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ABSTRACT

QUALITY CONTROL CHARTS BASED ON RANKED SET SAMPLING UNDER
VARIOUS SYMMETRIC DISTRIBUTIONS

Egemen, Didem

M.S., Department of Statistics

Supervisor: Assoc. Prof. Dr. Bar�³ Sürücü

July 2013, 86 pages

Quality of a product is a very important property for producers and service providers,
and can be maintained by statistical quality control methods. One of these methods is
Shewhart control chart, which is the most frequently used in the literature. Construc-
tion of accurate control limits is the main issue in this method and it strictly depends
on the e�ciency of the estimators used to construct control limits. In this thesis, a
new sampling method ranked set sampling (RSS), which is more e�cient than simple
random sampling (SRS), is proposed in the estimation part of Shewhart control charts.
With this aim, quality control charts constructed by using SRS and RSS are compared
under three di�erent symmetric distributions which are normal, long-tailed symmetric
and short-tailed symmetric. The simulation results show that RSS provides more ef-
�cient estimators compared to SRS. Moreover, it is demonstrated by simulations that
type I errors of the charts obtained by RSS technique are very close to the prede�ned
error level. To give a better illustration of the methods, a real life example is provided
at the end of the study.

Keywords: Extreme Ranked Set Sampling, Ranked Set Sampling, Shewhart Control
Charts, Symmetric Distributions
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ÖZ

S�METR�K DA�ILIMLAR ALTINDA SIRALI KÜME ÖRNEKLEMES�
YÖNTEM�YLE KAL�TE KONTROL GRAF�KLER�

Egemen, Didem

Yüksek Lisans, �statistik Bölümü

Tez Yöneticisi: Doç. Dr. Bar�³ Sürücü

Temmuz 2013, 86 sayfa

Bir ürünün kalitesi üreticiler ve servis sa§lay�c�lar için çok önemli bir özelliktir ve is-
tatistiksel kalite kontrol metotlar�yla sa§lanabilmektedir. Bu metotlardan literatürde
en çok kullan�lanlardan biri Shewhart kontrol gra�§idir. Bu metotdaki temel konu
do§ru kontrol limitlerini olu³turabilmektir ve bu da kontrol limitleri kurmak için kul-
lan�lan tahmin edicilerin etkinli§ine s�k� s�k�ya ba§l�d�r. Bu tez çal�³mas�nda yeni bir
örneklem metodu olan ve basit rastgele örneklem metodundan daha etkin sonuçlar
veren s�ral� küme örneklemesi önerilmi³tir. Bu amaçla, basit rastgele örneklem ve s�ral�
küme örneklemesi metotlar� kullan�larak üretilen kalite kontrol gra�kleri normal, uzun
kuyruklu simetrik ve k�sa kuyruklu simetrik da§�l�mlar kullan�larak kar³�la³t�r�lm�³t�r.
Simülasyon sonuçlar� s�ral� küme örneklemesi metodunun basit rastgele örneklem me-
toduna k�yasla daha etkin tahmin ediciler sa§lad�§�n� göstermi³tir. Dahas�, s�ral� küme
örneklemesi metodu alt�nda kurulan kontrol gra�klerinin birincil tip hatas�, bu hatan�n
daha önceden belirlenen de§erine daha yak�n ç�km�³t�r. Bu metotlar�n daha aç�k ifade
edilebilmesi için çal�³man�n sonunda gerçek bir veriyle örnek sunulmu³tur.

Anahtar Kelimeler: Shewhart Kontrol Gra�kleri, S�ral� Küme Örneklemesi, Simetrik
Da§�l�mlar, Uç S�ral� Küme Örneklemesi
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CHAPTER 1

INTRODUCTION

Quality control is not just a bunch of techniques, it is, as stated by Caulcutt [20], a way
of thinking. Montgomery [57] emphasizes that although most people de�ne quality as
some desired characteristics that a product should have, this is just the beginning of
understanding this concept. First of all, what is meant by a "product"? Actually, it can
be manufactured goods, such as automobiles, electronic devices, furniture, processed
food, or can be services, such as health care, banking, transportation. The basic aim
is to improve the quality of these products since quality makes the consumers prefer
that product among the others. In today's industrialized world, there is a strong
competition among factories, companies, service providers, etc. In order to have an
enhanced position in this competitive business world, the importance of an improved
quality should not be underestimated (Montgomery [57]).

There are many di�erent ways to assess the quality, one of which is quality control
charts. This method was �rst developed by Walter A. Shewhart in his research at
Bell Telephone Laboratories. He was the �rst to apply statistical methods to quality
control (Duncan [33]), that is why this chart is also named after Shewhart. Quality
control charts set standards or goals, which can be called as quality, for a product and
come to a decision whether or not that goal has been achieved (Duncan [33]). There
may occur two types of variation in quality of a product: assignable and chance causes.
Montgomery [57] de�nes chance causes as the inherent part of the process. Moreover,
Duncan [33] mentions that chance variations behave in a random manner, and they
do not show any de�ned pattern. However, they follow statistical laws. If only chance
causes a�ect the process, the process is said to be under-control. On the contrary, the
variation occurred by assignable causes is much larger than the one by chance causes.
Therefore, the existence of assignable causes leads to a process out-of-control. Due to
the fact that the variation by assignable causes is not an acceptable one, some actions
should be taken in order to eliminate it. Control charts are extremely useful tools to
detect this undesirable shift in the process, and to determine when to take corrective
actions.

X̄ charts (or Shewhart control charts) consist of two phases. In these phases, the
control limits are set and the process is monitored, respectively. The limits can be
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set by using the known population parameters. In case of unknown parameters, M
samples of size n are selected randomly from the in-control process. Then the mean of
the process and the variance of the process mean are estimated by using these samples.

The most frequent assumption made while constructing control charts is normality.
However, if it is desired to detect the shift in the population mean, then this assumption
is no more a must. As stated by Shewhart [78], the skewness and kurtosis of the
distribution of sample means approach to those of normal regardless of the underlying
population distribution (by central limit theorem (CLT)). Since X̄ chart is studied in
this thesis, with the help of CLT two di�erent non normal distributions are used in
addition to the normal.

When it is aimed to construct X̄ chart, samples of size n are taken very often (Duncan
[33]). Considering the cost e�ciency, these frequently taken samples should not be
very large. Moreover, Page [66] stated that if it is desired to detect large changes in
the mean, samples of smaller sizes are taken frequently. Emerging from these points
of view, if it is desired to take small samples to construct quality control charts (more
speci�cally X̄ charts); ranked set sampling (RSS) scheme may provide more e�cient
and unbiased samples.

The correctness of the information obtained for the population strictly depends on the
unbiasedness and e�ciency of the sample. Therefore, it is of crucial importance to use
e�cient sampling methods so as to achieve better statistical inference. Simple random
sampling (SRS), systematic sampling, and strati�ed sampling are the most and very
well known sampling techniques used in practice. Ranked set sampling (RSS) is among
one of the popular sampling methods and known to be more e�cient than SRS.

Ranked set sampling (RSS) is a sampling method which provides great observational
economy especially when the quanti�cation of sample units is quite expensive (Patil
et al. [67]-[68]). This sampling method was �rst introduced by McIntyre [55] and
developed further by Halls and Dell [38]. RSS is best for the cases when measurement
of the units are costly and time consuming. In the basic theory of RSS, it is assumed
that the population of interest is in�nite and there exist easily and cheaply ranked
units without actual measurement (Chen et al. [27]). RSS is applicable either when
the latent values of the units are easy to rank by visual inspection, or when there exist
concomitant variables which can easily be ranked (Chen et al. [27]). Concomitant
variables are not the variables of interest but have a strong correlation with the variable
which is the major concern of the study.

It must be noted that the samples obtained by RSS hold the information regarding
both measurements on the variable of interest and ranks of the variables. This proves
that RSS contains more information than simple random sampling (SRS). RSS esti-
mators are unbiased, and they have lower mean squared errors (MSE) compared to
SRS estimators.
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Since RSS depends on visual inspection, there may occur some imperfect ranking
errors. To overcome this problem, lots of modi�cations have been developed, which
enabled RSS to be applicable to a wider range of areas than originally intended (Chen
et al. [27]). Extreme ranked set sampling (ERSS) is one of these modi�cations which
is more robust to imperfect ranking errors since it only identi�es �rst and last ordered
units for quanti�cation (see McIntyre [55], Samawi et al. [74], and Shaibu and Muttlak
[76]). On the other hand, ERSS has two major drawbacks: First, there may be outliers
in the sample. Second, distribution of the population of interest may be skewed. In
these cases, RSS is more e�cient than ERSS (Patil et al. [67]). However, in this
thesis, symmetric distributions are taken into consideration which makes the second
drawback inconsiderable.

Estimation of location-scale parameters for RSS and ERSS has been discussed in many
studies; see for example Ozturk [64]-[65] for RSS and Shaibu and Muttlak [76]-[77]) for
ERSS. However, in the estimation processes of RSS and ERSS, there arise some prob-
lems which may be overcome by using the modi�ed maximum likelihood estimation
(MMLE) method proposed by Tiku [92] and Tiku and Suresh [97]. In this thesis, the
modi�ed maximum likelihood estimators for location and scale parameters for normal,
long tailed symmetric and short tailed symmetric distributions under RSS scheme are
obtained. Moreover, location and scale parameters are obtained by using both the
MMLE method and the best linear unbiased estimation (BLUE).

In this thesis, e�ciencies of quality control charts under SRS and RSS and its modi�-
cation, ERSS are compared under three symmetric distributions; normal, long-tailed
symmetric and short-tailed symmetric distributions. In Chapter 2, RSS and ERSS
methods are compared with their SRS counterparts for constructing Shewhart con-
trol charts under normal distribution. Chapter 3 considers the long-tailed symmetric
distribution. In this chapter, parameter estimators are obtained by using MMLE
method under both the SRS and RSS schemes, and construction of X̄ charts are dis-
cussed. Since normality assumption is not satis�ed, three-moment t-approximation
is used to construct control limits. Chapter 4 discusses construction of control limits
for Shewhart control charts under short-tailed symmetric distribution. Moment ap-
proximation is also considered when the normality is not satis�ed. The parameters
under both SRS and RSS are obtained through MMLE. Chapter 5 gives one real data
application and one simulated example on the methods covered in previous chapters.
Finally, Chapter 6 gives concluding remarks and discusses possible future works.
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1.1 LITERATURE REVIEW

1.1.1 QUALITY CONTROL CHARTS

Although quality control dates back to 1700s, statistical quality control can be con-
sidered as a newly developed method. It was �rst proposed by Shewhart in 1931 at
Bell Telephone laboratories. At that time, the importance of this method could not
grasped by the industry. However, it was no later than the World War II, the statistical
quality control became very popular (Montgomery [57]). This is due to the fact that
controlling and improving quality of products issues gained more importance during
the war time. After the war, the American Society for Quality Control was established
in 1948 in order to foster the use of statistical quality control in all kinds of products.

Since then, various forms of Shewhart control charts have been developed. For instance,
in the classical Shewhart control chart, the control limits are constructed under nor-
mality assumption. However, in the case of violation of this assumption, Yourstone
and Zimmer [106] showed the improperness of this method. Therefore, a great num-
ber of studies have been conducted to enable the use of control charting procedure
for non-normal populations. Chou et al. [30] and Spedding and Rawlings [81] pro-
posed the use of transformation to satisfy normality assumption. Ferrel [36] studied
the lognormal distribution whereas Nelson [61] proposed a method for the Weibull
distribution. Tagaras [88], Elsayed and Chen [34], and Wu [105] worked on developing
asymmetric control limits for skewed distributions. Choobineh and Ballard [29] pro-
posed the weighted variance method for skewed distributions; see also Bai and Choi
[13], and Amhemad [45]. Chan and Cui [23] suggested a new method for eliminating
the skewness of a distribution. Tadikamalla and Popescu [87] worked on distributions
having kurtosis greater than that of normal. For more information on distributional
studies, see Montgomery [56], and Ho and Case [43]. For a general review on quality
control readers can refer to Stoumbos et al. [85].

While constructing control limits, the choice of sample size and the number of samples
are important issues and have been discussed by many authors. The construction
of control limits depends on whether population parameters are known or unknown.
In case of known parameters, events of being out of limits are consecutive Bernoulli
trials. For 3σ control limits this probability equals to 0.0027. On the other hand,
when the parameters are unknown, the limits are estimated by the sample statistics.
In this case, the event of false alarm is no more independent of limits, hence the false
alarm probability for 3σ limits is greater than 0.0027. Actually, probability of a false
alarm depends only on number of samples (M) and sample size (n) (Quesenberry
[70]). Although most of the researchers (see, Montgomery [57], Ryan [72]) claim that
20 to 30 samples of size 4 or 5 are enough to construct control limits, Quesenberry
[70] proposed to use M samples such that M is equal to as 400/(n − 1); n being the
sample size.
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Some modi�cations of Shewhart control chart, known as exponentially weighted mov-
ing average charts (EWMA) and cumulative sum charts (CUSUM) were proposed to
improve the ability of this chart in detecting small shifts in the process. CUSUM
charts were �rst introduced by Page [66] as one of the modi�cations. Since then, many
studies have been conducted on this topic; see for example Taylor [90], Ewan [35], Chiu
[28], Hawkins and Olwell [42], Nishina and Peng-Hsiung [62]. For EWMA charts, see
Lowry et al. [50], Lu et al. [51], and Lucas and Saccucci [52].

Several Bayesian approaches were also implemented in constructing quality control
methods. Girshick and Rubin [37], Shiryaev [79], and Roberts [71] were the �rst
to apply Bayesian procedures. There are also studies to construct control limits for
multivariate distributions; see for example, Hotelling [44], Hawkins [41], Liu [49], and
Mason et al. [54]. One can refer to Chakraborti et al. [22] for the literature on quality
control procedures based on nonparametric methods.

1.1.2 RANKED SET SAMPLING

Ranked Set Sampling (RSS) is a newly developed method which was �rst proposed
by McIntyre [55]. He developed this method for his research on the yield of pastures
when he realized that inspection of the hay with an experienced eye is possible for
the pastures from which the sampling and measurement is costly and time consuming.
He proposed the procedure of RSS, and showed the gain in e�ciency in estimating
the population mean when compared to simple random sampling (SRS). McIntyre
[55], also, demonstrated that the e�ciency gain is high when the distribution of the
population is symmetric, and the gain decreases as the distribution becomes skewed.
Moreover, he mentioned some possible problems that may be faced with RSS; such as
imperfect ranking and correlation among the sample units.

Halls and Dell [38] applied RSS in their study on forage yields in a pine hardwood
forest. They are the ones to coin the name "ranked set sampling" for this method. Dell
and Clutter [32] proved that the RSS estimator of the population mean is unbiased
even in the case of errors in judgment ranking. They stated that the e�ciency of
the estimators obtained through RSS depends on the underlying distribution and the
accuracy of the judgment ranking.

Takahasi and Wakimoto [89] were the �rst to obtain some theoretical results on RSS.
Following them, Dell and Clutter [32] and David and Levine [31] proved the unbiased-
ness of the RSS estimator and its variance being smaller than that of the SRS estimator
under both perfect and imperfect ranking. After that, important contributions were
made by Stokes [83]-[82] who studied the e�ciency of the variance estimator of RSS
and set an estimator for correlation coe�cient for bivariate normal distribution under
RSS. Later, inferences about distribution function for RSS were made by Stokes and
Sager [84], Kvam and Samaniego [48], and Chen [24].
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Since 1990s there have been remarkable developments in the topic of RSS, which consist
of its modi�cations, as well as some parametric and nonparametric applications. The
modi�cations of RSS are extreme ranked set sampling (ERSS) (Shaibu and Muttlak,
[76]-[77], Al-Naser and Mustafa [6], L ranked set sampling (Al-Nasser [3]), double
ranked set sampling (DRSS) (Al-Saleh and Al-Kadiri [11], Al-Omari and Jaber [8],
moving extreme ranked set sampling (MERSS) (Al-Saleh and Al-Hadrami [9]-[10],
and ordered ranked set sampling (ORSS) (Balakrishnan and Li [15]-[16]-[17]-[18]). For
the estimation of parameters in RSS, the readers can refer to Ozturk [63]-[64]-[65],
Shadid et al. [75], and MacEachern et al. [53]. For the optimal design issues in RSS,
see Chen and Bai [26], Nahhas et al. [60], and Wang et al. [102]. For some general
information on this sampling method, the following references are useful: Chen et al.
[27], Chen [25], Bai and Chen [14], Bouza [19], Sinha [80], Wolfe [103]-[104].

1.1.3 QUALITY CONTROL CHARTS BASED ON RANKED SET SAM-
PLING

In the literature, there are very few studies combining quality control and RSS. The
�rst study suggesting the use of RSS method in quality control charts for the process
mean is due to Salazar and Sinha [73]. They found that control charts based on
RSS gave better results than its SRS counterparts. Later, Muttlak and Al-Sabah [59]
compared quality control charts obtained under some modi�cations of RSS (ERSS,
median ranked set sampling (MRSS)) with those based on SRS. They constructed all
of the charts under the normality assumption, and use average run length (ARL) for
the comparison when the process is both in control and in need of improvement for
the process mean. Moreover, they compared the performances of the charts based on
RSS, ERSS, and MRSS under perfect and imperfect ranking conditions. According to
their research, RSS and two of its modi�cations were found to be more superior than
the classical control chart based on SRS. Furthermore, MRSS was found to be the best
in terms of detecting an out-of control process when compared to RSS and ERSS, and
they suggested to use MRSS and ERSS rather than RSS for control charting procedure
since they are more robust to imperfect ranking errors and more practical in real life
cases.

Another research on quality control based on RSS and its modi�cations was conducted
by Abujiya and Muttlak [1]. In their study, they developed quality control charts based
on double ranked set sampling (DRSS), median double ranked set sampling (MDRSS),
double median ranked set sampling (DMRSS), and compared their e�ciencies with
those based on SRS, RSS, and MRSS. They concluded that DRSS is better than SRS
and RSS, and most e�cient results are obtained by DMRSS method.

