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ABSTRACT

ENERGY AND BUFFER AWARE APPLICATION MAPPING FOR NETWORKS ON CHIP

ÇELİK, COŞKUN

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

February 2013, 81 pages

Network-on-Chip (NoC) is a developing and promising on-chip communication paradigm that im-
proves scalability and performance of System-on-Chips. NoC design flow contains many problems
from different areas, for example networking, embedded design and computer architecture. Appli-
cation mapping is one of these problems, which is generally considered as a communication energy
minimization problem. This dissertation approaches to this problem from a networking point of view
and tries to find a mapping solution which improves the network performance in terms of the number
of packets in the buffers while still minimizing the total communication energy consumption. For this
purpose an on-chip network traffic model is required. Self similarity is a traffic model that is used
to characterize Ethernet and/or wide area network traffic, as well as most of on-chip network traffic.
In this thesis, by using an on-chip traffic characterization that contains self similarity, an application
mapping problem definition that contains both energy and buffer utilization concerns is proposed. In
order to solve this intractable problem a genetic algorithm based model is implemented. Execution of
the algorithm on different test cases has proved that such a mapping formulation avoids high buffer
utilizations while still keeping the communication energy low.

Keywords: Networks-on-chip, application mapping, self similar traffic, genetic algorithms
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ÖZ

YONGA ÜZERİ AĞLAR İÇİN ENERJİ VE ARABELLEĞE DUYARLI UYGULAMA
EŞLEŞTİRME

ÇELİK, COŞKUN

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt F. Bazlamaçcı

Şubat 2013 , 81 sayfa

Yonga üzeri ağlar, yonga üzeri sistemlerin ölçeklenebilirliğini ve performansını artıran yeni ve gelişen
bir yonga üzeri haberleşme yöntemidir. Tasarım aşamasında karşılaşılan uygulama eşleştirme prob-
lemi genellikle toplam haberleşme enerjisi azaltma problemi olarak çözülür. Bu çalışma, problemi ağ
tasarımı açısından ele alır ve toplam haberleşme enerjisini azaltırken arabelleklerdeki paket sayısı gibi
ağ parametrelerini iyileştiren eşleştirme çözümleri bulmaya çalışır. Bunun için bir yonga üzeri trafik
modeli gereklidir. Öz benzerlik, Ethernet trafiklerini olduğu gibi yonga üzeri haberleşmeyi de karak-
terize edebilen bir modeldir. Bu tezde yonga üzeri ağlar için bir öz benzer trafik modeli oluşturularak,
hem enerji hem de arabellek kullanımı ölçütlerini içeren bir uygulama eşleştirme problem tanımı öne-
rilmiş ve bu problemi çözmek için genetik algoritma temelli bir model geliştirilmiştir. Yapılan deneyler
sonucunda bu problem tanımının haberleşme enerjisini düşük tutarken yüksek arabellek kullanımını
önlediği görülmüştür.

Anahtar Kelimeler: Yonga üzeri ağlar, uygulama eşleştirme, öz benzer trafik, genetik algoritma
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CHAPTER 1

INTRODUCTION

Networks-on-Chip (NoC) has been proposed as a novel communication paradigm for Systems-on-
Chips (SoCs). NoC concept brings a networking perspective to on-chip communication and provides
improvements in terms of performance, scalability and flexibility over traditional bus-based or point-
to-point structures. An NoC architecture uses layered protocols and a packet-switched network, which
consists of on-chip routers, links and network interfaces (NI) for connecting different processing ele-
ments (PEs) of an SoC. A PE can be a memory unit, an ASIC, an FPGA, a DSP or a general purpose
processor core [2, 3]. A PE is also called an intellectual property (IP) core.

NoC has many advantages over traditional on-chip communication schemes. First one is the scalabil-
ity. Since the communication is performed over a set of point-to-point links, increase in network size
does not degenerate the system performance [1]. Besides, packet based communication makes con-
current transmissions possible, which increases the overall throughput of the communication system.
By using NoC, processing elements of a SoC can have different clock frequencies. NIs are respon-
sible for synchronization between processing elements and network. This paradigm, which is called
Globally Asynchronous Locally Synchronous (GALS), brings some advantages like reducing power
consumption and avoiding clock skews [4] [5].

Although it has many advantages, there are some difficulties of using NoC. The major one is network
congestion, which increases the communication latency. This problem may be considered at different
stages of NoC design flow. This study aims to avoid congestion problem at the application mapping
step in a proactive manner.

A generic NoC design flow starts with the selection of the network topology. A NoC topology can
be regular, such as mesh, torus or butterfly, or irregular which is tailored to the application under
consideration. Once the topology is decided the application which is generally expressed as an IP
core graph is mapped onto it by considering various constraints. Then, the routing protocol and the
flow control mechanisms should be implemented. Microarchitecture of the routers and the network
interfaces are some of the challenging design problems in NoC area.

1.1 Motivation

One of the major steps in NoC design flow is the placement of IP cores. This problem, called Appli-
cation Mapping Problem in the literature, is generally solved to minimize the communication energy
consumption or delay by minimizing the hop count between communicating cores.

Our computational studies on the effect of application mapping on network performance reveal that

1



mapping of cores by considering the energy consumption only may have a significant degenerative
effect on buffer utilization. The results indicate that buffer utilization of mapping solutions, which
have acceptable communication energy consumption, may differ significantly under self-similar traffic
assumption. Even though the energy consumption is optimal, if a mapping solution cause one or
more buffers to operate in congestion state, this will decrease the run time performance of the on-chip
network.

The main motivation of this dissertation is to solve the application mapping problem by considering a
quality of service point of view also, i.e. buffer utilization and end-to-end delay. Our aim is to avoid
possible high input loads on buffers at the mapping stage by using a priori traffic characteristics of
the application. Obviously, a traffic characterization of the application under concern is necessary for
this purpose. Self similarity is already an accepted model in local and wide area networks. Many
on-chip applications are also proved to have self-similar traffic. We therefore perform a simple buffer
utilization analysis under self-similar traffic assumption for on-chip networks and formulate a novel
application mapping solution.

1.2 Contributions

The contributions of the thesis work can be summarized as follows:

• An on-chip network traffic model is required to formulate a traffic aware application mapping.
Besides, self similarity has been proved to model on-chip traffic accurately. Therefore, a buffer
utilization model under self-similar traffic is implemented.

• The self similar traffic model contains three parameters. The effect of self-similar parameters on
buffer utilization is analyzed. The results emphasize the necessity of a mapping formulation that
addresses network dynamics besides energy.

• A novel application mapping formulation, which minimizes the energy consumption while con-
sidering the network dynamics, is proposed. This is the first study which aims to lower the buffer
utilization at mapping stage by using a priori traffic information, while still minimizing the com-
munication energy consumption. In order to solve this intractable problem, a genetic algorithm
based solution is implemented. The energy overhead of the proposed algorithm is also analyzed.

• The model and the performance of the proposed mapping algorithm are verified by means of a
simulation study. A self-similar traffic generator, which is consistent with the analytical model
used in the problem formulation, is implemented. Execution of simulations showed that NoCs
mapped with the proposed algorithm have better performance than the mapping algorithms in
the literature, in terms of buffer utilization or end-to-end delay.

• The proposed method is evaluated under various routing algorithms and observed to improve the
buffer utilization of the basic NoC routing algorithms.

Results of the computational and the simulation studies show that mappings found by the proposed
algorithm have better performance in terms of buffer utilization and end-to-end delay compared to the
ones found by energy-only mapping algorithms.

2



1.3 Thesis Organization

Outline of the thesis is as follows;

Chapter 2 presents the related work. It contains a brief introduction to NoC concepts. After defining
NoC design problems, recent solutions to the application mapping problem are reviewed. The funda-
mental concepts of self similarity which is the underlying traffic model of this study is also presented
in this chapter.

Chapter 3 introduces the energy and buffer aware application mapping concept by presenting the net-
work and queueing analysis under self-similar traffic. Then the computational work performed to
evaluate the effect of self-similar traffic parameters on performance of a NoC system is presented. The
chapter concludes with the novel problem formulation of energy and buffer aware application mapping.

Chapter 4 contains the details of our genetic algorithm implemented to solve energy and buffer aware
application mapping problem. It starts with a brief overview of genetic algorithms and then presents
the implemented method to solve energy and buffer aware application mapping. It also presents an
Integer Linear Programming based solution of the same problem.

In Chapter 5, the proposed application mapping problem formulation is evaluated under different rout-
ing protocols. A brief introduction to NoC routing protocols and computational study are also pre-
sented in this chapter.

Chapter 6 contains the simulation study performed to evaluate the proposed method. Generation of
self-similar traffic traces for a open source NoC simulator is presented. Details of the simulator and
extensions made on it are stated. The chapter concludes with simulation results and a discussion on
them.

Finally, Chapter 7 concludes the dissertation and outlines possible future directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Networks-on-Chip has been a promising communication paradigm proposed for Systems-on-Chip af-
ter 2000. NoC design flow addresses many different problems from various areas like embedded
systems, networking or computer architectures. This chapter presents basics and related works of NoC
design flow. Especially, application mapping problem is studied in detail. Self similarity, which is
used as underlying traffic model in this study is also presented.

2.1 Networks-on-Chip

The growth of the chip scale has changed the functions of a chip, marginally. Chips evolved from being
a part of a system module (e.g. a bitslice in a bitslice processor) to a single module (e.g. a processor or
memory unit) [1]. With todays semiconductor technology, a single chip can contain an entire system
consisting of different processing elements or replicas of identical processing elements. This paradigm,
which is called Systems-on-Chip (SoC), leads to new design problems like synchronization, power
minimization, reusability or on-chip communication.

As the number of processing elements (which is also called Intellectual Property (IP) core) on a SoC
increases, the volume of on-chip traffic also increases. Older on-chip communication schemes like
point-to-point, bus or hierarchical bus cannot respond to this increasing traffic demand. Therefore, a
packet-based communication paradigm, Networks-on-Chip (NoC) has been proposed in early 2000’s
[6, 7]. The main idea behind NoC is to transfer fundamental concepts of computer networking into
chip and construct a relatively simple packet based network between IP cores of a SoC.

A generic NoC architecture consists of three basic components, namely Network Interface (NI), router
and link. Each IP core connects to NoC through an NI. The network is composed of routers and links
connecting those routers. Figure 2.1 shows a basic 2D grid NoC architecture and its basic components.

As mentioned before, NoC brings fundamental concepts of computer networking into chip. Of course,
there are some differences in network conditions and design constraints of NoC and Computer Net-
works. Since embedded systems generally target battery-powered hand-held appliances, main design
constraint of NoC is power consumption. Therefore NoC components (like NI or router) and protocols
should be simple and have low power and area overheads. On the other hand, bandwidth of on-chip
links are not restricted with the underlying network infrastructure, as in the case of computer networks.
Adding more wires to an on-chip link may increase the bandwidth significantly (with power and area
trade-off, of course) [8].
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Fig. 4. Topological illustration of a 4-by-4 grid structured NoC, in-
dicating the fundamental components.

which the NoC contains the following fundamental components.

—Network adapters implement the interface by which cores (IP blocks) connect to the
NoC. Their function is to decouple computation (the cores) from communication (the
network).

—Routing nodes route the data according to chosen protocols. They implement the
routing strategy.

—Links connect the nodes, providing the raw bandwidth. They may consist of one or
more logical or physical channels.

Figure 4 covers only the topological aspects of the NoC. The NoC in the figure could
thus employ packet or circuit switching or something entirely different and be imple-
mented using asynchronous, synchronous, or other logic. In Section 3, we will go into
details of specific issues with an impact on the network performance.

2.2. Architectural Issues

The diversity of communication in the network is affected by architectural issues such
as system composition and clustering. These are general properties of SoC but, since
they have direct influence on the design of the system-level communication infrastruc-
ture, we find it worthwhile to go through them here.

Figure 5 illustrates how system composition can be categorized along the axes of
homogenity and granularity of system cores. The figure also clarifies a basic difference
between NoC and networks for more traditional parallel computers; the latter have gen-
erally been homogeneous and coarse grained, whereas NoC-based systems implement
a much higher degree of variety in composition and in traffic diversity.

Clustering deals with the localization of portions of the system. Such localization
may be logical or physical. Logical clustering can be a valuable programming tool. It
can be supported by the implementation of hardware primitives in the network, for
example, flexible addressing schemes or virtual connections. Physical clustering, based
on preexisting knowledge of traffic patterns in the system, can be used to minimize
global communication, thereby minimizing the total cost of communicating, power and
performancewise.

ACM Computing Surveys, Vol. 38, March 2006.

Figure 2.1: A generic 2D mesh NoC [1]

2.1.1 Basic NoC Design Issues

In this subsection, basic design issues of a generic NoC architecture are presented. First step of NoC
design flow is to decide network topology. The network topology determines physical layout and
connections between nodes. An NoC may have a regular topology like mesh, torus, tree or star, or an
irregular topology which is generated to optimize a specific application [9, 10].

Once a topology is selected (or generated), a routing protocol is necessary to determine a path be-
tween communicating nodes. NoC routing protocols can be divided into three groups; deterministic,
oblivious and adaptive [8]. Deterministic routing protocols are mostly used due to their simplicity.
XY dimension-ordered routing is an example for deterministic routing, in which packets travel in X-
dimension first and then in Y-dimension. In oblivious routing protocols, packets may travel in different
paths. But path selection does not depend on network conditions. On the contrary, in adaptive rout-
ing, path of a transmission may change depending on the network congestion. Adaptive protocols are
relatively difficult to implement and may require some additional control signaling between nodes.

The next issue to be considered is flow control. Flow control determines how packets are transferred in
a router. Before presenting flow control schemes, packetization of NoC should be given. When an IP
core has a “message” to send to another core, first, it is segmented into “packets” in NI. Each packet
is tagged with a header field consisting destination IP’s address and other necessary information. Then
packets are divided into smaller flow control units, which are called “flits”. Only first flit (header flit)
contains the addressing information of the packet. Flits are further divided into “phits”, which are
physical units and correspond to width of the links. But in many NoC design phit size is equal to flit
size. In another word, flit size is chosen as the data quantity that can be transferred in a single clock
cycle [8]. Figure 2.2 shows composition of an NoC message.

