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ABSTRACT

A SUBJECTIVE EVALUATION OF TONE MAPPING AND EXPOSURE FUSION
ALGORITHMS IN STANDARD AND SMALL SCREEN DISPLAY DEVICES

Eksert, Mustafa Levent

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Ahmet Oğuz Akyüz

September 2013, 57 pages

Standard display devices are not capable of displaying real world scenes as they are per-
ceived by humans. One of the reasons for this is their limited dynamic range. The field of
high dynamic range (HDR) imaging has been developed to alleviate this problem. Among
the techniques of HDR imaging, tone mapping operators (TMOs) and exposure fusion al-
gorithms (EFAs) are commonly used to display HDR content on conventional low dynamic
range (LDR) monitors. In this thesis, 4 TMOs and 3 EFAs are compared in terms of image
quality reproduction on standard and small-screen display devices. The latter is motivated
by the fact that small-screen monitors are becoming more widespread due to the advances in
mobile devices and digital cameras. The quality reproduction is performed with respect to
four criteria namely contrast, color, detail, and similarity. The results show that best TMOs
outperform the best EFAs in terms of reproduction of contrast, detail, and similarity. How-
ever, EFAs are found to be better in reproduction of colors. Also, the differences between the
algorithms are found to be minimized on a small-screen display device.

Keywords: high dynamic range imaging, tone mapping, exposure fusion, evaluation study
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ÖZ

STANDART VE KÜÇÜK EKRANLI GÖRÜNTÜ ARAÇLARINDA TON EŞLEME VE
POZ FÜZYONU ALGORİTMALARININ ÖZNEL DEĞERLENDİRMESİ

Eksert, Mustafa Levent

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ahmet Oğuz Akyüz

Eylül 2013 , 57 sayfa

Standart görüntüleme aygıtları, gerçek bir sahneyi insanlar tarafından algılandığı gibi göster-
mekte yetersiz kalmaktadır. Bunun sebeplerinden biri de standart görüntüleme cihazlarının sı-
nırlı dinamik aralığıdır. Yüksek dinamik aralık (YDA) alanı bu problemin kısmen giderilmesi
amacıyla ortaya atılmıştır. YDA görüntülemenin teknikleri arasında, ton eşleme operatörleri
(TEO) ve poz füzyonu algoritmaları (PFA), geleneksel düşük dinamik aralıklı (DDA) moni-
torlerde YDA içeriğini görüntülerken sıklıkla kullanılır. Bu tezde 4 TEO ve 3 PFA, standart ve
küçük ekranlı görüntüleme aygıtlarındaki resim kalitesi bazında karşılaştırılmıştır. Küçük ek-
ranlı görüntüleme cihazları mobil cihazlar ve dijital aygıtların yaygın kullanılıyor olmasında
ötürü çalışmaya dahil edilmiştir. Kalite değerlendirmesi kontrast, renk, ayrıntı ve benzerlik
adında dört esasa göre yapılmıştır. Sonuçlar göstermiştir ki en iyi TEO’lar, en iyi PFA’lara
kontrast, ayrıntı ve benzerlik ediniminde üstünlük sağlamışlardır. Buna karşın, PFA’ların renk
ediniminde daha iyi oldukları gözlemlenmiştir. Ayrıca algoritmalar arasındaki farkların küçük
ekranlı görüntüleme aygıtlarında azaldığı gözlemlenmiştir.

Anahtar Kelimeler: yüksek dinamik aralıklı görüntüleme, ton eşleme, poz füzyonu, değerlen-

dirme çalışması
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CHAPTER 1

INTRODUCTION

The real world as well as computer generated artificial scenes contain a vast range of lumi-
nances. Although the human eye can perceive the majority of this range, digital cameras as
well as display devices fall short in capturing and presenting this high luminance range accu-
rately. The techniques of HDR imaging have been developed to solve various problems that
stem from this discrepancy. In this thesis, my goal is to provide a rigorous psychophysical
evaluation of two major techniques of high dynamic range (HDR) imaging namely tone map-
ping (reproduction) operators and exposure fusion algorithms. Both of these methods aim
to display a high contrast scene on a conventional display device as effectively as possible.
However, no formal evaluation hitherto exists that compares these two groups of techniques
against each other. In this chapter, I first provide a discussion of differences of HDR imaging
from low dynamic range LDR imaging to clarify the concepts used in this thesis. This is
followed by the contributions and the outline of the thesis.

1.1 HDR vs. LDR Imaging

Photography has emerged in the middle of the nineteenth century and since then several
improvements have been achieved in the quality of both capturing, processing, and print-
ing [3, 4, 5]. More recently, digital photography supported with improvements in digital
storage and display technologies was born. As in the conventional one, digital photography
has gone through several improvements in image capture, processing, display, and printing.

One of the improvement in image presentation is spatial resolution. By increasing spatial
resolution more local details can be represented and the aliasing effect can be reduced [41].
Another quality improvement in digital imaging is the bit-depth. Higher bit-depth enables
more accurate representation of colors and reduces banding artifacts. In digital imaging,
typically 8-bits per color channel are used resulting in 224 number of distinct colors. Although
this seems like a large number, it is not enough to represent the range of luminances found
in real world as well as computer generated scenes. For instance, from starlight to sunlight
the real world contains more than 10 log units (orders of magnitude) of dynamic range which
is defined as the ratio of the maximum to the minimum luminance. The luminance levels
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of several typical scenes are given in Table 1.1 for illustration purposes. To deal with these
high range of luminances more than 8-bits per color channel are required in both capture,
processing, and display of real world scenes.

Table 1.1: Ambient luminance for some lighting conditions from [51]

Condition luminance
(cd/m2)

Starlight 10−3

Moonlight 10−1

Indoor lighting 102

Sunlight 105

The dynamic range in natural scenes may vary depending on several factors such as scene
content and lighting conditions. However, on average, most real world scenes contain at least
4 log units of dynamic range (1:10000) [41]. The human visual system (HVS) is a very
advanced and complex system that can cope with this dynamic range. In fact, the HVS is
known to be responsive for 5 log units of dynamic range in a given environment and to 10 log
units dynamic range over time through visual adaptation [21].

As traditional image capture devices are unable to capture this range directly, several tech-
niques have been developed to capture HDR scenes using these devices (along with develop-
ments in hardware that can directly capture HDR data). Typically, multiple shots of the same
scene each with a different exposure time are captured which are then combined into a single
HDR image. Alternatively, these individual exposures are directly merged to obtain a new
LDR image that contains details in both light and dark regions (known as exposure fusion).

Displaying an HDR image on a standard monitor requires further processing. If such an image
is displayed by clamping high and low luminances, or by linearly scaling its dynamic range to
that of the target display, undesired representations may occur. Using a proper tone mapping
operator can yield a much more plausible representation as illustrated in Figure 1.1.

(a) Clamping high and low lumi-
nances.

(b) Linearly scaling. (c) Proper tone mapping.

Figure 1.1: Different presentations of HDR data. 1.1(a) clamping high and low luminances
results in detail loss in dark and bright regions, 1.1(b) linearly scaling result is relatively
dark, 1.1(c) proper tone mapping result preserves details in shadows and sunny areas c© ILM.
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There are two mainstream approaches for representing HDR image content on LDR display
devices: tone mapping and exposure fusion. In the former, first an HDR image is created
from multiple exposures. Then the dynamic range of this HDR image is reduced to make
displayable on an LDR monitor. Different tone mapping operators (TMOs) put emphasis on
preserving different attributes during this process. For instance, while some operators aim
to reproduce all details, others aim to preserve the global contrast in lieu of details. More
details on these operators are given in the next chapter. The latter method, exposure fusion,
aims to directly create a detail-rich LDR image from a set of bracketed exposures. That is,
in this pipeline, the generation of the HDR image is bypassed. For instance, the HDR mode
in iPhone 4 and above models utilizes a proprietary algorithm of this type [2]. Again, more
information about exposure fusion algorithms are given in the following chapter.

1.2 Contributions

The proposed work contributes to the literature as follows:

• This study presents a rigorous subjective evaluation of several tone mapping and expo-
sure fusion algorithms by means of reproduction of color, contrast, detail, and similarity
in two types of display conditions (normal and small screen).

• Tested methods consist of diverse and recent techniques from TM and EF literature
which have not been tested in previous evaluation studies as well as well-known and
commonly used algorithms.

• For the first time, TMOs and EFAs are compared against each other in a rigorous psy-
chophysical experiment.

• In addition to a normal sized display condition, a small camera LCD screen is used as
a presentation medium to evaluate how well each algorithm preserves the similarity be-
tween the real world scene and its LDR depiction. This is motivated by the widespread
adoption of mobile devices and digital cameras that can capture HDR images.

1.3 Outline

In Chapter 2, TMOs and EFAs which are used in the experiments are explained in detail,
some fundamental EFAs and TMOs are presented, and the similar studies in the literature
are introduced. In Chapter 3 experimental methodology and the statistical analysis used in
the experimental data evaluation are presented. In Chapter 4 the experiment details are intro-
duced and the collected results are analyzed and discussed. In Chapter 5 overall experiment
results are discussed. In Chapter 6 the thesis is summarized and the possible future works
are discussed. In Appendix A instructions for experiment one are provided. In Appendix B
instructions for experiment two are provided.

3
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CHAPTER 2

RELATED WORK

In this chapter, several important tone mapping operators and exposure fusion algorithms
are described. More emphasis will be put on the methods that are evaluated in this thesis.
Additionally, earlier work on subjective evaluation of tone mapping operators is reviewed.

2.1 Tone Mapping

The tone mapping problem is first introduced by Tumblin and Rushmeier [49]. In that algo-
rithm, the purpose is to match the impression of the real world luminance in the human eye
and the effect of the displayed image on a display device. To achieve this, the operator works
on two separate models named the observer and the display models. The observer model uses
brightness as a function of luminance computed in the log domain. On the other hand, the
display model is influenced by the CRT encoding-decoding process taking into account the
display parameters such as the maximum display luminance and the screen background lu-
minance. The proposed tone reproduction operator concatenates the observer model and the
inverse display model to match brightness of the original scene and the displayed image.

Ward et al. [28] propose a tone mapping operator that carries out contrast compression in
both computer generated images such as ray tracing and radiosity results and photographic
images. The method aims to preserve visibility and imposes glare, color sensitivity, and visual
acuity models for simulating human vision imperfections. The algorithm first applies contrast
reduction with a special type of histogram equalization, named histogram adjustment, in order
to prevent contrast expansion in highly populated bins of the histogram. The first part of the
algorithm also involves a model of the human contrast sensitivity. Then several human visual
limitations such as the veiling glare around bright regions are added to improve the realism
of the reproduced image. Moreover, color sensitivity based on luminance values and visual
acuity, which account for resolution reduction in dark regions, is provided in the final result.

Different from the earlier work that directly use the luminance (or its logarithm), gradient
domain techniques have been developed that work on the luminance gradients. A well-known
example is the efficient and robust tone mapping operator introduced by Fattal et. al. [20].
The method reduces large gradients while expanding small gradients. The modified gradient
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map is converted back to the luminance domain by solving a Poisson equation. The tone
reproduction process is performed on gradients of 2D logarithmic luminance. An attenuation
function obtained with a multiscale decomposition of the gradient image is used during the
reduction process. The method provides effective compression by preserving visible details
without introducing halo artifacts.

In the remainder of this section, the four tone mapping operators that were used in this study
are discussed in greater detail.

