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ABSTRACT

DECISION FUSION FOR SUPERVISED, UNSUPERVISED AND SEMI-SUPERVISED
LEARNING

Özay, Mete

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

June 2013, 176 pages

In this thesis, Decision Fusion approaches have been analyzed for Supervised, Unsupervised
and Semi-supervised Learning problems. In Supervised Learning, classification or general-
ization error minimization problem has been studied by analyzing the classification error of
a classification algorithm into two parts. In the first part, the minimization of the differ-
ence between N -sample and large-sample classification error of k-NN has been studied using
a hierarchical decision fusion algorithm called Fuzzy Stacked Generalization (FSG). Then, a
weighted decision fusion and two sample selection algorithms are proposed to minimize the
difference between large-sample error and Bayes Error in FSG.

Unsupervised image segmentation problem has been analyzed for the fusion of decisions of
different segmentation algorithms. An unsupervised decision fusion algorithm called Segmen-
tation Fusion (SF) is proposed together with two distance learning methods. In addition, a
weighted decision fusion method has been introduced. Two algorithms are suggested for the
estimation of algorithm parameters and the number of different segmentation labels. The
prior and side information about the statistical properties of data are integrated to SF using
a new decision fusion algorithm called Semi-supervised Segmentation Fusion. The proposed
algorithms and methods have been analyzed and examined on both synthetic and real-world
datasets.

Keywords: Data Fusion, Statistical Learning, Supervised Learning, Unsupervised Learning,
Semi-supervised Learning, Classification, Segmentation
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ÖZ

DENETİMLİ, DENETİMSİZ VE YARI-DENETİMLİ ÖĞRENME İÇİN VERİ FÜZYONU

Özay, Mete

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Haziran 2013 , 176 sayfa

Bu tez çalışmasında, Denetimli, Denetimsiz ve Yarı-denetimli Öğrenme problemleri için veri
füzyonu yaklaşımları incelenmiştir. Denetimli Öğrenme için, sınıflandırma veya genelleştirme
hatasını azaltma problemi, bir sınıflandırma algoritmasının sınıflandırma hatasının iki kısımda
analiz edilmesiyle incelenmiştir. İlk kısımda, k-NN algoritmasınınN sayıda örnek ve çok sayıda
örnek kullanılarak elde edilen sınıflandırma hataları arasındaki farkın azaltılması, Bulanık
Yığılmış Genelleme Algoritması olarak adlandırılan bir hiyerarşik sınıflandırma algoritması
kullanılarak sağlanmıştır. Daha sonra, çok sayıda örnek kullanılarak hesaplanan sınıflandırma
hatası ve Bayes Hatası arasındaki farkı Bulanık Yığılmış Genelleme algoritmasında azaltmak
amacıyla, bir ağırlıklı karar füzyonu ve iki örnek seçim algoritması sunulmuştur.

Denetimsiz görüntü bölütlenmesi problemi, farklı bölütleme algoritma kararlarının füzyonu
için incelenmiştir. Bölütleme Füzyonu (BF) olarak adlandırılan bir karar füzyonu ile birlikte
iki uzaklık öğrenme metodu önerilmiştir. Ayrıca, bir ağırlıklı karar füzyonu metodu sunulmuş-
tur. Algoritma parametrelerinin ve farklı bölütleme etiketlerinin sayısının kestirimi için iki
algoritma önerilmiştir. Yarı-denetimli Bölütleme Füzyonu olarak adlandırılan yeni bir karar
füzyonu algoritması kullanılarak BF algoritmasına verilerin istatistiksel özellikleri hakkında
ön bilgiler ve yan bilgiler entegre edilmiştir. Önerilen algoritmalar ve metodlar, hem sentetik
hem de gerçek veri kümeleri üzerinde analiz edilmiş ve incelenmiştir.

Anahtar Kelimeler: Veri Füzyonu, İstatistiksel Öğrenme, Denetimli Öğrenme, Denetimsiz Öğ-

renme, Yarı-denetimli Öğrenme, Sınıflandırma, Bölütleme
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Âvecorr = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.3 Comparison of the performances (perf. %) of individual classifiers with re-

spect to the classes (C) and the performances of the FSG, Decision Fusion using

Decision Margin (DFDM) and two sample selection algorithms SS-1 and SS-2, when
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CHAPTER 1

INTRODUCTION

1.1 Existence of Knowledge of Beings

In nature, all beings are faced with a spectrum of problems from existence to non-existence.
As human beings, one of our concerns has been solving our problems for the sake of un-
derstanding the nature or understanding the nature for the sake of solving our problems. In
order to understand the mechanism of nature and solve the problems with maximum efficiency
and minimum effort, we systematized several methods in an intellectual way, called scientific
methodology.

Scientific methods have influenced and have been inspired by Epistemology and Ontology
which are concerned with the nature of knowledge and understanding, and being and existence,
respectively. Although two individual philosophical studies seem different from each other and
the scientific method, they are related with simple and fundamental questions, such as "Does

a solution of the problem exist?", "Do we have sufficient amount of data obtained from the

observations on the beings to solve the problem?", or "Is our knowledge of the problem and

the method complete?", etc. Therefore, the passion of existence has been regenerated as the
passion of knowledge to satisfy the ambition of beings.

These questions have been studied by the scientific method [1] constructing a collection of
procedures used for pursuit of knowledge as

1. the formulation of a problem,

2. the collection of data through observation on beings (i.e. observables),

3. proposing explanations (hypotheses) for understanding and solving the problem using
the data and

4. testing the explanations.

Initialized by the observation of a phenomenon, a scientific method implements these four
steps until a problem is solved. If a method cannot solve the problem, three approaches
are employed. First, the steps are implemented in a cycle, independently or recursively,
until a solution is obtained. Second, the problem is divided into sub-problems, new methods
are proposed to obtain solutions to sub-problems, and the solutions are merged to solve the
problem. Third, the methods which are used to solve other problems than the problem of
interest are used together with the proposed method. Then, interactions between the steps
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and among different scientific methods during the iterations lead to new scientific methods
in the hope of getting closer to the problem solution. Therefore, a scientific method can be
considered as a self-organizing and dynamic system [2].

1.2 Seeking the Knowledge of Beings, Relationships and Explanations

One of the implications of the realization of the scientific method in computer science is algo-
rithm [3]. Algorithms have been employed for formalizing and solving problems regarding the
computation of hypotheses using the representation of knowledge of beings, their relations and
explanations of the phenomena, i.e. the computation itself. Therefore, the above mentioned
scientific approaches and implementation steps have been employed by algorithms in computer
science for the passion of knowledge of beings.

In computer science, several ontological properties have been used to represent knowledge.
For instance,

● samples are used to represent the knowledge of beings,

● attributes and features are used to extract information from the observations which
represent the knowledge of samples,

● classes are used to represent the categorization of beings into groups using features, and

● algorithms are used to represent the explanations for the problems exposing relationships
between these representations.

In general words, algorithms have been used to generate knowledge of beings and their rela-
tionships using information obtained from features. This fascinating and beautiful relationship
between information and computation has been one of the motivations of this work.

1.3 Learning How to Group and Categorize Beings

The major goal of this work is to analyze one of the fundamental ontological problems of
computer science, which is division of a set of beings into groups and their categorization.
From the machine learning perspective, these problems have been referred as clustering and
classification of samples, measured by a variety of data acquisition devices.

In the proposed algorithms, four steps of a scientific method have been employed using three
approaches mentioned above to solve an epistemological problem, which is learning, i.e. gen-
erating (e.g. predicting or estimating) the knowledge of the relationships between samples,
their categories and groups.

Three problems are considered according to the information about the target or essential

categories and groups, available to the algorithms. These problems are called Supervised
Learning, Unsupervised Learning and Semi-supervised Learning in Statistical Learning Theory
[4, 5, 6]. In Unsupervised Learning, information about the samples is available through the
observations, such as features extracted from visual and audio measurements. In Supervised
Learning, additional information of samples about the target categories and groups is available.
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Finally, in Semi-supervised Learning, information about the samples and about few target
labels may be available, but instead of label information about most of samples, some external
sources, such as expert knowledge which defines the relationship between the samples and their
target values may be available. An overview of statistical learning algorithms which motivates
this work is provided in Chapter 2.

Generally speaking, performance of a statistical learning algorithm is measured by the sim-

ilarity between the target and the predicted values of the samples. In Statistical Learning
Theory, the performance of an algorithm is estimated by computing the expected value of the
similarity values, where the expectation is computed over the density of features in a feature
space. If the size of the set of training samples is finite, then an empirical performance, such
as the average performance, is measured over the samples in the dataset [7].

1.3.1 Learning with Fusion of Multiple Algorithms

Several statistical learning algorithms can be combined at different steps of a learning method
in order to obtain better performance than that of a single statistical learning algorithm.
These levels can be i) data acquisition, ii) feature extraction from data, and iii) making
decision using features. The combination process is called Fusion and the fusion approaches
are referred in general as Data Fusion [8, 9, 10, 11]. Then, Data Fusion approaches used at
these levels are called i) Data Level Fusion, ii) Feature Level Fusion, and iii) Decision Level

Fusion [8], respectively. Data Fusion approaches are summarized, and their relationship with
Statistical Learning methods are given in Chapter 2.

Given a set of features which construct feature spaces, the classification problem can be de-
scribed as computing hypotheses which analyze and explain the relationships between the
features of the samples and their target values using classification algorithms. Once the hy-
potheses are computed, they are tested by predicting the targets of new samples, called test
samples. For instance, in the well-known k Nearest Neighbors (k-NN) algorithm [12], the
relationship between a test sample and the other samples in the dataset is defined as the be-
longingness of the samples to a set of k nearest neighbors of the test sample, which is computed
using a distance function in a feature space consisting of features of observations on samples.
Then, the target value of the test sample is predicted using several decision combination rules,
such as voting, on target values of its k nearest neighbors.

1.3.2 The Concept of Error in Machine Learning

When an algorithm misclassifies a sample, an error is measured for that algorithm. Under
some conditions, errors of classification algorithms may approach to the minimum achievable
classification error rate, called Bayes Error (or Bayes Risk), over all the classification hy-
potheses. If the hypotheses do not satisfy these conditions, then a gap of error between their
error values and that of Bayes occurs. In order to satisfy the ambition of achieving minimum
error of the hypotheses, the algorithms which generate the hypotheses should be revised to
get closer to the Bayes Error.

For instance, the classification error of k-NN approaches to the Bayes Error if the number of
samples N approaches to infinity (i.e. N → ∞) and the neighborhood size k increases with
increasing sample size such that lim

N→∞

k
N
→ 0 [13]. If these two conditions are not satisfied, then
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a non-zero error difference between errors of classification algorithms employed on finite (N <<
∞) number of samples and large (N →∞) number of samples is observed [13]. Classification
error computed in the former case is called N -sample error, and in the latter case is called
large-sample error. In order to minimize the error difference between N -sample and large-
sample error, the relationship between the samples is redefined by designing a new distance
function employed in k-NN [14]. Error minimization problem for classification is described in
detail in Chapter 3.

Note that distance functions of k-NN algorithms are required to be updated in order to in-
crease the capability of information extraction from the feature spaces to obtain more accurate
decisions. If feature spaces provide discriminative information about samples, then a single
classification rule applied on this feature space, such as a Naive Bayes or a linear classification
rule, can provide high classification performances.

On the other hand, if a feature space does not provide sufficient information for the clas-
sification of the samples, then this feature space is mapped to a more informative feature
space using linear or nonlinear mappings. This approach has motivated us to define distance
function learning problem as a feature space mapping and a decision fusion problem.

1.4 Improvement of Learning Performance using Decision Fusion

The major theme of this study is to analyze the error bounds to improve the learning per-
formance under a decision fusion framework. The thesis is arranged in two parts: In Part I,
a distance learning approach used to minimize the difference between N -sample and large-
sample error is employed in a decision fusion algorithm called Fuzzy Stacked Generalization
(FSG). In addition, a weighted decision fusion algorithm and two sample selection algorithms
are proposed to minimize large-sample error using FSG. Part II is devoted to a set of semi-
supervised and unsupervised fusion algorithms. The approaches and contributions in Part I
and II are summarized below.

1.4.1 Part I: Decision Fusion for Supervised Learning

This part of the thesis involves two chapters. A distance learning approach for classification
error minimization and the proposed algorithms are given with experimental analyses in Chap-
ter 3. Chapter 4 is devoted to the applications of the suggested decision fusion algorithms on
the real-world problems, namely remote sensing and scene classification.

In Chapter 3, first several properties of feature spaces which provide sufficient information for
designing distance functions are analyzed. Feature space mappings are employed in two steps.
In the first step, k-NN algorithms are used to map feature spaces of the features of observations
to Decision Spaces consisting of decision vectors that represent class membership predictions
of k-NN algorithms on the samples. In the second step, decision spaces are fused in a new
space called Fusion Space in order to employ ℓ2 norm Euclidean distance as a distance function
for classification. These steps are implemented in a hierarchical classification algorithm called
Fuzzy Stacked Generalization (FSG). The description and analyses of FSG is provided in
Chapter 3. In FSG, base-layer k-NN classifiers are used to map feature vectors of observations
to decision vectors, which represent class memberships of samples, in decision spaces. At the
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meta-layer, decision spaces are concatenated to construct a fusion space, and a meta-layer
classification is employed for final prediction of class labels.

Once the gap between N -sample and large-sample error is bridged, the second goal is to
achieve the Bayes Error, i.e. bridging the gap between large-sample error and Bayes Error
in a classifier. Cover and Hart [13] state that this task can be achieved if and only if (iff)
target class labels of samples are predicted with maximum certainty or uncertainty, i.e. iff
the probability of assigning a sample to the target class is either 0, 1 (with certainty) or 1

2

(with uncertainty) for each sample. This result is quite intuitive in a two-class classification
problem using k = 1 in k-NN algorithm. In this particular example, expected error of assigning
a sample to wrong classes is equal to the Bayes Error as shown in [13].

In order to satisfy the conditions stated by Cover and Hart [13], one must assure that the
samples belonging to the same class reside in the same Voronoi region in the fusion space.
Therefore, one needs to measure the contribution of each sample to the classification perfor-
mance of the meta-layer classifier depending on its location in the feature space. For this
purpose, a distance function called Decision Margin is proposed in Chapter 3. It is shown that
if decision margin of the sample is minimum, then the feature vector of the sample is closer to
the vertex which represents its target class label than the other vertices of a polytope of feature
vectors in the fusion space. If decision margin values of all of the samples are minimum, then
the samples are correctly classified with maximum certainty by the meta-layer classifier.

In order to minimize decision margin values of the samples in the fusion space, decisions of
base-layer classifiers are fused with weights. This task is achieved by computing the weights
which minimize decision margin under a convex optimization problem. In order to employ
a decision selection strategy, which assigns zero weights to decisions of base-layer classifiers
that provide decisions with large decision margin values, sparsity constraints are used in
the optimization problem. Then, the optimization problem is solved using an optimization
algorithm called Alternating Direction Method of Multipliers. A weighted decision fusion
algorithm which minimizes decision margin values of samples by computing the weights using
the training dataset is introduced in Chapter 3.

Note that the above mentioned conditions, which are required to achieve the Bayes Error,
should be valid almost everywhere in the feature space, i.e. for almost every feature vector of
each sample. An approach to assure its validity for each sample is the employment of sample
selection methods considering the features of the samples in base-layer feature spaces and
decision spaces. Basically, sample selection methods involve re-designing the training dataset
by eliminating some of the samples which are assumed to decrease the large-sample error. In
order to reduce the large-sample error, two sample selection methods are proposed for FSG. In
the proposed selection methods, first the samples which could not be classified by at least one
base-layer classifier are selected to construct a set of misclassified samples. Then, base-layer
feature vectors and decision vectors of the samples belonging to the misclassified sample set
are eliminated in the first and second sample selection algorithms, respectively. The details of
the algorithms are given in Chapter 3.

In Chapter 4, the proposed algorithms have been employed to solve two practical problems,
namely, target detection of remotely sensed objects using multi-spectral images and object
classification in a scene by using audio-visual data. In the first application, a building detection
problem is defined as a two class classification problem in remotely sensed images, where each
segment of image pixels belongs to either building or background classes. Datasets contain
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multi-spectral images which are obtained from a high-resolution satellite, called QuickBird
[15]. In the second application, moving target detection problem is defined as a multi-class
classification problem. In this application, datasets contain audio-visual measurements on
the moving targets and other objects in an environment. Samples are labeled in four classes
according to the cases where i) the first target, ii) the second target, iii) both the first and
the second targets, and iv) none of the targets take place in an environment. Then, the four
class classification problem is solved using the proposed algorithms.

1.4.2 Part II: Decision Fusion for Unsupervised and Semi-supervised Learning

In Supervised Learning, samples are provided by both observations represented in feature
spaces and information about their target values such as class labels. When target class labels
are represented as the members of a set of numbers in the space of integer numbers Z and
observations are represented as the members of a set of numbers in the space of real numbers
R, a classification problem can be defined as computing a mapping between these two sets.
Then the error function of the problem is a function of difference between predicted class
labels and target class labels.

On the other hand, if target values are not given, then a fundamental epistemological and
ontological problem occurs. From epistemological point of view, the information about the
target values, such as cluster labels, is not available. Therefore, information about the co-
occurrence of two samples in the same cluster is not available. From ontological point of view,
existence of the target values is not assured. In other words, there may not exist a cluster in
which two samples must or cannot co-occur.

One approach to provide an approximate solution to these problems is transforming the prob-
lem of modeling the relationships between the samples and their target values to the problem of
modeling the relationships among the samples, called clustering, which is an ill-posed problem
[4].

In data clustering problems, spatial relationships among feature vectors of samples may not
be physically meaningful, therefore defining the target relationships and clusters may be a
challenge. For instance, Kernel clustering algorithms [16] first transform feature spaces of
feature vectors of samples to higher dimensional (usually infinite dimensional) spaces, and
then cluster the features in these spaces. Therefore, target clusters and spatial relationships
among the features cannot be defined in infinite dimensional spaces.

However, target clusters can be determined in some specific applications, such as image seg-
mentation, in which pixels of an image are grouped into clusters called segments. In an image
segmentation problem, target segments are labeled by users according to either human object
perception, or physical properties, such as geophysical characteristics, of the objects. The
former labeling procedure is employed in the segmentation of images consisting of objects in
natural scenes, such as images collected from personal cameras. For instance, an image of a
bird (with id number 42049) in Berkeley Image Segmentation Dataset [17] has been segmented
into five different number of segments by five different users.

On the other hand, geophysical characteristics of objects, which will be represented by seg-
ments, are used in the determination of target segments of most of remotely sensed images.
For instance, location of a building in the physical environment is physically recorded by

6



users. Then, labels of the pixels which represent that building in an image are determined
using the records. Unsupervised and Semi-supervised Learning methods have been employed
for segmentation of remotely sensed images in this work.

Although a segment, which represents the building pixels, is roughly labeled by expert users
using formally defined quantitative records, determination of the boundary of a segment is
still a challenge since the boundary is usually defined by humans. For instance, a tag of a
region which represents a building can be obtained from the records. However, corners and
edges of the roof of the building, which define the boundary of the building region, should be
determined by users. Since each user may provide different segment boundaries, a decision

fusion problem occurs in the combination of the decisions of users on a target segmentation.

A similar problem is observed for the fusion of segmentation decisions of different segmentation
algorithms or that of a segmentation algorithm employed on an image with different param-
eters. If segmentation decisions of the base-layer segmentation algorithms are different from
each other, then simple decision fusion methods such as voting cannot be applied. In this case,
an approach used to solve the fusion problem is to make a consensus among the segmentation
algorithms. A consensus error among segmentation decisions is defined by a distance function

which measures the difference or similarity between segmentations [18]. For instance, a sym-
metric distance computed between different pairwise segmentations gives information about
the number of pixels which co-occur in the same segment in different segmentations [18].

Computing the exact solution of the consensus segmentation problem is an NP-complete prob-
lem [18]. However, approximate solutions to the problem can be computed in polynomial time
[18]. In order to solve the problem with less computational complexity, i.e. in linear time,
stochastic optimization methods are employed in a new consensus segmentation algorithm
called Segmentation Fusion (SF). Details of segmentation fusion problem and the suggested
algorithm are given in Chapter 5.

Five challenges of segmentation fusion have been addressed in this work. The first challenge is
to suggest a method for learning the structure, i.e. type of mapping employed in the distance
function, using prior information about the data such as the distribution of pixels in an image.
For instance, a consensus clustering algorithm called Best One Element Move (BOEM) [18]
measures the consensus error between two segmentations using the Rand Index (RI) which
provides information about the probability of agreement among the segmentations [19]. In
order to minimize the consensus error defined by RI, a normalized symmetric distance function
called Average Sum of Distances (SOD) is used [18]. SOD assumes that the distributions
are uniform and the probability of the disagreement between two different segmentations
for co-segmenting two elements is a Normal distribution. However, this may not be a valid
assumption in real-world datasets as analyzed in Section 5.3. Therefore, the mappings of
distance functions is redesigned, considering the statistical properties of the data.

For this purpose, two distance function learning methods called Distance Learning (DL) and
Quasi-distance Learning (QD) are proposed in Section 5.6 and Section 5.7. In DL, we relax
the equal segmentation size assumption of SF, which assumes that each segmentation obtained
from the base-layer segmentation algorithms contains equal number of segments. DL computes
an adjusted form of RI called Adjusted Rand Index (ARI) for each pair of segmentations with
different number of segments, and defines the consensus error function as a function of ARI.
However, ARI and DL assume that the number of pixels in each segment is the same. In order
to relax this assumption, QD computes the distance function between two segmentations as
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a function of conditional entropies of the segmentations. Therefore, QD does not make any
assumption about distribution of pixels and segments in the dataset, which is taken into
account for each different segmentation during the computation of the distance function.

The second challenge is the estimation of an algorithm parameter which controls the learning
capacity, convergence rate and performance of the SF algorithm. The third challenge is to
estimate the optimal number of different segment names or labels, which is used to obtain
segmentations from the base-layer segmentation algorithms that lead to minimum distance
function value to achieve a consensus. For the parameter and cluster label estimation problems,
two performance indices which measure the consensus performance of the SF for the selected
parameters, are defined. Then, the parameters which maximize the consensus performance
are selected. Details of the algorithms are given in Chapter 5.

The fourth challenge is weighting the outputs of segmentation algorithms to achieve a better
consensus before fusing them. In this approach, distance function learning is employed by
learning the weight parameters of a weighted distance function, where a weight is assigned
to each segmentation. The weight of a segmentation si is computed using ARI between si

and other base-layer segmentations. Therefore, the weights are computed by minimizing a
distance function which is defined as a function of ARI between segmentations, such as SOD.
Details of the algorithm are given in Section 5.8.

Finally, integration of side information, such as the constraints that give information about
the co-occurrence of pixels in the same and different segments, to the Segmentation Fusion
algorithm has been studied. For this purpose, must-link and cannot-link constraints that pro-
vide side information is used to design the distance function of SF. Then, the distance function
is enhanced as a weighted distance function of segmentation weights as mentioned above and
in Section 5.8. In order to compute the weights using the constraints, segmentation fusion
problem is defined as a convex optimization problem. An algorithm called Semi-supervised
Segmentation Fusion (SSSF) which solves the optimization problem is given in Section 5.9.

Computational complexity analyses of FSG, SF and SSF are given in Section 3.6 and Section
5.10, respectively. Chapter 7 concludes the thesis.

1.5 Summary of the Chapters

In summary, Decision Fusion approaches to solve Supervised, Unsupervised and Semi-supervised
Learning problems have been studied in this thesis. Specifically, pattern classification prob-
lem has been addressed in Supervised Learning and image segmentation problem has been
analyzed in Unsupervised and Semi-supervised Learning.

The chapters of the thesis can be summarized as follows;

● Part I: Decision Fusion for Supervised Learning

– Chapter 2 gives the motivation of the thesis by criticizing the statistical learning
methods and data fusion approaches studied in the literature.

– Chapter 3 analyzes classification error minimization problem using a distance
learning approach, which is employed in a decision fusion algorithm called Fuzzy
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Stacked Generalization (FSG). In addition, a weighted decision fusion and two sam-
ple selection algorithms are introduced to decrease the large-sample classification
error. The proposed algorithms are examined in synthetic and real-world bench-
mark datasets.

– Chapter 4 employs the suggested decision fusion methods to solve two practical
problems, namely, target detection of remotely sensed objects using multi-spectral
images and object classification in a scene by using audio-visual data.

● Part II: Decision Fusion for Unsupervised and Semi-supervised Learning

– Chapter 5 introduces an unsupervised segmentation fusion algorithm which com-
bines the segmentation outputs (i.e. decisions) of various segmentation algorithms
employed on an image to achieve a consensus among the decisions. Then, the
challenges of the unsupervised segmentation fusion algorithm proposed are exper-
imentally and theoretically analyzed. In order to solve these challenges, various
methods have been suggested by incorporating the prior information on the train-
ing datasets in the proposed segmentation fusion algorithm. In addition, the side
information obtained from the expert knowledge has been used in a new Semi-
supervised Segmentation Fusion algorithm.

– Chapter 6 provides the experimental analyses of the proposed unsupervised and
semi-supervised segmentation fusion algorithms on benchmark aerial and multi-
spectral image datasets.

● Chapter 7 summarizes and discusses the contributions, the analyses and the results
provided in the thesis.
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CHAPTER 2

OUR MOTIVATION BASED ON A CRITIQUE OF
STATISTICAL LEARNING METHODS AND DATA

FUSION APPROACHES

In this chapter, we present our motivation and rationale for the suggested Supervised, Un-
supervised and Semi-supervised learning methods given in Part I and Part II of this thesis.
For this purpose, an overview together with a critique of the available Statistical Learning
Methods is provided. Then, the major problems in Data Fusion Approaches are discussed.
Since the chapter aims at a broad overview for the motivation of the proposed algorithms,
mathematical formalisms are avoided and postponed until the subsequent chapters. The nec-
essary background and literature survey are provided in Part I and II along with the suggested
methods throughout the thesis.

2.1 An Overview of Statistical Learning Methods

Statistical Learning Theory (SLT) is a subfield of Computational Learning Theory (CLT)
which deals with the analysis of the data and the functions employed on that data. Unlike
Algorithmic Learning Theory (ALT), SLT analyzes the statistical properties of the data to
construct computational models. In other words, SLT considers the properties of the data and
the functions, while ALT considers the properties of the algorithms which generate functions
and operate on the data.

In this work, first statistical properties of the data and the algorithms have been analyzed.
Then, upon these analyses, new methods are proposed for Data Fusion of Statistical Learning
methods, specifically for Decision Fusion of Supervised, Unsupervised and Semi-supervised
Learning.

Mathematically speaking, let X and Y be the probability spaces of all possible inputs and
outputs to an algorithm in the domain and range of functions f ∈ F, respectively. F is called
a function or an hypothesis space, and X and Y are called data spaces. Assume that a set of
samples S = {si ∶ si = (xi, yi)}Ni=1, whose elements are distributed by an unknown but a joint
distribution p(x, y) in a probability space X × Y , is given. Denote the difference between the
target yi and a function on an observation datum xi as ǫ(f(xi), yi), which is called an error
function of f on si.

There are various constraints imposed on the distribution of the samples. For instance, a
widely employed assumption is that the samples are independent and identically distributed
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(i.i.d.) with joint probability density function p(x, y). The joint distribution, and cumulative
distributions of the observations and targets are usually assumed to be stationary, i.e. they
do not change in time. If the distributions change in time, then new learning problems, such
as Data-shift and Domain-Shift, are defined and analyzed by Data Adaptation or Domain
Adaptation methods [20, 21, 22, 23, 24, 25]. For the sake of simplicity, stationary distributions
are assumed in this work.

Vapnik defines the problem of statistical learning or pattern recognition as the computation
of the function f ∶ X → Y which captures the relationships between observations and targets
by minimizing the expected error E{ǫ(f(xi), yi)} [26, 27, 5]. The motivation of the error
minimization is to compute an hypothesis function which generalizes on a new given sample
well using the dataset S.

There are various other approaches studied in SLT that are also related to ALT, such as
Valiant’s Probably Approximately Correct (PAC) learning [28] which analyzes the learnability

of the algorithms measuring capacity or size of the hypothesis spaces generated by the algo-
rithms. Therefore, ALT and SLT meets for the analysis of the functions employed on the data
in some learning models such as PAC.

The statistical learning problems that have been studied in this work are grouped according
to the availability of information on the targets. In addition, the algorithms that are proposed
to solve these problems have been analyzed considering the statistical properties of the data
spaces. In the literature, three statistical learning methods, namely Supervised, Unsupervised
and Semi-supervised learning, have been studied to solve the problems considered under that
categorization.

In the next subsection, an overview of the challenges of SLT which have been addressed in
this work is given with these three learning methods.

2.1.1 Challenges of Statistical Learning Methods

Among various exciting and delightful problems of SLT, two challenges have been studied in
this work. The definitions and the methods which aim to solve these problems are catego-
rized according to the assumptions and approaches to analyze the probability spaces and the
functions, defined on these spaces.

The first problem is to find an optimal representation of sample measurements in data spaces
for a given algorithm. This problem has been studied in the literature through the feature ex-
traction methods in machine learning and pattern classification [4]. There are major problems
of feature extraction; i) an optimal representation of the samples may not exist in a single
feature space, and ii) a single algorithm may not be able to process the features in a single
feature space even if such a representation exists.

In this work, we solve the above mentioned feature extraction problems simultaneously unify-
ing them under a Decision Fusion framework. Instead of searching the best feature set for the
representation of the samples, multiple learning algorithms have been employed on different
feature spaces. Then, the outputs or decisions of the algorithms are fused to obtain a final
decision.

The second problem is to define an optimal distance function which is to be computed between
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the feature vectors. This problem is studied under the heading of distance learning in the
literature [29, 30]. There are two common approaches for distance learning:

1. In the first approach, distance functions are designed according to the specific problem
of interest and their parameters are learned from the datasets.

2. In the second approach, either

(a) feature spaces are mapped to more informative feature spaces, or

(b) the features in feature spaces are weighted to obtain more informative features.

Then, the mapping parameters or the weights are learned from the datasets by preserving
the structure of the distance function. Note that a and b may be equivalent in some
special cases, e.g. when the mappings are linear and parameterized by the weights.

The first approach, i.e. distance function design, has been used to solve unsupervised cluster-
ing or segmentation problem. In addition, several weighted decision fusion algorithms have
been proposed by employing the second approach, i.e. feature space mapping and fusion, for
Unsupervised, Supervised and Semi-supervised Learning.

In addition to the employment of these two approaches, a new third approach is proposed in
this work for distance learning. In the proposed approach, the distance learning problem is
defined as the problem of designing classifiers and decision fusion methods. For this purpose,
first the individual learning algorithms in a hierarchical decision fusion algorithm maps the
input feature spaces into decision space as suggested in (a). Then, decisions in decision spaces
are aggregated with weights to construct fusion spaces. This operation can be used as a
non-linear mapping from decision spaces to fusion spaces (a), and a linear weighted feature
mapping in fusion spaces (b). In this case, the proposed approach combines feature space
mappings in (a) and feature space weights in (b). A detailed explanation of the proposed
solutions are given in the following subsection with discussions. Mathematical representation
of the solutions and algorithms are given in Part I and II.

2.1.2 Supervised Learning Methods

In Supervised Learning, information on targets is obtained from a set of target variables be-
longing to a training dataset S. If the target variables take values from real number space
R, then the learning problem is called regression, or function learning [31, 32]. If the tar-
get variables take values from integer number space Z, then the learning problem is called
classification or categorization [4].

There are two common learning models in Supervised Learning, namely Generative and Dis-
criminative Learning. In Generative Learning, the interest is on the computation of p(x, y)
such that the samples can be generated when the joint distribution is estimated. Vapnik
criticizes this model by stating that "one should solve the problem directly and never solve
a more general problem as an intermediate step" [26, 27]. The second model, Discriminative
Learning, follows the suggestion of Vapnik by directly estimating p(y∣x). Although there are
several heuristics to prefer one of the models to the other, the choice depends on the confidence
in the correctness of computing p(x, y) or p(y∣x) using the training dataset [33]. Another ap-
proach is constructing Hybrid Generative-Discriminative models [34]. In this approach, first
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a probabilistic relation or model between the latent or hidden variables of observations and
targets is learned using Generative Learning on the training dataset. Then, the models are
combined to predict the targets using Discriminative Learning.

In this work, one of the most stable, well-known, powerful and the simplest Discriminative
Supervised Learning models, k Nearest Neighbors (k-NN) [12], has been analyzed and used
in an ensemble of classifiers where the outputs are aggregated for Decision Fusion. In k-NN,
for a given sample point s, first its k nearest neighbors are found. Then, the target values or
the decisions of the nearest neighbors have been fused using a fusion rule, such as majority
voting, to estimate the target value or the decision of s.

Despite its simplicity, there are various open problems about the behavior of k-NN which have
been studied for a long decade and not been solved yet, such as the computation of a distance
function which minimizes the N -sample or large-sample classification error, or their difference.

In this thesis, distance learning for k-NN has been analyzed by defining the distance learning
problem as a Decision Fusion problem. For this purpose, a distance learning approach for k-
NN is implemented in a Hierarchical Decision Fusion algorithm consisting of various modified
k-NN algorithms employed on different feature spaces at each different layer of the hierarchy.
Then, decisions of k-NN algorithms employed in the base-layer have been fused to provide a
feature space to another k-NN classifier. which computes the final decision using at the meta-
layer. It is shown that the suggested method minimizes the difference between the N -sample
and large-sample classification error of 1-NN algorithm in the next chapter.

In one sense, k-NN is itself a micro-level Decision Fusion algorithm. Because, the label of a
sample is estimated by fusing the decisions of its neighbor samples, which are defined by the
labels of neighbor samples. Therefore, the employed Hierarchical Decision Fusion algorithm
can be considered as a Multi-scale Decision Fusion algorithm.

The second challenge that has been studied in this thesis is to minimize the large-sample
classification error of k-NN, which converges to Bayes Error, using a decision fusion approach.
For this purpose, two conditions stated by Cover and Hart [13] have been analyzed; i) the
class posterior probabilities should be estimated with maximum certainty, ii) the estimation
should be made for each sample in the dataset.

In order to satisfy the first condition (i), the contribution of each sample to the classification
performances of base-layer and meta-layer classifiers are measured using a new distance func-
tion called Decision Margin. It is shown that if a sample is correctly classified with maximum
certainty by a base-layer classifier, then its decision margin value computed at the output deci-

sion space of the base-layer classifier is minimum. Moreover, if a sample is correctly classified
by each of the base-layer classifier with minimum decision margin, then meta-layer classifier
estimates the posterior probability, i.e. class label, of the sample with maximum certainty in
a fusion space which is the Cartesian product of decision spaces.

In order to minimize decision margins of the samples in fusion space, a weighted decision fusion
algorithm, which assigns weights to decision spaces according to classification performances of
base-layer classifiers and decision margins of the samples, is proposed. Decision weights are
computed using a convex optimization algorithm which is given in Section 3.5.2.

In order to satisfy the second condition (ii), two spurious sample selection and elimination
algorithms are proposed. Unlike the sample selection method of Wilson [35] for k-NN, elimina-
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tion of spurious samples have been employed in various levels of the hierarchy in the proposed
algorithms which are given in Section 3.5.3.

2.1.3 Unsupervised Learning Models

Unsupervised Learning differs from Supervised Learning in the accessibility to the information
on the targets such that only the observations are considered in a training dataset Su = {si ∶ si =
(xi)}Ni=1, and target variables are not available to the algorithms. Therefore, determination
of the variables of the error functions depends on the problem definition, which is usually
ill-posed, such as clustering [4].

Although the definition of the clustering problem is as simple as grouping a set of samples

in clusters in a feature space, it is a challenging problem. Because, there is no well defined
definition of an optimal or a target group, cluster and feature representation of samples which
is universally consistent. Some widely studied specializations of the problem are,

● Finding clusters of sample groups in data spaces,

● Grouping the samples in clusters, where samples within each cluster are close to each
other or the cluster center, and samples of different clusters are far from each other or
these cluster centers.

The first problem, finding the clusters of sample groups, is still an ill-posed problem, especially
when the number of different clusters (i.e. cluster names or labels C) and the target clusterings
are not available in the training dataset. The estimation of the number of different clusters
has been analyzed in Chapter 5.

The second problem can be considered as a vector quantization problem, such that the vector
representation of the samples in data spaces, called features, are mapped to one of C number of
different clusters, i.e. quantized by the index of the clusters. Note that this is strongly related
to Coding Theory by representing samples using codes generated by the clustering algorithms.
Therefore, it is not surprising that one of the most successful clustering algorithms C-means
(or k-means) has been studied first for analyzing Pulse-Code Modulation problem [36].

C-means is a center based clustering algorithm. A brief description of the algorithm is the
following;

● Initialize: Randomly choose C cluster centers in the data space in which samples are
represented by features.

● do

– Assign each sample s to a cluster c = 1,2, . . . ,C if a distance between the feature of
s is closer to the center of c than the centers of the other clusters.

– Update the center of the clusters as the mean of the features of the samples assigned
to it.

while there is no further update in the assignments and cluster centers.
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Despite its simplicity, C-means is a hard problem in terms of computation. Clustering using
C-means in an arbitrary dimensional Euclidean feature space for a fixed C = 2 number of
clusters, or in a fixed dimensional (e.g. two dimensional) feature space with arbitrary number
of clusters is an NP-Hard problem [37, 38, 39]. If the dimension of feature spaces and the
number of clusters are fixed, then the problem can be solved exactly in polynomial time [40].

In addition to the computational hardness of clustering, designing feature spaces and distance
functions are two other challenges. Instead of designing the best feature space on which a
clustering algorithm is employed with the minimum error, fusion of the outputs or clusterings
of an ensemble of clustering algorithms [41] employed on individual feature spaces are studied
in this work. For this purpose, a special error criterion, which achieves a consensus among the
algorithm decisions, is suggested. In the literature, combination or the fusion of the clustering
algorithms to achieve the consensus among them has been studied as Consensus Clustering
[42].

In the proposed framework, the distance learning problem is handled by two approaches. First,
structure and parameters of distance functions employed in the fusion of outputs of clustering
algorithms are learned from the training datasets. Second, the problem is defined as a weighted
clustering fusion problem and the weights are computed using the training datasets.

In this work, unsupervised clustering algorithms are studied under an image segmentation
framework. The employment of clustering algorithms to image segmentation problem is
straightforward with two modifications. First, sample features are color vectors represent-
ing image pixels with a specific coordinate. Therefore, the clusters are called segments and
the clustering results are called segmentations. Second, spatial relationships among the pixels
should be considered in the design of feature spaces.

The second modification is required in order to obtain segmentations which are semantically

and cognitively meaningful to humans. However, the clustering algorithms do not satisfy
the necessary and sufficient conditions to achieve meaningful segmentations. For instance,
a consensus segmentation algorithm may converge to an optimal solution, which provides a
segmentation that resides in a decision space at equal distance to each segmentation obtained
from each individual segmentation algorithm. However, the consensus solution may not be
meaningful to humans. Therefore, side information about a target meaningful segmentation
should be incorporated both in the error function and distance function of the algorithm.
Considering the definitions of clustering problem given above, must-link and cannot-link con-
straints can be used as side information about the co-existence of the two pixels with the
same labels in the same segment and to avoid the co-existence of the two pixels with different
labels in the same segment, respectively. Incorporation of side information into Unsupervised
Learning algorithms have been studied by Semi-supervised Learning Methods.

2.1.4 Semi-supervised Learning Methods

Semi-supervised Learning methods can be analyzed from two different perspectives. From the
perspective of Supervised Learning, the partial information on the unlabeled test samples are
used during the computation of the learning models in Semi-supervised Learning [6]. On the
other hand, side information obtained from labeled samples, such as the co-occurrence of the
samples belonging to the same class in the same cluster, is incorporated to problem definition
from the perspective of Unsupervised Learning. Therefore, Semi-supervised Learning methods
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do not reside neither in the intersection nor in the union of Supervised and Unsupervised
Learning methods; rather, they should be considered as a separate paradigm.

In Semi-supervised Learning, a restricted set of labeled training samples S and a set of un-
labeled training samples Su are available to the algorithms. Indeed, training with unlabeled
samples together with labeled samples may not help improving the performance [43]. There-
fore, additional assumptions should be made on data and learning models [6].

In this work, semi-supervision is employed to unsupervised image segmentation problems.
Therefore, three assumptions about the side information have been made in this work;

1. There exist discrete segments in the datasets, i.e. the pixels can be split into groups by
analyzing data or feature spaces.

