
1

RESULTS ON THE MULTIPLICATION IN FINITE FIELDS OF CHARACTERISTIC
THREE USING MODIFIED POLYNOMIAL REPRESENTATION AND NORMAL

ELEMENTS IN BINARY FIELDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CANAN ÖZEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

MARCH 2013

Approval of the thesis:

RESULTS ON THE MULTIPLICATION IN FINITE FIELDS OF
CHARACTERISTIC THREE USING MODIFIED POLYNOMIAL

REPRESENTATION AND NORMAL ELEMENTS IN BINARY FIELDS

submitted by CANAN ÖZEL in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Department of Cryptography, Middle East Technical University
by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Prof. Dr. Ferruh Özbudak
Supervisor, Department of Mathematics, METU

Assist. Prof. Dr. Sedat Akleylek
Co-supervisor, The Department of Computer Engineering, Ondokuz
Mayıs University

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Prof. Dr. Ferruh Özbudak
Department of Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assist. Prof. Dr. Burcu Gülmez Temur
Department of Mathematics, Atılım University

Dr. Oğuz Yayla
Department of Cryptography, IAM, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: CANAN ÖZEL

Signature :

v

vi

ABSTRACT

RESULTS ON THE MULTIPLICATION IN FINITE FIELDS OF CHARACTERISTIC
THREE USING MODIFIED POLYNOMIAL REPRESENTATION AND NORMAL

ELEMENTS IN BINARY FIELDS

Özel, Canan

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

Co-Supervisor : Assist. Prof. Dr. Sedat Akleylek

March 2013, 58 pages

In this thesis, we study on the multiplication in finite fields of characteristic three. We use
Charlier and Hermite polynomials to represent elements in F3n for obtaining alternative repre-
sentations to the standart polynomial representation. We give multiplication methods in these
representations to multiply elements in F3n . We compute the multiplication and reduction
complexities in each representation and compare the complexity results with the ones in the
standart polynomial representation. Charlier and Hermite polynomial representations enable
us to find irreducible binomials. We show that in some cases, there is a set of irreducible bi-
nomials in each representation to do modular reduction with lower addition complexity than
the one in the standart polynomial representation. We give a multiplier architecture in Charlier
polynomial representation of finite fields F3n , where n ≡ 2 (mod 3). Then, we examine cub-
ing and inversion operations in this representation. We investigate the matrix-vector product
method for multiplication of the field elements in Hermite polynomial representation and we
generalize the reduction complexity by using the reduction matrix in this matrix-vector product
method. Finally, we focus on the optimal normal basis construction in binary fields and find a
connection between optimal normal basis elements and Hermite polynomials in these fields.

Keywords : finite field representation, polynomial multiplication, reduction complexity, normal
elements

vii

viii

ÖZ

DEĞİŞTİRİLMİŞ POLİNOM GÖSTERİMİ KULLANILARAK KARAKTERİSTİĞİ ÜÇ
OLAN SONLU CİSİMLERDE ÇARPMA ÜZERİNE VE İKİLİK CİSİMLERDE NORMAL

ELEMANLAR ÜZERİNE SONUÇLAR

Özel, Canan

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Sedat Akleylek

Mart 2013, 58 sayfa

Bu tezde, karakteristiği üç olan sonlu cisimlerdeki çarpma üzerinde çalışıyoruz. Standart poli-
nom gösterimine alternatif gösterimler elde etmek için, F3n’ deki elemanları göstermede Char-
lier ve Hermite polinomlarını kullanıyoruz. F3n’ deki elemanları çarpmak için bu gösterimler-
deki çarpma yöntemlerini veriyoruz. Her bir gösterimde, çarpma ve indirgeme karmaşıklıkla-
rını hesaplıyoruz ve karmaşıklık sonuçlarını standart polinom gösterimindekilerle karşılaştı-
rıyoruz. Charlier ve Hermite polinom gösterimleri indirgenemez iki terimli polinomlar bula-
bilmemize olanak sağlamaktadır. Bazı durumlarda, standart polinom gösterimindekine göre
daha az toplama karmaşıklığı olan modüler indirgeme yapmak için her bir gösterimde in-
dirgenemez iki terimli polinomlar kümesi olduğunu gösteriyoruz. n ≡ 2 (mod 3) olan F3n

sonlu cisimlerinin Charlier polinom gösteriminde bir çarpan yapısı veriyoruz. Daha sonra küp
alma ve tersini alma işlemlerini inceliyoruz. Hermite polinom gösteriminde cisim eleman-
larının çarpımı için matris-vektör çarpım yöntemini inceliyoruz ve bu matris-vektör çarpım
yönteminde indirgeme matrisini kullanarak indirgeme karmaşıklığını genelleştiriyoruz. Son
olarak, ikilik cisimlerde optimal normal tabanların oluşturulmasına odaklanıyoruz ve bu cisim-
lerde, optimal normal taban elemanları ve Hermite polinomları arasında bir bağlantı buluyoruz.

Anahtar Kelimeler : sonlu cisimlerin gösterimleri, polinom çarpımı, indirgeme karmaşıklığı,
normal elemanlar

ix

x

Onur’a

xi

xii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my supervisor Prof. Dr. Ferruh Özbudak for
his guidance throughout this work. It would not have been possible to write this thesis without
his help and encouraging support. I am also very greatful to Assist. Prof. Dr. Sedat Akleylek,
my co-supervisor for his valuable advices and constant help during this period. His insight and
suggestions have improved this work.

I would like to thank Dr. Oğuz Yayla for his comments and constructive feedback. Also many
thanks to Dr. Turgut Hanoymak for his support at all times I need during my gradute study.
I also would like to thank all my friends in the institute, especially Yeliz Yolcu Okur for her
encouragement and friendship.

I would like to show my gratitude towards my parents. They were always there for me and they
always supported me. Also I am grateful to my sister and her family for their love and support.
I would like to thank my parents-in-law and also I am so thankful to my dear grandmother who
will always with us.

Lastly, my special thanks go to my loving husband Onur for his unconditional support and love
that enabled me to complete this work.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xvii

CHAPTERS

1 INTRODUCTION . 1

2 MATHEMATICAL BACKGROUND . 3

2.1 Finite Fields . 3

2.2 Extension Fields . 5

2.3 Binary Field Arithmetic . 7

2.3.1 Multiplication . 7

2.3.2 Squaring . 9

2.3.3 Inversion . 10

3 CHARLIER POLYNOMIAL REPRESENTATION 11

3.1 Charlier Polynomials . 11

3.1.1 Charlier Basis . 13

3.2 Multiplication in Charlier Representation 13

3.2.1 Irreducible Charlier Binomials 16

xv

3.2.1.1 Reduction . 16

3.3 Design of Arithmetic Operations in Charlier Polynomial Representation 18

3.3.1 A Sequential Multiplier . 19

3.3.2 Cubing . 21

3.3.3 Inversion . 22

4 HERMITE POLYNOMIAL REPRESENTATION 25

4.1 Hermite Polynomials and Hermite Basis in F3n 25

4.2 Multiplication of Polynomials in Hermite Representation 27

4.2.1 Irreducible Hermite Binomials 29

4.2.1.1 Reduction . 29

4.3 Matrix vector product for Hermite Basis 31

5 NORMAL BASIS REPRESENTATION . 35

5.1 Optimal Normal Bases . 35

5.2 Dickson Polynomials . 36

5.3 Hermite Polynomials in F2[x] . 38

6 CONCLUSION . 41

REFERENCES . 43

A CONVERSION FROM STANDART POLYNOMIAL REPRESENTATION TO
A MODIFIED POLYNOMIAL REPRESENTATION 47

B IRREDUCIBLE CHARLIER BINOMIALS AND REDUCTION 49

C IRREDUCIBLE HERMITE BINOMIALS AND REDUCTION 53

CURRICULUM VITAE . 57

xvi

LIST OF TABLES

Table 3.1 Charlier polynomials in F3[x] . 12

Table 3.2 Reduction Complexity . 18

Table 4.1 Hermite polynomials in F3[x] . 26

Table 4.2 Reduction Complexity . 31

Table 5.1 Dickson polynomials in F2[x] . 37

Table 5.2 Hermite polynomials in F2[x] . 39

Table 5.3 Polynomials generated by An(x) over F2 . 40

Table B.1 Irreducible Charlier Binomials . 49

Table B.2 Reduction Complexity of βi . 51

Table C.1 Irreducible Hermite Binomials . 53

Table C.2 Reduction Complexity of βi . 56

xvii

xviii

CHAPTER 1

INTRODUCTION

Finite field arithmetic is widely studied in cryptographic applications, coding theory and com-
puter algebra [27]. Recently, in elliptic curve cryptography and pairing based cryptography
there has been an interest on the implementation of cryptographic systems based on odd char-
acteristic finite fields Fpn , where p is a prime [12], [13]. For instance, supersingular elliptic
curves over F3n are used for the efficient implementations of the algorithms in pairing based
cryptography [10]. The algorithms require the basic arithmetic operations such as field ad-
dition, subtraction, multiplication and cubing. Due to their complexities, multiplication and
cubing are the important operations for pairing implementations. In the implementation of
Tate pairing, multiplication and cubing in F36m are required [26]. As a result of these, the stud-
ies have been increased in the area of hardware and software implementations of arithmetic
operations in finite fields of characteristic three [3], [11], [19], [22], [35].

Multiplication is the most time consuming operation in finite field arithmetic. The other com-
plex operations such as exponentiation and inversion are done by performing the multiplica-
tion operation iteratively. Multiplication of finite field elements can be performed in two steps:
polynomial multiplication and modular reduction. Since the complexity of the multiplication
depends on the number of nonzero terms in the reduction polynomial, it is desirable to use a low
weight irreducible polynomial as the reduction polynomial. The selection of the representation
of finite field elements and the irreducible polynomial has a crucial role on the efficiency of the
arithmetic implementations. In F3n , there is no irreducible binomial except for x2 − 2 [36].
Therefore, irreducible trinomials, when trinomials do not exist, quadrinomials or pentanomials
are preferred to construct F3n [2]. A polynomial basis or a normal basis is used to represent
the elements of F3n . In Chapter 2, the mathematical background about the finite fields and the
arithmetic of finite fields are reviewed.

The studies on the hardware and the software implementations of the polynomial basis mul-
tiplication in binary extension fields appear intensively in the literature. However, there is no
similar interest for the polynomial basis multiplication in general extension fields. In the re-
cent studies such as [23] and [24], Dickson polynomials are used to represent binary extension
fields for efficient field multiplication. In [4], Hermite polynomials and Charlier polynomials
were proposed to represent binary fields to obtain subquadratic multiplication complexity. In
this thesis, we modify these ideas for F3n and we present new polynomial basis representations
using the orthogonal Charlier polynomials and Hermite polynomials for F3n . In Chapter 3,
we give the Charlier polynomial representation for finite fields of characteristic three and we
choose some irreducible binomials to represent the field elements. We present the multiplica-

1

tion and reduction operations in this representation and we give the complexity results of these
operations. For some irreducible Charlier binomials, we obtain better results in reduction com-
plexity according to the standart polynomial representation. We design a sequential multiplier
in this representation for the elements of F3n , where n ≡ 2 (mod 3). We give the cubing oper-
ation and we show that by using the irreducible Charlier binomials to represent the elements of
F3n , where n ≡ 2 (mod 3), the reduction in cubing operation requires less additions and scalar
multiplications than the reduction in cubing of an element represented with standart polyno-
mials. We also mention about the inversion operation in this representation. In Chapter 4, we
represent the elements in F3n by using Hermite polynomials and we explain how to obtain an
arithmetic design for multiplication and modular reduction. We obtain a set of irreducible bi-
nomials in Hermite polynomial representation to get faster modular reduction than in standart
polynomial representation. In this representation, we give the multiplication of two elements
in F3n by using matrix vector multiplication design and we construct reduction matrix. We
compute the multiplication and reduction complexities in each representation in view of the
number of multiplications and additions. All computations are done by using Maple [29].

Another method for representing finite field elements is the use of normal bases. Especially
in hardware implementations of binary fields, the normal basis representation is quite adven-
tageous than the polynomial basis representation [34]. Squaring of an element in the normal
basis representation of a binary field is performed simply by a cycle shift of the coordinates of
the element, thus it is almost free of cost in hardware. In [27], by Theorem 2.35 it is shown
that for any field Fq and any extension field Fqn , there always exists a normal basis of Fqn over
Fq. In [33], optimal normal bases are reported which allow efficient implementations of arith-
metic operations in finite fields Fqn and afterwards all optimal normal bases are determined in
[16]. Although there always exists a normal basis for every finite field, it is not valid in the
case of optimal normal bases. In [33], the constructions that give all the optimal normal bases
and a large family of normal bases of low complexity are given. Dickson polynomials are also
used for the construction of optimal normal bases. In [28], the connection between optimal
normal bases and Dickson polynomials are presented. In Chapter 5, we recall all these con-
structions and connections of optimal normal bases and we find a relationship between optimal
normal basis elements and Hermite polynomials over F2. Finally, we give the conclusion part
in Chapter 6.

2

CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter contains preliminaries in finite fields and applications of finite fields. Also the
binary field arithmetic is given.

2.1 Finite Fields

In this section, a brief introduction to the theory of finite fields is given. For details and proofs,
see [27]. We first give the definition of a field.

Definition 2.1.1. A field F = (F,+, ·) is a set F together with two binary operations on F
such that,

• F is a ring,

• (F/ {0} , ·) forms a commutative group, where 0 is the identity element of the group
(F,+).

Example 2.1.2. (R,+, ·) and (Q,+, ·) are fields.

Example 2.1.3. The set of integers modulo p, where p is a prime, together with addition and
multiplication operations forms a field. Since gcd(a, p) = 1 for 1 ≤ a < p, then a has a
multiplicative inverse in Zp. This field has finite elements.

Recall that if a field contains finitely many elements then it is called finite. The order of a finite
field is the number of elements in the field. A finite field of order q is denoted by Fq. Finite
fields are also referred to as Galois Fields.

Theorem 2.1.4. (Existence and uniqueness of finite fields). Finite fields of order q exist if and
only if q = pm for some prime p and some integer m ≥ 1. Moreover every finite field of order
q is unique up to isomorphism.

If m = 1 then Fp is called a prime field. If m ≥ 2, then Fpm is called an extension field. For a
proof see [27]. Now, we give the definition of the characteristic of a finite field.

Definition 2.1.5. The characteristic of a finite field is the least positive integer n such that∑n
i=1 1 = 0.

3

It can be shown that the characteristic n of a finite field must be a prime number ≥ 2. Before
we give the extension fields in the next section, we introduce the concept of polynomial rings.

