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ABSTRACT

MACHINE LEARNING METHODS FOR USING NETWORK BASED INFORMATION
IN MICRORNA TARGET PREDICTION

Sualp, Merter

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Tolga Can

February 2013, 73 pages

Computational microRNA (miRNA) target identification in animal genomes is a challenging
problem due to the imperfect pairing of the miRNA with the target site. Techniques based on
sequence alone are prone to produce many false positive interactions. Therefore, integrative
techniques have been developed to utilize additional genomic, structural features, and evolu-
tionary conservation information for reducing the high false positive rate. We propose that the
context of a putative miRNA target in a protein-protein interaction (PPI) network can be used
as an additional filter in a computational miRNA target prediction algorithm. We compute
several graph theoretic measures on human PPI network as indicators of network context.
We assess the performance of individual and combined contextual measures in increasing the
precision of a popular miRNA target prediction tool, TargetScan, using low throughput and
high throughput datasets of experimentally verified human miRNA targets. We used clas-
sification algorithms for that assessment. Since there exists only miRNA targets as training
samples, this problem becomes a One Class Classification (OCC) problem. We devised a novel
OCC method, DiVo, based on simple distance metrics and voting. Comparative analysis with
the state of the art methods show that, DiVo attains better classification performance. Our
eventual results indicate that topological properties of target gene products in PPI networks
are valuable sources of information for filtering out false positive miRNA target genes. We
show that, for targets of a number of miRNAs, network context correlates better with being
a target compared to a sequence based score provided by the prediction tool.

Keywords: microRNA target prediction, protein-protein interaction network, network topol-
ogy, One Class Classification, Distance Metrics, Voting
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ÖZ

MİCRORNA HEDEF TAHMİNLERİNDE AĞ TABANLI BİLGİLERİN KULLLANILMASI
İÇİN MAKİNE ÖĞRENİM YÖNTEMLERİ

Sualp, Merter

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Tolga Can

Şubat 2013 , 73 sayfa

Hayvan genlerindeki microRNA (miRNA) hedeflerinin berimsel olarak tanımlanması, miRNA
ile hedefi arasındaki kusurlu eşleşmeler sebebiyle zorlu bir problemdir. Yalnızca sıralamaya da-
yalı teknikler, normalde varolmayan bir çok pozitif etkileşim üretmeye meyillidirler. Bundan
ötürü, yüksek pozitif hata oranını azaltmaya yönelik olarak, ek genetik bilgileri, yapısal özellik-
leri, ve evrimsel muhafaza kurallarını bir araya getiren birleştirici yöntemler oluşturulmaktadır.
Biz, olası miRNA hedeflerinin protein-protein etkileşim (PPI) ağlarındaki bağlamlarının, be-
rimsel miRNA hedef tahmini yapan algoritmalarda ilave bir filtre olarak kullanılabileceğini öne
sürmekteyiz. Ağ bağlamı göstergesi olarak, insan PPI ağı üzerinde birden fazla kuramsal grafik
ölçüsü hesapladık. Deneysel olarak ispatlanmış düşük ve yüksek çıktılı insan miRNA hedef veri
kümeleri kullanarak, bağlam ölçülerinin bireysel ve birleştirilmiş performanslarını, popüler bir
miRNA hedef tahmin aracı olan TargetScan’in hassasiyetinin artışı üzerinden değerlendirdik.
Bu değerlendirmede sınıflandırma algoritmaları kullandık. Eğitim örnekleri olarak yalnızca
miRNA hedefleri bulunduğundan, problem Tek Sınıflı Sınıflandırma (OCC) problemi haline
geldi. DiVo adından, basit mesafe ölçülerine ve oylamaya dayalı, özgün bir OCC algoritması
geliştirdik. Son teknoloji yöntemlerle yaptığımız karşılaştırmalı analizler gösterdi ki, DiVo daha
iyi sınıflandırma performansına ulaşmaktadır. Nihai sonuçlarımız, PPI ağlarındaki hedef gen
ürünlerinin topolojik özelliklerinin, hatalı pozitif miRNA hedef genlerinin elenmesinde değerli
birer bilgi kaynağı olduğunu belirtmektedir. Bir takım miRNA hedefleri için, ağ bağlamının,
tahmin aracı tarafından sağlanan sıralama bazlı skora göre, hedef olup olmamayla daha ilintili
olduğunu göstermiş bulunmaktayız.

Anahtar Kelimeler: miRNA hedef tahmini, protein-protein etkileşimleri, ağ topolojisi, tek

sınıfla sınıflandırma, mesafe ölçütleri, oylama
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CHAPTER 1

INTRODUCTION

Proteins are the main entities that keep the organisms running in an orderly manner. To
accomplish this demanding task, they operate either on their own or form complexes with
other proteins [37]. By forming complexes, they may increase their level of effectiveness or start
to exhibit a different functional behavior other than the functions of their components [65].
Either way, interaction between the proteins in an environment is an undeniable fact and must
be taken into account for virtually all processes in a cell, since, assuming that the outputs
of isolated proteins will also be observed in a cell environment with many more molecules
around, may lead to unrealistic and unexpected results.

The basic abstraction level of protein-protein interactions is an undirected graph [66]. The
nodes of the graph represent proteins and each edge shows the relation between its nodes.
Although this simple visualization does not capture all the essential properties [61], it provides
important features that are meaningful for both biological and computational purposes. With
this abstraction, we can employ algorithms designed for undirected graphs to extract biological
information. On the other way around, we can explain some natural facts by translating them
into mathematical models. Furthermore, we can make key predictions on the viability of the
existence of some new molecules or interactions.

Regulation of metabolism is the ultimate aim of the interactions between the proteins. To
preserve the state of a cell, or to adapt for a new state, negative feedback mechanisms are
essential. Other than that, in removing an illnesses, inhibiting the protein activity of the
pathogen is crucial. Even if there exists no state changes or anomalies, a cell should be able
to program itself to death after a certain period, which is called apoptosis [4]. For similar
reasons, there must be some inherent mechanisms shared by multicellular organisms that
should provide a safe and sound inhibition on protein activity. microRNAs are part of one of
those mechanisms.

microRNAs (miRNA) are small nucleotide sequences of approximately 20 bases [7]. They are
translated from the non-coding parts of the DNA step by step [50, 67], as can be seen in
Figure 1.1. First, every miRNA is a part of a much longer nucleotide sequence inside the
nucleus. This form is named as pri-miRNA. It is around 150 nucleotides long, with a cap at
the 5’ end and a poly-A tail at the 3’ terminal. The source for these pri-miRNAs varies. In
a study of Rodriguez et al. [67] it has been found that more than half of them are produced
from introns and exons. But the main source is introns.

As the second step, the enzyme "Drosha" operates on the pri-miRNA. It cuts down the pri-
miRNA to around 80 nucleotides. This form consists of a stem-loop structure, characteristic
to each miRNA and known as pre-miRNA. Still inside the nucleus, pre-miRNA waits to be
transported out to the cytoplasm. There, the enzyme "Dicer" cleaves the pre-miRNA down
to the mature miRNA.

miRNAs primary focus is to interact with gene regulation. Basically, their function is to down

1



Figure 1.1: miRNA Production Steps - Artwork originally created for the National Cancer
Institute. Reprinted with permission of the artist, Jeanne Kelly. Copyright 2012.

regulate the production of proteins [4]. However, they do not operate on their own. T hey
bind themselves to a RNA - Induced Silencing Complex (RISC) molecule. With that, they aim
their specific targets inside the cell, which are most of the time messenger RNAs (mRNAs).

Another feature that miRNAs take part is developmental timing [63]. For various organisms,
it has been shown that miRNAs play important roles in different stages of the development of
the organism. These can either be in early or late developmental timing. Moreover, miRNAs
are also a part of programmed cell death.

There are two ways to prove that an organism contains a certain type of miRNA. The first
one is to do experimental work in a biology lab. There are different methods devised for this
purpose and forward genetics is one of them. A mutation phenotype is the starting point
and scientists try to figure out the mutated gene / protein. The very first miRNAs, which
are lin-4 [44] and len-7 [3] , were found by the help of this method. Although this method
discovered the very first miRNAs, it is used to identify very few of them because miRNAs are
small and tolerant to current programmed mutations. Moreover, it is really hard to generate
phenotype mutations that will lead to mutated miRNAs.
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Another way is to clone RNA from complementary DNA (cDNA) libraries and decide whether
it is a miRNA [55]. The importance of this method lies in constructing a concrete basis of
information about the properties of the miRNA. This information is the cornerstone of the
main miRNA identification method: the computational miRNA prediction.

Current major challenges in miRNA research are:

1. identification of novel miRNA genes

2. functional annotation of miRNAs

3. identification of genes targeted by miRNAs [6] 1

4. high throughput experimental validation of miRNA-target interactions

In this study, we focus on the problem of identification of human miRNA target genes.

Computational prediction methods require strict rules or distinctive features to be success-
ful. The biological methods do provide these distinctive features and computer applications
use them in such a way that more miRNA can be predicted. For example, the secondary
structure of precursor miRNAs have specific stem-loop hairpin and this is an important clue
for computational prediction methods [55]. Although this structure is different in animals,
plants and viruses, RNA folding programs can be effectively used for exploiting this structure
information. Moreover, thermodynamic properties of pre-miRNA are also important. It is
proposed that the free energy of a precursor miRNA should be lower than a fixed threshold
value. Many other distinctive features are also proposed, including symmetric difference, num-
ber of base pairs, GC content, etc. in order to increase the success rate of miRNA prediction
algorithms [54, 55, 96].

It is widely believed that miRNAs are evolutionarily conserved in related species [29]. This
means that, if a miRNA is identified in an organism, it is highly possible that the relatives of
this organism will also code that miRNA. miRNA prediction algorithms almost always keeps
use this feature [50], since looking for homologies is a known and widely studied topic. One of
the reasons of this is that closely related species have homolog proteins and homolog proteins
mean homolog mRNAs, i.e. miRNA targets. Therefore, searching for the homologs of miRNA
targets will also discover new miRNAs.

This conservation principle may serve well for plants and animals. Yet, it fails in some cases.
For instance, all organisms have miRNAs that are specific for their brethren. Most probably
their rapid evolvement, viruses show their "sympathy" for conservation the least. Hence, ab
initio miRNA predictions should not be underestimated. One way is just using the distinctive
features of miRNAs. Another way can be banking on the assumption that most animal
miRNAs are clustered [95]. So, for an animal genome, searching for new miRNAs in the
vicinity of previously proven miRNAs may extract other miRNAs.

Predicting them in silico is, of course, not enough to prove that they really exist, because
computational methods only provide the pre-miRNA. They cannot locate the exact nucleotide
positions of miRNA. By means of biological methods, miRNA ends inside the pre-miRNA

1 miRNAs target mRNAs of genes; however, throughout the manuscript we use the corresponding
gene products, i.e., proteins as miRNA targets and ignore the differentiation in gene products due to
post-translational modifications.
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should be found the and their miRNA abilities must be verified. Cloning and sequencing of
small RNAs [55] yield the best possible results in candidate validation.

miRNAs are of no use without their targets. They must, interact with their target molecules
and accomplish their intended functions. To understand these regulatory functions, the targets
of each miRNA should be identified. Almost all of the miRNAs target mRNAs. Since miRNAs
mostly target mRNAs, the target prediction methods are being developed accordingly. It
should also be known that a miRNA can target more than one mRNA, while an mRNA can
be regulated by more that one miRNA. Therefore, there is a many-to-many relation between
miRNAs and their targets.

The aim of the computational methods which try to find miRNA targets take advantage of
the facts below:

• The complementarity between miRNA and its target,

• The thermodynamics in RNA-RNA complex (This complex tend to have higher negative
folding energy), and

• Homology (Within the same kingdom, the conservation of miRNAs, binding sites of
mRNA to miRNAs and miRNA-mRNA complexes is quite high)

The tools designed for miRNA target prediction generally take a step-by-step approach [54].
They first check for the complementarity between the miRNA and possible targets. Later,
the thermodynamic eligibility of the RNA-RNA complex is investigated. The folding of this
complex should have a free energy that has an experimental viability. Of course it is infeasible
to search for all possible targets. Instead, using the homology argument, the miRNA targets
that exist in the organisms that are in the same kingdom are more likely candidates. As the
last step, these predicted miRNA targets should be experimentally verified by the biological
methods. The results of both computational and experimental studies should be kept for
further access. Many databases are developed for storing the information about miRNA and
their targets. The databases may either store manually curated, quality oriented targets, or
quantity oriented, high-throughput candidates.

Despite these features, studies show that current computational miRNA target prediction
techniques have high false negative rates [54, 55, 96]. Since the sequence complementarity is
imperfect and the length of the miRNA is too small, simple sequence comparison produces
many tentative targets. Applying thermodynamic rules and searching for homology are two
different filters that eliminate infeasible predicted targets.

In this work, our focus is to provide another feature, the topological properties of proteins
in the PPIN, as a filtering mechanism in miRNA target prediction. Different studies in the
literature investigated whether the known miRNA targets and their topological propertied are
related [35, 47, 49]. We used this information and generated a process to leave the predicted
targets that have less favorable network properties out, in order to lower the high false positive
rate of a widely used miRNA target prediction tool.

Having training data for only one class may lead to an unsuccessful or incomplete training
phase for the classification. In our case, we only have the experimentally validated miRNA
targets for training. There exist two alternatives [90]. One is to generate a putative dataset
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which is assumed to represent the other class and the second one is to develop an algorithm
that only needs training data from only one. The former approaches try to transform available
data into a form where readily established multi-class classification techniques can be applied.
Negative training data is artificially generated. Here, negative data generation problem has its
own challenges. First of all, the process of counter example production is also a classification
problem in itself. It is usually difficult to prove or disprove the fidelity of the generated
negative dataset in representing the real set of principles that covers all possible real negative
data. Especially, if the true positives are not covered well in the training data, a negative data
generation method, which aims to cover to whole space of negatives, may lead to a high false
negative rate. The success of this artificial generation process definitely affects the estimation
accuracy of the classifier.

We followed both alternatives. First, we employed a widely known classification algorithm.
The requirement here was that there must be two training sets for both miRNA targets and
non-miRNA targets. The miRNA target databases provide the former. However, no dataset
exists for the latter. Henceforth, by applying our own heuristic, we populated putative non-
miRNA targets. The by-product of this work can be used as a training set for negative data.

Second, we wanted to utilize only miRNA targets as the positive training data throughout the
machine learning process. Supervised classification techniques in machine learning depend on
gathering training samples and test them on instances that belong to an unspecified class. As
in our case, there may be situations where it may not be possible or feasible to gather training
data for each class. If samples from only a single class are available, the problem is known as
the One-Class Classification (OCC in short) problem [85].

