
IMPROVING SCALABILITY AND EFFICIENCY OF ILP-BASED AND GRAPH-BASED
CONCEPT DISCOVERY SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

ALEV MUTLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JANUARY 2013

Approval of the thesis:

IMPROVING SCALABILITY AND EFFICIENCY OF ILP-BASED AND GRAPH-BASED
CONCEPT DISCOVERY SYSTEMS

submitted by ALEV MUTLU in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pınar Karagöz
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Assoc. Prof. Dr. Pınar Karagöz
Computer Engineering Department, METU

Assoc. Prof. Dr. Tolga Can
Computer Engineering Department, METU

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Assist. Prof. Dr. Osman Abul
Computer Engineering Department, TOBB ETÜ

Date:

I hereby declare that all information in this document has been obtained and presented in ac-
cordance with academic rules and ethical conduct. I also declare that, as required by these rules
and conduct, I have fully cited and referenced all material and results that are not original to
this work.

Name, Last Name: ALEV MUTLU

Signature :

iv

ABSTRACT

IMPROVING SCALABILITY AND EFFICIENCY OF ILP-BASED AND GRAPH-BASED
CONCEPT DISCOVERY SYSTEMS

Mutlu, Alev

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

January 2013, 96 pages

Concept discovery is the problem of finding definitions of target relation in terms or other relation given
as a background knowledge. Inductive Logic Programming (ILP)-based and graph-based approaches
are two competitors in concept discovery problem. Although ILP-based systems have long dominated
the area, graph-based systems have recently gained popularity as they overcome certain shortcomings
of ILP-based systems.

While having applications in numerous domains, ILP-based concept discovery systems still sustain
scalability and efficiency issues. These issues generally arose due to the large search spaces such
systems build. In this work we propose memoization-based and parallelization-based methods that
modify the search space construction step and the evaluation step of ILP-based concept discovery
systems to overcome these problem.

In this work we propose three memoization-based methods, called Tabular CRIS, Tabular CRIS-wEF,
and Selective Tabular CRIS. In these methods, basically, evaluation queries are stored in look-up tables
for later uses. While preserving some core functions in common, each proposed method improves
efficiency and scalability of its predecessor by introducing constraints on what kind of evaluation
queries to store in look-up tables and for how long.

The proposed parallelization method, called pCRIS, parallelizes the search space construction and
evaluation steps of ILP-based concept discovery systems in a data-parallel manner. The proposed
method introduces policies to minimize the redundant work and waiting time among the workers at
synchronization points.

Graph-based approaches were first introduced to the concept discovery domain to handle the so called

v

local plateau problem. Graph-based approaches have recently gained more popularity in concept dis-
covery system as they provide convenient environment to represent relational data and are able to
overcome certain shortcomings of ILP-based concept discovery systems. Graph-based approaches can
be classified as structure-based approaches and path-finding approaches. The first class of approaches
need to employ expensive algorithms such as graph isomorphism to find frequently appearing substruc-
tures. The methods that fall into the second class need to employ sophisticated indexing mechanisms
to find out the frequently appearing paths that connect some nodes in interest. In this work, we also
propose a hybrid method for graph-based concept discovery which does not require costly substructure
matching algorithms and path indexing mechanism. The proposed method builds the graph in such a
way that similar facts are grouped together and paths that eventually turn to be concept descriptors are
build while the graph is constructed.

Keywords: Inductive Logic Programming, Graph, Concept Discovery, Scalability, Efficiency

vi

ÖZ

TÜMEVARAN MANTIK PROGRAMLAMA TABANLI VE ÇİZGE TABANLI KAVRAM KEŞİF
SİSTEMLERİNİN ÖLÇEKLENDİRİLEBİLİRLİK VE VERİMİNİN ARTIRILMASI

Mutlu, Alev

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Ocak 2013 , 96 sayfa

Kavram keşfi, bir ilişki tanımının arkaplan ilişlileri olarak adlındırılan diğeri bazı ilişkiler cinsinden
bulunması problemidir. Kavram keşif probleminde Tümevaran Mantık Programlama (TMP) ve çizge
tabanlı yöntemler yoğun olarak kullanılmaktadır.TMP tabanlı yaklaşımlar bu problemde uzun süredir
hakim bir şekilde kullanılıyor olsa da, bu tür sistemlerin bazı problemlerini çözdüğü için çizge tabanlı
yaklaşılar da son zamanlarda bu alanda popülarite kazanmıştır.

Birçok alanda uygulaması bulunmakla birlikte, TMP tabanlı sistemlerde verimililik ve ölçeklendirile-
bilirlik sorunları mevcuttur. Bu sorunlar genellikle TMP tabanlı sistemlerin oluşturduğu büyük arama
alanlarından kaynaklanmaktadır. Bu çalışmada, tablolama ve paralleleştirme yöntemleri kullanılarak
TMP tabanlı kavram keşif sistemlerinin arama alanı oluşturma ve değerlendirme aşamalarının iyileş-
tirilmesi için yöntemler sunulmaktadır.

Bu çalışmada tablolama yöntemlerini kullanan üç yöntem sunulmuştur, Tabular CRIS, Tabular CRIS-
wEF ve Selective Tabular CRIS. Bu metotlarda, temel olarak, arama alanı değerlendirme sorguları
daha sonra kullanılmak üzere tablolanmaktadır. Her üç metot bazı ortak temel fonksiyonları barındır-
makla birlikte, ardıl gelen öncekinin ölçeklendirilebilirliğini iyileştirmek için bazı yeni yaklaşımlar
sunmaktadır.

Önerilen paralel yöntem, pCRIS, TMP tabanlı sistemlerin arama alanı oluşturma ve değerlendirme aşa-
malarını veri-paralel yöntemler kullanılarak paralelleştirmektedir. Önerilen yöntem fazladan yapılan
işi ve senkronizayon anlarında işlemcilerin bekleme süresini asgari düzeyde tutacak şekilde tasarlan-
mıştır.

Çizge tabanlı sistemler öncelikle TMP tabanlı sistemlerin problemlerinden biri olan yerel plato prob-

vii

lemini gidermek için sunulmuştur. Veriyi etkin bir şekilde ifade edebildiği ve TMP tabanlı sistemlerin
bazı problemerini ortadan kaldırdıgı için yakın zamanlarda, kavram keşfi probleminde, çizge tabanlı
sistemler artan bir popülarite kazanmaktadır. Genel olarak bu tür sistemler ortak bileşen bulma ve
yol bulma sistemleri olarak gruplandırılabilir. İlk kümeye düşen yöntemler ortak bileşenleri bulmak
pahalı algoritmalar kullanmaktadır. İkinci kümeye düşen yaklaşımlar ise çizge içideki yolları tumak
için komplike indeksleme yöntemlerine ihityaç duymaktadır. Bu çalışmada çizge tabanlı kavram keşif
sistemleri için pahalı bileşen bulma algoritmalarına ve komplike indeksleme mekanizmalarına ihtiyaç
duymayan melez bir yöntem sunulmaktadır. Önerilen yöntemde bezer yapılar gruplanmakta ve kavram
tanımlarını oluşturan yollar çizge inşaa edilirken oluşturulmaktadır.

Anahtar Kelimeler: Tümevaran Mantık Programlama, Çizge, Kavram Keşfi, Ölçeklendirilebilirlik, Ve-

rimlilik

viii

To my parents and grandparents

Emine, Niyazi, Ayşe, Ömer

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Professor Pınar Karagöz for giving me the opportunity

to work with her. This dissertation would not be possible without her constructive criticism, positive

attitude and willingness to help. She has always been a great resource for me not only in research

issues, but also in many matters of life. I feel really lucky to be her advisee and once more would like

to express my greatest thanks.

I would like express my thanks to Professor İsmail Hakkı Toroslu and Professor Osman Abul for

serving as members of my thesis progress committee. Their comments were of great value and their

positive attitude have always motivated me.

I would like to thank Professor Ahmet Coşar and Professor Tolga Can for accepting to be members of

my dissertation committee. Their valuable feedback was of great value to finalize this work.

I really owe much to Dr. Yusuf Kavurucu. He supplied me with the material for the start up of this

work. I would like to express my greatest thanks to him for his continuous support and contributions

to this work.

I would like to express my thanks to Professor Meral Özsoyoğlu and Professor Tekin Özsoyoğlu

for their guidance and support during my research visit to Case Western Reserve University, Cleve-

land, OH.

I would like to acknowledge my friends. I would like especially thank to Levent, Gülşah, Ruken,

Özgür, Semra, Burçak, Derya, Özge, Sinan, Sarp, Umut, Hasibe and Xinjian. They made my life fun.

I would to express my special thanks to Çelebi and Ahmet for their great friendship and valuable help

with the department’s high performance computing system, Nar.

Finally, my deepest thanks go to my family. I would like to thank my parents Emine and Niyazi, and

grandparents Ayşe and Ömer, for their love, support and patience. They have always made their best

to provide me with a convenient environment and were the greatest supports of mine in all matters of

life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition and Motivation . 2

1.2 Contributions . 3

1.3 Organization of the Thesis . 5

2 BACKGROUND . 7

2.1 Overview on Inductive Logic Programming 7

2.1.1 Overview of ILP-based Concept Discovery Systems 9

2.1.2 Concept Rule Induction System (CRIS) 10

2.2 Scalability and Efficiency of ILP-based Concept Discovery Systems 13

2.2.1 Related work on Memoization in ILP-based Concept Discovery
Systems . 13

xi

2.2.2 Related work on Parallelization in ILP-based Concept Discovery
Systems . 15

2.2.3 Other Approaches . 18

2.3 Related work on Graph-based Concept Discovery 20

2.3.1 Related Work on Graph-based Concept Discovery 21

2.3.1.1 Path Finding-based Approaches 21

2.3.2 Structure-based Concept Discovery 23

3 MEMOIZATION TO SCALE UP ILP-BASED CONCEPT DISCOVERY SYSTEMS . 25

3.1 Tabular CRIS . 26

3.2 Tabular CRIS-wEF . 30

3.3 Selective Tabular CRIS . 32

3.4 Applicability of the Approach to other Concept Discovery Techniques 36

3.5 Comparison to Other ILP-based Concept Discovery Systems with Memoization 37

4 PARALLELIZATION TO SCALE UP ILP-BASED CONCEPT DISCOVERY SYS-
TEMS . 39

4.1 Data Dependence Analysis . 40

4.2 Framework and Design Issues . 42

4.3 Parallelizing the Search Space Construction Step 42

4.4 Parallelizing the Search Space Evaluation Step 44

5 GRAPH-BASED CONCEPT DISCOVERY . 47

5.1 Proposed Method . 48

5.1.1 Data representation . 49

5.1.2 Method . 49

5.1.3 A Discussion on the Proposed Approach 51

xii

6 EXPERIMENTS . 53

6.1 Experimental Environment . 53

6.2 Evaluation Metrics . 53

6.3 Data Sets . 55

6.4 Evaluation on Memoization-based Technique 56

6.4.1 Tabular CRIS . 56

6.4.2 Tabular CRIS-wEF . 57

6.4.3 Selective Tabular CRIS . 63

6.5 Evaluation on Parallelization Technique . 68

6.6 Evaluation on Graph-based Concept Discovery 74

6.6.1 Learning Capability . 75

6.6.2 Performance Analysis . 75

7 CONCLUSION . 79

REFERENCES . 83

CURRICULUM VITAE . 95

xiii

LIST OF TABLES

TABLES

Table 2.1 Data base and logic programming terminology . 7

Table 2.2 Confidence Query . 12

Table 2.3 Support Query . 12

Table 3.1 Concept descriptors with different renamings . 26

Table 3.2 Concept descriptors sharing different subsets of literals 27

Table 3.3 Concept descriptors mapping into the same confidence query 28

Table 3.4 Concept descriptors mapping into the same support query 29

Table 3.5 Daughter data set . 30

Table 4.1 The daughter dataset . 40

Table 4.2 Support and confidence values of two-literal concept rules 40

Table 4.3 Index ranges that each worker takes in specialization step 44

Table 4.4 Parallel Search Space Evaluation and Pruning Output for the Daughter Example . . . 46

Table 5.1 The elti data set . 49

Table 6.1 Data sets and experimental settings . 55

Table 6.2 Hash Table Hits . 57

xiv

Table 6.3 Running Times. 57

Table 6.4 Running Times at Component Level (hh:mm:ss.s). 58

Table 6.5 Speedup Comparison . 58

Table 6.6 Hash Table Hit Counts . 59

Table 6.7 Memory Consumption in KB . 60

Table 6.8 Running time of the Covering Algorithm, time format ss.s 61

Table 6.9 Comparison of memory consumption of T. CRIS-wEF to other Tabled ILP-based

systems . 61

Table 6.10 Comparison of speedup of Tabular CRIS-wEF to other Tabled ILP-based systems . . 62

Table 6.11 Comparison of accuracy . 62

Table 6.12 Phase Transition Experiments . 63

Table 6.13 Memory Consumption in KB . 63

Table 6.14 Change in memory consumption . 64

Table 6.15 Hash Table Hit Count . 65

Table 6.16 Values of the numerical constant arguments . 66

Table 6.17 Speedup comparison . 66

Table 6.18 Statistical analysis of S-Tabular CRIS’ speedup . 67

Table 6.19 Comparison of memory consumption of S-Tabular CRIS to other Tabled ILP-based

systems . 67

Table 6.20 Comparison of speedup of Selective Tabular CRIS to other Tabled ILP-based systems 68

Table 6.21 Running time for connections to a single DB . 68

Table 6.22 The Best Running Times of the Three Systems . 68

Table 6.23 Running Times of Parallel Components vs Sequential Versions 69

xv

Table 6.24 Running Times for Different Chunk Sizes . 71

Table 6.25 Running Times for Different Min. Chunk Sizes . 71

Table 6.26 Speedup Comparison . 72

Table 6.27 Statistical significance of speedups . 73

Table 6.28 Overall speedup and gain . 74

Table 6.29 Coverage and Accuracy Results . 74

Table 6.30 Coverage and Accuracy Results . 75

Table 6.31 Running Times in Seconds . 76

Table 6.32 Queries . 76

Table 6.33 Family data set results . 77

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Flow Chart of CRIS . 11

Figure 3.1 Relative running times of components of CRIS . 25

Figure 3.2 Initial state of the hash table for support queries . 31

Figure 3.3 State of the support hash table after the modified covering algorithm is run. 32

Figure 4.1 Relative running times of components of Tabular CRIS 39

Figure 4.2 The flowchart of parallel system . 43

Figure 4.3 The flowchart of parallel search space evaluation and pruning algorithm 45

Figure 5.1 Execution of the Algorithm . 48

Figure 6.1 Memory Consumption for Varying Number of Numerical Attributes of the PTE data

set . 64

Figure 6.2 Average running times over five runs for varying number of workers 70

Figure 6.4 Efficiency Results . 71

Figure 6.3 Speedup Results . 72

Figure 6.5 Workers’ Execution . 73

xvii

xviii

CHAPTER 1

INTRODUCTION

Learning from data has always been a challenging research topic in computer science. With the evolu-
tion of data collection and storage tools, the form of learning has also evolved, i.e. from propositional
learners that work data stored in flat tables [126] to relational learners that work on data that is stored
in relational databases [127].

Inductive Logic Programming (ILP) [107] provides a conventional environment to induce user inter-
pretable patterns that define data stored in relational databases. One of the mostly addressed tasks in
ILP is concept discovery [54] where the problem is to find theories that define a specific target relation
in terms of other relations provided as background data. Although ILP-based concept discovery sys-
tems have been applied in various domains with promising experimental results [55, 160, 8], they have
efficiency and scalability issues. Methods such as query transformations [41], limiting the search space
[156] have been proposed to handle these issues. Another frequently faced problem with ILP-based
concept discovery systems is the local plateau issue [133], where refinement operators of ILP are in-
sufficient to improve concept descriptor’s quality. To cope with this problem graph-based approaches
have been introduced. Recently graph-based approaches [66, 69, 164] have become a competitor to
ILP-based approaches in concept discovery problem.

In this dissertation we propose methods to improve scalability and efficiency issues of ILP-based con-
cept discovery systems. The proposed methods are based on memoization and parallelization. Those
methods are implemented as extensions to the ILP-based predictive concept discovery system called
CRIS [81, 83].

In addition to this, we also present a graph based concept discovery algorithm and investigate the effect
of the graph based model and solution on the execution time. For graph-based approach, a subset of
concept discovery problem that includes only predicates with two attributes are considered. The graph
based concept discovery algorithm proposes a new representation framework for data, which is more
compact and human interpretable. The graph based algorithm constructs the concept descriptors while
building the graph from data and does not require any further graph operations to construct the concept
descriptors.

In this chapter we firstly prove a formal definition of ILP-based concept discovery. Later, in Section
1.1, we discuss our motivation. In Section 1.2, we briefly introduce the proposed methods and list our
contributions. The last section presents the outline of this dissertation.

1

1.1 Problem Definition and Motivation

Inductive Logic Programming is a research area at the intersection of machine learning and logic pro-
gramming. It provides powerful tools to infer general patterns that define facts which is stored in
relational format. ILP systems can be classified as descriptive learners or predictive learners. Descrip-
tive ILP systems look for any pattern that can be considered valid based on some user defined metrics.
Predictive ILP systems, which are also called concept discovery systems, look for patters that define
a certain relation in terms of other relations available in the data set. Those auxiliary data is called
background knowledge.

ILP-based concept discovery systems input a set of target instances, a set of background knowledge
and some user-defined criteria to evaluate the concept descriptors and output solution clauses in the
form of Horn clauses [127]. ILP-based concept discovery systems can be as considered as supervised
learners as the target instances are labeled as positive if they belong to the target concept, or negative
if they do not belong to the target concept. An intermediate hypothesis is called strong if it does not
cover all the positive examples, and weak if it covers some negative examples. Such hypotheses are
refined to form the final hypothesis set whose members are expected to be complete and consistent.
The induced set of hypothesis is complete if every positive target instances are modeled by at least one
hypothesis, and consistent none of the negative target instances are explained by any hypothesis.

Although such systems have been applied in several domains and promising results have been reported,
they still sustain efficiency and scalability issues. These problems are mainly due to the evaluation of
large search space such systems build. Costa et. al. [41] reported that almost 90% of the total execution
time of ALPEH [150] is spent on evaluating the search space when run on the Muta data set, and around
80% of the total execution time when run on the PTE data set. Similar results have also been reported
for WARMR by Blockeel et. al. [21]. Several studies have been proposed to improve this step such
as modifying evaluation mechanism [41, 40], putting constraints on structure of allowable concept
descriptors [156]. Although computations in search space formation are inexpensive, this step may
require long running time if there exist to many concept to be considered.

In this study we work on the efficiency and scalability issues of ILP-based concept discovery systems
from two different points. We propose methods that incorporate memoization techniques to improve
the running time of the search space formation step and the search space formation step of ILP-based
concept discovery systems. Applications that employ memoization are vulnerable to memory overflow
problems. In this study we also propose a method that utilizes the memory requirement of ILP-based
concept discovery systems that employ memoization.

The second approach we follow to improve running time of ILP-based concept discovery is paralleliza-
tion. We propose a parametric system that parallelizes the search space formation and the search space
evaluation steps of the ILP-based concept discovery systems. In the proposed parallelization method
user can determine which parts of the ILP-based concept discovery system to run in parallel, minimum
work load required to run the components in parallel, and size of the chunks.

Graphs are powerful data structures to represent relational data and provide tools to induce patterns
that are valid within the graph representation of the data. As concept discovery systems work on
large data sets, representing each fact as a distinct object, i. e. by a single vertex or a group of
vertices, in the graph and employing purely graph oriented approaches to discover patterns may be
computationally expensive, and are hard to be interpret by users. In this study we propose a method
for compact representation of data on a graph structure. The proposed method builds the potential
concept descriptors while building the graph which enables the proposed approach to avoid costly

2

graph substructure discovery process.

1.2 Contributions

In this study we address the scalability and efficiency issues of ILP-based systems and introduce mem-
oization and parallelization based methods to improve them. In addition to this, we also elaborate
the representation and efficiency issues of graph-based concept discovery systems and propose initial
results of a hybrid graph-based concept discovery system. In this section we briefly introduce our
proposed methods and our contributions in turn in order to this section be self-contained.

In this dissertation we propose three methods that incorporate memoization, namely Tabular CRIS,
Tabular CRIS-wEF, and Tabular CRIS-S.

Tabular CRIS is proposed to deal with the repeating queries that are generated within the same iteration.
It stores the evaluation queries and the number of tuples returned by these queries in look-up tables. If
a query is regenerated within the same epoch, its result is directly retrieved from the look-up tables.

Tabular CRIS-wEF is proposed to deal with handling the repeated queries that are generated both
within the same and different iterations. In case of noisy and incomplete data, ILP-based concept
discovery systems perform multiple runs on the data and at the end of each iteration target instances
explained by the currently induced rules are removed from the data set. Tabular CRIS-wEF stores the
tuples returned by queries. Tabular CRIS-wEF modifies the set covering method in such a way that it
does not only removes the explained target instances from the data set but also from the look-up tables.
By this way the look-up tables store the updated results of evaluation queries, and result of a query that
is generated in a previous iteration can be retrieved from the look-up table.

Although Tabular CRIS-wEF improves the look-up table hit count of Tabular CRIS in a great extent,
it introduces memory problems. Although one can not know if a certain evaluation query will be
regenerated in a later step, one can know that a certain evaluation queries will not be. Tabular CRIS-
S proposes policies on what type of evaluation queries to store in look-up tables and for how long.
Tabular CRIS-S also modifies the search space formation step of Tabular CRIS for further memory
utilization.

Although memoization based techniques have widely been studied in ILP-based concept discovery
community, the proposed methods have certain advantages over the reported studies. These can be
listed as follows:

• The proposed approaches focus on the similarity among evaluation queries, while most of the
studies such as [21] focus on the similarity among concept descriptors. Even two concept de-
scriptors differ in structure, such concept descriptors may map into the same evaluation query.
Such cases can not be handled by looking for similarities among concept descriptors.

• Many of the approaches that employ memoization such as [137] look for similarities of the
concept descriptors that are of the same length. Concept descriptors of different lengths may
share the same evaluation query if the longer one differs from the shorter one with literals that
contain unbounded variables. The proposed approaches can handle such situations.

• Due to the large search space and size of the data sets, ILP-based concept discovery systems that
embody memoization usually face memory overflow problems. Several studies implement spe-
cial purpose data structures such as [64] to cope with such issues. Tabular CRIS-S implements

3

look-up table cleaning mechanisms to remove the evaluation queries and their associated results
that are known not to be regenerated.

• Many of the reported attempts modify the underlaying data storage engine, which is Prolog in
most of the cases, to handle the repeating queries. Our approach is coded within the induction
system, which makes it transparent to the user and the underlaying data management and storage
engine.

ILP-based concept discovery systems are well amenable for parallel implementation as their most
time consuming step, the search space evaluation step, consists of executing several evaluation queries
that perform read-only operations on the data set. Write operations are only performed at the end of
each iteration to remove the explained target instances from the data set. The proposed paralleliza-
tion method, called pCRIS, employs master-worker architecture and implements data-parallelization.
pCRIS dispatches evaluation queries among multiple computation units and gathers the results to prune
the search space.

Several studies have been proposed to parallelize the search space evaluation step of ILP-based con-
cept discovery systems. Other than the parallelization techniques, such systems differ in what they split
among the computational units. A class of such systems split the background data among the compu-
tational units and run the same query on smaller data sets and sum up the partial results to calculate
the global solution [98]. Another class of parallel ILP-based concept discovery systems split the target
instances among the computational units, each computational unit then runs an ILP-concept discovery
system to induce concept descriptors that define its share of target instances [45]. In the former class
of approaches, evaluation queries may be run on irrelevant data portions1, while in the later approach
different computational units may run a number of identical queries.

In pCRIS a certain node, called master, generates the evaluation queries and dispatches them among
multiple workers each of which has access to the entire data set. By this way pCRIS avoids the risk of
running an evaluation query on irrelevant data set. The master also maintains a list of the dispatched
evaluation queries in a look-up table, and before sending a new evaluation query to a worker it first
scans it in the list to find out if the query is already sent to some worker. If the scan results with a hit,
the query is not sent to the worker but its result is retrieved from the look-up. By this way pCRIS avoid
execution of repeating queries.

pCRIS also proposes parallelization method to improve running time of search space formation step
of ILP-based concept discovery systems. In the search space formation step, each hypotheses in the
current search space is compared to the every other concept descriptor and unifiable ones are merged
to form the search space of the next level. pCRIS splits the current search space among multiple
computational units in such a way that each worker extends mutually exclusive subsets of the search
space and sends the resulting partial search spaces to the master to form the global search space.

pCRIS has significant advantages over reported studies. These can be listed as follows:

• pCRIS is a parametric system. User can set which steps to run in parallel.

• User can provide pCRIS with minimum work load for parallel execution. This allows pCRIS to
execute certain functions in parallel when work load is high, otherwise in sequential manner. By
this way pCRIS prevents the communication cost overwhelm the computational cost.

1 We call a portion of a data set irrelevant with respect to the evaluation query if the portion does not contain
some of relations with in the query.

4

• While dispatching the evaluation queries among works, pCRIS calculates the size of chunks
dynamically in a monotonically decreasing order. By this way, pCRIS minimizes the waiting
time for the last computational node to finish it calculations.

• pCRIS maintains a central look-up table to avoid execution of the repeating queries.

In this work, we also introduce preliminary results of a new graph based concept discovery system. The
proposed method can be considered as a hybrid graph-based concept discovery system as it modifies
the representation of data in graph structure and induces concept descriptors using path-finding tech-
niques. In graph-based concept discovery systems, generally, a vertex represents a fact or an attribute
of a fact. Edges connect such related vertices. To induce concept descriptors, such systems either
look for frequently appearing substructures, which is the case with substructure-based approaches, or
paths that connect certain type of vertices, which is the case with path finding-based approaches. Dis-
covering frequently appearing substructures requires employing expensive graph operations such as
graph isomorphism. Looking for paths that connect certain type of vertices requires complex indexing
mechanism. In addition, when data is large, representing each fact or an argument of a fact as a distinct
vertex results in large graphs, which may be difficult for human interpretation.

We propose to store the facts that are similar to each other as a single vertex in the graph. In this work,
two facts are considered similar if they are related to the same fact with the same relation. Edges are
labeled after the relation name endpoints are involved with each other. Each vertex in the graph also
stores the its reachability information, i. e. the path to follow, to any other vertex within the graph that
it is related to.

We call the proposed approach hybrid as:

1. In context of substructure-based approach, vertices mimic frequently appearing substructures as
they hold information for similar facts.

2. In context of path-finding approach, to induce the concept descriptors from such constructed
graph, one only needs the reachability information of the vertices he is interested in.

The quality of these concept descriptors are calculated by translating them into SQL queries and exe-
cuting them on the database management engine.

The advantages of the proposed graph-based concept discovery can be listed as follows:

• It provides a compact representation of the data which makes it easier for human interpretation.

• It does not require expensive graph substructure matching algorithms to find similar substruc-
tures as graph is constructed in such a way that similar objects are represented as a single vertex.

• It does not require searching for paths that connect some vertices, but reduces the problem to
searching the graph for the vertex is in interest and retrieving its reachability information to the
other vertices.

1.3 Organization of the Thesis

This dissertation is composed of seven chapter. Chapter 1 introduces the problem definition and the
motivation behind this dissertation. Chapter 2 presents the related work on parallelization in ILP-based

5

concept discovery. In this section we also present the related work on memoization-based approaches
to speed-up ILP-based concept discovery systems. Related work on graph based concept discovery
is also presented in Chapter 2. Chapter 3 introduces Tabular CRIS, Tabular CRIS-wEF, and Tabu-
lar CRIS-S, the memoization-based methods. Chapter 4 introduces parallel version of CRIS, pCRIS.
Chapter 5 presents the proposed graph based concept discovery system. Chapter 6 presents the ex-
perimental results. Experimental results are discussed in comparison to the original implementation
of CRIS and several other state of the art studies. Chapter 7 concludes the dissertation with future
directions.