Al-Omari and Al-Naser [7], constructed control charts using robust extreme ranked set
sampling (RERSS). In this study, they reached the conclusion that the e�ciencies of
RSS and RERSS, become more evident as the process gets out-of-control. Al-Nasser
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and Al-Rawwash [5] used robust L-ranked set sampling (LRSS) in order to construct
quality control chart for the mean of a process. Folded ranked set sampling (FRSS)
which reduces the waste of units in RSS was applied to control charting procedure and
was found to be more e�cient than SRS but less e�cient than RSS (Al-Nasser et al.
[4]).
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CHAPTER 2

QUALITY CONTROL CHARTS UNDER NORMAL

DISTRIBUTION

In this thesis, control charts for the process mean are studied under three di�erent
symmetrical distributions. Therefore, when "quality control chart" is mentioned in the
text, it means quality control chart for the mean of a process or simply X̄ chart. Quality
control charts are constructed mostly under the assumption of normality; therefore,
the �rst distribution which will be covered in this chapter is normal distribution.

As mentioned in Chapter 1, control chart procedure consists of two phases. In the
�rst phase, control limits are constructed. If the population parameters are known,
the limits are set by directly using these values. Since the interest is the population
mean (µ), control limits are set around µ. This means the center line for the control
chart is µ, and the lower and upper limits of the control chart are set apart 3 standard
deviations from the center line µ, as shown in Equation 2.1. In the literature, the most
frequently used limit is 3σ for Shewhart control charts; 1.5σ and 2σ limits also being
of use. On the other hand, in the case of unknown population parameters, M samples
of size n are selected from the process under control, and the parameters are estimated
by using these samples.

UCL = µ+ 3
σ√
n
,

CL = µ ,

LCL = µ− 3
σ√
n
.

(2.1)

In the second phase of the control charting procedure, the process is monitored. For
the quality of a product, the sample mean is used to estimate the central tendency
of a grouped data (Shewhart [78]). At some points of time, one sample of size n is
selected, and the mean of this sample is plotted on the chart. The state of the process,
whether being under control or not, is judged according to the graph of the sample
means. If any sample statistic is out-of the control limits or there is a pattern in
the sample statistics lying within the control limits, this indicates that the process is
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out-of-control.

Most researchers have been interested in the distribution of the events of observations
being out-of control limits. In the known parameter case, these events, which are also
called false signal, are consecutive and independent Bernoulli trials and the probability
is equal to 0.0027 for 3σ limits as stated in Quesenberry [70]. However, when the
parameters are unknown, observations and estimated control limits are dependent to
each other, and the event of false signal is distributed as a linear function of normal
distribution (see Quesenberry [70]). The probability of false alarm, in this case, is
greater than 0.0027. As the number of samplesM increases, the false alarm probability
approaches to 0.0027.

2.1 Quality Control Charts with Simple Random Sampling

In the literature, the most frequently used sampling method for control charts is simple
random sampling (SRS). To obtain control limits, MLE of µ (which is X̄) is utilized
as X̄ is an unbiased and e�cient estimator of µ.

E(X̄) = µ , (2.2)

V ar(X̄) = σ2/n . (2.3)

In the estimation part of the control chart, M random samples of size n are selected
by using SRS, which leads to the use of ¯̄X to estimate µ. On the other hand, the
variance of µ is estimated by S̄

c4
√
n
(see Equation 2.5) where S̄ is the mean of M

sample standard deviations. The constant c4 is used to make S an unbiased estimator
of σ. The constant c4 can easily be obtained and is given approximately by

c4 =

√
2

n− 1

(
Γ(n/2)

Γ(n− 1/2)

)
; (2.4)

see Duncan [33] for details.

Thus, 3σ control limits for normal distribution under SRS can be written as follows:

UCL = ¯̄X + 3
S̄

c4
√
n
,

CL = ¯̄X ,

LCL = ¯̄X − 3
S̄

c4
√
n
.

(2.5)
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2.2 Quality Control Charts with Ranked Set Sampling

Shewhart [78] emphasized the importance of the sampling method in a quality control
chart procedure. In the literature, due to the ease of application, mostly SRS is
used when constructing control charts. However, small samples are preferred in the
monitoring stage of Shewhart control charts (as mentioned in Chapter 1), and RSS
has been shown to be superior over SRS in that case. Due to this fact, it is worth
seeing whether RSS also performs better under Shewhart control chart process.

In this sampling method, one �rstly identi�es a large sample from the population of
interest, and then chooses the units to be quanti�ed according to a certain process.
That is to say, if it is desired to select a random sample of size n from a population,
initially a random sample of size n2 is selected in order for identi�cation. Then,
n2 sample units are randomly allocated into n samples of size n. Finally, each of
the n samples is ranked within itself according to visual inspection without actually
measuring the units, and the �rst ranked one is selected from the �rst sample for
measurement on the variable of interest. Following the �rst measurement, the second
ranked unit from the second set is picked and measured. This continues until the
nth ranked unit in the nth set is selected for actual measurement. If it is desired to
obtain a larger sample, say a sample of size N = n ∗ r, the process explained above
is repeated r times. When considering the sample selection scheme of RSS, there is
a similarity between this method and the strati�ed sampling in the sense that both
processes divide the population into many subpopulations. In the RSS case, each of
these subpopulations has a di�erent distribution (Patil et al. [67]-[68], Chen et al.
[27]). The RSS scheme is illustrated in Figure 2.1 for n = 4 and r cycles . The
observations in bold are those which are chosen for actual measurement.

Judgment Rank
Cycle 1 2 3 4

1

X(1)1 X(2)1 X(3)1 X(4)1

X(1)2 X(2)2 X(3)2 X(4)2

X(1)3 X(2)3 X(3)3 X(4)3

X(1)4 X(2)4 X(3)4 X(4)4

...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

r

X(1)1 X(2)1 X(3)1 X(4)1

X(1)2 X(2)2 X(3)2 X(4)2

X(1)3 X(2)3 X(3)3 X(4)3

X(1)4 X(2)4 X(3)4 X(4)4

Figure 2.1: RSS scheme for n = 4 and r cycles

In the literature, there are a few applications of RSS in control charts, see Salazar and
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Sinha [73], Muttlak and Al-Sabah [59], Abujiya and Muttlak [1], Al-Omari and Al-
Naser [7]. However, no closed form solutions of the parameter estimators are available
in those studies. This is due to the fact that the likelihood function consists of some
intractable functions.

Let the distribution of the random variable of interest X be denoted by (1/σ) f
(x−µ

σ

)
,

1

σ
f

(
x− µ
σ

)
=

1√
2πσ

exp

{
−(x− µ)2

2σ2

}
; −∞ < x <∞, −∞ < µ <∞, σ > 0 .

(2.6)

Since each order statistic is taken from a di�erent sample, the order statistics are
independent of each other. Therefore, the likelihood function can be written as the
product of the density function of each order statistic

L =
n∏
i=1

fi:n(x(i)) , (2.7)

where

fi:n(x(i)) =
n!

(n− i)!(i− 1)!

1

σ
f

(
x(i) − µ

σ

)[
F

(
x(i) − µ

σ

)]i−1[
1− F

(
x(i) − µ

σ

)]n−i
;

(2.8)

1 ≤ i ≤ n, −∞ < x(i) <∞, −∞ < µ <∞, σ > 0 .

Further, the likelihood can be written as

L =
n∏
i=1

n!

(n− i)!(i− 1)!

1

σn

n∏
i=1

f(z(i))
n∏
i=1

[
F (z(i))

]i−1
n∏
i=1

[
1− F (z(i))

]n−i , (2.9)

where F (z) =
∫ z
−∞ f(t) dt is the cdf of the normal distribution; z(i) = (x(i) − µ)/σ.

To estimate µ and σ, the following partial derivatives of likelihood equations are ob-
tained:

∂lnL

∂µ
=

(
1

σ

)[ n∑
i=1

z(i) −
n∑
i=1

(i− 1)
f(z(i))

F (z(i))
+

n∑
i=1

(n− i)
f(z(i))

1− F (z(i))

]
, (2.10)

∂lnL

∂σ
=

(
1

σ

)[ n∑
i=1

z2
(i) −

n∑
i=1

(i− 1)z(i)

f(z(i))

F (z(i))

+
n∑
i=1

(n− i)z(i)

f(z(i))

1− F (z(i))
− n

]
. (2.11)

The MLEs of these parameters can not be obtained explicitly from Equations 2.10 and
2.11 due to the nonlinear functions
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g1(z(i)) =
f(z(i))

F (z(i))
, g2(z(i)) =

f(z(i))

1− F (z(i))
; 1 ≤ i ≤ n . (2.12)

2.2.1 Modi�ed Maximum Likelihood Estimation

Tiku [92], and Tiku and Suresh [97] proposed modi�ed maximum likelihood to over-
come the di�culties mentioned above. There is only one assumption for this model: Te
�rst two derivatives of lnf must exist (f is the pdf of the random variable of interest).
In this method, nonlinear terms in the likelihood functions are linearized by Taylor
series expansion. Consider the nonlinear terms in the likelihood functions 2.10 and
2.11,

g1(z(i)) ∼= α1i − β1iz(i) , g2(z(i)) ∼= α2i + β2iz(i) ; 1 ≤ i ≤ n . (2.13)

The linearized forms of the nonlinear terms (2.13) are obtained by using the �rst
two terms of Taylor series expansions of the functions g1(z(i)) and g2(z(i)) around the
expected values of z(i). The expected values of the standardized normal order statistics
are given by Harter [40]. The coe�cients α1i, β1i, α2i, and β2i are given in 2.14 - 2.15,

β1i =
t(i)f(t(i))

F (t(i))
+

(
f(t(i))

F (t(i))

)2

, α1i =
f(t(i))

F (t(i))
+ t(i)β1i , (2.14)

β2i =

(
f(t(i))

1− F (t(i))

)2

−
t(i)f(t(i))

1− F (t(i))
, α2i =

f(t(i))

1− F (t(i))
− t(i)β2i , (2.15)

where E(Z(i)) = t(i).

Substituting the linearized forms in the partial derivatives of likelihood function (2.10
- 2.11), the estimators of parameters µ and σ can be obtained as

µ̂ =

n∑
i=1

aix(i) ; ai =
ui
n∑
i=1

ui

(2.16)

and

σ̂ =
−B +

√
B2 + 4nC

2n
(2.17)

where

B =

n∑
i=1

wix(i) , C =

n∑
i=1

ui
(
x(i) − µ̂

)2 , (2.18)
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ui = (i− 1)β1i + (n− i)β2i + 1 , wi = (i− 1)α1i − (n− i)α2i . (2.19)

The modi�ed likelihood equation is asymptotically equivalent to the likelihood equa-
tion; therefore, MML estimators are asymptotically fully e�cient and unbiased (Tiku
and Akkaya [95]).

Quality control limits for Shewhart control chart under RSS: After obtaining
the closed forms of the estimators of unknown parameters, the control limits are set
by using these estimators. The mean of the process µ is estimated by ¯̂µ, where µ̂, is
an unbiased estimator. To construct control limits, variance of µ̂ is needed, and it can
be obtained as

V ar(µ̂) =

σ2
n∑
i=1

(
u2
iV ar(Z(i))

)
(

n∑
i=1

ui

)2 . (2.20)

Then the control limits are

UCL = ¯̂µ+ 3

c1
¯̂σ

√
n∑
i=1

(
u2
iV ar(Z(i))

)
n∑
i=1

ui

,

CL = ¯̂µ ,

LCL = ¯̂µ− 3

c1
¯̂σ

√
n∑
i=1

(
u2
iV ar(Z(i))

)
n∑
i=1

ui

,

(2.21)

where c1 is a constant used to make σ̂ an unbiased estimator of σ, and is obtained by
simulation.

2.2.2 Simulation Results

To see the superiority of RSS in the estimation of parameters, Monte Carlo simulation
with 100,000 repetitions is conducted under normal distribution with parameters µ = 0

and σ = 1. Table 2.1 shows the bias of the estimators and the mean squared errors
(MSE) under the corresponding sample size and sampling method.

According to the simulation results in Table 2.1, the bias of µ̂ obtained by both SRS
and RSS are negligible. RSS yields smaller MSE for all sample sizes (3,...,10). When
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Table 2.1: Comparison of RSS and SRS in the estimation of Normal distribution
parameters

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0007 0.0009 0.3343 0.1733 -0.1132 -0.1879 0.2272 0.1623
4 -0.0010 0.0007 0.2487 0.1048 -0.0794 -0.1127 0.1575 0.1026
5 0.0001 0.0016 0.1998 0.0699 -0.0604 -0.0658 0.1205 0.0711
6 0.0013 0.0001 0.1670 0.0498 -0.0485 -0.0417 0.0964 0.0538
7 -0.0001 -0.0002 0.1423 0.0377 -0.0414 -0.0251 0.0814 0.0426
8 0.0018 0.0003 0.1250 0.0292 -0.0343 -0.0133 0.0699 0.0348
9 -0.0005 0.0003 0.1119 0.0231 -0.0311 -0.0056 0.0613 0.0287
10 0.0005 -0.0003 0.0994 0.0190 -0.0263 0.0005 0.0546 0.0242

the scale parameter is of concern, RSS estimators have smaller bias and MSEs for
most of the sample sizes. To more clearly demonstrate the e�ciency of RSS over SRS,
relative e�ciency (RE) table is constructed by dividing the MSE of the estimators
obtained under SRS by those under RSS. Obtaining RE greater than 1 means RSS is
more e�cient, and vice versa.

Table 2.2: Relative e�ciency of µ̂ and σ̂ under SRS and RSS

n 3 4 5 6 7 8 9 10

µ̂ 1.93 2.37 2.86 3.35 3.78 4.29 4.84 5.22

σ̂ 1.40 1.53 1.69 1.79 1.91 2.01 2.13 2.25

According to Table 2.2, it can be said that relative e�ciency of RSS is always greater
than 1 meaning that RSS is always more e�cient than SRS. Moreover, as the sample
size increases, RE also increases.

Another Monte Carlo simulation is conducted to compare the performances of She-
whart control charts under SRS and RSS with 100,000 repetitions. The control chart
simulations are conducted under Normal distribution with parameters µ = 0, σ = 1,
and 3σ control limits are set such that the type I error level is 0.0027. Four di�erent
sets of samples (M = 20, 30, 50, 100) are used in the simulations for estimating the
control limits. The results are given in Table 2.3.

The results in Table 2.3 show that with fewer number of samples RSS yields smaller
type I errors for smaller number of samples. On the other hand, as the number of
samples increases, both sampling methods perform almost the same, and the type I
error levels get closer to the target value 0.0027
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Table 2.3: Type I error comparison for Shewhart control charts constructed under SRS
and RSS

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0055 0.0050 0.0045 0.0042 0.0037 0.0037 0.0032 0.0033
4 0.0047 0.0044 0.0040 0.0038 0.0034 0.0034 0.0031 0.0031
5 0.0044 0.0041 0.0038 0.0036 0.0033 0.0033 0.0030 0.0030
6 0.0042 0.0039 0.0037 0.0035 0.0032 0.0032 0.0030 0.0030
7 0.0041 0.0038 0.0035 0.0034 0.0032 0.0031 0.0029 0.0030
8 0.0040 0.0037 0.0035 0.0034 0.0032 0.0031 0.0029 0.0029
9 0.0039 0.0037 0.0035 0.0034 0.0031 0.0031 0.0029 0.0029
10 0.0039 0.0036 0.0034 0.0033 0.0031 0.0031 0.0029 0.0029

2.3 Quality Control Charts with Extreme Ranked Set Sampling

The e�ciency of the sampling method RSS depends thoroughly on the accuracy of
judgment ranks. In the worst case (completely wrong judgment ranks), the RSS is at
least as e�cient as SRS; however, RSS loses its superiority over SRS. To overcome the
judgment ranking errors, a more robust version called Extreme Ranked Set Sampling
(ERSS) has been developed.

ERSS scheme is very similar to that of RSS except that only the �rst and last ordered
units are selected for measurement. As in the �rst and second stages of RSS, n2 units
are selected for identi�cation and are randomly allocated into n sets of size n. Next,
each set is ranked within itself, and if n is even, the �rst ranked units in the �rst n/2
sets and the last ranked units in the last n/2 sets are selected for actual measurement.
However, if the sample size n is odd, the �rst ranked units in the �rst (n− 1)/2 sets,
the last ranked units in the following (n − 1)/2 sets, and the median of the last set
are selected for quanti�cation. Since identifying the extreme values in a set is an
easier process than identifying the ith, (i = 2, 3, ..., n − 1) units, ERSS is more robust
to imperfect ranking errors. In Figures 2.2 and 2.3, ERSS scheme for even and odd
sized samples are illustrated. The observations written in bold are selected for actual
measurement.

For the estimation process in ERSS, let the distribution of the random variable X be
denoted by

1

σ
f

(
x− µ
σ

)
=

1√
2πσ

exp

{
−(x− µ)2

2σ2

}
; −∞ < x <∞, −∞ < µ <∞, σ > 0 .

(2.22)

The likelihood function can easily be obtained through the multiplication of the pdfs
of the �rst and last order statistics (or median, if odd sized sample) since each order
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Judgment Rank
Cycle 1 2 3 4

1

X(1)1 X(2)1 X(3)1 X(4)1

X(1)2 X(2)2 X(3)2 X(4)2

X(1)3 X(2)3 X(3)3 X(4)3

X(1)4 X(2)4 X(3)4 X(4)4

...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

r

X(1)1 X(2)1 X(3)1 X(4)1

X(1)2 X(2)2 X(3)2 X(4)2

X(1)3 X(2)3 X(3)3 X(4)3

X(1)4 X(2)4 X(3)4 X(4)4

Figure 2.2: ERSS scheme for n = 4 and r cycles

statistic is obtained from a di�erent sample and hence independent of each other. For
an even sized sample, the likelihood function can be written as

L =

n/2∏
i=1

f1:n(x(1)i)

n∏
i=n/2+1

fn:n(x(n)i) , (2.23)

where

f1:n(x(1)) = n
1

σ
f

(
x(1) − µ

σ

)[
1− F

(
x(1) − µ

σ

)]n−1

; −∞ < x(1) <∞ , (2.24)

fn:n(x(n)) = n
1

σ
f

(
x(n) − µ

σ

)[
F

(
x(n) − µ

σ

)]n−1

; −∞ < x(n) <∞ . (2.25)

The likelihood function can also be written as

L =
(n
σ

)n n/2∏
i=1

[
f(z(1)i)

(
1− F (z(1)i)

)n−1
] n∏
i=n/2+1

[
f(z(n)i)F (z(n)i)

n−1
]
, (2.26)

where F (z) =
∫ z
−∞ f(t) dt is the cdf of the normal distribution, and z(i) = (x(i)−µ)/σ.