For this, we devised a new algorithm, DiVo, which facilitate a distance based heuristic with
a voting mechanism. We investigate two distance metrics, the Euclidean distance and the
Mahalanobis distance. We also compare these metrics on different datasets.

To summarize, the contributions of this work can be enumerated as follows:

1. We have constructed a negative gold standard dataset required by supervised learning
frameworks for miRNA target prediction. We used many miRNA target databases and
PPIN to extract these putative non-miRNA targets. To our knowledge, there is no other
dataset that can be used as a training data for non-miRNA targets.

2. We have integrated various graph theoretic measures into a statistical model. We applied
this statistical model to a popular miRNA target prediction tool. The implemented
model is used as an additional filter in miRNA target prediction. It is not tailored for
this specific tool, however. It can be used for other miRNA target prediction tools as
well.

3. We devised a novel, intuitive and easy to understand OCC method, DiVo, based on
simple distance metrics and voting. We compared its performance with the state of the
art methods.

The rest of this dissertation is organized as follows. In Chapter 2, we will present the theoretical
background that is necessary for accomplishing this study. Chapter 3 mentions about previous
work on miRNA target prediction and One Class Classification. Chapter 4 will present the
machine learning mechanisms and their guidance on differentiating less likely miRNA targets
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from the putative ones. Chapter 5 is dedicated to unveil the thinking behind our novel One-
Class Classification algorithm. It will also cover the time and performance analysis of our
algorithm and comparison of it with many other known One-Class Classification methods.
Chapter 6 is about applying our algorithm to the PPI network properties and explaining the
results on miRNA target prediction filtering. Chapter 7 will discuss the overall achievements
and conclude with future directions.
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CHAPTER 2

BACKGROUND

The computational identification of miRNA targets is a typical classification problem. There
are many organic molecules in a cell that may be targeted by miRNAs. Either manually or
computationally, these possible targets should be classified. For automatic classification, some
well-defined rules should be proposed. These rules are products of the experimental studies,
conducted by scientists. The scientists observe different properties that are common in all the
interactions between the miRNAs and their targets. These observations can be incomplete for
today, but they are useful in predicting more miRNA targets. The computational methods
exploit these theoretical and practical information. The first part of this chapter presents
these information as the backbone of our study.

The extracted properties simply cannot define a classification pattern by themselves. Using the
same set of properties, different approaches can be put forward. Some can achieve successful
results, the others cannot. The difference between these results stem from diverse usage
models of the same practical observations. The second part of this chapter defines the One-
Class Classification problem and specifies the fundamental properties of different techniques
solving this problem.

2.1 Computational miRNA Target Prediction

The miRNAs are executive molecules, operating mainly on mRNAs. mRNAs are responsible
for transferring genetic information from DNA to ribosome, where proteins are produced. This
shows that the regulatory operations of miRNAs depend on their targets. Henceforth, specific
purpose of each miRNA cannot be understood without its specific targets. The key point in
understanding what a miRNA does is identifying its possibly many targets.

2.1.1 Basics of miRNA-mRNA Interaction

The dynamics of observed miRNA-mRNA interactions provide important evidence for miRNA
target discovery. The experimental results indicate that interactions are different for plants
and animals. In plants, a miRNA connects itself to translated part of the mRNA, forming a
duplex, and degrade it. Though exceptions exist, plant miRNAs are almost always exactly
show Watson-Crick sequence complementarity of their target mRNAs. The case is different
for animals and viruses. Not only does miRNA bind to the 3’ untranslated region (3’UTR) of
mRNA but it also does not exactly complement to the part it is connected. In fact, there are
a few duplex patterns, as described in a study of Maziere et al. [54]. First, the connection site
may have canonical matching. This means that, the 3’ UTR matches almost perfectly along
the full length of the miRNA with one or no mismatches. Second, the 3’ UTR and 5’ end of the
miRNA matches perfectly but the remaining parts do not show any specific matching pattern.
And lastly, there may exist a near perfect matching in the 5’ end of the miRNA, followed by
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a high quality complement in the other end of the miRNA. There is a big mismatching region
in between.

Common to the all three types of interactions, there exists a region in the 5’ end of the
miRNA, the nucleotides in position 2-7. This region almost always perfectly matches with the
3’ UTR of its target. This location is called "the seed". The methods employing Watson-Crick
complementarity try to match the seed location of the miRNA with its possible target. Later,
they may search for other nucleotide sequence based features, including G:U wobbles [78] or
enlarge the seed location matching as long as it gets [36].

With this hindsight, we conclude that there should be a set of well-defined 3’ UTRs for
successfully identifying miRNA targets. This may not be the case for all species. Although
the genome wide sequencing of human DNA is a rapid developing research are, roughly 30%
of the human 3’ UTRs have ill-defined nucleotide sequences [54]. This creates lots of problems
for algorithms that depend heavily on the 3’ UTR sequence information.

Suppose that DNA sequencing is completed, the seed matching and other miRNA sequence
complementary searching over mRNAs is just a starting point in miRNA target discovery.
When we realize that the length of the seed is only 7 nucleotides, it becomes clear that there
will be many hits throughout all the human 3’ UTRs. To be precise, the hit count per 3’ UTR
is 1 on the average [54]. This means that every miRNA can target every mRNA. However,
current studies on Homo Sapiens DNA indicate that there are more than 800 miRNAs [10] and
there are reports predicting the miRNA target coverage on genes to be ranging from 30% [6]
to 60% [29]. This shows that relying only on seed matching will yield many false positives.

To overcome this, different features have been proposed [96]. The most prominent of them is
the viability of the free energy of the miRNA-mRNA complex. The free energy of this complex
is generally calculated by Vienna RNA Package [34]. The free energy threshold used in studies
is -20kcal/mol [63, 64]. The lower the free energy is, the most likely the miRNA-mRNA duplex
viable is.

Another important observation is about the conservation of miRNAs across different organ-
isms. If the predicted connection site also appears in orthologous 3’ UTRs in other species,
then it means that their common ancestor may also have this miRNA-mRNA interaction. This
strengthens the existence of a valid miRNA target. One of the problems with this feature is
that, the species in the same family have more or less the same transcript. The distinction
is lesser and the miRNA target search will most likely yield a positive result. However, not
every miRNA exists for all the members of the same family. Also, this filtering mechanism
strictly requires as many sequenced species as possible, which may not be always available.

Combining the sequence information and other features, the miRNA target prediction problem
can be formally defined as in the work of Yue et al. [96]. Let the prediction algorithm be a
function, f(), which takes a set of feature values, F = (f1, f2, . . . , fn) as an input and maps
it to 1, if it predicts the miRNA target as valid, or it maps it to 0, if it decides that it is
not a valid target for that miRNA. The feature set, F represents the possible target under
consideration. One of the features is sequence information. Let the sequence information be
fi. If the length of the miRNA is l, then fi = (fi1 , . . . , fil), where fij ∈ {A,U,G,C} is the
nucleotide in the jth position from the miRNA’s 5’ end. Let the length of the 3’UTR of the
mRNA, r be k. Then, r = r1, . . . , rk, where rm is the nucleotide in the mth position from the
mRNA’s 3’ end. The method should decide on whether the interactions between all j’s and
m’s conform the rules imposed by the method.
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2.1.2 miRNA Target Prediction Tools

Understanding the basics of miRNA-mRNA interaction is the first and the most important
step taken for computational miRNA target prediction. If the features are clear enough, then
the automatization process should be seamless. However, the fundamental problem for the
time being is that miRNA target detection mechanism is too immature. There are still many
unknowns and uncertainties. This leads to many target prediction algorithms taking different
approaches. The rule based algorithms try to exploit the rules derived from the features such as
complementarity, seed matching, free energy calculations and evolutionary conservation. On
the other hand, data driven approaches mainly use the training data to gather information
and apply it to the test cases. The following sections will present the widely used miRNA
target prediction tools.

2.1.2.1 miRanda

miRanda [36] is one of the first miRNA target prediction algorithms. It is rule based. It
applies a three-phase approach. As the initial step, it looks for sequence complementarity at
both ends of the miRNA. The algorithm uses a scoring matrix for assigning a value to each
nucleotide interaction. It does not search for the seed or any other specific location. Therefore,
more than one interaction sites can be discovered. If the Watson-Crick complementarity score
is sufficient, it checks whether the duplex composed of miRNA and its target is structurally
stable. This is accomplished by RNAfold [34] As the last step, it looks for the conservation of
that target among different species. If the default parameters are used, it is reported that the
false positive rate fluctuates between 24% and 39% [54].

2.1.2.2 TargetScan and TargetScanS

TargetScan [46] is one of the most popular miRNA target prediction tools. Aiming to reduce
false positive rate, it uses a rather different type of target prediction approach. It first scans for
perfect complementarity at the seed region. That is the main driving force behind the method.
Any target without a seed match is directly eliminated. Successfully seed matched miRNA
targets are subjected to the species conservation criteria among a number of selected species.
This step also serves for decreasing false positive rate. As the last step, thermodynamic
viability is tested. TargetScanS is another variant of the original algorithm. It modifies the
seed region matching and removes the free energy calculation step altogether. Both are rule
based.

Especially the imposed seed matching criteria helps lowering the false positive rate to 22%-30%
range [54, 96] at the expense of rejecting valid miRNA targets that show different secondary
structure characteristics in the seed region.

2.1.2.3 PicTar

PicTar [43] starts with a set of miRNAs and their possible targets which are orthologous to
each other. Hence, from the very beginning, the number of species under consideration is fixed.
The characteristic property of PicTar is that, it takes not only the miRNA as an input, but
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also its co-expressed miRNAs. This idea is based upon the showings [8] that a miRNAs and
its neighbor miRNAs are co-expressed. These factors make PicTar a data driven approach. A
program called nuclMap searches for best possible target sites. These sites include the seed
regions. The conservation of these seed regions in the orthologous mRNAs is very important.
Later, these target sites are filtered according to their optimal free energies. If the regions of
miRNAs that are filtered by the first two steps appear in all target species, then these regions
are called anchors. The miRNAs having a minimum of user defined anchors are subject to
more filters, which are defined by seed region matching and free energy calculations. These
filters resemble the first step in PicTar but this time, no orthologous conservation is required.
At the very end, the least likely candidates are eliminated. The remaining ones complete a
training set that will be used in training a Hidden Markov Model (HMM). This model assigns
scores to each 3’ UTR. As the last step, the different alignments in the 3’ UTR part of the
same target are combined to generate the final score for that miRNA target.

2.1.2.4 DIANA-MicroT

The distinctive property of the rule based DIANA-MicroT algorithm [41] is its usage of a
fixed-width screening window on the possible miRNA target in different organisms. The
window size is 38 nucleotides. It slides the window one nucleotide at a time. Since there are
more than one species, a two dimensional matrix is created. A type of dynamic algorithm is
employed on this matrix data structure to calculate the minimum free energies (MFE) of each
38 nucleotide segment. After that, 5 more features are inspected. These are mostly sequence
and complementarity based features. A test mRNA must comply with all of these 5 rules to
be tagged as a miRNA target. The false positive rate of DIANA-MicroT algorithm is more or
less the same as the others.

The performance of all the algorithms here and unmentioned others can be compared as in
a study from Alexiou et al. [2]. A group of them has a precision of around 50%. There is a
trade-off between specificity and sensitivity. But the main problem is the high false positive
rates. The reasons behind the interaction between a miRNA and its targets are not fully
understood and this is clear from the results of miRNA target prediction methods.

2.2 The Protein-Protein Interactions

Cellular machinery is a precise automation orchestrated by the DNA. The DNA is not the
sole actor, however. RNAs, inorganic molecules and the environmental factors play important
roles. All these components help or hinder the clockwork like workings of proteins. The
proteins generally cooperate with each other to fulfill their duties. The cooperation mechanism
is called Protein-Protein Interaction (PPI). This interaction starts with a physical contact,
such as molecular docking. The cell is a crowded place and every molecule can touch and
go to others randomly. Moreover, some interactions are generic. These occur in protein
production, folding and degradation. So, to define an interaction as a PPI, two facts should
be checked. First, the physical docking should not be random. It must be repeatable in the
same environment. Second, the interaction must happen for a specific purpose [65]. For this
work, we will concentrate on PPI between only two proteins. A comprehensive list of PPI
databases can be accessed from http://www.pathguide.org/ (last access on February 14,
2013)
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If we represent each PPI as a two-node, one-undirected-edge graph, then the whole set of
proteins of an organism having v proteins and e PPI, originate a larger graph which has v nodes
and e edges. This is called Protein-Protein Interaction Network (PPIN). The fundamental
model used for PPIN is an undirected, unweighted graph, G(v, e). This way, researchers can
apply graph centric algorithms to PPIN.

The computer science field is a rich one on graph algorithms. That said, to employ the proper
algorithms, we must understand the real world PPIN examples. In general, they are sparse
graphs. There exists many nodes but the number of edges is low. The number of interactions
of a protein is called degree. Many proteins tend to have small degrees, but some of them
have interact with many other proteins, meaning that they act as hubs. Also, the degree of a
protein is independent of the number of all proteins. This shows that PPINs can be modeled
by scale− free networks. However, some objections have been raised [62]. The problem with
this modeling is that, for the time being, the PPIN are noisy and incomplete. This means
that we only have access to a proper subset of the real PPIN. It is also known that subsets of
scale-free networks are not scale-free [81].

Thinking of PPINs as static entities is misleading. Any PPI depends on cell type, state,
developmental stage, environment, modifications, cofactors and other binding factors [65].
This means that all interactions are not available at all times and temporal information is an
indispensable part of the PPIN modeling. These imply that the scale-free models may not be
the best fit for PPINs.

Another important property of graphs is the number of steps required to convey information
from one node to another on the average. This is called closeness. Generally PPIN have small
closeness values and thus PPINs have small − world property.

The discovery of PPI and construction of PPIN can be obtained in different ways. The small
scale validations are called "binary" methods [65]. Here, the two proteins are taken and it
is observed whether they interact or not. It yields less but accurate and direct interactions.
Yeast-two hybrid [82] (Y2H) is an example of "binary" methods. There also exists large scale
discovery approaches. These are called "co-complex" methods [94]. This time, two groups
of proteins are taken and their both direct and indirect interactions are recorded. Later, the
spoke hub-distribution is used to eliminate irrelevant interactions. Tandem affinity purification
coupled to mass spectrometry [11] (TAP-MS) is a widely used co-complex technique.

The human PPI network construction and visualization is a constantly evolving area of re-
search. Database of Interacting Proteins [70], STRING [83], BioGRID [79], Human Protein
Reference Database [60] and Ophid I2D [13] are all active protein interaction data sources.