6

CHAPTER 2

BACKGROUND

In this chapter we firstly introduce ILP-based concept discovery in general and then explain the pre-
dictive ILP-based concept discovery system Concept Rule Induction System (CRIS) in detail as it is
the basis for the proposed methods studied in this thesis. In the subsequent sections we summarize
related work aiming to improve ILP-based concept discovery systems in terms of memoization and
parallelization. Lastly we present related work on graph-based concept discovery.

2.1 Overview on Inductive Logic Programming

With the increasing amount of data collected in relational databases, the need for mining algorithms
that can work on structured data has emerged. One proposed approach [88] is to convert database
tables into a single table and run propositional learners such as C4.5 [129]. However, integrating data
from multiple tables into a single table may result in the loss of information and is not desirable. An-
other approach [93] is to convert propositional learners into versions that directly work with relational
databases. Many classical propositional learners have their relational versions, e.g., relational decision
tree TILDE [23] is an upgrade of C4.5.

Many of the learning algorithms that use relational databases, called Multi Relational Data Mining
(MRDM) algorithms, have their roots in Inductive Logic Programming (ILP) [54]. ILP [107] is a
research area at the intersection of Machine Learning and Logic Programming and provides tools that
infer patterns that are valid for a given set of facts. Such systems usually employ first order logic
as the representation language for the input data, and represent the induced patterns in the form of
Horn clauses. In Table 2.1 we provide the database terminology and its counterpart in Inductive Logic
Programming terminology.

Table2.1: Data base and logic programming terminology

DB Terminology LP Terminology
relation name p predicate symbol p
attribute of relation p argument of predicate p
tuple a1, ..., an ground fact p(a1, ..., an)
relation p a set of tuples predicate p defined extensionally by a set of ground facts
relation p defined as a view predicate p defined intensionally by a set of clauses

ILP systems are divided into two categories based on what they learn: predictive systems and descrip-

7

tive systems. In predictive ILP systems there is a specific target concept to be learned; however there
is no specific goal in descriptive ILP learning [67].

One of the most commonly addressed task in multi relational learners is concept discovery [54], which
falls into the category of predictive learning tasks in context of ILP. ILP-based concept discovery
systems input a set of target instances, a set of background knowledge, and criteria to evaluate the
induced concept descriptors. Such systems, similar to the framework of MRDM, generally employ
first order logic to represent the data and output the concept descriptors in the form of Horn clauses
where the negated literals are from the background data and the positive literal is the target relation.
If recursion is supported, the target relation may participate as a negative literal in the induced Horn
clause.

Two criteria to evaluate the induced patterns in ILP are completeness (Formula 2.1) and consis-
tency (Formula 2.2). A pattern is called complete if it explains all the positive target instances, and
consistent if it explains none of the negative target instances.

complete(B,H, E) = {e ∈ E+|B ∪ H |= e} (2.1)

consistent(B,H, E) = {e ∈ E−|B ∪ H |= ∅} (2.2)

These two metrics are generally quite hard to achieve as the data may contain noise or may be in-
complete [108]. For this reason, in ILP-based concept discovery systems, definitions of completeness
and consistency are relaxed to cover as many positive target instances as possible, and as few negative
target instances as possible, respectively.

ILP-based concept discovery systems generally start with an initial hypothesis and refine it by one
literal at a time until they meet the quality metrics. At each iteration the intermediate concept descrip-
tors are tested against the background data, and based on their quality they are either pruned, further
refined in the next iteration or added into the solution set. If at the end of the iteration some concept
descriptors are added into the solution set, target instances they explain are removed from the target
instance set or are marked as covered. In cases where the input data set is incomplete or noisy, an
ILP-based concept discovery system needs to loop through these steps, namely initial hypothesis gen-
eration, refinement, evaluation, and covering, multiple times until all target instances are covered or
no more concept descriptors can be induced that explain the remaining target instances. Algorithm 1
outlines a generic ILP-based concept discovery system.

Based on the search direction, ILP-based concept discovery systems are classified as top-down systems
and bottom-up systems. Top-down systems start with a set of overly general initial theories that cover
both positive and negative target instances and refine them until they are complete and consistent. In
the context of top-down ILP-based concept discovery systems refinement operators are called special-
ization operators. Concept descriptors are specialized by adding a literal to the body of the concept
descriptor, or applying substitution to the concept descriptors. Such refinement operators include a
refinement graph which is used in MIS [145], and Apriori which is used in WARMR [44].

In bottom-up concept discovery systems, the initial hypothesis is very specific, called the bottom
clause, and models only one positive target instance. In such systems the concept descriptors are
refined by one literal at a time until they meet the quality measures. Generalization of a bottom clause
is achieved by removing a literal from the body of the concept descriptor, or applying inverse substi-
tution to the concept descriptor. Such refinement operators, called generalization operators, include

8

Algorithm 1 Generic ILP-based concept discovery
Require: E: target instances, B: Background knowledge
Ensure: H: Complete and consistent concept descriptors

1: H′′ = ∅

2: while E , ∅ or H′′ , ∅ do
3: H′′ = ∅

4: Start with an initial hypothesis set H′

5: for all h ∈ H′ do
6: refine(h)
7: evaluate(h, B)
8: if good(h) then
9: cover(E, h)

10: H′′ = H′′ ∪ h
11: end if
12: end for
13: H = H ∪ H′′

14: end while
15: RETURN H

relative least general generalization (rlgg) which is used in GOLEM [110], and inverse resolution
which is used in CIGOL [109].

There are also hybrid concept discovery systems, such as CRIS [83], that incorporate properties of
both top-down and bottom-up concept discovery systems.

2.1.1 Overview of ILP-based Concept Discovery Systems

ILP-based concept discovery systems have applications in a wide range of domains. In this section,
we introduce some of the general purpose, state of the art ILP-based concept discovery systems and
provide real-life domains they have been applied on.

WARMR [44, 46] is a top-down descriptive ILP system. It employs APRIORI rule [12] as the search
heuristic to traverse the search lattice. It requires mode declarations [156] to constrain the search
space. WARMR employs support and confidence values to prune the concept descriptors. As being
a descriptive ILP system, it finds frequent patterns instead of concept descriptors. WARMR may
mimic a concept discovery system by outputting frequent patterns that contain a specific target relation
instead of all frequent patterns hidden in the data. WARMR has been applied on problems such as the
carcinogenesis prediction [84] and gene function prediction [36].

GOLEM is a bottom-up ILP-based concept discovery system. It utilizes relative least general gen-
eralization operator [110] to constrain the search space. It requires mode declarations and negative
target instances. GOLEM can not induce recursive concept descriptors. GOLEM has been applied on
problems such as the finite element mesh design [49] and protein secondary structure prediction [111].

CLAUDIEN [130] is a top-down ILP-based system that searches the search space in an iterative deep-
ening manner where clauses are expanded by clausal refinement operator. A clause is pruned in CLAU-
DIEN if it is implied by the current clausal theory and if it contains redundant information. It is also
possible to learn multiple predicates in CLAUDIEN. It has been applied on problems such finite ele-
ment mesh design [48] and functional dependency discovery [92].

9

FOIL [127] is a top-down ILP-based concept discover system. It starts with an overly general hypoth-
esis and refines it by adding a literal to the body at a time. Best refinements are chosen based on the
information gain metric. FOIL requires mode declarations as well. It is capable of learning recursive
concept descriptors. Although FOIL requires negative target instances, they need not necessarily be
explicatively provided. FOIL can infer the negative target instances based on the Closed World As-
sumption [131]. FOIL has been applied on problems such as diterpene structure elucidation [56] and
mutagenicityin nitroaromatic compounds [117].

PROGOL [106] is a top-down ILP-based concept discovery system. It performs a search on refinement
graph which is bounded by a bottom clause. PROGOL needs mode declarations and negative target
instances. PROGOL employs inverse entailment during the refinement step. Clauses are evaluated
based on their f-value. It is capable of learning recursive rules. PROGOL has been applied on real
world problems such as the yeast production process [50], discovery of protein folding signatures
problem [160], traffic problem [55], and part-of-speech disambiguation [8].

ALEPH [150] is very similar to PROGOL in terms of search strategy and refinement operator but
employs more sophisticated evaluation metrics such as pbayes [42] and wracc [125]. ALEPH has been
applied to biochimical data to find hexose binding sites of protein-sugar models [116], word sense
disambiguation [148].

2.1.2 Concept Rule Induction System (CRIS)

CRIS an ILP-based predictive concept discovery systems that employs association rule mining tech-
niques [44] to induce strong and frequent concept descriptors.

CRIS inputs target instances, background data and outputs concept descriptors in the form of Horn
clauses. CRIS directly works on relational data which contains only positive target instances. It
generates the negative target instances based on the Closed World Assumption whenever necessary.
CRIS is a parametric system as it inputs minimum support and minimum confidence values to evaluate
the concept descriptors, and maximum concept descriptor length to limit the search space. Different
than many other ILP-based concept discovery systems it does not require mode descriptions, which
may require strong expertise to be defined, but instead utilizes referential constraints, support and
confidence values to prune the search space. CRIS is able to induce recursive concept descriptors, in
such problems the target instance set is also treated as background data.

Figure 2.1 describes the flow of CRIS. It is composed of four main components.

1. Generalization: In this step the most general two literal concept descriptors, head literal be-
ing the target relation and the body literal being a relation from the background relations, are
generated. For this purpose CRIS examines each argument of every predicate if it should par-
ticipate as a variable argument or a constant argument during the concept induction process.
A nominal argument participates as a constant in the concept induction process if it appears at
least min_sup× number_o f _uncovered_target_instances times in the table, otherwise it is rep-
resented by a variable argument. If an argument is a numeric value, instead of representing it as
a constant it is represented through ranges. To find the feasible ranges, the column is sorted in
an ascending order, partitioned into slots and lower bounding values of the slots are assigned as
representative values.

2. Specialization: In this step concept descriptors of length l are refined to build the concept

10

DATABASE
(Target Relation &
Background Facts)

INPUT
PARAMS
Min_sup
Min_conf
Max_depth Print

hypothesis

Y

N Are all
target
instances
covered?

Calculate feasible values for
head and body relations

GENERALIZATION
Find General Rules (one
head & one body literal)
using absorption.
Depth = 1.

Is Candidate
Rule Set
empty?

N
SPECIALIZATION
Refine general
rules using
APRIORI.
Depth = Depth + 1

Y COVERAGE
Find Solution
Rules
Cover Target
Instances

Is Depth
smaller than
Max_depth?

FILTER
Discard infreq
and un-strong
rules

N

Y

Figure 2.1: Flow Chart of CRIS

descriptors of length l+1. For this purpose CRIS compares each concept descriptor to every
other concept descriptor and unifies the ones that differ by exactly one body literal. CRIS utilizes
Apriori-based specialization operator [12]. A further specialization step is employed that unifies
the existential variables of the same type in the body of the concept descriptor. By this way,
concept descriptors with relations indirectly bound to the head predicate can be captured.

3. Filtering: This is a two fold step. In the first step goodness values of the concept descriptors
are calculated, and later in the second step the concept descriptors are either pruned, refined one
more step or added into the final solution set.

Goodness of a concept descriptor is determined by its support and confidence value. Support of
a concept descriptor is the ratio of number of positive target instances it captures over number
of target instances. Confidence of a concept descriptor is the ratio of number of positive target
instances it captures over number of instances that are deducible by its body literals. To calculate
these values concept descriptors are translated into SQL queries and are run against the input
data.

CRIS employs a two phase pruning mechanism. In the first phase concept descriptors that violate
the referential constraints are pruned. The remaining concept descriptors are pruned based on

11

their support and confidence values:

1. If a concept descriptor has a support value less then minimum support it is pruned.

2. If a concept descriptor has a support higher than minimum support but a confidence value
less than minimum confidence, it is pruned one more step.

3. If a concept descriptor of length larger than 2 has a confidence value less then either of its
parents it is pruned.

4. If a concept descriptor satisfies both the minimum support and minimum confidence it is
added into the final solution set. If more than one concept descriptor is added into the
solution set in this step the best concept descriptor is chosen based on the f-metric [71].

4. Coverage: In this target instances explained by the best concept descriptor found in the previous
are removed from the target instance set.

Support of a concept descriptor is the ratio of the number of positive target instances captured by the
rule over number of target instances.

support(h← b) =
|bindings of variables for h that satisfy h← b|
|bindings of variables for h that satisfy h|

Confidence of a concept descriptor is the ratio of number of positive target instances captured by the
rule over number of instances that are deducible by the body literals in the rule.

confidence(h← b) =
|bindings of variables for h that satisfy h← b|
|bindings of variables for h that satisfy b|

In Table 2.2 and Table 2.3, respectively, we provide support and confidence queries for the concept
descriptor

elti(A, B):-husband(C,A), brother(C,D)

Table2.2: Confidence Query

Nominator SELECT COUNT(CONCAT(r1.name2,’-’,r3.name)
FROM elti r0, husband r1, brother r2, person r3
WHERE r1.name2=r0.name1 AND r3.name=r0.name2 AND r1.name1=r2.name1

Denominator SELECT COUNT(CONCAT(r1.name2,’-’,r3.name)
FROM husband r1, brother r2, person r3 WHERE r1.name1=r2.name1

Table2.3: Support Query

Nominator SELECT COUNT(CONCAT(r1.name2,’-’,r3.name)
FROM husband r1, brother r2, person r3 WHERE r1.name1=r2.name1

Denominator SELECT COUNT CONCAT(r0.name1,’-’,r0.name2)
FROM husband r1, brother r2, elti r0
WHERE r0.is_covered = 0 AND r1.name1=r2.name1 AND r1.name2=r0.name1

12

If the data set contains noisy data, CRIS generally needs to loop through these four steps multiple
times until the remaining number of unexplained target instances drops below a certain threshold or
no concept descriptors can be found that explain the remaining target instances.

2.2 Scalability and Efficiency of ILP-based Concept Discovery Systems

ILP-based concept discovery systems usually build large search spaces mainly due to the refinement
operators. Evaluation of these search spaces is a computationally dense task due to the following
reasons:

1. Evaluation of the queries requires as many table joins as the length of the concept descriptors
and in some cases range queries are executed,

2. Such queries are run against large data sets.

To improve the evaluation several studies based on techniques such as parallelization, memiozation,
query optimization, search space sampling, data set sampling have been proposed with promising
experimental results.

In this section we firstly provide related work on memoization and parallelization to improve ILP-
based concept discovery systems. Later, in Section 2.2.3, we summarize other approaches to improve
search space evaluation process of such systems.

2.2.1 Related work on Memoization in ILP-based Concept Discovery Systems

As mentioned in the previous section ILP-based concept discovery systems usually suffer from effi-
ciency and scalability issues due to the long running search space evaluation step. One of the solu-
tions proposed for this problem is incorporating memoization to ILP-based concept discovery systems.
Memoization is a commonly employed technique to improve running time of a computer program
without modifying its internals [73]. It has widely been employed in query optimization [118, 101],
model checking [51], parsing [124], and compiler design [72].

Memoization is useful in ILP-based concept discovery systems as such systems usually execute repet-
itive evaluation queries, some evaluation queries contain some others as sub-queries or some queries
have common sub-queries.

Query Packs [21] is a memoization based technique proposed for handling queries that share a common
sub-structure. In ILP-based concept discovery systems the search space is generally represented as a
search lattice where hypotheses close to each other in the lattice are also similar in the concept they
represent. Query Packs approach proposes to reorganize the search lattice in such a way that common
parts of the such hypotheses are executed once, and those partial results are used to complete the
evaluation of the hypotheses. Query Packs approach works for hypotheses that are of the same in
length, i. e. for the concept descriptors represented at the same length. The Query Packs approach is
implemented as en extension to standard Prolog engine.

Common Prefixes [137] makes use of iterative hypothesis construction property of ILP-based concept
discovery systems and uses memoization to improve the search space evaluation step. It assumes that

13

if the partial hypothesis C is good in quality, i.e. explains many positive target instances and few
negative target instances, then its refinement will be generated. Common Prefixes saves the result of C
in order to calculate the coverage of its refinement.

The Query Flocks approach [159] is proposed to handle hypotheses that differ only by the constants
they contain in the where clause and are exactly the same in all other aspects. In such cases, the Query
Flocks approach suggests to run a query that performs a full join on the relations that constitute the
from clause and select the desirable query results, i. e. tuples that relate to the constants in the original
query.

Coverage Caching [8] is an other memoization based technique to improve search space evaluation
step of ILP-based concept discovery systems. Similar to Query Packs and Common Prefixes it relies
on the refinement by one literal at a time and generality ordering property on the concept descriptors
based on θ-subsumption. Different than Query Packs and Common Prefixes it stores the non-promising
hypotheses instead of promising ones. Any hypothesis that contains a previously stored non-promising
hypothesis as a substructure is pruned without being evaluated. This method has also been developed
for and implemented as an extension to Prolog engine.

In the Incomplete Tabling approach [136] hypotheses are evaluated until certain number of target
instances are found that make them good enough to be considered in the later iterations and those
target instances are stored in a look-up table. Once a hypothesis is generated that contains a subgoal
that is stored in the look-up table, firstly the refined hypothesis is tested for goodness against the target
instances that satisfy its subgoal. If an evaluation of a hypothesis based on the saved target instances
is enough to consider it as good, it is processed in the next level without further evaluation. If, on the
other hand, the saved target instances fail to consider it as a good hypothesis, it is tested against the
entire data set and if it succeeds its solution set is inserted into the look-up table.

ILP-based concept discovery systems that make use of memoization, and ILP itself, has the potential
of facing memory overflow problems [25]. Such encounters have already been reported in [137] and
[158]. In order to cope with such situations a number of methods and customized data structures have
been proposed.

To deal with memory problems, Query Packs reorganizes the evaluation of the hypotheses that form
the search space in such a way that a query result is used shortly after it is tabled and then removed
afterwards from the look-up table. In the Incomplete Tabling approach when a memory problem
is detected, the least recently entry is removed from the look-up table. Sagonas and Stuckey [141]
propose a method called just enough tabling which offers mechanisms to suspend and resume tabled
evaluation without requiring any re-computations.

AD-trees [103] and RL-trees [60] are two special purpose data structures proposed to deal with mem-
ory requirements of ILP-based concept discovery systems that incorporate memoization. These data
sets are generally employed to store full joins of multiple tables or statistics that describe the data
base. Full joins over multiple tables or statistics, such as counts of certain combinations over table
arguments, that describe the data set generally require large space to store. Such data structures pro-
vide memory efficient representations of such large data by for example storing combinations of table
arguments that appear more than some threshold.

General purpose data structures such as tries [64] and interval lists have also been successfully em-
ployed in ILP-based systems in order to deal with memory issues. Tries are proposed to store hypothe-
ses, while interval list are proposed to store results of the evaluation queries. While utilizing tries in
ILP [32], common prefixes of the hypotheses are stored only once so providing memory utilization in

14

storing the search space. In order interval list be applicable in ILP-based concept discovery systems,
the target instances and the background facts need to be uniquely indexed by integer values. In interval
list, instead of explicitly enumerating the facts that satisfy a certain evaluation query, lower and upper
bounds of the fact indexes are given if they form a sequence in terms of their indexes. Approaches
such as Aleph and IndLog [31] utilize this structure to save the explained target instances.

2.2.2 Related work on Parallelization in ILP-based Concept Discovery Systems

Computational power of single processor computers is far away from meeting requirements of today’s
complex problems that work on huge amount of data. This has led to the development of parallel
systems. In such systems, the problem or the data are divided into smaller pieces, each one is executed
on a separate computing unit, and finally partial results are gathered to build the global solution.

A widely accepted taxonomy to classify the parallel systems is proposed by Flyyn [59]. This clas-
sification is based on the notations of instruction streams and data streams and classifies the parallel
systems as follows:

• Single Instruction Single Data (SISD): This category represents class of machines which have a
single processor which operates a single instruction stream stored in a single memory.

• Single Instruction Multiple Data (SIMD): Systems in this category consists of several processors
that execute the same instruction stream on data stored at multiple memory locations. In such
systems the computing units are directed by common control unit which issues the instructions
to be executed.

• Multiple Instruction Single Data (MISD): In systems that belong to this class, multiple compu-
tational units perform some, not necessarily identical, instructions on a data stored in a single
memory.

• Multiple Instruction Multiple Data (MIMD): This class of systems consist of multiple processing
units that perform some operations on some data stored at multiple locations asynchronously and
independently.

This classification has been extended by Johnson [80] to classify the systems that fall under the MIMD
category. Johnson’s proposal further divides such systems with respect to their memory structure:
shared memory systems and distributed memory systems; and communication mechanism as shared
variables and message passing systems. In shared memory systems the processors are connected to a
globally available memory. In such systems usually the operating system is responsible for memory
coherence. In distributed memory architectures each processor has it own memory and none is aware
of the memory content of the others.

In shared memory architectures, processors are generally connected to the memory through central bus.
This type of architectures usually have a scalability problem to the number of processors. To overcome
such problems, hierarchical architectures are proposed where the processors located on the same board
can access the memory directly, while processors placed on different boards have a controlled access
to each others’ memory.

In distributed memory architectures, it is not feasible to connect processor to each other via a common
bus. So such systems employ message passing messages for communication purposes. Such systems

15

usually scale well with the number of processors. A number of message passing interfaces have been
developed, Open MPI [6], openMP [7], Microsoft Message Passing Interface (MS MPI) [10] just to
mention a few.

Parallelization of a serial code is achieved either by data parallelization or task parallelization. In data
parallel approaches processors access different parts of the data and execute the same set of operations
on it. In task parallel approaches different set of instructions are executed on data. These instructions
need not necessarily access the same data at the same time but may execute instructions on different
parts of the data. Task parallelization generally requires synchronization at some point in the execution.

Even though parallelization provides speedup over sequential codes, it has its own costs. Above all,
parallelization of a sequential code is not always an easy task, and not all serial codes can fully be
parallelized. Parallelization of a serial code requires what is called dependency analysis both on the
instructions executed in the serial code, i.e. task dependency analysis, and the data processed, i.e. data
dependency analysis. Then based on the dependencies the serial code goes through decomposition
process where the problem is divided into small parts, called task. The number of task defined and
their size define the granularity of the parallel code. A parallel code which has large number of task
each of which are small in size is called fine-grained, while a parallel code is called coarse-grained if
tasks are small in number and large in size. An indicator to determine the granularity of a parallel code
is its degree of concurrency which determines the number of tasks running in parallel. Two measured
derived from this indicator are maximum degree of concurrency and average number of concurrency.
The former one refers to the maximum number of parallel tasks running in parallel at any instant
during the execution of the parallel code, and the later one refers to the average number of tasks that
run concurrently throughout the total execution of the parallel code.

Another important concern in parallelization is the so called load balancing issue. Decomposing the
serial code into optimal number and size of tasks in not enough on its own to achieve the maximum
speedup as such tasks may have varying running times on the data. Such variations in the running time
may cause some processors be idle while others still perform some computations. On the other hand,
even if all tasks are finished with processors minimal idle time may be engaged in heavy communi-
cation to transfer the intermediate results among each other. Several data balancing algorithms have
been proposed including static mappings [30] and dynamic mappings [146].

Nevertheless, such systems hardly linearly scale with the number of processors in the systems [15],
and the maximal speedup is bounded by an upper limit. Given enough number of processors, the upper
limit on the speedup a parallel version of program can achieve over its sequential version is determined
by Amdahl’s Law [17]. The law states that if P is the proportion of the serial code that is parallelized,
and (1-P) is the proportion that can not be parallelized hence is executed in a sequential manner, and
N is the number of processors available, the maximum achievable speedup with N processors, S(N), is

S (N) =
1

(1 − P) + P
N

Speeding up ILP-based concept discovery, and data mining in general, through parallelization has
widely been addressed in the literature. Such efforts include parallel exploration of individual hy-
potheses, parallel exploration of the search space, and parallel coverage.

Three parallel algorithms, namely Count Distribution (CD), Data Distribution (DD) and Candidate
Distribution (CaD), are propsed by Agrawal and Shafer [13] to parallelize the APRIORI algorithm.

16

The algorithms are designed to work on distributed memory architecture and the data is evenly dis-
tributed among computers’ disk beforehand. In CD each processor stores the complete strong k −
itemsets and redundancy comes while creating candidate (k + 1) − itemsets. Processors exchange
local candidate (k + 1) − itemsets counts to calculate the global counts. The DD algorithm utilizes
the system’s total memory usage by each processor counting a mutually exclusive subset of candidate
(k + 1) − itemsets. DD has high communication cost due to exchange of local datasets. The CaD al-
gorithm aims to build an asynchronous system by intelligently dividing the candidate itemsets and the
data set among the processors in a such way that they do not require any data exchange for calculating
count values. Han et al. [74] proposes Intelligent Data Distribution (IDD) and Hybrid Distribution
(HD) algorithms to improve shortcomings of CD and DD, respectively. IDD focuses on improving the
communication schema and load balancing problems of DD. It replaces the all-to-all communication
schema of DD with point-to-point communication of processors, and improves load balancing prob-
lem of DD by sending itemsets with specific prefixes to specific processors. Communication becomes
a bottleneck both for DD and IDD as more processors are added into the system or as the number of
candidate k − itemsets decreases. HD aims to overcome this problem by forming equal sized groups
of processors, running IDD within each group to find the local candidate k− itemset counts and finally
running CD to find the global k − itemset counts.

Another work on parallelization of association rule mining is PDM [122], which is similar to the CD
algorithm in nature. While CD exchanges all itemsets, PDM exchanges local frequent itemsets with
count value equal or larger than b s

np
c, where np is the number of nodes and s is the minimum support

value. R. Kufrin [90] proposes parallelization methods for the most computation demanding parts of
the rule generator component of C4.5. Test results show that parallelization has improved running time
by at least 80% over sequential execution time on 8 processors.

Parallel version of CLAUDIEN is presented in [45]. The proposed system is based on shared memory
architecture and explores the search space in a parallel manner. Each processor stores the entire back-
ground knowledge while positive examples and the language bias are split among processors. Each
processor executes an ILP learner on its local data and the final hypothesis is formed by combining the
partial hypotheses.

Matsui et al. [98] proposes three parallelization techniques for FOIL based on splitting the search
space SSP-FOIL algorithm, splitting the training set TSP-FOIL algorithm, and splitting the background
knowledge BKP-FOIL algorithm. All algorithms work in a distributed memory environment and em-
ploy master-worker architecture. In SSP-FOIL, each processor stores the entire training set and the
background knowledge while a subset of the search space. Each processor extends its local search
space, i.e. adding new variables, and sends them to the master for overall evaluation. In TSP-FOIL,
each processor stores the entire hypothesis space, the background knowledge and a subset of the train-
ing examples. Each processor extends its local training set through substituting the newly induced
variables by the constants of the training set. Master collects the new training set items from the work-
ers and chooses the best variables. In BKP-FOIL, the process is the same of the TSP-FOIL algorithm.
A processor extends the local training set according to the background knowledge it has.

In [62], a pipelined data-parallel algorithm for ILP is proposed. The proposed algorithm P2 − MDIE,
parallelizes the well known ILP technique Mode Directed Inverse Entailment (MDIE) [106] by split-
ting examples among p processors and starting p searches in parallel. Learned rules are broadcast to
all processors and tested against their portion of data and rules that evaluate good on all subsets are
added into the final solution set.

Parallel hypothesis search technique for ILP system PROGOL is presented in [119]. They adopt gen-

17

erality function, g(h), as the objective function and extend the notation of compression measure to
f (h) = (1 − λ)g(h) − λn(h) to select which hypothesis to expand. Parallel execution of search is
achieved by parallel exploration of independent hypotheses, parallel hypothesis branching, and paral-
lel counting of g(h) and f(h).

Data-parallel version of ALEPH is presented in [86]. They adopt master - worker architecture where
master is responsible for building the bottom candidate clause and workers are responsible for evalu-
ating the candidate clause against their local portion of data. Upon receiving answers from workers,
master executes clause evaluation loop and proceeds with the next example.