There are three flow control mechanisms used in NoC architectures; store-and-forward, virtual cut
through and wormhole . In “store-and-forward” flow control, a router waits until an entire packet is
received, and then forwards packet to the next router. This mechanism requires buffer space for storing
entire packet and has high latency since each node waits the entire packet before starting transmis-
sion. “Virtual cut through” flow control is similar to previous one, but in order to reduce latency a
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(a) Message Composition

(b) Cache Line Packet

(c) Coherence Command Packet

Figure 5.1: Composition of Message, Packets, Flits: Assuming 16-byte wide flits and 64-byte cache
lines, a cache line packet will be composed of 5 flits and a coherence command will be a single-flit packet.
The sequence number (Seq#) is used to match incoming replies with outstanding requests, or to ensure
ordering and detect lost packets.

Flow control techniques are classified by the granularity at which resource allocation occurs.
We will discuss techniques that operate on message, packet and flit granularities in the next sections
with a table summarizing the granularity of each technique at the end.

5.2 MESSAGE-BASED FLOW CONTROL
We start with circuit-switching, a technique that operates at the message-level, which is the coarsest
granularity, and then refine these techniques to finer granularities.

Figure 2.2: Message compositon for NoC

router can start transmission before receiving the whole packet, if there is enough space in next router.
This scheme has relatively lower latency but it still requires high buffer space. To reduce buffer require-
ments, “wormhole” flow control mechanism has been proposed. It is a flit-based mechanism and states
that a router forwards a flit as soon as there is enough space for that flit in the next router. Once the
header flit is directed the body flits follow it. Wormhole flow control reduces the buffer requirements
significantly. However, it may cause idle physical links, since a packet may span several routers.

2.2 Application Mapping Problem for Networks-on-Chip

NoC design problems are classified into four distinct areas in [11] and then fourteen different prob-
lems are defined in these areas from different perspectives such as networking, embedded design or
computer architecture. Application mapping is one of these problems and is described as finding the
optimal mapping of IP cores of the application under concern to routers of an on-chip network topol-
ogy. In the above description, tasks of the application are assumed to be assigned and scheduled to
a PE (IP Core) prior to the mapping stage. In other words, given an assigned and scheduled IP core
graph, application mapping is the process of topological placement of these IP cores onto different
tiles.

[12] is one of the first studies, which dealt with application mapping problem. The authors present
a two step genetic algorithm based on a delay model for on-chip communication and an objective
function that minimizes the overall execution time of the given task graph. Hence the paper addressed
both application mapping and application scheduling problems simultaneously. The first step of the
algorithm assigns each task in the task graph to an appropriate type of IP core using an average delay
value for all edges and the second step of the algorithm maps the cores to the tiles of a 2D mesh
topology by using actual delays.

Authors in [13] use a branch and bound algorithm to solve the application mapping problem from
the perspective of communication energy minimization. An energy model which defines the required
power to transmit a single bit through the network is used to construct the objective function. Authors
extend their study in [14] in such a way that they obtain both the mapping of the cores and a dead-
lock free deterministic route for each edge of the IP core graph. Authors also propose a bandwidth
reservation scheme to guarantee the design constraints.

A bandwidth-constrained application mapping problem is defined in [15] and a heuristic algorithm is
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proposed to be applied to both mesh and torus network topologies. The paper also presents the novel
idea of splitting traffic between communication pairs into smaller parts and transferring each part from
a separate path. This avoids high bandwidth demand of single-path deterministic routing. This algo-
rithm is also used in a NoC synthesis tool [16], named SUNMAP. This tool selects the best topology
from a predefined topology set, and generates the mapping of the application onto that topology.

The application mapping problem is an important step of an NoC design flow. Therefore, some studies
handle it with some other steps of the whole design process. For example, [17] presents an integrated
approach that includes mapping of cores onto NoC topologies as well as physical planning of cores
where the position and size of the cores and other network components are computed. Besides, an
optimum topology is also selected from a topology library in this approach.

[18] proposes a heuristic to map IP cores of an application onto a mesh NoC topology and determine
routes of traffics traces under both bandwidth and latency constraints. In [19] authors formulates
custom NoC synthesis as a Mixed Integer Linear Programming (MILP) problem for minimizing power
consumption of communication infrastructure. The method contains two steps. In the first step, the
floorplan, i.e. the locations of cores and routers, are determined. By using the floorplan information,
in the second step, a custom topology is generated and routes are determined. The paper also presents
a cluster based heuristic for reducing run time of MILP formulation.

Almost all of the papers mentioned so far assume an ideal network infrastructure for on-chip commu-
nication, in which buffers in routers have infinite lengths and hence there is no packet drop and even no
link contention. Such issues are generally addressed apart from the application mapping problem. A
link contention aware application mapping problem has appeared only in [20]. The objective function
in this paper has two parts; first one is a weighted communication distance term, which is a widely
used objective for mapping problems, and a term emphasizing the link contention of on-chip commu-
nication. The authors claim that they place the IP Cores in a such way that there will be a minimum
number of link contention between communication transactions, which will eventually decrease the
packet latency.

[21] presents an approach to multi-objective exploration of the mapping space of a mesh-based networks-
on-chip architecture by using a genetic algorithm based heuristic. The algorithm optimizes both per-
formance and power consumption.

[22] presents a novel energy-aware scheduling algorithm which automatically assigns the application
tasks onto different processing elements and then schedules their execution. Given the IP core graph
and the NoC architecture, the method finds non-preemptive, static schedule which minimizes the com-
munication energy consumption.

Temperature may have an impact on circuit behavior in terms of interconnect delay or leakage current.
Therefore some studies handle NoC design problem from thermal-aware perspective. [23] proposes
a method to obtain a thermal balanced placement of cores in order to reduce hotspot links or routers
which cause higher temperature dissipation. [24] proposes a genetic algorithm based method for ther-
mal and communication (in terms of hop count) aware mapping of cores to 3D NoC architectures. In
[25] authors proposes ILP based mapping algorithms for 3D NoC architectures under thermal con-
straints.

[26] proposes a heuristic for mapping an application onto mesh topology and determining routing
paths between cores with the objective function of communication energy minimization. The heuristic
selects its initial cores with the help of symmetric cores of a mesh topology concept.
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Table 2.1 summarizes the related work on application mapping problem in a tabular form. As seen
from the table, there are no application mapping algorithm which assumes buffer utilization in its
objective function and uses a traffic model, at the same time. The current study aims to address these
issues. A detailed survey study on the application mapping problem of on-chip networks can also be
found in [27].

Table2.1: Related work on Application Mapping of NoCs
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[12] X X X X X X X
[13] X X X X X X
[14] X X X X X X X
[15] X X X X X X
[16] X X X X X X X X X
[17] X X X X X X X X
[22] X X X X X X
[21] X X X X X X X
[23] X X X X X X X X
[18] X X X X X X
[19] X X X X X
[20] X X X X X
[24] X X X X X X X X X
[25] X X X X X X X X
[26] X X X X X X X

2.3 Self Similarity

2.3.1 Definition

Self similarity can be defined as the phenomenon where a certain property of an object (e.g. a natural
image or a mathematical time series) is preserved with respect to scaling in space and/or time [28]. If
an object is self-similar, when its parts are zoomed in, they resemble the whole image. For example,
in Figure 2.3 a two-dimensional (2D) Cantor set is shown. A 2D Cantor set is obtained by starting
a single square, scaling it by 1/3, then placing four copies of the scaled square at the four corners of
original size, and repeating this process to infinity. Self similarity is a typical property of fractals.
Many objects in real world, such as coast lines or leaves of some kind of trees, show self similarity.

2D Cantor set (Figure 2.3) is an example for deterministic self similarity. But in the context of Network
Traffic Engineering a more flexible form of similarity is necessary, which is called Stochastic Self
Similarity.

Unlike deterministic one, the Stochastic Self Similarity does not possess an exact resemblance of their
rescaled samples. Instead, that means the similarity of second-order statistics like autocovariance
or autocorrelation functions. Second-order statistics are statistical properties that capture burstiness,
variability or scale invariance. [13]
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Figure 2.3: Two-Dimensional Cantor set

Although it is not possible to observe exact stochastic properties of given time series, Figure 2.4 gives
an idea about the burstiness of the traffic. The top left graphic in Figure 2.4 shows a traffic trace, where
time granularity is 100 sec, i.e. a single data point is the aggregated traffic volume over a 100 second
interval. Top right figure gives the trace of the first 1000 sec of the same traffic. This time, the time
granularity is 10 sec. The remaining two figure zoom in further on the initial segments by rescaling by
factors of 10.

Formal definition for stochastic self similarity is given below:

Consider a discrete time stochastic process or time series, X(t), t ∈ Z, where X(t) is interpreted as the
traffic volume measured in packets, bytes or bits, at time instance t.

Some properties and definitions on X(t) are given below:

• Stationarity: X(t) is assumed to be stationary in the sense that its behavior or structure is invariant
with respect to shifts in time. In other words, X(t) and the k-shifted process X(t + k) have the
same statistical properties.

• First moment, Mean: µ = E {X(t)}

• Second moment, Variance: σ2 = E
{
(X(t) − µ)2

}
• Autocovariance Function:

C(r, s) = E {(X(r) − µ)(X(s) − µ)}

• Due to stationarity, C(r, s) = C(r − s, 0) = C(k)

Aggregate process X(p) of X at aggregation level p is defined as

X(p)(i) =
1
p

p.i∑
t=p.(i−1)+1

X(t) (2.1)

In other words, X(t) is partitioned into non-overlapping blocks of size p and their values are averaged
while i is used to index these blocks. Let C(p)(k) denote the autocovariance function of X(p). Then the
definition of second-order self similarity is as follows:

X(t) is exactly second-order self-similar with Hurst parameter H, where 1/2 < H < 1, if

C(p)(k) =
σ2

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)
= C(k) (2.2)

and X(t) is asymptotically second-order self-similar with Hurst parameter H, where 1/2 < H < 1, if

lim
p→∞

C(p)(k) =
σ2

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)
= C(k) (2.3)
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Figure 2.4: Example for Stochastic Self similarity in terms of burstiness preservation

2.3.2 Self Similarity in Network Traffic

Although the concept of self similarity goes back to 17th century, the modern definition of the term is
given by Mandelbrot in 1975. In the second half of 1990s, researchers in computer networking area
started to use self similarity widely after [29]. The study in [29] analyzes two real Ethernet local area
network (LAN) traffic traces, recorded in Bellcore Laboratories in 1989 and 1992, and realizes that
aggregating the traces at different time scales (i.e. from a few milliseconds to minutes and hours) does
not smooth the traffic, which is the case in a Poisson process. In other words, burstiness is observed at
all time scales. After this paper Poisson-like models, although being simple for mathematical deriva-
tions, are considered to be inaccurate for modeling local area and wide area network (WAN) traffics.
Instead, mathematical models that contain self similarity are accepted to be more suitable for repre-
senting network traffic.

2.3.3 Self Similarity in NoC Traffic

Self similarity has also been proven to be a fundamental property of on-chip network traffic especially
for multimedia applications. For example, in [30], authors showed the existence of self similarity in
a typical MPEG-2 video application. In this study, the authors present methods for characterizing the
degree of self similarity (i.e. Hurst parameter) and try to find optimal buffer length distributions under
self-similar traffic, which is one of the main problems of router design for on-chip networks. Authors
also deal with estimation of Hurst parameter by using statistical methods in [31].

[32] proposes an empirically-derived statistical traffic model for homogeneous on-chip networks. The
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bursty nature of traffic is also represented in this work by the help of Hurst parameter and a method for
generating synthetic self-similar on-chip network traffic is presented.

[33] extends the study in [30] by investigating on-chip network applications, which exhibit a self-
similar characteristics. The authors, in [33], analyze the communication traces of processor IP cores at
a cycle-accurate level and demonstrate the presence of self similarity. They also show that the impact
of self similarity on networks-on-chip is highly correlated to the low level communication protocol
used.

In [34] and [35] authors apply network calculus methods to analyze the delay and backlog bounds for
self-similar traffic in networks-on-chips. They use the Fractional Brownian Motion model proposed
by Norros [36] and also deal with estimation of self similarity parameters.

[37] shows the effects of Long Range Dependant (LRD) traffic (i.e. self-similar) on NoC performance
by means of simulation. Authors utilize a Fractional Gaussian Noise (FGN) model to generate sim-
ulation traffic. The paper concludes with the statement the bursty behaviour of the LRD traffic has a
strong impact on the NoC performance, and the greater the Hurst parameters is, the sooner network
contention occurs.

In [38] authors propose a generic self-similar traffic model for NoC based on traffic traces obtained
from system simulation or real system devices. They characterize the self-similar traffic with three
parameters namely, Hurst parameter, injection rate and spatial distribution of the traffic. They compare
the synthetic traffic with real NoC traffic.

In many papers, self-similar traffic is generated by using ON/OFF Pareto distributions, because of its
simplicity. [39] show that aggregation of a large number of ON/OFF Pareto sources generates a self-
similar traffic. By using this, authors perform a performance comparison of different NoC architectures
under self-similar traffic. [40] proposes a new congestion-aware NoC architecture and evaluate it with
a cycle accurate simulation platform with ON/OFF Pareto sources.
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CHAPTER 3

ENERGY AND BUFFER AWARE APPLICATION MAPPING
FOR NOC

Application mapping is one fundamental step in an NoC design flow and there exist a lot of different
mapping algorithms in the literature. Most of these handle the application mapping problem as of
minimizing the average hop count between communicating cores, which in effect means minimizing
the communication energy consumption and the communication delay. Although it seems to be a rea-
sonable approach, it is possible to note that such methods omit the dynamics of packet based network
communications.

The effect of application mapping on NoC performance in terms of buffer utilization has been analyzed
in [41]. It is shown in [41] that mapping of cores by considering only the energy consumption may
have a significant degenerative effect on network performance in terms of buffer utilization of the NoC
system under consideration. The mapping solutions, which have acceptable communication energy
consumption, may differ significantly when number of packets in buffers is taken into account under
self-similar traffic assumption.