2.2.1 Network Topological Measures

In this section, we give descriptions of the network topological measures we have used (listed in
Table 2.1). For all the formulations that are described below, the PPI network is represented
as a graph G = (V,E), where V is the set of nodes and E is the set of unweighted, undirected
edges.

Betweenness centrality: Betweenness centrality [28] is a topological measure in graphs
for determining the bottleneck nodes. Nodes that occur on many shortest paths have higher
betweenness centrality values compared to other nodes that do not. This metric is commonly
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Table 2.1: Network topological measures. The seven graph theoretic measures that are used
as indicators of a protein’s context in a PPI network.

Measure Locality Short Description

Degree local number of neighbors of a node
Betweenness global ratio of number of shortest paths
Centrality that pass through a node over number of

all shortest paths between all nodes
Closeness local reciprocal of sum of distances
Centrality to all reachable nodes
Clustering local describes how connected
Coefficient the neighborhood of a node is
Eigenvector local-global a measure of importance of a node
Centrality similar to Google’s PageRank
Graph local reciprocal of maximum distance
Centrality to any reachable node
Stress global number of shortest paths
Centrality that pass through a node

used for identifying vertices which affect the data flow in the network. The effect of a node
to the communication between other nodes is required in identifying important yet non-hub
proteins [31]. The betweenness centrality of a node i is given by the following equation:

Bi =

∑
∀a,b6=i di(a, b)

((n− 1)(n− 2))/2
, for n > 2 (2.1)

which gives the ratio of the number of shortest geodesic paths between node pairs (not includ-
ing i) that pass through node i over the number of all node pairs in the graph except node i.
Here, n is the total number of nodes in the graph, and di(a, b) is the ratio of shortest paths
between nodes a and b that pass through node i over the number of all shortest paths between
a and b.

Closeness Centrality: Closeness centrality shows how close a node is to the others. A node
having a high closeness centrality means that information will spread quickly to the nodes
which are reachable from that node [31]. Formally it can be defined as:

CLi =
1∑

t∈V dG(i, t)
(2.2)

In this formula, we take the reciprocal of the sum of distances to all reachable nodes. This
way, the nodes that are near to many nodes will have smaller total distances, hence larger
closeness centrality values.

Clustering coefficient: Clustering coefficient [91] is a measure for determining how the
neighbors of a node are interconnected. In other words, it measures the modularity of the
neighborhood of a node. The clustering coefficient of Ci of node i in the network is defined
with the following equation:
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Ci =
2m

ki(ki − 1)
(2.3)

where ki is the degree of node i, i.e., the number of links incident to node i, and m is the
number of edges in the induced subgraph of the neighbors of i (not including i). The clustering
coefficient of a node gives the ratio of the existing edges in the node’s neighborhood to all
the possible edges that can occur between the neighboring nodes. Note that for a node with
degree 0 or 1, the clustering coefficient is undefined. Such cases can be treated specially and
the clustering coefficient can be set to 0.

Degree: The degree of a node in an undirected graph is simply the number of links connected
to that node. It gives a measure of local connectivity of the node. This measure can be used to
identify hub proteins in a PPI network. The hub proteins are essential since their knockdown
leads to lethality [31].

Eigenvector Centrality: Eigenvector centrality is closely related to Google’s page rank [58].
Relative scores are assigned to each node in the graph proportional to the connectivity and
accessibility of nodes. We use the power iteration method to compute eigenvector centrality.

Graph Centrality: Graph centrality is another type of closeness. It gives information about
how far the nodes are from each other. The important factor in this measure is the farthest
node to the node in consideration. Only that distance adds up to graph centrality measure.

Gi =
1

maxt∈V dG(i, t)
(2.4)

For node i, the distance to any reachable node t is calculated as dG(i, t). Then, maximum of
these distances represents the graph centrality measure for node i.

Stress Centrality: Stress centrality is very similar to betweenness centrality in that, while
betweenness centrality takes the number of all shortest paths passing through the start and end
nodes into account, stress centrality does not. It only deals with the number of all shortest
paths which include the node i. It provides another centrality measure which is based on
shortest paths.

Si =
∑

s6=i 6=t∈V

σst(i) (2.5)

Here, σst(i) represents the number of shortest paths starting from node s, passing through
node i and ending at node t.

2.3 Computational Classification

In the broader sense, labeling an input value is called Pattern Recognition. When an input is
given, the authority, who has the right to assign the label, searches for discriminating patterns.
Prior to the search action, there must be some training step. Without a training, the authority
has no knowledge about patterns and labels. If we know the training data and its real label,
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then the learning is known as supervised learning. If the training is supervised and the labels
are classes, the assignment process becomes Classification. Computational Classification is the
class assignment accomplished by an automata to test samples after a period of supervised
learning.

Generally, the number of classes under consideration is two or more. When there are two
classes to be assigned, it is called binary classification. If it is more than two, it means that
we have a multi-class classification problem. The algorithms devised for binary classification,
either inherently support multi-class problems, or can be converted to solve them. Therefore
the main focus in this field is on binary classification. In this section we will present two
methods designed for binary classification.

2.3.1 Support Vector Machines

Support Vector Machine, a technique proposed by Vapnik in [88], is a supervised learning
algorithm that provides discriminative statistical models for classification problems. SVM
technique has been applied in various domains from computer vision to web mining. SVMs
have also provided solutions for a number of bioinformatics problems. An extensive review of
these solutions can be found in the work of Noble [57]. Given a set of objects x1, . . . , xn ∈ X
(an object is a protein in this context), and a series of labels y1, . . . , yn ∈ Y associated with
the objects, support vector machines can be used to learn a function g : X → Y, which can
be used to predict the label of any new object x ∈ X. SVM is a kernel based technique in
which the objects are represented by their similarities to other objects using a kernel function.
Given a set of training objects (a combination of gold-standard positives and gold-standard
negatives), SVM learns a hyperplane (possibly in a higher dimensional space) to separate the
two classes of objects. This hyperplane defines two half-spaces of objects classified positively
and negatively, and the goal of SVM is to maximize the distance between these two half-spaces.
A more comprehensive description of SVMs can be found in a study of Schoelkoph et al. [72].
We used the libsvm [18] implementation to construct the SVMs used for this work.

2.3.2 Mahalanobis Distance

Euclidean distance is a metric distance which treats each dimension separately and does not
account for scale differences or correlations between dimensions. In 1936, P. C. Mahalanobis
introduced a distance measure for computing the distance of a sample to a multivariate dis-
tribution. Mahalanobis Distance takes into account different scales of dimensions and also
the correlation between different dimensions. Mahalanobis Distance is computed using the
equation

DM (x) =
√

(x− µ)TS−1(x− µ) (2.6)

where x is a multidimensional sample point, µ is a vector representing the means of each
variable, i.e., dimension, and S is the covariance matrix. S captures the correlations between
different dimensions and the variance within a single dimension.

Mahalanobis Distance is used in classification problems and cluster analysis. In this study,
the Mahalanobis Distance of predictions of TargetScan are calculated to both gold-standard
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positive and gold-standard negative data sets. Then, by comparing the two distances, we
identify possible false positive targets.

2.3.3 One-Class Classification

For a classification, when the number of classes under consideration is two or more, many
alternatives are ready to be chosen from. There is always the possibility of transforming a
binary classifier to multi-class classifiers. The problem arises if the case has only one class.
This may happen surprisingly frequent. Especially in application domains such as molecular
biology, proving membership to a class may be easy but disproving may be too time-consuming,
expensive, or even impossible. Therefore, in such cases, classification algorithms have to work
with insufficient training data. The research area dealing with these problems is One-Class
Classification.

When there exist sufficiently many training examples, the estimation error of the model tends
to decrease [77]. Otherwise, there may be many false positives and false negatives. Although,
it is convenient to have as many training data as possible for each class under consideration, it
may not be possible or feasible to collect sufficient training data. There are various techniques
to remedy for this problem. One is to generate a putative dataset which is assumed to represent
the other class [51] and the second one is to develop an algorithm that only needs training
data from only one class [22]. The former approaches try to transform available data into a
form where readily established multi-class classification techniques can be applied. Negative
training data is artificially generated. Here, negative data generation problem has its own
challenges. First of all, the process of counter example production is also a classification
problem in itself. It is usually difficult to prove or disprove the fidelity of the generated
negative dataset in representing the real set of principles that covers all possible real negative
data. Especially, if the true positives are not covered well in the training data, a negative data
generation method, which aims to cover to whole space of negatives, may lead to a high false
negative rate. The success of this artificial generation process definitely affects the estimation
accuracy of the classifier.

Methods which are specifically developed to work with one class training datasets bypass the
artificial data generation stage. There are many one class classification algorithms [24, 39, 53,
85]. Some of them use probabilistic estimations [85] and some form a boundary around the
training data [15]. The others construct models that fit the training samples [53]. Even, some
of the algorithms designed for binary classification are modified for one class classification [73].

The One-Class Classification problem can be formalized as in the study of Mazhelis [53]. Let’s
assume that the class under consideration is C and any sample is represented as a vector
x = (x1, x2, . . . , xn), where the number of features for each vector is n. The training set
is composed of T samples, DST = {(x1, x2, . . . , xn)j |j = 1, 2, . . . , T} , Test set is composed
of X samples, DSX = {(x1, x2, . . . , xn)j |j = 1, 2, . . . , X} Using the training set, DST , the
one-class classification algorithm will construct a model, Θ, such that, it can decide whether
a test sample from DSX belongs to the class C by applying u(x,Θ).

The model Θ described in the problem formalization can be produced in many different ways.
Generally, the employed mathematical and statistical methods produce the main diversity.
The first approach is estimating a probability density function by means of the training data
and comparing the output of this function on the test sample with a threshold value. These
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are Density Methods [53, 85]. The Θ is the probability density function and the threshold
value.

Another approach is assuming a data generator produced the training data. Because of this,
methods using this paradigm are known Reconstruction Methods [53, 85]. The parameters of
that data generator are found during the training phase. After the parameters are set, the
datagenerator and a threshold value can be used to calculate the reconstruction error for any
test sample and deciding whether that error is lower than the threshold. So the datagenerator
and the threshold value become the model Θ.

The last technique tries to encapsulate the training data by estimating the boundary around
it. These are named Boundary Methods [53, 85]. They are specifically designed for One-Class
Classification problems. Finding the boundary around the training data is accomplished by
calculating the distances between the training data. Different metrics can be used for this
purpose. The testing step depends on the same distance calculations, but this time, the
distance between the test sample and the training data is important.

In the subsequent sections, we will present some of the methods used extensively for solving
One-Class classification problems.

2.3.3.1 State of the Art Methods

To measure the success level of the proposed algorithm, we compare it with some well-
established one class classifiers. There are many one class classification algorithms. In this
study, we decided to implement five algorithms, which are Global Gaussian Distribution [24],
Local Gaussian Distribution [24], k-Nearest Neighbor Data Description [85], k-Nearest Neigh-
bor Data Description with Structural Risk Minimization [15] and Support Vector Machines
(SVM) for One Class Classification [73]. We used Gaussian Kernel for OCC SVM, therefore
it is theoretically the same as Support Vector Data Descriptor (SVDD) [84]. So the results
and comparisons with OCC SVM also apply to SVDD.

Global Gaussian Algorithm simply calculates the Mahalanobis Distance between the test
object, x and the training set, T . If the distance is less than a threshold value, then x is said
to be a member of the class. Otherwise, it is rejected. threshold is the only parameter of the
algorithm to be adjusted.

In k-Nearest Data Description, we first calculate the nearest other training data for every
training sample. Later, we find the nearest k training data to the test point, x. This is a
proper subset of training set, called setxk. For each element i of this set, we calculate the
following:

f(i) =
‖dist(i,NNtr(i)‖

‖dist(NNtr(i), NNtr(NNtr(i)))‖
(2.7)

If the result of this equation is less than one, the training data i is said to vote in favor of
x. Otherwise, i rejects x. The main idea here is that, if a test sample is closer to a training
data than the all other training data, then the membership of that test sample to the class
under consideration is more likely. After each training data votes for x, the number of votes
is calculated. If it is more than a ratio of all training data, then the test data is accepted. k
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and ratioare the parameters of the algorithm to be adjusted.

Local Gaussian Algorithm blends Global Gaussian method with k-Nearest Data Descrip-
tion. We first find the nearest training data, t, to the test point, x. This time, we find the
nearest k other training data to t. These k+1 samples form a proper subset of training set,
called setxk+1. Up until now, k-Nearest Data Description is applied. From here, Gaussian
approach is implemented. The Mahalanobis Distance from the test data x to this proper
subset setxk+1 is calculated. If the distance is less than a threshold value, then x is said to be
a member of the class. Otherwise, it is rejected. threshold and k are the parameters of the
algorithm to be adjusted.

k-Nearest Data Description with Structural Risk Minimization is a modified version
of the standard k-Nearest Data Description and Nearest Neighborhood with Structural Risk
Minimization [38]. Structural Risk Minimization [87] is a technique developed to overcome
the problem of over-fitting. While training machine learning methods, there exists a risk such
that the method focuses completely on training data. It produces great results in training but
the testing becomes more error-prone. This is called over-fitting.

k-Nearest Data Description with Structural Risk Minimization is first proposed with using
only 1 member of the training data [14] and later expanded to use k-nearest training data [15].
The main idea is to lower the number of comparisons required by k-Nearest Data Description
while maintaining its performance. The important balance here is that the decrease in number
of comparisons should only eliminate comparisons which do not contribute to the classification
of test samples.

Assuming that there are n training data andm dimensions, the process of eliminating irrelevant
comparisons in training data starts with calculating the center of mass of the training data
using the following formula:

cmass =


n∑

i=1

ai1

n
,

n∑
i=1

ai2

n
, . . . ,

n∑
i=1

aim

n
,

 (2.8)

There will be two data sets at the end of the training phase. The first one, rejectedset(RS)

will contain the outliers. The assumption here is that a certain percent of the training data is
noise. They do not belong to the class. The center of mass is used in calculating the distances
from each training data to the center of mass. Think of it as a sphere. A fracrej portion of
the training data that are furthest to the center of mass form a shell and these are though to
be the outliers. They are directly put into the RS.

At the very end of the training phase, a proper subset of the remaining training data will form
the second one, which is the prototypeset(PS). The algorithm tries to put as little training
data as possible into PS while achieving the zero training error. The minimum number of
elements is essential, since it will be used in the test phase. The training data that are not in
PS and RS will not be used in the test phase. They are the samples which do not add any
useful information for testing.