Fonseca et al. [63] reports three parallel ILP systems based on different parallelization strategies. All
algorithms proposed in the study employ master-worker architecture and distributed memory environ-
ment. In Parallel Coverage Test, the pct algorithm, positive and negative training examples are evenly
split among workers. Each worker receives some hypothesis from the master and evaluates them
against on its local data set. Master collects the partial scores and sums them up to calculate the final
score. In Data Parallel Rule Learner, the dplr algorithm, positive examples are evenly divided among
processors while all processors store the entire set of negative examples. All processors start learning
rules according to their data sets, exchange these rules among each other to build the global coverage
values. Each processor removes the examples from its local data set covered by the best rule. In Data
Parallel ILP, the dpilp algorithm, positive and negative examples are divided among processors. Each
processor executes an ILP learning system on its local data set and found rules are combined to form
the global hypothesis.

2.2.3 Other Approaches

Besides memoization and parallelization considerable effort has been conducted on improving the scal-
ability of ILP-based concept discovery systems in terms of query optimization, hypotheses sampling,
data sampling, and lazy evaluation. In this subsection we present such studies.

One of the efforts to improve the search space evaluation of ILP-based concept discovery systems in
term of query optimization is Query Transformations [41, 40]. The Query Transformations approach
does not change the size of the search space, but transforms the evaluation queries in such a way that
they are more efficiently evaluated. The proposed transformations are implemented on Prolog engine.
The first transformation is Theta-transformation, tθ, is achieved by removing the redundant literals
from the goal set. In the second transformation called Cut-transformation, t!, goals that substitute the
body of the clause are split into groups such that solution of a group does not alter the solution of
another. In Prolog manner failure in the evaluation of some goal requires reevaluation of the goals
that precede it in the order. Placing the clauses that are independent from each other into different
groups and evaluating the groups in a sequential manner prevents the reevaluation of some goals that
will not affect the solution of failing goal. The third transformation is Once-transformation, to further
divides the classes formed by t! by collecting prior information about the groundings of variables. The
last transformation defined is Smartcall-transformation, ts, makes use generality ordering of concept
descriptors. It stores the solutions of the parent clauses to evaluate their refinements and only runs the
refined concept descriptors for the newly added variables.

Another effort in improving the search space evaluation step by means of query optimization is Re-
ordering of Literals [154]. In this study literals that form the body of concept descriptor are ordered
based on their selectivity. Evaluation of the search space is achieved by reordering the literals in such
a way that a more selective literal precedes the less selective one in the body of the concept descriptor.

18

Another approach to improve running time of ILP-based concept discovery systems is minimizing the
number of hypotheses to be evaluated. One of the approaches [32] to realize this is based on collecting
statistical information about data set, such as the number of the occurrences of constants in data set
and perform early pruning based on these values. A second commonly employed method to prune the
concept descriptors without evaluating them is achieved by introduction of mode declarations [156].
Mode declarations put constraints on what kind of arguments can appear in what position is the literals.
Although such declarations reduce the number of concept descriptors in a great deal, they are generally
hard to be formulated and may require expertise knowledge. A similar approach for early pruning is
employed by CRIS as well. In CRIS concept descriptors are pruned without being evaluated if they
do not satisfy the data integrity constraints. Compared to mode declarations, pruning based on data
integrity is easier to implement as such knowledge is already available with the relational schema.

Another direction to minimize the number of concept descriptors to be evaluated is based on search
space approximation. DiMaio and Shavlik [47] propose a neural network based method to approximate
the search space. The neural network consist of one fully connected hidden layer. In the proposed
approach the authors define C as the saturated clause that is the bottom clause and C′ as the variablezed
form of C. Inputs of the neural network are ~x, ~y; and the number of literals in C, the number of distinct
variables in C′, number of distinct variables that appears more than once in C′, the average number
of times each variable appears in C′, and the length of the longest variable chain appearing in C′.
~x = {x1, x2, . . . , x⊥i } is defined as follows:

xk =

 1 if literal k is chosen in construction of C
0 otherwise

Definition of ~y is similar to of ~x, yk is 1 if C′ models the target instance, 0 otherwise.

Another study to reduce the search space size is proposed by Srinivasan and Kothari [153]. In their
study, the authors propose a dimensionality reduction procedure to remove the statistically irrelevant
literals from the hypotheses each of which are derived from a bottom clause, C. To represent a hypoth-
esis, C′ as a vector, a literal that exists in C but is missing in C′ is assigned value 0, and 1 otherwise.
The authors employ Principal Component Analysis [11] and RReliefF [135] as dimension reduction
algorithms.

Evaluation of the concept descriptors is costly not only because the queries are complex and are larger
in number, but also because they are tested against large data sets. Methods such as data sampling
[151], have been proposed to cope with the large amount of data. Subsampling and Logical Windowing
are two data sampling methods proposed by Srinivasan [151]. In Subsampling, a user defined number
of instances at random and with replacement are selected from the target instance set, Ei ∈ E =

E+ ∪ E−. At each iteration Ei is updated by removing the explained target instances by the clauses
found in the previous iteration. In the Logical Windowing induces theories are induced and tested on
different sample data sets, respectively, Ei and Traini. Traini is updated by appending the misclassified
target instances in Ei at the end of each iteration, and Ei is updated by removing the correctly modeled
target instances.

Other methods proposed to improve ILP-based concept discovery systems include employing genetic
algorithms [19, 76], stochastic matching [143], lazy evaluation [32], different representation settings
[155], and memory-wise scalability methods [24].

19

2.3 Related work on Graph-based Concept Discovery

Logic based approaches have long dominated the area of multi relational data mining. Another arising
competitor in concept discovery is based on representing the data on graph and employing graph
mining algorithms.

Graphs are one of the fundamental data structures and representation frameworks of computer science.
A graph, G, consists of a non-empty set of vertices or nodes, V, and a set of edge or arcs, E. Edges
connect 2 element subsets of nodes, which are called endpoints of the edges [34]. There also exist
graphs with empty set of vertices, yet no conclusion of official acceptance of such structures is reached
[75].

Formally graph is defined as

G(V, E, f) =

V a set of vertices
E a set edges connecting some pairs of vertices in V
f a mapping function f : E → V × V

Graphs appear as one of the best structures to represent structured data [161] and graph based data
mining has attracted great attention in recent years. Although there exist many different graph data
mining algorithms, they rely on certain theoretical aspects of graphs. Those can be listed as follows:

• Supgraph categories: Algorithms that aim to find substructures within a graph may limit them-
selves with certain types of substructures. An algorithm may look for subgraphs for type of
induced graphs, connected subgraphs or paths.

• Supgraph isomorphism: Algorithms that look for similarities among graph structures needs
somewhat to verify that two structures are identical in some sense. Subgraph isomorphism pro-
vides background for such justifications by providing mappings among the vertices and edges
of the subgraphs.

• Graph invariants: Graph invariant are numerical properties that describe a subgraph in substructure-
wise, such as the number of incoming edges of a vertex but not the label of the edges. They are
widely used for by means of pruning criteria in search of isomorphic structures in a graph. While
such properties are not enough to claim that two substructures are isomorphic they are enough
to claim that they are not.

• Mining measures: Finding frequent substructures is not enough on its own is not enough on
judging whether the found pattern is good enough. Such a frequently appearing substructure
may be overly general or overly specific. This category deals with such goodness measures
which are more or less inherited from the machine learning domain.

• Solution methods: This category deals with the searching techniques on graph data. Such
searches may be complete, heuristic, kernel function based, ILP-based, and inductive database
approaches.

Graph based data mining has been employed in varying domains which include from bioinformatics
binding site extraction of protein molecular surfaces [91, 18], from engineering domain operations
research formulations [138], from WWW domain social network analysis for business purposes [27].

20

Top-down ILP-based concept discovery systems are suspectable to the so called local maxima or local
plateau problems [128, 104]. The local plateau problem is a certain state in the hypothesis space
where traditional refinement operators become insufficient to improve concept descriptors’ quality by
refining a single body literal. Graph based approaches were first introduced by Richards and Mooney
[133] in context of concept discovery to over come this problem. Mooney and Richards propose in
their work to replace the refine by one literal at a time operator of ILP by refine by multiple literals
that form a path among variables of the literals of the arguments. Following the promising results
of this study several a number of other studies [38, 70, 164, 66] have been proposed that have get
their theoretical background from graph data mining algorithms. Theoretical background providing
relationship between graphs and logic are provided in [132, 162, 26, 147].

Graph-based approaches on concept discovery can broadly be classified as substructure based ap-
proaches and path-finding based approaches. The former approach relies on the idea that, if there
exists a concept in the graph data, it should appear as frequent similar substructures. The later one
follows a relatively similar analogy, if a concept exists in a graph data it should appear as frequent,
fixed-length paths that connect literals that form the definition of the concept rule.

Other then the structure they look for, graph based concept discovery systems differ from each other
by means of representation of the data, i. e. labeling the edges, search technique, i. e. depth-first
search vs bidirectional search, noise handling mechanisms, and concept evaluation. In the following
sections we firstly introduce the most common data representation mechanism employed by graph-
based discovery system. Then present the search mechanism such systems utilize, and conclude the
section with summarizing some state-of-the-art graph based concept discovery systems.

2.3.1 Related Work on Graph-based Concept Discovery

Although graph is the general framework to represent data in the graph-based concept discovery, such
systems differ in the type of graphs they work on, what they represent by the vertices and the edges and
their searching algorithms. In this subsection we introduce some state of the art graph-based concept
discovery systems. We group such studies as path finding approaches and structure based approaches.

2.3.1.1 Path Finding-based Approaches

In path finding approaches motivation is to find some paths that connect arguments of the target in-
stances. Such approaches usually employ basic graph traversal algorithms to search for the frequently
appearing paths.

One of the earliest works that introduced graph based approaches to the concept discovery problem is
by Richards and Mooney [133] called Relational Pathfinding. In this approach data is represented as an
undirected graph where nodes represent relation arguments and edges connects vertices whose values
form a fact. Although it is not clearly stated in the study, our understanding is that Relation Pathfinding
allows the target examples be n-ary relations while limiting the background data with binary and unary
relations. The system starts with creating n disjoint graphs where Gi, 1 ≤ i ≤ n and n being the
number of arguments in a target relation, each Gi consisting of a single vertex, say vi. The system also
associates a set of endvalues for each Gi called EV l

i , where i donates the graph a set is associated to
and l donates the number of expansion on the graph. To find the paths that connect the arguments of

21

the target instance, they expand each member of EV l
i with every related fact1 to form EV l+1

i . At the end
of each expansion, the newly formed EV l

i are tested against each other for intersection. The expansion
is stopped when an intersection is a non-empty set or l reaches the user or resource defined bound. An
intersection of any two endvalue set means a path is formed between two target instance arguments are
formed. Partial paths are merged to form the final paths. If more than one final paths are formed, due
to multiple branchings, the best one is selected based on their accuracies.

A recent work on concept discovery on graphs is Relational Paths Based Learning (RBPL) [66]. They
represent the data with a labeled undirected graph, where vertices store facts from the background data
and edges connect nodes that have an argument of the same type and value in common. Edges are
labeled after such shared constants. RBPL defines the following five structures that are employed in
the concept induction process:

• Structured Item Space (SIS): Holds the background data.

• Expanded SIS (E-SIS): This is the enhanced form of the SIS after the application of the domain
theories, if provided any.

• Relational Path (RP): Any path in SIS or E-SIS that connects arguments of a target instance.

• Specialized RR (S-RP): Refined version of RP which contains unary relations that define the
constant in RP.

• Generalized S-RP (S-RP): Generalized version of S-RP which results after variablizing the
constants with unique variables.

To find a path that connect arguments of a target relation, RBPL randomly picks a number of target
instances and constraints the source, s and target, t, nodes based of them. If t is a target instance of
form t(A, B) then s is t(A, *) and the t is p(?, B), where p is a relation from the background data whose
second argument is B. To find the paths, RBPL employs breadth first search. RBPL requires user inputs
to define the number of target instance to find concept descriptors and maximum length of the concept
descriptors.

Although applicability of the domain theories is proposed in [66], they are not implemented in RBPL.
In a later study [65] applicability of the domain theories are elaborated and experimentally discussed.
This later study also discusses the induction of recursive concept descriptors on graph based concept
discovery. To learn recursive rules, the target instances are also included into the SIS.

Both Relational Path Finding and RPBL are of the form of top-down ILP-based concept discovery.
Mode Directed Path Finding [120] is an application of graph based concept discovery on saturated
bottom clauses, i. e. a form of bottom-up ILP-based concept discovery. It differs from Relational Path
Finding and RBPL not only by means of working on saturated bottom clauses, but also by employing
hypergraph as a representation framework instead of graph. Each literal in the body of the saturated
bottom clause is represented as a vertex in the hypergraph. Edges are created based on the input / output
mode declarations among arguments of the literals. The head literal is represented with n distinct
vertices, n being the arity of the head literal, and those vertices are source for the paths. Initially each
path is of length 0, and each path is associated with a list that, Li, 1 ≤ i ≤ n, and contains the value
of the argument the vertex has. Vertices are expanded in a breadth first manner and at the end of each
expansion the newly reachable variables are added into the appropriate list. To find the final concept

1 Two facts are related if they share an argument with same type and value in common

22

descriptors, Mode Directed Path Finding compares each list against the every other list and if finds an
intersection between two lists merges their associated paths. Mode Directed Path Finding aims to finds
all possible paths that connect some head literal arguments, hence it does not stop expanding the graph
once some concept descriptors are found.

Another study that works on saturated bottom clauses and makes use of mode declarations is Head
Output Connected (HOC) Predicate learning. HOC class of clause is a special case of the clauses
induced by general path learning systems. A definite clause h ← b1, ..., bn is said to be HOC iff and
only if

1) Input variables for each body literal are either subset of the head input variables or are found in
a previous body atom, and

2) All its head output variables are instantiated in the body.

In the HOC system, the body literals of the bottom clause form the vertices of the graph. Starting with
length, d, 1, it finds paths of length d that connect the output variables of the head to its input variables.
For this purpose it employs breadth first search, and finds all paths of length at most max_depth which
is a user provided parameter and put upper bound on the length of paths. Once all paths are discovered
they are evaluated based on their compression and the best one is output as final solution clause.

2.3.2 Structure-based Concept Discovery

Graph based concept descriptors that employ substructure-based approaches relay on the idea that a
concept should appear as frequent similar substructure with in graph representation of the data. Such
systems usually start with multiple substructure what contain a single vertex or a single edge and
expand them until some meaningful substructures are discovered. They usually employ some graph
isomorphism algorithms to compare the formed substructures.

SUBDUE [78] is one of the pioneering works in the graph based concept discovery problem. SUB-
DUE inputs a labeled, directed multi graph where arguments are represented as vertices and edges
connect arguments that forms a fact and are labeled after the relation name. Initially SUBDUE as-
sumes each vertex as a valid substructure. At each iteration, each substructure is expanded by one
edge in all possible ways. At the end of each expansion the discovered substructures are evaluated
and pruned based on their goodness at compressing the initial graph. Their compression goodness is
evaluated based on the Minimum Description Length (MDL) [134] value. SUBDUE employs inexact
graph graph matching which is limited by user defined distortions. By this way, SUBDUE can handle
noisy data or may find concepts descriptors for instances that have slight differences in representation.
SUBDUE is similar to WARMR in a way that it does not output a concept descriptor for a specific
target but hierarchies of concepts that are significant within the graph data.

SUBDUECL [69] is an extended version of SUBDUE to discover concept descriptors for a specific
target relation. Basically it employs the same representation framework and core functions with SUB-
DUE, but differs in learning and evaluation mechanism. To evaluate the substructures, it employs set
covering function instead of compression. Quality of a substructure is calculated with respect of the
number of positive target instances it does not cover and negative target instances it covers. It em-
ploys constrained beam search and considers only as many substructures as the size of the beam at a
time. It maintains three lists to keep the substructures, ParentList, and ChildList, BestList. ParentList

23

stores the current substructures, the ChildList stores the substructures that are resultant of expanding
the structures in the ParentList, and the BestList stores a subset of substructures in the ChildList that
model at least one positive target instance, each one limited with item count equal to the beam size. If
after an expansion no substructure is added to the BestList, the beam size is increased to test the other
structures. Initially the ParentList is built up adding all substructures with one vertex, the ChildList is
built up by expanding these initial substructures in the ParentList by one edge in all possible ways.

Graph-Based Induction (GBI) [164] and Concept Learning From Inference Patterns (CLIP) are two
concept learning system based on substructure discovery. The former one embodies the concept in-
duction process of the later one. CLIP relies on the idea that important patterns in the data should
appear as frequently repeating substructures within the graph representation of the data. CLIP uti-
lizes colored directed graph to represent data where each vertex is associated with an edge and several
colors. Colors, in this representation, encode attribute values of a fact the vertex is associated with.
CLIP employs beam search to find patterns and at each iteration compresses the graph with replac-
ing the important substructures with e new vertex. CLIP considers each pair of connected vertices,
called patten, as promising substructure. CLIP maintains a lists called view each of which contain
typical, i.e. similar, patterns. To check the similarity of patterns, different than SUBDUE, it employ
graph identity instead of graph isomorphism. To form concept descriptors, CLIP follows a three step
procedure. In the first step, called pattern modification, CLIP examines each view in turn. Firstly, it
picks each pattern in the currently analyzed view and replaces its occurrences in the input graph with
a new vertex. Then adds every connected vertex pairs into the view and new patterns. In the second
step, called pattern combination, patterns in each updated view are combined to form new view. To
combine views, all possible combinations of patterns are considered. In last step, called pattern se-
lection, best patterns, determined by degree of reducing the graph when replaces by a new vertex, are
selected from each view. In CLIP Quality of a substructure is determined by the number of vertices in
the substructure and the number of different colors attached to the vertices.

GBI basically discusses how different types of problems can be represented as colored directed graphs.
This study is further extended by Matsuda et al. [97] to handle self loops and incorporating new
selection criteria.

24

CHAPTER 3

MEMOIZATION TO SCALE UP ILP-BASED CONCEPT
DISCOVERY SYSTEMS

Although ILP-based concept discovery systems have applications in a wide range of domains such
as bioinformatics [95, 160], biochemistry [116, 50], engineering [48, 58], and enviromental sciences
[22, 55], they still demonstrate scalability and efficiency problems. These deficiencies are generally
due to the evaluation of the large search spaces such systems create. Costa et. al. [41] reported that
ALEPH spends almost 90% of its total execution time on evaluating the search space when run on
the Muta data set, and around 80% of its total execution time on the PTE data set. Similar results are
reported for WARMR by Blockeel et. al. [21].

20

30

40

50

60

70

80

90

100

0

10

20

Muta PTE PTE-5

Search Space Formation Hypothesis Space Evaluation Other

Figure 3.1: Relative running times of components of CRIS

In Figure 3.1 running times for the major components of CRIS are plotted for the Muta, PTE, and
PTE-5 data sets. CRIS also has a long running time for the search space evaluation step as well as for
the search space construction step. These results suggest that improving running time of ILP-based
concept discovery systems is closely related with the improvement in the search space evaluation
process, and CRIS also requires improvements in the search space construction step.

In the following subsections, we propose three techniques to improve running time of ILP-based con-
cept discovery systems. These techniques are based on memoization and are basically about storing

25

some information in look-up tables in order to avoid calculations of already calculated functions or
to improve running time of certain functions. Although the problems these techniques address are
common to many ILP-based concept discovery systems, in this work, we discuss them with reference
to CRIS and implement them as extensions to CRIS.

The first technique, called Tabular CRIS [112], improves running time of CRIS by targeting the search
space formation and evaluation steps of CRIS. Tabular CRIS modifies the removing repeating concept
descriptors function of the search space formation step, and query evaluation mechanism of the search
space evaluation step.

The second technique, called Tabular CRIS-wEF [113, 115], modifies the structure of the concept
evaluation queries and the Covering function in such a way that if a concept descriptor evaluation
query is executed in a prior epoch, its result can still be retrieved from a look-up table.

The third technique, called Selective Tabular CRIS-wEF [114], aims to improve the memory require-
ment of Tabular CRIS-wEF by defining policies on what and how long to store in the look-up tables.

In the following subsections we discuss these methods in detail, and elaborate their applicability to
ILP-based concept discovery systems other than CRIS.

3.1 Tabular CRIS

In ILP-based concept discovery systems, concept descriptors are refined by one literal at a time. Based
on the search direction, a concept descriptor is refined either via a generalization operator or a spe-
cialization operator. Although all concept descriptors of length l are distinct, their refinements may be
identical. Such cases are due to:

1. Different renamings of the arguments of the same type,

2. A concept descriptor of length l may share different literal subsets of size l-2 in the body with
more than one concept descriptor.

In Table 3.1 and Table 3.2 we demonstrate examples for each case. In order to minimize the redundant
computations, such repeating concept descriptors need to be removed from the search space.

Table3.1: Concept descriptors with different renamings

C1 elti(A,B):-wife(C,D), mother(A,C)
C2 elti(A,B):-mother(A,C), daughter(D,A)
C3 elti(A,B):-mother(A,C), daughter(C,A)
C1 ∪ C2

elti(A,B):-wife(C,D), mother(A,C), daughter(D,A)
C1 ∪ C3

In the original implementation of CRIS, firstly all concept descriptors are refined in all possible ways,
then a linear search [85] is employed to remove the repeating concept descriptors.

In order to improve the running time of the search space construction step of CRIS, we propose to
replace the linear search with a hash based search. Once a concept descriptor is refined, before it is

26

Table3.2: Concept descriptors sharing different subsets of literals

C1 elti(A,B):-wife(A,C), son(C,D)
C2 elti(A,B):-wife(A,C), mother(B,D)
C3 elti(A,B):-son(C,D), mother(B,D)
C1 ∪ C2

elti(A,B):-wife(A,C), son(C,D), mother(B,D)
C1 ∪ C3

added into the search space it is searched in a look-up table. Failure in the search means that the
concept descriptor is not generated before, and it is added both into the search space and into the look-
up table. Hit in the search, on the other hand, means that the concept descriptor is already generated
and added to the search space, so no action is taken.

This strategy has a three-fold contribution to the system:

1. Searching for an element in a hash table is a constant time operation,

2. Unnecessary growth of the search space is avoided during its construction step,

3. The extra computational cost for resizing the search space container is avoided.

Algorithm 2 and Algorithm 3 outline the original algorithm and the proposed algorithm, respectively.
The function unifiable tests whether two concepts descriptors are unifiable, and if so the function unify
unifies them. push_back and erase are member functions that adds an element to the end of a vector,
and removes an element at the given position, respectively.

In CRIS, two concept descriptors map into the same confidence evaluation query if they differ only by
the variables that are bounded to the head literal. Similarly, two concept descriptors share the same
support evaluation query if they differ by literals that only have unbounded variables. Such examples
are provided in Table 3.3 and Table 3.4.

Execution of the evaluation queries is one of the most costly process in ILP-based concept discovery
systems. Execution of each such query requires as many table joins as the length of the concept
descriptor, and in some cases range selections on numerical attributes are performed [139, 16]. In order
to avoid executions of the repeating evaluation queries we propose a memoization based technique
which mimics a query cache.

In the proposed approach, before an evaluation query is sent to the database engine, it is first searched
in a look-up table. If the search results with a hit, which means query is executed before, its result is
retrieved from the look-up table. If the search results with a miss, which means the evaluation query is
not executed before, the evaluation query is sent to database engine for execution and is inserted into
the look-up table along with its result. The proposed approach is outlined in Algorithm 4.

Support and confidence evaluation queries are SELECT COUNT type queries that return the number
of the target instance a concept descriptor explains and the number of the back ground knowledge
instances that the body of the concept descriptor explains, respectively. As at the end of each epoch
the target instance set is altered in course of the Covering function, the same support evaluation query
generated at different epochs will have different support values, while the confidence evaluation query
will return its previous result. Due to this fact, support and confidence evaluation queries are stored at

27

distinct look-up tables and the one that stores the support evaluation queries is cleaned up at the end of
each epoch.

Algorithm 2 CRIS: Search Space Construction
Requires:Cl: Vector of concept descriptors of length l
Ensures:Cl+1: Vector of concept descriptors of length l+1

1: for i = 0 to Cl.size − 1 do
2: for j = i + 1 to Cl.size do
3: if (uni f iable(Cl[i],Cl[j])) then
4: Cl+1.push_back(uni f y(Cl[i],Cl[j]))
5: end if
6: end for
7: end for
8: for i = 0 to Cl+1.size − 1 do
9: for j = i + 1 to Cl+1.size do

10: if (Cl+1[i] == Cl+1[j]) then
11: Cl+1[j].erase()
12: end if
13: end for
14: end for

Algorithm 3 Tabular CRIS: Search Space Construction
Require: Cl: Vector of concept descriptors of length l
Ensure: Cl+1:Vector of concept descriptors of length (l+1)

Local Variables: specHash: Look-up table, uC: Concept descriptor
1: for i = 0 to Cl.size − 1 do
2: for j = i + 1 to Cl.size do
3: if (uni f iable(Cl[i], (Cl[j])) then
4: uC = unify(Cl[i], Cl[j])
5: if (f ind(specHash, uC) = NULL) then
6: Cl+1.push_back(uC)
7: specHash.insert(uC)
8: end if
9: end if

10: end for
11: end for

Table3.3: Concept descriptors mapping into the same confidence query

C1 elti(A,B):-husband(C,B),brother(C,D),brother(D,C)
C2 elti(A,B):-husband(C,A),brother(C,D),brother(D,C)

Query
SELECT DISTINCT CONCAT(r1.name2,’-’,r4.name) AS A1
FROM husband r1,brother r2,brother r3,person r4 WHERE r1.name1=r2.name1 AND
r1.name1=r3.name2 AND r2.name1=r3.name2 AND r2.name2=r3.name1

28

Table3.4: Concept descriptors mapping into the same support query

C1 elti(A,B):-wife(A,C),son(D,E)
C2 elti(A,B):-wife(A,C),sister(D,E)

Query
SELECT DISTINCT CONCAT(r0.name1,’-’,r0.name2) AS A1
FROM wife r1,elti r0 WHERE r0.is_covered_aux = 0 AND r1.name1=r0.name1

Algorithm 4 Tabular CRIS: Search Space Evaluation
Require: C: Vector of concept descriptors of length l
Ensure: scC:Vector of strong and confident concept descriptors of length l

Local Variables: supHash: Look-up table for support queries, confHash: Look-up table for confi-
dence queries
for i = 0 to Cl.size do

supSQL = buildSupportQuery(C[i])
it = supHash.find(supSQL)
if (it , null) then

C[i].sup = it.value
else

C[i].sup = executeQuery(supSQL) supHash.insert(supQuery, C[i].sup)
end if
if (C[i].sup ≥ min_sup) then

confSQL = buildConfidenceQuery(C[i])
it = confHash.find(confSQL)
if (it , null) then

C[i].conf = it.value
else

C[i].conf = executeQuery(confSQL)
confHash.insert(confSQL, C[i].conf)

end if
if (C[i].conf ≥ min_min_conf) then

solC.push_back(C[i])
else

scC.push_back(C[i])
end if

end if
end for

As in the search space construction step, in the search space evaluation step look-up tables are imple-
mented as hash tables. In this implementation evaluation queries are treated as key values and the query
results are treated as mapped values. In Algorithm 4, buildSupportQuery and buildConfidenceQuery
functions translate the concept descriptors into corresponding support and confidence queries, respec-
tively. The executeQuery function executes a query and returns its result. it is an iterator addressing to
a particular element in the hash table and its second value corresponds to the query result. The insert
and push_back functions are defined as in Algorithm 3.

29

3.2 Tabular CRIS-wEF

In presence of noisy and incomplete data, which is usually the case with ILP-based concept discovery
systems [53, 20], CRIS usually needs to run multiple epochs to find the entire solution set. At each
epoch such systems discover some concept descriptors with high accuracy and low coverage, and
execute another epoch to discover concept descriptors that explain the remaining target instances [102].

At each new epoch CRIS generates some of the concept descriptors that have been generated in pre-
vious steps and some new concept descriptors. Tabular CRIS can retrieve confidence evaluation query
results of such regenerated concept descriptors from the look-up table, while has to re-execute the sup-
port evaluation queries. In Tabular CRIS-wEF we address the problem of handling results of repeating
queries that are generated at different epochs.

