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ABSTRACT

EVALUATION OF ROTORCRAFT SYSTEM IDENTIFICATIONAPPROACHES

Kaymak Sekan
M. Sc., Department of Aerospace Engineering
Supervisor : Prof. Dr. Ozan Tekinalp

Co-Supervisor : Asst. Prof . Dr. Ali T¢rker Kut

February2013 90 pages

This thesisaddressesotorcraft system identificatiorapproacks and estimating the stability and
control parameterfor linear system identificatiorof a helicopterin hover Output error andleast
square methods are used for the system identificaliqouts of the system identificat analysis are
obtained from the nonlinear helicopter modetitten in FLIGHTLAB commercial software
environmentA linear helicopter model igsed foridentification For validation, results obtained from
identified helicopter modelare compared withFLIGHTLAB® s n o rsimulatien aesults by
employingdifferent inpus which are not useith the identification procedure

Keywords: HelicopterUH-60, simulation, system identificatiomqutput error method, least square
method mathematical modeling-LIGHTLAB, standard deviation, coefficient of determination
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

System identification isa multidisciplinaryand iterative process to determine the mathematical
model ofa systemby using theinput and output dataf the systemSystem can be defined in
different areas, such &sology, chemistry economics, civjl electricaland mechanical engineering,
automobiles shipsand flight vénicles. In this thesis flight vehiclespecifically helicoptersystem
identification, is addresed. Proper identification methods are examined, and identification of
helicopter using simulatioresultsis carried out.

What is System Identification?

Zadeh[1] defined the system @nhtification technicallyin 1 9 6 2 a s : ifithe deter minat
of observation of input and output, of a system within a specified class of system to which the

syt em under t e adcording to thisdefinitiom,lit eam be.said that system identification

processis basically composed of datathering, appropriate system mathematicaldel and test.

While the systemis beingtesed, input and output data are collected and by using these data system
mathematical model can be determined.

A simple definitionwas made by lliffP]in1 994 as: iGi ven the answer, w h
|l ook at the results and try to figurigunp[@t what
described the system identificatiom 1 9 97 a s: AThe process tofh going

mathematical model is fundamtal in science and engineering. In the control area this process has
been termed System Identification and objextis then to find dynamical models (difference or
di fferential equations) from observed input and

System identification isnulti-disciplinary. It is alsoan inverse problem of obtaining a descriptidn

a systemFigure * 1 shows the basic description of the system identification. Inputs and outputs are
known. They are obtained from simulation data. However systed/or parameters of the system
are not knownAim of the system identification is to find the parameters of the system by using
known inputs and outputs. In this thesis, unknown system is the helicopter.
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Figure 1- 1: System Identification

Process

The general approach of the system identification process can be descriheigase t 2. To

excite the desired rotorcraft modes during the flight test, specific control inputs are designed.
Responses ofhe rotorcraftto these input@are measured and recorded. By comparing the model
predicted response and the flight measured response ddesice| parameters are estimated.

A coordinated approach to flight vehicle system identification can be divided into three major parts
[4:

1 Instrumentatiorand Filters For the flight testing, data gathering is very important. Flight
data is gathered by using the flight data acquisition system. Flight data acquisition system
can be composed of the ground and/or airvehicle bassgbrding equipment.
Instrumentation and filters are part of the dadthgring procesdn order 6 obtain the high
data quality, instrumentation and filters are properly used

9 Flight Test Technique Flight test maneuvers should be determined according to dynamic
response of the airvehiclln order b excite the airvehicle dynamic modes, suitable inputs
shouldbe cover the frequency range of interest. Hetlw case obptimal input desigrof
the airvehicle may be required

1 Analysis of Flight Dataln order b analyze the flight data, mathematical model of the
airvehicle and ystem identification method should be properly chosemknown
parameters are estimated by minimizing the response errdal lmitknown parameter
values can be used to obtain the best solution for the identification process.

Jatagoankar4] explained he most importantspects of system idéfitation, namelyfi Q u-&ld

basics.QuadM consists of the maneuvers, measurements, models and mefagtisof that is the
requirement for the system identification procedfigure t 2 shows the Quat¥l requirements to
identify the unknown system or unknown parameters.

Maneuvers: Design of the control input in order to excite all modes of dhreehicle dynamic
system thatvill be identified



Measurements:Selection of instrumentation and filters for high accuracy data acquisition
Models: Mathematical model of the unknown system should be selected
Methods: Time domain or frequency domain system identification methods are used to identify the

system. In this part, more suitable estimation method is selected. A priori parameter values and/or
constraints of the parameters are also used for obtaining the timstties results.

M anoeuvres Actual M easurements
_ Input |_Response o |pata Collection
Optimized >|  Vehicle '

& Compatibility]|

Input
I—)‘

M ethods Parameter Estimation

A Priori Values, Estimation Identificati \
- ) | entification -
lowerfupper > Alg_or_lthrrj/ < Criteria e O
bounds Optimization E
Parameter

M odels Adjustments
Model Mathematical Model Response
Structure _MOdEI_/

Simulation
A

Identification Phase

_______________ 2
Validation Phase
Complementary Model
Flight Data Validation

Figure 1- 2: Quad-M Basics of Flight Vehicle System Identificatior[4]

Test Inputs

Proper control input design is important, because the accuracy and reliability of parameter
estimation depends on the amount of the information available in the flight vehicle redponse.
general,optimal control input means best excitation of the frequeange of interest. Optimal
control inputs should béhe ones whichmaximize the information content for minimum
maneuver time and minimum peak response. There are some limitations to design optimal input
because input design process is based on akprawledge of the model structure and dynamic
response characteristidéthe systemmodel structure and dynamicodecharacteristicare not

known, rough guesses cde used fom good initial estimateo design the optimal inputsd[5]

Based on these practical consat@ns, several signals can be found in literaterg, step,
doublet, multstep 32-1-1, Mehra, Schulz, Delft University of Technology (DUand Langley

inputs. Although the 2-1-1, Mehra, Langley and DUT inputs are more efficient, the doublet
input isoften used due tds simplicity. Since the multistep-3-1-1 signal is easily realizable

and relatively easy to fly manually by pilots, this signal remains as the one most accepted by the



flight test community. Moreover the31-1 signal and its variantsave been highly successful
in time-domain system identification applications such as Maximum Likelihood mefddd.
Figure * 3 shows the spectral density of the step, doubl2t13l and improved 2-1-1 inputs
with respect to normalized frequentyYo. It can be seen that-B1-1 input has vder
frequency range according to other signals aFibare % 3.

Another optimal input well suited for identification of transfer function modeld frequency
domain identification methods is th&chrodephase signal This signal composed ofulti
frequency wave formit haslarge number of harmonics at equal frequency spa@noroder
phase signahas also aery flat power spectral densitidence this signal is usddr especially
frequency domain identification methods. This signall& called"frequency sweep input
signal'. However relatively long maneuver timean be required for applying this input.idt
has also restriction witkingle axis excitationMoreover airvehicle can be easijeparedfrom
the trim condition by applying this input to airvehiclen addition, during the sweep testjng
critical flight incidence resulting from aeserveelastic interactions and exceeding the
permissible loadshould be avoidef#, 5]. At the Figure % 4, example of the frequency sweep
input can be seen. FroRigure 1 3 andFigure t 4, it can be seen that frequency sweep input is
applied to longer time than31-1 input.
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Figure 1- 3: Comparison ofthe different input signals [4]
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In this thesistime domain system identification methodstput error and leastjsare methodsre
used Multistep 32-1-1 and sine sweepnputs are employedto excite the rotorcraftDetailed
explanations are done in the related parts.

Applications and Examples

In the literature a lot of examplegor system identificatiorof different kinds of systemsould be
found, but the examplegpresented in this thesare related tair vehicles System identification
results are used for validation and update of siimh models, handling qualityanalyses and
automatic flight control design applications.

In 1972 Taylor andliff [6] tried to obtain a generic algorithm and develpodefor linear and
constant coefficient systems and also to give an example of the determination of the lateral
directional aerodynamic deatives of the aircraft. They claimed thatdar rggression methods such
asleastguare and Shinbrotds met hod, are good to mat
is a convergence problemmaking itdifficult to solve the equations because theg nonlinearThey
showed thaby using themodified Newton Raphson method (quasilinearization) this prolem

be eliminatedin the same year they explained this phenomén@motherarticle [7]. In this study

five different methods, namelgimplified euations, analog matching, leasjuare, Shinbrét s
methal and modified MwtonRaphson rethod, vereused to determine the stability derivatives of

the state equations of three different airgafthich are alight general aviation airplane, a large
supersonic airplane arallifting body vehicle. They encountered convergend#ficulties when

there wee more than a few unknowns, babdified NewtonRaphson method was used to secte

in sohing the convergence problem. Another important advantage of this method is that it does not

necessalry measure all components of the state variables and their érvatives.[ /]

Another application of the system identification on\ahicle systems is simulation development

and validation. In 2001 Cicolani, Sahai, Tischler anal. published an article related flight test
methods and results, and the simulation model and validation results 60A/Hnd UH60A with

slung load 8]. In this article, idatification computations are done by using the CIFER software for
interactive frequency domain analysis and frequency sweep input is used. By using the system
identification techniquebandwidth and phase delay parametees obtained. These parametars
important for modern specification of thandling quality.

Rotorcraft System Identification



The identification offlight vehicle dynamic models from test data has some difficultreamely
limitations of the flightdata measurement systgntestinputs, signal to noise ratio, and test record
length. Identification of rotorcraft is perhaps more challenging than other system identification
processesBecause these vehicles have a wide range of possible configurations, from small ducted
fun to tilt-rotor aircraft, single and tandem helicopters, and helicopter -$taugconfigurations4,

5, 8] Many rotorcrafs exhibit a highorder dynamic response because of the tightly coupled
dynamics of the fuselage, ro®rinflow, engine,etc. so that typical low order approximations of
fixed-wing aircraft responses do not apply. Inputs in one axis generally produce responses of
comparable magnitude in all axes, referred to cross couplingefdhe decoupled longitudinal and
lateral responsess infixed wing, are not validOther difficulties are due tohigh signal to noise

ratio for near hovering maneuvers, unstable pitch and roll dynamics, and high levels of noise in the

measuremestcaused by vibration and atmospheric disturbafbgs

1.2 FLIGHTLAB

FLIGHTLAB is a commercial software program developed by ART for modelingsandlation of
dynamicair vehiclesystems. It supports modeling of dynamic systems from a predefined library of
modeling components. Each component is an independent dynamic elememis suspring, a
damper, an airfoil section etc. These componentseainterconnected in arbitrary architectures to
model any desired dynamic systeviehicle specificvaluescan be assigneas the parameters of the
components allowing a wide range of complex models to be built from a common library of
modeling componentghat have been pmefined, programmed and tested for reliability.
FLIGHTLAB also provideghe possibility ofmodifying the basic modeling components and model
templates and building new components by using SCOPE whiahhigh level module of the

FLIGHTLAB. [9]

FLIGHTLAB simulations consist of two procedures, building a model by using FLME (Flightlab
Model Editor) and CSGE (Control System Graphlgeditor) and performing analysis and simulation
of the model by using XANALYSIS (Analysis and Simulation Model). FLME is a data entry tool for
entering rotorcraft simulation data. CSGE is an tbasedtwo dimensionalgraphical editollike
MATLAB SIMULINK that provides the user with the ability to design and build control system
schematicsn block diagrams. XANALYSIS is an Xvindows based graphical user interface for the

analysis of dynamic system models built under the FLIGHTLAB environngnt [

In 2011 Vitale, Genito, Federico and Corrald®][from Italian Aerospace Research Center, CIRA,
published an article which is related to rotorcraft identification using the hybrid approach from flight
data. In thisstudy casethe flight velicle is UH-60 Black Hawk helicopterTo apply the system
identification procedure, instead of flight data, simulated data generated by FLIGHTLAB was used.
Similarly, in this thesisFLIGHTLAB software environment is aed for flight data generation.
FLIGHTLAB nonlinear simulation results are used to compare the system identifieatidyses
resuls; moreoverthese results am@so used to evaluate the system identification approaches.
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13 UH-60 HELICOPTER

The word helicopter i s adapted
d'Amecourt in 1861, which originates from the Grdelix/helik- ( ~
pteron ( 0U0iphs) = "wing"

from the French
9 3) = "tandsted, C

Helicopters are categorized as rotary wing type aircraft, because their lifting and contreling
aretheir rotor systera. Helicopters cago forward, sideward, up and down like aircrafts, in addition
to thesethey cando some extrgpecialmaneuvers nameligover,backward flight,vertical takeoff
and landingHowever,helicopters have some limitatison speed and altitude.