Definition 2.1.6. Let R be a commutative ring, then a polynomial A(x) with an indeterminate
x over R is expressed by the following sum A(x) = anx

n + an−1x
n−1 + .. + a0 where the

coefficients ai’s are in R and n ≥ 0. The largest n, where an 6= 0 is called the degree of A(x)
and denoted by deg(A(x)).

The coefficient an is called the leading coefficient of A(x), if an = 1 then A(x) is called a
monic polynomial. A polynomial is called as a constant polynomial if A(x) = a0.

The sum of two polynomials where each has degree n is expressed as

A(x) +B(x) =
n∑

i=0

(ai + bi)x
i

The product of two polynomials A(x) =
∑n

i=0 aix
i and B(x) =

∑m
j=0 bjx

j is defined as
follows

A(x) ·B(x) =
n+m∑
k=0

∑
i+j=k

aibjx
k

Definition 2.1.7. Let R be a commutative ring. The set of polynomials over R with the poly-
nomial addition and multiplication is called a polynomial ring and denoted by R[x].

In this thesis, we study polynomials over fields and let F [x] denote the polynomial ring over a
field F . In this case, the division operation is applicable to the elements of F [x]. A polynomial
B(x) ∈ F [x] divides A(x) ∈ F [x] if there exists a polynomial C(x) ∈ F [x] such that A(x) =
B(x)C(x). B(x) is said to be a divisor of A(x) or A(x) is said to be a multiple of B(x). Also
we can say that A(x) is divisible by B(x). The following theorem gives the division algorithm
that expresses the divison in F [x].

Theorem 2.1.8. For any element B(x) 6= 0 in F [x] and for any A(x) ∈ F [x], there ex-
ist unique polynomials Q(x), R(x) ∈ F [x] such that A(x) = Q(x)B(x) + R(x), where
deg(R(x)) < deg(Q(x)).

Polynomials in F [x] have many common properties with integers, since division is defined over
both sets. For instance, the greatest common divisor of polynomialsA(x),B(x) is an analogue
to the greatest common divisor of integers a, b and it is denoted by gcd(A(x), B(x)). The two
polynomials are said to be relatively prime if gcd(A(x), B(x)) = 1. Euclidean Algorithm is
used to compute the greatest common divisor of two polynomials. As in the case of integers,
F [x] has prime elements which are called as irreducible polynomials.

Definition 2.1.9. Let P (x) ∈ F [x] be a polynomial with deg(P (x)) > 0 and P (x) =
B(x)C(x), where B(x), C(x) ∈ F [x]. P (x) is called irreducible over F if either B(x) or
C(x) is a constant polynomial.

Definition 2.1.10. Let A(x) ∈ F [x] be a polynomial, then an element β ∈ F is called a root
of A(x) if A(β) = 0.

4

Remark 2.1.11. If a polynomial P (x) is irreducible over F , then it does not have a root in F ,
otherwise it can be written as P (x) = (x− β)Q(x).

As given in Example 2.1.3, Zp is a prime field and also denoted by Fp. To construct the
extension fields of these fields, irreducible polynomials which are prime elements of Fp[x] are
used, in this manner they are fundamentally important polynomials. Before giving the resulting
theorem, we recall the residue class rings.

Let R[x] be a polynomial ring and A(x) ∈ R[x] be a nonzero polynomial, then (A(x)) is a
principal ideal and makes a partition ofR[x] into disjoint cosets. They are called residue classes
moduloA(x) and denoted by U(x)+(A(x)), where U(x) ∈ R[x]. Two polynomials U(x) and
V (x) are congruent modulo A(X) if their residue classes, U(x) + (A(x)) and V (x) + (A(x))
are identical, i.e., A(x) divides (U(x)−V (x)). For each residue class, a unique representative
N(x) ∈ R[x] with deg(N(x)) < deg(A(x)) is used and we can find it as follows. By using
the division algorithm, we divide U(x) by A(x) and we get unique polynomials M(x) and
N(x) such that U(x) = M(x)A(x) + N(x), where deg(N(x)) < deg(A(x)). This is called
reduction modulo A(x). Now, we can use N(x) + (A(x)) uniquely to represent the residue
class of polynomials containing U(x). The set of residue classes of polynomials in R[x] with
degree less than deg(A(x)) is called residue class ring of R[x] modulo A(x) and is denoted by
R[x]/(A(x)).

Theorem 2.1.12. Let F be a field and A(x) ∈ F [x]. The residue class ring F [x]/(A(x)) is a
field if and only if A(x) is irreducible over F .

2.2 Extension Fields

Firstly, we give the definition of an extension field.

Definition 2.2.1. Let F be a field and H be a subset of F such that H is a field under the same
operations. Then H is called a subfield of F and F is called an extension field of H .

If F is a finite field (also H is a finite field), then F is considered as a vector space over H .
The degree of F over H is the dimension of the vector space F over H . The other finite fields
except prime fields, Fp are extension fields of these fields. One can say that an extension field
contains a prime field as its subfield. A prime field is also called the base field of its extension
fields. An extension field can be constructed by using an irreducible polynomial of degree n
and a base field Fp and denoted by Fpn where n is called the extension degree over Fp. The
construction is done as follows:

Let P (x) ∈ Fp[x] be an irreducible polynomial of degree a positive integer n. Let β be a root
of P (x), so P (β) = 0. Then the residue class ring Fp[x]/(P (x)) is a field and it contains all
the poynomials an−1βn−1 + an−2β

n−2 + .. + a1β
1 + a0, where ai ∈ Fp. The operations in

this field are polynomial addition and polynomial multiplication modulo P (x).

For every base field Fp and every positive integer n there exists an irreducible polynomial in
Fp[x] of degree n, so we can construct any Fpn by using irreducible polynomials. The following
theorem introduces a fact about the roots of an irreducible polynomial.

5

Theorem 2.2.2. Let P (x) be an irreducible polynomial in Fp[x] with degree n. It has a root β
in Fqn , moreover all roots β, βq,..,βq

n−1
are in Fqn .

The field containing all the roots of an irreducible polynomial P (x) over Fq, is an extension
field of Fq and called as the splitting field of P (x) over Fq.

Definition 2.2.3. If Fqn is an extension field of Fq and β is an element in Fqn then β, βq,..,βq
n−1

are called the conjugates of β with respect to Fq.

Now, we give an important mapping from Fqn to Fq which uses the conjugates of an element
in Fqn .

Definition 2.2.4. Let β ∈ F = Fqn and H = Fq, the trace of β from F to H , denoted by
TrF/H(β), is defined as

TrF/H(β) = β + βq + ..+ βq
n−1

We can say that the trace of an element in F over H is the sum of all conjugates of the element
with respect to H . We recall that an extension field is a vector space over its base field, so it
has a basis as a vector space. The number of basis elements is equal to the extension degree
over the base field. If we think about F as a vector space over H , then the trace mapping is
a linear transformation from F onto H . In applications of finite fields, the choice of the basis
of the field is very important for implementing the operations such as addition, multiplication,
computing powers etc. In this thesis, we deal with two major bases of finite fields. Now, we
give the definitions of these bases below.

Definition 2.2.5. Let P (x) ∈ Fq[x] be an irreducible polynomial of degree n and β be a root of
P (x). Then the set 1, β, β2, .., βn−1 is a basis for Fqn over Fq and it is called as a polynomial
basis.

If a polynomial basis is chosen to represent the finite field Fqn , then field elements are poly-
nomials of degree at most n − 1. Therefore, addition and multiplication operations of field
elements are implemented in the usual way of polynomial addition and polynomial multiplica-
tion in F[x].

The other important type of basis is a normal basis.

Definition 2.2.6. Let α ∈ Fqn be a suitable element such that the set
{
α, αq, .., αqn−1

}
is a

basis for Fqn over Fq. This basis is called as a normal basis of Fqn over Fq.

Using normal basis to represent the elements of finite fields is practical in some implementa-
tions such as exponentiation. Namely, computing the q-th power of an element in Fqn which is
represented by a normal basis is just a shifting operation.

Theorem 2.2.7. For any n ≥ 2, there is a normal basis for Fqn over Fq.

Theorem 2.2.7 says that every finite field has a normal basis, so as an alternative to the poly-
nomial bases, one can use normal bases to represent finite fields. Therefore we can note that

6

there are many bases of an extension field over its any subfield. For a given set containing n
elements of Fqn one can test whether this set is a basis for Fqn over Fq or not. The following
result is one of the methods to determine a basis of Fqn .

Theorem 2.2.8. The set {β1, .., βn} is a basis for Fqn over Fq if and only if the determinant∣∣∣∣∣∣∣∣∣∣
β1 . . . βn
βq1 . . . βqn
...

. . .
...

βq
n−1

1

... βq
n−1

n

∣∣∣∣∣∣∣∣∣∣
is nonzero.

2.3 Binary Field Arithmetic

Basic arithmetic operations in binary extension fields F2n are commonly used in the applica-
tions of cryptography and coding theory [31]. Their efficient implementations are desired for
the efficiency of the cryptosystems. In the previous section, we give the bases that are used to
represent the finite fields. The choice of the basis has a significant role on the performance of
the field arithmetic. Multiplication is the most time consuming operation in field arithmetic.
Polynomial basis representation is very efficient for the multiplication methods in comparison
to the other basis representations.

We have seen that an element in F2n can be represented as a polynomial of degree at most n−1.
The addition of field elements is performed as polynomial addition or if we write elements as
a sequence in F2 then addition is a bitwise operation, named as XOR operation. Therefore it
is a fast operation, however multiplication is not a direct operation as addition. It has a carry
propagation and this increases the complexity. The hardware and software implementations of
the polynomial basis multiplication are studied extensively such as in [1], [20], [30], [37]. In
these studies, irreducible polynomials with low hamming weights and special structures have
been chosen. The multiplication of two field elements is performed as polynomial multiplica-
tion modulo an irreducible polynomial, so the polynomial basis multiplication has two steps:
polynomial multiplication and modular reduction [27].

In hardware implementations, multiplication of finite field elements are processed by serial,
digit or parallel multipliers. Space and time complexities are two important criteria to evaluate
and compare these multipliers. Space complexity includes the number of coefficient multipli-
cations (ANDs) and the number of coefficient additions (XORs).

2.3.1 Multiplication

There are several methods for multiplication operation. The standart polynomial multiplication
is the direct method which is also called as the schoolbook method. The following example
gives the addition and multiplication of two elements by using schoolbook method, where the
elements are represented as sequences in F2.

7

Figure 2.1: Multiplication of two elements in F24 by using schoolbook method

Example 2.3.1. Let f(x) = x4 + x+ 1 ∈ F2[x]. Since f(x) is irreducible, then F2[x]/(f(x))
is isomorphic to F24 . Let x3+x2+1 and x3+x2+x be two elements in F2[x]/(f(x)). These
elements are also written as sequences: (1101) and (1110). The addition of these elements is
just the XOR of two sequences which is (0011). The multiplication by the schoolbook method
is accomplished by using simply left-shifts and XORs. The resulting sequence is (1010) which
gives the polynomial x3 + x. The schoolbook method is illustrated in Figure 2.1.

LetA(x) andB(x) be two polynomials of degree n−1. The schoolbook method has the space
complexity to compute C(x) = A(x)B(x) as

• n2 coefficient multiplications (ANDs)

• (n− 1)2 coefficient additions (XORs).

In Example 2.3.1 the multiplication of x3 + x2 + 1 and x3 + x2 + x requires 16 ANDs and 9
XORs.

The complexity of the multiplication of two polynomials is independent of the choice of the
irreducible polynomial. There are several different multiplication methods with different com-
plexities. The Karatsuba algorithm has less coefficient multiplications but has more extra ad-
ditions compared to the schoolbook method. Since multiplication costs more than addition,
Karatsuba algorithm is considered to be more efficient than the schoolbook method.

The Karatsuba algorithm is applied in a recursive way and it has a divide-conquer idea [39]. If
the degree n of the polynomials is a power of 2, then the space complexity of the algorithm is
as follows:

8

• nlog23 multiplications,

• 6nlog23 − 8n+ 2 addititons.

The second step of the multiplication of polynomials is reduction. The reduction complexity
is dependent to the irreducible polynomial. In [40], an upper bound for the complexity of the
modular reduction is given as (r − 1)(n− 1) if the irreducible polynomial has degree n and r
terms.

In binary extension fields, there is another method proposed alternatively for polynomial mul-
tiplication which is described as matrix-vector operations. In one approach, polynomial multi-
plication part is computed by any multiplication method and the reduction part is done by using
a reduction matrix. In another approach, these two parts are performed in one step by using a
single matrix which is called Mastrovito matrix.

Mastrovito proposed a bit-parallel multiplier combining the two steps of polynomial multipli-
cation [30]. The complexity of computing the product matrix is proportional to the number of
nonzero elements of irreducible polynomials. In [38], it is shown that the general Mastrovito
multiplication requires (n2 − 1) XORs and n2 ANDs if the irreducible polynomial is a trino-
mial xn + xk + 1. This type of parallel multipliers is the quadratic complexity architectures
that requires quadratic space complexity, O(n2). There is also another type of bit parallel mul-
tiplier designs that has subquadratic space complexity, O(nm),m < 2. For large field sizes
of F2n , these architectures that have subquadratic space complexity are practical in hardware
implementations of elliptic curve cryptosystems. As we have given the space complexity of the
Karatsuba algorithm, it is the most well known algorithm which is used to design subquadratic
space complexity multipliers.

In the literature, subquadratic space complexity multipliers designed by using different poly-
nomial bases are proposed for binary extension fields. In [23] and [24], Dickson polynomials
are used to represent the finite fields F2n and a new scheme is proposed for the design of the
subquadratic space complexity parallel multiplier. They use Toeplitz matrix-vector product
instead of the polynomial multiplication algorithms and design a new multiplier with lower
subquadratic space complexity.

There are also other orthogonal polynomials that are used to represent binary extension fields.
In [4], Charlier and Hermite polynomials are presented as the bases of F2n to get subquadratic
space complexity multipliers.

2.3.2 Squaring

Squaring a polynomial in F2[x] is much faster than multiplying two arbitrary polynomials,
since it is a linear operation in F2n , ie. letA(x) =

∑n−1
i=0 aix

i, thenA(x)2 =
∑n−1

i=0 aix
2i. The

binary representation of A(x)2 can be obtained by inserting a 0 bit between each consecutive
bits of the binary representation of A(x). Then the reduction operation is performed.

In normal basis representation of F2n , squaring of an element is just a cyclic shift of its
coefficients. Let

{
β, β2, .., β2

n−1
}

be a normal basis of F2n , then A =
∑n−1

i=0 aiβ
2i and

9

A2 =
∑n−1

i=0 aiβ
2i+1

. Viewing the coefficients of A as a bilinear form A = (a0, a1, .., an−1)
then A2 has bilinear form (an−1, a0, .., an−2).