Table3.5: Daughter data set

Target Instances Background Instances
daughter(mary, james) +© father(james, mary) father(david, linda)
daughter(patricia, robert) +© father(paul, susan) father(robert, patricia)
daughter(linda, david) +© father(denis, walter) mother(sandra, maria)
daughter(barbara, helen) mother(amanda, gary) mother(helen, barbara)
daughter(maria, sandra) female(maria) female(linda)
daughter(susan, paul) +© female(barbara) female(mary)

female(patricia)

As an example consider the daughter data set given in Table 3.5, where the first argument of the
predicate is related to its second arguments with the predicate name, i. e. daughter(X, Y) means X is
daughter of Y, and female(X) means that X is a female.

In Figure 3.2 we visualize some of the most general concept descriptors that CRIS constructs at the
first epoch. In the small box on the left we list the most general two literal concepts descriptors and
arrows connect them to their corresponding evaluation queries.

Assuming that minimum support is 0.6 and minimum confidence is 1.0 Tabular CRIS will output s1 as
solution a clause at the end of the first epoch.

s1: daughter(X, Y) :- father(Y, X), female(X)

The target instances explained s1 are marked with +© in Table 3.5. Because not all of the target in-
stances are explained in the first epoch Tabular CRIS will perform a second epoch on the remaining
target instances. In this new epoch Tabular CRIS will generate r1, r2, and r3 as the most general two
literal concept descriptors. Tabular CRIS needs to re-execute the query corresponding to r1 as it has
been removed from the hash table. In order to avoid such computations we propose the following
modifications on Tabular CRIS’s query evaluation and covering steps:

1. Query structure of support queries is changed from SELECT COUNT to regular SELECT state-
ments. With this modification, support evaluation queries return a set of target instances that
satisfy the concept descriptor, and hash table for support queries store < query, resultset >,

30

Concept Descriptor

r1: daughter(A,B):-father(C,D)

r2: daughter(A,B):-mother(C,D)

r3: daughter(A,B):-female(C)

r4: daughter(A,B):-father(B,C)

r5: daughter(A,B):-father(C,A)

r6: daughter(A,B):-father(B,A)

r7: daughter(A,B):-female(A)

….

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

(
b
a
r
b
a
r
a
,
h
e
l
e
n
)

(
l
i
n
d
a
,
d
a
v
i
d
)

(
m
a
r
i
a
,
s
a
n
d
r
a
)

(
m
a
r
y
,
j
a
m
e
s
)

(
p
a
t
r
i
c
i
a
,
r
o
b
e
r
t
)

(
s
u
s
a
n
,
p
a
u
l
)

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
a
t
h
e
r

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
1
=
r
0
.
n
a
m
e
2

(
l
i
n
d
a
,

d
a
v
i
d
)

(
m
a
r
y
,
j
a
m
e
s
)

(
p
a
t
r
i
c
i
a
,
r
o
b
e
r
t
)

(
s
u
s
a
n
,
p
a
u
l
)

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
a
t
h
e
r

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
2
=
r
0
.
n
a
m
e
1

(
l
i
n
d
a
,
d
a
v
i
d
)

(
m
a
r
y
,
j
a
m
e
s
)

(
p
a
t
r
i
c
i
a
,
r
o
b
e
r
t
)

(
s
u
s
a
n
,
p
a
u
l
)

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
a
t
h
e
r

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
1
=
r
0
.
n
a
m
e
2

A
N
D

r
1
.
n
a
m
e
2
=
r
0
.
n
a
m
e

(
l
i
n
d
a
,
d
a
v
i
d
)

(
m
a
r
j
,
j
a
m
e
s
)

(
p
a
t
r
i
c
i
a
,
r
o
b
e
r
t
)

(
s
u
s
a
n
,
p
a
u
l
)

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
e
m
a
l
e

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
1
=
r
0
.
n
a
m
e
1

(
b
a
r
b
a
r
a
,
h
e
l
e
n
)

(
l
i
n
d
a
,
d
a
v
i
d
)

(
m
a
r
i
a
,
s
a
n
d
r
a
)

(
m
a
r
y
,
j
a
m
e
s
)

(
p
a
t
r
i
c
i
a
,
r
o
b
e
r
t
)

(
s
u
s
a
n
,
p
a
u
l
)

Figure 3.2: Initial state of the hash table for support queries

where query is the key and resultset is the mapped value. Confidence evaluation queries still
follow the SELECT COUNT structure.

2. The Covering algorithm is modified in such a way that it not only removes the explained exam-
ples from the target instance set but also removes them from the hash table that stores the support
queries. With this modification in the Covering algorithm, hash table for support queries stores
updated result sets of the stored queries after some solution clauses are found.

In Algorithm 5 we provide the modified version of the Covering function. The inner for loop removes
the explained target instances from the hash table.

Algorithm 5 Tabular CRIS-wEF: Covering Algorithm
Require: E: target instances, BF: Background knowledge, H: Hypothesis
Ensure: E: target instances not covered, Updated Memorized result sets

1: for all e ∈ E do
2: if BF ∪ H |= e then
3: E = E \ e
4: for i = 0 to i < supHash.size() do
5: supHash[i].resultSet=supHash[i].resultSet \ e
6: end for
7: end if
8: end for

31

After running the modified version of the Covering algorithm, the hash table for support queries given
in Figure 3.2 will be as in the Figure 3.3. With this modification on the Covering algorithm, result of
the support evaluation query of r1 can directly be retrieved from the hash table in the second epoch.

Concept Descriptor

daughter(A,B):-father(C,D)

daughter(A,B):-mother(C,D)

daughter(A,B):-female(C)

daughter(A,B):-father(B,C)

daughter(A,B):-father(C,A)

daughter(A,B):-father(B,A)

daughter(A,B):-female(A)

….

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

Q
u

er
y

R
es

u
lt

se
t

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

(
b
a
r
b
a
r
a
,
h
e
l
e
n
)

(
m
a
r
i
a
,
s
a
n
d
r
a
)

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
a
t
h
e
r

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
1
=
r
0
.
n
a
m
e
2

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
a
t
h
e
r

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
2
=
r
0
.
n
a
m
e
1

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
a
t
h
e
r

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
1
=
r
0
.
n
a
m
e
2

A
N
D

r
1
.
n
a
m
e
2
=
r
0
.
n
a
m
e

S
E
L
E
C
T

D
I
S
T
I
N
C
T

C
O
N
C
A
T
(
r
0
.
n
a
m
e
1
,
'
-
'
,
r
0
.
n
a
m
e
2
)

A
S

A
1

F
R
O
M

f
e
m
a
l
e

r
1
,
d
a
u
g
h
t
e
r

r
0

W
H
E
R
E

r
0
.
i
s
_
c
o
v
e
r
e
d
_
a
u
x

=

0

A
N
D

r
1
.
n
a
m
e
1
=
r
0
.
n
a
m
e
1

(
b
a
r
b
a
r
a
,
h
e
l
e
n
)

(
m
a
r
i
a
,
s
a
n
d
r
a
)

Figure 3.3: State of the support hash table after the modified covering algorithm is run.

3.3 Selective Tabular CRIS

Although Tabular CRIS-wEF improves hash table hit count of Tabular CRIS around 30% on the aver-
age, it introduces certain costs over Tabular CRIS:

1. The modified Covering function requires longer execution time.

2. Tabular CRIS-wEF requires more memory as it stores a number of tuples for each support eval-
uation query instead of a single numeric value,

3. Additional memory requirement, which indeed is inherit from Tabular CRIS, is for the hash
tables employed in the search space construction step for removing the repeating concept de-
scriptors.

As the experimental results show that the extra time introduced by the modified Covering function is
very small, and even negligible for the experiments that have long running times, we leave off this
issue.

32

In Selective Tabular CRIS we focus on the increased memory requirement of Tabular CRIS-wEF and
propose policies to improve the memory consumption. Tabular CRIS-wEF can be considered as a
greedy memoization approach as

1. It never removes a query from the hash tables even though some of them will never be generated
again,

2. It never removes a refined concept descriptor from its hash table, till the end of the epoch, even
though some generated refinements will never be generated again after a certain point.

During the generalization step, CRIS considers each argument of a predicate individually and decides
on the values it can have during the concept induction process. To find feasible values for nominal
arguments, CRIS executes the query given in (3.1).

SELECT a FROM t
GROUP BY a HAVING COUNT(*) >=(min_sup×num_ucv_ins)

(3.1)

Argument values that satisfy this query participate both as constants and as variables in the concept
induction process, others are substituted with variables.

Lemma 3.3.1 Assume that cp
j is the set of the nominal arguments that qualify to be represented as a

constant for predicate p at epoch j. Since the number of uncovered target instances decreases at the
end of each epoch, cp

j will be a subset of cp
k , k > j, which means concept descriptors generated at

epoch j will be regenerated at epoch k.

Searching for feasible constants for numerical values is not appropriate due to the support and confi-
dence thresholds. For this reason, feasible ranges are given through less than / greater than operators.
To find the feasible range values, CRIS sorts a table in ascending order based on the numerical ar-
gument, partitions the table into slots using the equation given in (3.2), and uses the lower bordering
value of each slot as a feasible numerical constant.

c × k ×
#uncovered_target_instances

#target_instances
, 0 ≤ k ≤ 1.0 (3.2)

where c is the cardinality of the table, and k is a user defined constant to determine the width of the
slots.

Lemma 3.3.2 Equation (3.2) states that width of the slots for the numerical values is determined
by the number of uncovered target instances. Once some solution clauses are found, width of the
slots changes, and hence the representative values, which means that an argument with a previous
representative numerical value will not be generated again.

To refine a concept descriptor, Tabular CRIS-wEF tests each concept descriptor against every other
concept descriptor that succeeds it in lexicographical order and unifies the pairs that differ by exactly
one body literal. If many concept descriptors succeed to pass the min_sup threshold, employing hash
based search in the specialization step may introduce memory problems.

33

Lemma 3.3.3 Let Z be the set of all possible generalizations of the predicates, and p, q, r ∈ Z; q ,
p; and r succeeds p and q in lexicographical order. Suppose that cp, cq, and cr are three concept
descriptors of length l, l > 1, that has p, q, and r as a predicate in their bodies. Any refinements of
{cp, cr} will differ from the refinements of {cq, cr} with a set a predicates that contain p.

Based on the Lemmas defined above we propose the following four policies to improve the memory
consumption of Tabular CRIS-wEF.
Policy 1: A concept descriptor that contains only variable arguments should permanently be kept in
the hash table.
Policy 2: A concept descriptor that contains variable arguments and nominal constant arguments
should permanently be kept in the hash table.
Policy 3: A concept descriptor that contains a numerical constant should be kept in the look-up table
until the end of the epoch.
Policy 4: Refinements of a concept descriptor should be kept in a look-up table until it is tested for
every other concept descriptor.

Policy 3 changes the greedy memoization behavior of the search space evaluation step of Tabular
CRIS wEF to selective behavior, and Policy 4 improves the memory consumption of the search space
construction step of Tabular CRIS-wEF.

Algorithm 6 outlines the algorithm for search space evaluation under selective memoization. The
containsNumConst function checks if the concept descriptor has literal with a numerical constant ar-
gument. Based on the return value of this function, queries and their result sets are stored and searched
either in temporary hash tables, namely sHashT and cHashT, or permanent hash tables, namely sHash
and cHash. The buildSupportQuery, buildConfidenceQuery, executeQuery, find, insert functions are
as defined for Algorithm 4.

sHash, cHash, sHashT, cHashT are globally defined hash tables to store queries. Support queries
that comply with Policy 1 and Policy 2 are stored in the sHash, the ones that comply with Policy 3
are stored in the sHashT. Similarly, confidence queries that contain numerical constant argument are
stored in the cHashT table, and the others are stored in the cHash table. The temporary hash tables are
cleaned once some solution clauses are found.

Algorithm 7 outlines the modified specialization function. The unifiable, unify, find, inset, and push_back
functions are as defined in Algorithm 3. The clear functions cleans the content of a hash table.

34

Algorithm 6 S-Tabular CRIS: Evaluation
Requires:Cl: Vector of concept descriptors of length l
Ensures:sC: Vector of concept descriptors of length l+1

1: for i = 0 to C.size − 1 do
2: flag = 0
3: q=buildSupportQuery(C[i])
4: if containsNumConst(C[i]) then
5: if sHashT. f ind(q) = NULL then
6: sup=executeQuery(q)
7: sHashT.insert(q, sup)
8: else
9: sup=find(sHashT, q)

10: end if
11: if sup > min_sup then
12: q=buildConfidenceQuery(C[i])
13: if cHashT. f ind(q) = NULL then
14: conf=executeQuery(q)
15: insert(cHashT, q, conf)
16: else
17: conf=cHashT.find(q)
18: end if
19: if con f > min_con f then
20: solC.puhs_back(C[i]
21: else
22: sC.push_back(C[i])
23: end if
24: end if

25: else
26: if sHash. f ind(q) = NULL then
27: sup=executeQuery(q)
28: sHash.insert(q, sup)
29: else
30: sup=sHash.find(q)
31: end if
32: if sup > min_sup then
33: q=buildConfidenceQuery(C[i])
34: if cHash. f ind(q) = NULL then
35: conf=calculateSQL(q)
36: cHash.insert(q, conf)
37: else
38: conf=confHash.find(q)
39: end if
40: if con f > min_con f then
41: solC.push_back(C[i])
42: else
43: sC.push_back(C[i])
44: end if
45: end if
46: end if
47: end for
48: RETURN sC

Algorithm 7 Selective Tabular CRIS: Specialization
Require: Cl: Vector of concept descriptors of length l
Ensure: Cl+1:Vector of concept descriptors of length (l+1)

Local Variables: specHash: Look-up table
1: for i = 0 to C.size − 1 do
2: for j = i + 1 to C.size do
3: if uni f iable(C[i], (C[j])) then
4: uC = unify(C[i], (C[j])
5: if specHash. f ind(uC) = NULL then
6: Cl+1.push_back(uC)
7: specHash.insert(uC)
8: end if
9: end if

10: end for
11: specHash.clear()
12: end for
13: RETURN Cl+1

35

3.4 Applicability of the Approach to other Concept Discovery Techniques

Tabular CRIS, Tabular CRIS-wEF, and Selective Tabular CRIS are proposed to improve running time
of ILP-based concept discovery systems without modifying their concept induction mechanism. Each
technique improves its predecessor in certain ways while preserving the predecessor’s core properties.
So each of the proposed approaches can be embodied in an ILP-based concept discovery system in a
similar manner. In this section we discuss applicability of Tabular CRIS-wEF to a number of other
ILP-based concept discovery systems. We picked four ILP-based concept discovery systems, three
of which are top-down systems and one is a bottom-up system, as case studies. Firstly we introduce
search space evaluation mechanism of these systems and then propose a method on how to embody
the proposed approach.

LINUS [94] is a top-down ILP-based concept discovery system that incorporates first order logic in
attribute-value learners such as ID3 [126] and IQ7 family [100]. In ID3 version of LINUS, called
ASSISTANT [33], concept descriptors are pruned based on their entropy (3.3).

E(ε) = −

N∑
j=1

p j.log2 p j (3.3)

where ε is the training set, p j is the prior probability which is computed as

p j =
nC j

n
(3.4)

n being the size of the training set and nC j is the number of examples from ε of class C j.

In NEWGEM [105], which is IQ7 embodied version of LINUS, concept descriptors are pruned based
on their coverage. Similar to CRIS, in NEWGEM, coverage refers to the number of positive and nega-
tive target instances explained by the concept descriptors. The proposed approach can be incorporated
in both applications as follows. For each concept descriptor, its related target instances are stored in
a list and as solution clauses are found, target instances explained are removed from the lists. As the
lists keep updated results of the concept descriptors, once a concept descriptor is regenerated its result
may directly be calculated by counting tuples in its list.

SAHILP [144] is another top-down ILP-based concept discovery system that uses weighted relative
accuracy (3.5) as the concept descriptor’s quality measure. In relative accuracy measure, the gain
function is extended with generality and relativity accuracy [125] .

WRAcc(H ← B) = p(B) × (p(H|B) − p(H)) (3.5)

In (3.5) p(B) and P(H) refer to coverage of the body and the head, respectively and p(H|B) refers to
the accuracy of the concept descriptor. Coverage measures fraction of instances covered by the body
of a rule, and accuracy measures the fraction of predicted positives that are true positives in binary
classification problem. In other words, SAHILP employs a quality measure that counts the number of
positive and negative target instances. Hence the proposed approach can be integrated in SAHILP in
such a way that the modified covering algorithm is employed to update the explained target instances
set.

FOIL is one of the earlist ILP-based concept discovery systems and employs a top-down search to
construct the concept definitions. As equations (3.6) and (3.7) show, its evaluation functions are about
the number of the positive and negative target instances concept descriptors explain. The proposed

36

approach can be incorporated into FOIL to calculate the goodness value of the concept descriptors by
memorizing coverage sets of their parents and updating them as some solution clauses are found.

Gain(Li) = T ++
i × (l(Ti) − l(Ti+1)) (3.6)

l(Ti) = −log2(
T +

i)
T +

i + T−i
) (3.7)

GOLEM is a bottom-up ILP-based concept discovery system that builds the bottom clauses by picking
up some positive target instances at random and refining them via relative least general generalization
operator (rlgg) [110]. Concept descriptors that have the highest coverage are chosen as the solution
clauses. Similar to (3.5), in rlgg coverage refers to the target instances explained by a concept descrip-
tor. Therefore, proposed method can be applied on GOLEM in a similar way.

Based on the discussion above we can state that the proposed approaches can be embodied both in top-
down and bottom-up ILP systems if they employ quality measures that calculate the number of positive
and negative target instances explained by concept descriptors and also employ covering approach.

3.5 Comparison to Other ILP-based Concept Discovery Systems with Memoization

In this section we compare the proposed methods to some state of the art methods, namely Query
Packs, Common Prefixes, Coverage List, and Coverage Caching, that employ memioization in ILP-
based concept discovery systems for speeding up purposes. In this chapter while addressing

All the above named methods look for partial or exact match among concept descriptors, while with
proposed approaches we look for similarities, indeed exact match, among evaluation queries. Looking
for common substructures among concept descriptors have certain flaws. As an example consider the
two concept descriptors given below
r1: p(A, B) :- q(C, A), r(D, E)
r2: p(A, B) :- r(C,D), q(E, A)
Although they are semantically equivalent, methods that look for common substructures within con-
cept descriptors will not be able to detect that these two concept descriptors have the same goodness
degree. Tabular CRIS-wEF can handle such situations as they map into the same evaluation query.

Query Packs and Common Prefixes look for similarities with in the concept descriptors that are of the
same length. On the other hand two concept descriptors may share the same evaluation query if the
larger one differs from the other with literals that have unbounded variables. In such a case Tabular
CRIS-wEF can retrieve the goodness degree from the hash table, while Query Packs and Common
Prefixes need to execute the entire query.

Tabular CRIS-wEF differs from the Coverage List approach in the way it uses the saved lists. In the
Coverage List approach the saved instances are used to calculate the coverage values of refinements of
a concept descriptor, while in Tabular CRIS-wEF they are used to calculate coverage values of concept
descriptors that map into the same evaluation query.

Common Prefixes, Coverage Lists, and Coverage Caching make use of the underlaying Prolog engine
to deal with the look-up tables. Tabular CRIS-wEF is independent of the underlaying data storage and
management systems as its memoization mechanism is a part of the concept discovery framework.

37

38

CHAPTER 4

PARALLELIZATION TO SCALE UP ILP-BASED CONCEPT
DISCOVERY SYSTEMS

Although memoization based methods improved running time of CRIS in magnitudes, the search space
evaluation step still constitutes the major part of the total running time of the resultant systems. In
Figure 4.1 we plot the execution times of search space evaluation and others for Tabular CRIS-wEF
for the Muta, PTE, and PTE-5 data sets.

0

10

20

30

40

50

60

70

80

90

100

Muta PTE PTE-5

Search Space Evaluation Other

Figure 4.1: Relative running times of components of Tabular CRIS

In this section we further discuss the speeding up ILP-based concept discovery systems and propose
methods that incorporate parallelization. Although the proposed methods can be integrated into any
ILP-based concept discovery systems in general, we base our discussions to CRIS. Parallelization
methods introduced in this section address modifications on the search space formation and the search
space evaluation steps of CRIS. The resultant system is named pCRIS.

Through this section we will use thedauter dataset given in Table 4.1 as a working example.

Assuming that minimum support is set to 0.8, Table 4.2 lists the most general two literal concept
descriptors that satisfy the minimum support threshold.

Search space evaluation step of CRIS constitutes majority of the total running time, as it executes many

39

Table4.1: The daughter dataset

Concept Instances Background Facts
daughter(mary, ann) parent(ann, mary)
daughter(eve, tom) parent(ann, tom)

parent(tom, eve)
female(ann)
female(mary)
female(eve)

Table4.2: Support and confidence values of two-literal concept rules

R. Index Concept Descriptor Support Confidence
1 daughter(A,B)←parent(B,A) 1 0.666
2 daughter(A,B)←parent(C,A) 1 0.166
3 daughter(A,B)←parent(B,C) 1 0.25
4 daughter(A,B)←parent(C,D) 1 0.125
5 daughter(A,B)←female(A) 1 0.166
6 daughter(A,B)←female(C) 1 0.125

SELECT type of SQL queries. Each such query execution requires as many table joins as the length
of the concept descriptor, and in some cases range selections are performed. As no write operations
are performed during the search space evaluation step, it can be parallelized by distributing the queries
over multiple workers.

Operations of the search space formation are inexpensive, this step may be a bottleneck if there are too
many concept descriptors to be specialized though. This step is also well suitable for parallelization as
none of the write operations interfere with the read operations.

4.1 Data Dependence Analysis

Data dependence analysis is the study of determining dependence relationships between statements in
a sequential or centralized program due to control and data flows [35]. It has originally been proposed
for automatic optimization, parallelization and vectorization of sequential programs, later it has been
utilized also to be employed in various software development steps such as program maintenance and
testing. Such dependencies are broadly classified into three categories:

1. Flow Dependence (δ): S 2 reads a data value which was earlier written by S 1

S 1 δ S 2 ↔ ∃ x: x ∈ OUT(S 1)
∧

x ∈ IN(S 2)
∧

S 1 Θ S 2
∧
∃! (S 1 Θ S k Θ S 2

∧
x ∈ OUT(S k))

2. Anti Dependence (δ̄): S 1 reads a data value before it is altered by S 2

S 1 δ̄ S 2 ↔ ∃ x: x ∈ IN(S 1)
∧

x ∈ OUT(S 2)
∧

S 1 Θ S 2
∧
∃! (S 1 Θ S k Θ S 2

∧
x ∈ OUT(S k))

3. Output Dependence (δ◦): S 2 overwrites a data value which is calculated earlier by S 1

S 1 δ
◦ S 2↔∃ x: x ∈ OUT(S 1)

∧
x ∈ OUT(S 2)

∧
S 1 Θ S 2

∧
∃! (S 1 Θ S k Θ S 2

∧
x ∈ OUT(S k))

where

40

• IN(S) is set of all data elements, whose value is read by S

• OUT(S) is set of all data elements, whose value is altered by S

• S 1 Θ S 2 states that instance of S 1 can be executed before an instance of S 2

In the rest of this section we analyze the search space formation and search space evaluation steps of
CRIS in this respect and propose methods for any occurring dependence.

The Sequential Search Space Formation algorithm, Algorithm 8, is data-independent as all read and
write operations enclosed in the loop are dependent only on the currently executing index.

Algorithm 8 Sequential Search Space Formation
Require: fC:Frequent clauses of length l
Ensure: sC:Possible clauses of length (l + 1)

1: for i = 0 to fC.size − 1 do
2: for j = i + 1 to fC.size do
3: if uni f iable(fC[i], fC[j]) then
4: uC = unify(fC[i], fC[j])
5: sC.push_back(uC)
6: end if
7: end for
8: end for
9: RETURN sC

Algorithm 9 Sequential Search Space Evaluation and Pruning
1: //posSol is a global variable to store possible solution clauses

Require: pC: Possible clauses of length l
Ensure: fC: Frequent clauses of length (l)

2: for i = 0 to pC.size do
3: pC[i] = calculateSupport(pC[i])
4: if pC[i].sup ≥ min_sup then
5: fC.push_back(pC[i])
6: end if
7: end for
8: for i = 0 to fC.size do
9: fC[i] = calculateConfidence(fC[i])

10: if fC[i].con f ≥ min_con f then
11: posSol.push_back(fC[i])
12: end if
13: end for
14: RETURN fC

The Sequential Search Space Evaluation and Pruning algorithm, Algorithm 9, exhibits a flow depen-
dence: B5 δ B9

1 due to fC. To deal with this dependence, workers should be synchronized before
entering the second loop in the parallel version of the search space evaluation and pruning step.

1 Bn refers to the nth line of Algorithm 9

41

At functional level, there exists a flow dependence on Algorithm 8 and Algorithm 9. Output of Algo-
rithm 8 is the input of the Algorithm 9. While parallelizing CRIS, workers should synchronize at this
point: all workers need to send their partial results back to the master upon finishing the search space
formation step and block until receiving a start message for the search space evaluation and pruning
step.

4.2 Framework and Design Issues

Parallel version of CRIS employs master-worker architecture. The master - worker paradigm consists
of two entities: a master and multiple workers. The master splits a problem into subproblems, dis-
patches subproblems among workers, and gathers the partial results in order to produce the final result.
The workers execute in a very simple cycle: receive a start message from the master, process the task,
send the result back to the master, and wait for the next start message [77]. The literature contains
several successful parallel applications based on master - worker paradigm [14].

pCRIS is designed to work in a shared-nothing environment. Each processor has its private memory
and disk. Communication is based on message passing. Each computational entity needs to access
to the entire data set. As distributing the data will be expensive, all data should be made available on
processor’s disk beforehand.

pCRIS is parametric in such a way that user can set

a) which steps to run in parallel

b) initial chunk sizes in parallel execution

c) minimum data size for parallel execution of a step

Minimum data size for parallel execution of a step is a distinctive property of pCRIS. Based on this
parameter, for different calls in a run, a step may work either in sequential mode or parallel. This
aims to eliminate situations where communication cost may overwhelm computational cost. Similarly,
a step may start running in a parallel mode but later, as the data size decreases, workers may stop
executing and master executes the remaining computations. The search space formation and the search
space evaluation and pruning steps of CRIS are parallelized in pCRIS. Figure 4.2 shows the overall
flow of pCRIS. Rectangles with dashed borders present the work done by the workers while rectangles
with straight borders show the work done by the master. pCRIS retains all properties of Tabular-CRIS.

4.3 Parallelizing the Search Space Construction Step

In the search space formation step, unifiable rules of length l are concatenated in order to form rules
of length l+1. In order to prevent redundancy, rules are grouped with respect to the rules they are
generated from and each group is given an index number. The candidate rules are generated in such
a way that a rule is unified with rules that have an index number greater than the index number of the
target rule.

Parallel version of the search space formation follows the ideas from the Count Distribution Algorithm
[13]. Each worker should specialize a mutually exclusive subset of the candidate clauses. To yield a

42

DATABASE
(Target Relation &
background facts)

INPUT
PARAMETERS

Min Sup
Min Conf

Depth
Chunk Size

Min Chunk Size
Num Proc.

Calculate feasible values
for head and body

relations

Are all
target

instances
covered?

GENERALIZATION
Find general rules (one
head and one body literal)
using absorption.
Depth = 1

Print
hypothesis

COVERAGE
Find solution
rules
Cover target
instances

Is
candidate

Y

N

Y

•Collect results from workers
•Discard infrequent and un-
strong rules

SEARCH SPACE EVALUATION
and PRUNING

candidate
rule set
empty?

Is depth
smaller

than max
depth?

W_N
Refine general rules
using APRIORI

Split general rules among workers
Collect specialized
rules
Depth = Depth+1

Y

N

N

SEARCH SPACE FORMATION

W_0
Refine general rules
using APRIORI

Split refined rules for confidence
and support calculations among
workers

W_0
Calculate
support and
confidence
value

W_N
Calculate
support and
confidence
value

Figure 4.2: The flowchart of parallel system

good work balance, number of the candidate rules should be evenly divisible by the number of workers.
Master calculates the index number of the last rule to be specialized in parallel, and sequentially
specializes the rules that have larger indices.