2.1.1 Photographic Tone Reproduction for Digital Images

This operator borrows from the well-known Zone system that has been used for decades in
conventional photography [3, 4, 5]. For applying the zone system, the photographer first
chooses a zone for the middle gray. The photographer then chooses the lightest and darkest
region from the scene in order to determine the dynamic range of the scene by means of
number of zones. If a scene has 9 zones, the scene can be printed properly, if not, darkest areas
are mapped to pure black and the lightest areas are mapped to white; dodging and burning
which withholds or adds extra light can be applied in case the clamped detail is important to
express in the final print.

In the algorithm, first the log average luminance is computed as:

Lw = exp

 1
N

∑
x,y

log(δ + Lw(x, y))

 , (2.1)

where Lw(x, y) is the world luminance of a pixel, N is the number of pixels and δ is the term
that is used to avoid singularity. Then the scaled luminance is calculated with the following:

L(x, y) =
α

Lw
Lw(x, y). (2.2)

For a typical normal-key scene, the key value α is set to 0.18 and this value can be set to
different values between [0, 1].

Modern photography tends to compress high luminance regions because high luminance pix-
els are not frequent in a normal image data [37, 46]. Therefore, an equation with this char-
acteristics is used in order to compress the luminance values by a factor of 1/L for high
luminance and 1 for low luminance:

Ld =
L(x, y)

1 + L(x, y)
. (2.3)

A different version of the equation which allows for burning beyond a threshold is given
below:

Ld(x, y) =

L(x, y)
(
1 +

L(x,y)
1+L2

white

)
1 + L(x, y)

, (2.4)

where Lwhite is the lowest luminance value which is mapped to white.
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The photographic operator also has a local component which simulates the dodging-and-
burning process. However, in this study only the global version of this operator is used.

2.1.2 Compressing and Companding High Dynamic Range Images with Subband Ar-
chitectures

Global tone mapping algorithms which use nonlinear tone curves [49, 52] or histogram [28]
reduce the dynamic range but they are not successful in preserving details. Some of the early
tone mapping algorithms address this problem and preserve visual details in image [45], but
they cause halo artifacts (gradient reversals). This algorithm proposes a multiscale image pro-
cessing technique for tone mapping which avoids visual artifacts caused by other multiscale
dynamic range compression approaches.

In the method, the original signal is split into subbands, bi, with different filters fi. The
original signal can be formed by summing all the subbands:

s(x) =
∑

i

bi(x). (2.5)

A compression can be applied to subbands in order to reduce the dynamic range of the image.
Applying a sigmoidal function directly to the subbands can compress the signal but it causes
distortion in the synthesized image. Therefore, gain functions which are obtained from a sig-
moidal compression are first blurred. The subbands are compressed by using these modified
gain maps, G as:

b′(x) = b(x)G(x). (2.6)

The modified subbands are then synthesized by synthesis filters to reconstruct the compressed
and less distorted signal s′(x).

A set of analysis-synthesis models are available for synthesizing and analyzing operations. In
this method, nested filtering model with symmetric analysis and synthesis filter banks is used.
In this model, 3 high-pass and 1 low-pass 2D zero padded filters namely hix, hiy, hixy, and lo
are used for constructing subbands of the image.

hi filters are directly used for constructing subband signals and lo filters are used for further
subband signal constructions. The resulting lo signal is recursively split into subbands with
these four synthesis filter banks with the same 4-way subband decomposition until a certain
recursion depth n is reached. 2D filter banks are modified in each successive level, expanded
in x and y direction by inserting 0 in the middle of the filter mask, (e.g f1 = [1,−1] transforms
into [1, 0,−1] in 1D filter mask). Therefore, a multiscale subband decomposition which avoids
the aliasing problems resulting from the subsampling technique is achieved.

Haar filters are used in subband decomposition since they are easy to implement and produce
plausible results with gain maps. After the gain map contrast reduction is carried out to the
subbands, the corresponding synthesis filters are applied to the compressed subbands and the
synthesized signals are summed in order to reconstruct the modified final image result.
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For an n level subband composition model, there exist 3n + 1 subbands where B3n+1(x, y) is
the lowpass residue. The following gives the activity map of the subband:

Ai(x, y) = g(σ) ∗ |Bi(x, y)|, (2.7)

where g(σ) is the Gaussian kernel. A nonlinear function p() is applied to activity map in order
to derive the gain control:

Gi(x, y) = p {Ai(x, y)} =

(
Ai(x, y) + ε

δ

)(γ−1)

, (2.8)

where γ is the compressive factor between 0 and 1, ε is noise level related parameter and δ is
the gain control stability level which modifies the activity value by increasing less than itself
and decreasing the activity value greater than its value. δ is calculated with the following:

δi = αi

∑
(x,y) (Ai(x, y))

M × N
, (2.9)

where αi is spatial frequency related function between 0.1 and 1.0 from the lowest to the
highest frequency subband.

After the gain is calculated, the subband is compressed with the following equation:

B′i(x, y) = Gi(x, y) × Bi(x, y). (2.10)

Finally, resulting subbands are convolved with synthesis filters and summed in order to obtain
compressed image result.

Since the subbands of the same signal tend to have similar activity, an appropriate gain map
can be used for all subbands. Therefore, an aggregated activity map that is calculated by
summing up activity maps of all subbands is used instead of separate gain maps for each
subband. δ is taken as one tenth of the average of Aag in gain map calculation. This gain map
is used to modify the subbands in the following equation:

B′i(x, y) = miGag(x, y) × Bi(x, y), (2.11)

where mi is a scale-related constant.

2.1.3 Display Adaptive Tone Mapping

In this work, Mantiuk et al. [34] propose a tone mapping operator which reduces contrast
according to a human visual system model. This operator also takes into account the visual
properties of the display device which is used for displaying the resulting image. Besides, a
comparison is performed between the proposed work and the previous algorithms in a small
case study.

In order to match the perception of the real scene and displayed image, the operator tries to
solve an optimization problem. The optimization process essentially updates the tone map-
ping parameters in order to minimize the difference between the HVS model response of the
original image and the displayed image.
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Apart from the optimized parameters, there exist other parameters related to the display prop-
erties and viewing conditions. Display device is modeled with the formula below:

Ld(L′) = (L′)γ · (Lmax − Lblack) + Lblack + Lre f l, (2.12)

where Ld is displayed luminance, L′ is the pixel value in range 0− 1, γ is gamma value of the
display (default 2.2), Lmax and Lmin are the peak and minimum luminance value of the display
and Lre f l is the ambient light reflected from the display surface which affects the minimum
luminance value of the display. Lre f l is calculated with the following formula:

Lre f l =
k
π

Eamb, (2.13)

where Eamb is the ambient luminance value in lux and k is the reflectivity of the display panel.

The HVS model is based on the factor of visual contrast distortions. A transducer func-
tion [53] is used to estimate the response of HVS: R = T (W, S ) where S is sensitivity and W
is contrast. For a given sensitivity value, the response function has a detection threshold and
invisible contrast noises are mapped to below the threshold value. Sensitivity is calculated
with the contrast sensitivity function from [14] with the parameters frequency ρ (cycle per
degree), adapting luminance La (cd/m2), and viewing distance vd, respectively:

S = CSF(ρ, La, vd). (2.14)

Contrast value W is calculated in a multiscale fashion, by taking differences of consecutive
Gaussian pyramid levels in log domain. For efficiency, the background luminance and contrast
values are separated into smaller blocks, named bins; and for a given background luminance,
contrast value, and the level of the Gaussian pyramid, a conditional probability density func-
tion is introduced in order to represent similar contrast values. The conditional probability
density function is formulated as:

ci,m,l = P
(
mδ −

δ

2
≤ Gl < mδ +

δ

2

∣∣∣ xi −
δ

2
≤ Il+1 < xi +

δ

2

)
, (2.15)

where xi is the background luminance bin, δ = xi+1 − xi the distance between consecutive
bins and m = −M, . . . ,−1, 1, . . . ,M where Mδ < 0.7 which gives an appropriate interval for
contrast bins.

Piecewise linear curve which illustrates the correlation between the original image luminance
and displayed image luminance is formed with the parameters obtained by the conditional
probability density function. xi and δ are used as the background luminance and luminance
interval respectively for the original image. The corresponding display image parameters; on
the other hand, are yi and di: background luminance bin for the corresponding xi value and
the distance is di = yi+1 − yi for i = 1 . . .N − 1.

An objective function is used to linearize log display luminance vs. log image luminance
curve. To achieve this, the difference between display luminance response and image lu-
minance response is minimized by adjusting di parameters of the display luminance. The
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optimization problem is formulated as follows:

arg mind1...,dN
=

∑
l

N−1∑
i=1

∑
m=−M,m,0

T
∑

k∈φ

dk, S d

 − T

e ∑
k∈φ

δ, S r



2

· ci,m,l, (2.16)

such that

di ≥ 0 for i = 1 . . .N − 1, (2.17)
N−1∑
i=1

di ≤ Ld(1) − Ld(0) for i = 1 . . .N − 1, (2.18)

where φ = i + m, . . . , i − 1 for m < 0 and φ = i, . . . , i + m − 1 for m ≥ 0. The constant e is
the constant enhancement factor used for enhancing contrast of the reference image (e = 1.15
by default). T is the transducer function. The minimization function is called iteratively in
order to recompute current d values from the previous d vector until it approaches the minimal
value in 3-7 iterations.

Finally, d values are used in the final tone curve reproduction equation:

yi = Ld(0) +

i−1∑
k=1

dk + α(Ld(1) − Ld(0) −
N−1∑
k=1

dk), (2.19)

where α is an image brightness factor which adjusts displayed image brightness.

2.1.4 Globally Optimized Linear Windowed Tone Mapping

This paper proposes a recent tone mapping technique which applies local tone mapping oper-
ation on the small overlapping virtual windows on the image. The proposed algorithm catego-
rizes transitions of the scene as smooth and sharp transition and imposes a local approach that
preserves global property of the image. The proposed algorithm directly processes the image
radiance instead of multiscale decomposition or image segmentation. Moreover, the algo-
rithm does not bring out problems caused by layer decomposition such as halo artifacts. The
algorithm operates on windows, compresses the strong edges by preserving the small details,
and imposes an optimization problem which combines a set of local-based constraints.

The algorithm is defined as linear mapping of HDR radiance map to LDR within small ra-
diance groups on the image called windows. The mapping is formulated with the following
basic linear function:

Il( j) = piIh( j) + qi, j ∈ ωi, (2.20)

where p and q are linear function parameters, Il is the compressed pixel value, Ih is the original
pixel value, andωi is the window i. The problem is essentially defined as an objective function
minimization:

f =
∑

i

∑
j∈ωi

(
Il( j) − piIh( j) − qi

)2
+ εc−2

i (pi − ci)2

 . (2.21)
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The term ci−2 (pi − ci)2 is squared relative error of guidance map ci which is contributed to
the objective function in order to avoid trivial solution to pi and qi: 1 and 0. ε is weight of
guidance error term.

The minimization process is conducted in the following convex function:

arg minp,q,Il f = arg minIl
∑
i

arg minpi,qi fi, where

fi =

( ∑
j∈ωi

(
Il( j) − piIh( j) − qi

)2
+ εc−2

i (pi − ci)2
)
.

The problem is solved by first setting the partial derivatives of pi and qi to zero and calculating
the optimal Il

is by solving the resulting linear system. The window size is set to 3 × 3 by
default.

Setting the guidance map directly controls pi value which controls the contrast compression
in a local window. Compressing high contrast and enhancing low contrast proportional to the
standard deviation of the window ωi is a naive approach but it amplifies noise on the image.
Moreover, light regions have more contrast values compared to dark regions [42]. Therefore,
the guidance map is calculated by the Gaussian approach using the following equation:

ci =
(
µ
β1
i σ

β2
i Ih(i)β3 + κ

)−1
, (2.22)

where κ is a small weight which is set to 0.05, µi, σi, Ih(i), and βs are window mean, window
standard deviation, radiance value and attenuation constants of pixel i respectively. The sum
of βs influences the compression rate of the image. Default value of βs are β1 = 0.6, β2 = 0.2
and β3 = 0.1. Different values of βs give different results by means of local contrast and
global illumination.