Likewise, the likelihood function for an odd sized sample is

L = fn+1
2

:n(x(n+1
2

))

n/2∏
i=1

f1:n(x(1)i)

n∏
i=n/2+1

fn:n(x(n)i) , (2.27)
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Judgment Rank
Cycle 1 2 3 4 5

1

X(1)1 X(2)1 X(3)1 X(4)1 X(5)1

X(1)2 X(2)2 X(3)2 X(4)2 X(5)2

X(1)3 X(2)3 X(3)3 X(4)3 X(5)3

X(1)4 X(2)4 X(3)4 X(4)4 X(5)4

X(1)5 X(2)5 X(3)5 X(4)5 X(5)5

...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

r

X(1)1 X(2)1 X(3)1 X(4)1 X(5)1

X(1)2 X(2)2 X(3)2 X(4)2 X(5)2

X(1)3 X(2)3 X(3)3 X(4)3 X(5)3

X(1)4 X(2)4 X(3)4 X(4)4 X(5)4

X(1)5 X(2)5 X(3)5 X(4)5 X(5)5

Figure 2.3: ERSS scheme for n = 5 and r cycles

where

fn+1
2

:n(x(n+1
2

)) =
n!(

n−1
2

)
!
(
n−1

2

)
!

[
F (x(n+1

2
))
](n−1)/2

f(x(n+1
2

))[
1− F (x(n+1

2
))
](n−1)/2

(2.28)

is the pdf of the median. More speci�cally, the likelihood for odd sized samples can
also be written as

L = C

(
1

σ

)n (n−1)/2∏
i=1

[
f(z(1)i)

(
1− F (z(1)i)

)n−1
] n−1∏
i=(n+1)/2

[
f(z(n)i)F (z(n)i)

n−1
]

[
F (z(n+1

2
))

(n−1)/2f(z(n+1
2

))
(

1− F (z(n+1
2

))
)(n−1)/2

]
, (2.29)

where C = n!nn−1

(n−1
2 )!(n−1

2 )!
.

Then, one can take the partial derivatives of the likelihood function (even sized sam-
ples) as follows:

18



∂lnL

∂µ
=

(
1

σ

)
n/2∑
i=1

z(1)i +
n∑

i=n/2+1

z(n)i

+(n− 1)

n/2∑
i=1

g1(z(1)i)−
n∑

i=n/2+1

g2(z(n)i)

 , (2.30)

∂lnL

∂σ
=

(
1

σ

)
n/2∑
i=1

z2
(1)i +

n∑
i=n/2+1

z2
(n)i − n

+(n− 1)

n/2∑
i=1

g1(z(1)i)−
n∑

i=n/2+1

g2(z(n)i)

 . (2.31)

For odd sized samples, partial derivative equations are obtained as

∂lnL

∂µ
=

(
1

σ

)
n/2∑
i=1

z(1)i +

n∑
i=n/2+1

z(n)i + z(n+1
2

)

+ (n− 1)

n/2∑
i=1

g1(z(1)i)−
n∑

i=n/2+1

g2(z(n)i)


+

(
n− 1

2

)[
g1(z(n+1

2
))− g2(z(n+1

2
))
]}

, (2.32)

∂lnL

∂σ
=

(
1

σ

)
n/2∑
i=1

z2
(1)i +

n∑
i=n/2+1

z2
(n)i + z2

(n+1
2

)
− n

+ (n− 1)

n/2∑
i=1

g1(z(1)i)−
n∑

i=n/2+1

g2(z(n)i)


+

(
n− 1

2

)
z(n+1

2
)

[
g1(z(n+1

2
))− g2(z(n+1

2
))
]}

. (2.33)

As in the estimation process of RSS, nonlinear terms (see 2.34) exist in the partial
derivatives of the likelihood function; therefore, it is not possible to directly obtain
closed form solutions of MLEs for parameters µ and σ.

g1(z(i)) =
f(z(i))

1− F (z(i))
, g2(z(i)) =

f(z(i))

F (z(i))
; i = 1,

n+ 1

2
, n . (2.34)

2.3.1 Modi�ed Maximum Likelihood Estimation

As proposed by Tiku [92], and Tiku and Suresh [97], the nonlinear terms (2.34) can
be linearized by Taylor series expansion around the expected values of standardized
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order statistics (E(z(i)) = t(i)). They are given by

g1(z(i)) ∼= α1i + β1iz(i) , g2(z(i)) ∼= α2i − β2iz(i) ; i = 1,
n+ 1

2
, n . (2.35)

where

β1i =

(
f(t(i))

1− F (t(i))

)2

−
t(i)f(t(i))

1− F (t(i))
, α1i =

f(t(i))

1− F (t(i))
− t(i)β1i , (2.36)

β2i =

(
f(t(i))

F (t(i))

)2

+
t(i)f(t(i))

F (t(i))
and α2i =

f(t(i))

F (t(i))
− t(i)β2i . (2.37)

Substituting the linearized forms of the terms (2.35s) in the partial derivatives of
likelihood function, the estimators of unknown parameters µ and σ can be obtained as

µ̂ =

n/2∑
i=1

x(1)i +
n∑

i=n/2+1

x(n)i

n
(2.38)

and

σ̂ =
−B +

√
B2 + 4nC

2n
(2.39)

where

B = (n− 1)α11

 n∑
i=n/2+1

x(n)i −
n/2∑
i=1

x(1)i

 , (2.40)

C = (1 + (n− 1)β11)

n/2∑
i=1

(x(1)i − µ̂)2 +
n∑

i=n/2+1

(x(n)i − µ̂)2

 (2.41)

and n is even.

For odd sized samples, the parameter estimators are

µ̂ =

(1 + (n− 1)β11)

(
(n−1)/2∑
i=1

x(1)i +
n−1∑

i=(n+1)/2

x(n)i

)
+
(

1 + (n− 1)β1n+1
2

)
x(n+1

2
)

(n− 1) (1 + (n− 1)β11) +
(

1 + (n− 1)β1n+1
2

)
(2.42)

and

σ̂ =
−B +

√
B2 + 4nC

2n
(2.43)
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where

B = (n− 1)α11

 n∑
i=n/2+1

x(n)i −
n/2∑
i=1

x(1)i

 , (2.44)

C = (1 + (n− 1)β11)

n/2∑
i=1

(x(1)i − µ̂)2 +

n∑
i=n/2+1

(x(n)i − µ̂)2


+
(

1 + (n− 1)β1n+1
2

)(
x(n+1

2
) − µ̂

)2
. (2.45)

As mentioned in Section 2.2.1, the MML estimators are asymptotically unbiased and
fully e�cient.

Quality control limits for Shewhart control chart under ERSS: In order to
construct control limits, MML estimators under ERSS can be used. The mean of the
process is estimated by ¯̂µ which is an unbiased estimator of µ for both even and odd
sized samples and the variance of the process mean is estimated by

V ar(µ̂mml,even) =
1

n
σ2V ar(Z(1)) (2.46)

V ar(µ̂mml,odd) = σ2

 (n− 1) (1 + (n− 1)β11)2 V ar(Z(1))[
(n− 1) (1 + (n− 1)β11) +

(
1 + (n− 1)β1n+1

2

)]2

+

(
1 + (n− 1)β1n+1

2

)2
V ar

(
Z(n+1

2
)

)
[
(n− 1) (1 + (n− 1)β11) +

(
1 + (n− 1)β1n+1

2

)]2

 . (2.47)

Then, the 3σ control limits are constructed as

UCL = ¯̂µ+ 3
√
V ar(µ̂) ,

CL = ¯̂µ ,

LCL = ¯̂µ− 3
√
V ar(µ̂) .

(2.48)

The unknown parameter σ in the variance of µ̂ is estimated by c1
¯̂σ where c1 is a

constant to make the σ̂ an unbiased estimator of σ. The constant c1 can easily be
obtained by simulation for both even and odd sized samples.
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2.3.2 Best Linear Unbiased Estimation Method

Parameter estimators under ERSS scheme can also be obtained by best linear unbiased
estimation (BLUE) method (Tiku and Akkaya [95]) as

µ̂blue,even =

n/2∑
i=1

x(1)i +
n∑

i=n/2+1

x(n)i

n
, (2.49)

σ̂blue,even =

n∑
i=n/2+1

x(n)i −
n/2∑
i=1

x(1)i

nt(n)
(2.50)

and

µ̂blue,odd =

(
(n−1)/2∑
i=1

x(1)i +
n∑

i=n/2+1

x(n)i

)
V ar

(
Z(n+1

2
)

)
+ x(n+1

2
)V ar(Z(1))

V ar(Z(1)) + (n− 1)V ar
(
Z(n+1

2
)

) , (2.51)

σ̂blue,odd =

n∑
i=(n+1)/2

x(n)i −
(n−1)/2∑
i=1

x(1)i

(n− 1)t(n)
. (2.52)

Since µ̂mml,even and µ̂blue,even are in the same forms, V ar(µ̂blue,even) equals to V ar(µ̂mml,even)

as in Equation 2.46. On the other hand, one can obtain the variance of µ̂ for odd sized
samples as

V ar(µ̂blue,odd) = σ2
V ar(Z(1))V ar

(
Z(n+1

2
)

)
V ar(Z(1)) + (n− 1)V ar

(
Z(n+1

2
)

) . (2.53)

The 3σ control limits by using BLU estimators can then be written as

UCL = ¯̂µ+ 3
√
V ar(µ̂) ,

CL = ¯̂µ ,

LCL = ¯̂µ− 3
√
V ar(µ̂) .

(2.54)

2.3.3 Simulation Results

In this part of the simulations, ERSS estimators obtained by MMLE and BLUE meth-
ods are compared with SRS estimators. For this comparison, Monte Carlo simulations
with 100,000 iterations are used under normal distribution with parameters µ = 0

and σ = 1. Since the likelihood function di�ers for even and odd sized samples, the
simulation results are given in distinct tables.
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Table 2.4: Bias and MSE comparison for µ̂srs, µ̂erss MMLE (denoted by ERSS*), and
µ̂erss BLUE (denoted by ERSS**) for even sized samples

µ̂

Bias MSE
n SRS ERSS* ERSS** SRS ERSS* ERSS**
4 -0.0010 0.0011 0.0004 0.2487 0.1217 0.1233
6 0.0013 0.0012 -0.0005 0.1670 0.0690 0.0695
8 0.0017 0.0005 0 0.1250 0.0465 0.0463
10 0.0005 -0.0002 -0.0006 0.0994 0.0342 0.0343

Table 2.5: Bias and MSE comparison for µ̂srs, µ̂erss MMLE (denoted by ERSS*), and
µ̂erss BLUE (denoted by ERSS**) for odd sized samples

µ̂

Bias MSE
n SRS ERSS* ERSS** SRS ERSS* ERSS**
3 0.0007 0.0008 -0.0021 0.3343 0.1718 0.1732
5 0.0001 -0.0008 0.0008 0.1998 0.0807 0.0803
7 0 0.0006 0.0009 0.1423 0.0501 0.0500
9 -0.0005 -0.0002 -0.0007 0.1119 0.0353 0.0349

According to Tables 2.4 and 2.5, the bias of µ̂ obtained by SRS and ERSS are all
negligible. MSEs of µ̂erss are almost equal for MML and BLU estimators and both are
less than the SRS counterparts.

Table 2.6: Bias and MSE comparison for σ̂srs, σ̂erss MMLE (denoted by ERSS*), and
σ̂erss BLUE (denoted by ERSS**) for even sized samples

σ̂

Bias MSE
n SRS ERSS* ERSS** SRS ERSS* ERSS**
4 -0.0794 -0.0680 -0.0006 0.1575 0.0796 0.1162
6 -0.0485 0.0059 -0.0004 0.0964 0.0376 0.0432
8 -0.0343 0.0313 0 0.0699 0.0240 0.0230
10 -0.0262 0.0448 -0.0002 0.0546 0.0178 0.0145

The results in Tables 2.6 and 2.7 demonstrate that bias of σ̂erss for both MMLE
and BLUE methods are mostly less than σ̂srs. While comparing MSE, it is obvious
that the ERSS estimator obtained by MMLE method yields the smallest MSE for
small sample sizes. As the sample size increases, the MSEs of ERSS estimators for
both MMLE and BLUE methods become almost equal but still less than that of σ̂srs.
Relative e�ciency table (see Table 2.8) shows the e�ciency of the estimators under
ERSS more clearly where the relative e�ciency is de�ned as RE = MSEsrs

MSEerss
. Values

of RE greater than 1 mean that ERSS estimators are more e�cient. The results in
Table 2.8 show that estimators under ERSS scheme for both MMLE and BLUE are
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Table 2.7: Bias and MSE comparison for σ̂srs, σ̂erss MMLE (denoted by ERSS*), and
σ̂erss BLUE (denoted by ERSS**) for odd sized samples

σ̂

Bias MSE
n SRS ERSS* ERSS** SRS ERSS* ERSS**
3 -0.1132 -0.1881 0.0006 0.2272 0.1621 0.3925
5 -0.0604 -0.0353 0 0.1204 0.0585 0.0828
7 -0.0414 0.0133 -0.0002 0.0814 0.0317 0.0355
9 -0.0310 0.0344 0.0007 0.0613 0.0215 0.0203

more e�cient than SRS. For small sample sizes, REs of ERSS estimators obtained by
MMLE are slightly greater than that of BLUE and become almost equal when sample
size increases. Moreover, all RE values increase as the sample size increases, which
means that ERSS estimators become more e�cient as the sample size gets larger.

Table 2.8: Relative e�ciency of µ̂ and σ̂ under SRS and ERSS

n 4 6 8 10 3 5 7 9

MMLE
µ̂ 2.043 2.42 2.69 2.91 1.94 2.48 2.84 3.17
σ̂ 1.98 2.56 2.91 3.07 1.40 2.06 2.56 2.85

BLUE
µ̂ 2.02 2.40 2.70 2.90 1.93 2.49 2.85 3.21
σ̂ 1.36 2.23 3.03 3.76 0.58 1.45 2.29 3.01

Tables 2.9- 2.10 give results of simulations for type I error levels of Shewhart con-
trol charts under SRS, ERSS by using MMLE and BLUE. In the simulations, normal
distribution is used with parameters µ = 0 and σ = 1, and control limits are con-
structed under 3σ limits with the target type I error level 0.0027. For both odd and
even sized samples, control charts under ERSS obtained by MML estimators yield the
smallest type I error when fewer samples of small sizes are considered. As the number
of samples in sets and corresponding sample sizes increase, the type I errors for three
di�erent control charts become almost equal to each other and converge to the true
type I error level 0.0027. It should be noted that the type I errors of control charts
under ERSS scheme are continuously decreasing for even sized samples; however, for
odd sized samples, there is not a monotonic decrease in the type I error. That is due
to the design of odd sized samples.
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Table 2.9: Type I error comparison for Shewhart control charts constructed under
SRS and ERSS for even sized samples (ERSS* denotes control charts under ERSS and
MMLE, ERSS** denotes charts under ERSS and BLUE)

M 20 30

n SRS ERSS* ERSS** SRS ERSS* ERSS**
4 0.0047 0.0043 0.0045 0.0040 0.0038 0.0039
6 0.0042 0.0039 0.0040 0.0037 0.0036 0.0036
8 0.0040 0.0038 0.0038 0.0035 0.0035 0.0035
10 0.0039 0.0037 0.0037 0.0034 0.0035 0.0035

M 50 100

n SRS ERSS* ERSS** SRS ERSS* ERSS**
4 0.0034 0.0035 0.0035 0.0031 0.0032 0.0032
6 0.0032 0.0033 0.0034 0.0030 0.0031 0.0031
8 0.0032 0.0033 0.0033 0.0029 0.0031 0.0031
10 0.0031 0.0033 0.0032 0.0029 0.0031 0.0031

Table 2.10: Type I error comparison for Shewhart control charts constructed under
SRS and ERSS for odd sized samples (ERSS* denotes control charts under ERSS and
MMLE, ERSS** denotes charts under ERSS and BLUE)

M 20 30

n SRS ERSS* ERSS** SRS ERSS* ERSS**
3 0.0055 0.0031 0.0042 0.0045 0.0039 0.0055
5 0.0044 0.0020 0.0030 0.0038 0.0025 0.0035
7 0.0041 0.0022 0.0019 0.0035 0.0021 0.0022
9 0.0039 0.0023 0.0021 0.0035 0.0026 0.0029

M 50 100

n SRS ERSS* ERSS** SRS ERSS* ERSS**
3 0.0037 0.0025 0.0031 0.0032 0.0038 0.0032
5 0.0033 0.0027 0.0027 0.0030 0.0026 0.0031
7 0.0032 0.0020 0.0026 0.0029 0.0022 0.0022
9 0.0031 0.0034 0.0017 0.0029 0.0030 0.0026
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CHAPTER 3

QUALITY CONTROL CHARTS UNDER LONG

TAILED SYMMETRIC DISTRIBUTION

Normality assumption may not always satis�ed in the quality control applications. The
distribution of the population of interest may be skewed, platykurtic and leptokurtic or
may have light tails or heavy tails. In the literature, there are various techniques which
enable researchers to construct Shewhart control charts for nonnormal distributions.
For instance, Chan and Cui [23] proposed a method to eliminate the skewness of a
distribution, which leads to construction of Shewhart control chart. Another example
is the kurtosis correction method proposed by Tadikamalla and Popescu [87], who
obtained a new structure to construct Shewhart control charts. For other robust
techniques in quality control charts; see Cetinyurek [21].

As stated by Shewhart [78], normality assumption is no more a must since CLT is a very
powerful and applicable theorem in constructing Shewhart control charts. However, to
eliminate judgment ranking errors in RSS, small samples should be taken. Sizes of 3 to
10 but mostly sample sizes of 4, 5 or 6 are preferable in this respect. Therefore, CLT
may not be well applicable in this case, and normality assumption may be violated.
Because of these reasons, the distributions of all estimators should be checked to obtain
correct quantile probabilities.

In this chapter, the most commonly encountered form of distribution in the quality
control applications is studied. The distribution namely known as long-tailed symmet-
ric is symmetric and has more mass in the tails. The long-tailed symmetric distribution
can be de�ned as

f(x, p) =
Γ(p)

Γ(p− 0.5)

1√
kπσ

{
1 +

(x− µ)2

kσ2

}−p
; −∞ < x <∞ (3.1)

where p is the shape parameter, k = 2p− 3 and p ≥ 2.