In this thess, for the system identification analysftight data are generated frotime nonlinear UH
60 Black Hawk helicopter model in the FLIGHTLAB software environment. Model consists of
main rotor, tail rotor, airframe, aerodynamic surfacestaitghropulsioncomponents.

Main rotor of the UH60 is modeled as articulatewtor system incluthg flapping and leadag
motions and blade element method (BEM) is used for modeling. Rotor inflow is modeéted
PetersHe Six State inflow. Tail rotor is disk rotor model with collective control only. Airframe
and aerodynamic surface modelingrisdeled withparametridablesof force and moments. UH0
has two General Electric turboshaft engines, T@E700. Engines have Digital Electronic Control
Unit (DECU) andHydro Mechanical Unit (HMU)[12]
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Figure 1- 6 : UH-60 Helicopter

The simple control system isomposed of longitudinal and lateral cyclic, collective and pedal
controls. Control inputs are transferred to rotor swashplate mechanism by mechanical linkages and
hydraulic servos. Outputs of the cockpit pilot controls are transmitted by mechanicag|bokpidpt

assist servos to mixing unit. Then these inputs are summed and coupled by mixing unit and outputs
of the mixing unit are carried by mechanical linkage to main and tail rotor controls.

The UH60 helicopter haalsoan Automatic Flight Control $stem which is composed &tability
Augmentation System (SASJTrim, Flight Path Stabilization System (FP&)d Stabilator System

The UH60 incorporates two SAS systems to help maintain a stable platform in flight. SAS 1 is an
analog system and SAS 2adligital system. Both provide short term rate dampening in the pitch,
roll, and yaw axes. Operation of the two SAS is essentially the same. SAS 2 kdiaggedbtic
capabilities where SAS 1 does not. The FPS system provides long term rate dampeminmtah th

roll, and yaw axes. FPS provides basic autopilot functions using the trim actuators to maintain
attitude in the pitch and roll axes, and heading hold/turn coordination in the yaw axis. The trim
system is comprised of three trim actuators. Theamdl yaw trim actuators are electr@chanical,

and the pitch trim assembly is eleetrgdromechanical. The trim system by itself provides a force
gradient in the pitch, roll, and yaw ax&he stabilator is a variable angle of incidence airfoil that
enhamres the handling qualities and longitudinal control of the aircraft. The automatic mode of
operation positions the stabilator to the best angle of attack for existing flight confllt#hns

14 OBJECTIVE OF THE THESIS

One of the goals of this thesis is to generate a linear helicopter system identificatioratriooledr
condition This model hasomesimplifications and assumptions, which are explained in Chapter 2.
Beside of that, main goal of this thesis is to identify helicopter stability derivatives and to evaluate
and determinghe system identificatioapproachfor helicopters andinally to conpare the results

with "nonlinear simulation dataAs an outcome of this thesiglentified simulation model can be
used for stabilitycontrol and handling quality analysis, designing control system and also updating
the simulation models.

15 SCOPE OF THE THESIS

The following chapter is devoted to explathe developnent of a general system identification
modelfor helicoptersin chapter3, two time domainsystem identification methadvhich are output
error and leastcgiare methodare presentedlhese methods are applied to the identification of a



helicopter based on data obtained from FLIGHTLAB software. The linear system identification
model obtained is compared with the Asrear simulation, and discussions on the success of the
approach arerpsented. The last chapter summarizesfittding of this thesis. Future work is also
given.
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CHAPTER 2

MODEL S FOR THE IDENTIFICATION OF HELICOPTER FLIGHT
MECHANICS

In this sectionlinear systemidentification modelof different order and complexitgre presented
Becauseherotor providesthe lift and contrad the helicopter, rotor dynamics and rotor body coupling
modeling are very important pag of the system identification modefor a classical fixed wing
aircraft, longitudinal and lateral coupled dynamics can be ignardiuncoupleddynamicsof these

can be examined separately, since fixed wing aircrafts do not have highly coupled dynamics.
Howe\er, helicopters have highly coupled dynamics and this isntbstimportant point to obtaim

high fidelity helicopter simulation modeMany studies in the literatufgl, 5, 13, 14, 15, 16] about
helicopter system identification modley and simulations show thathe low order system
identification models have a good fit with the -@axis flight test data but do nbiave avery good
correlation with the offixes. Moreoverthese models do not reflect high frequency responses as good
as the higher order system identification models. This phenomemrspésiallycrucial for designing

the high gain stability and control augmentation systétegiarding these, low order models can also
be used for simple simulation and stability analy$®; L7]. Therefore depending omelicopter rotor
dynamics and aim of the warHlifferent kind of higher order models were usgdJatagaonkard],

Tischler ], Fletchler [L8, 8], Mettler [13], Zivan [19], Ivler [15] etc.

In addition to the classical low order 6 degree of free@@oF) quasisteady modeljatagaonkard]

also defined arxtended model which includes the rotor body dynamics especially for time domain
sydem identification applicationgzigure 2 1 shows the extended model structure. The state matrix
consists of the fuselage, rotor and revody coupling termsTischler B] defined ahybrid model
which also take into accountrotor body dynamics, coning inflow dynamics and yaw engine
dynamics. In addition to these models, Fletchled] [defined al4 degree of freedom model which
contains 6 rigid body degrees of freedom, main rotor longitudinal and lateral flapping adddead
dynamics, vertical dynamic inflow, main rotor émg angular rate, engine torque and engine fuel
flow. These models hava good correlation on the akis flight dataresponse and also provide the
high frequency compatibility to design the stability and control systanthe sense of these the
expectabn is that the higher order model is better thhaelow order model. Howeverni 1982,
Hansen 20] examined3 different order model$or CH-53A helicopter First model includedhe
conventional 6 degree of freedom rigid body dynamics and second orgeatthiplane dyamics.The
second mdel consistedf the amended 6 degree of rigid body dynamics, second order coning and
first order tippath plane dynamics. HE third 8 degree of freedonmodel included 6 degree of
freedom rigid body and a simplified tjgath plane tilt dynamics. As a reswif this work, Hansen
concluded that amended 9 degree of freedom model has better predictions of the helicapisr off
response and usable bandwidth, wher@akegree of freedom model provides the better gbenibd
eigenvalues andith many stabilityderivatives.

11
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Figure 2- 1: Extended Helicopter Model Structure[4]

2.1 FORCES AND MOMENTS ACTING ON A HELICOPTER IN
FLIGHT

There are many helicopter configurations with different sizes and shapes. Fuseldggn different
sizes and shapedepending orhelicopter missionAlso the aerodynamiforce and momentapplied

on the fuselagean be assumeakclassical aircraftigid body aerodynamic force and moments. The
main rotor is the most important part of theit@bter andthere may beeither single ortwo as in
tandemrotor and coaxial rotorThe main rotor provides th lift force and also controkhe helicopter

by theswashplate mechanism. Anitirque system can be tail rotor, famtail, NOTAR, another main
rotor. As a classic helicoptetJH-60 which isutilized in this thesishas a tail rotor configuratiofhe
horizontal stabilizercan be considered as a wing ahdrovides the lift to help the longitudinal
stability of the helicopter especialiy the forward flight regime. Moreovgthe vertical tailmay also

be congilered as a winghat helpsthe directional stability of the helicoptdfigure 2 2 shows the
forces and moments actirgn thehelicopter[17]. Forces are indicated X, Y, Z directions and for
each force component is denoted by subscript of the first letter abthponentFor example, main
rotor X force is denoted a8 and horizontal stabilizer Z force is denoted:as Moments are
indicated as., M and N according to X, Yral Z axesrespectively Also their notation is the same as
the forcesln addition to these force and moments, there are highly coupled interactions between the
main rotor andbther componentsiamely fuselage, tail rotor, horizontal stabilizer and vertical fin and
also engine governor dynamics.

Helicopter, hasa varying mas and flies in the nestationary air so thathe force and moment
componentsacting on its bodyare changingvith aerodynamicpropulsive and gravitationdbrces
Because othese situationsvhen aerospace vehiclesre modeled, some simplifications afene to
simplify the calculations. These assumpticaslisted by Morelli 1] arefollows:

Thevehcileis a rigid body

The air is at regtelative to the earth

The earth is fixed in inertial space

The earth surfacis flat

Gravity is uniform;vehiclecenter of gravity idixed.

E I ]

12



Force equations are derived from the Newtonds

follows, [21]

Ai 6

5 (2.3)

where F is the total external force vector, m is the mass and the Vtiankttionalelocity vector.
Here superscript represents the inertial framk.this formula is converted to body axis coordinate
system, it camerewritten as[5]

& & A6
I I AO

where F is separated as gravity and aerodynamic forces iartie body angular velocity.
SuperscripE represents body axis.

Themoment equations are alderivedby using the Newtonbés Sascond

Ay
=0 (2.3

where M is the total external moment vectois the angular velocity ands the inertia tensor of the
system. If this formula is converted to body axis coordinate system, it can be rewritten as

A)¥ .
A0 1 O (24

- is the external aerodynamicoments vector.
These expressions are converted toyteds coordinate system because measurements are made in

the body axis system and inertia tenk@ constant in body axes, but it is a function of a time in
inertial axes. Thus body axis components of these vectors can be expressed as
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Figure 2- 2 : Forces andMoments Acting on Helicopter[17]

2.2 EQUATIONS OF MOTION FOR HELICOPTER

Forces and momentorresponding to inertia effeelssociated with accelerations (linear or angular)
and combinations of velocities, three force and three moment equatigrise written as[17]

o7 e
8 8 8 8 8 70fl 0 WO W (25)
A A
9 9 9 9 9 7O U @ B (2.6)
7ATTO LU & B @.7)
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These nonlinear equations do wiirectly include rotor dynamics such eaning, flappinginflow. By
usinga fi gsutaesaadsyniption,number ofdegres of freedom is eliminated and forces and
moments ofhe rotor prodce instantaneougsponse to control input¥his means that time constant
for flapping of rotor blades is neglectetl7]. This issueis examinedin the rotorbody coupling
section

Figure 2 3 shows the sign convention ftre forces, momentsaangular displacementselocities and
accelerationsccording tothe body axes coordinate system. Origin of this system is the helicopter
center ofgravity (cg)and xaxisis pointing forward to nose of the helicopteraxis pointing the right
when looking to the rear of the helicopter aralxisdown to earth

For the system identification 6 DoF (degree of freedom) getesidy linear models, nonlinear
equations of motion are converted to linear equations of motion by using the small perturbation
theory. According to this theory, this linear model is only valid fomlsmhanges around the trim
conditions.

