
= 0 (1.32)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= −∂p

∂x
+ Pr

(
∂2u
∂x2 +

∂2u
∂y2

)
∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
= −∂p

∂y
+ Pr

(
∂2v
∂x2 +

∂2v
∂y2

)
− PrRa
β∆T

(1 − βT∆T )

(1.33)

and
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
=
∂2T
∂x2 +

∂2T
∂y2 (1.34)

where the dimensionless parameters are

Pr =
ν

α
=
µc
k,

and Ra =
gβL0

3∆T
αν

, β = −1
ρ̂

(
∂ρ̂

∂T

)
p

the Prandtl and Rayleigh number, respectively. β is the thermal expansion coefficient, ν =
µ

ρ0

is the kinematic viscosity with the reference density ρ0, α =
k
ρ0c

is the thermal diffusivity,

and ∆T = Th − Tc is the temperature difference between hot and cold walls.

The Prandtl number is only related to the fluid property. It does not contain any length or
velocity scales of the fluid. It gives the ratio between the fluid viscosity and thermal diffusivity.
Prandtl number gives a relation between thermal and velocity boundary layers by comparing
their thickness. Each fluid has different Prandtl number. As an example, for liquid metal such
as mercury Pr << 1, for gases Pr < 1, for light liquids Pr > 1 and for oils Prandtl number is
very large [96].

The Rayleigh number which is used only for buoyancy driven flow gives an information about
what kind of heat transfer occur in the fluid. If the Rayleigh number is less than the critical
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value of the fluid then the type of the heat transfer is called conduction, and if it is higher than
the critical value of the fluid, then the heat transfer is called convection.

The body force appears in the y−direction of the momentum equation with the Boussinesq
approximation

ρ̂ = ρ0[1 − β(T − Tc)].

Similar to Navier-Stokes equations given in Section 1.3, natural convection flow equations
are transformed to stream function-vorticity-tempertaure form as

∇2ψ = −w (1.35)

Pr∇2w =
∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
− PrRa

∂T
∂x

(1.36)

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
. (1.37)

Now, the time derivatives in the vorticity transport and energy equations are approximated
again by using finite difference

∂w
∂t
=

w(n+1) − w(n)

∆t
and

∂T
∂t
=

T (n+1) − T (n)

∆t
(1.38)

where w(n) = w(x, y, tn), T (n) = T (x, y, tn), and tn = n∆t.

Vorticity and temperature in Laplace terms are relaxed as

w(n+1) = θww(n+1) + (1 − θw)w(n) and T (n+1) = θT T (n+1) + (1 − θT )T (n) (1.39)

with 0 < θw, θT < 1. Thus, vorticity transport and energy equations are put in the form of
inhomogeneous modified Helmholtz equations to give the iteration

∇2ψ(n+1) = −w(n) (1.40)

∇2w(n+1) − τw
2w(n+1) = − (1 − θw)

θw
∇2w(n) − τw

2w(n)

+
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)
− Ra
θw

∂T (n)

∂x

(1.41)

∇2T (n+1) − τT
2T (n+1) = − (1 − θT )

θT
∇2T (n) − τT

2T (n)

+
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

) (1.42)

between the equations where τw
2 =

1
Prθw∆t

, τT
2 =

1
θT∆t

, and n represents the iteration

number. Now, the equations are ready to be treated with DRBEM which uses fundamental
solution of modified Helmholtz equation.
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1.5 Double Diffusive Mixed Convection Flow

The mixed convection has been studied due to its importance in many engineering areas. If
the two types of convective heat transfer namely forced and natural convection occur in the
system then it is called mixed convection. In other words, if the motion of the fluid is occurred
by external force and by itself then it is named as mixed convection [19].

Double diffusive convection, which is also known thermo-solutal convection, is important
heat transfer mechanism. The convection is occurred due to at least two different density vari-
ations. As an example, in oceanography, heat and dissolved salt make two different density
gradients in the fluid.

In this section, double diffusive convection due to the combination of thermal and solutal
buoyancy forces is analyzed. Also, the fluid motion is influenced by the external forces.
Then, the flow is called double diffusive mixed convection flow.

The vector form of the governing equations are [57]

∇V = 0 (1.43)

ρ̂
∂V
∂t
+ ρ̂V · ∇V = −∇p + µ∇2V + ρ̂F̂ (1.44)

∂T
∂t
+ V · ∇T = α∇2T (1.45)

∂C
∂t
+ V · ∇C = D∇2C (1.46)

where V is the velocity, ρ̂ is the density, p is the pressure, µ is the dynamic viscosity, F̂ is
the body force, T is the temperature, α is the thermal diffusivity, C is the concentration of the
species and D is the binary diffusivity coefficient.

Nondimensional governing equations in two-dimensional Cartesian coordinates are the con-
tinuity, momentum, energy and concentration equations

∂u
∂x
+
∂v
∂y
= 0 (1.47)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= −∂p

∂x
+

1
Re

(
∂2u
∂x2 +

∂2u
∂y2

)
∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
= −∂p

∂y
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

)
− gL0

U2 [1 − βT T∆T − βCC∆C]

(1.48)

∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
=

1
RePr

(
∂2T
∂x2 +

∂2T
∂y2

)
(1.49)

∂C
∂t
+ u

∂C
∂x
+ v

∂C
∂y
=

1
ReS c

(
∂2C
∂x2 +

∂2C
∂y2

)
(1.50)

where Re =
UL0

ν
, Pr =

ν

α
and S c =

D
α

are Reynolds, Prandtl and Schmidt numbers, respec-
tively. Schmidt number gives a relation between viscous diffusion and mass diffusion.

Also, Ri =
GrT

Re2 , N =
βC∆C
βT∆T

, GrT =
gβT∆T L0

3

ν2 , and GrC =
gβC∆CL0

3

ν2 are Richardson
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number, buoyancy ratio and Grashof number due to the mass and thermal diffusivity, respec-
tively, where ∆C = Ch − Cc is the difference between high and low concentration values.

βT = −
1
ρ̂

(
∂ρ̂

∂T

)
p,C

, βC = −
1
ρ̂

(
∂ρ̂

∂C

)
p,T

are the volumetric expansion coefficients with temper-

ature and solutal concentration, respectively. U and L0 are reference velocity and reference
length , respectively, and g is the gravitational acceleration.

Richardson number shows the influence of the thermal buoyancy forces over the fluid inertial
force [55]. The value of the Richardson number gives an information about the type of the
convection. When Ri < 0.1 force convection is dominant and when Ri > 10 natural convection
is dominant in the fluid medium. But if the Richardson number takes the values between 0.1
and 10, then both of them influence the convective heat transfer. Buoyancy ratio gives a rela-
tion between the thermal and solutal buoyancy forces. Grashof numbers are the characteristic
numbers for the double diffusive mixed convection flows. The volumetric thermal expansion
coefficient βT is always positive but the volumetric solutal concentration expansion coeffi-
cient βC can be either positive or negative depending on the species concentration. Therefore,
thermal Grashof number (GrT ) is always positive and solutal Grashof number (GrC) can be
either positive or negative. The sing of the GrC has an importance over the behavior of the
buoyancy forces depending on the its sign, thermal and solutal buoyancy forces can oppose
or aid each other.

Now, in order to eliminate the pressure terms and obtain one equation for the vorticity, the
same procedure which is done for the Navier-Stokes and natural convection equations is going
to be applied for the equations (1.47)-(1.50). This procedure gives the governing equations

∇2ψ = −w (1.51)

1
Re
∇2w =

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
− Ri

(
∂T
∂x
+ N

∂C
∂x

)
(1.52)

1
RePr

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y

(1.53)

1
ReS c

∇2C =
∂C
∂t
+ u

∂C
∂x
+ v

∂C
∂y
. (1.54)

Now, the time derivatives of vorticity, temperature and concentration and the unknowns in the
Laplacian terms in equations (1.52)-(1.54) can be approximated as

∂A
∂t
=

A(n+1) − A(n)

∆t
, (1.55)

A(n+1) = θA(n+1) + (1 − θ)A(n) (1.56)

with θ denoting θw, θT or θC in (0, 1), and A denotes w, T or C.

Then, the following iterative equations can be written for thermo-solutal buoyancy induced
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mixed convection flow

∇2ψ(n+1) = −w(n)

∇2w(n+1) − τ2
ww(n+1) = − (1 − θw)

θw
∇2w(n) − τ2

ww(n)

+
Re
θw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)

−ReRi
θw

(
∂T (n)

∂x
+ N

∂C(n)

∂x

)
∇2T (n+1) − τ2

T T (n+1) = − (1 − θT )
θT

∇2T (n) − τ2
T T (n)

+
RePr
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)
∇2C(n+1) − τ2

CC(n+1) = − (1 − θC)
θC

∇2C(n) − τ2
CC(n)

+
ReS c
θC

(
∂ψ(n+1)

∂y
∂C(n)

∂x
− ∂ψ

(n+1)

∂x
∂C(n)

∂y

)

(1.57)

where τ2
w =

Re
∆tθw

, τ2
T =

RePr
∆tθT

, and τ2
C =

ReS c
∆tθC

, and n indicates iteration number.

1.6 Natural Convention Flow under a Magnetic Field

Natural convection flow problem is explained in the previous section (Section 1.4). Now, it
will be extended to the natural convection flow under a magnetic field. Several forces can
effect the natural convection. One of these forces is the Lorentz force which is the total
force caused by the influence of the electric and magnetic fields on the fluid. Therefore, both
buoyancy and Lorentz forces effect the system as a body force. Natural convection flow under
a magnetic field is used in material manufacturing as a control mechanism.

The vector form of the continuity, momentum and energy equations are [39]

∇V = 0 (1.58)

ρ̂
∂V
∂t
+ ρ̂V · ∇V = −∇p + µ∇2V + ρ̂F̂ + J × B (1.59)

ρ̂c
∂T
∂t
+ ρ̂cV · ∇T = k∇2T. (1.60)

Here, V is the velocity, ρ̂ is the fluid density, p is the pressure, F̂ is the body force, c is the
specific heat, T is the temperature, k is the coefficient of the thermal conductivity, B is the
magnetic field, J is the current density given as

J = σ(V × B) (1.61)

where σ is the electrical conductivity of the fluid. The electric field and the induced mag-
netic field in the fluid are assumed to be negligible. Two-dimensional governing equations of
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natural convection flow under an applied magnetic field are given in nondimensional form as

∂u
∂x
+
∂v
∂y
= 0 (1.62)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= −∂p

∂x
+ Pr

(
∂2u
∂x2 +

∂2u
∂y2

)
∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
= −∂p

∂y
+ Pr

(
∂2v
∂x2 +

∂2v
∂y2

)
− Ha2Prv + RaPrT

(1.63)

∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
=
∂2T
∂x2 +

∂2T
∂y2 (1.64)

where the dimensionless parameters

Pr =
ν

α
, Ra =

gβ∆T L0
3

αν
, Ha = B0L0

√
σ

ρ0ν

are Prandtl, Rayleigh and Hartmann numbers, respectively. Hartmann number gives a ratio
of electromagnetic force to viscous force. B0 is the intensity of the applied external magnetic
field.

After using the same procedure in the natural convection equation to obtain the vorticity
transport equation without pressure term, the governing equations take the form

∇2ψ = −w (1.65)

Pr∇2w =
∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
+ Ha2Pr

∂v
∂x
− RaPr

∂T
∂x

(1.66)

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
. (1.67)

In order to obtain modified Helmholtz equations for the vorticity transport and energy equa-
tions, we use the same approximations given in (1.38) and (1.39) for the time derivatives, and
vorticity and temperature terms which are located in the Laplace terms in (1.66) and (1.67).
Finally, the governing equations for the natural convection flow under a magnetic field con-
tain modified Helmholtz equation for vorticity and temperature, and are given in an iterative
procedure as

∇2ψ(n+1) = −wn (1.68)

∇2w(n+1) − τw
2w(n+1) = − (1 − θw)

θw
∇2w(n) − τw

2w(n)

+
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)
− Ha2

θw

∂ψ(n+1)

∂x2 − Ra
θw

∂T (n)

∂x
(1.69)

∇2T (n+1) − τT
2T (n+1) = − (1 − θT )

θT
∇2T (n) − τT

2T (n)

+
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

) (1.70)

where τw
2 =

1
Prθw∆t

, τT
2 =

1
θT∆t

, and n represents the iteration number. DRBEM solution

procedure will be used for ψ using the fundamental solution of Laplace equation, and for w
and T using the fundamental solution of modified Helmholtz equation, respectively.
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1.7 Literature Survey

The Navier-Stokes equations have attracted the attention of the scientific computational com-
munity. Actually, it is one of the most studied subject in the computational fluid dynamics
field. So, there are many studies on the numerical solutions of the equations by using different
numerical methods.

The steady-state incompressible Navier-Stokes equations in the primitive variable formula-
tion are solved with an automatic adaptive refinement technique which has been coupled to
multi-grid approach to obtain efficient and stable solution strategy [90]. The test problems
are defined in a driven cavity and in a horizontal channel with a backward-facing step. The
computational results are given for Reynolds number up to 5000 and 800, respectively. In-
compressible fluid motion given by the Navier-Stokes equations is studied by Skerget et.al in
[86]. Velocity-vorticity form of Navier-Stokes equations is solved with a boundary-domain in-
tegral method and the solutions are given for several Benchmark problems. Sahin and Owens
[83], used a novel implicit cell-vertex finite volume method for the solution of Navier-Stokes
equations. In the study, multiplying the momentum equations with the unit normal vector,
they eliminate the pressure term from the momentum equations. This way, they get rid of the
difficulties caused by the pressure or vorticity boundary conditions. The computational results
are obtained for Reynolds numbers up to 10000 for both steady and unsteady two dimensional
lid-driven cavity problem.

Wu and Shao [98], solved two-dimensional near-incompressible steady lid-driven cavity flows
by using the Lattice Boltzmann method using MRT (multi-relaxation-time) and SRT (single-
relaxation-time). The results are given by comparing these two methods and previous simu-
lation data using the same flow conditions. A new messless scheme which is combined with
the radial basis functions method is given for solving unsteady incompressible Navier-Stokes
equations in vorticity-stream function formulation in [99]. The efficiency and accuracy of
the method are shown by giving some numerical examples. Wong and Chan [97] presented
a study for unsteady incompressible Navier-Stokes equations with the Dirichlet type bound-
ary conditions using the consistent splitting scheme. The efficiency of the method is ana-
lyzed by using the problems which have exact solutions, and solving several two-dimensional
double lid-driven cavity problems. A lattice Boltzmann model (LBM) for the solution of two-
dimensional unsteady incompressible flow in voticity-stream function formulation is given by
Chen et.al in [29]. They examined their model by solving several benchmark problems and
claimed that their model was simpler and more efficient than LBMs which are used with the
primitive variables formulation. Erturk [40] made a study about the two-dimensional driven
cavity flow by considering its physical, mathematical and numerical situations. In his study,
also a literature review is done for the driven cavity flow problem.

Natural convection flow in enclosures plays an important role in many engineering applica-
tions such as nuclear reactor insulation, cooling of electronic components, solar energy collec-
tion, building heating and cooling systems, and crystal growth in liquids. Two-dimensional,
steady, laminar fluid motion caused by the temperature gradient in an enclosed cavity is de-
scribed first by De Vahl Davis [34]. Forward and central difference approximations are used
as a numerical method with the primitive variable formulation and the results are given for
Rayleigh numbers up to 2 × 105, and aspect ratio up to 5. Bejan and Tien [20], examined the
heat transfer by free convection in a horizontal channel with adiabatic walls and differentially
heated end walls. They developed three methods for the heat transfer mechanism in a cavity
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with the aspect ratio less than one, which are the intermediate and boundary layer regimes as
Ra→ 0 .

A comprehensive study for the natural convection in a square cavity is done in [36]. In the
study, they summarized and discussed several contributions by comparing their accuracy for
the benchmark solutions. In the computations, they used finite difference method for stream
function-vorticity formulation of the problem. Forward difference and second order central
difference are used for the time derivative and all the space derivatives, respectively. Another
study for the natural convection of air in a square cavity is done in [35]. In this study, again the
stream function-vorticity formulation is used with the same combination of the forward and
central difference approximations. The results are obtained for values of Rayleigh number
between 103 ≤ Ra ≤ 106 by using mesh refinement and extrapolation. Natural and forced
convective heat transfer in a liquid thermal storage tank is studied by Guo and Wu in [47].
Stream function-vorticity formulation is used for the two-dimensional unsteady problem. The
results are obtained for very large Grashof and Reynolds numbers for the first time by using
the alternating direction implicit (ADI) scheme.

A numerical study on natural convection flow inside a right-angled cavity formed by a hot ver-
tical and a cold horizontal wall is presented by Kimura and Bejan [53]. In the study, there are
the scale analysis, numerical simulation and an asymptotic solution in the Ra→ 0 limit. The
stream function-vorticity equations are solved with Allen-Southwell finite difference scheme
with the combination of point iterative method. November and Nansteel [70] investigated an
analytical and numerical study on steady natural convection flow in a square water-filled en-
closure heated from below and cooled from one side. Expansions of the variables (ψ−w− T )
for low Reynolds number are obtained to order Ra2, and finite difference solutions are given
for 0 ≤ Ra ≤ 106. A comprehensive article on this subject is given in [43]. The aim of the
study is to inform the reader what has been accomplished and what remains to be investigated
about the laminar flows in a rectangular cavity.

The study of Barakos et.al [16] represented a numerical simulation for the benchmark problem
of natural convection flow in a square cavity. In their study, the control volume method is used
to solve governing equations for laminar and turbulent flows, and the results are obtained for
the Rayleigh number values up to 1010. Also, in order to accelerate the convergence, a mixed
technique is used for the solution of final algebraic equations which are alternating direction
implicit (ADI), and strongly implicit (SIP) methods. A numerical study on steady natural
convection in a rectangular enclosure heated from below and symmetrically cooled from both
sides is conducted by Ganzarolli and Milanez [44]. The Allen-Southwell finite difference
scheme is used as a numerical method for the stream function-vorticity formulation. The
computational results are obtained for 103 ≤ Ra ≤ 107 by taking the Pr = 0.7, Pr = 7.0,
and the aspect ratio is varied from 1 to 9. Aydin et al. [14, 15] investigated the heat transfer
characteristics in two-dimensional enclosure heated from one side and cooled from above.
The computational results are obtained using finite difference method in a range 103 ≤ Ra ≤
107. The effects of Rayleigh number are examined by changing inclination angle in the range
0◦ − 360◦ in [14], and the aspect ration in the range 0.25 − 4.0 in [15].

In another study, the diffusion-convective transport problems are solved with a mixed bound-
ary element formulation (the boundary domain integral method using subdomains) by Ramsak
and Skerget in [79]. The method is given for incompressible unsteady Navier-Stokes equa-
tions in a velocity-vorticity formulation. Numerical results are given for the driven cavity
problem with Re = 100, 400 and 1000, and for the natural and forced convection in a cavity
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in the range 103 ≤ Ra ≤ 106. Moshkin [66] presented a numerical study for the natural con-
vection in a rectangular enclosure filled with two immiscible fluids. The numerical results are
obtained using finite difference method and compared with the laboratory experiments. An-
other study with the finite difference method is done by Volgin et.al [95] for the unsteady ion
transfer under the conditions of natural convection problem. They used an implicit difference
scheme to calculate the distribution of electrolyte species concentrations. Therefore, efficient
results are obtained at large Schmidt numbers where large Schmidt number is a typical char-
acteristic of electrochemical system. Two-dimensional natural convection in an enclosure is
solved by means of two different software packages based on Galerkin finite element method,
and results are obtained for Rayleigh numbers in the range 103 ≤ Ra ≤ 105 by Barletta et.al
[17]. From the study one can conclude that, an elliptical wall increases the mean Nusselt
number and dimensionless kinetic energy of the fluid.

Mixed convective heat and solutal transport play an important role in many engineering ap-
plications such as plasma spray coating, nuclear waste disposal, crystal growth and oceanog-
raphy. In simulation of a real problem of continuous removal of pollutants generated at the
bottom wall of a cavity by the moving top lid, the interaction between fluid inertial force
and thermosolutal buoyancy forces on convective heat and mass transfer becomes important.
Alleborn et al. [6] concerned with heat and mass transfer of steady two-dimensional flow in a
shallow lid-driven cavity with a moving heated bottom lid, and a cooled top lid moving with
a different constant velocity. Stream function- vorticity formulation of governing equations
are discretized with second order finite difference scheme. In their study an analytical solu-
tion for limiting situations, like different cavity orientation and limiting values of parameters,
is given. Aydin [13] conducted a numerical study to investigate the transport mechanism of
laminar mixed convection in a shear- and buoyancy-driven cavity where the left wall is mov-
ing across the cavity from bottom to top at a uniform velocity. Control volume-based finite
difference method was used in the computations. The aiding and opposing effects of buoy-
ancy forces were characterized by considering two different implementations of the thermal
boundary conditions.

Deng et al. [37] numerically studied laminar double-diffusive mixed convection in a two-
dimensional ventilated enclosure with discrete heat and contaminant sources by investigating
the effects of Grashof number, buoyancy ratio, Reynolds number and ventilation mode. Com-
putational results which are obtained using finite volume method showed that the indoor air,
heat and contaminant transport are caused by the interaction between fluid inertial force and
external forces. Al-Amiri et al. [5] numerically investigated steady mixed convection in a
square cavity under the combined buoyancy effects of thermal and mass diffusion by using
the Galerkin’s weighted residual finite element method. In this study, they obtained the results
with a wider range of Richardson number. Maiti et al. [64] presented a numerical study about
heat and mass transfer of two-dimensional, unsteady and laminar flow in a square cavity with
a moving top lid. Because of the defined boundary conditions for the temperature and con-
centration on the top lid and bottom wall, vertical temperature and concentration gradients
occur on the flow. The computational results are obtained from the finite volume method.
The influence of solutal and thermal bouyancy forces on the flow, and the effect of shearing
of the top lid are analyzed by different situations.

The velocity-vorticity form of Navier-Stokes equations was used for the analysis of the double-
diffusive mixed convection in a lid-driven cavity in [54], in a lid-driven cavity with a heated
blockage at the bottom wall of the cavity in [57, 58]. In these studies the Galerkin’s weighted
residual finite element method is used as a numerical procedure. Kumar et al. [54] exam-
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ined deeply the interaction between fluid inertial force and thermo-solutal buoyancy forces on
convective heat transfer by using various values of Richardson number (Ri), Reynolds number
(Re) and buoyancy ratio (N). In [57], first the same problem with [5] (the double-diffusive
mixed convection in a lid-driven cavity) is solved, and the results are compared to determine
the mesh sensitivity of the method. Then, method is used to solve the problem in a lid-driven
cavity with a heated square blockage at the bottom wall of the cavity, and the results are given
for the values of N between −100 to 100. In [58], the problem is defined in a lid-driven cavity
with a heated square blockage at different aspect ratio, and numerical results are obtained by
changing the variables Ri, N, Re and aspect ratio.

In addition, convective heat transfer in flow through channels with backward-facing step
(BFS) is important in engineering applications such as heat exchanger devises, electronic
cooling and turbine blade cooling. The recirculation region effects the convection heat trans-
fer characteristics of the system. Therefore, it is important to understand the mechanisms of
heat transfer. A numerical analysis is caried for two-dimensional, steady and incompressible
flow to investigate the heat transfer and the characteristics of the flow by Abu-Nada et al. in
[4]. Under the effect of suction and blowing, which are implemented on the bottom wall,
the reattachment length and the length of the top secondary recirculation bubble are com-
puted by using the finite volume method. Velazquez et al. [94] presented the effect of forced
flow pulsation on heat transfer for incompressible laminar flow in two-dimensional channel
with backward facing step. Finite-point formulation which was developed by themselves is
used to solve the problem. The influence of fluid recirculation on heat transfer in BFS with
porous floor segments placed after the step is presented in [2, 30]. Abu-Hijleh [2] used finite
element method with nonuniform rectangular mesh, and investigated the effect of additional
porous floor segment in the forced convection heat transfer characteristics of the flow field.
Chen et al. [30] used SIMPEC method in the numerical computations, and different from the
one-domain approach of Abu-Hijleh [2] they preferred to use two-domain approach in their
computations. A review study about the single-phase, laminar mixed convection flow over
vertical, horizontal, inclined backward/forward facing steps is presented by Abu-Mulaweh in
[3]. The intent of the study is to summarize the literature by analyzing the effect of the pa-
rameters such as Re, Pr, buoyancy force, freestream, inclination angle, step height, expansion
ratio and temperature difference between the walls.

Brown and Lai [25] investigated the problem of combined heat and mass transfer for horizon-
tal channel with an open cavity heated on the bottom wall. In the computations, numerical
results are obtained by using different values of buoyancy ratio, Lewis number and Reynolds
number to obtain the correlations of combined heat and mass transfer by mixed convection.
Another study for two-dimensional, steady heat transfer and fluid flow in a vertical pipe with
downward and upward flow is given by Teamah et al. [89]. Parametric conditions are ana-
lyzed by giving graphical results. In these last two studies, finite difference method was used
as a numerical technique.

In the BFS channel problems both the solutal buoyancy force and the thermal buoyancy force
contributions must be taken into consideration on the flow field variation and heat transfer.
The density gradients, which are generated by the solutal concentration and temperature dif-
ference gradients, develop the solutal and thermal buoyancy forces. At the channel entry, the
fluid inertial forces are dominant but when the fluid moves between the walls, the thermo-
solutal buoyancy forces influence the flow field structure. If the convective heat transfer
contains the thermo-solutal buoyancy forces, then it is called double diffusive mixed con-
vection. When the temperature and solutal concentration boundary conditions are changed,
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the thermal and solutal buoyancy forces can oppose or aid each other. There are studies on
the changes in recirculatory flow behavior because of the thermo-solutal buoyancy forces in a
BFS horizontal channel in [55, 56], and Galerkin’s finite element method was used to obtain
the numerical results.

In material manufacturing industry, in cooling of nuclear reactors, the important phenomena
is the external magnetic field. The Lorentz force caused by the magnetic field is used as
a control mechanism to obtain good quality product in the manufacturing process. Since
Lorentz force reduces the velocity, it affects the rate of heat and mass transport in the fluid.
Therefore, the characteristic of the transport has attracted the attention in computational fluid
dynamics field. A numerical study is presented for the effect of magnetic field on natural
convection flow in a rectangular enclosure by Rudraiah et.al [82]. Numerical results of the
stream function-vorticity formulation of the problem are given for a wide range of Grashof
and Hartmann number using a finite difference scheme with the combination of ADI and
SLOR (Successive Line Over Relaxation) methods. Al-Najem et.al [7] used the finite volume
method to analyze the effect of magnetic field on the natural convection flows in the tilted
enclosures. ADI method is used to accelerate the solutions towards steady-state.

Oztop et.al [71] studied magnetohydrodynamic (MHD) bouyancy driven heat transfer and
fluid flow in a non-isothermally heated square enclosure. The finite volume method is used
to solve primitive variable formulation of the governing equations. They analyzed the effect
of Rayleigh number (Ra), Hartmann number (Ha) and amplitude of sinusodial function (n)
on temperature and flow fields. In the study, it is concluded that when Ra or n increases,
the heat transfer increases but when Ha increases the heat transfer decreases. So, Hartmann
number can be used as a control parameter for the heat transfer of the fluid. The thermal
lattice Boltzmann scheme is used to solve the incompressible natural convection flow under
a magnetic field for three different cases in [32]. These cases are classified with respect to
location of the zones of the magnetic field. Also, Sheikhzadeh et.al [87] presented a study for
the tilted cavity with the control volume based finite volume method. The effect of magnetic
field is analyzed by changing the aspect ratio, inclination angle and the location of the partially
tilted thermal walls. The results show that, together with the magnitude of the Hartmann
number all the variables affect the heat transfer of the fluid.

The differential quadrature method (DQM), introduced by Bellman and Casti in [21], gives
an efficient discretization technique to obtain accurate numerical solutions. The applications
of DQ method has been implemented for solving engineering problems in [88]. Lo et al. [62]
solved the benchmark problem of 2D unsteady natural convection flow in a cavity by using
DQM. In their solution method, second order finite difference approximation is used for the
time derivative. They obtained the results for 103 ≤ Ra ≤ 107 and aspect ratios changing from
1 to 3. Ece and Büyük [39] uses DQM in the solution of steady natural convection flow under
a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls with
various Grashof and Hartmann numbers. Their results showed that strength and direction of
the magnetic field, the inclination angle and the aspect ratio affect the convection heat transfer
and the characteristic of the fluid.

Dual reciprocity boundary element method (DRBEM) is a numerical solution technique which
can treat the nonlinearities in the partial differential equations by taking them as right hand
side functions [73]. In DRBEM, only a boundary integral equation is obtained for inhomo-
geneous, nonlinear or time dependent problems by eliminating the domain integral through
the BEM formulation. Sarler and Kuhn [84] studied DRBEM solution of two-dimensional
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Navier-Stokes equations using the primitive variable formulation. Numerical results are given
for the lid-driven cavity flow problem for Re = 100. The DRM subdomain decomposition ap-
proach is used for the solution of two-dimensional Navier-Stokes equations by Power and
Mingo in [77]. In this approach the original domain is divided into several subdomains and
in each subdomain the integral representation is given. The numerical results are given for
lid-driven cavity and backward facing step flow for different Reynolds numbers. The subdo-
main decomposition method also is used for the Navier-Stokes equations in [41] and [42].
Florez and Power [41], Florez et.al [42] used this method by obtaining small quadrilateral
elements which have isoparametric linear continuous or discontinuous boundary elemets.
The thin plate splines (r2 log r) are used in the integral representation of the subdomains.
DRBEM is used for two-dimensional unsteady incompressible Navier-Stokes equations by
Choi and Balaras in [33]. A fractional step algorithm is utilized for the time advancement,
and Adam-Bashforth scheme is used for the nonlinear convective terms. The numerical re-
sults are obtained for Taylor-Green vortex and lid-driven cavity flows, and compared with the
analytical solution and the results in the literature, respectively. Ghadimi and Dashtimanesh
[45] presented a new coupled method for solving the stream function-vorticity formulation of
the Navier-Stokes equations. They used finite difference method for the solution of vorticity
transport equation, and DRBEM for the solution of stream function equation. They compared
the numerical results with a benchmark problem.