2. Pixels in the same segment are more likely to share a label. In other words, must-link
constraints do not violate the learning model and can be employed on the datasets.

3. Pixels in different segments are more likely to have different labels. In other words,
cannot-link constraints do not violate the learning model and can be employed on the
datasets.

The major goal of this thesis is to develop methods which combine individual Supervised,
Unsupervised and/or Semi-supervised learning algorithms to boost the overall performance of
the fusion architectures. In the next section, we present an overview of the available data fusion
approaches emphasizing power and weakness of them. This discussion prepares a background
for our motivation for the suggested Supervised, Unsupervised and Semi-supervised Data
Fusion methods.

2.2 An Overview of Data Fusion Approaches

With the proliferation of different sensors and information sources providing information about
certain phenomenon, data/information fusion has become extremely important. It is well-
known that the available data fusion strategies independently fuse the data, features or de-
cisions at different levels, optimizing local error functions. One of the major drawbacks of
the current approaches is the lack of techniques to optimize the parameters of data, features
and/or decisions across the levels, which are needed for global optimization of the fusion pa-
rameters. In other words, once a strategy performs fusion at data and/or feature and/or
decision levels according to the parameter optimization of a certain level, then, the strategy
cannot be updated or revisited for further improvements of the overall or local performances
at the upper levels.

Multiple sensors, features, and/or classifiers are used for data fusion in data, feature and
decision levels, using hierarchical algorithms [44]. The goal of these methods is to extract
information from different data sources and feature spaces, which cannot be obtained from
single data source or feature space, using multiple classifiers or decision systems [45].
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In the literature, Data Fusion is considered to be accomplished at 3 basic Levels:

1. Data Level,

2. Feature Level and

3. Decision Level.

In the following subsections, fusion of data, features and decisions at the above mentioned
levels will be described and the major problems associated with fusion approaches will be
discussed.

2.2.1 Data Level Fusion

The main concern of Data Level Fusion is to process the raw data obtained from multiple
sensors in order to extract compact and valuable information. For this purpose, the data
obtained from the sensors are processed by various classical techniques, such as estimation,
detection and registration [9, 10, 11]. The techniques, implemented at this level, highly depend
on the application domain. For example, in the remote sensing applications, pixel based fusion
methods are employed [46], on the other hand, detection and estimation methods are common
in target detection problems [47].

Rottensteiner et al. [48] aggregate data obtained from laser scanner and multi-spectral image
sensors for building detection. Turlapaty et al. use multi-angular optical data to estimate
height information and extract buildings [49]. Fabre, Briottet and Appriou [50] employ pixel
fusion using Dempster-Shafer theory. Al-Osaimi et al. [51] use pixel level fusion of 3-D
shape and texture for face recognition. Chibelushi et al. [52] give an overview of data fusion
approaches for speech recognition.

There are two major problems associated with Data Level Fusion. The first problem is the
high complexity of the analysis and the evaluation of physical models of the sensors which
provide the data [53, 54]. In practice, the estimation and the detection of the physical model
of each sensor and type of data may not be available. In addition, these approaches suffer
from the construction of appropriate models for the targets and the mismatches between the
real and the modeled data. The second problem is the high computational complexity for the
estimation of the models of each type of data and sensor. A detailed analysis of the above
mentioned problems is provided in [47, 55, 56].

2.2.2 Feature Level Fusion

The second level of data fusion is Feature Level Fusion. At this level, multiple features are
extracted from a single sensor data or from the fused data coming from data level fusion. The
extracted features may be preprocessed by normalization and/or via dimensionality reduction
techniques [57, 58, 59, 60]. Finally, the features are fused to create feature groups [9].

Li et al. [61] combine spectral and texture features for the detection of collapsed buildings
which are damaged by an earthquake. Hansch and Hellwich [62] use a SLT algorithm called
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Random Forests to combine polarimetry, intensity and texture features extracted from Po-
larimetric Synthetic Aperture Radar (SAR) images for building detection. Fernando et al.
[63] proposed a discriminative image classication method using feature level fusion. Wender
and Dietmayer [64] fused the features extracted from laser scanner and video data for moving
object classification. Sharma and Davis [65] combine contour features extracted from thermal
and visible sensor data for image segmentation.

The current data fusion approaches implement the Data and the Feature Level Fusion in a
sequential manner. The data obtained from Data Level Fusion directly affects the structure
and the quality of Feature Level Fusion. Therefore, the information represented at the output
of the Feature Level Fusion depends on the Data Level Fusion strategies. The problems and
errors inherent to the Data Level and Feature Level Fusion propagate to the upper levels
affecting the performance of the overall architecture.

2.2.3 Decision Level Fusion

The upper level of a Data Fusion architecture is Decision Level Fusion, which receives the
feature groups from the Feature Level and outputs the final decision. There are various
techniques and architectures in order to perform the decision inferences [8].

A major problem in Decision Level Fusion is the requirement of a priori information on the
features. In most of the applications, the a priori information cannot be estimated easily or
may not be available. One of the reasons for this problem is that the decision process is based
only on the features obtained at the output of feature level fusion, ignoring the information
on the data and feature structures at the lower levels.

The information on the features may include crisp or fuzzy hypothesis sets on the class con-
ditional distributions of the samples [9]. The hypothesis vectors construct the output feature
space of a decision fusion algorithm. This methodology is commonly used for ensemble learn-
ing which aims to provide a priori information on the samples to the meta-layer classifiers
at the Decision Level [66]. Various probabilistic, possibilistic (i.e., fuzzy), and crisp decision
fusion methods are analyzed by Huang and Zhang [67], and by Milisavljevic and Bloch for
object detection and classification [68].

Decision Fusion methods have been integrated with and related to the statistical learning
methods. Therefore, a detailed discussion on the relationship is given in the next section.

2.3 Statistical Learning and Data Fusion

Data fusion problems have been studied as the challenges of statistical learning algorithms,
such as designing the classification rules that perform better than other classifiers, or a feature
set that represents the samples better than the other features.

One approach to solve this problem is to combine an ensemble of classifiers to boost the
performance of the individual classifiers in the ensemble. There are many algorithms available
in the literature for ensemble learning which can be studied under the heading of Decision
Level Fusion [66, 69, 70, 8, 71, 72, 73, 74].
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Another approach is to collect data by using more than one sensor and extract multiple features
to represent the samples. This approach can be studied under the heading of Feature Level
Fusion in the literature [57, 58, 59, 60, 9, 61, 62, 63, 64, 65].

Statistical learning algorithms have been widely used by several researchers for object detection
and tracking at different fusion levels [75, 76, 77, 78, 71, 79, 80, 69, 81]. Fu, Cao, Guo,
and Huang [75] perform feature level fusion for face detection by transforming the feature
spaces into a common vector space and decrease the dimension of the space by PCA while
considering the maximum mutual information correlation of the feature spaces. However, this
fusion method suffers from 3 problems. First the method does not consider the isometry of
the space transformations while reducing the vector spaces with different levels of sparsity,
which causes the unbalanced vector topology and dominated component construction for the
projection space. Second the method evaluates different spaces with multiple modalities by the
assuming that the spaces have the same physical structure with the same topological behavior.
However, this assumption is not acceptable for multimodal features, especially for audio data
in frequency domain and video data in space domain. Therefore, the probabilistic correlation
of the feature spaces may generate false alarms. Finally, they perform learning phase after
the transformation of the spaces by ignoring feature level training in order to obtain inference
representing the statistical behavior of the feature spaces from the data.

Dai, Yang, Wu and Katsaggelos [76] perform component based detection by applying logical
set operations such as AND and OR on the feature subspaces for fusion operations at feature
level. However, this method suffers from the audio-visual sensor fusion because of the subspace
construction problem for the audio data, where audio subspaces should be well matched with
video subspaces.

Polikar [77] and Avidan [78] apply boosting as an ensemble method for data fusion at decision
level. However, firstly, the methods suffer from the problems of the Adaboost such as over-
fitting [82], noise sensitivity and computational complexity [71]. Secondly, applying voting
(majority or weighted) as a fusion mechanism for boosting may not be suitable for audio-
visual data fusion, since the voting requires the correct classification of the training data by at
least greater than half of the number of the weak classifiers without regarding the topological
structure of the data [71].

Fauvel et al. [69] propose a decision fusion approach in which the features are extracted by
morphological operators. Then, the features are classified using neural networks and a fuzzy
classifier. Finally, posterior probabilities obtained from the output of the neural networks and
the class membership degrees obtained from the fuzzy classifier are fused. Sun et al. [81]
propose an interpretation model for the classification of targets in urban areas. They extract
the segments using pyramid-cut, and then compute color, texture, shape and location features
for each segment. Finally, they classify the segments by a Joint Boosting algorithm. Waske
and Benediktsson [83] aggregate the decisions of individual SVMs which process multitempo-
ral synthetic aperture radar data and optical images independently using a majority voting
method for multi-sensor data classification.

Another statistical learning algorithm employed for Decision Fusion is Stacked Generalization
(SG), which is proposed by Wolpert [84] and used by many others [85, 86, 87, 88, 74, 89, 90,
91, 92, 93]. The basic idea is to ensemble several classifiers in a variety of ways so that the
performance of the SG is higher than that of the individual classifiers which take place under
the ensemble.
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There are various approaches to implement the Stacked Generalization architecture. Ueda
[86] employs feature vector concatenation operation at the output of the base-layer feature
spaces of SG and call these operations as the linear decision combination methods. Then,
he compares linear combination and voting methods in an SG architecture, experimentally,
where Neural Networks are implemented as the base-layer classifiers. Following the same
formulation, Sen and Erdogan [87] analyzes various weighted and sparse linear combination
methods by combining the decisions of heterogeneous base-layer classifiers such as decision
tree and k-NN method. Rooney et al. [88] employs homogeneous and heterogeneous classifier
ensembles for stacked regression using linear combination rules. Zenko et al. [74] compares the
classification performances of SG algorithms, which employ linear combination rules with the
other combination methods (e.g. voting) and ensemble learning algorithms (e.g. Adaboost).

Sigletos et al. [89] compare the classification performances of several Stacked Generalization
algorithms which combine nominal (i.e., crisp decision values such as class labels) or probabilis-
tic decisions (i.e., estimations of probability distributions). In most of the experiments given
in the above mentioned studies, linear combination or decision aggregation method provides
comparable or better performances than the other combination methods.

However, the performance evaluation of the stacked generalization methods reported in the
literature are not consistent with each other. This fact is demonstrated by Dzeroski and Zenko
in [90] where they employ heterogeneous base-layer classifiers, in their stacked generalization
architecture. They report that their results contradict with the observations of the studies
in the literature on SG. The contradictory results can be attributed to many nonlinear re-
lations among the parameters of the SG, such as the input feature spaces, structure of the
heterogeneous classifiers and their output feature spaces.

For instance, popular classifiers, such as, k-NN, Neural Networks and Naïve Bayes, can be
used as the base-layer classifiers in SG to obtain nominal decisions. However, there are crucial
differences among these classifiers in terms of processing the feature vectors. First, k-NN and
Neural Networks are non-parametric classifiers, whereas the Naïve Bayes is a parametric one.
Second, k-NN is a local classifier which employs the neighborhood information of the features,
whereas Neural Networks compute a global linear decision function and Naïve Bayes computes
the overall statistical properties of the datasets. Therefore, tracing the feature mappings
from base-layer input feature spaces to meta-layer output decision spaces in SG becomes
an intractable and uncontrollable problem. Additionally, the outputs of the heterogeneous
classifiers give different type of information about the decisions of the classifiers, such as crisp,
fuzzy or probabilistic class labeling.

Although gathering the classifiers under the SG algorithm significantly boosts the performance
in some application domains, it is observed that the performance of the overall system may get
worse than that of the individual classifiers in some other cases. In fact, the performance may
even get worse and worse, as the number of the classes and the dimension of the feature space
increases. Wolpert defines the problem of describing the relation between the performance
and various parameters of the algorithm as a black art problem [84, 85].

2.3.1 Decision Fusion for Supervised Learning

In this study, most of the above mentioned intractable problems of supervised learning have
been analyzed by employing a hierarchical learning algorithm called Fuzzy Stacked General-
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ization (FSG) [94, 95, 70] which consists of the same type of classifiers in SG. The proposed
technique fuses the independent decisions of the fuzzy base-layer classifiers by aggregating the
membership values of each sample for each class under the same vector space, called the deci-
sion space. A meta-layer fuzzy classifier is, then, trained to learn the degree of the correctness
of the base-layer classifiers.

This architecture allows the fusion of the output decision spaces of the base-layer classifiers,
which contain consistent information. Furthermore, linear combination or feature space aggre-
gation method is modeled as a feature space mapping from the base-layer output feature space
to the meta-layer input feature space. In the proposed model, classification rules are consid-
ered as the feature mappings from classifier input feature spaces to output decision spaces. In
order to control these mappings for tracing the transformations of the feature vectors of the
samples through the layers of the architecture, homogeneous classifiers are used in both the
base-layer and the meta-layer.

The employment of fuzzy decisions in the ensemble learning algorithms is analyzed in [91,
92, 93]. Tan et al. [91] uses fuzzy k-NN algorithms as base-layer classifiers, and employs a
linearly weighted voting method to combine the fuzzy decisions for Face Recognition. Cho and
Kim [92] combine the decisions of Neural Networks which are implemented in the base-layer
classifiers using a fuzzy combination rule called fuzzy integral. Kuncheva [93] experimentally
compares various fuzzy and crisp combination methods, including fuzzy integral and voting,
to boost the classifier performances in Adaboost. In their experimental results, the algorithms
which implement fuzzy rules outperform the algorithms which implement crisp rules. However,
the effect of the employment of fuzzy rules to the classification performances of SG remains
an open problem.

In the proposed architecture, the fuzzy k-NN method is employed and the behavior of fuzzy
decision rules are investigated at the base-layer and meta-layer classifiers. Moreover, employ-
ment of fuzzy k-NN classifiers enables us to obtain information about the uncertainty of the
classifier decisions, and the belongingness of the samples to classes [96, 97].

2.3.2 Decision Fusion for Unsupervised and Semi-supervised Learning

Unsupervised and Semi-supervised Learning methods employed for Decision Fusion can be
studied in two groups. The works belonging to the first group employ statistical signal pro-
cessing methods such as Dempster-Shafer Theory [98, 99, 100], Causal Autoregressive Random
Fields [101] or Markov Random Fields [102].

The works in the second group aggregate the decisions of several base-layer unsupervised
learning algorithms as in supervised decision fusion methods. In Machine Learning community,
this approach is referred as Ensemble or Consensus Clustering [41, 103, 104] as mentioned in
the previous sections. Consensus clustering problem has been studied as the median partition
problem, in which a partition is computed so that the average distance between this proposed
partition and the elements of a set of given partitions obtained from base-layer clustering
algorithms is minimized. However, finding a globally optimal solution using a symmetric
difference distance is an NP-complete problem [18].

In order to solve the problem in polynomial time, two greedy search algorithms, Best of K
(BOK) and Best One Element Move (BOEM), are proposed [18]. In BOK, the distance is
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computed for each partition which is sequentially selected as the consensus partition from a
set of K partitions. Then, a partition with minimum distance to all the other partitions is
selected as the best of K partitions. In BOEM, first an initial partition is selected using an
algorithm such as BOK. Then, only one-element of the current partition (i.e. one element
of best partition) is moved at each iteration of the algorithm as long as the distance of the
partition to the other partitions decreases.

Yang et al. used semi-supervision for the fusion of the decisions of unsupervised algorithms
with supervised algorithms [73]. Franek et al. [105] and Vega-Pons et al. [106] employed
various state of the art Ensemble Clustering algorithms for image segmentation and introduced
a detailed experimental analysis on Berkeley Image Segmentation Dataset [17]. They report
that, among various clustering or segmentation fusion algorithms, two less complex algorithms,
Best One Element Move (BOEM) and Best of K (BOK) algorithms have provided competitive
results.

Motivated by the performances of consensus clustering algorithms in image segmentation
problems, a new Segmentation Fusion (SF) algorithm is introduced in this work. In SF, first
the consensus clustering problem is reformulated as the segmentation fusion problem. Then,
the problem is solved using a filtered stochastic optimization method called Filtered Stochastic
BOEM [107].

In this study, two challenges of SF, which are learning the distance function from the data,
and the estimation of the algorithm parameter and the number of different segment labels
C, have been studied. For this purpose, two distance learning functions and two parameter
estimation methods are proposed. In addition, weighted distance learning problem is defined
as the weighted decision fusion problem and a method is suggested to solve the problem by
learning weights from the data.

Incorporating prior information about the data statistics and side information obtained from
expert knowledge is another challenge of consensus segmentation and clustering algorithms.
This problem has been studied for subspace clustering [108], and generalized cluster aggre-
gation [109] problems. Together with these challenges, sparse weighted decision fusion with
semi-supervision and distance learning have been considered in a single constrained optimiza-
tion problem in this work. The proposed problem has been analyzed and solved using a
Semi-supervised Segmentation Fusion (SSSF) algorithm.
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CHAPTER 3

CLASSIFICATION ERROR MINIMIZATION IN
DECISION FUSION

3.1 Introduction

In this chapter, the classification error minimization problem has been analyzed from the
Decision Fusion perspective. A well-known Decision Fusion approach for minimizing the clas-
sification or the generalization error is, first designing a set of weak classifiers by minimizing
the training error, and then combining the classification models or decisions of the weak classi-
fiers. This approach has been studied under the ensemble learning algorithms for a long decade
[93] to solve various practical problems, such as target detection, localization [47, 8, 9, 10],
object recognition and classification [10, 46, 55], and discussed in the previous chapter.

In this chapter, the classification error of a k-NN classifier is analyzed in two parts, namely i)
N -sample error which is the error of a classifier employed on a training dataset of N samples
and ii) large-sample error which is the error of a classifier employed on a training dataset
of large number of samples such that N → ∞. First, a distance learning approach which
minimizes the error difference between N -sample and large-sample error is analyzed. Then,
the distance learning approach is employed in a hierarchical Decision Fusion algorithm, called
Fuzzy Stacked Generalization (FSG) [94, 95, 70]. Finally, a weighted decision fusion and two
sample selection algorithms are suggested to minimize the large-sample error.

In the next section, N -sample and large-sample classification errors of k-NN are defined. A
distance learning approach proposed by Short and Fukunaga [14] which minimizes the error
difference between N -sample and large-sample errors for a k-NN algorithm is given in Section
3.3. The employment of the distance learning approach in FSG is explained in Section 3.4.
A weighted decision fusion algorithm and two sample selection algorithms for FSG, which
minimize the large-sample error, are given in Section 3.5. Computational complexities of the
suggested algorithms are analyzed in Section 3.6. Experimental analyses of the proposed algo-
rithms are given in Section 3.7. Section 3.8 summarizes the analyses, the proposed algorithms
and the results, given in the chapter.
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3.2 N-sample and Large-sample Classification Errors of k-NN

Suppose that a training dataset S = {(si, yi)}Ni=1 of N samples, where yi ∈ {ωc}Cc=1 is the label
of a sample si, is given. A sample si is represented in a feature space Fj by a feature vector
x̄ij ∈ RDj .

Let {P (x̄j ∣ωc)}Cc=1 be a set of probability densities at a feature vector x̄j of a sample s,
such that x̄j is observed by a given class label ωc according to density P (x̄j ∣ωc). Therefore,
P (x̄j ∣ωc) is called the likelihood of observing x̄j for a given ωc. A set of functions {P (ωc)}Cc=1

is called the set of prior probabilities of class labels such that
C

∑
c=1

P (ωc) = 1 and P (ωc) ≥ 0,

∀c = 1,2, . . . ,C. Then, the posterior probability of assigning the sample s to a class ωc in Fj

is computed using the Bayes Theorem [4] as

P (ωc∣x̄j) =
P (x̄j ∣ωc)P (ωc)
C

∑
c=1

P (x̄j ∣ωc)P (ωc)
.

Note that x̄j is a random vector which maps the prior probability vector

[P (ω1), . . . , P (ωc), . . . , P (ωC)]
into the posterior probability vector

[P (ω1∣x̄j), . . . , P (ωc∣x̄j), . . . , P (ωC ∣x̄j)].
Bayes classification rule estimates the class label ŷ of s as [4]

ŷ = argmax
ωc

{P (ωc∣x̄j)}Cc=1.

If a loss L(ωc, s) occurs when a sample s is assigned to ŷ = ωc, then the classification error of
the Bayes classifier employed on Fj is defined as [13]

err(s) =min
c

C

∑
c=1
L(ωc, s)P (ωc∣x̄j)

and the expected error is defined as [13]

e∗ = E{err(s)},
where the expectation is taken over the density p(x̄j) of the feature vectors in Fj .

In this work, we focus on the minimization of the classification error of a well-known classifier
which is k Nearest Neighbors (k-NN) [4]. Given a new test sample (s′, y′) with x̄′j ∈ Fj , let
ℵk(x̄′j) = {x̄l(1)j, . . . , x̄l(k)j} be a set of k nearest neighbors of x̄′j such that

d(x̄′j , x̄l(1)j) ≤ d(x̄′j , x̄l(2)j) ≤ . . . ≤ d(x̄′j , x̄l(k)j).
The nearest neighbor rule (e.g. k = 1) simply estimates ŷ′, which is the label of x̄′j , as the
label yl(1) of the nearest neighbor x̄l(1)j of x̄′j . In the k nearest neighbor rule (e.g. k-NN), ŷ′

is estimated as
ŷ′ = argmax

ωc

N (ℵk(x̄′j), ωc),
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where N (ℵk(x̄′j), ωc) is the number of samples which belong to ωc in ℵk(x̄′j).
Then, the probability of error ǫ(x̄i,j , x̄′j) = PN(error∣x̄i,j , x̄′j) of the nearest neighbor rule is
computed using N number of samples as

ǫ(x̄i,j , x̄′j) = 1 − C

∑
c=1

µc(x̄i,j)µc(x̄′j), (3.1)

where µc(x̄i,j) = P (ωc∣x̄i,j) and µc(x̄′j) = P (ωc∣x̄′j) represent posterior probabilities [4].

In the asymptotic of large number of training samples, if µc(x̄′j) is not singular, i.e. continuous
at x̄′j , then large-sample error ǫ(x̄′j) = lim

N→∞
PN (error∣x̄′j) is computed as

ǫ(x̄′j) = 1 − C

∑
c=1

µ2
c(x̄′j). (3.2)

It is well known that there is an elegant relationship between the classification errors of Bayes
classifier and k-NN as follows [13]:

e∗ ≤ ǫ(x̄′j) ≤ ǫ(x̄i,j , x̄′j) ≤ 2e ∗ .
Then, the difference between the N -sample error (3.1) and the large-sample error (3.2) is
computed as

ǫ(x̄i,j , x̄′j) − ǫ(x̄′j) = C

∑
c=1
(µc(x̄′j))(µc(x̄i,j) − µc(x̄′j)). (3.3)

In this chapter, we have two goals. The first goal is to minimize the difference between
ǫ(x̄i,j , x̄′j) and ǫ(x̄′j) (3.3) by employing a distance learning approach suggested by Short and
Fukunaga [14] using Fuzzy Stacked Generalization. The distance learning approach of Short
and Fukunaga and its employment in the Fuzzy Stacked Generalization algorithm is given in
Section 3.3. The second goal is to minimize the difference between ǫ(x̄′j) and e∗ using a new
distance function called Decision Margin in a new algorithm called weighted decision fusion.
This algorithm reveals two sample selection methods for the FSG, which are given in Section
3.5.

3.3 Minimization of N-sample and Large-sample Classification Error Difference
using Distance Learning in the FSG

Let us start by defining
ec(x̄i,j , x̄′j) = (µc(x̄i,j) − µc(x̄′j))2

and an error function

e(x̄i,j , x̄′j) = C

∑
c=1

ǫc(x̄i,j , x̄′j)
for a fixed test sample x̄′j . Then, the minimization of the expected value of the error difference

in (3.3), EN{(ǫ(x̄i,j , x̄′j)− ǫ(x̄′j))2}, is equivalent to the minimization of the expected value of
the error function [14]

EN{e2(x̄i,j , x̄′j)}, (3.4)
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where the expectation is computed over the number of training samples N .

Short and Fukunaga [14] notice that (3.4) can be minimized by either increasingN or designing
a distance function d(x̄′j , ⋅) which minimizes (3.4) in the classifiers. In a classification problem,
a proper distance function is computed as [14]

d(x̄′j , x̄i,j) = ∥µ̄(x̄i,j) − µ̄(x̄′j)∥22, (3.5)

where

µ̄(x̄i,j) = [µ1(x̄i,j), . . . , µc(x̄i,j), . . . , µC(x̄i,j)] ,
µ̄(x̄′j) = [µ1(x̄′j), . . . , µc(x̄′j), . . . , µC(x̄′j)]

and ∥ ⋅ ∥22 is the squared ℓ2 norm, or Euclidean distance.

In a single classifier, (3.5) is computed in Fj ,∀j, using local approximations to posterior prob-
abilities using training and test datasets [14]. Moreover, if the N -sample error is minimized
on each different feature space Fj ,∀j = 1,2, . . . , J , then an average error over an ensemble of
classifiers ÊJ{EN{e2(x̄i,j , x̄′j)}} which is defined as

ÊJ{EN{e2(x̄i,j , x̄′j)}} = 1

J

J

∑
j=1

EN{e2(x̄i,j , x̄′j)} (3.6)

is minimized by using

d(x̄′, x̄i) = J

∑
j=1

C

∑
c=1
(µc(x̄i,j) − µc(x̄′j))2. (3.7)

In this study, an approach to minimize (3.6) using (3.7) is employed in a hierarchical deci-
sion fusion algorithm. For this purpose, first posterior probabilities µc(x̄i,j) are estimated
using individual k-NN classifiers, which are called base-layer classifiers. Then the probability
estimates µc(x̄i,j) are concatenated to construct

µ̄(x̄i) = [µ̄(x̄i,1) . . . µ̄(x̄i,j) . . . µ̄(x̄i,J)]
and

µ̄(x̄′) = [µ̄(x̄′1) . . . µ̄(x̄′j) . . . µ̄(x̄′J)] ,
for all training and test samples. Finally, classification is performed using µ̄(x̄′) and µ̄(x̄i),∀i,
by a k-NN classifier, called meta-layer classifier, with

d(x̄′, x̄i) = ∥µ̄(x̄i) − µ̄(x̄′)∥22. (3.8)

Note that (3.8) can be used for the minimization of the error difference in a feature space
F = F1 × F2 × . . . × FJ . If F = Fj for j ∈ {1,2, . . . , J}, then (3.8) is equal to (3.5). Therefore,
distance learning problem proposed by Short and Fukunaga [14] is reformulated as a decision
fusion problem. Then, the distance learning approach is employed using a hierarchical decision
fusion algorithm called Fuzzy Stacked Generalization (FSG) [94] as described below.
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3.4 Fuzzy Stacked Generalization

Given a training dataset S = {(si, yi)}Ni=1, each sample si is represented in J different feature
spaces Fj , j = 1,2, . . . , J by a feature vector x̄i,j ∈ RDj which is extracted by using the jth

feature extractor FEj ,∀j = 1,2, . . . , J . Therefore, training datasets of base-layer classifiers
employed on feature spaces Fj ,∀j = 1,2, . . . , J can be represented by J different feature sets,
Sj = {(x̄i,j , yi)}Ni=1.
At the base-layer, each feature vector extracted from the same sample is fed into an individual
fuzzy k-NN classifier in order to estimate posterior probabilities using the class memberships
as

µc(x̄i,j) = ∑kn=1 yl(n)(∥x̄i,j − x̄l(n),j∥2)−
2

ϕ−1

∑kn=1(∥x̄i,j − x̄l(n),j∥2)− 2

ϕ−1

, (3.9)

where yl(k) is the label of the kth-nearest neighbor of x̄i,j which is x̄l(k),j , and ϕ is the fuzzifi-
cation parameter [110]. Each base-layer fuzzy k-NN classifier is trained and the membership
vectors µ̄(x̄i,j) of each sample si is computed using leave-one-out cross validation. For this
purpose, (3.9) is employed for each (x̄i,j , yi) using a validation set SCVj = Sj − (x̄i,j , yi), where(x̄l(k),j , yl(k)) ∈ SCVj .

The class label of an unknown sample si is estimated by a base-layer classifier employed on
Fj as

ŷi,j = argmax
ωc

(µ̄(x̄i,j)).
The training performance of the jth base-layer classifier is computed as,

Perf trj =
1

N

N

∑
i=1
δŷi,j(Sj), (3.10)

where

δŷi,j(Sj) = ⎧⎪⎪⎨⎪⎪⎩
1, if yi ≡ ŷi,j
0, otherwise

(3.11)

is the Kronecker delta which takes the value 1 when the jth base-layer classifier correctly
classifies a sample si ∈ Sj such that yi ≡ ŷi,j .

When a set of test samples Stej = {s′i}N ′i=1 is received, the feature vectors {x̄′i,j}N ′i=1 of the
samples are extracted by each FEj . Then, posterior probability µc(x̄′i,j) of each test sample
s′i, i = 1,2, . . . ,N

′ is estimated using the training datasets Sj by each base-layer k-NN classifier
at each Fj , ∀j = 1,2, . . . , J .

If a set of labels of test samples, {y′i}N ′i=1, is available, then the test performance is computed
as

Perf tej =
1

N ′

N ′

∑
i=1
δŷ′
i,j
(Stej ).

The output space of each base-layer classifier is spanned by the membership vectors of each
feature vector x̄i,j . It should be noted that the membership vectors satisfy

C

∑
c=1

µc(x̄i,j) = 1.
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This equation aligns each sample on the surface of a simplex at the output space of a base-layer
classifier, which is called a Decision Space of that classifier. Therefore, base-layer classifiers
can be considered as transformations which map the input feature space of any dimension into
a point on a simplex in a C (number of classes) dimensional decision space (for C = 2, the
simplex is reduced to a line).

Class-membership vectors obtained at the output of each classifier are concatenated to con-
struct a feature space called Fusion Space for a meta-layer classifier. The fusion space consists
of CJ dimensional feature vectors µ̄(x̄i) and µ̄(x̄′i) which form the training dataset

Smeta = {(µ̄(x̄i), yi)}Ni=1
and the test dataset

S′meta = {µ̄(x̄′i)}N ′i=1
for the meta-layer classifier. Note that

J

∑
j=1

C

∑
c=1

µc(x̄i,j) = J and
J

∑
j=1

C

∑
c=1

µc(x̄′i,j) = J.
Finally, a meta-layer fuzzy k-NN classifier is employed to classify the test samples using their
feature vectors in S′meta with the feature vectors of training samples in Smeta. Meta-layer
training and test performance is computed as

Perf trmeta =
1

N

N

∑
i=1
δŷi,meta(Smeta)

and

Perf temeta =
1

N ′

N ′

∑
i=1
δŷ′
i,meta

(S′meta),
respectively. An algorithmic description of the FSG is given in Algorithm 1.

input : Training set S = {(si, yi)}Ni=1, test set Stej = {s′i}N ′i=1 and J feature extractors
FEj , ∀j = 1,2, . . . , J .

output: Predicted class labels of the test samples {ŷ′i}N ′i=1.
foreach j = 1,2, . . . , J do

1 Extract features {x̄i,j}Ni=1 and {x̄′i,j}N ′i=1 using FEj ;
2 Compute {µ̄(x̄i,j)}Ni=1 and {µ̄(x̄′i,j)}N ′i=1 using (3.9);

end

3 Construct Smeta ∶= {(µ̄(x̄i), yi)}Ni=1 and S′meta ∶= {µ̄(x̄′i)}N ′i=1;
4 Employ meta-layer classification using Smeta and S′meta to predict {ŷ′i}N ′i=1;

Algorithm 1: Fuzzy Stacked Generalization.

Notice that the Fuzzy Stacked Generalization fuses the posterior probabilities obtained at
the output of base-layer classifiers under the fusion space and then updates these posterior
probabilities at the output of the meta-layer classifier.

3.5 Minimization of Large-sample Classification Error in the FSG

Cover and Hart [13] state that one of the conditions required to converge ǫ(x̄′j) to e∗ is to
estimate posterior probabilities with complete certainty or uncertainty. For instance, in a two
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class classification problem, if ǫ(x̄′j) = 0,1 or 1
2
, then ǫ(x̄′j) is equal to e∗. If ǫ(x̄′j) = 1, then

the classification performance is 0, i.e. all the samples are misclassified. If ǫ(x̄′j) = 1
2
, then

all the samples are correctly classified or misclassified by chance. Therefore, we focus on the
condition ǫ(x̄′j) = 0, where all the samples are correctly classified. In this section, this condition
is analyzed using a weighted decision algorithm and two sample selection algorithms.

In order to satisfy the conditions stated by Cover and Hart [13], one must assure that the
samples belonging to the same class reside in the same Voronoi region [4] in the fusion space.
For this purpose, first the contribution of each sample to the classification performance of the
meta-layer classifier should be measured. This task is achieved by introducing a new concept
called Decision Margin which will defined in the following subsection.

3.5.1 Decision Margin

The relationship between the contribution of a training and a test sample, si and s′i, to the
classification performances of the base-layer classifiers and that of the meta-layer classifier is
analyzed by first defining the target posterior probability values of si and s′i as

µc(si, j) = { 1, if yi ∈ ωc
0, otherwise

and µc(s′i, j) = { 1, if y′i ∈ ωc
0, otherwise

, (3.12)

µ̄(si, j) = [µ1(si, j), . . . , µC(si, j)] and µ̄(s′i, j) = [µ1(s′i, j), . . . , µC(s′i, j)], (3.13)

µ̄(si) = [µ̄(si,1), . . . , µ̄(si, J)] and µ̄(s′i) = [µ̄(s′i,1), . . . , µ̄(s′i, J)], (3.14)

respectively. Then, we define a training and a test error function to measure the classifiability
of si and s′i as

e(si, j) = C

∑
c=1
∥ µc(si, j) − µc(x̄i,j) ∥22 and e(s′i, j) = C

∑
c=1
∥ µc(s′i, j) − µc(x̄′i,j) ∥22 . (3.15)

Let us denote EN{e2(si, j)} and EN ′{e2(s′i, j)} as the N -sample training and test errors,
respectively. Similar to the strategy for defining the distance function (3.5) to minimize the
error (3.4) in Section 3.3, two distance functions are proposed to minimize EN{e2(si, j)} and
EN ′{e2(s′i, j)} as

ρ(si, j) = ∥µ̄(si, j) − µ̄(x̄i,j)∥2 and ρ(s′i, j) = ∥µ̄(s′i, j) − µ̄(x̄′i,j)∥2. (3.16)

ρ(si, j) is called Decision Margin of the training sample si and ρ(s′i, j) is called Decision

Margin of the test sample s′i in a feature space Fj .

By the definition given in (3.12), decision margin provides information on the magnitude with
which a sample is classified in a feature space Fj . For instance, in a two class classification
problem with C = 2, if a sample si with yi ∈ ω1 is correctly classified with high probability in
Fj such that µ1(x̄i,j) = 1, then ρ(si, j) = 0. On the other hand, if the sample si is classified by

chance i.e. µ1(x̄i,j) = µ2(x̄i,j)(= 0.5), then ρ(si, j) = 2

√
1
2
≈ 0.7. If the sample is misclassified,

then ρ(si, j) takes the maximum value for this example, which is ρ(si, j) = 2
√
2 ≈ 1.41.
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The information about the classifiability of the samples at the meta-layer is obtained using
following error functions;

e(si) = J

∑
j=1

e(si, j) and e(s′i) = J

∑
j=1

e(s′i, j), (3.17)

for training and test samples, respectively.

Note that the membership values of all the samples lie on the surface of a simplex in the
C-dimensional output space of each base-layer classifier. In practice, the entry of the vector
µ̄(x̄′i,j) with the highest membership value shows the estimated class label ŷi,j in Fj , and the
membership vector of a correctly classified sample is expected to accumulate around the correct

vertex of the simplex. Concatenation operation creates a CJ-dimensional fusion space at the
input of the meta-layer classifier in which the membership values lie on the CJ-dimensional
simplex. The membership values of the correctly classified samples, this time, form even a more
compact cluster around each vertex of the simplex, and misclassified samples are scattered all
over the surface. If a sample si is correctly classified by at least one base-layer classifier in
Fj with ρ(si, j), then the corresponding membership value will be close to the correct vertex
of the simplex by a magnitude of ρ(si, j), and will contribute to increase the performance of
overall FSG. Let us depict the above fact by an example.

Example: Consider a synthetic dataset, consisting of C = 2 classes each of which consists
of 250 samples represented in J = 2 distinct feature spaces. In the base-layer feature spaces
shown in Figure 3.1, the classes have Gaussian distribution with substantial overlaps where
the mean value and covariance matrices are

M1 = ( 2 0

0 −2
) , T1 = ( 1 1

1 1
) andM2 = ( −2 0

2 2
) , T2 = ( 1 1

1 1
)

for the first and the second feature spaces, respectively. The features of the samples from the
first class are represented by blue dots and that of the second class are represented by red dots.
Features of two randomly selected samples, which are misclassified by one of the base-layer
classifiers and correctly classified by the meta-layer classifier, are shown by star markers. In
the feature spaces, each of the training samples is correctly classified by at least one base-layer
fuzzy k-NN classifier with k = 3. The classification performances of the base-layer classifiers
are 91% and 92% respectively. The classification performance of the FSG is 96%.

The membership values lie on a line at the output spaces of two base-layer classifiers, as
depicted in Figure 3.2. In these figures, the decisions of the classifiers are also depicted for
individual samples. For instance, the sample marked with red star s1 is misclassified by the first
classifier as shown in Figure 3.2.a with ρ(s1,1) = 0.823, but correctly classified by the second
classifier with ρ(s1,2) = 0 as shown in Figure 3.2.b. In addition, the feature of the sample
marked with blue star s2 is correctly classified by the first classifier as shown in Figure 3.2.a
with ρ(s2,1) = 0.463, but misclassified by the second classifier with ρ(s2,2) = 0.851 as shown
in Figure 3.2.b.

The concatenation operation creates a 4 (2∗2) dimensional fusion space at the meta-layer input
feature space. In order to visualize the distribution of the samples, four different subspaces,
each of which is a 3-dimensional Euclidean space, are selected. Figure 3.3 displays different
combinations of the subspaces and the membership vectors obtained from each classifier.
Notice that the concatenation operation forms planes in these subspaces accumulating the
correctly classified samples around the edges and the vertices. Therefore, features of the
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(a) F1 (b) F2

Figure 3.1: Feature vectors in (a) F1 and (b) F2. Features of two randomly selected samples
are indicated by (*) to follow them at the decision spaces of base-layer classifiers and the
fusion space.

(a) (b)

Figure 3.2: Membership vectors obtained at the output of base-layer classifiers: (a) Classifier
1 and (b) Classifier 2. The locations of the features of randomly selected samples of Figure 3.1
are indicated by (*), at each simplex.

samples which are correctly classified by at least one base-layer classifier are located close to
one of the correct vertices, or edges. This fact is depicted in Figure 3.3, where the feature of
the sample indicated by red star is located close to the edges of the second class in Figure 3.3.b,
c, d. On the other hand, the feature of the sample indicated by blue star is located close to
the edges of the first class in Figure 3.3.a, c, d. Both of these samples are correctly labeled by
the meta-layer fuzzy k-NN classifier.

Since the decision margin ρ(si, j) and the error e(si, j) of a sample si is linearly related, there
is also a linear relationship between ρ(si, j) and e(si). Therefore, if a sample or a group of
samples in the training data is correctly classified by the base-layer classifiers with minimum
decision margin, then these sample groups contribute to improve the overall performance of
the FSG. Otherwise, the samples which are not correctly classified by any of the base-layer
classifiers with the highest decision margin become spurious, and distort the feature space at
the input of the meta-layer classifier. This observation is consistent with the works of Wolpert
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(a) (b)

(c) (d)

Figure 3.3: The relationships among (a) µ1(xi,1), µ2(xi,1), µ2(xi,2), (b) µ1(xi,1), µ2(xi,1),
µ1(xi,2), (c) µ1(xi,2), µ(xi,2), µ1(xi,1), and (d) µ2(xi,1), µ1(x,2), µ2(xi,2), are visualized.
The locations of the features of randomly selected samples of Figure 3.1 are indicated by (*)
at the subspaces of the fusion space.

[84], Ting and Witten [85] which claim that the individual classifiers can identify different
parts of the feature space. Therefore, base-layer feature spaces, classifiers and decision fusion
methods should be designed in such a way that feature vectors of samples are shared among
the base-layer classifiers to recognize the samples in the training set, and cover the entire
feature space. If this is not possible, it may be wise to eliminate the spurious samples which
spoil the separability of the fusion space.