This is a special form of symmetric p family distributions (Tiku and Suresh [97]).
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Mean, variance and kurtosis of this distribution are given as

E(X) = µ , V ar(X) = σ2 and β2 =
3(p− 3/2)

(p− 5/2)
. (3.2)

The kurtosis value of this distribution decreases as the shape parameter increases, and
gets the value 3 (the kurtosis of normal) when p = ∞. For instance, for the values
of p = 2.5, 3, 5, 10,∞, the kurtosis of the distribution becomes ∞, 9, 4.2, 3.4, 3, respec-
tively. For 1 ≤ p < 2, k is set to 1, and variance does not exist for the distribution. In
this case, σ becomes just a scale parameter. For p = 1, expected value of the distribu-
tion does not exist and µ becomes just a location parameter. Long tailed symmetric
family is very appropriate especially in modeling samples containing outliers (Tiku and
Akkaya [95]). For this study the transformation t =

√
ν/k((x − µ)/σ) is considered.

Following this, the random variable t has a Student's t distribution with ν = 2p − 1.
In the simulations, this transformation will be used to generate random variables as
well as calculating the pdf and cdf of long-tailed symmetric distribution.

3.1 Quality Control Charts with Simple Random Sampling

In order to compare the performances of quality control charts under SRS and RSS,
parameter estimators of long-tailed symmetric distribution under SRS is obtained �rst.
As stated by Tiku and Suresh [97], Vaughan [101]-[100], and Islam et al. [46], obtaining
explicit forms of parameter estimators is not easy due to the form of the likelihood
function. Iterative methods also fail when there exist outliers (Puthenpura and Sinha
[69]); therefore, an easy and e�ective way to obtain parameter estimators for long-
tailed symmetric distribution is the use of MMLE method due to Tiku [92], and Tiku
and Suresh [97].

The log likelihood function of long-tailed symmetric distribution under SRS is given
by

lnL = const ∗ −nlnσ − p
n∑
i=1

ln
{

1 + (1/k)z2
i

}
(3.3)

where zi = (xi − µ)/σ and −∞ < xi < ∞. The partial derivatives with respect to µ
and σ are,

∂lnL

∂µ
=

2p

kσ

n∑
i=1

zi{
1 + (1/k)z2

i

} , (3.4)

∂lnL

∂σ
= −n

σ
+

2p

kσ

n∑
i=1

z2
i{

1 + (1/k)z2
i

} . (3.5)
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The partial derivatives of the likelihood function have the nonlinear term

g(z) =
z

1 + 1
kz

2
(3.6)

which leads to multiple roots for p <∞ (Vaughan [101]-[100]). Hence, it is not possible
to �nd explicit solutions for estimators of µ and σ by MLE method.

3.1.1 Modi�ed Maximum Likelihood Estimation

Since MLEs are intractable for long-tailed symmetric distribution under SRS, the
parameter estimators can be found by MMLE method proposed by Tiku [92], and
Tiku and Suresh [97]. To obtain MMLEs of parameters, let nonlinear functions be
expressed as a function of z(i), i = 1, 2, ..., n, where z(i) =

x(i)−µ
σ . Then, the partial

derivatives can be written as

∂lnL

∂µ
∼=
∂lnL∗

∂µ
=

2p

kσ

n∑
i=1

g(z(i)) , (3.7)

∂lnL

∂σ
∼=
∂lnL∗

∂σ
= −n

σ
+

2p

kσ

n∑
i=1

z(i)g(z(i)) . (3.8)

Let also the function g(z(i)) be linearized by using Taylor Series expansion around the
expected value of Z(i) (E(Z(i)) = t(i)). Some of t(i) values are tabulated in the papers
by Tiku and Kumra [96], and Vaughan [101]-[100].

g(z(i)) ∼= αi + βiz(i) (3.9)

where

αi =

2
k t

3
(i){

1 + 1
k t

2
(i)

}2 , βi =
1− 1

k t
2
(i){

1 + 1
k t

2
(i)

}2 . (3.10)

Replacing the nonlinear term with the corresponding linearized form of g(z(i)) in the
partial derivatives of the likelihood function, µ̂ and σ̂ are obtained as

µ̂ =

n∑
i=1

βix(i)

m
, σ̂ =

B +
√
B2 + 4nC

2
√
n(n− 1)

(3.11)

where

m =

n∑
i=1

βi , B =
2p

k

n∑
i=1

αix(i) and C =
2p

k

n∑
i=1

βi(x(i) − µ̂)2 . (3.12)
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If the value of C is negative, σ̂ is not real and positive; therefore, αi and βi can be
replaced with α∗i and β∗i , respectively (3.13); see also Tiku et al. [99]. C often gets
negative values when p ≤ 3. When p > 3, C gets negative values very rarely.

α∗i = 0 , β∗i =
1{

1 + 1
k t

2
(i)

} . (3.13)

The MML estimators are, as stated in Chapter 2, asymptotically fully e�cient and
unbiased.

Distribution of µ̂: After obtaining µ̂ by using MMLE method, its distribution
should be investigated for small samples. This is important for constructing Shewhart
control limits since the desired type I error level may not be achieved due to non-
normality. For this reason, one can practically calculate the skewness and kurtosis of
µ̂ by a simulation study based on 100,000 runs; see Table 3.1.

Table 3.1: Skewness and kurtosis values of µ̂ under SRS

p n 3 4 5 6 7 8 9 10

3
√
β1 -0.013 0.063 0.008 0.004 0.009 0.006 -0.004 0.015
β2 4.262 4.593 3.499 3.371 3.292 3.244 3.197 3.185

3.5
√
β1 -0.010 0.018 -0.011 -0.005 -0.011 0.004 0.011 -0.004
β2 3.814 3.483 3.375 3.305 3.229 3.157 3.183 3.156

5
√
β1 0.007 0.008 -0.005 0.008 0.006 0.006 0.001 -0.005
β2 3.352 3.265 3.187 3.181 3.133 3.086 3.115 3.067

10
√
β1 0.001 -0.009 0.004 -0.020 -0.001 -0.006 0.006 0.006
β2 3.139 3.087 3.098 3.060 3.060 3.045 3.041 3.067

From the results in Table 3.1, it is obvious that the distribution of µ̂ is symmetric
for all p values included in the simulation study. On the other hand, the kurtosis of
µ̂ is always greater than 3; therefore, normality assumption fails especially for smaller
shape parameter values. Therefore, one needs to use a di�erent approach to deal with
longer tails in constructing control chart limits.

3.2 Quality Control Charts with Ranked Set Sampling

In this section, estimators for long-tailed symmetric distribution parameters µ and σ
under RSS are obtained. Since long-tailed symmetric distribution is also of location-
scale type, the likelihood can be de�ned as

1

σ
f

(
x− µ
σ

)
∝ 1

σ

{
1 +

(x− µ)2

kσ2

}−p
; −∞ < x <∞ . (3.14)
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Further, the log-likelihood function can be written as

lnL ∼= −nlnσ+

n∑
i=1

lnf(z(i)) +

n∑
i=1

(i− 1)lnF (z(i)) +

n∑
i=1

(n− i)ln(1− F (z(i))) (3.15)

where z(i) = (x(i)−µ)/σ and F (z) is the cdf of the long-tailed symmetric distribution.

The partial derivatives of the log likelihood are

∂lnL

∂µ
=

(
1

σ

)[
2p

k

n∑
i=1

z(i)

1 + 1
kz

2
(i)

−
n∑
i=1

(i− 1)
f(z(i))

F (z(i))

+
n∑
i=1

(n− i)
f(z(i))

1− F (z(i))

]
, (3.16)

∂lnL

∂σ
=

(
1

σ

)[
2p

k

n∑
i=1

z(i)

1 + 1
kz

2
(i)

z(i) −
n∑
i=1

(i− 1)
f(z(i))

F (z(i))
z(i)

+
n∑
i=1

(n− i)
f(z(i))

1− F (z(i))
z(i) − n

]
. (3.17)

The estimators of µ and σ can not be obtained explicitly by MLE method due to the
nonlinear terms in the following equations:

g1(z(i)) =
z(i)

1 + 1
kz

2
(i)

, g2(z(i)) =
f(z(i))

F (z(i))
, g3(z(i)) =

f(z(i))

1− F (z(i))
; 1 ≤ i ≤ n .

(3.18)

3.2.1 Modi�ed Maximum Likelihood Estimation

Because of the fact that the closed form solutions of the estimators can not be obtained
by MLE method, MMLE can be applied in this section. To do that, the nonlinear terms
in 3.18 can be linearized by Taylor Series expansion around the expected value of z(i).
Write,

g1(z(i)) ∼= α1i + β1iz(i) , (3.19)

g2(z(i)) ∼= α2i − β2iz(i) , (3.20)

g3(z(i)) ∼= α3i + β3iz(i) ; 1 ≤ i ≤ n , (3.21)

where

β1i =
1− 1

k t
2
(i){

1 + 1
k t

2
(i)

}2 , α1i =

2
k t

3
(i){

1 + 1
k t

2
(i)

}2 , (3.22)
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β2i =
2pt(i)

k + t2(i)

f(t(i))

F (t(i))
+

(
f(t(i))

F (t(i))

)2

, α2i =
f(t(i))

F (t(i))
+ t(i)β2i , (3.23)

β3i =

(
f(t(i))

1− F (t(i))

)2

−
2pt(i)

k + t2(i)

f(t(i))

1− F (t(i))
and α3i =

f(t(i))

1− F (t(i))
− t(i)β3i .

(3.24)

Thus, the MML estimators are obtained as follows:

µ̂ =
n∑
i=1

aix(i) ; ai =
ui
n∑
i=1

ui

(3.25)

and

σ̂ =
−B +

√
B2 + 4nC

2n
, (3.26)

where

B =

n∑
i=1

x(i)wi , C =

n∑
i=1

(
x(i) − µ̂

)2
ui , (3.27)

ui =
2p

k
β1i + (i− 1)β2i + (n− i)β3i , (3.28)

wi = (i− 1)α2i − (n− i)α3i −
2p

k
α1i . (3.29)

If C is less than zero, then α1i and β1i can be replaced practically with α∗1i and β
∗
1i

(Equation 3.13), respectively, so as to obtain a real and positive root of σ̂ as mentioned
in Section 3.1.1.

Distribution of µ̂: Before constructing Shewhart control charts, the distribution of
the estimator µ̂ should be investigated as mentioned at the beginning of this chapter.
Table 3.2 exhibits the skewness (

√
β1) and kurtosis (β2) values of the estimator µ̂

under di�erent p parameters obtained by Monte Carlo simulations.

Similar to µ̂ obtained under SRS, the distribution of the estimator µ̂ under RSS has
a similar structure. It has a long-tailed symmetric distribution especially for smaller
sample sizes and shape parameter values.

3.3 Simulation Results

To compare the estimators obtained by SRS and RSS under long-tailed symmetric
distribution, Monte Carlo simulations with 100,000 repetitions were conducted. In
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Table 3.2: Skewness and kurtosis values of µ̂ under RSS

p n 3 4 5 6 7 8 9 10

3
√
β1 -0.025 -0.003 -0.002 -0.012 0 -0.010 -0.024 0.018
β2 4.532 3.690 3.419 3.313 3.200 3.126 3.098 3.138

3.5
√
β1 0.008 -0.014 0.010 -0.014 -0.007 -0.010 0.012 0.007
β2 3.904 3.511 3.343 3.223 3.141 3.090 3.096 3.045

5
√
β1 -0.003 0.023 0 -0.001 -0.002 -0.003 -0.003 0.007
β2 3.404 3.233 3.146 3.149 3.040 3.031 3.032 3.056

10
√
β1 0 0.001 -0.001 0.001 0.014 -0.003 -0.012 -0.002
β2 3.162 3.097 3.051 3.036 3.070 3.021 3.033 3.006

Table 3.3: Comparison of RSS and SRS in the estimation of long-tailed symmetric
distribution parameters with p = 3

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 -0.0009 -0.0028 0.3166 0.1756 0.0529 -0.0528 0.4482 0.2786
4 0.0017 0.0009 0.2266 0.0988 0.0647 0.0153 0.3296 0.2005
5 -0.0006 -0.0006 0.1765 0.0638 0.0645 0.0540 0.2480 0.1536
6 0.0004 0.0008 0.1439 0.0446 0.0627 0.0785 0.1994 0.1312
7 -0.0004 0.0011 0.1230 0.0335 0.0591 0.0829 0.1677 0.1081
8 0.0013 0.0010 0.1063 0.0251 0.0580 0.0970 0.1432 0.0931
9 0.0003 0.0003 0.0937 0.0199 0.0518 0.1007 0.1230 0.0783
10 -0.0013 0.0026 0.0838 0.0166 0.0488 0.1054 0.1077 0.0739

Table 3.4: Comparison of RSS and SRS in the estimation of long-tailed symmetric
distribution parameters with p = 3.5

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0005 0.0000 0.3215 0.1697 0.0190 -0.0779 0.3823 0.2380
4 0.0007 -0.0025 0.2355 0.1009 0.0363 -0.0032 0.2734 0.1800
5 -0.0033 -0.0009 0.1858 0.0673 0.0430 0.0386 0.2157 0.1416
6 -0.0011 0.0004 0.1525 0.0473 0.0419 0.0523 0.1730 0.1107
7 -0.0007 0.0020 0.1296 0.0351 0.0428 0.0690 0.1448 0.0909
8 0.0001 0.0011 0.1122 0.0267 0.0414 0.0782 0.1246 0.0797
9 -0.0019 -0.0021 0.0997 0.0212 0.0390 0.0869 0.1080 0.0681
10 -0.0007 0.0025 0.0893 0.0177 0.0379 0.0855 0.0959 0.0569

the simulations, four di�erent p parameters were used, p = 3, 3.5, 5, 10 and the other
parameters were set as µ = 0 and σ = 1.

As can be seen from Tables 3.3, 3.4, 3.5, and 3.6, the biases of the estimators
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Table 3.5: Comparison of RSS and SRS in the estimation of long-tailed symmetric
distribution parameters with p = 5

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0010 0.0043 0.3283 0.1769 -0.0261 -0.1159 0.3080 0.1968
4 0.0000 -0.0006 0.2446 0.1032 -0.0034 -0.0449 0.2169 0.1375
5 0.0023 0.0008 0.1947 0.0684 0.0072 0.0053 0.1696 0.1050
6 -0.0009 0.0006 0.1604 0.0490 0.0107 0.0236 0.1385 0.0832
7 0.0021 0.0005 0.1372 0.0357 0.0133 0.0326 0.1151 0.0658
8 0.0022 -0.0004 0.1214 0.0278 0.0165 0.0441 0.1001 0.0561
9 -0.0004 -0.0033 0.1060 0.0221 0.0145 0.0496 0.0871 0.0478
10 -0.0004 -0.0003 0.0957 0.0178 0.0163 0.0566 0.0788 0.0433

Table 3.6: Comparison of RSS and SRS in the estimation of long-tailed symmetric
distribution parameters with p = 10

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0015 0.0000 0.3324 0.1732 -0.0739 -0.1564 0.2546 0.1739
4 -0.0017 0.0015 0.2488 0.1016 -0.0443 -0.0799 0.1801 0.1138
5 -0.0002 -0.0039 0.1989 0.0703 -0.0304 -0.0372 0.1385 0.0826
6 0.0009 -0.0037 0.1645 0.0495 -0.0211 -0.0176 0.1109 0.0624
7 -0.0002 0.0045 0.1421 0.0376 -0.0167 -0.0015 0.0933 0.0507
8 -0.0005 -0.0021 0.1243 0.0288 -0.0117 0.0123 0.0812 0.0421
9 -0.0011 -0.0009 0.1101 0.0225 -0.0072 0.0208 0.0717 0.0351
10 -0.0005 0.0002 0.0995 0.0187 -0.0061 0.0292 0.0637 0.0309

of µ under both SRS and RSS are negligible, and the MSEs of the estimators under
RSS are quite smaller than SRS counterparts. Likewise, the estimators of σ under
RSS yield always much smaller MSEs. To see the e�ciencies of RSS estimators more
clearly, relative e�ciency (RE) table is compiled such that it is de�ned as RE =

MSEsrs/MSErss (see Table 3.7). RE greater than 1 means RSS is more e�cient.

Table 3.7 shows that RSS is always more e�cient than SRS. Moreover, as the sample
size increases the e�ciency of RSS increases too. However, since normality assumption
is not satis�ed, type I errors do not converge to the real value 0.0027 under 3σ limits.
To solve this problem, a moment approach can be useful and the tails of the distribution
of µ̂ can be modeled more e�ciently.
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Table 3.7: Relative e�ciency of µ̂ and σ̂ under SRS and RSS

p n 3 4 5 6 7 8 9 10

3
µ̂ 1.80 2.29 2.77 3.23 3.67 4.24 4.70 5.04
σ̂ 1.61 1.64 1.61 1.52 1.55 1.54 1.57 1.46

3.5
µ̂ 1.89 2.33 2.76 3.23 3.69 4.20 4.71 5.04
σ̂ 1.61 1.52 1.52 1.56 1.59 1.56 1.59 1.68

5
µ̂ 1.86 2.37 2.85 3.28 3.84 4.36 4.79 5.37
σ̂ 1.57 1.58 1.61 1.66 1.75 1.78 1.82 1.82

10
µ̂ 1.92 2.45 2.83 3.32 3.78 4.32 4.90 5.32
σ̂ 1.46 1.58 1.68 1.78 1.84 1.93 2.04 2.06

Table 3.8: Type I error comparison for Shewhart control charts under SRS and RSS
with normal approximation for long tailed symmetric distribution with p = 3

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0108 0.0102 0.0095 0.0089 0.0086 0.0086 0.0080 0.0079
4 0.0089 0.0076 0.0080 0.0070 0.0073 0.0065 0.0067 0.0061
5 0.0075 0.0064 0.0068 0.0058 0.0062 0.0054 0.0057 0.0051
6 0.0066 0.0056 0.0060 0.0053 0.0055 0.0048 0.0051 0.0045
7 0.0064 0.0053 0.0058 0.0047 0.0053 0.0043 0.0049 0.0041
8 0.0059 0.0047 0.0054 0.0043 0.0050 0.0040 0.0046 0.0037
9 0.0053 0.0045 0.0048 0.0041 0.0045 0.0038 0.0042 0.0036
10 0.0052 0.0042 0.0047 0.0039 0.0043 0.0036 0.0040 0.0034

Table 3.9: Type I error comparison for Shewhart control charts under SRS and RSS
with normal approximation for long tailed symmetric distribution with p = 3.5

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0097 0.0089 0.0085 0.0077 0.0077 0.0072 0.0070 0.0068
4 0.0081 0.0071 0.0072 0.0062 0.0065 0.0058 0.0060 0.0055
5 0.0070 0.0058 0.0062 0.0054 0.0056 0.0049 0.0053 0.0046
6 0.0061 0.0053 0.0054 0.0048 0.0049 0.0044 0.0046 0.0041
7 0.0057 0.0049 0.0051 0.0044 0.0047 0.0041 0.0044 0.0038
8 0.0054 0.0046 0.0049 0.0042 0.0045 0.0039 0.0042 0.0036
9 0.0051 0.0042 0.0046 0.0039 0.0042 0.0036 0.0040 0.0034
10 0.0053 0.0041 0.0047 0.0038 0.0044 0.0035 0.0041 0.0033

3.4 Three-Moment t Approximation

Consider a random variable Y from a distribution such that

|
√
β1| < 0.1 and β2 ≥ 3 ,

35



Table 3.10: Type I error comparison for Shewhart control charts under SRS and RSS
with normal approximation for long tailed symmetric distribution with p = 5

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0077 0.0073 0.0066 0.0064 0.0058 0.0058 0.0052 0.0054
4 0.0063 0.0059 0.0055 0.0052 0.0049 0.0048 0.0045 0.0045
5 0.0059 0.0052 0.0051 0.0046 0.0046 0.0042 0.0043 0.0040
6 0.0053 0.0046 0.0047 0.0043 0.0043 0.0040 0.0040 0.0037
7 0.0050 0.0045 0.0045 0.0041 0.0041 0.0037 0.0038 0.0035
8 0.0050 0.0041 0.0045 0.0037 0.0041 0.0035 0.0038 0.0033
9 0.0044 0.0040 0.0040 0.0037 0.0036 0.0034 0.0034 0.0032
10 0.0047 0.0038 0.0042 0.0036 0.0039 0.0033 0.0036 0.0031

Table 3.11: Type I error comparison for Shewhart control charts under SRS and RSS
with normal approximation for long tailed symmetric distribution with p = 10

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0066 0.0055 0.0054 0.0049 0.0046 0.0044 0.0041 0.0040
4 0.0054 0.0049 0.0047 0.0043 0.0041 0.0039 0.0037 0.0036
5 0.0050 0.0044 0.0044 0.0040 0.0038 0.0037 0.0035 0.0034
6 0.0048 0.0041 0.0042 0.0038 0.0038 0.0034 0.0035 0.0032
7 0.0046 0.0040 0.0040 0.0037 0.0037 0.0033 0.0034 0.0032
8 0.0044 0.0039 0.0038 0.0036 0.0035 0.0033 0.0032 0.0031
9 0.0042 0.0038 0.0037 0.0035 0.0034 0.0032 0.0032 0.0030
10 0.0042 0.0038 0.0038 0.0034 0.0034 0.0032 0.0032 0.0030

where
√
β1 and β2 are the skewness and kurtosis of Y, respectively. Then a shifted

form of the random variable Y has Student's t distribution with ν degrees of freedom.