Therefore our main motivation in this study is to propose, by using a priori traffic information, a
cost function that minimizes the communication energy while also considering the number of packets
waiting in buffers. The new formulation is likely to generate a mapping, which uses network resources
fairly and decreases average network delay due to packet drops or high queue waiting times.

Formal definition of our energy and buffer aware application mapping problem is presented in the next
subsections. A genetic algorithm based solution will be presented in the next chapter.

3.1 Network Analysis under Self-similar Traffic

The mathematical analysis of networks under self-similar traffic is more difficult than Poisson traffic
because there is no simple, closed form formula, such as Little’s theorem, for different network pa-
rameters. For modeling self-similar traffic (i.e. for queuing analysis or for generating synthetic traffic
traces), different mathematical models, some of which are listed below, can be used [42]:

• Fractional Gaussian Noise (FGN)

• Fractional Brownian Motion (FBM)

• Fractional Autoregressive Integrated Moving Average (FARIMA)

13



• On/Off Processes

• Wavelet-based Models

• Markovian Model

Each model has some pros and cons in terms of simplicity or mathematical tractability. Within those,
the Fractional Brownian Motion (FBM) model is used by Norros [43] for analyzing a network buffer
under self-similar traffic. We review this analysis and present further results on buffer utilization in the
following subsection.

There are some studies addressing loss probability of finite queues under self similar traffic. For
example, [44] uses Markovian input model to approximate the loss probability, and [45] utilizes on/off

processes models. In the current study, we use FBM model, which can express a self similar traffic
by using only three parameters. To the best of our knowledge, there are no study dealing with loss
probability of a finite queue under self similar traffic, by using FBM model. In the next subsection we
derive a loss model for infinite buffers. This model can easily be used for formulating an application
mapping problem, since it has only three distinct parameters. Using such a model can be interpreted
as minimizing number of packets waiting in a very long buffer.

3.1.1 Buffer Utilization Analysis

In order to model a self-similar process, Norros [43] used a Fractional Brownian Motion process, Z(t).
Before presenting the self-similar process, it is necessary to state some properties of Z(t) as below:

• Z(t) has stationary increments

• Mean, E{Z(t)} = 0

• Variance, E{Z2(t)} = |t|2H , where H is the Hurst parameter.

After defining the Fractional Brownian Motion process, Z(t), a self-similar process A(t) can be given
as follows:

A(t) = mt +
√

maZ(t) (3.1)

where m > 0 is the mean input rate, a > 0 is the variance coefficient. In this model, a self-similar traffic
is described by the three parameters (m, a,H). H ∈ [0.5, 1] is the Hurst (self similarity) parameter of
the process Z(t).

By using this model, Norros obtained two important results. One is the lower bound for the probability
of the queue length exceeding a certain buffer size under the assumption of having an infinite buffer.
Second is the effective bandwidth of a queue for satisfying a loss rate [36]. In this thesis, we used the
former result to calculate the buffer utilization of an on-chip network.

Although self similarity has a considerable impact on queueing performance of an on-chip network,
very few analytical results are available in the literature. Norros [43] has already used Fractional
Brownian Motion (FBM) model to capture self similarity effects. This model finds out a lower bound
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for the probability of the queue length Q to exceed a certain buffer size x under the assumption of
having an infinite buffer. Mathematically,

P(Q > x) = e−K·xT
(3.2)

where K =
(C−m)2H

2amH2H (1−H)T and T = 2 − 2H

H, m and a are the parameters characterizing the traffic, C is the service rate of the queue.

Using (3.2), buffer occupancy probabilities (probability density function) can be written as

P(Q = 1) = P(Q > 0) − P(Q > 1)

P(Q = 2) = P(Q > 1) − P(Q > 2)

...

P(Q = n) = P(Q > (n − 1)) − P(Q > n) (3.3)

Then by using (3.3) the average number of packets in buffer, l, can be derived as

l =
∑b

i=1 i · P(Q = i)
l = 1.P(Q = 1) + 2.P(Q = 2) + ... + b.P(Q = b)
l = 1.(P(Q > 0) − P(Q > 1)) + 2.(P(Q > 1) − P(Q > 2)) + ... + b.(P(Q > (b − 1)) − P(Q > b))
l = P(Q > 0) + (2 − 1).P(Q > 1) + (3 − 2).P(Q > 2) + ... − b.P(Q > b)
l = P(Q > 0) + P(Q > 1) + P(Q > 2) + ... + P(Q > (b − 1)) − b.P(Q > b)

Finally, the average number of packets in buffer is,

l =

b∑
i=0

P(Q > i) − b · P(Q > b) (3.4)

If b→ ∞ then

l =

∞∑
i=0

P(Q > i) =

∞∑
i=0

e−K·iT (3.5)

Using (3.2), the probability of the number of packets exceeds the buffer size, b, (under infinite buffer
assumption) can be written as

P(Q > b) = e−K·bT
(3.6)

Throughout the thesis expression in (3.6) will be called the buffer utilization of an on-chip router. The
lower value of the probability figure means less number of packets exist in the buffer, and eventually
the utilization is low. This probability figure will be used one of two terms of the cost function of our
combined optimization problem.

3.2 Effect of Self-Similar Traffic Parameters on Network Performance

The following sections aim to quantize the effect of self similarity parameters, namely Hurst parameter,
H, variance coefficient, a, and mean input rate m on the average number of packets and the buffer
utilization.
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3.2.1 Effect of Mean Input Rate on Average Packet Number and Buffer Utilization

Figure 3.1 gives the effect of mean input rate, m, on average packet number and buffer utilization for
different values of H. As expected for high values of input rate the queue enters to congestion region.
For higher values of H (in other words, when self-similar property exists) this effect is more obvious,
which may prove the potentially the negative effect of self similarity on network performance. Another
point that should be noted is that, for very low values of input rate short range traffic (H=0.5) has a
better performance in terms of average packet number. This is due to a phenomenon called “resetting
and truncating effect”, which states that, the effects of long-range dependence (self similarity) are
significant only if long range dependence causes the busy periods to be long enough for the long lags
to come into play. However, when the input rate is too low, the buffer stays empty for most of the
time (resetting). On the other hand, if the buffer length is too low, the buffer is full for long periods
and incoming packets are lost (truncating). In both cases, the effect of self similarity (or long range
dependence) is diminished. [46, 47]

3.2.2 Effect of Variance Coefficient on Average Packet Number and Buffer Utilization

Effect of variance coefficient on performance is shown in Figure 3.2 which illustrates that variance
coefficient has a negative effect on performance. Therefore, keeping variance coefficient low earlier
at the mapping stage might improve on-chip network performance considerably. The resetting and
truncating effect is also observed in this figure.

3.2.3 Computational Study

In order to analyze the effect of application mapping on NoC performance, we used a 6-core test
graph. The density and traffic demand of the core graph are varied in order to reflect various network
conditions ranging from a sparse network with low traffic to a dense one with high traffic. The density
of the graph is selected as sparse, normal and dense, which have 9, 15, 23 links, respectively. The
traffic demands of communicating cores are selected randomly with a uniform distribution between 50
and 250 MBps (for low demand case) and 100 and 500 MBps (for high demand case). These bounds
are chosen such that traffic rates are in the lower half of the mean input rate axes of Figure 3.1. For
each case, the service rate of routers is 1000 MBps and buffer lengths are 1000 bits. Each edge of
the graph is also assigned with a Hurst parameter, H, between 0.5 and 1, and a variance coefficient, a,
between 50 and 500, which are chosen in consistence with [48]. In Figure 3.3, core graph of the sparse
network with high traffic demand (test case-2) is presented. Other test cases are generated by adding
more links to the same graph. All test cases are listed in Table 3.1.

We assumed a simple on-chip network organized in the form of a 3x3 grid topology. Deterministic XY
routing is chosen for simplicity but any other routing policy can also be adapted easily.

For each test case, we then iterated all possible mappings in a brute-force manner. Then for each
possible mapping we considered communication energy overhead and buffer utilization, separately.

In calculation of each different mapping, incoming traffic for each queue is aggregated by using the
method in [49]. The method states that when two self-similar traffic, with parameters (H1, m1, a1) and
(H2, m2, a2), are combined in the same queue the parameters of aggregated input traffic (Hagg, magg,
aagg) are calculated as;
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Figure 3.1: Effect of Mean Input Rate on (a) Average Packet Number (b) Buffer Utilization
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Figure 3.2: Effect of Variance Coefficient on (a) Average Packet Number (b) Buffer Utilization
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Table3.1: Test cases

Graph Density Traffic Demand
Test Case - 1 Sparse (9 links) Low, between [50, 250] MBps
Test Case - 2 Sparse (9 links) High, between [100, 500] MBps
Test Case - 3 Normal (15 links) Low, between [50, 250] MBps
Test Case - 4 Normal (15 links) High, between [100, 500] MBps
Test Case - 5 Dense (23 links) Low, between [50, 250] MBps
Test Case - 6 Dense (23 links) High, between [100, 500] MBps
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c5 c6
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m

H

a

310
(0.7, 245)

130 (0.58, 510)

Figure 3.3: Core Graph for Test Case-2

Hagg = max(H1,H2) (3.7)

magg = m1 + m2 (3.8)

aagg =
m1.a1 + m2.a2

m1 + m2
(3.9)

The resulting aggregated input traffic is used in buffer utilization calculations of each buffer. In order
to see the effect of application mapping on NoC performance, two different evaluation metrics are de-
fined. “Maximumbuffer utilization” is defined as the highest utilization seen on the buffers of on-chip
routers. Similarly, “average buffer utilization” is the average value of all utilizations. In this study, it is
assumed that in case of congestion incoming packets are dropped. Therefore buffer utilization is very
important and is used as the main evaluation metric. Similarly, same metric can be used as “block-
ing probability” for on-chip networks where a congested buffer blocks the traffic by a backpressure
mechanism.

19



Table3.2: Proximity of worst short list solution to optima wrt. energy

Proximity to optima
Test Case - 1 13%
Test Case - 2 12%
Test Case - 3 10%
Test Case - 4 9%
Test Case - 5 6%
Test Case - 6 6%

3.2.4 Effects of Application Mapping on NoC Performance

For each test case, the overall communication energy consumption and buffer utilization of the routers
are calculated separately for each possible valid mapping.

After that, each mapping is labeled with a percentage value which indicates ratio of the value of eval-
uation metric under concern to the maximum value of that metric. These labels show the relative
improvement of a mapping solution in terms of the evaluation metric (namely, maximum buffer uti-
lization and average buffer utilization).

Then all mappings are sorted with respect to ascending overall communication energy consumption
and the top 1% of this list is considered separately called as “short list”. For example, for test case
1, the short list contains solutions that have at most 13% higher energy consumption value than the
optimal solution. Proximity ranges of all test case short lists are presented in Table 3.2. It may be
concluded that for all test cases, our short lists contain near optimal solutions of the mapping problem
when communication energy is the only concern for minimization. Therefore analyzing only these
sets is enough for evaluating the effect of application mapping on Networks-on-Chip performance.

For analysis purposes, the labels of this short list, calculated in the previous step, are counted and
presented in a histogram form. In other words, buffer utilization values of best 1% mapping with
respect to communication energy consumption are visualized on histograms. Figure 3.4 to 3.9 show
these histograms for different test cases. In Figure 3.5-a, for example, test case 3 has 310 mappings
in its short list. 121 of these mappings are in the best 1% with respect to average buffer utilization.
57 mappings are in 1%-2% interval, 33 are in 2%-3% interval and so on. All other figures can be
interpreted in the same manner. In these figures, both average buffer utilization and maximum buffer
utilization metrics are presented separately. Maximum buffer utilization is a stricter criterion than the
average value for the evaluation of a mapping solution, since it considers the buffer that has the highest
utlization. But in extreme cases, such as dense network with high traffic demand (Figure 3.9-b), this
evaluation metric is not meaningful, since in many solutions there is at least one congested buffer. In
such cases, average buffer utilization metric gives more information about the distribution of solutions
in our short list, with respect to maximum buffer utilization. (Figure 3.6-b)

The main observation obtained from figures is that near-optimal solutions of energy minimization
problem can vary significantly with respect to utilization. For example, in Figure 3.8-b the near optimal
solutions range from highest buffer utilization solution, i.e. 100%, to 20% of it. That means minimum
energy mapping solutions may perform a low utilization performance, which eventually degenerate the
overall NoC performance. This effect cannot be observed in sparse network cases, as expected. But as
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the number of communicating cores and the traffic demand increase, the buffer utilization performance
of mapping solutions differ, representing the effect of application mapping on network performance.

Another important observation from Figure 3.6-b and Figure 3.9-b is that the short list, which contains
near-optimal solutions of energy minimization problem does not include the mapping solutions, which
is under 20% with respect to buffer utilization. That presents a trade-off between energy consumption
and utilization of the buffers. Some mapping solutions which have slightly higher energy consumption
than near-optimal solutions may have a better networking performance in terms of buffer utilization
and consequently support the QoS requirements of an application. Same effect can be observed in
figures 3.5-b, 3.6-a and 3.8-b, in a smaller scale.

As a result, minimizing communication energy consumption during the application mapping stage
does not necessarily minimize the buffer utilization of the routers. Therefore, although it is a network
related issue, buffer utilization of on-chip routers can be decreased on the mapping stage in a proactive
manner.

3.2.5 A New Approach to the Application Mapping Problem

Section 3.2.4 reveals that mapping of cores by considering the energy consumption only may have
a significant degenerative effect on network performance in terms of buffer utilization for an on-chip
network system. The results indicate that mapping solutions, which have acceptable communication
energy consumption, may differ significantly when buffer utilization observed on buffers are taken into
account under self-similar traffic assumption. Even though the energy consumption is optimal, if a
mapping solution cause one or more buffers to operate in congestion state, this will decrease the run
time performance of the on-chip network.