In this work, decision margin is used as a criterion to measure the contribution of each sample
to base-layer and meta-layer classification performances. For this purpose, decision fusion
method of FSG is redesigned by taking into account the decision margins of samples. In this
approach, decisions of base-layer classifiers are fused in order to maximize the contributions
of samples to meta-layer classification performance by minimizing their decision margins.
Therefore, decision of each base-layer classifier is weighted according to decision margins of
samples computed in the classifier. Then, the weights which minimize decision margins of
samples and the meta-layer classification error are computed by solving a convex optimization
problem using a weighted decision fusion algorithm called Decision Fusion using Decision
Margin in the next subsection.
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3.5.2 Weighted Decision Fusion using Decision Margin in the FSG

In the previous sections, it is shown that the training and test errors are minimized when the
decision margins of the training and test samples are minimized. Therefore, the decision fusion
problem of the FSG is defined as the decision margin minimization problem in this section.

First a weighted decision margin is defined as

ρ(si, j)w̄j = ∥µ̄(x̄i,j)w̄j − µ̄(si, j)∥2, (3.18)

where w̄j ∈ RC is a weight vector used for the weighted fusion of the classifier decisions. Note
that decision margin of a sample s computed by a classifier in a feature space Fj gives infor-
mation about the decision of that classifier on the class membership of s and the contribution
of the decision of the base-layer classifier on s to the decision of a meta-layer classifier. There-
fore, the weight vectors are employed to increase the certainty of the decision of the meta-layer
classifier on the samples using the information on the relationship between the classifiability
of the samples and the classification performances of base-layer and meta-layer classifiers.

The analyses given in the previous sections show that the minimization of decision margins
of samples enables us to minimize large-sample error of the meta-layer k-NN classifier. In
addition, decision margins can be used to accumulate the samples belonging to the same
classes towards the vertices of polytopes of decision vectors in the fusion space which represent
the target (class) locations of the feature vectors of the samples that are defined by µ̄(si, j) of
the samples si, ∀i = 1,2, . . . ,N and ∀j = 1,2, . . . , J .

Then, the following weighted decision margin minimization problem is defined for the fusion
of the classifier decisions;

minimize
N

∑
i=1

J

∑
j=1

ρ(si, j)2w̄j + λ J

∑
j=1
∥w̄j∥2, (3.19)

where the ℓ2 norm regularization parameter λ is used for inducing sparsity on the weight
vectors used for classifier decision fusion. Therefore, the number of classifiers whose decisions
will not be considered in the decision fusion increases as λ increases. Note that (3.19) has
been studied as the Group Lasso problem in the statistical data analysis and learning problems
[111].

This problem is modeled as a convex optimization problem in the following form

minimize λ
J

∑
j=1
∥w̄j∥2,

subject to µ̄(x̄, j)w̄j − µ̄(si, j) = 0, ∀j = 1,2, . . . , J,
∀i = 1,2, . . . ,N.

(3.20)

The Lagrangian of (3.20) is defined as

L(w̄j , ᾱ) = λ J

∑
j=1
∥w̄j∥2 + ᾱ⊺( N∑

i=1

J

∑
j=1
(µ̄(x̄, j)w̄j − µ̄(si, j))), (3.21)

where ᾱ is a vector of optimization dual variables and ᾱ⊺ is the transpose of ᾱ. The dual
function is defined as

Υ(ᾱ) = inf
w̄j
L(w̄j, ᾱ). (3.22)
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Then the dual problem is defined as

maximize Υ(ᾱ). (3.23)

An optimal solution for (3.20) is w̄∗j and for (3.23) is ᾱ∗. When the dual problem (3.23) is
solved, the primal solution w̄∗j can be obtained using

w̄∗j = argmin
w̄j

L(w̄j , ᾱ∗). (3.24)

In the dual ascent method [112], the the dual problem (3.23) is solved using gradient ascent on
Υ(ᾱ) by computing the gradient ∇Υ(ᾱ), assuming that Υ is differentiable. In the algorithm,
first a local primal solution is computed as

w̄t+1j ∶= argmin
w̄j

L(w̄j , ᾱt). (3.25)

Then, using the following approximation to the gradient

∇Υ(ᾱ) ≈ µ̄(x̄, j)w̄t+1j − µ̄(si, j), (3.26)

the following dual variable update step is employed

ᾱt+1 ∶= ᾱt + υt( N∑
i=1

J

∑
j=1

µ̄(x̄, j)w̄t+1j − µ̄(si, j)), (3.27)

where υt is a step size which can be defined at each iteration t [112].

Since the decision margin problem (3.20) is separable with respect to the classifier decisions,
(3.25) can be solved at each local processor (classifier) independently and in parallel. Then,
the local solutions w̄t+1j are gathered or collected at the master-processor (meta-classifier) to
compute the residual

υt( N∑
i=1

J

∑
j=1

µ̄(x̄, j)w̄t+1j − µ̄(si, j)).
Finally, the global dual solution of (3.27) is distributed or broadcasted to the local processors
to update the local solutions in the next epoch.

In order to relax the convexity and finiteness requirements of (3.19), the problem is written
as

minimize
J

∑
j=1
∥µ̄(s, j) − γ̄j∥22 + λ J

∑
j=1
∥w̄j∥2,

subject to µ̄(x̄, j)w̄j − γ̄j = 0,∀j = 1,2, . . . , J, (3.28)

where µ̄(s, j) = [µ̄(s1, j)⊺, . . . , µ̄(sN , j)⊺]⊺, µ̄(x̄, j) = [µ̄(x1,j)⊺, . . . , µ̄(xN,j)⊺]⊺, γ̄j is a vector
of optimization variables. Then, the augmented Lagrangian is written as [112]

Lθ(wj , ᾱ) = J

∑
j=1
∥µ̄(s, j)− γ̄j∥22+λ J

∑
j=1
∥w̄j∥2+ ᾱ⊺( J

∑
j=1

µ̄(x̄, j)w̄j − γ̄j)+ θ
2
∥µ̄(x̄, j)w̄j − γ̄j∥22, (3.29)

where θ > 0 is a penalty parameter .

Then, (3.29) is solved in the following three steps:
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1. w̄j update step:

w̄t+1j ∶= argmin
w̄j

(θ
2
∥µ̄(x̄, j)w̄j − µ̄(x̄, j)w̄tj + 1

J

J

∑
j=1
(µ̄(x̄, j)w̄t − γ̄j)+ ūt∥22 +λ∥w̄j∥2), (3.30)

where ūt = 1
θ
ᾱt is a vector of scaled dual optimization variables computed at an iteration

t.

2. ˜̄γ update step:

˜̄γt+1 ∶=
1

J + θ
(µ̄(s, j) + θ 1

J

J

∑
j=1
(µ̄(x̄, j)w̄t+1j ) + θūt). (3.31)

3. ū update step:

ūt+1 ∶= ūt +
1

J

J

∑
j=1
(µ̄(x̄, j)w̄t+1j ) − ˜̄γt+1. (3.32)

In the first step of the algorithm, (3.30) is solved at each classifier individually. Then, the
local solutions of (3.30) are gathered at the meta-layer classifier to update an average ˜̄γ by
computing (3.31). Finally, ˜̄γt+1 is distributed among the classifier to update ūt using (3.32).
The algorithm has been referred as Alternating Direction Method of Multipliers (ADMM)
[112] in the literature.

input : Training set S = {(si, yi)}Ni=1, feature extractors FEj , j = 1,2, . . . , J ,
the parameters λ, θ, ᾱ and algorithm termination time T .

output: Decision weights {w̄j}Jj=1.
1 t ← 1 and ᾱt ← ᾱ;
2 w̄j(t)← 0, ∀j = 1,2, . . . , J ;

foreach j = 1,2, . . . , J do
3 Extract features {x̄i,j}Ni=1 using FEj ;
4 Compute {µ̄(x̄i,j)}Ni=1 using (3.9);

end
repeat

5 Update weights w̄t+1j using (3.30), ∀j = 1,2, . . . , J ;
6 Gather weights w̄t+1j at the meta-classifier to update ˜̄γt+1 using (3.31) ;
7 Update ūt+1 using (3.32), and distribute ūt+1 to the base-layer classifiers

∀j = 1,2, . . . , J ;
8 t← t + 1;

until t ≤ T ;
9 w̄j ← w̄j(T ), ∀j = 1,2, . . . , J ;

Algorithm 2: Decision Fusion using weighted Decision Margin minimization in the
Fuzzy Stacked Generalization.

An algorithmic description of the weighted decision fusion algorithm for the FSG is given in
Algorithm 2. In the first and second steps of the algorithm, variables are initialized. Features
are extracted from the samples in the third step, and class membership vectors which represent
the decisions of the base-layer classifiers are computed in the fourth step. In each base-layer
classifier employed on each feature space Fj , posterior probability vectors are estimated (step
4). At an epoch t of the algorithm, first weight vectors ŵj(t) are locally computed in each
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base-layer individual classifier (step 5). Then, locally computed weights w̄t+1j are gathered at
the meta-classifier to compute the global solution ˜̄γt+1 using (3.31) in step 6, which is then
distributed to the base-layer classifiers to update ūt in step 7. Algorithm epoch is updated in
step 8 and the algorithm is iterated until a given termination time T . The computed solution
ŵj(T ) is returned as the final solution in step 9.

At the meta-layer, decision vectors of base-layer classifiers are updated using weight vectors
w̄j . Then, the updated decision vectors are fused for classification at the meta-layer classifier.

3.5.3 Sample Selection for Decision Fusion in the FSG

Recall that the condition stated by Cover and Hart [13] and analyzed in the previous subsec-
tions, which is the estimation of posterior probabilities with complete certainty or uncertainty,
should be satisfied almost everywhere, i.e. at each feature vector of each sample in each feature
space.

Following the sample selection approach of Wilson [35], this condition is satisfied by eliminating
the samples which are not correctly classified by at least one base-layer classifier from the
training dataset in this subsection.

Sample selection methods have been used by Ozay and Yarman Vural [94, 95, 70, 113, 114,
115, 116] for base-layer feature space design by eliminating the samples from both training
and test datasets. In this work, two sample selection algorithms are proposed to minimize the
difference between large-sample error of k-NN and Bayes Error.

In order to determine whether a sample is correctly classified by at least one base-layer classifier
or not, first a misclassification index is defined for each sample as

mc(si) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ( J

⋁
j=1

δŷi,j(Sj)) ≡ 0
0, otherwise

, (3.33)

where

δŷi,j(Sj) = { 1, if yi ≡ ŷi,j
0, otherwise

(3.34)

Therefore, if a sample is correctly classified by at least one base-layer classifier, then its mis-
classification index is 0, otherwise it is 1. In addition, a set of samples which are misclassified
by all the base-layer classifiers is defined as MC = {si ∶mc(si) ≡ 1}.
In the first sample selection algorithm (SS-1) given in Algorithm 3, the samples belonging to
the misclassified sample set are removed from the meta-layer input training dataset in order
to obtain Ŝmeta, which is a new set of meta-layer features with the associated class labels of
the samples that are correctly classified by at least one base-layer classifier. Then, Ŝmeta is
used to label the meta-layer features of test samples.

In Algorithm 3, a new set of membership vectors in S′meta are computed using the membership
vectors in Smeta. However, this approach may result in some information loss about the
eliminated samples in S′meta and the statistical stability between meta-layer input training
and test datasets may be damaged. In order to avoid this undesired loss and assure the
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input : Training set S = {(si, yi)}Ni=1, test set Stej = {s′i}N ′i=1 and feature extractors
FEj ,∀j = 1,2, . . . , J .

output: Predicted class labels of the test samples {ŷ′i}N ′i=1.
foreach j = 1,2, . . . , J do

1 Extract features {x̄i,j}Ni=1 and {x̄′i,j}Ni=1 using FEj ;
2 Compute {µ̄(x̄i,j)}Ni=1 and {µ̄(x̄′i,j)}Ni=1 using (3.9);

end
3 Construct MC ;
4 Construct S′meta ∶= {µ̄(x̄′i)}N ′i=1;
5 Eliminate spurious training samples from meta-layer input training dataset by

constructing

Ŝmeta ∶= {(µ̄(x̄i), yi) ∶ si ∉MC and si ∈ S,∀i = 1,2, . . . ,N}.
6 Employ meta-layer classification using S′meta and Ŝmeta to predict {ŷ′i}N ′i=1;
Algorithm 3: Spurious training data elimination from meta-layer input training
dataset (SS-1).

statistical stability of the samples at the meta-layer, the membership vectors of test samples
are also updated at Ŝmeta in Algorithm 4 as follows.

input : Training set S = {(si, yi)}Ni=1, test set Stej = {s′i}N ′i=1 and feature extractors
FEj ,∀j = 1,2, . . . , J .

output: Predicted class labels of the test samples {ŷ′i}N ′i=1.
1 Construct MC ;
2 Construct Ŝ ∶= {(si, yi) ∶ si ∉MC and si ∈ S,∀i = 1,2, . . . ,N};
3 Construct Smeta and S′meta using Ŝ as the base-layer input training dataset;
4 Employ meta-layer classification using S′meta and Smeta to predict {ŷ′i}N ′i=1;
Algorithm 4: Spurious training data elimination from base-layer input training dataset
(SS-2).

In Algorithm 4 (SS-2), first the samples belonging to MC are eliminated from the base-layer
feature training set in order to construct a new base-layer training set Ŝ. Then, the base-layer
classifiers are re-trained and the membership vectors of both the training and test samples are
computed using Ŝ. Finally, the test samples are classified at the meta-layer.

The proposed algorithms have been analyzed on synthetic and benchmark datasets in Section
3.7. Computational complexity of the algorithms are given in the next section.

3.6 Computational Complexity of the Algorithms

In the analysis of the computational complexities of the proposed decision fusion algorithms,
computational complexities of feature extraction algorithms are ignored assuming that the
feature sets are already computed and given.

The computational complexity of the Fuzzy Stacked Generalization algorithm is dominated
by the number of samples. The computational complexity of a base-layer k-NN classifier is
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O(NDj). If each base-layer classifier is implemented by an individual processor in paral-
lel, then the computational complexity of base-layer classification process is O(ND̃), where
D̃ = max{Dj}Jj=1. In addition the computational complexity of a meta-layer classifier which
employs fuzzy k-nn is O(NJC). Therefore, the computational complexity of the FSG is
O(N(D̃ + JC)).
In Algorithm 2 which employs weighted decision fusion in FSG, the computational complexity
of the computation of membership decision vectors is O(ND̃) as mentioned above. In ad-
dition, if the variable transmission time among the processors is ignored, the computational
complexity of the weight vector computation steps is dominated by the weight update step. In
this step, a regularized regression problem is solved at each base-layer classifier. Note that this
problem can be approximated as a Tikhonov regularization problem in which Cholesky decom-
position can be employed on µ̄(x̄, j)⊺µ̄(x̄, j) [112]. Therefore, the computational complexity
of this operation employed by a base-layer classifier is O(NDj) for each step t ≤ T . Since
matrix-vector multiplications are employed in the other update steps, their computational
complexities are also O(NDj) in each base-layer classifier. If the computation is terminated
after T iterations, then the complexity of the overall computation process is O(TND̃).
Computational complexities of the sample selection algorithms are affected by the size ∣MC ∣ of
the MC set. In both of the algorithms, Algorithm 3 and 4, membership vectors are computed
by the base-layer classifiers with O(ND̃). In order to employ the sample selection in a linear
time complexity, first each classifier constructs a 0 − 1 predicate matrix whose elements are
the values of the Dirac functions (3.34), in parallel. Then, MC can be constructed using a
search algorithm on the concatenated predicate matrices, whose complexity is O(N).
In Algorithm 3, the samples are eliminated from meta-layer input training dataset. Therefore,
the computational complexity of the meta-layer classifier is O(N − ∣MC ∣). In Algorithm 4,
the samples are eliminated from base-layer input training dataset. Then, the classifiers are
re-trained with O((N − ∣MC ∣)D̃) in the base-layer, and with O((N − ∣MC ∣)JC) in the meta-
layer.

3.7 Experimental Analysis of the Decision Fusion Algorithms

In this section, two sets of experiments are performed to analyze the behavior of the sug-
gested supervised decision fusion algorithms. First, the proposed algorithms are tested on
the synthetic datasets following the comments of Cover and Hart [13] for the analysis of the
relationship between the class conditional densities of the datasets and the performance of
the k = 1 nearest neighbor classification algorithm, and the metric learning method of Hastie
and Tibshirani [117] to minimize the difference between the N -sample and large-sample clas-
sification error. Second, benchmark pattern classification datasets such as Breast Cancer,
Diabetis, Flare Solar, Thyroid, German, Titanic [118, 119, 120, 121, 122], Caltech 101 Image
Dataset [123] and Corel Dataset [113] are used to compare the classification performances of
the proposed approach and state of the art supervised ensemble learning algorithms.

In the FSG, k values of the fuzzy k-NN classifiers are optimized by cross validation using
training datasets. In the experiments, fuzzy k-NN is implemented both in Matlab and C++.
For C++ implementations, a fuzzified modification of a GPU-based parallel k-NN is used
[124]. T = 10000 is used as the termination time for Decision Fusion using Decision Margin
(DFDM) algorithm. Algorithm parameters of DFDM are selected from the parameter sets
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λ ∈ {0.01,0.02, . . . ,2}, θ ∈ {0.01,0.02, . . . ,2}, ᾱ ∈ {0.01,0.02, . . . ,2} by cross validation using
training datasets.

Classification performances of the proposed algorithms are compared with the state of the
art ensemble learning algorithms, such as Adaboost [125], Rotation Forest [126] and Random
Subspace [72]. Weighted majority voting is used as the combination rule in Adaboost. Decision
trees are implemented as the weak classifiers in both Adaboost and Rotation Forest, and k-
NN classifier is implemented as the weak classifier in Random Subspace. The number of weak
classifiers Numweak ∈ {1,2, . . . ,2D} is selected using cross-validation in the training set, where

D =
J

∑
j=1

Dj is the dimension of the feature space of the samples in the datasets.

Experimental analyses of the proposed algorithms on synthetic datasets are given in Section
3.7.1. In Section 3.7.2, classification performances of the proposed algorithms and the state-
of-the art classification algorithms are compared using benchmark datasets.

3.7.1 Experiments on Synthetic Datasets

The relationship between the performance of the k = 1 and k ≥ 2 nearest neighbor algorithms
and the statistical properties of the datasets has been studied in the last decade by many
researchers. Cover and Hart [13] analyzed this relationship with an elegant example, which is
revised later by Devroye, Gyorfi and Lugosi [127].

In the example, suppose that the feature vectors of the samples of a training dataset {x̂i}Ni=1
are grouped in two disks with centers ō1 and ō2, which represent the class groups ω1 and ω2

such that ∥ ō1− ō2 ∥2≥ σ1,2
BC

in a two dimensional feature space, where σ1,2
BC

is the between-class
variance. In addition, assume that the class conditional densities are uniform and

P (ω1) = P (ω2) = 1

2
.

Note that the probability that n samples belong to the first class ω1, i.e. that the feature
vectors reside in the first disk, is

1

2N
(N
n
).

Now, assume that the feature vector of a training sample x̂i belonging to ω1 is classified by
k = 1 nearest neighbor rule. Then, x̂i will be misclassified if its nearest neighbor resides in
the second disk. However, if the nearest neighbor of x̂i resides in the second disk, then each
of the feature vectors must reside in the second disk. Therefore, the classification error is the
probability that all of the samples reside in the second disk such that

P (yi ∈ ω1, yj≠i ∈ ω2) + P (yi ∈ ω2, yj≠i ∈ ω1) = 1

2N
.

If k-NN rule is used for classification with k = 2k̂ + 1, where k̂ ≥ 1, then an error occurs if k̂ or
less number of features reside in the first disk with probability

P (yi ∈ ω1,
N

∑
j=1

I(yj≠i ∈ ω1) ≤ k̂) +P (yi ∈ ω2,
N

∑
j=1

I(yj≠i ∈ ω2) ≤ k̂)
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which is a Binomial distribution Binomial(k̂,N, 1
2
)

k̂

∑
n=0
(N
n
)(1

2
)n(1 − 1

2
)N−n = (1

2
)N k̂

∑
n=0
(N
n
).

Then the following inequality holds

(1
2
)N k̂

∑
n=0
(N
n
) > (1

2
)N .

Therefore, the classification or generalization error of the k-NN depends on the class condi-
tional densities [13] such that k = 1 rule performs better than k ≥ 2 rule when the between class
variance of the data distributions σc,c

′

BC is smaller than the within class variances Σc, ∀c ≠ c′,
c = 1,2, . . . ,C, c′ = 1,2, . . . ,C.

Although Cover and Hart [13] introduced this example to analyze the classification perfor-
mances of the nearest neighbor rules, Hastie and Tibshirani [117] used the results of the
example in order to develop a metric, which is a function of σc,c

′

BC and Σc, to minimizes the
difference between the N -sample and large-sample errors. Since the minimization of error
difference is one of the motivations of FSG, a similar experimental setup is designed in or-
der to analyze the performance of FSG by Ozay [94]. In this chapter, the experiments are
designed to compare the classification performances of FSG (Algorithm 1), decision fusion
with the decision margin (DFDM) given in Algorithm 2 and two sample selection algorithms
(Algorithm 3 and Algorithm 4) which are used for spurious training data elimination from
meta-layer (SS-1) and base-layer input training datasets (SS-2).

In the experiments, feature vectors of the samples in the datasets are generated using a
Gaussian distribution in each Dj = 2 dimensional feature space Fj , j = 1,2, . . . , J . While
constructing the datasets, the mean vector ōc and the covariance matrix Σc of the class-
conditional density of a class ωc

f(x̄∣ ōc, Σc) = 1√(2π)d∣Σ∣ exp [−
1

2
(x̄ − ōc)T Σ−1c (x̄ − ōc)] (3.35)

are systematically varied in order to observe the effect of the class overlaps to the classification
performance. One can easily realize that there are explosive alternatives for changing the
parameters of the class-conditional densities in a Dj-dimensional vector space. However, it is
quite intuitive that the amount of overlaps among the classes affects the performance of the
individual classifiers rather than the changes in the class scatter matrix. Therefore, we suffice
to control only the amount of overlaps during the experiments. This task is achieved by fixing
the covariance matrix Σc, in other words within-class-variance, and changing the mean values
of the individual classes, which varies the between-class variances, σc,c

′

BC , ∀c ≠ c′,c = 1,2, . . . ,C,
c′ = 1,2, . . . ,C.

Denoting vi as the eigenvector and ϑi as the eigenvalue of Σ, we have ∑vi = ϑivi. Therefore,
the central position of the sample distribution constructed by datasets in a 2-dimensional
space is defined by v1 and v2 and the propagation is defined by ϑ1/21 and ϑ1/22 . In the datasets,
covariance matrices are held fix and equal. Therefore, the eigenvalues represented on both
axes are the same. As a result, datasets are generated by the circular Gaussian function with
fixed radius.

In this set of experiments, a variety of artificial datasets is generated in such a way that most
of the samples are correctly labeled by at least one base-layer classifier. In other words, feature
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spaces are generated to construct classifiers which are expert on specific classes. The number
of samples belonging to each class ωc is taken as 250, and 2-dimensional feature spaces are
fed to each base-layer classifier as input for C = 12 classes with total of 3000 samples. The
performances of the classifiers are controlled by fixing the covariance matrices, and changing
the mean values of Gaussian distributions which are used to generate the feature vectors.

In order to avoid the misleading information in this gradual overlapping process, the classes
are first generated apart from each other to assure the linear separability in the initialization
step. Then, the distances between the mean values of the classes are gradually decreased.
The ratio of decrease is selected as one tenth of between-class variance of each pair of class ωc
and ωc′ , ∀c ≠ c′, c = 1,2, . . . ,C, c′ = 1,2, . . . ,C, which is 1

10
σ
c,c
′

BC , where σc,c
′

BC = ∥ōc − ōc′∥. The
termination condition for the algorithms is

∑
c,c′

σ
c,c
′

BC = 0,∀c ≠ c
′, c = 1,2, . . . ,C, c′ = 1,2, . . . ,C.

At each epoch, only the mean value of the distribution of one of the classes approaches to the
mean value of that of another class, while keeping the rest of the mean values fixed. Defining
J as the number of classifiers fed by J different feature extractors and C as the number of
classes, the data generation method is given in Algorithm 5.

input : The number of feature spaces J , the number of classes C, the mean value
vectors ōc and the within class variances Σc of the class conditional densities,
∀c = 1,2, . . . ,C.

output: Training and test datasets.
foreach j = 1,2, . . . , J do

foreach c = 1,2, . . . ,C do
1 Generate feature vectors using (3.35);

end

end
foreach j = 1,2, . . . , J do

foreach c′ = 1,2, . . . ,C do
2 Initialize ôc′ ;

foreach c = 1,2, . . . ,C do
repeat

3 σ
c,c′

BC ← ∥ōc − ôc′∥ ;

4 ôc′ ← ōc +
1
10
σ
c,c
′

BC ;

until σc,c
′

BC ≠ 0;
end

end

end
5 Randomly split the feature vectors into two datasets, namely test and training

datasets.
Algorithm 5: The synthetic data generation algorithm.

In the experiments, classification performances of FSG, Decision Fusion using Decision Margin
(DFDM) that is given in Algorithm 2 and two sample selection algorithms, that are given
Algorithm 3 (SS-1) and Algorithm 4 (SS-2), are compared.

In the first set of the experiments, 7 base-layer classifiers are used. The feature sets are
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prepared with fixed and equal Covj = [Σ1 . . .Σc]T , where

Covj = ( 5 5

5 5
)

is the covariance matrix of the class conditional distributions in Fj , ∀c, c′ = 1,2, . . . ,12, ∀j =

1,2, . . . ,7. In other words, ϑ
1

2

1 = 5 and ϑ
1

2

2 = 5.

The features are distributed with different σc,c
′

BC and converged towards each other using Al-
gorithm 5. The matrix Ωj = [ōc,j]12c=1, with the row vectors that contain the mean values ōc,j
of the distribution of each class ωc at each space j = 1,2, . . . ,7 is defined as

Ω = [Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7].
In addition, this experimental apparatus enables us to analyze the relationship between the
number of samples which are correctly classified by at least one of the base-layer classifiers
and classification performances of the proposed algorithms. Therefore, the average number of
samples which are correctly classified by at least one base-layer classifier, which is denoted as
Âvecorr, is also given in the experimental results.

In each epoch, features belonging to different classes are distributed with different topologies
in each classifier by different overlapping ratios. For example, feature vectors of the samples
belonging to the ninth class is located apart from that of the rest of the classes in F7, while
they are overlapped in other feature spaces. In this way, the classification behaviors of the
base-layer classifiers are controlled through the topological distributions of the features, and
classification performances are measured by the metrics given in the previous Section 3.3.

In Table 3.1, performances of individual classifiers and the proposed algorithms are given for an
instance of the dataset generated by Algorithm 5, where the datasets are constructed in such
a way that each sample is correctly recognized by at least one of the base-layer classifiers, i.e.
Âvecorr = 1. Although the performances of individual classifiers are in between 53%−66%, the
classification performance of FSG is 99.9%. Performance boost is obtained by the employment
of the decision weighting and sample selection algorithms. In that case, different classes are
distributed at higher relative distances and with different overlapping ratios. The matrix Ω

used in the first experiment is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 −10 −10 −10 −10 −10 −10 −10 −10 −10 10 −15 −25 −25

−10 10 −10 10 −10 10 −10 10 −25 −25 0 0 −15 10

10 −10 10 −10 10 −10 20 −10 15 −15 −10 −10 −25 −25

15 15 15 15 25 25 15 15 15 15 10 10 −15 10

15 5 −25 0 −15 5 −15 5 −15 5 15 15 5 −10

−25 0 15 5 15 5 15 5 15 5 15 5 0 0

5 15 5 15 5 15 5 15 5 15 10 15 −25 25

5 −20 5 −20 5 −20 5 −15 5 −15 −15 −10 25 −25

−5 −5 −5 −5 −5 −5 −5 −5 −5 −5 15 10 25 25

5 5 5 5 5 5 5 5 5 5 0 0 25 0

−5 5 −5 5 −5 5 −5 5 −5 5 −15 10 −10 10

5 −5 5 −5 5 −5 5 −5 5 −5 25 −25 10 −10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Table 3.1: Comparison of the performances (perf. %) of the base-layer classifiers with respect
to the classes (C) and the performances of the FSG, Decision Fusion using Decision Margin
(DFDM) and two sample selection algorithms SS-1 and SS-2, when Âvecorr = 1.

F1 F2 F3 F4 F5 F6 F7 FSG DFDM SS-1 SS-2

C1 66.0 63.6 67.6 62.8 61.6 85.6 50.0 100 100 100 100
C2 67.2 60.8 49.6 50.8 98.4 38.4 36.8 100 100 100 100
C3 54.4 58.8 50.8 85.2 72.4 53.6 47.6 99.2 100 100 100
C4 66.8 64.0 96.8 66.4 61.6 22.8 37.6 100 100 100 100
C5 60.8 90.0 56.0 63.6 75.2 38.8 48.4 100 100 100 100
C6 91.6 57.2 69.6 54.0 66.0 43.6 73.6 100 100 100 100
C7 57.2 55.2 65.2 57.6 60.8 37.2 94.4 100 100 100 100
C8 78.4 75.6 86.0 69.2 54.4 61.6 97.6 100 100 100 100
C9 40.8 41.2 36.0 36.0 32.8 26.0 99.6 100 100 100 100
C10 44.0 32.4 32.0 38.0 37.6 43.2 95.6 100 100 100 100
C11 32.0 35.2 33.6 40.0 39.6 92.8 38.8 99.6 100 100 100
C12 37.6 39.6 34.4 52.0 44.4 97.2 63.6 99.6 100 100 100
AP 58.0 56.1 56.5 56.3 58.7 53.4 65.3 99.9 100 100 100

In Table 3.2, the performance results of algorithms at another epoch of the experiments are
given. In this experiment, 90% of the samples are correctly classified by at least one of the
base-layer classifiers, i.e. Âvecorr = 0.9. The corresponding mean value matrix Ω of each class
at each feature space is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−20 −20 −10 −10 −10 −10 −10 −10 10 −10 10 −15 15 5

−20 20 −10 10 −10 10 −10 10 −5 −10 0 0 −5 10

10 −10 20 −20 10 −10 10 −10 15 −15 −10 −10 −10 −5

15 15 25 25 5 5 −5 10 15 15 10 10 −15 10

15 5 −5 0 −25 25 −10 5 −5 5 15 15 5 −10

−5 0 15 5 25 25 15 5 15 5 15 5 0 0

5 15 5 15 5 15 25 25 5 10 10 15 −5 5

5 −20 5 −10 5 −5 25 25 5 −15 −15 −10 5 −5

−5 −5 −5 −5 −5 −5 −5 −5 −25 −25 15 10 5 5

5 5 5 5 5 5 5 5 25 25 0 0 5 0

−5 5 −5 5 −5 5 −5 5 −5 5 −25 25 −10 10

5 −5 5 −5 5 −5 5 −5 5 −5 15 −15 25 −25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Table 3.2: Comparison of the performances (perf. %) of individual classifiers with respect
to the classes (C) and the performances of the FSG, Decision Fusion using Decision Margin
(DFDM) and two sample selection algorithms SS-1 and SS-2, when Âvecorr = 0.9.

F1 F2 F3 F4 F5 F6 F7 FSG DFDM SS-1 SS-2

C1 97.2 67.6 68.4 69.6 28.0 53.6 65.6 100 100 100 100
C2 96.8 63.2 63.6 41.6 67.6 44.4 30.0 100 100 100 100
C3 56.4 95.2 57.2 66.8 56.8 47.2 66.4 99.6 100 99.9 99.9
C4 60.8 98.0 22.8 30.8 62.0 24.4 46.0 100 100 100 100
C5 56.8 24.0 96.8 27.2 44.8 38.8 50.4 100 100 100 100
C6 32.8 68.4 97.6 71.2 57.2 43.6 14.0 100 100 100 100
C7 54.0 65.6 74.4 96.8 52.4 36.8 24.4 99.6 100 100 100
C8 77.2 43.6 29.6 98.4 48.0 65.6 27.6 99.6 100 99.9 99.9
C9 45.2 34.0 35.2 35.2 98.8 24.8 29.2 100 100 100 100
C10 40.0 33.6 22.4 47.6 90.4 33.6 18.0 100 100 100 100
C11 49.2 28.4 38.0 28.0 38.4 100 26.0 100 100 100 100
C12 34.8 34.4 22.4 34.4 44.4 65.2 98.8 100 100 100 100
AP 58.4 54.6 52.3 53.9 57.4 48.1 41.3 99.9 100 99.98 99.98

In the third set of the experiments, samples are distributed in the descriptors such that 80%

of the samples are correctly classified by at least one base-layer classifier (Âvecorr = 0.8). The
performance results of the experiment are provided in Table 3.3 and the corresponding mean
value matrix Ω is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 −12 −7.5 −7.5 −10 −10 −7.5 −7.5 10 −10 10 −15 10 5

−10 10 −8 8 −10 10 −10 10 −5 −10 0 0 −5 10

10 −10 10 −15 10 −10 10 −10 10 −15 −10 −10 −5 −5

15 15 15 17.5 5 5 −5 10 15 15 10 10 −15 10

15 5 −5 0 −15 15 −10 5 −5 5 15 15 5 −10

−5 0 15 5 15 15 10 5 10 5 10 5 0 0

5 15 5 15 5 15 10 15 5 10 10 15 −5 5

5 −15 5 −10 5 −5 15 −15 5 −15 −15 −10 5 −5

−5 −5 −5 −5 −5 −5 −5 −5 −10 −15 15 10 5 5

5 5 5 5 5 5 5 5 20 20 0 0 5 0

−5 5 −5 5 −5 5 −5 5 −5 5 −5 10 −10 10

5 −5 5 −5 5 −5 5 −5 5 −5 15 −15 10 −15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Table 3.3: Comparison of the performances (perf. %) of individual classifiers with respect
to the classes (C) and the performances of the FSG, Decision Fusion using Decision Margin
(DFDM) and two sample selection algorithms SS-1 and SS-2, when Âvecorr = 0.8.

F1 F2 F3 F4 F5 F6 F7 FSG DFDM SS-1 SS-2

C1 82.8 63.6 66.0 71.2 32.0 54.0 67.2 99.6 100 100 100
C2 73.2 63.6 48.0 34.4 51.6 37.6 29.6 97.2 100 99.5 98.7
C3 55.2 78.0 59.6 51.2 62.4 46.8 69.6 98.4 100 99.1 99.0
C4 61.2 82.0 26.0 31.2 44.4 17.6 52.8 98.4 100 98.8 99.2
C5 53.2 23.2 76.8 29.6 41.2 39.6 45.2 100 100 100 100
C6 24.8 66.4 87.2 62.0 56.4 42.4 21.2 98.8 100 99.2 99.0
C7 54.0 63.2 54.8 88.4 55.2 36.8 23.6 98.4 100 99.0 99.2
C8 80.8 39.2 22.8 74.8 45.2 63.2 23.6 96.4 99.2 96.6 97.8
C9 39.6 33.2 33.2 29.6 83.6 21.6 29.6 99.2 100 100 100
C10 38.4 35.6 30.8 47.6 82.8 38.0 24.0 99.2 100 100 100
C11 33.2 30.0 30.8 30.4 38.8 84.4 29.6 96.4 100 96.8 97.2
C12 40.4 33.2 28.0 40.4 32.4 58.8 81.2 99.2 100 100 100
AP 53.1 50.9 47.0 49.2 52.2 45.1 41.4 98.4 99.9 99.1 98.8

In the fourth set of the experiments given in Table 3.4, samples are distributed in the descrip-
tors such that each classifier can correctly classify 70% of the samples. The corresponding
mean value matrix Ω is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12.5 −12.5 −10 −10 −10 −10 −10 −10 10 −10 10 −15 15 5

−10 15 −10 10 −10 10 −10 10 −5 −10 0 0 −5 10

10 −10 15 −15 10 −10 10 −10 15 −15 −10 −10 10 −5

15 15 19 19 5 5 −5 10 15 15 10 10 −15 10

15 5 −5 0 −17.5 17.5 −10 5 −5 5 15 15 5 −10

−5 0 15 5 17.5 17.5 15 5 15 5 15 5 0 0

5 15 5 15 5 15 17.5 17.5 5 10 10 15 −5 5

5 −20 5 −10 5 −5 17.5 −17.5 5 −15 −15 −10 5 −5

−5 −5 −5 −5 −5 −5 −5 −5 −15 −15 15 10 5 5

5 5 5 5 5 5 5 5 22.5 22.5 0 0 5 0

−5 5 −5 5 −5 5 −5 5 −5 5 −10 10 −10 10

5 −5 5 −5 5 −5 5 −5 5 −5 15 −15 15 −15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.36)

Note that, the performance of the overall FSG decreases as the percentage of the samples
that are correctly classified by at least one classifier decreases, i.e. Âvecorr decreases. This
observation is due to the results given in the previous section which state that the large-sample
classification error of the meta-layer classifier of the FSG is bounded by Bayes Error, which
can be achieved if each sample is correctly classified by at least one base-layer classifier such
that the features of samples belonging to the same class reside in the same Voronoi regions in
the fusion space.

In order to satisfy this requirement, SS-1 and SS-2 algorithms have been employed in the
experiments, and they boost the performance of the FSG. In addition, the amount of their
performance boost increases as Âvecorr decreases. Among all the proposed algorithms, the
best average performance is obtained by DFDM. This is due to the fact that the DFDM
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Table 3.4: Comparison of the performances (perf. %) of individual classifiers with respect
to the classes (C) and the performances of the FSG, Decision Fusion using Decision Margin
(DFDM) and two sample selection algorithms SS-1 and SS-2, when Âvecorr = 0.7.

F1 F2 F3 F4 F5 F6 F7 FSG DFDM SS-1 SS-2

C1 75 42 68 52 36 62 46 99 100 100 100
C2 64 45 41 38 43 37 32 98 100 99 99
C3 46 72 60 40 39 52 46 88 94 90 91
C4 68 72 23 33 45 17 59 98 100 100 100
C5 54 22 70 28 40 42 32 100 100 100 100
C6 22 68 74 50 46 28 18 97 100 99 99
C7 65 62 50 72 44 34 20 96 99 99 99
C8 55 30 25 75 44 61 18 89 95 94 95
C9 36 24 36 30 67 32 23 100 100 100 100
C10 42 32 24 27 74 32 21 98 100 100 100
C11 31 17 34 16 38 70 26 95 99 97 97
C12 33 28 27 41 38 67 68 100 100 100 100
AP 49.3 42.9 44.3 41.8 46.1 44.4 34.2 96.4 98.9 98.2 98.3

algorithm converges to the optimal solution if the Lagrangian of the problem computed on
the data has a saddle point, i.e. the solution exits. When the optimal solution is obtained,
decision vectors of base-layer classifiers or meta-layer feature vectors of samples are aggregated
by minimum decision margin, i.e. the minimum classification error is achieved at the meta-
layer. However, the number of samples eliminated by SS-1 and SS-2 algorithms increases as
Âvecorr decreases. Therefore, sample elimination methods may damage the requirements of
the existence of points of non-zero probability measures or continuity points of the densities
in the datasets [13]. If the eliminated samples cause singularities which violate these two
requirements, then the performance boost is not assured.

3.7.1.1 Convergence Analysis of Decision Fusion using Decision Margin Algo-
rithm

Finally, the relationship between the classification performance of Decision Fusion using De-
cision Margin Algorithm (DFDM) and its parameters is depicted in Figure 3.4 for the exper-
imental results given in Table 3.4.

The results show that the classification performance is more sensitive to λ and θ than the
initial value of α which is used to initialize a vector of scaled dual optimization variables ū.
Because, ū is updated in the iterations of the algorithm and is converged to an optimal solution
if there exits an optimal solution that can be achieved using the training dataset and there is
no duality gap [112].

In this experiment, the selection of the algorithm parameters affected the classification per-
formance by %0.6 since the difference between the maximum and the minimum performance
obtained by DFDM algorithm is 98.9% − 98.3% = 0.6%. Therefore, a reasonable convergence
error for the computation of decision weights can be obtained using the suggested optimization
method in the minimization of decision margins in the DFDM algorithm.
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Figure 3.4: The relationship between the classification performance (Perf. (%)) of the sug-
gested DM algorithm and its parameters.

3.7.2 Experiments on Benchmark Datasets

In the experiments, classification performances of k = 1 nearest neighbor rule, Fuzzy Stacked
Generalization (FSG), Decision Fusion using Decision Margin (DFDM), two sample selection
algorithms SS-1 and SS-2, and the state of the art algorithms, Adaboost, Random Subspace
(RS) and Rotation Forest (RF), are compared using benchmark datasets.