Y + a

b
∼ tν (3.30)

Constants a, b, and ν can be obtained by equating the �rst three moments on both
sides of 3.30 (Tiku [91]).

Considering the distribution of this random variable, the absolute value of the skewness
is less than 0.1 for all the p parameters included in the simulation and for all sample
sizes. Moreover, the kurtosis is always greater than 3, hence the t approximation can
be applied to construct Shewhart control chart for the process mean under both SRS
and RSS.
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Quality Control Limits with t Approximation under SRS: Quality control
limits can be obtained with the help of three-moment t-approximation.

UCL = ¯̂µsrs + tν,α/2b ,

CL = ¯̂µsrs ,

LCL = ¯̂µsrs − tν,α/2b ,

(3.31)

where

b =

√
ν − 2

ν
V ar(µ̂srs) , ν =

2(2β2 − 3)

β2 − 3
, (3.32)

and β2 is the kurtosis of the distribution of µ̂srs. Since the distribution is symmetric,
a is equal to zero. The exact variance of µ̂srs can not be easily obtained; therefore,
one needs to use the asymptotic variance (see Tiku and Akkaya, 2004 [95])

V ar(µ̂srs) =
σ2

M
(3.33)

where

M =
2pm

k
, m =

n∑
i=1

βi (3.34)

and βi is de�ned in Equation 3.10. σ can be estimated by c1σ̂srs. Here c1 is a constant
which can be obtained by simulation and makes σ̂srs an unbiased estimator of σ.

Quality Control Limits with t Approximation under RSS: Shewhart control
chart limits with t approximation can be found in the same form

UCL = ¯̂µrss + tν,α/2b ,

CL = ¯̂µrss ,

LCL = ¯̂µrss − tν,α/2b ,

(3.35)

where

b =

√
ν − 2

ν
V ar(µ̂rss) , ν =

2(2β2 − 3)

β2 − 3
. (3.36)

β2 is the kurtosis of the distribution of µ̂rss, and variance of µ̂rss can be written as

V ar(µ̂rss) =

σ2
n∑
i=1

u2
iV ar(Z(i))

n∑
i=1

ui
2 (3.37)

where ui is de�ned in Equation 3.28 and V ar(Z(i)) is simply the variance of the stan-
dardized order statistic z(i)
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3.4.1 Simulations with Three-Moment t Approximation

At the beginning of this chapter, it has been shown that the estimators of the pro-
cess mean under both SRS and RSS are not distributed as normal, hence the classi-
cal Shewhart control chart is not relevant for this case. In this part of simulations,
Shewhart control charts are constructed with the three-moment t-approximation as
explained above. Long tailed symmetric distribution with parameters µ = 0, σ = 1,
and p = 3, 3.5, 5, 10 are used in the simulations and the type I error is chosen as 0.0027.

Table 3.12: Type I error comparison for Shewhart control charts under SRS and RSS
with three-moment t-approximation for long tailed symmetric distribution with p = 3

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0038 0.0030 0.0033 0.0029 0.0030 0.0025 0.0027 0.0025
4 0.0036 0.0035 0.0034 0.0030 0.0029 0.0029 0.0028 0.0027
5 0.0036 0.0036 0.0035 0.0033 0.0030 0.0030 0.0028 0.0028
6 0.0038 0.0033 0.0035 0.0031 0.0031 0.0028 0.0028 0.0027
7 0.0042 0.0035 0.0036 0.0033 0.0033 0.0029 0.0030 0.0028
8 0.0039 0.0037 0.0035 0.0033 0.0033 0.0032 0.0030 0.0030
9 0.0038 0.0036 0.0035 0.0035 0.0032 0.0031 0.0029 0.0029
10 0.0037 0.0032 0.0033 0.0030 0.0030 0.0027 0.0028 0.0026

Table 3.13: Type I error comparison for Shewhart control charts under SRS and RSS
with three-moment t-approximation for long tailed symmetric distribution with p = 3.5

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0042 0.0036 0.0038 0.0031 0.0032 0.0028 0.0028 0.0026
4 0.0043 0.0034 0.0036 0.0031 0.0034 0.0029 0.0031 0.0027
5 0.0040 0.0035 0.0035 0.0030 0.0033 0.0028 0.0029 0.0026
6 0.0037 0.0035 0.0032 0.0032 0.0029 0.0029 0.0027 0.0028
7 0.0039 0.0036 0.0033 0.0033 0.0031 0.0031 0.0029 0.0028
8 0.0041 0.0038 0.0037 0.0035 0.0034 0.0032 0.0031 0.0030
9 0.0039 0.0035 0.0034 0.0032 0.0030 0.0029 0.0028 0.0028
10 0.0039 0.0039 0.0037 0.0034 0.0032 0.0032 0.0030 0.0031

Simulations of Shewhart control charts with three-moment t-approximation show that
the type I errors approach to the target value 0.0027. Moreover, control charts under
RSS give smaller type I errors.
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Table 3.14: Type I error comparison for Shewhart control charts under SRS and RSS
with three-moment t-approximation for long tailed symmetric distribution with p = 5

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0046 0.0042 0.0040 0.0036 0.0034 0.0033 0.0029 0.0029
4 0.0043 0.0038 0.0036 0.0036 0.0032 0.0032 0.0028 0.0029
5 0.0044 0.0040 0.0038 0.0035 0.0033 0.0032 0.0030 0.0029
6 0.0039 0.0036 0.0033 0.0033 0.0030 0.0030 0.0028 0.0027
7 0.0041 0.0041 0.0035 0.0037 0.0031 0.0034 0.0029 0.0032
8 0.0043 0.0039 0.0039 0.0035 0.0034 0.0032 0.0032 0.0030
9 0.0035 0.0037 0.0031 0.0035 0.0028 0.0031 0.0027 0.0030
10 0.0041 0.0035 0.0037 0.0032 0.0032 0.0030 0.0031 0.0028

Table 3.15: Type I error comparison for Shewhart control charts under SRS and RSS
with three-moment t-approximation for long tailed symmetric distribution with p = 10

M 20 30 50 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0055 0.0046 0.0042 0.0036 0.0035 0.0033 0.0032 0.0029
4 0.0047 0.0041 0.0040 0.0036 0.0035 0.0032 0.0031 0.0029
5 0.0041 0.0041 0.0037 0.0037 0.0031 0.0032 0.0029 0.0030
6 0.0043 0.0040 0.0037 0.0034 0.0034 0.0032 0.0030 0.0030
7 0.0041 0.0035 0.0036 0.0032 0.0033 0.0028 0.0030 0.0027
8 0.0039 0.0037 0.0035 0.0033 0.0032 0.0031 0.0030 0.0030
9 0.0038 0.0036 0.0034 0.0031 0.0030 0.0030 0.0029 0.0028
10 0.0037 0.0036 0.0033 0.0033 0.0030 0.0031 0.0028 0.0029
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CHAPTER 4

QUALITY CONTROL CHARTS UNDER SHORT

TAILED SYMMETRIC DISTRIBUTION

As explained in Chapter 3, normality assumption is not very practical in quality control
applications. Most of the data have more mass in tails; therefore long tailed symmetric
distribution provides a good �t to that type of data. Sometimes, researchers may also
encounter with some data having shorter tails, and the use of short tailed symmetric
distribution could be a good solution for this situation. Although there are very
few applications on short-tailed symmetric distributions in the literature, Akkaya and
Tiku [2] claim that some real life data can �t to this distribution perfectly. Data sets
available by Hand et al. [39], Kendall and Stuart [47], Montgomery and Peck [58],
and Atkinson and Riani [12], are examples of a short-tailed symmetric distribution in
practice. Advantage of the short tailed symmetric distribution is that it is appropriate
for modeling samples containing inliers which have erroneous information in the middle
of the sample.

Tiku and Vaughan [98] de�ned a family of short tailed symmetric distributions as

f(x) =
K√
2πσ

{
1 +

1

2h

(
x− µ
σ

)2
}2

exp

{
−(x− µ)2

2σ2

}
; −∞ < x <∞ (4.1)

where h = 2− d and d < 2 is a constant and K = 1{
2∑

j=0
(2j)(

1
2h)

j (2j)!

2jj!

} .

This distribution is a symmetric distribution and its kurtosis depends on the value
of d parameter. As d increases the kurtosis of X decreases. For instance, for the
values of d = 1.5, 1, 0.5, 0,−0.5,−∞, kurtosis takes values 1.71, 2.03, 2.26, 2.44, 2.56, 3,
respectively. The kurtosis of short-tailed symmetric distribution is always less than 3
and approaches to 3 only when d goes to −∞. The distribution is always unimodal
for d ≤ 0, and it is generally multi-modal for d > 0; see Figure 4.1.

The expectation and variance of the distribution is given by
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E(X) = µ , (4.2)

V ar(X) = µ2σ
2 = K

n∑
i=1

(
2

j

)(
1

2h

)j {2(j + 1)!}
2j+1(j + 1)!

σ2 . (4.3)

Figure 4.1: The density functions of short-tailed symmetric distribution with shape
parameter d = −1,−0.5, 0, 0.5, 1, respectively.

4.1 Quality Control Charts with Simple Random Sampling

In the �rst part of the estimation process, parameter estimators are obtained under
SRS. As in Section 3.1, maximum likelihood equations are intractable for short-tailed
symmetric distribution too; therefore, MMLEs are obtained as given in Akkaya and
Tiku [2]. MMLEs are as e�cient as MLEs for small n and they are asymptotically
fully e�cient. The partial derivatives of log likelihood function are obtained as,

∂lnL

∂µ
=

1

σ

n∑
i=1

zi −
2

hσ

n∑
i=1

g(zi) , (4.4)

∂lnL

∂σ
= −n

σ
+

1

σ

n∑
i=1

z2
i −

2

hσ

n∑
i=1

zig(zi) , (4.5)

where

zi =
xi − µ
σ

, g(zi) =
zi

1 + (1/2h)z2
i

. (4.6)
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4.1.1 Modi�ed Maximum Likelihood Estimation

Because of the non-linear function g(zi), closed form solutions for µ̂ and σ̂ can not be
obtained. To obtain MMLEs, zi's should be represented in the form of order statistics,
z(i). After that, the non-linear function g(z(i)) should be linearized by Taylor Series
expansion around the expected value of z(i).

g(z(i)) ∼= αi + γiz(i) (4.7)

where

αi =

1
h t

3
(i){

1 + 1
2h t

2
(i)

}2 and γi =
1− 1

2h t
2
(i){

1 + 1
2h t

2
(i)

}2 . (4.8)

Then, the estimators are obtained as follows:

µ̂ =
1

m

n∑
i=1

βix(i) , σ̂ =
−B +

√
B2 + 4nC

2
√
n(n− 1)

(4.9)

where

βi = 1− 2

h
γi , m =

n∑
i=1

βi , (4.10)

B =
2

h

n∑
i=1

αix(i) and C =
n∑
i=1

βi(x(i) − µ̂)2 . (4.11)

When d ≤ 0, βi (1 ≤ i ≤ n) is always greater than zero and C is positive which leads
to real and positive σ̂. On the other hand, some of the values of βi in the middle are
less than zero for d > 0. In this case, σ̂ is not real and positive. To obtain an estimator
for σ which is always real and positive, α∗i , γ

∗
i , and β

∗
i can be used instead of αi, γi,

and βi. These modi�ed coe�cients are given by

α∗i =

1
h t

3
(i) +

(
1− h

2

)
t(i){

1 + 1
2h t

2
(i)

}2 , γ∗i =

h
2 −

1
2h t

2
(i){

1 + 1
2h t

2
(i)

}2 and β∗i = 1− 2

h
γ∗i . (4.12)

With this replacement, the asymptotic properties of the estimators do not change as

αi + γiz(i)
∼= α∗i + γ∗i z(i) (4.13)

It should be noted that αi = α∗i and γi = γ∗i when d = 0.
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Distribution of µ̂: The distribution of µ̂ is important to determine how to construct
con�dence limits. If it is normally distributed, then classical Shewhart control chart
method can be used. Otherwise, another approach is needed to construct chart limits.
For this purpose, checking sample skewness and kurtosis values might be useful. Table
4.1 gives skewness (

√
β1) and kurtosis (β2) values of µ̂ obtained by Monte Carlo

simulation based on 100,000 iterations.

Table 4.1: Skewness and kurtosis values of µ̂ under SRS

d n 3 4 5 6 7 8 9 10

-1
√
β1 -0.006 0.009 -0.002 0.001 -0.004 0.005 -0.007 0.006
β2 2.932 2.940 2.954 2.957 3.002 3.000 2.983 2.984

-0.5
√
β1 0.011 0.003 -0.007 0.001 -0.009 0 -0.008 0.002
β2 2.895 2.957 2.984 2.985 2.984 2.990 3.018 3.008

0
√
β1 -0.011 -0.001 0.012 0.009 -0.006 -0.004 0.002 0.005
β2 2.902 3.006 3.023 3.049 3.035 3.055 3.067 3.045

0.5
√
β1 -0.003 0.008 -0.009 0.009 0.004 -0.005 -0.013 0
β2 2.846 3.091 3.162 3.167 3.165 3.145 3.188 3.187

1
√
β1 -0.002 0.012 -0.013 0.004 0.011 -0.005 0.012 0.006
β2 2.482 3.232 3.218 3.324 3.308 3.338 3.373 3.334

According to Table 4.1, the distribution of µ̂ seems to be quite close to normal for
d = −1,−0.5, 0 since skewness values are very close to zero and kurtosis values are
almost equal to 3. However, the distribution of µ̂ seems to be coming from a lep-
tokurtic symmetric family for d = 0.5, 1. Therefore, a classical Shewhart control chart
procedure can be applied when d = −1,−0.5, 0. For d = 0.5, 1, a three-moment t
approximation provides more accurate results.

Quality control limits for Shewhart control chart under SRS with normal
approximation: The MMLE of µ is unbiased since E(µ̂) = µ. The exact variance
of µ̂ is

V ar(µ̂) = (β′Ωβ)
σ2

m
(4.14)

where m is de�ned in Equation 4.10. Here β is the column vector of βi coe�cients
in Equation 4.10 and Ω is the variance-covariance matrix of Z(i). But it is very hard
to obtain Ω; therefore, Akkaya and Tiku [2] obtained asymptotic variance of µ̂ as in
Equation 4.15. It is given by

V ar(µ̂) =
σ2

nD
(4.15)

where

D = 1− 2

h

[
1− 1

2h

1 + 2 1
2h + 3 1

2h

2

]
. (4.16)

The Shewhart control limits for µ̂ satisfying normality assumption can be constructed
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as

UCL = µ̂+ 3
c1

¯̂σ

d1

√
nD

,

CL = µ̂ ,

LCL = µ̂− 3
c1

¯̂σ

d1

√
nD

,

(4.17)

where c1 is the constant to make σ̂ an unbiased estimator of σ, and is obtained through
simulations. The constant d1 is also used to let the asymptotic variance of µ̂ be an
unbiased estimator of exact variance and is also obtained through simulations.

4.2 Quality Control Charts with Ranked Set Sampling

In this section, parameters of short-tailed symmetric distribution are estimated under
the RSS scheme. Each observation in RSS is coming from a di�erent distribution and
they are independent of each other since each order statistic is obtained from a di�erent
set of observations. Short-tailed symmetric distribution is also from a location-scale
family; therefore, the likelihood can be obtained as in Equation 2.7 in Section 2.2. The
only di�erence is,

f(z) =
K

σ
√

2π

{
1 +

1

2h
z2

}2

exp
(
−z2/2

)
; −∞ < z <∞ (4.18)

where z = (x− µ)/σ.