The above discussion shows that mapping of applications, which generate self-similar data traffic be-
tween its components, to an on-chip network topology by only considering the energy minimization
may have a negative effect on the run time performance of the on-chip network. Therefore, if a priori
traffic information of the application is available, a new kind of application mapping problem formu-
lation can be proposed, which has a cost function that minimizes the communication energy while
considering the utilization of network buffers. Such a formulation will generate a mapping that uses
network resources fairly and decreases network delays caused by packet drops or high queue waiting
times. Next section presents the formal definition of energy and buffer aware application mapping.
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Figure 3.4: Histograms for average buffer utilization metric: (a) Sparse network with low traffic, (b)
Sparse network with high traffic.
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Figure 3.5: Histograms for average buffer utilization metric: (a) Normal network with low traffic, (b)
Normal network with high traffic.
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Figure 3.6: Histograms for average buffer utilization metric: (a) Dense network with low traffic, (b)
Dense network with high traffic.
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Figure 3.7: Histograms for maximum buffer utilization metric: (a) Sparse network with low traffic, (b)
Sparse network with high traffic.
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Figure 3.8: Histograms for maximum buffer utilization metric: (a) Normal network with low traffic,
(b) Normal network with high traffic.
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Figure 3.9: Histograms for maximum buffer utilization metric: (a) Dense network with low traffic, (b)
Dense network with high traffic.
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3.3 Problem Formulation

Our novel Energy and Buffer aware Application Mapping (EBAM) formulation consists of two models,
namely the energy and the traffic models. The energy model, which is encountered commonly in the
literature [13], calculates the total communication energy consumption between IP core pairs in an
application, which is to be mapped onto the NoC whose topology is given. Besides, the traffic model
calculates the buffer utilization of the routers, as described in Section 3.1.

The following set of definitions will be used in stating the overall problem formulation:

Definition 1: An application, which is going to be mapped onto an NoC architecture, is described as
an Application Characterization Graph (APCG), G = G(C, E). G(C, E) is a directed graph, where each
vertex ci ∈ C represents an IP core and each arc ei, j ∈ E represents the communication from vertex ci

to vertex c j.

Definition 2: v(ei, j) is the communication volume on ei, j, i.e. between cores ci and c j, in bits.

Definition 3: Network topology is described by the graph T (R, L), where R is the set of routers and L
is the set of links in the network.

Definition 4: PR defines the routing protocol, which determines the path between any source and
destination router.

Definition 5: The energy required to send one bit from router ri to router r j can be calculated as

Ebit(ri, r j) = nhop × ES + (nhop − 1) × EL (3.10)

where nhop is the number of routers along the path between ri and r j, ES is the energy consumed on
routers, EL is the energy consumed on links (in µJ/Mb).

In this study, we assume that the SoC under consideration has 100-nm technology. In [19], energy
consumption of the on chip router and the links in 100-nm have been studied. According to this, the
energy consumption of the input port of an router is 328 nJ/Mb and it is 65.5 for an output port. In
total, we take ES as 393.5 nJ/Mb. On the other hand, we assume that links are length of 3 mm. In
[19], energy consumption of a physical link is assumed as 79.6 nJ/Mb/mm. Therefore in this study, we
assume energy consumption of each link (EL) is 238.8 nJ/Mb.

Definition 6: Bi =
{
bk

i

}|Bi |

j=1
is the set of buffers in router ri. Here, bk

i denotes the kth buffer of router ri

and so
∣∣∣bk

i

∣∣∣ is the length of bk
i , in flits.

|Bi| is the number of buffers in a router. It is two for corner routers, three for edge routers and four for
intermediate routers for a 2D grid topology.

Definition 7: BUk
i = P(Q >

∣∣∣bk
i

∣∣∣) is the buffer utilization of bk
i , where P(Q > x) is referred to (3.6).

Definition 8: By using definition 7, the maximum buffer utilization of a networks-on-chip architecture,
BUmax may be defined as

BUmax = max{BUk
i }, ∀ri and ∀bk

i

Using the above definitions, our energy and buffer aware application mapping problem can be formu-
lated as follows:

Given
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• an application characterization graph, APCG

• a topology, T

• a routing protocol, PR

• a self-similar traffic model using (H, a,m), where H, a and m are defined for every arc

• buffer lengths, |bk
i |, of each router

Find

• a mapping function map() : C → R (from set of cores to set of routers), which minimizes

min{
1
α

∑
∀ei, j

v(ei, j) × Ebit(map(ci),map(c j)) +
1
β

BUmax} (3.11)

Such that

• each core is mapped to a router,

• no two cores are mapped to the same router,

• QoS constraints (buffer utilization or end-to-end delay) are satisfied

The first term in (3.11) is the total energy consumed on the communication infrastructure. The second
term in (3.11) is the maximum buffer utilization of all routers on the network. The variables α and β
are the normalization coefficients, which will be calculated as part of the solution.

The application mapping problem presented above is an instance of quadratic assignment problem
[14], which has been proven to be NP-hard [50]. The search space of a problem increases factorially
with the size of the problem. Therefore, in the next chapter, we proposed a genetic algorithm based
solution for our proposed mapping problem.
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CHAPTER 4

AN EVOLUTIONARY METHOD FOR ENERGY AND BUFFER
AWARE APPLICATION MAPPING

The problem formulation of energy and buffer aware application mapping proposed in previous chapter
is an NP-hard one. Therefore a genetic algorithm based solution have been implemented to solve this
intractable problem.

This chapter starts with a brief introduction to genetic algorithms. Then the genetic algorithm imple-
mented for energy and buffer aware application mapping problem formulation is presented in detail. In
order to evaluate the proposed method an Integer Linear Programming (ILP) model has also been im-
plemented and used as a lower bound for the problem. The chapter concludes with the computational
study performed to evaluate the proposed genetic algorithm based method.

4.1 Genetic Algorithms

Application mapping problem has already been proven to be NP-hard [50]. Hence our problem for-
mulation proposed in previous chapter is also NP-hard. Therefore, a genetic algorithm based solution
methodology is adopted in this work.

Genetic algorithm is a method for searching a large solution space using principles of evolution and
genetics. In genetic algorithms, each solution in space is represented with an individual called chro-
mosome. Chromosomes are composed of fundamental units called genes. Each chromosome may be
evaluated using a fitness value that is related to the cost function of the problem.

Search process in genetic algorithms starts with an initial population containing randomly selected
chromosomes. In each iteration new individuals, i.e. offsprings, are born by crossover operations.
Crossover operation takes two individuals as input and generates two offsprings. It is desired that
these new individuals have better fitness values, while still keeping some of the characteristics of their
parents.

Search space may have some local optima and it is obviously necessary to avoid being stucked in such
points. Mutation operation is used for this purpose of changing some characteristics of chromosomes,
which may help in jumping to other parts of the search space.

At the end of an iteration, old and new chromosomes are sorted with respect to their fitness values and
the ones with low fitness values are discarded in the next iteration, which represents the natural selec-
tion mechanism. A good feasible solution for the problem under consideration is found by iteratively
repeating the above process.
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Figure 4.1: Permutation encoding example

4.2 Genetic Algorithm for Energy and Buffer Aware Application Mapping

In order to solve the problem given in Section 3.3 using a genetic algorithm, one should design the
required mechanisms and operations. This subsection presents below the details of the algorithm
designed for solving our application mapping problem.

4.2.1 Encoding

Permutation encoding, which is suitable for most mapping problems, is chosen here also. In this en-
coding the value of a gene is the router number and the place of the gene in the chromosome represents
the IP core that is assigned to this router. For example, the example chromosome in Figure 4.1 repre-
sents a solution for a six core graph. From the values of the genes, it is possible to deduce that core 1
(c1) is mapped to router 8 (r8), core 2 (c2) is mapped to router 5 (r5), and so on.

In such an encoding, duplicated genes produce infeasible solutions since one core cannot be mapped
to more than one router.

4.2.2 Population

Initial population is generated randomly in a genetic algorithm. From our experiments, we observed
that an initial population of 30 chromosomes is sufficient to solve our problem. Final population
contains the best solutions encountered during all iterations. The best solution of the final population
is accepted as the solution of the problem.

4.2.3 Crossover

Crossover is the key operation in genetic algorithms for traversing the solution space efficiently. Since
we use a permutation type encoding, it is not possible to use a basic crossover operation, in which
a crossover point for parent chromosomes are randomly selected and the second parts of each parent
are exchanged. Such a crossover may generate infeasible solutions and instead, a mechanism called
partially matched crossover is used. In this scheme, two crossover points are selected randomly. The
inner parts of these points are exchanged between two parents. Also, this inner part gives the exchange
matching of genes. Figure 4.2 illustrates partially matched crossover operation on two sample six
genes chromosomes.
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Figure 4.2: Partially matched crossover operation.

4.2.4 Mutation

The mutation for our algorithm is implemented by selecting two genes of a chromosome randomly and
simply exchanging their values as illustrated below.

Initial chromosome: 1 2 3 4 5 6;

Chromosome after mutation: 1 5 3 4 2 6.

Mutation rate is kept at 5% in order to avoid changing the characteristics of the population drastically.

4.2.5 Elitism

Elitism is a mechanism to keep the best solution found so far within the population during iterations. If
all of the population is replaced by newly generated offsprings, a good solution may be lost. This may
occur due to mutation also. Therefore, in our algorithm only twenty new chromosomes are generated
at each iteration and are replaced with the worst 20 out of 30 chromosomes. In other words, in every
iteration the best ten solutions are kept within the population. Elitism may obviously increase the
probability of being stuck in a local optimum.

The details and the parameters of our genetic algorithm are summarized in Table 4.2.
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Table4.1: Methods and parameters of the genetic algorithm

Paradigm Decision
Encoding Permutation encoding

Population 30 chromosomes,
random initialization (for first phase only)

Selection Random 20 (10x2) parents
Crossover Partially matched crossover
Mutation Exchange one gene, rate: 5%
Elitism Yes. Offspring replace worst 20 chromosomes.

10 out of 30 remain unchanged.
Stopping After a fixed number of iterations

Fitness value Reciprocal of cost function (3.11)

4.3 Energy and Buffer Aware Application Mapping Algorithm

The genetic algorithm proposed above can be used for solving the problem to minimize energy only
or similarly buffer utilization only. For solving the combined optimization problem however, one
needs the fix two normalization coefficients α and β. In this study, we first solve the problem to
minimize energy only and then separately buffer utilization only. After that we perform the required
normalization simply by dividing each separate term, that corresponds to energy and buffer utilization
respectively, to their maximum values obtained during previous genetic algorithm steps. This, in effect,
means scaling both energy and buffer utilization to unity.

Therefore our algorithm runs in three phases. The first phase calculates the maximum value of energy
consumption (coefficient α) by using the energy part of (3.11) only. The second phase calculates the
maximum value of buffer utilization (coefficient β) by using the related part of (3.11) only . The third
phase uses equation (3.11) fully for computing the fitness value.

We observed that using the final population of a phase as the initial population of the next phase
increases the success rate of the algorithm. Hence, following a random initialization of the first phase’s
population, the second and third phases use the final populations of their preceding phases as initial
population.

There is no stopping criteria for our genetic algorithm. It is seen that fixed number of 50 iterations are
enough to get good solutions. With this number, the time taken for executing largest test case is less
than 20 minutes.

4.4 An ILP Model for Energy Aware Application Mapping

In this section, we present an Integer Linear Programming (ILP) model of application mapping prob-
lem with only energy minimization goal, which is similar to the one in [20]. Utilization of this model is
twofold. First, for evaluating the success of our genetic algorithm model. For this purpose, the results
of the first phase of our genetic algorithm model (which has only energy constraints) are compared
with the results of ILP model. In another words, the ILP model is used as the lower bound of our
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problem.

Second, we use ILP model in order to see the efficiency of our problem formulation and pitfalls of
energy-only solutions, in terms of buffer utilization. This is performed by comparing the buffer utiliza-
tion figures of mapping solutions obtained by ILP and three phases of our genetic algorithm.

Hereafter our ILP based application mapping model will be called as “ILP_M” . The ILP_M contains
two types of binary variables and a set of equations reflecting constraints. An open source solver, lp-
solve [51] is used to solve the problem, optimally. The solver is capable of assigning binary attributes
to variables. Using this property, the number of equations and the execution time of the solver is
reduced. The following paragraphs present the details of the ILP_M.

mrs
ci variables indicate whether the core ci is assigned to router rs, or not.

mrs
ci

=

1, core ci is assigned to router rs,

0, otherwise.
(4.1)

prsrt
cic j variables express a communication path between routers rs and rt. Its value is 1 if there is a

communication between routers rs and rt, where cores ci and c j are mapped to those routers, and 0
otherwise [20].

prsrt
cic j

=

1, i f there is a communication between ci and c j,

0, otherwise.
(4.2)

Drsrt is used for the distance between routers rs and rt. Since we consider XY deterministic routing in
this study, it implies the Manhattan Distance between two routers.

The first constraint of ILP_M is one-to-one mapping, which states every core must be mapped to a
router (4.3).

∀ci ∈ C,
∑
∀rs∈R

mrs
ci

= 1 (4.3)

Since in our NoC infrastructure there is only one port for IP core connection in each router, two
different cores cannot be mapped to the same router (4.4).

∀rs ∈ R,
∑
∀ci∈C

mrs
ci
6 1 (4.4)

mrs
ci variable must be binary, i.e. either 0 or 1 (4.5).

∀rs ∈ R, ci ∈ C, 0 6 mrs
ci
6 1 (4.5)

Another constraint is on communication path variables. prsrt
cic j is equal to 1 only if mrs

ci = 1, mrt
c j = 1 and

there is a communication between ci and c j. This can be expressed in ILP_M formulation as in (4.6).
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mrs
ci

+ mrt
c j
− 1 6 prsrt

cic j
6

mrs
ci + mrt

c j

2
(4.6)

The last one is binary constraint on prsrt
cic j variables (4.7).

0 6 prsrt
cic j

6 1 (4.7)

By using the above variables and equations the objective function of the ILP_M is;

min{
∑

∀(ci,c j)∈C

wci,c j · (
∑
∀rs,rt∈R

Drsrt · p
rsrt
cic j

)} (4.8)

By using “assign binary variable” property of lp-solve, the equations (4.5) and (4.7) can be omitted.
This reduces the number of equations and consequently decreases the execution time and memory
requirement of the solver, considerably.