2.3.3 Inversion

Inversion in binary extension fields can be performed by using the extended Euclidean al-
gorithm or exponentiation based techniques. In the first inversion approach, the extended Eu-
clidean algorithm is used for computing the greatest common divisor of binary field elements in
standart polynomial representation. Let a(x) be a polynomial over F2. Then a(x)a−1(x) = 1
(mod f(x)) where f(x) is the irreducible polynomial of degree n. By using a(x) and f(x) as
inputs in the extended Euclidean algorithm, one can find the inverse of a(x), ie. a−1(x) [21].
By this method, inverses of elements in F2n can be efficiently computed.

The second inversion approach is based on Fermat’s little theorem and some efficient algo-
rithms are given in [1] and [25]. In this method, exponentiation is performed to compute the
inverse of a field element. Let α be an element of F2n , the inverse α−1 is computed as follows,

α−1 = α2n−2 = α21+22+...+2n−2+2n−1

Normal basis representation is prefered in this method, because squaring in normal basis is a
cyclic shift in binary extension fields.

10

CHAPTER 3

CHARLIER POLYNOMIAL REPRESENTATION

In this chapter, we give the Charlier polynomial representation in finite fields of characteristic
three. Charlier polynomials are used in the representation of binary fields in [5]. We modify
this idea for F3n . We compute the complexities of multiplication and reduction operations.
We design a sequential multiplier and we investigate the cubing operation for finite fields F3n ,
where n ≡ 2 (mod 3). We also give the inversion operation in F3n . We show that by using
some specific irreducible Charlier binomials in multiplication and cubing operations we have a
lower reduction complexity in Charlier polynomial representation than in standart polynomial
representation.

This chapter was presented in [6].

3.1 Charlier Polynomials

In this section, we give preliminaries about Charlier polynomial representation in F3n .

Definition 3.1.1. [18] The Charlier polynomials are the monic orthogonal polynomials where
C0(x) = 1, C1(x) = x and for n ≥ 2

Cn(x) = (x− n+ 1)Cn−1(x)

We give the Charlier polynomials in F3[x] for n ≤ 10 in Table 3.1.

Remark 3.1.2. We note that deg(Cn(x)) = n and Charlier polynomials have a recursive
structure. By computing Cn(x)’s for n ≤ 10, one can see that all Charlier polynomials in F3

have the forms where k ∈ N as follows:

C3k(x) = xk · (x+ 2)k · (x+ 1)k

C3k+1(x) = xk+1 · (x+ 2)k · (x+ 1)k

C3k+2(x) = xk+1 · (x+ 2)k+1 · (x+ 1)k

For notational simplicity, let Cn(x) = βn be the n-th Charlier polynomial in F3[x]. The
multiplication of Charlier polynomials in F3[x] is given in Theorem 3.1.3.

11

Table 3.1: Charlier polynomials in F3[x]

C0(x) 1

C1(x) x

C2(x) x2 + 2x

C3(x) x3 + 2x

C4(x) x4 + 2x2

C5(x) x5 + 2x4 + 2x3 + x2

C6(x) x6 + x4 + x2

C7(x) x7 + x5 + x3

C8(x) x8 + 2x7 + x6 + 2x5 + x4 + 2x3

C9(x) x9 + 2x3

C10(x) x10 + 2x4

Theorem 3.1.3. Let βn be the n-th Charlier polynomial in F3[x], where n ≥ 0. Then for all
i, j ≥ 0 the Charlier polynomials {β0, β1, ..., βn−1, ...} satisfy the following equation

βi · βj = βi+j + l · (k · βi+j−1 + 2 ·m · βi+j−2) (3.1)

where l, k,m ∈ F3 is defined as

l =

{
0 if i or j ≡ 0 mod 3
1 otherwise.

k =

{
1 if i ≡ j mod 3
2 otherwise.

m =

{
1 if i, j ≡ 2 mod 3
0 otherwise.

Proof. We have formalized the Charlier polynomials in Remark 3.1.2. Now, we compute all
the cases with respect to the residues of i and j (mod 3), respectively. Since β3k = xk ·(x+2)k ·
(x+ 1)k and the powers of x, (x+ 2), (x+ 1) are same, then it is obvious that by multiplying
any βi and β3k we get βi+3k. If we compute the other cases, ie. βi · βj where i, j ≡ 1 or 2
(mod 3), we get the following equations:

β3k+1 · β3k+1 = β6k+2 + β6k+1

β3k+1 · β3k+2 = β6k+3 + 2β6k+2

β3k+2 · β3k+2 = β6k+4 + β6k+3 + 2β6k+2

If we combine all these cases, then we get the Equation 3.1. As a result, we can say that the
multiplication of Charlier polynomials, βi and βj changes with respect to the indices i,j (mod
3). One can also use the induction method to prove the theorem. �

12

Now, we represent the elements of finite field F3n by using Charlier polynomials in F3[x].
We first use the elements represented with standart polynomial representation in F3n . We
recall the standart polynomial basis representation in Section 2.2. Let a(x) = a′n−1x

n−1 +
a′n−2x

n−2 + .. + a′0, where a′i ∈ F3. a(x) can be represented by using Charlier polynomials
as a = an−1βn−1 + .. + a0β0, where ai ∈ F3. Algorithm 3 in Appendix A gives the way of
conversion of the coefficients from standart polynomial representation to Charlier polynomial
representation.

3.1.1 Charlier Basis

In Section 2.2 we mention that the construction of any extension fields can be done by us-
ing irreducible polynomials. Similarly, we can say that any finite field F3n is isomorphic to
F3[x]/(f(x)), where f(x) is an irreducible polynomial of degree n in F3[x]. The standart rep-
resentation of elements of F3[x]/(f(x)) is done by using the polynomial basis

{
1, x, x2, ..., xn−1

}
.

F3n is an extension field of F3 and also considered as a vector space over F3, therefore it should
contain n basis elements.

The Charlier polynomial representation is done by using {β0, β1, ..., βn−1} in the same way. It
is obvious that this set is linearly independent. By using Algorithm 3, we can convert elements
from standart polynomial representation into Charlier polynomial representation and we write
each element uniquely as a linear combination of {β0, β1, .., βn−1}. As a result, we write down
the following remark.

Remark 3.1.4. Let f = fnβn+ ..+f0β0 be an irreducible polynomial of degree n where each
fi ∈ F3. The set {β0, β1, .., βn−1} is a basis of F3n

∼= F3[x]/f(x).

3.2 Multiplication in Charlier Representation

In this section, we describe the multiplication of field elements represented with Charlier poly-
nomials and explore the complexity of the multiplication. In Section 2.3 we give the multi-
plication in binary fields. In the same way, multiplication of finite field elements in F3n can
be performed in two steps: multiplication of polynomials and then modular reduction with re-
spect to the irreducible polynomial that is chosen before. We give the multiplication and the
reduction operations, respectively. Theorem 3.2.1 gives the required number of multiplications
and additions to multiply polynomials in Charlier basis whereM(n) andA(n) denote the min-
imum number of multiplications and the minimum number of additions for the corresponding
algorithm for multiplication of two n-term polynomials.

Theorem 3.2.1. Let a = an−1βn−1 + ... + a0β0 and b = bn−1βn−1 + ... + b0β0 be n-term
polynomials over F3 and a · b = c = c2n−2β2n−2 + ... + c0β0. By using any multiplication
method, the coefficients of the polynomial c are computed with

M(n) + M(n− dn
3
e − b

n− dn3 e
2

c) + 3 ·M(b
n− dn3 e

2
c)

+ 4 · b
n− dn3 e

2
c · (n− dn

3
e − b

n− dn3 e
2

c)

13

multiplications and

A(n) + A(n− dn
3
e − b

n− dn3 e
2

c) + 2 ·A(b
n− dn3 e

2
c)

+ 2 · b
n− dn3 e

2
c · (n− dn

3
e − b

n− dn3 e
2

c) + 3

additions.

Proof. By using Theorem 3.1.3, the coefficients are computed as follows,

c0 = a0b0

c1 = a0b1 + a1b0 + a1b1

c2 = a0b2 + a2b0 + a1b1 + 2a2b1 + 2a1b2 + 2a2b2
...

c2n−3 = an−2bn−1 + an−1bn−2 + an−1bn−1

c2n−2 = an−1bn−1

If we compare this multiplication with standard polynomial basis representation, there are some
extra terms. All these terms come from the multiplication of the basis elements βi · βj , where
0 ≤ i, j ≤ n− 1 and i, j 6≡ 0 (mod 3). The multiplication differs with respect to the values of
i (mod 3) and j (mod 3), i.e., if i, j ≡ 1 (mod 3) then βi · βj = βi+j + βi+j−1 or if i, j ≡ 2
(mod 3) then βi · βj = βi+j + βi+j−1 +2 · βi+j−2. Therefore, the number of the extra terms is
related to the number of the indices which are smaller than n and equal to 1 or 2 (mod 3). The
number of indices that are equal to 2 (mod 3) is bn−d

n
3
e

2 c and the number of indices that are

equal to 1 (mod 3) is n−dn3 e−b
n−dn

3
e

2 c. The extra terms are computed with the multiplication
of the polynomials contains those numbers of terms, so the total multiplication complexity is
determined as the sum of these multiplications.

Similarly, in the total addition complexity, we have additions to combine these extra terms to
the ordinary multiplication terms. These are related to the indices of ci, where 0 ≤ i ≤ 2n− 4
and the values of these indices modulo 3. �

Remark 3.2.2. Some of this multiplication complexity comprises scalar multiplication, ie. mul-
tiplication by two. The number of scalar multiplication is:

2 · b
n− dn3 e

2
c · (n− dn

3
e − b

n− dn3 e
2

c) +M(b
n− dn3 e

2
c)

In hardware implementations of finite fields of characteristic three, multiplication by two is
equivalent to the negation operation, so we can perform a subtraction operation in place of
multiplication by two [35].

By the choice of the multiplication method, some or all elements of extra terms may be com-
puted in the first part of the algorithm, ie. in n-term polynomial product, therefore the complex-
ities added to M(n) and A(n) may be smaller than the given ones in Theorem 3.2.1. Hence,

14

Theorem 3.2.1 gives the upper bound for the complexity of the multiplication of two elements
in Charlier basis representation. We explain the theorem with an example by using the Karat-
suba multiplication method. We give the complexity of the Karatsuba algorithm in Section
2.3. Recall that Karatsuba algorithm decreases the number of coefficient multiplications com-
pared to the schoolbook or ordinary multiplication method by using the divide-conquer idea
recursively. Example 3.2.3 shows the required multiplications for 4-term polynomials over Fp

where p ≥ 2.

Example 3.2.3. Let a(x) = a3x
3 + ...+ a0 and b(x) = b3x

3 + ...+ b0 be 4-term polynomials
over Fp where p ≥ 2. Karatsuba algorithm computes the product c(x) = c6x

6 + ...+ c0 with
the following multiplications:

m0 = a0b0

m1 = a1b1

m2 = a2b2

m3 = a3b3

m4 = (a0 + a1)(b0 + b1)

m5 = (a0 + a2)(b0 + b2)

m6 = (a1 + a3)(b1 + b3)

m7 = (a2 + a3)(b2 + b3)

m8 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

By using appropriate additions of mi’s the coefficients of c are obtained. In this example,
Karatsuba algorithm needs 9 multiplications and 24 additions [39].

Now, in Example 3.2.4, we multiply two 4-term polynomials in Charlier basis representation
by using Karatsuba multiplication method.

Example 3.2.4. Let a = a3β3 + a2β2 + a1β1 + a0β0 and b = b3β3 + b2β2 + b1β1 + b0β0 be
4-term polynomials over F3. Let a · b = c = c6β6 + c5β5 + ...+ c0β0. Then

c0 = a0b0

c1 = a0b1 + a1b0 + a1b1

c2 = a0b2 + a2b0 + a1b1 + 2a2b1 + 2a1b2 + 2a2b2

c3 = a0b3 + a3b0 + a1b2 + a2b1 + a2b2

c4 = a1b3 + a3b1 + a2b2

c5 = a2b3 + a3b2

c6 = a3b3

The extra terms in this multiplication are a1b1, 2a2b1 + 2a1b2 + 2a2b2 and a2b2. By apply-
ing Karatsuba algorithm for performing an ordinary polynomial multiplication as in Example

15

3.2.3, we compute the terms except these extra terms by using 9 multiplications and 24 addi-
tions. Now we compute the cost of the extra terms.

We already have m1 = a1b1 and m2 = a2b2. We compute 2m2 to obtain 2a2b2, so we need
one multiplication. To compute 2a2b1 + 2a1b2, we do

2 · [(a1 + a2) · (b1 + b2)− a1b1 − a2b2] = 2 · [(a1 + a2) · (b1 + b2)−m1 −m2]

The cost is 2 multiplications and 4 additions. Also we need 4 additions to add these terms to
the general result. So we need totally 3 multiplications and 8 additions as an extra cost. As a
result, by using Karatsuba algorithm we need 9 + 3 = 12 multiplications and 24 + 8 = 32
additions to multiply c = a · b in Charlier polynomial representation.

In Theorem 3.2.1, we have given the upper bound for the complexity of the multiplication of
two elements in Charlier basis representation. Now, we explore the reduction part.

3.2.1 Irreducible Charlier Binomials

Recall that the Charlier polynomials in F3 are given in Table 3.1 for n ≤ 10. Because of
the recursive structure of the Charlier polynomials, we can say that the polynomials includ-
ing constant terms are only β0. We explore low weight irreducible Charlier polynomials for
the performance of the reduction operation, so we look for the Charlier binomials. Since irre-
ducible polynomials should include the constant term, there is only one form of the Charlier
binomials that is βn+β0 for some integer n ≥ 1. We give some irreducible Charlier binomials
in Table B.1 in Appendix B.

3.2.1.1 Reduction

We give the reduction operations with respect to each form of the irreducible Charlier binomials
in Appendix B. They are different due to the residues of the indices n in mod 3, since the
multiplication of Charlier polynomials differs with respect to the values of the indices mod 3.
Due to the reduction complexities in Appendix B, the binomials βn + β0, where n ≡ 0 (mod
3) has the least number of multiplications and additions. However there is only one binomial
in this form which is β3 + β0. From the implementation point of view, one cannot find an
irreducible Charlier binomial in this form to represent the finite fields F3n except β3 + β0.
Therefore we choose the binomials βn+β0, where n ≡ 2 (mod 3) from TableB.2 in Appendix
B since they have the least number of multiplications and additions after the binomials βn+β0,
where n ≡ 0 (mod 3). By the following theorem we give the total reduction complexity by
using the binomial βn + β0, where n ≡ 2 (mod 3).