At the beginning of the parallel search space formation step, master calculates the last clause index
to be specialized in parallel, the ParallelWorkingEndRange function. The index is calculated based
on the number of clauses to be specialized, cl, and the number of workers, ws. Master broadcasts the
candidate clauses and the last index to be specialized. To specialize a rule at index i, each worker
calculates its working range based on its rank, r, and the number of the clauses, cl_s. The functions
calculateStartIndex and calculateEndIndex given in Figure 8 implement these calculations. Workers
send the specialized clauses back to the master. Master specializes the remaining candidate clauses and
removes the repeating ones. All communication among the processors is based on blocking routines.

For the specialization of the rules given in Table 4.2, workers and the master will specialize the clauses
as given in Table 4.3.

43

Table4.3: Index ranges that each worker takes in specialization step

Rule Index W1 W2 W3 Master
1 [2, 3] [4, 5] [6] −

2 [3, 4] [5] [6] −

3 [4] [5] [6] −

4 [5] [6] − −

5 [6] − − −

Given two candidate clauses C1:h1 ← b1 and C2:h2 ← b2 are unifiable if

a) C1 and C2 share the same head predicate

b) b1 and b2 differ by at most 1 literal

Since CRIS finds rules for a specific target concept, all generated rules have the same head predicate.
Two literals are equivalent if they share the same relation name and the same bounded variables at the
same argument places.

CRIS applies a substitution to the literal in order to rename variables in the literal according to the
variables in rule C1. Since there may be more than one intersection of two frequent rules, it is possible
to produce multiple unions of two rules. Specialization of the candidate clauses given in Table 4.2
results in 24 new possible clauses of length 2. Flowchart of the algorithm for parallelized version of
the specialization step is given in Figure 4.2.

4.4 Parallelizing the Search Space Evaluation Step

The search space evaluation and pruning step takes possible clauses as input, maps them into SQL
queries and calculates their support and confidence values. According to the support value, the infre-
quent clauses are pruned. Two different actions can be taken on the basis of the confidence value. If
confidence score satisfies the min_conf criteria, it is added into the set of possible solutions clauses.
Otherwise, it is added to next level’s possible clauses vector for further consideration.

As described in [112], different rules may map to the same SQL queries. This is due to the different
substitutions of variables of the same type within the same predicate. Tabular CRIS solves this problem
by making use of look-up tables. With a single processor, Tabular CRIS works well since the repeating
queries will eventually be a hit in the look-up table. In parallelized algorithm, repeating queries may
be sent to different processors, resulting in redundant work. To be able to avoid such situations, master
maintains a vector of distinct queries, and distinct queries are distributed among workers. By this
approach, workers do not require to build their own look-up tables for repeating queries. Once all
distinct SQL queries are executed on workers and results are gathered in the master, rules are assigned
with their corresponding support and confidence values.

In this step, firstly the support and then the confidence scores of a clause are calculated. This order
is followed because a) confidence values calculation requires execution of two queries while support

44

vector pc: possible

clauses

int ics: initial chunk

size

int cs: chunk size

vector q = buildSupQ(pc)

vector dq = distinctQ(q)

int left = |dq|, int cs = ics,

bool flag = false

broadcast start signal

send each worker cs # queries

left = left – numWorkers * cs

vector fq = findFreqC(dq)

q = buildConfQ(fq)

dq = distinctQ(q)

cs = ics, flag = true,

left = |fq|

flag=true

recv results from

 a worker

id = workerID

left > mcs

cs = left / numWorkers

send start signal

send id cs # queries

left = left - cs

candc = findStrongC(fq) candc

recv signal

recv queries

execute queries

send results

terminate

signal!=stop

MASTER WORKER 1

WORKER N

Y

N

N

Y

broadcast stop signal

execute dq with index > |dq|-

left

N

Y

Figure 4.3: The flowchart of parallel search space evaluation and pruning algorithm

value calculation requires execution of a single query, b) a confident clause should be a frequent clause
as well.

While parallelizing the search space evaluation and pruning step, workers need to synchronize upon
finishing calculation of the support values. Master collects support results from the workers, prunes
the infrequent clauses and builds the confidence queries of the frequent clauses. Distinct queries are
determined and these queries are distributed among the workers.

Since query execution times vary, distributing queries among workers in equal size of chunks may
lead to idle processors. Both for the support value calculation and confidence value calculation, master
sends a user specified number of queries to each worker. Any worker that has finished its chunk
requests for a new chunk of queries. New chunk sizes are computed at running time and they are
monotonically decreasing. Sending chunks in different sizes is important as it decreases the possibility
for workers to block on master while sending results back. Another concern is to enable master to
stop distributing the queries when the chunk size drops below a threshold as communication cost may

45

Table4.4: Parallel Search Space Evaluation and Pruning Output for the Daughter Example

Source Destination Action Source Destination Action
1 Number of distinct support queries : 14 16 Worker 2 Master Send 4 queries
2 Master Worker 1 Send 4 queries 17 Master Worker 2 Send 4 queries
3 Master Worker 2 Send 4 queries 18 Worker 1 Master Send 4 queries
4 Master Worker 3 Send 4 queries 19 Master Worker 1 Send 3 queries
5 Worker 1 Master Send 4 queries 20 Worker 3 Master Send 4 queries
6 Worker 2 Master Send 4 queries 21 Master Worker 3 Send 2 queries
7 Worker 3 Master Send 4 queries 22 Worker 2 Master Send 4 queries
8 Master is executing query at index 12 23 Master Worker 2 Send 1 query
9 Master is executing query at index 13 24 Worker 1 Master Send 3 queries
10 Number of distinct confidence queries : 29 25 Master Worker 1 Send 1 query
11 Master Worker 1 Send 4 queries 26 Worker 3 Master Send 2 queries
12 Master Worker 2 Send 4 queries 27 Worker 2 Master Send 1 query
13 Master Worker 3 Send 4 queries 28 Worker 1 Master Send 1 query
14 Worker 1 Master Send 4 queries 29 Master is executing query at index 27
15 Master Worker 1 Send 4 queries 30 Master is executing query at index 28

overwhelm computation cost.

Flowchart of the parallel algorithm for search space evaluation and pruning step is given in Figure 4.3.
buildSupQ() and buildConfQ() functions translate the concept descriptors into support and confidence
queries, respectively. dq is allocator to store the unique queries returned by the distinctQ() function.
findFreqC() prunes the infrequent clauses and findStrongC() appends the non-strong clauses into the
search lattice for further specializations and the strong clauses into the solution set. As in the parallel
search space formation algorithm, the search space evaluation and pruning algorithm implements the
communication with blocking routines.

For the daughter example, master receives 24 possible clauses as input and translates them into the
support queries. 14 of these queries are distinct and 10 are repeating. Output of the parallel search
space evaluation and pruning step for the daughter example is given in Table 4.4. This output corre-
sponds to execution with four processors, one master and three workers, initial chunk size set to 4 and
minimum data size set to 2. Master starts with dispatching query chunks with user specified size, in
this case 4, to every worker and waits for the results. As there are 14 queries to be executed and min-
imum chunks size is 2, master does not send any other support query to workers but instead executes
the remaining two queries itself. After this step, it removes the infrequent clauses and builds SQL
queries for confidence score calculation. Master sends 4 queries to each worker and goes to listening
phase for results. Upon starting to receive results, master sends new chunks of queries in decreasing
sizes, in this example chunks are of size 3, 2 and 1. When there are less than minimum chunk size
number of queries to be executed, master sends stop signal to each worker and executes the remaining
queries.

46

CHAPTER 5

GRAPH-BASED CONCEPT DISCOVERY

In this chapter, we present a hybrid graph based concept discovery system and investigate the effect
of the proposed structure for running time improvement. It is a hybrid approach such that it looks for
paths, which eventually form the concept descriptors, on a compressed graph. The proposed approach
distinguishes from other state of the art graph based approaches by inducing the concept descriptors
while building the graph. In this approach, in addition to being the representation framework, the
graph structure is also used to guide the concept induction process.

Among the others, a common problem faced by ILP-based concept discovery systems is the so called
locale plateau problem [128], where refinement by one literal at a time operators of ILP are insufficient
to improve a rule quality. As to our knowledge, graph based approaches were first proposed to solve
this problem by Richards and Mooney [133], which replaces the refinement by one literal a time
operators of ILP with refinement by multiple literals at a time operators. Theoretical foundation on
the relations among graphs, hypergraphs, and inductive logic programming are provided in [26].

Graph-based concept discovery methods can be classified into two main categories: substructure based
approaches and path-finding based approaches. Substructure based approaches [38, 70] rely on the idea
that if there exists some concepts in a graph then they should appear as frequent substructures. Such
systems repeatedly look for substructures that best compress the graph and replace such substructures
with a new vertex. Metrics such as minimum description length [149], information gain [165] are
employed to evaluate the candidate substructures.

The motivation behind the path-finding based approaches [66] is the assumption that concepts should
appear as frequent, finite length paths that connect some arguments of positive target instances. Such
systems usually put constraints on the source and the target vertices and look for frequent paths that
connect such pairs of nodes. To evaluate the discovered paths metrics such as F1-measure [163] are
employed.

In this work we propose a hybrid framework that combines properties of substructure based and path-
finding based approaches of graph-based concept discovery systems. Our work is similar to structure
based approaches in a way that instead of representing each fact as a distinct vertex in the graph, it
groups the similar facts and represents them as a single vertex in the graph. Similar to path-finding
approaches, it infers the concept descriptors by finding paths that connect arguments of target target
instances. Different than state of the art graph-based concept discovery systems, the proposed method
discovers the concept descriptors while constructing the graph. The current implementation of the pro-
posed approach is limited with working on binary relations that belong to the Head Output Connected
(HOC) class of learning problems [142].

47

5.1 Proposed Method

...

(s)
Cemile
Nalan

Ayse
Ayten

Bedriye
(t)

(s)
Cemile
Nalan

(s11)
Mehmet
Sadullah

(s12)
Mehmet
Sadullah

h(C,A) w(A,C)

Ayse
Ayten

Bedriye
(t)

Ali
Ismail

Yildirim
(t11)

Ali
Ismail

Yildirim
(t12)

h(C,B) w(C,B)

(s)
Cemile
Nalan

(s11)
Mehmet
Sadullah

h(C,A) w(A,C)

Ayse
Ayten

Bedriye
(t)

Ali
Ismail

Yildirim
(t11)

h(C,B) w(C,B)

Mehmet
Sadullah

(s11)

Ismail
Ali

Yildirim
(s21)

b(C,D)

Ali
Ismail

Yildirim
(t1)

Mehmetl
Sadullah

(t21)

b(C,D)

s

s11 s12

s21

t21

t11 t12

t

1

1

1

1

3

3

1 2 3 4

2

2

2

2

4

4

3

3

3

4

4

...
(a) (b) (c) (d) (e)

Figure 5.1: Execution of the Algorithm

In this section we firstly discuss our data representation model. Next, we present the concept discovery
process, and lastly we discuss the correctness of the proposed approach.

We employ the elti data set given in Table 5.1 as a running example in this section. In the data set,
predicate e stands for elti relation, h stands for husband relation, w stands for wife relation, and b
stands for brother relation. All arguments are of type person.

In Figure 5.1, we illustrate execution steps of the algorithm. Gray vertices are expanded, and white
vertices are yet unexpanded. Text given in braces in the vertices are vertex labels and in this example
are used for illustrative convenience.

48

Table5.1: The elti data set

Target Instances Backgorund data
e(cemile, ayse) b(mehmet, ismail) h(mehmet, cemile)
e(cemile, ayten) b(mehmet, ali) h(ismail, ayten)
e(nalan, bedriye) b(sadullah,yildirim) h(ali, ayse)

h(sadullah, nalan) w(ayten, ismail)
h(yildirim, bedriye) w(ayse, ali)
w(cemile, mehmet) w(nalan, sadullah)
w(bediye, yildirim)

5.1.1 Data representation

We employ directed acyclic graph as a representation framework. Vertices in the graph hold the con-
stants that are valid for the newly introduced variables. Edges connect vertices such that the tail vertex
is directly related to the head vertex through some relation given in the background data. Edges are
labeled after the relation that the constants in the tail vertex and the head vertex hold for.

5.1.2 Method

The proposed approach inputs a set of target instances, a set of background data; minimum support,
minimum confidence, and maximum rule length parameters. The target instances and the background
data are initially stored in a database.

In the proposed approach concept descriptors are evaluated and pruned based on their support and
confidence values. Similar to CRIS, support of a concept descriptor is the ratio of the number of target
instances captured by the concept descriptor over total number of the target instances. Confidence
refers to the number of target instances that correctly hold for the rule divided by the number of
instances that hold for the body of the rule. Maximum rule length parameter limits the length of the
concept descriptors. Concept descriptors that do not qualify the minimum support value are pruned.
Concept descriptors that qualify the minimum support but fail with the minimum confidence are further
refined in the next iteration. Concept descriptors that qualify both values are added to the solution set.
Any path that exceeds the maximum rule length parameter is pruned.

The proposed method builds the graph in compressed manner by grouping arguments that hold for the
same relation. It considers the uncovered target instances all together so that avoids the target instance
ordering problem. The grouping of the facts also allows embodying the generalization step of concept
learning process into the graph based concept induction process - on the contrary to many path-finding
based systems where the generalization step is performed as a post-processing step. The proposed
approach utilizes absorption operator of inverse resolution for generalization of concept instances.

The proposed method is composed of seven main components:

1. Initialization: In this step the source and the target vertices are created, namely s and t, respec-
tively. This very initial graph is a disconnected graph with two vertices where vertex s stores
the values of the first argument of the target instances, and the vertex t stores the values of the
second argument of the target relations, Figure 5.1-a.

49

2. Expansion: In this step graph is expanded by adding vertices that contain related facts of yet
unexpanded vertices. To find such related facts, constants in the tail vertices are expanded with
the relations which do not appear as labels on their incoming edges as such expansions will
create loops. As an example in Figure 5.1-c we do not extend vertex s11 with the husband and
wife relations but only with the brother relation.

3. Merge: In this step vertices that store the same content are represented as single vertex. Edges
are rearranged accordingly. The graph in Figure 5.1-b turns to be the one in Figure 5.1-c once
this step is executed.

4. Evaluation and pruning: In this step support and confidence values of the current concept
descriptors are calculated. To calculate these values current concept descriptors are translated
into SQL queries and these queries are run against the database. In Equations 5.1 to 5.4 we
provide evaluation queries for the concept descriptor
elti(A, B):-husband(C,A), brother(C,D)

SELECT COUNT(CONCAT(r1.name2,’-’,r3.name)
FROM elti r0, husband r1, brother r2, person r3
WHERE r1.name2=r0.name1
AND r3.name=r0.name2
AND r1.name1=r2.name1

(5.1)

SELECT COUNT(CONCAT(r1.name2,’-’,r3.name)
FROM husband r1, brother r2, person r3
WHERE r1.name1=r2.name1

(5.2)

SELECT COUNT CONCAT(r0.name1,’-’,r0.name2)
FROM husband r1, brother r2, elti r0
WHERE r0.is_covered_aux = 0
AND r1.name1=r2.name1
AND r1.name2=r0.name1

(5.3)

SELECT COUNT CONCAT(r0.name1,’-’,r0.name2)
FROM elti r0 (5.4)

Con f idenceC =
Equation5.1
Equation5.2

S upportC =
Equation5.3
Equation5.4

Pruning is performed as described above.

5. Check for intersection: To find intersections, tail vertexes and their heads of the subgraph
with the root node s are compared to tail vertices and their heads of the subgraph with the root
node t. An intersection in a comparison means that such pairs connect the two subgraphs, hence
form a path from one argument of the target relation to the other. Such paths are added into the
candidate solution set. In the intersection step we allow partial matches, i. e. two tail nodes need
not necessarily contain the same constants. By this way we can discover concept descriptors
in a noisy data. Similar mechanisms are also employed in structure based approaches, i. e.
matches with partial distortions are allowed [39]. In Figure 5.1-d such an intersection exist and
the formed paths are:
p1: e(A,B), w(A,C), b(C,D), b(C,D), h(C,B), e(A,B)
p2: e(A,B), h(C,A), b(C,D), b(C,D), h(C, B), e(A,B)

50

p3: e(A,B), w(A,C), b(C,D), b(C,D), w(C,B), e(A,B)
p4: e(A,B), h(C,A), b(C,D), b(C,D), w(C,B), e(A,B)

In this step the concept discovery process terminates if the length of the current paths is larger
than dmax_depth/2e and no intersection is found.

6. Update path variables: In this step the variables of concept descriptors discovered are up-
dated to be consistent with the constant values they hold for. For this purpose we build a new
substitution map based on the constants. As an example in partial path e(A,B), w(A,C), b(C,D)
D = {Ismail, Ali, Yildirim}, while in the same constant set is represented with C in the partial
path b(C,D), h(C,B), e(A,B). To build the final concept descriptors repeating literals are removed
from the paths, and variable names are updated to be consistent with each other. The candidate
solution set will be:
path1: e(A,B):-h(C,A), b(C,D), h(D,B)
path2: e(A,B):-h(C,A), b(C,D), w(B,D)
path3: e(A,B):-w(A,C), b(C,D), h(D,B)
path4: e(A,B):-w(A,C), b(C,D), w(B,D)

In Figure 5.1-e we show the traversals of the solution clauses. Once final candidate solution
set is constructed, the candidate solution clauses are pruned based on their support and confi-
dence value. Any candidate solution clause that does not qualify the minimum values is pruned.
Similar to CRIS, to choose the best candidate concept descriptor f-metric is employed.

In this step the concept discovery process terminates if the newly discovered concept descriptors
have already been discovered in the previous iterations.

7. Covering: In this step target instances explained by the solution clauses are marked as covered.
If the number of the remaining uncovered target instances is below min_sup×#target_instances
the concept induction process terminates, else restarts with the initialization step.

5.1.3 A Discussion on the Proposed Approach

The proposed approach starts with a data set where all target instances are uncovered. Expansion of
the graph is achieved by adding new vertices with constants that are related to previously generated
vertices. Only those vertices that do not qualify the minimum support and minimum confidence values
with respect to the current number of uncovered target instances are pruned. If a vertex is pruned at
some iteration due to insufficient support or confidence values, it will be regenerated at a later iteration
and at that step if it qualifies the minimum support and minimum confidence values it will participate
in a solution clause.

Concept descriptors are formed by conjunctions of relations that have arguments directly or indirectly
related to the target instances. In the formation of the graph we include vertices that are connected to
some other already created vertices. In this approach some background data may not be included in
the graph but as such background data is not directly or indirectly related to the target instances their
inexistence in the graph will not hurt the concept induction process.

Concept discovery process terminates only when no new concept descriptors can be found with the
current uncovered target instances or remaining number of the uncovered target instances are below of
a threshold, i.e. less than min_sup × #target_instances.

51

52

CHAPTER 6

EXPERIMENTS

A set of experiments were conducted to evaluate the performance of the proposed methods on well
know data sets. The experimental results are discussed in comparison to CRIS and other state of the
art methods.

The section starts with the introduction of the experimental environment, followed by the explanations
of the metric employed to evaluate the proposed methods. Then we explain the data sets used in the
experiments. In the last subsection we present and discussed the experimental results.

6.1 Experimental Environment

The experiments are conducted on Middle East Technical University Computer Engineering Depart-
ment’s (METU CEng) high performance computing facility NAR [1]. NAR has 46 computational
nodes (HP ProLiant BL460c) with total of 368 cores, 736 GB of memory and 6.5 TB disk space.

The proposed methods are implemented in C++. MySQL version 5.0.95 [2] is used as the data store
and management tool. Due to the resource limitations, while testing pCRIS, instead of installing a
dedicated MySQL server for each worker, we run 8 instances of MySQL. Each instance has its own
communication port and a separate data path. For the experiments in which more than 8 processors
are employed, multiple connections are established to an instance of MySQL over the same port. In
pCRIS, Boost.MPI library version 1.37.0 [3] is used as the message passing interface.

6.2 Evaluation Metrics

• Speedup: Speedup is metric to measure how much a version of a program is faster then its an-
other version. In case of parallel programs, speedup, S p, is calculated by dividing the execution
time of the sequential program, T1 by the execution time of the parallel program on p workers,
Tp.

S p =
T1

Tp
(6.1)

The speedup is called linear or ideal if S p = p and superlinear if S p > p. Such speedups are
generally unachievable due to the shared resources, communication cost, and not fully paral-
lelizable sequential codes [57].

The same metric has also been widely employed to calculate the efficiency of ILP-based concept
discovery systems that employ memoization. In this context speedup is calculating by dividing

53

the execution time of the original implementation by the execution time of the memoization
based version.

• Efficiency: Efficiency is a metric to calculate the utilization of the processors in a parallel archi-
tecture.

Ep =
S p

p
(6.2)

Efficiency is called ideal if Ep = α × n, for some constant α, 0 < α ≤ 1.

• Coverage: Coverage donates the number of target instances of the test data is covered by the
induced solution clauses over the number of all target instances.

• Accuracy: Accuracy donates the fraction the of the sum of correctly covered true positive and
true negative target instances over the total number of true positive, true negative, false positive
and false negative target instances.

• Precision: Precision is the fraction of correctly covered true positive target instances over of the
sum of true positive and true negative target instances.

• Recall: Recall is the fraction of the correctly covered true positive target instances over the
number of true positive and false negative target instances.

• Hit Count: Number of searches that do not result with a miss on a hash table.

As CRIS and the proposed extensions to it work on positive only data, the negative examples are
generated under the Closed World Assumption.

Not all of the metrics listed above are employed in the evaluation of each experiment, but are selected
based on the evaluation metrics employed in the reference materials.

54

6.3 Data Sets

To evaluate the the proposed methods we conducted experiments on 16 data sets, each of which ad-
dresses different aspects of the concept discovery problem. In Table 6.1 we list the properties of these
data sets and the experimental settings.

Table6.1: Data sets and experimental settings

Data Set Num. Pred. Num. N. Pred. Num. Ins. Min. Sup. Min. Conf.
Dunur 9 0 224 0.3 0.7
Eastbound 12 0 196 0.1 0.1
Elti 9 0 224 0.3 0.7
Mesh 26 0 1749 0.1 0.7
Muta 8 0 16544 0.1 0.7
PTE 27 0 23850 0.1 0.7
Muta-S-Aggr 12 3 190 0.3 0.7
Muta-4-Aggr. 14 4 17652 0.3 0.7
PTE-5-Aggr. 32 5 29267 0.1 0.7
Student Loan 10 2 5288 0.1 0.7
m5l13 10 2 5288 0.1 0.7
m6l20 10 2 5288 0.1 0.7
m13l31 10 2 5288 0.1 0.7
m15l29 10 2 5288 0.1 0.7
m6l26 10 2 5288 0.1 0.7
m6l28 10 2 5288 0.1 0.7
Family 10 2 5288 0.1 0.7
Same Generation 10 2 5288 0.1 0.7

Elti [81], Dunur [81] and Same Generation [81] are real life data sets that contain family relationships.
The Elti data set contains background data that are directly related to the target relation. The Dunur
data set contains background data that is indirectly related to the target relation. The Same Generation
data set contains recursive relations. The Family [5] data set is a highly relational data set that also
contains family relationships.

The Eastbound [99] problem aims to predict if a train is eastbound or westbound train based on the
trains’ properties such as shape and load.

Mesh [48] is an engineering problem data set that aims to determine the mesh resolution values of
edges of physicals structures.

Muta [9] is biochemical data set and aim with this problem is learning if a chemical is mutagenic or
not. Muta-4-Aggr. is extended version of Muta with aggregate predicates. Muta-S-Aggr. is a subset of
Muta-4-Aggr. The following aggregate predicates are added to the Muta data sets:

• atm atm(drug,cnt).

• atm bond(drug,cnt).

• atm count(drug,cnt).

55

• bond count(drug,cnt).

PTE [152] is a biochemical data sets and aim with this problem is learning if a chemical is carcinogenic
or not. PTE-5-Aggr. is extended version of PTE with aggregate predicates. The following predicates
are manually calculated and added to the PTE data set:

• pte atm count(drug,cnt).

• pte bond count(drug,cnt).

• pte atm bond count(drug,cnt).

• pte atm charge max(drug,mx).

• pte atm charge min(drug,mn).

The Student Loan [123] data set contains data about students’ enrollment and employment status, and
the aim is to find rules that define a student’s obligation for paying his/her loan back.

m5l13, m6l20, m13l31, m15l29, m6l26, m6l28 are data sets from Botta’s Phase Transition data set [29,
28]. Phase Transition [68] divides the problem universe into three subspaces such that problems falling
in the first subspace, called yes region, have many solutions so it is easy to find one, problems falling
in the second subspace, called no region, have very few solutions if not none, and lastly probability of
having solutions for the problems in the third subspace, called mushy region, suddenly changes from
1 to 0. m5l13 and m6l20 belong to the yes region; m13l31 and m15l29 belong to the no region; and
m6l26 and m6l28 belong to the mushy region.

In the subsequent sections we present the experimental results. The experimental results are

As it is the case with the evaluation metrics, not every method is tested on each data set, but data sets
are chosen in accordance to the reference materials.

6.4 Evaluation on Memoization-based Technique

6.4.1 Tabular CRIS

To evaluate the performance of Tabular CRIS, we performed a set of experiments on hit count, running
time, and memory consumption. In Table 6.2 we list the hit counts and the memory consumption
of Tabular CRIS. The second column list the number of evaluation query hits over the total number
of queries generated, the third column list the number of the repeating concept descriptors over the
total number of concept descriptors. The last column list the maximum memory consumed during the
experiment to store the repeating queries and the concept descriptors.

In Table 6.3 we compare the running time of Tabular CRIS with of CRIS.

As seen in the results, the number of common queries (the number of hits) vary. However, even the
smallest number of hits (716 for the Muta data set) provides an important gain. As seen on the third
column of the same table, the number of repeating rules vary with the data sets, as well. However, the

56

Table6.2: Hash Table Hits

Data Set Query Hits Repeating Concept Descriptors Table Size (≈KB)
Dunur 2002/3777 25/1850 28
Elti 946/3571 75/1832 41
Eastbound 9623/21868 0/7294 2
Mesh 141300/154015 323/57100 75
Muta 716/13500 25/6081 166
PTE 9328/25570 346/11008 184
PTE-5-Aggr. 19684/131719 1843/61292 1173
Same Generation 400/996 9/397 8

Table6.3: Running Times.

Data Set CRIS Tabular CRIS
Dunur 00:00:26 00:00:01
Elti 00:00:35 00:00:02
Eastbound 00:11:36 00:00:01
Mesh 02:39:34 00:00:32
Muta 00:03:42 00:00:13
PTE 00:21:25 00:08:35
PTE-5-Aggr. 05:17:00 01:37:16
Same Generation 00:00:12 00:00:01

efficiency gain in finding repeating rules is more in this task, since the search complexity is improved
even for small number of hits.

Tabular CRIS addresses the search space formation and the search space space evaluation functions of
CRIS to improve its running time. In order to analyze the improvement at functional level, in Table
6.4 we list the running times of the search space formation step and the search space evaluation step.
Although in majority of the experiments the search space formation step has a longer running time,
there are cases where both steps consume almost the same time, i. e. the PTE experiment, and in
some cases the total running time is determined by the search space evaluation step, i. e. the Same
Generation experiment. These results show that both steps deserve the proposed optimizations.

Experimental results show that the proposed approach is effective and the execution time drops con-
siderable. Independent of the nature of the data set and application, use of hash table improves the
complexity of detecting repeating rules from polynomial time to linear time.

6.4.2 Tabular CRIS-wEF

To evaluate the performance of Tabular CRIS-wEF we conducted a set of experiments and analyzed its
performance in terms of speedup, hash table hit count, memory consumption, and the cost introduced
by the proposed modifications. The experimental results are presented and discussed in comparison to

57

Table6.4: Running Times at Component Level (hh:mm:ss.s).

Data Set
CRIS Tabular CRIS

S. S. Formation S. S. Evaluation S. S. Formation S. S. Evaluation
Dunur 23.00 03.00 00.20 02.40
Elti 22.00 03.00 00.20 01.32
Eastbound 8:30.00 3:07.00 00.67 05.90
Mesh 02:19:53 10:33.00 02.21 24.00
Muta 01:31.00 11.00 01.80 11.20
PTE 08:27 8:41.00 01.92 02:41.12
PTE-5-Aggr. 03:29:15 01:44:30 21.00 35:01.00

CRIS, Tabular CRIS and some state of the art approaches.