4.5 Numerical Evaluation of the EBAM

This section presents the computational study we performed for evaluating our genetic algorithm pro-
posal and for demonstrating the benefits of energy and buffer aware application mapping approach in
terms of buffer utilization of the routers. Test cases in 15 main test network classes of different sizes
with different number of cores and links were generated. For each test case, the problem is solved by
using our genetic algorithm both with and without the buffer utilization term in the cost function (3.11).
For evaluating the success of our algorithm, the ILP_M presented in previous section is executed for
each test case and the results are compared.

4.5.1 Test Cases

In order to address different network conditions, 15 core graphs with various dimensions and commu-
nication requirements are considered. These graphs are divided into several groups.

• The first group (Case 1a, 1b and 1c) considers a small core graph. Number of links are chosen to
create sparse, normal and dense networks (namely, 9, 15 and 23 links) and the graph is mapped
to a 3x3 topology.

• In our previous studies [41], we observed that an energy and buffer aware application mapping
could be more effective on dense networks. For evaluating our method also on sparse networks,
we formed the second, third and fourth test case groups that has a degree of around 2.5 and
below.

• Finally, test cases 5 to 7 contain larger core graphs, which are mapped to 4x4 grid topology.

The traffic between each communicating core pair is selected randomly from a uniform distribution
between 100 and 500 MBps. For each case, the service rate of a router is assumed to be 1000 MBps and
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Figure 4.3: Core Graph for Case-1a

buffer lengths are chosen as 1000 bits. Each arc in the graph is also associated with a Hurst parameter,
H (between 0.5 and 1), a variance coefficient, a (between 50 and 500), which are chosen in consistence
with [52]. A detailed analysis of parameter selection can be found in [41]. Figure 4.3 shows the core
graph for test case-1 as an example. The IP core graph (with (H, a, m) values), network topology, link
and router capacities are the inputs of the problem. For simplicity, only deterministic XY routing has
been considered but any routing policy can also easily be adapted.

4.5.2 Methodology

For evaluating the success of genetic algorithm and the efficiency of our problem formulation, results
of different phases of genetic algorithm are compared with the results of the ILP_M. For each test
case, we generated problem instances (core graphs) by selecting links of core graphs randomly with a
uniform probability distribution and by assigning H, m and a parameters of each link in the core graph,
again randomly with a uniform probability distribution. Each test case instance is solved by following
three methods, separately.

• The first one is the our lower bound solution, ILP_M, which is described above. The cost
function of this model is the total communication energy consumption, which is actually the
first part of our problem formulation (3.11). This model is relatively slow and one needs some
additional heuristics to make it run faster but such run time concerns are left out of the scope of
this study.

• The second one is our proposed algorithm, which uses only the energy part of our formulation,
which is equivalent to cost function of the ILP_M.

• The last one is the complete genetic algorithm including all three phases described. (Throughout
the rest of the dissertation, the last two methods are called EBAM-energy and EBAM-complete,
respectively.)

Then all results within a test case are averaged and statistical significance level is computed. The
number of instances to solve before terminating the experiment is determined so that the obtained
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results are within ±10% of actual values with a confidence level of 90%.

Computation of a single core graph by using EBAM takes 5 minutes for the smallest core graph (case-
1a) and 20 minutes for the largest one (case-7) on a computer having Intel i5 processor with 4 GB of
RAM. The ILP_M solves most of the cases in reasonable times but for case-6 and case-7 it times out
at 30 minutes due to the high number of links of these test cases.

Table 4.2 presents the details of each test case and the corresponding results. Descriptions for each
column are given below;

• Columns 2 to 4 give the number of cores and number of links in core graph, and size of network
topology, respectively.

• Columns 5 and 6 present degree and density of IP core graph. Degree is the average number
of links per core and density is the ratio of number of links to the number of links of a fully
connected graph of that size.

• Columns 7 to 12 give total energy consumption (in µJ) and maximum buffer utilization (percent-
age) calculated by three different methods.

• Column 13 presents energy difference between ILP_M and EBAM-energy (∆E−e
E (%)) models.

This column gives an opinion about the success of our genetic algorithm in solving the prob-
lem with energy only concern.

∆E−e
E (%) =

EE−e − EILP_M

EE−e × 100

• Similarly, column 14 gives energy difference between ILP_M and EBAM-complete (∆E−c
E (%)),

which implies the energy overhead of our proposed method

∆E−c
E (%) =

EE−c − EILP_M

EE−c × 100

• Finally, column 15 gives the buffer utilization improvement achieved by EBAM-complete,
∆E−c

L

∆E−c
L = LE−c − LILP_M

where EILP_M , EE−e and EE−c are the communication energy consumptions of ILP_M, EBAM-energy
and EBAM-complete, respectively and LILP_M and LE−c are the maximum buffer utilization values of
ILP_M and EBAM-complete models, respectively.

4.5.3 Performance of the Genetic Algorithm in solving EBAM

Table 4.2 contains many results about the value of our energy and buffer aware application mapping
approach and the success of the proposed genetic algorithm.

Our first observation is about buffer utilization when only energy consumption is taken as the cost.
Maximum buffer utilization values of ILP_M and EBAM-energy solutions are considerably high,
which means that there is at least one bottleneck router in the network. Such results verify our state-
ment that the minimum energy only solution does not necessarily generate an acceptable buffer uti-
lization on routers, which in turn supports the main motivation of the thesis work.
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The energy consumption values of ILP_M and EBAM-energy (two methods that use the same cost
function) are observed to be very close (∆E−e

E values). Since the ILP_M solution is a lower bound
of our mapping problem, we can conclude that the implemented genetic algorithm is efficient and
successful. Figure 4.4 presents energy consumptions obtained by two different methods.
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Figure 4.4: Energy overhead

Energy and buffer aware application mapping formulation naturally causes an increase in energy con-
sumption. Results indicate that the energy trade-off (∆E−c

E ) is reasonable, i.e., 9% at the most (case-5).
On the other hand, quite high buffer utilization improvements (∆E−c

L ) were achieved by the proposed
algorithm (up to 26%). So that, probability of generating congested router will be decreased. There-
fore the algorithm is suitable for applications where QoS requirements are strict such as real time
multimedia applications.

In Table 4.2, test cases are divided into groups where each group has same number of cores but various
number of links. Within each test case group, the test case with the highest degree (i.e. test cases 1c,
2c, 3c and 4c) has a lower buffer utilization improvement (∆E−c

L ). This is because when the number
of links increases, the number of intersecting paths also increases. This eventually increases the input
traffic load of some buffers. But even in those cases, the proposed method has an important buffer
utilization improvement (up to 10%). In other words, the method can find a mapping solution which
can distribute the overall traffic more fairly.

Figure 4.5 presents maximum buffer utilization values of all test cases for both ILP_M and EBAM-
complete. In each case, the gap corresponding to the chosen confidence interval obtained at the end of
each experiment are also illustrated on the corresponding bar graph. It is observed for almost all test
cases, that the possible worst value of the buffer utilization of EBAM-complete is better than the best
value of the ILP_M solution.

Figure 4.6 shows some of maximum buffer utilization values, in groups having same number of links
and different core numbers. We observed that for high number of cores, the buffer utilization value
is low. The total traffic injected to the network is directly related to the number of links in the core
graph. Therefore, two test cases with same number of links have same amount of traffic. On the other
hand, increasing number of cores means more routers join to packet transmission. Since the number of
routers that share same amount of traffic increases the input traffic per buffer decreases, which improves
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Figure 4.5: Maximum buffer utilization improvements

Table4.3: Results for increasing network resources

ILP_M EBAM-complete
NRC∗ Energy BUmax Energy BUmax Utilization improvement Energy overhead

(µJ) (%) (µJ) (%) in dB ∆E−c
E (%)

×1 0.8168 90.136 0.8432 79.944 0.52 3.13
×1.5 0.8270 40.841 0.8923 18.696 3.39 7.32
×2 0.8271 9.160 0.8981 1.560 7.69 7.91
×3 0.8243 0.149 0.8563 0.004 16.13 3.73
×4 0.8245 6.21E-04 0.8937 2.18E-07 34.54 7.75

(*) NRC: network resource coefficient to multiple buffer size (b) and service rate (C)

the buffer utilization of the system. Therefore results presented in Figure 4.6 are quantitive proof of
our initial statement which says that distributing the overall traffic across the network will improve the
buffer utilization of the networks-on-chip.

All test case presented in Table 4.2 have low network resources in terms of buffer size (b) and service
rate (C). Those cases results in high buffer utilization values showing the relative buffer utilization
improvements for varying test cases. Another set of experiments has been carried out by increasing
network resources in order to evaluate the efficiency of the proposed algorithm in more relaxed net-
work conditions. Table 4.3 presents results using test case 2c but by multiplying the buffer size and
service rate with a constant coefficient. Results indicate that the EBAM-complete method has better
performance when network resources are increased. In some cases our proposal decreases maximum
buffer utilization a few order of tens. Therefore, it can be concluded that our proposed method will be
useful in satisfying more strict loss rate constraints of an application in relaxed network conditions.
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Figure 4.6: Maximum buffer utilization of EBAM-complete vs. Number of links in core graph.

4.6 Effect of Normalization Coefficients

Cost function of EBAM-Complete contains two terms, i.e. the energy consumption term and the max-
imum buffer utilization term (3.11). Combined optimization of energy and buffer utilization requires
summation of these two terms, but since they have different units, direct summation is not applicable.
Therefore a normalization process is necessary.

The cost function (given in Chapter 3 as (3.11)) can be simply written as;

CostFunction =
1
α

f1 +
1
β

f2 (4.9)

A simple normalization can be performed by dividing each term by its maximum value. In this way,
each term gets a unitless value within [0, 1] interval. The summation will be in [0, 2]. After that
comparison of costs of different mapping solutions will be meaningful.

For the reason described above, EBAM-Complete method contains three phases. First phase optimizes
the problem with respect to energy consumption only and used to used to find maximum value of
energy consumption for a given core graph (α). Similarly, second phase uses only maximum buffer
utilization as the cost function and detects the solution with the highest maximum buffer utilization
value (β). These two values are used as normalization coefficients in the third phase.

Values found in first two phases are not the exact maximum of the terms under concern. But an error
made at this point only effects the normalization process. With a maximum value which is less than
the actual maximum, normalization of the best solution will result slightly higher than unity. That
means the weight of that term will be higher than the other one. The following paragraph quantizes
this variation.

From results of our previous computational study (Table 4.2), it is observed that the difference between
energy terms of the ILP_M and the EBAM-Energy (two methods having same cost function) is 5% at
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most. Assuming that ILP_M is a lower bound for our problem, we can say that first phase will result
with a value E′max = 0.95Emax. (where Emax and E′max are the actual and the computed maximums of
energy term.) Assuming the second phase would find the exact maximum (BU′max =BUmax), the cost
of the best solution will be calculated as;

Cost =
Emax

E′max
+

BUmax

BU′max

Cost =
Emax

0.95Emax
+

BUmax

BUmax
= 1.05 + 1 (4.10)

It is seen from (4.10) that weight of the energy term will be 5% higher than that of buffer utilization
term.

We can conclude that, this deviation is acceptable and cost function (3.11) can be used for combined
optimization of energy consumption and maximum buffer utilization of a NoC system.

4.6.1 Adding Weights to Cost Function

Our cost function can be improved by adding a weight factor to each term. In the original cost function
(3.11) both terms have same weights, i.e. 50%. But in some cases, it may be desired to give some
priority to one of the terms against the other.

In (4.11), it is simply obtained by adding a factor, called gamma, γ, to energy term and (1-γ) to buffer
utilization term. As the γ increases the weight of energy optimization increases, on the other hand low
γ values means higher (dense) buffer utilization optimization. For γ=0.5, (4.11) is identical to (4.9).

CostFunction =
γ

α
f1 +

1 − γ
β

f2 (4.11)

where f1 and f2 represent energy consumption and buffer utilization terms of the original cost function,
respectively.

Effect of adding a weight factor can be examined in a new set of computational studies. For this
purpose, Case 3a, 3b and 3c of previous computational study are repeated with γ=0.3 and γ=0.7
factors. Table 4.4 and Figure 4.7 present obtained results.

It is observed that, as γ increases the energy overhead of the method decreases. In other words, as
γ increases the method gets more “energy sensitive”. As the gamma goes to 1 the ∆E−c

E value will
decrease to ∆E−e

E , i.e. no buffer utilization optimization. Similarly increasing gamma decreases the
buffer utilization improvement, as expected. The methods ILP_M and EBAM-energy have only a
single energy term and therefore they do not have a weight factor in their cost functions. But the
variations within the results of same test cases for these two methods are due to the random generation
of test core graphs and averaging according to confidence interval rules.
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Table4.4: Obtained results for varying gamma

ILP_M EBAM-Energy EBAM-Complete

Core Link Gamma Energy BUmax Energy BUmax Energy BUmax ∆E−e
E (%) ∆E−c

E (%) ∆E−c
L

Case3a 8 14 0.3 0.60 70.1% 0.62 76.2% 0.65 49.0% 2.8% 7.0% -21.1%
Case3a 8 14 0.5 0.61 70.1% 0.62 76.3% 0.65 51.2% 2.9% 6.4% -18.8%
Case3a 8 14 0.7 0.61 69.8% 0.63 74.5% 0.64 53.0% 2.6% 5.3% -16.8%

Case3b 8 16 0.3 0.69 81.7% 0.70 81.2% 0.74 58.2% 2.3% 7.6% -23.5%
Case3b 8 16 0.5 0.70 80.1% 0.71 80.7% 0.74 61.4% 2.3% 6.2% -18.8%
Case3b 8 16 0.7 0.69 81.5% 0.70 81.0% 0.73 62.4% 2.2% 5.9% -19.0%

Case3c 8 20 0.3 0.94 93.5% 0.96 93.5% 0.97 81.7% 2.4% 3.8% -11.8%
Case3c 8 20 0.5 0.92 92.0% 0.94 96.3% 0.96 83.1% 2.0% 4.7% -8.9%
Case3c 8 20 0.7 0.93 92.4% 0.95 94.9% 0.96 86.1% 2.3% 3.0% -6.3%
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Figure 4.7: (a) Energy Overhead, (b) Buffer Utilization Improvement for varying weight factor
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CHAPTER 5

EVALUATION OF EBAM UNDER VARIOUS ROUTING
ALGORITHMS

In this chapter, the proposed mapping algorithm, EBAM, will be evaluated under various routing
algorithms. After introducing NoC routing algorithms briefly, a computational study will be presented
which evaluates the effect of minimizing buffer utilization at mapping stage on the performance of
routing protocol.