Experiments on the benchmark datasets are performed in two groups, namely, the experiments
on i)multi-attribute and ii)multi-feature datasets. In the multi-attribute experiments, feature
vectors consisting of multiple attributes reside in a single feature space Fj = F1j × . . . × Faj ×

. . . × FAj . In these experiments, decision fusion algorithms are implemented by employing
individual base-layer classifiers on a feature space Faj consisting of an each individual attribute.
In multi-feature experiments, each base-layer classifier is employed on an individual feature
space Fj , ∀j = 1,2, . . . , J . State of the art algorithms have been employed on an aggregated
feature space F = F1 × . . . ×Fj × . . . × FJ in multi-attribute and multi-feature experiments.

In the next subsection, state of the art ensemble learning algorithms which have been used in
the experiments for performance comparison are briefly explained.
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3.7.2.1 A Brief Description of State of the Art Ensemble Learning Algorithms

In this subsection, we provide a short overview for the ensemble learning algorithms employed
in this study, for comparing the suggested supervised decision fusion methods. The algorithms,
namely, Adaboost, Rotation Forest and Random Subspaces are the most popular ensemble
learning algorithms available in the literature. It is well-known that many variants of these
algorithms are available in the literature. In this study, we employ the following basic versions
of these algorithms.

3.7.2.1.1 Adaboost

In the following, the Adaboost algorithm is explained as an ensemble learning approach for
decision fusion, in which a collection of weak base-layer classifiers are generated and combined
using a combination rule to construct a stronger meta-layer classifier which performs better
than base-layer classifiers [125].

Given a set of training samples S = {(si, yi)}Ni=1, at each iteration t = 1,2, . . . , T of the
algorithm, a decision or hypothesis ft(⋅) of the weak classifier is computed with respect
to the distribution pt(⋅) on the training samples at t by minimizing the weighted error

ǫt =
N

∑
i=1
pt(i)I(ft(si) ≠ yi), where I(⋅) is the indicator function. The distribution is initial-

ized uniformly p1(i) = 1
N

at t = 1, and is updated by 1
2
log( 1−ǫt

ǫt
) as follows

pt+1(i) = pt(i)e−
1

2
log( 1−ǫt

ǫt
)yift(si)

Zt
, (3.37)

where Zt is a normalization parameter, called partition function. At the output of the algo-
rithm, a strong classifier H(⋅) is constructed for a sample s′ using

H(s′) = sign( T∑
t=1

1

2
log(1 − ǫt

ǫt
)ft(s′)).

3.7.2.1.2 Random Subspace

The decision fusion strategy of Random Subspace [72] is similar to that of Adaboost and
FSG. Briefly, J feature subspaces Fj , j = 1,2, . . . , J are selected from a set of feature spaces
F , randomly and without replacement. Then, each base-layer classifier is trained on each
randomly selected Fj to predict the base-layer decision, such as a class membership value
µc(x̄i,j). At the meta-layer, base-layer decisions are fused by majority voting or averaging as

µc(x̄i) = 1

J

J

∑
j=1

µc(x̄i,j),∀i, c.

3.7.2.1.3 Rotation Forest

Rotation Forest employs a forest (an ensemble) of decision trees as base-layer classifiers. In
each base-layer classifier, randomly selected feature vectors are rotated according to their
statistical correlation by preserving their order in feature spaces using Principle Component
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Analysis (PCA) algorithm [126]. Then, each classifier predicts the class memberships of sam-
ples using the rotated features. Finally, a meta-layer classifier linearly combines decisions
of the base-layer classifiers to compute the final decision. Formally, the algorithm can be
summarized in the following steps;

1. For each base-layer classifier fa, a = 1,2, . . . ,A, randomly split a set of features into J
subsets Fa,j , j = 1,2, . . . , J ,

(a) Eliminate from a dataset Sa,j ⊂ S, which contains the samples that are represented
by the features in Fa,j , a random subset of classes,

(b) Draw a bootstrap sample S′a,j from Sa,j,

(c) Apply PCA on S′a,j to obtain a matrix of Ca,j of the coefficients of principle com-
ponents,

(d) Construct a block diagonal rotation matrix Ra by arranging the matrices Ca,j in
the order of subset indices,

(e) Then, rearrange the columns of Ra by matching the order of features in F in a new
matrix Ro

a,

(f) In order to update feature vectors for the base-layer classifier, project the original
features in F with Ro

a to a new feature space F ′a.

(g) Finally, train the base-layer classifier with F ′a to predict the class membership values
of the samples µc(x̄i,aRo

a) as the classifier decision, where x̄i,aRo
a is the product of

Ro
a by x̄i,a, ∀i = 1,2, . . . ,N and ∀c = 1,2, . . . ,C.

2. At the meta-layer, compute the meta-layer decision by the average combination of the
decisions of base-layer classifiers as

µc(x̄i) = 1

A

A

∑
a=1

µc(x̄i,aRo
a),∀i, c.

3.7.2.2 Experiments on Multi-attribute Datasets

In the experiments, two-class Breast Cancer (BCancer), Diabetis, Flare Solar (FSolar), Thy-
roid, German, Titanic [118, 119, 120, 121, 122] datasets are used as multi-attribute datasets.
The number of attributes of the feature vectors of the samples in the datasets are given in Ta-
ble 3.5. Training and test datasets are randomly selected from the datasets. The experiments
are repeated 100 times and the average performance values are given in the table. The ratio
of the number of samples belonging to MC to the size of the sample dataset is denoted as
PMC. Performances of the benchmark algorithms and the proposed decision fusion methods
are also given in Table 3.5.

An interesting observation from Table 3.5 is that the k = 1 nearest neighbor rule outperforms
various well-known ensemble learning algorithms such as Adaboost and Rotation Forest, if the
number of attributes is small, e.g. the dimension D = 3.

Experimental results show that the suggested DFDM algorithm performs better than all of
the aforementioned algorithms in all the tests. In addition, the performance gains of the
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sample selection and decision weighting algorithms increase with increasing PMC. In addi-
tion, SS-2 algorithm outperforms SS-1 algorithm in the experiments where the removal of the
samples from the training dataset damages the statistical stability between training and test
datasets. In this case, re-training the base-layer classifiers may recover the statistical stability
[84]. However, SS-2 may perform worse than SS-1 in the experiments where re-training the
base-layer classifiers may not successfully recover the stability, such as in Thyroid dataset.
Moreover, re-training the classifiers based on Ŝ may further increase the divergence between
the distribution of features in Smeta and S′meta.

Table 3.5: Classification performances of the algorithms on Multi-attribute Datasets.

Datasets FSolar German Titanic BCancer Diabetis Thyroid

Num. of Att. 9 20 3 9 8 5
Adaboost 66.21% 75.89% 75.06% 74.87% 75.98% 93.10%

RF 62.75% 74.81% 70.14% 70.58% 72.43% 95.64%
RS 65.04% 75.17% 74.83% 74.08% 74.40% 94.78%

1 NN 60.58% 71.12% 75.54% 67.30% 69.88% 95.64%
FSG 67.33% 75.30% 76.01% 75.51% 77.42% 96.41%
SS-1 68.27% 77.35% 78.14% 76.42% 77.55% 96..62%
SS-2 69.10% 78.12% 78.69% 77.13% 78.14% 96.60%

DFDM 72.49% 80.13% 81.02% 80.15% 79.03% 98.15%
PMC (%) 7.65% 7.21% 13.13% 8.18% 0.83% 0.06%

3.7.2.3 Experiments on Multi-feature Datasets

In this section, the algorithms have been analyzed on two image classification benchmark
datasets, which are Corel Dataset consisting of 600 classes and Caltech 101 Dataset consisting
of 102 classes.

3.7.2.3.1 Experiments on Corel Dataset

In the Corel Dataset experiments, 4 to 8 feature (descriptor) combinations of the MPEG-7
features are used over 10 to 30 classes, each of which contains 100 samples from the dataset.
50 of the samples of each class are used for the training, and the remaining 50 samples are
used for testing.

The employed Haar and 7 of MPEG-7 visual features (descriptors) [128, 129] are summarized
as follows

● Color Structure (Feature Space Dimension Dj = 32) gives information on the spatial
statistics and structural properties of colors in the image. A color structure feature is a
vector of eight bit-quantized histogram values histm(q), where m is the scale of a square
structuring element and q ∈ {1,2, . . . ,Q}, where Q ∈ {32,64,128,256}. For instance, a
feature extracted using m = 8 gives information about the number of times a color is
present in an 8×8 windowed neighborhood which is traversed over the image. Moreover,
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if Q = 32, then each variable of the vector represents the relative spatial frequency of
each quantized color value in the image.

● Color Layout (Feature Space Dimension Dj = 12) captures the spatial arrangement of
colors in an image, similar to Color Structure, but the features are invariant to scale
unlike Color Structure. In order to achieve scale invariance, an image is partitioned
into 8 × 8 = 64 blocks. Then, a representative color is selected from each block by
using a pooling method such as average pooling which computes the average of the pixel
colors in a block. Three pooled images are constructed for luminance, the blue and
red chrominance values. Next, a Discrete Cosine Transform (DCT) is employed on the
pooled images and three sets of DCT coefficients are constructed. In order to group the
low frequency coefficients of the 64 blocks, a zigzag scanning is performed with these
three sets of DCT coefficients. Therefore, 3 zigzag scanned matrices is obtained for each
pooled images. In the experiments, a total of 12 coefficients, 6 for luminance and 3 for
each chrominance, are used.

● Edge Histogram (Feature Space DimensionDj = 80) represents the spatial distribution
of five types of edges, namely four directional edges (horizontal, vertical, left and right
diagonal edges) and a non-directional edge for 16 local regions in the image. Since there
are five types of edges for each local region, 16 ∗ 5 = 80 histogram bins are computed.

● Region-based Shape (Feature Space Dimension Dj = 35) considers all the pixels which
represent a shape, such as the boundary and interior pixels. Therefore, shapes of the
objects consisting of a single connected region or multiple regions with holes can be
represented with that feature. First, a shape is decomposed into a number of orthogo-
nal complex-valued 2-D basis functions using Angular Radial Transform which is a 2D
complex transform defined on a unit disk in polar coordinates. Then, the normalized
and quantized magnitudes of coefficients are used to describe the shape. In the imple-
mentations, twelve angular and three radial functions are used to extract 35 features,
which are concatenated into a feature vector of Region-based Shape descriptor.

● Dominant Color (Feature Space Dimension Dj = 16) provides a compact representa-
tion of descriptive colors in an image region or a whole image. A dominant color feature
vector is

((comp1, p1, σ1), (comp2, p2, σ2) . . . , (compN , pN , σN), homog),
where N is the number of dominant colors in the image, compi is a vector of color space
component values, pi is the fraction of pixels in the image or image region corresponding

to the ith color such that
N

∑
i=1
pi = 1, σi describes the variation of the color values of the

pixels in a cluster around the ith color, and homog is a single number that represents
the overall spatial homogeneity of the dominant colors in the image. In the experiments,
3 dominant colors are computed in RGB space.

● Scalable Color (Dj = 64) computes a color histogram of an image in the HSI color
space and applies a Haar transform-based encoding scheme across values of the his-
togram. In the algorithm, first the histogram values are computed, normalized and
nonlinearly mapped into a four-bit integer representation, giving higher significance to
small values. Then, the Haar transform is applied to the four-bit integer values across
the histogram bins. In the experiments, 64 coefficients of the Haar transform are used,
which are equivalent to histograms with 64 bins.
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● Homogenous Texture (Dj = 62) describes the region texture in an image using the
mean energy and the energy deviation from a set of frequency channels which are com-
puted using Gabor filters computed on the image. Gabor features are computed for each
angular direction 30○ × a, where a ∈ {0,1,2,3,4,5} is the angular index and radial direc-
tion Bb = B0 ⋅2

−b, where b ∈ {0,1,2,3,4} and B0 is the largest bandwidth specified by 1
2
.

Therefore, 30 frequency channels are computed using Gabor filters. For each ith channel,
the energy eni and the energy deviation devi, which are defined as as the log-scaled sum
and standard devitation of the square of the Gabor-filtered Fourier transform coefficients
of an image, are computed. Concatenating eni and devi, ∀i = 1,2, . . . ,30, with the mean
and the standard deviation of the image, a 62 dimensional vector is constructed as a
Homogenous Texture feature vector.

● Haar Descriptor (Dj = 195) employs Haar wavelets to hierarchically decompose an
image in order to obtain information about the coarseness of the image at different scales.
At each scale, three different orientations of Haar wavelets, each of which responds
to variances in intensities across different axes, are used. Therefore, the information
about how intensity varies in each color channel in the horizontal, vertical and diagonal
directions is obtained. In the experiments, each image is scaled into a 128 × 128 pixel
and 4-layer two dimensional Haar wavelet transform is applied. Concatenation of the
wavelet coefficients computed at each layer constructs the feature vector,

In the experiments, the following 4 to 8 feature combinations are used to test the behavior of
the suggested algorithms to feature space dimensions:

● 4 Features (4FS): Color Structure, Color Layout, Edge Histogram, Region-based Shape,

● 5 Features (5FS): Color Structure, Color Layout, Edge Histogram, Region-based Shape,
Haar,

● 6 Features (6FS): Color Structure, Color Layout, Edge Histogram, Region-based Shape,
Haar, Dominant Color,

● 7 Features (7FS): Color Structure, Color Layout, Edge Histogram, Region-based Shape,
Haar, Dominant Color, Scalable Color, and

● 8 Features (8FS): Color Structure, Color Layout, Edge Histogram, Region-based Shape,
Haar, Dominant Color, Scalable Color, Homogenous Texture.

The selected MPEG-7 features have high variance and a well-balanced cluster structure [128].
These properties allow us to distinguish the samples in different classes. In addition, the feature
vectors in the descriptors satisfy i.i.d. (independent and identically distribution) conditions
by providing high between class variance values [128]. Therefore, the statistical properties of
the feature spaces provide wealthy information variability.

In the Corel Dataset, two types of experiments are employed. In the first type of the ex-
periments, samples belonging to a pre-defined set of classes is selected to construct smaller
datasets. Then the change of the performance of the algorithms is analyzed as the new sam-
ples belonging to the new classes are added to the datasets and the new features are added
to the feature sets. In the second type of the experiments, the datasets are constructed by
selecting samples belonging to randomly selected classes. In these experiments, the random
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class selection procedure is repeated 10 times and the average performance of the experiments
for each procedure is given.

The pre-defined class names of 10, 15 and 20 class classification experiments are the following

● 10 Class Classification: New Guinea, Beach, Rome, Bus, Dinosaurs, Elephant, Roses,
Horses, Mountain, and Dining,

● 15 Class Classification: Classes used in 10 Class Classification together with Autumn,
Bhutan, California Sea, Canada Sea and Canada West,

● 20 Class Classification: Classes used in 15 Class Classification together with China,
Croatia, Death Valley, Dogs and England.

When the sample set is fixed, the change of the classification performance is analyzed as the
new features are added from combinations of 4FS to 8FS feature sets. The classification results
are given in Table 3.6. In the experiments, the Fuzzy Stacked Generalization and its sample
selection and decision weighting algorithms outperform the benchmark algorithms. Moreover,
the suggested DFDM algorithm gives the highest classification performance among all the
classification algorithms.

As new features are added, the performances of the algorithms which employ majority voting
to the classifier decision may decrease. For instance, when Dominant Color and Scalable Color
features are added to the combination of features in 5FS to construct the 6FS and the 7FS,
the classification performances of the FSG and the Random Subspace, which employ majority
voting at the meta-layer classifiers, decrease.

However, the algorithms which employ weighted decision fusion at the meta-layer, such as
Adaboost, Rotation Forest and DFDM, are more robust to the integration of spurious features
to the existing feature sets as observed in Table 3.6. This fact is observed specifically in the
weighted combination or selection of the decisions of the base-layer classifiers employed on
Dominant Color and Scalable Color features; if these features do not provide discriminative
information about the samples, or provide destructive information, then lower weights are
assigned to the decisions of the classifiers employed on these features.

Note that the PMC decreases when Dominant Color and Scalable Color features are added
to the feature set 5FS. Although these features do not provide discriminative information
to the base-layer classifiers in order to increase their average classification performances, the
classification performances of the sample selection algorithms SS-1 and SS-2 increase in the 6FS
and the 7FS. Therefore, Dominant Color and Scalable Color features provide discriminative
information about the specific samples in MC which are correctly classified by the base-layer
classifiers employed on these features.
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Table 3.6: Classification results of the benchmark and the proposed decision fusion algorithms
on the Corel Dataset with varying number of features and classes.

Algorithms 4FS 5FS 6FS 7FS 8FS

10
-C

la
ss

E
xp

er
im

en
ts Adaboost 63.0% 63.6% 63.2% 66.6% 67.2%

Rotation Forest 76.2% 74.4% 74.6% 76.6% 78.2%
Random Subspace 78.1% 77.5% 75.8% 76.9% 75.5%

FSG 85.6% 86.8% 85.6% 85.8% 85.8%
SS-1 86.9% 87.6% 87.4% 87.6% 88.1%
SS-2 86.4% 87.4% 87.4% 87.6% 88.9%

DFDM 87.1% 89.9% 89.9% 90.1% 91.2%
PMC (%) 6.6% 5.1% 5.0% 4.7% 3.6%

15
-C

la
ss

E
xp

er
im

en
ts Adaboost 42.2% 45.5% 43.2% 46.8% 46.8%

Rotation Forest 60.2% 60.6% 60.9% 60.9% 61.3%
Random Subspace 65.5% 64.1% 59.8% 63.3% 61.8%

FSG 66.2% 65.3% 62.3% 62.8% 64.5%
SS-1 67.9% 68.4% 68.3% 68.0% 69.7%
SS-2 69.1% 68.2% 68.8% 68.8% 69.8%

DFDM 70.1% 71.4% 71.4% 73.7% 75.5%
PMC (%) 9.3% 9.1% 8.8% 8.7% 8.6%

20
-C

la
ss

E
xp

er
im

en
ts Adaboost 23.3% 27.0% 27.0% 27.0% 27.0%

Rotation Forest 47.7% 49.5% 49.5% 49.6% 50.4%
Random Subspace 48.3% 48.1% 48.1% 48.6% 48.7%

FSG 52.4% 50.7% 49.9% 50.9% 52.9%
SS-1 54.0% 53.3% 53.8% 53.8% 56.2%
SS-2 54.8% 53.2% 53.1% 53.2% 56.3%

DFDM 54.9% 55.1% 55.1% 56.2% 57.3%
PMC (%) 13.8% 13.1% 12.7% 12.7% 12.5%

58



In the second set of the experiments, the samples belonging to randomly selected classes
are classified. Average (Ave.) and variance (Var.) of the classification performances of the
benchmark and the proposed algorithms are given in Table 3.7 and Table 3.8, respectively.
The classification results in the tables are depicted in Figure 3.5.

In the experiments, the difference between the classification performances of the benchmark
and the proposed algorithms increases as the number of classes (C) increases. The performance
of the Adaboost algorithm decreases faster than the other algorithms as C increases (see Figure
3.5). Moreover, the Adaboost algorithm performs better than the other benchmark algorithms
for classifying the samples belonging to C ≤ 5. However, the difference between the perfor-
mance of the Adaboost and the other benchmark algorithms decreases for the classification of
C ≥ 5. Moreover, the performance of the Adaboost and the FSG is approximately same for
C = 2 class classification. Note also that the difference between their performances increases
as C increases. In addition, 1-NN classifier outperforms the Adaboost and is competitive to
the other benchmark classifiers for C ≥ 7.

Table 3.7: Classification results of the benchmark algorithms on the Corel Dataset.

Benchmark Algorithms

C Adaboost RF RS 1 NN
Ave. Var. Ave. Var. Ave. Var. Ave. Var.

2 90.56% 9.30% 86.00% 0.97% 88.11% 0.75% 82.44% 2.78%
3 81.33% 0.97% 76.27% 0.57% 75.87% 0.62% 75.27% 0.55%
4 73.45% 0.54% 69.75% 0.81% 70.45% 1.27% 69.60% 1.10%
5 64.32% 0.32% 62.72% 0.78% 65.32% 0.92% 61.08% 0.65%
6 61.17% 0.86% 61.67% 0.83% 64.20% 1.24% 60.50% 0.84%
7 54.12% 0.67% 58.00% 0.51% 62.98% 0.45% 56.98% 0.55%
8 53.17% 0.12% 60.03% 0.30% 54.92% 2.36% 58.22% 0.35%
9 49.02% 1.35% 56.98% 1.81% 55.89% 3.37% 54.98% 1.87%
10 39.65% 0.65% 48.35% 0.27% 47.00% 0.35% 47.60% 0.58%
12 38.64% 0.65% 45.57% 0.87% 43.22% 1.13% 45.02% 0.86%
14 33.16% 0.66% 47.16% 0.63% 46.81% 0.71% 45.76% 0.85%
16 29.54% 0.17% 40.42% 0.24% 41.53% 0.29% 39.86% 0.31%
18 25.30% 0.59% 41.56% 0.42% 40.91% 0.47% 39.97% 0.44%
20 19.46% 0.14% 38.27% 0.16% 39.98% 0.21% 36.25% 0.24%
25 16.15% 0.23% 35.92% 0.42% 35.57% 0.63% 33.94% 0.37%
30 14.37% 0.55% 33.53% 0.22% 36.28% 0.58% 32.43% 0.26%
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Figure 3.5: Classification performances of the algorithms on the Corel Dataset. Note that the
best performance is achieved by the suggested Decision Fusion with Decision Margin (DFDM)
algorithm.
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Table 3.8: Classification results of the proposed algorithms on the Corel Dataset.

Decision Fusion Algorithms

C FSG SS-1 SS-2 DFDM
Ave. Var. Ave. Var. Ave. Var. Ave. Var.

2 91.00% 0.43% 93.20% 0.41% 93.26% 0.41% 94.00% 0.34%
3 86.97% 0.53% 88.45% 0.53% 89.91% 0.53% 91.15% 0.55%
4 83.85% 0.59% 85.22% 0.63% 84.15% 0.60% 88.01% 0.56%
5 74.32% 0.42% 75.03% 0.48% 76.37% 0.45% 77.98% 0.45%
6 71.90% 0.67% 73.00% 0.77% 73.16% 0.84% 75.45% 0.71%
7 68.65% 0.44% 70.62% 0.52% 71.20% 0.56% 72.37% 0.43%
8 68.72% 0.28% 68.35% 0.33% 69.84% 0.35% 70.23% 0.19%
9 67.82% 1.16% 67.15% 1.57% 69.02% 1.66% 71.32% 1.22%
10 59.80% 0.37% 59.88% 0.75% 61.58% 0.58% 62.98% 0.61%
12 57.46% 0.48% 56.06% 0.64% 58.13% 0.69% 60.13% 0.50%
14 57.87% 0.75% 58.01% 1.12% 59.44% 0.98% 60.59% 0.72%
16 52.07% 0.44% 50.00% 0.45% 51.03% 0.67% 54.21% 0.37%
18 51.09% 0.47% 52.60% 0.45% 52.31% 0.42% 53.41% 0.40%
20 47.77% 0.20% 48.17% 0.31% 49.56% 0.25% 51.58% 0.18%
25 45.84% 0.42% 46.41% 0.72% 47.35% 0.66% 50.81% 0.35%
30 41.33% 0.52% 38.93% 0.92% 40.93% 0.89% 44.85% 0.69%

3.7.2.3.2 Experiments on Caltech Dataset

In Caltech Dataset experiments, the samples belonging to 2 to 10 different classes are randomly
selected from the dataset. The experiments are repeated 10 times for each class.

In the experiments, the features provided by Gehler and Nowozin [123] are used for the con-
struction of the feature spaces. Four feature spaces are constructed using three visual de-
scriptors. Two features spaces consist of SIFT features extracted on a gray scale and an HSI
image. The third and the fourth feature spaces contain the features extracted using Region
Covariance and Local Binary Patterns descriptors. Implementation details of the features are
given below [123].

● SIFT (Dj = 300 dimensional) descriptors model scale invariant appearance information
[130]. In the experiments, the descriptors are computed in a regular grid on the image
with a spacing of 10 pixels and four different radii 4,8,12,16. The descriptors are
subsequently quantized into a vocabulary of visual words that is generated by k-means
clustering. Two variants of the descriptor are used by implementing SIFT on a grey
scale image (Dj = 128) and in HSI space (Dj = 384) of the image with a codebook of
size 300.

● Region Covariance (Dj = 112) captures the statistical information on the features
inside an image region by a covariance matrix of the features in that region [131]. Since
covariance matrices do not lie on Euclidean space, they are projected to the tangent-
space of a manifold Sym+7 which is a set of 7×7 dimensional symmetric positive definite
matrices, i.e. a connected Riemannian manifold. The features are extracted at different
scales of an image. The base scale is the image itself and the image is split into four
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non-overlapping windows in each subsequent level. The features computed at the second
level are used as the final feature.

● Local Binary Patterns (Dj = 148) extracts the local relationship between the pixels in
a circular region by comparing the signal intensity value of a center pixel with that of its
neighbor pixels in the region [132]. In the experiments, histograms of uniform rotation
invariant LBP8,1 features are computed using the gray values of 8 equally spaced pixels
on a circle of radius 1 at the second level of the image scale representation described
above.

Table 3.9: Classification results of the benchmark algorithms on the Caltech Dataset.

Benchmark Algorithms

C Adaboost RF RS 1 NN
Ave. Var. Ave. Var. Ave. Var. Ave. Var.

2 96.47% 0.13% 87.72% 2.86% 87.70% 1.31% 87.78% 2.00%
3 89.68% 0.11% 80.90% 0.46% 81.20% 0.33% 80.90% 0.46%
4 81.21% 1.55% 74.17% 1.82% 76.10% 1.73% 72.20% 2.62%
5 83.27% 0.95% 77.66% 0.92% 76.91% 1.07% 77.55% 1.24%
6 85.14% 0.69% 82.73% 0.47% 83.42% 0.51% 80.97% 0.97%
7 77.00% 0.55% 76.86% 0.32% 76.79% 0.49% 76.71% 0.25%
8 68.49% 1.14% 71.46% 0.97% 70.13% 1.07% 66.77% 2.83%
9 75.48% 0.88% 75.90% 0.71% 75.93% 0.83% 75.69% 0.76%
10 64.30% 0.34% 65.66% 0.20% 65.47% 0.18% 62.30% 0.30%

Table 3.10: Classification results of the proposed algorithms on the Caltech Dataset.

Decision Fusion Algorithms

C FSG SS-1 SS-2 DFDM
Ave. Var. Ave. Var. Ave. Var. Ave. Var.

2 95.64% 0.28% 96.15% 0.29% 97.42% 0.19% 99.05% 0.15%
3 90.46% 0.12% 91.07% 0.12% 92.33% 0.18% 94.01% 0.22%
4 85.32% 0.70% 85.75% 0.81% 86.40% 0.74% 87.93% 1.19%
5 88.57% 0.41% 89.47% 0.69% 90.09% 0.70% 91.26% 0.61%
6 92.15% 0.25% 93.89% 0.33% 94.88% 0.21% 95.49% 0.85%
7 88.54% 0.23% 87.93% 0.99% 88.90% 0.50% 90.79% 0.25%
8 85.89% 0.35% 86.17% 0.14% 86.31% 0.95% 87.09% 0.99%
9 86.28% 0.24% 87.20% 0.41% 88.27% 0.44% 89.05% 0.39%
10 81.06% 0.23% 82.20% 0.33% 83.01% 0.29% 84.67% 0.85%

In the experiments with Caltech dataset, classification performances of the algorithms do
not decrease linearly by increasing number of classes as observed in the experiment with
Corel dataset. Note that this non-linear performance variation is observed for all of the
aforementioned algorithms. This may be occurred because of the uncertainty in the feature
vectors of the samples which is caused by the descriptors employed on the dataset instead
of the instability of the classification algorithms. For instance, Adaboost performs better
than the other algorithms for C = 2. In addition, the difference between the classification
performances of Adaboost and FSG is 0.78% for C = 3. However, the difference increases to
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17.40% for C = 8 where Adaboost performs worse than the other algorithms. In all of the
experiments, DFDM outperformed the other algorithms.

3.8 Chapter Summary

In this chapter, the classification error minimization problem have been addressed for Decision
Fusion. The error minimization problem has been studied using k-Nearest Neighbor algorithm
in two parts; i) the minimization of the difference between N -sample and large-sample classi-
fication errors, and ii) the minimization of the large-sample classification error.

k-NN algorithm has been employed for the analysis of the error difference minimization prob-
lem because of three reasons. First, the error of k-NN is upper and lower bounded by the
Bayes Error which is the minimum achievable classification error by any classification algo-
rithm. Therefore, the error bounds are tractable. Second, k-NN can be considered as a
decision fusion algorithm which combines the decisions of the neighbor samples of a given
test sample to estimate its label or class membership value. In addition, k-NN is a powerful

nonparametric density estimation algorithm used for the estimation of posterior probabilities
to design distance functions.

Distance learning problem for classification error minimization is analyzed as a feature vector
mapping, decision and feature space design, i.e. classifier design and decision fusion, problem.
In order to solve these problems, a hierarchical decision fusion algorithm called Fuzzy Stacked
Generalization (FSG) is employed.

Base-layer classifiers of the FSG are used for two purposes; i) mapping feature vectors to
decision vectors and ii) estimating posterior probabilities, which are the variables of the dis-
tance function, using the datasets. Decision vectors in the decision spaces are concatenated
to construct the feature vectors in the fusion space for a meta-layer classifier.

One of the major contributions of the suggested decision fusion methods is to minimize the
difference between N -sample and large-sample classification error of k-NN. This property is
shown by using the distance learning approach of Short and Fukunaga [14]. In addition,
samples should be classified with complete certainty as shown by Cover and Hart [13] in order
to converge the large-sample classification error to Bayes Error. In FSG, this condition should
be satisfied by the meta-layer classifier employed on the fusion space in almost everywhere,
i.e. by each feature vector of each sample.

In order to assure this condition, first a distance function called Decision Margin (DM), which
measures the distance between the feature of a sample and its target location defined by
its target label in the fusion space, is introduced. Moreover, DM gives information about
the decisions of base-layer classifiers on the samples. Therefore, the relationship between
classification performances of base-layer classifiers and meta-layer classifier can be analyzed
using DM.

Minimization of DM values of the samples in decision spaces can be achieved by minimizing
the N -sample classification errors of the base-layer classifiers. Moreover, large-sample error of
the meta-layer classifier can be minimized by minimizing DM values in the fusion space. For
instance, if a sample is correctly classified by base-layer classifiers with maximum certainty,
then DM of the sample is minimum. If DM of the sample is minimum, then the feature
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vector of the sample is closer to the vertex which represents its target class label than the
other vertices of a polytope of feature vectors in the fusion space. If DM values of all of the
samples are minimum, then the samples are correctly classified with maximum certainty by
the meta-layer classifier.

In order to compute the weights which minimize DM values, weighted decision fusion problem
is defined as a convex optimization problem. In order to employ a decision selection strategy,
which assigns zero weights to decisions of base-layer classifiers that provide decisions with large

DM values, sparsity constraints are used in the optimization problem. Then, the optimization
problem is solved using an optimization algorithm called Alternating Direction Method of
Multipliers.

Decision Fusion with Decision Margin (DFDM) algorithm minimizes DM values of samples
averaged over the training dataset. However, we may also need to assure that each sample
is correctly classified with complete certainty in the fusion space. This requirement can be
partially satisfied by forcing the samples that belong to the same class in the same Voronoi
region in the fusion space. Noticing that the decision vectors of the samples provided by the
base-layer classifiers define the belongingness of the samples to Voronoi regions, the features
of the samples that could not be correctly labeled by at least one base-layer classifier are elimi-
nated from the base-layer and meta-layer feature spaces using two sample selection algorithms,
SS-1 and SS-2, respectively.

The proposed algorithms are tested on artificial and benchmark datasets by the comparisons
with the state of the art algorithms such as Adaboost, Rotation Forest and Random Subspace.

In the first group of the experiments, the samples belonging to different classes are gradually
overlapped in the synthetic datasets. The experiments are designed in such a way that the
requirements of N -sample and large-sample error minimization conditions are controlled.

It is observed that if one can design the feature spaces such that Âvecorr ≈ 1, the classification
performance of FSG becomes significantly higher than that of the individual classifier perfor-
mances. This experiment also shows that the performance of FSG depends on sharing and
collaborating the features of the samples rather than the performance of individual classifiers.

In the experiments, sample selection methods boost the performance of FSG if PMC is not
too large such that the removal of the samples from the training datasets does not cause singu-
larities in the datasets. In addition, eliminating the misclassified samples from the base-layer
output space may bring many problems, such as loss of information or curse of dimensionality.
In all of the experiments, DFDM has provided better classification performances than the
other algorithms.

In the second group of experiments, the proposed algorithms are compared with state of the art
algorithms using benchmark datasets. In two class multi-attribute classification experiments,
FSG and Adaboost provide similar performances. Meanwhile, Adaboost outperforms FSG for
the classification of samples with high dimensional features such as D = 20. This is observed
due to the curse-of-dimensionality observed in the fusion space which is 20×2 = 40 dimensional.
However, DFDM eliminates decisions of some of the base-layer classifiers in the construction
of the fusion space, therefore, provides better classification performance.

FSG with sample selection and DFDM algorithms outperform state of the art algorithms in the
experiments employed on multi-feature datasets, especially for the classification of the samples
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belonging to C > 2 number of classes. The difference between the classification performances
of the proposed algorithms and the state of the art algorithms employed on multi-feature
datasets is greater than that of the difference observed in multi-attributed datasets because
of two reasons. First, the proposed algorithms fix the dimensions of the feature vectors in
fusion space to CJ (number of classes × number of feature extractors) no matter how high is
the dimension of the individual feature vectors at the base-layer. Second, employing distinct
feature extractors for each base-layer classifier enables us to split various attributes of the
feature spaces, coherently. Therefore, each base-layer classifier gains an expertise to learn a
specific property of a sample, and correctly classifies a group of samples belonging to a certain
class in the training data. This approach assures the diversity of the classifiers as suggested
by Kuncheva [133] and enables the classifiers to collaborate for learning the classes or groups
of samples. It also allows us to optimize the parameters of each individual base-layer classifier
independent of the other.
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CHAPTER 4

APPLICATIONS OF DECISION FUSION
ALGORITHMS

4.1 Building Detection with Decision Fusion

Building detection is one of the challenging problems of target detection in remote sensing
applications. Although various algorithms have been developed for a better automatic building
extraction, they do not provide an exact solution for an automated building detection system.
The state of the art methods aim to solve this problem with a great variety of approaches, which
can be grouped under unsupervised and supervised detection methods. The unsupervised
algorithms basically, detect the buildings using predefined rule-based models and unsupervised
classifiers. A popular approach in this group is to employ the shape based features which
represent the rectangular structure of the roofs [134].

Some of the unsupervised learning algorithms employ techniques to discriminate and remove
the irrelevant regions from the image. Then, they focus on the regions which include buildings.
Sirmacek and Unsalan [135] formulate the urban-region and building detection problems using
graphical models. Ok et al. [136] use the shadow evidence to focus on building regions. Their
proposed approach models the directional spatial relationship between buildings and their
shadows.

A group of unsupervised methods is supported by a set of knowledge based rules to compute
decisions [134, 137]. The main drawback of this model is the construction of knowledge
based rules which are defined using object specific assumptions such as the size or shape of
the buildings. Therefore, the performance of the algorithm depends on the validity of the
assumptions; if the assumptions are not valid for the test images, then the algorithm may fail.
For instance, Saeedi and Zwick [134] assume that the buildings are separated by a distance
value which is smaller than a user defined threshold value. However, the threshold value
depends on the type and the location of the buildings, such that the hotels in urban areas and
the cottages in rural areas are separated by different distances.

In supervised learning approaches, a set of training samples (i.e., pixels, segments or features
with ground truth data) is used to train the classifiers which are employed to classify a given
test sample. The crucial step of the supervised building detection methods is the design of the
feature spaces. A popular approach is to use the mean color of the RGB bands and simple
texture features. A good example of this approach can be found in Turker and Koc San [138],
where they use color intensity, normalized digital surface model and Normalized Difference
Vegetation Index (NDVI) for feature extraction. Also, Inglada [139] extracts low and high
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level geometric features which are aggregated under the same vector space. Recent studies
on building detection methods are reviewed in [140, 141]. Mountrakis et al. suggest to use
another state of the art supervised learning algorithm Support Vector Machines (SVMs) [142]
in remote sensing applications [143].

In this study, building detection problem is solved by the decision fusion algorithm Fuzzy
Stacked Generalization (FSG) introduced in Chapter 3. Figure 4.1 shows the block diagram
representation of the suggested building detection method. In the first step of the method, a
remotely sensed image is segmented using Mean Shift segmentation method [144]. In order to
optimize the parameters of the Mean Shift algorithm, a new metric called Overall Segmentation
Quality is defined, and an optimal parameter set which maximizes this metric is selected for
each experiment. Then, the segments which belong to the vegetation and shadow regions are
identified and discarded from the image. Next, various multi-modal color, shape and texture
features are extracted from each segment. The features are fed to separate classifiers. Finally
the output decision spaces of each classifier are fused in FSG to detect buildings.

The performance of the proposed algorithm is examined using a multi-spectral image dataset
which consists of QuickBird satellite image with a 60cm spatial resolution. The performance of
FSG is compared with the other machine learning algorithms used for building detection, such
as SVMs and with one of the recent approaches proposed by Turker and Koc San mentioned
above [138].

The next subsection describes the proposed building detection algorithm which employs the
FGS.

Figure 4.1: The building detection method with decision fusion.
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4.1.1 An Overview of the Proposed Building Detection Method

This section introduces the major steps of the suggested building detection algorithm, which
includes, segmentation, pre-processing of the segments using vegetation and shadow elimina-
tion, feature extraction and hierarchical classification with FSG.

4.1.1.1 Mean Shift Segmentation and Optimization of its Parameters

In this chapter, Mean Shift segmentation algorithm [144] is used for segmenting the remotely
sensed images. The Mean Shift algorithm is a density estimation based mode detection and
data clustering algorithm, which was proposed by Fukunaga and Hostetler [145]. The algo-
rithm has been used successfully for image segmentation and clustering [144].

Given a set of vectors x̄i ∈ RD, i = 1,2, . . . ,N , with bandwidth values hi > 0, the estimator is

f̂K(x̄) = 1

N

N

∑
i=1

1

hDi
k(∥x̄ − x̄i∥2),

where k(⋅) is called the profile of the spherically symmetric kernel K defined as

K(x̄) = ck,Dk(∥x̄∥2) ,
where K(x̂) > 0, ∥x̂∥ ≤ 1 and ck,D is a normalization constant which assures the integration of
K(x̂) to 1.

In Mean Shift, since we are interested in the differentials of the kernels, we seek the modes
and the means of the distributions in the algorithm. Therefore, the differential of the kernel
profile is defined by the function

g(x̄) = −k′(x̄),
when the differential of k(x̄) exists.

When the gradient of the estimator is computed, we get the following mean shift vector:

ˆ̄x =

N

∑
i=1
x̄i

1

h
(D+2)
i

g(∥ x̄−x̄i
hi
∥2)

N

∑
i=1

1

h
(D+2)
i

g(∥ x̄−x̄i
hi
∥2) − x̄ ,

which points towards the direction of maximum increase in the density [144].

Then, we achieve the nearest stationary point of the density iteratively via

ˆ̄xj+1 =

N

∑
i=1
x̄i

1

h
(D+2)
i

g(∥ ˆ̄xj−x̄i
hi
∥2)

N

∑
i=1

1

h
(D+2)
i

g(∥ ˆ̄xj−x̄i
hi
∥2) , j = 1,2, . . . .

In the employment of the Mean Shift algorithm to image segmentation, the spatial coordinates
are evaluated with the feature vectors. Therefore, the density is estimated in a joint domain
and the density estimation kernel is defined as the product of two radially symmetric kernels
with a single bandwidth parameter for each domain as follows,
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K(x̄) = C

h2sh
D−2
r

k(∥ x̄s
hs
∥2)k(∥ x̄r

hr
∥2) , (4.1)

where hs is the spatial resolution parameter, which affects the smoothing and the connectivity
of the segments, and hr is the range resolution parameter which affects the number of the
segments [144]. x̄s represents the spatial coordinate of the pixels and x̄r represent the range
of the pixels, such that x̄r ∈ R3 for the segmentation of an RGB image. Some of the smallest

regions are eliminated or merged with the nearest regions in order to deal with the noisy
patches in the implementations. The size of the smallest region is defined by the user with
the parameter minArea.