The partial derivatives of the log likelihood function are

∂lnL

∂µ
=

(
1

σ

){ n∑
i=1

z(i) −
2

h

n∑
i=1

g1(z(i))−
n∑
i=1

(i− 1)g2(z(i))

+

n∑
i=1

(n− i)g3(z(i))

}
(4.19)

∂lnL

∂σ
=

(
1

σ

){ n∑
i=1

z2
(i) −

2

h

n∑
i=1

z(i)g1(z(i))−
n∑
i=1

(i− 1)z(i)g2(z(i))

+
n∑
i=1

(n− i)z(i)g3(z(i))− n

}
(4.20)
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where

g1(z(i)) =
z(i)

1 + (1/2h)z2
(i)

, (4.21)

g2(z(i)) =
f(z(i))

F (z(i))
, (4.22)

g3(z(i)) =
f(z(i))

1− F (z(i))
; 1 ≤ i ≤ n . (4.23)

The g functions in the equations above are non-linear terms in the partial derivatives
of the log likelihood function and prevent from obtaining explicit solutions of the
maximum likelihood estimators.

4.2.1 Modi�ed Maximum Likelihood Estimation

First of all, the non-linear g functions should be linearized by Taylor Series expansion
around the expected values of Z(i) as follows

g1(z(i)) ∼= α1i + β1iz(i) , (4.24)

g2(z(i)) ∼= α2i − β2iz(i) , (4.25)

g3(z(i)) ∼= α3i + β3iz(i) ; 1 ≤ i ≤ n . (4.26)

where α1i and β1i equal to αi and γi in Equation 4.8, respectively. Other coe�cients
are

β2i = t(i)
f(t(i))

F (t(i))

(
1− 4

2h+ t2(i)

)
+

(
f(t(i))

F (t(i))

)2

, (4.27)

α2i =
f(t(i))

F (t(i))
+ t(i)β2i , (4.28)

β3i =

(
f(t(i))

1− F (t(i))

)2

− t(i)
f(t(i))

1− F (t(i))

(
1− 4

2h+ t2(i)

)
, (4.29)

α3i =
f(t(i))

1− F (t(i))
− t(i)β3i ; 1 ≤ i ≤ n . (4.30)

When d ≤ 0, α∗1i and β
∗
1i can be used instead of α1i and β1i to obtain a real and positive

estimator for σ. α∗1i and β
∗
1i are equal to α

∗
i , γ

∗
i as in Equation 4.12, respectively. Then,

MML estimators are obtained as

µ̂ =

n∑
i=1

aix(i) ; ai =
ui
n∑
i=1

ui

(4.31)

and

σ̂ =
−B +

√
B2 + 4nC

2n
, (4.32)
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where

B =
n∑
i=1

x(i)wi , C =
n∑
i=1

(
x(i) − µ̂

)2
ui , (4.33)

ui = (i− 1)β2i + (n− i)β3i + 1− 2

h
β1i and wi =

2

h
α1i + (i− 1)α2i − (n− i)α3i .

(4.34)

It should also be noted that the MML estimators are asymptotically fully e�cient and
unbiased, and almost equal to ML estimators even for small sample sizes (Tiku and
Akkaya [95]).

Distribution of µ̂: To simply analyze the distribution of µ̂, sample skewness and
kurtosis values are examined based on a simulation of 100,000 runs. Table 4.2 gives
the skewness (

√
β1) and kurtosis (β2) values of µ̂ under di�erent d parameters and

di�erent sample sizes n = 3, 4, ..., 10.

Table 4.2: Skewness and kurtosis values of µ̂ under RSS

d n 3 4 5 6 7 8 9 10

-1
√
β1 0.032 0.011 0.051 -0.011 0.004 -0.049 0.005 -0.020
β2 2.994 2.944 3.004 2.941 3.019 2.992 2.992 3.060

-0.5
√
β1 0.014 -0.006 0.014 0.018 0.037 -0.001 0.009 -0.012
β2 2.993 2.926 3.048 3.061 3.021 2.939 2.967 3.007

0
√
β1 0.015 -0.008 0.011 0.045 -0.014 -0.018 0.023 -0.020
β2 2.926 2.995 3.032 3.075 3.052 3.023 3.015 3.016

0.5
√
β1 -0.009 -0.002 0.003 -0.024 0.006 -0.007 0.055 0.002
β2 3.013 3.113 3.070 3.088 3.017 3.023 3.094 3.006

1
√
β1 -0.076 -0.006 0.002 -0.011 -0.008 -0.015 0.041 0.044
β2 2.992 3.294 3.151 3.215 3.219 3.043 3.183 3.080

The outcomes shown in Table 4.2 indicate that µ̂'s from the short-tailed symmetric
distribution are approximately normally distributed when d = −1,−0.5, 0. On the
other hand, µ̂'s from short-tailed symmetric distribution with d = 0.5, 1 do not satisfy
normality since the kurtosis values are greater than 3. Therefore, classical Shewhart
control chart can be constructed by using normal approximation for d = −1,−0.5, 0.
As for d = 0.5, 1, a three-moment t approximation is again useful to construct control
charts.

Quality control limits for Shewhart control chart under RSS with normal
approximation: MML estimators are unbiased since E(µ̂) = µ. The variance of the

47



estimator µ̂ is

V ar(µ̂rss) =

σ2
n∑
i=1

u2
iV ar(z(i))

n∑
i=1

ui
2 (4.35)

where ui is de�ned in Equation 4.34.

For µ̂ satisfying normality assumption (when d = −1,−0.5, 0) the Shewhart control
limits with type I error α = 0.0027 are constructed as

UCL = ¯̂µ+ 3c1
¯̂σ

√
n∑
i=1

u2
iV ar(z(i))

n∑
i=1

ui

,

CL = ¯̂µ ,

LCL = ¯̂µ− 3c1
¯̂σ

√
n∑
i=1

u2
iV ar(z(i))

n∑
i=1

ui

,

(4.36)

where c1 is a constant de�ned for unbiasedness purposes.

4.3 Simulation Results

In this section, e�ciencies of the estimators under SRS and RSS are compared by
Monte Carlo simulations based on 100,000 repetitions. In the simulations, short-tailed
symmetric distribution with parameters µ = 0, σ = 1, and 4 di�erent d parameters
(d = −1,−0.5, 0, 0.5, 1) are used.

Table 4.3: Comparison of RSS and SRS in the estimation of short-tailed symmetric
distribution parameters with d = −1

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 -0.0027 -0.0014 0.5677 0.2936 -0.1761 -0.2443 0.2022 0.1573
4 -0.0026 0.0098 0.4223 0.1735 -0.1225 -0.1617 0.1384 0.0957
5 -0.0043 -0.0008 0.3350 0.1162 -0.0921 -0.1104 0.1040 0.0647
6 0.0015 0.0024 0.2788 0.0867 -0.0751 -0.0804 0.0829 0.0474
7 -0.0022 0.0031 0.2387 0.0640 -0.0632 -0.0591 0.0691 0.0364
8 -0.0013 0.0027 0.2089 0.0500 -0.0532 -0.0445 0.0595 0.0286
9 -0.0005 0.0013 0.1857 0.0401 -0.0477 -0.0362 0.0520 0.0237
10 0.0007 0.0002 0.1659 0.0328 -0.0421 -0.0299 0.0459 0.0193
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Table 4.4: Comparison of RSS and SRS in the estimation of short-tailed symmetric
distribution parameters with d = −0.5

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 -0.0027 -0.0092 0.6065 0.3242 -0.1900 -0.2648 0.1960 0.1626
4 0.0024 -0.0009 0.4545 0.1986 -0.1308 -0.1787 0.1350 0.0964
5 -0.0006 0.0030 0.3615 0.1300 -0.1003 -0.1207 0.1011 0.0639
6 0.0011 0.0031 0.2948 0.0920 -0.0798 -0.0930 0.0800 0.0473
7 0.0009 0.0069 0.2536 0.0698 -0.0659 -0.0725 0.0668 0.0355
8 0.0007 -0.0043 0.2225 0.0538 -0.0564 -0.0539 0.0564 0.0279
9 0.0024 -0.0021 0.1959 0.0433 -0.0500 -0.0442 0.0493 0.0230
10 -0.0021 -0.0005 0.1785 0.0357 -0.0446 -0.0374 0.0439 0.0191

Table 4.5: Comparison of RSS and SRS in the estimation of short-tailed symmetric
distribution parameters with d = 0

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 -0.0001 0.0008 0.6813 0.3799 -0.2147 -0.3005 0.1939 0.1710
4 -0.0013 -0.0009 0.5003 0.2252 -0.1416 -0.1983 0.1294 0.0991
5 0.0001 -0.0014 0.3932 0.1477 -0.1063 -0.1450 0.0962 0.0658
6 0.0038 -0.0006 0.3253 0.1044 -0.0848 -0.1078 0.0760 0.0461
7 -0.0026 0.0009 0.2739 0.0790 -0.0695 -0.0856 0.0626 0.0353
8 -0.0020 0.0013 0.2378 0.0603 -0.0604 -0.0659 0.0530 0.0263
9 -0.0020 0.0029 0.2104 0.0495 -0.0517 -0.0555 0.0460 0.0221
10 0.0003 0.0019 0.1898 0.0402 -0.0460 -0.0469 0.0409 0.0183

Table 4.6: Comparison of RSS and SRS in the estimation of short-tailed symmetric
distribution parameters with d = 0.5

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 -0.0029 -0.0125 0.8672 0.5764 -0.1584 -0.2748 0.1872 0.1640
4 -0.0036 -0.0130 0.5783 0.2865 -0.0986 -0.1837 0.1223 0.0926
5 -0.0013 -0.0038 0.4448 0.1869 -0.0703 -0.1327 0.0885 0.0589
6 0.0008 -0.0051 0.3615 0.1266 -0.0550 -0.1010 0.0696 0.0424
7 -0.0019 0.0026 0.2998 0.0936 -0.0436 -0.0811 0.0564 0.0311
8 0.0010 0.0019 0.2587 0.0725 -0.0359 -0.0690 0.0474 0.0252
9 -0.0010 0.0020 0.2260 0.0575 -0.0301 -0.0575 0.0410 0.0199
10 -0.0040 -0.0045 0.2017 0.0471 -0.0262 -0.0489 0.0360 0.0167

As demonstrated in Tables 4.3, 4.4, 4.5, 4.6, and 4.7, the biases of the estimator
µ̂ under both SRS and RSS are all negligible. MSE values of µ̂ obtained for RSS
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Table 4.7: Comparison of RSS and SRS in the estimation of short-tailed symmetric
distribution parameters with d = 1

µ̂ σ̂

Bias MSE Bias MSE
n SRS RSS SRS RSS SRS RSS SRS RSS
3 -0.0028 0.0075 1.7300 2.0250 0.0685 -0.0456 0.2765 0.1594
4 -0.0061 0.0104 0.6866 0.4958 -0.0137 -0.1208 0.1276 0.0744
5 0.0012 0.0086 0.5442 0.3215 0.0044 -0.0992 0.0877 0.0488
6 -0.0061 -0.0005 0.4086 0.1934 0.0060 -0.0815 0.0656 0.0353
7 -0.0018 -0.0003 0.3352 0.1391 0.0082 -0.0683 0.0522 0.0265
8 -0.0021 0.0040 0.2808 0.0981 0.0078 -0.0605 0.0433 0.0210
9 -0.0024 -0.0014 0.2425 0.0777 0.0073 -0.0550 0.0362 0.0175
10 -0.0001 0.0023 0.2119 0.0604 0.0083 -0.0469 0.0317 0.0143

are always smaller than those for SRS. Biases of σ̂ under RSS and SRS are almost
equal to each other for some values of n. For other n's biases under SRS are slightly
smaller. However, MSE under RSS is always less than SRS. To compare the e�ciencies
of these estimators more clearly, relative e�ciencies (RE) are obtained as in Table
4.8. Relative e�ciency is constructed as in the form MSEsrs/MSErss; therefore, the
values of RE less than one indicates that the estimator under SRS is more e�cient
than the RSS estimator.

Table 4.8: Relative e�ciency of µ̂ and σ̂ under SRS and RSS

d n 3 4 5 6 7 8 9 10

-1
µ̂ 1.93 2.43 2.88 3.22 3.73 4.18 4.63 5.05
σ̂ 1.29 1.45 1.61 1.75 1.90 2.08 2.19 2.38

-0.5
µ̂ 1.87 2.29 2.78 3.20 3.63 4.14 4.52 5.00
σ̂ 1.21 1.40 1.58 1.69 1.88 2.03 2.14 2.30

0
µ̂ 1.79 2.22 2.66 3.11 3.47 3.94 4.25 4.72
σ̂ 1.13 1.31 1.46 1.65 1.77 2.02 2.08 2.23

0.5
µ̂ 1.50 2.02 2.38 2.86 3.20 3.57 3.93 4.28
σ̂ 1.14 1.32 1.50 1.64 1.81 1.88 2.06 2.15

1
µ̂ 0.85 1.38 1.69 2.11 2.41 2.86 3.12 3.51
σ̂ 1.74 1.71 1.80 1.86 1.97 2.06 2.07 2.21

According to the relative e�ciency table (Table 4.8), it can be said that the estimators
under RSS are highly e�cient compared to those under SRS since RE values are all
greater than 1. Moreover, as the sample size increases, the e�ciency also increases.

In the second part of the simulations, type I errors of Shewhart control charts are
obtained under short-tailed symmetric distribution with d = −1,−0.5, 0, 0.5, 1 and
for both SRS and RSS. In the simulations, the true parameter values of µ and σ are
chosen to be 0 and 1, respectively, and the control limits are set for α = 0.0027. As
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mentioned in the previous sections, the process mean does not satisfy normality for
some shape parameters (which are d = 0.5, 1) of short-tailed symmetric distribution.
Although they do not satisfy normality, we construct Tables 4.12 and 4.13 to see the
e�ect of violation for the assumption on the type I error.

Table 4.9: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = −1

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0045 0.0044 0.0038 0.0036 0.0028 0.0031 0.0027 0.0027
4 0.0044 0.0037 0.0033 0.0032 0.0030 0.0028 0.0027 0.0025
5 0.0039 0.0038 0.0033 0.0033 0.0033 0.0030 0.0026 0.0027
6 0.0037 0.0037 0.0036 0.0033 0.0032 0.0030 0.0031 0.0028
7 0.0040 0.0033 0.0037 0.0029 0.0028 0.0027 0.0027 0.0025
8 0.0041 0.0034 0.0033 0.0031 0.0031 0.0029 0.0027 0.0027
9 0.0039 0.0037 0.0034 0.0034 0.0028 0.0031 0.0029 0.0030
10 0.0039 0.0034 0.0032 0.0031 0.0032 0.0028 0.0026 0.0026

Table 4.10: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = −0.5

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0048 0.0041 0.0036 0.0034 0.0028 0.0029 0.0024 0.0025
4 0.0041 0.0042 0.0035 0.0036 0.0032 0.0032 0.0024 0.0029
5 0.0040 0.0038 0.0033 0.0033 0.0028 0.0030 0.0029 0.0028
6 0.0040 0.0036 0.0035 0.0032 0.0030 0.0029 0.0026 0.0027
7 0.0039 0.0033 0.0035 0.0030 0.0032 0.0028 0.0032 0.0025
8 0.0038 0.0037 0.0034 0.0034 0.0031 0.0031 0.0028 0.0029
9 0.0038 0.0036 0.0032 0.0033 0.0033 0.0031 0.0027 0.0028
10 0.0038 0.0034 0.0036 0.0031 0.0030 0.0028 0.0029 0.0027

Tables 4.9, 4.10, and 4.11 show the performances of SRS and RSS estimators for short-
tailed symmetric distribution with shape parameter d = −1,−0.5, 0, respectively. The
process means obtained from these distributions satisfy normality assumption. There-
fore, the type I errors are very close to 0.0027. Type I errors obtained under RSS are
smaller for small sample sizes and sets with fewer samples.

Due to the fact that normality is not satis�ed for the process means from short-tailed
symmetric distributions with d = 0.5, 1 type I errors of Shewhart control charts are not
as small as 0.0027, which necessitates using a moment approach to model the quantiles
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Table 4.11: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = 0

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0044 0.0042 0.0032 0.0035 0.0025 0.0029 0.0023 0.0025
4 0.0049 0.0039 0.0035 0.0034 0.0033 0.0030 0.0027 0.0027
5 0.0040 0.0042 0.0035 0.0037 0.0033 0.0034 0.0032 0.0031
6 0.0042 0.0037 0.0038 0.0033 0.0038 0.0030 0.0031 0.0028
7 0.0045 0.0036 0.0037 0.0032 0.0035 0.0029 0.0032 0.0028
8 0.0041 0.0037 0.0038 0.0033 0.0033 0.0031 0.0033 0.0029
9 0.0039 0.0038 0.0033 0.0035 0.0034 0.0033 0.0034 0.0032
10 0.0042 0.0034 0.0037 0.0032 0.0034 0.0030 0.0031 0.0029

Table 4.12: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = 0.5

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0041 0.0043 0.0032 0.0036 0.0025 0.0030 0.0016 0.0026
4 0.0047 0.0046 0.0038 0.0041 0.0034 0.0037 0.0028 0.0034
5 0.0051 0.0044 0.0044 0.0040 0.0039 0.0037 0.0038 0.0035
6 0.0050 0.0039 0.0045 0.0036 0.0042 0.0033 0.0042 0.0031
7 0.0050 0.0038 0.0043 0.0035 0.0041 0.0032 0.0042 0.0030
8 0.0045 0.0039 0.0045 0.0036 0.0044 0.0034 0.0033 0.0032
9 0.0047 0.0034 0.0041 0.0031 0.0039 0.0029 0.0034 0.0027
10 0.0044 0.0037 0.0042 0.0034 0.0040 0.0032 0.0044 0.0031

Table 4.13: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = 1

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
3 0.0023 0.0042 0.0015 0.0034 0.0011 0.0028 0.0008 0.0024
4 0.0053 0.0055 0.0048 0.0049 0.0041 0.0045 0.0040 0.0042
5 0.0050 0.0049 0.0047 0.0044 0.0042 0.0041 0.0039 0.0039
6 0.0059 0.0052 0.0059 0.0048 0.0056 0.0046 0.0052 0.0044
7 0.0062 0.0046 0.0066 0.0043 0.0054 0.0040 0.0053 0.0038
8 0.0056 0.0044 0.0059 0.0041 0.0052 0.0039 0.0052 0.0037
9 0.0059 0.0043 0.0055 0.0040 0.0049 0.0038 0.0048 0.0036
10 0.0058 0.0044 0.0054 0.0041 0.0052 0.0039 0.0050 0.0037

of the distribution of µ̂ under both distributions.
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4.4 Three-Moment t Approximation

As mentioned in Section 3.4, three-moment t-approximation can be applicable to ap-
proximate the distributions of random variables having absolute skewness less than 0.1
and kurtosis greater than 3. The distribution of the parameter estimator µ̂ from short-
tailed symmetric distribution with d = 0.5, 1 is quite relevant for this approximation.
Since the distribution of µ̂ is not close to normal, classical Shewhart control chart
method can not be applied. Instead, control charts for SRS and RSS are constructed
by t-approximation. As before, write

µ̂+ a

b
∼ tν (4.37)

where the constants a, b, and ν are obtained by equating the �rst three moments on
both sides of 4.37 (Tiku [91]).