5.1 Routing Protocols for Networks-on-Chip

In all packet-based network systems, a routing protocol is used to determine the path that each packet
should traverse form its source to destination. Since energy and area constraints of SoC are very strict,
a routing protocol for NoC should be simple, easy to implement and should not consume too much
energy.

Routing protocols can be divided into two groups. The first group is deterministic routing protocols, in
which all packets between two nodes always traverse the same path determined according to a specific
rule. For example, in XY deterministic dimension-ordered routing, packets are sent in X-direction first
and then in Y-direction. Deterministic routing protocols are widely used in NoC’s because of their
simplicity.

The second group is adaptive routing protocols. Adaptive routing protocols detect the state of the
network and avoid selecting congested nodes while routing packets. Although they have better perfor-
mance in terms of delay and throughput, adaptive routing protocols are prone to deadlock.

A deadlock occurs when a packet is waiting for an output link which is hold by a second packet and
the second packet is waiting for a link which is hold by the first packet. Deadlocks may occur when a
cycle exists among different routes. Therefore in order to avoid deadlocks in a routing protocol some
turns are prohibited, in a way that the remaining turns cannot generate a cycle. In general, this is called
turn model routing [8]. Figure 5.1.a shows all possible 8 turns in a 2D mesh network. Actually, XY
deterministic routing is obtained by deleting 4 of these turns (Figure 5.1.b). Therefore, deterministic
XY is a deadlock free routing protocol. But it can be shown that deleting only 2 appropriate turns is
enough to avoid cycle generation. Following three turn model routing protocols are obtained in this
manner.

• West First Routing: Figure 5.2.a shows possible turns of West First routing. In this protocol
North-to-West and South-to-West turns are eliminated. That means, a packet going to west must
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Figure ***1: (a)All possible turns in 2D mesh network. (b) Allowed turns in XY routing (dashed lines 
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West First Routing: Fig. ***2.a shows possible turns of West First routing. In this protocol North‐to‐

West and South‐to‐West turns are eliminated. That means, a packet going to west must be first 

transmitted to west until it reaches the same horizontal coordinate with its destination. After that a 

last turn (to the North or South) can be performed.  

North Last Routing: In this protocol, North‐to‐West and North‐to‐East turnings are not allowed (Fig. 

***2.b). Therefore any packet which turns to North cannot change its direction anymore. In this 
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Fig. 2 Turn Model routing protocols. (a) West First Routing, (b) North Last Routing, (c) Negative First Routing (dashed lines are forbidden.) 

 

COMPUTATIONAL STUDY  

In this section performance of our proposed mapping method is analysed under various routing protocols with 
the help of a computational study which is similar to the one described in Section ***. The performance metrics 
are the total communication energy consumption and the maximum loss rate seen on buffers. Four routing 
protocols are considered, which are deterministic XY routing and adaptive west-first, north-last and negative-
first routing protocols.  

Test Cases 

For comparison purposes, test cases with different number of cores and links were generated. For each test 
case, the problem is solved by using our algorithm and an integer linear programming (ILP) model found in 
literature.  (ILP solution can be considered as a lower bound of our optimization problem). In order to address 
different network conditions, 6 core graphs with various dimensions and communication requirements are 
considered. These are; 
 Case 1a and 1b: small core graph (6 cores), normal and dense cases, respectively (9 and 15 links). 
 Case 2a and 2b: core graph with 7 cores, normal and dense cases, respectively (14 and 18 links).  
 Case 3: core graph with 8 cores and 16 links, 
 Case 4: core graph with 9 cores and 18 links, 

Figure 5.1: (a)All possible turns in 2D mesh network. (b) Allowed turns in XY routing (dashed lines
are forbidden.)

first be transmitted to west until it reaches the same horizontal coordinate with its destination.
After that a last turn (to the North or South) can be performed.

• North Last Routing: In this protocol, North-to-West and North-to-East turns are not allowed
(Figure 5.2.b). Therefore any packet which turns to North cannot change its direction anymore.
In this scheme, packets going to North are routed deterministically, other can be routed adap-
tively.

• Negative First Routing: This protocol allows all turns except the ones from positive directions
to negative directions. Therefore packets should be routed in negative directions first. (Negative
directions refer to South and West on a 2D coordinate plane.)
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Figure 5.2: Turn Model routing protocols. (a) West First Routing, (b) North Last Routing, (c) Negative
First Routing (dashed lines are forbidden.)

5.2 Computational Study

In this section performance of our proposed mapping method is analysed under various routing proto-
cols with the help of a computational study which is similar to the one described in Section 4.5. The
performance metrics are the total communication energy consumption and the maximum utilization of
the buffers. Four routing protocols are considered, which are deterministic XY routing and adaptive
west-first, north-last and negative-first routing protocols.

5.2.1 Test Cases

For comparison purposes, test cases with different number of cores and links were generated. For
each test case, the problem is solved by using our proposed algorithm and the ILP_M, which can
be considered as a lower bound of our optimization problem. In order to address different network
conditions, 6 core graphs with various dimensions and communication requirements are considered.
These are;

46



• Case 1a and 1b: small core graph (6 cores), normal and dense cases, respectively (9 and 15
links).

• Case 2a and 2b: core graph with 7 cores, normal and dense cases, respectively (14 and 18 links).

• Case 3: core graph with 8 cores and 16 links,

• Case 4: core graph with 9 cores and 18 links,

All test core graphs are considered to be mapped to a 3x3 2D mesh topology. The self-similar traffic
between each communicating core pair is selected randomly from a uniform distribution between 100
and 500 MBps. For each case, the service rate of a router is assumed to be 1000 MBps and buffer
lengths are chosen as 1000 bits.

5.2.2 Methodology

Mapping solutions for all test core graphs are found by both the ILP_M and the EBAM. For each
solution the total communication energy consumption and the maximum buffer utilization values are
recorded. In order to have statistical confidence each computation is repeated many times and the
results are averaged. The number of computations is determined in a way to satisfy that the obtained
results are within ±10% of actual values with a confidence interval of 90%.

5.2.3 Results

Figure 5.3 contains maximum buffer utilization values obtained by two different mapping techniques
and with four different routing protocols, which are deterministic XY and adaptive west-first (WF),
north-last (NL), negative-first (NF), for six different test core graphs.

Maximum buffer utilization values for the mapping obtained by the ILP_M are almost the same for
each routing protocol in each case. That means, when only energy is considered as the cost function of
a mapping formulation, deterministic and adaptive routing protocols have identical buffer utilization.

The main observation from Figure 5.3 is that the deterministic XY protocol has better performance
compared to adaptive ones. For example in Figure 5.3.a the difference between XY and WF is 17%
and the one between XY and NL is 23%. The reason for this result can be explained as follows:
the main objective in buffer aware mapping is to distribute source destination pairs to NoC topology
in a way that there are minimum number of intersecting paths. The method is successful on this
when the paths between communicating pairs are deterministic (like XY routing). But when paths are
determined randomly the method cannot distribute cores fairly. From a different point of view, our
method can be regarded as to perform the main task of a routing protocol. It places communicating
core pairs close to each other for minimizing the energy consumption which is identical to finding the
minimum path between two points. Additionally, it also tries to separate the communication paths for
minimizing buffer utilization which is the main property of an adaptive routing protocol. As a result
our mapping method decreases the effect of routing protocol on NoC performance.

Total communication energy consumption values are almost the same for all routing protocols. This is
because all routing protocols studied in this computational study are “minimum-path” protocols, and
the fact that in our energy model, the energy consumption is only a function of hop count.
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As a result, the computational study has shown that with such a mapping formulation with XY routing,
which is a simple and widely used protocol, shows better buffer utilization performance compared to
adaptive protocols. Adaptive protocols generate extra control traffic and are more complicated, i.e.
require more energy and hardware resources.
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Figure 5.3: Maximum buffer utilization values obtained by two methods for various routing protocols
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CHAPTER 6

SIMULATION STUDY

In previous chapters, the energy and buffer aware application mapping has been defined and it is solved
by the help of genetic algorithm. The efficiency of the algorithm and the improvements of the proposed
mapping technique, in terms of maximum buffer utilization, have been analyzed analytically. This
section evaluates the proposed mapping algorithm by means of a simulation study and computationally.
A self-similar traffic generator module is implemented on a well known NoC simulator (i.e. Nirgam
[53]). The simulator is used to observe the buffer utilization of the routers in a given core graph and
application mappings. Our energy and buffer aware application mapping method is compared with the
ILP_M, which minimizes communication energy consumption only.

The main aim of the simulation study is to observe the buffer occupancies during the whole simulation
time. By doing this, results such as the waiting times at queues and end-to-end delay will be obtained.
By analyzing these results we can then compare the two mapping methods, in terms of packet drop or
blocking rates that they cause, buffer utilization, probability of generating bottleneck routers, etc.

The chapter starts with a review of Fractional Brownian Motion process generation methods. Then the
algorithm, which is used to generate self-similar traffic traces in our simulations, is presented in detail.
The details of open source NoC simulator and our additions are given. Following the presentation of
the steps of the simulation, the chapter concludes with the results of the simulation study.

6.1 Self-Similar Traffic Generation

The analytical model, on which our problem formulation is based, assumes a self-similar traffic on
the on-chip network (Section 3.3). Therefore, the first and one of the most important steps of the
simulation study is to generate a synthetic self-similar traffic. In some network simulators (for either
on-chip or regular networks) self-similar traffic is generated by ON/OFF traffic models, which is not
applicable to our case, since we have defined the self similarity using a three parameter model (namely
H, a and m).

As was described in Section 3.1, mathematical models for expressing self similarity already exist in
the literature. Some of these are Fractional Gaussian Noise, On/Off processes, Wavelet-based models
and Fractional Brownian Motion (FBM). Buffer utilization model used in our study is based on FBM.

Generation of accurate FBM processes is crucial for the simulation of networks that does not obey
traditional network models. In the literature, there are methods which can be used to generate FBM
processes. These methods can be divided into two categories; exact and approximate ones. The
following subsection briefly describes them.
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6.1.1 Fractional Brownian Motion (FBM) Generation

There are some well known algorithms for generating stationary Gaussian processes with a given
autocovariance function. The obtained process then can be used to generate an FBM sample by using
different methods. These are the exact methods for generating FBM processes. The Hosking method
[54] generates fractional Brownian motion samples from a fractional Gaussian noise sample by taking
cumulative sums. The required computation time is of O(N2). Another method uses the Cholesky
decomposition of the covariance matrix, which results in an order O(N3) algorithm [55]. Both methods
compute the same matrix [56]. Another exact method is known as Davies and Harte method [57],
which is based on finding “square root” of the covariance matrix of a stationary discrete-time Gaussian
process. Its complexity is O(NlogN) but it requires a positive definite covariance matrix.

The exact methods are not feasible due to their required CPU times [55]. There are some proposals
in the literature for approximate synthetic FBM generation also. One of them, the spectral simulation
[58] is a method to generate FBM processes using spectral analysis. The idea of the method is to
generate a process in the frequency domain and then transform it to the time domain by using the Fast
Fourier Transform (FFT). A wavelet-based generation method for FBM processes is also proposed in
[59].

Another approximate method is Random Midpoint Displacement (RMD) [55]. The idea behind this
algorithm is to obtain the values of the process at midpoints from the values at endpoints, by simply
averaging and adding a random displacement. Beside its simple implementation and its wide usage
in network traffic engineering domain, the RMD algorithm can directly be applied to our self-similar
model, given in Section 3.3. Therefore, Random Midpoint Displacement algorithm is chosen for
generating traffic traces of our simulation study.

6.1.2 The Random Midpoint Displacement (RMD) Algorithm

The idea behind RMD algorithm is to generate an FBM process inward, by obtaining midpoints using
the values of the endpoints. For example, for generating a trace in the time interval [a, b], the value of
the process at midpoint is

Z[
a + b

2
] =

Z[a] + Z[b]
2

+ displacement. (6.1)

The displacement is a random variable from a zero-mean Gaussian distribution, whose variance is
updated at each iteration according to specific rules.

Figure 6.1 illustrates the operation of the algorithm for the first two steps. The point d1,1 is obtained by
averaging the values of d0 and dT and then adding a random displacement. Similarly all inner points
are obtained by using their outer neighbors. For example, the value of d2,1 is obtained by using d0 and
d1,1. This process is repeated recursively until the desired number of points are obtained. The thick
line in Figure 6.1 represents the FBM signal obtained at the end of two steps.

The obtained signal (Z(t) in Figure 6.1) is an approximate FBM trace. The cumulative arrival process,
A(t), is derived as described in Section 3.1.1.
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Figure 6.1: First two steps of RMD algorithm

A(t) = mt +
√

maZ(t) (6.2)

Then Ã(t), the number of arrivals in time interval [t, t+1], is given by,

Ã(t) = A(t + 1) − A(t)

Ã(t) = (m(t + 1) +
√

maZ(t + 1)) − (mt +
√

maZ(t))

Ã(t) = m +
√

ma((Z(t + 1) − Z(t)) (6.3)

Finally, Ã(t) is our fundamental process constituting our packet injection task of source nodes. The
process contains three parameters of our self-similar traffic model, namely, m, mean rate, a variance
coefficient and H, the Hurst parameter (which is implicit in Z(t) process).