2.2 Exposure Fusion

Exposure fusion is an alternative technique to HDR image tone mapping. In exposure fusion,
instead of compressing the luminances of an HDR image, the individual exposures of a brack-
eted image sequence are directly combined in the LDR domain. The result is an LDR image
that contains details from all exposures.

The pioneering work for exposure fusion can be considered as Goshtasby’s method [24].
This method involves separating the input exposures into fixed sized blocks and selecting the
block with the highest entropy for the final image. The smooth transition between the blocks
is ensured by using rational Gaussians. A more detailed description of this method is given in
the following subsection.

Jo and Vavilin [25] propose a cluster based exposure fusion algorithm which blends regions
that have the best exposures in the bracketed sequence of the scene. Similar to Goshtasby’s
work [24], each image is divided into several regions; however, in this method, the regions
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are constructed with neighboring pixels with similar intensity values rather than simply sepa-
rating image to the fixed size blocks. After decomposing exposure images into clusters, fused
image is formed by the pixels that are selected from the best exposed clusters which are deter-
mined by the entropy and detail calculation. The resulting image is then blurred with bilateral
filtering [48] for smoothing sharp transitions between the connected clusters. Therefore, high
contrasts are attenuated while small details are recovered in the final image.

Another method which is a probabilistic model based fusion technique for multi exposure
images proposed by Shen et al. [43]. Input exposure images are weighted with a weight map
produced by a probability function. Generalized random walk [30] is used to solve a global
optimization problem of two quality measures in the multi exposure image data. The method
gives plausible results that are comparable to other exposure fusion methods [24, 36] and tone
mapping operators [32, 40, 42]. The method provides color consistency of the pixels avoiding
unnatural and saturated color defects and preserves local contrast in the final image.

In the remainder of this section, the three exposure fusion algorithms that were used in this
study are discussed in greater detail.

2.2.1 Fusion of Multi Exposure Images

This method provides a combination process of multi exposure images into a single image
by selecting fixed blocks from different exposures of the bracketed image sequence. The
selection of the blocks is based on the amount of information in each block. The selected
blocks are blended into one image with a monotonically decreasing function. Optimal block
size and function width parameters are iteratively altered in order to maximize the information
content of the final image. Information is measured by entropy which is calculated as:

Eg =

255∑
i=0

−pi log(pi), (2.23)

where pi is the probability of intensity i ranging from 0 to 255. pi = ni/n where ni is the
number of pixel which has intensity i and n is the total number of pixels. ni values are
estimated by histogram calculation. In color images, image data is converted to CIELab
space [13] and 3D histogram is clustered to the most dominant 256 colors with centers ci via
Xiang’s clustering algorithm [54]. Entropy of the image is then calculated by the following
equation:

Ec =

255∑
i=0

−pc
i log(pc

i ), (2.24)

where pc
i is the probability of pixels within the cluster i.

Each input image is divided into d × d blocks, which have 16 pixels at minimum, and the
block which has the highest entropy among the corresponding image blocks with the same
index among the other exposure images are selected for the final image. The selected image
blocks are blended together to avoid discontinuities along the block borders.
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The following monotonically decreasing blending function is used for combining image blocks:

O(x, y) =

nr∑
j=1

nc∑
k=1

W jk(x, y)I jk(x, y), (2.25)

where I jk(x, y) is a pixel intensity value with index of (x, y) within the image blocks of index
( j, k) in exposure sequence and W jk(x, y) is the weight of (x, y) index within the image block
( j, k). The intensity value is the weighted sum of the pixels with same index (x, y) in exposure
images where the weight of selected block is approximately 0.8 and the sum of other block
weights is 0.2.

The weight function assigns maximum weight to the center of the selected blocks, decreasing
as distance to the center of the block is increasing. Rational Gaussian surface [23] is used to
model the blending function:

W jk(x, y) =
G jk(x, y)

nr∑
m=1

nc∑
n=1

Gmn(x, y)
, (2.26)

nr and nc are the number of image blocks vertically and horizontally. G jk(x, y) is defined as:

G jk(x, y) = exp

−
(
x − x jk

)2
+

(
y − y jk

)2

2σ2

 , (2.27)

where (x jk, y jk) are the center coordinate of jkth block and σ is the standard deviation of the
Gaussian or width of blending function.

Two parameters d and σ are modified to obtain optimal values using gradient-ascent algo-
rithm: d and σ parameters are initially set to 160. The values are incremented or decremented
by a constant 4 = 32 until the resulting image reaches the highest entropy compared the other
parameter combinations.

2.2.2 Mertens et al.’s Exposure Fusion

This method fuses the individual exposures into one LDR image by weighting the pixels in
the same position using three criteria namely well exposedness, saturation, and contrast [36].

For well exposedness, low weights are assigned to over and under exposed regions and high
weights are assigned to pixels with moderate exposures. This is accomplished by using a
Gaussian:

g(i) = exp
(
−

(i − 0.5)2

2σ2

)
, (2.28)

where i is the intensity value of a color channel and σ = 0.2. This Gaussian is applied to
each color channel separately and their product is taken to compute the final weight. Contrast
measure is determined by applying a Laplacian filter to the grayscale version of each image
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and taking the absolute value of the filter response. Saturation is determined by taking the
standard deviation within the R, G, B values of each pixel.

The quality measures are combined by the following multiplication:

Wi, j,k =
(
Ci, j,k

)ωC
×

(
S i, j,k

)ωS
×

(
Ei, j,k

)ωE
, (2.29)

where C, S and E are contrast, saturation and well exposedness weights. ω values are weight-
ing exponents and i, j, and k refers to the pixel of kth image in (i, j) position. By default
ωC = ωS = ωE = 1.

The weights of a pixel in position (i, j) are normalized by the following formula:

Ŵi, j,k =

 N∑
k′=1

Wi, j,k′


−1

Wi, j,k, (2.30)

and the final image is obtained by weighted blending:

Ri, j =

N∑
k=1

Ŵi, j,kIi, j,k. (2.31)

This approach results in seam artifacts in the final image since weight map unexpectedly
varies due to the difference of exposure times. Smoothing the weight map via Gaussian filters
impose halo artifact around the edges and using bilateral filtering has problems with choosing
optimal parameters. Therefore, the method uses Laplacian pyramid decomposition [10] of
each exposure image and Gaussian pyramid of normalized weight maps of the images:

L {R}li j =

N∑
k=1

G
{
Ŵ

}l

i j,k
L {I}li j,k . (2.32)

L {A} is the Laplacian pyramid decomposition of image A, G {B} is the Gaussian pyramid
of image B, and l is the level of the pyramid. In this formula, each level of the resulting
Laplacian pyramid is expressed as weighted average of Laplacian pyramid of exposure image.
The resulting pyramid is combined to obtain the final image. The operation is applied in every
level separately.

Multiresolution blending clears seam artifact since it works on the image features instead of
intensities directly and by the use of Laplacian filter factor, the effect of sharp differences in
weight function are attenuated in the flat regions and preserved in edges.

2.2.3 Gradient Directed Composition of Multi Exposure Images

This method proposes a gradient based exposure fusion method in which a high quality image
from exposure sequences of an HDR scene is aimed to be obtained by combining exposure
images by means of visibility and consistency assessments [56] .
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In an exposure sequence of a scene, it is observed that gradient magnitude is high for well
exposed regions and low for over or under exposed regions [56]. Moreover, if moving ob-
jects exist in the scene, gradient direction changes occur in the exposure images. Therefore,
gradient magnitude and direction are used as metrics for combining exposure images in order
to produce well exposed images avoiding the ghosting artifact. As a result, a method which
eliminates complex camera calibration and tone mapping operation and attenuates ghosting
artifacts is introduced.

Exposure images are combined by the general formula:

H(x, y) =

N∑
i=1

W i(x, y)Ii(x, y), (2.33)

where N is number of exposures, I and W are the intensity and weight functions respectively.
The result depends on the weight term W which is calculated by the gradient based visibility
quality measure. The resulting image is produced seamlessly with a multiresolution recon-
struction process using Laplacian pyramid.

The gradients of the exposure images are calculated by first derivative of 2D Gaussian ker-
nel. Eventually, the gradient result is refined by cross bilateral filtering [39]. The visibility
of a pixel is expected to be high where the gradient magnitude becomes larger since gradi-
ent decreases gradually if a detail is over exposed or under exposed in an exposure image.
Therefore, the visibility assessment is developed as follows:

V i(x, y) =
mi(x, y)

N∑
i=1

mi(x, y) + ε

, (2.34)

where mi(x, y) is the gradient magnitude in the pixel location (x, y) of ith exposure image and
ε is a small value to avoid singularity. In static scenes V i = W i and this setting produces
pleasant results in preserving details in every regions in all exposure images.

Visibility assessment is sufficient to set pixel weights if the scene is static. Therefore, con-
sistency assessment of the method is not used in this thesis since all of the used exposure
sequences represent static scenes.

2.3 Subjective Evaluation

As HDR imaging has been developing, several tone mapping operators have been presented
in recent years. As a result, many case studies have been conducted for the assessment of the
resulting image quality with performance analysis. Experiment types used in these works de-
pend on the objective of the studies and various instructions such as ranking [11], rating [55]
and preference [7, 11, 16, 50] were used in order to test operator performances with respect to
some basic image attributes such as contrast, color, detail, brightness. In some of the experi-
ments which test naturalness or reality, the real scene of tone mapped image was provided for
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reference [7, 11, 55]. However, most of the experiments were conducted with LCD or CRT
display and tone mapping evaluation on a small screen is rare [50]. Moreover, a case study
which evaluates exposure fusion techniques have not been proposed yet since exposure fusion
is a new concept in HDR imaging field. Recently, a literature survey was carried out in order
to compare exposure fusion algorithms but it does not involve a subjective evaluation [22].

A visual perception case study was conducted by Drago et al. [16] with 6 tone mapping
operators. 11 subjects evaluated 4 images consisting of photographic and synthetic scenes.
The tone mapping results were displayed in pairs to the subjects which were expected to
specify distances between two images and choose the natural and better-looking one in the
displayed image pair. The results were analyzed by INDSCAL and the first and the second
most salient dimensions were associated with the detail and naturalness attributes respectively
via the multiple regression analysis. Pairwise preference rankings obtained by subject choices
in image pairs were used in PREFMAP, leading to determine an ideal point in INDSCAL-
derived stimulus space. Results show that a proper contrast reduction which preserves spatial
details are most likely to be preferred. In stimulus space, tone mapping operators resided
in 3 groups which are categorized by their performances. In the first group, which has the
best evaluation score, there are 3 stimuli near the ideal point. In the second group, there
are 2 stimuli which have relatively natural results. In third group there is only histogram
adjustment method [28] which has the worst performance, resulted from the unnatural image
reproduction. Although the study proposes a sound comparison method, subjects are not
asked to evaluate basic attributes (color and contrast etc.) of the image and the real world
scene is not used for photographic scenes in order to compare naturalness of the image pair.