Table6.5: Speedup Comparison

Data Set Tabular CRIS-wEF Tabular CRIS
Dunur 13.13 15.38
Eastbound 435 457
Elti 9.85 16.50
Mesh 366 252
Muta-S-Aggr. 16.90 16.38
Muta 14.27 12.07
PTE 7.24 5.90
PTE-5-Aggr. 9.60 8.80
Same Generation 13.1 12

Table 6.5 compares the speedups achieved by Tabular CRIS-wEF to Tabular CRIS over the original
implementation of CRIS. As the results indicate for the Dunur, Eastbound and Elti data sets there is a
drop in the achieved speedup while there is an increase for the other data sets. Indeed these results are
expected due to the following reasons:

• For the Dunur, Eastbound, and Elti data sets the entire solution set that covers all the target in-
stances is found at the end of the first iteration. Tabular CRIS-wEF aims to improve running time
of ILP-based concept discovery systems by caching the repeating queries that are generated at
different iterations. For these data sets Tabular CRIS-wEF can not benefit from its added func-
tionality but executes more time consuming functions, such as the covering function, compared
to Tabular CRIS and achieves less speedup.

• For the PTE data set the entire solution set that covers some of the target instances is found in
the first iteration, and a second iteration is executed in order to check whether further solution
clauses exist for the uncovered target instances. The second iteration fails to find solution clauses
for the uncovered target instances. For the other data sets, the entire solution set is found in
multiple iterations. For these data sets Tabular CRIS-wEF benefits from its added functionality
and achieves greater speedups compared to Tabular CRIS.

58

Table6.6: Hash Table Hit Counts

Data Set Num. Queries Tabular CRIS-wEF Tabular CRIS Improvement
Dunur 3777 2010 2010 -
Eastbound 21868 9623 9623 -
Elti 3571 943 943 -
Mesh 154015 148695 141371 5%
Muta-S-Aggr. 13056 1162 718 38%
Muta 88821 74586 43816 58%
PTE 25570 13282 9347 29%
PTE-5-Aggr. 131719 34194 25132 26%
Same Generation 996 513 400 28%

In memoization based studies, the achieved speedup is directly related to the hash table hit counts.
In Table 6.6 we report the number of hash table hit counts. Num. Queries column lists the number
of queries generated, including the repeating ones. The third and the fourth columns list the number
of hash table hit counts due to Tabular CRIS-wEF and Tabular CRIS, respectively. The last column
shows the increase in the hash table hit count. As the experimental results show Tabular CRIS-wEF
preserves the hash table hit counts for the experiments for which the entire solution clause is found in
a single iteration, and has greater hash table hit counts for the data sets for which the entire solution
clause is found in multiple iterations.

The greatest increase in hit count is achieved for the Muta data set, 58%, and the smallest increase
is achieved for the Mesh data set, 5%. The other data sets have close increases in the hash table hit
counts, the average is 30%. To understand why the Muta and the Mesh data sets differ from the other
data sets, we examined the structure of the data sets, distribution of the target instances over the class
labels, and the solution clauses induced.

• In the PTE and PTE-5-Aggr. data sets there are two classes namely carcinogenic and non-
carcinogenic with 162 and 137 target instances, respectively. Entire set of the solution clauses
is found in 2 iterations for both data sets.

• In the Muta data set there are two classes namely mutagenic and non-mutagenic with 125 and
63 items, respectively. The solution clauses are found in 4 iterations.

• In the Muta-S-Aggr. data set there are two classes namely mutagenic and non-mutagenic with 9
and 8 target instances, respectively. The solution clauses are found in 2 iterations.

• In the Mesh data set there are 11 class labels with 1, 4, 6, 8, 9, 15, 17, 29, 52, 64 target instances.
The entire solution set is found in 10 iterations.

For the Mesh data set Tabular CRIS-wEF either generates concept descriptors with very general heads,
i.e. with variable arguments only, or very different ones, i.e. with different constants. Tabular CRIS
itself catches the concept descriptors with very general heads, while Tabular CRIS-wEF also catches
the ones with constant variables. Concept descriptors that share the same constant at their heads are
generated at iterations (1, 4) and (3, 7). The limited increase is due to these hash table hits.

For the Muta data set, the entire solution set is found in 4 iterations. In the first and the third iterations
solution clauses with head literal muta(a,True), at the second iteration solution clauses with the head

59

literal muta(a,False), and at the fourth iteration solution clauses with the head literal muta(a,b) are
found. Hence the result of the evaluation queries for concept descriptors that are generated at iteration 3
are retrieved from the hash table since they are already generated and evaluated at iteration 1. Similarly
results of the evaluation queries for the concept descriptors of iteration 4 are retrieved from the hash
table as they are generated in the previous iterations.

Another interesting result is about the Mesh data set again. Although it has a very limited increase in
the hash table hit count compared to the other data sets, it demonstrates the greatest speedup. Tabular
CRIS is able to catch 91% of the repeating queries and improves the running time of CRIS for the
Mesh data set from some 2 hours 39 minutes to 38 seconds. Tabular CRIS-wEF catches 96% of the
repeating queries and completes the experiment in around 26 seconds. Although improvement on the
running time is around 12 seconds, this results in a great speedup achievement due to the very long
execution time of CRIS.

When compared to Tabular CRIS, Tabular CRIS-wEF has two extra costs due to its added functionality.
The first cost is the larger memory requirement, and the second one is the extra computational time
required to search and remove target instances from the hash table.

In Table 6.7 we report the memory used by Tabular CRIS-wEF and Tabular CRIS, in KB, for the
memoization purposes. Tabular CRIS-wEF requires obviously more memory for hash tables. This is
due to the fact that Tabular CRIS stores only one integer value per query, while Tabular CRIS-wEF
stores a number of strings for each query. The Eastbound differs from the other data sets by requiring
very limited extra memory. When we analyzed the evaluation queries for the Eastbound data set, we
found out that they consist of at most 3 tuples, while for example the PTE data set each query returns
a result set with 56 tuples on the average.

Table6.7: Memory Consumption in KB

Data Set Tabular CRIS-wEF Tabular CRIS
Dunur 46.5 28
Eastbound 2.1 2
Elti 61 41
Mesh 349 75
Muta Small 312 166
Muta 1275 60
PTE 1916 184
PTE-5-Aggr. 12427 1163
Same Generation 143 8

In order to analyze the time required for the extra computations we conducted a number of experiments
to measure the time spent on the Covering function. In Tabular CRIS this function marks the explained
target instances as covered and cleans the hash table for support queries. In Tabular CRIS-wEF, instead
of cleaning the hash table, tuples explained by the solution clauses are removed from it. So the modified
version of the Covering function has extra cost to search for the explained items in the hash table. In
Table 6.8 we compare the time spent for the Covering function. As the results show, for data sets that
have relatively long execution times, the time required for the covering function is almost negligible.
On the other hand for the experiments that finish in seconds, the extra time is apparent and causes a
considerable drop in speedup.

60

Table6.8: Running time of the Covering Algorithm, time format ss.s

Data Set Tabular CRIS-wEF Tabular CRIS
Dunur 0.837692 0.619531
Eastbound 0.221229 0.139542
Elti 0.038619 0.032761
Mesh 2.578483 2.187224
Muta Aggr. 0.593751 0.365285
Muta 8.602057 7.067541
PTE 2.868113 1.926015
PTE-5-Aggr. 8.063303 5.283680
Same Generation 0.436249 0.238712

Based on the discussions above, we can conclude that Tabular CRIS-wEF considerably improves the
efficiency of CRIS, achieving speedups varying from 7.24 to 435. Compared to Tabular CRIS, Tabular
CRIS-wEF requires more memory, which is still affordable though, and achieves higher speedups for
the problems whose entire solution set is found in multiple iterations. Although it achieves limited
speedup over Tabular CRIS, we should note that the main focus of this work is improving hash hit
count of Tabular CRIS. Tabular CRIS-wEF improves the hash hit count of Tabular CRIS by around
30%, providing good performance especially for the domains with limited number of concept classes.

In order to further demonstrate efficiency of Tabular CRIS-wEF, we compared its speedup and memory
consumption with the state of the art ILP-based concept discovery systems that incorporate memoiza-
tion. PTE and Muta are the two of the most commonly addressed data sets in ILP-based concept
discovery evaluation systems [150, 83, 106, 87, 89], hence our comparison is based on these two data
sets.

Table6.9: Comparison of memory consumption of T. CRIS-wEF to other Tabled ILP-based systems

Method Name PTE Muta
T. CRIS-wEF 1.8 MB 0.9MB
Common Prefixes Tabling 11 MB 6 MB
Conjunction of Common Prefixes Mem. O.F. 6 MB
Query Packs 882 MB 1.5 MB
Query Transformations 2 MB 25 MB
Coverage Caching 12.9 MB -

Table 6.9 compares memory consumption of such systems. In the table, Mem. O.F. means that a
memory overflow has occurred. As the experimental results show Tabular CRIS-wEF requires very
limited extra memory compared to other systems.

In Table 6.10 we compare Tabular CRIS-wEF to other ILP-based concept discovery systems that em-
ploy memoization in terms of the speedup they achieved. The Common Prefixes and Conjunction of
Common Prefixes approaches are implemented on APRIL [61] and results are reported in [137]. The
Query Packs approach is implemented on WARMR and the results are reported in [21]. The Query
Transformations approach is embodied in ALEPH and the speedup results are reported in [41]. The
Reordering Literals approach is embodied in ALEPH and its results are reported in [154]. Coverage

61

caching is implemented in APRIL and its results are reported in [4]. As these experiments are not
conducted in the same environment with Tabular CRIS-wEF, we list their results to give an idea about
the speedup performance of Tabular CRIS-wEF. As the experimental results show, Tabular CRIS-wEF
performs well in terms of achieved speedup and memory consumption.

Table6.10: Comparison of speedup of Tabular CRIS-wEF to other Tabled ILP-based systems

Method Name PTE Muta
T. CRIS-wEF 7.24 14.27
Query Packs 2.51 -
Query Transformations 2.5 4
Reordering Literals - 1.6

Memoization is a tool to improve efficiency of computer programs without modifying their internals.
In case of ILP-based concept discovery systems, incorporating memoization improves their efficiency
without effecting the accuracy. In Table 6.11 we compare accuracy of CRIS to ILP-based concept
discovery systems that are also referred to in the speedup and the memory consumption comparison
experiments. For more detailed comparison of CRIS to the other state-of-the are systems, reader may
refer to [82].

Table6.11: Comparison of accuracy

Method Name PTE Muta
CRIS 0.86 0.95
TILDE 0.79 0.85
APRIL - 0.64

Another way to analyze the accuracy of the relational learners is to test their behavior within the Phase
Transition framework [29]. Phase Transition divides the problem universe into three subspaces such
that problems falling in the first subspace, called yes region, have many solutions so it is easy to find
one, problems falling in the second subspace, called no region, have very few solutions if not none,
and lastly probability of having solutions for the problems in the third subspace, called mushy region,
suddenly changes from 1 to 0.

In order to analyze behavior of Tabular CRIS-wEF within the Phase Transition framework we con-
ducted a set of experiments on a subset of artificial data sets provided by Botta et. al. [28]. We took
equal number of sample data sets from each region. The properties of the induced solution clauses and
their accuracy results are compared to that of FOIL reported in [68]. Accuracy of CRIS on the data
sets is similar to that of FOIL, slightly higher for the data sets in the no region.

For the hash table hit count and the speedup performance, the results for the phase transition data
sets are presented in Table 6.12. The second column shows the region the data set belongs, and the
third and fourth columns show the total number of queries generated and the number of hash table hit
counts, respectively. The last column lists the speedup of Tabular CRIS-wEF over CRIS. The greatest
hash table hit count is achieved for the m5l13 data set, for which the entire solution set is found in two
iterations. For the all other data sets the achieved hash table hit count is close to each other, around
11%, and the entire solution set for is found in a single iteration. As the experimental results show
Tabular CRIS-wEF performs good if the entire solution clause set is found in multiple iterations.

62

Table6.12: Phase Transition Experiments

Data Set Region Num. Queries Hit Count Speedup
m5l13 yes 819 380 10.6
m6l20 yes 729 81 3.8
m13l31 no 3081 342 3.6
m15l29 no 4860 342 8.5
m6l26 mushy 312 34 1.5
m6l28 mushy 498 53 2.6

6.4.3 Selective Tabular CRIS

Similar to the evaluation of Tabular CRIS-wEF, we analyzed the performance of Selective Tabular
CRIS in terms of memory consumption, hash table hit count, and speedup.

Main purpose of Selective Tabular CRIS is improving the memory consumption of Tabular CRIS-
wEF. In Table 6.13 we compare the memory consumption, in KB, of Selective Tabular CRIS to the of
CRIS, Tabular CRIS, and Tabular CRIS-wEF for memoization purposes. Columns 5 and 6 compare
the change in memory consumption of Selective Tabular CRIS and Tabular CRIS-wEF over Tabular
CRIS. A negative percentage indicates a drop in memory usage, while a positive percentage indicates
an increase in the memory consumption. The experimental results show that, Selective Tabular CRIS
consumes less memory compared to Tabular CRIS-wEF. The drop in the memory consumption is of
real significance especially for the data sets that have numerical attributes. For the other data sets
drop in the memory consumption is relatively less, i. e. 86% for the PTE-5-Aggr. data set compared
to 4.1% for the Mesh data set. For the data sets that have only nominal arguments Selective Tabular
CRIS employs Policy 1, Policy 2, and Policy 4. In such data sets saving in the memory is due to the
Policy 4, i.e. saving in memory consumption occurs is due to optimization in the specialization step.
For the data sets that have numerical arguments Selective Tabular CRIS employs Policy 3 and Policy
4. For such data sets, saving in the memory consumption is due to both steps.

Table6.13: Memory Consumption in KB

Data Set S-T. CRIS T. CRIS wEF T. CRIS
Increase in % w.r.t

S-T. CRIS T. CRIST-wEF
Dunur 41 46.5 28 46% 66%
Eastbound 1.9 2.1 2 -5% 5%
Elti 55 61 41 34% 48%
Mesh 338 349 75 350% 365%
Muta 1264 1273 60 2006% 2021%
PTE 2545 2565 184 1283% 1294%
Muta-S-Aggr 115 312 166 -30% 88%
PTE-5-Aggr. 2727 12427 1163 134% 968%
Student Loan 694 4561 493 40% 825%

In order to analyze how Selective Tabular CRIS behaves with varying number of numerical attributes
we conducted a set of experiments on the PTE data set. Staring with 0 aggregate predicates, at each

63

experiment we added an aggregate predicate to PTE data set and plotted its memory consumption
graph.

In order to better see this, in Table 6.14 we list the change in the memory consumption with respect to
the memory used with the initial data set. The results show the increase in the memory consumption for
S-Tabular CRIS is very small compared to Tabular CRIS. Memory consumption of Tabular CRIS wEF
increases by around 384% with the introduction of the fifth numerical argument while the increase
of S-Tabular CRIS is only around 7%. The experiments show that S-Tabular CRIS scales well with
increasing number of predicates that have numerical attributes.

Figure 6.1: Memory Consumption for Varying Number of Numerical Attributes of the PTE data set

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

S-Tabular CRIS Tabular CRIS wEF

Table6.14: Change in memory consumption

Epoch 1 2 3 4 5
S-T. CRIS 5.8% 6.5% 5.2% 6.4% 7.1%
T. CRIS wEF 248% 292% 304% 339% 384%

Although memory saving achieved by the introduction of the Policy 4 in the specialization step seems
relatively small compared to the memory saving in the search space evaluation and pruning step, mem-
ory usage in the specialization step may be a problem if there are too many concept descriptors to be
refined. One such example is the Muta-4-Aggr. data set. Neither Tabular CRIS nor Tabular CRIS-wEF
was able to finalize this experiment. Both Tabular CRIS and Tabular CRIS-wEF encountered memory
overflow during the specialization of 10928 concept descriptors. Selective Tabular CRIS was able to
pass this step and proceeded with the evaluation of the resulting 775572 concept descriptors. We ter-
minated the execution of S-Tabular CRIS at the point where there were 5 uncovered target instances
and 3571087 concept descriptors were generated to explain them. We believe that the induced concept
descriptors would be overly specific. Until this point 2787227 concept descriptors were evaluated and
only 29677 hash table hits were counted in the search space evaluation and pruning step. This very low
number of hash table hit count and being able to proceed two more steps than Tabular CRIS and Tab-
ular CRIS-wEF shows the importance of the optimization introduced by Policy 4 in the specialization
step.

In Table 6.15 we list the hash table hit counts of Tabular CRIS, Tabular CRIS-wEF, and Selective
Tabular CRIS. The last two columns show the change in the hash table hit counts. The results show
that Selective Tabular CRIS does not miss any hash table hit for the data sets that have only nominal

64

values. For the data sets that have numerical arguments there is a drop in the hash table hit count.

Table6.15: Hash Table Hit Count

Data Set S-T. CRIS Tabular wEF T. CRIS Increase in % w.r.t
T. CRIS wEF T. CRIS

Dunur 2010 2010 2010 0% 0%
Eastbound 9623 9623 9623 0% 0%
Elti 943 943 943 0% 0%
Mesh 148695 148695 141371 0% 5%
Muta 74586 74586 43816 0% 70%
PTE 13282 13282 9347 0% 29%
Muta-S-Aggr 946 1162 718 -18% 38%
PTE-5-Aggr. 33202 34194 25132 -2% 25%
Student Loan 791111 834111 811445 -5% 2.7%

In order to understand the drop in the hash table hit count, we analyzed the values the numeric argu-
ments have at each iteration. Table 6.16 lists these values. As in some other studies [43, 140], Selective
Tabular CRIS splits the numerical arguments into slots and picks a representative value for each slot.
The assumption behind the Policy 3 is that, once the width of a slot changes, its representative value
changes as well. Although this applies to many predicates with numerical arguments in the experi-
ments, exceptions are atom_bond_count of the PTE-5-Aggr. data set, atom_count and bond_count of
the Muta-S-Aggr. data set, and absence and enrolled of the Student Loan data set. This is due to the
dense repetition of the same numerical value within a relation. For example, in the atom_bond_count
predicate there are 340 distinct atoms, each having one the 70 different bond counts. 18 atoms that
have 24 bonds, 14 atoms have 18 bonds, 12 atoms have 19 bonds, and the remaining bond counts
repeat on average 4 times.

At the end of the each epoch, Selective Tabular CRIS removes evaluation queries of the concept de-
scriptors that have predicates with constant numerical attributes. Because in the above predicates the
same constant is densely repeated, a concept descriptor with a previously computed constant value is
regenerated, and the query is re-executed. This explains the drop in the hash table hit counts.

In Table 6.17 we list the speedup factors achieved by three versions of CRIS. Speedups are calculated
over the running time of the basic implementation of CRIS. As the experimental results show, Tabular
CRIS achieves the greatest speedup usually, and the speedup factor drops as the system gets more
complicated. Although the drop in speedup for some data sets seems great, this is indeed due to the
very much improvement in the execution time. For example for the Mesh data set, CRIS terminates
in 2 hours 37 seconds while Tabular CRIS-wEF terminates in 29 seconds and Selective Tabular CRIS
terminates in 38 seconds. A very small increase in the execution time, compared to the execution time
of the original implementation, results in a great drop of the speedup factor.

Execution time of these system is closely dependent on the evaluation time of the queries. Based on
the load of the database server, the evaluation time of the queries may vary. While comparing the
speedup factors, we run each test 10 times and took their median as the execution time.

65

Table6.16: Values of the numerical constant arguments

Data
Set

Relation
Name

Epoch Values
Data
Set

Relation
Name

Epoch Values

PTE
5
Aggr.

charge
1 0.047

Student
Loan

Absence

1 4
2 -0.020 2 2,4
3 -0.086 3 2,4,6

atom
count

1 22 4 1,3,5,6
2 19 5 1,3,4,6,7
3 18 6 1,2,4,6,7

bond
count

1 24 7 1,2,3,4,5,6,8
2 19 8 1,2,3,4,5,6,7,8
3 18

Enrolled

1 6
atom
bond
count

1 2 2 3,6
2 2 3 3,5,8
3 2 4 3,4,7,10

max
charge

1 0.540 5 2,4,6,8,10
2 0.423 6 2,3,4,6,8,10
3 0.400 7 2,3,4,6,7,9,11

min
charge

1 -0.612 8 2,3,4,5,6,8,9,11
2 -0.639

Muta
S
Aggr.

charge
1 -0.117

3 -0.645 2 -0.123,-0.097
Muta-S
Aggr.

bond
count

1 4 atom
count

1 4
2 3,4 2 3,4

Table6.17: Speedup comparison

Data Set Selective TabularCRIS Tabular CRIS-wEF Tabular CRIS
Dunur 12.3 13.3 15.3
Eastbound 368 435 457
Elti 12.3 13.3 16.5
Mesh 190 247 252
Muta 11.93 14.12 12.07
PTE 7.1 7.24 5.9
Muta-S-Aggr. 13.6 13.01 12.59
PTE-5-Aggr. 9.4 9.8 8.8
Student Loan 29.13 40.1 9.17

We also analyzed the statistical significance of the observed speedup factors. For this aim we employed
Wilcoxon Mann Whitney test [79]. Wilcoxon Mann Whitney is a non-parametric statistical hypothesis
test to determine whether two sets of independent observations have equally large values. Although
Wilcoxon Mann Whitney test does not assume any distribution for observations, it assumes that they
differ by a location shift (6.3). One possible way to check whether the observations satisfy the shift
change condition is to employ Kolmogorov Smirnov test [37].

66

M= µ(X) − µ(Y) (6.3)

where µ is the median, X and Y are the observation sets, and M is the location shift.

Given the risk factor, i.e. α, the Kolmogorov Smirnov’s test computes a p-value. p-value ≥ α indicates
that samples satisfy the Wilcoxon Mann Whitney requirement. To justify that a claim is statistically
significant, 0.05 is the most commonly used value for α [52].

We run the speed up test tool provided by Touati et al. [157] to statistically analyze the speedups.
Table 6.18 presents the result of the analysis. p-values of the data sets for the Kolmogorov Smirnov’s
test are listed in the second column of the table. With the risk factor α = 0.05, each data set qualifies
to be analyzed by the Wilcoxon Mann Whitney test. Results show that the achieved median speedup
is statistically significant.

Median Speedup is the speedup for the median running times: median speedup =
med(X)
med(Y)

.

Table6.18: Statistical analysis of S-Tabular CRIS’ speedup

Data Set p Value Speedup Median Is Median Sign. Median Conf Level
Dunur 0.818 1.002 TRUE 0.5
Eastbound 1 2.671 TRUE 0.99
Elti 1 1.084 TRUE 0.99
Mesh 1 1.299 TRUE 0.99
Muta 0.88 1.917 TRUE 0.94
PTE 0.82 1.68 TRUE 0.99
Muta-S-Aggr. 0.81 1.013 TRUE 0.99
PTE-5-Aggr. 0.82 1.352 TRUE 0.99
Student Loan 0.81 1.607 TRUE 0.99

In Table 6.19 we list the memory consumption of some of the state of the art ILP-based concept
discovery systems that incorporate memoization. Experimental results show that Selective Tabular
CRIS requires less memory than other systems both for the PTE and Muta data sets.

Table6.19: Comparison of memory consumption of S-Tabular CRIS to other Tabled ILP-based systems

Method Name PTE Muta
Selective Tabular CRIS 2.4 MB 1.2 MB
Common Prefixes Tabling 11 MB 6 MB
Conjunction of Common Prefixes Mem. O.F. 6 MB
Query Packs 882 MB 1.5 MB

In Table 6.20 we compare the speedups achieved by Selective Tabular CRIS and the state of the art
ILP-based concept discovery systems that incorporate memoization. The results show that Selective
Tabular CRIS achieves greater speedups than the state of the art systems.

67

Table6.20: Comparison of speedup of Selective Tabular CRIS to other Tabled ILP-based systems

Method Name PTE Muta
Selective Tabular CRIS 7.4 11.93
Query Packs 2.51 Not Available
Query Transformations 2.5 4
Reordering Literals Not Available 1.6

As Selective Tabular CRIS does not modify the rule induction of CRIS, its accuracy performance is
the same of Tabular CRIS-wEF.

6.5 Evaluation on Parallelization Technique

In this section we demonstrate the experimental results of pCRIS. Due to the resource limitations,
instead of running a dedicated worker for each worker, 8 instances of MySQL each with separate
communication ports and data paths were run, and in experiments where more than 8 workers were
employed more than one connection to a MySQL instance is established. Before discussing the ex-
perimental results, we firstly analyze how MySQL instances behaves when more than one connected
clients. In Table 6.21 we list its running time of pCRIS on PTE-5-Aggr. with varying number of work-
ers connected to the same MySQL instance. In this experiment chunk and minimum chunks sizes are
180 and 500, respectively.

Table6.21: Running time for connections to a single DB

Connections Running Time Speedup
1 (Sequential code) 36.13 -
2 30.41 1.18
4 26.20 1.37
9 31.50 1.13

As seen in the results, execution time does not scale well as the number of connections increase. For
this reason, we prefer to use a moderate number of multiple connections to a single database instance.

Table6.22: The Best Running Times of the Three Systems

Data Set
Running Time (hh:mm:ss.s) # Dist. Que. # Chunk

pCRIS Tabular CRIS CRIS Executed Processors Size
Dunur 00:00.90 00:02.88 00:26.00 1775 14 20
Elti 00:00.99 00:02.12 00:35.00 2625 16 30
Eastbound 00:01.88 00:06.54 00:11:36 12245 16 20
Mesh 00:17.12 00:37.36 02:39:34 12715 16 100
Muta 00:04.30 00:12.05 03:42.00 12784 16 50
PTE No Aggr 00:46.00 03:35.00 21:25.00 16242 12 100
PTE 5 Aggr 04:26.00 36:13.00 05:17:00 112035 10 50

68

In Table 6.22 we present the best running times of pCRIS, Tabular CRIS and CRIS. Although improve-
ment in running time was expected with experiments where large number of queries are executed,
speedup is also achieved for the experiments which have very short running times as well.

In order to analyze how pCRIS improves the running times of the parallelized components we con-
ducted a set of experiments. In Table 6.23 we present these results. As the experimental results show
pCRIS behaves poorly in the search space formation step. Speedup is not observable in this step as
the computations themselves are very cheap and communication cost overwhelms the computation
cost. We believe that parallelization of this is step is still necessary especially for experiments which
involve high number of concept descriptors to be specialized both for the sake of memory usage and
computational efficiency.

Experimental results show that pCRIS shows its power in the search space evaluation step. High
speedups are achieved even for experiments, such as Elti and Dunur, where there were relatively less
number of concept descriptors to be evaluated, queries distributed as small chunks among many work-
ers.

Table6.23: Running Times of Parallel Components vs Sequential Versions

Data Set
Search Space Evaluation and Search Space Formation

ChunkPruning (mm:ss.s) (ss.s)
pCRIS Tabular CRIS pCRIS Tabular CRIS Processors Size

Dunur 00:00.44 00:02.40 00.30 00.20 16 20
Elti 00:00.56 00:01.32 00.32 00.20 16 30
Eastbound 00:01.17 00:05.90 00.42 00.67 16 20
Mesh 00:09.80 00:24.00 02.00 02.21 12 100
Muta 00:03.76 00:11.20 01.71 01.80 4 50
PTE No Aggr 00:42.00 02:41.12 01.73 01.92 12 100
PTE 5 Aggr 04:44.03 35:01.00 21.00 28.00 8 50

Because the parallelization in the search space formation step does not lead to speedup in the rest
of the experiments only the search space formation step is executed in parallel and the search space
formation step is executed in sequential manner.

In order to analyze how pCRIS behaves with varying number of workers we conducted an other set
of experiments. In Figure 6.2 we present the results. The experimental results show that there is a
persistent increase in speedup up to 8 workers, but irregular after that point. We believe this is due to
the MySQL’s response to multiple connections to the same database instance.