After training, the shortest euclidean distance, d1 from the test sample, x to the RS is cal-
culated. The same process is repeated for PS and d2 is produced. If d1/d2 is less than a
threshold, then it is a reject. Otherwise, it is an accept. This acceptance check is done for k
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nearest PS and RS members. At the end, if the accept votes are more, than the test sample
is labeled as a member of the class.

SVM for One-Class Classification tries to draw a hypersphere boundary around the train-
ing data while occupying the minimum volume. Since the boundary is a type of sphere, it has
a center, a and a radius, R. Testing the membership of the sample is checking whether the
sample is inside the hypersphere or not, as in the following formula:

‖x− a‖2 ≤ R2 (2.9)

SVM for One-Class Classification produces the better results in many experiments [71, 84, 89].

All these algorithms try to exploit the distance information between the data points. Our
method also presents a new heuristic on the same distance information. Henceforth, we find it
adequate to directly compare the classification power of the aforementioned algorithms with
ours.

We implemented our algorithm and also the other methods in Java as a new Weka pack-
age [32] except the SVM for One Class Classification. We decided to use the Python scikit
OneClassSVM function [59].
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CHAPTER 3

RELATED WORK

The discovery of miRNAs has a very short history. Although they are identified in a study
by Lee et al. [44], they are classified as a separate RNA and their functions are exposed
only within a decade. Despite their brief existence, the work on miRNAs is immense, due to
their roles in many important disease, such as cancer and their activities in stem cells for cell
differentiation. The proliferation of studies on cancer and stem cells make miRNAs one of the
hottest topics in biology.

The constant interest about miRNAs also affected the bioinformatics research field. The com-
putational identification of both the miRNAs and their targets are growing areas of interest.
There are many algorithms, tools and databases that contain information about miRNA tar-
gets. Each database may contain different miRNA targets for different organisms. For this
work, we examined the most widely used miRNA target databases for humans.

Different biological phenomena can be mathematically modeled by different abstractions. PPI
networks represent the interactions between proteins in an organism. Some interactions may
be temporary and others can be permanent. Although the graph representation cannot capture
this, at least it shows the existence of known interactions. We used human PPIN to extract
topological properties of human miRNA targets. Also, we benefited the PPIN in generating
putative human non-miRNA target set.

In this chapter, we will present the studies and contributions previously made on the compu-
tational miRNA target predictions using Protein-Protein Interaction Networks.

3.1 Protein-Protein Interaction Networks and miRNA Targets

Recent discoveries in genetics show that gene expression in higher eukaryotes is regulated
in part by small non-coding RNA molecules named miRNAs [4, 7, 48]. In plants, miRNAs
regulate protein expression by binding to the coding region of the corresponding mRNA. Plant
miRNAs exhibit near-perfect complementarity with the target sites. In animals, miRNAs
usually bind to the 3’ untranslated region (UTR) of the target mRNA and have only limited
complementarity to their target sites [7].

miRNAs are involved in many important cellular processes [23] and their dysregulation is
related to anomalies such as cancer [33] and heart diseases [17, 97]. In recent years, several
thousand miRNAs were identified in animals and plants.

Computational prediction of miRNA target genes is difficult in animal genomes due to the
imperfect pairing of the miRNA with the corresponding target site. Techniques based only on
sequence comparison are prone to produce many false positive interactions. Therefore, recent
computational target prediction methods [36, 43, 46, 63] integrate filters such as ‘stability of
the RNA-RNA duplex’ and ‘target site conservation across species’ to reduce the large number
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of false positive target sites identified by sequence matching only. Some others [40, 93] try
to devise different structural features to achieve lower false positive rates. Despite these
improvements, studies show that current miRNA target prediction techniques have high false
positive and false negative rates. For example, miRanda [36] is estimated to have a false
positive rate of 24-39% [9]. Similarly, TargetScan [46] and PicTar [43] are estimated to have
false positive rates around 30% [45, 76].

Recently, two studies by Selbach et al. [74] and Baek et al. [5] analyzed proteome-wide ef-
fects of miRNA expression. Both studies provide important insights toward high throughput
experimental validation of miRNA-target interaction. Baek et al. compared down-regulated
miRNA targets to computational predictions by TargetScan. TargetScan provides a total
context score, which is a sequence based measure, as an indicator for efficiency of targeting
of an mRNA by a miRNA. Based on this score, Baek et al. showed that top third targets
predicted by TargetScan correlate better with protein down-regulation [5]. According to their
results, about two-thirds of TargetScan and PicTar predictions for miR-223 appeared to be
false positive targets. In order to work with a more trusted set of miRNA targets some studies
apply different filtering strategies based on the total context score. Cheng et al. [20] use a
fixed threshold of -0.20 while Yehya et al. [92] filter out three quarters of the predictions made
by TargetScan. These studies indicate that there is a need for additional filters to reduce false
positive rates of computational miRNA target predictions. Our study shows that, for targets
of some miRNAs, the network context based filter we propose is more effective in reducing
false positive rate compared to the total context score, provided by TargetScan.

PPI networks provide systems level view of the complex organization of biological processes in a
cell. Genome-scale PPI networks have become available in recent years due to high throughput
methods for detecting protein-protein interactions [68]. In addition, accurate computational
approaches have been developed which provide increased genome coverage [13, 52].

The information hidden inside biological networks is constantly being investigated. Although
signaling pathways can also be used [42], especially PPI networks are under the radar for many
studies. In the study of Zhu et al. [98], it has been shown that drug-targets have distinguishable
properties. These are PPI network related features. Degree, betweenness and clustering
coefficient of nodes in PPIN are calculated. It is reported that drug-targets have higher degree
and betweenness and lower clustering coefficient than the non-drug-targets. These hypothesis
are backed by another study [56]. There, it is shown that using only PPI network topological
properties, only cancer-related drugs can be identified but the same principle does not lead to
a successful general drug-target classifier. The integration of features should be the ultimate
aim. Although these revolve around human PPI networks, similar approaches are conducted
for other organisms as well [26].

Interestingly, in the work of Liang et al. [47], it is presented that having higher degree, between-
ness and lower clustering coefficient values is highly correlated with being a miRNA target.
The overlap in the results of these papers suggests that, the topological properties derived
from PPI networks have undeniable biological meanings and contain valuable knowledge [69].

The reasons for the existence of such biological meanings can be explained by the basics of
miRNA operations. The miRNAs either "switch on and off" protein expression, or "tune
them down" to required levels [7]. The proteins which interact with many other proteins are
more likely to be regulated by miRNAs since, if some interactions of that protein may lead to
problematic situations, it must be completely shut down. For other cases, the complete shut
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Figure 3.1: miR-21 regulated protein-protein interaction subnetwork. The proteins in red are
targets of miR-21, taken from the study Hsu et al. [35]. Courtesy of WILEY-VCH with license
number 3061890408961.

down of that protein is not necessary but some of its interactions should proceed while others
are to be stopped. Therefore, the protein expression levels must be sustained or lowered, and
the protein production output should be diverted to the required interactions [47]. Because
of the operational behaviors explained above, the miRNAs can handle both situations.

Two recent studies by Liang et al. [47] and Hsu et al. [35] investigate the relationship between
miRNAs and PPI networks, as depicted in Figure 3.1. In their work, they show that miRNAs
regulate PPI networks by targeting the mRNAs of hub and bottleneck proteins. In other
words, genes targeted by miRNAs tend to have more important roles in the cell compared to
non-target genes and this difference is reflected in the interactome. Based on this observation,
we investigate how the network context of a protein can be utilized for increasing the precision
of miRNA target prediction.

It is important to note the main differences of our work compared to the studies from Liang
et al. [47] and Hsu et al. [35]. Both Liang and Li and Hsu et al. aim to understand the
mechanisms of miRNA regulation of PPI networks by analyzing known targets of miRNAs.
They show that various network topological features are correlated with being a miRNA target
gene. However, they do not use PPI data for improving miRNA target prediction. In the paper
of Linde et al. [49], simple ranking approaches are introduced to order the putative targets for
miRNAs that are related specifically to breast cancer. The ranking mechanisms only compare
mean values of some network properties from different datasets and apply greater or smaller
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operators to putative targets. Our goal is to use network context as a filter in a computational
miRNA target prediction algorithm and increase the precision of miRNA target prediction by
using binary classification methods. When using the One-Class Classification techniques, our
aim is to increase the recall (sensitivity) of miRNA target prediction.
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CHAPTER 4

USING NETWORK CONTEXT AS A FILTER FOR
MIRNA TARGET PREDICTION

In this chapter, we specify the process of applying PPI network context information with
computational methods to filter the miRNA target predictions of TargetScan. A major re-
quirement for this method is a gold standard, i.e., ground truth, dataset which is needed
for training the classifier. We build our gold positive dataset with experimentally validated
miRNA targets. However, a negative gold standard is not easy to obtain as there exists no
non-target database. As a solution, we construct our putative negative training dataset by
using genes which do not appear in any of the major miRNA target databases.

For the genes in our ground truth dataset, we compute various graph topological measures
(listed in Table 2.1) on a PPI network. We train our SVM and MD classifiers on these com-
puted measures and construct discriminative models to separate target genes from non-target
genes. Given a putative target protein identified by a miRNA target prediction tool, we com-
pute the same network context indicators for this protein and use the learned discriminative
models to filter out that protein if it is classified as a non-target gene.

Our preliminary approach is to employ traditional machine learning and statistical methods to
miRNA target data. We analyze different ways of integrating network context information as
a filter to an existing miRNA target prediction method. The Support Vector Machine (SVM)
and Mahalanobis Distance (MD) methods that we implemented allows integration of various
contextual measures. These methods are used extensively in many areas of both computer
science and bioinformatics. This way, we have the opportunity to evaluate discriminative
power of the PPI network information without worrying about the performance and success
levels of new methods.

We share the results of applying our approach of filtering the predictions of TargetScan. The
first set of evaluation is about the discriminative power of network properties by themselves.
Later, we compare these results with the results of two different machine learning algorithms.
We investigate whether integrative techniques trained on a dataset of known miRNA targets
and putative non-targets perform better as a filter compared to simple threshold filters.

4.1 Materials

Application of graph theoretic measures for miRNA target prediction requires the composition
of PPI network data and miRNA target databases. The main entity in all these datasets is the
protein or the gene that encodes that specific protein. In the field of bioinformatics, there is an
abundance of naming policies for proteins. Different tools and datasets may choose different
naming conventions. Widely used protein identifiers are Protein Information Resource (PIR)
accession codes (http://pir.georgetown.edu/, last access on Febuary 14, 2013), Ensemble
Protein Identifiers (http://www.ensembl.org/index.html, last access on February 14, 2013)

23

http://pir.georgetown.edu/
http://www.ensembl.org/index.html


Universal Protein Resource (UniProt) [21] and protein names. Since we employed more than
one data source, it was necessary to use one common universal naming scheme for all proteins.
We chose UniProt identifiers for this purpose. We replaced all protein names that exist either
in the PPI network or miRNA databases with their respective UniProt primary accession
numbers. This way, we were able to identify each protein uniquely and accurately. However,
a number of proteins in some databases do not have UniProt identifiers. We ignored such
proteins in our analyses.

We use the I2D human PPI network [13] in our results reported in this work. The network is
maintained by the Jurisica Lab, Ontario Cancer Institute and University of Toronto. It is a
combination of different human PPI networks and is regularly updated. We downloaded it from
http://ophid.utoronto.ca/ophidv2.201/downloads.jsp. The version is last accessed and
downloaded on May 1, 2010. We ignored self-interactions and duplicate entries in the I2D
PPI network. The resultant PPI network we used in our experiments contains 13,504 nodes
and 91,264 edges, in which each node represents a unique protein and an edge represents the
interaction between two proteins.

4.1.1 The Positive Ground Truth Dataset

Verification of miRNA targets can be done in different ways. High quality results can be
achieved by testing the interaction between a miRNA and its putative target in vivo. This
is time consuming but produces much more reliable validations. For attaining high quantity
results in a relatively short period of time, high-throughput screening techniques are essential.
The results may yield lower accuracy.

For evaluation of the filtering power of graph theoretic measures and training our discrimina-
tive statistical models, we need a gold-standard true positive and a gold-standard true nega-
tive miRNA target dataset. We use two different sources as positive gold-standard datasets of
miRNA targets. The first one is TarBase v5 [75]. TarBase contains manually curated targets
that are verified by high quality, low throughput experiments. TarBase dataset is also used in
training the classifiers; however, in our tests we use cross validation by excluding the targets
of the tested miRNA from the training set. 663 miRNA targets for 65 miRNAs in TarBase
v5 exist in the I2D human PPI network. The second positive ground truth dataset we used is
based on a high throughput experimental technique called pSILAC [5]. The pSILAC dataset
also contains experimentally validated miRNA targets but the difference is that it is a high
throughput validation. Instead of direct miRNA-target interaction, it measures the change in
protein expression levels in the presence and absence of a miRNA. The difference of production
levels is represented as fold changes. We chose a threshold of -0.2 for fold change as in the
study of Alexiou et al. [2]. Therefore, the proteins having a fold change strictly lower than
-0.2 are considered as miRNA targets. This way, there exists a total of 1,460 different miRNA
target genes for 5 miRNAs used in the study: let-7, miR-1, miR-16, miR-30, and miR-155.
TarBase and pSILAC datasets are also used as ground truth set of miRNA targets in a recent
study which provides a comparison of several miRNA target prediction tools [2].

4.1.2 miRNA Target Databases

In order to generate a putative true negative dataset, we decided to select genes which exists
in PPI network but do not appear in any of the major miRNA target databases. We col-
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lected miRNA target information from five different miRNA target databases: miRBase [30],
microRNA.org [12], TargetScan [46], TarBase [75], and PicTar [43]. The motivation behind
using as many miRNA target databases as possible is to construct a negative dataset that is
as accurate as possible.

miRBase [30] uses miRanda [36] miRNA target prediction algorithm. As of June 12, 2009,
miRBase v5 contains 463,100 target genes. The data includes the miRNA families, the target
genes, and their possible interaction sites. Each interaction site is assigned a score by applying
the miRanda algorithm [36]. There were 21,200 distinct human proteins in the data we
downloaded and 19,306 of them had UniProt identifiers.

microRNA.org [12] hosts a miRNA target database that is constructed in a similar way as in
miRBase. miRanda algorithm is used as the target prediction method. microRNA.org explic-
itly provides the miRNA families, their target genes, and the sequence alignments between
them. miRanda assigns a score to each of these alignments. As of January 2008, microRNA.org
contains 18,506 distinct human miRNA target genes in 1,791,961 miRNA-target interaction
records. We were able to find UniProt identifiers for 13,352 miRNA targets in the data we
downloaded.