Steady natural convection in Darcy-Brinkman porus media in a two-dimensional differentially
heated rectangular cavity is solved by Sarler et.al in [85] with DRBEM. The method is based
on augmented scaled thin plate splines and numerical results are obtained using constant,
linear and quadratic boundary elements with different mesh size, uniform and non-uniform
mesh arrangement. Gümgüm and Tezer-Sezgin [48, 49] numerically investigated the unsteady
natural convection of nanofluids and micropolar fluids, respectively. In [48], the problem is
solved with DRBEM and implicit Euler scheme is used for the time derivative. Also vorticity
boundary conditions are obtained using the Taylor series expansion of stream function. In
[49], they again used DRBEM for the solution of the problem but in this case vorticity bound-
ary conditions are obtained using the DRBEM coordinate matrix. Bozkaya and Tezer-Sezgin
[26] solved the natural convection flow in differentially heated enclosure by using the cou-
pling of the DRBEM in space with the DQM in time. They solved three test problem which
are two-dimensional Navier-Stokes equations including a force term, lid-driven cavity flow
and natural convection flow in a square cavity. The results are given for 500 ≤ Re ≤ 2000,
100 ≤ Re ≤ 1000 and 103 ≤ Ra ≤ 105, respectively.

Alsoy-Akgün and Tezer-Sezgin [9] used DRBEM procedure in the solution of the natural con-
vection and lid-driven flow problems in cavities. The results are obtained for Navier-Stokes
equations in a lid-driven cavity with Re values up to 2000, and Ra = 106 is achieved for
natural convection flow in enclosures. In another study of Alsoy-Akgün and Tezer-Sezgin
[10] natural convection in a cavity under a magnetic field is solved by using DRBEM. Results
are obtained again up to Ra values of 106, and Hartmann number Ha = 300. In both prob-
lems, stream function-vorticity formulation is used. The vorticity and energy equations are
transformed to modified Helmholtz equations by utilizing forward difference with relaxation
parameters for the time derivatives before discretization in space direction is performed. This
procedure eliminates the need of another time integration scheme in vorticity transport and
energy equations. The resulting modified Helmholtz equations are solved by DRBEM using
the fundamental solution K0(x) whereas in the stream function Poisson’s equation ln(x) is
made use of. The inhomogeneities are approximated by using coordinate functions f = 1 + r
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in the stream function equation, and f = r2 log r or f = 1 + r2 + r3 − λ
(

r2

4 +
r4

16 +
r5

25

)
in

the vorticity and energy equations. Also, natural convection flow problem is solved by DQM
by transforming the vorticity transport and energy equations to the modified Helmholtz equa-
tion. The results obtained from DRBEM and DQM are compared in terms of accuracy and
computational cost.

Alsoy-Akgün and Tezer-Sezgin [11, 12] presented the DRBEM solution of the two-dimensional
thermo-solutal buoyancy-driven flow problems. The mixed convective heat and solutal trans-
port in a lid-driven cavity and in a horizontal channel with backward-facing step are given
in [11], and in a lid-driven square cavity with a square blockage placed at the bottom wall
is given in [12]. In all problems, stream function, vorticity, temperature and concentration
variables are used. The vorticity, energy and concentration equations are transformed to mod-
ified Helmholtz equations by using the same procedure in [9, 10]. The inhomogeneities are
approximated by using coordinate functions f = 1 + r in the stream function equation and
f = r2 log r in the vorticity, energy and concentration equations.

There are many applications in heat and mass transfer, e.g. re-entry of vehicles into the atmo-
sphere, combustion chamber processes, in which high temperatures/ high pressures prevent
the measurement, or the prescription of known boundary conditions on the hostile portion
of the surface of a specimen. Instead, measurements of both temperature and heat flux may
be available on the remaining friendly portion of the surface, or even internal temperature
values may be more conveniently measured. This gives rise to an inverse problem and many
efforts have been devoted in the past for solving the inverse heat conduction problem for the
temperature satisfying the heat equation only, see the excellent book by Beck et al. [18].

Later on, inverse convection-diffusion problems received the attention of several researchers.
Moutsoglou [67] investigated the steady inverse natural-convection between vertical paral-
lel plates, whilst Huang and Ozisik [51] solved an inverse forced-convection problem in a
channel. Cauchy inverse problems for convection-diffusion equation have been investigated
in [81, 59, 80], whilst for advection-diffusion and reaction-diffusion equations in [60, 65],
respectively. In all these papers the coupling between the fluid velocity and the temperature
was not taken into account. However, the main difficulty in the inverse convection problem
arises when the flow and temperature equations are coupled nonlinearly. This coupling was
taken into account in [61].

Alsoy-Akgün and Lesnic [8] extended the analysis to inverse natural magneto-convection
problems. The inclusion of the magnetic field acting on the fluid results in the Lorentz force
interacting with the buoyancy force in the equations governing the fluid flow and temperature
field. This way the Lorentz force suppresses the convection currents by reducing velocities.
The direct problem was solved with DRBEM by Alsoy-Akgün and Tezer-Sezgin in [10] and
the numerical results were given for various values of Ra and Ha. These results are used as
missing boundary conditions for DRBEM solution of the inverse problem, and the numerical
results represented stable and reasonably accurate approximation to desired direct problem
heat flux output.
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1.8 Contributions in the Thesis

In this thesis, some physically important time-dependent fluid dynamics problems such as
lid-driven cavity flow, natural convection flow in enclosures, double diffusive mixed con-
vection flow, and natural convection flow under a magnetic field are solved by using dual
reciprocity boundary element method. The previously known dual reciprocity boundary ele-
ment method applications are always for the Poisson type differential equations. In this thesis,
the governing equations containing time derivatives are transformed first to the form of inho-
mogeneous modified Helmholtz equations by discretizing time derivatives using the forward
finite difference approximation. Thus, the formulation of dual reciprocity boundary element
method is given for inhomogeneous modified Helmholtz equations with the fundamental so-

lution
1

2π
K0(r) of modified Helmholtz equation. Since, the inhomogeneity of the modified

Helmholtz equation is approximated by using radial basis functions the corresponding par-
ticular solution must be derived. In this thesis, corresponding particular solutions and their
normal derivatives for polynomial radial basis functions are obtained starting from particular
solutions. For the thin plate splines the annihilator method is used for obtaining particular so-
lutions. These form the original core part of the thesis. Behind these, dual reciprocity bound-
ary element method is used for the solution of time-dependent, inverse natural convection
flow in the presence of a magnetic field in the form of inhomogeneous modified Helmholtz
equation [8]. This is achieved for the first time in the literature. Numerical experiments are
carried for two test problems, accurate and stable results are obtained for the temperature and
heat flux with various Hartmann and Rayleigh numbers.

1.9 Plan of the Thesis

The thesis aims to apply dual reciprocity boundary element method to some fluid dynamics
problems such as lid-driven cavity flow, natural convection and mixed convection flows in
enclosures, either in direct or inverse formulations. For this, governing equations are trans-
formed first to the modified Helmholtz equations, and DRBEM is used with its fundamental
solution capturing more information from the dominating operator. Particular solutions corre-
sponding to radial basis functions used in the approximation of inhomogeneities are derived.
These are the main contributions made in the thesis for using DRBEM in the physical prob-
lems considered. The thesis is organized as follows.

Chapter 2 presents the derivation of the dual reciprocity boundary element method for Poisson
and inhomogeneous modified Helmholtz equations giving the corresponding boundary inte-
gral equations. The fundamental solution ln(x) of Laplace equation is used for the Poisson
equation, and the fundamental solution K0(x) of modified Helmholtz equation is used for the
inhomogeneous modified Helmholtz equation. The discretization of the boundary for both
problems is done by using constant boundary elements, and the resulting system of algebraic
equations are obtained. The DRBEM solution of unsteady partial differential equations by
transforming them to the modified Helmholtz equations is the main idea of this thesis. Thus,
partial differential equations governing unsteady physical problems such as Navier-Stokes
equations and equations of natural convection, mixed convection flows are all transformed
first to the form of modified Helmholtz equations. The inhomogeneity term of the modified
Helmholtz equation is approximated by using several radial basis functions, and correspond-
ing particular solutions and their normal derivatives are obtained by using annihilator method
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for each case. In the last part of the chapter, dual reciprocity boundary element method is
explained for the inverse problem defined by the modified Helmholtz equation. Thus, the
method is made available for the solutions of both direct and inverse problems of any partial
differential equation.

Chapter 3 presents the application of the polynomial-based differential quadrature method
for the modified Helmholtz equation which is the transformed form of the partial differential
equation defining a physical fluid dynamics problem. Typical nonuniform grid point distri-
butions which give more stable numerical results for the differential quadrature method are
described for the domain discretization. The discretization and insertion of the Dirichlet and
Neumann type boundary conditions in differential quadrature method is explained at the end
of the chapter.

Chapter 4 emphasizes on the solution of direct and inverse partial differential equations us-
ing DRBEM and DQM. At the beginning of the chapter, the validity of the DRBEM using
fundamental solution of modified Helmholtz equation, and efficiency of different radial ba-
sis functions are tested with some problems by comparing obtained numerical results with
the exact solutions. DRBEM is used for the solution of physical problems which are Navier-
Stokes equations, natural convection flow, double diffusive mixed convection flow and natural
convection flow under a magnetic field. The governing equations are solved with constant
elements using the stream function-vorticity formulation. Since vorticity, temperature and
concentration equations are transformed to the modified Helmholtz equations, resulting equa-
tions are solved by DRBEM using the fundamental solution K0(x) whereas stream function
Poisson equation is solved by DRBEM using the fundamental solution ln(x). The inhomo-
geneity of stream function equation is approximated with the coordinate function (radial basis
function) f = 1+r, and the inhomogeneities of vorticity, temperature and concentration equa-
tions are approximated with coordinate function f = r2 log r. In addition, natural convection
flow under a magnetic field is solved by DRBEM with the fundamental solution of modified

Helmholtz equation using f = 1+r2+r3−τ
(
r2

4
+

r4

16
+

r5

25

)
as a coordinate function. Natural

convection flow under a magnetic field which is in the form of Poisson type stream function
and modified Helmholtz type vorticity and energy equations is also solved with DQM. Re-
sults obtained from DRBEM and DQM procedures are compared in terms of accuracy and
computational effort. Finally, the inverse problem is described for the natural convection flow
under a magnetic field. Then, the application of the DRBEM with the fundamental solution of
modified Helmholtz equation is explained for the inverse problem. The computational results
are obtained for two problems with different boundary conditions which are solved before as
direct problems using DRBEM.
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CHAPTER 2

THE DUAL RECIPROCITY BOUNDARY ELEMENT
METHOD

Many engineering and physical problems are represented with differential equations and very
few of them can be solved analytically. So, for the solution of these equations it is necessary
to find accurate and efficient numerical solution method. In the literature, for this aim there
are several numerical methods which have different advantages or disadvantages. Classical
methods such as finite element method (FEM) or finite difference method (FDM) discretize
the domain of the problem by using a number of elements or cells and these methods are
called domain methods. The use of these type of solution techniques causes to obtain large
discretized systems and needs extra computational effort.

Boundary element method (BEM) can be used as an alternative numerical method for the
solution of the differential equations. It transforms a differential equation defined in a domain
to an integral equation defined on its boundary. Therefore, it is enough to discretize only the
boundary instead of all the domain. BEM is very suitable technique for the solution of ho-
mogeneous differential equations. However, when the method is used for the inhomogeneous
differential equations, the inhomogenity results in a domain integral. So, the method loses its
advantage. Also, in the process of obtaining a boundary integral equation it is necessary to
use the fundamental solution of the original differential equation. In some physical problems
involving time dependence, convection terms or nonlinearity it cannot be possible to find a
fundamental solution for the governing differential equation. This emerges the need of mod-
ifications on BEM for treating inhomogenieties, nonlinearities and time dependence in the
differential equation.

Dual reciprocity boundary element method (DRBEM) is a useful method to overcome these
problems. In the DRBEM, a boundary formulation is obtained for inhomogeneous, nonlin-
ear and time dependent problems by eliminating the domain integral. The basic idea of the
DRBEM is to treat all these terms as the inhomogeneity (forcing term) in the differential
equation, and then is to approximate forcing term by a series of radial basis functions. Thus,
BEM formulation can be carried out with the fundamental solution of mostly known differ-
ential equation as Laplace or biharmonic equation. Also, it is important that, the forcing term
of the governing equation be kept as simple as possible so that the interpolation error can be
reduced to a minimum. This is achieved by leaving convection terms or reaction terms on the
left hand side (in the governing differential operator) for which the corresponding fundamen-
tal solution is still available. Fundamental solution of Laplace, biharmonic and convection
diffusion equations are already known and given in [22, 73]. Reaction terms are generally
result in modified Helmholtz equation in which corresponding fundamental solution is rather
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complicated to obtain.

In this chapter, the basic theory of DRBEM is given for two cases. The first case is DRBEM
formulation for Poisson equation, and the second case is DRBEM formulation for inhomo-
geneous modified Helmholtz equation which are explained in Section 2.1 and Section 2.2,
respectively. Modified Helmholtz equation can also be obtained when a time derivative is
discretized at two time levels at the beginning of the solution procedure. In this thesis, the
partial differential equations are put in the form of modified Helmholtz equations discretizing
the time derivative first, and applying DRBEM to the modified Helmholtz operator. Cor-
responding particular solutions for the radial basis functions used in the approximation of
inhomogeneities are derived. This forms the main original part of the thesis.

Obtaining a particular solution analytically for the Laplace operator L = ∇2 and the bihar-
monic operator L = ∇4 can be possible done by repeated integrations [46, 28, 73]. For that
reason most of the differential operators were restricted to the form ∇2u = b(x, y, u, ux, uy)
when the DRBEM was used [73]. We have arranged the differential equations in the form
∇2u − τ2u = b(x, y, u, ux, uy), and approximated the function b by using several radial basis
functions for which corresponding particular solutions are also obtained in Section 2.2.

Generally, DRBEM is used as a solution technique for the direct problems, but it can also be
used for an inverse problem. We explain the use of DRBEM for the solution of the inverse
problem which is again defined with modified Helmholtz operator in Section 2.3 indicating
some advantages of the method.

2.1 DRBEM Solution of Poisson Equation ∇2u = b1(x, y)

DRBEM is also a boundary only solution method which transforms domain integrals into
equivalent boundary integrals, and gives the solution at required interior points at the same
time. The solutions are obtained by using less computational time and data preparation effort
since it discretizes boundary only. As a difference from the BEM, it does not need to use the
fundamental solution of the original equation.

In this part, the DRBEM will be discussed for the Poisson equation where the right hand side
function contains only space variables by giving the derivation of boundary integral equations.

2.1.1 Boundary Integral Equation for the Poisson Equation

Dual reciprocity boundary element method is going to be explained by constructing the
boundary integral equation as in [22, 73]. Let us consider the following two dimensional
Poisson equation

∇2u = b1(x, y) , (x, y) ∈ Ω (2.1)

with the Dirichlet and/or Neumann boundary conditions

u(x, y) = u(x, y) , (x, y) ∈ Γ1

q(x, y) =
∂u
∂n
= q(x, y) , (x, y) ∈ Γ2

(2.2)
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where ∇2 is the Laplace operator and b1(x, y) is a known function of position. n is the unit
outward normal to the boundary Γ = Γ1 + Γ2 of the region Ω, u(x, y) and q(x, y) are the
prescribed functions for u and q, respectively.

The aim of this section is to obtain a boundary integral equation corresponding to Poisson
equation. Multiplying equation (2.1) with the fundamental solution of Laplace equation, in
which r is the distance between the source and the field points

u∗ =
1

2π
ln

(
1
r

)
(2.3)

and integrating over the domain Ω one can obtain a domain integral equation (weighted resid-
ual statement)

∫
Ω

(
∇2u − b1

)
u∗dΩ = 0. (2.4)

Application of Divergence theorem leads

∫
Ω

(
u∇2u∗ − b1u∗

)
dΩ +

∫
Γ

∂u
∂n

u∗dΓ −
∫
Γ

∂u∗

∂n
udΓ = 0. (2.5)

Insertion of boundary conditions (2.2) gives∫
Ω

u∇2u∗dΩ −
∫
Ω

b1u∗dΩ = −
∫
Γ2

qu∗dΓ −
∫
Γ1

qu∗dΓ +
∫
Γ2

uq∗dΓ +
∫
Γ1

uq∗dΓ (2.6)

where q∗ =
∂u∗

∂n
is the normal derivative of the fundamental solution.

The fundamental solution u∗ satisfies Laplace equation as

∇2u∗ + ∆i = 0 (2.7)

where ∆i is Dirac delta function and defined as follow

∆i (x) =
{

0 if x , xi

∞ if x = xi
. (2.8)

The integral of ∆i over the domain is equal to one, and with the integral property of Dirac
delta function one can obtain∫

Ω

u∇2u∗dΩ =
∫
Ω

u
(
−∆i

)
u∗dΩ = −ciui (2.9)

where ui = u(xi, yi), ci is a constant which depends on the geometry of boundary as

ci =


θi

2π
, if i ∈ Γ

1, if i ∈ Ω/Γ.
(2.10)

Here θi represents the internal angle at the point i. Using equation (2.9) and grouping all the
terms together in equation (2.6) give the boundary integral equation at the point i
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ciũi +

∫
Ω

b1u∗dΩ +
∫
Γ

ũq∗dΓ =
∫
Γ

q̃u∗dΓ (2.11)

where the notations ũ and q̃ are used as

ũ =
{

u, on Γ2
u, on Γ1

(2.12)

and

q̃ =
{

q, on Γ1
q, on Γ2

. (2.13)

In equation (2.11) there is still a domain integral which contains the known function b1(x, y)
and dual reciprocity boundary element method will be used to transform this domain integral
also to a boundary integral.

2.1.2 DRBEM for the Poisson Equation

In the previous section, a corresponding integral equation is obtained for the Poisson equation.
Due to the right hand side function b1(x, y) there is still a domain integral in (2.11), and it can
be transformed to a boundary integral by using the dual reciprocity boundary element method.
In this section, DRBEM is explained for the Poisson equation (2.1) following the reference
[73].

The solution to equation (2.1) can be expressed as

u = u
′
+ û (2.14)

where u
′

is the solution of Laplace equation and û is a particular solution which satisfies the
governing equation (2.1)

∇2û = b1(x, y). (2.15)

Actually, it is not easy to find a particular solution û satisfying the equation (2.15). The
DRBEM recommended a series of particular solutions û j instead of a single function û. Thus,
the inhomogeneity function b1(x, y) is expanded with the approximating functions as

b1 ≈
K+L∑
j=1

α j f j (2.16)

where K and L are the number of boundary and internal nodes, α j are initially unknown
coefficients, and f j are the approximating functions. Also, there is a relation between the
particular solutions û j and f j such as

∇2û j = f j. (2.17)

After substituting equation (2.17) into equation (2.16) one can obtain a new approximation
for the right hand side function b1

b1 =

K+L∑
j=1

α j∇2û j. (2.18)
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Substitution of b1 into the Poisson equation (2.1) gives the following equation

∇2u =
K+L∑
j=1

α j∇2û j. (2.19)

Now, the Laplace operator appears to be in both sides. Multiplying equation (2.19) with the
fundamental solution of the Laplace equation and integrating over the domain one obtains

∫
Ω

(
∇2u

)
u∗dΩ =

K+L∑
j=1

α j

∫
Ω

(
∇2û j

)
u∗dΩ. (2.20)

Integrating equation (2.20) by parts and applying Green’s theorem twice for the Laplace term
produces the following integral equation for each source node i

ciũi +

∫
Γ

ũq∗dΓ −
∫
Γ

q̃u∗dΓ =
K+L∑
j=1

α j

[
cîui j +

∫
Γ

û jq∗dΓ −
∫
Γ

q̂ ju∗dΓ
]

(2.21)

where ûi j = û j (xi, yi) , and q̂ j is the normal derivative of û j defined as

q̂ j =
∂̂u j

∂n
=
∂̂u j

∂x
∂x
∂n
+
∂̂u j

∂y
∂y
∂n
. (2.22)

For simplicity of the notation, ∼ will be dropped in u and q in the rest of the formulation.

Now the equation (2.21) contains only boundary integrals and the next step is to obtain a
system of equations by discretizating the boundary of the domain. Each part of the boundary
is called as boundary element, and the points which are located on the boundary elements are
called as nodes. The type of the boundary elements is changed depending on the number of
nodes on the possession. If the nodes are placed at the center of each element, the elements
are called constant elements. If an element has two nodes placed at the ends, it is a linear
element. Similarly, the number of the nodes can be increased to obtain higher order boundary
elements. In this thesis, the discretization of the boundary is done by using constant elements.

The boundary is divided into K constant boundary elements by taking the nodes in the middle
of each element. In the case of the constant element the boundary is always smooth and thus
u and q are assumed to be constant over the element. The values of u and q at any point on
the element can be defined in terms of their nodal values as

u ≈ uk

q ≈ qk
(2.23)

on the k-th boundary element Γk, (k-th node also), k = 1, 2, ...,K. Discretization of the bound-
ary Γ in (2.21) gives an expression
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ciui +

K∑
k=1

∫
Γk

uq∗dΓ −
K∑

k=1

∫
Γk

qu∗dΓ =
K+L∑
j=1

α j

cîui j +

K∑
k=1

∫
Γk

û jq∗dΓ −
K∑

k=1

∫
Γk

q̂ ju∗dΓ

 .
(2.24)

The constant values of u and q can be taken out of the integrals and equation (2.24) becomes

ciui+

K∑
k=1

uk

∫
Γk

q∗dΓ−
K∑

k=1

qk

∫
Γk

u∗dΓ =
K+L∑
j=1

α j

cîui j +

K∑
k=1

ûk j

∫
Γk

q∗dΓ −
K∑

k=1

q̂k j

∫
Γk

u∗dΓ

 .
(2.25)

Integration of u∗ and q∗ over each boundary element results in the system of equations

ciui +

K∑
k=1

Hikuk −
K∑

k=1

Gikqk =

K+L∑
j=1

α j

cîui j +

K∑
k=1

Hikûk j −
K∑

k=1

Gikq̂k j

 (2.26)

where the index k is used for the boundary nodes, and the components of H and G matrices
are

Hik =

∫
Γk

q∗dΓk =
1

2π

∫
Γk

(r − ri) .n
|r − ri|2

dΓk i , k,

Gik =

∫
Γk

u∗dΓk =
1

2π

∫
Γk

ln
1

|r − ri|
dΓk i , k.

(2.27)

where r = (x, y) and ri = (xi, yi) are the field and source points, respectively. n is the outward
unit vector on the boundary Γk.

When i = k, there are singularities in Hii and Gii but they can be calculated analytically for
a constant element. Since normal n and distance (r − ri) vectors are always perpendicular to
each other, Hii components are identically zero. The Gii components are [22]

Gii =
1

2π

(
ln

1
l
+ 1

)
(2.28)

where l is the length of the element.

Since all the boundary elements are straight lines the angle θi can be taken as π and for the
constant element ci is

ci =


1
2
, if i ∈ Γ

1, if i ∈ Ω/Γ
. (2.29)

Thus, the equation (2.26) becomes for K nodes on the boundary
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1
2

ui +

K∑
k=1

Hikuk −
K∑

k=1

Gikqk =

K+L∑
j=1

α j

1
2

ûi j +

K∑
k=1

Hikûk j −
K∑

k=1

Gikq̂k j

 (2.30)

where i = 1, ...,K. After rearranging the coefficient matrices, equations (2.30) take the form

Hu −Gq =
K+L∑
j=1

α j
(
Hû j −Gq̂ j

)
(2.31)

where

Hik = Hik +
1
2
δik (2.32)

and δ is the Kronecker delta function defined as

δik =

{
1, if i = k
0, if i , k

(2.33)

for i, k = 1, 2, ...,K.

In equation (2.31) each vector, û j and q̂ j is considered to be one column of the matrices Û
and Q̂ respectively. Thus, equation (2.31) results in

Hu −Gq =
(
HÛ −GQ̂

)
α (2.34)

where the matrices H and G are of size K×K, the matrices Û and Q̂ have the size K× (K+L),
the vectors u and q are of size K × 1, and the vector α has the size (K + L)× 1 which contains
unknown coefficients α j.

In equation (2.34) all the coefficients ci =
1
2

’s are located on the main diagonal of the matrix
H, and the solution of equation (2.34) gives the unknown boundary values where i ranges
from 1 to K. The values at any interior point i can be calculated from equation (2.26) with
ci = 1 as

ui = −
K∑

k=1

Hikuk +

K∑
k=1

Gikqk +

K+L∑
j=1

α j

̂ui j +

K∑
k=1

Hikûk j −
K∑

k=1

Gikq̂k j

 (2.35)

where L is the number of the interior points, and i ranges from 1 to L. Thus, equation (2.35)
can be written in a matrix-vector form

Iui = Gq −Hu +
[
IÛi +HÛ −GQ̂

]
α (2.36)

where ui is a vector of size L×1 which contains the computed values of interior points. Here,
H and G matrices are of size L × K, Û and Q̂ matrices have the size K × (K + L), Ûi has the
size L × (K + L), and I is a L × L identity matrix. The vectors u and q contain the known
values of boundary points which have the size K × 1, and the vector α is of size (K + L) × 1.
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Now, systems (2.34) and (2.36) can be combined in a one system by enlarging the matrices
[73] as

[
Hb

K×K 0K×L

Hi
L×K IL×L

] {
ub

K×1
ui

L×1

}
−

[
Gb

K×K 0K×L

Gi
L×K 0L×L

] {
qb

K×1
0L×1

}

=

([
Hb

K×K 0K×L

Hi
L×K IL×L

] [
Ûb

K×(K+L)

Ûi
L×(K+L)

]
−

[
Gb

K×K 0K×L

Gi
L×K 0L×L

] [
Q̂b

K×(K+L)
0L×(K+L)

]) {
α(K+L)×1

}
(2.37)

where b and i refer to the boundary and interior nodes, and I and 0 are identity and zero
matrices, respectively. So, the enlarged system (2.37) can be written in a compact form

Hu −Gq = (HÛ −GQ̂)α. (2.38)

In the above system all the matrices are of size (K + L)× (K + L), and all the vectors have the
size (K + L) × 1. For simplicity, the same notations with the equation (2.34) are used for the
enlarged system.

Now, the α vector can be computed by using the approximation (2.16) with the value of b1 at
(K + L) different points which gives a matrix form as

b1 = Fα (2.39)

where F is the coordinate matrix of size (K + L) × (K + L), b1 is the vector containing values
of b1 function at (K + L) points. In the F matrix f j are consisted of columns which contain
the value of function f j at (K + L) points. Thereby, α vector can be obtained by inverting the
equation (2.39)

α = F−1b1. (2.40)

Inserting equation (2.40) into equation (2.38) one can get the system

Hu −Gq = (HÛ −GQ̂)F−1b1 (2.41)

in which the right hand side of the equation (2.41) can be calculated by using known values
of H, G, Û, Q̂, F−1 and b1. Using the given boundary conditions and rearranging the equation
(2.41) one can obtain the usual linear system of algebraic equations

Ax = y (2.42)

where x is the vector of K unknown boundary values u or q, and L unknown interior values
of u, y contains all known values at the boundary points, and both x and y have the size
(K + L) × 1.

It is necessary to choose suitable f j function to obtain F, Û and Q̂ matrices. Several type
of functions can be used for f j but it should be chosen in such a way that resulting matrix
F should be nonsingular. Therefore, usually polynomials in terms of the distance function r
with the constant term which are simplest and accurate alternatives for f j are preferred.
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Let us define f in a polynomial form as in [73]

f = 1 + r + r2 + ... + rm (2.43)

where r is the distance between source and field points. This f function should satisfy the
equation

∇2û = f (2.44)

which is equal to in polar coordinates with the definition of f

1
r
∂

∂r

(
r
∂̂u
∂r

)
= 1 + r + r2 + ... + rm. (2.45)

Corresponding û and q̂ functions can be obtain by using equation (2.45) in the form

û =
r2

4
+

r3

9
+ ... +

rm+2

(m + 2)2 (2.46)

q̂ =
(
rx
∂x
∂n
+ ry

∂y
∂n

) (
1
2
+

r
3
+ ... +

rm

(m + 2)

)
(2.47)

with the definitions
r2 = r2

x + r2
y (2.48)

and
∂r
∂n
=

1
r

(
rx
∂rx

∂n
+ ry

∂ry

∂n

)
(2.49)

where r = (rx, ry) and r is the length of the vector r.