Theorem 3.2.5. Let f = βn + β0, where n ≡ 2 (mod 3) and a · b = c′ = c′2n−2β2n−2 +
c′2n−3β2n−3 + ... + c′0β0 be the product of a and b in F3n , where c′i ∈ F3. Then the reduction
of c = c′ (mod f) requires 5

3n−
7
3 additions and 4

3n−
5
3 scalar multiplications.

Proof. The reduction operation is performed due to the terms of c′ with indices n ≤ i ≤ 2n−2.
We compute the reduced forms of βi’s for n ≤ i ≤ 2n− 2 by using the reduction formula that

16

we give in Appendix B.

βn = 2β0

βn+1 = 2β1 + 2β0

βn+2 = 2β2 + β1
...

β2n−3 = 2βn−3 + βn−4

β2n−2 = 2βn−2

The coefficients c′i of each βi on the left of the equations are added to the coefficients c′j of each
βj’s on the right, where 0 ≤ j ≤ n−1. So the number of additions is equal to the total number
of βi’s on the right side of the equations. There are n − 1 equations. Starting from the first
equation, for each three equations there are five βj’s on the right side except the last equation.
The number of these three iterative equations is n−2

3 , then the number of terms on the right
hand side is 5

(
n−2
3

)
. Also there is one more term in the last equation. So the total number of

terms is 5
(
n−2
3

)
+ 1. In each three iterative equations there are four scalar multiplications, so

from all of three iterative equations, we have 4
(
n−2
3

)
scalar multiplications. Also we have one

multiplication in the last equation.

Totally, the number of additions is 5
3n−

7
3 and the number of scalar multiplications is 4

3n−
5
3 .

�

Now, we give the general reduction complexity in standart polynomial representation. In [15],
the reduction complexity in standart polynomial representation is given for binary extension
fields and in [40] it is given for general extension fields. The following theorem gives the
reduction complexity in standart polynomial representation for Fqn .

Theorem 3.2.6. [40] Let f(x) be a degree n monic irreducible polynomial with r nonzero
terms in Fq[x]. Then the reduction with respect to f(x) in standart polynomial representation
requires (r− 1)(m− 1) additions and at most (r− 1)(m− 1) scalar multiplications over Fq.

Remark 3.2.7. In Charlier polynomial representation, we deal with irreducible binomials βn+
β0, where n ≡ 2 (mod 3) to decrease the reduction complexity. For the comparison, we
choose irreducible trinomials with degree n as low weight polynomials in standart polynomial
representation. Recall that in [17], it’s proved that there is always a trinomial or quadrinomial
for the extension degree n ≤ 539.

We give Example 3.2.8 to compare the reduction operation in Charlier polynomial representa-
tion with the reduction operation in standart polynomial representation.

Example 3.2.8. Let f = β5 + β0 be an irreducible Charlier binomial over F3. We choose
x5 + 2x + 1 over F3 as irreducible trinomial in standart polynomial representation. Now, we
compute the reduction complexities with respect to these polynomials in each representation,
respectively.

17

We reduce the elements βi, where 5 ≤ i ≤ 8 as follows:

β5 = 2β0

β6 = 2β1 + 2β0

β7 = 2β2 + β1

β8 = 2β3

Then we have 6 additions and 5 scalar multiplications as total reduction complexity. By using
Theorem 3.2.5 we can also compute the reduction complexity. The number of additions is
5
35−

7
3 = 6 and the number of multiplications is 4

35−
5
3 = 5.

We reduce the elements xi, where 5 ≤ i ≤ 8 as follows:

x5 = x+ 2

x6 = x2 + 2x

x7 = x3 + 2x2

x8 = x4 + 2x3

Then we have 8 additions and 4 scalar multiplications as total reduction complexity. By using
Theorem 3.2.6 we compute the reduction complexity as (3 − 1)(5 − 1) = 8 additions and at
most 8 scalar multiplications.

Remark 3.2.9. For the comparison, we choose an irreducible trinomial xn+ax+b in F3[x]. By
using the Theorem 3.2.6, the reduction with respect to this trinomial requires 2n− 2 additions
and at most 2n − 2 multiplications. In Table 3.2, we give the comparison of the reduction
complexities in Charlier polynomial representation and standart polynomial representation.

Table 3.2: Reduction Complexity

Form # Additions # Constant Multiplications
Charlier Binomial, βn + β0 (n ≡ 2 mod 3) 5

3n−
7
3

4
3n−

5
3

Polynomial Basis, xn + ax+ b 2n− 2 2n− 2

3.3 Design of Arithmetic Operations in Charlier Polynomial Representation

In previous section, we have shown that if we choose an irreducible Charlier binomial βn + β0
where n ≡ 2 (mod 3), we have a lower reduction complexity than an irreducible trinomial in
standart polynomial representation. Therefore, in this section we study the arithmetic opera-
tions in finite fields F3n , where n ≡ 2 (mod 3) and we use the irreducible Charlier binomials
βn + β0, where n ≡ 2 (mod 3) to construct these fields.

We give the algorithms of multiplication and reduction, then we indicate the computations for
cubing of the elements of F3n represented with Charlier polynomial representation.

18

3.3.1 A Sequential Multiplier

We give the multiplication of the elements of F3n where n ≡ 2 (mod 3) with a sequential
model in Algorithm 1. It is similar to the left-to-right serial multiplication in an algebraic field.
By Equation 3.1, multiplication of two basis elements βi and βj produces up to three terms
with respect to the values i and j modulo 3. The first term in all forms is βi+j which is similar
to the multiplication algorithm using standart polynomial basis. We give the product of two
polynomials in standart polynomial representation in Section 2.1. In Charlier representation
the product of two elements a and b can be written as

c = a · b =

(
n−1∑
i=0

aiβi

)
·

n−1∑
j=0

bjβj

 =

n−1∑
i=0

ai ·

n−1∑
j=0

bjβiβj

As we have noted that we take the elements of F3n where n ≡ 2 (mod 3). We can express
the product of two elements with respect to the multiplication of Charlier polynomials, where
n ≡ 2 (mod 3) as follows:

c =
n−1∑
i=0

ai ·

n−1∑
j=0

bjβi+j

+

(n−2
3)∑

s=0

a3s+1 ·

(n−2
3)∑

t=0

b3t+1β(3s+1)+(3t+1)−1 + 2

bn−3
3 c∑

t=0

b3t+2β(3s+1)+(3t+2)−1

+

bn−3
3 c∑

s=0

a3s+2 ·

2

(n−2
3)∑

t=0

b3t+1β(3s+2)+(3t+1)−1

+

bn−3
3 c∑

s=0

a3s+2 ·

b
n−3
3 c∑

t=0

b3t+2β(3s+2)+(3t+2)−1 + 2

bn−3
3 c∑

t=0

b3t+2β(3s+2)+(3t+2)−2

To implement the algorithm, we take four registers B, B1, B20 and B21 initialized with the
coefficients of bi’s. In B all coefficients of b are taken, this register corresponds to the first
summand of the sum. Then the register B is shifted by one to the right. The coefficients of
bi with indices i ≡ 1 (mod 3) in the shifted register B remain same and the other coefficients
vanish. By this way we obtain the register B1. Similarly, to generate B20 the coefficients of b
with indices i ≡ 2 (mod 3) are taken in the shifted register B and the rest of them vanish. The
last register B21 is obtained by shifting the register B20 by one to the right. In Algorithm 1, we
get the coefficients of the extra terms that come from the Charlier polynomial multiplication
by multiplying the coefficients of a and the registers B1, B20 and B21.

We note that the registers B1, B20 and B21 given in Algorithm 1 are initialized for the mul-
tiplication of elements in F3n where n ≡ 2 (mod 3). For other fields, the initialization of the
registers B1, B20 and B21 only differ in Algorithm 1.

The second part of the multiplication is the reduction operation. Algorithm 2 gives the reduc-
tion with respect to f = βn+β0 where n ≡ 2 (mod 3). In this algorithm, we take three registers

19

Algorithm 1 Sequential Multiplication of Elements in Charlier Representation

Input:a =
∑n−1

i=0 aiβi and b =
∑n−1

j=0 bjβj
Output:C = ab
Variables:B[2n− 2...0], B1[2n− 2...0], B20[2n− 2...0], B21[2n− 2...0],
C[2n− 2...0]
{initialization}
B[2n− 2...n− 1]← (bn−1, .., b1, b0)
B1[2n− 2...n− 1]← (0, bn−1, 0, 0, bn−4, 0, 0, ..., b1)
B20[2n− 2...n− 1]← (0, 0, 0, bn−3, 0, 0, bn−6, ..., b2, 0)
B21[2n− 2...n− 1]← (0, 0, 0, 0, bn−3, 0, 0, bn−6, ..., 0, b2)

{main loop}

1: for i = n− 1 downto 0 do
2: C[2n− 2...0]← C[2n− 2...0] + ai ·B[2n− 2...0]
3: if i ≡ 1 (mod 3) then
4: C[2n− 2...0]← C[2n− 2...0] + ai ·B1[2n− 2...0]
5: C[2n− 2...0]← C[2n− 2...0] + 2ai ·B20[2n− 2...0]
6: end if
7: if i ≡ 2 (mod 3) then
8: C[2n− 2...0]← C[2n− 2...0] + 2ai ·B1[2n− 2...0]
9: C[2n− 2...0]← C[2n− 2...0] + ai ·B20[2n− 2...0]

10: C[2n− 2...0]← C[2n− 2...0] + 2ai ·B21[2n− 2...0]
11: end if
12: shift right B,
13: shift right B1,
14: shift right B20,
15: shift right B21,
16: end for
17: return C

20

R, R0 and R1 initialized with the coefficients ci where n ≤ i ≤ 2n − 2. The register R con-
tains all these coefficients. Then the register R is shifted by one to the right. The coefficients
ci with indices i ≡ 0 (mod 3) in the shifted register R remain same and the other coefficients
vanish. By this way we obtain the register R0. Similarly, to generate R1 the coefficients of
c with indices i ≡ 1 (mod 3) are taken in the shifted register R and the rest of them vanish.
Recall that the arithmetic complexities of these algorithms are given in Section 3.2.

Algorithm 2 Reduction

Input:c ∈ F3n where c =
∑2n−2

i=0 ciβi
Output:c (mod f)
Variables:B[n− 2...0], C[2n− 2...0]
{initialization}
R[n− 2...0]← (c2n−2, ..., cn+1, cn)
R0[n− 2...0]← (0, 0, 0, c2n−4, 0, 0, c2n−7, ..., 0, cn+1)
R1[n− 2...0]← (0, 0, c2n−3, 0, 0, c2n−6, ..., cn+2, 0)

1: C[n− 2...0]← C[n− 2...0] + 2R[n− 2...0] + 2R0[n− 2...0] +R1[n− 2...0]
2: return C[n− 1...0]

3.3.2 Cubing

Cubing is a linear operation in finite fields of characteristic three. In standart polynomial rep-
resentation, cubing over F3n consists in reducing the following expression modulo f(x):

c(x) = a(x)3 mod (f(x)) =
n−1∑
i=0

aix
3i mod (f(x))

In Charlier polynomial representation, the cubing of an element a = an−1βn−1 + .. + β0 in
F3n can be computed as,

c = a3 mod (f) =
n−1∑
i=0

aiβ
3
i mod (f)

where the reduction polynomial is f . By using the Equation 3.1, we compute the cubes of the
basis elements in three equations with respect to their indices. We find the following results for
0 ≤ k ≤

⌊
n−1
3

⌋
:

β33k = β9k

β33k+1 = β9k+3 + β9k+1

β33k+2 = β9k+6 + 2β9k+4 + 2β9k+3 + β9k+2

In cubing operation multiplication is performed iteratively, therefore we have extra terms com-
ing from Charlier polynomial multiplication as it can be seen in above equations. By using an
appropriate multiplication method the number of these extra terms can be decreased. However,

21

the current multiplication methods cannot completely reduce the extra cost in the multiplica-
tion or cubing operations in Charlier polynomial representation. These operations have quite
fewer complexities than the same operations in standart polynomial representation.

Now, we examine the reduction part of the cubing operation in Charlier polynomial repre-
sentation. Different than the reduction operation in multiplication, in cubing we reduce some
terms into the interval [0, n− 1] by applying reduction two times. In this part, we again use
f = βn + β0, where n ≡ 2 (mod 3) as the reduction polynomial since it has a better reduction
complexity. By using the reduction formula two times for βn+β0, where n ≡ 2 (mod 3) given
in Appendix B we get the following equations for each βi where 2n ≤ i ≤ 3n − 3 and i is
equal to zero, one and two (mod 3), respectively:
If i ≡ 0 (mod 3):

βi (mod f) = βi−2n + βi−2n−2 (3.2)

If i ≡ 1 (mod 3):
βi (mod f) = βi−2n + 2βi−2n−1 + βi−2n−2 (3.3)

If i ≡ 2 (mod 3):
βi (mod f) = βi−2n + βi−2n−1 (3.4)

To compare the reduction with standart polynomial representation by using an irreducible tri-
nomial f and applying reduction two times with respect to this trinomial, we give the reduced
form of xi where 2n ≤ i ≤ 3n− 3 as follows:

xi (mod f) = xi−2n+2 + 2xi−2n+1 + xi−2n (3.5)

Apart from the extra terms coming from the cubing operation of an element, the terms βi in
the cube of an element have indices i ≡ 0 (mod 3) and in standart polynomial representation
the terms in the cube of an element have exponents i ≡ 0 (mod 3). Therefore, if we compare
the reductions in Equation 3.2 and Equation 3.5 we can see that in Charlier representation the
reduction of one term requires one less addition and one less scalar multiplication. If we evalute
the total reduction complexity, since in each representation the number of reduced terms will
be equal then we can say that the total reduction complexity in Charlier representation will be
less than the total reduction complexity in standart polynomial representation.

3.3.3 Inversion

We have given inversion operation for binary extension fields in Section 2.3.3. The same
methods are used in finite fields of characteristic three. The extended Euclidean algorithm is
performed for the inversion of an element in standart polynomial representation of F3n and as
an alternative way the exponentiation based algorithms are used in normal basis representation.

Since we deal with the Charlier polynomial representation, we investigate the Euclidean al-
gorithm approach for the inversion in this representation. The extended Euclidean algorithm
for binary polynomials in [21] is adapted to be used in finite fields of characteristic three [3].
In this algorithm the most used operations are addition and multiplication. As we give the
multiplication complexity in Theorem 3.2.1, we have extra cost in multiplication of elements

22

in Charlier polynomial representation than in standart polynomial representation. Let a(x) be
a polynomial over F3 in standart polynomial representation, to compute the inverse of a(x)
which is denoted by a−1(x) we propose that the extended Euclidean algorithm is implemented
in standart polynomial representation and then the inverse a−1(x) can be converted to the Char-
lier polynomial representation. By this way, we can prevent the complexity of the inversion to
be increased by the Charlier polynomial multiplication.