A psychophysical experiment was developed by Kuang et al. [27] This study was aimed to
observe the relation between tone mapping and overall rendering performances. Approxi-
mately 30 subjects compared the image pairs of 10 scenes with a variety of dynamic range.
Colored tone mapping results were used in overall rendering performance evaluation and gray
scale images obtained from luminance channel of the tone mapping results were used in tone
mapping evaluation. 10 scenes were rendered with 8 different HDR image rendering algo-
rithms involving well-known global and local operators with default parameters. Colored and
gray scale results were separately displayed in pairs to the participants which are asked to
choose the image they preferred between two images. Image rendering and tone mapping
results are statistically very similar and Durand’s bilateral filtering [17] and Reinhard’s global
photographic tone reproduction [40] have the best scores in both evaluation results. In this
study, it is concluded that the tone mapping results are very effective in overall HDR image
rendering quality.

Another psychophysical experiment in tone mapping evaluation was conducted by Yoshida et
al. [55]. 7 tone mapping operator results of 2 HDR images were compared with their corre-
sponding real-world scenes. Each subject rated all 14 images by means of a set of attributes:
naturalness, overall contrast, overall brightness, detail reproduction in dark regions, and detail
reproduction in bright regions. Before conducting the experiment, a pilot study was carried
out in order to fine tune parameters of tone mapping operators. Statistical analysis on eval-
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uation results was conducted with ANOVA [47] and no significant difference was observed
between 2 scenes. The study shows that tone mapping operators are perceived differently
when compared with real-world scenes. Image attributes are not correlated with each other
and the most uncorrelated attributes are overall brightness and detail reproduction in bright
regions since high overall brightness causes the lack of detail visibility in bright regions.
Mahalanobis distances calculated with MANOVA [47] show that the local and global tone
mapping operator results are correlated within themselves. The global operators have higher
overall brightness and strong contrast while the local operators are good at preserving details.
The work has a sound contribution to the field since it proposed the first real-scene-referenced
tone mapping evaluation. General characteristics of global and local operators can be easily
observed in the resulting attribute scores. However, two scenes are similar by means of con-
tent and dynamic range. In order to strengthen the validity of results, different types of real
world scene could be used to test other scene variations.

Ashikhmin and Goyal [7] proposed a tone mapping evaluation study which compares the eval-
uation of operator results with and without real world scene reference. 5 tone mapping results
were tested with 15 participants in 3 types of experiments. In the first and second experiment,
the subjects were expected to rank 5 tone mapping results of 5 scenes with respect to the pref-
erence and realism criteria. Unlike the first and second experiments, in the third experiment
the real world reference was used for the evaluation and 4 scenes were ranked according to
their similarity to the corresponding real world scene. 3 scenes were common in all exper-
iments. All tone mapping results of a scene were displayed in the screen at once. Default
parameters and authors’ implementations were used for creating the tone mapped images.
The first two experiments results are highly scene-dependent, preventing to form a significant
ranking among tone mapping performances. However, in the third experiment, overall op-
erator performances do not show drastic changes in 4 scenes. For this experiment, gradient
domain compression [20] and adaptive logarithmic mapping [16] have the best scores. Re-
sults of the first and second experiments are relatively correlated but the third experiment is
completely different than the other two. This observation can be interpreted that subjects’
decisions change when the real scene is provided. Therefore, contrary to the Kuang et al.’s
work [27], results of this study suggest that the virtual realism, which is defined as the sub-
jective depiction of a real scene composed in human mind, is unreliable for evaluation of
realism. Performances of operators are different than the other studies such as [27] and [55].
Therefore, the reliability of subjective studies without real world reference are questionable.
Determining which attributes are exactly effective in subjects’ decision is a very hard task.
However, low or high presence of detail reduces the naturalness of a tone mapping image
result and overall brightness is essential for reality of the images.

Cadik et al. [11] conducted perceptual experiments by evaluating tone mapping results by
means of a set of attributes namely brightness, color, detail, contrast, artifacts, and overall
quality. 2 different experiments each of which have 10 distinct participants were used to assess
14 tone mapping results of 3 common scenes. In the first experiment, subjects were asked to
rate images on a standard LCD screen by using the real scene of the images as reference
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while in the second experiment, subjects were asked to rank printed versions of the same tone
mapping results by comparing them with the real scene predictions emerged in participants’
minds without a real scene reference. All the attributes stated above is evaluated in both
referenced and non-referenced experiments. The study aimed to determine the effect of basic
attributes of the image in overall quality by stating the correlation between the overall quality
and the other attributes scores. This finding allows image quality to be defined by means
of brightness, color, detail, and artifacts. Moreover, the influences of other attributes among
each other were also examined. Statistical analysis showed that two experiment results are
not statistically significant. It was concluded that the real scene reference is not necessary
for perceptual evaluation of the tone mapping operators for this study unlike Ashikhmin and
Goyal’s work [7]. Subjects were statistically consistent among each other. The tone mapping
performances changed for different input scenes. Results show that overall image quality was
achieved best by linear clip followed by a group of tone mapping techniques which were
global or have global tone mapping characteristics. The other methods had average scores
and 2 operators [12]and [20] had the worst performances. Overall quality was influenced by
the contrast, color, and artifact attributes, and brightness contributed indirectly by distributing
its effect to the other attribute scores. The study involved several methods (14 tone mapping
techniques); however, they are limited with tone mapping operators. In addition, they used 2
outdoor scenes which have high risk of the ground truth change for the referenced experiment.

A recent study which influenced this proposed work was conducted on both standard screens
and small screen devices (SSD) by Urbano et al. [50]. The purpose of the study was to
compare tone mapping operator performances in different screen sizes and find out whether
the screen size is effective in subjects’ choices. In the experiment, LCD, CRT, and PDA
(personal digital assistant) screens were used to evaluate 7 tone mapping operator results
of 2 indoor scenes. For each scene and device, 19 different subjects (114 subjects in total)
participated in the evaluation. Tone mapping results were displayed in pairs and participants
were asked to choose the image which is similar to the real scene based on the color, detail,
contrast, and naturalness attributes, separately. Subject consistency and general agreement are
ensured by the statistical analysis. LCD and CRT screen results were statistically similar but
SSD results were different from both LCD and CRT screen results. The tone mapping operator
which produced saturated colors and more details received better scores in SSD since color
and detail attributes are essential in order to compensate limited screen size and color depth
in SSDs. This study had an important contribution to the field of tone mapping evaluation by
demonstrating the effect of the display properties on tone mapping performance. However,
the experiment does not contain exposure fusion algorithms and excluded device dependent
tone mapping operators which may be suitable for this type of experiment such as Mantiuk et
al.’s display adaptive tone mapping [34].

A literature survey was recently conducted by Ganga et al. [22] for exposure fusion meth-
ods. 4 different exposure fusion approaches were introduced and discussed. In Goshtasby’s
work [24], every image is divided into image blocks and the image which contains the most
information is selected among the different exposures of the block. Finally, image blocks
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are combined and blended. This method was described as not having a side effect such as
increasing the contrast and color saturation. Mertens et al.’s work [36] weights each pixel
resides in the same positions of different exposures according to the contrast, saturation and
well exposedness quality. It was explained that the algorithm performs high contrast and good
color reproduction. Another method proposed by Li et al. [31] uses features extracted from
discrete wavelet frame transform coefficients in order to train support vector machines and
selects the image that has the best focus for each pixel. However, it was mentioned that re-
sults are affected by slight object movements and defections in exposure sequence. Shen et
al. [43] introduced a method in which generic random walk (GRW) model [30] applied to
multi exposure image fusion. GRW is applied in an undirected graph in which a fused image
pixels and input images are represented as nodes and local contrast and color consistency are
used as quality measures. The survey concluded that GRW approach produces more natural
images and has lower time complexity compared to other image fusion methods.
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CHAPTER 3

EXPERIMENTAL METHODOLOGY

In the previous chapter, the algorithms used in the experiments are introduced with the other
fundamental studies in literature, and some earlier similar subjective evaluations are dis-
cussed. In this chapter, the pairwise comparison is briefly mentioned and the statistical anal-
ysis methods of the pairwise experimental data used in this study are given in detail.

In this study, subjective evaluation which can be defined as human based evaluation was used
in image quality assessment since it is accepted to be the best evaluation method for this
task [41]. Subjective algorithm evaluation can be conducted with several types of comparison
methods. Some of the previous subjective studies used rating [11, 16, 55] and ranking [11]
evaluations. In this study, the pairwise comparison evaluation was preferred to compare image
performances. Although comparing the image set in pairs is a time consuming task, it enforces
the subjects to assess the images more than once unlike rating and ranking methods. Besides,
it offers a reliability measurement of the subjects with a consistency analysis method. The
following part of the chapter contains further information about the statistical data analysis of
the pairwise comparison results.

3.1 The Method of Paired Comparisons

While processing experimental data obtained from pairwise comparison, it is important to
validate the significance of the results in order to declare any conclusion. Therefore, reliability
of the results should be tested by statistical analyses. Two analysis methods are conducted to
resulting experimental data in order to state consistency of subject preference and significance
of method scores. Detailed information about analysis methods are provided in the following
part of this chapter.

3.1.1 Method of Consistency Analysis

Pairwise comparison aims to scale and rank quality of compared object. It is carried out
by asking to participants to prefer one object to the other in pair and all possible pairwise
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preference results lead to an overall ranking among all objects. However, misunderstanding of
the experiment objectives or reluctance of the subject himself may cause inconsistencies in the
final ranking even if the preference process is done for every pair of objects. Furthermore, the
difficulty of the experimental task may cause the participants to make inconsistent decisions.

Suppose a subject participate in an experiment in which the evaluated objects involve A, B,
and C. If a subject preferred A to B and B to C, a ranking can intuitively be done as A > B > C
for the subject’s overall evaluation. However, if the subject chooses C in object pair (A,C)
then this preference causes inconsistency in the final ranking.

Kendall and Smith [26] introduce a metric for subject consistency that stems from the case
explained above. Suppose, in a pairwise comparison experiment, the demonstration of pref-
erence in object pair (A, B) is A → B or B ← A, if A is preferred to B. With n objects
to compare, this gives rise to a total of t(t − 1)/2 preferences. These preferences can be dis-
played in a complete directed graph in which each node corresponds to an object. An example
preference matrix and its preference graph are given in Table 3.1 and Figure 3.1.

Table 3.1: An example preference matrix.

A B C D E
A 0 1 1 1 0
B 0 0 1 0 0
C 0 0 0 1 0
D 0 1 0 0 1
E 1 1 1 0 0

Figure 3.1: Preference graph for matrix in Table 3.1.

A preference set consisting of 3 objects with their connecting edges in a preference graph is
called a triads (e.g. A→ B, B→ C, and A→ C) [26]. Some triads form a loop in the overall
preference graph, causing inconsistencies in the final evaluation results of a subject. These
are called circular triads (e.g. A → B, B → C, and C → A) which are considered to be the
simplest unit of inconsistency.

Although circular n-ads are also possible for a set of preferences, the number of triads are
used for consistency analysis since circular n-ads contain at least (t − 2) circular triads. The
consistency of a subject can be evaluated by comparing the number of circular triads with the
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total possible number of triads as explained below.

Let α1, α2, ..., αt be the number arrows pointing out from each object r for r = 1, 2, . . . , t (that
is the number of preference of each object):

t∑
r=1

(αr) =

 t
2

 . (3.1)

The mean of αr is (t − 1)/2. A T value can be defined as:

T =

t∑
r=1

(
αr −

t − 1
2

)2

, (3.2)

which substitutes into

T =

n∑
r=1

(
α2

r

)
−

t (t − 1)2

4
. (3.3)

The number of circular triads change resulting from inversion of an arrow in preference graph
will be examined. Suppose that in a subject evaluation, A → B preference exists. There are
α preferences with A → X including A → B and β preferences with B → X where X is any
object in experiment. Then four types of triads are possible in the preference graph:

A→ X ← B, p number of preferences in total
A← X → B,
A→ X → B, α − p − 1 number of preferences in total
A← X ← B, β − p number of preferences in total

When A → B is changed to A ← B, the first two types of triads stay as non-circular triads.
The third type is turned into circular triads and the fourth one becomes non-circular when
they were circular before. Therefore, the increase in circular triad count is equal to:

(α − p − 1) − (β − p) = α − β − 1 = d, (3.4)

and the decrease in T value is:

(α2 + β2) −
(
(α − 1)2 + (β + 1)2

)
= 2 (α − β − 1) = 2d, (3.5)

where d value is the change in the number of circular triads. This shows that if the circular
triad count increases by d, then the T value decreases by 2d.