Actually, one can use any combination of terms from equation (2.43) but there is not much
of a difference between the results. So, for simplicity f = 1 + r is used in the solution of
the Poisson equation. Also, different kind of radial basis functions can be used for Laplace

operator which results in corresponding particular solution û and q̂
(̂
q =

∂̂u
∂n

)
functions as

f = r2 ln r, û =
r4

16

(
ln r − 1

2

)
, q̂ =

(
r3

4
ln r − r3

16

)
∂r
∂n

(2.50)

f =
2c − r

(r + c)4 , û = − c + 2r
2(r + c)2 , q̂ =

r
(r + c)3

∂r
∂n

(2.51)

f = exp(−r2), û =
1
4

(
ln r2 + E1(r2)

)
, q̂ =

1
2r

(
1 − exp(−r2)

) ∂r
∂n

(2.52)

where c is an arbitrary constant and E1 is the exponential integral represented by [100]

E1(X) =
∫ ∞

X

exp(−t)
t

dt. (2.53)
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2.2 DRBEM Solution of Inhomogeneous Modified Helmholtz Equation ∇2u −
τ2u = b2(x, y)

DRBEM which is available in the literature is basically the boundary element technique treat-
ing both sides of inhomogeneous partial differential equations with the fundamental solution
of Laplace equation [73]. Thus, the domain integral resulting from inhomogeneous term in
the BEM formulation is also transformed to a boundary integral. This current section presents
the dual reciprocity boundary element method application to the inhomogeneous modified
Helmholtz equation. For this aim, mathematical development of DRBEM will be modified
for the inhomogeneous modified Helmholtz equations. This means that the fundamental so-
lution of modified Helmholtz equation will be used in the formulation.

2.2.1 Boundary Integral Equation for Homogeneous Modified Helmholtz Equation

In this Section, we first describe boundary integral equation for the homogeneous modified
Helmholtz equation since it forms a basis for the DRBEM solution of inhomogeneous modi-
fied Helmholtz equation. Let us consider the homogeneous modified Helmholtz Equation in
two-dimensional domain

∇2u − τ2u = 0 , (x, y) ∈ Ω (2.54)

with the following Dirichlet and Neumann boundary conditions

u(x, y) = u(x, y) , (x, y) ∈ Γ1

q(x, y) =
∂u
∂n
= q(x, y) , (x, y) ∈ Γ2

(2.55)

where ∇2 is the Laplace operator. Here n is unit outward normal to the boundary Γ = Γ1 +Γ2,

u(x, y) and q(x, y) are the prescribed functions for u and q, respectively.
In order to obtain an integral equation for the modified Helmholtz equation (2.54), we multiply
with the fundamental solution of modified Helmholtz equation and integrate over the domain
to obtain weighting residual statement∫

Ω

(∇2u − τ2u)u∗dΩ =
∫
Γ2

(q − q)u∗dΓ −
∫
Γ1

(u − u)q∗dΓ (2.56)

where q =
∂u
∂n

and q∗ =
∂u∗

∂n
.

Applying Green’s theorem twice for the left hand side of equation (2.56) we obtain the fol-
lowing equation∫

Ω

(∇2u∗ − τ2u∗)udΩ = −
∫
Γ2

qu∗dΓ −
∫
Γ1

qu∗dΓ +
∫
Γ2

uq∗dΓ +
∫
Γ1

uq∗dΓ (2.57)

or ∫
Ω

(∇2u∗ − τ2u∗)udΩ −
∫
Γ

ũq∗dΓ +
∫
Γ

q̃u∗dΓ = 0 (2.58)
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where ũ and q̃ contain all known and unknown boundary values.

The weighting function u∗ satisfies the differential equation (2.58) in the Dirac delta sense,
then ∫

Γ

q̃u∗dΓ −
∫
Γ

ũq∗dΓ = 0. (2.59)

The fundamental solution of the modified Helmholtz equation is u∗ = K0(τr), second kind
modified Bessel function of order zero, where r is the distance from an arbitrary point i to a
point on the boundary [92, 69].
Substitution of u∗ in equation (2.59) becomes (using u and q for ũ and q̃ for convenience)

∫
Γ

(
∂u
∂n

K0(τr) − u
∂K0(τr)
∂n

)
dΓ = 0. (2.60)

In order to take this integral, the singularities must be removed in the region as (r → 0).
So, the singularity can be handled by integrating around the circle of radius ε containing the
singularity [92]∫

Γ

(
∂u
∂n

K0(τr) − u
∂K0(τr)
∂n

)
dΓ +

∫ 2π

0

(
∂u
∂n

K0(τε) − u
∂K0(τε)
∂n

)
εdθ = 0 (2.61)

where θ increases counterclockwise when the integral along dΓ is taken in a clockwise direc-
tion.

Let us take the both side limits when ε → 0. Since K0 function has the asymptotic behavior,
like − log(τε) for small argument and limε→0 ε log(τε) = 0, we have

∫ 2π

0

∂u
∂n

K0(τε)εdθ = 0 (2.62)

∫ 2π

0
u
∂K0(τε)
∂n

εdθ =
∫ 2π

0
u
∂(− log(ε))

∂n
εdθ =

∫ 2π

0
u(

1
ε

)εdθ = 2πu. (2.63)

After substituting equation (2.62) and equation (2.63) into the equation (2.61), we arrive at
the boundary integral equation

ui =
1

2π

∫
Γ

(
∂u
∂n

K0(τr) − u
∂K0(τr)
∂n

)
dΓ. (2.64)

Thus, evaluating the above integral for any point i in the interior of the domain, u values can
be found by just using the boundary points.

To remove the singularities which occur on the boundary as (r → 0), the integration is taken
around a semi-circular path Γε of radius ε [92],

∫
Γ−Γε

(
∂u
∂n

K0(τr) − u
∂K0(τr)
∂n

)
dΓ +

∫ π

0

(
∂u
∂n

K0(τε) − u
∂K0(τε)
∂n

)
εdθ = 0 (2.65)
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Taking limit as ε→ 0, we get the boundary integral for i at the boundary, which gives a u and
∂u
∂n

values on the boundary

ui =
1
π

∫
Γ

(
∂u
∂n

K0(τr) − u
∂K0(τr)
∂n

)
dΓ. (2.66)

After combining equations (2.64) and (2.66) one can obtain a boundary integral equation

ciui =
1

2π

∫
Γ

(
∂u
∂n

K0(τr) − u
∂K0(τr)
∂n

)
dΓ (2.67)

where

ci =


1
2
, if i ∈ Γ

1, if i ∈ Ω/Γ
. (2.68)

2.2.2 DRBEM for the Inhomogeneous Modified Helmholtz Equation

In this part, the dual reciprocity BEM method will be developed for the inhomogeneous mod-
ified Helmholtz equation by using the same idea with the reference [73]. Consider the inho-
mogeneous modified Helmholtz equation in two-dimensional domain

∇2u − τ2u = b2(x, y). (2.69)

We need a simple way to solve the equation (2.69) without computing any domain integral.
As is done for Poisson equation, solution is written as

u = u
′
+ û (2.70)

where u
′

is the solution of the homogeneous equation and û is a particular solution of the
Modified Helmholtz equation

∇2û − τ2û = b2. (2.71)

Similarly the DRBEM proposes a series of particular solutions û j instead of a single function
û. There will be K + L values of û j if there are K boundary nodes and L interior nodes.
In addition, the DRBEM proposes an approximation for b2 as

b2 ≈
K+L∑
j=1

α j f j (2.72)

where the f j are approximating functions and α j are coefficients which are initially unknown.
There is a relation between û j and f j functions such that

∇2û j − τ2û j = f j. (2.73)

If the equation (2.73) is substituted into the equation (2.72) it gives

b2 =

K+L∑
j=1

α j(∇2û j − τ2û j) (2.74)
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and then the right hand side of equation (2.69) becomes

∇2u − τ2u =
K+L∑
j=1

α j(∇2û j − τ2û j). (2.75)

Multiplying the equation (2.75) with the fundamental solution u∗ of modified Helmholtz equa-
tion, and integrate over the domain (weighting with u∗ over Ω)∫

Ω

(∇2u − τ2u)u∗dΩ =
K+L∑
j=1

α j

∫
Ω

(∇2û j − τ2û j)u∗dΩ. (2.76)

Integrating by parts the Laplacian terms on both sides and inserting the fundamental solution,
we obtain the following integral equation for each source node i (either on the boundary or
inside)

ciui −
1

2π

∫
Γk

u
∂Ko(τri)

∂n
dΓk +

1
2π

∫
Γk

∂u
∂n

Ko(τri)dΓk =

K+L∑
j=1

α j

[
cîui j −

1
2π

∫
Γk

û j
∂Ko(τri)

∂n
dΓk

+
1

2π

∫
Γk

q̂ jKo(τri)dΓk

]
(2.77)

where q̂ j =
∂̂u j

∂n
, n is the unit outward normal to Γ, and ri is the distance from the source node

i to field point k. Note that equation (2.77) involves no domain integrals. The constant ci takes
the values given in (2.68) according to the position of the source point i.
Discretizing equation (2.77) by using constant boundary elements gives for a source node i
the expression

1
2

ui +

K∑
k=1

H′
ikuk +

K∑
k=1

G
′
ikqk =

K+L∑
j=1

α j

1
2

ûi j +

K∑
k=1

H′
ikûk j +

K∑
k=1

G
′
ikq̂k j

 (2.78)

where index k is used for the boundary nodes which are field points and the entries of H′ and
G
′

matrices are

H′
ik = −

1
2π

∫
Γk

∂Ko(τri)
∂n

dΓk i , k,

G
′
ik =

1
2π

∫
Γk

Ko(τri)dΓk i , k.
(2.79)

When the Γk contains the point i, the integrals in H′
ii and Gii contain singularities, so these

integrals need different algorithm. For the case of i = k since the direction cosine is zero, the
diagonal entries become

H′
ii = 0. (2.80)

When the G matrix is calculated for the case i = k, the equation (2.79) is not useful to take
the integral. So, the integration formula given in [63] is used
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G
′
ii =

1
2π

∫
Γi

Ko(τri)dΓ ≈
1
π

6∑
l=0

(dlβ
2l+1 − log βclβ

2l+1)/τ (2.81)

where β = (τ∆ξi)/4 and the values of dl and cl are given in [63], (page:64).

For the case i , k, the coefficients are [92, 1]

H′
ik = −

1
2π

∫
Γk

∂K0(τri)
∂n

dΓ =
1

2π

∫
Γk

τK1(τri)
∂ri

∂n
dΓ =

1
2π
τ∆ξ jK1(τri)

∂ri

∂n
(2.82)

where K1(x) is a modified Bessel function of second kind and of order one, and
∂ri

∂n
is the

normal derivative of r defined in equation (2.48), and evaluated at the point i.

Similarly, for the G matrix, we have

G
′
ik =

1
2π

∫
Γk

K0(τri)dΓ ≈
1

2π
∆ξk

[
K0(τri

∣∣∣k−1/2 ) + 4K0(τri) + K0(τri
∣∣∣k+1/2 ))

]
/6 (2.83)

where the term ri
∣∣∣k−1/2 and ri

∣∣∣k+1/2 are the distance between the point i and the end points of
the k-th elements, [92].

In equation (2.78) û and q̂ are known functions when f function is defined. If the same
procedure is used for every source node i, i = 1, ...,K (discretization with K constant boundary
elements), equation (2.78) can be expressed in matrix-vector form as

H
′
u +G

′
q =

K+L∑
j=1

α j
(
H
′
û j +G

′
q̂ j

)
. (2.84)

If each of the vectors û j and q̂ j is considered to be one column of the matrices Û′ and Q̂′

respectively, the equation (2.84) becomes a matrix-vector equation for the unknown vectors u
and q defined on Γ

H
′
u +G

′
q =

(
H
′
Û
′
+G

′
Q̂
′)
α. (2.85)

The terms ci =
1
2

have been incorporated onto the principle diagonal of H′
such that

H
′
ik = H′

ik + ciδik (2.86)

and α is vector containing α j values from 1 to K + L.

Since this system involves the discretization of the boundary only, the location of the interior
points is not important. These nodes can be defined at the locations desired by the user. The
values at any interior point i can be calculated from equation (2.77) with ci = 1 as

ui = −
K∑

k=1

H′
ikuk −

K∑
k=1

G
′
ikqk +

K+L∑
j=1

α j

̂ui j +

K∑
k=1

H′
ikûk j +

K∑
k=1

G
′
ikq̂k j

 (2.87)
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where L is the number of the interior points, and i ranges from 1 to L. Thus, equation (2.87)
can be written in a matrix-vector form

Iui = −H′u − G′q +
[
IÛ′ i + H′Û′ + G′Q̂′

]
α (2.88)

where ui is a vector with the size L× 1 which contains the computed values of interior points,
H′

and G′ matrices have the size L × K, Û′ and Q̂′ matrices are of size K × (K + L), Û′ i has
the size L × (K + L), and I is a L × L identity matrix. The vector α has size (K + L) × 1 and
the vectors u and q contain the known values of boundary points which are of the size K × 1.

By using equations (2.85) and (2.88) a global scheme may be obtained which is valid for both
boundary and interior points [73] as

 H′ b
K×K 0K×L

H′ i
L×K IL×L

 { ub
K×1

ui
L×1

}
+

 G′ bK×K 0K×L

G′ iL×K 0L×L

 { qb
K×1

0L×1

}

=


 H′ b

K×K 0K×L

H′ i
L×K IL×L


 Û′

b
K×(K+L)

Û′
i
L×(K+L)

 +
 G′ bK×K 0K×L

G′ iL×K 0L×L

  Q̂′
b

K×(K+L)
0L×(K+L)


 {α(K+L)×1

}
(2.89)

where b and i refer to the boundary and interior nodes, I and 0 are identity and zero matrices,
respectively. So, the enlarged system (2.89) can be written in a compact form as

H′u + G′q = (H′Û′ + G′Q̂′)α. (2.90)

In the above system all the matrices have the size (K + L) × (K + L), and all the vectors have
the size (K + L) × 1. The same notations with the equation (2.85) are used for the enlarged
system also.

The α vector can be computed by using the approximation (2.72). If the right hand side term
b2(x, y) is a known function of space, one can obtain the values of b2(x, y) at (K + L) different
points which gives a matrix form as

b2 = Fα (2.91)

where the f j are approximating functions and F is the coordinate matrix which has the size

(K + L) × (K + L). In the F matrix f j are consisted as columns which contain the value of
function f j at (K + L) points. Thus, α vector can be obtained by inverting the equation (2.91)

α = F
−1

b2 (2.92)

and is inserted back into equation (2.90) to arrive at

H′u + G′q = (H′Û′ + G′Q̂′)F
−1

b2 (2.93)
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in which the right hand side can be obtained by using known values of H′
, G′ , Û′ , Q̂′ , F

−1

and b2(x, y).

2.2.3 DRBEM Solution for the Equation ∇2u − τ2u = b2(x, y, ux, uy)

If the right hand side function is in the form b(x, y, ux, uy) then a different idea should be used
for the terms ux and uy. Let the inhomogeneous term be a combination of space derivatives
such as

b2(x, y, ux, uy) =
∂u
∂x
+
∂u
∂y
. (2.94)

Now, the basic approximation of the DRBEM can be done for the right hand side function
b2(x, y, ux, uy), i.e.

b2 = Fα. (2.95)

A similar idea can be written for the function u

u = Fβ (2.96)

where β , α. Differentiation (2.96) with respect to x and y, gives

∂u
∂x
=
∂F
∂x
β (2.97)

and
∂u
∂y
=
∂F
∂y
β, (2.98)

respectively. Inverting equation (2.96), β is obtained as

β = F
−1

u (2.99)

then equations (2.97) and (2.98) become

∂u
∂x
=
∂F
∂x

F
−1

u (2.100)

and
∂u
∂y
=
∂F
∂y

F
−1

u, (2.101)

respectively. Therefore, the right hand side function (2.94) is

b2(x, y, ux, uy) =

∂F
∂x

F
−1
+
∂F
∂y

F
−1

 u. (2.102)

Substituting equation (2.102) into equation (2.93) one can obtain

H′u + G′q = d (2.103)
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where

d =
(
H′Û′ + G′Q̂′

)
F
−1

∂F
∂x

F
−1
+
∂F
∂y

F
−1

 u. (2.104)

Therefore, d vector can be obtained directly by multiplying known vector and matrices except
the solution u. Defining

S =
(
H′Û′ + G′Q̂′

)
F
−1

∂F
∂x

F
−1
+
∂F
∂y

F
−1

 (2.105)

equation (2.103) becomes
H′u + G′q = Su (2.106)

where the calculation of the matrix S can be done by multiplying known vector and matrices.
Collecting the terms for u on the left hand side one can obtain

(H′ − S)u + G′q = 0. (2.107)

After inserting the boundary conditions, this equation reduces to the form

Ax = y (2.108)

where x is a vector of unknown boundary values of u and q, and y is obtained by multiplying
the corresponding columns of H′

or G′ by the known values of u and q. This linear system of
equation is solved for x by using any direct solution method and all the boundary values will
be known. The coefficient matrix A does not show a special form. It contains lots of scattered
zeros but still in the form of a full matrix.

2.2.4 Different f Expansions for Modified Helmholtz Operator

A coordinate function f in terms of radial distance r is used for approximating the inhomo-
geneity b2(x, y) in the differential equation (2.69),

b2 =

K+L∑
j=1

α j f j. (2.109)

It is also used for obtaining the F matrix in (2.95) and (2.96) which must be non-singular.
So, we cannot choose f function arbitrarily. Usually polynomials in terms of the distance
r are taken but some other definitions of f are used for computing corresponding particular
solutions û, and its normal derivative q̂ by using

(
∇2 − τ2

)
û = f .

2.2.4.1 Polynomial Form of f Expansion

We start by taking particular solution û also as a polynomial in r

û = a0 + a1r + a2r2 + a3r3 + ... + amrm (2.110)
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where ak is a set of coefficients. This particular solution û satisfies the modified Helmholtz
equation

∇2û − τ2û = f (2.111)

or in the cylindrical coordinates

1
r
∂

∂r

(
r
∂̂u
∂r

)
− τ2û = f . (2.112)

Thus, approximation for û gives

∇2û−τ2û =
a1

r
+4a2+9a3r+ ...+m2amrm−2−τ2(a0+a1r+a2r2+a3r3+ ...+amrm). (2.113)

Taking a0 = 0 and a1 = 0, the f and û functions are

f = 4a2 + 9a3r + ... + m2amrm−2 − τ2(a2r2 + a3r3 + ... + amrm) (2.114)

û = a2r2 + a3r3 + ... + amrm. (2.115)

The normal derivative q̂ function is computed as

q̂ =
∂̂u
∂n
=
∂̂u
∂x
∂x
∂n
+
∂̂u
∂y
∂y
∂n

(2.116)

or

q̂ =
∂̂u
∂n
=
∂̂u
∂r
∂r
∂n
. (2.117)

In the two-dimensional case the distance of the vector r = (rx, ry) is

r2 = r2
x + r2

y (2.118)

and
∂r
∂n
=

1
r

(
rx
∂rx

∂n
+ ry

∂ry

∂n

)
. (2.119)

So, using definitions (2.115) and (2.116) we arrive at

q̂ = (2a2 + 3a3r + ... + mamrm−2)(rx
∂x
∂n
+ ry

∂y
∂n

). (2.120)

2.2.4.2 Thin Plate Splines for f Expansion

Other than the polynomial form of f functions there is a different way to obtain a suitable
function which satisfies the modified Helmholtz equation. Chen and Rashed [28], obtained
a closed form expression for û, and f was a linear combination of thin plate splines (TPS)
but systematic derivation was not given. Then Muleskov, Golberg and Chen [68] generalized
these results by using the annihilator method which is used to obtain particular solutions for
ordinary differential equations.
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Annihilator Method:

Let P be a linear partial differential operator and

Pu = b2(x, y) (2.121)

where

b2 =

K+L∑
j=1

α j f j and Pû j = f j. (2.122)

Suppose that there is a differential operator M satisfying

M f j = 0 (2.123)

and commutes with P such that MP = PM. Using operator M for equation (2.122), we get

M(Pû j) = M f j = 0 = P(Mû j). (2.124)

Let V = {v : Pv = 0} and W = {w : Mw = 0} are finite and disjoint sets and {βk} and {γk} are
bases for V and W, respectively. Then, a particular solution can be written as

û j =

s∑
k=1

bkβk +

t∑
k=1

ckγk (2.125)

where the coefficients {bk} and {ck} are determined by equation (2.122). Thus, û j satisfies
equation (2.124) as

MPû j = MP

 s∑
k=1

bkβk +

t∑
k=1

ckγk


= MP

 s∑
k=1

bkβk

 + MP

 t∑
k=1

ckγk


= 0.

(2.126)

Assigning now P as modified Helmholtz operator (P = ∇2−τ2) and M as biharmonic operator
(M = ∇4), we can use the annihilator method for solving

(∇2 − τ2)̂u j = r2
j log r j, j = 1, ...,K + L. (2.127)

Thus, it is enough to solve

1
r

d
dr

(r
d(̂u(r))

dr
) − τ2û(r) = r2 log r (2.128)

where

∇2u(r) =
1
r

d
dr

(r
d(̂u(r))

dr
). (2.129)
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Also, it is equivalent to solving
∇4(∇2 − τ2)̂u(r) = 0 (2.130)

where biharmonic operator and modified Helmholtz operator commute. In order to find a
solution for equation (2.130), we must find finite and disjoint solution sets for ∇4w = 0 and
(∇2 − τ2)v = 0. Biharmonic operator is a fourth order Euler operator and its characteristic
polynomial is p2(p − 2)2. So, its solution can be written as

w(r) = a + b log r + cr2 + dr2 log r. (2.131)

Also, modified Helmholtz equation is a Bessel operator and its solution can be written as

v(r) = AI0(τr) + BK0(τr) (2.132)

where I0 and K0 are the first and second kind modified Bessel functions of order zero. There-
fore, the solution of equation (2.130) is

û(r) = AI0(τr) + BK0(τr) + a + b log r + cr2 + dr2 log r. (2.133)

All the coefficients in equation (2.133) can be determined by using the equation (2.128). Since

(∇2 − τ2)I0(τr) = (∇2 − τ2)K0(τr) = 0 (2.134)

we can take
(∇2 − τ2)̂u(r) = (∇2 − τ2)(a + b log r + cr2 + dr2 log r)

= r2 log r.
(2.135)

Solution of this equation gives

a = b = − 4
τ4 , c = 0 and d = − 1

τ2 . (2.136)

Thus,

û(r) = AI0(τr) + BK0(τr) − 4
τ4 −

4
τ4 log r − 1

τ2 r2 log r. (2.137)

But there is a singularity in (2.133) at r = 0. So we need to choose B to cancel the ’log r’ term
at r = 0. If K0(τr) is expanded for small argument [46], we have

K0(τr)→ −γ − log
(
τr
2

)
as r → 0 (2.138)

where γ = 0.5772156649015328 is known as Euler’s constant [1]. Thus, for B = − 4
τ4 , we

obtain a particular solution which is continuous at r = 0. Also, since particular solutions are
not unique, we can consider A = 0. Therefore, we obtain

û(r) = − 4
τ4 −

4 log r
τ4 − r2 log r

τ2 − 4K0(τr)
τ4 , r , 0

û(r) = − 4
τ4 +

4γ
τ4 +

4
τ4 log

(
τ

2

)
, r = 0.

(2.139)
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In general, we can use higher order splines as [68]

(∇2 − τ2)̂u j = r2n
j log r j, j = 1, ...,K + L. (2.140)

This differential equation can be solved now by taking M = (∇2)(n+1) and using the annihilator
method where (n + 1) denotes (n + 1)-th derivative of the ∇2.

Now, using the fact that
(∇2)(n+1)r2n log r = 0, r > 0, (2.141)

û can be obtained by solving

(∇2)(n+1)(∇2 − τ2)̂u(r) = 0. (2.142)

Thus, its solution can be written as

û = v + w (2.143)

where
(∇2)(n+1)w = 0, (∇2 − τ2)v = 0. (2.144)

The solution for v is given in (2.132). It will be enough to solve ∇2(n+1)w = 0. ∇2(n+1) is the
multiple of the Euler operator where its characteristic polynomial is p2(p−2)2 . . . (p−2n)2 = 0
and characteristic exponents are p = 0, 2, 4, . . . , 2n. Its solution can be written as

w(r) =
n+1∑
k=1

ckr2k−2 log r +
n+1∑
k=1

dkr2k−2. (2.145)

Thus, the solution of equation (2.142) is

û = AI0(τr) + BK0(τr) + w(r). (2.146)

The coefficients of equation (2.146) can be determined by using the equation

(∇2 − τ2)̂u = r2n log r. (2.147)

In [1] K0 is define as

K0(τr) =
∞∑

k=0

µkr2k −
∞∑

k=0

τ2k

22k(k!)2 r2k log r (2.148)

where

µ0 = log
(
2
τ

)
− γ (2.149)
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and

µk =

log
(
2
τ

)
− γ +

k∑
j=1

(
1
j

) τ2k

22k(k!)2 , k ≥ 1. (2.150)

But, it has a singularity at r = 0. So, if we choose ck’s in (2.145) as

ck+1 =
Bτ2k

22k(k!)2 , 0 ≤ k ≤ n, (2.151)

then we can cancel the log r terms in (2.148).

By using the equation (2.147), we can determine the dk’s in (2.145). Since

(∇2 − τ2)I0(τr) = (∇2 − τ2)K0(τr) = 0 (2.152)

and it suffices to solve
(∇2 − τ2)w = r2n log r. (2.153)

Thus, we have

(∇2 − τ2)w(r) =
n∑

k=1

(
4k2ck+1 − τ2ck

)
r2k−2 log r − τ2cn+1r2n log r

+

n∑
k=1

(
4kck+1 − τ2dk + 4k2dk+1

)
r2k−2 − τ2dn+1r2n

(2.154)

where

∇2(r2k log r) = 4k2r2k−2 log r + 4kr2k−2 (2.155)

and

∇2(r2k) = 4k2r2k−2. (2.156)

In order to obtain the whole coefficients, we use the assumptions

4k2ck+1 − τ2ck = 0, (i)

−τ2cn+1 = 1, (ii)

4kck+1 − τ2dk + 4k2dk+1 = 0, (iii)

−τ2dn+1 = 0, (iv)

(2.157)

k=1,2,. . . ,n. By using equation (2.151) and (i) we have
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4k2ck+1 − τ2ck =
4k2Bτ2k

22k(k!)2 −
τ2Bτ2k−2

22k−2((k − 1)!)2 = 0. (2.158)

Conditions (ii), and (iv) give

cn+1 = −
1
τ2 and dn+1 = 0. (2.159)

From (2.151) and (2.159) the constant B becomes

B = −22n(n!)2

τ2n+2 (2.160)

and then the coefficients ck’s

ck = −
22n(n!)2

22k−2((k − 1)!)2 τ
2k−2n−4. (2.161)

Substituting (2.161) into condition (iii) in the equation (2.157) and multiplying by
22k−2(k − 1)!)2

τ2k+2
it becomes

−22n(n!)2

τ2n+4k
− 22k−2((k − 1)!)2dk

τ2k +
22k(k!)2dk+1

τ2k+2 = 0. (2.162)

If we take

δk =
22k−2((k − 1)!)2dk

τ2k , 1 ≤ k ≤ n + 1, (2.163)

then (2.162) can be written

−22n(n!)2

τ2n+4k
− δk + δk+1 = 0 (2.164)

where from (2.159), δn+1 = 0. So,

δk = δn+1 +

n∑
j=k

(
δ j − δ j+1

)
, 1 ≤ k ≤ n. (2.165)

Thus,

δk = −
22n(n!)2

τ2n+4

n∑
j=k

(
1
j

)
(2.166)

and
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dk = −
22n(n!)2

22k−2((k − 1)!)2 τ
2k−2n−4

n∑
j=k

(
1
j

)
, 1 ≤ k ≤ n. (2.167)

Finally, from (2.161) and (2.167)

dk = ck

n∑
j=k

(
1
j

)
, 1 ≤ k ≤ n. (2.168)

Also, since particular solutions are not unique, we can consider A = 0. Therefore, we obtain
[68]

û(r) = AI0(τr) + BK0(τr) +
n+1∑
k=1

ckr2k−2 log r +
n∑

k=1

dkr2k−2 (2.169)

where



B = −22n(n!)2

τ2n+2

ck = −
22n(n!)2

22k−2((k − 1)!)2 τ
2k−2n−4, 1 ≤ k ≤ n + 1

dk = ck

n∑
j=k

(
1
j

)
, 1 ≤ k ≤ n.

(2.170)

A list of particular solutions û explicitly for modified Helmholtz equation for the two-dimensional
case with corresponding f is shown in Table (2.1).
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Table 2.1: Particular solutions for modified Helmholtz equation in R2 with inhomogenity f ,
[68].

f û

Case I − 4
τ4 (K0(τr) + log r) − r2 log r

τ2 − 4
τ4 , r > 0

f = r2 log r 4
τ4 (γ + log ( τ2 )) − 4

τ4 , r = 0

Case II −64
τ6 (K0(τr) + log r) − r2 log r

τ2 ( 16
τ2 + r2) − 8r2

τ4 − 96
τ6 , r > 0

f = r4 log r 64
τ6 (γ + log ( τ2 )) − 96

τ6 , r = 0

Case III −2304
τ8 (K0(τr) + log r) − r2 log r

τ2 ( 576
τ4 +

36r2

τ2 + r4)

f = r6 log r − 12r2

τ4 ( 40
τ2 + r2) − 4224

τ8 , r > 0

2304
τ8 (γ + log ( τ2 )) − 4224

τ8 , r = 0

Case IV − 147456
τ10 (K0(τr) + log r) − r2 log r

τ2 ( 36864
τ6 +

2304r2

τ4 + 64r4

τ2 + r6)

f = r8 log r − r2

τ4 ( 39936
τ4 +

1344r2

τ2 + 16r4) − 307200
τ10 , r > 0

147456
τ10 (γ + log τ

2 ) − 307200
τ10 , r = 0

Case V −14745600
τ12 (K0(τr) + log r) − r2 log r

τ2 ( 3686400
τ8 + 230400r2

τ6 + 6400r4

τ4 + 100r6

τ2 + r8)

f = r10 log r − r2

τ4 ( 4730880
τ6 + 180480r2

τ4 + 2880r4

τ2 + 20r6) − 33669120
τ12 , r > 0

14745600
τ12 (γ + log τ

2 ) − 33669120
τ12 , r = 0

2.3 DRBEM for Inverse Problem

A direct (forward) problem which is also called a well-posed problem is a classical mathemati-
cal description of a physical problem with the properties of uniqueness, stability and existence
of a solution of corresponding mathematical problem. A problem is called an inverse problem
which consists of finding an unknown property of an object from the observation of response
of this object to probing signal [78]. If a mathematical problem does not have any of the above
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properties, it is called ill-posed problem. On the contrary to the solution of a direct problem,
the solution of inverse problem is generally ill-posed. Ill-posedness is a typical property of
inverse problems.