Quality Control Limits with t Approximation under SRS: Shewhart control
chart limits under SRS by using three-moment t approximation are

UCL = ¯̂µsrs + tν,α/2b ,

CL = ¯̂µsrs ,

LCL = ¯̂µsrs − tν,α/2b ,

(4.38)

where

b =

√
ν − 2

ν
V ar(µ̂srs) and ν =

2(2β2 − 3)

β2 − 3
. (4.39)

β2 is the simulated kurtosis of the distribution of µ̂srs, and can be obtained through
Monte Carlo simulations. Variance of µ̂srs is de�ned in the same form as in Equation
4.15.

Quality Control Limits with t Approximation under RSS: Shewhart control
chart limits with three-moment t-approximation can be obtained as follows under RSS:

UCL = ¯̂µrss + tν,α/2b ,

CL = ¯̂µrss ,

LCL = ¯̂µrss − tν,α/2b ,

(4.40)

where

b =

√
ν − 2

ν
V ar(µ̂rss) , ν =

4(β2 − 1.5)

β2 − 3
; (4.41)

β2 being the simulated kurtosis of the distribution of µ̂rss. Variance of µ̂rss is similarly
obtained as in Equation 4.35.
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4.4.1 Simulations with Three-Moment t Approximation

In this part, Monte Carlo simulations for Shewhart control charts are conducted by
three-moment t approximation for the process means. The parameters of the distri-
bution are set as µ = 0 and σ = 1 and the α value is chosen as 0.0027 to construct
control limits.

Table 4.14: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = 0.5

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
4 0.0039 0.0033 0.0033 0.0030 0.0028 0.0027 0.0025 0.0025
5 0.0037 0.0040 0.0033 0.0036 0.0029 0.0034 0.0026 0.0032
6 0.0038 0.0032 0.0033 0.0029 0.0029 0.0027 0.0028 0.0025
7 0.0036 0.0036 0.0033 0.0034 0.0030 0.0030 0.0029 0.0029
8 0.0037 0.0038 0.0034 0.0035 0.0031 0.0032 0.0030 0.0031
9 0.0032 0.0027 0.0029 0.0025 0.0028 0.0023 0.0025 0.0021
10 0.0034 0.0036 0.0031 0.0033 0.0028 0.0031 0.0027 0.0028

Table 4.15: Type I error comparison for Shewhart control charts under SRS and RSS
for short-tailed symmetric distribution with d = 1

M = 20 M = 30 M = 50 M = 100

n SRS RSS SRS RSS SRS RSS SRS RSS
4 0.0036 0.0030 0.0029 0.0026 0.0025 0.0023 0.0023 0.0021
5 0.0036 0.0035 0.0031 0.0031 0.0029 0.0029 0.0026 0.0026
6 0.0037 0.0034 0.0033 0.0033 0.0031 0.0031 0.0029 0.0030
7 0.0037 0.0030 0.0036 0.0027 0.0033 0.0024 0.0032 0.0023
8 0.0035 0.0040 0.0033 0.0038 0.0032 0.0035 0.0030 0.0034
9 0.0032 0.0030 0.0030 0.0027 0.0028 0.0025 0.0027 0.0024
10 0.0033 0.0038 0.0032 0.0034 0.0030 0.0033 0.0029 0.0028

Tables 4.14 and 4.15 show that by using the three-moment t approximation, the type
I errors converge to the target value 0.0027. Moreover, type I errors obtained under
RSS are mostly smaller than SRS. There seems to be a weird sequence between the
type I error values for the same number of samples. Sometimes values get very small
and do not monotonically decrease as the sample size increases. The reason for this
pattern arises from the shape of the distributions which are bimodal.
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CHAPTER 5

APPLICATIONS

5.1 A REAL LIFE APPLICATION OF SHEWHART CONTROL

CHART: LONG TAILED SYMMETRIC DISTRIBUTION

In this section, the use of Shewhart control charts under the proposed sampling method
RSS is shown by a real life data. The data is from the article by Tadikamalla and
Popescu [87]. They obtained the data set from a company which produces electronic
components for various di�erent sectors, such as military, medical companies. The data
that is going to be used in the application is about optical lenses, and the characteristic
that is going to be assessed is the center thickness of these lenses. The data was
collected when the process was under control; therefore, it is expected that the sample
statistics obtained from this data should vary within the control limits.

The data was scaled by some constants as X = a+ bY to preserve the con�dentiality
of the company. This transformation did not e�ect the distribution of the data, it only
changed the mean and variance. The writers obtained the skewness and the kurtosis
of the data as −0.24 and 5.1, respectively. Figure 5.1 displays the histogram of the
data.

According to sample skewness and kurtosis values, it can be said that this data may
be a good �t for long-tailed symmetric distribution. In the estimation process of
control chart, the shape parameter of long-tailed symmetric distribution is treated as
known. Therefore, the shape parameter should be estimated beforehand. The shape
parameter can be estimated along the same lines as explained by Surucu and Sazak
[86], and Tiku and Akkaya [95]. By following these studies, µ̂ and σ̂ were obtained
under various values of the shape parameter p, and the set of parameters maximizing
the log-likelihood function was chosen. Figure 5.2 shows the log-likelihood values for
the corresponding p values.

The vertical line in Figure 5.2 shows the position of the p parameter which maximizes
the log-likelihood and the estimate is p̂ = 2.9. Other parameter estimates are obtained
as µ̂ = 60.16 and σ̂ = 2.29. To visually check the goodness-of-�t of this data set under
the long-tailed symmetric distribution with shape parameter p = 2.9, a Q-Q plot was
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Figure 5.1: The histogram of the data, center thickness

Figure 5.2: The plot of the estimation process
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Figure 5.3: Q-Q plot of the center thickness data

constructed as in Figure 5.3.

The Q-Q plot in Figure 5.3 shows that the data exhibits a straight line structure.
Therefore, it can be said that this data set is a good �t for the long-tailed symmetric
distribution with shape parameter p = 2.9.

After determining the distribution from which the data comes from, Shewhart control
charts were constructed under both the SRS and RSS methods. As explained in
Chapter 3, the normality assumption for the sample means of long-tailed symmetric
distribution is not acceptable. Therefore, quality control charts should be constructed
with t-approximation. In this application, to show the appropriateness of the three-
moment t approximation method, Shewhart control charts were constructed under
both SRS and RSS, using three-moment t and normal approximations. To obtain
equal sized SRS and RSS, sample sizes were chosen as n = 3 and 20 sub-groups were
obtained. It can be noted that the total sample size was 200 in the original study.

The straight lines in Figures 5.4 and 5.5 show the upper and lower limits of Shewhart
control chart obtained by normal approximation, whereas the dashed lines were ob-
tained by t approximation. As mentioned above, the sample was collected when the
process was under control, thus it is expected that all of the sample statistics should
vary within the control limits. However the 3rd point in Figure 5.4 and the 17th point
in Figure 5.5 are out-of Shewhart control limits obtained by normal approximation.
The limits by three-moment approach cover all of the sample statistics in the plots
which proves the accuracy of this method when compared to classical Shewhart control
limits obtained with normal approximation.
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Figure 5.4: The Shewhart control chart under SRS with both normal and t approxi-
mations

Figure 5.5: The Shewhart control chart under RSS with both normal and t approxi-
mations
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5.2 AN EXAMPLE OF SHEWHART CONTROL CHART WITH

SIMULATED DATA: SHORT TAILED SYMMETRIC DISTRI-

BUTION

In order to illustrate the concepts explained in this study, an example with a simu-
lated data set is provided in this section. The example is prepared FOR short-tailed
symmetric distribution with parameters d = −1, µ = 0, and σ = 1. The simulated
data sets and parameter estimators µ̂, σ̂ are given in Tables B.1- B.3 in appendix.
Sample size and sub-group size are chosen as n = 5 and M = 50, respectively.

Shewhart control charts constructed under both SRS and RSS are given in Figures
5.6-5.7. These samples can be treated as the samples from in-control process since all
of them are generated from one distribution with �xed parameters. Therefore, it is
expected that all sample statistics should vary within the control limits.

Figure 5.6: The Shewhart control chart under SRS for in-control situation

As expected, the sample points in Figures 5.6 and 5.7 are all within the control limits
for both SRS and RSS. To compare the ability of detecting an out-of control process
of charts under SRS and RSS, one observation was shifted according to Tiku's outlier
model (Tiku [93]-[94]). In Tiku's outlier model, 3σ is added to the maximum value in
the simulated data in order to generate an outlier.

Figures 5.8-5.9 show that Shewhart control chart under SRS could not detect the
outlier whereas the outlier point generated is out-of control limits in the control chart
under RSS. This example is a good proof of what is claimed in this study.
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Figure 5.7: The Shewhart control chart under RSS for in-control situation

Figure 5.8: The Shewhart control chart under SRS for out-of control situation
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Figure 5.9: The Shewhart control chart under RSS for out-of control situation
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CHAPTER 6

CONCLUSION AND FUTURE STUDIES

In this thesis, a new sampling method RSS has been adapted into the Shewhart control
chart. The sampling method RSS holds more information than the SRS counterpart;
therefore, especially for samples of small sizes, RSS provides samples which are better
representatives of population of interest. Shewhart control chart method is one of the
best application areas for this sampling method. In the literature, there are some
papers applying RSS in Shewhart control charts (see Section 1.1.3); however, closed
form solutions for parameter estimators are not given in these studies. In fact, due to
the form of the likelihood function, the explicit solutions of MLEs can not be obtained
under RSS. Therefore, in this study, an estimation method proposed by Tiku [92], and
Tiku and Suresh [97] has been applied to obtain closed form solutions of parameter
estimators under RSS and its modi�cation ERSS for Shewhart control charts. The
method is namely known as MMLE. It is asymptotically unbiased and fully e�cient.

Shewhart control chart under RSS is compared with its SRS counterpart. In these
comparisons, three di�erent distributions are used. The �rst distribution is normal
which is the most frequently used distribution in Shewhart control chart studies. The
parameter estimators of normal under RSS are obtained by MMLE method and the
Shewhart control charts obtained with this method yield smaller type I errors. More-
over, a modi�cation of RSS, known as extreme ranked set sampling, is used to obtain
quality control charts. The sampling design of ERSS di�ers for even and odd sized
samples, hence the estimators have di�erent forms for both even and odd sized sam-
ples. Type I errors of Shewhart control charts give better results under ERSS when
compared to SRS.

The second distribution used in the comparison of control charts under di�erent sam-
pling designs is long tailed symmetric distribution. Since the variable of interest in
this study is to control the process mean for constructing control charts, it can be said
that the distribution of the process need not be normal, which follows from the CLT.
However, this statement is true only for large samples. The e�ciency of the sampling
method RSS strictly depends on the correctness of the judgment ranks; therefore,
sample sizes should be kept at minimum, such as 4, 5 or 6 to minimize the judgment
ranking errors. However, this is not enough to ensure normality of statistics coming
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from long-tailed symmetric distribution. This necessitates using a di�erent approach
so as to construct control chart boundaries. Three-moment t approximation is very
useful in this respect and provide the desired results.

Short-tailed symmetric distribution is the last distribution considered in this study.
Unlike long-tailed symmetric distribution, some forms of this distribution is appro-
priate for normal approximation. On the other hand, some forms violate normality
assumption, and three-moment t approximation is applicable. The simulation results
show that Shewhart control charts under RSS result in smaller type I errors.

Simulations in this thesis are conducted by using R statistical software, version 2.15.1.
Some sample codes are given in Appendix C.

In the estimation of quality control limits ¯̂µ is used; however, depending on the sample
size some robust methods, such as trimmed mean, median can be utilized as ˆ̂µ. The
performances of these control charts can be compared as a future study. Moreover,
many di�erent modi�cations of RSS can be compared under each distribution for
estimating Shewhart control limits. The e�ciency of the sampling method may vary
according to the shape of the distribution; therefore, Shewhart control charts by SRS,
RSS, and modi�cations of RSS can also be compared under skewed distributions. In
this study, it is assumed that judgment rankings are perfect, however in practice,
there may be judgment ranking errors. Therefore, RSS and its modi�cations can be
compared under judgment ranking errors for constructing Shewhart control charts.
Also, di�erent sampling methods can be applied to the new types of control charts;
such as CUSUM and EWMA charts as a future study.
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APPENDIX A

BIAS OF THE SCALE PARAMETER ESTIMATOR

FOR LONG TAILED SYMMETRIC DISTRIBUTION

Table A.1: Bias of the scale parameter estimator (σ̂mml) under RSS

H
HHH

HHn
p

3 3.5 5 10

3 -0.0528 -0.0779 -0.1159 -0.1564
4 0.0153 -0.0032 -0.0449 -0.0799
5 0.0540 0.0386 0.0053 -0.0372
6 0.0785 0.0523 0.0236 -0.0176
7 0.0829 0.0690 0.0326 -0.0015
8 0.0970 0.0782 0.0441 0.0123
9 0.1007 0.0869 0.0496 0.0208
10 0.1054 0.0855 0.0566 0.0292
11 0.1047 0.0837 0.0556 0.0256
12 0.1031 0.0900 0.0553 0.0316
13 0.0998 0.0833 0.0568 0.0311
14 0.0987 0.0809 0.0578 0.0326
15 0.0978 0.0792 0.0593 0.0332
16 0.0955 0.0792 0.0604 0.0338
17 0.0942 0.0799 0.0561 0.0342
18 0.0940 0.0776 0.0551 0.0345
19 0.0912 0.0769 0.0537 0.0348
20 0.0860 0.0726 0.0534 0.0347
30 0.0679 0.0591 0.0446 0.0321
50 0.0473 0.0420 0.0318 0.0230
100 0.0266 0.0236 0.0184 0.0130
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APPENDIX B

SIMULATED DATA SETS FROM SHORT TAILED

SYMMETRIC DISTRIBUTION UNDER SRS AND RSS

Table B.1: Simulated SRS sample with n = 5 andM = 50 from short-tailed symmetric
distribution with parameters d = −1, µ = 0, and σ = 1

group x1 x2 x3 x4 x5 µ̂SRS σ̂SRS
1 -0.619 0.387 -0.754 0.176 2.170 0.375 0.871
2 1.036 1.862 -1.865 1.710 -1.836 0.100 1.297
3 -1.490 1.952 0.331 -1.023 -1.728 -0.248 1.118
4 -0.045 0.352 1.728 -0.441 1.661 0.663 0.701
5 1.892 -0.757 1.812 1.882 -1.043 0.633 1.037
6 1.686 2.720 1.424 -0.022 1.045 1.363 0.754
7 -0.381 -1.361 0.152 1.112 0.448 -0.040 0.696
8 -0.208 -0.803 0.292 -0.952 0.438 -0.251 0.444
9 0.505 1.392 1.212 -1.172 1.028 0.464 0.775
10 -2.148 -2.257 1.277 -0.722 0.296 -0.660 1.102
11 0.612 1.597 0.714 1.480 1.429 1.140 0.324
12 0.074 -0.020 -0.361 -0.423 0.058 -0.149 0.167
13 0.646 1.370 -0.851 0.952 -0.398 0.311 0.674
14 2.863 1.248 -0.706 -0.062 1.381 0.961 1.027
15 -0.887 1.162 -0.227 1.182 -0.632 0.142 0.691
16 -0.057 -2.625 0.120 1.040 1.122 -0.241 1.134
17 -0.728 -2.495 -0.651 0.652 -0.469 -0.784 0.863
18 -1.186 1.838 -0.218 1.189 -1.125 0.166 0.970
19 0.116 2.250 1.607 0.510 0.040 0.977 0.699
20 2.470 0.066 -0.411 -0.787 -0.192 0.387 0.972
21 -1.104 0.792 -0.403 -0.074 1.086 0.050 0.650
22 0.057 -1.183 0.311 -0.281 -2.062 -0.703 0.713
23 -1.645 0.543 0.975 1.240 -0.183 0.082 0.855
24 0.393 -1.287 0.048 -0.193 1.057 -0.025 0.651
25 -0.040 1.448 -1.841 0.051 1.154 0.080 0.963
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Table B.2: Simulated SRS sample cont.