Finally in this chapter, we emphasize that if we use an appropriate multiplication method and
reduce the number of extra terms coming from the multiplication of Charlier polynomials, then
we also reduce the complexities in the cubing and inversion operations. Apart from this, in the
reduction part of both multiplication and cubing operations by using the irreducible Charlier
binomial βn + β0, where n ≡ 2, we have already less reduction complexity than the standart
polynomial representation where an irreducible trinomial is used.

23

24

CHAPTER 4

HERMITE POLYNOMIAL REPRESENTATION

In this chapter, we present Hermite polynomials to represent finite field elements in F3n . We
obtain a set of irreducible binomials in Hermite polynomial representation to get faster modular
reduction. In this representation, we give the multiplication of two elements in F3n by using
matrix-vector multiplication design and we construct reduction matrix.

The work done in this chapter is partially presented in [7] and [8] and included in [9].

4.1 Hermite Polynomials and Hermite Basis in F3n

In this section, we give some preliminaries and Hermite polynomial representation of finite
fields of characteristic three.

Definition 4.1.1. [14] The probabilists Hermite polynomials are H0(x) = 1, H1(x) = x and
for n ≥ 2

Hn(x) = x ·Hn−1(x)− (n− 1) ·Hn−2(x)

We give the Hermite polynomials in F3[x] for n ≤ 10 in Table 4.1.

Remark 4.1.2. We note that deg(Hn(x)) = n. Since Hermite polynomials have a recursive
structure, it is easy to show that all Hermite polynomials in F3 have the forms

H3k(x) = x3k

H3k+1(x) = x3k+1

H3k+2(x) = x3k+2 + 2x3k

for k ∈ N.

Let Hn(x) = βn be the n-th Hermite polynomial in F3[x] with degree n. Now, we define the
multiplication operation on Hermite polynomials over F3n .

Theorem 4.1.3. Let Hn(x) = βn be the n-th Hermite polynomial in F3[x], where n ≥ 0. Then
for all i, j ≥ 0 the Hermite polynomials {β0, β1, ..., βn−1, ..} satisfy the following equation

βi · βj = βi+j + l · (k · βi+j−2 + 2 ·m · βi+j−4) (4.1)

25

Table 4.1: Hermite polynomials in F3[x]

H0(x) 1

H1(x) x

H2(x) x2 + 2

H3(x) x3

H4(x) x4

H5(x) x5 + 2x3

H6(x) x6

H7(x) x7

H8(x) x8 + 2x6

H9(x) x9

H10(x) x10

where l, k,m ∈ F3 is defined as

l =

{
0 if i or j ≡ 0 mod 3
1 otherwise.

k =

{
1 if i ≡ j mod 3
2 otherwise.

m =

{
1 if i, j ≡ 2 mod 3
0 otherwise.

Proof. As noted in Remark 4.1.2, ∀k ∈ N, β3k = x3k, β3k+1 = x3k+1 and β3k+2 =
x3k+2 + 2x3k+2. Now, we compute all the cases with respect to the residues of i and j (mod
3), respectively. It is obvious that by multiplying any βi and β3k we get βi+3k. If we compute
the other cases, i.e., βi · βj , where i, j ≡ 1 or 2 (mod 3), we get the following equations:

β3k+1 · β3k+1 = β6k+2 + β6k

β3k+1 · β3k+2 = β6k+3 + 2β6k+1

β3k+2 · β3k+2 = β6k+4 + β6k+2 + 2β6k

If we combine all these cases with respect to the residues of i and j (mod 3) respectively, then
we get the Equation 4.1. As a result, the multiplication of Hermite polynomials, βi and βj
changes with respect to the indices i,j (mod 3). One can also use the induction method to
prove the theorem. �

Our aim is to represent the elements of finite field F3n by using Hermite polynomials in F3[x].
As in Section 3.1, we take the elements in the standart polynomial representation and convert
them into the Hermite polynomial representation. We use the Algorithm 3 in Appendix A.

26

Remark 4.1.4. The Hermite polynomial representation is done by using {β0, β1, ..., βn−1}.
It is obvious that this set is linearly independent. By using Algorithm 3, we can convert the
elements into this representation and we can write each element of F3n uniquely as a linear
combination of {β0, β1, .., βn−1}. Let f = fnβn + .. + f0β0 be an irreducible polynomial
of degree n, where each fi ∈ F3. The set {β0, β1, .., βn−1} constitutes a basis of F3n

∼=
F3[x]/f(x).

4.2 Multiplication of Polynomials in Hermite Representation

In this section, we describe the multiplication of field elements represented by Hermite polyno-
mials and explore the complexity of the multiplication. As in Section 3.2 we give the multipli-
cation and the reduction operations respectively. Theorem 4.2.1 gives the required number of
multiplications and additions to multiply polynomials in Hermite basis where M(n) and A(n)
denote the minimum number of multiplications and the minimum number of additions for the
corresponding algorithm for multiplication of two n-term polynomials.

Theorem 4.2.1. Let a = an−1βn−1 + ... + a0β0 and b = bn−1βn−1 + ... + b0β0 be n-term
polynomials over F3 and a · b = c2n−2β2n−2+ ...+ c0β0. By using any multiplication method,
the coefficients of the polynomial c are computed with

M(n) + M(n− dn
3
e − b

n− dn3 e
2

c) + 3 ·M(b
n− dn3 e

2
c)

+ 4 · b
n− dn3 e

2
c · (n− dn

3
e − b

n− dn3 e
2

c)

multiplications and

A(n) + A(n− dn
3
e − b

n− dn3 e
2

c) + 2 ·A(b
n− dn3 e

2
c)

+ 2 · b
n− dn3 e

2
c · (n− dn

3
e − b

n− dn3 e
2

c) + 3

additions.

Proof. By using Theorem 4.1.3, the coefficients are computed as follows,

c0 = a0b0 + a1b1 + 2a2b2

c1 = a0b1 + a1b0 + 2a2b1 + 2a1b2

c2 = a0b2 + a2b0 + a1b1 + a2b2
...

c2n−3 = an−2bn−1 + an−1bn−2

c2n−2 = an−1bn−1

If we compare this multiplication with standard polynomial basis representation, we can see
extra terms. All these terms come from the multiplication of the basis elements βi · βj , where

27

0 ≤ i, j ≤ n− 1 and i, j 6≡ 0 (mod 3). The multiplication differs with respect to the values of
i (mod 3) and j (mod 3), ie. if i, j ≡ 1 (mod 3) then βi · βj = βi+j + βi+j−2 or if i, j ≡ 2
(mod 3) then βi · βj = βi+j + βi+j−2 + 2 · βi+j−4. Therefore, the number of the extra terms
are related to the number of indices which are smaller than n and equal to one or two (mod
3). The number of indices that are equal to two (mod 3) is bn−d

n
3
e

2 c and the number of indices

that are equal to one (mod 3) is n − dn3 e − b
n−dn

3
e

2 c. The extra terms are computed with the
multiplication of the polynomials contains those numbers of terms, so the total multiplication
complexity is determined as the sum of these multiplications.

Similarly, in the total addition complexity, we have additions to combine these extra terms to
the ordinary multiplication terms. These are related to the indices of ci, where 0 ≤ i ≤ 2n− 4
and the remainder of these indices from the division with three. �

Remark 4.2.2. Some of this multiplication complexity comprises scalar multiplication, ie. mul-
tiplication by two. The number of scalar multiplication is:

2 · b
n− dn3 e

2
c · (n− dn

3
e − b

n− dn3 e
2

c) +M(b
n− dn3 e

2
c)

In hardware implementations of finite fields of characteristic three, multiplication by two is
equivalent to the negation operation, so we can perform a subtraction operation in place of
multiplication by two [35].

By the choice of the multiplication method, some or all elements of extra terms may be com-
puted in the first part of the algorithm, i.e., in n-term polynomial product, so the complexities
added to M(n) and A(n) may be smaller than the ones given in Theorem 4.2.1. We explain
the theorem with an example by using the Karatsuba multiplication method as in Section 3.2.
In Example 4.2.3, we multiply two 4-term polynomials in standart polynomial representation
and in Hermite polynomial representation by using Karatsuba multiplication method and we
give the complexities in each representation.

Example 4.2.3. Let a(x) = a3x
3 + a2x

2 + a1x + a0, b(x) = b3x
3 + b2x

2 + b1x + b0
be 4-term polynomials in standart polynomial representation over F3 and let a = a3β3 +
a2β2 + a1β1 + a0β0, b = b3β3 + b2β2 + b1β1 + b0β0 be 4-term polynomials in Hermite
polynomial representation over F3. We get a(x) · b(x) = c(x) = c6x

6 + c5x
5 + ... + c0 and

a · b = c = c6β6+ c5β5+ ...+ c0β0 respectively from the multiplications of given polynomials
in each representation where the coefficients can be written as:

Coefficients in Standart polynomial representa-
tion

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a2b0 + a1b1

c3 = a0b3 + a3b0 + a1b2 + a2b1

c4 = a1b3 + a3b1 + a2b2

c5 = a2b3 + a3b2

c6 = a3b3

Coefficients in Hermite polynomial repre-
sentation

c0 = a0b0 + a1b1 + 2a2b2

c1 = a0b1 + a1b0 + 2a2b1 + 2a1b2

c2 = a0b2 + a2b0 + a1b1 + a2b2

c3 = a0b3 + a3b0 + a1b2 + a2b1

c4 = a1b3 + a3b1 + a2b2

c5 = a2b3 + a3b2

c6 = a3b3

28

We first examine the complexity of multiplication in standart polynomial representation. In
Example 3.2.3 we see that Karatsuba algorithm needs 9 multiplications and 24 additions to
find the coefficients of c(x).

It is obvious that the coefficients in Hermite polyomial representation are computed by using
more terms. We underline the extra terms: a1b1 + 2a2b2, 2a2b1 + 2a1b2 and a2b2. The terms
which are not underlined can be similarly obtained by using Karatsuba algorithm with a cost
of 9 multiplications and 24 additions. Now we compute the extra cost.

We already have a1b1 and a2b2. We compute 2a2b2 by using one multiplication. To compute
2a2b1 + 2a1b2, we do

2 · [(a1 + a2) · (b1 + b2)− a1b1 − a2b2]

The cost is 2 multiplications and 4 additions. Also we need 4 additions to add these terms to the
general result. So we totally need 3 multiplications and 8 additions as an extra cost. If we add
this to the previous result, we can say that by using Karatsuba algorithm we need 9 + 3 = 12
multiplications and 24 + 8 = 32 additions to multiply c = a · b.

By this way, we compare the complexities of the first parts of the polynomial multiplications
in the Hermite polynomial representation and the standart polynomial representation.

4.2.1 Irreducible Hermite Binomials

The Hermite polynomials in F3 are given in Table 4.1 for n ≤ 10. Because of the recursive
structure of the Hermite polynomials, we can say that the polynomials including constant terms
are only β0 and β2. We try to find irreducible Hermite binomials as low weight polynomials
for the performance of the reduction operation. Since irreducible polynomials should include
the constant term, there are two forms of the Hermite binomials that are βn + β0 and βn + β2.
We give some irreducible Hermite binomials in Table C.1 in Appendix C.

4.2.1.1 Reduction

We perform the reduction operations with respect to each form of the binomials and give the
results in Appendix C. From Table C.2 in Appendix C, we can see βn + β2, where n ≡ 0
(mod 3) has the least number of constant multiplications and the least number of additions.
Therefore, we compute the total reduction complexity due to the binomial βn + β2, where
n ≡ 0 (mod 3). In the rest of the study, we use this binomial so we call it as f = βn + β2,
where n ≡ 0 (mod 3) and we call the corresponding polynomial of this binomial in the standart
polynomial representation as f(x) = xn + x2 + 2, where n ≡ 0 (mod 3).

Theorem 4.2.4. Let f = βn+β2, where n ≡ 0 (mod 3) and a·b = c′2n−2β2n−2+c
′
2n−3β2n−3+

... + c′0β0, where c′i ∈ F3 be the product of a and b in F3n . Then the reduction of c = c′ (mod
f) requires 2n− 3 additions and 4

3n− 3 scalar multiplications.

Proof. The reduction operation is performed due to the terms of c′ with indices n ≤ i ≤ 2n−2.
We compute the reduced forms of βi’s for n ≤ i ≤ 2n− 2 by using the reduction formula that

29

we give in Appendix C.

βn = 2β2

βn+1 = 2β3 + β1

βn+2 = 2β4 + 2β2 + β0

βn+3 = 2β5

βn+4 = 2β6 + β4

βn+5 = 2β7 + 2β5 + β3
...

β2n−3 = 2βn−1

β2n−2 = βn−2 + β2

The coefficients c′i of each βi on the left of the equations are added to the coefficients c′j of
each βj’s on the right, where 0 ≤ j ≤ n − 1. So the number of additions is equal to the total
number of βi’s on the right side of the equations. Starting from the first equation, for each three
equations there are 6 βj’s on the right side except the last two equations. The number of these
three iterative equations is

(
n−3
3

)
, then the number of terms on the right hand side is 6

(
n−3
3

)
.

Also there are 3 more terms in the last two equations. So the total number is 6
(
n−3
3

)
+ 3 and

it is equal to 2n− 3.

In each three iterative equations there are 4 scalar multiplications, so from all of three iterative
equations, we have 4

(
n−3
3

)
scalar multiplications. Also we have one multiplication in the last

two equation. Totally, we have 4
3n− 3 scalar multiplications. �

Remark 4.2.5. The standart polynomial representation of βn+β2 is the trinomial xn+x2+2.
The reduction by using this trinomial is performed as

xn = 2x2 + 1

xn+1 = 2x3 + x

xn+2 = 2x4 + x2

xn+3 = 2x5 + x3

xn+4 = 2x6 + x4

xn+5 = 2x7 + x5

...

x2n−2 = xn−2 + x2 + 2

After the reduction operation, the coefficients of c in F3 are given in both Hermite polynomial
representation and standart polynomial representation as

30

Coefficients in Hermite polynomial representa-
tion

c0 = c′0 + c′n+2

c1 = c′1 + c′n+1

c2 = c′2 + 2c′n + 2c′n+2 + c′2n−2

c3 = c′3 + 2c′n+1 + c′n+5

c4 = c′4 + 2c′n+2 + c′n+4

c5 = c′5 + 2c′n+3 + 2c′n+5

c6 = c′6 + 2c′n+4 + c′n+8

...

cn−1 = c′n−1 + 2c′2n−3

Coefficients in Standart polynomial rep-
resentation

c0 = c′0 + c′n + 2c′2n−2

c1 = c′1 + c′n+1

c2 = c′2 + 2c′n + c′n+2 + c′2n−2

c3 = c′3 + 2c′n+1 + c′n+3

c4 = c′4 + 2c′n+2 + c′n+4

c5 = c′5 + 2c′n+3 + c′n+5

c6 = c′6 + 2c′n+4 + c′n+6

...

cn−1 = c′n−1 + 2c′2n−3

Now, we compute the reduction complexity in standart polynomial representation by using
xn + x2 +2 as the irreducible polynomial. We use the reduction complexity results in standart
polynomial representation in Theorem 3.2.6. However, in our case because of the chosen
trinomial xn + x2 + 2, the number of additions is slightly different than the one given in
Theorem 3.2.6 which is obviously seen in Remark 4.2.5.