Actually direct and inverse problems are related to each other. The data of one problem can
be an unknown of the other. The purpose of a direct problem is to resolve the field variables
but in an inverse problem, one of the terms (boundary conditions) is not known explicitly and
it should be specified from a direct problem. So, the main idea of the inverse problem is to
determine the unknown variables using additional information which are usually obtained by
some measured data.

For instance, in a heat conduction problem if the temperature or heat flux values on the solid
surface are known as functions of time then all the temperature distributions of the solid can
be obtained [18]. This problem is called a direct problem. In some cases, to obtain the
temperature or heat flux values of the solid on its surface can not be measured. Sometimes the
surface heat flux and temperature values are determined by using previously known interior
temperature values, or transient level known boundary values. In this case the problem is
called an inverse problem.

The mathematical modeling of heat transfer process is necessary for estimating the surface
transient heat flux of the solid. One-dimensional temperature distribution T in a plate can be
modeled as

∂

∂x

(
k
∂T
∂x

)
= ρ̂c

∂T
∂t

(2.171)

T (x, t) = T0(x) (2.172)

∂T
∂x
= 0 at x = Lp (2.173)

T (x1, ti) = Yi (2.174)

where k is thermal conductivity, c is the specific heat, ρ̂ is the density, T0 is the known initial
temperature, Lp is the thickness of the plate, and x1 is the location of interior temperature sen-
sor. The temperature is measured by using the sensor at discrete times ti and the temperature
measurement at time ti is Yi. So, in the problem the only known boundary condition is given
for x = Lp. Using the measurement obtained from interior temperature sensor this problem
can be transformed to two different problems

∂

∂x

(
k
∂T
∂x

)
= ρ̂c

∂T
∂t

(2.175)

T (x, t) = T0(x) (2.176)

T (x, t) = Y(t) at x = x1 (2.177)

∂T
∂x
= 0 at x = Lp (2.178)

as a direct problem, and
∂

∂x

(
k
∂T
∂x

)
= ρ̂c

∂T
∂t

(2.179)

T (x, t) = T0(x) (2.180)

T (x, t) = Y(t) at x = x1 (2.181)
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q(x1, t) = −k
∂T
∂x

at x = x1 (2.182)

as an inverse problem. Here, the heat flux at x1 can be obtained from the solution of direct
problem in x ∈ [x1, Lp].

Now, the inverse heat conduction problem is an ill-posed problem. There are many reasons
for its ill-posedness. Sometimes the solution of the problem is not unique or does not depend
continuously on the data, or does not exist for arbitrary data. The ill-posedness of the inverse
problem is caused by the noise in the data which may give rise to some errors in the measure-
ment. Therefore, some techniques which are known as regularization methods should be used
to deal with this problem. There are two subclasses for the ill-posed problems which are due
to the estimation of the data and design of automatic controls [93, 18]. The ill-posedness of
inverse heat conduction problem belongs to the first subclass.

For the solution of heat conduction problem, many numerical methods such as BEM, FEM,
and FDM can be used, and these methods lead to the sets of algebraic equations such as

Ax=b (2.183)

where x contains the temperature or heat flux values. The location of the temperature mea-
surement and small time step cause the ill conditioned system where for small changes in b
would make large changes in x [18]. So, the system is ill-posed in the sense that the inverse
operator A−1 of A exists but is not continuous, it has a unique solution. But, when it is solved
directly, a right solution may not be obtained.

The regularization method is an modification of the least squares approach by adding the
factors [18]. Several regularization methods have been developed to solve such ill-conditioned
systems [50]. The most common and well known regularization method for linear ill-posed
problem is the Tikhonov Regularization Method [93]. In order to get a stable solution for the
system (2.183) Tikhonov Regularization Method proposes that the equation

(
AT A + λI

)
x = AT b (2.184)

has a unique solution which is called Tikhonov solution. In equation (2.184) λ is the regular-
ization parameter forcing

(
AT A + λI

)
to be positive definite, AT is transpose matrix of A, and

I is the identity matrix.

The numerical solution of the inverse problem consists of two parts. The first part of the
problem is a numerical discretization of the equation, and the second part is a regularization
procedure to stabilize the usually ill-conditioned system obtained in the first part. There-
fore, various numerical methods such as BEM, FEM, and FDM can be used in the solution
of the inverse problem [18, 91]. Since the solution procedure of DRBEM does not require
the domain discretization, it gives a small sized discretized system than the other numerical
schemes. In the calculation of the inverse problem, the size of the numerical discretization
system has an important effect on the computing effort [31]. Thus, DRBEM enables a re-
markable computing saving.

In this thesis, some of the problems which are solved by direct DRBEM are solved also with
inverse DRBEM. For this, the governing equations of the inverse problem are discretized
with DRBEM as is done with the direct problem where its derivation is given in Section 2.1
and 2.2. In the solution procedure, known variables of the inverse problem and additional
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information obtained from the solution of direct problem are combined. However, at the end
of the solution procedure, an ill-posed linear system is obtained caused by the noise in the
data. Thus, the Tikhonov regularization method is used to deal with this ill-posedness of the
problem.

2.3.1 DRBEM Solution of Poisson Equation for an Inverse Problem

In this section, DRBEM is developed for the inverse problem governed by two-dimensional
Poisson equation

∇2u = b1(x, y) (x, y) ∈ Ω (2.185)

with the Dirichlet and Neumann boundary conditions

u(x, y) = u1(x, y) (x, y) ∈ Γ1

q(x, y) =
∂u
∂n
= q2(x, y) (x, y) ∈ Γ2

(2.186)

where b1(x, y) is known function of position and n is the unit outward normal to the boundary
Γ = Γ1 + Γ2. u1(x, y) and q2(x, y) are the prescribed functions for u at the boundary Γ1 and q
at the boundary Γ2, respectively.

Sometimes, one boundary can be overprescribed with both u and q given while the other
boundary can be underprescribed without a condition on either u or q. These type of problems
are called inverse problem and their solutions require extra attention.

As an example, a governing equation of inverse problem can be described as

∇2u = b1(x, y) (x, y) ∈ Ω (2.187)

with the Dirichlet and Neumann boundary conditions

u(x, y) = u1(x, y) q(x, y) = q1(x, y) (x, y) ∈ Γ1
u(x, y) = u2(x, y) =? q(x, y) = q2(x, y) =? (x, y) ∈ Γ2

(2.188)

where the prescribed values of direct problem are regarded as unknown in the inverse problem,
and the missing boundary condition of inverse problem will be obtained from the solution of
the direct problem.

DRBEM derivation of Poisson equation for an inverse problem is done by using the same
way with the direct problem which was explained in Section 2.1. At the end of the solution
procedure one can obtain the system of algebraic equations

Ax=y. (2.189)

This system is constructed using the known variables of the inverse problem and additional
informations obtained from the direct problem. Since Γ1 is considered as overprescribed and
Γ2 is considered as underprescribed, this system will lead to the ill-posedness of the problem.
Therefore, classical DRBEM is not adequate and a regularization procedure should be used
to overcome obtained ill-posed system.
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2.3.2 DRBEM Solution of Modified Helmholtz Equation for an Inverse Problem

Let us consider the following two-dimensional Modified Helmholtz equation in which the
right hand side is a known function b2(x, y), i.e.

∇2u − τ2u = b2(x, y) (x, y) ∈ Ω (2.190)

with the Dirichlet and Neumann boundary conditions

u(x, y) = u1(x, y) (x, y) ∈ Γ1

q(x, y) =
∂u
∂n
= q2(x, y) (x, y) ∈ Γ2

(2.191)

where n is the unit outward normal to the boundary Γ = Γ1 + Γ2, and u1(x, y) and q2(x, y) are
the prescribed functions for u at the boundary Γ1 and q at the boundary Γ2, respectively.

In the direct problem, normal derivative q2(x, y) on the boundary Γ2 is considered as pre-
scribed, but in the inverse problem it will be regarded as unknown. Normal derivative q1(x, y)
at Γ1,which will be obtained from the solution of the direct problem will be used for the miss-
ing boundary condition at Γ2. Therefore, an inverse problem for modified Helmholtz equation
can be defined as

∇2u − τ2u = b2(x, y) (x, y) ∈ Ω (2.192)

with the Dirichlet and Neumann boundary conditions

u(x, y) = u1(x, y) q(x, y) = q1(x, y) (x, y) ∈ Γ1
u(x, y) = u2(x, y) =? q(x, y) = q2(x, y) =? (x, y) ∈ Γ2.

(2.193)

In the DRBEM derivation of modified Helmholtz equation, there is no difference between
direct and inverse problem, and it was given for direct problem in Section 2.2. Similar with
inverse Poisson equation, the DRBEM solution procedure for modified Helmholtz equation
also gives an ill-posed system of algebraic equations which is obtained using the known vari-
ables of the inverse problem and additional information obtained from the direct problem
as

Ax=y. (2.194)

Therefore, the solution of inverse problem will be obtained after using Tikhonov regulariza-
tion method for the ill-posed system. In the regularization procedure, the system (2.194) is
written in the form [76] (

AT A + λI
)

x = AT b (2.195)

where λ > 0 is the regularization parameter to achieve positive definiteness of the coefficient
matrix, and it should be chosen close to 0 but too much small choice may cause again an
ill-conditioned system. Therefore, the choice of λ is an important point on the solution of the
system.
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CHAPTER 3

DIFFERENTIAL QUADRATURE METHOD

The differential quadrature method (DQM) is a numerical discretization technique for the
approximation of derivatives which was developed by R. Bellman and his associates in the
early 1970’s. Bellman introduced DQM as an efficient solution technique to obtain accurate
numerical solutions by using a considerably small number of mesh points [21]. In the solution
procedure, a partial derivative of a function with respect to a coordinate direction can be
expressed as a linear summation of all the function values along a mesh line.

The aim of the DQM is the determination of the weighting coefficients for the discretization
of a partial derivative of any order. The weighting coefficients can be obtained just by using
the grid point information. Thus, one can easily obtain a set of algebraic equations for any
partial differential equation by using these coefficients. Shu [88] generalized all the current
methods for determination of weighting coefficients by using the properties of a linear vector
space. Shu [88] proposed that, in order to compute the weighting coefficients of the first
order derivative, a simple algebraic formulation can be obtained without any restriction on the
choice of the mesh points. Also, a recurrence relation to compute the weighting coefficients
of second and higher order derivatives in terms of first order derivative weighting coefficients,
are presented in [88]. If the polynomial approximation is considered as a base of DQM,
then the method is called polynomial-based differential quadrature (PDQ). It is possible to
approximate a function by using Fourier series, and the use of Fourier series approximation
as a base results in Fourier-based differential quadrature (FDQ).

In this thesis, the partial differential equations governing the physical problems considered
are transformed to the form of modified Helmholtz equations, and then they are solved with
polynomial-based differential quadrature method. Non-uniform grid point distributions as the
roots of Chebyshev polynomial or Chebyshev-Gauss-Lobatto points are used in the compu-
tations. In Section 3.1, the polynomial-based differential quadrature method is going to be
explained in detail for the first, second and higher order derivative approximations. Then,
different type of grid point distributions are given in Section 3.2. Sections 3.3 and 3.4 give ap-
plications of PDQ to Poisson and modified Helmholtz equations, respectively, with Dirichlet
and Neumann boundary conditions.

3.1 Polynomial-based Differential Quadrature Method

In this section, we will explain the fundamentals of the differential quadrature method (DQM)
in one-dimension when the derivatives of a function are approximated by using polynomials
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following the reference [88]. Generalization to higher order dimensions follows the same
idea. The main idea of the DQM is that the first order derivative of a function f (x) with
respect to x, at a grid point xi can be approximated by the linear sum of all the functional
values in the domain such as

fx(xi) =
∂ f
∂x

(xi) =
N∑

j=1

ai j f (x j), for i = 1, 2, ...,N (3.1)

where ai j are the weighting coefficients and N is the number of the grid points in the whole
domain. DQM determines the weighting coefficients ai j which are different at different grid
points xi. The function f (x) is assumed to be sufficiently smooth over the one-dimensional
domain in R1.

Generally, the solution of partial differential equations (PDEs) may not be obtained in a closed
form. However, the solution of well-posed PDEs can be approximated by using higher order
polynomials. High order polynomials and the Weierstrass’ first Theorem form the basis of the
DQM. The statement of the theorem is given bellow:

Weierstrass’ first Theorem: Let f (x) be a real valued continuous function defined in a closed
interval [a, b]. Then there exists a sequence of polynomials Pn(x) which converges to f (x)
uniformly as n goes to infinity or for every ϵ > 0, there exists a polynomial Pn(x) of degree
n = n(ϵ) such that the inequality

| f (x) − Pn(x)| ≤ ϵ (3.2)

holds through the interval [a, b].
Thus, the solution of a differential equation can be approximated by a high degree polynomial
of degree N − 1 as in [88] such that

f (x) ≈ PN(x) =
N−1∑
k=0

ck xk (3.3)

where f (x) represents the solution of differential equation and ck’s are the coefficients. Here
PN(x) sets up an N−dimensional linear vector space with the operation of vector addition and
scalar multiplication.

Let suppose that there are N mesh points in a closed interval [a, b] with the coordinates
a = x1, x2, ..., xn = b. To obtain a numerical solution of a PDE one needs to find the func-
tional values f (xi). If the function f (x) is evaluated at these N different points, this gives the
following equation system


c0 + c1x1 + c2x2

1 + ... + cN−1xN−1
1 = f (x1)

c0 + c1x2 + c2x2
2 + ... + cN−1xN−1

2 = f (x2)
...................................................................

c0 + c1xN + c2x2
N + ... + cN−1xN−1

N = f (xN)

(3.4)
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which is called Vandermonde matrix. Since this matrix is nonsingular, matrix equation (3.4)
has a unique solution for the coefficients c0, c1, c2, ..., cN−1. So, in order to obtain the approx-
imate function, the coefficients must be determined. But, when N is large, the matrix can be
highly ill-conditioned and in this situation to obtain its inverse is very difficult. This problem
can be solved by using different sets of base functions. In this section, Lagrange interpolation
polynomials are used in the derivation of coefficients in differential quadrature method which
is called Shu’s general approach [88].

If the Lagrange interpolation polynomials are taken as a set of base polynomials,

f (x) =
N∑

k=1

lk(x) f (xk) (3.5)

is obtained where lk(x)’s are Lagrange polynomials. The k-th degree Lagrange polynomial
lk(x) can be written in the form

lk(x) =
N(x, xk)
M(1)(xk)

(3.6)

with

M(x) = (x − x1)(x − x2)...(x − xN) = N(x, xk)(x − xk)

M(1)(xk) = (xk − x1)...(xk − xk−1)(xk − xk+1)...(xk − xN) =
n∏

k=1,k,i

(xk − xi)

N(xk, x j) = M(1)(xk)δk j

(3.7)

where δk j is the Kronecker delta function and k = 1, ...,N. So, k-th degree Lagrange polyno-
mial lk(x) in the equation (3.5) possesses the property

lk(xi) =
{

1, when k = i
0, otherwise.

(3.8)

The derivative of f (x) can be obtained by just differentiating lk(x) polynomials,

f (1)(xi) =
N∑

k=1

l(1)
k (x) f (xk). (3.9)

A practical notation is introduced for calculating the weighting coefficients by Shu [88] as

f (1)(xi) =
N∑

k=1

aik f (xk) (3.10)

where
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aik =
N(1)(xi, xk)

M(1)(xk)
. (3.11)

If M(x) = N(x, xk)(x − xk) is successively differentiated with respect to x, the following
recurrence formulation

M(m)(x) = N(m)(x, xk)(x − xk) + mN(m−1)(x, xk) (3.12)

can be achieved for m = 1, 2, · · · ,N − 1 where M(m)(x) and N(m)(x, xk) indicate the mth order
derivative of M(x) and N(x, xk), respectively. From equation (3.12), one can obtain

N(1)(xi, xk) =
M(1)(xi)
xi − xk

, i , k

N(1)(xi, xi) =
M(2)(xi)

2
.

(3.13)

Substituting equation (3.13) into equation (3.11), one can get

aik =
M(1)(xi)

(xi − xk)M(1)(xk)
, i , k,

aii =
M(2)(xi)

2M(1)(xi)
.

(3.14)

If xi is given, it is easy to compute M(1)(xi) and hence aik for i , k. But the calculation of
aii is based on the computation of the second order derivative M(2)(xi) which is not an easy
task. This difficulty can be eliminated by using the set of polynomials xk−1. According to the
property of a linear vector space, if one set of base polynomials satisfies a linear operator,
so does another set of base polynomials [88]. Therefore, the system for determination of
aik derived from the Lagrange interpolation polynomials should be equivalent to that derived
from another set of base polynomials xk−1, k = 1, . . . ,N. Thus, aik satisfies the following
equation which is obtained by the base polynomial xk−1 when k = 1, [88]

N∑
k=1

aik = 0 or aii = −
N∑

k=1,k,i

aik. (3.15)

Thus, equations (3.14) and (3.15) are two formulations to compute the weighting coefficients
aii.

For the discretization of second order derivative, we use a similar approximation given by

f (2)(xi) =
N∑

k=1

bik f (xk) (3.16)
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for i = 1, . . . ,N, where f (2)(xi) is the second derivative of f (x) at xi, bik are the weighting
coefficients for the second order derivative approximation.

Similar with the first order derivative, by taking second derivative of equation (3.6), we obtain

bik =
N(2)(xi, xk)

M(1)(xk)
. (3.17)

In addition, from the equation (3.12), we get

N(2)(xi, xk) =
M(2)(xi) − 2N(1)(xi, xk)

xi − xk
, i , k

N(2)(xi, xi) =
M(3)(xi)

3
.

(3.18)

Substituting these into equation (3.17), we obtain

bik =
M(2)(xi) − 2N(1)(xi, xk)

(xi − xk)M(1)(xk)
, i , k

bii =
M(3)(xi)

3M(1)(xi)
.

(3.19)

Therefore, by using equation (3.14) and (3.19) we get

bik = 2aik

(
aii −

1
xi − xk

)
, i , k. (3.20)

Similar with the first order derivative, bik satisfies the following equation which is obtained
by the base polynomial xk−1 when k = 1,

N∑
k=1

bik = 0 or bii = −
N∑

k=1,k,i

bik. (3.21)

So, equations (3.19) and (3.21) are two formulations to compute the weighting coefficients
bii.

For the higher order derivatives there is a generalization which is called Shu’s recurrence
relation formulation for high order derivatives for m = 2, 3, ...,N − 1
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w(m)
i j = m

ai jw
(m−1)
ii −

w(m−1)
i j

xi − x j

 , i , j

w(m)
ii = −

N∑
j=1,i, j

w(m)
i j , i = j

(3.22)

where i, j = 1, 2, ...,N and ai j are the weighting coefficients of the first order derivative.
Now, when the coordinates of grid points xi are known, the weighting coefficients for the
discretization of derivatives can be calculated easily.

3.2 Typical Grid Point Distribution

In this section, two typical point distributions will be given which are Chebyshev-Gauss-
Lobatto (CGL) grid, and a grid with coordinates chosen as the roots of Chebyshev polynomial.
These point distributions enable us to take grid points close to the end points. Generally,
when the other numerical methods are used, uniform grid points are preferred because of its
practical use. But nonuniform grid points which give more stable numerical result than the
other are suitable for DQM [88].

3.2.1 Chebyshev-Gauss-Lobatto Grid (CGL Points)

The Chebyshev polynomial of degree i is defined as

Ti(x) = cos iθ θ = arccos x (3.23)

and the Chebyshev-Gauss-Lobatto points are chosen as the roots of |TN(x)| = 1, which are
given

xi = cos
( iπ

N

)
, i = 0, 1, ...,N. (3.24)

All the points in equation (3.24) are located in the interval [1,−1]. If CGL will be used for any
physical domain [a, b], it should be transformed to [1,−1] by using the following coordinate
transformation

x =
b − a

2
(1 − ξ) + a. (3.25)

This transformation maps the interval [a, b] in the x-domain onto the interval [1,−1] in the
ξ-domain.

3.2.2 The Roots of Chebyshev Polynomial

The roots of Chebyshev polynomial can be obtained by solving the equation TN(x) = 0 which
are

xi = cos
(
(2i − 1) π

2N

)
, i = 1, 2, ...,N. (3.26)
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The roots of Chebyshev polynomial xi are in the domain [x1, xN] where x1 = cos
(
π

2N

)
and

xN = cos
(
(2N − 1) π

2N

)
= −x1.

For a general domain [a, b], the following transformation

x =
b − a
2x1

(x1 − ξ) + a. (3.27)

is used to map [a, b] in the x-domain onto the interval [x1, xN] in the ξ-domain.

3.3 DQM Solution of Poisson Equation ∇2u = b1(x, y)

In this part, DQM will be applied to Poisson equation where the right hand side function
contains only space coordinates as in [88]. Let us consider the following two dimensional
Poisson equation

∇2u = b1(x, y) (3.28)

on a rectangular domain, 0 ≤ x ≤ H1, 0 ≤ y ≤ H2. Let N1 and N2 be the number of grid points
in x- and y- directions, respectively. At any point (xi, y j), (3.28) can be discretized as

N1∑
k=1

bik uk j +

N2∑
k=1

b jk uik = b1(xi, y j) (3.29)

where bi j and bi j are the weighting coefficients of the second order derivatives of u with
respect to x and y, respectively. ui j represents the value of u at the grid point (xi, y j), and
i = 1, ...,N1 and j = 1, ...,N2.

Assume that Dirichlet type boundary conditions are defined at all the boundaries. Since the
functional values at the boundary points are known, DQM procedure should be applied only
at the interior points. Thus, equation (3.29) can be written as

N1−1∑
k=2

bik uk j +

N2−1∑
k=2

b jk uik = si j (3.30)

for i = 2, ...,N1 − 1, j = 2, ...,N2 − 1, and the right hand side function is

si j = b1(xi, y j) − (bi1 u1 j + biN1 uN1 j + b j1 ui1 + b jN2 uiN2). (3.31)

Equations (3.30) give a set of algebraic equations, which can be written in a matrix form

Au = s (3.32)

where A is a coefficient matrix with the dimension (N1 − 2)(N2 − 2)× (N1 − 2)(N2 − 2), u is a
vector of unknown values at all the interior points given by

u =
[
u22, u23, ..., u2(N2−1), u32, u33, ..., u3(N2−1), ..., u(N1−1)2, u(N1−1)3, ..., u(N1−1)(N2−1)

]T (3.33)
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with the dimension (N1 − 2)(N2 − 2), and s is a known vector given by

s =
[
s22, s23, ..., s2(N2−1), s32, s33, ..., s3(N2−1), ..., s(N1−1)2, s(N1−1)3, ..., s(N1−1)(N2−1)

]T (3.34)

with the dimension (N1−2)(N2−2). Thus, equation (3.32) can be solved by direct or iterative
methods.

Assume that Neumann type boundary conditions are defined at all the boundaries such as

∂u
∂x

= c1, x = 0, 0 ≤ y ≤ H2

∂u
∂y

= c2, y = 0, 0 ≤ x ≤ H1

∂u
∂x

= c3, x = H1, 0 ≤ y ≤ H2

∂u
∂y

= c4, y = H2, 0 ≤ x ≤ H1

(3.35)

where c1, c2, c3 and c4 are constants. Since Neumann type boundary conditions are defined at
the boundary points, DQM procedure should be applied to both interior and boundary points.
For the interior points, similar with the Dirichlet type boundary conditions, DQM gives

N1−1∑
k=2

bik uk j +

N2−1∑
k=2

b jk uik = si j (3.36)

where si j = b1(xi, y j), i = 2, ...,N1 − 1 and j = 2, ...,N2 − 1. For the Neumann type boundary
conditions, the first order derivatives are discretized at the boundaries as

N1∑
k=1

a1k uk j = c1, j = 1, ...,N2,

N2∑
k=1

a1k uik = c2, i = 2, ...,N1 − 1

N1∑
k=1

aN1k uk j = c3, j = 1, ...,N2,

N2∑
k=1

aN2k uik = c4, i = 2, ...,N1 − 1

(3.37)

where ai j and ai j are the weighting coefficients of the first order derivatives of u with respect
to x and y, respectively.

Equation system (3.37) can be used to solve for 2(N1 + N2 − 2) unknown boundary points.
Together with the equation (3.36) there are N1N2 equations for N1N2 unknowns which give a
set of algebraic equations, and can be written in a matrix-vector form

Au = s (3.38)

where A is a coefficient matrix with the dimension N1N2 × N1N2, u is a vector of unknown
values at all the interior and boundary points given by
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u =
[
u22, u23, ..., u2(N2−1), u32, u33, ..., u3(N2−1), ..., u(N1−1)2, u(N1−1)3, ..., u(N1−1)(N2−1),

u11, u12, ..., u1N2 , uN11, uN12, ..., uN1N2 , u21, u31..., u(N1−1)1, u(2N2), u3N2 , ..., u(N1−1)N2

]T

(3.39)

with the dimension N1N2, and s is a known vector

s =
[
s22, s23, ..., s2(N2−1), s32, s33, ..., s3(N2−1), ..., s(N1−1)2, s(N1−1)3, ..., s(N1−1)(N2−1),

c1, c1, ..., c1, c3, c3, ..., c3, c2, c2..., c2, c4, c4, ..., c4]T (3.40)

with the dimension N1N2. Now, equation (3.38) can be solved by direct or iterative methods.

The mixed type boundary conditions are combinations of the Dirichlet and Neumann type
boundary conditions. So, they can be implemented in a similar way.

3.4 DQM Solution of Modified Helmholtz Equation ∇2u − τ2u = b2(x, y)

In this part, DQM will be applied to inhomogeneous modified Helmholtz equation where
the right hand side function contains only space coordinates as in [88]. Two dimensional
nonhomogeneous modified Helmholtz equation can be written as

∇2u − τ2u = b2(x, y) (3.41)

on a rectangular domain, 0 ≤ x ≤ H1, 0 ≤ y ≤ H2 where τ is the wave number. Let N1 and N2
be the number of grid points in x- and y- direction, respectively. At any point (xi, y j), (3.41)
can be discretized as

N1∑
k=1

bik uk j +

N2∑
k=1

b jk uik − τ2ui j = b2(xi, y j) (3.42)

where bi j and bi j are the weighting coefficients of the second order derivatives of u with
respect to x and y, respectively, ui j represents the value of u at the grid point (xi, y j), and
i = 1, ...,N1 and j = 1, ...,N2.

Similar to Poisson equation insertion of Dirichlet type boundary condition results in a system
of equations passing the known boundary values to the right hand side

N1−1∑
k=2

bik uk j +

N2−1∑
k=2

b jk uik − τ2ui j = si j (3.43)

for i = 2, ...,N1 − 1, j = 2, ...,N2 − 1, and the right hand side function is

si j = b2(xi, y j) − (bi1 u1 j + biN1 uN1 j + b j1 ui1 + b jN2 uiN2). (3.44)
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From the equations (3.43), a set of algebraic equations can be obtain and written in a matrix-
vector form

Au = s (3.45)

where A is a coefficient matrix. u is a vector of unknown values at all the interior points which
are given by

u =
[
u22, u23, ..., u2(N2−1), u32, u33, ..., u3(N2−1), ..., u(N1−1)2, u(N1−1)3, ..., u(N1−1)(N2−1)

]T . (3.46)

s can be obtained by using the known values of right hand side function and Dirichlet type
boundary conditions such as

s =
[
s22, s23, ..., s2(N2−1), s32, s33, ..., s3(N2−1), ..., s(N1−1)2, s(N1−1)3, ..., s(N1−1)(N2−1)

]T (3.47)

Therefore, equation (3.45) can be solved by direct or iterative methods.

Similarly, Neumann type boundary conditions are defined at all the boundaries such as

∂u
∂x

= c1, x = 0, 0 ≤ y ≤ H2

∂u
∂y

= c2, y = 0, 0 ≤ x ≤ H1

∂u
∂x

= c3, x = H1, 0 ≤ y ≤ H2

∂u
∂y

= c4, y = H2, 0 ≤ x ≤ H1

(3.48)

where c1, c2, c3 and c4 are constants, then DQM should be applied both to the interior and
boundary points. For the interior points we have

N1−1∑
k=2

bik uk j +

N2−1∑
k=2

b jk uik − τ2ui j = si j (3.49)

where si j = b2(xi, y j), i = 2, ...,N1 − 1 and j = 2, ...,N2 − 1. Similarly, Neumann boundary
conditions (3.48) are discretized as

N1∑
k=1

a1k uk j = c1, j = 1, ...,N2,

N2∑
k=1

a1k uik = c2, i = 2, ...,N1 − 1

N1∑
k=1

aN1k uk j = c3, j = 1, ...,N2,

N2∑
k=1

aN2k uik = c4, i = 2, ...,N1 − 1

(3.50)

where ai j and ai j are the weighting coefficients for the first order derivatives of u with respect
to x and y, respectively.