We used TargetScan version 5. It has 218,298 miRNA-target interaction records. We identified
7,927 distinct human miRNA target genes in TargetScan. We found UniProt information for
7,695 of these targets.

The version of PicTar we have accessed is composed of four vertebrates, which are human,
mouse, rat, and dog. We downloaded the data from UCSC Genome Bioinformatics Site [99],
listed under assembly of May 2004. It consists of 205,263 records for 9,152 distinct human
miRNA target genes. 8,313 of these genes have UniProt identifiers.

4.1.3 Constructing The Negative Ground Truth Dataset

In addition to the true positive miRNA target set, we also need a true negative dataset for
training the SVM and MD classifiers. To the best of our knowledge, there is no database that
provides a list of genes that are not targeted by miRNAs. We extracted the proteins that
are in the PPI network but do not occur in any miRNA target databases we have used. This
approach is reasonable because miRNA target prediction programs scan all known 3’ UTR
sequences against all known miRNAs and we aim to reduce the overall false negative rate
by using the union of major miRNA target databases. Also, we believe that the probability
of these proteins being a miRNA target, within the rules applied by current miRNA target
prediction tools, is much less compared to a randomly selected protein in the PPI network;
because, a majority (10,198/13,504) of the proteins in the PPI network is included in at least
one of the miRNA target databases we accessed. With this approach we bypass the necessity
of artificially generating a negative training dataset as in other studies such as in the works
of Kim et al. [40], and Showe et al. [93]. At the end of this process, putative negative miRNA
target dataset became a collection of 1,896 proteins.

We analyzed the putative negative dataset in depth, to see whether there is a specific biological
reason that these genes are not listed in any of the major miRNA target databases. We first
performed a Gene Ontology (GO) term enrichment analysis of the negative dataset. We
used the GOrilla [25] tool which gives significantly represented GO terms in a ranked list of
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proteins. We used all the three main GO hierarchies in this analysis: molecular function,
biological process, and cellular compartment. We set the p-value threshold to 10−9. In that
case, GOrilla did not find any significantly represented GO term in the 1,896 proteins in
our negative dataset. This shows that a gene that does not appear in any miRNA target
database cannot be identified by a specific molecular function, biological process, or cellular
compartment.

As a second analysis, we investigated whether the 1,896 proteins in our putative negative
dataset have distinctive features in their 3’ UTR regions. Since the miRNA and its target
usually have a near perfect match in the 3’ end of the target, the 3’ UTR region is important
in miRNA target identification. From the UCSC Genome Bioinformatics Site [99], we down-
loaded 3’ UTR sequences of mRNAs encoding the proteins in our dataset. We downloaded
3’ UTR sequences for both our putative negative dataset and for the 10,198 proteins that are
identified as targets by at least one miRNA target database. We compared the total length
and base composition of 3’ UTR sequences in the negative dataset to the length and base
composition of the rest of the proteins by histogram analysis. Figure 4.1 shows the distribu-
tion of the lengths of the 3’ UTR regions. The negative dataset exhibits a similar 3’ UTR
length distribution compared to the proteins that are identified as targets in at least one of
the major miRNA target databases. The difference between the two histograms is statistically
not significant (p-value = 0.7805). Our conclusions in base composition show that the genes
in our putative negative dataset cannot be easily identified by their 3’ UTR sequences.
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Figure 4.1: Histogram for comparing the 3’UTR lengths of miRNA targets found in a miRNA
target database and putative true negative proteins. The comparison of the lengths of 3’UTR
parts of mRNAs that produce proteins in putative negative dataset and mRNAs that produce
the proteins that are identified as targets by at least one miRNA target database. Here, as an
example, the number of mRNAs having a 3’UTR length between 100 and 199 are represented
as within the same bin since the bin size of the histogram is 100. The calculated count for each
length size 100 is divided by the total number of mRNAs for that dataset and represented as
a percentage for an easy comparison.
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4.2 Experimental Evaluation of Topological Properties

In this section, we investigate various ways of integrating network context of a protein as a
filter to a miRNA target prediction algorithm. We apply our filter on TargetScan [46], which is
one of the most widely used miRNA target prediction methods [19]. First, before employing a
rigorous information integration approach, we assess the performance of individual topological
measures as simple threshold filters. Then, we integrate these measures using two separate
supervised learning approaches and analyze their performance when applied as an additional
filter on TargetScan.

4.2.1 Performance of Individual Measures as Simple Threshold Filters

We use seven graph theoretic measures as indicators of network context of a protein in a PPI
network: degree, betweenness centrality, closeness centrality, clustering coefficient, eigenvector
centrality, graph centrality, and stress centrality (Table 1). For a given network context
measure, we define a simple threshold filter which classifies a given query protein p as a
miRNA target or a non-target based on a simple comparison of the calculated measure for p
on the PPI network against a threshold value, τ , and filters out non-target proteins.

In order to measure the performance of a simple threshold filter, we applied precision Receiver
Operating Characteristic (pROC) curve analysis. A pROC curve shows the classification
performance of a classifier on a ground truth dataset as a two-dimensional plot of precision
versus recall, or sensitivity. The main reason for using a pROC curve instead of a regular ROC
curve is that a miRNA target prediction tool tries to identify targets and the data to validate
such a tool is a validated target dataset. Currently, there is no validated non-target dataset
that can be used for validation purposes. Therefore, specificity, i.e., true negative rate, cannot
be computed. Instead, it is more reasonable to compute precision for this specific problem
as in a study of Alexiou et al. [2]. We apply pROC analysis on TargetScan predictions using
two different sets of experimentally validated miRNA targets, TarBase [75] and pSILAC [74]
datasets, as true positives.

For each topological measure, we sort all the values for that measure in descending order and
assign each value as a threshold τ . With this approach, we vary threshold values used in the
simple threshold filters and plot the pROC curves. Sensitivity is computed as the ratio of the
number of true positives that pass the filter to the total number of experimentally verified
targets. Precision is the ratio of the number of true positives that pass the filter to the total
number of predictions that pass the filter. The same procedure is applied to the context
score provided by TargetScan. Henceforth, eight different curves are produced for comparison
(Figure 4.2).

Figure 4.2 shows the performance of threshold filters for let-7 in the pSILAC dataset. The
sensitivity values are low, since the number of TargetScan predictions are much more than
the validated number of miRNA targets. In general, we see that eigenvector and closeness
centrality measures perform better than other measures, while graph centrality and clustering
coefficient perform worse. However, except miR-1, in Figure 4.3 and miR-16, in Figure 4.4, all
measures perform worse than the total context score (TCS) provided by TargetScan. Here,
the sensitivity values are also low, for the same reasons.

With the help of pROC analysis, one can determine the best threshold as the threshold

27



0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Sensitivity

P
re

c
is

io
n

B CL CC D E G S TCS

Figure 4.2: pROC curve of each network measure for let-7 using the pSILAC dataset. Here, the
network properties and the total context score (TCS) of TargetScan are used independently as
simple threshold filters. Every possible value of a given measure is considered as a threshold.
Each curve is constructed by calculating the sensitivity and precision for that threshold.
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Figure 4.3: pROC curve of each network measure for miR-1 using the pSILAC dataset. Here,
the network properties and the total context score (TCS) of TargetScan are used independently
as simple threshold filters. Every possible value of a given measure is considered as a threshold.
Each curve is constructed by calculating the sensitivity and precision for that threshold.
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Figure 4.4: pROC curve of each network measure for miR-16 using the pSILAC dataset. Here,
the network properties and the total context score (TCS) of TargetScan are used independently
as simple threshold filters. Every possible value of a given measure is considered as a threshold.
Each curve is constructed by calculating the sensitivity and precision for that threshold.

which maximizes the F-measure. Table 4.1 shows the average precision and sensitivity of
each individual filter on target lists of each of the five miRNAs when the best threshold is
found using cross validation, i.e., by excluding the pROC curve of the miRNA for which the
accuracy is measured. The best threshold for TargetScan total context score is also derived by
the same cross validation process. We see that, for sensitivity, only graph centrality narrowly
outperformed the total context score based filter. However, none of the other individual

Table 4.1: Average sensitivity and precision of network properties on the pSILAC dataset.
The average sensitivity and precision of target prediction for five pSILAC miRNAs for each
seven graph theoretic measures that are used as indicators of a protein’s context in a PPI
network.

Network Property
Average Average

Sensitivity Precision
Betweenness 0.122 0.129
Closeness 0.119 0.130
Clustering Coefficient 0.122 0.123
Degree 0.127 0.128
Eigenvector 0.122 0.132
Graph 0.143 0.112
Stress 0.122 0.129
TCS 0.141 0.113
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Figure 4.5: pROC curve of each network measure for miR-124 using the TarBase dataset. Here,
the network properties and the total context score (TCS) of TargetScan are used independently
as simple threshold filters. Every possible value of a given measure is considered as a threshold.
Each curve is constructed by calculating the sensitivity and precision for that threshold.

Table 4.2: Average sensitivity and precision of network properties on the TarBase dataset.
The average sensitivity and precision of target prediction for eight TarBase miRNAs for each
seven graph theoretic measures that are used as indicators of a protein’s context in a PPI
network.

Network Property
Average Average

Sensitivity Precision
Betweenness 0.255 0.069
Closeness 0.261 0.065
Clustering Coefficient 0.307 0.059
Degree 0.249 0.073
Eigenvector 0.249 0.072
Graph 0.340 0.060
Stress 0.254 0.071
TCS 0.230 0.087

measures is able to provide better sensitivity.

Figure 4.5 and Table 4.2 show the results of a similar analysis on the TarBase dataset. There
are eight miRNAs in TarBase for which TargetScan is able to identify more than 10 verified
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Figure 4.6: pROC curve of each network measure for miR-16 using the TarBase dataset. Here,
the network properties and the total context score (TCS) of TargetScan are used independently
as simple threshold filters. Every possible value of a given measure is considered as a threshold.
Each curve is constructed by calculating the sensitivity and precision for that threshold.

target genes. Figure 4.5 shows the pROC curve for miR-124. We observe similar results on
TarBase dataset as eigenvector and closeness centrality measures perform better than other
measures. Especially clustering coefficient again has the worst performance.

The difference between the total context score (TCS) provided by TargetScan and other mea-
sures is much more apparent, except again for miR-16, which can be seen in Figure 4.6. The
number of TargetScan predictions outnumbers the validated number of miRNA targets, mak-
ing the sensitivity values low. In Table 4.2, for the TarBase dataset, it is clear that using
TCS as a filter provides a better precision while individual measures provide better sensi-
tivity. Although individual topological measures do not perform well as threshold filters, we
investigate whether a combination of network context indicators can be used as a filter in the
next subsections.

4.2.2 Integration of Network Context Measures using Support Vector Machines

Support Vector Machines are supervised discriminative models which optimize a separating
hyperplane between two classes of high dimensional data. We used SVMs to learn discrimina-
tive models between combined network context features of miRNA targets and non-miRNA
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Table 4.3: Fold change of precision in TargetScan using SVM. The ratio of precision of Tar-
getScan predictions filtered by SVM to the precision of original predictions of TargetScan is
presented. The threshold level of the SVM is set to 0.5. 0.000 means that SVM filters out all
the verified targets.

miRNA Fold Change

TarBase

let-7 1.815
miR-1 0.347
miR-155 0.000
miR-16 0.914
miR-30 1.439
miR-124 1.433
miR-29 3.874
miR-373 0.767

pSILAC

let-7 1.100
miR-1 0.000
miR-155 0.000
miR-16 1.361
miR-30 1.258

targets. SVMs are originally developed to make binary boolean classifications; however, several
extensions allow for multi-class and probabilistic classifications. We make use of the probabil-
ity estimates provided by such an extension of the SVM library we used in this study [18].

We represent each gene as a seven dimensional vector based on the topological measures, i.e.,
betweenness, closeness centralities, clustering coefficient, degree, eigenvector, graph and stress
centralities computed for that gene. We trained an SVM model for each miRNA by using
verified targets of other miRNAs1 in TarBase and pSILAC targets separately and the putative
non-target dataset using five-fold cross validation. Several kernel functions such as radial basis
function (RBF), linear, polynomial, or sigmoid kernels can be used when learning an SVM
model. However, in our initial experiments (results not shown), the RBF kernel produced the
best results among available standard kernel functions; hence, we used the RBF kernel in the
results reported in this article. We compared the probability estimates of SVM predictions
against a threshold to label a protein as a miRNA target or a non-target. We first set the
probability threshold to 0.5, which provides the same binary classification as the original SVM.
This threshold can be increased or decreased in order to obtain a more stringent or lenient
classifier, respectively.

Table 4.3 shows the results of the fold change of precision in TargetScan predictions when this
SVM classifier is used as a filter for the targets of five miRNAs in the pSILAC dataset and
eight miRNAs in the TarBase dataset. We see that the precision can be increased for some
of the miRNAs if SVM predictions are used as filters. The average fold change of precision
is 0.744 for pSILAC and 1.324 for TarBase datasets. This is an indication of the difference
between using a quality training dataset over a quantity dataset. It seems that, at least for
the SVM, training with quality dataset produces better results than training with quantity
validated miRNA targets. Next, we used different probability thresholds and see how this
effects the efficiency of the filter.

1 in order to ensure separation of training and test data
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Table 4.4 shows the results of filtering at different stringency levels. We chose to analyze
decreasing stringency to see the effect of filtering less number of miRNA targets for higher
sensitivity. The precision fold change decreases especially after the probability threshold level
of 0.3. For the same miRNA, the fold changes in TarBase are generally better than the
pSILAC. The exception is miR-16. The other miRNAs take advantage of training the SVM
with quality validated targets. Using TarBase is much more beneficial in SVM than using
pSILAC for training.

Table 4.4: Effect of different stringency levels in TargetScan using SVM. The ratio of precision
of TargetScan predictions filtered by SVM to the precision of original predictions of TargetScan
is presented. Five different threshold levels, which are 0.5, 0.4, 0.3, 0.2, and 0.1 of the SVM
are compared. 0.000 means that SVM filters out all the verified targets.

miRNA Fold Fold Fold Fold Fold
Chng. Chng. Chng. Chng. Chng.
@0.5 @0.4 @0.3 @0.2 @0.1

TarBase

let-7 1.815 1.644 1.863 1.505 1.063
miR-1 0.347 0.273 0.636 0.711 0.873
miR-155 0.000 0.000 0.721 0.721 0.631
miR-16 0.914 1.052 1.256 1.432 1.018
miR-30 1.439 1.849 0.984 0.980 1.039
miR-124 1.433 1.283 1.258 1.283 1.019
miR-29 3.874 3.818 3.182 2.422 1.083
miR-373 0.767 0.739 0.703 0.580 1.036

pSILAC

let-7 1.110 1.075 1.126 1.069 1.000
miR-1 0.000 0.000 0.961 1.609 0.999
miR-155 0.000 0.000 0.000 0.000 0.536
miR-16 1.361 1.350 1.318 1.269 0.991
miR-30 1.258 1.222 1.138 1.008 1.007

As another analysis, we compare TargetScan total context score (TCS) with SVM filter using
pROC curve analysis. The results can be seen in Figures 4.7-4.8. Each point on the curve
corresponds to a different TCS and SVM probability threshold. The sensitivity and precision
point for the TCS threshold which keeps the top third of the targets is marked as “tcs”. For
SVM, points for different probability values are marked as “p50”, “p40”, “p30”, “p20”, and “p10”.