For example, lateral nonlinear force equation can be linearized as follows by using the small angle
assumption and also in terms of the stability derivatives.

T
9 70&I LU @® ® (2.11)

This equation can be rewritten by using the small angle assunipt@derto linearize the products
of the variables.

u @ Ww (2.12)
Y

9 70 EO OO0 @O x b xb (2.13

Initial conditions are the trim conditions seetfollowing velocities are zero.
N b O =

Moreover Y lateral force can be written in a Taylor series of the stability and control derivatives
multiplying corresponding velocities and control inputs. Stability and control derivatives are partial
derivatives of the specific aerodynamic forces and mometitsrespect to the variations in the states
and controls. Stability and control derivatives related to forces can belimemsionalized by

dividing to aircraft mass and the derivatives related to moments can be&imensionalized by
dividing to inertiasFor examplé and, can be written as

(2.14)

3l 3
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Other forces and momentan be linearized by using the same procedatlatsystem identification
6 DoF quassteady lineamodelis obtained.
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—0 90 90 9 x 9N 9 —x b 9 — 0O O 710
C C C (2.18
9%d 9d 91 9~
rY(I) O D [A) ® 0 ® U ™ 2
W O ® v () () Q m,
I (b (b (b W (b (0] (,1) Tt TN
I "\ N N N N |”|
T A
L ) 0 0 0 moT,
Il’.'J l’.'J 6 6 0] 6 Tt T
Mt o« P 3 3 nm o mh
Um 1 T g i n nV
8 8 8 8 (2.19
1B % % VR
: : U “u “u u ::
: : fj L] fj L] fj L] fj I:I é
I-I D ) 'j ) 'j ) 'j I’l
o U . Can
1o T T m N
U T T n U

where staterectorand input vector are respectively as

@ O0O6x PpNOUGd
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And the output vector js
WNj 6 0x PR OG d

Here, subscript @epreserd the trim values of the parametek$ence,total number of the unknown
system parameters €.

2.3 ROTOR-BODY COUPLING

In order b obtain a linearized 6 DoF helicopter model, quasi steady assumption is used to ignore the
rotor lag dynamics fohelicopters which have small hinge offset. For helicopters which have large
hinge offset, this assumption is not practical and the tesfithe linearized system may rmgood.

For thisreasonrotorbody coupling dynamics added tdahe classical 6 DoF linearized modki.the
literature, here are twanainmodeling approaches of the rotoody couplingn the literature namely

hybrid modeling and extended rigimbdy and rotomodeling §,5].

These system identification models are suitable for the high frequency response range and also for

hover and forward flight regimes. Hybrid modeglclaimed tdead to an accurate identification in the
0.2 to 30 rad/sec frequency range with good accudapgnding on the achievementthé test[5]

17



Hence if a high bandwidth modeils required the system identitation model should be extended
High bandwidth models can be used for the applications of flight mechanics, simulation, autopilot
design and handling quality analysidence, system identification model shollé determined
depending on the purpose of the identification

Hybrid model structure has the 13 DoF @hdan be obtained by extenditige classical linear 6 DoF
modelwith [5]

coupled fuselage/regressiflap dynamics which has 2 DoF
coupled inflowconing dynamics which has 2 DoF
leadlag dynamics which has 2 DoF

engine torque response which has 1 DoF

E ]

On the other handatagaonkar4] usedextended rigid bodyotor and rotor dynamicsiodels with9
DoF. Moreover depending on thpurpose wake, turlkence or any requiring model még addedo
this extended model to improve the accuracy

In this study, 8 DoF linear model obtained by using the coupled fuselage /regrestiyedynamics
adding to classical 6 Do#s used to identify UFB0 helicopter in hover case.

24  FLAPPING MODEL

Rotor blades have mainly three motiofdapping, leadag and feathering (pitching motion). As
shownin Figure 2 4, flapping motion is the up and down motion of the bladmundflapping hirge
at the root of the blade. Ledalg motion is the forward and backward motion of the blwendthe
lead lag hinge and finally feathering motion can be described as the pitching raagiond the
feathering hinge

C]'* Lag hinge

(S
Flapping
L‘_‘_‘_‘-‘-‘_""‘-—-‘
. . Lagging
Flapping hinge
Feathering

Pitch change
(or feathering) hinge “="— "

Figure 2- 4 : Hinges of the Articulated Rotor [25]
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For high fidelity model applicationgspeciallyfor designinghigh bandwidth control systems, effects
of the rotor time delaynay be added to the classical 6 DoF helicopter model. In the literdhene
are many studies abouthiesehelicopterflight mechanicsmodels with flapping effectsThey are
capable of predting high frequency responsesore accuratg than the classical 6 DoF moded b,

18, 8, 15, 22,.

Rotor motion 6 the helicopter is modeled alisc or tippath planewhere coupled tippath plane
dynamic equations are derived by Ched][ Tip-path plane of motion is described by the conning
angle { ), longitudinal flapping anglg ( ) and lateral flapping anglé (). Figure 2 5 shows the
sign convention of these tjpath plane motions.
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Figure 2- 5: Rotor Disc Motion [26]

There are two approaches for modeling the flapping dynaimigdicit first orderflapping model and
explicit second ordeflapping model 44].

According to implicit first order model, there is a high coriielatetween the flapping motiaf the
tip-path plane and the body angular accelerations. For exafopleelicopters wit rigid rotors and
high hinge offsets;oll acceleration and lateral flapping canébgressed as

b ., b (2.20)

D ,, b (2.21)
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D ,, b g 0P b Sch (2.23)
D , D ,b ,; i (2.24)

wherel repreents the new lateral systerarpmeterJ is the flapping time constasind] is the
control input at the root of the bladehese equations mean that step control input leads to a first order
response of the rotor itselMoreover, control inputouples with the body response driven bg th
rotor flapping B]. Similarly, these equations can be changed fer ltngitudinal flapping motion.
After these implementatienthe new state terms are appearedbasndN hence tip-pathplane
dynamics is modeled implicitly.

Tip-path plane dynamics can also be modageplicitly. Actually thesedynamics hae three second
order flapping modes. Two of them are the lower frequanoge andhe higher frequency mode
which are related to longitudinal and lateral flap angéspectively Third mode comes from the
coning flap responséHowever second modevhich isthe higher frequency mode abqut q ,

for UH-601 v T I 'Qds much higher than flight dynamics and control mode frequencies.

Third mode isthe important mode for the flight dynamics and controls especih#iyertical degree

of freedom. p]. However first order zero flap response gives the nearly same results as thé secon
order flapping mode in the baxis. Hence flapping response can be accurately modeled as two
coupled first order equatior|®, 26, 27]. Accordingto this result, tippath plane equations can be
rewrittenby dropping the flap and fuselage angular accelerations.

P , E . fE , #E
p - . T E - E
b Ub Y b N ¥ u ¥ u (2.26)

Here, £, - /£, , £ and- £ are coupling terms.

Rotor time constant), can be calculated theoretically. Time constant is a function of the hinge offset

andeffective Lock number and it can bgpressed as [27],

p IR

- — 2.2

U po P aY (227
where e ighe hinge offset, R is radius of the rotor,is the angular velocity of the rotor ahds the
Lock numberUnit of the time constant is secorichck number is a nondimensional paetar which
represents the rataf the aeodynamicforcesto centrifugal forces.

BN A
r —5 (2.28
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However timeconstant should be corrected for the influence of dyndnfiow. [5] Curtiss[28]
replaces the geometric Lock number do effective or reduced Lockumber for taking into
consideration of the dynamic inflo\&ffective Lock number denoted as.

, [
N Py (2.29

P —_—

Py

where ,, is the rotor solidity and is the nondimensional inflow ratio.

Solidity can becalculated as

E W

" Ty (2.30)

Here¢ is the number of the blades. Trim inflow ratio is obtained from momentum theory and it can
be expressed ag5]

o (2.31)
C

where 6 is the trim thrust coefficient.

In hover case, effects of the correction on the time constant are importaovdnwith correction

the rotor time constant is increasing about %50. Moreover most hovering helgbpterthe time
constant between 0.10 and 0dépending on thainge offset. If the time constant is closer to 0.10
helicopter can be classified asmall hinge offset helicopter and if the time constant is closer to 0.15,
helicopter can be classified atarge hinge offset helicoptes]|.

UH-60 helicopter has the 0.1265 time constant for hover condition. So it can be classified as small
hinge offset helicopter.

In the identification process rotor time constant is a free parantetstimate Rotor time constant
has a single value for tHengitudinal and lateral flapping equations, so the constraint for the time
constant can be used in the identification process. Moreover at the begifirthngy identification,
time constant which is calculated from previous formulations can be usedtiak vialue of the
identified time constant2p]

The rotor fuselage coupling terms are the rotor force and moment stiffness whigh arel 9, for
the roll and lateral degrees of freedom ang and8; for the pitch and longitudinal degrees of
freedom. There is a relation between the longitudinal and lateral force springs terms as

% 8p (232

21



Moreover these force stiffness terms theoretically equal to gravity constant. However these terms can
be free to identify because of the uncertainty of thdocadrtenter of gravity locatiofb]. In this study,
the vertical center of gravity locationassumed to bkenown.

In this explicit flapping model, there aimportant points First, the quassteady derivatives and
lateraland longitudinal inputs in the state equations are omitted. These derivatives arstepasi
rotor moment derivatives whiclare, h, h- PAT A , quasisteady rotor forceand moment
derivatives which are; h,; h- 3 h ; h8; h8; ; AT g . As mentioned before,
omitting classical quasiteady terms are a result of the 6 DaxgSumptionshat models the rotawith

a simple time delay. Hence by using the explicit flapping model, these staasdly derivatives are not
necessaryn the 8 DoF modelMoreover there is no need farsingthe longitudinal and lateral cyclic
input terms because they are modeled as lodigiali flapping anglep , and lateral flapping angle,
b . Forces and moments are transmitted by these longitudinal and lateral flapping responses to the
fuselage with associated flap spring terms which8gre and 9, , respectivelyHowever there i
quasisteady force angular derivati# which is retained to account for thail-rotor effects even
thoughthe explicit flapping model is usefb, 8, 17, 18, 19

Second in the explicit flapping modeinstead of the all rotor equations, omggular shaft motions

are taken into account. Hence, flapping response to translational velocities and effects of the rotor
force and momestresulting from translational dynamics on the fuselage are remaining in the 8 DoF
model. These speed derivatives, sucB d® i h etc., are related to low frequency responses, so
thatrotor time lag is not important her, 8, 17, 18, 19|

Finally, if explicit flapping model isadded to the quasteady 6 Dofmodel, 8 DoF model is obtained
as
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where staterectorand input vector are

i O Ox DNOGIdDb b

And the output vector is,
oNj OO6x PNOGIdDH b
Here subscript @epresergthe trim values of the parameters.

In this thesidinal mode] which is 8 DoF with flapping dynamicthe unknown system parameters are
56. The number of the unknown parameters can be much higher to identify the peraoeestly.