Remark 4.2.6. By using the trinomial xn+ax2+b in F3[x], the polynomial modular reduction
can be done with 2(n− 1)+ 1 = 2n− 1 additions and at most 2(n− 1) multiplications. From
Remark 4.2.5, we can see that there are 2(n−1)+1 terms on the right sides of the equations and
in each equation there is one scalar multiplication, so there are n− 1 scalar multiplications.

Recall that, in the Hermite polynomial representation the reduction with respect to the binomial
βn + β2 requires 2n − 3 additions and 4

3n − 3 multiplications. In Table 4.2, we give the
comparison of the reduction complexities in Hermite polynomial representation and standart
polynomial representation.

Table 4.2: Reduction Complexity

Form # Additions # Constant Multiplications
Hermite Binomial, βn + β2 (n ≡ 0 mod 3) 2n− 3 4

3n− 3

Polynomial Basis, xn + ax2 + b 2n− 1 2n− 1

4.3 Matrix vector product for Hermite Basis

In this section, we express the product of two elements in F3n as a matrix vector product.
Let u(x) = un−1x

n−1 + ... + u1x + u0 be a polynomial representing an element in F3n .
The coefficient vector of u(x) is given by u = [u0, u1, ..., un−1]

T . Let a, b and c are such
vectors including the coefficients of a(x), b(x) and c(x) in F3n and let f(x) be an irreducible
polynomial with degree n. We now compute a(x)·b(x) = c(x) (mod f(x)) by using the matrix

31

vector product method. First we construct a 2n − 1 × n matrix including the coefficients of
a(x) and denote it by M ′.

M′ =

a0 0 0 . . . 0 0
a1 a0 0 . . . 0 0
...

...
...

...
an−2 an−3 an−4 . . . a0 0
an−1 an−2 an−3 . . . a1 a0
0 an−1 an−2 . . . a2 a1
0 0 an−1 . . . a3 a2
...

...
...

...
0 0 0 . . . an−1 an−2
0 0 0 . . . 0 an−1

Let us call the upper part of the matrix M ′ as L which is a n× n matrix and the lower part of
the matrix M ′ as U which is a n− 1× n matrix, i.e.,

M′ =

[
L
U

]
The reduction operation is performed by using an n× n− 1 reduction matrix which is defined
in terms of the irreducible polynomial f(x) and called as Q. After the reduction, one can get
an n× n matrix denoted by M . This matrix is called the Mastrovito matrix in binary fields. It
is computed as follows,

M = L+Q · U

Thus, the multiplication a(x) · b(x) = c(x) mod f(x) can be done by the product of matrix M
and vector b, i.e.,

c =M · b

Remark 4.3.1. In the reduction part, the rows n, (n + 1), .., (2n − 1) of the matrix M ′ are
added to the first n rows of M ′ with respect to the reduction modulo f(x). The number of
nonzero entries in the reduction matrixQ is equal to the number of additions and the number of
nonzero entries different than one is equal to the number of scalar multiplications in reduction
complexity.

In [15], they survey the matrix vector product techniques for binary fields. There are two dif-
ferent approaches in the application of the matrix vector product. One is that the polynomial
multiplication part is done by any multiplication method and then the reduction part is per-
formed by the matrix vector product. The other approach is that the two steps of multiplication
are performed by the matrix vector product using the Mastrovito matrix. Recall that we give
the complexity results of the Mastrovito multiplication in Section 2.3. In Table 4.2, we show
that in reduction part of the polynomial multiplication, in some cases Hermite polynomial rep-
resentation is better than the standart polynomial representation in the case of the number of
additions. Therefore in this section, we use matrix vector product method only in the reduction

32

part and we explain how the reduction operation in Hermite polynomial representation can be
computed by using matrix vector operations.

The reduction matrix is constructed by using the irreducible reduction polynomial f(x). Let the
jth column of reduction matrix Q be denoted by qj = [q0,j , q1,j , ..., qn−1,j]

T , where the entries
of this column vector correspond to the coefficients of qj(x) = q0,j + q1,jx+ ...+ qn−1,jx

n−1.
In [15], this qj(x) is defined by

qj(x) =

{
xn modf(x), j = 0

xqj−1(x) modf(x), j = 1, ..., n− 2,
(4.2)

In the Hermite polynomial representation, let the entries of the column vector qj correspond to
the coefficients of qj = q0,jβ0 + q1,jβ1 + ...+ qn−1,jβn−1 and we define qj by

qj =

{
βn modf, j = 0

β1qj−1 + l · qj−2 modf, j = 1, ..., n− 2,
(4.3)

where

l =

0 if j ≡ 1 mod 3
1 if j ≡ 2 mod 3
2 if j ≡ 0 mod 3

Now, we give an example to show the difference between the reduction matrices in standart
polynomial representation and Hermite polynomial representation.

Example 4.3.2. We choose an irreducible Hermite binomial βn + β2, where n ≡ 0 (mod
3). Let’s take β12 + β2 from Table C.1. It is equal to x12 + x2 + 2 in standart polynomial
representation. We compute the reduction matrices by using Equation 4.2 and Equation 4.3.
The sizes of the matrices are 12 × 11. We denote the reduction matrix of x12 + x2 + 2 by QS

and the reduction matrix of βn + β2 by QH .

QS =

1 0 0 0 0 0 0 0 0 0 2
0 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 1

0 2 0 1 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0 0
0 0 0 2 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 1 0 0
0 0 0 0 0 2 0 1 0 0 0
0 0 0 0 0 0 2 0 1 0 0

0 0 0 0 0 0 0 2 0 1 0
0 0 0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 0 2 0

33

QH =

0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0 1

0 2 0 0 0 1 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0 0
0 0 0 2 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 1 0 0
0 0 0 0 0 2 0 1 0 0 0
0 0 0 0 0 0 2 0 2 0 0

0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 0 2 0

We count the nonzero entries of each matrices. The matrix QS has 23 nonzero entries which
is also equal to the number of additions in reduction complexity and the number of 2’s in the
matrix is 11 which is equal to the number of scalar multiplications. The matrix QH has 21
nonzero entries and the number of 2’s in the matrix is 13.

By using Theorem 4.2.4, the reduction complexity of β12+β2 contains 2n−3 = 2.12−3 = 21
additions and 4

3n − 3 = 4
312 − 3 = 13 scalar multiplications. In the standart polynomial

representation, as we stated in Remark 4.2.6, we can compute the reduction complexity of
x12 + x2 + 2 as (3− 1)(12− 1) + 1 = 23 additions and 12− 1 = 11 scalar multiplications.

In Example 4.3.2, we divide the matrices into 3× 3 block matrices to simplify the observation.
As n increases the entries of the matrices do not change, only they expand diagonally. Both
matrices have a recursive structure. The 3× 3 block matrices repeat down the diagonals of the
matrix. Therefore, we can compute the general reduction complexity for any n, where n ≡ 0
(mod 3) by using the matrices in Example 4.3.2.

In each reduction matrices, there are two different 3×3 nonzero block matrices and they appear
in each three columns. The number of 3×3 block matrices in each reduction matrices is (n−3)

3 .
First, we compute the reduction complexity for QS . These two block matrices in QS contains
6 nonzero terms and 3 scalar multiplications and in the last two columns there are 5 nonzero
terms and 2 scalar multiplications. Totally, QS has 6 (n−3)

3 + 5 = 2n − 1 nonzero terms and
3 (n−3)

3 + 2 = n − 1 scalar multiplications. For QH , these two block matrices contains 6
nonzero terms and 4 scalar multiplications and in the last two columns there are 3 nonzero
terms and 1 scalar multiplications. Totally, QS has 6 (n−3)

3 + 3 = 2n − 3 nonzero terms and
4 (n−3)

3 + 1 = 4
3n − 3 scalar multiplications. These results are the same with the reduction

complexities given in Table 4.2. By this way, we give the matrix vector product method for the
reduction part of the polynomial multiplication in Hermite polynomial representation of F3n .

34

CHAPTER 5

NORMAL BASIS REPRESENTATION

In this chapter, we give some structural properties of normal bases and we examine the rela-
tionship between normal bases and orthogonal polynomials.

We have briefly given the definition of normal bases in Section 2.2. Let g(x) be an irreducible
polynomial of degree n. Recall that, if α is a root of g(x) then the n distinct roots of g(x) in
Fqn is given by B =

{
α, αq, αq2 , ..., αqn−1

}
. If the elements of B are linearly independent,

then B is called a normal basis for Fqn over Fq and α is named as a normal element of Fqn

over Fq. Also, g(x) is called a normal polynomial. The elements in a normal basis are exactly
the roots of a normal polynomial. Normal polynomials exist for every degree n [32].

Let α = α0 generate B = {α0, α1, α2, ..., αn}, a normal basis of Fqn over Fq and let αi = αqi

for 0 ≤ i ≤ n − 1. Then αiαj is a linear combination of α0, α1, α2, ..., αn with coefficients
in Fq for any 0 ≤ i, j ≤ n − 1, ie. αiαj =

∑n−1
k=0 t

(k)
ij αk where t(k)ij ∈ Fq. For an element

a ∈ Fqn , let ai ∈ Fq and a =
∑n−1

i=0 aiαi and let A = (a0, ..., an−1). The multiplication of
two elements a, b ∈ Fqn is given by c = ab where ck =

∑
i,j aibjt

k
ij = ATkB

′ where the

collection of matrices
{
Tk = (t

(k)
ij)
}

is known as a multiplication table for Fqn over Fq. (t(k)ij)

denotes the left cyclic shift of the vector t(0) by k positions, ie. t(k)ij = t
(0)
i−k,j−k. Let (t(0)ij)

be the matrix denoted by T0. Then, T0 and Tk have the same nonzero entries. The number of
non-zero entries in T is called as the complexity of the normal basis B, denoted by cB [33].
The following theorem gives the lower bound of cB .

Theorem 5.0.3. For any normal basis B of Fqn over Fq, cB ≥ 2n− 1.

5.1 Optimal Normal Bases

A normal basisB is called optimal if cB = 2n−1. Optimal normal bases are normal bases with
low complexity. For the efficiency of hardware and software implementations of finite fields
the normal bases are required to have low complexities. Therefore, existence of optimal normal
bases in finite fields is an important issue. For finding normal bases of a required complexity,
we don’t have many techniques. However, in [33] two general constructions that give all the
optimal normal bases and a large family of normal bases of low complexity are given. We
begin with these two constructions presented in [33].

35

Theorem 5.1.1. Suppose n + 1 is a prime and q is primitive in Zn+1, where q is a prime or
prime power. Then the n nonunit n+1th roots of unity are linearly independent and they form
an optimal normal basis of Fqn over Fq.

Theorem 5.1.2. Let 2n+ 1 be a prime and assume that either

(i) 2 is primitive in Zn+1, or

(ii) 2n + 1 ≡ 3 (mod 4) and 2 generates the quadratic residues in Z2n+1. Then α =
γ + γ−1 generates an optimal normal basis of F2n over F2, where γ is a primitive
(2n+ 1)th root of unity.

The optimal normal basis constructed by using Theorem 5.1.1 is called type I optimal normal
basis, and the basis constructed by using Theorem 5.1.2 is called type II optimal normal basis.
In [33], for binary extension fields it is proved that all the optimal normal bases in finite fields
are completely determined by these two theorems. If n does not satisfy the criteria in these the-
orems then F2n does not contain an optimal normal basis. Later, in [16] this result is extended
for any arbitrary finite field. The following theorem is used to determine that a given basis is
an optimal normal basis or not.

Theorem 5.1.3. [32] LetB =
{
α, αq, αq2 , ..., αqn−1

}
be an optimal normal basis of Fqn over

Fq. Let z = Trqn|q(α), the trace of α in Fq. Then either

(i) n + 1 is a prime, q is primitive in Zn+1 and −α/z is a primitive (n + 1)th root of
unity or

(ii)

(a) q = 2m for some integer m such that gcd(m,n) = 1,
(b) 2n+ 1 is a prime, 2 and −1 generate the multiplicative group Z∗2n+1 and
(c) α/z = ζ + ζ−1 for some primitive (2n+ 1)th root ζ of unity.

5.2 Dickson Polynomials

Dickson polynomials are first introduced by L.E.Dickson in 1896, see Lidl et al. [28]. They are
an important class of permutation polynomials. A polynomial p(x) over Fq is a permutation
polynomial if p(x) induces an injective mapping on the field Fq. Dickson polynomials with
this important permutation property have several applications in combinatorics and cryptogra-
phy [23], [24]. Over the complex numbers, Dickson polynomials are essentially equivalent to
orthogonal Chebyshev polynomials with a change of variable. Dickson polynomials are mainly
studied over finite fields, when they are not equivalent to Chebyshev polynomials.

There are two kinds of Dickson polynomials. In this study, we consider the first kind of Dickson
polynomials.

Definition 5.2.1. Let a ∈ Fq and n ≥ 2 be an integer. The Dickson polynomial of the first kind
with degree n and parameter a is defined as

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

36

For n = 0 we define D0(x, a) = 2 and similarly we define D1(x, a) = x for n = 1.

Remark 5.2.2. Dickson polynomials satisfy a second order recurrence, i.e. for n ≥ 0,

Dn+2(x, a) = xDn+1(x, a)− aDn(x, a).

We are interested in the first kind of Dickson polynomials where the parameter a = 1 and we
denote them shortly, byDn(x). Then in this case, we can express the recurrence asDn+2(x) =
xDn+1(x) −Dn(x). In [23], they use Dn(x) to represent binary extension fields for efficient
field multiplication. Using the relation the Dickson polynomials Dn(x) in F2[x] are obtained
for n ≤ 10 and given in Table 5.1.

Table 5.1: Dickson polynomials in F2[x]

D0(x) 0

D1(x) x

D2(x) x2

D3(x) x3 + x

D4(x) x4

D5(x) x5 + x3 + x

D6(x) x6 + x2

D7(x) x7 + x5 + x

D8(x) x8

D9(x) x9 + x7 + x5 + x

D10(x) x10 + x6 + x2

Dickson polynomials are also used for the construction of optimal normal bases. We give
the conditions for optimal normal bases in Theorem 5.1.2. In [28], they give the connection
between this theorem and Dickson polynomials. They show that the minimal polynomial of
such an α over Fq is related to the Dickson polynomials Dn+1 and Dn.