In the case of miR-29, we see that SVM has a comparable performance to TCS; however, for
other miRNAs, TCS is a better indicator of being a miRNA target, overall for both pSILAC
and TarBase datasets. Next, we use an alternative statistical filter and analyze its performance.
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Figure 4.7: pROC curve comparison of TargetScan total context score and SVM using the
pSILAC dataset for miR-16. Results for other miRNAs are given in Supplement 3. Points
on the curves correspond to different TargetScan total context scores and SVM probabilities.
The point on the TCS curve represented as “tcs” shows the sensitivity and precision where
top one third of the TargetScan predictions are retained. The points on the SVM curve show
the sensitivity and precision at fixed stringency levels of 0.5, 0.4, 0.3, 0.2, and 0.1.
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Figure 4.8: pROC curve comparison of TargetScan total context score and SVM using the
TarBase dataset for miR-29. Results for other miRNAs are given in Supplement 4. Points
on the curves correspond to different TargetScan total context scores and SVM probabilities.
The point on the TCS curve represented as “tcs” shows the sensitivity and precision where
top one third of the TargetScan predictions are retained. The points on the SVM curve show
the sensitivity and precision at fixed stringency levels of 0.5, 0.4, 0.3, 0.2, and 0.1.
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4.2.3 Integration of Network Context Measures using Mahalanobis Distance

Mahalanobis Distance is used in computing the distance of a multi-variate sample to a multi-
variate distribution. This distance measure can be used as a classifier by comparing the
distance of a sample to multiple multi-variate distributions. We employed this statistical
metric as a filter to the predictions of TargetScan. Here, the two multi-variate distributions
correspond to the network context measures of the true miRNA target genes and putative
non-miRNA target genes and are the same datasets used in training the SVM models. We
again used five-fold cross validation. We computed the MD of each TargetScan target to both
of the distributions. The decision process involves a simple comparison of whether the distance
to the positive training data is smaller than the distance to the negative training data.

The MD filter outperformed the SVM filter and attained better precision for all of the miRNAs
in the pSILAC dataset and for six out of eight miRNAs in the TarBase dataset (Table 4.5).
The average fold change is 1.282 for pSILAC and 1.147 for TarBase. The better performance
on the pSILAC dataset suggests that a more complete experimentally validated database
promises more effective filtering of false positive predictions.

Similar to SVM predictions, the stringency level of MD filter can be varied by using a distance
margin when labeling a non-target gene. Table 4.6 shows the results of MD filters at increasing
distance margins, i.e., decreasing stringency levels. Each time the distance margin increases
by adding 0.2, the set of miRNA targets generated by the previous margin becomes the
proper subset of the recently constructed set of miRNA targets, increasing sensitivity. The
fixed amount of 0.2 represents a 10% addition to distance difference, because for all miRNA
targets, more than 70% of them have an MD difference between -1 and +1. Table 4.6 shows
that the precision fold change is insensitive to the changes in the distance margin.

We performed a similar comparative analysis with TargetScan total context scores. Figures 4.9
and 4.10 show the pROC curves of MD and TCS filters on miRNAs in the pSILAC and TarBase

Table 4.5: Fold change of precision in TargetScan using MD. The ratio of precision of Tar-
getScan predictions filtered by MD to the precision of original predictions of TargetScan is
presented. The threshold level of the MD is set to 0.

miRNA Fold
Change

TarBase

let-7 1.487
miR-1 1.091
miR-155 1.299
miR-16 1.244
miR-30 0.941
miR-124 1.172
miR-29 1.282
miR-373 0.658

pSILAC

let-7 1.124
miR-1 1.578
miR-155 1.088
miR-16 1.335
miR-30 1.283
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Table 4.6: Effect of different stringency levels in TargetScan using MD. The ratio of precision
of TargetScan predictions filtered by MD to the precision of original predictions of TargetScan
are given. Six different threshold levels, which are +0.0, +0.2, +0.4, +0.6, +0.8 and +1.0 of
the MD are compared.

Fold Fold Fold Fold Fold Fold
miRNA Chng. Chng. Chng. Chng. Chng. Chng.

+0.0 +0.2 +0.4 +0.6 +0.8 +1.0

TarBase

let-7 1.487 1.184 1.182 1.086 0.910 0.894
miR-1 1.091 1.243 1.195 1.278 1.224 1.094
miR-155 1.299 1.045 1.224 1.172 1.289 1.165
miR-16 1.244 1.107 1.226 1.163 1.053 1.077
miR-30 0.941 1.078 1.071 1.101 1.076 1.029
miR-124 1.172 1.067 1.036 1.051 1.085 1.070
miR-29 1.282 1.625 1.713 1.545 1.146 1.093
miR-373 0.658 0.531 0.486 0.589 0.862 0.929

pSILAC

let-7 1.124 0.998 0.921 0.883 0.934 0.973
miR-1 1.578 1.465 1.514 1.435 1.213 1.134
miR-155 1.088 1.065 1.096 1.290 1.309 1.215
miR-16 1.335 1.266 1.295 1.198 1.004 1.020
miR-30 1.283 1.229 1.199 1.161 1.082 1.056
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Figure 4.9: pROC curve comparison of TargetScan total context score and MD using the
pSILAC dataset for miR-1. Points on the curves correspond to different TargetScan total
context scores and MD distance margins. The point on the TCS curve represented as “tcs”
shows the sensitivity and precision where top one third of the TargetScan predictions are
retained. The points on the MD curve show the sensitivity and precision at fixed stringent
levels of +0.0, +0.2, +0.4, +0.6, +0.8 and +1.0.
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Figure 4.10: pROC curve comparison of TargetScan total context score and MD using the
TarBase dataset for miR-16. Points on the curves correspond to different TargetScan total
context scores and MD distance margins. The point on the TCS curve represented as “tcs”
shows the sensitivity and precision where top one third of the TargetScan predictions are
retained. The points on the MD curve show the sensitivity and precision at fixed stringent
levels of +0.0, +0.2, +0.4, +0.6, +0.8 and +1.0.

datasets for miR-1 and miR-16, respectively. Again, each point on the curve corresponds to
a different TCS threshold and MD distance margin. The sensitivity and precision point for
the TCS threshold which keeps the top third of the targets is marked as “tcs”. For MD, the
same points for different distance margins are marked as “d0”, “d2”, “d4”, “d6”, “d8”, and “d10”.
Figures 4.9 and 4.10 show that MD outperforms TCS. Similar pROC curves are observed
for all of the miRNAs in the pSILAC data. The sensitivity values are low, since the number
of TargetScan predictions are much more than the validated number of miRNA targets. The
Mahalanobis Distance based filter produced the best results and increased the precision of
target predictions for all of the miRNAs in the pSILAC dataset and six out of eight miRNAs
in the TarBase dataset. This strong result shows that the network context of a protein in a
PPI network may be as important as sequence related features of the target site.
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CHAPTER 5

DIVO: A NOVEL DISTANCE BASED VOTING
METHOD FOR ONE CLASS CLASSIFICATION

The classification problems in bioinformatics have their own characteristics. Some of them
have very small datasets, some have very large but inaccurate. For miRNA target prediction,
there exists only validated miRNA target data since validation of a gene product to be a
non-target is impossible. Since deciding whether a gene product is a miRNA target or not
is a classification problem, we either form a putative non-miRNA target data set or use
only validated miRNA targets as training. In our study, we followed both of them. For
the latter, the problem become One-Class Classification. This is a rather established field of
research. One-Class Classification algorithms try to find similarities among training samples
and generalize these similarities while avoiding over-fitting. In this study, we devised a more
easy to understand and intuitive approach that exploit the distances between data that belong
to the class. The DiVo algorithm we propose assumes that training samples cluster in a closed
and connected boundary in the feature space.

The class boundary is established by the following rule:

• Boundary Rule: The distance from a class member q to a training sample t, is less than
or equal to the farthest distance from t to any of the other training samples.

Figure 5.1: The regions that may contain the class members when the Boundary Rule is
applied at different ratios.
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For a test instance, x, to be accepted as a class member, at least a certain percentage of
the training samples should approve that x complies the Boundary Rule. This percentage,
which is named ratio for the rest of the paper, is the only parameter of our method. We
demonstrate the intuition behind this heuristic with a visual example. Suppose that we have
three two-dimensional training samples as given in Figure 5.1.

In Figure 5.1, the darkest regions show the space of class members where all three training
samples agree upon, i.e., ratio > 2/3. The lighter zones are where two training samples agree,
i.e., 1/3 < ratio ≤ 2/3. The lightest parts are where only one training sample votes positively
for the test instance, i.e., ratio ≤ 1/3.

Applying the Boundary Rule require distance calculations. In this study, we use two different
distance metrics. These are the Euclidean (DiVo-E) and the Mahalanobis (DiVo-M) distances.
The major difference of the Mahalanobis distance is that it computes the distance of a single
sample to the rest of the training dataset as a single scalar value. Therefore, instead of the
maximum distance, we use this distance in the Boundary Rule. For the Mahalanobis distance,
we used the following equation:

DM (p, µset) =
√

(p− µset)TS−1(p− µset) (5.1)

where p is a multidimensional sample point, µset is a vector representing the means of each
variable in the set, and S is the covariance matrix. S captures the correlations between differ-
ent dimensions and the variance within a single dimension. When calculating the Mahalanobis
distance, for certain data distributions, calculating the inverse of a covariance matrix may not
be possible. This occurs when an attribute of all data samples has the same value. In these
cases, we simply add a regularization matrix to the covariance matrix [85]. Regularization
matrix is a square matrix where only the diagonal elements are non-zero and all these values
are equal to a fixed value, which is called the regularization parameter. In our experiments,
we used 0.01 as the regularization parameter.

In the DiVo algorithm, we used the following step function in Equation 5.2 as the Boundary
Rule.

ϕb(x) =

{
1 if x ≤ b
0 otherwise

(5.2)

40



Algorithm 1 Training Phase
Input 1: A set T of k positive samples,
T = {t1, t2, . . . , tk} ⊂ <n

Input 2: Distance metric, D
Output: A set B of k boundary distances,
B = {b1, b2, . . . , bk} ⊂ <
for ∀ti ∈ T, do
if D = Mahalanobis then
bi ← D(ti, T \ {ti})

else
bi ← maxj∈[1..k],j 6=iD(ti, tj)

end if
end for

Algorithm 2 Testing Phase
Input 1: A set R of k positive samples with corresponding boundary distances,
R = {(t1, b1), . . . , (tk, bk)} ⊂ <n ×<
Input 2: Distance metric, D
Input 3: Input sample,
x ∈ <n whose label is to be predicted
Input 4: The vote ratio threshold,
ratio ∈ [0..1]

Output: The label y ∈ {0, 1} of sample x,
i.e., 0 for negative and 1 for positive
if D = Mahalanobis then
T = ∅
for ∀(ti, bi) ∈ R, do
T ← T ∪ {ti}

end for
y ←
(
∑

j∈[1..k] ϕbj (D(x, T \ {tj})) >= (k ∗ ratio))
else
y ← (

∑
j∈[1..k] ϕbj (D(x, tj)) >= (k ∗ ratio))

end if

For the DiVo algorithm, the basic principal is that, every training sample used in the testing
phase has a single and equal vote. Using the Boundary Rule, the total number of positive
votes is compared to a ratio of the training samples. Hence, the only parameter for the DiVo
algorithm is the ratio.

The time complexity of the training phase of our algorithm depends on the number of the
training samples, k, and the number of the attributes, n, of the training samples. The distance
between each pair of training samples is computed once; hence, the total running time is
O(k2)O(t), where t is the time it takes to compute the distance between a pair of samples.
For the Euclidean distance, the complexity is linear in the number of attributes; therefore, the
total complexity is O(k2n). For the Mahalanobis distance, it is O(k2n2).

It is important to note that the training phase of DiVo does not have an optimization of an

41



error function as in other boundary OCC algorithms described in the work of Mazhelis [53].
Hence, we do not require complex optimization methods in the training phase. The training
phase is simply the computation of all-to-all distances of the training samples.

5.1 Data Preprocessing

Since the methods we compare are sensitive to scaling, we normalized all attribute values
between 0 and 1. For 3-fold cross-validation, we divided each class of each dataset into three
randomly and evenly distributed subsets. In every iteration, one of these subsets become the
training samples while the rest of the dataset becomes the test samples.

Some of the datasets we use have missing values. To overcome this obstacle, we get all the
instances which share the same class with the instance having the missing value. We calculated
the median of that attribute for these instances and assign the calculated value to the missing
attribute [1].

Before evaluating all the algorithms, we need to set their parameters with the best possible
values. This process requires iterating the algorithm over a predefined set of parameter values
using a dedicated dataset. Then, we can use the selected parameters and evaluate the results on
another dataset. The two datasets should be mutually exclusive. Otherwise, the performance
measurement will be unsound. Here, we will give the details of the datasets we used for the
parameter selection and performance evaluation.

5.1.1 Datasets for Parameter Selection

The classification algorithms compared in this study have a number of parameters that affect
classification accuracy. Therefore a mechanism for setting them to the best available values
is crucial. For this, we used three different datasets. These are Iris, Wine and Ecoli datasets
from UCI [27]. A summary of these datasets is given in Table 5.1. Optimum values of the
ratio parameter of DiVo and the compared algorithms are discovered by 3-fold cross validation
on these datasets.

Table 5.1: The datasets for parameter selection and their number of classes, attributes, and
instances.

Dataset Class Attribute Instance
Name Count Count Count
Iris 3 4 150
Wine 3 13 178
Ecoli 2 7 336
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5.1.2 Datasets for Performance Comparison

After the optimal parameters are determined, we compare the algorithms on five independent
datasets. These are Biomed from StatLib [16], Breast Cancer [80], Dermatology, Diabetes and
Ionosphere from UCI [27]. A summary of these datasets are given in Table 5.2. We used a
group of UCI datasets for both parameter selection and performance comparison since they
are appropriate for comparing one class classification algorithms, as can be seen in a study of
Tax and Duin [86]. Originally, all of these datasets are multi-class datasets. We simulate the
one class classification problem by selecting each class as the target class and the rest of them
as the non-targets and using a subset of the target class samples during the training phase.