In the employment of the Mean Shift algorithm to image segmentation in this chapter, R, G
and B pixel values are transformed into LUV color space. A fixed kernel, with bandwidth
parameters hs and hr is constructed. Then, the kernel is shifted to the point corresponding
to the mean value of the sample points (feature values of the pixels in LUV space) which
are within the corresponding bandwidth of each sample point. This process is iteratively
applied until the Mean Shift vector converges to a point at which the density estimations are
stationary, i.e. do not change. After the convergence is achieved, the pre-segments which
are within the pre-defined spatial and spectral proximity, are merged. Finally, the smallest

regions are eliminated or merged with the nearest regions to compensate for the noisy patches.
The size of the smallest region is defined by the user with the parameter minArea, as will be
explained in Section 4.1.2.

The detection performance of the buildings highly depends on the segmentation output. In
other words, the features extracted from the segments, which represent the buildings in a single
region are more discriminative than the features extracted from the output of under-segmented
or over-segmented images. Although there are several studies focused on the selection of
optimal Mean Shift segmentation parameters [146],[147], in this study, a computationally
efficient approach which is designed for building detection problem, is suggested to estimate
the optimal parameters.

Let Sψj = {si}Ni=1 be the segmentation result which is obtained from the Mean Shift algorithm
implemented with a parameter tuple ψj = (hsj, hrj ,minAreaj) selected from a set of parame-
ters ψ = {ψj}Λj=1 for a training image, I. The pixels of I are marked as building or background
using a ground truth image, IG. The number of pixels in a segment si is defined as Mi, and
the number of pixels which represent buildings (i.e., the pixels which are marked as buildings
in I

G) in si is defined as M b
i . Then, a set of segments is defined as Db

ψj
= {si ∶ M b

i > sMi},
where s ∈ R is a given constant. In order to select the optimal ψj parameters, two metrics are
defined as

SFψj =
∣M(Db

ψj
)⋂ϑG∣

∣M(Db
ψj
)∣ , (4.2)

GTCψj =
∣M(Db

ψj
)⋂ϑG∣

∣ϑG∣ , (4.3)

whereM(⋅) defines a set of pixels in the boundaries of segments in Db
ψj

. ϑG is the set of the
boundary pixels in the ground truth image, and ∣ ⋅ ∣ is the set cardinality. SFψj (Segmentation
Fitting) measures the accuracy of individual segments to represent a building, and GTCψj
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(Ground Truth Coverage) measures the quality of representing a building’s boundary without
considering the number of oversegments. Finally, the Overall Segmentation Quality (OSQψj )
is computed by combining these metrics under one equation as follows;

OSQψj = 2
(SFψj)(GTCψj)
SFψj +GTCψj

. (4.4)

Then, an optimal parameter tuple ψ̂ is selected using

ψ̂ = argmax
ψj∈ψ

OSQψj . (4.5)

In the experiments, (4.5) is solved by exhaustive search on a given set of parameters ψ. The
implementation details for finding an optimal parameter tuple ψ̂ are given in the experiments.

4.1.1.2 Pre-processing: Elimination of Vegetation and Shadow Regions

The segments which belong to vegetation and shadow regions are identified and discarded to
avoid the false alarms in building detection. In order to detect vegetation regions, Normalized
Difference Vegetation Index (NDVI) is utilized [148] as

NDV I =
NIR −R

NIR +R
, (4.6)

where R and NIR represent red and near-infrared bands, respectively. For each image, a
threshold value τNDV I is computed using the Otsu method [149]. Then, the pixels whose
NDV I values are greater than τNDV I are marked as vegetation pixels, and a vegetation mask
is generated. The number of vegetation pixels in each segment si is defined as Mv

i . Then, a
segment si is labeled as vegetation, if Mv

i > sMi.

Moreover, a multi-spectral false color shadow detection algorithm proposed by Teke et al. [150]
is used due to two important reasons:(i) their proposed approach utilizes the advantage of the
NIR band, and (ii) the shadow detection algorithm does not require user defined thresholds.
In this approach, NIR, R and G are used to generate a false color image. Once the false
color image (NIR-R-G) is obtained, it is converted into HSI color space. The RatioMap is
defined as

RatioMap =
S − I

S + I
, (4.7)

where S is the normalized saturation, and I is the normalized intensity. The extracted
RatioMap is binarized using Otsu method to obtain a set of pixels which represent both
shadows and vegetations, called shadow and vegetation pixels, respectively. After the vege-
tation pixels are eliminated using NDV I, a segment si is labelled as a shadow segment, if
M s
i > sMi, where M s

i is the number of shadow pixels in si.

4.1.1.3 Features used in the Building Detection Algorithm

Given a segmented image represented by the dataset S
ψ̂
= {si}Ni=1 consisting of N segments

si, a set of features Fj is constructed using the following jth feature extractor;

S
ψ̂
= {si}Ni=1Ð→Fj = {x̄i,j , yi}Ni=1 ,∀j = 1,2, . . . , J, (4.8)
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where x̄i,j ∈ RDj is the feature vector extracted from the ith segment in the dataset, and yi is
the label of the corresponding segment. The base-layer consists of J classifiers each of which
is fed by a set of distinct features extracted from the same segment. A feature set Fj , which
is fed to an individual base-layer classifier is selected to represent different physical properties
of the segments. Therefore, the feature extractors are considered as low-level information
extractors.

The features employed in this section have been studied in various papers on object detection
[151] [81]. Since the goal of this section is to show the performance improving effect of the
suggested Fuzzy Stacked Generalization architecture, feature or sample selection algorithms
have not been implemented for this problem.

A diverse set of features, which are used to extract information about color, texture and shape
characteristics of segments, is given below. Mathematical definitions of the features which are
used to construct Fj and the dimensions of the feature vectors are provided in Table 4.1. The
dimensions of the feature vectors described in this section, are given in Table 4.1.

● Color Features For each segment si, the standard deviation of the intensity values
of the pixels in si, stdci ∈ RDim , is computed, where Dim = 4 is the number of color
bands. Moreover, each color band is divided into 8 histogram bins for each segment
si,∀i = 1,2, . . . ,N . Then, a probability density vector (hist_pdvi), which describes the
ratio of the number of pixels belonging to each bin to the total number of pixels, is
computed for each segment si. In addition, for each si, the first (hist_meani), the
second (hist_variancei), the third (hist_skewnessi) and the fourth (hist_kurtosisi)
moments, hist_energyi and hist_entropyi measures are computed using the probability
density values estimated from the histogram, as described in [152], and given in Table
4.1.

● Shape Features Three shape features are extracted for each segment. The first feature
is the areai, which is the number of pixels belonging to si. In order to utilize the rect-
angular shape properties of the buildings, rectangularityi is computed. Moreover, the
major axis length and minor axis length are concatenated to generate a two-dimensional
shape vector, axis_lengthsi.

● Texture Features Texture provides important information on the structure of the ob-
jects in remote sensing. In this study, the Gray-Level Co-occurrence Matrix (GLCM)
[153] is used to extract textural information. In order to construct a GLCM, each band is
employed as a grayscale image, and discretized into 8 levels. After discretization, 4 differ-
ent GLCMs of each segment si are computed in four directions {0, 45, 90, 135}, and then
these matrices are used to compute glcm_contrast, glcm_correlation, glcm_energy,
glcm_entropy features as suggested in [153].

4.1.1.4 Decision Fusion with the Fuzzy Stacked Generalization

Building detection problem is formulated as a two-class classification problem in which the
segments with yi = 0 belong to background class, and the segments with yi = 1 belong to
building class. The membership values, µc(x̄i,j) of the features x̄i,j for the cth class, ∀c =
1,2, are computed by each base-layer classifier using (3.9). Therefore, a two-dimensional

72



Table 4.1: Mathematical definitions of the feature extraction algorithms. Recall that, Fj
represents the jth feature space,Dj represents the dimension of Fj , where a different descriptor
is used in each Fj .

Fj Dj Description

stdci = [stdc1i , stdc2i , stdc3i , stdc4i ] 4 stdcDbi =

¿ÁÁÀ 1
Mi

Mi

∑
j=1
(xDbij −mcDbi )2 , where mcDbi =

1
Mi

Mi

∑
j=1

xDbij , Db is the selected band and Mi is the

number of pixel in si and xij is the intensity value
of jth pixel in si

hist_pdvi = [pdv1i1, pdv1i2, . . . , pdv4i8] 32 pdvDbim =
h
Db
im

8

∑
n=1

h
Db
in
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hist_mi = [hm1
i , hm

2
i , hm

3
i , hm

4
i ] 4 hmDb

i =
8

∑
n=1

pdvdinn

hist_vi = [hv1i , hv2i , hv3i , hv4i ] 4 hvDbi =
1
N

8

∑
n=1
(pdvDbin (n − hist_mDb

i )2)
hist_si = [hs1i , hs2i , hs3i , hs4i ] 4 hsDbi =

1√
hist_vari

3

8

∑
n=1
(pdvDbin (n − hist_mDb

i )3)
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1√
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∑
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2
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3
i , hen

4
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8
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(pdvDbin )2

hist_entropyi =[het1i , het2i , het3i , het4i ]
4 hetDbi =

8

∑
n=1

pdvDbin log(pdvDbin )
rectangularityi = Mi

majoriminori
1 minori and majori are the length of major and mi-

nor axes lengths
axis_lengthsi = [majori,minori] 2 minori and majori are the length of major and mi-

nor axes lengths
areai =Mi 1 Mi is the number of pixel in si

glcm_contrasti =[g_ct10i, . . . , g_ct4135i]
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∑
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G
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the GLCM, generated from band the Db, in ψ di-
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in the quantized image.

glcm_correlationi =[g_cr10i, . . . , g_cr4135i]
16 g_crDb

ψi
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∑
k
∑
j

(jk)pDb
ψi
(k,j)−m2
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mean and variance
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membership vector is obtained for each segment si at the output of each base-layer classifier
as

µ̄(x̄i,j) = [µ1(x̄i,j), µ2(x̄i,j)]. (4.9)

The above membership vector of each segment si carries information about the decisions and
performances of the base-layer classifiers for identifying the class label of si with respect to
its input feature vector x̄i,j . Decision vectors of the base-layer classifiers are aggregated to
create the feature vectors of decision space. Then a meta-layer fuzzy k-NN classifier (3.9) is
implemented using the feature vectors in the decision space for the detection of the buildings
using FSG.

In the experiments, the performance of FSG is compared with the performance of the state
of the art Support Vector Machines (SVM) classifier. Therefore, a brief description of SVM
is given in the following subsection.

4.1.1.5 Support Vector Machines

The k-NN algorithm employs a non-linear classification rule in a feature space Fj . Alter-
natively, Support Vector Machines (SVMs) employ linear classification rules that separate
the samples into two half spaces using hyperplanes in a high dimensional feature space, Fj ,
which is constructed by a non-linear mapping f ∶ Fj → Fj [154]. The motivation to employ a
mapping f is to construct linearly separable classes Fj, where the classification rules exhibit
higher performance than in Fj . Note that, a linear classifier employed in Fj is equivalent to
a non-linear classifier in Fj .

In a D′j dimensional feature space Fj , a hyperplane is represented by a weight vector w̄f ∈ RD
′
j

and a bias variable b ∈ R, which results in

w̄f ⋅ f(s) + b = 0, (4.10)

where w̄f is normal to the hyperplane, and f(s) is the feature vector of the sample that lies
on the hyperplane [155]. That being the case, ∣b∣

∥w̄f∥2 is the perpendicular distance between
the origin and the hyperplane. Note that Fj can be infinite dimensional, for instance, when
mapping f is exponential, it results in Gaussian (RBF) kernels. In this case, the problem
is formulated in dual-form. Therefore, the kernel trick, which enables the representation of
the inner products between feature vectors in a kernel, can be used in order to compute the
hyperplanes [156].

In our case, we seek a hyperplane which linearly separates the features of the samples that
belong to the background and building classes in Fj. Clearly, there are infinitely many hy-
perplanes that linearly separate these features. However, we also need to correctly classify a
new test segment s′i using the hyperplane. In order to satisfy this requirement, we choose the
hyperplane that is at the largest distance from the closest feature vectors of the samples that
belong to the background and building classes. For instance, if d+ and d− are the shortest
distances from the hyperplane to the closest feature vectors of the samples from background
and building classes, respectively, we look for the hyperplane with the maximum distance
d+ + d−. This constraint can be formulated [155] as

yi(w̄f ⋅ f(s)+ b) − 1 ≥ 0, ∀i = 1,2, . . . ,N. (4.11)
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Note that, d+ = d− = 1
∥w̄f∥2 . Therefore, a maximum margin hyperplane can be computed by

minimizing ∥w̄f∥2 and using quadratic optimization.

If the training examples in the transformed space are not linearly separable, the optimization
problem can be modified by introducing slack variables ξi ≥ 0, ∀i = 1,2, . . . ,N , in (4.11) which
yields

yi(w̄f ⋅ f(si) + b)− 1 + ξi ≥ 0 ,∀i = 1,2, . . . ,N. (4.12)

In order to compute the hyperplane given in (4.12), the optimization problem can be posed
[32] as

minimize ∥w̄f∥22 +C N

∑
i=1
ξi

subject to yi(w̄f ⋅ f(si) + b) − 1 + ξi ≥ 0
ξi ≥ 0, ∀i = 1,2, . . . ,N

(4.13)

where C is a constant. This optimization problem is solved either in primal form [157] or
in a dual form, which leads to a convex quadratic optimization problem [154, 156, 32], using
various SVM algorithms. In the dual form, the problem is defined as

maximize
N

∑
i=1
ai −

1
2 ∑
i,j

aiajyiyjK(i, j)
subject to

N

∑
i=1
aiyi = 0

C ≥ ai ≥ 0, ∀i = 1,2, . . . ,N,

(4.14)

where K(i, j) is called the Kernel matrix. If K(i, j) = f(si)f(sj), i.e. the inner product of
f(si) and f(sj), an SVM which solves (4.14) is called SVM with Linear Kernel (SVM-Linear).
If K(i, j) = exp(− 1

hsvm

2 ∥ f(si) − f(sj) ∥22), then an SVM which solves (4.14) is called SVM
with Gaussian Kernel (SVM-RBF ), where hsvm is the width of the kernel.

4.1.2 Experiments

In the experiments, a QuickBird satellite image is used. The image includes red, green, blue
and near infra-red bands with a 60cm spatial resolution. 10 different patched images are
selected from the whole image, and some of these images are illustrated in Figure 4.2. The
sizes of four of the patched images are 1646 × 929, 1535 × 968, 1434 × 905, 1917 × 1004, and
the sizes of the rest of the patched images are 1934× 1013. Each image belongs to a different
district of Ankara. During the performance evaluation, randomly selected 4 images are used
for training, and the rest of 6 images are used for testing. Then, the average of the performance
values of 10 experiments with different training subsets is computed. The reference buildings
for each image are marked manually by a qualified human operator to generate the ground
truth.

In this study, s value is set to 0.5 which means, if at least a half of a segment overlaps
with vegetation or shadow masks then this segment represents a vegetation or shadow region,
respectively. Moreover, if at least a half of a segment overlaps with the reference buildings
then this segment considered as a building during the performance calculations. Higher s
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values result in higher precision, but lower recall values. In order to keep the balance between
the precision and recall, s value is set to 0.5.

The classifier decisions are grouped in four distinct categories as True Positive (TP ), True
Negative (TN), False Positive (FP ), and False Negative (FN) as given in Table 4.2. The
segments which are detected as building, and also marked as building in the ground truth data
are categorized as TP . On the other hand, if a building segment is not detected correctly,
then the decision on the segment is categorized as FN . If the algorithm labels a non-building
segment as a building, the decision on the segment is categorized as FP . Finally, the decisions
on the segments, which are not detected as a building, and do not represent a building in the
reference data, are categorized as TN .

Table 4.2: Definitions of TP, FP, TN, and FN.

Building Background
Classified as Building TP FP

Classified as Background FN TN

After each segment is classified, performances of the algorithms are evaluated by using the
well-known three metrics [158] which are defined as

precision =
TP(TP + FP ) , recall =

TP(TP + FN) , f-score = 2
precision.recall(precision+ recall) .

It is important to remember that the precision metric disregards the missed buildings. On
the other hand, the recall pay no attention on false alarms. However, in order to evaluate
the building detection performance, it is crucial to consider both false alarms and missed
buildings. For that reason f-score, which measures the harmonic mean of precision and recall,
is used in the experiments.

In Mean Shift segmentation, minArea is selected as 300 where the minimum building size
in our test site is approximately 120m2 ≈ 400 pixel. In order to select the optimum hs

and hr parameters, the training images are segmented by different hs ∈ {4,5,6,7,8} and
hr ∈ {4,5,6,7,8} parameters. Then, the Overall Segmentation Quality(OSQ) is calculated
using these segmentation results. The set of optimal parameters, which gives the highest
OSQ, is used in the segmentation of the test images. After the segmented images are pre-
processed, the features given in Section 4.1.1.3 are extracted from the segments.

For each experiment, the training set is divided into two subsets. By using the first set, FSG is
trained with different k values (5, 10, 15 and 20) at the base-layer, and the rest of the training
set is used to validate the performance of the meta-layer classifier. The k value which gives
the highest f-score at the meta-layer of FSG in the training phase is selected, and this k value
is used for fuzzy k-nn classifiers at the base-layer during the test phase.

After FSG is trained, the features of the test images are fed to the base-layer classifiers.
Decisions of the base-layer classifiers are fused at the meta-layer to construct a meta-layer
fusion space, and a meta-layer classifier is employed in the fusion space to detect buildings.

Moreover, performance of FSG is compared with SVM (SVM-Linear and SVM-RBF ), and
fuzzy k-nn classifiers, which are employed on an aggregated feature space F = F1 × . . . × Fj ×

. . .×FJ . Finally, FSG is compared with one of the recent approaches proposed by Turker and
Koc San [138] without including normalized Digital Surface Model, since the dataset does not
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(a) Locations of Patches in
Ankara

(b) Image Sample 1 (c) Image Sample 2

(d) Image Sample 3 (e) Image Sample 4 (f) Image Sample 5

(g) Image Sample 6 (h) Image Sample 7 (i) Image Sample 8

Figure 4.2: The example images from Ankara dataset used in the experiments.

contain stereo images. Therefore, the set of features employed in Data-Set 13 (DS13) which
is proposed by Turker and Koc San [138] is used. During these experiments, SVM parameters
are selected using cross-validation as suggested in [159].

The individual performances of the base-layer fuzzy k-nn classifiers, that averages over 10

experiments, are given in Table 4.3. Two sets of experiments are accomplished to compare the
classification performances of the suggested decision fusion method, and the classical single
classifier approach.

In the first set of experiments, base-layer classifiers of the suggested FSG architecture is fed
by a set of 15 different features given in Table 4.1, which is called Feature Set-1.

As it can be seen from Table 4.4, the decision fusion approach improves the highest perfor-
mance obtained at the output of the fuzzy k-NN classifier. Then, the same set of features are
concatenated and the 128-dimensional feature vectors are fed to a single SVM and a single
fuzzy k-NN classifier. The performances of SVM and fuzzy k-nn get worse than the perfor-
mances of the classifiers fed by only histogram mean value feature. Note that the suggested
decision fusion method outperforms all the classifier methods, given in Table 4.4.

Decisions of base-layer classifiers and FSG are visualized in Figure 4.3 for the first sample,
Sample 1 in the dataset. In the label masks,

● yellow pixels belong to the set of pixels in TP,

● red pixels belong to the set of pixels in FP,
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Table 4.3: Performance results of the individual base-layer fuzzy k-nn classifiers using indi-
vidual features.

precision recall f-score

stdc 71.31% 67.17% 69.18%
hist_pdv 86.78% 77.28% 81.75%

hist_m 85.92% 79.61% 82.64%
hist_v 60.74% 61.04% 60.89%
hist_s 81.80% 76.48% 79.05%
hist_k 64.44% 67.18% 65.78%

hist_energy 64.32% 67.92% 66.07%
hist_entropy 68.26% 52.63% 59.43%

rectangularity 67.38% 67.97% 67.67%
axis_lengths 66.19% 67.44% 66.81%

area 59.22% 57.90% 58.55%
glcm_contrast 68.58% 75.62% 71.93%

glcm_correlation 64.77% 74.62% 69.35%
glcm_energy 67.39% 78.93% 72.71%

glcm_entropy 71.10% 80.45% 75.49%

Table 4.4: Performance results of FSG with other classification approaches using all of the
features.

precision recall fscore

FSG 88.86% 78.67% 83.46%

SVM-Linear 78.84% 78.00% 78.42%
SVM-RBF 58.90% 83.48% 69.07%

Turker DS13-RBF 58.13% 62.37% 60.18%
Turker DS13-Linear 90.48% 76.58% 82.95%
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● green pixels belong to the set of pixels in FN, and

● blue pixels belong to the set of pixels in segment boundaries.

In Table 4.4, the recall of the classifier employed on hist_mean is greater than the recall of
the FSG, and its precison is less than that of the FSG. However, the f-score of the classifier
employed on hist_mean is better than that of the other base-layer classifiers, and is close to
the f-score of the FSG.

One of the main reasons of this performance relationship between the base-layer classifier
employed on hist_m and the FSG is the color dominance over the other features in the
dataset. For instance, let us denote the sets of segments which contain buildings with red
roofs as {rei}Ni=1r and buildings with white roofs as {whi}Ni=1w.

Since Nr >Nw in the dataset, color features of the segments in {rei}Ni=1r may construct clusters
in the color feature spaces. Then, color features of the segments in {whi}Ni=1w may reside far
from the clusters. Therefore, average performances of base-layer classifiers employed on the
color feature spaces, such as hist_m and hist_pdv, are greater than the performances of the
other base-layer classifiers.

If dense clusterings occur in color feature spaces, then base-layer classifiers employed on color
feature spaces decide the class of the segments in {whi}Ni=1w as background with large class
posterior probability in decision spaces. If the segments in {whi}Ni=1w have discriminating
shape and textural characteristics, then class posterior probabilities of the segments belonging
to {whi}Ni=1w may decrease when the decisions of the base-layer classifiers employed on color
feature spaces are fused with that of the other base-layer classifiers in fusion space. Therefore,
the FSG provides higher precision values than the base-layer classifiers.

This case can be observed by investigating the results given in Figure 4.3.p and Figure 4.3.q.
In the upper left part of Figure 4.3.p, a segment which contains pixels depicted with green
color is classified as background although its ground truth is building. On the other hand,
that segment is correctly labeled by the other 10 base-layer classifiers employed on shape and
texture features. Therefore, FSG correctly predicts its label by decision fusion in Figure 4.3.q.

If sparse clusterings occur in color feature spaces, then base-layer classifiers employed on
color feature spaces decide the class of the segments in {rei}Ni=1r as building with small class
posterior probabilities in decision spaces. If these segments have the similar shape and textural
properties with the other objects such as roads and farms, then base-layer classifiers that use
shape and texture features may predict labels of these segments either correctly or incorrectly
with large class posterior probability. Then, these segments may have large decision class
posterior probabilities in fusion space. Therefore, FSG may misclassify these segments (see
Figure 4.3).

In the second set of the experiments, the robustness of the FSG is examined with respect
to the random feature selection for building detection. For this purpose, a subset of the 15

features, called Feature Set-2 is selected, and the performance of FSG method is compared
with that of SVMs and base-layer classifiers.

An example of these tests for 7 randomly selected features (stdc, hist_v, hist_k, hist_entropy,
area, axis_lengths and rectangularity) is given in Table 4.5. The results for Feature Set-1
and Feature Set-2 are given in Figure 4.4 and 4.5, respectively.
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(a) RGB image (b) area (c) glcm_contrast

(d) glcm_correlation (e) glcm_energy (f) glcm_entropy

(g) axis_lengths (h) rectangularity (i) stdc

(j) hist_entropy (k) hist_v (l) hist_k

(m) hist_energy (n) hist_s (o) hist_pdv

(p) hist_m (q) FSG

Figure 4.3: Building Detection with Decision Fusion in an experiment on Image Sample 1
using Feature Set-1. Decisions of the base-layer classifiers on the feature spaces are given in
(b)-(p) and the decision of FSG is given in (q).
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(a) Image Sample 1 (b) Results on Feature Set-1 (c) Results on Feature Set-2

(d) Image Sample 2 (e) Results on Feature Set-1 (f) Results on Feature Set-2

(g) Image Sample 3 (h) Results on Feature Set-1 (i) Results on Feature Set-2

(j) Image Sample 4 (k) Results on Feature Set-1 (l) Results on Feature Set-2

Figure 4.4: Results of FSG on the sample images 1-4, where k = 10 is selected for base-layer
fuzzy k-nn classfiers.
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(a) Image Sample 5 (b) Results on Feature Set-1 (c) Results on Feature Set-2

(d) Image Sample 6 (e) Results on Feature Set-1 (f) Results on Feature Set-2

(g) Image Sample 7 (h) Results on Feature Set-1 (i) Results on Feature Set-2

(j) Image Sample 8 (k) Results on Feature Set-1 (l) Results on Feature Set-2

Figure 4.5: Results of FSG on the sample images 5-8, where k = 10 is selected for base-layer
fuzzy k-nn classfiers.
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In all of the tests, the FSG outperforms the f-scores of the individual classifiers at the base-
layer. However, f-score of the SVM with RBF Kernel is 0.44% higher than that of the FSG. In
addition, the f-score of the FSG in Table 4.5 is less than the f-score of the FSG in Table 4.4.
Therefore, feature space selection is critical for the FSG.

Table 4.5: Performance results of the experiments on Feature Set-2.

precision recall fscore

stdc 71,31% 67,17% 69,18%
hist_v 60,74% 61,04% 60,89%
hist_k 64,44% 67,18% 65,78%

hist_entropy 68,26% 52,63% 59,43%
area 59,22% 57,90% 58,55%

axis_lengths 66,19% 67,44% 66,81%
rectangularity 67,38% 67,97% 67,67%

FSG 74,27% 69,83% 71,98%

SVM-Linear 61,29% 55,83% 58,43%
SVM-RBF 56,78% 99,95% 72,42%
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4.2 Target Detection for Multi-sensor Decision Fusion

Sensors with multiple modalities have the capability of sensing the environment by evaluating
the data which represent the different characteristics of the environment. Therefore, the
manipulation and the integration of different type of sensors by Data Fusion algorithms is an
important obstacle for robotics research. One of the challenging problems of Multi-sensor Data
Fusion is to select the best information extractors that manipulate on the multimodal data
which are obtained from different sensors, and achieve inference from the data by reducing
the sensor inaccuracy and the environment uncertainty, thereby, the entropy of the data
representing the environment. Since the physical modality of each group of data obtained
from each individual sensor is discrete and divergent, individual information extractors which
are expert on each modality are required. Moreover, the information extractors should be
complementary in order to supply the decisions made by each individual expert.

Decision Fusion algorithms, which employ ensemble learning approach such as Adaboost, often
process the data sampled from the same distribution and they are experienced with overfitting
of the data. Therefore, most of the Decision Fusion systems may not satisfy the requirements
of multimodal sensor fusion such as the manipulation of the heterogeneous data by considering
the generalization error or risk minimization criteria. In order to meet these requirements,
FSG is implemented for the object detection in this section. The object detection problem
is considered as a multi-class classification problem, where background and each object of
interest belong to individual classes.

4.2.1 Problem Definition and Scenario for Data Acquisition

In the multi-modal target detection problem, data acquisition is accomplished by an audio-
visual sensor, which is a webcam with a microphone located in an indoor environment as
shown in Figure 4.6. In this scenario, recordings of the audio and video data are obtained
from randomly moving two targets T1 and T2, i.e. two randomly walking people, in the indoor
environment. The problem is defined as the classification of the audio and video frames with
two targets in the noisy environment, where the other people talking in the environment and
the obstacles distributed in the room are the sources of the noise for audio and video data.

Four classes are defined for the dataset. The first class represents the absence of the moving
targets, in other words, there is no target in the environment. The second and the third classes
represent the existence of the first and the second target in the environment. In the fourth
class, both of the targets take place in the environment. Definitions of the classes according
to the presence and absence of two targets T1 and T2 in the environment are given in Table
4.6.

Table 4.6: Definitions of classes, according to the presence (☀) and absence (◯) of two
targets, T1 and T2.

Class1 Class2 Class3 Class4

T1 ◯ ☀ ◯ ☀

T2 ◯ ◯ ☀ ☀

The audio characteristics of the targets are determined with specific musical melodies with
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Figure 4.6: The data acquisition setup for the multi-modal decision fusion.

Table 4.7: Number of samples.

Class1 Class2 Class3 Class4 Total

Train 190 190 190 189 759
Test 190 190 160 189 729

different tonalities. In Table 4.7, the number of samples (image frames) belonging to each
class for each data set is given.

The experimental setup is designed to satisfy the one of the requirements of FSG, which is
the correct classification of the samples by at least one of the base-layer classifiers, for the
performance boost given in Chapter 3. Therefore, complementary expertise of the base-layer
classifiers on different classes is aimed to achieve.

For instance, if a target is hidden behind an obstacle such as a curtain (see Figure 4.7), then
a base-layer classifier which employs audio features for classification can correctly detect the
target behind the curtain, even if a a base-layer classifier which employs visual features for
classification, cannot detect the target correctly.

4.2.1.1 Audio-Visual Descriptors for Multi-modal Target Detection

In order to extract visual features from the frames of a video recording, two MPEG-7 descrip-
tors, Homogenous Texture (HT) and Color Layout (CL) described in the previous chapter
are used. Three audio descriptors, Fluctuation (Fluct.), Chromagram (Chrom.) and Mel-
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Figure 4.7: A sample frame used in the training dataset in which a target (T1) is hidden
behind an obstacle which is a curtain.

Frequency Cepstral Coefficients (MFCC), [160] are used to extract audio features. Audio
descriptors are described briefly below.

● Mel-Frequency Cepstral Coefficients (Feature Space Dimension Dj = 25) describes
the spectral shape of an audio signal. In the algorithm, first the Fourier transform is
employed on the audio signal, and the powers of the spectrum are mapped onto the
Mel-scale. Then, a Discrete Cosine Transform(DCT) is applied to the logarithms of
the powers of Mel-scale frequencies. Finally, the amplitudes of the DCT spectrum are
considered as MFCC features.

● Fluctuation (Feature Space Dimension Dj = 35) estimates the rhythmic periodicity in
the audio signal. Similar to MFCC, this is accomplished by the spectral analysis of the
signal. First the spectrogram is computed on audio frames and the Terhardt outer ear
modeling is computed, with Bark-band redistribution of the energy, and estimation of
masking effects [160]. Then, amplitudes of the Fast Fourier Transform (FFT) spectrum
computed on each Bark band are used as features.

● Chromagram (Feature Space Dimension Dj = 12) is used to measure the tonality
in an audio signal by computing the energy distribution of pitches. Briefly, frequency
components of the audio are computed and converted to a spectrogram using the FFT.
Spectrogram is filtered by selecting the frequencies in the range of [100Hz,5000Hz] and
the local maximum values of the spectrum are selected. Finally, variables of a feature
vector, called Chroma, are computed by estimating the energy distribution along 12

pitch classes [160].

4.2.2 Experiments

In the experiments, three different fusion approaches are considered; FSG for the fusion of the
decisions of the classifiers employed on i) visual features ( Video Fusion ), ii) audio features
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( Audio Fusion ) and iii) both audio and visual features ( Audio-Visual Fusion ).

Experimental results show that the base-layer classifiers employed on visual features perform
better than the classifiers employed on audio features for the fourth class. However, the
classifiers employed on audio features perform better than the classifiers employed on visual
features for the first three classes. For instance, the base-layer classifiers employed on the visual
descriptors most likely misclassify the samples from the second class, but perform better than
the other classifiers for the fourth class (see Table 4.8 and Table 4.8). On the other hand,
the base-layer classifiers employed on audio descriptors have a better discriminative power
compared to the base-layer classifiers employed on the visual descriptors for the first class.

One of the reasons of this observation is that the classifiers employed audio features which
are affected by audio noise, are less sensitive to noise than the classifiers employed on visual
features which are affected by visual noise. In other words, two targets have visual appearance
properties similar to the other objects in the environment and the obstacles, such as curtains
and doors, block completely the visual appearance of the targets. On the other hand, the
targets have different visual appearance properties such that the heights of the targets and
color of their clothes are different from each other. In addition, the audio properties of the
measurements obtained from the targets have discriminative characteristics which are different
than the other objects in the environment.

An analysis of Table 4.8 and Table 4.9 reveals that the performance of an individual descriptor
varies across the classes due to similar arguments. As a result, a substantial increase in the
general classification performance of the FSG is achieved.

Table 4.8: Classification performances for training dataset.

Class1 Class2 Class3 Class4 Total

Homogeneous Texture 76.84% 67.89% 76.84% 96.30% 79.45%
Color Layout 93.16% 86.84% 84.21% 97.35% 90.38%

MFCC 99.47% 84.74% 94.74% 83.60% 90.65%
Chromagram 98.42% 90.00% 89.47% 82.01% 89.99%
Fluctuation 94.74% 85.79% 75.79% 52.38% 77.21%

Video Fusion 92.63% 87.37% 84.21% 95.77% 89.99%
Audio Fusion 97.89% 93.16% 96.32% 92.59% 94.99%

Audio-Visual Fusion 99.47% 97.89% 98.42% 100% 98.95%

Table 4.9: Classification performances for test dataset.

Class1 Class2 Class3 Class4 Total

Homogeneous Texture 54.74% 49.47% 43.75% 93.12% 60.91%
Color Layout 76.32% 49.47% 40.63% 83.07% 63.24%

MFCC 92.11% 77.37% 93.13% 81.48% 85,73%
Chromagram 92.63% 84.21% 83.13% 66.67% 81.62%
Fluctuation 93.68% 82.63% 75.00% 52.38% 75.99%

Video Fusion 69.47% 54.21% 45.63% 90.48% 65.71%
Audio Fusion 90.53% 93.16% 93.13% 79.37% 88.89%

Audio-Visual Fusion 93.68% 94.21% 94.37% 97.88% 95.06%
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Each cell of Table 4.10 and Table 4.11 represents the number of samples which are misclassified
by the classifier for the descriptor in the ith row, and correctly classified by the classifier for
the descriptor in the jth column, for the training and test datasets, respectively. In the tables,
the maximum number of misclassified samples for each descriptor is bolded.

For example, 144 samples which are misclassified in HT feature space are correctly classified in
Chromagram feature space. The samples that are misclassified in the feature spaces defined
by the visual descriptors are correctly classified in the feature spaces defined by the audio
descriptors. This is observed when the visual appearance of the targets are affected by the
visual noise, e.g. the targets are completely blocked by an obstacle, such as a curtain, but
their sounds are clearly recorded by the audio sensor, as shown in Figure 4.7. Therefore, it can
be easily observed from the tables that the feature spaces are complementary to each other.

On the other hand, the samples that are misclassified in the feature spaces defined by the
audio descriptors (e.g. Fluctuation and Chromagram) are correctly classified in the feature
spaces defined by the visual descriptors (e.g. CL and HT) when there are other objects that
make sounds with audio characteristics similar to the targets in the environment. In this
case, audio features of the targets are affected by audio noise. If the visual sensor can make
clear measurements on the targets, such that the visual features are not affected by visual
noise, then the classifiers employed in the feature spaces defined by the visual descriptors can
correctly classify the samples.

Table 4.10: Covariance matrix for the number of correctly and misclassified samples for the
descriptors for train dataset.

Train Dataset Correct Classification

M
is

cl
as

si
fi
ca

ti
o
n HT CL MFCC Chrom. Fluct. Total

HT 0 137 142 144 130 156
CL 54 0 64 59 57 73

MFCC 57 62 0 44 40 71
Chromagram 64 62 49 0 39 76
Fluctuation 147 157 142 136 0 173

Table 4.11: Covariance matrix for the number of correctly and misclassified samples for the
descriptors for test dataset.

Test Dataset Correct Classification

M
is

cl
as

si
fi
ca

ti
o
n HT CL MFCC Chrom. Fluct. Total

HT 0 134 247 249 233 285
CL 117 0 235 223 216 268

MFCC 66 71 0 52 54 104
Chromagram 98 89 82 0 61 134
Fluctuation 123 123 125 102 0 175
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4.2.2.1 Statistical Analysis of Feature, Decision and Fusion Spaces

In this section, transformations of class conditional distributions of feature and decision vectors
through the layers of the FSG in feature, decision and fusion spaces are analyzed for target
detection problem described in the previous section. Histograms are used to approximate the
distributions for visualization.

In the histogram representation [161], first the range of random variables A that reside in[0,1] (e.g., posterior probabilities computed by base-layer classifiers in the FSG), is divided
into B intervals (lowb, upb), b = 1,2, . . . ,B representing the width wb = upb − lowb of the bth

bin of a histogram. Denoting the probability density function of A as f , the entropy can be
approximated using

H(A) ≈ − B

∑
b=1

pb,

where the probability of a bin

pb = ∫
upb

lowb

f(a)da, ∀b = 1,2, . . . ,B
is approximated as the area of a rectangle of height f(ab) which is wbf(ab) where ab is a
representative value within the interval (lowb, upb). Then the entropy is approximated as

H(A) ≈ − B

∑
b=1

pb log
pb

wb
.

In order to represent the class conditional distributions using histograms, first the number of
samples belonging to each class is computed by counting nb,c which is the number of samples
that fall into each of the disjoint histogram bins b = 1,2, . . . ,B for each class c = 1,2, . . . ,C, as

Nc =
B

∑
b=1

nb,c

and N =
C

∑
c=1

Nc where N is the number of samples in the dataset. Then a bin probability is

computed as pb,c =
nb,c
N

.

Note that, three different spaces are constructed through the FSG; i) feature space (at the
input of base-layer classifiers), ii) decision space (at the output of base-layer classifiers) and iii)
fusion space (at the input of meta-layer classifier). Feature spaces consist of the feature sets
obtained from the descriptors. A bin probability pb,c of a histogram computed in a feature
space Fj is an approximation to a class conditional distribution. In a decision space of a
classifier employed on Fj , posterior probability or class membership vectors µ̄(x̄ij) are used.
In the fusion space, the histograms are computed using the concatenated membership vectors
µ̄(x̄i).
In Figure 4.8, the histograms representing the approximate probability distributions at each
base-layer decision space (Figure 4.8 (a-e)) and the fusion space (i.e. the meta-layer input
feature space) (Figure 4.8.f) are displayed for test dataset. It is observed from the histograms
that the concatenation operation decreases the uncertainty of the feature spaces.

Entropy values computed in feature spaces are given in Table 4.12. Entropy values computed
for each class in each feature space give the information about the data uncertainity in the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Histograms which represent distributions for the individual decision spaces of
base-layer classifiers employed using (a) Histogram Texture, (b) Color Layout, (c) MFCC, (d)
Chromagram, (e) Fluctuation features, and (f) in the fusion space of the meta-classifier in
FSG. Notice that the lowest entropy is observed in the fusion space.
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feature space. If the distributions of the features in a feature space Fj provide lower entropy
values for a particular class ωc than the other classes, then the features may represent a
characteristic of class ωc. Therefore, a classifier employed on Fj classify the samples belonging
to ωc with better performance than the samples belonging to other classes.

For instance, distributions of Fluctuation, MFCC and Homogeneous Texture features have
the lowest entropy values for the first, the third and the fourth classes, respectively (see Table
4.12). The base-layer classifiers which use these features provide the highest classification
performances, as shown in Table 4.9.

Although the distribution of Color Layout features gives the lowest entropy for the second
class than the other audio and visual features, a base-layer classifier employed on Color Layout
features performs worse than the other classifiers employed on other features. However, the
features of the samples belonging to the fourth class have the lowest entropy in Color Layout
feature space (see the row of Table 4.12 labeled Color Layout). Then, a classifier employed on
Color Layout feature space gives the highest classification performance for the fourth class as
given in Table 4.9.

Entropy values computed in decision and fusion spaces are given in Table 4.13 for test dataset.
Entropy values of the class membership vectors in decision spaces represent the decision un-
certainty of base-layer classifiers for each class. Note that the classifiers employed on the
feature spaces with minimum decision uncertainties for particular classes provide the highest
classification performances for these classes (see Table 4.9).

Entropy values of the membership vectors µ̄(x̄i) that reside in the fusion space represent the
joint entropy of {µ̄(x̄i,j)}Jj=1, since µ̄(x̄i) = [µ̄(x̄i,1) . . . µ̄(x̄i,j) . . . µ̄(x̄i,J)]. If classifier decisions
are independent, then the entropy value Entfusion of µ̄(x̄i) is equal to the sum of the entropy
values Entj of µ̄(x̄i,j), ∀j = 1,2, . . . , J , such that

Entfusion =
J

∑
j=1

Entj .