For the 2(N1 + N2 − 2) unknown boundary points there are 2(N1 + N2 − 2) equations which
are obtained by using the Neumann boundary conditions. Thus, equations (3.49) and (3.50)
give a set of algebraic equations, and it can be expressed in a matrix-vector form

Au = s (3.51)
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where A is a coefficient matrix with the dimension N1N2 × N1N2, u is a vector of unknown
values at all the interior and boundary points given by

u =
[
u22, u23, ..., u2(N2−1), u32, u33, ..., u3(N2−1), ..., u(N1−1)2, u(N1−1)3, ..., u(N1−1)(N2−1),

u11, u12, ..., u1N2 , uN11, uN12, ..., uN1N2 , u21, u31..., u(N1−1)1, u(2N2), u3N2 , ..., u(N1−1)N2

]T

(3.52)

with the dimension N1N2 and s is a known vector given by

s =
[
s22, s23, ..., s2(N2−1), s32, s33, ..., s3(N2−1), ..., s(N1−1)2, s(N1−1)3, ..., s(N1−1)(N2−1),

c1, c1, ..., c1, c3, c3, ..., c3, c2, c2..., c2, c4, c4, ..., c4]T (3.53)

with the dimension N1N2. Again, equation (3.51) can be solved by direct or iterative methods.
Mixed type boundary conditions are discretized by using similar idea.

DQM is going to be applied to the natural convection flow in a cavity under the effect of an
externally applied magnetic field. Obtained solutions will be compared with the DRBEM
solution of the same problem in terms of effectiveness and computational cost.
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CHAPTER 4

APPLICATION OF DRBEM AND DQM TO THE NATURAL
AND MIXED CONVECTION FLOWS

DRBEM formulations for both inhomogeneous modified Helmholtz equation and Poisson
equation are given in general in Chapter 2. For the modified Helmholtz equation, different
type of f expansions are derived, and related particular solutions and their normal derivatives
are computed. Thus, as a starter, these f radial basis functions are tested with four test prob-
lems which have exact solutions in the first section of this chapter. Two of these problems are
inhomogeneous modified Helmholtz equations, and the remaining two problems are diffusion
and convection-diffusion-reaction type equations. The efficiency of these f expansions in
DRBEM applications is analyzed using the numerical results of these four examples (Section
4.1) in terms of maximum absolute errors between the exact and the numerical solutions.

The application of DRBEM using the fundamental solution of the modified Helmholtz equa-
tion is performed on different types of fluid flow problems. In Section 4.2, lid driven cavity
and natural convection flow problems are solved, and then in Section 4.3 solutions of thermo-
solutal buoyancy induced mixed convection flow problems are given in different type of phys-
ical domains. We have also solved natural convection flow under a magnetic field using the
DRBEM and DQM, comparing the advantages and disadvantages of the two methods with
the numerical results obtained, in Section 4.4.

Finally, in Section 4.5, the application of DRBEM with the fundamental solution of modified
Helmholtz equation is used for the inverse problems. In this section, first we describe the
inverse problem of the natural convection flow under a magnetic field, and solve the problem
with two different types of boundary conditions in square cavities.

Before the DRBEM application of the fluid dynamics problems considered in the thesis, the
governing equations which include the time derivatives of the unknowns are transformed to
the inhomogeneous modified Helmholtz equations using forward difference approximation
for the time derivatives. Then, Laplace terms are approximated also with relaxation parame-
ters at two consecutive time levels. The results for some of the test problems are given using
tables, and for the others the results are presented in terms of streamlines, vorticity contours,
isotherms, concentration contours, and velocity profiles at the mid-plane of the cavity.
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4.1 Choice of f Expansions for DRBEM Solution of Modified Helmholtz Equa-
tions

In Chapter 2, different f expansions were given for DRBEM solution of inhomogeneous
modified Helmholtz equation. For the problems discussed in this section, the order of the
polynomial radial function f is selected to achieve less maximum absolute error.

In the approximation of the inhomogeneity

b(x, y) =
K+L∑
j=1

α j f j (4.1)

the radial basis function f is assumed to be a polynomial in the distance r as

f = 4a2 + 9a3r + ... + m2amrm−2 − τ2
(
a2r2 + a3r3 + ... + amrm

)
. (4.2)

4.1.1 Example 1: Modified Helmholtz Equation

Consider the Dirichlet problem defined by inhomogeneous modified Helmholtz equation in a
square domain

∇2u − τ2u = b(x, y, τ) in Ω = (0, 1) × (0, 1) (4.3)

u(x, 0) = 0 u(0, y) = sin 4πy (4.4)

u(x, 1) = 0 u(1, y) = sin 4πy (4.5)

where the exact solution is

u(x, y) = cos(4πx) sin(4πy) (4.6)

and the right hand side function is

b(x, y, τ) = −(32π2 + τ2) cos 4πx sin 4πy. (4.7)
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Table 4.1: Polynomial f functions and particular solutions û

Case a2 a3 û f max. abs. err.

1
1
4

1
9

r2

4
+

r3

9
1 + r − τ2

(
r2

4
+

r3

9

)
0.26587

2 −1
4

1
9

−r2

4
+

r3

9
−1 + r − τ2

(
−r2

4
+

r3

9

)
0.02649

3 −1
4
−1

9
−r2

4
− r3

9
−1 − r − τ2

(
−r2

4
− r3

9

)
0.26587

4
1
4

−1
9

r2

4
− r3

9
1 − r − τ2

(
r2

4
− r3

9

)
0.02649

5
1
2

−1
9

r2

2
− r3

9
2 − r − τ2

(
r2

2
− r3

9

)
0.06334

6
1
2

1
9

r2

2
+

r3

9
2 + r − τ2

(
r2

2
+

r3

9

)
38.44541

7 −1
8

1
9

−r2

8
+

r3

9
−0.5 + r − τ2

(
−r2

8
+

r3

9

)
0.01552

8 − 1
16

1
9

−r2

8
+

r3

9
−0.25 + r − τ2

(
− r2

16
+

r3

9

)
0.02255

9 −1
4

1
18

−r2

4
+

r3

18
−1 +

r
2
− τ2

(
−r2

4
+

r3

18

)
0.06334

10 −1
4

1
3

−r2

4
+

r3

3
−1 + 3r − τ2

(
−r2

4
+

r3

3

)
0.01652

11 −1
8

1
3

−r2

8
+

r3

3
−0.5 + 3r − τ2

(
−r2

8
+

r3

3

)
0.03008

12 −1
2

1
3

−r2

2
+

r3

3
−2 + 3r − τ2

(
−r2

2
+

r3

3

)
0.01469

13 −1 1 −r2 + r3 −4 + 9r − τ2
(
−r2 + r3

)
0.01584

First, the problem is solved with DRBEM using f polynomial of order 3, and keeping the
wave number as τ2 = 1. From the Table 4.1 it can be seen that, the accuracy of the results
depends on the coefficients a2 and a3. It is observed that the best results are obtained when the
coefficients a2 and a3 have opposite sings, and the coefficients must be reduced or enlarged
together. With these constraints, the maximum absolute errors for the problem are ε = 10−2.

Then the dependence of DRBEM solution on the wave number τ2 is given in terms of maxi-

mum absolute errors in Table 4.2. Radial function f is taken as f = 1− r − τ2
(
r2

4
− r3

9

)
. The

minimum error is attained with a very high value of τ2 for this particular problem since the
exact solution is independent of τ.
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Table 4.2: Dependence of wave number τ2

τ2 max. abs. err. τ2 max. abs. err.

1 0.026486 4900 0.000933

9 0.018987 8100 0.000531

100 0.011299 10000 0.000432

169 0.009853 40000 0.000380

400 0.006879 160000 0.000131

900 0.004424 250000 0.000087

1600 0.003149 360000 0.000062

2500 0.002102 1440000 0.000016

68



4.1.2 Example 2: Diffusion Equation

The diffusion equation is given as

∇2u =
1
kx

∂u
∂t

(4.8)

where kx is the dispersion or diffusivity coefficient. Consider equation (4.8) in a square plate
(0 ≤ x, y ≤ Lx) initially at a temperature u0 and cooled by the application of a thermal shock
(u = 0 all over the boundary). The exact solution for this problem is given as [73],

u(x, y, t) =
∞∑

n=1

∞∑
m=1

Anm sin
(
nπx
Lx

)
sin

(
nπy
Lx

)
exp

[
−

(
kxn2π2

L2
x
+

kxm2π2

L2
x

)
t
]

(4.9)

where
Anm =

4u0

nmπ2

[
(−1)n − 1

] [
(−1)m − 1

]
(4.10)

and the problem is solved with Lx = 3, kx = 1.25, t = 1.2 and u0 = 30.
After using the procedure to obtain a modified Helmholtz equation given in Section 1, equa-
tion (4.8) takes the form

∇2u(n+1) − 1
kxθ∆t

u(n+1) = −
(
1 − θ
θ

)
∇2u(n) − 1

kxθ∆t
u(n) (4.11)

where ∆t is the time increment, θ is a relaxation parameter, and (n + 1) and (n) represent cur-
rent and previous time levels, respectively. Now, equation (4.11) is inhomogeneous modified
Helmholtz equation with the known values u(n), ∆t, kx and θ.
For the case θ = 1, it reduces to a backward difference time-stepping procedure. For θ = 0.5
it is called Crank-Nicolson scheme and θ = 2/3 is the Galerkin scheme. These schemes are
frequently preferred to backward differences. The use of these schemes implies expressing
the term ∇2u(n) in terms of known values [75]. This can be done as follows. First, equation
(4.11) is written using θ = 1

∇2u(n+1) =
1

kx∆t

(
u(n+1) − u(n)

)
(4.12)

and then equation (4.12) is written for n = 0

∇2u(1) =
1

kx∆t

(
u(1) − u(0)

)
. (4.13)

Then, when n = 1 equation (4.11) takes the form

∇2u(2) − 1
kxθ∆t

u(2) = −
(
1 − θ
θ

)
∇2u(1) − 1

kxθ∆t
u(1). (4.14)

Substituting equation (4.13) into equation (4.14) gives

∇2u(2) − 1
kxθ∆t

u(2) = −
(
1 − θ
θ

) (
u(1) − u(0)

kx∆t

)
− 1

kxθ∆t
u(1). (4.15)

Therefore, equation (4.15) can be written for any time level

∇2u(n+1) − 1
kxθ∆t

u(n+1) = −
(
1 − θ
θ

) (
u(n) − u(n−1)

kx∆t

)
− 1

kxθ∆t
u(n). (4.16)
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Thus, inhomogeneous modified Helmholtz equation (4.16) is going to be solved by using
DRBEM which uses fundamental solution of the modified Helmholtz equation.

In the DRBEM solution of the test problem the following f expansions are taken as

Case 4 f = 1 − r − τ2(
r2

4
− r3

9
) (Table 4.1)

Case 14 f = 1 − r + r2 − τ2(
r2

4
− r3

9
+

r4

16
)

Case 15 f = 1 − r + r2 − r3 − τ2(
r2

4
− r3

9
+

r4

16
− r5

25
)

(4.17)

where τ2 =
1

kxθ∆t
with û =

r2

4
− r3

9
, û =

r2

4
− r3

9
+

r4

16
and û =

r2

4
− r3

9
+

r4

16
− r5

25
, respectively.

The Crank-Nicolson and Galerkin time integration schemes are used with these f expansions.
Results for the problem are shown in Table 4.3 at three interior points. The results are obtained
using 60 constant boundary elements, and 35 interior nodes. From the Table 4.3 it can be
seen that Case 15 (higher order f polynomial) with θ = 2/3 (Galerkin scheme) gives the best
accuracy comparing with exact solution of the diffusion problem.

Table 4.3: Results for diffusion problem with several f functions for θ = 1/2 and θ = 2/3

Point (0.6, 0.2) (0.2, 1.3) (0.9, 1.3)
case 4 θ = 2/3 0.278 0.453 1.446

θ = 1/2 0.277 0.452 1.442
case 14 θ = 2/3 0.280 0.458 1.455

θ = 1/2 0.279 0.457 1.458
case 15 θ = 2/3 0.295 0.483 1.503

θ = 1/2 0.294 0.482 1.500
Exact 0.298 0.487 1.514
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4.1.3 Example 3: Convection-Diffusion Equation

Two-dimensional convection-diffusion equation is given

Kx
∂2u
∂x2 + Kx

∂2u
∂y2 − cx

∂u
∂x
− cy

∂u
∂y
− du =

∂u
∂t

(4.18)

with the boundary conditions on a square [0, 1] × [0, 1]

u(0, y, t) = 300 u(1, y, t) = 10
q(x, 0, t) = 0 q(x, 1, t) = 0.

(4.19)

The values of the parameters are

Kx = 1,
cy = 0,

cx = dx + log
10

300
− d

2

(4.20)

and initial condition is u = 0. The steady-state solution is given in [75] as

u(x, y, t) = 300 exp(
d
2

x2 + log
10
300

x − d
2

x). (4.21)

The procedure of obtaining modified Helmholtz model can be applied to the convection-
diffusion equation as is done in Chapter 1. Thus, following the same procedure one can
obtain an inhomogeneous modified Helmholtz equation

∇2u(n+1)− 1
Kxθ∆t

u(n+1) = −
(
1 − θ
θ

) (
u(n) − u(n−1)

Kx∆t

)
− 1

Kxθ∆t
u(n)+

cx

Kx

∂u(n)

∂x
+

cy

Kx

∂u(n)

∂y
+

d
Kx

u(n).

(4.22)

Following the conclusion of diffusion problem 4.1.2, convection-diffusion equation is also
solved by using higher order f expansion in DRBEM as (case 15)

f = 1 − r + r2 − r3 − τ2(
r2

4
− r3

9
+

r4

16
− r5

25
) (4.23)

where τ2 =
1

Kxθ∆t
for d = 5 and d = 40.

The boundary of the region is discretized using K = 60 and 100 constant boundary elements
for the values of d = 5 and 40, with L = 49 and 144 interior nodes, respectively. In Table 4.4
and Table 4.5 we give DRBEM solutions of the convection-diffusion problem with Galerkin
and Crank-Nicolson schemes, for d = 5 and 40, respectively, and these solutions are compared
with the exact solutions. From these tables it can be seen that, as in the case of diffusion
equation, Galerkin scheme is better than the Crank-Nicolson scheme in terms of accuracy.
Also, as the coefficient of reaction term (d) increases we need to take more boundary elements
due to the dominance of reaction term in the convection-diffusion equation.
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Table 4.4: Results for convection-diffusion equation with d = 5, t = 1.0, K = 60, L = 49 at
y = 0.6.

X Exact θ = 1/2 θ = 2/3
0.000 300.000 300.000 300.000
0.088 181.735 181.963 181.794
0.206 98.968 98.673 98.999
0.324 57.757 58.007 57.745
0.441 36.122 36.474 36.102
0.559 24.210 24.589 24.151
0.676 17.389 17.693 17.351
0.794 13.284 13.597 13.389
0.912 11.040 11.089 11.019
1.000 10.000 10.000 10.000

Table 4.5: Results for convection-diffusion equation with d = 40, t = 1.0, K = 100, L = 144
at y = 0.6.

X Exact θ = 1/2 θ = 2/3
0.000 300.000 300.000 300.000
0.220 4.588 4.675 4.538
0.300 1.622 1.731 1.680
0.460 0.437 0.515 0.459
0.700 0.416 0.501 0.485
0.860 1.449 1.492 1.479
1.000 10.000 10.000 10.000
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4.1.4 Example 4: Modified Helmholtz Equation

Consider the following Dirichlet problem for the modified Helmholtz equation [27]

(∇2 − τ2)u(x, y) = (ex + ey)(1 − τ2), (x, y) ∈ D, (4.24)

u(x, y) = (ex + ey), (x, y) ∈ ∂D, (4.25)

where D ∪ ∂D = {(x, y) : 0 ≤ x, y ≤ 1} .
The exact solution of the problem is

u(x, y) = (ex + ey), (x, y) ∈ D ∪ ∂D. (4.26)

In the DRBEM solution of the problem, higher order logaritmic splines f = r2n log r are used

for f function by taking n as 1, 2, 3, 4 and 5. f = 1 − r + r2 − r3 − τ2(
r2

4
− r3

9
+

r4

16
− r5

25
)

is also used as a 6-th case. For the DRBEM solution 56 constant boundary elements and
49 internal nodes are used, and the results for the problem are shown in Table 4.6 for cases
1-6. From the Table 4.6 it can be seen that, all orders of the spline function give results with
almost the same accuracy with the exact solution, but when the order of spline functions is
increased, the accuracy of the solutions are also increased. In addition, it is seen that, when

f = 1 − r + r2 − r3 − τ2(
r2

4
− r3

9
+

r4

16
− r5

25
) is used, the accuracy is almost the same with

the higher order splines. In Figure 4.1 very good agreement is shown with the exact solution
at y = 0.4 for all cases of f expansion. Since all the higher order splines results are found to
differ little from those obtained using f = r2 log r which is simplest alternative, it will be used
in the rest of the examples.

Table 4.6: Results for Example 4 with higher order splines

X Y Exact n=1 n=2 n=3 n=4 n=5 5th order f
0.0000 0.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.2500 0.2500 2.5681 2.5695 2.5680 2.5684 2.5682 2.5680 2.5679
0.3214 0.3929 2.8603 2.8608 2.8602 2.8604 2.8603 2.8603 2.8602
0.3929 0.5357 3.1899 3.1903 3.1897 3.1899 3.1899 3.1899 3.1899
0.4643 0.6071 3.4261 3.4264 3.4259 3.4260 3.4261 3.4261 3.4260
0.6071 0.6071 3.6704 3.6707 3.6706 3.6703 3.6703 3.6704 3.6703
0.7500 0.6786 4.0881 4.0887 4.0883 4.0880 4.0881 4.0881 4.0879
1.0000 1.0000 5.4366 5.4366 5.4366 5.4366 5.4366 5.4366 5.4366
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Figure 4.1: DRBEM solution of Example 4 with higher order splines and polynomial f at
y = 0.4
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4.2 DRBEM Solution of Lid-Driven and Natural Convection Flow Problems in
Cavities

In this section, DRBEM solution of two-dimensional unsteady Navier-Stokes equations in
a lid-driven square cavity, and natural convection flow equations in a cavity are considered.
Stream function-vorticity and temperature formulation is used, and vorticity transport and
energy equations are transformed to inhomogeneous modified Helmholtz equations. The re-
sulting modified Helmholtz equations are solved by DRBEM using the fundamental solution
1

2π
K0(x) of modified Helmholtz equation whereas in the stream function Poisson equation

fundamental solution
1

2π
ln(x) of Laplace equation is made use of. The inhomogeneities are

approximated by using coordinate functions f = 1 + r and f = r2 ln r in the stream function
and vorticity-energy equations, respectively.

4.2.1 Lid-Driven Cavity Flow

This is the classical two-dimensional incompressible flow problem which is defined in a
square cavity [0, 1] × [0, 1] and governed by unsteady Navier-Stokes equations. Stream
function-vorticity (ψ − w) formulation of Navier-stokes equations is given as

∇2ψ = −w (4.27)
1

Re
∇2w =

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y

(4.28)

where Re =
ρ̂UL0

µ
is the Reynolds number of the fluid and

u =
∂ψ

∂y
, v = −∂ψ

∂x
, w =

∂v
∂x
− ∂u
∂y

(4.29)

are the time dependent velocity components and the vorticity, respectively.
Using the procedure for obtaining inhomogeneous modified Helmholtz equation for vorticity
transport equation given in Chapter 1, the governing equations take to form

∇2ψ(n+1) = −w(n)

∇2w(n+1) − τ2
ww(n+1) = −

(
1 − θw

θw

)
∇2w(n) − τ2

ww(n)

+
Re
θw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

) (4.30)

where τ2
w =

Re
∆tθw

. ∆t and θw are the time step and relaxation parameter 0 < θw < 1, re-

spectively. Thus, we have Poisson (4.27) and modified Helmholtz (4.28) equations for stream
function and vorticity transport equations, respectively.

The DRBEM is going to be applied now to the equations (4.30). For this, these equations are
rewritten as inhomogeneous Poisson and modified Helmholtz equations

∇2ψ(n+1) = b1 (4.31)
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∇2w(n+1) − τ2
ww(n+1) = b2 (4.32)

where b1 and b2 are the right hand sides of corresponding equations in (4.30). These functions
are constructed using the values of vorticity obtained from the previous time level and stream
function from the newly obtained current time level.

The DRBEM transforms the governing equations defined in a region Ω bounded by Γ, to
corresponding boundary integral equations. The equations are weighted with the fundamental

solutions u∗1 =
1

2π
lnr and u∗2 =

1
2π

K0(τr), respectively, and then the Green’s second identity
is applied to arrive at the equations as explained in Chapter 2

ciψ
(n+1)
i +

∫
Γ

(
q∗1ψ

(n+1) − u∗1
∂ψ(n+1)

∂n

)
dΓ = −

∫
Ω

b1u∗1dΩ, (4.33)

ciw
(n+1)
i +

∫
Γ

(
q∗2w(n+1) − u∗2

∂w(n+1)

∂n

)
dΓ = −

∫
Ω

b2u∗2dΩ, (4.34)

where
b1 = −w(n) (4.35)

b2 = −
(
1 − θw

θw

)
∇2w(n) − τ2

ww(n) +
Re
θw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)
(4.36)

Here, q∗1 =
∂u∗1
∂n

and q∗2 =
∂u∗2
∂n

. Approximating b1 and b2 with the radial basis functions

f j = 1 + r j and f j = r2
j ln r j

b1 =

K+L∑
j=1

α1 j f j (4.37)

b2 =

K+L∑
j=1

α2 j(t) f j (4.38)

where α1 j and α2 j(t) are coefficients which are initially unknown, r j denotes the distance
between the source and field points, K and L are the numbers of boundary and interior points,
respectively. The discretization of Γ using constant boundary elements gives DRBEM matrix-
vector equations

Hψ −Gqψ = (HΨ̂ −GQ̂ψ)α1

H
′
w +G

′
qw = (H

′
Ŵ +G

′
Q̂w)α2

(4.39)

where H, G, H
′

and G
′

are square matrices of size (K + L) × (K + L) which are derived in
Chapter 2 (equations (2.32), (2.27), (2.86) and (2.79), respectively). ψ, w, and qψ, qw are
(K+L)×1 vectors containing discretized values of stream function, vorticity and their normal
derivatives. Ψ̂, Q̂ψ, Ŵ and Q̂w matrices are formed columnwise from the particular solutions
and their normal derivatives of the equations at the nodes j = 1, ...,K + L with

∇2ψ̂ j = f j = 1 + r j (4.40)

and
∇2ŵ j − τ2

wŵ j = f j = r2
j ln r j. (4.41)

Collocating b1 and b2 in (4.37) and (4.38) at all boundary and interior nodes gives b1 = Fα1
and b2 = Fα2, and inverting, one can get the matrix-vector equations

Hψ −Gqψ = (HΨ̂ −GQ̂ψ)F−1b1 (4.42)
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and
H
′
w +G

′
qw = (H

′
Ŵ +G

′
Q̂w)F

−1
b2 (4.43)

where F and F are (K + L) × (K + L) coordinate matrices and their columns are constructed
using f j = 1 + r j and f j = r2

j ln r j, j = 1, ...,K + L, respectively.

In equation (4.36), the first and second order derivatives of stream function and vorticity can
be approximated using DRBEM idea with the coordinate matrices as

ψ(n+1) =

K+L∑
j=1

β j f j and w(n) =

K+L∑
j=1

β̃ j f j (4.44)

where β j, β̃ j are unknown coefficients and α2 j(t) , β j, α2 j(t) , β̃ j. These equations result in
systems

ψ(n+1) = Fβ and w(n) = Fβ̃ (4.45)

which give
∂ψ(n+1)

∂x
=
∂F
∂x

F
−1
ψ(n+1),

∂ψ(n+1)

∂y
=
∂F
∂y

F
−1
ψ(n+1) (4.46)

and
∂w(n)

∂x
=
∂F
∂x

F
−1

w(n),
∂w(n)

∂y
=
∂F
∂y

F
−1

w(n) (4.47)

where β = F
−1
ψ(n+1) and β̃ = F

−1
w(n).

Also, using the first order derivatives of the vorticity in equation (4.47), ∇2w(n) can be obtained
with the help of coordinate matrix F such that

∇2w(n) =
∂F
∂x

F
−1

(
∂w(n)

∂x

)
+
∂F
∂y

F
−1

(
∂w(n)

∂y

)
. (4.48)

Physically there is no boundary condition for the vorticity. But it can be obtained from (4.29)
with the help of coordinate matrix F

w(n+1) =
∂v(n+1)

∂x
− ∂u(n+1)

∂y
=
∂F
∂x

F
−1

v(n+1) +
∂F
∂y

F
−1

u(n+1). (4.49)

Since the right hand sides of the equations (4.42) and (4.43) can be obtained from the pre-
viously known ψ and w values in (4.30) and, all the vectors and matrices are known, linear
systems of equations are obtained as

A1x1 = y1
A2x2 = y2

(4.50)

with x1 and x2 containing only unknown values of ψ, qψ and w, qw, respectively.

Since the governing equations (4.27)-(4.28) are coupled in vorticity and stream functions, the
system of equations (4.42)-(4.43) are also coupled in vorticity and stream function values.
Thus, an iterative procedure should be used for the solution which can be given as follows:
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1. Start with an initial approximation w(0) = 0 for n = 0, and obtain the right hand side b1
in (4.42).

2. Solve the stream function equation for ψ(n+1) using w(n).

3. Approximate the first derivatives of ψ(n+1) using (4.46), and then u(n+1) and v(n+1) ve-
locity components from relationships (4.29).

4. Compute the vorticity boundary conditions w(n+1) using the equation (4.49).

5. Approximate first and second order space derivatives of w(n) by using the DRBEM idea
with the coordinate matrix F, and compute the right hand side b2 of the equation (4.43).

6. Solve the vorticity transport equation (4.43) using b2 and obtain w(n+1).

7. Check the stopping criteria to obtain steady-state solution as

max
i
|ψ(n+1) − ψ(n)| ≤ ε i = 1, ...,K + L

max
i
|w(n+1) − w(n)| ≤ ε i = 1, ...,K + L

8. Update w(n) values for the next iteration.

9. Continue steps 2-8 at the next time levels until the stopping criteria is satisfied.

4.2.1.1 Numerical Results

The lid-driven cavity flow problem is defined in a square domain Ω = [0, 1] × [0, 1] shown
as Figure 4.2. The non-dimensional equations in stream function-vorticity formulation in
the modified Helmholtz operator form are given in equations (4.30). The no-slip boundary
conditions are imposed on the vertical and bottom walls, and the upper boundary is assumed
to move with the constant velocity u = −1. Therefore, stream function boundary conditions
are considered zero. The vorticity boundary conditions are obtained using DRBEM idea with
the coordinate matrix F (equation (4.49)). The initial vorticity is taken as zero.

The problem is solved using constant boundary elements and the radial basis functions are
taken as f = 1 + r and f = r2 ln r, for stream function and vorticity equations, respectively.
The solutions are given at steady state where stopping criteria is taken as ε = 10−4. For this
problem, K = 52, 92, 108 and 140 boundary elements are used, and ∆t = 1.0, 0.1, 0.05 and
0.025 are taken for the values of Reynolds number Re = 50, 500, 1000 and 2000, respectively.
As Re increases, we need to take more boundary elements. Although, we need to take smaller
time increments as Re increases, these are still quite large time steps than the ones required in
other time integration methods. This situation is expected for high Reynolds numbers which
cause thin boundary layers near the walls.

From the Table 4.7, we can see that θw values close to one take less iterations than the other
values when the corresponding K and ∆t values are kept fixed. The relation between θw and

convergence rate is due to τ2
w =

Re
∆tθw

. So, the behavior of K0(x) → 0 for large x, makes it

possible to use large time steps, and to keep θw close to one.
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Figure 4.2: Boundary conditions for the lid-driven flow in a square cavity

Table 4.7: The number of iteration with corresponding θw for Re = 500, N = 92, ∆t = 0.1

θw 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Iterations − 385 272 189 132 102 83 70 61

Figures 4.3-4.6 show the contour lines of ψ and w for flows 50 ≤ Re ≤ 2000. At a Reynolds
number of around 50 the streamline primary vortex moves toward the left-hand wall with
the same direction of the movement of the lid. Also, at the left bottom corner, there is a
secondary eddy which is very small and thin. When the Reynolds number takes the higher
values, the primary vortex moves towards the center of the cavity. In the case of Re = 500, the
secondary eddy at the left bottom corner enlarges, and also at the right bottom corner, a new
secondary eddy starts to appear. When the Reynolds number achieves to 1000, the eddy in
the right bottom corner enlarges and a new secondary eddy appears at the right upper corner.
As Reynolds number increases from 1000 to 2000 the eddy at the right corner grows.

From the vorticity contour lines, as Re increases, because of the movement of the lid, there is
a recirculation on the fluid towards to the left upper corner. When Re increases, the boundary
layers occur at the walls, especially close to the left wall and on the top lid. The center of the
cavity becomes stationary. This behavior of the fluid shows that the strong velocity gradients
occur at the left wall and on the top lid. These solutions are in good agreement with the ones
in [29, 83], and physically expected behaviors are obtained.
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(a) Vorticity

(b) Streamline

Figure 4.3: Lid-driven cavity flow, Re = 50.
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(a) Vorticity

(b) Streamline

Figure 4.4: Lid-driven cavity flow, Re = 500.
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(a) Vorticity

(b) Streamline

Figure 4.5: Lid-driven cavity flow, Re = 1000.