Table 5.2: The datasets for performance comparison and their number of classes, attributes,
and instances.

Dataset Class Attribute Instance
Name Count Count Count
Biomed 2 4 209
Breast Cancer 2 9 463
Dermatology 3 34 366
Diabetes 2 8 768
Ionosphere 2 34 350

5.2 Experimental Evaluation of DiVo Performance

In this section, we present the performance of DiVo compared to different state of the art
one class classification algorithms on five different datasets. The results are summarized in
Table 5.3. We computed the average and standard deviation of f-measures on five independent
datasets.

For the Biomed dataset, the DiVo-M variant performs on par with OCC SVM, which returns
the best classifications. However, the standard deviation of DiVo-E is the smallest one. This
shows that the results provided by DiVo-E for Biomed dataset are much more precise than the
others. For instance, Local Gaussian has a higher accuracy than the DiVo-E, but the standard
deviation across its classifications is larger.

On the Breast Cancer dataset, the DiVo-E variant outperforms the rest of the methods, except

Table 5.3: The average and standard deviation of f-measures on different datasets.

Algorithm Biomed Breast Cancer Dermatology Diabetes Ionosphere
Name

Avg.
Std.

Avg.
Std.

Avg.
Std.

Avg.
Std.

Avg.
Std.

Dev. Dev. Dev. Dev. Dev.
DiVo-E 0.508 0.126 0.776 0.064 0.759 0.254 0.409 0.162 0.433 0.236
DiVo-M 0.530 0.272 0.685 0.183 0.773 0.182 0.421 0.192 0.538 0.340
GG 0.472 0.228 0.634 0.243 0.669 0.121 0.414 0.169 0.503 0.411
LG 0.510 0.253 0.571 0.259 0.210 0.111 0.303 0.065 0.446 0.431
kNNDD 0.447 0.188 0.448 0.131 0.625 0.116 0.372 0.149 0.378 0.296
kNNDD-SRM 0.423 0.241 0.759 0.156 0.177 0.062 0.415 0.181 0.400 0.144
OCC SVM 0.538 0.137 0.791 0.057 0.529 0.113 0.415 0.182 0.450 0.398
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OCC SVM. But again, the small standard deviation in DiVo-E shows that this algorithm
performs more or less the same for different classes of the Breast Cancer data.

With the Dermatology dataset, we see that both DiVo-M and DiVo-E achieve the best results.
They are the only ones to get better than 0.750 f-measure values. The third best, which
is Global Gaussian, can only get an f-measure value of 0.669. But this time, the standard
deviations of DiVo are higher compared to the other algorithms.

The DiVo-M variant produces the best f-measure average for the Diabetes dataset. However,
the differences here are not as significant as in the Dermatology results. All the methods,
except Local Gaussian and k-Nearest Neighbor Data Description, achieve more or less the
same f-measure values.

On the Ionosphere dataset, again DiVo-M produces the best results. The overall results are an
indication that DiVo algorithm can perform on par with all the other well established methods
in the field. On some occasions, DiVo-M produces the best f-measure averages.

5.2.1 Parameter and Data Analysis for DiVo

For each dataset, we also investigated the effect of the ratio parameter on the performance of
DiVo-E and DiVo-M. In Figures 5.2 and 5.3 there exists two patterns for each distance metric.
For the Euclidean distance, datasets other than the Breast Cancer and Dermatology, the
algorithms perform more or less the same. They seem to be independent of the ratio threshold.
But for the Breast Cancer and Dermatology, they perform better for larger ratio threshold
values. In fact, these two datasets are the ones that DiVo-E returns better f-measures.

Figure 5.2: The effect of ratio to the outcome of DiVo-E algorithm.
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For the Mahalanobis distance, the ratio affects the outcome in a different way than using the
Euclidean distance. The changes in the ratio, making a peek at around 0.1 and 0.2. For the
increasing values of ratio, the effectiveness of DiVo-M decreases. Here, all five datasets show
this trend.

Figure 5.3: The effect of ratio to the outcome of DiVo-M algorithm.

We conducted two different data analyses to answer what makes a dataset suitable for the DiVo
algorithm. The first one is about the statistical properties of Euclidean distance distributions.

For each dataset, we analyzed the distance distributions using histograms. Our observation is
that, when the distribution is left or right skewed, the success of DiVo-E decreases. In Figures
5.4 and 5.5, we see two different distributions. DiVo-E performs better than the other non-
DiVo algorithms when applied on the Dermatology data. The average of the minimum and
maximum distances is close to the average of all distances. However, the performance of DiVo-
E is not that successful when run on the Biomed dataset. The average of the minimum and
maximum distances is quite different than the average of all distances. The same is also true
for the Diabetes data, although it is not shown.

We performed another analysis to see if the dimensionality reduction by PCA and kernel
PCA (kPCA) can bring some hidden patterns out. We analyzed only the first two principal
components. We chose Gaussian kernel for kernel PCA with sigma is set to the reciprocal
of median distance for each dataset. There are two classes clearly visible in the 2D kPCA
plot of the Biomed data as shown in Figure 5.6. The graph shows that the outliers affect the
performance of algorithms detrimentally.
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Figure 5.4: The histogram for Euclidean Distances in Biomed Data. Bin size is 50.

Figure 5.5: The histogram for Euclidean Distances in Dermatology Data. Bin size is 50.
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Figure 5.6: The 2D output of the kPCA for Biomed dataset.

Figure 5.7: The 2D output of the kPCA for Dermatology dataset.
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Figure 5.7 shows that, in the Dermatology dataset, three classes are so apart from each other
that they can be separated linearly. Although two classes occupy nearly the same space, DiVo
achieves better results.

The 2D PCA and kPCA plots of the Diabetes dataset do not reveal any specific clusters (data
not shown). They are so interleaved that a successful classification cannot be achieved. The
worst f-measures are observed for the Diabetes dataset.

Figure 5.8: The 2D output of the PCA for Ionosphere dataset.

Figure 5.9: The 2D output of the kPCA for Ionosphere dataset.
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Figures 5.8 and 5.9 show interesting patterns in the Ionosphere dataset. Although the 2D
PCA plot is fairly cluster-free, the 2D kPCA reveals two clusters: one of them surrounds the
other. The characteristic distribution of this dataset is the main reason that DiVo-M variant
perform best on this specific dataset.

5.2.2 Time Complexity and Analysis of DiVo

We extracted the temporal properties of all the methods that we have selected for performance
comparison. We run all implementations on the same data-class-fold set for 150 times and
saved the minimum running time for training. Then we calculated the average of execution
times of each class-fold set. As a result, we have a training time for each algorithm on each
dataset. These results can be seen in Figure 5.10. Since there is no specific training phase for
Global Gaussian, Local Gaussian and k-Nearest Neighbor Data Description, they are omitted.
The performance of kNNDD-SRM on Diabetes took 120 million nanoseconds, but the time
axis is capped at 30 million nanoseconds to visualize small numbers more clearly.

As can be seen in Figure 5.10, DiVo-E spends the minimum training time. Biomed is the
dataset that has the least number of data and attributes. It can be concluded that for smaller
data sizes, DiVo-E will be both effective and efficient.

The total time required to train kNNDD-SRM is much more higher than even the sum of all
other algorithms. The increase in the training dataset also increases the training times. The

Figure 5.10: Total training times required by each algorithm on different datasets.
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OCC SVM algorithm is the only one that is not affected considerably.

Here, the training time for DiVo-M is bigger than the training time of kNNDD-SRM. That
is because of the dramatic increase in number of attributes. Dermatology is one of the two
datasets having 34 attributes.

The training time is the highest for both OCC SVM and DiVo-E on Diabetes dataset. The
reason behind these results is that one of the Diabetes dataset class has 330 training data.
That is the largest class in our study. The execution time required to train kNNDD-SRM is
120 million nanoseconds on the average.

The trend seen in the results of Dermatology repeats itself, since Ionosphere dataset also has
a high number of attributes. The increase in attribute size imposes a time penalty to DiVo-
M algorithm. This is due to the increase in the size of matrix calculations in Mahalanobis
distance.

We have implemented all algorithms except OCC SVM in Java. The OCC SVM is a scikit
function coded in Python. The programming languages and implementation details may affect
the execution times. However, their behavior against changes in data and attribute size are
independent of these two facts. This is presented in Table 5.4. Here, we assume that for a
dataset having k data and n attributes, training time takes 1 unit of time. By means of our
running time calculations, we extracted the multiplication factor that is required to train a
dataset which has 2k data and n attributes. Moreover, we carried the same process to find
the training time for another dataset which has 3k data and 2n attributes. These are in fact
different classes in different datasets. The first one is "Biomed-carrier" class. The second one
is "Biomed-normal" class. The third one is "Breast Cancer-benign" class. This way, we have
the opportunity to investigate the effect of changes in the number of both training data and
attributes.

Table 5.4: The multiplication factors required to train each algorithm.

k data 2k data 3k data
Algorithm n attr. n attr. 2n attr.
DiVo-E 1.00 2.93 14.55
DiVo-M 1.00 2.49 12.43
kNNDD-SRM 1.00 2.40 31.82
OCC SVM 1.00 1.32 2.58

First observation is that OCC SVM is affected by a much more lesser extent than the others.
Second, the number of training data plays a bigger role than the number of attributes for
DiVo algorithm. Also, the increase in training data size and number of attributes adds up a
greater complexity for kNNDD-SRM.

5.3 Observations

The DiVo-M variant achieves the best results on three datasets, while coming a very close
second on the Biomed. It is the best and most consistent algorithm for the datasets used in
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our experiments.

The average f-measures and performance rank of DiVo-E varies from dataset to dataset, but
its comparative classification power do not fluctuate. For example, kNNDD-SRM generated
one of the better results in the Breast Cancer dataset but for the Dermatology dataset, its
accuracy was the worst. Local Gaussian also performed better on the Biomed dataset, however
it performed poorly on the Dermatology dataset. DiVo-E sustains its performance level for all
of the datasets. Moreover, the standard deviations of DiVo-E within a dataset are also worth
attention. The different random training data distributions for each fold and different classes
affect it to a lesser extent than the other algorithms. In general, our results show that the
proposed algorithm, DiVo, achieves better success levels on some UCI datasets than the state
of the art one class classification methods.
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CHAPTER 6

DIVO ON MIRNA TARGET FILTERING

After examining the performance results of DiVo algorithm, we decided to use it on filtering
the miRNA target predictions of TargetScan. In this study, we do not need the ground truth
negative dataset that we have produced. Instead, we train the DiVo algorithm with only
the ground truth positive dataset. First, we analyzed if there exists a correlation between
TargetScan predictions and positively labeling targets by DiVo. Following this analysis, we
compare both of them with the experimentally validated miRNA targets.

The important assumption here is that, the first one third of the TargetScan predictions having
the best context scores are the most likely candidates of being a real target. Therefore, we
count the number of experimentally validated targets within that set. To make a comparison,
we also count the number of experimentally validated targets within the positively labeled
targets by DiVo.

As the last study, we tried to enhance the TargetScan predictions by filtering them with
DiVo. The distinction between two studies is that, the last one shows the effect of adding the
topological network properties as a feature to existing miRNA target prediction tools while
the previous one measures the miRNA target prediction power of topologic network properties
on their own.

6.1 Correlation Analysis

For the correlation analysis, we used the same validated targets in TarBase and pSILAC. For
each miRNA, we saved the targets of others as positive training sets. We trained DiVo by

Table 6.1: The correlation coefficients between DiVo-Euclidean vote counts and TargetScan
context scores. NA indicates that the pSILAC targets of that miRNA are not used or do not
exist in the database. Div/0 occurs when all targets of a miRNA have the same number of
votes.

miRNA Name pSILAC TarBase
let-7 Div/0 Div/0
miR-1 -0.02454 -0.025167
miR-16 Div/0 Div/0
miR-29 NA Div/0
miR-30 0.00244 0.001608
miR-124 NA -0.016943
miR-155 -0.00712 -0.007122
miR-373 NA 0.045897
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using these. From the TargetScan predictions, we removed the ones that are in the training
data. Then, for each of the remaining predictions, we find the number of votes assigned by
DiVo. We run the DiVo method with both Euclidean and Mahalanobis distances. We tried to
see if there exists a correlation between the votes they get from DiVo and context scores they
get from TargetScan. For each miRNA, we accumulated the following tables for Euclidean
distance (Table 6.1) and Mahalanobis distance (Table 6.2):

Table 6.2: The correlation coefficients between DiVo-Mahalanobis vote counts and TargetScan
context scores. NA indicates that the pSILAC targets of that miRNA are not used or do not
exist in the database.

miRNA Name pSILAC TarBase
let-7 0.03562 0.029660
miR-1 -0.00577 -0.035094
miR-16 -0.00657 0.014043
miR-29 NA -0.006864
miR-30 -0.00061 0.034123
miR-124 NA -0.036311
miR-155 -0.00712 0.006299
miR-373 NA 0.030477

The results do indicate that there is no correlation between the TargetScan context scores
and DiVo vote counts (Tables 6.1 and 6.2). All values are around zero. This shows that the
positively labeled targets by DiVo and TargetScan predictions depending on the context score
will produce different miRNA target prediction sets. To verify this claim, we held another
experiment which is described in the next section.

6.2 Experimental Evaluation of DiVo on miRNA Target Prediction

Using the same setup as in correlation analysis, we run the DiVo algorithm with Euclidean
and Mahalanobis distance. The aim here is to measure the discrimination power of topological
network properties. For each miRNA, the TargetScan targets are gathered. These targets are
supplied to DiVo and their votes are calculated. Applying different stringency levels generated
different miRNA target prediction sets. For each set, we count the number of experimentally
validated targets within that set. This way, the voting results of DiVo directly translated into
miRNA target prediction. To make a comparison, we also count the number of experimentally
validated targets in the best one third predictions of TargetScan that have the highest context
scores. All these mean that, we position DiVo as a miRNA target prediction tool by itself.

Here we only present the Mahalanobis results since for the Euclidean case, all the training
almost always gave full votes to TargetScan predictions. This means that the stringency has
no effect while using Euclidean Distance. DiVo with Euclidean distance cannot differentiate
the miRNA targets with miRNA non-targets. It almost always classify a test data as target.