In order to analyze the effect of the data chunk sizes on pCRIS’s running time, we conducted two
different experiments. In the first experiment, we set the minimum chunk size for parallel execution
to 100 and run pCRIS five times for different initial chunk sizes. In the second experiment, initial
chunk size was set to 200 and we changed the value of the minimum chunk size required for parallel
execution. With the first experiment we aim to keep every worker busy until the very end of the
execution and idle afterwards. In the second experiment we either allow work dispatching for very
small sizes, say 1, or stop work dispatching at large data sizes, say 1000. The first experiment aims
to allow busy communication at the beginning of the execution while the second experiment allows
heavy communication through the end of the execution.

69

Figure 6.2: Average running times over five runs for varying number of workers

I.C.S: Initial Chunk Size

C.S: Chunk Size

0

200

400

600

800

1000

2 4 8 10 12 14 16

Tim
e

(se
c)

Num. Processors

PTE-5 Aggr. (I.C.S = 500, C.S = 100)

0

50

100

150

2 4 8 10 12 14 16

Ti
m

e(
se

c)

Num. Processors

PTE No Aggr. (I.C.S = 500, C.S=300)

0

5

10

15

20

25

2 4 8 10 12 14 16

Tim
e

(se
c)

Num. Processors

Mesh (I.C.S=100, C.S=300)

0

2

4

6

8

10

2 4 8 10 12 14 16

Tim
e

(S
ec

)

Num. Processors

Muta (I.C.S=50, C.S=50)

0

0.5

1

1.5

2

2.5

2 4 8 10 12 14 16

Tim
e(

se
c)

Num. Processors

Elti (I.C.S=10, C.S=30)

0

0.5

1

1.5

2

2 4 8 10 12 14 16

Tim
e(

se
c)

Num. Processor

Dunur (I.C.S=20, C.S=40)

0

1

2

3

4

5

6

2 4 8 10 12 14 16

Tim
e

(se
c)

Num. Processor

Eastbound (I.C.S=20, C.S=40)

Experimental results show that pCRIS performs poorly with the extreme values. Setting the initial
chunk size to a large value causes some fast workers to wait for the slow workers to finish their job
before advancing to the next step. Setting the minimum chunk size to a very small value for parallel
execution causes high communication cost and hence poor execution time. These observations in-
deed comply with Lowenthal’s [96] study stating that a small block size decreases node idle time but
increases the amount of communication, while a large block size decreases the amount of commu-
nication but increases node idle time and both situations resulting in efficiency loss. pCRIS tries to
avoid falling in either situation by letting the user set the initial chunk size and minimum data size for
parallel execution.

Figure 6.3 illustrates the speedup achieved for experiments with varying number of workers. The
graph shows that pCRIS scales well with the number of SQL queries executed. For the PTE-5 Aggr
experiment, pCRIS has a superlinear speedup [15], i.e. for four workers speedup is 6.2 and for 8
workers speedup is 9.3. As the number of queries executed drops, the performance of pCRIS worsens
but still achieves some speedup.

70

Table6.24: Running Times for Different Chunk Sizes

Chunk Size Running Time
20 8:32
100 5:14
200 4.42
500 4:59
700 5.04

1000 6:15

Table6.25: Running Times for Different Min. Chunk Sizes

Min. Chunk Size Running Time
0 5.43
50 5.36

100 5.14
200 4.55
500 5.07

1000 5.20

Figure 6.4: Efficiency Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20

Number of Processors

Efficiency

Pte 5 Aggr.

Pte No Aggr.

Mesh

Elti

Dunur

Eastbound

Muta

Figure 6.4 illustrates the efficiency of the workers in the system. Every experiment benefits until
four workers, while experiments with larger search spaces still benefit from more workers. After
eight workers, each experiment shows a sharp drop in efficiency measure, at the point when multiple
connections are established to the same database instance. The efficiency measure dropping after eight
workers suggests us that pCRIS may perform better if each worker has its own database instance.

71

Figure 6.3: Speedup Results

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18

Number of Processors

Speedup

Pte 5 Aggr.

Pte No Aggr.

Mesh

Elti

Dunur

Eastbound

Muta

In Table 6.26 we compare the speedup of pCRIS with three other ILP-based parallel systems namely
pct, dplr, and dpilp [63]. For PTE No Aggr test pCRIS outperforms the other three systems. For the
Mesh data set dpilp performs better than pCRIS, while pCRIS outperforms the other two systems.
Mesh is a sparse data set and has relatively small number of instances compared to PTE, PTE data set
consists of 29267 instances of 32 relations and Mesh data set consist of 1749 instances of 26 relations.
This imbalance in data sizes suggests that pCRIS is well suited for domains which have heavy SQL
query executions.

Table6.26: Speedup Comparison

Data Set # Proc. pCRIS pct dplr dpilp

PTE
2 2.36 0.75 1.34 1.20
4 6.2 0.42 2.31 3.23
8 8.3 - 0.79 5.17

Mesh
2 1.21 0.76 0.38 2.75
4 1.53 0.79 0.53 3.46
8 1.41 0.80 1.18 4.35
16 1.34 - 1.21 4.37

72

Figure 6.5: Workers’ Execution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

0

1

2

3

4

5

Time (milliseconds)

W
or

ke
r I

D

We are unable to report the communication overhead, as data transfers are overlapping in most of the
experiments and thereby hiding the exact cost. Figure 6.5 shows execution of four workers for the PTE
data set with chunk size 500. Although every call to worker is not clear, the figure gives an idea on the
overlapping processing. Indeed, for the test above, there are 18 calls for worker 1, 31 calls for worker
2, 16 calls for worker 3 and 24 calls to worker 4.

Similar to the statistical analysis of Selective Tabular CRIS, we employed Wilcoxon Mann Whitney
test to analyze the statistical significance of the observed results.

p-values of the data sets for the Kolmogorov-Smirnov’s test are listed in the first column of Table 6.27.
With the risk factor α = 0.05, each data set qualifies to be analyzed by the Wilcoxon-Mann-Whitney
test. Results obtained for statistical significance are presented in Table 6.27. The statistical significance
analysis is conducted with sample sets of 40 running times for each data set. Analysis results show
that both the obtained median speedup is statistically significant.

Table6.27: Statistical significance of speedups

Data Set p Value Speedup Median Is Median Sign. Median Conf Level
Dunur 0.9945 1.48 True 0.99
Eastbound 0.81 3.847 True 0.99
Elti 0.4175 1.585 True 0.99
Mesh 0.787 1.353 True 0.99
Muta 0.9945 1.926 True 0.99
PTE No Aggr. 1.897 1.895 True 0.99
PTE 5 Aggr. 2.795 3.116 True 0.99

The speedup test tool also reports the overall gain, G, and overall speedup, S, for the the observations.
When W is some weight function, G and S are defined as follows:

73

G = 1 −

∑b
j=1 W(C j) × ExecutionT ime(C‘

j, I j)∑b
j=1 W(C j) × ExecutionT ime(C j, I j)

(6.4)

S =

∑b
j=1 W(C j) × ExecutionT ime(C j, I j)∑b
j=1 W(C j) × ExecutionT ime(C‘

j, I j)
(6.5)

Table 6.28 reports overall speedup and gain for the experiments conducted on five processors. The
reported confidence interval for the overall speedup and overall gain of the mean and the median is
[0.561; 1].

Table6.28: Overall speedup and gain

Min. Mean Median
Overall Speedup 3.77 3.93 3.84
Overall Gain 0.73 0.75 0.66

The test results confirm that pCRIS is consistent with CRIS in terms of rule coverage and accuracy
since the concept induction mechanism remains unchanged. In Table 6.29 we report the coverage and
accuracy results of pCRIS in comparison to that of similar systems. Note that for Mesh data set the
result is for coverage, for the other data sets the result is for accuracy.

Table6.29: Coverage and Accuracy Results

System Mesh Mutagenesis PTE
pCRIS 53 % 95% 86%
PosILP 42 % 90% Not Avail.

SAHILP 38 % 89% Not Avail.
PROGOL 31% 83% 72%

FOIL 31% 83% Not Avail.

6.6 Evaluation on Graph-based Concept Discovery

In this section we firstly discuss the concept learning capability of the proposed approach and next its
performance. In order to analyze its concept learning capability we performed experiments on data set
with different characteristics.

In order to evaluate the performance and the accuracy of the proposed approach we conducted two
sets of experiments. With the first set of the experiments we compare the proposed approach to the
ILP-based concept discovery system CRIS. With the second set of the experiments we compare the
proposed approach to graph based concept learning system Relational Paths-Based Learning.

The experiments are conducted on four different data sets, namely Elti, Dunur, Same Genetation, and
Family. Although the data sets are very similar in nature, they are challenging in the concept discovery
process due to the characteristics of the data. Elti is a real world kinship data set which contains
transitive relations in the target concepts. Dunur is a real world kinship data set where facts indirectly

74

related to the target instances exist. The Same-Gen data set is also a real world kinship data set that
contains recursive relations. Family [5] data set is highly relational data set that contains different
kinship relations.

6.6.1 Learning Capability

To analyze the applicability of the proposed approach on data set that contain transitive facts we con-
ducted experiments on the Elti data set. The proposed approach was successful in learning concept
descriptors for such problems. The proposed approach outperformed CRIS in several aspects. Above
all, the solution set it discovered does not contain any concept descriptors that are semantically identi-
cal but different in representation, i.e. differing in ordering of the literals or different renaming of the
same literal argument. For the Elti data set CRIS discovered 12 concept descriptors while the proposed
approach found 4 concept descriptors that have the same meaning.

To analyze the applicability of the proposed approach on data set which contains indirectly related
facts we conducted experiments on the Dunur data set. The proposed approach was successful in dis-
covering the concept descriptors in a domain where indirectly related fact were existent. It discovered
the same set of the solution clauses as CRIS did.

To analyze the recursive rule learning capacity of the proposed approach we conducted a set of experi-
ments on the Same-Gen data set. The proposed approach was successful in learning such theories and
found the same set of solution clauses as CRIS did.

6.6.2 Performance Analysis

In this section we firstly compare the proposed approach to CRIS in terms of accuracy, coverage, and
running time. For this purpose we conducted experiments on the Elti, Dunur, and Same-Gen data sets.
In the second part we compare the proposed approach to RPBL in terms of number of solution clauses
found, average length of the solution clauses, precision, and recall. For this comparison we conducted
experiments on the Family data set.

In Table 6.30 we list the coverage and accuracy values of the proposed approach. In order to find the
number of false positive and false negative instances, data sets are extended with their duals under
the Close World Assumption. Coverage denotes the number of target instances of data set covered
by the induced hypothesis set over the total number of target instances. Accuracy denotes the sum of
correctly covered true positive and true negative instances over the sum of true positive, true negative,
false positive and false negative instances.

Table6.30: Coverage and Accuracy Results

Data Set Coverage Accuracy
Elti 1.0 1.0
Dunur 1.0 1.0
Same-Gen 0.84 1.0

As the proposed approach discovered concept descriptors that cover the same set of target instances
with CRIS, their accuracy and coverage values are identical.

75

Another problem with ILP-based concept discovery systems is their long running times. In Table
6.31 we compare running time of the proposed approach to CRIS. Experimental results show that
the proposed approach has a shorter running time compared to CRIS. Although CRIS has powerful
pruning strategies, it generalizes the concept descriptors in all possible ways which results in a large
search space. On the other hand, the proposed approach limits it search space by possible graph
expansions only and has a relatively small search space.

Table6.31: Running Times in Seconds

Data Set The Proposed Approach CRIS
Elti 0.51 35
Dunur 0.11 26
Same-Gen 0.76 12

ILP-based concept discovery systems suffer from long execution times as such systems usually execute
huge number of queries to evaluate the search space. Execution of each such query may be costly
especially for long concept descriptors as the execution of a query requires as many table joins as the
length of the concept descriptor. In Table 6.32 we compare the number of queries executed for pruning
purposes.

Table6.32: Queries

Data Set The Proposed Approach CRIS
Elti 2118 3571
Dunur 3192 3777
Same-Gen 222 996

As the results show, the proposed approach executes less number of queries compared to CRIS. Drop
in the number of executed queries is especially apparent for the Elti and Same-Gen data sets. For these
data sets the proposed approach finds solution sets with less number of concept descriptors which have
the same semantical meaning with that of CRIS.

The experimental results discussed above show that the proposed approach is comparable and compat-
ible to ILP-based concept discovery system called CRIS.

To compare the proposed approach to RPBL we conducted a set of experiments on the Family data set.
We set the minimum support to 0.1, minimum confidence to 0.7 and maximum rule length according
to the length of the longest path found by RPBL. In Table 6.331 we list the observed results. The third
column lists the number of the solution clauses induced, the fourth column lists the average length of
solution clauses. The last two columns list the precision and recall values. We did not run RPBL on
our machines but retrieved the results from [65].

As the experimental results show the proposed approach finds larger number of concept descriptors
with less number of literals. Concept descriptors with many literals may be hard to interpret and
such concept descriptors are subject to the overfitting problem. The proposed approach is capable
of inducing much simpler concept descriptors with almost the same precision and recall values. The
proposed approach missed to define 1 target instance for the husband, nephew, and wife relations; 2

1 Some of the induced solution clauses are of length 2, and some are of length 3. Their average is not an
integer value.

76

Table6.33: Family data set results

Target Algorithm #Clauses Length Precision Recall

Brother
Proposed 2 2.5 100 100
RPBL 2 6 95 96

Uncle
Proposed 9 2 100 100
RPBL 2 6 100 100

Niece
Proposed 7 2 100 98
RPBL 2 6 100 100

Aunt
Proposed 10 2 100 100
RPBL 2 6 100 100

Nephew
Proposed 7 2 100 99
RPBL 2 6 100 100

Son
Proposed 3 2 100 94
RPBL 2 6 100 100

Mother
Proposed 6 2 100 100
RPBL 2 6 100 100

Father
Proposed 6 2 100 100
RPBL 2 6 100 100

Daughter
Proposed 3 2 100 96
RPBL 2 6 100 100

Sister
Proposed 4 2.7 100 100
RPBL 2 6 96 99

Wife
Proposed 1 2 100 96
RPBL 1 3 100 100

Husband
Proposed 1 2 100 96
RPBL 1 3 100 100

target instances for the niece and daughter relations; and 4 target instances for the son relation. Indeed
these misses are due to the minimum support and confidence values. For example, for the wife relations
there is 1 uncovered target instance. As 1 / 25 is less than the minimum support value, the proposed
approach does not attempt to find a concept descriptor for the uncovered target instance. Average
concept descriptor learning time for RPBL is around 0.02, and it is around 1 second for the proposed
approach.

Similar to the run of RPBL on the Family data set, we did not include the negative target instances in
the concept learning process but employed CWA.

77

78

CHAPTER 7

CONCLUSION

Increasing amount of the data stored on relational databases has triggered the development of mining
algorithms that can directly work on such data. Inductive Logic Programming (ILP) is one the most
successful attempts to handle such data.

ILP systems employ first order logic as the representation framework for data and employ various logic
based techniques to discover the hidden patterns. The induced patterns are also represented within the
first order logic framework, generally as Horn clauses.

Based on the pattern such systems discover, they are classified as descriptive systems or predictive
systems. In descriptive ILP, the systems looks for any valuable pattern in the data. In the descriptive
ILP, however, the aim is to find patterns that define some target concept.

Predictive ILP, also referred concept discovery, has widely been applied in various domains and suc-
cessful experimental results have been reported. Concept discovery systems input a finite set of target
instances, a finite set of background facts, and some parameters to constrain the properties of the in-
duced concept descriptors. Concept discovery can be considered as a supervised learning as the target
instances are labeled as positive if they belong to the target relation, or negative if they do no. Back-
ground data consists of a set of fact which are directly or indirectly related to the target instances.
Such systems also require some user defined parameters to constrain the search space and evaluate the
quality of concept descriptors.

One of the problems concept discovery systems face is scalability and efficiency. Such systems usually
experience scalability issues, both execution time wise and memory wise, as they create a large search
spaces and evaluation of the search space is a costly process. Among others, methods based on query
transformation, lazy evaluation, and introduction of language bias have been introduced to improve
scalability of concept discovery systems.

In this study we focus on the scalability issue of concept discovery systems. We attack this from two
seemingly different points. First attempt is based on employing memoization and the second one is
based on parallelization. The proposed methods are implemented as extension to CRIS, which is an
ILP-based predictive learning system.

Memoization has extensively been applied in problems to improve running time. This technique im-
proves the running the time of systems if they make calls to the same functions with the same param-
eters. In memoization, results of functions are stored in look-up tables and a solution of a function
is directly retrieved from the look-up table when it is re-executed with the previously called parame-
ters. Memoization is well applicable to concept discovery systems as such systems frequently generate
repeating executing queries.

79

To improve efficiency of concept discovery systems we developed three methods. The first method,
called Tabular CRIS, aims to catch the repeating queries that are generated within the same epoch. To
realize this, Tabular CRIS maintains a look-up to store the evaluation queries. Tabular CRIS sends an
evaluation query to the database engine if it is not executed before. If a query is executed before its
result is retrieved from the look-up table. Tabular CRIS stored the evaluation query and the number of
tuples returned by the query in the look-up tables.

In case of noisy and incomplete data, concept discovery systems usually runs multiple iterations on
the data set. At each iteration some hypotheses that explain a subset of the target instances are found,
and those explained target instances are removed from the data set. A new iteration is performed to
find concept descriptors that explain the remaining target instances. In such cases, an evaluation query
that is generated in the current iteration may have been generated and evaluated in one of the previous
iterations. Tabular CRIS is not able to handle such repeating queries as it cleans the content of the look-
up tables at the end of each iteration. In order to cope with such repeating queries generated at different
iterations we propose Tabular CRIS-wEF. Different than Tabular CRIS, it stores the evaluation query
and the tuples returned by the evaluation query in the look-up table. As removing the target instances
that are explained by some concept descriptors may change the result of the evaluation queries stored
in the look-up tables, the covering function is modified to remove the explained target instances also
from the look-up tables. With this modification on the covering function, look-up tables always store
the updated resultsets of the queries.

Although Tabular CRIS-wEF improved hash look-up table hit count of Tabular CRIS in considerable
extent, it requires relatively more memory to main the look-up table. Although it is not possible to
figure out if a query will be regenerated in the following iterations, in some cases it is possible to
decide that a certain query will not be. Tabular CRIS-S is proposed to deal the storage of such non-
repetitive evaluation queries. Tabular CRIS-S implements policies on what kind of queries to store in
the look-up tables and for how long.

Those proposed methods differ from the state of the art memoization based concept discovery systems
by focusing on the evaluation queries instead of concept descriptors. Considering evaluation queries
instead of concept descriptors itself has a major contribution as different concept descriptors may
map into same evaluation query. Also, the proposed methods are implemented within the concept
discovery tool, which makes it transparent to the under laying data storage engine. Several studies
proposed in the literature modify the underlaying data engine, which is Prolog in most cases, to handle
such memoization issues.

Experimental results of Tabular CRIS, Tabular CRIS-wEF, and Tabular CRIS-S have proved that mem-
oization has greatly improved the running time of CRIS with affordable memory requirements. When
compared to stat of the art systems, the proposed approaches require less memory and gain higher
speedups.

ILP-based concept discovery systems are well amenable for parallelization as they perform large num-
ber of reads on the data set to evaluate the concept descriptors. Considering this we propose a paral-
lel version of CRIS, called pCRIS. pCRIS employs implements master-worker architecture in shared
nothing environment and realizes data-parallelization paradigm. In pCRIS there is master node which
generates the job and patches it among multiple workers for evaluation. As it works on a shared noth-
ing environment data must be made available to each worker beforehand. pCRIS is parametric as it
requires user inputs to decide which parts to run in parallel, minimum workload to run a function in
parallel.

pCRIS parallelizes both the search space construction and evaluation steps of CRIS. To parallelize the

80

search space formation step, the master splits the current search space among workers in such a way
that each worker refines a mutually exclusive subset of the current search space, and sends the result
back to the master where the global search space for the next iteration is formed.

To parallelize the search space evaluation step, the master node maps the concept descriptors into
evaluation queries and dispatches them among workers. The master node also maintains a look-up
table to store the evaluation queries sent to workers to avoid re-executing of the regenerated queries.

pCRIS is designed in such a way that, based on the workload, it may start execution of function in
parallel and when the workload drops below a user defined threshold suspends the workers and serially
executes the code for the remaining workload.

Experimental results show that pCRIS well scales with the size of the data. We have also observed that
speedup is more significant for the experiments whose search space and the data set are large. Even
for the PTE-5 Aggr. data set super linear speedup is achieved. Also when compared to state of the art
systems pCRIS achieved higher speedups.

Graph based approaches are recently attracting more attention from concept discovery community.
Graph based approaches either look for frequently appearing substructures or for finite length paths that
connect similar objects. Such approaches require costly computations to compare the similarity of the
substructures and complex indexing mechanisms to keep track of the paths. In this study we propose
a new method to represent the data on the graph. We utilize directed multigraph as the representation
framework. Instead of representing each fact as distinct vertices in the graph, we propose to represent
similar facts as a single vertex. By this way the representation of the data becomes more compact
and easier for human interpretation. We consider two facts similar if they are related to a common
fact with the same relation. We label the edges after the relation names that holds between related
vertices and each child vertex stores the path from the root to itself. By this way, while constructing
the graph we also form the possible concept descriptors. Once the graph is constructed, the path stored
at the leaf vertices are translated into SQL queries and they are sent to database server for evaluation.
Initial experimental results show that the proposed approach is capable of representing the data in less
number of concept descriptors with almost the same accuracy values.

Some of the open problems related to the methods studied in his dissertation are listed below:

• Effect of different hashing functions on speedup in memoization based approaches need to be
analyzed.

• The chunk size calculation mechanism of pCRIS may even be improved by employing prior
statistical information on the distribution of data.

• The current implementation of the graph based approach is limited with the binary relations.
This need to be extended to n-ary relations.

• Data may be preprocessed to find closely related facts and the graph based algorithm can be
parallelized in such a way that each worker executes on such more related sub-data set.

81

82

REFERENCES

[1] http://www.ceng.metu.edu.tr/hpc/index/. [Last accessed December, 2012].

[2] http://dev.mysql.com/doc/refman/5.0/en/index.html. [Last accessed December,
2012].

[3] http://www.boost.org/users/history/version_1_37_0.html. [Last accessed De-
cember, 2012].

[4] DCC-2003-03 (2003) on the implementation of an ILP system with prolog. Technical report,
Laboratorio de Inteligencia Artificial e Ciencia de Computadores, Porto, Porugal.

[5] Large family dataset. http://www.cs.utexas.edu/ftp/mooney/forte/. Online; ac-
cessed December 09, 2012.

[6] Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/. Last
accessed December, 2012.

[7] Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/. Last
accessed December, 2012.

[8] PRG-TR-25-96 (1996) Part-of-speech disambiguation using ilp. Technical report, Oxford Uni-
versity Computing Laboratory, Oxford, UK.

[9] PRG-TR-8-95 (1995) Theories for mutagenicity: A study of first-order and feature based induc-
tion. Technical report, Oxford University Computing Laboratory, Oxford, UK.

[10] Using Microsoft Message Passing Interface. http://technet.microsoft.com/en-us/
library/4cb68e33-024b-4677-af36-28a1ebe9368f. Last accessed December, 2012.

[11] H. Abdi and L. J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433–459, 2010.

[12] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of associa-
tion rules. In Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT
Press, 1996.

[13] R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEE Transactions on Knowl-
edge and Data Engineering, 8:962–969, December 1996.

[14] K. Aida, W. Natsume, and Y. Futakata. Distributed computing with hierarchical master-worker
paradigm for parallel branch and bound algorithm. In CCGrid 2003: Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 156 – 163, May
2003.

[15] E. Alba. Parallel evolutionary algorithms can achieve super-linear performance. Information
Processing Letters, 82(1):7–13, 2002.

83

http://www.ceng.metu.edu.tr/hpc/index/
http://dev.mysql.com/doc/refman/5.0/en/index.html
http://www.boost.org/users/history/version_1_37_0.html
http://www.cs.utexas.edu/ftp/mooney/forte/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://technet.microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f
http://technet.microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f

[16] É. Alphonse, T. Girschick, F. Buchwald, and S. Kramer. A numerical refinement operator based
on multi-instance learning. In P. Frasconi and F. A. Lisi, editors, ILP, volume 6489 of Lecture
Notes in Computer Science, pages 14–21. Springer, 2010.

[17] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In AFIPS Spring Joint Computing Conference, volume 30 of AFIPS Conference
Proceedings, pages 483–485. AFIPS / ACM / Thomson Book Company, Washington D.C.,
1967.

[18] M. S. Amin, R. L. F. Jr., and H. M. Jamil. Top-k similar graph matching using tram in biological
networks. IEEE/ACM Trans. Comput. Biology Bioinform., 9(6):1790–1804, 2012.

[19] C. Anglano, A. Giordana, G. L. Bello, and L. Saitta. An experimental evaluation of coevolutive
concept learning. In J. W. Shavlik, editor, ICML, pages 19–27. Morgan Kaufmann, 1998.

[20] E. Bauer and G. Kókai. Learning from noise data with the help of logic programming systems.
In Proceedings of the 4th WSEAS International Conference on Artificial Intelligence, Knowl-
edge Engineering Data Bases, pages 32:1–32:6, Salzburg, Austria, 2005. World Scientific and
Engineering Academy and Society (WSEAS).

[21] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, and H. Vandecasteele. Improving the ef-
ficiency of inductive logic programming through the use of query packs. Journal of Artificial
Intelligence Research, 16:135–166, 2002.

[22] H. Blockeel, S. Dzeroski, and J. Grbovic. Simultaneous prediction of mulriple chemical param-
eters of river water quality with tilde. In J. M. Zytkow and J. Rauch, editors, PKDD, volume
1704 of Lecture Notes in Computer Science, pages 32–40. Springer, 1999.

[23] H. Blockeel and L. D. Raedt. Top-down induction of first-order logical decision trees. Artif.
Intell., 101(1-2):285–297, 1998.

[24] H. Blockeel, L. D. Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic programming
by learning from interpretations. Data Min. Knowl. Discov., 3(1):59–93, 1999.

[25] H. Blockeel and M. Sebag. Scalability and efficiency in multi-relational data mining. SIGKDD
Explorations, 5(1):17–30, 2003.

[26] H. Blockeel, T. Witsenburg, and J. N. Kok. Graphs, hypergraphs, and inductive logic program-
ming. In MLG, 2007.

[27] F. Bonchi, C. Castillo, A. Gionis, and A. Jaimes. Social network analysis and mining for busi-
ness applications. ACM Trans. Intell. Syst. Technol., 2(3):22:1–22:37, May 2011.

[28] M. Botta. Challenging relational learning problems. http://www.di.unito.it/~mluser/
challenge/index.html, 2004. Online; accessed July 29, 2012.

[29] M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational learning: Hard problems and phase
transitions. In Proceedings of the Advances in Artificial Intelligence, 6th Congress of the Italian
Association for Artificial Intelligence, pages 178–189, Bologna, Italy, September 14-17 1999.

[30] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed computing systems.
Journal of Parallel and Distributed Computing, 61(6):810 – 837, 2001.

84

http://www.di.unito.it/~mluser/challenge/index.html
http://www.di.unito.it/~mluser/challenge/index.html

[31] R. Camacho. Indlog − induction in logic. In J. J. Alferes and J. Leite, editors, Logics in
Artificial Intelligence, volume 3229 of Lecture Notes in Computer Science, pages 718–721.
Springer Berlin Heidelberg, 2004.

[32] R. Camacho, N. A. Fonseca, R. Rocha, and V. S. Costa. Ilp : - just trie it. In H. Blockeel, J. Ra-
mon, J. W. Shavlik, and P. Tadepalli, editors, ILP, volume 4894 of Lecture Notes in Computer
Science, pages 78–87. Springer, 2007.

[33] B. Cestnik, I. Kononenko, and I. Bratko. Assistant 86: A knowledge-elicitation tool for so-
phisticated users. In Proceedings of 2nd European Working Session on Learning, pages 31–45,
Bled, Yugoslavia, May 1987.

[34] G. Chartrand. Introductory Graph Theory. Dover Publications, 1984.

[35] J. Cheng. Dependence analysis of parallel and distributed programs and its applications. In
Advances in Parallel and Distributed Computing, 1997. Proceedings, pages 370–377, March
1997.