T value reaches its maximum value when αr’s are successive (1, 2, . . . , t− 1) since the overall
result forms a normal ranking. Therefore, the maximum T value becomes T =

(
t3 − t

)
/12.

The minimum T value is reached when αr values are close to each other or equal if possible.
This is achieved when αr = (t − 1)/2 when n is odd and t/2 nodes have a preference of t/2
and the remaining t/2 nodes have a preference of (t − 2)/2. In this case T becomes equal to
t/4.

Therefore, the range of T is zero to
(
t3 − t

)
/12 if t is odd and t/4 to

(
t3 − t

)
/12 if t is even. We

can derive from the previous equations that the circular triad count change is equal to the half
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of the variation in T value. Therefore, the maximum number of circular triads in a preference
graph is (t3 − t)/24 if t is odd and (t3 − 4t)/24 if t is even.

Finally, the coefficient of consistence ζ is calculated by finding the ratio of the current number
of circular triads to the maximum number of circular triads and subtracting this quantity from
unity:

ζ = 1 −
24

(
t3−t
24 −

1
2

t∑
i

(
αi −

t−1
2

)2
)

t3 − t
if t is odd, (3.6)

ζ = 1 −
24

(
t3−t
24 −

1
2

t∑
i

(
αi −

t−1
2

)2
)

t3 − 4t
if t is even. (3.7)

3.1.2 Method of Significance Analysis

Preference testing scores contribute to a ranking when combining pairwise comparison choices.
However, these data need to be analyzed to determine whether the score differences are sig-
nificant enough to constitute a proper ranking. Starks and David [44] propose a statistical data
analysis that provides a significance test for paired comparison experiments. In this thesis, the
evaluation scores are analyzed by using this method as explained below.

Assume that a pairwise experiment is conducted with t number of treatments (items or objects)
and with n number of subjects (participants). The number of times a treatment i where i =

1, . . . , t is preferred is ai and the probability of treatment i being preferred to treatment j is
πi j. An average preference probability of treatment u is then given by:

πu. =

t∑
j=1

πu j/ (t − 1) , (3.8)

where j , u.

Two tests are used in order to analyze the significance of score difference for any ai and a j.

3.1.2.1 Test of Equality of Two Preassigned Treatments

This test is conducted to determine if any distinguishable difference between treatments u and
v exists. The following null hypothesis is tested:

H0 : πu. = πv., (3.9)

against
Ha : πu. , πv.. (3.10)

The test is developed under

H′0 : πi j =
1
2

for all (i, j). (3.11)
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The test is done by the probability calculation of |au − av| ≥ m where m is a positive integer.
Ultimately, for a predetermined significance level, an mc number is determined. If |au − av| ≥

mc then Ha is accepted. That means, if the previous condition is achieved, au is significantly
better than av. A table that gives the appropriate mc values for various values of n and t and
two significance levels α = 0.01 and α = 0.05 is given in [44].

Although this test can state that a difference between two preassigned treatments is significant
or not, it does not provide a general difference metric in order to separate any two treatment
scores. To achieve this, one needs to perform a multiple comparison test.

3.1.2.2 Multiple Comparison Test

In [44], two types of multiple comparison tests, multiple comparison range test and least
significant difference method, are introduced. The latter is used in this work in order to
compare the results of multiple algorithms. In this method, sample means are compared
using variance analysis. The method initially tests

H0 : πi =
1
2

for all i, (3.12)

against

Hα : πi ,
1
2

for some i. (3.13)

If H0 is not rejected, that means there are no significant differences between scores. If not,
the steps below are applied to determine the threshold beyond which the differences can be
considered significant:

1. Determine the significance level α

2. (a) For small n and t values, use tables in [9], [8] and [15] to test H0.

(b) For larger values which do not exist in these tables, use Durbin’s method [18] with
the following formula:

D =

t∑
i=1

d2
i = 4

 t∑
i=1

(ai − a)2

 /(nt) , (3.14)

which substitutes into

D =

t∑
i=1

d2
i = 4

 t∑
i=1

a2
i −

1
4

tn2 (t − 1)2

 /(nt) , (3.15)

and compare the result with the upper 100α% point of the χ2-distribution with
(t − 1) degrees of freedom. Reject the null hypothesis H0 if D is greater than the
critical χ2 value.

3. If the null hypothesis H0 cannot be rejected then the test is completed and no significant
difference is found. Otherwise, apply the “equality of two pre-assigned treatments test”
to find the critical value mc for the two sided test in Table 1 in [44]. Any two treatments
which differ at least by mc are declared to be significantly different.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this thesis, four tone mapping operators and three exposure fusion algorithms are compared
with each other. Below, first the motivation for selecting these algorithms are given. This is
followed by the description of the stimuli used in the experiments. Finally, the details and
results of each experiment are elaborated.

4.1 Selected Algorithms

Although there is a myriad of tone mapping and exposure fusion algorithms comparing all
of them in a single study is impossible for practical reasons. Therefore, in this study the
comparison is made between four tone mapping and three exposure fusion algorithms. These
are (the symbols in parenthesis serve as their identifiers):

• Block based EFA (A) [24]

• Subband based TMO (B) [32]

• Display adaptive TMO (C) [34]

• Multiscale EFA (D) [36]

• Global photographic TMO (E) [40]

• Linear windowed TMO (F) [42]

• Gradient based EFA (G) [56]

The selected algorithms include the state-of-the-art methods in both fields and some of them
have been found to be the best methods in earlier validation experiments.

The photographic TMO had good performance in the earlier case studies [6, 16, 27, 29, 50,
55]. The presence of the photographic TMO is also motivated by its existence in several eval-
uation studies. This may allow to compare any algorithm performance of this study and the
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other studies by taking the common operator result as a reference. Display adaptive TMO
was selected to test an operator designed for handling various device and ambient lighting
conditions and the second experiment contained a proper test environment for display adap-
tive TMO since it provided standard and small screen evaluations and various illumination
conditions. Li et al. and Shan et al.’s operators were included in the algorithm set since they
produce high quality results and author implementation of the operators are available.

Mertens’s et al. and Goshtasby’s EFAs are the two fundamental studies among the EFAs.
Therefore their presences are very important for this experiment, which is the first subjective
evaluation of exposure fusion in literature. Zhang and Cham’s EFA were chosen due to its
high quality of image results.

4.2 Stimuli

The selected algorithms were tested using 4 photographic scenes. In order to create different
test cases, the scenes were selected in a variety of content, lighting condition, dynamic range,
and detail. 4 scenes used in the experimental evaluation are listed below:

• Ametyst

• Lamp

• Toys

• Trail

Ametyst is an indoor scene with different-colored object illuminated by a desk lamp. Strong
highlights are visible on some objects. Lamp scene, on the other hand, represents an outdoor
night environment that contains a bright light source with heavy foliage. Toys is an another
indoor scene but illuminated with standard florescent lights and has relatively low dynamic
range. Trail scene represents a bright daylight environment that is partly shadowed due to
arching trees.

Table 4.1: The dynamic ranges of the images used in the experiments. DR stands for the order
of magnitude difference between the maximum and minimum luminances. DR1 represents the
dynamic range after the removal of %1 of the least and greatest pixel values.

Ametyst Lamp Toys Trail
DR 4.27 4.51 2.99 4.33
DR1 2.40 3.75 2.08 2.46

The dynamic ranges of the images are stated in Table 4.1. As illustrated in this table, all
images have similar dynamic ranges except toys scene. In the second row of the table, the
darkest and lightest pixels are excluded from dynamic range calculations in order to obtain the
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dynamic range values without outliers. In both cases, lamp has the highest dynamic range,
especially after the removal of the outliers, there is a remarkable difference with the other
dynamic range values.

The scenes were photographed in a way that the dynamic range of the medium lighting was
covered. To achieve this, multiple shots of the same static scenes with different exposure
times were taken as shown in Figure 4.1. Each bracketed sequence was taken in RAW format
using a Canon EOS550D camera in order to avoid the necessity of determining the camera
response curve (CRF) (The pixel values in RAW images are linear with respect to the scene
luminance). The exposure spacing between each exposure was 1-fstop.

The images were then converted to the JPEG format using the sRGB non-linearity which
serves as a common starting point for both tone mapping and exposure fusion algorithms. In
the case of TMOs, first an HDR image was created using a standard HDR assembly equation:

I j =

N∑
i=1

f −1
(
pi j

)
ω

(
pi j

)
ti

/ N∑
i=1

ω(pi j), (4.1)

where N is the number of exposures, pi j is pixel value in position j in the ith image, f is the
camera response function, which is the inverse sRGB gamma in this case, ω is the weighting
function to reduce the effect of under and over exposed pixels [38], and tis are exposure times.
The generated HDR images were tone mapped by the 4 tone mapping algorithms listed in
Section 4.1. As for the exposure fusion results, the JPEG images are directly combined using
the selected EFAs.

Table 4.2: Parameters of the algorithms used in the experiments. For all TMOs, gamma is set
to 0.45. The value of the ambient light parameter for toys scene and the maximum luminance
parameter for the camera screen are given in parenthesis.

Alg. Parameters
A d = 160, σ = 160, ∆ = 32
B α = 0.2, γ = 0.6

C Eamb = 10(250), Lmin = 0.5,
k = 0.01, Lmax = 80(125)

D ωC = 1, ωE = 1, ωS = 1
E α = 0.18, Lwhite = 1e20

F ε = 0.1, κ = 0.05, windowsize = 3,
β1 = 0.6, β2 = 0.2, β3 = 0.1, s = 1

G l = 9, τ = 0.9

All of the selected algorithms were implemented with the original author implementations
except Zhang and Cham’s TMO since its implementation has not been made publicly available
by their authors. Default parameters are used in the implementations of algorithms. However,
parameters of display adaptive TMO are set according to the black and white luminance values
of the display devices and ambient illumination of the experiment room. The parameter set
for all algorithms are reported in Table 4.2. All of the TMO and EFA results are shown in
Figure 4.2.
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The final tone mapping results together with fused images were transferred to the screen
devices in experiment location. Overall illustration of image acquisition chart is provided in
Figure 4.3.

4.3 Experimental Setup

After generation of tone mapping and exposure fusion images, two subjective experiments
were conducted. The aim of the first experiment was to evaluate which algorithm better pre-
serves the attributes of color, contrast, and detail on a standard desktop screen. Computer
screens are defined to be standard screens since they are commonly used in everyday life, es-
pecially when displaying a digital photograph. The second experiment was aimed to evaluate
the similarity of the images to their real-world counterparts.

Both experiments were conducted in an experiment room which had no windows and is to-
tally isolated from the outside environment (see Figure 4.4). During the first experiment no
additional light source was used to illuminate the experiment room. When conducting the sec-
ond experiment, the room was illuminated by a desk lamp or florescent lights depending on
the real world reference scene being tested at that moment. The LCD monitor was calibrated
to the sRGB profile using an X-Rite i1Display Pro colorimeter. The camera’s LCD display
was used only in the second experiment. The details of the display devices are provided in
Table 4.3

Table 4.3: Screen device properties.