It is clear that DiVo with Mahalanobis Distance generates better results than the TargetScan
scores for miR-16 and miR-30 (Table 6.4). That is the case for both pSILAC and TarBase
datasets. When using TarBase, DiVo, again, produces a higher recall value for let-7 and
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Table 6.3: Effect of different stringency levels in recall using DiVo with Mahalanobis distance
on pSILAC dataset. The recall of TargetScan prediction scores and recall of DiVo is presented.
Eleven different ratio values, which are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 of the
DiVo are compared. - means that DiVo filters out all the verified targets.

miRNA Recalls
Name TargetScan 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
let-7 0.12360 0.07064 0.07031 0.05392 0.06849 0.06944 0.07042 0.07246 0.06250 0.05952 0.03704 -
miR-1 0.20134 0.18321 0.17101 0.17822 0.17365 0.17073 0.17610 0.17308 0.16779 0.18627 0.15294 0.17647
miR-16 0.09787 0.12693 0.12195 0.11141 0.11864 0.12083 0.12169 0.11950 0.11215 0.11688 0.09091 1.00000
miR-30 0.10931 0.07544 0.07679 0.08061 0.08553 0.08311 0.08202 0.08494 0.09375 0.09649 0.16981 -
miR-155 0.14706 0.14428 - - - - - - - - - -

Table 6.4: Effect of different stringency levels in recall using DiVo with Mahalanobis distance
on TarBase dataset. The recall of TargetScan prediction scores and recall of DiVo is presented.
Eleven different ratio values, which are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 of the
DiVo are compared. - means that DiVo filters out all the verified targets.

miRNA Recalls
Name TargetScan 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
let-7 0.06742 0.03612 0.03485 0.03647 0.03409 0.03543 0.04000 0.05344 0.05941 0.09091 0.08333 -
miR-1 0.16107 0.15065 0.15134 0.14887 0.14981 0.16667 0.17000 0.17089 0.18919 0.17333 0.21951 -
miR-16 0.04255 0.04341 0.03769 0.03916 0.04848 0.04848 0.04430 0.04605 0.04054 0.01887 0.02941 0.00000
miR-29 0.04787 0.02748 0.02948 0.01429 0.01053 0.01111 0.01604 0.02128 0.02703 0.01351 0.02273 -
miR-30 0.06073 0.03577 0.03770 0.03883 0.04615 0.04663 0.04688 0.04839 0.04420 0.04167 0.05769 0.07143
miR-124 0.16225 0.08772 0.08488 0.08518 0.07927 0.08243 0.08108 0.08550 0.10270 0.09836 0.12281 -
miR-155 0.13235 0.09950 - - - - - - - - - -
miR-373 0.03676 0.01955 0.02778 0.03101 0.02542 0.02564 0.02586 0.01316 0.00000 0.00000 0.00000 -

miR-1. However, the results produced by DiVo using only topological network properties
for miRNA target prediction show that, these features are not enough on their own for a
successful miRNA target prediction. Independent of the prediction method, the recall values
are low, since the number of TargetScan predictions are much more than the validated number
of miRNA targets.

6.3 Experimental Evaluation of DiVo on Filtering miRNA Targets

Using only the DiVo votes as a miRNA target prediction mechanism does not produce much
better results than the TargetScan scores. Instead of putting DiVo as a direct competitor to
the established miRNA target prediction tools, we add it as a feature to filter the TargetScan
predictions. This way, DiVo become a collaborative algorithm rather than a competitor one.

We used the same setup as in correlation analysis. For each TargetScan prediction, we gathered
the TargetScan context score and DiVo vote. We only investigated DiVo with Mahalanobis
Distance since for the Euclidean case, we have almost all target predictions of TargetScan set
to be a possible miRNA target. We named the first one third of the TargetScan predictions
having the best context scores as the set B and named the remaining predictions as the set
W .

We employed two different filtering methods. The first one filters the elements of only B by
DiVo votes using stringency levels. If the ratio of DiVo votes to all possible training data (vote
ratio) is above or equal to the stringency level s, then we retained that prediction as a possible
target. Else, we left out that prediction. We called the proper subsets that have only filtered
best predictions as "filterBest". The stringency s is between 0 and 1. For each iteration, it is
incremented by 0.1. The second method does the same filtering as the first one. Moreover, it
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also adds some predicted targets which are low on context scoring but above the stringency
level (1−s) on voting. These come from the set W . We called these miRNA target prediction
subsets as "filterAll". Here, The stringency s is between 0 and 0.5. For each iteration, it is
incremented by 0.05.

In Figure 6.1 we can see the effect of the stringency to the recall of TargetScan predictions
when using TarBase dataset. The orange plots represent the recalls for "filterBest" sets while
the blue plots represent "filterAll" sets. For example, when the stringency level s = 0.1, the
predictions in B should have a vote ratio higher than 0.1 to be positively labeled as a target.
On the other side, for the same stringency level s = 0.1, the predictions in W should have a
vote ratio higher than 0.9 to be positively labeled as a target. Since the incrementation steps
for the second filter is smaller than the first one, the last stringency will be 0.5. This means
that, as the last case, the "filterAll" subset will contain all targets in both B and W which are
approved by half of the training data. The dashed lines show where the original TargetScan
recall lies and added for comparison purposes. The same explanations also hold for figure 6.2,
where we can see the effect of the stringency on the recall of TargetScan predictions when
using pSILAC dataset.

The pictures depicted by using TarBase or pSILAC are different. For TarBase, we cannot
report definitive results for miR-29. For the other miRNAs, "filterBest" recalls are almost
always better than the "filterAll" ones (Figures in 6.1). let-7, miR-1 and miR-16 shows a trend
where increase in stringency causes an increase the recall of "filterBest", while decreasing the
recall of "filterAll". "filterBest" is always better. Another trend can be seen for miRNAs
miR-30, miR-155 and miR-373. Here, "filterBest" is better than the TargetScan score until
stringency reaches to 0.6 or 0.7. Increasing the stringency makes "filterBest" worse.

Looking at specific stringency values, we see that for let-7, miR-1, miR-16, miR-30 and miR-
155, 0.7 is consistently successful when "filterBest" sets are used. They produce better results
than the unmodified TargetScan predictions. When the stringency is 0.6, "filterBest" achieves
good results for miR-373, but for 0.7, it is far worse than the original TargetScan predictions.

For pSILAC, we cannot report definitive results for miR-16. For let-7 and miR-155, "filterBest"
recalls are better than the "filterAll" ones and TargetScan predictions (Figures in 6.2). The
remaining miR-1 and miR-30 results indicate that "filterAll" is better than "filterBest". In
fact, for miR-30, "filterAll" is better even than original TargetScan predictions.

There are no clear trends as in pSILAC. But we can say that, when the stringency is 0.6,
"filterBest" is better than TargetScan for let-7 and miR-155. For stringencies 0.05 and 0.15,
"filterAll" is better than TargetScan for miR-30.

6.4 Observations

The first observation here is that, the topological network properties on their own is an in-
sufficient feature set for effectively identifying miRNA targets. Hence, these should be added
as a complementarity properties to the currently used features. However, the type of the
integration also matters. Except in one case (for miR-30 with pSILAC), "filterBest" achieves
better recall values than "filterAll". The problem with "filterAll" is that, increasing stringency
removes predictions with higher context scores and adds the ones having lower context scores.
This almost always leads to decreasing recall value. On the other hand, increasing stringency
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Figure 6.1: Filtering TargetScan with DiVo using TarBase target database. The x-axis repre-
sents stringency and y-axis shows recall values.
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makes the "filterBest" approach more and more elitist. Only the very best predictions are
retained and the number of predictions gets smaller in size, while preserving the experimen-
tally validated targets within the filtered set. The only miRNA, where "filterAll" consistently
surpassed "filterBest" was miR-30 when using pSILAC dataset. Other than that, there is no
example where "filterAll" should be used.

The positive training data sets also affects the outcome of DiVo. Using pSILAC for training
leads marginal gains over original TargetScan predictions. The DiVo "filterBest" for miR-155
generates the only significant increase in recall. Other than that, we can see a comparable
recall value for let-7 from the "filterBest", and for miR-30 from the "filterAll" prediction sets.
When the TarBase database used for training DiVo, five of the possible eight miRNAs’ recall
values prospers with "filterBest". For miR-1 and miR-155, again "filterBest" also generates
comparable results. We can conclude that the manually curated, high quality miRNA target
sets add much more power to the classification power of DiVo.

As for the stringency levels, s = 0.6 and s = 0.7 gains considerable success and attention for
"filterBest". Almost in all experiments, these two stringency levels produces either better or
comparable recall values. In a few cases, s = 0.9 attained the highest recalls, but then, the
number of predictions was too low. Moreover, for the cases where s = 0.9 didn’t show up
well, it failed significantly. It was too inconsistent to be recommended. For the "filterAll"

Figure 6.2: Filtering TargetScan with DiVo using pSILAC target database. The x-axis repre-
sents stringency and y-axis shows recall values.

58



stringencies, around s = 0.1 can be seen as an important step but this does not change the fact
that "filterAll" is not a good mechanism as "filterBest". Overall, we can say that the filtering
mechanism backed by a One-Class Classification technique yields overlapping success levels
with the results of our binary classification study. Therefore, we conclude that integration
of proposed features, as PPI network properties, is beneficial to existing target prediction
methods.
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CHAPTER 7

DISCUSSION, CONCLUSION AND FUTURE WORK

To the best of our knowledge, this is the first study that uses network context as a filter in
miRNA target prediction. We implemented the Support Vector Machines and Mahalanobis
Distance methods, which are both supervised learning techniques, to integrate seven different
context measures. We evaluated the results of our models on two datasets of experimentally
verified human miRNA targets, TarBase and pSILAC datasetsThe success of a supervised
learning approach depends highly on the quality of the datasets used. Both the gold-standard
miRNA target dataset used for training and the PPI network used for extracting topological
features are incomplete datasets and may contain false positive targets or interactions. How-
ever, we did not conduct robustness analyses in this study due to a widely accepted assumption
in the biological network analysis field that node-related statistics should not deviate too much
from the ones in a complete and correct network as long as the PPI network is neither strongly
biased nor too small [47].

Due to the nature of the implemented SVM and MD, we are also in need of a negative training
data set. As far as we know, there is no database that stores organic molecules that are not
targeted by any miRNA. In other words, there is no verified miRNA non-targets. To overcome
this obstacle, we devised a heuristic and generate a set of putative miRNA non-targets. It
is an important information source, especially for miRNA target prediction techniques using
binary classifiers.

There are many types of biological networks, such as gene regulatory networks, metabolic
pathways, and PPI networks. Although PPI networks are incomplete and noisy, they provide
better genome coverage compared to other networks. Combination of these networks and
applying our approach to other networks may be an important future direction.

As we explained in previous sections, the performance of individual measures varied signif-
icantly. Closeness and eigenvector centrality measures perform better while others, such as
clustering coefficient and graph centrality measures have poor performance. Moreover, there
is a correlation between some measures. For instance, for betweenness and stress centrality,
the order of miRNA targets when sorted with respect to these measures is the same. Also,
for degree and eigenvector centrality, the order of miRNA targets when sorted with respect
to these measures is, again, the same. As a follow-up study, a feature selection method may
be applied to select the most informative subset of topological measures for miRNA target
prediction, before integration of these measures using SVM or MD.

Another performance difference can be observed between miRNAs. Our methods have shown
varied results for each miRNA. For example, the average betweenness and stress centrality
measures of let-7, miR-124, and miR-155 targets are relatively higher than the others. On
the contrary, the average closeness and graph centrality values for the same miRNA targets
are smaller than the rest. Interestingly, these are the miRNAs that SVM and MD perform
poorly. On the other hand, the same network properties show just the opposite trend for
miR-29 and miR-16 targets. These are the ones for which network context performs better.
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The underlying biological reasons should be investigated for discovering a common pattern.

TargetScan is a popular miRNA target prediction tool among many others [96]. For this
work, we used only TargetScan to apply our method. However, this filter is easily applicable
to other computational miRNA target prediction algorithms. Because of the inherent problems
within the miRNA target prediction tools, and lack of rapid experimental validation of miRNA
targets, the number of predictions are very much higher than the current miRNA targets. This
is reflected throughout the performance analysis of our studies. The sensitivity values are too
low. The increase in the size of real miRNA targets will yield better recall values. Nonetheless,
our results show that network context is a valuable information source that can be used in
miRNA target prediction.

Using the network context of a protein in a PPI network and employing this information
with binary classification techniques, we were able to increase the precision of miRNA target
predictions. Note that we do not propose a new standalone miRNA target prediction tool.
As we presented in Chapter 6.4, using only topological network properties for miRNA target
prediction is not enough on its own for a successful miRNA target prediction process. The
biology of miRNA-target interaction for many species is well studied and understood; and,
we strongly believe that a miRNA target prediction method should be based on sequence,
structure, and conservation analysis. But integration of additional features, such as the ones
proposed in this study, to existing target prediction methods promises increased precision.

Our results show that the network context of a protein in a PPI network may be as important
as sequence related features of the target site, which implies that topological properties of
proteins in PPI networks can be used as an additional information source for filtering out false
positive miRNA target predictions. As a follow-up study, integrating sequence based scoring
measures with network context using a Decision Tree Learning model and testing it with all
miRNA target prediction tools can be done.

The field of One Class Classification is an established research area. In this study, we also
introduce a different heuristic that is based on a voting scheme using simple distance infor-
mation between the training data samples which belong to the class under consideration. For
this work, we propose a more intuitive and easy to understand one class classification method
based on voting on the distances of the training samples. DiVo-M, which utilizes the Maha-
lanobis Distance, returns the best results for three different datasets and comes a very close
second for a fourth one. The DiVo-E, which uses the Euclidean distance, produces comparable
results throughout all datasets.

The main advantage of the proposed approach over existing techniques is its consistency. Both
distance metrics used in conjunction with the DiVo algorithm sustain their performance level
for all of the datasets. The intuitive nature of our approach makes it easy to understand
and its consistency makes it applicable on different types of datasets without a decrease in
performance.

As a last study, we applied our novel One-Class Classification algorithm, DiVo, to miRNA
target prediction problem. The features of the classification are seven topological network
properties that we used in the binary classification study. The first application was using
only these topological features for miRNA target prediction and compare the output with
that of TargetScan. The recall values have shown that, the topological network properties on
their own is an insufficient feature set for effectively identifying miRNA targets. This agrees
with the conclusion we have come in our binary classification study. As a second experiment,

62



we integrated the DiVo algorithm utilizing the same set of features. This time, we did not
predict the targets but only filter the ones having less votes. Moreover, we wanted to see the
effect of different filtering mechanisms by applying two different methods. Although these
methods provide diverse recall values, the main outcome aligns with our previous conclusion,
where binary classifiers are used. Both of these experiments conclude that adding topological
network properties have a beneficial effect on the recall of miRNA target prediction tools.
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