In addition to identifyng these parameters with outperror method their initial values are very
importantfor identifying the best values of the parametdence,in the identification procedure,
proper constraints may be applied to somknown parameters. Moreover, known system parameters
are taken as fixed parameters to reduce the number of the unknown parameters.
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CHAPTER 3

IDENTIFICATION METHOD S

There are two main systeidentification methods in the literaturerdguencydomain methodand
time domainmethod In time domainsystem identification methods can be classifiedenrtédlo main
headings. They are filter output error and output error methods. In this study, eutpunhethodis
used for system identificatiorFurthermore, classical leasiumre method is used to find the initial
values of the parameters which agbsequentlysedin the output or method. In this séion, the
general structure of outputrrer method, cost function calculation and optimization, stafistic
accuracy approaches and the legstse method are explained.

3.1 OUTPUT ERROR METHOD

Output eror method often used in system identification methodshénl®70s, Taylor and lliffg, 7]
used this method and has been sgstul in identification of thgparameters of aaircraft. Later,
Jatagoankard] and Morelli 21] used the Outputrror method in thie studies for the identification of
linear and nonlinear systemk the literature,althoughmost of the studies are done the time
domainidentificationfor the fixed wingaircraftidentification, inthe time domain outpwrrormethod
is also used for the helicopter identification proccess

In this part, atput error dgorithm and the formulatiorare described.In addition to these,
optimization of the cost function usddr GaussNewton method is also explained heFénally
statistical measurements of thecuracy of the parameters and legsiase method angresented

Figure 3 1 shows the output reor method. System identification inputs are applied to the
FLIGHTLAB non-linear model and then ndimear responses are gathered. Bover, identification

inputs areapplied to 8oF linear modein hover flight condition. Theseesponses are compared with

the nonlinear simulation responses to calculate the errors. By using these output errors and
optimization algorithmparameter values are calculatéthknown parameters are upeld and these
updated parameters are used identificatimdel so that identification model responses are updated.
Output errors are again calculated and cost function is optimized. This cycle is continued up to
obtaining minimum cost function
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UH-60 Helicopter Measured Resoonse. z

B
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¥

(FLIGHTLAB Nonlinear Model)

& DoF Linear Identification Model —..GFD

ry Outputs, y

I Error, v

Parameter update by

(z-y)

r

Optimization of cost function

Figure 3- 1: Output Error Method Diagram [ 4]

3.1.1 THE MAXIMUM LIKELIHOOD FUNCTION FOR ESTIMATION OF
PARAMETERS IN DYNAMIC SYSTEM

System identification is a statistical method and it depends on the estimation Feoprobability
density function of @which has a Gaussian distribution and a real random variable is written as

p -

N 6 F'Q (3.2)

Here,n| @ represents the probability af & and, are represent the mean and variance respectively.

Mean and variance can be also expresséd, &4, 3(],

a Ow

where E is the expected value.

If the variables are more than one, joint probabiiistributionfunction is used and these variables
are independent variabl€Ehe joint probability distribution function for n variable can be written as

p(® FE Fo

—Q0h-® & Y & & (3.2)

where (FE fw o represents the variables arid fE & represents the mean values
of the variables. Moreovely is the covariance matriand its elements are calculated 421],

2 %g i @ 0  Khm
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m are called as correlation coefficients.

For nonparametric system identification, maximum likelihood function which is based on the Fisher
Estimation Model is widelysed. According to this moddkélihood funcion can bedefined as the
conditional probability density function and it can be writtsrfollows #],

PUsd DPUsd PUsd EDU sd (3.3

Here z represents the given N samples of random observationg esnthe unknown value of the
parameter vecto® Usd is the probability of z giver®. According to The Maximum Likelihood
Method which is also known as Fisher Model Estimator, optimal solution for the unknown parameters
vectoré probability of z givert should be maximized'hus the solution can betasated as following
expressiori4, 21].

d A Ot;déﬁ b Usd (34)

Assuming that probability density function of z givis twice differentiable function and according

to estimation method its first differential function should be equal to zero. Then the linear Taylor
series expansion can be appliabundd to first dfferential function of the probability density
function of zgiven#®. These expressions can be written as

sd

7 T (3.5

sd sd sd
i 7 i yd (3.6)

whered d  Ydis the improved approximation of teThesewo expressions can be coméd
and then written as follows,

sd sd
. ——yd (3.7)

This system of equation can be solved byvusingmn'ynization technique to find thenprovement
vectorYd. Expected value of the coefficient ¥dfis called as the Fisher Information Matr#, 21]

Assuming thatparameter vectof and errorwhich is expressed a@ U U has a Gaussian
distribution so thathe mean and covarianoeatrix can completely determined. Moreover assuming
the error is independent at different time poifitsen mean and variance of the error, are
%A T
#1 & 2

For the Gaussian distributionf the parameter vector and errtine conditional probability density
function takes the forras[4],

pUsdie ¢ @ A@ag UE UE 2 UE UE 3.8)
wherel is the dimension of measurement vector Hrisl the number of measurements.
Jatagaonkaf4] and Morelli[21] suggest that when doing minimization to find the optimal solution

negative logarithm of the likelihoddinction 1 Usd 2 , can be used. Because the negative logarithm
of the likelihood fuetion is simpler than thdensity function itself. Moreover the differential of these
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density functions are equal. So that when constructing the output error algorithm negative logarithm
of the likelihood function is usedt can be written as,

P Usdi2 k 1 Usdre
P
C

UE UE 2 UE UE EI AAD (3.9)

Application Maximum Likelihood Function to Outggrror Method

As discussed before, the mathematical system identification model of the helicopter can be expressed
as linear stat space dynamic system. In this case there is no process noise and the system can be
described a®llowing expressions.

0 1@ " OO (3.10
ud #ad $8O (3.11)
UE UE G&E (3.12)

wherez is the measurementutputs, @0 @ is the initial condition anat is the error which as
zero nean with covariance matrk, that is[4],

%OE 0and%OEO E  2u

where U is the Kronecker delta which means that pforE Eandli mforE E

Now negativelogarithm of the maximum likelihood functigh Usdf2 , can be used to find the
unknown parameters of the system identification system. For general conveniencesriegatithm

of the maximum likelihood functiom) Usdf2 renamed as the cost functi@s*. To obtain the
optimal unknown parameters solution, cost function can be minimized like mentioned before as
Maximum Likelihood function by differentiated twic&he likelihood cost function or negative
logarithm of the likelihood function ig}, 21],

4 Usdie  *d

p S
- UE UE 2 UE UE EI AAD (3.13)

a0
N

3.1.2 COST FUNCTION OPTIMIZATION

Cost function optimization is based on the known measurement noise covariance and unknown
measurement covariance matrix. In this thesis measurement covarianceisnatrknown and the
optimization is done according to this case.

First, likelihood costudnction, equatior8.13 is differentiated with respect to R and setting the result

to zero and then the following equation is obtained.

> P ue UE UE UEe (3.14)
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For obtaining themeasurement covariance matrix, likelihood cost function caexpeessed again as
[4],

| L1 RAS i (3.15)
C C

*d

N |
>

There will be applied as assumptitimat the measurement noise sequenfe the I measured

outputs are uncorrelated with one anoth@d] [With this assumption the calculation efficiency is
higher than before. Hence the first and last terms become a constant and they can be neglected without
affecting the minimization results. Final likelihood cost function becomes as

*d AAD (3.16)
When this cost function minimized with respec#toy using the optimization algoriththe unknown

parameter vectod can be determined. In this thesis optimization method is chosen as Modified
NewtonRaphson Method. It is detailed explained next topic.

3.1.3 MODIFIED NEWTON -RAPHSON METHOD

Modified NewtorRaphson method is an iterative optimization technique to find the zero points of the
nonlinear function. In this case this method can be used to minimize the cost function.

Partial differential equation of the cost function with respegarameter vector,is

i RE

3.17
= _FdZUE UE 1 (3.17)

The system responsecan be expand by usingthetvee r m Tayl or 6 s like,eri es expan

. . 12
— 3.18
UdeUd = yd (3.18)
where
yd d d (3.19)

This quasiinearized (first ordeapproximation) equation is substituted to the first partial differential
cost function equation and then the equation becomes

TUE L TUE TUE .
— — - 2
— 2 UE UE — 2 =z Yd m (3.20)

After these manipulationsystem consists of the linear equations and they can be solved easier than
before. The first term of the left hand side is the gradient vector and the coefficient of the parameter
changevector, Yd, is the Fisherinformation matrix. Hence to find the upedt parameter, firstly
gradient and then information matrices are calculated and then parameter change vectsolvad be

by using these matric¢4, 5, 21].
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3.1.4 STATISTICAL ACCURACY OF PARAMETER ESTIMATES

After the all unknown parameters are calculated, accuracy of the parameters should be checked by
using the statistical properties. These properties can also be used for the validation of the system
idenification model results. CramidRao bound, or standard deviatiorand also correlation
coefficients are usually used for determining the parameter accuracy in the system identification
procedure.

CramerRao bound shows th@aximum achievable statistical acaay of the estimated paramete

[5]. In the time domain, maximum likelihood estimator is used the available data very efficiently, so
that maximum likelihood estimator has thsymptotic efficiency which means that the maximum
likelihood estimates converge in probability to the true values of the paraméieihe] standad
deviatonsand correlation coefficients are calculated by using the parameter error covariance matrix.
It is calculated by taken the inverse of the Fisher information matrix. It can be represented as follows
[4],

RE RE
—— 2 _—_

iy iy (3.21)

0O#/ 6

In statistics and probability theorjasdard deviatiofis the measure of the variation from the mean or
expected value. If the standard deviation is low, estimated parameters are close to the expected value
and if itis high, estimated parameters are spread out over a large range of expectedThalues.
diagmal elements of the square root of the parameter error covariance sfaivixthe standard
deviation of the estimated parameters. In statistics, it is showeg, lsjgma notation and can be
represented 44,

0#/ 6 (3.22)

Co

Correlationcoefficient is widely used to show the linear dependence between two variables. It has the
value betweenl and 1. If the correlatiocoefficient closeghe 1 means the estimated output fit
measurement output very good. For different correlation coefficient examples of different scatter
diagrams are shown Btgure 3 2. It is unitless parameté¢4, 21].

O#/ 6

0O#/ ®#/ 6 (329)

In addition to these statisticabtcuracy parameters, t statistics is used for determining the significance
of the parameter. It has a simple calculatior2d§ [

o — (3.24)

where —indicates the estimated parameter ang- represents the standard error of the estimated
parameter. In regression analysis, standard error of the mean is the standard deviation and it is unitless
parameter.
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r=-1 -1<r <0

0<r<l r=+1 r=0

Figure 3- 2: Examples of scatter diagrams with different values of correlation coefficierfi22]

3.2 LEAST SQUARE METHOD

In this thesis, parameter estimation is done by using the eermut method however the initial

values of the parameters are required to estimate the parameters correctly and also prevent the any
singular value error. At the beginning of the system ifleation with output error methodp find

the initial parameter valuekast square method is usatithe translational and angular dynamics

Least square method is also known as the one of the equation error method.

General least square model can bitem as

U sd (3.25)

U 8d a (3.26)

Here again y is the estimated output &nd the unknown parameter vecteris the measurement
vector, X is the regression vector ards the measurement error vectdissumethat measurement
errorhas the zero mean and constant uncorrelated variagast square model may be constructed by

using the measured states and their derivatives. Hence, measurement output vector may consist of the
state vector and derivative of thate vector.