Camera display Standard LCD display
Name & brand Canon EOS 550D NEC SpectraView Reference 241W
Size 3 inches in diagonal 51.9cm × 32.2cm
Resolution 720 × 480 1920 × 1200
Min. luminance 0.5cd/m2 0.5cd/m2

Max. luminance 125cd/m2 80cd/m2

4.4 Experiment One: Color, Contrast, and Detail

In order to examine the performance of the selected algorithms, the resulting images were
tested by a set of quality attributes namely color, contrast, and detail. These attributes were
also used as the quality measures by several earlier tone mapping evaluation studies such
as [11, 16, 50, 55]. To ensure that the meaning of these attributes are understood, they were
defined in the instruction given to the participants (see Appendix A).

The main objective was to rank the methods in different scenes according to these quality
attributes. In the first experiment, ametyst, lamp, and trail scenes were tested. The subjects
were asked to compare the image results in pairs and choose the better one according to
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their preference. Each attribute-scene combination was evaluated once at a time and after all
possible pairs of an attribute-scene combination were finished, the set of random image pairs
for the next scene-attribute combination was shown to the subject. Attributes were evaluated
in the order of color, contrast, and detail. The scenes were ordered as ametyst, lamp, and trail
within each attribute evaluation.

The images were displayed on a standard LCD display with a custom experiment software
implemented using Physchtoolbox [1] in Matlab environment. The program first created all
possible image pairs of a scene and presented them to the participants in random order. For
each pair, the participants could view one image at a time in full screen and switch between the
images by using the arrow keys. The participants indicated their preference by pressing the
enter key while the preferred images were shown. This choice was recorded by the program
and a neutral gray screen was displayed for 5 seconds before switching to the next pair. Each
image pair was tested only once. At the end of the experiment, the preference matrices of the
subject were written in a file in order to be used in the analysis phase.

There were 15 people which participated in the first experiment. The participants involved
graduate students and instructors mostly from the computer engineering department. Before
the experiment, an instruction manual was provided to the subjects in order to clarify regula-
tions and objectives of the experiment (see Appendix A). Each subject was allowed to take the
experiment individually. For each subject, the experiment took about 30 minutes on average.

Every subject made 189 comparisons (

 7
2

 image pairs × 3 scenes × 3 attributes) in total.

189 × 15 = 2835 pairwise comparisons were made for all subjects.

4.4.1 Results

After all the image evaluations were finished, the collected data was processed by using the
paired comparisons analysis as explained in Section 3.1. The data are gathered as preference
matrices formed by choices of the subjects. The accumulated preference matrices are given in
Table 4.4. The algorithm names are abbreviated with the identifiers introduced in Section 4.1.

4.4.1.1 Consistency Analysis

In order to assess the reliability of the results, a measurement has to be made to determine
whether preferences of a subject can represent a ranking. Therefore, Kendall’s consistency
test discussed in Section 3.1.1 was conducted to every preference matrix of every subjects. In
these experiments, the number of objects t is equal to 7. The resulting consistency values are
listed in Table 4.5.

In Table 4.5 it is observed that all subjects has a high degree of consistency. Therefore, no
subject result is excluded from the data analysis. It can be stated that the consistency values of
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Table 4.4: Accumulated preference matrices for the first experiment. T stands for the total
test score of the algorithm for the corresponding accumulated preference matrix.

Color Contrast Detail
A B C D E F G T A B C D E F G T A B C D E F G T

A
m

et
ys

t

A 0 12 3 2 5 7 2 31 0 3 11 8 14 14 9 59 0 0 9 11 9 6 13 48
B 3 0 2 5 3 6 5 24 12 0 12 8 15 15 14 76 15 0 15 13 14 15 15 87
C 12 13 0 10 10 9 11 65 4 3 0 5 13 15 9 49 6 0 0 10 5 5 13 39
D 13 10 5 0 6 8 10 52 7 7 10 0 14 14 13 65 4 2 5 0 7 4 15 37
E 10 12 5 9 0 9 11 56 1 0 2 1 0 5 2 11 6 1 10 8 0 8 12 45
F 8 9 6 7 6 0 5 41 1 0 0 1 10 0 3 15 9 0 10 11 7 0 13 50
G 13 10 4 5 4 10 0 46 6 1 6 2 13 12 0 40 2 0 2 0 3 2 0 9

L
am

p

A 0 7 9 5 11 11 3 46 0 10 5 4 5 13 8 45 0 0 8 3 8 15 10 44
B 8 0 9 6 13 8 4 48 5 0 6 4 7 14 8 44 15 0 14 14 14 15 14 86
C 6 6 0 4 12 6 3 37 10 9 0 12 9 13 10 63 7 1 0 4 5 15 13 45
D 10 9 11 0 14 10 5 59 11 11 3 0 6 13 11 55 12 1 11 0 10 15 15 64
E 4 2 3 1 0 4 3 17 10 8 6 9 0 13 11 57 7 1 10 5 0 15 11 49
F 4 7 9 5 11 0 3 39 2 1 2 2 2 0 2 11 0 0 0 0 0 0 1 1
G 12 11 12 10 12 12 0 69 7 7 5 4 4 13 0 40 5 1 2 0 4 14 0 26

Tr
ai

l

A 0 12 8 9 10 10 5 54 0 3 2 0 10 10 2 27 0 1 10 0 7 10 4 32
B 3 0 3 0 3 5 2 16 12 0 10 12 14 14 13 75 14 0 15 14 15 14 15 87
C 7 12 0 7 8 9 4 47 13 5 0 5 10 13 11 57 5 0 0 0 3 10 0 18
D 6 15 8 0 10 10 9 58 15 3 10 0 14 13 11 66 15 1 15 0 12 14 13 70
E 5 12 7 5 0 11 4 44 5 1 5 1 0 9 3 24 8 0 12 3 0 12 3 38
F 5 10 6 5 4 0 4 34 5 1 2 2 6 0 2 18 5 1 5 1 3 0 1 16
G 10 13 11 6 11 11 0 62 13 2 4 4 12 13 0 48 11 0 15 2 12 14 0 54

To
ta

l

A 0 31 20 16 26 28 10 131 0 16 18 12 29 37 19 131 0 1 27 14 24 31 27 124
B 14 0 14 11 19 19 11 88 29 0 28 24 36 43 35 195 44 0 44 41 43 44 44 260
C 25 31 0 21 30 24 18 149 27 17 0 22 32 41 30 169 18 1 0 14 13 30 26 102
D 29 34 24 0 30 28 24 169 33 21 23 0 34 40 35 186 31 4 31 0 29 33 43 171
E 19 26 15 15 0 24 18 117 16 9 13 11 0 27 16 92 21 2 32 16 0 35 26 132
F 17 26 21 17 21 0 12 114 8 2 4 5 18 0 7 44 14 1 15 12 10 0 15 67
G 35 34 27 21 27 33 0 177 26 10 15 10 29 38 0 128 18 1 19 2 19 30 0 89

color evaluation is relatively small compared to others. This suggests that it was more difficult
to decide color quality than contrast and detail. It should also be noted that the average
consistency for the ametyst-color combination was the lowest among all other combinations.
This can be due to showing this combination as the first one to all subjects. That is, as the
experiment progressed, the subjected learned to make more consistent decisions.

4.4.1.2 Significance Analysis

After the consistency analysis, the second test was conducted to understand how significant
the differences among total method scores were. To this end, the multiple comparison test
described in Section 3.1.2.2 was applied to find the mc value which was used to test the
significance of difference between two scores.

For each scene-attribute combination, the n and t values were set to 15 and 7 to determine
the D value using Equation 3.14. D values of all tests are given in Table 4.6. χ2 distribution
with (t − 1) = 6 degrees of freedom at significance level p = 0.05 is 12.59. Therefore, all test
results were found to be statistically significant. For the aggregated results, n was set to 45 as
the results of three scenes were combined. This gave rise to the D values shown in Table 4.7.
Note that significance level p is chosen to be 0.05 as a common practice.
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Table 4.5: Subject consistency values for the first experiment.

Color Contrast Detail
Sub. # Ametyst Lamp Trail Ametyst Lamp Trail Ametyst Lamp Trail

1 0.786 0.929 0.929 1.000 1.000 1.000 1.000 0.929 1.000
2 0.429 1.000 0.929 0.857 1.000 0.929 0.643 1.000 0.929
3 0.571 0.929 0.714 0.786 0.929 1.000 0.714 0.929 1.000
4 0.714 1.000 0.714 0.929 1.000 0.929 0.714 1.000 1.000
5 0.714 0.643 0.500 0.857 0.857 0.571 0.929 0.714 0.571
6 1.000 0.786 0.714 1.000 0.786 0.714 1.000 0.929 0.571
7 0.571 0.643 0.714 0.786 1.000 0.929 0.929 0.929 1.000
8 0.286 0.929 1.000 1.000 1.000 1.000 1.000 0.857 1.000
9 0.571 0.857 0.929 0.786 0.857 0.643 0.929 1.000 0.857

10 0.714 0.643 0.714 0.857 0.857 0.929 0.643 1.000 0.929
11 0.286 0.429 0.571 0.929 0.857 1.000 0.929 0.786 0.857
12 1.000 0.571 0.857 0.500 1.000 0.929 1.000 1.000 1.000
13 0.571 0.571 0.786 1.000 0.786 1.000 0.929 0.857 1.000
14 0.786 0.571 0.857 0.929 0.929 1.000 0.714 0.857 0.929
15 0.571 0.857 1.000 0.857 0.857 0.857 0.714 1.000 1.000

Avg. 0.638 0.757 0.795 0.871 0.914 0.895 0.852 0.919 0.910

Table 4.6: D values for the first experiment.

Ametyst Lamp Trail
Color 46.629 63.467 57.371
Contrast 139.200 66.667 113.828
Details 121.676 165.942 162.209

According to Table 1 in [44], mc value was calculated with the following formula:

mc = d1.96 (0.5nt)0.5 + 0.5e. (4.2)

For n = 15 and t = 7, mc is equal to 15. This means that two scores with a difference not
less than 15 are statistically significant. For the aggregated results mc is equal to 26. Based
on these, the similarity groups for the individual scene-attribute combinations as well as the
aggregated results for each attribute are shown in Figures 4.5, 4.6, 4.7, and 4.8. In these
figures, the algorithms underlined by the same line belong to the same similarity groups. That
is, the differences between them are not statistically significant.

To illustrate, in Figure 4.8, the difference between Mertens (D) and Zhang (G)’s color attribute
scores is 8 which is less than mc value 26. Therefore, the scores are accepted to be statistically
similar and these algorithms share the same horizontal line below their names in the figure.
However, the scores of Li (B) and Shan (F) in the same attribute test differ 26, equal to the
mc value. Thus, they are stated to be significantly different and they belong to the different
significance groups in the figure.
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Table 4.7: Aggregated D values for the first experiment.

Color Contrast Details
77.537 222.883 315.937

4.4.1.3 Evaluation of Results

In the previous section, the experimental data is validated by the statistical models which test
the significance of the collected results. In this section, these findings are interpreted.

The algorithms were tested in 3 scenes which have different characteristics by means of lumi-
nance, detail, and content. The accumulated scores are generally significantly different from
each other and significant groups do not contain more than three operators (see Figure 4.8).
The results show that most EFAs are better in color reproduction, while contrast and detail
performances of the best TMOs outperform EFAs. It can also be stated that parameter setting
is important in the ranking of the algorithms since bad image results due to improper param-
eter setting for a specific scene causes a drastic change in the ranking of the algorithm. In the
following, the performance of each algorithm in the first experiment is discussed separately.