As a nature of FBM, some Ã(t) values may be negative. But since Ã(t) is interpreted as an arrival
process, all values should be non-negative. Therefore, the truncated version of Ã(t) is used as described
in [55]. Furthermore, since it is an approximate method, the obtained Hurst parameter of the algorithm
may differ slightly from the given value, due to the extreme values of random displacements. Those
cases are discarded by using the Hurst parameter estimator tool of Matlab. The generated signals
whose H values are out of ±5% of the input value are not used in our simulation phase.

6.2 The NoC Simulator

Simulation is generally used for observing behavior of a network under various parameters such as
communication protocols or traffic models. Similarly, in Networks-on-Chip research area also sim-
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ulations are employed at different steps of the design flow. But since NoC design problems contain
different aspects such as power consumption or area overhead of various entities (routers, network
interfaces, etc.) well known network simulators (like ns2/ns3 or Opnet) are not suitable. Rather, a
simulator implemented at Register Transfer Language (RTL) level is required.

In the last decade, several NoC simulators appeared in the NoC research area. Two of them, Noxim
[60] and Nirgam [53], are widely used and observed to get lots of citations. Both of them are based
on SystemC, a C++ library which is implemented for describing hardware components in simulation
software. After analyzing both simulators, Nirgam is found to be more suitable for our simulation
study, because of its simplicity for adding a new traffic generator.

NIRGAM (NoC Interconnect RoutinG and Applications’ Modeling) is developed by University of
Southampton, UK and Malaviya National Institute of Technology, India. It is a SystemC based discrete
event, cycle accurate simulator which let the user experiment with different applications and routing
algorithms [53]. The simulator supports mesh, torus, mesh with link failures and irregular topologies
with wormhole switching mechanism. Some of the available routing algorithms are deterministic XY,
source routing, deadlock free odd-even (OE), Q-routing, minimally adaptive XY and DyAd. The simu-
lator has some synthetic traffic generators but lacks a self-similar traffic module, which is implemented
and added to NIRGAM as part of this thesis work.

The Figure 6.2 shows the NIRGAM architecture [53]. The starred modules are updated for our simu-
lation purposes. The additions made on the simulator are explained below;

• A new self-similar traffic generator module is implemented. The module takes as input the
application core graph labeled with the three-parameters of our traffic model at each link. It then
creates the packet inter arrival traces and injects packets according to these trace files.

• The simulator originally does not support the single source, multiple destinations case, which
is frequently encountered in our test cases since number of links are greater than number of
cores in our graphs. Therefore a new mechanism for sending packets from a source to multiple
destinations is implemented. The transactions having the same source are combined prior to
simulation run.

• Finally, during the simulation time entities that are related to our performance metrics are stored
in separate log files. Those files are processed after the completion of simulations to obtain
information about the number of packets waiting in buffers and end-to-end delay observed by
each packet.

The simulations are run on a computer having Intel i5 processor with 4 GB of RAM and Ubuntu
operating system. Each simulation lasts for at least 20000 clock cycles (equivalent to 20000 ns.)
which takes 4-5 minutes for each run. Since increasing number of links in a core graph also increases
the number of packets injected into the network, test cases with higher number of links (from Section
4.5) cause memory allocation problems. Therefore those cases are discarded in the simulation study.
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Figure 6.2: The Nirgam simulator architecture

6.3 Simulation Work

The main purpose of the simulation study is to simulate a core graph using identical traffic traces
under two different mappings, i.e. a mapping found by an energy-only ILP model (“ILP_M”) and the
mapping found by our proposed algorithm. By doing this, queuing behaviors and packet delays of the
same application under different mappings will be observed, and the main motivation and findings of
this dissertation and the results of the computational study presented in Section 4.5.3 will be verified.

This subsection presents the details of the simulation study. The whole simulation work can be divided
into 5 steps. These are

1. Generation of a core graph,

2. Mapping the core graph by using the two different algorithms under consideration,

3. Generation of synthetic traffic with the parameters obtained in step 1,

4. Running the simulation and collecting results for each mapping separately,

5. Combining the results.

Figure 6.3 visualize all simulation steps and the relation between them.

The first step of the simulation is to generate a core graph instance. The core graph contains application
cores, communication links between them and the traffic parameters for each link. The number of cores
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and links are chosen to be consistent with the test cases presented in Section 4.5. Similarly, self-similar
traffic parameters are assigned randomly within the intervals given in Section 4.5.

Once the core graph is generated, the next step is to map the graph to a 3x3 2D mesh topology, as in
the case of previous chapters. At this point, again the ILP_M algorithm is assumed as the lower bound
of the problem and the core graph is mapped by this algorithm. On the other hand, our energy and
buffer aware application mapping algorithm is utilized to solve the same mapping problem. The two
mapping solutions obtained are then used as the inputs of two separate simulation steps.

Before starting the simulations, we need to generate packet intervals. Due to the nature of the RMD
algorithm, we cannot utilize it on-the-fly [55]. The packet inter arrival times are generated as was
described in previous subsection by using the three parameters of the self-similar traffic as inputs.
Once an FBM signal is obtained, its Hurst parameter is checked to be in ±5% of the given value. If it
is not, corresponding FBM signal is discarded and a new one is generated. We observed that a proper
H value is obtained in at most 10 trials.

Step 4 is the main simulation work whose inputs are

• the core graph generated at step 1,

• mapping solution found in step 2,

• traffic trace generated at step 3.

The simulation is run once for each of the two mappings. Then the simulator log files are processed
separately. In the last step, results of these simulations are combined and number of packets in each
source node buffer and the end-to-end delay seen by each individual packet are stored.

6.4 Results of the Simulation Study

The main aim of our application mapping algorithm is to distribute the on-chip traffic to the topology
evenly and reduce the buffer utilization, while considering energy minimization, as well. The algorithm
achieves this by lowering the maximum buffer utilization seen on the whole system. For doing this,
we have defined a probability figure stating the probability of the number of packets in a buffer being
greater than a specific value ( P(Q > b) in (3.6) ).

In the simulation study, instead of trying to obtain a probability figure, we observe the number of
packets in a buffer during the simulation period and compute the ratio of times that the packet number
is greater than a specific threshold. Comparing those ratios against different mappings provides some
information about the traffic distributions. The key point here is that the applied traffic is the same for
both mappings. Different packet distributions under the same traffic pattern can be used to deduce the
characteristics of the mapping solution.

The Nirgam simulator has a back pressure mechanism, which results in packet queues generated at
source node. Although it is not the exact case in our analytical study, it provides an accurate compari-
son between the two mappings. Besides, observing only source nodes (nine nodes at most) makes our
analysis of the simulation results easier.

In the simulator configuration, buffer size is set to 100 packets, which is 10 times greater than our
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Figure 6.4: Number of packet distributions for a sample test case with 6 cores and 15 links

initial buffer size assumption. However, number of packets that is greater than 10 shall mean a buffer
overflow at that router in our study.

6.4.1 Investigation of Buffer Utilization

With the help of the above discussion, first set of graphics are obtained for showing the number of
packets in buffers against simulation time. Figure 6.4 gives an example for test case instances with 6
cores and 15 links. There are 9 figures, one for each tile of a 3x3 topology. Some of the figures have
zero packet numbers during the whole simulation since those nodes do not have an application core
(or traffic generator) assigned. Each figure has two packet distribution lines. The upper one is obtained
with the EBAM mapping and the lower one is obtained with the ILP_M. Numbers next to each line
gives the ratio of time portions that the packet number is higher than 10 to the whole simulation time.
Hereafter this parameter will be called as “RBgt10” (Ratio of Buffer utilization greater than 10).

Average of all RBgt10 values gives an insight about buffer utilization of the NoC with the mapping
under concern. Table 6.1 summarizes those parameters for 10 instance of each test case group with
two different mappings. These 10 instances are selected from a slightly larger set of simulation results
(about 15-20 instances). At this selection, success rate of each test case group (i.e. the number of
instances that EBAM gets better results) are kept constant. Results of all simulations are presented in
Appendix A.1.

As was mentioned before, the aim of the simulation study is not to obtain a loss probability figure,
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which was the case in our analytical work. Instead, in this study we simulate an application core graph
on an on-chip network twice with the same parameters (like the traffic traces and number of cores and
links) except the mapping. Therefore the obtained results verify the positive effect of the proposed
mapping solution on the buffer utilization of NoC. In Table 6.1, in most of cases the proposed method
gets better results, meaning, buffer utilization of NoC’s with mappings obtained by EBAM is lower
than that of ILP_M.

The average RBgt10 values for all test cases decreases with EBAM mappings (difference is between
4%-26%) except case 1c. The core graphs generated in case 1c have 23 links connecting only 6 cores,
i.e. the degree of the graph is near to 4, and 23 out of possible 30 links exist in the graph. This is an
extreme case where the traffic load is very high. In this case, the average RBgt10 value increases only
2.5% in the EBAM case.

In all other cases there are considerable decreases in RBgt10. It is observed that in test cases with
7, 8 or 9 cores, the improvement of the proposed method is higher than that of 6-core graphs. This
is a result of mapping a lower number of cores (6 cores) to a high number of routers (9 routers). In
this case, a deeper analysis of mapping solutions shows that most of the paths are one-hop, since there
are spare routers. In such a case, congestion on routers decreases naturally and the proposed method
provides either no or very low improvements.

On the other hand, as the number of the cores gets closer to number of routers, the improvement level
increases. For 7-, 8- and 9-core cases, it is possible to observe improvement levels that are greater than
20% (Table 6.1). For 9-core case, the number of successful simulations decreases to 6 (out of 10) but
there are still improvements on the average RBgt10 value.

6.4.2 Investigation of End-to-End Delay

Another set of results is about the delay characteristics of the system. For doing this the end-to-end
delay seen by each individual packet is extracted from the simulation log files and minimum, maximum
and average values are stored. Since we utilize XY routing, a time difference between two packets of
the same source-destination pair is due to queue waiting times. Therefore comparing these figures
against the two mappings provides information about how the mapping technique effects the timing
characteristics of an application.

Figure 6.5 is a sample for minimum and average end-to-end delays for two different mappings. The
horizontal axes contains the index for source-destination pairs (i.e. links in the core graph). The bars
represent the minimum and average value of the time passed between packet generation and arrival
to destination node. The maximum values are not shown in figure because in case of high congestion
this value reduces the readability of the figure. Besides, each figure is labeled with the average of all
non-zero average end-to-end delays.

Average end-to-end delay values for 10 instances of each test case group are presented in Table 6.2.
Again instances are selected in a way to provide success rate of all simulations. Results for all instances
are presented in Appendix A.2. The values in Table 6.2 support the buffer utilization results found
earlier (Table 6.1). Again average end-to-end packet delays obtained by EBAM mappings are observed
to be lower than that of ILP_M.

The worst case is case 1c again. Even in this case the average end-to-end delay increase is only 0.8%
with EBAM mappings, and in 5 out of 10 instances the proposed mapping decreases the end-to-end
delays.
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Figure 6.5: Minimum and average end-to-end packet delay for a sample core with 6 cores and 9 links

Table 6.2 shows that in two instances (instance 9 of case 3c and instance 6 of case 4b) the ILP_M
mappings cause congestion somewhere in the network. In both of these cases, EBAM avoids those
congestions and results in reasonable average end-to-end delays.
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CHAPTER 7

CONCLUSION

This chapter concludes the dissertation. A brief summary of the thesis work and its contributions are
presented. It is then followed by future directions and extensions for current study and also for the
application mapping problem of NoC design flow.

7.1 Conclusion

In this study, the application mapping problem of the NoC design flow is tackled from a networking
point of view. The main motivation is to find a mapping solution such that the obtained on-chip
network system has better characteristics in terms of buffer utilization or average number of packets
in buffers. In other words, solutions that degenerate network performance are aimed to be avoided by
using a priori traffic characteristics of the application under concern.

In order to implement traffic aware application mapping, first of all an on-chip network traffic model is
required. Self similarity has been proved to model computer networks better than Poisson-based mod-
els. In previous works, it is also shown that on-chip traffics have self-similar characteristics. Therefore
in this thesis, a buffer utilization analysis under self-similar traffic is performed. Self similarity is a
phenomenon which is hard to express mathematically. Therefore FBM process is used to express self
similarity and average number of packets in a buffer and buffer utilization figures are obtained under
infinite buffer length assumption.

Before an application mapping problem formulation is obtained the effect of self-similar model param-
eters on network performance is analyzed first. Results showed that mapping solutions which minimize
the energy consumption may cause some congested buffers and degenerate the network performance,
especially in dense networks or under heavy traffic loads.

Seeing that possible effect, a novel application mapping formulation, which minimizes the energy
consumption while considering the network dynamics, is proposed. In order to solve this intractable
problem, a genetic algorithm based solution is implemented. Application of the method to various
test cases containing different core graphs and communication requirements demonstrates potential
improvements on network performance in terms of buffer utilization. In order to evaluate the proposed
genetic algorithm, an ILP model is also implemented within the scope of this study and is used as a
lower bound.

In order to evaluate the energy overhead of our algorithm, results of the ILP_M and the EBAM-energy
(two methods that use the same cost function) are compared. The energy consumption of both methods
are observed to be very close. In some cases both methods generate the same result, which shows that
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the implemented genetic algorithm is efficient and successful.

After a series of executions, we observed that our method is capable of solving complex mapping prob-
lems successfully in a reasonable amount of time. We also observed that mapping solutions obtained
by only energy minimization has worse network performance, which emphasizes the necessity of a
mapping model that addresses network dynamics besides energy. The proposed method improves the
buffer utilization figure with a reasonable energy trade-off and is suitable for applications with QoS
requirements.

The initial motivation of the dissertation is also verified by mean of a simulation study. A self-similar
traffic generator, based on a three-parameter FBM model, was implemented. Execution of simulations
showed that NoCs mapped with the proposed algorithm have better performance in terms of buffer
utilization or end-to-end delay. In some simulations the algorithm was proved to avoid congestion
states that was created by energy-only mapping algorithm.