[36] A. Clare and R. D. King. Predicting gene function in saccharomyces cerevisiae. In ECCB,
pages 42–49, 2003.

[37] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 1998.

[38] D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and
background knowledge. J. Artif. Intell. Res. (JAIR), 1:231–255, 1994.

[39] D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2):32–41,
2000.

[40] V. S. Costa, A. Srinivasan, and R. Camacho. A note on two simple transformations for improv-
ing the efficiency of an ilp system. In J. Cussens and A. M. Frisch, editors, ILP, volume 1866
of Lecture Notes in Computer Science, pages 225–242. Springer, 2000.

[41] V. S. Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens, J. Struyf, H. Van-
decasteele, and W. V. Laer. Query transformations for improving the efficiency of ilp systems.
Journal of Machine Learning Research, 4:465–491, 2003.

[42] J. Cussens. Bayes and pseudo-bayes estimates of conditional probabilities and their reliability.
In P. Brazdil, editor, ECML, volume 667 of Lecture Notes in Computer Science, pages 136–152.
Springer, 1993.

[43] M. Davis, W. Liu, P. Miller, and G. Redpath. Detecting anomalies in graphs with numeric
labels. In CIKM, pages 1197–1202, 2011.

[44] L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In ILP’97: Pro-
ceedings of the 7th International Workshop on Inductive Logic Programming, pages 125–132.
Springer-Verlag, 1997.

[45] L. Dehaspe and L. D. Raedt. Parallel inductive logic programming. In In Proceedings of the
MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in
Databases, pages 112–117, 1995.

[46] L. Dehaspe and H. Toironen. Relational data mining. chapter Discovery of relational associa-
tion rules, pages 189–208. Springer-Verlag New York, Inc., New York, NY, USA, 2000.

85

[47] F. DiMaio and J. W. Shavlik. Learning an approximation to inductive logic programming clause
evaluation. In R. Camacho, R. D. King, and A. Srinivasan, editors, ILP, volume 3194 of Lecture
Notes in Computer Science, pages 80–97. Springer, 2004.

[48] B. Dolsak. Finite element mesh design expert system. Knowl.-Based Syst., 15(8):315–322,
2002.

[49] B. Dolsak and S. Muggleton. The application of inductive logic programming to finite element
mesh design. In Inductive Logic Programming, pages 453–472. Academic Press, 1992.

[50] A. Doncescu, J. Waissman, G. Richard, and G. Roux. Characterization of bio-chemical signals
by inductive logic programming. Knowl.-Based Syst., 15(1-2):129–137, 2002.

[51] Y. Dong, X. Du, Y. Ramakrishna, C. Ramakrishnan, I. Ramakrishnan, S. Smolka, O. Sokolsky,
E. Stark, and D. Warren. Fighting livelock in the i-Protocol: A comparative study of verifi-
cation tools. In Proceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, volume 1579, pages 74–88, Amsterdam, The Nether-
lands, March 22-28 1999. Springer Berlin / Heidelberg.

[52] S. Dudoit, J. P. Shaffer, and J. C. Boldrick. Multiple hypothesis testing in microarray experi-
ments. Statistical Science, 18(1):71–103, 2003.

[53] S. Džeroski. Handling imperfect data in inductive logic programming. In Proceedings of the
4th Scandinavian Conference on Artificial intelligence, pages 111–125, Stockholm, Sweden,
May 4-7 1993. IOS Press, Amsterdam, The Netherlands.

[54] S. Džeroski. Multi-relational data mining: An introduction. SIGKDD Explorations, 5(1):1–16,
2003.

[55] S. Dzeroski, N. Jacobs, M. Molina, C. Moure, S. Muggleton, and W. V. Laer. Detecting traffic
problems with ilp. In Page [121], pages 281–290.

[56] S. Dzeroski, S. Schulze-Kremer, K. Heidtke, K. Siems, and D. Wettschereck. Applying ilp to
diterpene structure elucidation from 13c nmr spectra. In S. Muggleton, editor, Inductive Logic
Programming, volume 1314 of Lecture Notes in Computer Science, pages 41–54. Springer
Berlin Heidelberg, 1997.

[57] D. Eager, J. Zahorjan, and E. Lazowska. Speedup versus efficiency in parallel systems. IEEE
Transactions on Computers, 38(3):408 423, March 1989.

[58] C. Feng. Inducing temporal fault diagnostic rules from a qualitative model. In L. Birnbaum and
G. Collins, editors, ML, pages 403–406. Morgan Kaufmann, 1991.

[59] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901 –
1909, December 1966.

[60] N. Fonseca, R. Rocha, R. Camacho, and F. Silva. Efficient data structures for inductive logic
programming. In Proceedings of the 13th International Conference Inductive Logic Program-
ming, pages 130–145, Szeged, Hungary, September 29-October 1 2003. Springer-Verlag.

[61] N. Fonseca, F. Silva, and R. Camacho. April An inductive logic programming system. In
Proceedings of the 10th European Conference on Logics in Artificial Intelligence, pages 481–
484. Springer Berlin / Heidelberg, Liverpool, UK, September 13-15 2006.

86

[62] N. A. Fonseca, F. M. A. Silva, V. S. Costa, and R. Camacho. A pipelined data-parallel algorithm
for ILP. In CLUSTER 2005: IEEE International Conference on Cluster Computing, pages 1–
10, 2005.

[63] N. A. Fonseca, O. Silva, and R. Camacho. Strategies to parallelize ILP systems. In ILP 2005:
Proceedings of the 15th International Conference on Inductive Logic Programming, volume
3625 of Lecture Notes in Computer Science, pages 136–153. Springer, 2005.

[64] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[65] Z. Gao, Z. Zhang, and Z. Huang. Extensions to the relational paths based learning approach
rpbl. In N. T. Nguyen, H. P. Nguyen, and A. Grzech, editors, ACIIDS, pages 214–219. IEEE
Computer Society, 2009.

[66] Z. Gao, Z. Zhang, and Z. Huang. Learning relations by path finding and simultaneous covering.
In CSIE (5), pages 539–543, 2009.

[67] F. Giannotti, G. Manco, and J. Wijsen. Logical languages for data mining. In J. Chomicki,
R. van der Meyden, and G. Saake, editors, Logics for Emerging Applications of Databases,
pages 325–361. Springer, 2003.

[68] A. Giordana, L. Saitta, M. Sebag, and M. Botta. Analyzing relational learning in the phase
transition framework. In ICML, pages 311–318, Stanford, CA, USA, June 29 - July 2 2000.

[69] J. A. Gonzalez, L. B. Holder, and D. J. Cook. Graph based concept learning. In H. A. Kautz
and B. W. Porter, editors, AAAI/IAAI, page 1072. AAAI Press / The MIT Press, 2000.

[70] J. A. Gonzalez, L. B. Holder, and D. J. Cook. Graph-based relational concept learning. In
ICML, pages 219–226, 2002.

[71] C. Goutte and E. Gaussier. A probabilistic interpretation of precision, recall and f-score, with
implication for evaluation. In ECIR’05: Proceedings of the 27th European Conference on
Information Retrieval, pages 345–359. Springer, 2005.

[72] G. Graefe and W. McKenna. The Volcano optimizer generator: extensibility and efficient
search. In Proceedings of the 9th International Conference on Data Engineering, pages 209–
218, Vienna, Austria, April 19-23 1993. IEEE.

[73] M. Hall and J. P. McNamee. Improving software performance with automatic memoization.
Johns Hopkins APL Technical Digest, 18(2), 1997.

[74] E. H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. IEEE
Transactions on Knowledge and Data Engineering, 12(3):377–352, May/June 2000.

[75] F. Harary and R. Read. Is the null-graph a pointless concept? In R. Bari and F. Harary,
editors, Graphs and Combinatorics, volume 406 of Lecture Notes in Mathematics, pages 37–
44. Springer Berlin Heidelberg, 1974.

[76] J. Hekanaho. Dogma: A ga-based relational learner. In Page [121], pages 205–214.

[77] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive scheduling for master-worker
applications on the computational grid. In GRID ’00: Proceedings of the 1st IEEE/ACM Inter-
national Workshop on Grid Computing, pages 214–227. Springer-Verlag, 2000.

87

[78] L. B. Holder, D. J. Cook, and S. Djoko. Substucture discovery in the subdue system. In U. M.
Fayyad and R. Uthurusamy, editors, KDD Workshop, pages 169–180. AAAI Press, 1994.

[79] M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods, Edition 2. Wiley-
Interscience, 1999.

[80] E. E. Johnson. Completing an mimd multiprocessor taxonomy. SIGARCH Comput. Archit.
News, 16(3):44–47, June 1988.

[81] Y. Kavurucu. ILP-based Concept Discovery Method for Multi-relational Data Mining. PhD
thesis, Middle East Technical University, 2009.

[82] Y. Kavurucu, P. Senkul, and I. Toroslu. A comparative study on ilp-based concept discovery
systems. Expert Systems with Applications, 38(9):11598–11607, 2011.

[83] Y. Kavurucu, P. Senkul, and I. H. Toroslu. Concept discovery on relational databases: New tech-
niques for search space pruning and rule quality improvement. Knowl.-Based Syst., 23(8):743–
756, 2010.

[84] R. King, A. Srinivasan, and L. Dehaspe. Warmr: a data mining tool for chemical data. Journal
of Computer-Aided Molecular Design, 15:173–181, 2001.

[85] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-
Wesley, 1973.

[86] S. Konstantopoulos. A data-parallel version of Aleph. CoRR, abs/0708.1527, 2007.

[87] S. Kramer, N. Lavrac, and P. Flach. Propositionalization Approaches to Relational Data Min-
ing, pages 262–291. Springer-Verlag, 2001.

[88] M.-A. Krogel, S. Rawles, F. Zelezný, P. A. Flach, N. Lavrac, and S. Wrobel. Comparative
evaluation of approaches to propositionalization. In T. Horváth, editor, ILP, volume 2835 of
Lecture Notes in Computer Science, pages 197–214. Springer, 2003.

[89] M.-A. Krogel and S. Wrobel. Transformation-based learning using multirelational aggregation.
In Proceedings of the 11th International Conference on Inductive Logic Programming, pages
142–155, Strasbourg, France, September 9-11 2001. Springer-Verlag.

[90] R. Kufrin. Generating C4.5 production rules in parallel. In AAAI-1997: Proceedings of the 14th
National Conference on Artificial Intelligence, pages 565–570, 1997.

[91] N. Kurumatani, H. Monji, and T. Ohkawa. Binding site extraction by similar subgraphs mining
from protein molecular surfaces. In Bioinformatics Bioengineering (BIBE), 2012 IEEE 12th
International Conference on, pages 255–259, nov. 2012.

[92] W. V. Laer, L. Dehaspe, and L. D. Raedt. Applications of a logical discovery engine. In KDD
Workshop, pages 263–274, 1994.

[93] W. V. Laer and L. D. Raedt. How to upgrade propositional learners to first order logic: A case
study. In G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos, editors, Machine Learning and
Its Applications, volume 2049 of Lecture Notes in Computer Science, pages 102–126. Springer,
2001.

[94] N. Lavrac, S. Džeroski, and M. Grobelnik. Learning nonrecursive definitions of relations with
linus. In Proceedings of the 6th European Working Session on Machine Learning, pages 265–
281, Porto, Portugal, March 6-8 1991. Springer-Verlag.

88

[95] H. Lodhi, S. Muggleton, and M. J. Sternberg. Multi-class protein fold recognition using large
margin logic based divide and conquer learning. In Proceedings of the KDD-09 Workshop on
Statistical and Relational Learning in Bioinformatics, pages 22–26, Paris, France, June 28 2009.
ACM.

[96] D. K. Lowenthal. Accurately selecting block size at runtime in pipelined parallel programs.
International Journal of Parallel Programming, 28:245–274, June 2000.

[97] T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Knowledge discovery from structured data
by beam-wise graph-based induction. In M. Ishizuka and A. Sattar, editors, PRICAI, volume
2417 of Lecture Notes in Computer Science, pages 255–264. Springer, 2002.

[98] T. Matsui, N. Inuzuka, H. SEKI, and H. Itoh. Comparison of three parallel implementations of
an induction algorithm. In In 8th Int. Parallel Computing Workshop, pages 181–188, Singapore,
September 1998. Springer-Verlag.

[99] R. Michalski and J. Larson. Inductive inference of VL decision rules. In Workshop on Pattern-
Directed Inference Systems, volume 63, pages 33–44. SIGART Newsletter, ACM, 1997.

[100] R. S. Michalski. A theory and methodology of inductive learning. Artificial Intelligence",
20(2):111–161, 1983.

[101] S. R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha. Dynamic join optimization in multi-hop
wireless sensor networks. PVLDB, 3(1):1279–1290, 2010.

[102] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, USA, 1997.

[103] A. W. Moore and M. S. Lee. Cached sufficient statistics for efficient machine learning with
large datasets. J. Artif. Intell. Res. (JAIR), 8:67–91, 1998.

[104] J.-I. Motoyama, S. Urazawa, T. Nakano, and N. Inuzuka. A mining algorithm using property
items extracted from sampled examples. In S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad,
editors, Inductive Logic Programming, volume 4455 of Lecture Notes in Computer Science,
pages 335–350. Springer Berlin Heidelberg, 2007.

[105] I. Mozetic. Newgem: Program for learning from examples, technical documentation and user’s
guide. In Reports of Intelligent Systems Group UIUCDCSF-85-949, Department of Computer
Science, University of Illinois, Urbana Champaign, IL,, 1985.

[106] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special issue on
Inductive Logic Programming, 13(3-4):245–286, 1995.

[107] S. Muggleton. Inductive Logic Programming. In The MIT Encyclopedia of the Cognitive Sci-
ences (MITECS). MIT Press, 1999.

[108] S. Muggleton. Inductive logic programming: Issues, results and the challenge of learning lan-
guage in logic. Artif. Intell., 114(1-2):283–296, 1999.

[109] S. Muggleton and W. L. Buntine. Machine invention of first order predicates by inverting resolu-
tion. In Proceedings of the 5th International Conference on Machine Learning, pages 339–352,
Ann Arbor, Michigan, USA, June 12-14 1988.

[110] S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the 1st
Conference on Algorithmic Learning Theory, pages 368–381, Tokyo, Japan, October 8-10 1990.

89

[111] S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction using logic.
In International Workshop on Inductive Logic Programming, 1992.

[112] A. Mutlu, M. A. Berk, and P. Senkul. Improving the time efficiency of ilp-based multi-relational
concept discovery with dynamic programming approach. In E. Gelenbe, R. Lent, G. Sakellari,
A. Sacan, I. H. Toroslu, and A. Yazici, editors, ISCIS, volume 62 of Lecture Notes in Electrical
Engineering, pages 373–376. Springer, 2010.

[113] A. Mutlu and P. Senkul. Improving hit ratio of ilp-based concept discovery system with memo-
ization, 2012. Accepted for publication in the Computer Journal, DOI: 10.1093/comjnl/bxs163.

[114] A. Mutlu and P. Senkul. Selective memoization for ilp-based concept discovery systems, 2012.
Submitted to Knowledge and Information Systems.

[115] A. Mutlu and P. Senkul. Improving hash table hit ratio of an ilp-based concept discovery system
with memoization capabilities. In E. Gelenbe and R. Lent, editors, Computer and Information
Sciences III, pages 261–269. Springer London, 2013.

[116] H. Nassif, H. Al-Ali, S. Khuri, W. Keirouz, and D. Page. An inductive logic programming
approach to validate hexose binding biochemical knowledge. In Proceedings of the 19th Inter-
national Conference on Inductive Logic Programming, pages 149–165, Leuven, Belgium, July
2-4 2010. Springer.

[117] C. Nattee, S. Sinthupinyo, M. Numao, and T. Okada. Learning first-order rules from data with
multiple parts: applications on mining chemical compound data. In Proceedings of the twenty-
first international conference on Machine learning, ICML ’04, pages 77–, New York, NY, USA,
2004. ACM.

[118] A. Nica. A call for order in search space generation process of query optimization. In 27th
International Conference on Data Engineering Workshops, pages 4–9, Hannover, Germany,
April 11-16 2011. IEEE.

[119] H. Ohwada, H. Nishiyama, and F. Mizoguchi. Concurrent execution of optimal hypothesis
search for inverse entailment. In ILP’00: Proceedings of 10th International Conference on
Inductive Logic Programming, volume 1866 of Lecture Notes in Computer Science, pages 165–
173. Springer Berlin / Heidelberg, 2000.

[120] I. M. Ong, I. de Castro Dutra, D. Page, and V. S. Costa. Mode directed path finding. In J. Gama,
R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, editors, ECML, volume 3720 of Lecture Notes
in Computer Science, pages 673–681. Springer, 2005.

[121] D. Page, editor. Inductive Logic Programming, 8th International Workshop, ILP-98, Madison,
Wisconsin, USA, July 22-24, 1998, Proceedings, volume 1446 of Lecture Notes in Computer
Science. Springer, 1998.

[122] J. S. Park, M.-S. Chen, and P. S. Yu. Efficient parallel data mining for association rules. In
CIKM ’95: Proceedings of the 4th International Conference on Information and Knowledge
Management, pages 31–36. ACM, 1995.

[123] M. J. Pazzani, C. Brunk, and G. Silverstein. A knowledge-intensive approach to learning rela-
tional concepts. In ML, pages 432–436, 1991.

[124] G. Penn and C. Munteanu. A tabulation-based parsing method that reduces copying. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics, pages 200–
207, Sapporo, Japan, July 7-12 2003. ACL.

90

[125] N. L. Peter, P. Flach, and B. Zupan. Rule evaluation measures: A unifying view. In Proceed-
ings of the 9th International Workshop on Inductive Logic Programming, pages 174–185, Bled,
Slovenia, June 24-27 1999. Springer-Verlag.

[126] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1986.

[127] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266,
1990.

[128] J. R. Quinlan. Determinate literals in inductive logic programming. In IJCAI, pages 746–750,
1991.

[129] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[130] L. D. Raedt and M. Bruynooghe. A theory of clausal discovery. In R. Bajcsy, editor, IJCAI,
pages 1058–1063. Morgan Kaufmann, 1993.

[131] R. Reiter. On closed world data bases. In Proceedings of the Symposium on Logic and Data
Bases, pages 55–76, Toulouse, France, 1977. Plemum Press, New York.

[132] A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors, Graph Transformations, volume 3256 of Lecture Notes in
Computer Science, pages 319–335. Springer Berlin Heidelberg, 2004.

[133] B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In AAAI, pages 50–55,
1992.

[134] J. Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1989.

[135] M. Robnik-Sikonja and I. Kononenko. An adaptation of relief for attribute estimation in regres-
sion. In D. H. Fisher, editor, ICML, pages 296–304. Morgan Kaufmann, 1997.

[136] R. Rocha. On improving the efficiency and robustness of table storage mechanisms for tabled
evaluation. In PADL, pages 155–169, 2007.

[137] R. Rocha, N. A. Fonseca, and V. S. Costa. On applying tabling to inductive logic programming.
In Proceeedings of the 16th European Conference on Machine Learning, pages 707–714, Porto,
Portugal, October 3-7 2005. Springer.

[138] C. J. Romanowski, R. Nagi, and M. Sudit. Data mining in an engineering design environment:
Or applications from graph matching. Computers & Operations Research, 33(11):3150 – 3160,
2006.

[139] O. E. Romero, J. A. Gonzalez, and L. B. Holder. Handling of numeric ranges for graph-based
knowledge discovery. In H. W. Guesgen and R. C. Murray, editors, FLAIRS Conference. AAAI
Press, 2010.

[140] O. E. Romero, J. A. Gonzalez, and L. B. Holder. Handling of numeric ranges with the subdue
system. In FLAIRS Conference, 2011.

[141] K. F. Sagonas and P. J. Stuckey. Just enough tabling. In E. Moggi and D. S. Warren, editors,
PPDP, pages 78–89. ACM, 2004.

[142] J. C. A. Santos, A. Tamaddoni-Nezhad, and S. Muggleton. An ilp system for learning head
output connected predicates. In EPIA, pages 150–159, 2009.

91

[143] M. Sebag and C. Rouveirol. Any-time relational reasoning: Resource-bounded induction and
deduction through stochastic matching. Machine Learning, 38(1-2):41–62, 2000.

[144] M. Serrurier and H. Prade. Improving inductive logic programming by using simulated anneal-
ing. Information Sciences, 178(6):1423–1441, 2008.

[145] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA, 1983.

[146] H. J. Siegel and S. Ali. Techniques for mapping tasks to machines in heterogeneous computing
systems. Journal of Systems Architecture, 46(8):627 – 639, 2000.

[147] J. Sowa. Conceptual graph summary. In Conceptual Structures: Current Research and Prac-
tice, pages 3–66, 1992.

[148] L. Specia, M. Stevenson, and M. das Graças Volpe Nunes. Learning expressive models for word
sense disambiguation. In J. A. Carroll, A. van den Bosch, and A. Zaenen, editors, ACL. The
Association for Computational Linguistics, 2007.

[149] T. P. Speed. Review of ’stochastic complexity in statistical inquiry’ (rissanen, j.; 1989). IEEE
Transactions on Information Theory, 37(6):1739–, 1991.

[150] A. Srinivasan. The Aleph Manual. http://www.comlab.ox.ac.uk/activities/

machinelearning/Aleph/, 1999. Online; accessed July 29, 2012.

[151] A. Srinivasan. A study of two sampling methods for analyzing large datasets with ILP. Data
Mining and Knowledge Discovery, 3(1):95–123, 1999.

[152] A. Srinivasan, R. D. King, S. H. Muggleton, and M. Sternberg. The predictive toxicology
evaluation challenge. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pages 1–6. Morgan Kaufmann, Stockholm, Sweden, July 31-August 6 1997.

[153] A. Srinivasan and R. Kothari. A study of applying dimensionality reduction to restrict the size
of a hypothesis space. In S. Kramer and B. Pfahringer, editors, ILP, volume 3625 of Lecture
Notes in Computer Science, pages 348–365. Springer, 2005.

[154] J. Struyf and H. Blockeel. Query optimization in inductive logic programming by reordering
literals. In Proceedings of the 13th International Conference on Inductive Logic Programming,
pages 329–346, Szeged, Hungary, September 29-October 1 2003. Springer-Verlag.

[155] J. Struyf, J. Ramon, M. Bruynooghe, S. Verbaeten, and H. Blockeel. Compact representation of
knowledge bases in inductive logic programming. Machine Learning, 57(3):305–333, 2004.

[156] B. Tausend. Representing biases for inductive logic programming. In Proceedings of the 7th
European Conference on Machine Learning, pages 427–430, Catania, Italy, April 6-8 1994.

[157] S.-A.-A. Touati, J. Worms, and S. Briais. The speedup test. Technical report, Parallélisme,
Réseaux, Systèmes d’information, Modélisation - PRISM - CNRS : UMR8144 - Université
de Versailles-Saint Quentin en Yvelines - ALCHEMY - INRIA Saclay - Ile de France - IN-
RIA - CNRS : UMR8623 - Université Paris Sud - Paris XI - Laboratoire de Mathématiques
de Versailles - LM-Versailles - CNRS : UMR8100 - Université de Versailles-Saint Quentin en
Yvelines, 2010.

[158] R. Troncon, B. Demoen, and G. Janssens. When tabling does not work. In Proceedings of
the Colloquium on Implementation of Constraint Logic Programming Systems, pages 18–32,
Seattle, Washington, USA, August 16-21 2006. Springer.

92

http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/

[159] D. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal. Query
flocks: a generalization of association-rule mining. ACM SIGMOD Record, 27(2):1–12, 1998.

[160] M. Turcotte, S. H. Muggleton, and M. J. E. Sternberg. Generating protein three-dimensional
fold signatures using inductive logic programming. Computers & Chemistry, 26(1):57–64,
2001.

[161] T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explorations,
5(1):59–68, 2003.

[162] M. Wermelinger. Conceptual graphs and first-order logic. In G. Ellis, R. Levinson, W. Rich, and
J. F. Sowa, editors, ICCS, volume 954 of Lecture Notes in Computer Science, pages 323–337.
Springer, 1995.

[163] K. Yoshida and H. Motoda. Foundation of evaluation. Journal of Documentation, 30(4):365–
373, 1974.

[164] K. Yoshida and H. Motoda. Clip: concept learning from inference patterns. Artificial Intelli-
gence, 75(1):63 – 92, 1995. <ce:title>AI Research in Japan</ce:title>.

[165] K. Yoshida, H. Motoda, and N. Indurkhya. Graph-based induction as a unified learning frame-
work. Appl. Intell., 4(3):297–316, 1994.

93

94

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Mutlu, Alev
Nationality: Turkish (TC), Bulgarian (BG)
Date and Place of Birth: July 11, 1979, Shumen, Bulgaria
Marital Status: Single
Phone: 0505 237 6751
Fax: 0312 210 5544

EDUCATION

Degree Institution Year of Graduation
Ph.D. Department of Computer Engineering, METU 2013
B.S. Department of Computer Engineering, Kocaeli University 2002
High School Kabataş High School for Boys 1998

PUBLICATIONS

• Peer-reviewed Articles in SCI Journals

1. A. Mutlu, P. Senkul, Improving Hit Ratio of ILP-based Concept Discovery System with
Memoization, The Computer Journal, 2012 (DOI:10.1093/comjnl/bxs163)

2. A. Mutlu, P. Senkul, Y. Kavurucu, Improving the Scalability of ILP-based Multi-Relational
Concept Discovery System through Parallelization, Knowledge-Based Systems, Volume
27, 2012

• Peer-reviewed Articles in International Conference Proceedings

1. A. Mutlu, P. Senkul, Improving Hash Table Hit Ratio of an ILP-Based Concept Discovery
System with Memoization Capabilities, ISCIS 2012, Paris, France, October 3-5, 2012

2. A. Mutlu, P. Senkul, Y. Kavurucu, MPI-based Parallelization for ILP-based Multi-Relational
Concept Discovery, ICMLA 2011, Hawaii, USA, December 18-21, 2011

3. A. Mutlu, M. A. Berk, P. Senkul, Improving the Time Efficiency of ILP-based Multi-
Relational Concept Discovery with Dynamic Programming Approach, ISCIS 2010, Lon-
don, UK, September 22-24, 2010

• Peer-reviewed Articles in National Conference Proceedings

95

1. A. Mutlu, P. Senkul., Y. Kavurucu, Tumevaran Mantik Programlama Tabanli Kavram Kesif
Sistemleri icin Paralel bir Yontem, 3. Ulusal Yuksek Basarimli Hesaplama Konferansi,
Ankara, Turkey, April 12-14, 2012

96

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Problem Definition and Motivation
	Contributions
	Organization of the Thesis

	Background
	Overview on Inductive Logic Programming
	Overview of ILP-based Concept Discovery Systems
	Concept Rule Induction System (CRIS)

	Scalability and Efficiency of ILP-based Concept Discovery Systems
	Related work on Memoization in ILP-based Concept Discovery Systems
	Related work on Parallelization in ILP-based Concept Discovery Systems
	Other Approaches

	Related work on Graph-based Concept Discovery
	Related Work on Graph-based Concept Discovery
	Path Finding-based Approaches

	Structure-based Concept Discovery

	Memoization to Scale up ILP-based Concept Discovery Systems
	Tabular CRIS
	Tabular CRIS-wEF
	Selective Tabular CRIS
	Applicability of the Approach to other Concept Discovery Techniques
	Comparison to Other ILP-based Concept Discovery Systems with Memoization

	Parallelization to Scale up ILP-based Concept Discovery Systems
	Data Dependence Analysis
	Framework and Design Issues
	Parallelizing the Search Space Construction Step
	Parallelizing the Search Space Evaluation Step

	Graph-Based Concept Discovery
	Proposed Method
	Data representation
	Method
	A Discussion on the Proposed Approach

	Experiments
	Experimental Environment
	Evaluation Metrics
	Data Sets
	Evaluation on Memoization-based Technique
	Tabular CRIS
	Tabular CRIS-wEF
	Selective Tabular CRIS

	Evaluation on Parallelization Technique
	Evaluation on Graph-based Concept Discovery
	Learning Capability
	Performance Analysis

	Conclusion
	REFERENCES
	CURRICULUM VITAE