Goshtasby (A) results have moderate performance on average, although images are relatively
pale compared to other TMO and EFA results. Contrast performance in trail image is the
worst. It can be observed that Goshtasby’s EFA could not succeed in extending the luminance
range possibly resulting from the fact that small size of well exposed regions increased the
number of blocks, leading to too much blending and loss of contrast in the fused image. Detail
performance of the algorithm is not worse than others although the algorithm is stated to fail
to spill information across object boundaries [36].

In general, Li et al. (B) is observed to produce images that have saturated colors. Although
this algorithm provides the most vivid colors among the other algorithms, the colors of the im-
ages are unnatural. Therefore, color performances of the algorithm are relatively worse since
the subjects were asked to evaluate the naturalness of colors in this task (See Appendix A).
The detail performance of this algorithm is significantly better than the other TMOs and EFAs.
This can be attributed to the fact that this is a local tone mapping operator.

Mantiuk et al. (C) performances are average in the image attributes, but relatively better in
contrast. Lamp result has glare around the light source. Also trail image output has over
exposed regions. Therefore, the operator has the worst performance in detail reproduction
for the trail scene. Both lamp and trail outputs show that direct lighting and sharp bright
regions cause burn-out in this algorithm. In contrast, the algorithm performed well in contrast
reproduction, considering the image result of the dark lamp scene.

Mertens et al.’s method (D) has a moderate performance on average, similar to Goshtasby’s
results but it produces relatively colorful images. Contrast reproduction is better than the av-
erage possibly resulting from the contrast quality measure imposed by the weight calculation
in the algorithm’s implementation.
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Reinhard et al. (E) scores are mostly in the middle of performance rankings. Color perfor-
mances of the lamp scene are significantly the worst amongst the others. In color evaluation,
the subjects may be distracted by the glare around the lamp which deteriorates the naturalness
of the lamp image. Global TMOs do not succeed in preserving details in high contrast im-
ages [41]. Therefore, both Mantiuk et al. and Reinhard et al. stays in medium range in detail
reproduction ranking.

Shan et al. (F) can be considered as the most unsuccessful algorithm among the other TMOs
and EFAs. It is possible that the default parameters for this algorithm did not work very well
for the images used in this experiment. Color results are moderate, but contrast and detail
quality of every scene have the worst performance except detail reproduction of the ametyst
scene. The algorithm tends to smooth small details. Thus the algorithm fails in lamp and trail
scene and produces reasonable result in ametyst scene. Lamp image result of the operator is
dark, leading to be significantly worst in contrast and detail reproduction.

Zhang and Cham (G) produced the most preferred color quality together with the Mertens
et al. image results. Color quality is better in lamp and trail scene compared to the ametyst
scene since the lamp and trail scenes have small details that increase the gradient and, as a
result, well exposed region representation in the implementation. The algorithm has the worst
detail representation in ametyst and lamp scene since the dark regions are mapped to zero or
low luminance values, causing to the loss of details in the final image. The trail scene is not
affected from the bad reproduction of details, for it is relatively bright and does not have large
dark regions.

4.5 Experiment Two: Similarity

In this experiment, the similarity attribute of the methods was tested on different screen sizes.
Ametyst and toys scenes were evaluated with their real scene references. Since outdoor scenes
are vulnerable to content and lighting condition modifications, 2 static indoor scenes with
different dynamic ranges were used. The experiment was aimed to measure the similarity
performances of TMOs and EFAs in different display devices and determine whether the
display device properties are effective in the similarity performance.

2 scenes were first evaluated on a standard LCD screen. After the standard screen evaluation
is finished, the camera screen evaluation is conducted. The scenes were ordered as ametyst
and toys within each screen evaluation. The image pairs were organized randomly similar to
the first experiment. Ametyst scene was common in both experiments in order to observe the
correlation among the similarity and the other 3 attributes tested in the first experiment.

In the second experiment, the algorithm results were organized as image pairs similar to the
first experiment and the subjects were asked to determine which image in the image pair is
more similar to the corresponding real scene residing to the left and right side of the LCD
display (see Figure 4.4). Standard LCD monitor test was conducted with the program used in
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the first experiment. In the camera screen test, the experimental setup was organized manually.
A randomized set of image pairs were created by using a bash script. A neutral gray image
was placed in between every image pair. The resulting image sequence was transferred to
the camera with an SD memory card. Subjects could use buttons near the camera screen
to change the displayed image in the current pair and pass to the next image pair. Similar
to the standard LCD display test, the subjects could view only one image at a time in full
screen mode. For every image pair, the subjects stated the preferred image name verbally to
the experimenter. These image names were noted down in order to compose the preference
matrices of the participant for further analysis.

There were 15 people which participated in the second experiment. The subject profile of
this experiment was similar to that of first experiment. Before the experiment, an instruction
manual was provided to the subjects in order to clarify the regulations and objectives of the
experiment (see Appendix B). Each subject was allowed to take the experiment individually.
For each subject, the experiment took about 20 minutes on average.

Every subject made 84 comparisons (

 7
2

 image pairs × 2 scenes × 2 screens) in total.

84 × 15 = 1260 pairwise comparisons were made for all subjects.

4.5.1 Results

After the second experiment was finished, the collected data was processed by using the
paired comparison analysis similar to the first experimental data evaluation. The accumulated
preference matrices are given in Table 4.8. The algorithm names are abbreviated with the
identifiers introduced in 4.1.

4.5.1.1 Consistency Analysis

Similar to the first experiment, the reliability of the results are measured by Kendall’s con-
sistency test mentioned in Section 3.1.1. The number of objects t is the same as the first
experiment’s number of objects, 7. The resulting consistency values are listed in Table 4.9.

Table 4.9 shows that subject are consistent on average. It can be observed that the average
consistency value of ametyst scene evaluation in standard LCD display device is relatively
low. Therefore, it can be concluded that the similarity evaluation conducted in standard LCD
screen is harder than the same evaluation conducted in small camera screen. Similar to the
first experiment, the first evaluated image pair set, which is the image pair set of computer-
ametyst combination in this experiment, has the lowest average consistency value. This shows
that the reliability of subjects improved by the time during the experiment.
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Table 4.8: Accumulated preference matrices for the second experiment. Camera columns
represents small camera screen and computer column represents standard LCD screen. T
stands for the total test score of the algorithm for the corresponding accumulated preference
matrix.

Computer Camera
A B C D E F G T A B C D E F G T

A
m

et
ys

t

A 0 4 12 7 7 10 9 49 0 9 6 6 7 8 7 43
B 11 0 13 10 12 12 12 70 6 0 4 7 8 9 11 45
C 3 2 0 3 7 11 5 31 9 11 0 4 9 10 8 51
D 8 5 12 0 10 12 9 56 9 8 11 0 12 10 10 60
E 8 3 8 5 0 10 7 41 8 7 6 3 0 8 6 38
F 5 3 4 3 5 0 6 26 7 6 5 5 7 0 8 38
G 6 3 10 6 8 9 0 42 8 4 7 5 9 7 0 40

To
ys

A 0 14 3 10 7 4 13 51 0 15 2 11 10 5 14 57
B 1 0 1 2 3 0 6 13 0 0 0 2 2 2 4 10
C 12 14 0 14 12 7 14 73 13 15 0 12 13 9 15 77
D 5 13 1 0 4 2 15 40 4 13 3 0 6 2 14 42
E 8 12 3 11 0 3 14 51 5 13 2 9 0 1 14 44
F 11 15 8 13 12 0 13 72 10 13 6 13 14 0 13 69
G 2 9 1 0 1 2 0 15 1 11 0 1 1 2 0 16

To
ta

l

A 0 18 15 17 14 14 22 100 0 24 8 17 17 13 21 100
B 12 0 14 12 15 12 18 83 6 0 4 9 10 11 15 55
C 15 16 0 17 19 18 19 104 22 26 0 16 22 19 23 128
D 13 18 13 0 14 14 24 96 13 21 14 0 18 12 24 102
E 16 15 11 16 0 13 21 92 13 20 8 12 0 9 20 82
F 16 18 12 16 17 0 19 98 17 19 11 18 21 0 21 107
G 8 12 11 6 9 11 0 57 9 15 7 6 10 9 0 56

4.5.1.2 Significance Analysis

After the subject consistency analysis, the second test was conducted on the experimental
data to measure the significance of the algorithm scores. To achieve this, the test explained in
Section 3.1.2.2 was applied to find mc value similar to the significance evaluation of the first
experiment.

For any screen type-scene combination analysis, the n and t values were equal to 15 and 7
respectively. These values were used in calculation of D values by using the Equation 3.14. D
values of all tests are given in Table 4.10. χ2 distribution with (t − 1) = 6 degrees of freedom
at significance level p = 0.05 is 12.59. Therefore, all test results were found to be statistically
significant similar to the significance analysis of the first experiment. For the aggregated
results, n was set to 30 since the results of two scenes were combined. D values of aggregated
results are shown in Table 4.11. The aggregated results were also found to be statistically
significant in the same significance level.

For n = 15 and t = 7, mc is equal to 15. This means that two scores with a difference not
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Table 4.9: Subject consistency values for the second experiment. Camera columns represent
the small camera screen and computer columns represent the standard LCD screen.

Camera Computer
Sub. # Ametyst Toys Ametyst Toys

1 0.857 0.786 0.643 0.643
2 1.000 0.929 0.571 0.286
3 1.000 1.000 0.643 1.000
4 0.714 1.000 0.571 1.000
5 0.929 1.000 0.643 0.786
6 0.929 0.786 0.357 0.714
7 0.857 1.000 0.357 0.929
8 1.000 0.929 0.714 1.000
9 0.714 0.214 0.286 0.857
10 0.929 0.929 0.857 0.929
11 0.786 1.000 0.500 0.929
12 0.929 1.000 0.429 0.929
13 0.929 0.714 1.000 0.929
14 1.000 0.857 0.929 1.000
15 1.000 0.857 1.000 0.714

Avg. 0.905 0.867 0.633 0.843

less than 15 are statistically significant. For the aggregated results mc is equal to 21. Based
on these, the similarity groups for the individual scene-attribute combinations as well as the
aggregated results for each attribute are shown in Figures 4.5, 4.6, 4.7, and 4.8. In these
figures, the algorithms underlined by the same line belong to the same similarity groups. That
is, the differences between them are not statistically significant.

Table 4.10: D values for the second experiment.

Ametyst Toys
Camera 51.2 134.63
Computer 14.781 145.52

Table 4.11: Aggregated D values for the second experiment.

Camera Computer
29.295 84.227

4.5.1.3 Evaluation of Results

The second experiment was conducted on ametyst and toys scenes which have different char-
acteristics such as lighting conditions and content. The resulting image scores are scene
dependent. Since an operator which shows good performance in a scene may fail in other
scene, it is difficult to find out a correlation between operator scores except the consistent
performance of Mantiuk et al.’s operator.

38



In ametyst scene evaluation results have a small number of significance groups. This means,
most of the algorithm performances can be considered to be the same for ametyst scene.
Besides, the subject consistency values in ametyst scene are also small in the standard LCD
test (see Table 4.9). In contrast, toys scene produced the most salient significance groups in
both camera and standard display tests. Moreover, operator scores are consistent in between
the standard and camera display evaluation results of toys scene.

Mantiuk et al.’s display adaptive TMO has the best performance in overall results since it
proposes an HVS contrast response model leading to improved similarity performance of
the resulting images. Besides, the algorithm takes the ambient light and the maximum and
minimum luminance values of the display devices as parameters. Therefore, the algorithm
coped with the display device and viewing condition change by producing the final images
according to the device and ambient light modifications performed in the second experiment.