To find the unknownparameter vector, sum of the squares of the residuals (errors) should be
minimized. In this case the cost function can be written as follgw21]

* d g UE UE UE UE gu sd U sd 3.27)

The derivative of the cost function with respect to the parameters which minimizes the cost function is
given by

8U 88d T (3.28)

gl
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where d best parameter solution to minimize the cost function. So that the least square estimation
solution can be expressed as follpws

d 88 8U (3.29)

If the 8 8 matrix becomes a singular, there will be multiple solutions. For aircraft system
identification applications, this matrix is generally nonsingular. For the least square estimation,
information matrix is the8 8 matrix, since this matrix is the measuretloé informaion content of

the measuremen4]

In addition to the statistical accuracy parameters which are explained before part, coefficient of
determination? , is used for the determine the matching of the model to measuremefdrdatest
square estimation. The coefficient of determination defines as the ratio of the regression sum of
squaresY“Yto total sum of squareSy"Y. Theseparameters are defining according to mean value of
the measured output data. It is expressd@Hs
o~ P -
ar 0 aQ (3.30
where N is theaumber of data and | is the sampling number of the data. Then the regression sum of
squares and total sum of squares are calculatgtlas

YY B %Q 4 andYY B 4Q of (331

Hence coefficient of determination is
2 o~ (3.32

Another statistical parameter is the fit errdt.indicates how close the estimated outputs are to the
measured values. It is the square root of the measurement error varicdEd,error is calculated as,
[21]

i L P a0 ®Q (3.33)

where¢ is the number of the parameter.

Parameter covariance matrix is estimated by using the fit error and information matrix for least square
estimation.Then, t is obtained asollows,

G60mi & (3.34)
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CHAPTER 4

SYSTEM IDENTIFICATION APPROACH AND IDENTIFIED MODEL
VALIDATION

In this part,system identification approacafsed to identify dinear model of the UK60 Black Hawk
helicopterusing FLIGHTLAB simulation datais examined. As mentioneoh chapter one, system
identification procedure have same basics namely, manemearsurements, methodsodelsand
validation In this chapter, firstvhich maneuver is done and datampatibility of the gathering data
from simulationareexplained. Identification models and methods was explained the before chapters
In chapter two liear system identification modelégplainedandin chapterthree the output error and
least square methods in time domareintroduced. Hence after data compatibility analysis, system
identification approacks explained. Finallymodel validatioris carried outoy comparingsimulation
datawith system identification model results.

4.1 EXPERIMENT AND DATA GATHERING

In this thesis, FLIGHTLAB UH60 Black Hawk helicopter model is used denerate flightdata
instead ofactual flight test data.Open loop system identificationis carried out Thus Stability
Augmentation Systerwas turnedoff. UH-60 helicopter has the mixeinit which mixes the inputs
before the swashplate mechanism. Therefore swashplate anglesednstead of the pilot inputs to
represents the system characteristic more acdyrate the literature, Wwen Fetcherf18] were
modeling the UHB0 helicopter for system identification purpose, he used to mixer control matrix to
convert to pilot inputs to the swgdateangles.However, h FLIGHTLAB environment these angles
can be selected as outputs and there is adtoeconvert the pilot inputs to swgsate angles.

For the successful system identificatianputs shouldexcite the helicopter stdiby and control
modes and tgield good data compatibility. For this reasons the input design is the important part of
the system identification procedure. In the literature optimal input design is the subject of the many
research. Jategaonkd,[studiedthe maximum likelihood parameter estimation with using t2el13

1, modified 32-1-1, doublet and step inputs in the time domain analydreover, Morelli R1] also
investigatedon the time domain system identification with optimal input designs. On the other hand,
Tischler p] investigatedthe frequency domain system identificat with the sine sweep inputs.
Tischler b], Jategaonkar4] and Morelli [21] suggests that for the time domain system identification
3-2-1-1 multistep input or the modified31-1 step inpumaybe used for frequency domain system
identification sine sweepr Schroerdephased signalre reported to bmost effective

At the beginning of this study, although the time domain method is selected to identify the helicopter,
sine sweep inputvas also employed However in this caseéata collinearitywas not as good as
expected In addition,the analysis timavas long compared to th&-2-1-1 input. Tischler b] also
mentioned that the simulation sine sweep inogsnot havesufficient spectral richness because it

did not haveany irregularities in the input shapgfgome noise components aaisoadded to the sine
sweep input and the other afkis inputs. However in this case, some problemseobserved related

to the simulation convergencensethe system is open loop and helicopter is an unstable sy§tem
obtain convergence resultstbie nalinearsimulation, input amplitude anthe frequency rangevere
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reduced However this resulted itower coherencevaluesthan requiredFor example, cherence
values of the swashplate controls witingitudinalsine sweep and-3-1-1 inputs are shown &igure

4- 1. As a result of these situations;231l-1 multistep input is used for identification in this study
instead of sine sweep input

Coherence with Longitudinal Input
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Figure 4- 1: Comparison of the coherence value of the swasplate controls withnigitudinal
input (Hover, SAS off (soff) )

4.2 DATA COLLINEARITY

When doing thesimulation 3-2-1-1 input is applied to each of the controls of the helicopter, namely,
longitudinal, lateral, collective and pedal contrdiese identification inputs are shownFagure 4

2. After gathering the output data corresponding to the each cqriatéscollinearity can be checked
between variables befodming system identification.

As shownFigure 4 2, lateral 32-1-1 input has the smaller step time than other ingbisp time of

the bngitudinal, collective and petdeputs ischosen ad secondHowever,step time of the lateral
input is 0.3 secorg] sincedata colinearity problem is observed when using tha-3-1 lateral input
with 1 second stepiime. Moreover input which has smaller stéme covers the wider frequency
range.Hence lateral 2-1-1 input with 0.3 second step tinedecided to beappropriate for system
identification All of the inputshave 0.2 second rise time and fall time to approximate the pilot input
except for lateral input. Since;21-1 lateral input has 0.3 second step time, its rise time and fall time
are t&en as zero.
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Identification Inputs
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Figure 4- 2: Identification Inputs

For successful system identification, correlation betweerotiputdata should be minimunsjnce

the fundamentahssumption of the maximum likelibd function is that inpuis independent of the
system output. Thus after doing the experiment, data collinearity should be checked for linearity
between variables. Correlation between data can be measured by using differectbtatibtiques.

One of them idooking at the carelation matrix of the data. Obtaining the correlation matrix was
explainedin chapter two. Correlation matrix gives the information about the linearity between two
variables. For the air vehicle system identification, absolute value of the correlatior should be

less than the 0.9. Data collinearity is also used for determining the sidéaification model
parameterd4,21]. Linearity of the datamay also be determined by using graphical method. For
example,Figure 4 3 shows the uncorrelated relation with angular pitch and rolé fatdateral input.

For longitudinal, lateral, collective and p@dinputs, the correlation matrices for the states are
calculated agable 4 1, Table 4 2, Table 4 3 andTable 4 4 respectively Elements of correlation
matrix are unitlessThese matrices are the symmetric matrices according to diagonal elements.
Correlations between states are generally low and suitable for the iggintificSome correlations are
greater than 0.9 but these parameters are elimimatde identification procedurd-or examplefor
collective input, correlation coefficient of theitch ) and roll {) attitudesis greater than 0.9.
However pitch and roll attitudeare not relatedparametes in the system identification modeTheir
coefficientsare notidentified in system identificatioprocedureHence collinearity of the simulation
data issuitable for system ghtification.
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Correlation Between Angular Pitch Rate vs Roll Rate with Lateral Input
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Figure 4- 3: Uncorrelated Relation with Angular Pitch Rate and Roll Rate for Lateral Input
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Table 4- 1: Correlation Matrix of the Statesfor the Lon

itudinal 3-2-1-1 Input

p q r Y P u Vv w a R a0
p 1,00 -0,62 -0,26 0,46 -0,52 0,12 -0,48 -0,03 0,26 -0,70
q -0,62 1,00 -0,19 0,17 0,06 0,60 0,82 -0,39 -0,11 0,78
r -0,26 -0,19 1,00 -0,10 -0,25 -0,23 -0,28 0,55 0,28 0,05
¥ 0,46 0,17 -0,10 1,00 -0,91 0,83 0,37 0,14 0,56 -0,06
P -0,52 0,06 -0,25 -0,91 1,00 -0,65 -0,07 -0,28 -0,63 0,18
u 0,12 0,60 -0,23 0,83 -0,65 1,00 0,72 -0,30 0,27 0,41
v -0,48 0,82 -0,28 0,37 -0,07 0,72 1,00 -0,26 -0,01 0,73
w -0,03 -0,39 0,55 0,14 -0,28 -0,30 -0,26 1,00 0,60 -0,45
Iy 0,26 -0,11 0,28 0,56 -0,63 0,27 -0,01 0,60 1,00 -0,44
A -0,70 0,78 0,05 -0,06 0,18 0,41 0,73 -0,45 -0,44 1,00

Table 4- 2 : Correlation Matrix of the Statesfor the Lateral 3-2-1-1 Input

p q r v P u \Y, w 0oy a0
p 1,00 0,21 -0,18 0,09 -0,40 0,36 -0,51 0,28 0,55 -0,25
q 0,21 1,00 0,02 0,90 0,30 0,92 -0,02 0,93 -0,49 -0,11
r -0,18 0,02 1,00 0,14 0,89 -0,20 0,87 0,08 -0,22 0,13
¥ 0,09 0,90 0,14 1,00 0,45 0,72 0,23 0,73 -0,55 -0,26
P -0,40 0,30 0,89 0,45 1,00 0,03 0,92 0,30 -0,56 0,17
u 0,36 0,92 -0,20 0,72 0,03 1,00 -0,33 0,94 -0,34 -0,14
v -0,51 -0,02 0,87 0,23 0,92 -0,33 1,00 -0,07 -0,43 0,19
w 0,28 0,93 0,08 0,73 0,30 0,94 -0,07 1,00 -0,42 0,05
7oy 0,55 -0,49 -0,22 -0,55 -0,56 -0,34 -0,43 -0,42 1,00 -0,09
PR -0,25 -0,11 0,13 -0,26 0,17 -0,14 0,19 0,05 -0,09 1,00
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Table 4- 3:

Correlation Matrix

of the Statesfor the Collective 3-2-1-1 Input

p q r ¥ P u \Y w 7w 3
p 1,00 0,54 0,03 0,37 0,27 -0,27 -0,51 0,09 0,80 -0,81
q 0,54 1,00 -0,46 0,58 0,42 -0,28 -0,15 0,50 0,06 -0,55
r 0,03 -0,46 1,00 -0,77 -0,67 0,71 -0,60 -0,96 0,36 -0,18
Y 0,37 0,58 -0,77 1,00 0,94 -0,83 0,10 0,73 -0,02 -0,26
P 0,27 0,42 -0,67 0,94 1,00 -0,84 -0,04 0,56 -0,10 -0,18
u -0,27 -0,28 0,71 -0,83 -0,84 1,00 -0,12 -0,62 -0,07 0,20
v -0,51 -0,15 -0,60 0,10 -0,04 -0,12 1,00 0,65 -0,42 0,68
W 0,09 0,50 -0,96 0,73 0,56 -0,62 0,65 1,00 -0,20 0,13
I oy 0,80 0,06 0,36 -0,02 -0,10 -0,07 -0,42 -0,20 1,00 -0,61
a -0,81 -0,55 -0,18 -0,26 -0,18 0,20 0,68 0,13 -0,61 1,00