However, Entfusion ≤
J

∑
j=1

Entj in Table 4.13, which implies that the decisions are dependent.

This dependency occurs by sharing the samples among the classifiers in the FSG as shown in
Table 4.11. Thereby, lower entropy values are obtained in the fusion space.

Table 4.12: Entropy values computed in feature spaces for test dataset.

Feature Spaces Class 1 Class 2 Class 3 Class 4

Homogeneous Texture 0.3751 0.3840 0.3702 0.0679
Color Layout 0.1905 0.2644 0.3255 0.0861

MFCC 0.1920 0.3824 0.0879 0.3347
Chromagram 0.3442 0.3621 0.2011 0.2834
Fluctuation 0.0389 0.3013 0.3115 0.4276
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Table 4.13: Entropy values computed in decision and fusion spaces for test dataset.

Decision and Fusion Spaces Class 1 Class 2 Class 3 Class 4

Homogeneous Texture 0.2160 0.2360 0.2550 0.0457
Color Layout 0.1057 0.3052 0.2383 0.4584

MFCC 0.1539 0.2161 0.1322 0.1936
Chromagram 0.1165 0.1092 0.1582 0.1760
Fluctuation 0.0344 0.2286 0.2890 0.3228
Fusion Space 0.0228 0.0529 0.0873 0.0156

4.3 Chapter Summary

In this chapter, the proposed FSG algorithm is applied to target detection problems in remote
sensing and audio-visual data processing applications. First a new building detection technique
is proposed using decision fusion with FSG. Note that the dimension of the concatenated
feature vectors employed at the base-layer classifiers is quite high (i.e. a 128 dimensional
vector) in building detection problem. Decomposing this vector into the base-layer classifiers
according to their modalities reduces the curse of dimensionality problem.

Fusion space created by the Cartesian product of decision spaces also has some nice properties.
First of all, since the membership vectors lie in the interval of [0,1], there is no need for
normalization of the feature vectors. Secondly, the dimension of the fusion space is fixed to 2×

number of base-layer classifiers, which is independent of the dimension of the feature vectors
fed to base-layer classifiers. Therefore, one may include various types and sizes of the feature
vectors for a fixed number of base-layer classifiers without increasing the size of the decision
space.

In building detection problem, it is observed that an FSG with various parameter and fea-
ture sets mostly improves the f-score performance of the individual base-layer classifiers. In
addition, fusion of decisions of base-layer classifiers employed on different feature sets enables
us learning different characteristics of the segments which represent the buildings. In this
technique, it is possible to optimize the individual parameter sets of the base-layer classifiers,
independently, using FSG.

One of the crucial points of the proposed fusion technique is the design of the feature spaces of
the individual base-layer classifiers. One should pay attention to select complimentary features
of the buildings to assure the coverage of the characteristics of the various types of segments.
For instance, a building can be detected in difficult scenes where the building has similar color
to the background, and the other buildings have different textural or geometric properties
than the background. In this case, color features may not provide useful information to the
base-layer classifiers for the detection, but the classifiers can extract discriminative information
from the texture and shape features. Then, the base-layer classifiers can be trained to learn
the discriminative properties of the features, and provide their decisions as the feature vectors
to the meta-layer classifiers, which can correctly detect the buildings. Recall that, detailed
discussion on the sufficient and necessary conditions required for feature extraction and sample
selection in FSG is given in Chapter 3.

Similar to the most of the other supervised building detection algorithms [81, 69, 138], train-
ing and test images are selected from the same region. This approach assumes the statistical
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stability of the training and test data. If the training data and test data are selected from
dissimilar and irrelevant regions (where data and domain shift occurs), the performance val-
ues decrease drastically, due to the change in the terrain structures and building variations.
In practice, this challenge occurs if the buildings in training and test images have different
sizes and color/shading properties. Similar problems are addressed in various remote sens-
ing applications such as land use classification in [23, 25]. In order to solve this problem,
state-of-the-art domain adaptation methods [22, 23, 24, 25] can be used.

Additionally, the proposed approach requires adequate and reliable ground-truth labels to
obtain the decisions of the base-layer classifiers. In order to relax this requirement, semi-
supervised and unsupervised classification methods can be employed in the base-layer classifier
by satisfying the requirements proposed in Chapter 3.

In the second application, the data is obtained from different sensors, namely audio and
video recorders. This multi-modal data is fused under the FSG architecture. Apparently,
the features extracted from the individual modes have different statistical properties, and
give diverse information about different classes. Therefore, base-layer classifiers each of which
can correctly classify the samples belonging to specific classes can be trained, even if the
individual performances of the classifiers are low. Since this data setting is complementary
to the observations on the synthetic datasets (see Section 3.7.1) and satisfy the requirements
mentioned in Chapter 3, the FSG boosts the performances of the base-layer classifiers with
10% performance gain.

Moreover, it is observed that the entropies of the features are decreased through the feature
space transformations from the base-layer to the meta-layer of the architecture. Therefore,
the architecture transforms the linearly non-separable feature spaces with higher dimensions
into a more separable feature space (Fusion Space) with lower dimensions which are fixed with
the number of classes and base-layer classifiers.
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CHAPTER 5

FUSION OF MULTIPLE IMAGE SEGMENTATION
ALGORITHMS

Image segmentation is one of the most important, yet unsolved problems in computer vision
and image processing areas [162, 163, 164]. Various segmentation algorithms in the literature
have been applied to segment the objects in images. However, there are two main issues for
their employment.

The first challenge is to extract a robust structure, e.g. shape, of the segments by analyzing the
outputs of segmentation algorithms when a target segmentation is not available with a training
dataset. This challenge has been studied in data mining community as a consensus clustering
problem [165]. In this work, the problem has been considered as an unsupervised image mining

problem and analyzed using a consensus segmentation method called Segmentation Fusion.

The second challenge is the selection of an appropriate algorithm or its parameters that pro-
vides an optimal segmentation which is closer to a target segmentation if a target segmentation
is available with a training dataset. This challenge has been analyzed by a new segmenta-
tion fusion algorithm called Semi-supervised Segmentation Fusion which incorporates prior
and side information obtained from training datasets and expert knowledge to the proposed
Segmentation Fusion algorithm.

In real-world applications, the problem definition of segmentation varies by the type of data
and the targets to be detected. For instance, algorithms based on density estimation methods
may be successfully employed to detect targets that are distributed in the image. However,
these algorithms may fail if the global statistics of the data are not smooth or predictable.
Moreover, a global distribution function that defines the global statistics of the data may not be
available. In these problems, structural or local segmentation algorithms should be employed.
The choice of a suitable segmentation algorithm in many problems requires computationally
exhaustive analyses in the datasets. Even with the choice of a single algorithm to employ for
a specific problem, different algorithm parameters results in different segmentations. Then,
the selection of an optimal segmentation becomes an extremely difficult task.

A partial solution to the above mentioned problems is to train the parameters of a segmen-
tation algorithm which is selected by heuristics. This is a challenging problem for specific
applications, such as the segmentation of remotely sensed images, since the labels of the data
may not be available or the size of the data may be either too large or not sufficient for train-
ing. Moreover, the images in training and test datasets may not be statistically stable. In
addition, in most practical problems, there is no best set of parameters to be selected for a
segmentation algorithm. This is basically because of the inherently multi-resolution nature
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of the problem. In other words, some objects are recognized on large scales whereas other
objects may require high resolution data. For example, at a given scale, the algorithms with
a set of selected parameters may successfully detect simple targets such as airplanes and cars;
and may fail to detect complex targets, such as airports and parking lots. Therefore, one may
need to employ more than one segmentation output obtained at multiple scales to extract
various types of targets. Additionally, depending on the target types, one may need to employ
more than one set of features in the segmentation algorithms.

In multi-spectral image segmentation problems, it is difficult to find an optimal segmentation
algorithm that covers all the spectral bands. Some objects are recognized on specific spectral
bands, whereas other objects may require the processing of different bands together. For
example, the algorithms with a set of selected parameters may successfully detect objects
such as water and shadow in the near-infrared (NIR) band, but may fail to detect objects
which provide color or textural information, such as farms and buildings. Therefore, one may
need to employ more than one segmentation output obtained from multiple spectral bands to
extract various types of objects.

In this chapter, the aforementioned problems have been studied using decision fusion ap-
proaches with unsupervised and semi-supervised learning. For this purpose, first a consensus
segmentation problem is formalized as an unsupervised segmentation fusion problem. Then,
a new segmentation fusion method, called Segmentation Fusion (SF), is introduced based on
a consensus clustering algorithm, called Stochastic Filtered Best One Element Move (Filtered
Stochastic BOEM) [107]. In the base-layer of the fusion method, different segmentation algo-
rithms or a single segmentation algorithm with a set of different parameters are employed and
a set of segmentation outputs (i.e. decisions of segmentation algorithms) is obtained. Then,
a fusion strategy is designed by adapting the Filtered Stochastic BOEM method to fuse the
decisions of base-layer segmentation algorithms.

In the suggested Segmentation Fusion algorithm, some of the segments in the segmentation
decision set are expected to represent target objects in order to be able to obtain a consen-
sus segmentation which represents the target objects. This assumption of the proposed SF
algorithm is analyzed with various examples on real-world images. In the examples, complex
objects, such as airports, are segmented using two well-known remote sensing image seg-
mentation algorithms, Mean Shift [144] and Recursive Hierarchical Segmentation (RHSEG)
[166, 167, 168]. Various sets of segmentations are obtained by implementing Mean Shift and
RHSEG with different parameters on the aerial images in order to observe the situations in
which a consensus segmentation is appropriate to obtain a segmentation that represents target
objects.

The proposed Segmentation Fusion algorithm is an unsupervised segmentation algorithm
which aims to achieve a consensus on the decisions of the segmentation algorithms. How-
ever, there are various problems of the algorithm. First of them is the estimation of algorithm
convergence rate parameter β since the convergence analysis of the proposed SF algorithm is
a challenge and the algorithm may terminate before converging to an optimal solution if β
parameter is not selected appropriately. In order to estimate β, we suggest a method to select
a β parameter by minimizing the error function of the algorithm in order to achieve a consen-
sus segmentation. A similar strategy is proposed to estimate the number of different segment
labels C, i.e. number of segments, in the images which provides a consensus segmentation
with minimum error function.
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Moreover, one may be interested in a segmentation output which is closer to a target segmen-
tation. For this purpose, some of the segments in the segmentation decision set are expected to
represent acquired target objects in the suggested SF. In order to relax this assumption, first
the error function of the algorithm should be refined to include these two requirements. There-
fore, prior information on the statistical properties of the datasets need to be incorporated
using supervision. In addition, side information about a target segmentation output should
be used in the unsupervised segmentation fusion algorithm, which leads to a semi-supervised
algorithm.

For this purpose, two novel methods are proposed to learn the distance function employed in
the SF using prior information about the targets, such as the distributions of pixels or the
number of segments in images.

In addition, contributions of the base-layer segmentation algorithms to decision fusion are mea-
sured as the error values induced by their decisions to the error function of the segmentation
fusion problem. Then, the weighted distance learning problem is defined as a weighted deci-
sion (i.e. segmentation) fusion problem. To solve this problem using supervision, performance
validation indices are employed to compute the weights [169].

Finally, an algorithm called Semi-supervised Segmentation Fusion (SSSF) is introduced for
fusing the segmentation outputs (decisions) of base-layer segmentation algorithms by incorpo-
rating the prior information about the data statistics and side-information about the content
into the Segmentation Fusion algorithm. In the SSSF, this is accomplished by extracting the
available side information about the targets, such as defining the memberships of pixels for
the segments which represent a specific target in images. For this purpose, the SF algorithm is
reformulated with a set of constraints to incorporate the side information about the pixel-wise
relationships.

Based on the distance learning methods for SF, a new distance function is defined for the
Semi-supervised Segmentation Fusion by assigning weights to each segmentation. In order to
compute the optimal weights, the median partition (segmentation) problem is converted into a
convex optimization problem. The side information which represents the pixel-wise segmenta-
tion membership relations defined by must-link and cannot-link constraints are incorporated
in an optimization problem and in the structure of distance functions. In addition, sparsity
of the weights are used in the optimization problem for decision selection.

Various weighted cluster aggregation methods have been used in the literature [103, 170, 109,
104]. Unlike these methods, the proposed approach and the algorithms enable learning both
the structure of the distance function, the pixel-wise relationships and the contributions of
the decisions of the segmentation algorithms from the data by solving a single optimization
problem using semi-supervision.

In the next section, the proposed segmentation fusion method, which generates a consensus
among the segmentation outputs is introduced with a brief overview of Filtered Stochastic
BOEM problem. The suggested method is examined in various examples in Section 5.2.
The assumptions of segmentation fusion algorithms are analyzed to explain the motivation
for distance learning and incorporating supervision to the SF in Section 5.3. Algorithms
for distance learning, and parameter and optimal segment number estimation are given in
Section 5.6, 5.7, 5.5 and 5.4. Weighted decision fusion for segmentation algorithm is given
in Section 5.8. Semi-supervised Segmentation Fusion algorithm is introduced in Section 5.9.
Computational complexities of the algorithms are analyzed in Section 5.10. Section 5.11
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concludes the chapter. Experimental analyses of the algorithms are given in the next chapter.

5.1 Segmentation Fusion using Filtered Stochastic Optimization

Filtered Stochastic BOEM [107] is a consensus clustering algorithm which approximates a
solution to the Median Partition Problem [18] by integrating Best One Element Move (BOEM)
[18] and Stochastic Gradient Descent (SGD) [171]. In this work, Segmentation Fusion is
employed using the filtered stochastic optimization method to solve the segmentation fusion
problem which is defined below.

In the proposed segmentation fusion method, an image I is fed to J different base-layer seg-
mentation algorithms SAj , j = 1,2, . . . , J . Each segmentation algorithm is employed on I to
obtain a set of segmentation outputs Sj = {si}nji=1 where si ∈ AN is a segmentation (partition)
output, A is the set of segment labels with N pixels, ∣A∣ = C different segment labels, and a
distance function d(⋅ , ⋅ ). Note that AN is the class of all segmentations of finite sets with C

different segment labels in the image I.

For instance, an image I of size 100×100 has N = 104 pixels. If a Mean Shift algorithm (SA1)
is implemented with hs = 1, hr = 1,minArea = 100 and hs = 2, hr = 3,minArea = 100 on I,
then we have n1 = 2 and S1 = {s1, s2} where s1 is the segmentation obtained from Mean Shift
with (hs = 1, hr = 1,minArea = 100) and s2 is the segmentation obtained from Mean Shift
with (hs = 2, hr = 3,minArea = 100). If C = 5 different segment labels, e.g. background, car,
parking area, building and road, are used to label the segments, and the pixels in the segments,
then the segmentations s1 and s2 are realizations observed in 510

4

tuples. Moreover, another
segmentation algorithm SA2, such as k-means, can be implemented with k = 5 providing a
segmentation s3, such that n2 = 1 and S2 = {s3}.
An initial segmentation s is selected from the segmentation set S =

J⋃
j=1

Sj consisting of K =

J

∑
j=1

nj segmentations using algorithms which employ search heuristics, such as Best of K (BOK)

[18]. Then, a consensus segmentation ŝ is computed by solving the following optimization
problem:

ŝ = argmin
s

K

∑
i=1
d(si, s) .

Given two segmentations si and sj , the distance function is defined as the Symmetric Distance

Function (SDD) given by d(si, sj) =N01+N10, where N01 is the number of pairs co-segmented
in si but not in sj, andN10 is the number of pairs co-segmented in sj but not in si [18]. In order
to normalize SDD such that segmentation outputs are compared with different segmentations
K, a normalized form of SDD which is called Average Sum of Distances (Average SOD) [18]

SOD =
2∑Ki=1 d(si, s)
KN(N − 1) , (5.1)

is used.

At each iteration of the optimization algorithm, a new segmentation is computed. Specifically,
a segmentation s is randomly selected from the segmentation set. Then, the best one element
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move of the current segmentation s is computed with respect to the objective of the optimiza-
tion and applied to the current segmentation to generate a new segmentation. If there is no
improvement on the best move, the current segmentation is returned by the algorithm.

The Best One Element Move (BOEM) of segmentation s is defined as

∆s =
∂
K

∑
i=1
d(si, s)
∂s

,

and can be evaluated by

∆st =
∂Ht

∂st
,

where

Ht =
K

∑
i=1
d(si, st)

is the objective at time t. Using the assumption that single element updates do not change
the objective function, Ht can be approximated by Ht−1 with a scale parameter β ∈ [0,1].
Then,

∆st =
∂

∂st
(βHt−1 + d(si′ , st)) ,

where si′ is the randomly selected segmentation for updating the current BOEM. If an N ×C
matrix [H] is defined such that the nth row and the cth column of the matrix, [H]nc, is the
updated value of H obtained by switching nth element of s to the cth segment label, the move
can be approximated by

argmin
n,c

β[Ht−1]n,c + [d(si′ , st)]n,c , (5.2)

if si′ is selected for updating st at time t, ∀i = 1,2, . . . ,N , ∀c = 1,2, . . . ,C.

input : Input image I, {SAj}Jj=1, T .
output: Output segmentation O

1 Run SAj on I to obtain Sj = {si}nji=1, ∀j = 1,2, . . . , J.;
2 At t = 1, initialize s and [Ht];

for t← 2 to T do
3 Randomly select one of the segmentation results with the index i′ ∈ {1,2, . . . ,K};
4 [Ht]← β[Ht] + [d(si′ , s)];
5 Find ∆s by solving argmin

n,c
β[Ht]n,c;

6 s← s +∆s;
7 t← t + 1;

end
8 O ← s ;

Algorithm 6: Segmentation Fusion.

In the proposed Segmentation Fusion (SF) Algorithm, [Ht] is initialized at t = 1. Until
t reaches a given termination time T , the segmentation s is updated. A segmentation is
randomly selected from a pseudo-random permutation of the numbers 1,2, . . . ,K until all the
segmentations in s1, s2, . . . , sK are traversed. Then, a new segmentation is generated and
this operation is repeated until all of the permutations are traversed. [Ht] is updated by
aggregating [d(si′ , s)] with the scaled β[Ht].
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β ∈ [0,1] controls the convergence rate and the performance of the algorithm. If β = 0,
the algorithm employs pure stochastic BOEM and the algorithm is memoryless. If β = 1,
the algorithm forgets slowly. However, Zheng, Kulkarni and Poor [107] reported that the
algorithm may perform worse if β is on either end of [0,1]. Selection of the optimal β values
for segmentation fusion is a very crucial problem. An optimization method is suggested to
find an appropriate β as explained in Section 5.5. After [Ht] is updated, ∆s is computed in
order to update s. The algorithm is iterated until the termination criterion is achieved.

5.2 Examples to Analyze the Segmentation Fusion Algorithm

The aim of this subsection is to investigate various properties of the suggested Segmentation
Fusion (SF) algorithm, empirically. For this purpose, some real-world examples are first
segmented by popular segmentation algorithms, namely Mean Shift and RHSEG. Then the
outputs of these algorithms are fused to generate a consensus over these algorithms.

In the examples, image datasets which are collected using Google Maps at different resolutions
from 8m to 16m are processed. The proposed algorithm is examined by fusing the decisions
of Mean Shift, RHSEG and Mean Shift + RHSEG algorithms. Complex targets such as
substations, airports and harbors in the images are considered.

An EDISON C++ implementation of Mean Shift is used in the examples. Mean Shift extracts
a 5-dimensional feature vector from the given image which consist of R, G, B channels, and X
and Y spatial coordinates. Kernel density estimation is employed with different parameters(hs, hr,minArea) in heterogeneous feature spaces. An overview of the algorithm is given in
Section 4.1.1.1.

The hierarchical segmentation algorithm (HSEG) [166], is a popular segmentation method
that merges segments at different levels of detail. Tilton provides an algorithmic description
of the HSEG as follows [56];

1. Initialization: Assign a segment label to each pixel in the image.

● If a pre-segmentation output is available, use the segment labels obtained from the
pre-segmentation output.

● Otherwise, assign a different label to each different pixel.

2. Compute the distance between all spatially adjacent segments using a distance function
which defines the (dis)similarity between the segments. Then, merge the segments with
the smallest distance.

3. If there are no more segments that will be merged, then terminate the algorithm. Oth-
erwise, return to the previous step.

RHSEG is a recursive approximation of HSEG that recursively subdivides the image data
for more efficient analysis [167]. In [168], RHSEG is employed with the other segmentation
algorithms in an ensemble of classifiers for the classification of multi-spectral data. In RHSEG,
individual pixels or segments are labelled initially with different labels. Then, a (dis)similarity
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value, such as minimizing entropy change, spectral information divergence or spectral angle
mapper, is computed between all pairs of spatially adjacent segments or pixels [172].

In RHSEG, a spectral weight parameter 0 ≤ spw ≤ 1 is introduced by the user in order to merge
the spatial or spectral neighbors. If spw = 0, only the spatially neighboring segments or pixels
are merged. For 0 < spw ≤ 1, the merging of spatially adjacent or non-adjacent pixels and
the segments are balanced with 1

spw
. This process is recursively employed until convergence

is achieved. An algorithmic description of RHSEG is given below [56];

1. Given an input image I,

● Compute the number of levels of recursion levelr such that each spatial dimension
of I can be evenly divided by 2levelr−1.

● Set the level index level = 1.

2. Call rhseg(I, level) which is defined in the following steps;

(a) If level = levelr, go to step (c). Otherwise, divide I into 4 sub-images {Ii}4i=1 and
call rhseg(Ii, level + 1) for each sub-image Ii.

(b) Call the previous step 4 times and collect the segmentation results.

(c) If level < levelr, initialize the segmentation with the segmentation results obtained
from the previous step. If level = levelr, exit. Otherwise, do the following and exit;

● For each segment, find a set candidate_segment of segments that are more
similar to each other than a value defined by Fregion × spw ×mergemax, where
Fregion is a user defined value and mergemax is the maximum of the distances
computed in the previous steps and used for merging for spw > 0.

● For each segment with ∣candidate_segment∣ > 0, select the pixels in the seg-
ment that are more similar to segments in candidate_segment than to their
current segment by a factor Fsplit. If spw = 0, assign these pixels to the most
similar segment. Otherwise, first split these pixels from their current regions.
Then, merge them by running HSEG using the segments of the pixels that are
split out from and the segments in candidate_segment.

3. Run HSEG on I using the output of the previous step as a pre-segmentation output.

In the examples, an implementation of RHSEG provided by Tilton is used [172]. spw = 0 is
employed with region sum features, while the other parameters are used as default values, e.g.
Fregion = Fsplit = 1.5 [56]. Since our goal for the analyses on the examples is to investigate the
variation of the performance of SF on various different image segmentations, the parameters
of the Mean Shift algorithm are randomly selected. The SF algorithm is implemented with
β = 0.6,0.7, . . . ,0.9 and β = 0.99 with the termination time T equal to the partition size [107].
The segmentations which provide the minimum Average SOD values are given.

5.2.1 Performance Measures used in the Examples

Since the proposed Segmentation Fusion algorithm is based on unsupervised learning, it is
assumed that ground truth of the objects in the images are not available in the examples.
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Therefore, two types of performance measures for unsupervised segmentation are used. First,
the distance between a base-layer segmentations si and segmentation fusion output O is mea-
sured using Average Sum of Distances (SOD), which is defined in (5.1) as

SOD =
2∑Ki=1 d(si,O)
KN(N − 1) .

In addition, the (dis)similarity between a segmentation algorithm output si and segmenta-
tion fusion output O is measured using i) Rand Index (RI) and ii) Adjusted Rand Index
(ARI), which provide information about the probability of agreement, iii) Mirkin’s Index
(MI) which provides information about the probability of disagreement, and iv) Hubert’s
Index (HI) which provides information about the difference between probability of agreement
and probability of disagreement [19].

Mathematically speaking, given two segmentations si and sj , Rand Index RI is defined as

RI(si, sj) = 1 − d(si, sj)(N
2
) ,

where
d(si, sj) = N10 +N01 = (N

2
) − (N00 +N11)

and N01 is the number of pairs co-segmented in si but not in sj , N10 is the number of pairs
co-segmented in sj but not in si, N11 is the number of pairs co-segmented in both si and sj ,
i.e. the number of pairs that are in the same segment, and N00 is the number of pairs that
are in different segments.

On the other hand, Adjusted Rand Index (ARI) [173] is defined as

ARI(si, sj) = ∑Kini=1∑
Kj
nj=1 (Nij

2
) − aij

1
2
(ai + aj) − aij , (5.3)

where N(i) is defined as the number of pixels in the ith segment of si, and Nij is defined as
the number of pixels in both the ith segment of si and the jth segment of sj, ai = ∑Kini=1 (N(i)2

),
aj = ∑Kjuj=1 (N(j)2

) and aij =
2aiaj
N(N−1) .

When the output segmentation O and a base-layer segmentation are identical, the ARI and
the RI are equal to 1. Moreover, the ARI equals 0 when the RI equals its expected value.

Finally, for the sake of completeness, we provide the definitions of two more popular indexes,
Mirkin’s (MI), which is defined as

MI(si, sj) = 1 − N00 +N11(N
2
) ,

and Hubert’s Index which is defined as the difference between Rand Index and Mirkin’s Index,
HI = RI −MI. A more detailed mathematical treatment of the indices is given in Section 5.6.
Since Mirkin’s and Hubert’s indexes are consistent with RI, we skip interpreting the values
obtained for these indexes in the following analyses.

A summary of the examples is presented in Table 5.1. In the examples, the results of Mean
Shift and RHSEG segmentation are fed into the SF. The results of Mean Shift are fused in
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Table 5.1: Summary of The Examples.

Figure Name Image Size Seg. Algorithm Average SOD

Figure 5.1 1060 x 922 Mean Shift 3.2
Figure 5.2 1076 x 922 Mean Shift 8.7
Figure 5.3 1024 x 768 Mean Shift 1.4
Figure 5.4 1030 x 850 Mean Shift 5.8
Figure 5.5 1455 x 794 RHSEG 10.3
Figure 5.6 1455 x 794 Mean Shift and RHSEG 8.9

Figure 5.1-5.4, of RHSEG are fused in Figure 5.5 and of both of the algorithms are fused in
Figure 5.6.

The SOD values, which are computed in the examples, are provided in Table 5.1. Average
SOD values can be considered as the similarity between the output of the SF algorithm, O,
and the segmentation outputs, si, i = 1,2, . . . ,K. For instance, the distances between output
images of SF and the base-layer segmentation algorithms, which are shown in Figure 5.3, are
more smaller than the distances computed in the other experiments. Therefore, it can be
stated that SF algorithm provides a segmentation output which is similar or closer to the
base-layer segmentation algorithm outputs in the example given in Figure 5.3 than the other
examples given in the other images.

5.2.2 Examples using Mean Shift Segmentation

In this section, the proposed SF method is employed on the images consisting of substations
and airports to fuse the outputs of the Mean Shift segmentation algorithm obtained with
different parameters.

5.2.2.1 Examples on Substation Images

In this subsection, Mean Shift segmentation algorithm is applied on several remotely sensed
images with hs = 3 and hr = 3. Different minArea values are used to obtain different seg-
mentation outputs. In the first example, the segmentation outputs of base-layer segmentation
algorithms and the SF algorithm are displayed in Figure 5.1. The performances indices of the
algorithms are given in Table 5.2.

The original image is shown in Figure 5.1.a. The segmentation outputs of the Mean Shift
algorithm are shown in Figure 5.1.b to Figure 5.1.i and the output of the SF algorithm is
shown in Figure 5.1.j. Note that, four segmentation outputs in Figure 5.1.b to Figure 5.1.e
provide over-segmented regions for the substation and an under-segmented region is shown in
Figure 5.1.i.

Among many Mean Shift segmentation outputs run with different parameters, the most similar
one to the output of the suggested SF algorithm is shown in Figure 5.1.f where both RI and
ARI indexes are maximum. Visual inspection among various outputs reveals that Figure 5.1.f
extracts the whole substation region. The next similar segmentation outputs are shown in
Figure 5.1.g and Figure 5.1.h. The over-segmented and the under-segmented outputs, which
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are shown in Figure 5.1.b and Figure 5.1.i, respectively, are the most dissimilar segmentation
outputs.

Table 5.2: Performances for the segmentation outputs shown in Figure 5.1 with Average
SOD = 3.2.

Performance (b) (c) (d) (e) (f) (g) (h) (i)

ARI 0.57 0.61 0.61 0.64 0.71 0.66 0.64 0.52
RI 0.89 0.91 0.90 0.92 0.98 0.96 0.96 0.78
MI 0.11 0.09 0.10 0.08 0.02 0.04 0.04 0.22
HI 0.78 0.82 0.80 0.84 0.96 0.92 0.92 0.56

The segmentation outputs of the algorithms, which are employed on another image, are shown
in Figure 5.2, and the performances are given in Table 5.3. The original image is shown in
Figure 5.2.a. The segmentation outputs of the Mean Shift algorithm are shown in Figure 5.2.b
to Figure 5.2.i and the output of the SF algorithm is shown in Figure 5.2.j.

When RI values, which are given in Table 5.3, are analyzed, it is observed that the output of
the SF algorithm is similar to the outputs of over-segmented images, which are Figure 5.2.b,
Figure 5.2.c and Figure 5.2.d. If ARI values are analyzed, base-layer segmentation outputs,
which are shown in Figure 5.2.d and Figure 5.2.e, are more similar to the SF output, than
the other segmentation outputs. For this particular example, RI does not provide a visually
meaningful performance metric due ti the violation of equal segment number assumption in
both Mean Shift and Segmentation Fusion. On the other hand, ARI, which is robust to the
violation of this assumption, enables us to select the visually meaningful Mean Shift output
(see Figure 5.2.d and Figure 5.2.e). On the other hand, the most dissimilar segmentation
outputs, which are Figure 5.2.g, Figure 5.2.h and Figure 5.2.i, are the most under-segmented
results with highest minArea values, such as minArea = 50000, minArea = 100000 and
minArea = 200000, respectively.

Table 5.3: Performances for the segmentation outputs shown in Figure 5.2 with Average
SOD = 8.7.

Performance (b) (c) (d) (e) (f) (g) (h) (i)

ARI 0.40 0.39 0.42 0.42 0.41 -0.04 0.01 0.00
RI 0.74 0.74 0.74 0.73 0.70 0.57 0.48 0.27
MI 0.26 0.26 0.26 0.27 0.30 0.43 0.52 0.73
HI 0.48 0.47 0.48 0.46 0.40 0.13 -0.03 -0.47

5.2.2.2 Examples on Airport Images

In this section, Mean Shift algorithm with hs = 1 and hr = 1 is applied on an airport image
shown in Figure 5.3.a. The performance values are given Table 5.4. The segmentation outputs
of the Mean Shift algorithm are shown in Figure 5.3.b to Figure 5.3.k and the output of the
SF algorithm is shown in Figure 5.3.l. Note that the segmentation outputs in Figure 5.3.b to
Figure 5.3.g provide over-segmented regions for the airport and two under-segmented regions
are shown in Figure 5.3.j and Figure 5.3.k.

RI values, which are given in Table 5.4, show that the over-segmented images, which are given
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(a) Original Image (b) minArea=7000 (c) minArea=8000

(d) minArea=10000 (e) minArea=15000 (f) minArea=20000

(g) minArea=30000 (h) minArea=40000 (i) minArea=200000

(j) Output of SF

Figure 5.1: Examples with Mean Shift segmentation algorithm, hs = 3 and hr = 3 with
different minArea values.
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(a) Original Image (b) minArea=8000 (c) minArea=10000

(d) minArea=15000 (e) minArea=40000 (f) minArea=50000

(g) minArea=100000 (h) minArea=200000 (i) Output of SF

Figure 5.2: Examples with Mean Shift segmentation algorithm, hs = 3 and hr = 3 with
different minArea values.
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in Figure 5.3.b to Figure 5.3.f, are the more similar to the output of the SF than the other
segmentation outputs. On the other hand, ARI values computed on these images (Figure 5.3.b
to Figure 5.3.f) are smaller than the other images. As mentioned before, this behaviour is
observed because of two reasons. First the number of segments and the number of pixels in
the segments, which are observed in these images, are much more different than the segment
numbers and sizes observed in other images. Therefore, the assumption of RI measures, which
is the uniform distribution of the samples in the segments, is not valid in these images. Second,
the differences between the expected values and the maximum values of the distances among
the segmentation outputs of base-layer and SF decrease as minArea values increase in these
images. For this reason, ARI provides a better metric to measure the similarity between the
fused segmentation output of SF and Mean Shift output.

Table 5.4: Performances for the segmentation outputs shown in Figure 5.3 with Average
SOD = 1.4.

Performance (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

ARI 0.41 0.41 0.41 0.47 0.51 0.53 0.53 0.54 0.52 0.51
RI 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.78 0.65
MI 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.22 0.35
HI 0.64 0.64 0.64 0.64 0.63 0.63 0.61 0.62 0.57 0.31

The segmentation outputs and the performance values of the algorithms, which are employed
on another airport image are given in Figure 5.4 and Table 5.5, respectively. The original image
is shown in Figure 5.4.a. The segmentation outputs of the Mean Shift algorithm are shown in
Figure 5.4.b to Figure 5.4.k and the output of the SF algorithm is shown in Figure 5.4.l. Note
that six segmentation outputs in Figure 5.4.b to Figure 5.4.g provide over-segmented regions
for the substation and two under-segmented regions are shown in Figure 5.4.j and Figure 5.4.k.

In Table 5.5, the SF output is closer to the segmentation output with minArea = 8000, which
is shown in Figure 5.4.i. Unlike the results in Table 5.4, ARI values increase as RI values
increase in Table 5.5. This is due to the fact that the statistical properties of the segmentations,
such as the number of segments and the pixels in the segments, do not change drastically, as
minArea increases.

Table 5.5: Performances for the segmentation outputs shown in Figure 5.4 with Average
SOD = 5.8.

Performance (b) (c) (d) (e) (f) (g) (h) (i) (j)

ARI 0.50 0.51 0.60 0.61 0.64 0.69 0.74 0.82 0.40
RI 0.80 0.80 0.80 0.81 0.86 0.86 0.88 0.94 0.65
MI 0.20 0.20 0.20 0.19 0.12 0.12 0.10 0.00 0.37
HI 0.60 0.60 0.60 0.62 0.74 0.74 0.78 0.94 0.28

109



(a) Original Image (b) minArea=500 (c) minArea=1000

(d) minArea=1500 (e) minArea=2000 (f) minArea=3500

(g) minArea=5000 (h) minArea=6500 (i) minArea=8000

(j) minArea=20000 (k) minArea=40000 (l) Output of SF

Figure 5.3: Examples with Mean Shift segmentation algorithm, hs = 1 and hr = 1 with
different minArea values.
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(a) Original Image (b) minArea=500 (c) minArea=1000

(d) minArea=1500 (e) minArea=2000 (f) minArea=3500

(g) minArea=5000 (h) minArea=6500 (i) minArea=8000

(j) minArea=20000 (k) Output of SF

Figure 5.4: Examples with Mean Shift segmentation algorithm, hs = 1 and hr = 1 with
different minArea values.
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5.2.3 Examples using RHSEG Segmentation

In this section, RHSEG algorithm is implemented with the parameters introduced in the former
sections and several segmentation levels, which are fed into the SF algorithm, are obtained.
In this example, a harbor image, which is shown in Figure 5.5.a is used. The segmentation
outputs of RHSEG are shown in Figure 5.5.b to Figure 5.5.h and the output of the SF is
shown in Figure 5.5.i. The performance values obtained in the example are given in Table 5.6.

In Figure 5.5, the number of segments decreases as the segmentation level increases. However,
there is no linear change in ARI or RI values as the level increases, which are given in Table
5.6. On the other hand, it is observed the segmentation output of the proposed algorithm is
closer to the segmentation output obtained at level = 6 (Figure 5.5.d), when the performance
values given in the table are considered.

Table 5.6: Performances for the segmentation outputs shown in Figure 5.5 with Average
SOD = 10.3.

Performance (b) (c) (d) (e) (f) (g) (h)

ARI 0.51 0.62 0.81 0.62 0.65 0.63 0.57
RI 0.80 0.92 0.95 0.83 0.87 0.90 0.81
MI 0.20 0.08 0.05 0.16 0.13 0.12 0.18
HI 0.60 0.84 0.90 0.67 0.74 0.78 0.63

5.2.4 Level Selection and Fusion on Mean Shift and RHSEG Segmentation

In this section, the SF algorithm is employed on the outputs of both Mean Shift and RHSEG
segmentation algorithms.

For this purpose, first the harbor image in Figure 5.5.a is segmented with Mean Shift algorithm.
The parameters of Mean Shift are selected as hs = 3 and hr = 3 with varying minArea values.
The segmentation outputs of the Mean Shift algorithm are shown in Figure 5.6.a- Figure 5.6.h.
Then, the SF algorithm is employed on the segmentation outputs of RHSEG algorithm, which
are shown in Figure 5.5.b to Figure 5.5.h, together with the outputs of Mean Shift algorithm
(Figure 5.6.a - Figure 5.6.h).

The output of the SF algorithm is visualized in Figure 5.6.i. The distance values between the
segmentation outputs of SF and RHSEG algorithm are given in Table 5.7, and the outputs of
Mean Shift algorithm are given in Table 5.8.

Note that, Average SOD computed for RHSEG segmentations decreases when the RHSEG
segmentations are fused with Mean Shift partitions, as given in Table 5.1. In addition, the
performance values of some of the segmentation outputs of RHSEG, which are given in Table
5.6, increase in Table 5.7. Since the outputs of Mean Shift algorithm provide the segmented
images with the statistical properties similar to the segments in Figure 5.5.b, the output of
the SF algorithm is closer to the segmentation output given in Figure 5.5.b, in this example.
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(a) Original Image (b) level = 2 (c) level = 4

(d) level = 6 (e) level = 8 (f) level = 9

(g) level = 10 (h) level = 11 (i) Output of SF

Figure 5.5: Examples with RHSEG segmentation algorithm, with different segmentation
levels.
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(a) minArea=50 (b) minArea=150 (c) minArea=300

(d) minArea=450 (e) minArea=500 (f) minArea=1000

(g) minArea=1500 (h) minArea=2000 (i) Output of SF with Mean
Shift and RHSEG algorithms

Figure 5.6: Examples with Mean Shift and RHSEG segmentation algorithms.
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Table 5.7: Performances obtained in the example with Mean Shift and RHSEG segmentation
algorithms with Average SOD = 8.9.

RHSEG Segmentations (Figure 5.5)
Performance (b) (c) (d) (e) (f) (g) (h)

ARI 0.64 0.63 0.60 0.60 0.60 0.56 0.55
RI 0.93 0.92 0.92 0.91 0.91 0.90 0.90
MI 0.07 0.08 0.08 0.09 0.09 0.10 0.10
HI 0.86 0.85 0.83 0.83 0.83 0.81 0.80

Table 5.8: Performances obtained in the example with Mean Shift and RHSEG segmentation
algorithms with Average SOD = 8.9.

Mean Shift Partitions (Figure 5.6)
Performance (b) (c) (d) (e) (f) (g) (h)

ARI 0.54 0.24 0.21 0.20 0.10 0.21 0.08
RI 0.89 0.86 0.84 0.81 0.70 0.85 0.74
MI 0.11 0.14 0.16 0.19 0.30 0.15 0.26
HI 0.78 0.72 0.68 0.61 0.40 0.69 0.49

In the above examples, we observe that various assumptions of SF may be invalid in the
segmentation of real-world images. For instance, segmentation outputs of different segmen-
tation algorithms may contain different number of segments. Then, under-segmented and
over-segmented segmentations are observed at the output of the Segmentation Fusion algo-
rithm. Therefore, the assumption of RI, which is the uniform distribution of the samples in
the segments, is not valid. Since RI is used to compute the distance function of SF, violation
of the assumption affects the performance of SF. In addition, if the number of segmenta-
tions which contain over-segmented or under-segmented images is greater than the number
of segmentations which represent the target objects, then SF does not provide a consensus
segmentation output which represents the target objects.

In order to address these problems, we, first, analyze the assumption of SF on the distribution
of pixels and segments in the segmentations in the following section. Then, we suggest two
distance learning methods which employ an adjusted form of RI, i.e. ARI, in the computation
of distance functions to overcome the assumptions of RI and SF in Section 5.6 and 5.7. Next,
two methods are proposed to estimate the number of different segment labels and algorithm
parameter of SF by minimizing the error function of SF in Section 5.5. In order to select the
decisions of base-layer segmentation algorithms or fuse them according to their contribution
to the performance of SF, a weighted segmentation fusion method is suggested in Section 5.8.