group x1 x2 x3 x4 x5 µ̂SRS σ̂SRS
26 0.304 2.531 -0.069 2.210 1.011 1.214 0.816
27 0.371 -0.633 -1.747 -1.728 3.351 0.147 1.557
28 0.161 0.775 0.767 -0.089 -1.305 -0.017 0.631
29 -2.203 -0.041 0.928 -0.094 0.556 -0.283 0.915
30 0.397 0.493 1.549 -1.737 -0.495 -0.006 0.921
31 -2.770 -1.968 -1.284 0.241 0.378 -1.097 0.984
32 2.272 -0.967 0.350 -0.602 0.107 0.333 0.943
33 0.528 1.070 1.768 -0.732 0.017 0.527 0.712
34 2.269 -1.664 1.153 0.021 1.066 0.485 1.108
35 -1.457 0.117 0.301 0.078 2.705 0.422 1.143
36 -1.299 2.759 0.594 -0.069 -0.314 0.442 1.143
37 0.467 1.833 -0.249 -1.859 -1.790 -0.254 1.133
38 -1.101 0.429 -0.708 -1.072 0.718 -0.295 0.603
39 -3.815 1.142 -2.123 1.229 0.795 -0.784 1.624
40 -0.306 2.483 0.420 -1.937 1.567 0.408 1.267
41 1.282 0.351 -0.590 -1.102 1.282 0.205 0.768
42 -1.753 -0.366 3.083 2.235 0.946 0.786 1.425
43 1.055 -0.142 1.572 0.188 -1.598 0.165 0.910
44 0.895 1.061 2.064 1.470 -2.685 0.341 1.411
45 0.941 0.811 -0.101 -0.078 -0.022 0.350 0.358
46 0.328 -1.011 -1.819 -1.163 1.351 -0.385 0.934
47 -1.147 0.396 1.775 0.764 2.047 0.695 0.940
48 0.885 -1.380 0.017 0.629 -0.038 -0.038 0.658
49 0.537 -1.997 0.231 -0.507 -0.988 -0.589 0.744
50 -1.057 2.698 -0.198 -1.132 0.867 0.380 1.168
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Table B.3: Simulated RSS sample with n = 5 andM = 50 from short-tailed symmetric
distribution with parameters d = −1, µ = 0, and σ = 1

group x(1) x(2) x(3) x(4) x(5) µ̂RSS σ̂RSS
1 -1.798 -0.963 1.002 1.318 2.091 0.330 1.006
2 -0.134 0.747 0.126 -0.045 1.686 0.471 0.579
3 -2.624 -0.042 -0.381 0.223 1.406 -0.275 0.933
4 -1.170 -0.574 -0.532 1.255 2.946 0.378 1.056
5 -0.775 -1.134 -0.057 1.665 1.237 0.188 0.808
6 -0.502 -1.681 -0.930 0.914 3.153 0.170 1.278
7 0.057 -1.449 -0.040 0.304 2.508 0.253 1.004
8 -1.918 -0.311 -0.224 0.528 1.967 0.010 0.861
9 -2.350 -1.615 0.022 -0.417 1.626 -0.555 0.954
10 -1.753 0.263 -0.322 1.282 0.176 -0.051 0.801
11 0.669 0.203 -0.608 0.992 1.389 0.524 0.646
12 -2.090 -1.057 0.387 1.137 0.352 -0.243 0.853
13 -1.910 -0.803 -0.020 2.244 1.248 0.165 1.060
14 -0.522 1.090 -0.287 0.141 2.360 0.553 0.873
15 -0.423 -0.522 -0.044 1.182 2.820 0.592 0.893
16 0.530 -0.041 0.493 -0.533 1.244 0.324 0.654
17 -1.284 -0.787 0.290 1.354 1.198 0.158 0.731
18 -1.132 -0.193 -0.142 2.668 1.530 0.560 1.019
19 -2.331 0.017 1.615 -0.094 1.030 0.054 1.081
20 -1.380 -1.054 -0.732 0.521 2.968 0.051 1.119
21 -1.865 -0.766 0.191 2.516 1.825 0.392 1.143
22 -1.859 -1.330 -0.004 0.292 1.212 -0.340 0.758
23 -2.523 0.351 -0.133 1.470 1.056 0.065 1.033
24 -1.701 -1.099 0.764 0.629 2.659 0.241 1.058
25 -2.377 -0.488 -0.411 -0.403 2.768 -0.190 1.178
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Table B.4: Simulated RSS sample cont.

group x(1) x(2) x(3) x(4) x(5) µ̂RSS σ̂RSS
26 -0.933 0.048 0.296 -0.318 1.159 0.047 0.525
27 -1.613 -0.469 -1.069 0.851 1.199 -0.215 0.773
28 -0.795 -1.591 0.957 0.944 2.568 0.401 1.056
29 -1.031 -1.685 -0.590 1.138 2.260 0.008 1.044
30 -1.105 -1.819 0.378 0.650 1.076 -0.171 0.815
31 -2.234 -2.037 -0.314 0.718 1.174 -0.540 0.961
32 -1.426 -1.419 -0.210 0.574 2.053 -0.095 0.903
33 -1.007 -0.510 0.867 0.796 3.317 0.680 1.043
34 -0.817 -1.208 0.191 1.126 1.398 0.134 0.732
35 -0.380 -1.132 0.991 1.793 0.272 0.313 0.904
36 -1.226 -1.235 -0.988 -0.108 1.573 -0.407 0.764
37 -3.031 1.212 -0.897 -0.105 1.776 -0.194 1.363
38 -2.014 -2.123 -1.356 1.005 2.421 -0.422 1.273
39 -0.643 -1.767 0.378 1.615 0.558 0.028 0.942
40 -2.012 -0.810 0.259 1.153 1.185 -0.038 0.844
41 -0.633 -1.072 0.844 1.102 2.652 0.566 0.938
42 -1.121 0.325 0.091 0.298 1.212 0.164 0.535
43 -2.559 -0.260 0.375 -0.287 1.411 -0.261 0.941
44 -1.579 -1.436 1.049 1.054 1.482 0.112 0.954
45 -1.440 -0.910 -0.154 1.845 0.644 0.008 0.873
46 -2.179 -0.564 -0.342 1.990 1.865 0.165 1.101
47 -1.866 -0.270 0.599 -0.370 2.317 0.075 0.995
48 -0.789 -0.769 -0.104 0.629 1.173 0.025 0.533
49 -0.766 -0.887 -0.516 -0.227 1.506 -0.190 0.640
50 -1.875 -0.035 -0.189 0.902 1.424 0.054 0.783
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APPENDIX C

R CODES FOR SHEWHART CONTROL CHARTS

UNDER NORMAL, LONG-TAILED SYMMETRIC AND

SHORT-TAILED SYMMETRIC DISTRIBUTIONS

# QUALITY CONTROL CHART BY RANKED SET SAMPLING UNDER NORMAL DISTRIBUTION

cchart_rss_normal <- function(M,n,vec_n,vec2_n)

{

N = 10000

N_test = 10000

for(h in 1:N){

####### GENERATING M SAMPLE OF SIZE n

for(group in 1:M){

for(i in 1:n)

rss[i,] = rnorm(n, mean = 0, sd = 1)

rss = t(apply(rss,1,sort))

rss_samp= diag(rss)

sum_urxr = 0

sum_urxr_sq =0

sum_wrxr = 0

for(i in 1:n){

w1=dnorm(vec_n[1,i], mean = 0, sd = 1)/pnorm(vec_n[1,i],

mean = 0, sd = 1)

w2=dnorm(vec_n[1,i], mean = 0, sd = 1)/(1-pnorm(vec_n[1,i],

mean = 0, sd = 1))

b1 = vec_n[1,i]*w1 + w1^2

b2 = w2^2 - vec_n[1,i]*w2

a1 = w1 + vec_n[1,i]*b1

a2 = w2 - vec_n[1,i]*b2
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sum_urxr = sum_urxr + (((i-1)*b1 + (n-i)*b2 + 1)*rss_samp[1,i])

sum_urxr_sq = sum_urxr_sq + (((i-1)*b1 + (n-i)*b2 + 1)

*(rss_samp[1,i])^2)

sum_wrxr = sum_wrxr + (((i-1)*a1 - (n-i)*a2) * rss_samp[1,i])

}

estimates[group,1] = sum_urxr/sum_ur

B = sum_wrxr

C = sum_urxr_sq - (2*estimates[group,1]*sum_urxr)

+ (estimates[group,1]^2 * sum_ur)

estimates[group,2] = (-B + sqrt(B^2 + (4*n*C)))/(2*n)

} ####### END OF GENERATING M SAMPLE OF SIZE n

est_hatbar[h,1] = mean(estimates[,1])

est_hatbar[h,2] = mean(estimates[,2])

limits[h,1] = est_hatbar[h,1] - (3 * A1 * est_hatbar[h,2])

limits[h,2] = est_hatbar[h,1] + (3 * A1 * est_hatbar[h,2])

########### START TESTING THE LIMITS

count = 0 # for counting the values out of limits

for(test in 1:N_test){

for(i in 1:n)

rss[i,] = rnorm(n, mean = 0, sd = 1)

rss = t(apply(rss,1,sort))

rss_samp = diag(rss)

sum_urxr = 0

for(i in 1:n){

w1=dnorm(vec_n[1,i], mean = 0, sd = 1)/pnorm(vec_n[1,i],

mean = 0, sd = 1)

w2=dnorm(vec_n[1,i], mean = 0, sd = 1)/(1-pnorm(vec_n[1,i],

mean = 0, sd = 1))

b1 = vec_n[1,i]*w1 + w1^2

b2 = w2^2 - vec_n[1,i]*w2

sum_urxr = sum_urxr + (((i-1)*b1 + (n-i)*b2 + 1)*rss_samp[1,i])

}

mu_hat = sum_urxr/sum_ur

if ((mu_hat<limits[h,1]) || (mu_hat>limits[h,2])) count=count+1
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} # end of test loop N_test

########### END OF TESTING THE LIMITS

alpha[h,1] = count / N_test

} # end of big for N

} # end of function

# QUALITY CONTROL CHART BY RANKED SET SAMPLING

# UNDER SHORT TAILED SYMMETRIC DISTRIBUTION

cchart_rss_sts <- function(M, n, d){

N = 1000

N_test = 10000

h = 2-d

K = 1 / (1 + (1/h) + (0.75/h^2))

for (ii in 1:N) {

for (group in 1:M) {

rss_samp = sts_random_samples[id[group],]

rss_samp = as.matrix(rss_samp)

dim(rss_samp) = c(1,n)

sum_ur_star = 0

sum_urxr = 0

sum_urxr_star = 0

sum_wrxr = 0

sum_urxrsq = 0

for (i in 1:n) {

w1 = dtikuv(vec_n[1,i],d) / ptikuv(vec_n[1,i],d)

w2 = dtikuv(vec_n[1,i],d) / (1 - ptikuv(vec_n[1,i],d))

b1 = (1 - (vec_n[1,i]^2/(2*h))) / (1 + (vec_n[1,i]^2/(2*h)))^2

b2 = w1^2 + (w1 * vec_n[1,i] * (1 - (4/(2*h + vec_n[1,i]^2))))

b3 = w2^2 - (w2 * vec_n[1,i] * (1 - (4/(2*h + vec_n[1,i]^2))))

if (d<=0) { a1 = (vec_n[1,i]^3/h) / (1+(vec_n[1,i]^2/(2*h)))^2

b1_star = b1

} else{a1=((vec_n[1,i]^3/h)+(vec_n[1,i]*(1-(h/2))))

/(1+(vec_n[1,i]^2/(2*h)))^2

b1_star=((h/2)-(vec_n[1,i]^2/(2*h)))

/(1+(vec_n[1,i]^2/(2*h)))^2

}
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a2 = w1 + (vec_n[1,i] * b2)

a3 = w2 - (vec_n[1,i] * b3)

sum_ur_star = sum_ur_star + ((i-1)*b2 + (n-i)*b3 + 1

- (2/h)*b1_star)

sum_urxr = sum_urxr + (rss_samp[1,i] * ((i-1)*b2 + (n-i)*b3 + 1

- (2/h)*b1))

sum_urxr_star=sum_urxr_star+(rss_samp[1,i]*((i-1)*b2+(n-i)*b3

+ 1 - (2/h)*b1_star))

sum_wrxr = sum_wrxr + (rss_samp[1,i] * ((2/h)*a1 + (i-1)*a2

- (n-i)*a3))

sum_urxrsq=sum_urxrsq+(rss_samp[1,i]^2 * ((i-1)*b2 + (n-i)*b3

+ 1 - (2/h)*b1_star))

}

est_group[group,1] = sum_urxr / sum_ur

B = sum_wrxr

C = sum_urxrsq-(2*est_group[group,1]*sum_urxr_star)

+(est_group[group,1]^2 * sum_ur_star)

est_group[group,2] = (-B + sqrt(B^2 + (4*n*C))) / (2 * n)

}

est_bars[ii,] = apply(est_group,2,mean)

limits[ii,1] = est_bars[ii,1] - (3 * A1 * est_bars[ii,2])

limits[ii,2] = est_bars[ii,1] + (3 * A1 * est_bars[ii,2])

count = 0

test_id = sample(dim_samples[1], N_test, replace=F)

#################### START TESTING THE LIMITS

for(test in 1:N_test) {

rss_test = sts_random_samples[test_id[test],]

rss_test = as.matrix(rss_test)

dim(rss_test) = c(1,n)

sum_urxr = 0

for(j in 1:n) {

w1 = dtikuv(vec_n[1,j],d) / ptikuv(vec_n[1,j],d)

w2 = dtikuv(vec_n[1,j],d) / (1 - ptikuv(vec_n[1,j],d))

b1 = (1 - (vec_n[1,j]^2/(2*h))) / (1 + (vec_n[1,j]^2/(2*h)))^2

b2 = w1^2 + (w1 * vec_n[1,j] * (1 - (4/(2*h + vec_n[1,j]^2))))
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b3 = w2^2 - (w2 * vec_n[1,j] * (1 - (4/(2*h + vec_n[1,j]^2))))

sum_urxr = sum_urxr + (rss_test[1,j] * ((j-1)*b2 + (n-j)*b3

+ 1 - (2/h)*b1))

}

mu_hat = sum_urxr / sum_ur

if (mu_hat < limits[ii,1] || mu_hat > limits[ii,2]) count=count+1

} ############################ END OF TESTING THE LIMITS

alpha[ii,1] = count / N_test

} }

# QUALITY CONTROL CHART BY RANKED SET SAMPLING

# UNDER LONG TAILED SYMMETRIC DISTRIBUTION

# THREE-MOMENT T APPROXIMATION

cchart_rss_lts_tmoment <- function(M,n,p)

{

N = 1000

N_test = 10000

v=2*p-1

k=2*p-3

dof_v = (2*(2*kurt - 3)) / (kurt - 3)

for(h in 1:N){

for(group in 1:M){

rss = rt(n*n,v)*sqrt(k/v)

dim(rss) = c(n,n)

rss = t(apply(rss,1,sort))

rss_samp = diag(rss)

sum_ur = 0

sum_urxr = 0

sum_urxr_sq =0

sum_wrxr = 0

for(i in 1:n){

w1 = (dt((vec_n[1,i]*sqrt(v/k)), df=v) * sqrt(v/k))
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/ (pt((vec_n[1,i]*sqrt(v/k)), df=v))

w2 = (dt((vec_n[1,i]*sqrt(v/k)), df=v) * sqrt(v/k))

/ (1 - pt((vec_n[1,i]*sqrt(v/k)), df=v))

b1 = (1 - (vec_n[1,i]^2 / k))/(1 + (vec_n[1,i]^2 / k))^2

b2 = w1*((2*p*vec_n[1,i])/(k+vec_n[1,i]^2)) + w1^2

b3 = w2^2 - (w2*((2*p*vec_n[1,i])/(k+vec_n[1,i]^2)))

a1 = ((2/k)*vec_n[1,i]^3)/(1 + (vec_n[1,i]^2/k))^2

a2 = w1 + (b2*vec_n[1,i])

a3 = w2 - (b3*vec_n[1,i])

sum_ur = sum_ur + (((2*p/k)*b1) + ((i-1)*b2) + ((n-i)*b3))

sum_urxr = sum_urxr + (rss_samp[i]*(((2*p/k)*b1) + ((i-1)*b2)

+ ((n-i)*b3)))

sum_urxr_sq = sum_urxr_sq + (rss_samp[i]^2 * (((2*p/k)*b1)

+ ((i-1)*b2) + ((n-i)*b3)))

sum_wrxr = sum_wrxr + (rss_samp[i]*(((i-1)*a2) - ((n-i)*a3)

- ((2*p/k)*a1)))

}

estimates[group,1] = sum_urxr/sum_ur

B = sum_wrxr

C = sum_urxr_sq - ((sum_urxr)^2/sum_ur)

if (C<0) { # checking whether sigma is real and positive

sum_ur = 0

sum_urxr = 0

sum_urxr_sq =0

sum_wrxr = 0

for(i in 1:n){

w1 = (dt((vec_n[1,i]*sqrt(v/k)), df=v) * sqrt(v/k))

/ (pt((vec_n[1,i]*sqrt(v/k)), df=v))

w2 = (dt((vec_n[1,i]*sqrt(v/k)), df=v) * sqrt(v/k))

/(1 - pt((vec_n[1,i]*sqrt(v/k)), df=v))

b1 = 1/(1 + (vec_n[1,i]^2 / k))

b2 = w1*((2*p*vec_n[1,i])/(k+vec_n[1,i]^2)) + w1^2

b3 = w2^2 - (w2*((2*p*vec_n[1,i])/(k+vec_n[1,i]^2)))

a2 = w1 + (b2*vec_n[1,i])

a3 = w2 - (b3*vec_n[1,i])

sum_ur = sum_ur + (((2*p/k)*b1) + ((i-1)*b2) + ((n-i)*b3))
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sum_urxr = sum_urxr + (rss_samp[i]*(((2*p/k)*b1) + ((i-1)*b2)

+ ((n-i)*b3)))

sum_urxr_sq = sum_urxr_sq + (rss_samp[i]^2 * (((2*p/k)*b1)

+ ((i-1)*b2) + ((n-i)*b3)))

sum_wrxr = sum_wrxr + (rss_samp[i]*(((i-1)*a2) - ((n-i)*a3)))

}

B = sum_wrxr

C = sum_urxr_sq - ((sum_urxr)^2/sum_ur)

} # end of checking whether sigma is real and positive

estimates[group,2] = (-B + sqrt(B^2 + (4*n*C)))/(2*n)

}

est_hatbar[h,] = apply(estimates,2,mean)

bb = (sqrt((dof_v - 2)/dof_v) * A1 * est_hatbar[h,2])

limits[h,1] = bb * qt((0.0027/2), dof_v) + est_hatbar[h,1]

limits[h,2] = bb * qt((1-(0.0027/2)), dof_v) + est_hatbar[h,1]

########### START TESTING THE LIMITS

count = 0 # for counting the values out of limits

for(test in 1:N_test){

rss = rt(n*n,v)*sqrt(k/v)

dim(rss) = c(n,n)

rss = t(apply(rss,1,sort))

rss_samp = diag(rss)

sum_ur = 0

sum_urxr = 0

for(i in 1:n){

w1 = (dt((vec_n[1,i]*sqrt(v/k)), df=v) * sqrt(v/k))

/ (pt((vec_n[1,i]*sqrt(v/k)), df=v))

w2 = (dt((vec_n[1,i]*sqrt(v/k)), df=v) * sqrt(v/k))

/ (1 - pt((vec_n[1,i]*sqrt(v/k)), df=v))

b1 = (1 - (vec_n[1,i]^2 / k))/(1 + (vec_n[1,i]^2 / k))^2

b2 = w1*((2*p*vec_n[1,i])/(k+vec_n[1,i]^2)) + w1^2

b3 = w2^2 - (w2*((2*p*vec_n[1,i])/(k+vec_n[1,i]^2)))

sum_ur = sum_ur + (((2*p/k)*b1) + ((i-1)*b2) + ((n-i)*b3))

sum_urxr = sum_urxr + (rss_samp[i]*(((2*p/k)*b1) + ((i-1)*b2)

+ ((n-i)*b3)))
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}

mu_hat = sum_urxr/sum_ur

if ((mu_hat<limits[h,1]) || (mu_hat>limits[h,2])) count=count+1

}

########### END OF TESTING THE LIMITS

alpha[h,1] = count / N_test

} } # end of function
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