Table 4- 4 : Correlation Matrix of the Statesfor the Pedal 3-2-1-1 Input

p q r v P u \Y, w 0y a0
p 1,00 -0,10 -0,34 0,35 0,01 -0,38 -0,10 -0,25 0,88 -0,89
q -0,10 1,00 -0,74 0,70 0,08 -0,22 0,38 -0,06 -0,14 -0,03
r -0,34 -0,74 1,00 -0,54 -0,16 0,51 -0,14 0,52 -0,17 0,35
v 0,35 0,70 -0,54 1,00 0,19 -0,27 0,59 0,30 0,51 -0,59
P 0,01 0,08 -0,16 0,19 1,00 -0,79 0,04 -0,09 0,19 -0,22
u -0,38 -0,22 0,51 -0,27 -0,79 1,00 0,30 0,53 -0,39 0,50
v -0,10 0,38 -0,14 0,59 0,04 0,30 1,00 0,71 0,14 -0,08
w -0,25 -0,06 0,52 0,30 -0,09 0,53 0,71 1,00 0,10 0,04
O N 0,88 -0,14 -0,17 0,51 0,19 -0,39 0,14 0,10 1,00 -0,96
a -0,89 -0,03 0,35 -0,59 -0,22 0,50 -0,08 0,04 -0,96 1,00
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In addition to the 2-1-1 input, when obtaining the initiglarameter valuey using the éastsquare
method sine sweep inputs are also used for the identific&tigure 4 4 shows the sine sweep inputs
are used for the longitudinal and lateral translational dynamtosy are generated in FLIGHTLAB.
They have small amplitude avoid instability since SAS is turned offfo obtain the simulation data
amplitudesare taken small witltompared tahe 32-1-1 inputs.Lateral sine sweep input is taken
shorter than longitudinal inputLow frequencies are evy important to estimate the dominant
parametersn translational dynamicsTo observe this phenomenon, longitudinal sine sweep iaput
selected to havewider frequency, 0.05 to 2 Hz than lateral sine sweep whigh runs from0.05 to
0.2Hz

Longitudinal Trasnlational Dynamics ldentification Input

2 T T T T T
1 L -
=y
[}
=
= D -
[=]]
5
s
RS i
2 1 1 1 1 1
0 20 40 G0 a0 100 120
time [sec)
Lateral Translational Dynamics [dentification Input
2 T T T T T T T T

Biat [inch]

_2 | 1 1 | 1 1 | 1
0 5 10 14 20 25 30 35 40 45

time [sec)

Figure 4- 4: Identification Inputs for Longitudinal and Lateral Translational Dynamics

Correlation matrices for longitudinal and lateral sine sweep inputs are Sravia 4 5 andTable 4
6, respectively. It can be seen that correlation values are lower thao @hat these inputsay be
usedfor identificationof translational parameters
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Table 4 5: Correlation Matrix for the Longitudinal Sine Sweepnput

P u 7y
1,00 -0,72 -0,52
-0,72 1,00 0,37
-0,52 0,37 1,00

Table 4- 6 ;: Correlation Matrix for the Lateral Sine Sweegnput

¥ v 7y
1,00 -0,18 -0,31
-0,18 1,00 0,42
-0,31 0,42 1,00

SYSTEM IDENTIFICATION APPROACH

As presentecbefore, 8 DoF linear helicopter system identificatmndel, which consists of 6 DoF
fuselage and 2 DoF flapping dynamics,used to identify the U0 helicopterat hover condition
Good starting values are needed to successfully identify unknown pgarameother challenge of
the identification is the numbeif parametes to be identified As the number of the parametéss
increasedaccuracy of the estimatianay decrease anith somecases there is no solutionfeund. If

it is needed to identifthe more parameters, more informative data are requ&d

In the 8 DoF linear system identification model, there 3ainknownsystemparametes with no

initial condition informationfor these unknown parametekoweverinitial parameter valuesay be
determinedto startthe identification Yuan R9] and Mettler B1] suggestedo usepartition system
identification procedurdo find the initial parameter valueand to identify the complex systems.
According to this approach systems can be divided to some meaningful dynamicahpartsen

these partare solved. After that each part of the system is solved, build up procesgus bed

finally full system is identified with initiaparameter valuewhich arecomputed irthe previousstep

In this way, especially coupled parameters can be found after obtaining the dominant parameters of
the system.

Yuan [29] identified the full model of the miniature rotorcraft at the nine stepshowrFigure 4 5.

This procedure is called partitioned system identification procediureay be divided three main
steps.First, the parameters of thganslationalnd anguladynamicsareidentified. In the first par of

this procedure, least square method is used, since this method does not require the initial conditions to
estimate the parameters. Hence, the dominant parameters are obtained without any initial parameter
values, and then these parameters are usehbeaiitial parameter values for identification of the
uncoupled and coupled dynamics. Secahé,uncoupledpitch and roll dynamicsre acquiredoy

using the output error methodhird, coupled dynamice&nd complete model dynamics wesalved

after obtaining the uncoupled dynami@$ie complete dynamic model is obtained by combining the
coupled pitch and roll dynamics and the coupled heave and yaw dyn&muipait error method is

usedto identify thecoupleddynamicsandthe completedynamic modelsEstimated parameters of the
coupled dynamics are used as the initial parameter values of the complete dynamicTinedel.
complete dynamic model isolved for finding the remaining coupled parametérs.addition,
complete dynamienodelis agan identifiedto refineall the unknownparameters.
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Figure 4- 5: Partitioned System Identification Procedure

Similar to the study described abowe this study8 DoF UH60 linear identificabn hovermodel is
identified at thethree main stepsThese stepsre translationaland angulardynamics, unoupled
dynamics and coupled dynamida. order tofind the initial conditions othe dominant parameters
least sjuare method is use®y taking results othe previous stepfutput eror method is used to
identify the uncoupled and coupled dynamiés.shownFigure 4 5, at the partition methgdoupled
heave and yaw dynamics identified separately. Howevein this study thiscoupled dynamics is
estimated in the complete dynamic model as shbigure 4 6. The estimated grametersof the
heave and yaw dynamics are used as initiatameter valuedor further identification step
Afterwards, parameters of theoupled heave and yaw dynamics ahe coupled pitch and roll
dynamicsare estimate at theestimation of theomplete 8©oF modelstep At the final stepall of the
unknown 36 parameters areefined again to take effects of the complete system dynaimics

account

41



Leongitudinal Lateral Heave Taw
Translational Translational Dynamics Drvnamics
Drynamics Dynamics
¥ ¥
Pitch Dynamies Eeoll Dynamies
L ] ¥ ¥ ¥
Coupled

Longitudinal and
Lateral Diynamics

| |

el
L ]

¥

Complets
Drymamies

Figure 4- 6 : System Identification Procedure Used In This Study

Translationaland anguladynamic steps consist of the lohglinal, lateral, heave and yalynamics

with some simplifications which is explained at the related parifter that by using the
identification solution of the translational and angular dynamilis uncoupled pitch and roll
dynamics are identifiedThe uncoupled pitch dynamics hmir states namely(HNPdA T B . The
uncoupled roll dynamics has al$our states nmely, U & B . Identified parameters of the
uncoupled pitch and roll dynamics are used as the initial pargméten identifying the coupled
pitch and roll dynamigswhich has theeight states QoM e Fdfb A T B . Finally, parameters of

the complete 8 DoF linear identification model are estimated by using the previous identified
parameter valudsy making use ofhe aitputerror method

4.3.1 TRANSLATIONAL AND ANGULAR DYNAMICS

In order b begin the identification process with output error method, impgahmeter valuesf the
unknown parameters should be meaningfud close to their real valués obtainsuccessfutesults.
Hence,identification process begins with the simple transtati and angular equations with least
squae method. Adliscussedefore, leastquare method is independent of the initial conditions of
parametersin other words initiabarameter valueare not necessatg obtain resultsThe drawback

of the least sqares method, however is that the translational and rotational accelerations must be
available.

After extending the ®oF rigid body dynamics to 8 Dokith the addition othe flapping dynamics
longitudinal translational equations can be written as
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However this equation involves the coupled terms. To simpiifig equationcoupled terms can be
ignored so that the dminant parametemrgmainon the oraxis After this simplification (4.1 can be
rewritten as

6 w6 0— 8, b (4.2)

Then it remainedthe only daninant parametey & and8, .8; hasbeen constraineds explained
in the flapping modesection 8; has the value of the negatigeavity constant theoretically. That is,

if the verticalcenter of gravityis known its exact value can be calculated. Becausthat, all data
obtainedfrom the nonlinear simulationare defined in the body axe3herefore it can be said that
8, has thevalue of the negative gravity constant andhe calculationsits value is fixedFinally,

the only remainingarametes, & and thebias termd are identified & is the speed force derivative
and it should be physically negative

After the least guaremethodis applied to this simple equatioabtainedresults areshown atthe
Table 4 7. It may be concludedthat 8 has the small standard errand its coefficient of
determination is close to 0.Furthermore,it has the relatively smafd, inverse of the relative
parameter standard errdtience,it is justifiable to useit as initial parameter valuéor output eror
method.Figure 4 7 shows the result of the lorigdinal translational dynamic&raight line shows
nonlinear simulationresultand dashed line showdentified result As shown in theFigure 4 7,
model fit is better at théiow frequency region than high frequeniegion.Main am of this step is
fitting the low frequency content of tmnlinear simulation responsét is enough fothe beginning
of the system identification procedure.

Table 4- 7 : Longitudinal Translational Dynamics, Least Square Estimation Results

Parameters P Stan?a;d Error, % Error DS
@ -3,13E02 1,44E03 4,60E+00| 2,17E+01
o} 3,32E+00 1,97E02 5,95E01 | 1,68E+02
s (fit error) 1,72E+00
'Y (coeficient of determinatiqrte) | 8,38E01

Lateral translational dynamic equatialsoobtained as longitudinalynamiccase. After using the
same simplificationdateral translationaéquation becomes

0 QU Of Qe 9 b (4.3)

In this equatior is coupled parametgsinceit represents the tail rotor contribution. Hepicean be
ignored at this step. Then equation rewritten as

0 QWL Q¢ 9 b (44
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Figure 4- 7 : Body Acceleration in xdirection result with Least Square Method

Finally, lateral translational dynamitasone unknown paramete®y at this stepAgain the unknown
parameters are estimated using the least square mei$todated parameters are tabulatedable 4
- 8. Like longitudinalcase,9 has small standard errand its coefficient of determinatios tlose to
1. Hence,identified model response shows good agreement witHinear simulation modelesult It
hasrelatively high percentage errdout it is acceptedfor simplified lateral translational dynamic
equation 9 is thespeed foce damping derivativelt should havethe neative valuephysically.
Estimated result is negative. Hence itay be useé as initial parameter valugor the further
estimationsd is the bias parameter to tattee effects of the nolinearity into accountComparison
of the nonlinear simulation mode&and identified body acceleration in-direction are shown at the
Figure 4- 8. In this figure,solid line showsnonlinear simulationresponseand dashed line shows
identified model response

Table 4- 8: Lateral Translational Dynamics, Least Square Estimation Results

Parameters P Stan(ija;d Error, % Error DS
® -4,44E02 2,76E03 6,22E+00| 1,61E+01
6 1,20E+00 6,54E02 5,46E+00| 1,83E+01
s (fit error) 1,33E+00
'Y (coeficient of determinatiqrto) | 9,89E01
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Figure 4- 8 : Body Acceleration in y-direction result with Least Square Method