For most of the cases, the similarity performance of the camera is related to the contrast
performance. If an operator has good contrast scores, then it generally performs well in
small screen devices since high contrast tolerates the detail loss in small screen devices. As a
result, it makes the displayed image more similar to the real scene. This can be concluded by
examining ametyst performance of Mertens et al.’s EFA results.

Drastic change in an algorithm score may result from the low amount of overall brightness
or artifacts. Zhang and Cham’s toys scene produced dark image and Li et al.’s result of the
same scene has halo artifact in sharp contrast transition (see Figure 4.12). Therefore, they
are significantly worse than the other algorithms in toys scene. On the other hand, Shan
et al.’s bright image result has one of the best score in the same scene although it has the
worst overall performance in the other quality evaluations. An interesting observation is that,
Goshtasby’s result of the same scene has an average score although it has seam artifacts in the
background (see Figure 4.13). Considering the Goshtasby’s implementation, toys scene has
large flat regions and this led to large use of block size in the selection of the well exposed
regions from the exposure sequence. Large block usage in blending operation caused the
seam artifact in the background of the image.

The results show that, for the small screens, the differences between the algorithm’s scores are
minimized. Therefore, it can be argued that, simpler and computationally efficient versions
of these algorithms can be used when preparing HDR images for display on a small display
device. An explanation for this based on the human contrast sensitivity is provided in the
following chapter.
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Figure 4.1: Exposure sequence of input scenes in JPEG format.
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Figure 4.2: Outputs of all algorithms for all images.

Figure 4.3: Image acquisition chart.
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Figure 4.4: A photograph from the experiment room.

Figure 4.5: Significance groups of ametyst scene for the first experiment.

Figure 4.6: Significance groups of lamp scene for the first experiment.
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Figure 4.7: Significance groups of trail scene for the first experiment.

Figure 4.8: Significance groups of aggregated results for the first experiment. EFA names are
written in bold.

Figure 4.9: Significance groups of lamp scene for the second experiment.

Figure 4.10: Significance groups of trail scene for the second experiment.
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Figure 4.11: Significance groups of aggregated results for the second experiment. EFA names
are written in bold.

Figure 4.12: Halo artifact in toys scene result of Li et al.’s TMO.

Figure 4.13: Seam artifact in toys scene result of Goshtasby’s TMO.
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CHAPTER 5

DISCUSSION

In this chapter, further analysis on the results of subjective experiments are made based on
the main findings of the statistical evaluation. The details of these findings are highlighted by
introducing some reasonings and models. Also relationships to earlier validation studies are
discussed.

Three main observations can be made while examining the evaluation results: First, Li et al.’s
TMO performs better in contrast and detail attribute evaluations and Mantiuk et al.’s TMO
produces images that have a high quality of similarity performances on the standard display.
Second, colors of EFA results are more natural than that of TMOs. Third, most algorithms
have similar scores in the small screen evaluation.

The reason of the first two findings can be clarified by explaining the overall mechanism of
the EFA and TMO algorithms. TMOs process the radiance map which is obtained from the
exposure sequence. The radiance map is a linearized data generated by recovering the camera
response function (CRF) of the capturing device and using the exposure times of the bracketed
sequence. Thus, the resulting HDR image is the exact representation of the real world scene
in a linear color space. EFAs, on the other hand, skip the HDR image reproduction steps and
directly fuse the multiple exposures into one final image.

EFAs discard the radiance data and attempt to form visually appealing images by weighting
the exposure sequence. However, TMOs operate on the linear HDR data that refers to the
pixel-wise lighting distribution of the real scene in a color space. Therefore, the similarity
performances of the tone mapped images are expected to be better than that of fused images.

Both TMO and EFA pipelines start with a set of exposures as illustrated in 5.1. The operation
which affects the detail performance of EFAs is the exposure weight map generation. EFAs
blend the exposures’ weights in order to smooth the boundaries of selected well-exposed
regions or remove the seam artifacts of the fused image. This weight map modification causes
small details being smoothed in the final image. In the tone mapping pipeline, the exposures
are weighted in the HDR generation phase before the tone mapping operation. The linear
hat function ω in Equation 4.1 is used for weighting the exposures in order to reduce the
contribution of over and under exposed pixels to the HDR image. ω is not a spatially- varying
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function so it does not cause a deterioration in the final image. Therefore, the detail loss
is expected to be lower in TMOs, so TMOs perform better than EFAs by means of detail
attribute.

Figure 5.1: The exposure fusion and tone mapping imaging pipeline. An HDR scene which
has a dark region on the left side and a bright region on the right side is captured with 2
exposure times. Weight maps used in the exposure fusion pipeline is blended, causing detail
loss in the final image. Weight maps used in the tone mapping pipeline are not blurred.

EFAs directly combine well-exposed pixels by discarding the exposure times of the bracketed
sequence. Thus, it is possible that both dark and bright regions is mapped to the similar
luminance values. Therefore, the EFA results have a low degree of contrast compared to the
TMO results.

EFAs work on the color space of the individual exposures which is designed to be visually
appealing to humans. On the other hand, the HDR generation accumulates the color values
of each exposure into one image by using the camera response curve, leading the correlation
among the color values in this visually appealing space being lost.

A second issue for tone mapping operators is the Hunt effect. According to the Hunt effect
colorfulness is incremented as the luminance is increased [19]. Compressing only the lumi-
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nance does not preserve colors. The colors are mostly reproduced by the following equation:

Co =

(
Ci

Li

)s

Lo, (5.1)

where Ci represents the input color channels (Ri,Gi, Bi), Co represents the output color chan-
nels, Li is the input luminance, Lo is the output color luminance, and s is the saturation param-
eter. The problem of this calculation is the difficulty in setting this parameter in an automatic
way. Although some methods exist that suggest a solution [35], the proposed solutions are
limited only for gamma-like luminance compressions. Therefore, it could be expected that in
this study, TMOs produced less natural colors compared to EFAs.

In the second experiment, the angular sizes for the camera and standard LCD display evalu-
ation were different. The approximate angular sizes of the central pixel for the standard and
camera screen were 0.022o and 0.017o respectively. These angular size values led to spa-
tial frequency of 45 cycles per degree for the standard display and 59 cycles per degree for
the camera display. The contrast sensitivity function (CSF) for modeling the HVS contrast
sensitivity introduced by Mannos and Sakrison [33] is as follows:

A( f ) = 2.6(0.0192 + 0.114 f ) exp(−0.114 f 1.1), (5.2)

where f is the spatial frequency. The CSF plot given in Figure 5.2 shows that the CSF value
has the maximum value for f = 8 cycles/degree and it decreases for the higher values of f .
Therefore, it can be concluded that the contrast sensitivity is higher in the standard display
than the camera display. In the second experiment, contrast sensitivity decreased in the camera
screen evaluation and this prevented subjects to distinguish the similarity performances of the
images. Therefore, evaluation results of the camera screen evaluation are similar to each other
for all TMOs and EFAs.

Figure 5.2: The contrast sensitivity function of Mannos and Sakrinson [33].

It is impractical to make a detailed comparison between the results of any other different
subjective evaluation studies although a common operator, Reinhard et al.’s photographic tone
reproduction [40] is included in some of the earlier evaluation studies since the experiment
conditions and the selected scenes are not the same. However, it is worth to indicate some of
the relationship between this study and the other subjective evaluation results.
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The photographic TMO performed well in [6, 16, 27, 29, 50, 55], but it was generally out-
performed by Li et al.’s TMO [32] and Mantiuk et al.’s TMO [34] operators. Also mostly
the EFAs were found to be generally better than the photographic TMO. Therefore, it can be
concluded that these algorithms which have not been evaluated by any validation study may
perform better than the other algorithms which are tested with the photographic TMO in the
earlier subjective evaluations.

Finally, the importance of parameter settings should be emphasized. All of the tested algo-
rithms include a set of parameters and using different settings can drastically change their
output. Therefore, the presented results should be considered valid only for the parameter
settings used in this study (see Table 4.2).
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, a subjective validation study was conducted with two main techniques in HDR
imaging, TMOs and EFAs in order to assess the reproduced image quality. 4 TMOs and 3
EFAs were selected and 4 different scenes were captured. The exposure sequence and the
corresponding HDR images were reproduced by these selected algorithms. The reproduced
images were evaluated by two different experiments of pairwise comparison in an isolated
experiment room. In the first experiment the subjects were asked to evaluate that 7 algorithm
results of each 3 scenes by means of color, contrast, and detail attributes in the standard
LCD display. In the second experiment, the subjects were asked to compare that 7 algorithm
results of each 2 scenes by means of similarity attribute in the standard LCD display and
camera display. There were 15 participants in each experiments. The results were analyzed
by Kendall’s consistency analysis [26] and multiple comparison test in [44].

Significant findings are observed in the statistical evaluation of the experimental results. It
is concluded that color, contrast, and detail performance of EFAs are surpassed by the best
TMO operator of that attribute evaluation. It is also stated that color reproduction of EFAs
is better compared to that of TMO. This observation shows that TMOs needs to be improved
for better color reproduction. The screen size and the viewing distance is effective in the
similarity performance. In a small screen, the ranking of the algorithm performances changes
as well as the differences between the algorithm performance scores are minimized due to
the contrast sensitivity change of the human observer. This suggests that a simpler and more
efficient algorithm can be used in the embedded program of the camera in order to receive
an instant feedback of HDR capture which is expected to be a common feature for the future
cameras.

Further improvements can be included in the study in order to conduct the experiments in a
more controlled manner. For example, the experiments started with the same scene-attribute
or scene-image device combinations. This led to less amount of overall consistency value
for the first combination since subjects were learning the experiment objectives in the first
combination. Instead of starting with the same combination, each subject can start to the
experiments with a different combination in order to distribute the influence of the most in-
consistent part of the experiment to the other image combination results. Also subjects can be
trained with a brief pilot study before the experiment for covering the learning phase before
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the first evaluated combination and for better understanding of experiment objectives. The an-
gular size can be controlled by fixing subject to a certain distance from the display device, for
instance by using head-mounting. Moreover, the experiment can be extended by increasing
the number of scenes and algorithms.
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Appendix A

INSTRUCTIONS FOR EXPERIMENT ONE

In this experiment, you’ll be presented with multiple image pairs. For each pair, you’ll be
asked to choose the image that you prefer according to three different criteria, namely:

1. Naturalness of colors

2. Sensation of contrast

3. Visibility of details

For (1), please choose the image whose colors appear more natural to you. For (2), please
choose the image that appears to have more contrast. For (3), please choose the image where
details are more visible.

The experiment should take about 30-40 minutes assuming that you spend 10-15 seconds on
each image pair. To avoid fatigue, please do not spend too much on each stimulus. Please
note that you can terminate the experiment if you feel any discomfort.

Thank you for your participation. Please ask the experimenter if you have any questions.
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Appendix B

INSTRUCTIONS FOR EXPERIMENT TWO

In this experiment, you’ll be presented with multiple image pairs in two different display
devices. For each pair, you’ll be asked to choose the image that you think is more similar to
its real world version.

For the desktop monitor, please switch between the images using the keys “1” and “2” on the
numpad. When you make your decision, please press the “enter” key to continue with the
next pair.

For the camera LCD monitor, please switch between the images using the camera’s “left”
and “right” buttons. When you make your decision, please tell the name of that image to the
experimenter. You can then move on to the next pair (each pair is separated by a gray image).

The experiment should take about 15-20 minutes assuming that you spend 10-15 seconds on
each image pair. To avoid fatigue, please do not spend too much on each stimulus. Please
note that you can terminate the experiment if you feel any discomfort.

Thank you for your participation. Please ask the experimenter if you have any questions.
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