The proposed method is also evaluated under various routing algorithms. XY routing algorithm is a
widely used one in NoC area due to its simplicity and low overhead. However, it has a degenerate
performance when compared with adaptive routing protocols. Our computational study performed on
various routing protocols showed that the proposed mapping algorithm increases the performance of
XY routing. This is because of the twofold optimization mechanism in the algorithm; minimizing
energy at mapping stage is identical to finding the minimum path between nodes. On the other hand,
distributing the traffic evenly and avoiding congestion corresponds to the main task of an adaptive
algorithm. Therefore, together the proposed algorithm makes the routing protocol’s operation easier,
and so, a simple routing protocol, such as XY, can show a better performance.

7.2 Future Work

Future directions for the dissertation contain application of the EBAM to different NoC topologies.
The method should be extended to cover 3D NoC architectures, which is a promising research area.
Efficiency of the proposed method should be evaluated on NoC benchmarks or real NoC applications.
This requires some further study for the estimation of self-similar model parameters.

The present study is an example for taking network related issues into consideration at earlier stages of
the NoC design flow. In this manner, some other steps of the design flow, such as buffer size selection,
routing protocol or congestion/flow control, can be improved or simplified.

Most of the SoCs today perform multiple functions, i.e. the application core graph may change on-
the-fly. This may also require the updating of the mapping dynamically. So, the work presented in this
dissertation should be extended to be able to change the mapping dynamically, with respect to varying
communication requirements or the core graph.

Self similarity is an essential phenomenon in both computer and on-chip networks. Therefore, self-
similar traffic parameter estimation by means of simulation or emulation will be very useful for improv-
ing the current study and also for other network related issues of NoC design like routing, congestion
or flow control.
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APPENDIX A

RESULTS OF SIMULATION STUDY

A.1 Results of Buffer Usage Analysis

In this section, simulation results on buffer usage are presented. Following tables contain average
RBgt10 values of the ILP_M and the EBAM mappings for each simulation instances. The values of
instances in which the proposed method improves the performance are presented in bold.

ID

RBgt10

ILP

RBgt10

ELAM

1000 24,31 17,31

1003 6,49 7,96 Case 1a

1004 22,34 18,50 Number of simulations 16

1005 39,00 21,12 Number of successful cases 10

1006 32,37 45,53 Success rate 0,63

1007 22,38 23,10

1009 21,90 24,42

1010 10,60 11,81

1011 34,38 31,82

1013 29,94 22,67

1015 67,03 41,69

1016 51,48 38,97

1018 33,12 36,10

1027 5,09 3,97

1028 42,12 17,82

1029 28,90 15,82

Average 29,47 23,66
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ID

RBgt10

ILP

RBgt10

ELAM

2001 35,42 31,46

2006 45,55 47,20 Case 1b

2011 16,85 15,61 Number of simulations 11

2015 23,67 17,37 Number of successful cases 9

2016 56,58 34,47 Success rate 0,82

2018 39,89 45,05

2022 29,76 28,36

2030 34,27 18,78

2036 75,61 59,32

2038 48,56 30,92

2047 26,13 24,48

Average 39,30 32,09

ID

RBgt10

ILP

RBgt10

ELAM

3048 37,57 51,18 Case 1c

3055 25,93 42,54 Number of simulations 12

3064 43,37 42,97 Number of successful cases 7

3067 56,62 64,91 Success rate 0,58

3071 67,47 61,93

3075 59,97 51,83

3087 51,20 50,89

3112 64,20 38,81

3128 70,73 69,96

3140 46,98 56,14

3152 69,60 60,62

Average 53,97 53,80
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ID

RBgt10

ILP

RBgt10

ELAM

4001 36,56 32,20 Case 2a

4005 20,49 9,70 Number of simulations 16

4012 34,17 31,44 Number of successful cases 14

4015 44,93 28,74 Success rate 0,88

4016 47,33 27,33

4017 51,33 35,03

4018 39,52 34,84

4026 28,90 26,26

4027 19,83 6,16

4030 21,03 35,84

4035 35,69 19,72

4040 12,83 11,58

4041 21,09 16,27

4044 16,84 23,75

4048 34,09 32,48

Average 30,98 24,76

ID

RBgt10

ILP

RBgt10

ELAM

5002 35,86 30,97 Case 2b

5005 54,74 38,90 Number of simulations 15

5009 49,26 59,92 Number of successful cases 13

5013 40,63 38,01 Success rate 0,87

5018 29,65 19,66

5023 64,89 29,84

5024 20,76 25,21

5026 44,29 30,22

5031 32,62 30,29

5034 39,96 16,75

5035 36,36 34,61

5038 18,04 15,69

5043 22,95 12,20

5047 31,79 19,14

Average 37,27 28,67
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ID

RBgt10

ILP

RBgt10

ELAM

6018 60,08 77,77 Case 2c

6024 80,64 60,42 Number of simulations 11

6027 19,42 15,26 Number of successful cases 8

6032 42,34 43,86 Success rate 0,73

6034 26,78 25,23

6038 13,20 6,61

6041 31,68 37,06

6044 43,20 34,86

6062 54,15 49,06

6073 50,60 36,22

Average 42,21 38,64

ID

RBgt10

ILP

RBgt10

ELAM

7007 23,73 17,03 Case 3a

7008 17,55 19,39 Number of simulations 17

7012 21,18 17,11 Number of successful cases 12

7015 49,18 41,81 Success rate 0,71

7016 59,06 49,55

7017 23,19 25,58

7018 46,91 46,56

7019 28,53 31,08

7023 58,76 58,29

7026 41,02 31,29

7031 26,08 33,72

7033 39,45 39,01

7036 28,92 26,49

7044 9,36 5,43

7048 29,68 27,18

7049 23,88 26,86

Average 32,90 31,02
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ID

RBgt10

ILP

RBgt10

ELAM

8001 31,73 25,33 Case 3b

8006 34,55 50,19 Number of simulations 14

8007 30,31 23,10 Number of successful cases 11

8008 37,03 51,09 Success rate 0,79

8010 44,23 41,73

8016 25,13 25,10

8022 24,08 22,75

8023 33,18 31,97

8025 52,44 55,48

8026 27,62 23,00

8060 67,29 43,96

8072 56,59 29,26

8074 40,86 40,66

Average 38,85 35,66

ID

RBgt10

ILP

RBgt10

ELAM

9004 42,23 56,14 Case 3c

9007 29,08 20,77 Number of simulations 16

9008 13,98 27,18 Number of successful cases 11

9012 23,48 26,48 Success rate 0,69

9016 24,94 24,19

9023 39,46 29,32

9027 37,04 33,12

9039 58,26 56,24

9050 59,82 64,30

9052 42,69 35,27

9060 38,01 36,16

9066 26,34 18,30

9069 28,20 30,31

9074 64,31 32,22

9079 27,10 24,28

Average 37,00 34,28
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ID

RBgt10

ILP

RBgt10

ELAM

10007 37,13 16,93 Case 4a

10018 19,84 13,06 Number of simulations 12

10021 30,74 29,33 Number of successful cases 8

10025 23,12 17,58 Success rate 0,67

10027 35,23 22,78

10028 23,73 22,13

10032 26,09 27,27

10033 37,12 52,48

10044 35,51 9,81

10050 37,55 39,73

10056 31,90 34,59

Average 30,72 25,97

ID

RBgt10

ILP

RBgt10

ELAM

11002 13,37 13,23 Case 4b

11009 29,05 29,41 Number of simulations 12

11022 26,12 28,98 Number of successful cases 7

11029 51,08 47,67 Success rate 0,58

11030 36,10 29,01

11034 46,05 44,52

11042 55,33 52,68

11045 27,59 32,09

11059 51,63 53,82

11064 42,28 46,22

11080 46,36 24,77

Average 38,63 36,58
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ID

RBgt10

ILP

RBgt10

ELAM

12014 57,10 34,73 Case 4c

12015 32,39 39,46 Number of simulations 14

12022 30,70 31,65 Number of successful cases 8

12026 41,71 34,53 Success rate 0,57

12027 53,94 58,07

12033 68,70 48,36

12038 29,91 35,28

12043 59,62 44,64

12055 46,49 24,99

12056 44,56 32,71

12061 40,25 37,17

12062 56,65 61,21

12067 33,51 49,23

Average 45,81 40,93
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A.2 Results of End-to-End Delay Analysis

In this section, simulation results on end-to-end delay are presented. Following tables contain aver-
age end-to-end delay values of both mapping methods for each simulation instances. The values of
instances in which the proposed method improves the performance are presented in bold.

ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

1000 109,50 72,56

1003 27,80 35,07

1004 88,48 52,67 Case 1a

1005 94,70 51,64 Number of simulations 16

1006 105,59 107,26 Number of successful cases 11

1009 85,23 115,23 Success rate 0,69

1010 38,42 39,36

1011 65,50 56,43

1012 14,88 8,86

1013 68,41 53,50

1015 186,04 98,28

1016 129,70 116,56

1020 41,39 48,62

1027 17,37 10,32

1028 163,77 55,16

1029 52,26 32,68

Average 80,56 59,64
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ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

2001 163,23 221,68

2006 112,07 117,56

2011 67,41 49,16 Case 1b

2015 81,98 76,20 Number of simulations 11

2016 755,91 190,78 Number of successful cases 7

2018 119,63 232,76 Success rate 0,64

2022 107,29 108,54

2030 120,80 69,41

2036 230,58 159,91

2038 280,50 122,10

2047 101,18 73,44

Average 194,60 129,23

ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

3001 276,84 189,45

3032 304,54 416,62

3055 82,43 173,07 Case 1c

3064 145,91 147,94 Number of simulations 12

3067 236,65 309,19 Number of successful cases 6

3071 218,52 174,79 Success rate 0,50

3075 244,26 198,37

3087 227,43 214,03

3112 221,49 151,04

3128 380,48 380,48

3140 194,73 195,80

3152 305,58 300,88

Average 236,57 237,64
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ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

4000 95,59 67,46

4001 175,04 125,13

4005 87,96 31,25 Case 2a

4008 145,96 100,80 Number of simulations 16

4011 105,02 85,09 Number of successful cases 13

4012 125,20 116,15 Success rate 0,81

4016 149,51 103,29

4017 266,27 142,09

4027 52,83 26,69

4036 110,69 56,04

4037 94,34 87,69

4040 28,84 29,22

4041 61,68 67,86

4042 117,58 78,51

4044 54,61 74,38

4048 82,99 74,77

Average 109,63 79,15

ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

5001 199,69 134,51

5002 153,94 160,53

5005 301,98 113,34 Case 2b

5018 115,45 88,83 Number of simulations 15

5023 295,09 94,82 Number of successful cases 8

5024 75,86 146,44 Success rate 0,53

5026 60,31 70,36

5028 69,55 79,68

5031 87,06 144,30

5034 228,31 55,28

5035 131,12 127,04

5038 65,64 72,22

5043 92,23 62,71

5047 63,94 51,14

5048 107,45 115,26

Average 136,51 101,10
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ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

6004 191,20 98,27

6018 237,27 315,96

6024 270,93 215,88 Case 2c

6027 33,10 36,61 Number of simulations 11

6032 174,52 198,27 Number of successful cases 7

6034 104,01 119,54 Success rate 0,64

6038 24,39 20,53

6041 202,18 157,15

6044 194,43 161,84

6062 268,08 215,91

6073 206,16 111,95

Average 173,30 150,17

ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

7004 63,09 99,60

7007 78,50 57,23

7008 46,48 51,86 Case 3a

7012 39,53 70,36 Number of simulations 17

7015 245,98 189,91 Number of successful cases 12

7016 318,26 235,48 Success rate 0,71

7017 68,70 82,87

7018 238,04 209,88

7019 117,73 110,57

7023 201,56 126,86

7026 163,64 83,89

7031 80,59 86,34

7033 181,32 170,52

7036 86,37 65,59

7044 34,19 21,63

7048 104,02 95,94

7049 104,53 89,93

Average 127,80 108,73
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ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

8000 148,73 62,39

8001 85,88 90,36

8003 42,19 4,53 Case 3b

8006 90,96 127,68 Number of simulations 14

8007 100,73 116,89 Number of successful cases 9

8008 132,58 157,88 Success rate 0,64

8016 82,64 79,32

8022 116,32 106,00

8023 114,03 108,24

8025 243,84 198,75

8026 54,71 51,33

8060 115,47 97,57

8072 183,59 178,00

8074 114,39 150,25

Average 116,15 109,23

ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

9002 124,77 49,81

9004 185,77 167,41

9007 135,88 88,60 Case 3c

9008 64,18 150,16 Number of simulations 15

9016 96,49 94,12 Number of successful cases 11

9023 150,08 95,01 Success rate 0,73

9027 121,30 109,92

9039 233,94 446,71

9050 250,27 147,28

9052 188,10 101,11

9060 107,48 94,10

9066 79,03 50,08

9069 95,59 96,50

9074 1431,62 118,62

9079 74,14 82,98

Average 222,58 126,16
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ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

10004 120,22 111,02

10007 199,54 64,22

10017 166,12 110,19 Case 4a

10018 75,34 52,70 Number of simulations 12

10021 73,28 64,61 Number of successful cases 8

10025 78,69 64,33 Success rate 0,67

10028 62,06 84,62

10031 140,28 140,28

10033 104,47 138,82

10044 111,31 41,05

10050 92,54 141,40

10056 165,29 116,94

Average 115,76 94,18

ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

11001 230,35 420,83

11002 46,79 67,87

11009 251,23 147,42 Case 4b

11029 169,89 135,95 Number of simulations 12

11030 142,08 123,12 Number of successful cases 6

11034 140,82 143,09 Success rate 0,50

11041 35,01 47,22

11042 1144,24 167,33

11045 62,96 85,13

11059 278,29 198,28

11064 95,73 108,61

11080 214,35 116,42

Average 234,31 146,77
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ID

Avg. Delay (ns)

ILP

Avg. Delay (ns)

ELAM

12005 167,15 184,71

12014 261,15 124,35

12015 124,94 142,70 Case 4c

12022 132,78 101,91 Number of simulations 14

12026 185,81 128,67 Number of successful cases 8

12027 182,74 187,17 Success rate 0,57

12033 249,55 161,55

12043 151,94 132,87

12044 133,70 174,03

12055 120,14 92,95

12056 209,75 179,19

12061 106,98 91,68

12062 207,20 235,62

12067 126,80 223,91

Average 168,62 154,38
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