Heave translationalynamicequationmaybe written as

0 ®Wo WL WULu R i ) b ) b AV
" . n “ “ “ (4.5)
@ U
In this equation heave dynamis directly affected fronheave dampinglerivativehcd , andgain for
the heave dynamics from collective inpady, . Other terms represent the couplieffecs and they

may be ignored at this step to examine the dominant parameters. Then this equation becomes as
follows,

6 GO G U 46)

There are two unknowsystemparameter to estimatd this stepEstimatedvalues of these unknown
parametersaind their statisticalparametersare seerin Table 4- 9. Heave damping derivativeust
have anegative valueEstimated value is negative with small standard error. Moreover fit error is very
small and coefficient ofletermination is also close to Hence,fitting is acceptableFigure 4- 9
showsnortlinear simulation resulind estimated body acceleration in z directitis seerthat low
frequency responsesematched better thamgh frequency responses. Howeestimated parameter
areused as initiaparameter value® identifythe full 8 DoFlinear hover identificatioonodel.
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Table 4- 9: Heave Translational Dynamics, Least Square Estimation Results

Parameters P Stan?la;d Error, % Error DS
@ -2,41E01 2,85E03 1,18E+00| 8,45E+01
(&) -2,44E+02 7,15E01 2,94E01 | 3,40E+02
0 7,86E+01 2,31E01 2,93E01 | 3,41E+02
s (fit error) 5,77E01
'Y (coeficient of determinatiqrte) | 9,83E01

Last step of the identification of the translational and angular dynamics is yaw angular dynamics. Yaw
angular rate equation can be written as,

O .06 .0 . x .b .N .0 .¢gb )

R R .7

In this equation, and. j are directly related to yaw axis. Other parameters affect the yaw
dynamic indirectly and they are coupled terms. Hence, in this stepnd. ; are estimated by
using the least square method. Final equation is obtained as,

O .0 ., (4.8)
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Figure 4 - 9: Body Acceleration in zdirection result with Least Square Method
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Estimatedparameter valueand their errorsare shown at th@able 4- 10. The results aregood
enough sinceerror, namely fit error, standard ersoand percentage eroare small Furthermore,
coefficient of determination and values are sufficiently high values. Moreovemontlinear
simulation responsand esmated angular yaw accelerati@ne shown with respect to time at the
Figure 4- 10. Straight line shows thaontlinear simulation modealesponsand dashed line shows the
identified model responsdt seemsa very good fitting After ten seconds error is growing up
However estimated parameteese acceptable to tales initid parameter values for th@mplete8
DoF linearcoupledidentification model. Since, fitting of the low frequency regias important for
this step.

Table 4- 10: Angular Yaw Dynamics, Least Square Estimation Results

Parameters P Stan?a;d Error, % Error DS
0 -3,71E01 2,31E03 6,23E01 | 1,60E+02
Oy -4,04E+00 8,40E03 2,08E01 | 4,81E+02
0 1,65E+00 3,55E03 2,15E01 | 4,66E+02
s (fit error) 2,92E02
'Y (coeficient of determinatiqrto) | 9,92E01
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Figure 4 - 10: Angular Yaw Acceleration in zdirection result with Least Square Method
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4.3.2 UNCOUPLED DYNAMICS

After estimating dominant parameters of the translational and angular dynamics which are mentioned
previouspart of this chapteremaining uncodpd parametersay be estimatedby using the output
error method. In this stuyd uncoupled dynamics meapich androll dynamics.

Pitch dynamicsnay be obtained from the complete 8 DoF modehtmking use ofhe CNITA T &

stateswithout cross coupling term€oupled termsre ignoredThen the following state space form
of the pitch dynamici obtained.

I Q 8b -
0 . ~ [N s
o, U T T -5 & -
1'n (] £ <
— vtoPp T ”p -:-(*’ o u (4.9)
b U ''n T =" 0
’ u Y g0
In these equationsthere ae four unknown parameters whicired h- , ROPAT & . O

represents the effects of the changing helicopter longitudinal velocity to the pitching motion of the
helicopter.- ¢ is relating tothe flapping model and represents the rotor dynamics cross cougling.

is the rotor time constaatnd its theoretical vak is 0,127%&econdwhich is calculated at the flapping
model part! is the gain from longitudinal inpuéd and 8 are taken as a fixed parameteiith

estimatingvalues ofthe translational dynamic stedere! representshe ratio of the rotor pitch

moment derivative tde rotor time constan{%.

Estimated parameters and their statistical parameters are tabulatedTablbet- 13. In order to
estimate these unknown parameters, output error method is usttdated parameters have the
reasonable values with small errors. Rotor time constant is estimated assegdohtiand its
theoretcal value is 0,128cond It is also tabulated at thEable 4- 12. Its estimated value is close to
its theoretical value.

Table 4- 11: Pitch Dynamics, Output Error Method Results

Parameters P Stan(ija;d Error, % Error DS
6,91E03 1,65E05 2,39E01 | 4,18E+02
9,05E+00 5,73E02 6,33E01 | 1,58E+02
1,44E01 8,63E03 6,01E+00| 1,66E+01
-6,82E+00 9,63E02 1,41E+00| 7,08E+01

Dynamics Step

Parameter

Estimated Value

Theoretical Value

U [sec]

0,144

0,127
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Identified model responsemnd nonlinear simulation model responsase shownat Figure 4- 11.

Solid line represents thaornlinear simulation responseand dashed line represents thanlinear
analysis resultdn order b determine the linearity between the estimated and measured outputs, data
correlation matrix is calculatedts diagonal elementare tabulatedat the Table 4- 13. Diagonal
elements of the correlation matrix represent tberatation of theidentified model resultsnd non

linear simulationresponsesAll of them are greater than®thustheir linearity is very good. Hence
these estimated parametengsy be used as initiggarameter valuest the identification of theoupled

pitch and roll dynamicstep
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Figure 4-11: Uncoupled Pitch Dynamics result with Output Error Method

Table 4- 13: Correlation Coefficient Matrix for Pitch Dynamics

Outputs Coetitients
6 0,99
q 1,00
— 1,00
b 0,94
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Roll dynamicsequationsmay be obtainedikewise If cross couplingerms are ignoredstate space
form of the roll dynamicamay be written as (4.10. Roll dynamics has four states which are

o AT & .

o rvd) m Q 9b l
ﬂ’r‘] l,l 10 0 T ,p ™ E
[y 1 3 o
o JUu. p T T ,I(l) T u (410)
LD L'J, 11 7|’,| 6

This state space for involvesquasisteady force angular derivativé . However this parameters
ignoredin the identification procedureSince,its contributionto resultsis much smalletthan other
parameterddence final roll dynamis equatiorcan be expressed as following

O T Q 9b -

L. o~ I
”Il] 1] I’u‘) m 1T, B ] E
1 n ] R o
o amop T oM@ U (4.11)
b oo LI
’ u” p T G

9 @s estimated by using the leagjusire method at thilentification of the lateral translational
dynamicstep Moreover,9; has a fixed value. It is equal gwavity constant'Q Then four unknown

parameters, namelyy h,, AJ @& @ , remain to estimateRotor time constafif), has thesame
value forpitch and roll dynamic casetheoretically However in this stepit is also estimatedd

represents the ratio of the rotor roll moment derivative to the rotor time cqns%ant

Estimation value®f the four unknown parameterare tabulated afable 4- 14 with their statistical
accuracy parameter§he results areseful Standard errors are small a@dstatistics are sufficiently
high to accept the parameter accuraky.addition, rotor time constant is almost same with its
theoretical value as seenthé Table 4- 15.

Table 4- 14: Roll Dynamics, Output Error Method Results

Parameters P Stan(ija;d Error, % Error DS
0 -5,40E02 5,00E04 9,25E01 | 1,08E+02
' b 4,89E+01 2,49E01 5,08601 | 1,97E+02
0] 1,28E01 9,29E04 7,24E01 | 1,38E+02
0 8,14E+00 3,06E02 3,76E01 | 2,66E+02

Table 4- 15: Comparison of Theoretical and Estimated Rotor Time Constants at Roll
Dynamics Step

Parameter | Estimated Value | Theoretical Value
U [sec] 0,128 0,127
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Resultsof the roll dynamicsare seen at thd=igure 4- 12. The nonlinear simulationresponsesind
identification resulthave good matching with each othér.addition correlation of the notinear
simulationresponseandidentified model resultare seenat the diagonal elements of theorrelation
coefficient matrix Diagonal elements of the correlation coefficient matrix are tabuédtise Table 4

- 16. All of the diagonal elements of the correlation coefficient matrixgagaterthan 0,9 That is to
say, nodlinear simulation responsemnd identified resultsare almost same. As a result, estimated
parametersmay be used for estimatinthe other unknown parametersthe further step which is
coupled pitch and roll dynamics.
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Figure 4-12: Uncoupled Roll Dynamics results with Output Error Method

Table 4- 16: Correlation Coefficient Matrix for Roll Dynamics

Ouputs | SO et
0 0,92
p 0,99
. 1,00
b 0,95
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4.3.3 COUPLED DYNAMICS

At this part, first coupled pitch and roll dynamics is identified. Second, parameters of the complete 8
DoF linear model are estimated. In order to estimate the unknown parametersafpteal pitch and

roll dynamics estimated parameters of tiranslational dgamics, angular dynamics and uncoupled
dynamics are useddoreover, to identifythe complete 8 Dolinear identificationmodel, results of
thecoupled pitch and rolynamics modek used

ry(I) W T Q8 e
0. D O O mQ . T 9% \
oo B0 b M,
||P n :U v T T T o T o U T T .
nfl i li') b mmTmn mo- o m L
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However some parameters are also dropped in the iteration process because of their small
contributions. These parameters @éd w & &. Finally coupled pitch and roll dynamics can be
expressed at the state space form as follows

”(’b m nmnmn Q8 T
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First, estimated parameters of ttranslational dynami@ngular dynamiand uncoupled dynamiese
taken as fixedvaluesat the estimation of thecoupled dynamics stepHence total six unknown
coupled parameters namegly fb I B B  && & , areestimated at this step with longitudinal
and lateral inputsCrosscoupling parameter representshe ratio of the pitch moment stiffness to

the rotor time constantg—. " is the ratio of the roll moment stiffness to the rotor time constant,

b
0

o and" are defined at thenecoupled dynamicsection!  and" indicate the ratio of

the momentontrol derivatives to rotor time constarthey can be expressedasg— Al AUU—
respectively.
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Table 4- 17 shows theestimated parameterd the coupled pitch and roll dynamioSutput error
method is used to estimate the unknown parameters at thisSpamtiarderrors of theestimated
parameteraresmall andt is acceptabldor successfufitting.

Figure 4- 13 andFigure 4- 14 show the results of the coupled pitch and roll dynamics. Fitting of the

FLIGHTLAB non-linear simulation responses and identification results are acceptable except for the
lateral flapping angleh .

Table 4- 17: Coupled Pitch and Roll Dynamics, Output Error Method Results

Parameters P Stamija;d Error, % Error DS
0 2,52E04 4,69E05 1,86E+01| 5,38E+00
0 3,21E02 1,88E04 5,87E01 | 1,70E+02
0 4,36E01 6,62E02 1,52E+01| 6,58E+00
6 -9,73E01 3,86E02 3,96E+00| 2,52E+01
0 -1,13E+00 2,59E02 2,28E+00| 4,38E+01
0 1,51E+00 2,13E02 1,42E+00| 7,06E+01

Diagonal elements of therelation coefficient matriareused tomeasure thénearity betweemon
linear simulationresponsesndidentified results. Thewretabulated aJable 4- 18. Theresults of
identification of thepitch dynamicsOhfN\FdA T B  havegreater than 0,9 correlatiosith nonlinear
simulation model responses. In additioesults ofthe roll dynamicsOf) % & ©Q havegreater than
0,7 correlationfactor. Estimated dteral flapping angldy , does nothavegood agreement with the
nonlinear simulation model resuliowever all estimated results asxlequateo useatthe complete
8 DoFmodel.