Moreover, prior information on the statistical properties of the data and side information
obtained from expert knowledge, such as must-link and cannot-link constraints of segments
and pixels, is incorporated into SF by defining the segmentation fusion problem as a convex
optimization problem. Then, the convex optimization problem is solved using ADMM [112]
method with SF to compute the weights of decisions of base-layer segmentation algorithms
for their weighted decision fusion in Section 5.9.
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5.3 Analysis of the Assumptions of Segmentation Fusion Algorithm

Segmentation Fusion is an unsupervised segmentation technique where the parameters are
randomly selected. However, the consensus generation strategies and rules for parameter
selection can be learned from the data, if the prior information or the target labels are available.
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(f) C = 100

Figure 5.7: Distribution of the pixels in segmentation outputs for different C number of
segment names, using k-means algorithm.

One of the crucial assumptions of consensus segmentation (clustering) algorithms is that the
number of segments (clusters), C are fixed in each segmentation set Sj . However, this as-
sumption may not be satisfied when the segmentation algorithms are implemented for differ-
ent number of segments. For instance, a segmentation algorithm SAi can be implemented for
the segmentation of buildings and roads in Si for C = 2, and another algorithm SAj for the
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segmentation of building, roads and farms in Sj for C = 3.

This assumption leads to inaccurate computations of normalized distances for the consensus
among segmentation with different C number of segments. During the computation of Average
Sum of Distances (Average SOD) (5.1), it is assumed that the distributions are uniform and
Ci = c,∀i = 1,2, . . . ,K for a constant c, where K is the total number of segmentations.
Additionally, the probability of the disagreement between two different segmentations for co-
segmenting two elements is assumed to be a Normal distribution. Therefore, the segmentations
are chosen uniformly at random in order to solve (5.1) in SF.
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(e) C = 50
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(f) C = 100

Figure 5.8: Distribution of the pixels in segmentation outputs for different C number of
segment names, using Normalized Cuts algorithm.

However, this assumption may fail in some cases. For instance, the k-means algorithm is
implemented for different k values in order to produce C = k number of distinct segments for
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the segmentation of an aerial image (Figure 5.1) in Figure 5.7 and Normalized Cuts algorithm
(see Section 6.1) is implemented for C = k distinct segments in Figure 5.8. The distributions
of the pixels for each segment index c = 1,2, . . . ,C, are given in the figures. In Figure 5.7, we
observe that the distributions are not uniform for C ≤ 5 and tails of distributions are observed
for C > 5. Moreover, distributions of the pixels in the segmentations outputs of Normalized
Cuts algorithm shown in Figure 5.8 are not uniform for 2 ≤ C ≤ 100.

Another assumption of RI and the suggested Segmentation Fusion algorithm is that distri-
butions computed in the segmentation outputs of two different segmentation algorithms with
the same C values are the same. However, this assumption may be invalid as can be observed
in this example. In order to analyze this assumption, Kullback-Leibler (K-L) divergence val-
ues between the distributions of the segmentation outputs of k-means and Normalized Cut
algorithms implemented with the same number of segments C = k are computed and shown
in Figure 5.9. For instance, K-L divergence value between the distributions in Figure 5.7.b
and Figure 5.8.b is 0.12 and the divergence increases as C increases. If the SF algorithms
is employed on the segmentation sets in Figure 5.7 and Figure 5.8, then the employment of
average SOD (5.1) for segmentation fusion may fail. In order to overcome the challeges of
these assumptions, C values which maximize the performance of the fusion algorithm should
be selected and new distance measures should be defined as suggested in the following sections.
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Figure 5.9: Kullback-Leibler(K-L) divergence values between the distributions of the segmen-
tation outputs in Figure 5.7 and Figure 5.8.
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5.4 Estimating Number of Different Segment Labels for Segmentation Fusion

One of the crucial problems of Segmentation Fusion algorithm is to estimate, C, the number
of different segment labels in the image, as discussed in the previous sections.

In order to estimate C in the base-layer segmentation algorithms, several clustering validity
indices can be employed [174]. In this section, a new method is introduced to estimate C for
segmentation fusion. For this purpose, a segmentation index (SI) is defined for SF as

SI(c) =∑
i<j
ARI(si, sj),

where {si}Ki=1 is the set of K segmentations and each segmentation si contains segments with
c different labels [165]. Then, the following optimization problem is solved,

Ĉ = argmax
c=2,3,...,Cmax

SI(c) , (5.4)

where Cmax is the maximum value of c provided by the user. Therefore, an optimal segment
number Ĉ computed using the base-layer segmentations is the segment number on which all
the segmentations agree, i.e. their average agreement quantified with ARI value is maximum.

Vinh and Epps [165] compared Normalized Mutual Information (NMI) and ARI for the esti-
mation of segment number on several datasets. Since they report that both of the algorithms
agree on the segment number in various experiments, ARI is employed for estimating c in this
work.

5.5 Estimating β Parameter for Segmentation Fusion

β parameter of the Segmentation Fusion ( Algorithm 6) controls the convergence rate and
performance of the algorithm. For instance, if β = 0, the algorithm employs pure stochastic
BOEM and the algorithm is memoryless [107]. If β = 1, the algorithm forgets slowly [107].
Therefore, if β value is not chosen appropriately, then the algorithm may terminate before
converging to an optimal or a desired approximate solution. Zheng et al. experimentally
analyzed this challenge for consensus clustering problem [107].

Figure 5.10 depicts the relationship between β values and averageARI values of the algorithms
employed in the examples given in Section 5.2 and shown in Figure 5.1, 5.2, 5.3, 5.4, 5.5.

Examples show the random convergence behavior of the Segmentation Fusion (SF) algorithm.
For instance, the SF algorithm implemented with β = 0.9 may converge to a maximum value
before a termination time T = 1000 is achieved as shown in Figure 5.10.a, 5.10.d and 5.10.e.
Moreover, the performance of the SF may decrease after the maximum performance is obtained
if the SF continues running until the termination time (see Figure 5.10.b).

On the other hand, the SF algorithm implemented with β = 0.6 achieves the maximum perfor-
mance at the termination time T = 1000 (see Figure 5.10.b and Figure 5.10.e). In addition, an
implementation with β = 0.99 provides a gradual increase in the performance as the algorithm
implemented until T = 1000 as shown in Figure 5.10.c.

One of the reasons of the random convergence behavior of the SF algorithm is the stochastic
optimization method implemented to compute the best element moves at each iteration; at
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each iteration t of the SF, a segmentation is randomly selected according to a uniform distri-
bution. If a segmentation s, which is the best element move, is selected at an iteration t, then
a maximum ARI is obtained at that iteration. If the SF continues selecting segmentations in
order to obtain a better move, then the performance may decrease since s is the best element
move.

Since the SF provides an approximation to the optimal segmentation, the best segmentation
or move is not known during the implementation of the algorithm. Therefore, a new proof
strategy is needed to prove the convergence of the stochastic optimization and probabilistic
move selection methods of the SF for image segmentation. Since the convergence analysis of
the SF considering its computational complexity and approximation error is an open problem,
we skip this problem until a future work.

In this work, we intuitively propose an approach to estimate the parameter β by maximizing
the agreement between outputs of base-layer segmentation algorithms and an output of the
proposed Segmentation Fusion algorithm, following the experimental analyses on the relation-
ship between algorithm performance ARI and parameter β.

Given a set of β values Ξ = {βb}Bb=1, a beta index (BI) is defined as

BI(βb) = K

∑
i=1
ARI(si,O(βb)),

where O(βb) is the output segmentation of the proposed Segmentation Fusion algorithm im-
plemented using βb. Then the optimal β̂ is computed by solving the following optimization
algorithm:

β̂ = argmax
b=1,2,...,B

BI(βb) . (5.5)

Note that computing β̂ by solving (5.5) may not provide a globally optimum solution for SF.
However, we can select a β parameter from the set Ξ which provides a consensus segmentation
with the maximum agreement of the base-layer segmentation algorithms that can be achieved
by the implementation of SF using the parameters in Ξ.

5.6 Distance Learning

Following the analyses given in the previous sections, a method called distance learning that
overcomes the difficulties of the assumptions of SF, such as measuring the distance between
two segmentations with different numbers of segments, in this section.

For this purpose, we first analyze the structure of the distance function of SF. Note that the
distance function d(si, sj) of SF and a Rand Index (RI(si, sj)), that are computed between
two segmentations si and sj , are related by the following definition

RI(si, sj) = 1 − d(si, sj)(N
2
) ,

where
d(si, sj) = N10 +N01 (5.6)

and N01 is the number of pairs co-segmented in si but not in sj , and N10 is the number of
pairs co-segmented in sj but not in si.
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(a) Results for Figure 5.1

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

A
v
er
a
g
e
A
R
I

T

 

 

β=0.6
β=0.7
β=0.8
β=0.9
β=0.99

(b) Results for Figure 5.2
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(c) Results for Figure 5.3
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(d) Results for Figure 5.4
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(e) Results for Figure 5.5

Figure 5.10: The relationship between the convergence rate parameter β and Average ARI
performance of the Segmentation Fusion algorithm.
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Since RI is not corrected for chance, a deficiency of the distance function of SF is observed by
analyzing this relationship between d(si, sj) and RI(si, sj). For instance, the average distance
between two segmentations is not zero and the distance depends on the number of pixels [19].
Therefore, it is assumed that each segmentation si = {si,ni}Kini=1 consists of Ki numbers of
different segments in SF.

In order to relax this assumption, we suggest the following distance learning method. Let us
first define N(i) as the number of pixels in the ith segment of si, and Nij as the number of
pixels in both the ith segment of si and the jth segment of sj . In addition, si and sj are
assumed to be randomly drawn with a fixed number of segments, and a fixed number pixels in
each segment according to a generalized hypergeometric distribution [173]. Then, an adjusted
version of RI called Adjusted Rand Index (ARI) [173] is defined as

ARI(si, sj) = ∑Kini=1∑
Kj
nj=1 (Nij

2
) − aij

1
2
(ai + aj) − aij , (5.7)

where ai = ∑Kini=1 (N(i)2
), aj = ∑Kjuj=1 (N(j)2

) and aij =
2aiaj
N(N−1) .

Note that, if the assumptions are applied for equal segmentation sizes Ki = Kj ,∀i ≠ j in
ARI, (5.1) is obtained [18]. Instead, ARI(si, sj) is computed for each different base-layer
segmentation algorithm output Si with different segment numbers Ki. Then, d(si, sj) is
computed from ARI(si, sj), such that [18]

d(si, sj) = 1 −ARI(si, sj).
Since ARI(si, sj) values are computed using the segmentation sets for each segmentation pair,
the distance function values computed between the segmentation outputs can be learned using
the segmentation sets independent of the segmentation sizes Ki unlike (5.6).

For instance, let S1 = {si}n1

i=1 and S2 = {si}n2

i=1 be two segmentation sets with n1 ≠ n2 obtained
from the implementations of a k-means and a Mean Shift segmentation algorithm, respectively.
Then, distances between S1 and S2 can be computed using the proposed method to measure the
similarity between segmentation outputs of k-means and Mean Shift algorithms implemented
with different number of segments. Therefore, this method is called Distance Learning (DL)
for SF in which d(si, sj) is learned by computing ARI(si, sj) using the segmentation sets.

5.7 Quasi-Distance Learning

An important assumption made in the derivation of ARI [175] is that the number of pixels in
each segment is the same. However, this assumption may fail in the segmentation of images
that contain complex targets, such as airports or harbors.

In order to relax this assumption, a normalization method is employed for Quasi-distance
functions, introduced by Luo et al. [176] as

nd(si, sj) = d(si, sj) − dmin(si, sj)
dmax(si, sj) − dmin(si, sj) , (5.8)

where dmin(si, sj) and dmax(si, sj) are the minimal and maximal values of d(si, sj).
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Luo et al. [176] states that the exact computation of dmax(si, sj) for any segmentation dis-
tribution is not known in general, and can be achieved in special cases. For instance, if the
sizes of the segments that reside in a consensus segmentation s and a base-layer segmentation
si are the same, then (5.8) becomes (5.7) and maximal values can be computed exactly [176].

Otherwise, several approximations [176] are proposed such as the computation of approximate
d̂max(s, si) as

d̂max(s, si) = 1

2
(C(si, s) + C(s, si)) + (H(si)C(s, si)), (5.9)

where H(si) is the entropy of a base-layer segmentation si defined as [176]

H(si) = ni

∑
m=1

pm log2 pm

and C(s, si) is the conditional entropy defined as [176]

C(s, si) = ni

∑
m=1

∣πm∣∣π∣ H(sπm),
where s = {π1, π2, . . . , πni} and sπm is a sub-partition which contains a segment πm that
co-exist in s and si.

In this approximation, distance function between a target segmentation s and a base-layer
segmentation si is computed as

d(s, si) = C(s, si) + C(si, s) (5.10)

and dmin(s, si) = 2C(s, si) is its minimal value [176].

An important difference between (5.7) and (5.8) is that the minimal and maximal values of the
distances between the pairwise segmentations (si, sj) are included into the distance function
as the normalization factors, in order to compute the distances between si and sj in (5.8).
On the other hand, (5.7) requires the expected values of the distances between all of the
segmentations in the computations. In addition, (5.7) assumes that the number of pixels in
the segments are the same, i.e. distributions of the pixels in the segments are the same in
different segmentations. However, (5.8) does not make an assumption on the distributions of
pixels by computing the distributions using segmentation sets.

In this section, (5.8) is employed to develop another algorithm for distance learning called
Quasi-distance Learning(QD). Given a training dataset of segmentations, the algorithm steps
can be summarized as follows;

1. Compute d(s, si) using (5.10) for a selected segmentation output si, i = 1,2, . . . ,K and
a consensus segmentation s computed using a Best One Element Move of SF.

2. Compute the minimal value dmin(s, si) of d(s, si) as dmin(s, si) = 2C(s, si).
3. Compute the maximal value dmax(s, si) of d(s, si) using (5.9).

4. Compute the values of the quasi-distance function using (5.8).

Then, steps of the Quasi-distance Learning algorithm have been used in the Segmentation
Fusion (SF) algorithm for the computations of best one element move at each step of SF.
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Note that DL and QD methods are proposed to obtain a consensus segmentation using SF
by maximizing the agreement, i.e. the similarity between base-layer segmentations and the
computed consensus segmentation. In these methods, we do not make any assumption on the
availability of a target segmentation that is given in a training segmentation set.

On the other hand, one may require to obtain a segmentation output which also agrees with
a target segmentation, i.e. which is closer to both base-layer segmentations and a target

segmentation. In order to obtain such a segmentation output of SF, we suggest another
distance learning method in the following section.

5.8 Segmentation Fusion with Decision Weighting

The distance learning method proposed in the previous section can be employed for learning
the structure of the distance in Section 5.6 without using a target segmentation. In this section,
distance learning is used for learning the weights wi assigned to each segmentation si in the
following fusion problem,

argmin
wi

K

∑
i=1
wid(si, starget) , (5.11)

where starget is the target segmentation, wi > 0 and ∑Ki=1wi = 1.
The weights computed in (5.11) provide a fused segmentation output which is closer to a target
segmentation starget. If the distance between a base-layer segmentation si and starget is large,
then a weight wi ≈ 0 can be assigned to si and si may be used in the fusion with a confidence
less than the other base-layer segmentations. On the other hand, if d(si, starget) ≈ 0, then
a large weight wi ≈ 1 can be assigned to si. Therefore, the problem (5.11) is called as a
Segmentation Fusion with Decision Weighting problem.

In addition, we require that the computed weights provide a fused segmentation which is both
closer to starget and a consensus segmentation on which the base-layer segmentations agree. In
order to satisfy both of these requirements, another new weighted distance learning algorithm
called Segmentation Weighting is suggested below.

1. First a cumulative Adjusted Rand Index between each base-layer segmentations si and
sj is computed as

ARI(si) = K

∑
j=1

ARI(si, sj).
2. Next, the segmentation weight wi is computed as follows

wi =
ARI(si)

∑Ki=1ARI(si) ,
where wi > 0 and ∑Ki=1wi = 1 for each si. Note that wi is computed according to the
agreement between each si and all the other base-layer segmentations at this step.

3. Then, wi is used to compute the weighted distances wid(si, starget), ∀i = 1,2, . . . ,K in
(5.11). Therefore, the agreement between si and the base-layer segmentations is used to
measure the agreement between si and starget in this step.
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4. Finally, (5.11) is solved using the suggested Segmentation Fusion Algorithm 6 in the
computation of best one element moves from the base-layer segmentations to the target
segmentation starget.

A similar partition (i.e. segmentation) weighting method is employed by Yang and Chen [169]
using Modified Huber’s index, Dunn’s Validity Index and Normalized Mutual Information for
clustering. In the proposed method, ARI is used instead of these indices as well as other
clustering indices, since ARI is directly related to SDD and SOD of SF as mentioned in the
previous sections and in [18].

In the training phase, SF algorithm learns the weights which are used to produce a consensus
segmentation that is both close to a target segmentation and the base-layer segmentations.
Then, the learned weights are employed on a new segmentation to predict its segment labels.
However, one must assure that the statistical properties of training and test data are equivalent
in order to employ the learning methods. Note that this requirement may not be satisfied
in remote sensing datasets in the experiments because of the variability of the images in
the context of space and time, i.e. because of the data shift and domain shift problems
[20, 25, 24, 22].

In addition, there are various open problems of the proposed methods. First, there is a trade-off
between achieving a consensus segmentation which is obtained by maximizing the agreement
between base-layer segmentations and computing a segmentation which is close to a target
segmentation. In practical applications, this requirement may not be achieved. For instance,
an object which is represented by a target segmentation may not be represented in a set of
base-layer segmentations. In addition, the size of a training set of segmentations affects both
the performance of the SF and the computation of optimal weights. A detailed theoretical
analysis of the relationships between the size of the training dataset, learning error, algorithm
performances and the trade-off is beyond the scope of this thesis and considered as a future
work.

5.9 Incorporating Prior and Side Information to Segmentation Fusion

In this section, we introduce a new Semi-supervised Segmentation Fusion algorithm which
solves distance and decision weight learning problems that are mentioned in the previous
sections by incorporating side-information about the pixel memberships into the unsupervised
Segmentation Fusion algorithm. Then, the goal of the proposed Semi-supervised Segmentation
Fusion algorithm can be summarized as obtaining a segmentation which is close to both base-
layer segmentations and a target segmentation using weighted distance learning and semi-
supervision.

The weights computed in Segmentation Weighting method are mostly greater than zero. How-
ever, some of the weights may be required to be zero, in other words, sparsity may be required
in the space of weight vectors to select the decision of some of the segmentation algorithms.
For instance, if fusion is employed on multi-spectral images with large number of bands, and
if some of the most informative bands are needed to be selected, then sparsity defined by the
weight vectors becomes a very important property.

In addition, side information about the pixel-wise relationships of the segmentations can be
defined in distance functions. Thereby, both the structure of the distance function, the pixel-
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wise relationships and the contributions of the decisions of the segmentation algorithms can
be learned from the data.

5.9.1 Formalizing Semi Supervision for Segmentation Fusion

We define Semi-supervised Segmentation Fusion problem as a convex constrained stochastic
sparse optimization problem.

In the construction of the problem, first pixel-wise segment memberships are encoded in the
definition of a semi-supervised weighted distance learning problem by decomposing Symmetric
Distance Function (SDD) as [103]

d(si, sj) = N

∑
m=1

N

∑
l=1
dm,l(si, sj), (5.12)

and

dm,l(si, sj) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if (m, l) ∈ Θc(si) and (m, l) ∉ Θc(sj)
1, if (m, l) ∉ Θc(si) and (m, l) ∈ Θc(sj)
0, otherwise

,

where (m, l) ∈ Θc(si) means that the pixels m and l belong to the same segment Θc in si and(m, l) ∉ Θc(si) means that m and l belong to different segments in si. Then, a connectivity
matrix M is defined with the following elements;

Mml(si) = { 1, if (m, l) ∈ Θc(si)
0, otherwise

(5.13)

Note that [103],
dm,l(si, sj) = [Mm,l(si) −Mm,l(sj)]2 . (5.14)

Then, the distance between the connectivity matrices of two segmentations s and si is defined
as [109]

dκ(M(s),M(si)) = N

∑
m=1

N

∑
l=1
dκ(Mm,l(s),Mm,l(si)) , (5.15)

where dκ is the Bregman divergence defined as

dκ(x, y) = κ(x) − κ(y)− ∇κ(y)(x − y) ,
and κ ∶ R → R is a strictly convex function. Since dκ is defined in (5.14) as Euclidean distance,
(5.15) is computed during the construction of best one element moves in SF.

In order to compute the weights of base-layer segmentations during the computation of distance
functions, (5.11) is converted to the following quadratic optimization problem;

argmin
w̄

K

∑
i=1
widκ(M(s),M(si)) + λq ∥ w̄ ∥22

s.t.
K

∑
i=1
wi = 1,wi ≥ 0,∀i = 1,2, . . . ,K ,

(5.16)
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where λq > 0 is the regularization parameter and w̄ = (w1,w2, . . . ,wK) is the weight vector.

Since we use
K

∑
i=1
wi = 1 and wi ≥ 0 in the constraints of the optimization problem (5.16), we

enable the selection and removal of a base-layer segmentation si by assigning zero valued
weights wi = 0 to si.

Defining the distance function (5.12) in terms of the segment memberships of the pixels (5.13)
in (5.14), must-link and cannot-link constraints can be incorporated to the constraints of
(5.16) as follows;

Mml(si) = ⎧⎪⎪⎨⎪⎪⎩
1, if(m, l) ∈M
0, if(m, l) ∈ C , (5.17)

where M is the set of must-link constraints and C is the set of cannot-link constraints. Then,
the following optimization problem is defined for Semi-supervised Segmentation Fusion

argmin
M(s)

K

∑
i=1
dκ(M(s),M(si)) + λq ∥ w̄ ∥22
s.t Mml(si) = 1, if(m, l) ∈M

Mml(si) = 0, if(m, l) ∈ C .
(5.18)

Wang, Wang and Li [109] analyze generalized cluster aggregation problem using (5.18) for
fixed weights w̄ and define the solution set as follows;

1. If (m, l) ∈M or (m, l) ∈ C, then (5.17) is the solution set for (k, l),
2. If (m, l) ∉M and (m, l) ∉ C, then Mml(si) can be solved by

∇κMml(si) = K

∑
i=1
wi∇κ(M(si)).

Then, they solve (5.16) for fixed M(s).
Note that, ℓ2 norm regularization does not assure sparsity efficiently [177] because ∥ w̄ ∥22 is a
quadratic function of the weight variables wi which treats each wi equally. In order to control
the sparsity of the weights by treating each wi different from the other weight variables wj≠i
using a linear function of wi, such as ∥ w̄ ∥1 which is the ℓ1 norm of w̄, a new optimization
problem is defined as follows;

argmin
(M(s),w̄)

K

∑
i=1
widκ(M(s),M(si)) + λ ∥ w̄ ∥1

s.t
K

∑
i=1
wi = 1,wi ≥ 0,∀i = 1,2, . . . ,K

Mml(si) = 1, if(m, l) ∈M
Mml(si) = 0, if(m, l) ∈ C ,

(5.19)

where λ ∈ R is the parameter which defines the sparsity of w̄. Similarly, (5.19) is computed
into two parts;
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1. For fixed M(s), solve

argmin
w̄

K

∑
i=1
widκ(M(s),M(si)) + λ ∥ w̄ ∥1

s.t
K

∑
i=1
wi = 1,wi ≥ 0,∀i = 1,2, . . . ,K ,

(5.20)

2. For fixed w̄, solve

argmin
M(s)

K

∑
i=1
widκ(M(s),M(si)) + λ ∥ w̄ ∥1
s.t Mml(si) = 1, if(m, l) ∈M

Mml(si) = 0, if(m, l) ∈ C ,
(5.21)

An algorithmic description of Semi-supervised Segmentation Fusion which solves (5.20) and
(5.21) in Segmentation Fusion algorithm is given in the next subsection.

5.9.2 Semi-supervised Segmentation Fusion Algorithm

In the proposed Semi-supervised Segmentation Fusion Algorithm, (5.20) and (5.21) are solved
to compute weighted distance functions which are used in the construction of best one element
moves of Segmentation Fusion.

In Algorithm 7, first the weight vector w̄ is computed by solving (5.20) for each selected
segmentation si′ in the 4th step of the algorithm. In order to solve (5.20) using an optimization
method called Alternating Direction Method of Multipliers (ADMM) [112]. Details of the
employment of ADMM to solve (5.20) are given in the next subsection.

Once the weight vector w̄ is computed in the 4th step, (5.21) is solved in the 5th, 6th and 7th

steps of the algorithm: w̄d(si′ , s) + λ ∥ w̄ ∥1 is computed using M(si′) and w̄ in the 5th step,[Ht] is computed in the 6th step and ∆s is computed in the 7th step to update s. Note that
the sparse weighted distance function, which is approximated by β[Ht]+[w̄d(si′ , s)+λ ∥ w̄ ∥1]
in Algorithm 7, is different from the distance function in Algorithm 6.

In addition, each segmentation is selected sequentially in a pseudo-randomized permutation
order in Algorithm 7. If an initially selected segmentation performs better than the other
segmentations, then the algorithm may be terminated in the first running over the permutation
set. Otherwise, the algorithm runs until the termination time T is achieved or all of the
segmentations are selected.
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input : Input image I, {SAj}Jj=1, T , Tτ .
output: Output segmentation O.

1 Run SAj on I to obtain Sj = {si}uji=1, ∀j = 1,2, . . . , J.;
2 At t = 1, initialize s and [Ht];

for t← 2 to T do
3 Randomly select one of the segmentation results with an index i′ ∈ {1,2, . . . ,K};
4 Solve (5.20) for M(si′) to compute wk;
5 Compute w̄d(si′ , s) + λ ∥ w̄ ∥1;
6 [Ht]← β[Ht] + [w̄d(si′ , s) + λ ∥ w̄ ∥1];
7 Compute ∆s by solving argmin

n,c
β[Ht]n,c ;

8 s← s +∆s;
9 t← t + 1;

end
10 O ← s ;

Algorithm 7: Semi-supervised Segmentation Fusion.

5.9.2.1 Computation of the weights of Semi-supervised Segmentation Fusion Al-
gorithm

In order to compute weight vectors assigned to the decisions of base-layer segmentation algo-
rithms in Algorithm 7, (5.20) is re-written in an ADMM problem [112] as

minimize A(w̄) +B(z̄)
s.t w̄ − z̄ = 0 ,

(5.22)

where A(w̄) = K

∑
i=1
widκ(M(s),M(si) and B(z̄) = λ ∥ z̄ ∥1.

The Lagrangian of (5.22) is

Lθ(w̄, z̄, ᾱ) = A(w̄) +B(z̄) + ᾱ⊺(w̄ − z̄) + (θ
2
) ∥ w̄ − z̄ ∥22, (5.23)

where θ > 0 is a penalty parameter, where ᾱ is a vector of optimization dual variables, ᾱ⊺ is
the transpose of ᾱ, and ∥ ⋅ ∥22 is the squared Euclidean norm.

Then, (5.23) can be solved in the following three steps using ADMM [112];

● w̄ minimization step of (5.23):

w̄τ+1 ∶= argmin
w̄

Lθ(w̄, z̄τ , ᾱτ ), (5.24)

where ᾱτ is the dual optimization vector of the Lagrangian of (5.22) computed at an
iteration τ .

● z̄ minimization step of (5.23):

z̄τ+1 ∶= argmin
z̄

Lθ(w̄τ+1, z̄, ᾱτ ), (5.25)

129



● ᾱ update step of (5.23):
ᾱτ+1 ∶= ᾱτ + θ(w̄τ+1 − z̄τ+1). (5.26)

In (5.24), the Lagrangian is minimized with respect to w̄ at an iteration of the ADMM steps,
τ . Then, w̄ is updated and used in the second step (5.25) which minimizes the Lagrangian
with respect to z̄. Finally, the dual optimization variable ᾱ is updated.

In order to clarify the relationship among the ADMM steps, first, we define the residual
function r̄ = w̄ − z̄ such that

ᾱ⊺r̄ +
θ

2
∥ r̄ ∥22= θ2 ∥ r̄ + ū ∥

2
2 −

θ

2
∥ ū ∥22,

where ū = 1
θ
ᾱ is called the scaled dual optimization variable, which is used in ADMM as

w̄τ+1 ∶= argmin
w̄

(A(w̄) + θ
2
∥ w̄ − z̄τ + ūτ ∥22 ), (5.27)

z̄τ+1 ∶= argmin
w̄

(B(z̄) + θ
2
∥ w̄τ+1 − z̄ + ūτ ∥22 ), (5.28)

ūτ+1 ∶= ūτ + w̄τ+1 − z̄τ+1. (5.29)

Then, ū relates the dual optimization variable ᾱ to the residual r̄ [112] as follows;

ūτ = ū0 +
τ

∑
ν=1

r̄ν ,

where r̄ν = w̄ν − z̄ν is the residual computed at the iteration ν.

Then, the ADMM algorithm [112] solves (5.20) using the scaled dual optimization variable in
the following three steps;

1. w̄ update step:
w̄τ+1 ∶= argmin

w̄
(A(w̄) + (θ/2)∥w̄ − z̄τ + ūτ∥22), (5.30)

where ūτ = 1
θ
ᾱτ is a vector of scaled dual optimization variables ᾱτ of the Lagrangian of

(5.22) computed at an iteration τ .

2. z̄ update step:
z̄τ+1 ∶= Πλ

θ
(w̄τ+1 + ūτ), (5.31)

where Πλ
θ
(w̄τ+1 + ūτ) is the soft thresholding operator defined as

Πλ
θ
(w̄τ+1 + ūτ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w̄τ+1 + ūτ − λ

θ
, if w̄τ+1 + ūτ > λ

θ

0, if ∣w̄τ+1 + ūτ ∣ ≤ λ
θ

w̄τ+1 + ūτ + λ
θ
, if w̄τ+1 + ūτ < −λ

θ

(5.32)

The soft thresholding operator is employed to solve (5.28), since B(z̄) is not differen-
tiable.
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3. ū update step:
ūτ+1 ∶= ūτ + w̄τ+1 − z̄τ+1. (5.33)

These three steps of ADMM are iterated until a termination criterion τ ≤ Tτ is achieved. Note
that, ADMM algorithm converges to an optimal solution if i) an optimal solution, i.e. weight
vector, exists and can be computed using the training data, and ii) there is no gap between
primal and dual solutions.

However, we may not obtain an approximate segmentation which is close to an optimal seg-
mentation using SSSF, even if we compute an optimal weight vector using ADMM. Because,
SSSF implements the stochastic optimization algorithm SF in the computation of best one
element moves and the theoretical analysis of the convergence rate of SF is an open question.
In this work, we provide an experimental analysis of the convergence of SF and SSSF in the
next chapter.

On the other hand, if SSSF converges to an optimal solution given sufficiently large T and
Tτ , then we can achieve the maximum performance, i.e. ARItr(s, starget = 1 computed in
the training phase. However, we may suffer from a generalization error ARI(ŝ, stest which
is defined as the error occurred in the prediction of a segmentation output ŝ given a test
segmentation stest. Therefore, another fascinating challenge is the analysis of the relationship
between T , Tτ , ARItr(s, starget) and ARI(ŝ, stest), which is considered as the future work.

5.10 Computational Complexity of the Algorithms

The motivation for the development of Segmentation Fusion algorithm is to reduce the compu-
tational complexity of the the median segmentation computation problem for image segmenta-
tion, which is an NP-complete problem [18]. Algorithms that provide approximate solutions to
the problem have polynomial complexity in the number segments N or the number of segmen-
tations K [18]. For instance, Best of K (BOK) algorithm has the computational complexity
O(K2N) and is a 2-approximation algorithm, i.e. the sizes of the segments are close to the
optimal segment sizes by a factor of 2 in the fused segmentation. In addition, the computa-
tional complexity of the well known clustering based approaches, such as majority voting of
the segmentation outputs, is dominated by the complexity O(N2K) of the initialization step
in which the distance matrices are computed explicitly [18].

In the proposed SF algorithm, BOK algorithm is implemented with complexity O(K2), where
N = 1 since the best partition is selected for the initialization step. Each update step of the
SF takes CN SDD operations. If [Ht=0] is need to be computed accurately at initialization,
KJCN extra SDD evaluations are needed. Therefore, the computational complexity of SF is
O(CN(K + T )), if the algorithm terminates after T iterations. If [Ht=0] is initialized as an
all-zero matrix, then the computational complexity is reduced to O(CNT ).
Computation of ARI and normalized indices takes O(C2N) time. Since SF employs a stochas-
tic optimization procedure in which a single sample is selected at each iteration, complexity
of the computation of the distance functions is O(CN) in SF. Therefore, computational com-
plexity of distance learning algorithms proposed in this chapter has the same complexity
with SF, which is O(CNT ), if the SF terminates after T iterations. However, Segmentation
Weighting requires the computation of ARI values for each segmentation pair. Therefore, the
computational complexity of the Segmentation Weighting algorithm is O(C2NT ).
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Estimation of the parameters C and β requires running the SF Cmax and B times, therefore,
their computational complexities are O(CNTCmax) and O(CNTB), respectively. However,
the estimation procedures can be run in different processes in parallel. If they are implemented
in Z parallel processors, then the complexities are O(CNTCmax

Z
) and O(CNTB

Z
), respectively.

In Semi-supervised Segmentation Fusion, the weight vectors are computed by solving (5.20)
using an optimization algorithm called ADMM, which takes O(NTτ ) [112], if ADMM termi-
nates after Tτ iterations. Then, the segmentation s is updated using the steps in Segmentation
Fusion which takes O(CN) for each iteration t ≤ T . Therefore, the computational complexity
of SSSF is O(N2TCTτ)).

5.11 Chapter Summary

Segmentation problem has been analyzed for unsupervised, supervised and semi-supervised
learning. In unsupervised segmentation problem, target labels of a segmentation, i.e. a target
segmentation is not available. Therefore, domain specific heuristics may be employed to
compute an error function to measure the similarity between segments in a segmentation
obtained from a segmentation algorithm.

One of the approaches employed to analyze the similarity between different segmentations is
the computation of a consensus segmentation by maximizing the agreement between decisions
of base-layer segmentation algorithms. In order to solve the consensus segmentation prob-
lem, we have proposed a Segmentation Fusion (SF) algorithm which selects and/or fuses the
segmentation outputs of several segmentation algorithms in order to achieve a consensus of
base-layer segmentations. The output segmentation of the SF algorithm can be interpreted
as representation of segmentation with maximum mutual information on the set of base-layer
segmentations.

SF is examined by employing two popular segmentation algorithms at the base-layer and ap-
plied on remote sensing applications: Mean Shift and RHSEG. Images consisting of several
complex objects, such as substations, airports and harbours have been analyzed. The con-
sensus output demonstrates its efficacy in compromising over-segmented results and under-
segmented results and enhance the performance of the algorithm without preselecting param-
eters.

Various challenges of Segmentation Fusion (SF) such as parameter estimation and distance
learning are addressed to overcome the difficulties of the assumptions of SF. First, a new
method is proposed to estimate the number of different segment labels C in the images for
the suggested SF, and a method is introduced to estimate the convergence rate parameter β
of the SF.

In order to estimate the algorithm parameter β, an index called beta index is used by measuring
the agreement between an output of a base-layer segmentation algorithm and an output of the
Segmentation Fusion algorithm that is computed using a parameter value βb ∈ Ξ, i = 1,2, . . . ,B.
An index, called segmentation index, which measures the similarity between the segmentations
computed using different number of segment labels c = 1,2, . . . ,C, is introduced to select the
optimal C.

Second, two novel methods are proposed to learn the distance function employed in the SF
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using prior information about the pixels, segments and segmentations, such as the distributions
of pixels or the number of segments in segmentations.

The distance functions are learned by analyzing the statistical properties of segmentations in
order to enhance the segmentation performance without preselecting parameters, or evaluating
the outputs for specific targets. For this purpose, two approaches have been suggested. First
distance learning algorithms are embedded into the Segmentation Fusion algorithm using two
suggested methods called Distance Learning for SF (DL) and Quasi-distance Learning (QD).

In supervised segmentation problem, image segmentation is employed as a preprocessing step
for target detection and recognition in remote sensing applications, such as for building detec-
tion given in Section 4.1. Therefore, extracting the segments that represent targets of interest
is crucial. For instance, the region representing a building should be extracted as a whole
segment in order to extract the texture features that contain information on building roofs.
Then, the classification algorithms are trained by a set of discriminative features, extracted
from each segment. Another example is to detect ships and jetties in harbors and runways in
airports, using the shape information extracted from the boundaries of the regions.

Different segmentation algorithms with different parameters provide different segmentation
results, which construct a set of base-layer segmentations. Therefore, the problem can be
defined as the selection or the fusion of the segmentation outputs of the base-layer segmentation
algorithms in a segmentation fusion problem in order to achieve a fused segmentation which
is both close to a target segmentation and base-layer segmentations.

For this purpose, first contributions of the base-layer segmentation algorithms to decision
fusion are measured as the error values induced by their decisions to the error function of the
segmentation fusion problem. Then, the weighted distance learning problem is defined as a
weighted decision (i.e. segmentation) fusion problem. To solve this problem using supervision,
performance validation indices are employed to compute the weights [169].

Finally, an algorithm called Semi-supervised Segmentation Fusion (SSSF) is introduced for
fusing the segmentation outputs (decisions) of base-layer segmentation algorithms by incorpo-
rating the prior information about the data statistics and side-information about the content
into the Segmentation Fusion algorithm. The proposed SSSF algorithm reformulates the SF
algorithm as a constrained optimization problem, where the constraints are defined in such a
way to semi-supervise the segmentation process.

Various open problems of the proposed algorithms, such as the analyses of relationships be-
tween statistical properties of datasets, convergence rates, training and test performances of
the proposed algorithms, are postponed to the future work.

In the next chapter, the proposed algorithms are examined on benchmark datasets which
contain multi-spectral [178, 179] and aerial images [180].
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CHAPTER 6

EXPERIMENTAL ANALYSES AND APPLICATIONS
OF UNSUPERVISED AND SEMI-SUPERVISED

SEGMENTATION FUSION ALGORITHMS

In this chapter, the proposed Unsupervised and Semi-supervised methods are analyzed with
simulations and their behaviors are examined on real world benchmark multi-spectral and
aerial images [178, 179, 180].

In the experiments, four well-known segmentation algorithms, k-means, Mean Shift [145],[144],
Normalized Cuts [181] and Graph Cuts [182, 183, 184, 185, 186, 187] are used as the base-layer
segmentation algorithms. Mean Shift and k-means are summarized in the previous chapters.
Normalized Cuts and Graph Cuts algorithms are briefly described in the following section.

6.1 Graph Partitioning Algorithms for Image Segmentation

In graph partitioning algorithms which solve an optimal graph cut problem, an image I is
represented by a weighted graph G = (V ,E ,W), where V is a set of nodes that represent
pixels in the image and E is a set of edges that represent the connections between pixels. The
similarity or the relation between two pixels vm ∈ V and vl ∈ V is represented by a weight
wml ∈W of an edge eml ∈ E . The pixel-wise similarity is extended to segment-wise similarity
between to disjoint segments Vi ⊂ V and Vj ⊂ V , such that Vi ∩ Vj = ∅ and Vi ∪ Vj = V , by a
graph cut

cut(Vi,Vj) = ∑
vm∈Vi,vl∈Vj

wml . (6.1)

Since cut(Vi,Vj) computes the sum of weights (capacities) between the pixels in Vi and Vj ,
the cut can be used as a measure of the similarities between two segments. Then, an optimal

bi-partitioning of the graph, i.e. an optimal segmentation of the image with C = 2 different
number of segments, can be computed by minimizing (6.1). Therefore, the minimum cut
(min-cut) maximizes the dissimilarity between the segments. However, finding a segmentation
which minimizes (6.1) is an NP-Hard combinatorial optimization problem. In order to solve
this problem in polynomial time, (6.1) should be relaxed by reformulating the min-cut problem
as a max-flow (maximum flow) problem [188, 189, 185]. In max-flow formulation, first, two
terminal nodes, namely source and sink nodes, which belong to two disjoint sets are defined.
Then, defining the flow capacity among the nodes as the weights, the capacity of a minimal
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cut between source and sink (minimum s-t cut) can be measured as the maximal amount of
a flow from source to sink. Thereby, min-cut problem in planar graphs is reduced minimum
s-t cut problem, which can be solved in polynomial time [188, 189, 185]. In the experiments,
a Graph Cut implementation of Veksler [186] for image segmentation is used with a Matlab
wrapper of Bagon [184].