82



(a) Vorticity

(b) Streamline

Figure 4.6: Lid-driven cavity flow, Re = 2000.
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4.2.2 Natural Convection in a Square Cavity

In this section, the application of DRBEM will be given for the natural convection flow prob-
lem. In the natural convection problems, the fluid density differences, caused by the temper-

ature, generate the buoyancy force RaPr
∂T
∂x

which is the dominant driving force for the sys-
tem. Therefore the energy equation should be directly coupled with the momentum equations.
The governing equations of the natural convection problem in the stream function-vorticity-
temperature (ψ − w − T ) formulation are obtained in Chapter 1 as

∇2ψ = −w (4.51)

Pr∇2w =
∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
− RaPr

∂T
∂x

(4.52)

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y

(4.53)

where Pr and Ra are Prandtl number and Rayleigh number, respectively, and

u =
∂ψ

∂y
, v = −∂ψ

∂x
, w =

∂v
∂x
− ∂u
∂y

(4.54)

are the time dependent velocity components and the vorticity.

After transforming the vorticity transport and energy equations to inhomogeneous modified
Helmholtz equations as is done in Chapter 1, the following iteration procedure can be written
for natural convection flow

∇2ψ(n+1) = −w(n)

∇2w(n+1) − τ2
ww(n+1) = − (1 − θw)

θw
∇2w(n) − τ2

ww(n)

+
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)
− Ra
θw

(
∂T (n)

∂x

)

∇2T (n+1) − τ2
T T (n+1) = − (1 − θT )

θT
∇2T (n) − τ2

T T (n)

+
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)

(4.55)

where τ2
w =

1
Pr∆tθw

and τ2
T =

1
∆tθT

. So, we have a Poisson equation for stream function and

two inhomogeneous modified Helmholtz equations for vorticity transport and energy equa-
tions, respectively (equations (4.52) and(4.53)).

The application of DRBEM is carried for the equations in the form

∇2ψ(n+1) = b1 (4.56)

∇2w(n+1) − τ2
ww(n+1) = b2 (4.57)
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∇2T (n+1) − τ2
T T (n+1) = b3 (4.58)

where b1, b2 and b3 are the right hand sides of corresponding equations in (4.55), and they
contain the values of vorticity and temperature obtained from the previous time level and
stream function from the newly obtained current time level.

In the DRBEM procedure, the fundamental solutions
1

2π
ln(r) and

1
2π

K0(τr) are used for
the Poisson and modified Helmholtz equations, respectively. The procedure for the stream
function and vorticity equations is the same with the lid-driven flow problem which differs

only with the term RaPr
∂T
∂x

. Thus, energy equation will also be discretized by using DRBEM,
and will be included in the iteration.

Now, the DRBEM discretized system of equations become

Hψ −Gqψ = (HΨ̂ −GQ̂ψ)F−1b1 (4.59)

H
′
w +G

′
qw = (H

′
Ŵ +G

′
Q̂w)F

−1
b2 (4.60)

H
′
T +G

′
qT = (H

′
T̂ +G

′
Q̂T)F

−1
b3 (4.61)

where vectors b1, b2, b3 are formed from

b1 = −w(n) (4.62)

b2 = −
(
1 − θw

θw

)
∇2w(n) − τ2

ww(n) +
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)
− Ra
θw

(
∂T (n)

∂x

)
(4.63)

and

b3 = −
(
1 − θT

θT

)
∇2T (n) − τ2

T T (n) +
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)
. (4.64)

ψ and qψ, w and qw, and T and qT are the vectors containing known and unknown values, and
their normal derivative values at the corresponding nodes, for the stream function, vorticity
and temperature, respectively. The right hand side functions b1 is approximated using the
coordinate function f = 1 + r whereas b2 and b3 are approximated using the coordinate
function f = r2 ln r.

Space derivatives of T are also computed with the coordinate matrix F as

∂T(n)

∂x
=
∂F
∂x

F
−1

T(n),
∂T(n)

∂y
=
∂F
∂y

F
−1

T(n). (4.65)

The Laplacian term ∇2T (n) is also approximated by using DRBEM idea with the coordinate
matrix belonging to T as F, such that

∇2T(n) =
∂F
∂x

F
−1

(
∂T(n)

∂x

)
+
∂F
∂y

F
−1

(
∂T(n)

∂y

)
. (4.66)

Thus, linear system of equations are obtained after the insertion of related boundary condi-
tions to (4.59)-(4.61)

A1x1 = y1
A2x2 = y2
A3x3 = y3

(4.67)
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where x1, x2 and x3 contain now only unknown values of ψ, qψ, w, qw and T, qT, respectively.

In the iterative procedure for the lid-driven cavity flow, the system for energy equation will be
included now with an initial T (0) vector, and the temperature is obtained at steady-state with
the same stopping criteria in the cycle.

4.2.2.1 Numerical Results

Figure 4.7: Boundary conditions for the natural convection flow in a square cavity

The boundary conditions of natural convection flow problem defined in a square cavity Ω =
[0, 1] × [0, 1] are shown in Figure 4.7. The no-slip boundary conditions are assumed on the
fixed walls and boundary conditions of stream function are taken as zero at these walls. The

vorticity boundary conditions are obtained from w =
∂v
∂x
− ∂u
∂y

by using the coordinate matrix

F. At the left and right walls Dirichlet type boundary conditions are considered as 1 and 0
for T (walls are heated and cooled, respectively) whereas Neumann type boundary conditions
∂T
∂y
= 0 (adiabatic) are imposed on the horizontal walls.

The problem is solved iteratively using the given numerical algorithm to obtain the unknown
values of stream function, vorticity and temperature. The stopping criteria for the steady-
state results is taken as ε = 10−4 for all variables. The radial basis functions are taken as
f = 1+ r for stream function equation and f = r2 ln r for vorticity and temperature equations.
Computations are carried using Ra = 103, 104, 105 and 106 with N = 60, 68, 100 and 132
constant boundary elements, and ∆t = 0.1, 0.05, 0.01 and 0.005, respectively, and for every
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case Pr is taken as 1. Thus, one can conclude that time increment is decreased and boundary
element numbers are increased with increasing values of Rayleigh number. The choices of

∆t and θw, θT are closely related with the nice behavior of K0(τr) since τ2 =
1
∆tθ

as in the
lid-driven cavity problem. Relaxation parameters are taken close to one and not too small step
size, prevent K0(x)→ ∞ behavior, but K0(x)→ 0 smoothly.

In Figure 4.8 we give isotherms, vorticity contours and streamlines at steady-state for Ra =
103 − 106 using constant boundary elements. When Ra = 103 there is not enough convection,
so viscous forces are dominating in the cavity. From the figure, it is observed that the vortex
of the streamlines shows a circular behavior and it takes the minimum value at the center of
the cavity. The isotherms take the values 1 to 0 from left to right walls of the cavity due to
the boundary conditions. Their behaviors look like a vertical line and they are perpendicular
to the top and bottom walls. This is caused by the adiabatic boundary conditions obeying the
physics of heat transfer in the cavity. The vorticity action occurs by forming a vortex at the
center of the cavity.

As the Rayleigh number increases, in the system, convection forces start to dominate over
the viscous forces. So, the circular shape of the streamlines takes the shape of an ellipse
and boundary layer formation occurs near the vertical walls. Because of the high values
of Rayleigh number, the vorticity values near the vertical walls increase and so boundary
layers occur near the vertical walls. Also, the primary vortex starts to divide into two new
vortices which move towards the left upper and the right bottom corners. Vertical shape of the
isotherms becomes parallel to the bottom wall and form boundary layers closer to the vertical
walls of the cavity. The central region of the cavity is almost stationary. These behaviors are
in good agreement with the ones given in [62].
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Streamline Vorticity Temperature

Figure 4.8: Natural convection in a square cavity: Ra = 103, Ra = 104, Ra = 105 and
Ra = 106 from top to bottom
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4.3 DRBEM Solution of the Thermo-Solutal Buoyancy Induced Mixed Con-
vection Flow

The thermo-solutal buoyancy-driven flow is governed by the equations that represent con-
servation of mass, momentum, energy and solutal concentration. Together with the velocity-
vorticity form of vorticity transport equation the governing equations are given in non-dimensional
form as

∇2ψ = −w (4.68)

1
Re
∇2w =

∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
− Ri

(
∂T
∂x
+ N

∂C
∂x

)
(4.69)

1
RePr

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y

(4.70)

1
ReS c

∇2C =
∂C
∂t
+ u

∂C
∂x
+ v

∂C
∂y

(4.71)

in which velocity components u, v and vorticity w are defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, w =

∂v
∂x
− ∂u
∂y

(4.72)

where ψ, w, T , and C are the stream function, vorticity, temperature, and solutal concentra-

tion, respectively. Re is the Reynolds number given by Re =
U0H
ν

where U0, H and ν are
characteristic velocity, characteristic length and the kinematic viscosity, respectively. Ri is the

Richardson number given by
GrT

Re2 where GrT is the Grashof number due to the thermal diffu-

sion. N is the buoyancy ratio given by
βC∆C
βT∆T

where βC is the volumetric solutal concentration

expansion coefficient, βT is the volumetric thermal expansion coefficient, ∆C = Ch − Cc (Ch

and Cc are high and low solutal concentrations), and ∆T = Th − Tc (Th and Tc are high and
low temperatures).

Using the same procedure given in Chapter 1 for obtaining inhomogeneous modified Helmholtz
equations for the vorticity transport, energy and concentration equations the following itera-
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tive equations can be written for thermo-solutal buoyancy induced mixed convection flow

∇2ψ(n+1) = −w(n)

∇2w(n+1) − τ2
ww(n+1) = − (1 − θw)

θw
∇2w(n) − τ2

ww(n)

+
Re
θw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)

−ReRi
θw

(
∂T (n)

∂x
+ N

∂C(n)

∂x

)
∇2T (n+1) − τ2

T T (n+1) = − (1 − θT )
θT

∇2T (n) − τ2
T T (n)

+
RePr
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)
∇2C(n+1) − τ2

CC(n+1) = − (1 − θC)
θC

∇2C(n) − τ2
CC(n)

+
ReS c
θC

(
∂ψ(n+1)

∂y
∂C(n)

∂x
− ∂ψ

(n+1)

∂x
∂C(n)

∂y

)

(4.73)

where τ2
w =

Re
∆tθw

, τ2
T =

RePr
∆tθT

, and τ2
C =

ReS c
∆tθC

, and n indicates iteration number.

DRBEM solutions for stream function, vorticity, temperature and concentration equations are
obtained from Poisson, and modified Helmholtz equations

∇2ψ(n+1) = b1 (4.74)

∇2w(n+1) − τ2
ww(n+1) = b2 (4.75)

∇2T (n+1) − τ2
T T (n+1) = b3 (4.76)

∇2C(n+1) − τ2
CC(n+1) = b4 (4.77)

where b1, b2, b3 and b4 are the right hand sides of corresponding equations in (4.73), and they
contain the values of vorticity, temperature and concentration obtained from the previous time
level and stream function from the newly obtained current time level.

Again, the fundamental solutions
1

2π
ln(r) and

1
2π

K0(τr) are used for the Poisson and mod-
ified Helmholtz equations, respectively. The radial basis functions f = 1 + r is used to
approximate b1 and f = r2 ln r is used to approximate b2, b3 and b4.

The DRBEM discretized matrix-vector equations for stream function, vorticity, temperature
and concentration are

Hψ −Gqψ = (HΨ̂ −GQ̂ψ)F−1b1 (4.78)

H
′
w +G

′
qw = (H

′
Ŵ +G

′
Q̂w)F

−1
b2 (4.79)

H
′
T +G

′
qT = (H

′
T̂ +G

′
Q̂T)F

−1
b3 (4.80)

H
′
C +G

′
qC = (H

′
Ĉ +G

′
Q̂C)F

−1
b4 (4.81)
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where b1, b2, b3 and b4 vectors are formed collocating b1, b2, b3 and b4 from

b1 = −w(n) (4.82)

b2 = −
(
1 − θw

θw

)
∇2w(n) − τ2

ww(n) +
Re
θw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)

−ReRi
θw

(
∂T (n)

∂x
+ N

∂C(n)

∂x

) (4.83)

b3 = −
(
1 − θT

θT

)
∇2T (n) − τ2

T T (n) +
RePr
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)
(4.84)

b4 = −
(
1 − θC

θC

)
∇2C(n) − τ2

CC(n) +
ReS c
θC

(
∂ψ(n+1)

∂y
∂C(n)

∂x
− ∂ψ

(n+1)

∂x
∂C(n)

∂y

)
. (4.85)

F, is (K + L) × (K + L) coordinate matrix formed columnwise from the radial basis function
f j = r j

2 ln r j. ψ, qψ, w, qw, T, qT, and C, qC contain known and unknown values of stream
function, vorticity, temperature, concentration and their normal derivatives, respectively.

First and second order space derivatives are computed with the help of coordinate matrices

∂T(n)

∂x
=
∂F
∂x

F
−1

T(n),
∂T(n)

∂y
=
∂F
∂y

F
−1

T(n) (4.86)

and
∂C(n)

∂x
=
∂F
∂x

F
−1

C(n),
∂C(n)

∂y
=
∂F
∂y

F
−1

C(n). (4.87)

The Laplacian terms ∇2T (n) and ∇2C(n) in equations (4.84) and (4.85), are also computed as

∇2T(n) =
∂F
∂x

F
−1

(
∂T(n)

∂x

)
+
∂F
∂y

F
−1

(
∂T(n)

∂y

)
(4.88)

and

∇2C(n) =
∂F
∂x

F
−1

(
∂C(n)

∂x

)
+
∂F
∂y

F
−1

(
∂C(n)

∂y

)
. (4.89)

With the insertion of related boundary conditions for ψ, w, T, and C the following system of
linear equations are obtained

A1x1 = y1
A2x2 = y2
A3x3 = y3
A4x4 = y4

(4.90)

where x1, x2, x3 and x4 contain only unknown values of ψ, qψ, w, qw T, qT and C, qC on the
walls and unknown interior values, respectively.

Solution is obtained iteratively by solving systems (4.90) with initial estimates w(0), T (0) and
C(0) for n = 0 as

1. Solve the stream function equation for ψ(n+1) using w(n).
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2. Compute first order space derivatives of ψ(n+1) by using coordinate matrix F and com-
pute the u and v velocity components using the equation (4.29).

3. Obtain the vorticity boundary conditions using the definition (4.49) and coordinate ma-
trix F.

4. Compute first and second order space derivatives of w(n), T (n) and C(n) by using the
DRBEM idea.

5. Compute the right hand side b2 and solve the vorticity transport equation to obtain
w(n+1).

6. Compute the right hand side b3 and solve the temperature equation to obtain T (n+1).

7. Compute the right hand side b4 and solve the concentration equation to obtain C(n+1).

8. Check the stopping criteria in order to get steady-state solution as

max
i
|ψ(n+1) − ψ(n)| ≤ ε i = 1, ...,K + L

max
i
|w(n+1) − w(n)| ≤ ε i = 1, ...,K + L

max
i
|T (n+1) − T (n)| ≤ ε i = 1, ...,K + L

max
i
|C(n+1) −C(n)| ≤ ε i = 1, ...,K + L

9. Update w(n), T (n) and C(n) values for the next iteration.

10. Continue the steps 1-9 for the next time levels until the stopping criteria is satisfied.

Now, the computational results for the two-dimensional, thermo-solutal mixed convection
flow are given for three test problems. Thermo-solutal mixed convection in a lid-driven square
cavity, and then in a lid-driven cavity with a square blockage placed at the bottom wall. As
the third problem, thermo-solutal mixed convection flow is given in a horizontal channel with
a step.
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4.3.1 Thermo-solutal Mixed Convection in a Lid-driven Cavity

In the first example, we consider lid-driven flow problem in a square cavity Ω = [0, 1 × 0, 1]
as shown in Figure 4.9 [54]. The governing equations are given in (4.68)-(4.71) in the form of
stream function, vorticity, temperature and solutal concentration. These equations are solved
using DRBEM in a square cavity which has three motionless walls, where the upper lid moves
with a uniform velocity u = 1. The adiabatic boundary conditions are imposed for both tem-
perature and concentration on the vertical walls. The bottom wall of the cavity is heated
(T = 1) and it is subjected to the high solutal concentration (C = 1), whereas the top lid is
cooled (T = 0) and it is subjected to the low solutal concentration (C = 0.)

Figure 4.9: Boundary conditions for thermo-solutal mixed convection lid-driven cavity flow

At the three walls no-slip boundary conditions for the velocity are considered, thus the stream
function boundary conditions are taken zero at all the walls of the cavity. Physically, there
is no boundary condition for the vorticity but they can be obtained from its definition w =
∂v
∂x
− ∂u
∂y

using the DRBEM idea with the help of the coordinate matrix. In all computations

the results are obtained using the highest K = 124 constant boundary elements, and L =
225 interior points. Actually, as Ri, N and Re increase one needs to take more boundary
elements. For achieving smooth results the highest number of boundary elements and interior
nodes are preferred. The relaxation parameters (θw, θT , θC) for vorticity, temperature and
solutal concentration resulted from the procedure of obtaining modified Helmholtz equation
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Table 4.8: ∆t variations for thermo-solutal mixed convection in a lid-driven cavity

N = −10 N = −3 N = 1 N = 3 N = 10
Ri = 0.5 0.25 0.25 0.1 0.1 0.05
Ri = 1 0.1 0.1 0.05 0.05 0.03
Ri = 3 0.05 0.05 0.03 0.03 0.01

are taken as 0.9. This means that more contribution is used from the newly obtained solutions.
Therefore one can get steady-state results using less number of iterations with a stopping
criteria tolerance ε = 10−5 for all unknowns. Table 4.8 shows time increments ∆t needed for
reaching steady-state solutions for several values of Richardson number and buoyancy ratio.
From the table one can conclude that as N or Ri increases the time increment must decrease
but these time increments are still very large compared to the ones needed for other time
discretization schemes.

In the thermo-solutal buoyancy induced mixed convection flow there is a close relationship
between the parameters Re, Ri and N. Reynolds number (Re) gives a measure of the ratio
of fluid inertial force to viscous force, and its magnitude defines the dominance of the fluid
inertial force compared with viscous force of the fluid. Richardson number (Ri) describes the
relative strength of thermal buoyancy force over the inertial force of the fluid. Buoyancy ratio
(N) represents the effect of solutal buoyancy force on the fluid flow. In this study, the effect
of fluid inertial force is examined using the different combinations of Ri and N. There is an
important relation between the boundary conditions of temperature and solutal concentration.
Different situations create different results for the buoyancy forces where they may oppose
or aid each other. In our case the bottom wall is heated and is subjected to the high solutal
concentration whereas the top lid is cooled and is subjected to the low solutal concentration.
Thus, the density due to the temperature gradient and solutal concentration near the bottom
wall and top lid plays an important role in the emergence of the buoyancy forces. When N
takes positive values, because of the high temperature and high concentration at the bottom
wall, the fluid buoyancy forces act together and the density due to the temperature and solutal
concentration gradients is lower than the density near the top lid. Therefore, the lighter fluid
moves from bottom wall towards the top lid. When N takes negative values, the density due to
the temperature gradient near the bottom wall is lower than the density near the top lid but the
density due to solutal concentration near the bottom wall is higher than the density near the
top lid. Hence, the lighter fluid caused by temperature gradient moves from bottom wall to the
lid, and upward thermal buoyancy force occurs in the fluid. Thus, the heavier fluid caused by
solutal concentration gradient moves from top lid to the bottom wall, and downward solutal
buoyancy force occurs in the fluid. Consequently, thermal and solutal buoyancy forces oppose
each other.

Figure 4.10 shows streamlines for the variations of Ri and N by assuming Re = 100 and
Pr = S c = 1. In Figure 4.10(a), Ri = 0.5 and N changes between −10 to 10. When N = 1, the
thermal and solutal buoyancy forces are equal and aid each other. In this case, there is a single
fluid core in the middle of the cavity. Also a small eddy occurs at the right bottom corner.
When N decreases in the negative direction, the density due to the solutal concentration gradi-
ent increases. So, the configuration of the secondary fluid circulation occurs for N = −3 and
three fluid cells are developed when N = −10. These additional fluid cells cause the transport
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of momentum and heat to slow down. When N increases in the positive direction, the thermal
and solutal buoyancy forces aid each other. The size of the eddy increases for N = 3 and
secondary fluid cell also occurs for N = 10. In the contrast to the negative values of N, these
secondary fluid cells aid the fluid momentum transport from top lid to the bottom wall.

The same analysis is carried by taking Ri = 1 and Ri = 3, and results are given in Figure
4.10(b) and Figure 4.10(c), respectively. The behavior of streamlines for Ri = 1 is almost the
same with the case Ri = 0.5. But in this case, the size of the secondary cells increases. In the
case of Ri = 3, we can see the three fluid cores when N = −10 and N = −3. Also, secondary
fluid cell begins to appear for N = 1. Further increase in N as N = 3 and N = 10 causes a
small eddy at the left bottom corner. For the positive value of N, solutal and thermal buoyancy
forces aid each other, and buoyancy forces become dominant in the fluid which is expected
behavior reported in [54].

The effect of the buoyancy force on vorticity for different values of Ri is given in Figure 4.11.
For increasing positive N values, fluid flow covers almost all parts of the cavity forming vortex
at the center. As Ri increases this center vortex starts to be developed at lower values of N,
and even it is divided to two vortices for Ri = 3. For negative values of N, the increase in Ri
causes boundary layer formation close to the moving lid on the vertical walls. As N decreases
a center vortex also is formed especially for small values of Ri as can be seen in Figure 4.11
(N = 1, N = −3, N = −10 cases).

Figure 4.12 depicts the temperature and concentration contours for different values of Ri and
N by taking Re = 100, and Pr = S c = 1. Since Pr = S c = 1 is taken in the computations,
the temperature and concentration contours are identical. So, both contour lines are given in
the same figure. Contour lines take the values between 1 and 0 from bottom to the top walls
of the cavity due to the boundary conditions. Because of the adiabatic boundary conditions
which are imposed on the vertical walls, the temperature contours are perpendicular to the
vertical walls. In the figures which are given for the negative values of N and all values of
Ri, the smooth linear variation of the temperature can be seen clearly. The density due to the
thermal gradient is less than the density due to solutal concentration for negative values of N.
So, heavier fluid moves from top lid to bottom wall. Therefore, heat transfer due to the fluid
convection does not occur. But when N increases in positive direction fluid behavior changes.
When N = 1 and N = 3 for Ri = 0.5 and Ri = 1, the circular behavior is shown in the
cavity. When N = 10, the magnitude of the solutal buoyancy force reaches its highest value.
Also, both solutal and thermal buoyancy forces aid each other. Thus, the secondary bubble is
noticed for all values of Ri. Also, this behavior can be seen when Ri = 3 for all positive values
of N. Since the constant value of Re is used in the computations, the thermo-solutal buoyancy
forces affect all behaviors of the isotherms and concentration contours. These primary and
secondary bubbles increase with increasing values of N and Ri. These results are remarkably
similar to the ones in [54], and the values of the contours are matching.

Figure 4.13 represents u-velocity profile along the vertical mid-plane of the cavity by taking

Le = 2. Le is the Lewis number and it is defined as Le =
S c
Pr
. The computation is done to

make a comparison with reference [54] by using the same values of parameters, and it is seen
that the behavior is in agreement with the behavior in [54].

The convective heat and mass transfer along the bottom wall of the cavity are calculated in

95



terms of average Nusselt and Sherwood numbers defined as

Nuav =
1
H

∫ H

0

(
uT − ∂T

∂y

)
dx (4.91)

S hav =
1
H

∫ H

0

(
uC − ∂C

∂y

)
dx (4.92)

where H is the characteristic length of the channel.

Figure 4.14 presents Nusselt and Sherwood numbers for the bottom wall to show the effect of
thermo-solutal buoyancy forces on convective heat and mass transfer. In the figure, Nusselt
and Sherwood numbers are plotted for Re = 100 in the range −10 ≤ N ≤ 10 at different
values of Ri. Although Nusselt and Sherwood numbers show a steady increase for Ri = 0.1
in the range −10 ≤ N ≤ 10, for the other values of Ri there is always a sharp increase in
Nusselt and Sherwood numbers with a maximum value of N around 2.5. The same behavior
is observed in reference [54].
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Figure 4.10: The effect of the buoyancy forces on streamlines for different Ri at Re = 100 and
Pr = S c = 1.
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Figure 4.11: The effect of the buoyancy forces on vorticity for different Ri at Re = 100 and
Pr = S c = 1.
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Figure 4.12: The effect of the buoyancy forces on temperature and concentration for different
Ri at Re = 100 and Pr = S c = 1.
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Figure 4.13: u-velocity profile along vertical line (x = 0.5) for Re = 500, GrT = GrC = 100
and Le = 2.

Figure 4.14: The effect of the buoyancy forces on the hot wall, Average Nusselt numbers for
Re = 100 and Pr = S c = 1.
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4.3.2 Thermo-solutal Mixed Convection in a Lid-Driven Cavity with a Square Block-
age

Figure 4.15: Boundary conditions for lid-driven square cavity with a square blockage placed
at the bottom wall

We solve the thermal-solutal mixed convection flow in a lid-driven square cavityΩ = [0, 1 × 0, 1]
with a square blockage placed at the bottom wall. The no-slip boundary conditions for veloc-
ity are imposed on all the walls of the cavity and the square blockage with the exception of
the upper lid which moves with a uniform velocity u = 1. The top lid assumed to be cooled
(T = 0) with high solutal concentration (C = 1). The bottom wall of the cavity except the
square blockage are cooled (T = 0) with low solutal concentration (C = 0). The adiabatic
boundary conditions are imposed on the vertical walls for both temperature and solutal con-
centration. Blockage boundary conditions for T and C are 1 and 0, respectively.

Boundary conditions for stream function are taken as zero at the walls due to the Dirichlet
type wall conditions of velocities, and the vorticity boundary conditions are obtained from

the discretization of w =
∂v
∂x
− ∂u
∂y

by using the DRBEM coordinate matrix. The boundary of

the cavity is discretized by using K = 286 constant boundary elements, and L = 1066 interior
points are used for obtaining the solution and drawing graphics. The pre-assigned accuracy
for reaching steady-state is taken as ϵ = 10−5. In the numerical solution, relaxation parameters
(θw, θT , θC) for vorticity, temperature and solutal concentration are taken 0.9, which takes less
number of iterations for reaching steady-state solution. These values of relaxation parameters
indicate that more contribution is used from the newly obtained solutions. The time incre-
ment ∆t = 0.05 is used for reaching steady-state which is very large compared to other time
discretization schemes.
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First, the effect of the buoyancy ratio is given for Ri = 0.01, Re = 100 and Pr = S c = 1 by
using N = −50, 0, 50. From Figure 4.16 one can see that fluid cores occur in the cavity even
around the blockage when N = 50. When N decreases from 50 to −50 the center of the fluid
core gets shifted closer to the center of the cavity increasing the fluid convection. The vorticity
which is generated by the boundaries gets diffused and convected throughout the cavity for
N = −50, and the fluid regime gets divided for N = 50. These are expected behaviors since
for the negative and positive values of N, buoyancy forces aid and oppose each other. We
can see that remarkable temperature gradients occur only near the hot square blockage. Also,
since the top lid of the cavity moves from left to right, the temperature contours are twisted
towards left-hand side along the left corner of the blockage. For concentration, one can see
that there is a boundary layer over the top side of the blockage. When N decrease from 50
to −50, this boundary layer becomes thick. These results are remarkably similar to the ones
in [57]. In the second case, the effect of the buoyancy ratio is given for Ri = 0.1, Re = 100
and Pr = S c = 1 by using N = −50, 0, 50. Figure 4.17 shows a fluid core at the center
of the cavity and secondary cores for N = −50, 0 around the blockage. But, when N = 50
there is a secondary fluid cell in the cavity. Vorticity behavior is similar to the first case.
When N is increased to N = 0 and N = 50, boundary layers are more pronounced close to
and on the top lid. When we look at temperature and concentration contours we see that for
N = −50 and N = 0, the behaviors are almost the same with the previous case. When N = 50
temperature and concentration contours occupy almost all parts of the cavity with smooth
variations. Action around the blockage is weakened. In the Figure 4.18 the effect of increase
in Re is visualized. When Re is increased main fluid core is shifted through upper right corner
with the movement of the upper lid. This behavior is more pronounced for N = 50. Vorticity
forms strong boundary layers close to the upper lid and at the side walls close to the upper
corners. Isotherms and concentration are not effected much with the increase of Re.
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Figure 4.16: The effect of the buoyancy forces for Ri = 0.01, Re = 100
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Figure 4.17: The effect of the buoyancy forces for Ri = 0.1, Re = 100
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Figure 4.18: The effect of the buoyancy forces for Ri = 0.01, Re = 200
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4.3.3 Thermo-solutal Mixed Convection Flow in Backward-facing Step Horizontal Chan-
nel

Figure 4.19: Backward-facing step channel flow

Third test problem is the backward-facing step (BFS) horizontal channel thermo-solutal mixed
convection flow. Computed results are given to show the changes in the recirculatory flow
pattern near the step due to the changes in the Ri, N and Re. The BFS problem is defined

in a horizontal channel with step height
H
2
, channel height H and length 6H as is shown in

Figure 4.19, and H is taken 1 in all computations. Boundary conditions of temperature and
concentration are different over the walls and the step of the channel. The channel walls are
maintained at low temperature (T = 0) whereas the step is at high temperature (T = 1). The
step and bottom wall of the channel are assumed to be maintained at low solutal concentration
C = 0 while the top wall is at high solutal concentration (C = 1). At the inlet, temperature
and solutal concentration are linear functions as T (y) = −2y+2 and C(y) = 2y−1. The no-slip
boundary conditions of velocity are imposed on the channel walls and the step, and at the inlet
the fluid flows with constant velocity u = 1. Stream function is zero at the bottom wall and
the step, and 0.5 at the top wall, whereas Ψ(y) = y − 0.5 at the inlet. The vorticity boundary

conditions on the channel walls and step are obtained from the discretization of w =
∂v
∂x
− ∂u
∂y

by using the DRBEM coordinate matrix, and is taken as zero at the inlet. At the exist, the

exist conditions are imposed for all variables as
∂

∂n
= 0. At most K = 212 constant boundary

elements, L = 672 interior nodes and ∆t = 0.025 time increment are used in the application
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of DRBEM in obtaining the solution for the values of Ri = 0.1, 0.5, 1, 3, 5, 10, N = −10, −5,
1, 5, 10, and Re = 10, 30, 50, 100, 150, 200.