Table 4- 18: Correlation Coefficient Matrix for Coupled Pitch and Roll Dynamics

Outputs | oot ronts

) 0,98
0 0,98
p 0,87
q 0,97
. 0,72
— 0,97

0,84
b 0,26

53



Coupled Pitch and Roll Dynamics
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Figure 4- 13: Coupled Pitch and Roll Dynamics results with Output Error Method
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Figure 4 - 14 : Coupled Pitch and Roll Dynamics result{Cont.) with Output Error Method
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Finally, complete 8 DoF model islentified by using all of thestimated parametedd the previous
steps.Final model is obtained by adding the heave and yaw dynamics to coupled pitch and roll
dynamics model with their coupled paramet&tate space model of this model can be expressed as
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with the output vectqr
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Quasisteady force angular derivativ@®, is taken into account at this stdprepresentshe effect of
the tail rotor Longitudinal, lateralpedaland collectiveinputs areusedfor identification of the model
®hoh8; hah9y hd hO h0 hodhdhdh:y h:y hO hG GE& Q are taken as zero

Since,their contributions are small according to others paraméfbrss,final complete 8 DoHinear
hover identificatiormodelmaybewritten as follows
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Complete 8 DoHRdentification model has 36 free unknown parametardtwo fixed parametersis
shown equation (4.15. Fixed parameters ar8, A1 8, . They areassociated with gravity
constant. Except for the new coupled parameters sugh ah®wh®hd h. ;  etc., initialvalues

of the parameters are taken astimatedvalues at the previousteps Furthermore, laof them are
refined in this stepvith bias termsinitial parameter valuefor the newunknowncoupled parameters
are taken as zero.

After estimating allunknown parametersestimated parameter values are obtained@aide 4- 19.
Standard error®f the estimated parametease small andexcept for the: . O statistis have

sufficiently big valuesandthisis good forparameter accuracy

Identification of the omplete 8 DoHinear hoveridentification model converged to a cost function
0 = 8,38E24. It is a very small valueso that thisis acceptablefor identification In the
identification procedurenumber of thainknown parameters reduced as much as possiliriefly,
36 free parameters are estimated. All estimated paranatskownat theTable 4- 19. Theyare in
terms of theEnglish units In addition to, # of them are taken asfree parameter to identifthe
complete 8 DoF linear hovanode| except for the8, And 9, . They have constant valuess

explainedrelated part

Figure 4- 15 shows the inputs which are used at the identification process. Inputs are applied to the
FLIGHTLAB non-linear simulationmodel separatelyand then albbtaining result@re combined to

useat the identification process. At theigure 4- 16, Figure 4- 17 andFigure 4- 18, twelve seconds

of the response correspond to response of the longitudinal inpwielve to twentysecondsof the
responsesepresenthe lateral response. Twenty to thithreesecondf the responseepresent the
response of the collective input, and then last twekeondsof the responsesepresent the pedal
response.

Comparison of the nelinear simuation model responses and identified model results are shown
Figure 4- 16, Figure 4- 17 andFigure 4- 18. Figure 4- 16 shows the translational velocities. It is
seen that vertical velocity does not have a good matching wittimear simulation response between
five to twelve seconds. This region corresponds to the longitudinal input response. Since, it is the off
axis response and it may be required higher order modeling with inflow coning dynamics for perfect
fitting. At the Figure 4- 17, angular velocity responsed the identified model and nelinear
simulation model responses are compared. Angular velocities have good matching wlitreaion
model responses. Responses of pitch and roll attitudes are showrFajuiee4- 18. Attitudes are

very close to the nglinear simulation model responses. Longitudinal and lateral flapping angles are
also shown aFigure 4- 18. Flapping angles, especially lateral flap angle, have large errors according
to others responses. However, these errors are seen at-#xésatsponse part. Fitting of the off axis
respone is much more difficult than eaxis response. To identify the off axis responses,
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identification model and/or identification inputs may be enhandgd.§ 8, 13, 15, 22] On the other
hand, offaxis responses of the identified model are acceptable for this study.

[dentification Inputs
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Figure 4 - 15: Identification Inputs
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Table 4- 19: Complete 8 DoF Model, Output Error Method Results

Standard Error,

Parameters P i P % Error DS
@ -1,37E01 1,78E03 1,30E+00| 7,72E+01
8p -32,17 - - -
® -1,44E01 2,54E03 1,76E+00| 5,69E+01
® 5,99E+00 3,06E01 5,10E+00| 1,96E+01
@ 3,41E+00 6,07E02 1,78E+00| 5,62E+01
% 32,17 - - -

@ -4,53E01 8,88E03 1,96E+00| 5,10E+01
@ -1,01E+01 2,07E01 2,05E+00| 4,89E+01
) 2,35E+00 1,24E01 5,30E+00| 1,89E+01
0 1,98E02 1,88E04 9,49E01 | 1,05E+02
0 -4,46E02 4,24E04 9,50E01 | 1,05E+02
) 5,06E+01 4,55E01 8,99E01 | 1,11E+02
0 3,62E03 5,12E05 1,41E+00| 7,07E+01
8,19E03 1,06E04 1,29E+00| 7,74E+01

-4,25E02 9,04E04 2,13E+00| 4,70E+01

" b 9,65E+00 4,13E02 4,28E01 | 2,34E+02
] 1,00E03 4,58E05 4,55E+00| 2,20E+01
0 -6,06E03 1,47E04 2,43E+00| 4,11E+01
0 -2,13E01 3,81E03 1,79E+00| 5,59E+01
0 -2,76E01 2,22E03 8,04E01 | 1,24E+02
b 5,40E+00 7,96E02 1,47E+00| 6,78E+01
U] 1,22E01 5,21E04 4,28E01 | 2,34E+02
0 -5,93E+00 1,20E01 2,02E+00| 4,95E+01
o} 1,12E+00 1,50E02 1,34E+00| 7,47E+01
8y 5,43E+01 1,21E+00 2,24E+00| 4,47E+01
9 2,30E+01 2,67E01 1,16E+00| 8,64E+01
- -2,93E+02 3,93E+00 1,34E+00| 7,47E+01
‘u -4,85E+00 8,48E01 1,75E+01| 5,71E+00
) -4,22E+00 1,01E01 2,39E+00| 4,18E+01
' i 2,58E+00 3,28E02 1,27E+00| 7,87E+01
-4 4,72E+00 2,92E02 6,19E01 | 1,61E+02
gl -2,34E+00 1,00E02 0,428959| 2,33E+02
o 8,54E+00 6,15E02 7,21E01 | 1,39E+02
v -3,63E+00 1,34E02 3,68E01 | 2,72E+02
0 -6,80E+00 1,08E£02 1,58E01 | 6,32E+02
0 3,84E+00 3,30E02 8,58E01 | 1,16E+02
0 1,54E+00 9,70E03 0,630953| 1,58E+02
0 7,50E+00 3,58E02 4,78E01 | 2,09E+02
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Translational Yelocities
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Figure 4- 16: Complete Model Velocity results with Output Error Method

Angular Welocities
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Figure 4 - 17: Complete Model Angular Velocity results with Output Error Method
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Attitudes and Tip Path Plane Angles
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Figure 4 - 18: Complete Model Attitudes andFlap Angles results with Output Error Method

As discussed before, in order to interptieé model fitting,correlationcoefficient of determination
matrix is used for complet8 DoF linear hover identificatiomodel and FLIGHTLAB nonlinear
simulationmodel. Diagonal elements of the correlation matrixsdrewn atTable 4- 20. Except of
the vertical velocity and lateral swashplate angle, all ofdhgputshave greater than.® correlation
coefficient This means thaidentification is successfully completedor the vertical velocity and
lateral swashplate angle, linearity of the responses are not very good because obfie fiifing
results.However these responses are acceptable for this stddyeover atTable 4- 21 shows the
theoretical and identified values of the rotor time cortstiés theoretical value is the 127 secad
and its estimated value is122 second It showsagreeablegrediction for time constanf.he ratio of

the pitch and roll stiffness terms% , should be equal to the ratio of the pitch moment inertia to roll

momentinertia. [B] Its comparisorof the theoretical and estimated values alsown at théable 4-
21. Its theoretical value is 47 andestimated value is 4. Hence itmay be claimedthat parameters
are successfully estimate

In order b determine the helicopter static speed stabilityoff axis controls should be fixed, so that
the only control gradient parametfyaLIJy; is remaining. For positive static speed stability this gradient
should be negative. Simplified equation for the longitudinal speed stability deriisafble

5 - — (4.16)
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Table 4- 20: Correlation Coefficient Matrix for Complete 8 DoF Hover Model

Correlation
Coefficients

0,98
0,96
0,78
0,92
0,99
r 0,98
0,96
_ 1,00
b 0,94
0,60

Outputs

o|loc|s|<|c

Table 4- 21 : Comparison of Theoretical ard Estimated Rotor Time Constants andlhe Ratio of
The Pitch to Roll Flapping Stiffnessfor Complete 8 DoF Hover Model

Parameter | Estimated Value | Theoretical Value
U [sec] 0,122 0,127
b

— 5,24 4,47
" b

A positiveis expected for  according to first principles analyses of the steady state response of an
isolated rotor to speed perturbatiorts, 17, 25] As a result of thes® should have a positive value
and results consistent with the estimated value ofthe o® & 1 8

Similarly lateral speederivatived , maybeexpressed a®llows, based orthe nonlinear simulation
trim gradients[5]
yi yu

' Yy 5O (4.1

Hence for thepositivelateral dihedral stability, should be negative. Moreover identification result
of , isnegative with value o#4.46E02. Hence, identification parameters have good agreement with
their theoretical values.

4.4  VERIFICATION

After estimated all of the unknown parameters of the complete 8 DoF hover tiogeklomain
verification isdone to observe the predictive capability of the identified model with step and doublet
inputs. Theyare not used at the identification procedsre FLIGHTLAB simulation data represent
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the flight data.At the figures,solid line represents theonlinear simulationresponss, dashed line
representthe identified model resporseAll inputs are applied after the hover trim condition.

4.4.1 PILOT LONGITUDINAL CYCLIC RESPONSEVERIFICATION

For identified 8 DoF Hover model, stability and tmh derivatives ardixed and thenstep and
doubletinput are applied four control sticks, longitudinal, lateral, collective and peeslpectively.
Figure 4- 19 showsthe verification pilot inputs. &me inpus arealso applied FLIGHTLAB non
linear simulationmodel to compare with identified model responsgsese inputs have 0.2 second
rise time and fall time.
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Figure 4 - 19: Verification (Step and Doublet) Pilot Inputs for Longitudinal Responses

In order to compare the idéfied 8 DoF model responsandnortlinear simulation model responses
correlation coefficients are used. If the correlation coefficient is 1, fomhtmocdel response and
simulation responselave a perfect matchTable 4- 22 and Table 4- 23 show the correlation
coefficients for the step and doublet inputs, respectively.
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