Theorem 5.2.3. [28] If 2n+1 is a prime and α as in Theorem 5.1.2 (ii), generates an optimal
normal basis then the minimal polynomial of α over Fq is given by

(Dn+1(x)−Dn(x))/(x− 2).

Proof. By assumption let 2n+1 be prime and α = ζ+ζ−1 generates an optimal normal basis,
i.e. B =

{
α, α2, α22 , ..., α2n−1

}
.

Since 2n+ 1 ≡ 3 (mod 4) and 2 generates the quadratic residues in Z2n+1, then the basis can
be written as B =

{
α, α2, ..., αn

}
=
{
ζ + ζ−1, ζ2 + ζ−2, ..., ζn + ζ−n

}
.

Since it is given that ζ is a primitive (2n + 1)th root of unity, i.e. ζ2n+1 = 1 (mod qn). Then
ζn+1 = ζ−n (mod qn). For any 0 ≤ j ≤ n, ζj is also a (2n+ 1)th root of unity. This gives us

37

the following equation:

(ζj)n + (ζj)−n = (ζj)n+1 + (ζj)−(n+1). (5.1)

Let mn(x) ∈ Fq[x] be the minimal polynomial of α = ζ + ζ−1, then all the roots of mn(x)
are the elements of the basis B =

{
ζ + ζ−1, ζ2 + ζ−2, ..., ζn + ζ−n

}
. We can express the

polynomial as

mn(x) =
n∏

j=1

(x− ζj − ζ−j).

By Waring’s formula, for any positive integer t,

(ζj)t + (ζj)−t =

[t/2]∑
i=0

t

t− i

(
t− i
i

)
(−1)i(ζj − ζ−j)t−2i.

If, we write the first kind of Dickson polynomials,

Dt(x) =

[t/2]∑
i=0

t

t− i

(
t− i
i

)
(−1)ixt−2i

it is obvious by 5.1 that ζj + ζ−j is a root of Dn+1(x) −Dn(x) for j = 0, 1, ..., n. Then the
minimal polynomial mn(x) divides Dn+1(x) − Dn(x). The degree of Dn+1(x) − Dn(x) is
n+ 1 and mn(x) is n. If we divide Dn+1(x)−Dn(x) by mn(x), we get a linear polynomial,

Dn+1(x)−Dn(x) = mn(x)(x− 2).

�

5.3 Hermite Polynomials in F2[x]

In Chapter 4 we use the recurrence relation of probabilists Hermite polynomials and we gen-
erate them in F3[x]. In this section, we give more details about these polynomials and our aim
is to find a relationship between Hermite polynomials and optimal normal basis elements as in
Theorem 5.2.3 over F2. Therefore in this section, we deal with Hermite polynomials over F2.

Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability,
combinatorics and physics. The probabilists’ Hermite polynomials are defined by

Hn(x) = (−1)nex2/2 d
n

dxn
e−x

2/2

38

They can be written explicitly as:

Hn(x) =
n!

(
√
2)n

bn2 c∑
i=0

(−1)i

i!(n− 2i)!
(
√
2x)n−2i

As it is given in Section 4.1, Hermite polynomials satisfy the recurrence relation Hn(x) =
x · Hn−1(x) − (n − 1) · Hn−2(x). We give the Hermite polynomials in F2[x] for n ≤ 10 in
Table 5.2.

Table 5.2: Hermite polynomials in F2[x]

H0(x) 1

H1(x) x

H2(x) x2 + 1

H3(x) x3 + x

H4(x) x4 + 1

H5(x) x5 + x

H6(x) x6 + x4 + x2 + 1

H7(x) x7 + x5 + x3 + x

H8(x) x8 + 1

H9(x) x9 + x

H10(x) x10 + x8 + x2 + 1

For finding a relationship between optimal normal basis elements and Hermite polynomials,
we examine that if we can get a connection between Hermite polynomials and Dickson poly-
nomials over F2. We use the recurrence relations of polynomials and we compare them over
F2.

Dn(x) = xDn−1(x) +Dn−2(x), D0(x) = 0, D1(x) = x

Hn(x) = xHn−1(x) +Hn−2(x) + nHn−2(x), H0(x) = 1, H1(x) = x

Different than Dickson recurrence relation, Hermite relation has a term nHn−2(x) and the first
Hermite polynomial, H0(x) is 1. We define a new polynomial sequence generated by using
Hermite polynomials over F2 to obtain Dickson polynomials from Hermite polynomials.

Definition 5.3.1. Let the polynomial sequence be denoted by An(x) and A0(x) = 1, A1(x) =
0. The recurrence relation of An(x) connected to Hermite polynomials for n ≥ 2 is

An(x) = xAn−1(x) +An−2(x) + nHn−2(x) (5.2)

In Table 5.3, we give the polynomials generated by An(x) for n ≤ 10.

Proposition 5.3.2. If 2n + 1 is a prime and α as in Theorem 5.1.2 (ii), generates an optimal
normal basis then the minimal polynomial of α over F2 is given by

((An+1(x) +Hn+1(x)) + (An(x) +Hn(x))) /x.

39

Table 5.3: Polynomials generated by An(x) over F2

A0(x) 1

A1(x) 0

A2(x) 1

A3(x) 0

A4(x) 1

A5(x) x3

A6(x) x4 + 1

A7(x) x3

A8(x) 1

A9(x) x7 + x5

A10(x) x8 + x6 + 1

Proof. If we sum up the recurrence relations of two polynomials An(x) and Hn(x), we get

An(x) +Hn(x) = xAn−1(x) +An−2(x) + nHn−2(x) + xHn−1(x) +Hn−2(x) + nHn−2(x)

= xAn−1(x) +An−2(x) + xHn−1(x) +Hn−2(x)

= x (An−1(x) +Hn−1(x)) + (An−2(x) +Hn−2(x))

and the first two polynomials of this recurrence relation are A0(x) +H0(x) = 0 and A1(x) +
H1(x) = x which are same with Dickson polynomials. By these results, we can write
Dn(x) = An(x) + Hn(x). Therefore we can rearrange the result in Theorem 5.2.3 by us-
ing the connection between Dickson polynomials and Hermite polynomials. �

Remark 5.3.3. As we have given in Definition 5.3.1, the polynomial sequence An(x) is gen-
erated by using Hermite polynomials over F2. Firstly by constructing An(x) from Hermite
polynomials, we can obtain Dickson polynomials from Hermite polynomials over F2. There-
fore we can conclude that the minimal polynomial of a normal element generating an optimal
normal basis of F2n over F2 is related to the Hermite polynomials.

40

CHAPTER 6

CONCLUSION

In this thesis, Charlier and Hermite polynomial representations over finite fields of character-
istic three are presented and in addition to this, optimal normal basis elements in binary fields
are investigated.

In Chapter 3, we propose the Charlier polynomial representation for finite fields of characteris-
tic three. Charlier polynomials are used in the representation of binary fields in [5]. We modify
the idea given in [5] for F3n . We give the multiplication method in two steps and compute the
multiplication and reduction complexites. In this representation, we show that one can obtain
an irreducible binomial βn + β0, where n ≡ 2 (mod 3), which allows us an efficient mod-
ular reduction. For these Charlier binomials, we have better results in reduction complexity
according to the standart polynomial representation. We design a sequential multiplier for the
elements of F3n , where n ≡ 2 (mod 3) and we give the cubing operation for these elements.

In Chapter 4, we modify the Hermite polynomial representation given in [4] for finite fields
of characteristic three. We give the multiplication method in Hermite polynomial representa-
tion. In this representation, we get an efficient modular reduction if we choose an irreducible
binomial βn + β2, where n ≡ 0 (mod 3). We also give the matrix vector product method
for the multiplication of field elements in this representation and we construct the reduction
matrix for the binomial βn + β2, where n ≡ 0 (mod 3). Furthermore, these proposed methods
presented in Chapter 3 and Chapter 4 bring a new approach to the representation of finite fields
of characteristic three.

In Chapter 5, we focus on the relation between the optimal normal bases elements in binary
fields and permutation polynomials. In [33] the constructions that give all the optimal nor-
mal bases are presented. Dickson polynomials are also used for the construction of optimal
normal bases. In [28], the connection between optimal normal bases and Dickson polynomi-
als are given. By using this connection and constructions of optimal normal bases, we find a
relationship between optimal normal basis elements and Hermite polynomials over F2.

41

42

REFERENCES

[1] G. Agnew, T. Beth, R. Mullin and S. Vanstone, Arithmetic operations inGF (2m), Journal
of Cryptology, 6:3-13, 1993.

[2] O. Ahmadi, F. Rodriguez-Henriquez, Low Complexity Cubing and Cube Root Computa-
tion over F3m in Polynomial Basis. IEEE Transactions on Computers, 59:1297-1308.

[3] O. Ahmadi, D. Hankerson and A. Menezes, Software Implementation of Arithmetic in
F3m , International Workshop on Arithmetic of Finite Fields (WAIFI 2007), LNCS 4547,
85-102, 2007.

[4] S. Akleylek, On the Representation of Finite Fields, Phd. Thesis, 2010.

[5] S. Akleylek, M. Cenk, F. Özbudak, Polynomial Multiplication over Binary Fields Using
Charlier Polynomial Representation with Low Space Complexity, INDOCRYPT 2010:
227-237.

[6] S. Akleylek, F. Özbudak, C. Özel, Charlier Polynomial Representation for Finite Fields
of Characteristic Three, 18th International Conference on Applications of Computer Al-
gebra (ACA 2012), Sofia, Bulgaria, 2012.

[7] S. Akleylek, F. Özbudak, C. Özel, Hermite Polynomial Representation for Finite Fields of
Characteristic Three, 5th International Information Security and Cryptology Conference
(ISCTURKEY 2012), vol.5 pp.155-159 Ankara, 2012.

[8] S. Akleylek, F. Özbudak, C. Özel, On the Multiplication over Finite Fields of Character-
istic Three in Hermite Polynomial Representation, International Conference on Applied
and Computational Mathematics (ICACM), Ankara, 2012.

[9] S. Akleylek, F. Özbudak, C. Özel, On the Arithmetic Operations over Finite Fields of
Characteristic Three with Low Complexity, submitted, 2013.

[10] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, M. Scott, Efficient Algorithms for Pairing-
Based Cryptosystems, Proc. 22nd Ann. Int’l Cryptology Conf. Advances in Cryptology
(CRYPTO’02), M. Yung, ed., pp. 354-368, 2002.

[11] J.-L. Beuchat, M. Shirase, T. Takagi and E. Okamoto, An algorithm for the ηT pairing
calculation in characteristic three and its hardware implementation, Proceedings of the
18th IEEE Symposium on Computer Arithmetic, pages 97-104, IEEE Computer Society,
2007.

[12] I.F. Blake, G. Seroussi, N.P. Smart, Elliptic curves in cryptography, London Mathematical
Society Lecture Note Series 265, Cambridge Univ. Press, 1999.

[13] H. Cohen, G. Frey, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete
Math. Appl., Chapman Hall/CRC, 2006.

43

[14] D. Drake, The Combinatorics of Associated Hermite Polynomials, European Journal of
Combinatorics, vol.30 no.4 pp. 1005-1021, 2009.

[15] S. S. Erdem, T. Yanik, and C. K. Koc, Polynomial Basis Multiplication over GF (2m),
Acta Applicandae Mathematicae, vol. 93, nos. 1-3, pp. 33-55, 2006.

[16] S. Gao and H. W. Lenstra, Optimal normal basis, Designs, Codes and Cryptography,
2:315-323, 1992.

[17] J. von zur Gathen, Irreducible Trinomials over Finite Fields, In B. Mourrain, editor, Pro-
ceedings of the 2001 International Symposium on Symbolic and Algebraic Computation-
ISSAC2001, pp. 332-336. ACM Press, 2001.

[18] C.D. Godsil, Algebraic Combinatorics, Chapman Hall/CRC Mathematics Series, Boca
Raton, 1993.

[19] R. Granger, D. Page and M. Stam, Hardware and software normal basis arithmetic for
pairing-based cryptography in characteristic three, IEEE Transactions on Computers, pp.
852-860, 54, 2005.

[20] D. Hankerson, J. Lopez Hernandez and A. Menezes, Software Implementation of Elliptic
Curve Cryptography over Binary Fields, Proc. of CHES 2000, LNCS, Vol. 1965, pp.
1-24, Springer-Verlag, 2000.

[21] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004.

[22] K. Harrison, D. Page and N. Smart, Software implementation of finite fields of charac-
teristic three, for use in pairing-based cryptosystems, LMS Journal of Computation and
Mathematics, pp. 181-193, 5, 2002.

[23] M.A. Hasan and C. Negre, Subquadratic Space Complexity Multiplication over Binary
Fields with Dickson Polynomial Representation, WAIFI 2008, LNCS 5130, pp.88-102,
2008.

[24] M.A. Hasan and C. Negre, Low Space Complexity Multiplication over Binary Fields with
Dickson Polynomial Representation, IEEE Trans. on Computers, vol.60, no.4, pp.602-
607, 2011.

[25] T. Itoh and S. Tsujii, A Fast Algorithm for Computing Multiplicative Inverse in GF (2m)
Using Normal Bases, Information and Computer, vol. 78, pp. 171-177, 1988.

[26] T. Kerins, W.P. Marnane, E.M. Popovici and P.S.L.M. Barreto, Efficient Hardware for the
Tate Pairing Calculation in Characteristic Three, CHES 2005, LNCS 3659, pp. 412-426,
2005.

[27] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cam-
bridge University, 1997.

[28] R. Lidl, G.L. Mullen, G. Turnwald, Dickson Polynomials, Longman Scientific and Tech-
nical, Essex, United Kingdom, 1993.

44

[29] Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
http://www.maplesoft.com

[30] E.D. Mastrovito, VLSI Architectures for Multiplication over Finite Field GF (2m), Ap-
plied Algebra, Algebraic Algorithms, and Error-Correcting Codes, T. Mora, ed., pp. 297-
309, Berlin, Springer-Verlag, 1988.

[31] A.J. Menezes, Handbook of Applied Cryptography, CRC, 1997.

[32] A.J. Menezes, I.F. Blake, X. Gao, R. C. Mullin, S.A. Vanstone, T. Yaghoobian, Applica-
tion of Finite Fields, Kluwer Academic Publishers, 1993.

[33] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone and R.M. Wilson, Optimal normal bases in
GF (pn), Discrete Appl. Math. 22, pp. 149-161, 1988/89.

[34] R. Mullin, I.Onyszchuk and S. Vanstone, Computational method and apparatus for mul-
tiplication, U.S patent 4,745,568, May 1988.

[35] D.Page, N.Smart, Hardware Implementation of Finite Fields of Characteristic Three, In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002, LNCS, vol. 2523, pp. 529-539,
Springer, Heidelberg, 2003.