The results are obtained first for N = 1, Re = 200, and Ri is changing between 0.1 to 10,
and are shown in the Figures 4.20, 4.21 and 4.22. Figure 4.20 depicts streamlines for the
variations of Ri. When Ri = 0.1, the fluid inertial forces are dominant over the thermal and
solutal buoyancy forces. From the figure, the primary recirculation bubble at the downstream
of the step is very clear. As Ri increases the buoyancy forces begin to dominate over the
inertial force of the fluid. Because of the high concentration of the fluid near the top wall the
recirculation bubble gets compressed. Also, the thermal buoyancy force originates only from
the hot sides of the step, so the recirculatory fluid core gets shifted towards the heated vertical
steps. Since the buoyancy ratio N is taken 1, the magnitude of the solutal buoyancy force is
equal o the magnitude of the thermal buoyancy force. So, as Ri increases, both thermal and
solutal buoyancy forces increase and make the bubble growth but flattened.

Figure 4.21 gives vorticity behavior for increasing Ri values. For all values of Ri, the circula-
tions occur near the step due to the sharp drop of the fluid from the step, but when Ri increases
the lengths of the circulations decrease since the fluid circulation core is concentrated in front
of the step.

The temperature and concentration distributions in the channel for different values of Ri are
given in Figure 4.22. From Figure 4.22(a) we see that, the thermal energy accession into the
flow occurs near the hot side of the step and high temperature contour lines are located in the
central core of the fluid. When Ri increases, the thermal energy convection is more in the hot
stream of the fluid and less at the central core of the stream. From the Figure 4.22(b) it is
concluded that, the concentration gradient is less near the hot side of the step for low values
of Ri compared to high values of Ri. Results are in good agreement with the results given in
[55] that the values of the contours are matching.

Figure 4.23 shows u-velocity profile along the vertical line at x = 5 of the channel for the same
values of parameters of the reference [55]. Behavior of u is in agreement with the u-behavior
in reference [55].

Figures 4.24(a) and 4.24(b) represent u-velocity and vorticity profiles at x = 3. From the
Figure 4.24(a) it is seen that, the maximum values of velocity are changed between 0.8 and
1.0, and their locations vary between y = 0.45 and y = 0.6. Maximum values of velocity
profiles decrease when N increases from −10 to 10. When we look at the Figure 4.24(b) we
see that the vorticity profiles are almost the same for all values of N, and their values are
changed between −3 to 5. For all cases these values decrease between y = 0 to y = 0.025.

The effect of Reynolds number on the streamline, vorticity, temperature and solutal concen-
tration is analyzed for Ri = 1, N = 1, Pr = S c = 1, and Re is changing from 10 to 200. Since
N = 1 is taken in the analysis, thermal and solutal buoyancy forces are equal to each other.
So, when Re increases, the inertial force effect becomes dominant on the solutions. Figure
4.25 shows streamlines for the variations of Re. As is shown in the figure, the recirculation
bubble occurs near the step and when Re increases, reattachment length increases.

Figure 4.26 gives vorticity contours for different values of Re. Similar to the contours in Figure
4.22, the boundary layers occur at the inlet and near the channel walls, and the recirculations
near the step. When Re increases from 10 to 200, the lengths of the circulations increase.
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In Figures 4.21 and 4.26, some discrepancies are noticed in vorticity values near the top
and bottom corners at the exit of the channel. This is not an expected physical behavior
of vorticity. This may be due to the singularities in boundary conditions (passing from the
Dirichlet type to the Neumann type) at the corners of the exit. These discrepancies which are
far away from the step don’t effect the general behavior of the flow, and can be eliminated
by refining the mesh. However, the advantage of DRBEM actually lies in obtaining solutions
with small number of boundary elements.

Figure 4.27 depicts the temperature and concentration distributions in the channel for different
values of Re. From the Figure 4.27(a) one can see that, when Re increases, the thermal energy
is convected in the fluid approximately at the central core of the stream. From the Figure
4.27(b), the concentration gradient is less near the hot side of the step for low values of Re
compared to high values of Re.
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Figure 4.20: Effect of Richardson number on the streamline for Re = 200, N = 1, Pr = S c =
1, from top to bottom Ri = 0.1, Ri = 0.5, Ri = 1, Ri = 3, Ri = 5 and Ri = 10.
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Figure 4.21: Effect of Richardson number on the vorticity for Re = 200, N = 1, Pr = S c = 1,
from top to bottom Ri = 0.1, Ri = 0.5, Ri = 1, Ri = 3, Ri = 5 and Ri = 10.
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Figure 4.22: Effect of Richardson number on the temperature and concentration for Re = 200,
N = 1, Pr = S c = 1, from top to bottom Ri = 0.1, Ri = 0.5, Ri = 1, Ri = 3, Ri = 5 and
Ri = 10.
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Figure 4.23: u-velocity profile along vertical line (x = 5) for Re = 200, N = 1, Ri = 0.01 and
Le = 1

The convective heat and mass transfer are calculated in terms of average Nusselt and Sher-
wood numbers defined as follows

Nuav =
1
H

∫ H

0

(
uT − ∂T

∂n

)
dΓ (4.93)

S hav =
1

6H

∫ 6H

0

(
uC − ∂C

∂y

)
dx (4.94)

where H is characteristic length (width) of the channel, n is direction normal to the surface.
dΓ = dx for the horizontal side of the step and dΓ = dy for the vertical side of the step.

The variation of average Nusselt and Sherwood numbers with buoyancy ratio at various values
of Richardson number are given in Figure 4.28(a) and Figure 4.28(b). Average Nusselt num-
bers take the values between 3 and 5. A steady behavior is observed in the Nusselt number for
Ri = 0.1 in the range −10 ≤ N ≤ 10. But when the Richardson number increases the Nusselt
number decreases with increasing values of N, and after N = −0.5 the decreasing behavior
becomes very fast for Ri = 1 and Ri = 3. Average Sherwood numbers have the same behavior
with the average Nusselt numbers for all values of Ri, but the values of Sherwood numbers
change between 1.2 and 1.45. Behavior is in agreement with the behavior in the reference
[55].
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(a) u-velocity profile along vertical line (x = 3)

(b) Vorticity profile along vertical line (x = 3)

Figure 4.24: Effect of buoyancy ratio on the vorticity for Re = 200, Ri = 0.1, Pr = S c = 1,
for N = −10, N = −5, N = 1, N = 5 and N = 10.
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Figure 4.25: Effect of Reynolds number on the streamline for Ri = 1, N = 1, Pr = S c = 1,
from top to bottom Re = 10, Re = 30, Re = 50, Re = 100, Re = 150 and Re = 200.
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Figure 4.26: Effect of Reynolds number on the vorticity for Ri = 1, N = 1, Pr = S c = 1,
from top to bottom Re = 10, Re = 30, Re = 50, Re = 100, Re = 150 and Re = 200.
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Figure 4.27: Effect of Reynolds number on temperature and concentration for Ri = 1, N = 1,
Pr = S c = 1, from top to bottom Re = 10, Re = 30, Re = 50, Re = 100, Re = 150 and
Re = 200.
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(a) Nuav

(b) S hav

Figure 4.28: (a)Effect of buoyancy ratio for various Richardson numbers on the step: average
Nusselt number, (b)Effect of buoyancy ratio for various Richardson numbers on top wall:
average Sherwood number,
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4.4 DRBEM and DQM Solutions of Natural Convection Flow in a Cavity under
a Magnetic Field

In this section, we consider the numerical solution of two-dimensional unsteady natural con-
vection flow in a square cavity under an externally applied magnetic field. Stream function-
vorticity and temperature variables are used, and vorticity and energy equations are trans-
formed to modified Helmholtz equations. The vorticity transport equation is altered due to
the effects of temperature and applied magnetic field. The governing equations in the stream
function-vorticity-temperature (ψ − w − T ) formulation are given in Chapter 1 as

∇2ψ = −w (4.95)

Pr∇2w =
∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
+ Ha2Pr

∂v
∂x
− RaPr

∂T
∂x

(4.96)

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y

(4.97)

where T , Pr, and Ra are the temperature, Prandtl number and Rayleigh number, respectively,

u =
∂ψ

∂y
, v = −∂ψ

∂x
, w =

∂v
∂x
− ∂u
∂y

(4.98)

are the time dependent velocity components, and w is the vorticity.

As is done in all other cases the vorticity transport and energy equations are written in the
form of inhomogeneous modified Helmholtz equation (Chapter 1) in (n + 1)th level

∇2ψ(n+1) = −w(n)

∇2w(n+1) − τ2
ww(n+1) = − (1 − θw)

θw
∇2w(n) − τ2

ww(n)

+
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)

−Ha2

θw

(
∂2ψ(n+1)

∂x2

)
− Ra
θw

(
∂T (n)

∂x

)

∇2T (n+1) − τ2
T T (n+1) = − (1 − θT )

θT
∇2T (n) − τ2

T T (n)

+
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)

(4.99)

where τ2
w =

1
Pr∆tθw

and τ2
T =

1
∆tθT

. So, we have a Poisson equation for stream function

and two modified Helmholtz equations for vorticity transport (4.96) and temperature equation
(4.97), respectively.

As in Sections (4.2) and (4.3) for the natural convection and thermo-solutal mixed convection
flows, first, the resulting modified Helmholtz equations are solved by DRBEM using the
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fundamental solution
1

2π
K0(x) whereas in the stream function Poisson equation

1
2π

ln(x) is
made use of. Next, they are solved by DQM using polynomial based test functions.

In order to use the DRBEM, equations (4.95)-(4.97) are written in a compact form

∇2ψ(n+1) = b1 (4.100)

∇2w(n+1) − τ2
ww(n+1) = b2 (4.101)

∇2T (n+1) − τ2
T T (n+1) = b3 (4.102)

where b1, b2 and b3 are the right hand sides of corresponding equations in (4.99), and they
are constructed using the values of vorticity and temperature at the nth time level but stream
function at the (n + 1)th time level.

DRBEM solutions are obtained with both of the approximating functions (radial basis func-

tions) which are f = r2 ln r and f = 1+ r2+ r3−τ2
(
r2

4
+

r4

16
+

r5

25

)
(τ refers to τw and τT ) for

vorticity transport and temperature equations, respectively, for the right hand side functions
b2 and b3. For both cases f = 1 + r is used to approximate the function b1. These radial basis
functions are depending only on geometry.

Approximating the functions b1, b2 and b3 with radial basis functions f = 1+r, and f = r2 ln r

or f = 1 + r2 + r3 − τ2
(
r2

4
+

r4

16
+

r5

25

)

b1 =

K+L∑
j=1

α1 j f j (4.103)

b2 =

K+L∑
j=1

α2 j(t) f j (4.104)

b3 =

K+L∑
j=1

α3 j(t) f j (4.105)

where α1 j, α2 j(t) and α3 j(t) are initially unknown coefficients, r is distance between the source
and field points, K and L are the the number of boundary and interior nodes, respectively.

DRBEM formulation of the governing equations (4.100)-(4.102) now give the matrix-vector
equations

Hψ −Gqψ = (HΨ̂ −GQ̂Ψ)F−1b1 (4.106)

H
′
w +G

′
qw = (H

′
Ŵ +G

′
Q̂w)F

−1
b2 (4.107)

H
′
T +G

′
qT = (H

′
T̂ +G

′
Q̂T)F

−1
b3 (4.108)

with the vectors b1, b2, b3 formed from

b1 = −w(n) (4.109)
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b2 = −
(
1 − θw

θw

)
∇2w(n) − τ2

ww(n) +
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)

−Ha2

θw

(
∂2ψ(n+1)

∂x2

)
− Ra
θw

(
∂T (n)

∂x

) (4.110)

b3 = −
(
1 − θT

θT

)
∇2T (n) − τ2

T T (n) +
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)
(4.111)

where F and F are (K + L) × (K + L) coordinate matrices and their columns are constructed

using f j = 1 + r j and f j = r2
j ln r j or f = 1 + r2

j + r3
j − τ

2
(r2

j

4
+

r4
j

16
+

r5
j

25

)
, respectively.

First and second order space derivatives of stream function, vorticity and temperature can be
approximated using the coordinate matrix F as

ψ(n+1) =

K+L∑
j=1

β j f j

w(n) =

K+L∑
j=1

β
′
j f j

T(n) =

K+L∑
j=1

β
′′
j f j

(4.112)

where β j, β
′
j and β

′′
j are unknown coefficients. These result in systems

ψ(n+1) = Fβ
w(n) = Fβ′

T(n) = Fβ′′ .

(4.113)

Thus, first and second order derivatives of stream function

∂ψ(n+1)

∂x
=
∂F
∂x

F
−1
ψ(n+1),

∂ψ(n+1)

∂y
=
∂F
∂y

F
−1
ψ(n+1) (4.114)

and
∂2ψ(n+1)

∂x2 =
∂F
∂x

F
−1

(
∂ψ(n+1)

∂x

)
,

∂2ψ(n+1)

∂y2 =
∂F
∂y

F
−1

(
∂ψ(n+1)

∂y

)
. (4.115)

Similarly,
∂w(n)

∂x
=
∂F
∂x

F
−1

w(n),
∂w(n)

∂y
=
∂F
∂y

F
−1

w(n)

∂T(n)

∂x
=
∂F
∂x

F
−1

T(n),
∂T(n)

∂y
=
∂F
∂y

F
−1

T(n)

(4.116)

and
∂2w(n)

∂x2 =
∂F
∂x

F
−1

(
∂w(n)

∂x

)
,

∂2w(n)

∂y2 =
∂F
∂y

F
−1

(
∂w(n)

∂y

)

∂2T(n)

∂x2 =
∂F
∂x

F
−1

(
∂T(n)

∂x

)
,

∂2T(n)

∂y2 =
∂F
∂y

F
−1

(
∂T(n)

∂y

)
.

(4.117)
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Applying the suitable boundary conditions for ψ, w and T to the systems (4.106)-(4.108) the
known and unknown values are passed from one side to another giving algebraic systems

A1x1 = y1
A2x2 = y2
A3x3 = y3

(4.118)

where yi and xi (i = 1, 2, 3) contain known (obtained nth level) and unknown ((n+ 1)th level)
values of ψ, qψ, w, qw and T, qT.

The DRBEM iterative procedure is started by taking initial values of w(n) and T (n) with n = 0.
Then the stream function ψ(n+1) is solved from (4.106) using w(n). Velocity components u
nd v are computed using the coordinate matrix F. Using the definition (4.98) the vorticity
boundary conditions are obtained. Then the right hand side of the vorticity transport equation
is computed and system (4.107) is solved for w(n+1). Lastly, the right hand side of the tem-
perature equation is computed and system (4.108) is solved for T (n+1). A stopping criteria is
described for all variables, and the solution procedure is continued until it is satisfied.

In this section, the natural convection flow in a cavity under an applied magnetic field is
also studied with the differential quadrature method. The governing equations (4.95)-(4.97)
are again transformed to Poisson equation and inhomogeneous modified Helmholtz equa-
tions (4.99) for stream function and vorticity, temperature equations, respectively. Then these
equations are solved by DQM. The discretized equations employing the differential quadra-
ture method (DQM) corresponding to stream function, vorticity and temperature equations
(4.99) are

N1∑
k=1

bikψ
(n+1)
k j +

N2∑
k=1

b̄ jkψ
(n+1)
ik = −w(n)

i j (4.119)

N1∑
k=1

bikw(n+1)
k j +

N2∑
k=1

b̄ jkw(n+1)
ik − τ2

ww(n+1)
i j = b2 (4.120)

N1∑
k=1

bikT (n+1)
k j +

N2∑
k=1

b̄ jkT (n+1)
ik − τ2

T T (n+1)
i j = b3 (4.121)

where

b2 = −
(
1 − θw

θw

)( N1∑
k=1

bikw(n)
k j +

N2∑
k=1

b̄ jkw(n)
ik

)

−τ2
ww(n)

i j +
1

Prθw

( N2∑
k=1

ā jkψ
(n+1)
ik

N1∑
k=1

aikw(n)
k j −

N1∑
k=1

aikψ
(n+1)
k j

N2∑
k=1

ā jkw(n)
ik

)

−Ha2

θw

N1∑
k=1

bikψ
(n+1)
k j − Ra

θw

N∑
k=1

aikT (n)
k j

(4.122)
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and

b3 = −
(
1 − θT

θT

)( N1∑
k=1

bikT (n)
k j +

N2∑
k=1

b̄ jkT (n)
ik

)

−τ2
T T (n)

i j +
1
θT

( N2∑
k=1

ā jkψ
(n+1)
ik

N1∑
k=1

aikT (n)
k j −

N1∑
k=1

aikψ
(n+1)
k j

N2∑
k=1

ā jkT (n)
ik

)
.

(4.123)

Here, i = 1, . . . ,N1, j = 1, . . . ,N2, and N1 and N2 represent the total number of grid points
in x- and y-directions, respectively. For the DQ method, a non-uniform grid point distribution
(GCL) is used which is expressed as [62].

xi =

cos
π

2n
− cos

(2i − 1)π
2n

cos
π

2n
− cos

(2n − 1)π
2n

Lx

yi =

cos π
2n − cos

(2 j − 1)π
2n

cos
π

2n
− cos

(2n − 1)π
2n

Ly

(4.124)

for i = 1, ...,N1 and j = 1, ...,N2 where Lx and Ly are the lengths in the x- and y-directions.
The Dirichlet type boundary conditions for the stream function which are zero due to the
no-slip condition for velocity are inserted to the equation (4.119) directly as

ψ1 j = 0, ψN1 j = 0, ψi1 = 0, ψiN2 = 0, (4.125)

for i = 1, ...,N1 and j = 1, ...,N2. The boundary conditions for the vorticity can be obtained
from (4.98) and can also be approximated by the DQ method as follows

w(n+1)
1 j =

N1∑
k=1

a1kv(n+1)
k j −

N2∑
k=1

ā jku(n+1)
1k ,

w(n+1)
N1 j =

N1∑
k=1

aN1kv(n+1)
k j −

N2∑
k=1

ā jku(n+1)
N1k ,

w(n+1)
i1 =

N1∑
k=1

aikv(n+1)
k1 −

N2∑
k=1

ā1ku(n+1)
ik ,

w(n+1)
iN2

=

N1∑
k=1

aikv(n+1)
kN2
−

N2∑
k=1

āN2ku(n+1)
ik ,

(4.126)

where j = 1, ...,N2, i = 2, ...,N1 − 1, and the velocity components are also obtained from
(4.98), with their DQ approximations

u(n+1)
ik =

N2∑
k=1

ā jkψ
(n+1)
ik ,

v(n+1)
ik = −

N1∑
k=1

aikψ
(n+1)
k j

(4.127)

and then these equations are added to the equation (4.120). Similarly, Dirichlet type tem-
perature boundary conditions can be directly inserted to the equation (4.121), but Neumann
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type boundary conditions are also approximated using the DQM, and added to the equation
(4.121).

These system of equations are solved iteratively and iterative solution procedure starts by
taking w(0) at the right hand side of the stream function equation.

4.4.1 Numerical Results

Figure 4.29: Natural convection flow in a square cavity under a magnetic field

We simulated natural convection flow under a magnetic field in a square cavity Ω = [0, 1] ×
[0, 1] with the related boundary conditions in Figure 4.29. The no-slip boundary conditions
of the velocity at the boundary walls are assumed. Temperature has Dirichlet type boundary
conditions as 1 and 0 (walls are heated and cooled, respectively) at the left and right walls of

the cavity, whereas adiabatic boundary conditions
∂T
∂y
= 0 are imposed on the top and bottom

walls [7]. Boundary conditions for stream function are taken as zero at the walls due to the
no-slip wall conditions of velocities, and the vorticity boundary conditions are obtained from

the discretization of w =
∂v
∂x
− ∂u
∂y

using DRBEM coordinate matrix or DQM.

The governing equations are discretized by using DRBEM first and then DQM. These nu-
merical algorithms are applied to determine the stream function, vorticity and temperature
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variations with the given initial values w = T = 0 iteratively. The pre-assigned accu-
racy for reaching steady-state is taken as ε = 10−4. The DRBEM and DQM results are
obtained for Ra = 103-106 and Ha ≤ 300. All the computations are carried by taking
Pr = 1. The radial basis function f = 1 + r is used to approximate b1, and f = r2 ln r or

f = 1 + r2 + r3 − τ2
(
r2

4
+

r4

16
+

r5

25

)
is used to approximate b2 and b3.

Table 4.9: Number of iterations with different θw and θT in DRBEM using f = r2 log r,
Ra = 104.

θw

θT 0.4 0.5 0.6 0.7 0.8 0.9
0.4 - - - 4068 1404 955
0.5 - - 1439 736 528 425
0.6 - 1301 622 424 336 286
0.7 - 675 413 304 249 219
0.8 - 498 320 247 205 182
0.9 693 396 275 218 182 161

Table 4.10: Number of iterations with different θw and θT in DQM, Ra = 104.

θw

θT 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3 - - - - - 5543 2165
0.4 - - 15556 1601 896 652 527
0.5 - 1915 867 551 412 340 294
0.6 - 735 474 341 267 236 208
0.7 - 485 339 257 214 188 183
0.8 840 387 276 213 188 187 182
0.9 513 333 242 198 189 187 181

Table 4.9 and Table 4.10 show the iteration numbers for reaching steady-state in DRBEM and
DQM solutions of the problem, for Ra = 104 and Ha = 0. In the DRBEM application we
use K = 68 constant boundary elements with ∆t = 5.10−2, and in the DQM applications we
use 21 × 21 GCL grid distribution with ∆t = 10−3. It is noticed that in both of the numerical
algorithms relaxation parameters (θw, θT ) for vorticity and temperature can take values close
to one, which means quite small number of iterations are required for reaching steady-state
solution. These values of relaxation parameters indicate that more contribution is used from
the newly obtained solutions. This is the main advantage of writing the equation in the form of
modified Helmholtz equations after the discretization of time derivatives, and using relaxation
parameters between two consecutive iterations. Also, quite large time increment ∆t can be

used, since τ2
w =

1
Pr∆tθw

and τ2
T =

1
∆tθT

are still very large for these values of ∆t and θw, θT ,

so that K0(x)→ 0 for large x in the DRBEM.

As Ra or Ha increases we need to take more boundary elements in DRBEM and more grid
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points in DQM, and smaller ∆t in both of them. For a fixed Ra = 103, Ha varies from 10
to 100 and 300, and requires ∆t values 10−1, 10−2, 10−3 and K = 60, 76, 92, respectively,
in DRBEM. Similarly, in DQM, Ha = 10, 100, 300 require ∆t = 10−2, 10−3, 10−4, and
20 × 20, 23 × 23, 27 × 27 grid points, respectively. For a fixed Ha = 100, K (number of
boundary elements) varies from 76, 84, 116, to 148 as Ra varies from 103, 104, 105 and 106,

respectively, again with decreasing ∆t’s.

Table 4.11: ∆t values in DRBEM using f = r2 log r and f = 1+ r2 + r3 − τ2( r2

4 +
r4

16 +
r5

25 ) for
Ha = 50.

Ra = 103 Ra = 104 Ra = 105

f = r2 ln r 0.05 0.01 0.005
f = 1 + r2 + r3 − τ2( r2

4 +
r4

16 +
r5

25 ) 0.1 0.05 0.01

In Table 4.11 we present the use of two radial basis functions in approximating the inhomo-
geneities in modified Helmholtz equations for vorticity and temperature. As it can be noticed
that radial basis function containing the constant parameter τ in the equation requires even
much larger time increments. Thus, it is more advantageous.

In Figures 4.30-4.31, the effect of the Hartmann number on isotherms, vorticity contours and
streamlines is given with Rayleigh number 105 for both DRBEM and DQM solutions. From
these figures, we can say that the intensity of the convection is decreased because of the drag
force of the magnetic field. The vortex of streamlines is in circular pattern for small Ha.
The circular vortex of the streamlines is elongated vertically with the increase of Hartmann
number. This process continues until this vortex finally breaks up in two secondary vortices.

As Ha increases, at the center of the cavity, the vorticity contours are separated into two cells
and one of them approaches the top wall and another one approaches the bottom wall. Also,
the vorticity values near the walls decrease and form boundary layers. The central region of
the cavity is almost stationary as Ha increases. In addition, for high Hartmann numbers, the
isotherms are almost parallel to the vertical walls. This means that, the heat transfer process
approaches the pure conduction limit. Therefore we can conclude that the magnetic field
suppressed the heat transfer between the hot and cold walls.

In Figures 4.32-4.33, isotherms, vorticity contours and streamlines are given at Ha = 50
and for various values of Rayleigh number in both DRBEM and DQM solutions. From the
figures one can say that, for low Rayleigh number due to the effect of the Lorentz force,
the isotherms are almost parallel to the vertical walls. In addition, thin boundary layers for
vorticity and straight form of the streamlines already occur, although the Rayleigh number is
very low. But for high Rayleigh number, the effect of the magnetic field is very week for all
variables.

Thus, one can conclude for both methods that, when Hartmann number is increased the con-
duction heat transfer mechanism becomes dominant. Boundary layers are formed for vorticity
and streamlines. For increasing values of Rayleigh number the effect of the magnetic field is
weaker which is expected behavior reported in [7, 16]

In obtaining the solutions presented in Figures 4.30-4.31 and 4.32-4.33, f = 1 + r and
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f = r2 log r radial basis functions are used for stream function, and vorticity, temperature
equations, respectively. When the radial basis function f = 1 + r2 + r3 − τ2( r2

4 +
r4

16 +
r5

25 ) is
used for modified Helmholtz equation we obtain the solution up to Ra = 105 with the same
accuracy obtained with f = r2 ln r by using much larger ∆t. These results are given in Figure
4.34.

The comparison of the two methods (DQM and DRBEM) is carried in terms of horizontal
and vertical velocity profiles at the mid-plane of the cavity in Figure 4.35. u( 1

2 , y) and v(x, 1
2 )

obtained from DQM and DRBEM are plotted on the same graphs to show the well agreement.
The external magnetic field in x-direction produces a force opposite to the flow direction
which decreases the horizontal velocity at the centerline.

Table 4.12: The comparison of maximum value of the stream function in magnitude and its
location for Ha = 100.

Ra Ψmin Vortex Center WV.C.

(x,y)
103 DQM −0.01245 (0.5, 0.28) −0.16389

DRBEM −0.01312 (0.5, 0.24) −0.28938
104 DQM -0.12442 (0.5, 0.72) -1.63795

DRBEM -0.13036 (0.5, 0.76) -1.70420
105 DQM -1.15044 (0.5, 0.72) -15.57319

DRBEM -1.19336 (0.5, 0.76) -14.90651
106 DQM -6.23678 (0.5, 0.5) -39.91785

DRBEM -6.98622 (0.5, 0.5) -38.58250

Table 4.13: The comparison of maximum value of the stream function in magnitude and its
location for Ra = 104.

Ha Ψmin Vortex Center WV.C.

(x,y)
0 DQM -5.10128 (0.5, 0.5) -98.37708

DRBEM -5.19924 (0.5, 0.5) -100.12940
50 DQM -0.47037 (0.5, 0.35) -6.91643

DRBEM -0.49372 (0.5, 0.35) -7.02472
100 DQM -0.12442 (0.5, 0.72) -1.63795

DRBEM -0.13036 (0.5, 0.76) -2.70420
200 DQM -0.03193 (0.5, 0.84) -1.76551

DRBEM -0.03296 (0.5, 0.81) -1.22764
300 DQM -0.01428 (0.5, 0.84) -0.39429

DRBEM -0.01412 (0.5, 0.81) -0.41955

Figures 4.36 and 4.37 present variations of horizontal and vertical velocity profiles at the mid-
planes for increasing values of Hartmann number, respectively for DRBEM and DQM results.
Is also observed that an increase in Ha decreases the magnitudes of both horizontal and ver-
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tical velocities. This is the well-known characteristic of MHD flow which is the flattening
tendency of the velocity as Ha increases. These mid-plane velocity profiles are in agreement
with the ones given [7].

In order to compare DRBEM and DQM, we also consider maximum value of stream function
in magnitude and the vorticity value at the vortex center, for various Ra and Ha in Tables 4.12
and 4.13, respectively. As Ra increases Ψmin and WV.C. both decrease and the vortex center

moves on x =
1
2

line settling down at the center of the cavity for large Ra as 106. An increase
in Ha results in an increase both in Ψmin and w at the vortex center which moves through the
bottom and top walls due to the boundary layers formed for large Ha. The differences in w
vortex values obtained from DRBEM and DQM arise from the different mesh points used.

Since DQM is based on interpolation of solution and its derivatives by polynomials, it is
quite simple considering the construction of the system of ordinary differential equations in
time. Although, DQM is preferred and found to be simple in terms of computation, DRBEM
especially with polynomial radial basis functions can use larger time increment than DQM to
advance the solution to the steady-state faster. Other than this, the two methods give the same
accuracy for solving natural convection flow under a magnetic field.
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Figure 4.30: Temperature, vorticity and streamline contours with DRBEM using f = r2 log r
for Ha = 50, 100, 200, 300 from top to bottom with Ra = 105.

128



Figure 4.31: Temperature, vorticity and streamline contours with DQM for Ha = 50, 100,
200, 300 from top to bottom with Ra = 105.
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Figure 4.32: Temperature, vorticity and streamline contours with DRBEM using f = r2 log r
for Ra = 103, 104, 105, 106 from top to bottom with Ha = 50.
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Figure 4.33: Temperature, vorticity and streamline contours with DQM for Ra = 103, 104,

105, 106 from top to bottom with Ha = 50.
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Figure 4.34: Temperature, vorticity and streamline contours with DRBEM using f = 1+ r2 +

r + 3 − τ2( r2

4 +
r4

16 +
r5

25 ) for Ra = 103, 104, 105, from top to bottom with Ha = 50.
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Figure 4.35: Horizontal and vertical velocity profiles at the mid-plane of the cavity for Ra =
104 and Ha = 50.

Figure 4.36: Horizontal and vertical velocity profiles at the mid-plane of the cavity for Ra =
104.
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Figure 4.37: Horizontal and vertical velocity profiles at the mid-plane of the cavity for Ra =
104.
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4.5 Application of DRBEM for the Inverse Problems

4.5.1 Natural Convection Flow under a Magnetic Field

In this section, the mathematical direct and inverse formulations of natural magneto-convection
flow in a square cavity are given. The DRBEM solution procedure for the direct problem was
given in Section 4.4, and in this section it is briefly described for an inverse problem. Together
with the velocity-vorticity form of vorticity transport equation, the governing equations are
given in non-dimensional form in terms of stream function ψ, vorticity w and temperature T
as

∇2ψ = −w, (4.128)

Pr∇2w =
∂w
∂t
+ u

∂w
∂x
+ v

∂w
∂y
+ Ha2Pr

∂v
∂x
− RaPr

∂T
∂x
, (4.129)

∇2T =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
, (4.130)

with the same relations for u, v and w given in (4.98). Pr, Ra and Ha are the Prandtl, Rayleigh
and Hartmann numbers, respectively described in Chapter 1.

Approximating the time derivatives using the forward difference approximation, and using
relaxation parameters θw and θT for vorticity and temperature, governing equations take the
same form (4.99)

∇2ψ(n+1) = −w(n) (4.131)

∇2w(n+1) − τ2
ww(n+1) = − (1 − θw)

θw
∇2w(n) − τ2

ww(n)

+
1

Prθw

(
∂ψ(n+1)

∂y
∂w(n)

∂x
− ∂ψ

(n+1)

∂x
∂w(n)

∂y

)

−Ha2

θw

∂2ψ(n+1)

∂x2 − Ra
θw

∂T (n)

∂x
,

(4.132)

∇2T (n+1) − τ2
T T (n+1) = − (1 − θT )

θT
∇2T (n) − τ2

T T (n)

+
1
θT

(
∂ψ(n+1)

∂y
∂T (n)

∂x
− ∂ψ

(n+1)

∂x
∂T (n)

∂y

)
,

(4.133)

where
τ2

w =
1

Pr∆tθw
, τ2

T =
1
∆tθT

. (4.134)

The DRBEM discretization of the equations (4.131)-(4.133) for both direct and inverse prob-
lems is the same which is developed in Section 4.4 resulting in the systems of equations
(4.106)-(4.111). In the DRBEM application procedure there is no difference between direct
and inverse problems. In the inverse problem, overprescribed boundary conditions are im-
posed on one boundary while underprescribed boundary conditions are imposed on the other
boundary. So, the resulting linearized system of equations is ill-conditioned due to the bound-
ary conditions imposed, and for its stable numerical solution we use a classical Tikhonov
regularization [76] with regularization parameter λ > 0.
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4.5.2 Numerical Results

4.5.2.1 Example 1

As a first example, we consider the schematic of the physical situation shown in Figure 4.38
with the same boundary conditions as those previously investigated by Li [61] for an inverse
natural convection problem in the absence of the magnetic field. The boundary conditions are

ψ(0, y, t) = ψ(1, y, t) = ψ(x, 0, t) = ψ(x, 1, t) = 0, (4.135)

∂ψ

∂x
(0, y, t) =

∂ψ

∂x
(1, y, t) =

∂ψ

∂y
(x, 0, t) =

∂ψ

∂y
(x, 1, t) = 0, (4.136)

∂T
∂x

(1, y, t) =
∂T
∂y

(x, 0, t) =
∂T
∂y

(x, 1, t) = 0, (4.137)

∂T
∂x

(0, y, t) = q(y, t), (4.138)

for x, y ∈ (0, 1), t > 0, where q(y, t) = Q(y, t)/Qre f is an unknown non-dimensional heat flux
at x = 0. The initial conditions are uniform and taken to be zero,

u(x, y, 0) = v(x, y, 0) = T (x, y, 0) = 0 , (x, y) ∈ [0, 1] × [0, 1]. (4.139)

Vorticity boundary conditions are not known but they can be obtained from the vorticity defi-
nition (4.98) by using coordinate matrix.

Figure 4.38: Inverse problem for the natural convection flow in a square cavity under a mag-
netic field.
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In the direct problem, the heat flux q(y, t) on the left wall x = 0 is considered as prescribed,
but in the inverse problem it will be regarded as unknown. Instead, the missing boundary
condition at x = 0 is compensated for by obtaining (it is obtained from the results of the direct
problem at x = 1) the boundary temperature at the right wall x = 1 as

T (1, y, t) = ϕ1(y, t), y ∈ (0, 1), t > 0. (4.140)

At the right wall x = 1 we know both the values of the temperature (4.140) and heat flux
(4.137) but at the left wall x = 0 there is no condition on either temperature, heat flux or a
combination of them. Generally, it is expected that such an inverse formulation will lead to
the ill-posedness of the problem, e.g. in our case although the solution may be unique, it may
not exist if the data (4.140) is prescribed arbitrarily. In addition, the solution is unstable in
the sense that small measurement errors into the data (4.140) will lead to large errors in the
computed solution for

T (0, y, t) = ϕ(y, t) =?, y ∈ (0, 1), t > 0, (4.141)

∂T
∂x

(0, y, t) = q(y, t) =?, y ∈ (0, 1), t > 0. (4.142)

Consequently, classical methods of inversion are not adequate and instead regularization
methods are necessary to be employed in order to obtain a stable numerical solution [76].

As a heat flux (4.142), a triangular time-dependent function independent of y is taken as in
[61]

q (y, t) ≡ q (t) =



0, 0 ≤ t < t0
t − t0
t1 − t0

, t0 ≤ t < t1

t2 − t
t2 − t1

, t1 ≤ t < t2

0, t2 ≤ t ≤ t3

(4.143)

with t0 = 10∆tre f , t1 = 30∆tre f , t2 = 50∆tre f and t3 = 60∆tre f , where ∆tre f = 0.0133. In the

time-marching procedure, ∆t =
∆tre f

Λtime
is taken as computational time step and some numerical

investigation is performed by changing Λtime.

The iterative computational procedure for solving the inverse problem can be summarized as
follows:

1. w(0) = 0, T (0) = 0 are taken at the zero time level (n = 0).

2. Solve the discretized equations for direct problem inserting boundary conditions (4.135)-
(4.138), taking definition of q(y, t) from equation (4.143) for using the DRBEM, and
compute ψ, w and T.

3. Use the temperature values obtained from the direct problem at x = 1 (equation (4.140))
as the input data for the inverse problem.

4. Solve the discretized stream function equation from (4.131), to obtain ψ(n+1) by using
w(n).
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5. Obtain the velocity components u(n+1) and v(n+1) from the relationship with ψ and com-
pute the unknown vorticity boundary values using (4.98) using the DRBEM idea with
coordinate matrix F.

6. Approximate the space derivatives of the stream function, ψ(n+1), temperature, T (n), and
vorticity, w(n), by using corresponding coordinate matrices.

7. Solve the discretized form of vorticity transport equation (4.132), to obtain w(n+1) by
using w(n) and the partial derivatives of w(n), ψ(n+1) and T (n).

8. Solve the discretized form of energy equation (4.133), to obtain T (n+1) and the flux
q(y, t) by using T (n), and the partial derivatives of ψ(n+1) and T (n).

9. Update w(n) and T (n) values for the iteration procedure.

10. Continue the steps 4-9 to the next time levels until the required values of the flux q(y, t)
at the left wall are obtained.

In the DRBEM, we use as radial basis functions 1 + r in the stream function equation (4.131)
and thin plate splines r2 ln r in the vorticity and energy equations (4.132) and (4.133), where
r is the radial distance. All computations are carried with Pr = 1.

At the beginning of the numerical study, the convergence of the DRBEM for the direct prob-
lem is analyzed by using various numbers of boundary elements K and internal nodes L1.

The numerical isotherms at the time t = 30∆tre f , i.e., after 6000 time steps ∆t =
∆tre f

200
, in

the absence of the magnetic field, i.e., Ha = 0, and Ra = 5 × 102 (conduction dominat-
ing), Ra = 5 × 103 (mild convection) and Ra = 5 × 105 (strong convection), obtained with
K ∈ {44, 84, 164} boundary elements and L1 ∈ {25, 100, 400} internal nodes, are shown in
Figures 4.39-4.41, respectively. By comparing these figures it can be seen that the mesh in
Figure 4.39 is too coarse, whilst the results in Figures 4.40 and 4.41, by almost coinciding
with each other show that the convergence of the numerical method has been achieved. The
middle mesh K = 84 and L1 = 100 in Figure 4.40 is sufficiently fine to ensure that any further
increase in it, such as the mesh K = 164 and L1 = 400 in Figure 4.41, does not significantly
affect the accuracy of the numerical results. Therefore, in the next two Figures 4.42 and 4.43
we present the results for the boundary temperatures T (0, y, t) and T (1, y, t), respectively, for
this mesh only.

In the inverse problem which is next investigated, Figures 4.43 represent the input additional
boundary temperature data (4.140) at the ”friendly” wall x = 1, whilst Figures 4.42 represent
the desired output of the boundary temperature (4.141) at the ”hostile” wall x = 0.

We solve the inverse problem with the same conditions as in Li [61] in order to show some
comparison between the methods. Note that in [61] only the natural convection problem with
the absent magnetic field was addressed and thus we initially take Ha = 0. Furthermore, in
order to avoid committing on inverse crime the inverse problem is solved using a number of
internal nodes L2 = 90 different from L1 = 100 which was used in the direct problem to
generate the numerically simulated input data of Figures 4.43. We also include regularization
with a regularization parameter λ = 10−6 with the note that for λ = 0 the problem is too
ill-posed for the computational program to even run.

138



Figures 4.44 and 4.45 show the numerical results for the internal isotherms and heat flux at
x = 0, respectively. By comparing Figures 4.40 and 4.44 it can be seen that the internal
isotherms at the time t = 30∆tre f obtained by solving the direct and inverse problems are in
good agreement with each other. We also report that the results obtained in Figure 4.44 are in
good agreement with the results presented in Figure 6 of [61] who used the sequential function
specification method combined with a control-volume approach. Further, Figure 4.45 shows
that the numerical results are in good agreement with the piecewise linear heat flux (4.143).

The DRBEM is applied by transforming the differential equations to boundary integrals based
on the fundamental solutions of Laplace’s and modified Helmholtz equations which is rather
simple compared to the original system of nonlinear partial differential equations. The use of
the Bessel function K0(r) as the fundamental solution for the modified Helmholtz equation
in the DRBEM makes it possible to use larger time steps. Before this, when the governing
equations (4.131)-(4.133) are constructed, the forward finite difference approximations are
used for the time derivatives. So we need smaller time increment in our computations and∆t =
∆tre f

Λtime
is used as a time step. To achieve suitable time steps, the calculations are performed

by using several values of ∆t and the results are presented in Figure 4.46. From the figure it
can be seen that the accuracy of the numerical results improves as the time step ∆t decreases.
Although we have better results when smaller time steps are used, since it takes too long

computational time we prefer to use ∆t =
∆tre f

200
in all other computations which gives good

results too, as seen in Figure 4.45.

In practice, temperature measurements are obviously affected by noisy errors. We take this
into account by perturbing the boundary temperature T (1, y, t) obtained from the direct prob-
lem and shown in Figures 4.43 as

T noise(1, y, t) = T direct problem(1, y, t)(1 + χρ), y ∈ (0, 1), t ∈ (t0, t3], (4.144)

where ρ represents the percentage of noise and χ is a random variable in the interval [−1, 1].

In the analysis of the results under noisy input data, it is considered that there is no noise in
the boundary temperature T (1, y, t) up to t = t0 and the noisy data is introduced only after
t = t0. The effects of the noisy errors on boundary temperature and heat flux at x = 0 for
various percentages of noise ρ ∈ {0, 2%, 4%} are given in Figures 4.47 and 4.48, respectively.
Both figures show good accuracy and stability against noise. The numerical results become
less accurate, especially for the heat flux q(0.5, t) in Figure 4.48, as t approaches the final
time t3 = 60∆tre f = 0.8. This is to be expected since in the inverse problem we use the
additional data (4.140) is only up to t = t3 and this information at the right wall x = 1 over
the time interval [0, t3] can restore the information at the left wall x = 0 only on a shorter time
interval [0, t3 − δ], for some δ > 0. This phenomenon is commonly encountered in inverse
heat conduction problems, see [18] and [38].

The effect of the Tikhonov’s regulation parameter λ is analyzed within the range λ = 10−12

to 10−1 and the results are presented in the Figure 4.49. From this figure it can be seen
that the regularization parameter λ has little influence on the stability of the numerical results
which is a little surprising. However, it seems that regularization is achieved through DRBEM
smoothing and by stopping the iterative process once the semi-convergence of the algorithm
is observed, i.e. before the instability of the numerical solution starts to manifest through
highly oscillatory and unbounded behavior.
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Isotherm patterns at t = 30∆tre f and t = 60∆tre f with Ra = 500, Ha = 0 are illustrated to
show the effect of noise in Figures 4.50 and 4.51, respectively, in comparison with the direct
problem solution. From these figures it can be seen that the largest inaccuracies occur, as
expected, at the left wall x = 0 which represents the region which is farthest from the right
wall x = 1 where the Cauchy data are prescribed. The inaccuracies near the right wall x = 1
are only apparent because it is at that end where we impose the noisy errors as in (4.144).

To investigate the effect the magnetic field has on the heat flux, numerical calculations are
carried out for various values of Ha ∈ {50, 100, 200} and the results are illustrated in Figure
4.52. As it can be seen from this figure, the results show good agreement with the exact heat
flux (4.143) for all values of Ha.

Figure 4.53 shows the isotherms, streamlines and vorticity lines at the various Ha ∈ {50, 100, 200}
and Ra = 500. This figure clearly illustrates the significant effect that the magnetic field has
on the fluid flow though this effect is much less significant on the temperature field.

Finally, the effect of noisy error ρ ∈ {0, 2%, 4%} on the heat flux is analyzed in Figure 4.54
for mild convection Ra = 5000 and magnetic field Ha = 100. From this figure it can be seen
that the numerical results are quite insensitive to noise for times up to t = t1 after which they
start to deviate from each other as the percentage of noise ρ increases.
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(a) Ra = 5 × 102 (b) Ra = 5 × 103

(c) Ra = 5 × 105

Figure 4.39: Isotherm patterns at the time t = 30∆tre f for the direct problem with Ha = 0,

∆t =
∆tre f

200
, K = 44 and L1 = 25.
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(a) Ra = 5 × 102 (b) Ra = 5 × 103

(c) Ra = 5 × 105

Figure 4.40: Isotherm patterns at the time t = 30∆tre f for the direct problem with Ha = 0,

∆t =
∆tre f

200
, K = 84 and L1 = 100.
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(a) Ra = 5 × 102 (b) Ra = 5 × 103

(c) Ra = 5 × 105

Figure 4.41: Isotherm patterns at the time t = 30∆tre f for the direct problem with Ha = 0,

∆t =
∆tre f

200
, K = 164 and L1 = 400.

143



(a) Ra = 5 × 102 (b) Ra = 5 × 103

(c) Ra = 5 × 105

Figure 4.42: Isotherms at boundary x = 0 for the direct problem with Ha = 0, ∆t =
∆tre f

200
,

K = 84 and L1 = 100.
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(a) Ra = 5 × 102 (b) Ra = 5 × 103

(c) Ra = 5 × 105

Figure 4.43: Isotherms at boundary x = 1 for the direct problem with Ha = 0, ∆t =
∆tre f

200
,

K = 84 and L1 = 100.
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(a) Ra = 5 × 102 (b) Ra = 5 × 103

(c) Ra = 5 × 105

Figure 4.44: Isotherm patterns at the time t = 30∆tre f for the inverse problem with Ha = 0,

λ = 10−6, ∆t =
∆tre f

200
, K = 84 and L2 = 90.
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Figure 4.45: Effect of the Rayleigh number on the heat flux q(0.5, t) for Ha = 0, K = 84,

L2 = 90, λ = 10−6, and ∆t =
∆tre f

200
.

Figure 4.46: Effect of the time step on the heat flux q(0.5, t) for Ra = 500, Ha = 0, K = 84,
L2 = 90 and λ = 10−6.
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Figure 4.47: Effect of noise on the boundary temperature T (0, 0.5, t) for Ra = 500, Ha = 0,

K = 84, L2 = 90, λ = 10−6 and ∆t =
∆tre f

200
.

Figure 4.48: Effect of noise on the heat flux q(0.5, t) for Ra = 500, Ha = 0, K = 84, L1 = 100,

L2 = 90, λ = 10−6 and ∆t =
∆tre f

200
.
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Figure 4.49: Effect of regularization parameter λ on the heat flux q(0.5, t) for Ra = 500,

K = 84, L1 = 100, L2 = 90, ρ = 4% and ∆t =
∆tre f

200
.
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(a) direct (b) inverse, ρ = 0

(c) inverse, ρ = 2% (d) inverse, ρ = 4%

Figure 4.50: Isotherm patterns at the time t = 30∆tre f for the direct and inverse (λ = 10−6)

problems with Ra = 500, Ha = 0, ∆t =
∆tre f

200
, K = 84, L1 = 100 and L2 = 90.
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(a) direct (b) inverse, ρ = 0

(c) inverse, ρ = 2% (d) inverse, ρ = 4%

Figure 4.51: Isotherm patterns at the time t = 60∆tre f for the direct and inverse (λ = 10−6)

problems with Ra = 500, Ha = 0, ∆t =
∆tre f

200
, K = 84, L1 = 100 and L2 = 90.
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Figure 4.52: Effect of the Hartmann number on the heat flux q(0.5, t) for Ra = 500, K = 84,

L2 = 90, λ = 10−6, ρ = 0 and ∆t =
∆tre f

200
.
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Figure 4.53: Isotherms (top row), streamlines (middle row) and vorticity lines (bottom row)

at the time t = 30∆tre f for the inverse problem with Ra = 500, λ = 10−6, ρ = 0, ∆t =
∆tre f

200
,

K = 84 and L2 = 90.
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Figure 4.54: Effect of noise on the heat flux q(0.5, t) for Ra = 500, Ha = 100, K = 84,

L2 = 90, λ = 10−6, and ∆t =
∆tre f

200
.

4.5.2.2 Example 2

As a second example, we consider the laminar natural convection flow under a magnetic
field in a square cavity (enclosure) with thermal boundary conditions involving an isothermal
vertical wall x = 1 and adiabatic horizontal walls y = 0 and y = 1. The wall x = 0 may or may
not be isothermically heated, see the direct problem numerical simulations of [82] and [71],
respectively. On all walls, the no-slip boundary condition on the fluid velocity is imposed.
The schematic of the physical problem with the boundary conditions is depicted in Figure
4.55. In this case the boundary conditions (4.135) and (4.136) remain unchanged, but (4.137)
and (4.138) change to

T (1, y, t) =
∂T
∂y

(x, 0, t) =
∂T
∂y

(x, 1, t) = 0, (4.145)

T (0, y, t) = ϕ(y, t), (4.146)

for x, y ∈ (0, 1), t > 0.
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Figure 4.55: Inverse problem for the natural convection flow under a magnetic field with
isothermal vertical walls

For a prescribed isothermal boundary temperature ϕ(y, t) ≡ 1, the direct natural magneto-
convection problem in a square enclosure heated and cooled on adjacent walls x = 0 and
x = 1, respectively, given by equations (4.128)-(4.130), (4.135), (4.136), (4.139), (4.145)
and (4.146) has recently been investigated at length in Alsoy-Akgün and Tezer-Sezgin [10]
where isotherms, streamlines and vorticity lines were illustrated and thoroughly discussed for
various Ra ∈

{
103, 104, 105, 106

}
and Ha ∈ {50, 100, 200, 300} . Therefore, in Figures 4.56 and

4.57 we only present the numerical results for the heat flux at the boundaries x = 1 and x = 0
which in the inverse analysis will become input data and output desired data, respectively, for
strong convection Ra = 105 and various magnetic fields with Ha ∈ {100, 200, 300} .

Next the numerical results of Figure 4.56 given by the heat flux

∂T
∂x

(1, y, t) = q1(y, t), (4.147)

perturbed by ρ = 2% noise as

qnoise
1 (y, t) = qdirect problem

1 (1 + χρ), y ∈ (0, 1), t > 0, (4.148)

are used as input in the inverse problem given by equations (4.128)-(4.130), (4.135), (4.136),
(4.139), (4.145) and (4.147) where χ is the random variable in [−1, 1]. The desired output is
represented by the boundary temperature (4.146) with ϕ = 1 and the heat flux illustrated in
Figure 4.57. The numerical retrieved results for ρ = 2% noise are shown in Figures 4.58 and
4.59. Figure 4.58 shows that the numerically retrieved boundary temperature T (0, y, t) is a
good approximation of the exact solution which is equal to unity. Finally, by comparing Fig-
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ures 4.57 and 4.59 it can be seen that the numerical results represent a stable and reasonably
accurate approximation to the desired direct problem heat flux output.

(a) Ha=100 (b) Ha=200

(c) Ha=300

Figure 4.56: The heat flux q1(y, t) :=
∂T
∂x

(1, y, t) at the boundary x = 1 for the direct problem

with Ra = 105, K = 84, L1 = 100 and ∆t ∈ {2 × 10−3, 5 × 10−4, 3 × 10−4} for Ha ∈
{100, 200, 300}, respectively.

156



(a) Ha=100 (b) Ha=200

(c) Ha=300

Figure 4.57: The heat flux q(y, t) :=
∂T
∂x

(0, y, t) at the boundary x = 0 for the direct problem

with Ra = 105, K = 84, L1 = 100 and ∆t ∈ {2 × 10−3, 5 × 10−4, 3 × 10−4} for Ha ∈
{100, 200, 300}, respectively.
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(a) Ha=100 (b) Ha=200

(c) Ha=300

Figure 4.58: The numerically retrieved temperature T (0, y, t) at the boundary x = 0 for the
inverse problem with Ra = 105, K = 84, L2 = 90 λ = 10−6, ρ = 2% and ∆t ∈ {2 × 10−3, 5 ×
10−4, 3 × 10−4} for Ha ∈ {100, 200, 300}, respectively.
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(a) Ha=100 (b) Ha=200

(c) Ha=300

Figure 4.59: The numerically retrieved temperature q(y, t) at the boundary x = 0 for the
inverse problem with Ra = 105, K = 84, L2 = 90 λ = 10−6, ρ = 2% and ∆t ∈ {2 × 10−3, 5 ×
10−4, 3 × 10−4} for Ha ∈ {100, 200, 300}, respectively.
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CHAPTER 5

CONCLUSION

This thesis is devoted to the dual reciprocity boundary element solution of inhomogeneous
Helmholtz-type equations which are the transformed form of some time-dependent fluid dy-
namics problems. All the physical problems are considered two-dimensional, laminar, vis-
cous, incompressible and unsteady fluid flow problems. Some of them include temperature
and concentration variations, and one includes external magnetic field. The stream function-
vorticity formulation of Navier-Stokes equations is basically used in the governing equations.
Adding the energy and concentration equations to the Navier-Stokes equations, natural con-
vection and double diffusive mixed convection flows are defined in enclosures, and also the
case of applied external magnetic field on natural convection flow is considered.

For the time derivatives, the forward time discretization with a relaxation parameter is inserted
at the beginning of the process for obtaining modified Helmholtz equations which eliminates
the need of another time integration scheme and the stability problems. The relaxation pa-
rameter has an important role in accelerating the convergence of the solution. DRBEM for-
mulations are given for Poisson and inhomogeneous modified Helmholtz equations with their
corresponding fundamental solutions. The right hand side functions are approximated by us-
ing several coordinate (radial basis) functions. For the case of modified Helmholtz equation,
two different coordinate functions are derived which are the thin plate splines and polyno-
mial form, containing the wave number of the modified Helmholtz equation. Corresponding
particular solutions of modified Helmholtz equation are derived using annihilator method.

The DRBEM applications are carried out for fluid flow problems with the fundamental so-
lution of Laplace equation for the stream function equation, and with the fundamental solu-
tion of modified Helmholtz equation for the vorticity, energy and concentration equations us-
ing constant boundary elements. The inhomogeneities are approximated by using coordinate
functions f = 1+r in stream function equation and f = r2 ln r in the vorticity, temperature and
concentration equations. Furthermore, natural convection flow under a magnetic field prob-
lem is solved with DRBEM with the coordinate function f = 1 + r2 + r3 + τ2

(
r2

4 +
r4

16 +
r5

25

)
for the vorticity and temperature equations.

The DRBEM applications are given first for the lid-driven flow in a square cavity, and natural
convection flow in enclosures. The solutions are obtained for Reynolds number up to 2000,
and Rayleigh number values between 102 and 106, respectively. The solution procedure needs
considerably small number of iterations, and large time increments with suitable values of re-
laxation parameters which occur in the argument of Bessel function K0(x). The application
of DRBEM using fundamental solution of modified Helmholtz equation is extended then to
two-dimensional double diffusive mixed convection flow problem. Three test problems are
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solved for different psychical domains which are lid-driven cavity, lid-driven cavity with a
square blockage at the bottom wall, and horizontal channel with backward-facing step. Com-
putations are carried for several values of Richardson number, buoyancy ratio, and Reynolds
number. When the temperature and solutal concentration boundary conditions are changed,
the thermal and solutal buoyancy forces can oppose or aid each other. In lid-driven cavity
problem, when both Ri and N increase in positive direction, the thermal and solutal buoyancy
forces over the fixed inertial force of the fluid become dominant. It is an expected behav-
ior since the walls of the cavity are cooled and are subjected to low concentration, or are
heated and are subjected to high concentration. However, in the second problem, at the top
lid and square blockage, the opposite boundary conditions are imposed for temperature and
concentration. Thus, when the buoyancy ratio is negative, temperature and concentration aid
each other while for positive buoyancy ratio they oppose each other. In backward facing step
problem, again due to the opposite temperature and solutal concentration boundary conditions
assumed on the channel walls, the buoyancy forces aid each other for negative values of N,
and oppose each other for positive values of N.

The two-dimensional natural convection flow in a square cavity under an externally applied
magnetic field is solved by using DRBEM and DQM. DRBEM is used when forcing terms
of vorticity and energy equations are approximated with the coordinate functions f = r2 ln r
or f = 1 + r2 + r3 + τ2

(
r2

4 +
r4

16 +
r5

25

)
. DQM is also applied by using nonuniform grid points

(Gauss-Chebyshev-Lobatto) which cluster through the end points. In the procedure, together
with the stream function equation, obtained modified Helmholtz form of the vorticity and
temperature equations are discretized by DQM inserting Dirichlet boundary conditions but
discretizing also normal boundary conditions. The solution can be obtained with both DQM
and DRBEM for highly large Ra and Ha values up to 106 and 300. The use of K0(r) as
fundamental solution in DRBEM application makes possible to use larger time increments.
Although DQM is a domain discretization method it gives very accurate results using con-
siderably small number of the mesh points. Also, it is based on interpolation of solution and
its derivatives by polynomials, making the construction of the system of ordinary differential
equations in time quite simple.

Finally, the DRBEM solution of a two-dimensional transient inverse natural magneto-convection
problem is given where it has been done for the first time. Accurate and stable numerical re-
sults at various convective Rayleigh and magnetic Hartman numbers are presented obtaining
discontinuous time-varying step heat flux in the first problem, and uniform boundary temper-
ature in the second problem. DRBEM interpolation seems to have a stabilizing effect on the
inverse problem solution. The presence of natural convection characterized by high Ra affects
the accuracy of the numerical solution, but the magnetic field has less influence.

The dual reciprocity boundary element method, when it is applied for solving direct or inverse
time-dependent fluid dynamics problems in the form of inhomogeneous modified Helmholtz
equations, gives very accurate results since it can extract more information from the governing
equations formulated in Poisson equation. As a future study, further investigations could be
concentrated on using DRBEM with the differential operator containing Laplace, reaction and
convection terms as an extension to modified Helmholtz equation. This requires obtaining
fundamental solution and corresponding particular solutions for radial basis functions used in
the approximation of the inhomogeneity. Even variable coefficient convection terms should
be considered. The physical fluid dynamics problems solved by direct DRBEM in the thesis
can be also formulated and solved for the inverse problem formulation.
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