[36] D.Panairo and D.Thompson, Efficient pth Root Computations in Finite Fields of Charac-
teristic p, Designs, Codes and Cryptography, vol. 50, pp. 351-358, 2009.

[37] A. Reyhani-Masoleh and M. A. Hasan, Low complexity bit parallel architectures for poly-
nomial basis multiplication over GF (2m), IEEE Trans. Computers, vol. 53, no. 8, pp.
945-959, 2004.

[38] B.Sunar, Ç.K.Koç, Mastrovito Multiplier for All Trinomials, IEEE Trans. Computers, vol.
48, no. 5, pp. 522-527, May 1999.

[39] A.Weimerskirch, C.Paar, Generalizations of the Karatsuba Algorithm for Efficient Imple-
mentations, http://eprint.iacr.org/2006/224, 2006.

[40] H. Wu, Bit-parallel Finite Field Multiplier and Squarer Using Polynomial Basis, IEEE
Trans. Computers, vol. 51, no. 7, pp. 750-758, 2002.

45

46

Appendix A

CONVERSION FROM STANDART POLYNOMIAL
REPRESENTATION TO A MODIFIED POLYNOMIAL

REPRESENTATION

Algorithm 3 Conversion of Coefficients From Standart Polynomial Representation to a Modi-
fied Polynomial Representation

Input:a(x) =
∑n−1

i=0 a
′
ix

i

Output:(a0, a1, ..., an−1) where a =
∑n−1

i=0 aiβi

1: T ← a
2: for i = n downto 1 do
3: if deg(T) = i then
4: if a′i = 1 then ai ← 1, T ← T + 2βi
5: else if a′i = 2 then ai ← 2, T ← T + βi
6: end if
7: else ai ← 0
8: end if
9: end for

10: a0 ← T

47

48

Appendix B

IRREDUCIBLE CHARLIER BINOMIALS AND REDUCTION

Table B.1: Irreducible Charlier Binomials

β3 + β0 β37 + β0 β118 + β0

β5 + β0 β46 + β0 β133 + β0

β11 + β0 β47 + β0 β158 + β0

β14 + β0 β74 + β0 β179 + β0

β26 + β0 β77 + β0 β242 + β0

β31 + β0 β83 + β0 β386 + β0

Let f be the irreducible Charlier binomial f . Reduction operation with respect to modulo f
can be performed as follows:

We take each binomial form respectively, let f = βn + β0 where n ≡ 0 (mod 3) and let
n ≤ i ≤ 2n− 2. Then,

βn · βi−n = βi (B.1)

2β0 · βi−n = βi

βi = 2βi−n

Now let f = βn + β0 where n ≡ 1 (mod 3). The reduction of βi where n ≤ i ≤ 2n− 2 differs
with respect to the value of i− n (mod 3). We give the reduction formulas for the values zero,
one and two, respectively.

If i− n ≡ 0 (mod 3):

βn · βi−n = βi

βi = 2β0 · βi−n
βi = 2βi−n

49

If i− n ≡ 1 (mod 3):

βn · βi−n = βi + βi−1

2β0 · βi−n = βi + βi−1

βi = 2βi−n + 2βi−1

βi = 2βi−n + 2(2βi−1−n)

βi = 2βi−n + βi−1−n

If i− n ≡ 2 (mod 3):

βn · βi−n = βi + 2βi−1

2β0 · βi−n = βi + 2βi−1

βi = 2βi−n + βi−1

βi = 2βi−n + 2βi−1−n + βi−2−n

If we combine these, we get the equation:

βi = 2βi−n + u · (v · βi−1−n + w · βi−2−n) (B.2)

u =

{
0 if i− n ≡ 0 mod 3
1 otherwise.

v =

{
1 if i− n ≡ 1 mod 3
2 if i− n ≡ 2 mod 3

}
,w =

{
0 if i− n ≡ 1 mod 3
1 if i− n ≡ 2 mod 3

Now let f = βn + β0, where n ≡ 2 (mod 3). Since the value of n ≡ 2 (mod 3), the
multiplication changes with respect to the values of i− n (mod 3), where n ≤ i ≤ 2n− 2. We
write this seperately.

If i− n ≡ 0 (mod 3):

βn · βi−n = βi

2β0 · βi−n = βi

βi = 2βi−n

If i− n ≡ 1 (mod 3):

βn · βi−n = βi + 2βi−1

2β0 · βi−n = βi + 2βi−1

βi = 2βi−n + βi−1

βi = 2βi−n + 2βi−1−n

50

If i− n ≡ 2 (mod 3):

βn · βi−n = βi + βi−1 + 2βi−2

2β0 · βi−n = βi + βi−1 + 2βi−2

βi = 2βi−n + 2βi−1 + βi−2

βi = 2βi−n + 2(2βi−1−n + 2βi−2−n) + 2βi−2−n

βi = 2βi−n + βi−1−n

If we combine these in a formula:

βi = 2βi−n + r · βi−1−n (B.3)

r =

0 if i− n ≡ 0 mod 3
2 if i− n ≡ 1 mod 3
1 if i− n ≡ 2 mod 3

We perform the reduction operations by choosing all possible irreducible Charlier binomials
as some of these are given in Table B.1. Since we have three kinds of irreducible Charlier
binomials, we get three different reduction formulas. Each reduction formulas changes due to
the difference i − n and so the value of the index i (mod 3), which is the index of reduced
element βi. Table B.2 gives the reduction complexity of βi for each form of the irreducible
Charlier binomials.

Table B.2: Reduction Complexity of βi

Form # Constant Multiplications # Additions
βn + β0 (n ≡ 0 mod 3) 1 0

βn + β0 (n ≡ 1 mod 3) 2 2

βn + β0 (n ≡ 2 mod 3) 2 1

There are also irreducible Charlier binomials in the form βn+2β0. In the reduction operations,
they have the same number of additions with βn+β0. In hardware implementations, there is no
difference in the selection of binomials βn+β0 or βn+2β0 in the way of reduction complexity.

51

52

Appendix C

IRREDUCIBLE HERMITE BINOMIALS AND REDUCTION

Table C.1: Irreducible Hermite Binomials

β3 + β2 β4 + β2 β11 + β0

β12 + β2 β7 + β2 β26 + β0

β15 + β2 β19 + β2 β35 + β0

β60 + β2 β28 + β2 β119 + β0

β111 + β2 β67 + β2 β146 + β0

β183 + β2 β151 + β2 β242 + β0

We list the irreducible binomials with respect to the indices n (mod 3). The reduction opera-
tions are different due to the chosen binomials from each column of the Table C.1, since the
multiplication of Hermite polynomials differs with respect to the values of the indices in mod
3, as it is given in Theorem 4.1.3.

Let f be the irreducible Hermite binomial. Reduction operation with respect to modulo f can
be performed as follows:

We deal with each binomial form respectively, so first let’s take f = βn + β2 where n ≡ 0
(mod 3) and let n ≤ i ≤ 2n− 2. Then,

βn · βi−n = βi

2β2 · βi−n = βi

βi = 2βi−n.β2

We formulate this by using Theorem 4.1.3 as follows:

βi = 2βi−n+2 + r · (s · βi−n + t · βi−n−2) (C.1)

r =
{

0 if i− n ≡ 0 mod 3
1 otherwise.

s =
{

1 if i− n ≡ 1 mod 3
2 if i− n ≡ 2 mod 3

53

t =
{

1 if i− n ≡ 2 mod 3
0 otherwise.

Remark C.0.4. If n ≡ 0 (mod 3) then by Theorem 4.1.3, l is zero and note that βn = 2 · β2.

Now, let f = βn + β2, where n ≡ 1 (mod 3). The reduction of βi where n ≤ i ≤ 2n − 2
differs with respect to the value of i − n (mod 3). Let’s give the reduction formulas for the
values zero, one and two, respectively.

If i− n ≡ 0 (mod 3):

βn · βi−n = βi

βi = 2β2 · βi−n
βi = 2βi−n+2

If i− n ≡ 1 (mod 3):

βn · βi−n = βi + βi−2

2β2 · βi−n = βi + βi−2

βi = 2β2 · βi−n + 2βi−2

βi = 2βi−n+2 + βi−n + 2βi−2

βi = 2βi−n+2 + βi−n + 2(2βi−2−n+2 + 2βi−2−n + βi−2−n−2 + 2βi−4−n+2)

βi = 2βi−n+2 + 2βi−n + 2βi−n−2 + 2βi−n−4

If i− n ≡ 2 (mod 3):

βn · βi−n = βi + 2βi−2

2β2 · βi−n = βi + 2βi−2

βi = 2β2 · βi−n + βi−2

βi = 2βi−n+2 + 2βi−n + βi−n−2 + βi−2

βi = 2βi−n+2 + 2βi−n + βi−n−2 + 2βi−2−n+2

βi = 2βi−n+2 + βi−n + βi−n−2

If we combine these, we get the equation:

βi = 2βi−n+2 + u · [v · (βi−n + βi−n−2) + w · βi−n−4] (C.2)

u =

{
0 if i− n ≡ 0 mod 3
1 otherwise.

v =

{
2 if i− n ≡ 1 mod 3
1 if i− n ≡ 2 mod 3

54

w =

{
2 if i− n ≡ 1 mod 3
0 otherwise.

Now let f = βn + β0, where n ≡ 2 (mod 3). Since the value of n ≡ 2 (mod 3), the
multiplication changes with respect to the values of i− n (mod 3), where n ≤ i ≤ 2n− 2. We
compute the reduction respectively.

If i− n ≡ 0 (mod 3):

βn · βi−n = βi

2β0 · βi−n = βi

βi = 2βi−n

If i− n ≡ 1 (mod 3):

βn · βi−n = βi + 2βi−2

2β0 · βi−n = βi + 2βi−2

βi = 2βi−n + βi−2

If i− n ≡ 2 (mod 3):

βn · βi−n = βi + βi−2 + 2βi−4

2β0 · βi−n = βi + βi−2 + 2βi−4

βi = 2βi−n + 2βi−2 + βi−4

If we combine these in a formula:

βi = 2βi−n + h · (y · βi−2 + z · βi−4) (C.3)

h =

{
0 if i− n ≡ 0 mod 3
1 otherwise.

y =

{
1 if i− n ≡ 1 mod 3
2 if i− n ≡ 2 mod 3

z =
{

1 if i− n ≡ 2 mod 3
0 otherwise.

We perform the reduction operations by choosing all possible irreducible Hermite binomials as
some are given in the Table C.1. Since we have three kinds of irreducible Hermite binomials,
we get three reduction formulas in Equations C.1, C.2 and C.3. In the form βn+β2 where n ≡ 0
(mod 3), the multiplication of βn · βi−n directly gives βi, so we can reduce βi in one step for

55

this form. In the other two forms, each reduction formulas changes due to the difference i− n
and so the value of the index i (mod 3), which is the index of reduced element βi. Reduction
in Equation C.3 is not completed in one step. The terms βi−2, βi−4 should be reduced until the
indices drop into the interval [0, n − 1]. We do not carry on these reductions, since it depends
on the value of the index i. Table C.2 gives the upper bound of the reduction complexity
for each form of the irreducible Hermite binomials. Since the reduction in Equations C.3 is
not completed, we give the signed numbers in Table C.2 which are the numbers of constant
multiplications and additions for one step of the reduction. The total number of multiplications
and additions for this binomial increases by the number of reduction steps.

Table C.2: Reduction Complexity of βi

Form # Constant Multiplications # Additions
βn + β2 (n ≡ 0 mod 3) 2 2

βn + β2 (n ≡ 1 mod 3) 4 3

βn + β0 (n ≡ 2 mod 3) 2∗ 2∗

There are also irreducible Hermite binomials in the form βn+2β0 and βn+2β2. In the reduction
operations, they have the same number of additions with βn + β0 and βn + β2, respectively.
Therefore in hardware implementations, the choice of the binomials βn + β0 or βn + 2β0 and
the choice of βn + β2 or βn + 2β2 do not effect the reduction complexity.

56

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Özel, Canan
Nationality: Turkish
Date and Place of Birth: 1982 - Manisa
Marital Status: Married
email: canancozel@gmail.com

EDUCATION

Degree Institution Year of Graduation
M.S. METU, Department of Cryptography 2008
B.S. METU, Department of Mathematics 2005
High School Eskişehir Fatih Science High School 2000

PROFESSIONAL EXPERIENCE

Year Place Enrollment
2006 - 2013 Institute of Applied Mathematics, METU Research Assistant

PUBLICATIONS

Papers in Progress

S. Akleylek, F. Özbudak, C. Özel, On the Arithmetic Operations over Finite Fields of Charac-
teristic Three with Low Complexity, submitted, 2013.

Papers published in International Conference Proceedings

S. Akleylek, F. Özbudak, C. Özel, Hermite Polynomial Representation for Finite Fields of
Characteristic Three, 5th International Information Security and Cryptology Conference (ISC-
TURKEY 2012), vol.5 pp.155-159 Ankara, 2012.

57

Presentations in International Conferences

S. Akleylek, F. Özbudak, C. Özel, On the Multiplication over Finite Fields of Characteristic
Three in Hermite Polynomial Representation, International Conference on Applied and Com-
putational Mathematics (ICACM), Ankara, 2012.

S. Akleylek, F. Özbudak, C. Özel, Charlier Polynomial Representation for Finite Fields of
Characteristic Three, 18th International Conference on Applications of Computer Algebra
(ACA 2012), Sofia, Bulgaria, 2012.

58

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	CHAPTERS
	INTRODUCTION
	MATHEMATICAL BACKGROUND
	Finite Fields
	Extension Fields
	Binary Field Arithmetic
	Multiplication
	Squaring
	Inversion

	CHARLIER POLYNOMIAL REPRESENTATION
	Charlier Polynomials
	Charlier Basis

	Multiplication in Charlier Representation
	Irreducible Charlier Binomials
	Reduction

	Design of Arithmetic Operations in Charlier Polynomial Representation
	A Sequential Multiplier
	Cubing
	Inversion

	HERMITE POLYNOMIAL REPRESENTATION
	Hermite Polynomials and Hermite Basis in F3n
	Multiplication of Polynomials in Hermite Representation
	Irreducible Hermite Binomials
	Reduction

	Matrix vector product for Hermite Basis

	NORMAL BASIS REPRESENTATION
	Optimal Normal Bases
	Dickson Polynomials
	Hermite Polynomials in F2[x]

	CONCLUSION
	REFERENCES
	CONVERSION FROM STANDART POLYNOMIAL REPRESENTATION TO A MODIFIED POLYNOMIAL REPRESENTATION
	IRREDUCIBLE CHARLIER BINOMIALS AND REDUCTION
	IRREDUCIBLE HERMITE BINOMIALS AND REDUCTION
	CURRICULUM VITAE