If a cut minimization algorithm minimizes the number of edges across the cut by solving (6.1),
then the solution may provide segments which are too small to represent the objects, such
that single pixels can be considered as segments. In order to solve this problem, a constraint
can be used in (6.1) to model the relationship between a disjoint partition Vi and V as

Ncut(Vi,Vj) = cut(Vi,Vj)
assoc(Vi,V) +

cut(Vi,Vj)
assoc(Vj ,V) , (6.2)

where

assoc(Vi,V) = ∑
vm∈Vi,vl∈V

wml, (6.3)

which measures the sum of weights of all edges that are connected to the pixels in Vi.

Then, the Normalized Cut problem is defined as minimizing (6.2). Note that solving the
Normalized Cut problem on regular grids is an NP-complete problem [190]. However, Shi
and Malik suggest a method to obtain an approximate solution to the problem using spectral
properties of the Graph [181]. The key idea is to use the second smallest eigenvalue of a
normalized Graph Laplacian [191] in the computation of (6.2). Then, an approximate solution
of (6.2) can be computed in polynomial time. Shi and Malik [181] define the steps of the
Recursice 2-way Ncut algorithm as follows;

1. Construct a weighted graph G = (V ,E ,W) using an image I,

2. Solve (D −W)ῑ = λDῑ to compute the eigenvectors with the smallest eigenvalues, where
D = diag(d1, . . . ,dN ), dm =∑

l

wml, N = ∣V ∣, and ῑ is an indicator vector such that ῑm = 1,

if the mth node is in Vi and ῑm = −1, otherwise.

3. Partition the graph into two parts by finding the splitting point at which (6.2) is max-
imized using the eigenvector with the second smallest eigenvalue obtained from the
previous step.

4. If the value of (6.2) is smaller than a user defined threshold τncut, then recursively
partition the segmented parts. Otherwise, exit.

In the implementations, the source code provided by Shi [181] is used. A weight between the
mth node and the lth node is computed as

wml = part1 ∗ part2, (6.4)

where

part1 = exp(− ∥ x̄r(m) − x̄r(l) ∥22
σr

),
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part2 =
⎧⎪⎪⎨⎪⎪⎩
exp(−∥x̄s(m)−x̄s(l)∥22

σs
), if ∥ x̄s(m) − x̄s(l) ∥2≤ rncut

0, otherwise
,

x̄r(m) is the spatial location of the mth node, x̄r(i) is the feature vector at that node, σr, σs
and rncut are user defined parameters.

In the experiments, user defined parameters are selected by first computing ARI values
between a given target segmentation and each segmentation computed for each parameter
σr ∈ {0.1,0.2, . . . ,10}, σs ∈ {1,2, . . . ,100}, rncut ∈ {1,2, . . . ,100} and τncut ∈ {0.01,0.02, . . . ,1}.
Then, a parameter tuple (σr, σs, rncut, τncut) which maximizes ARI is selected. Similarly, a
parameter tuple (hs, hr,minArea) which maximizes ARI is selected for Mean Shift algorithm
from the parameter sets hs ∈ {1,3,5,10,50,100}, hr ∈ {1,3,5,10,50,100} and minArea ∈{100,200 . . . ,10000}. For k-means, k = C is used, if not stated otherwise.

6.2 Analyses Using Simulations

One of the essential assumptions of Segmentation Fusion method suggested in this study is
that the elements of the segmentation set {si}Ki=1 are the segments with noise added to a target

consensus segmentation s. The noise is defined as different labellings and segmentations of a
randomly selected subset of pixels in a given base-layer segmentation si. The noise level nl
is defined as the percentage of pixels replaced between the segments in the segmentation si

according to the distribution of pixels in the segments in a target segmentation s such that
the labels of pixels in s are modified to produce si [18].

For instance, given a target consensus segmentation s with N = 100 pixels, a pixel is randomly
selected to be moved to a randomly selected segment according to a uniform distribution,
excluding its current segment and including a new empty segment, in order to construct
a segmentation si with nl = 1 [18]. If a segmentation si is constructed with a noise level
nl = 10 using s, then random selection and movement of pixels between segments is repeated
100nl

N
= 10 times.

Noisy segmentation generation setup [18] used in the simulations is shown in Figure 6.1. First
a target segmentation s is constructed by the employment of an image segmentation (I.S.)
algorithm on a given input image I. Then, K segmentations are generated by adding noise
to s with a noise level nl (S.G.) using the procedure given above. Finally, the segmentation
set is fed to the Semi-supervised Segmentation Fusion (SSSF) algorithm to produce an output
segmentation.

In the simulations, each segmentation in the set {si}Ki=1 is generated either using same or dif-
ferent noise levels. In the experiments, must-link and cannot-link constraints are not explicitly
defined in order to examine both Algorithm 6 and Algorithm 7, since Algorithm 7 simulates
Algorithm 6, if semi-supervised constraints are not introduced in Algorithm 7.

In Figure 6.2, k-means algorithm is used for k = 2,4,6,8,10 for the initial segmentation. Then,
K = 2,4,6,8,10 number of different segmentations are generated with noise level

nl = 10,20,30,40,50,60,70,80,100.

In order to measure the performance of SSSF, RI and ARI values are computed between
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Figure 6.1: The setup for generating segmentation outputs {si}Ki=1 with noise, given a noiseless
initial segmentation s.

the segmentations of the initial segmentation output of k-means algorithm and the output
segmentations which are computed by SSSF algorithm.

In the experimental results, it is observed that as the number of segments C (determined by
k) increases for a fixed noise level, RI and ARI decreases. However, a symmetry in the change
of RI and ARI values is observed for small number of C, such as C = 2, as the noise level
increases. Since the noise incorporated to a segmentation s for the noise levels nl and 100−nl

are the same for C = 2, this symmetry is observed. For instance, there is no noise incorporated
to the segmentation s for nl = 0, and the labels of all of the pixels are switched from either
segment 1 to segment 2 or from segment 2 to segment 1 for nl = 100. Therefore, RI = 0.5 and
ARI = 0 at nl = 50, and RI and ARI values increase after that point, symmetrically. Since the
randomness employed for noise generation increases as k increases, the symmetry disappears
as the number of segments k increases. For k > 6 and nl > 50, ARI values converge to 0 for
all of the output segmentations. However, RI values increase for all of the segmentations and
k number of segments.

Moreover, RI and ARI values are observed as the same for a fixed noise level nl, the k-means
parameter k and different number of segmentations K. In order to observe this phenomenon
in detail, the variation of RI and ARI values is shown as K increases for noise level 10 in
Figure 6.3.a and Figure 6.3.c, respectively. The changes of RI and ARI values are shown for
noise level 50 in Figure 6.3.b and Figure 6.3.d, for k = 2(●), k = 4(∗), k = 6(◯), k = 8(☆),
k = 10(◻). It is observed that RI and ARI values are the same as K increases for k < 10.
However, the difference between RI and ARI values of different segmentations obtained with
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Figure 6.2: Simulation results for k = 2(●), k = 4(∗), k = 6(◯), k = 8(☆) and k = 10(◻).

139



2 4 6 8 10
0.8

0.85

0.9

0.95

1

K

R
I

Noise Level: 10%

(a) RI values for noise level 10%.

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

K

R
I

Noise Level: 50%

(b) RI values for noise level 50%.

2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

K

A
R

I

Noise Level: 10%

(c) ARI values for noise level 10%.

2 4 6 8 10
−0.1

0

0.1

0.2

0.3

K

A
R

I

Noise Level: 50%

(d) ARI values for noise level 50%.

Figure 6.3: Change of ARI as K changes for noise levels 10, 50 and for k = 2(●), k = 4(∗),
k = 6(◯), k = 8(☆), k = 10(◻) .
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Figure 6.4: The change of performance for the termination time T .

different k values increases as k increases. In addition, the difference between RI and ARI

values decreases as noise level increases.

For k = 10, it is observed that the difference between RI and ARI values increases, as K
increases. The reason for the fluctuation is that SSSF algorithm is terminated before the
consensus is achieved. In order to analyze this observation, the change in the fluctuation
pattern is depicted with the change of the termination time T in Figure 6.4, for k = 4 and noise
level 30%. Fluctuation for T = 100 and T = 150 is observed, since the algorithm is terminated
before the consensus is achieved. When the termination time is increased to T = 200, the same
ARI values are obtained for different K, since the algorithm is terminated at t = 184.

6.3 Analyses on Benchmark and Real-world Datasets

In the implementations, k-Means, Normalized Cuts, Graph Cuts and Mean Shift algorithms
are used as base-layer segmentation algorithms. Three indices are used to measure the per-
formances between the output images O and the ground truth of the images: i) Rand Index
(RI), ii) Adjusted Rand Index (ARI), and iii) Adjusted Mutual Information (AMI) [175]
which adjusts the effect of mutual information between segmentations due to chance, similar
to the way the ARI corrects the RI. Given two segmentations si and sj , AMI is defined as

AMI(si, sj) = MI(si, sj) −E{MI(si, sj)}
max{H(si),H(sj)} −E{MI(si, sj)} ,

whereMI(si, sj) is the mutual information between si and sj , E{MI(si, sj)} is the expected
mutual information computed over the segments in the segmentations, H(si) and H(sj) are
the entropies associated to the segmentation sets si and sj .

SSSF is examined using weighted distance functions with semi-supervision. The termination
parameter of SSSF and ADMM is taken as T = 1000 and Tτ = 1000, respectively. The penalty
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parameter of ADMM is chosen as θ = 1 as suggested in [112]. The regularization parameter is
computed as λ = 0.5λmax [112], where

λmax =max{∣∣dκ(M(s),M(s1))y∣∣2, . . . , ∣∣dκ(M(s),M(sK))y∣∣2} ,
yn = ∣∣dκ(M(s),M(sn))w̄∣∣2, S = {sn}Nn=1 is the set of segments in an training image and
ȳ = [y1, y2, . . . , yN ] is the labels of segments in S. Then, λ is computed in training phase and
employed in both training and test phases.

In the training phase, λ and w̄ are computed, and the constraints M and C are constructed
using the ground data, i.e. pixel labels of training images as described in Section 5.9.1.
In the testing phase, (5.13) is employed for the construction of connectivity matrices and[w̄d(sik, s) + λ ∥ w̄ ∥1] is computed ∀i = 1,2, . . . ,K.

6.3.1 Analyses on Multi-spectral Images

In the first set of experiments, the proposed algorithms are employed on 7 band Thematic
Mapper Image which is provided by MultiSpec [180]. The image with size 169×169 is splitted
into training and test images: i) a subset of the pixels with coordinates x = (1 ∶ 169) and
y = (1 ∶ 90) is taken as the training image and ii) a subset of the pixels with coordinates
x = (1 ∶ 169) and y = (91 ∶ 142) is taken as the test image. Dataset is split in order to obtain
segments with at least 100 pixels both in training and test images.

Training and test images are shown in Figure 6.5.a and Figure 6.5.c, with their ground truth
labels in Figure 6.5.b and Figure 6.5.d. In the images, there are C = 6 number of different
segment labels. The distribution of pixels given the segment labels is shown in Figure 6.6.a
and Figure 6.6.b, for training and test datasets, respectively.

First k-means is implemented on different bands Ij of the multi-spectral image I = (I1, I2, . . . , IJ)
for J = 7, in order to perform multi-modal data fusion of different spectral bands using seg-
mentation fusion. The termination time of the SF is set to T = 1000. Assuming that C is not
known in the image, (5.4) is employed using the training data in order to find the optimal C
for c = 2,3,4,5,6,7,8,9,10. Then, Ĉ = 6 is obtained with ARI = 0.2648. (5.5) is employed for
a set of β values

Ξ = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}
and β̂ = 0.9 is obtained with ARI = 0.2648.

Table 6.1: Training (Tr) and test performances of the algorithms for Thematic Mapper Image.

Average Base SF DL QD

Tr Test Tr Test Tr Test Tr Test

RI 0.730 0.703 0.731 0.704 0.738 0.710 0.732 0.714
ARI 0.264 0.159 0.265 0.160 0.282 0.184 0.270 0.174
AMI 0.182 0.187 0.182 0.188 0.205 0.203 0.198 0.204

The results of the experiments on Thematic Mapper Image are given in Table 6.1 and Table
6.2. In the Average Base column, the performance values of k-means algorithm averaged over
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(a) Training image. (b) Ground truth of training image.

(c) Test image. (d) Ground truth of test image.

Figure 6.5: Training and test images obtained from Thematic Mapper Image.
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(a) Distribution of pixels in training dataset.
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(b) Distribution of pixels in test dataset.

Figure 6.6: Distribution of pixels given the segment labels in Thematic Mapper Image. Note
that the distributions of test and training data are quite similar.
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Table 6.2: Training (Tr) and test performances of the algorithms for Thematic Mapper Image.

SW SSSF

Tr Test Tr Test
RI 0.740 0.718 0.792 0.740

ARI 0.272 0.181 0.305 0.220
AMI 0.197 0.202 0.251 0.237

7 bands are given. The performance values of the Segmentation Fusion algorithm are given
in the column labeled SF, and that of the Semi-supervised Segmentation Fusion algorithm
are given in the column labeled SSSF. The performance of Distance Learning and Quasi-
distance Learning algorithms, are given in DL and QD, respectively. It is observed that the
performance values of SF are similar to the arithmetic average of the performance values of k-
means algorithms. Since distance functions for SF are computed using the segmentation-wise
ARI values in DL and QD, ARI values of DL and QD increase compared to SF.

The performances of Segmentation Weighting algorithm are given in SW (see Table 6.2). In
SW, the weights of each segmentation are computed as a function of ARI values of the seg-
mentations using the training images and the weighted distance functions are employed for
the experiments on test images. Note that the segmentation with higher ARI values have
weight values greater than the segmentation with lower ARI. Therefore, the distance values
computed by k-means algorithms on the channels of the image using the segmentations with
lower ARI values are suppressed by the segmentations with higher ARI. In addition, the out-
put segmentation of SW is closer to the segmentation with higher ARI. In the experiments,
it is observed that the performance values of SW are greater than the performance values of
the other algorithms except SSSF.

When semi-supervision is used, a remarkable increase is observed in the performances in
SSSF. However, full performance (1 values for the indices) is not achieved in training. Since
the output image O may not converge to the ground truth image, the convergence assumption
mentioned in the previous chapter may not be valid for this image.

In the second set of the experiments, k-means, Graph Cut and Mean Shift algorithms are
employed on 7-band training and test images. Now, the image segmentation problem is con-
sidered as a pixel clustering problem in 7 dimensional spaces. Ĉ = 6 and β̂ = 0.9 are obtained
with ARI = 0.267 using the training data and with ARI = 0.176 for test data.

The results are given in Table 6.3 and Table 6.4. The performance values of SF are closer
to the performance values of the Mean Shift algorithm, since the output image of SF is
closer to the output segmentation of the Mean Shift algorithm. It is observed that the ARI
values of DL are greater than the values of QD, since DL computes the distance functions
by computing the ARI values between the segmentations. However, the AMI values of QD
are greater than the values of DL, since QD calibrates distance functions by computing
information theoretic measures, such as conditional entropty of the segmentations, which are
related to the mutual information of the segmentations computed in AMI.

Moreover, SW and SSSF provide better performances than the other algorithms, since SW
and SSSF incorporate prior information by assigning higher weights to the partitions with
higher performances.
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Table 6.3: Experiments using k-means, Graph Cut, Mean Shift and Segmentation Fusion
algorithms on 7-band images.

k-means Graph Cut Mean Shift SF

Tr Test Tr Test Tr Test Tr Test
RI 0.742 0.715 0.754 0.717 0.710 0.714 0.711 0.714

ARI 0.167 0.125 0.234 0.132 0.266 0.176 0.267 0.176
AMI 0.176 0.183 0.193 0.190 0.195 0.209 0.196 0.209

Table 6.4: Performance values for distance learning, Segmentation Weighting and Semi-
supervised Segmentation Fusion algorithms on Training (Tr) and Test data.

DL QD SW SSSF

Tr Test Tr Test Tr Test Tr Test
RI 0.713 0.710 0.752 0.724 0.765 0.721 0.801 0.733

ARI 0.270 0.180 0.262 0.178 0.293 0.220 0.326 0.236
AMI 0.195 0.205 0.198 0.211 0.215 0.213 0.220 0.219

In the third set of experiments, k-means algorithm is employed on each band of 12-band
Moderate Dimension Image: June 1966 aircraft scanner Flightline C1 (Portion of Southern
Tippecanoe County, Indiana) [180]. The size of the image is 949 × 220, and there are 11

segments in the ground truth of the image [180]. The classes are background, Alfalfa, Br Soil,
Corn, Oats, Red Cl, Rye, Soybeans, Water, Wheat, Wheat2. 104392 pixels are randomly
selected for training and the remaining 104388 pixels are randomly selected for testing. In
order to conserve the spatial distribution of the selected pixels, the pixels which reside in
a segment with the same label in a spatial neighborhood are selected as test and training
data. The distributions of pixels in training and test datasets are shown in Figure 6.7.a and
Figure 6.7.b.
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(a) Distribution of pixels in training dataset.
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(b) Distribution of pixels in test dataset.

Figure 6.7: Distribution of pixels given the segment labels in Moderate Dimension Image.

The results on the test data are given in Table 6.5, 6.6 and 6.7. Ĉ = 11 and β̂ = 0.9 are obtained
with ARI = 0.004 using the training data and with ARI = 0.003 for test data. It is observed
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that the performance values for SF are smaller than the average performance values of base-
layer segmentation outputs. Since the distance functions are computed for each segmentation
pair, better performance for distance learning algorithms (DL and QD) is achieved. When
prior information is employed using SW and SSSF, it is observed that the smaller weights
are assigned to the segmentations with relatively small performance values. In addition, the
output images of SW and SSSF are closer to the target segmentations obtained from the
ground truth images. In summary, remarkable performance increases are observed in SSSF
algorithm.

Table 6.5: Performance of k-means algorithms for Moderate Dimension Image.

Channel Number Training Test

RI ARI AMI RI ARI AMI
1 0.533 0.008 0.154 0.537 0.014 0.153
2 0.533 0.009 0.134 0.531 0.006 0.134
3 0.532 0.003 0.124 0.528 0.009 0.126
4 0.529 0.010 0.142 0.532 0.009 0.140
5 0.529 0.005 0.131 0.532 0.006 0.131
6 0.531 0.000 0.110 0.523 -0.003 0.112
7 0.530 0.005 0.110 0.529 0.000 0.110
8 0.532 0.007 0.152 0.531 0.008 0.158
9 0.536 0.013 0.169 0.534 0.015 0.176
10 0.528 -0.002 0.123 0.527 -0.003 0.129
11 0.541 0.019 0.158 0.540 0.023 0.162
12 0.539 0.020 0.159 0.540 0.018 0.155

Table 6.6: Performance of the algorithms for Moderate Dimension Image.

Average Base SF DL QD

Tr Test Tr Test Tr Test Tr Test
RI 0.533 0.532 0.532 0.530 0.533 0.533 0.535 0.530

ARI 0.008 0.009 0.007 0.007 0.013 0.011 0.010 0.011
AMI 0.139 0.141 0.124 0.120 0.123 0.121 0.123 0.124

Table 6.7: Performance of the algorithms for Moderate Dimension Image.

SW SSSF

Tr Test Tr Test
RI 0.545 0.540 0.553 0.550

ARI 0.020 0.023 0.109 0.110
AMI 0.168 0.176 0.177 0.185

146



6.3.2 Analyses on Aerial Images

In this section, the suggested algorithms are analyzed on aerial images collected from Google
Maps. In the first set of experiments, the algorithms are employed on an image dataset
consisting of four images which contain substations. The sizes of Image 1, Image 2 and Image
3 are 1060×922 and the size of Image 4 is 1076×922. In the ground truth images, white pixels
represent the substations and black pixels represent the background (see Figure 6.8)

The algorithms are implemented four times; three images are selected as training images
and the remaining image is selected as test image, at each time. In the results, the average
performances are given. The results of the base-layer segmentation algorithms are given in
Table 6.8. Table 6.9 shows the results of the proposed algorithms.

In the experiments, Ĉ = 2 and β̂ = 0.9 are obtained with ARI = 0.024. The highest AMI and
ARI performances are obtained from the outputs of Mean Shift and Graph Cut, respectively.
In addition, ARI and RI values of the segmentations obtained from k-means algorithm is close
to the performances of Graph Cut. Note that the performances obtained in this experiment
is less than the performances obtained in the experiments which use two patched images
of a single multi-spectral image given in the previous sections. This is observed because
of the difference between the statistical properties of training and test images used in this
section, such as the distributions of pixels and segments in the segmentations, which affects
the parameter estimation performances of algorithms.

Although the performances of base-layer segmentation algorithms decrease in this experiment,
the performances of the proposed algorithms increase according to the experiments on multi-
spectral images. One of the reasons of this observation is the similarity of the images in the
dataset. For instance, three of the images in the dataset (Image 1, 3 and 4 shown in Figure
6.8.a, Figure 6.8.e and Figure 6.8.f), have more similar statistical properties such as the size
of the segments, than Image 2 shown in Figure 6.8.c.

Therefore, if two of the similar images are used with Image 2 in the training dataset and the
remaining image is used as the test image, then the base-layer segmentations whose parameters
are estimated using training datasets, may not correctly predict the labels of the test image.

However, the proposed distance learning algorithms enable us learning the statistical properties
of the segmentations and employ pair-wise distance computations between the segmentations
to achieve a consensus among the segmentation outputs. In addition, SW and SSSF assign
lower weights to the base-layer segmentations employed on Image 2. Therefore, the proposed
algorithms provide higher performances.

Table 6.8: Performances of the popular image segmentation algorithms on Substation Image
Dataset.

k-means Mean Shift Ncut Graph Cut

RI 0.579 0.219 0.545 0.584
ARI 0.137 0.018 0.022 0.148
AMI 0.109 0.216 0.085 0.123

In the second set of experiments, the algorithms are employed on an image dataset, consisting
of two images which contain airports, roads, urban area and green fields. The size of Image
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(a) Image 1. (b) GT of Image 1.

(c) Image 2. (d) GT of Image 2.

(e) Image 3. (f) GT of Image 3.

(g) Image 4. (h) GT of Image 4.

Figure 6.8: Sample Images and Ground Truth (GT) Images in Substation Images Dataset .
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Table 6.9: Performances of the suggested algorithms on Substation Image Dataset.

SF DL QD SW SSSF

RI 0.520 0.535 0.585 0.605 0.602
ARI 0.024 0.144 0.140 0.153 0.167
AMI 0.016 0.078 0.110 0.230 0.246

1 is 1024 × 768 and the size of Image 2 is 1030 × 850. In ground truth images, white pixels
represent airport, black pixels represent roads, green pixels represent green fields and red pixels
represent urban area (see Figure 6.9). In this experiment, the algorithms are implemented
two times and an images is selected as training images and the other image is selected as test
image, at each time. In the results, the average performances are given.

As shown in Figure 6.9, the statistical properties of the images are similar. In the experiments,
Ĉ = 3 and β̂ = 0.9 are calculated with ARI = 0.129. The number of segments C is not correctly
estimated because of the difference between the sizes of the segments, i.e. distributions of
pixels in the segments. Since the segments labeled as urban area contain less pixels than
the segments with the other segment labels, the pixels could not be correctly assigned to
urban area segments. For instance, Mean Shift algorithm ignores the urban area segments by
merging these segments to their adjacent segments. The results are given in Table 6.10 and
6.11.

In the results, we observe that the performances of the base-layer and the proposed segmenta-
tion algorithms employed on airport dataset are higher than that of the algorithms employed
on substation dataset. One of the reasons of this observation can be explained as the sta-
tistical similarity of two images used in airport dataset. Moreover, considering the results of
the experiments employed on multi-spectral and substation datasets, it can be stated that
the performances of the proposed algorithms increase, as the statistical similarity between the
images in training and test datasets increases.

Table 6.10: Performances of the popular image segmentation algorithms on Airport Image
Dataset.

k-means Mean Shift Ncut Graph Cut

RI 0.564 0.596 0.544 0.566
ARI 0.119 0.128 0.060 0.115
AMI 0.114 0.266 0.079 0.117

Table 6.11: Performances of the suggested algorithms on Airport Image Dataset.

SF DL QD SW SSSF

RI 0.601 0.621 0.635 0.659 0.705
ARI 0.129 0.133 0.149 0.210 0.292
AMI 0.271 0.302 0.318 0.378 0.409

In the last set of experiments, the segmentation of roads in the aerial images is considered,
which are analyzed in [178] and available on http://www.imageparsing.com/ Detailed infor-
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(a) Image 1. (b) Ground Truth of Image 1.
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Figure 6.9: Airport Images Dataset.

mation about the images in the dataset is given in [178, 179].

7 training and 7 test images with road and background labels are randomly selected from the
dataset. The id numbers of the training and test images in the dataset are tr = (7,26,40,41,42,43,77),
and te = (78,90,91,92,93,94,95), respectively. In order to observe the affect of the statistical
similarity between training and test datasets, the performances are not averaged for different
implementations of algorithms on random permutations of training and test images, and both
of training and test performances are given in the results.

In the experiments, Ĉ = 3 and β̂ = 0.9 are obtained with ARI = 0.010. The results are shown
in Table 6.12 and Table 6.13. It is observed that the performances indices of SF are the
same as the indices of Mean Shift. This is basically because of the fact that Mean Shift has a
higher number of different segment labels than the other algorithms. Therefore, the outputs of
Mean Shift suppress the outputs of other algorithms in the computation of distance functions.
However, when DL and QD are employed, the distance functions are normalized, therefore,
higher performances are obtained in Table 6.12. Moreover, higher performances than the base-
layer segmentation algorithms are obtained in Table 6.13, when semi-supervision (SSSF) and
weighting (SW) are employed in segmentation fusion.

6.4 Chapter Summary

In this chapter, two types of experimental analyses are given. First, the proposed segmentation
fusion algorithms have been experimentally analyzed using synthetically generated datasets.
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Table 6.12: Performances of k-means, Graph Cut, Mean Shift and Segmentation Fusion algo-
rithms on Road Segmentation Dataset.

k-means Graph Cut Mean Shift SF

Tr Test Tr Test Tr Test Tr Test
RI 0.513 0.535 0.512 0.523 0.379 0.328 0.378 0.328

ARI 0.014 0.002 0.017 0.008 0.010 0.008 0.010 0.008
AMI 0.404 0.003 0.054 0.006 0.053 0.070 0.044 0.070

Table 6.13: Performances of distance learning, Segmentation Weighting and Semi-supervised
Segmentation Fusion algorithms.

DL QD SW SSSF

Tr Test Tr Test Tr Test Tr Test
RI 0.392 0.353 0.407 0.390 0.515 0.536 0.550 0.563

ARI 0.010 0.008 0.011 0.007 0.017 0.008 0.020 0.015
AMI 0.082 0.080 0.090 0.080 0.401 0.060 0.422 0.110

Then, performances of the proposed algorithms have been examined by fusing the outputs
of four popular segmentation algorithms, namely, k-means, Mean Shift, Normalized Cuts
and Graph Cut. The algorithms have been analyzed using multi-spectral and aerial images
consisting of several objects, such as substations, airports and roads.

In the experiments on synthetic datasets, the relationships between the number of segments
in the segmentations (C), the number of base-layer segmentations (K), RI and ARI perfor-
mances of the proposed segmentation fusion algorithms are analyzed. In the generation of
synthetic datasets, one of the essential assumptions of segmentation fusion which is that the
elements of the segmentation set are the segments with noise added to a target consensus seg-
mentation is used. The noise is defined as different labellings and segmentations of a randomly
selected subset of pixels in a given base-layer segmentation si according to a noise level nl,
which is the percentage of pixels replaced among the segments in si and a target segmentation
s.

Experimental results show that RI and ARI values decrease as C increases when the difference
between a target consensus segmentation s and base-layer segmentations si, ∀i = 1,2, . . . ,K,
is defined by a fixed noise level nl. In addition, RI and ARI values may have the same values
as K increases if the number of segments in the segmentations is less than a fixed number,
such as k < 10. However, the difference between RI and ARI values of different segmentations
increases as k increases. In addition, the difference between RI and ARI values decreases as
noise level nl increases.

For a fixed number of segments C, it is observed that the difference between RI and ARI

values increases, as the number of segmentation outputs K increases. The experiments show
that one of the reasons for the observation of this fluctuation is the early termination of the
proposed SF and SSSF algorithms before a consensus segmentation is obtained.

In the experiments on real-world benchmark datasets, it is observed that the estimated Ĉ

values are the same or similar to the C values that are defined by the users in the ground
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truth data. However, Ĉ may not be a correct estimate of C of a training data if the statistical
properties of the segments in the segmentation outputs are different. For instance, if there
are 4 different segments with segment sizes 600000, 200000, 200000 and 1000 in the ground
truth data, then the pixels in the last segment, which has the least number of pixels, may not
be correctly placed in that segment. In other words, the labels of the pixels placed in that
segment in the ground truth data may not be correctly predicted in the output segmentations
of the segmentation fusion algorithms.

In addition, the experimental analyses show that the performances of the base-layer segmenta-
tion algorithms and the proposed segmentation fusion algorithms are sensitive to the statistical
similarity of the images used in training and test datasets. The sensitivity of the base-layer
segmentation algorithms affect the performances of the unsupervised Segmentation Fusion
algorithm. However, distance learning methods can learn the statistical properties of the pix-
els and segments in the segmentation. Therefore, the proposed distance learning algorithms
boost the performance of the unsupervised Segmentation Fusion (SF) algorithm. Moreover,
the employment of semi-supervision on the proposed unsupervised SF and distance learn-
ing algorithms using Decision Weighting and Semi-supervised Segmentation Fusion algorithm
further increase the performances.

In summary, the performances of the suggested algorithms demonstrate its efficacy in compro-
mising over-segmented results and under-segmented results. Note that the performances of
the proposed algorithms can be improved by the theoretical analyses on their open problems
such as the investigation and modeling the dependency of the performances on the algorithm
parameters, the statistical properties of the segmentations and images in training and test
datasets. These theoretical problems are left to the future work, since the construction of
performance bounds and mathematical modeling of the relationships between the algorithm
parameters and data properties require novel mathematical approaches which enable us the
integration of Statistical Learning Theory, Approximation Theory, Stochastic Optimization
Theory and Theory of Computation.
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CHAPTER 7

SUMMARY AND CONCLUSION

Over the last decade, Machine Learning methods are shifted from the single learning systems
to ensemble learning architectures which are gathered under a decision fusion framework.

In this thesis, Decision Fusion approaches are studied from the optimization theoretic perspec-
tive. Based on the analysis of the optimization problems, which formalizes the decision fusion,
a set of novel supervised, unsupervised and semi-supervised algorithms are introduced. The
suggested decision fusion algorithms are assured to boost the performance of the individual
learners which take place in the ensemble.

This thesis is organized in two parts: The first part involves the supervised decision fusion
problem, whereas the second part is devoted to the unsupervised and semi-supervised image
segmentation fusion problem.

In the first part, the classification error minimization problem has been reformulated for
decision fusion applied to supervised learning. For this purpose, the classification error of a
popular supervised learning algorithm, k-NN is decomposed into two components.

1. The first component of the error involves, the error difference between N -sample and
large-sample error of k-NN classifier which is minimized using a distance learning method
suggested by Short and Fukunaga [14] for a single classifier. Distance learning problem
is reformulated as a decision fusion problem for the minimization of the error difference
using a hierarchical decision fusion algorithm called Fuzzy Stacked Generalization (FSG).

2. The second component of the error involves the difference between large-sample error of
k-NN and Bayes Error. Cover and Hart state that Bayes Error can be achieved if the
samples are classified with complete certainty or uncertainty. In order to control the
(un)certainty of the classification of a sample in base-layer and meta-layer classifiers,
we first analyze the relationship between the classifiability of a sample by a base-layer
classifier and a meta-layer classifier. For this purpose, a new distance function, called
Decision Margin, is introduced. This function measures decision certainty of a base-
layer classifier on the class membership of a sample and the contribution of this sample
to meta-layer classification performance. The relationship between the performances of
base-layer and meta-layer classifiers is analyzed by computing decision margins of sam-
ples. Since classification error of a meta-layer classifier and the expected value of decision
margins of samples are linearly related, classification error of a meta-layer classifier can
be minimized by minimizing decision margins of samples.
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Based upon the analysis on the error differences mentioned above, first a decision fusion
method using weighted decision margin minimization algorithm is proposed. Then, two sam-
ple selection algorithms are integrated to the FSG architecture. The suggested Supervised
Decision Fusion architecture is tested and analyzed using synthetic and benchmark datasets
and the results are compared with the results of state of the art algorithms such as Adaboost,
Rotation Forest and Random Subspace.

The results show that the suggested FSG together with the weighted decision fusion and the
sample selection methods, outperform the Adaboost algorithm in C ≥ 3 class classification
problems, and the Rotation Forest and Random Subspace algorithms for any C number of
classes in all of the experiments. Specifically, weighted decision fusion and sample selection
algorithms has a great impact for boosting the performance of the FSG, in the experiments.

Furthermore, the Supervised Decision Fusion method is applied to solve two real-world prob-
lems: First, FSG is applied on the remotely sensed image to detect the buildings. Second, it is
applied to audio-visual data to detect the moving targets in an indoor environment. In these
applications, it is observed that the supervised fusion method, FSG, boosts the performance
of individual base-layer classifiers. In addition, it is observed that the class conditional en-
tropies of the features are decreased through the layers of the FSG. In other words, fusing the
decisions of the classifiers at the base-layer, extracts the discriminative information for sample
classification from the features while transforming the feature spaces of the features extracted
from observations to a feature space consisting of the decisions of base-layer classifiers.

There are three major superiorities of the suggested supervised decision fusion method: First
of all, it minimizes the error difference between N -sample and large-sample error of k-NN
classifiers. Second, the error difference between large-sample error of k-NN and Bayes Error
can be minimized using weighted decision fusion and sample selection algorithms. Finally,
base-layer classifiers can be trained as expert classifiers on each different feature space using the
Decision Margin. Therefore, individual heterogeneous feature spaces which provide different
information about the samples using the observations on data with different modalities can
be fused efficiently for classification.

Yet, there are many challenges remain to be exploited for the suggested supervised decision
fusion method: Among them, one of the most important issues is the selection of the feature
spaces of the base-layer classifiers. Unfortunately, the performance of the suggested decision
fusion method is very much dependent on the selection of the feature space of the base-layer
classifiers. It may not be superior to the other state of the art algorithms for the classification
of samples in a single feature space, if the feature spaces are not complimentary of each other.
For instance, if two sets of features recognizes the same set of samples, but fail to recognize the
remaining ones, the performance of the individual classifiers cannot be boosted by the FSG
architecture. Another serious problem is the curse of dimensionality of the fusion space, which
occur for large class classification problem when the training samples are not sufficient. For
instance, if a feature space is 2 dimensional and the samples belong to C = 10 different classes,
then the dimension of Fusion Space of the FSG is 20. Therefore, a curse of dimensionality
problem occurs for the meta-classifier. FSG requires large number of training samples to
provide high classification performance since fuzzy k-NN classifiers are used at the base-layer.
Although FSG bridges the gap between N -sample and large-sample error of k-NN, higher
large-sample errors are observed in the classification with less number of samples.

Sample selection algorithms are used to converge the large-sample error to Bayes Error. How-
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ever, the algorithms may suffer from another problem, which is the observation of singularities
in the feature spaces caused by the elimination of samples from the datasets. In other words,
the singularity assumption of the sample selection algorithms may fail. If this assumption fails,
then posterior probabilities cannot be estimated accurately by the base-layer classifiers and
high classification errors are occurred at the meta-layer classifier. On the other hand, decision
fusion using weighted decision margin minimization algorithm converges to an optimal solu-
tion, i.e. provides an optimal weight vector, if the solution exists and can be achieved using
the training dataset. If an optimal solution is achieved, then the classification error of FSG
converges to Bayes Error. Finally, analyzing the convergence properties, such as convergence
rates and error bounds, of weighted decision fusion and sample selection algorithms and the
conditions on the feature spaces required to achieve high classification performances is another
challenge.

In the second part of the thesis, unsupervised image segmentation problem has been analyzed
for decision fusion. A specific realization of segmentation fusion, called consensus segmen-
tation, is introduced. The aim of this realization is to achieve a consensus among different
segmentation outputs obtained from different segmentation algorithms. In order to provide an
approximate solution to this problem with less computational complexity (i.e. in linear time),
an unsupervised decision fusion algorithm called Segmentation Fusion (SF) is introduced using
a stochastic optimization method called Filtered Stochastic BOEM. The assumptions on the
data statistics have been relaxed by incorporating prior information on the statistical proper-
ties of the data, such as pixel and segment distributions, to estimate the number of segment
labels and algorithm parameters and solve distance learning problems.

Semi-supervision is incorporated in SF using a new algorithm called Semi-supervised Seg-
mentation Fusion (SSSF). In SSSF, side information about the co-occurrence of pixels in the
same or different segments is formulated as the constraints of a convex optimization problem.
Although the employment of semi-supervision by integrating prior and side information in
SF boosts the consensus performance, computational complexity increases to polynomial time
in the number of different segment labels C and number of pixels N . Therefore, a trade-off
between algorithm performance and running time occurs.

Before concluding the thesis, we would like to comment on the relationship between group
level sparsity used in Chapter 3 for Supervised Decision Fusion and ℓ1 norm sparsity used in
Chapter 5 for Semi-supervised Decision Fusion. Since this relation is expected to guide the
researchers who works in decision fusion area, we think it is worth to spend a short section on
this topic.

7.1 Future Work for Appraising the Sparsity in Decision Fusion

The relationship between weight regularization using ℓ2 norm and ℓ1 norm sparsity, i.e. Lasso,
has been analyzed by Yuan and Lin to induce Group-wise sparsity to the weights, i.e. Group
Lasso [111].

Let us denote the weight vectors used in Decision Fusion for Supervised Learning problem
with w̄suj ∈ R

C , j = 1,2, . . . , J which are assigned to decisions of base-layer classification algo-
rithms, e.g. class memberships, to solve a decision margin minimization problem. Similarly,
in semi-supervised segmentation fusion problem, we denote a weight variable with wusi ∈ R,
i = 1,2, . . . ,K each of which is assigned to a base-layer segmentation decision.
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In other words, vectors of weights w̄su are assigned to decision vectors of base-layer classifiers
and variables of weights wus are assigned to the values of distance functions computed between
base-layer segmentations and a computed segmentation, for Decision Fusion using Supervised
Learning and Semi-supervised Learning, respectively.

Group Lasso algorithm use a penalty term
J

∑
j=1
∥w̄suj ∥2 in the definition of the error function of

the supervised decision fusion problem (3.29). In Lasso, ℓ1 norm ∥ w̄us ∥1 of w̄us = [wusi ]Ki=1
is used as the penalty term. If wsuj ∈ R

1 is used in (3.29), i.e. a weight variable is assigned
to each classifier for its decision on each class, then Group Lasso problem becomes a Lasso
problem.

Mathematically speaking, the weight variables wusi are linearly dependent on each other when
ℓ1 norm regularization is used. On the other hand, the variables wsujc , ∀c = 1,2, . . . ,C of a
weight vector w̄suj assigned to the decision of a base-layer classifier are non-linearly related to
each other.

However, there is a linear relationship between a weight vector w̄su1 assigned to a base-layer
classifier and the variables wsu2c , ∀c = 1,2, . . . ,C of another weight vector w̄su2 [111]. Then, the
penalty of Group Lasso used in supervised decision fusion remains in between ℓ1 norm penalty
term of Lasso used in semi-supervised segmentation fusion and ℓ2 norm penalty term of a
Tikhonov regularization problem observed in a special solution of Lasso, which is mentioned
in Section 3.6.

Therefore, Group Lasso is used to induce sparsity to a group of decisions and Lasso is used
to induce sparsity to an individual decision of a base-layer supervised classification and semi-
supervised segmentation algorithm, respectively.

Sparse data processing has been popularly used in the machine learning community [177, 111,
192, 193, 194, 195]. On the other hand, there are various open problems such as the selection
of appropriate sparsity level in the construction of an optimization problem or the convergence
of the proposed solutions to the problem [196, 197, 198, 199, 200]. Although these problems
are fascinating and their solutions may improve the performances of the suggested algorithms,
detailed analyses of these open problems are out of the scope of this thesis and are considered
as future work.

7.2 Passion of Machine Learning and Data Fusion

Epistemologically, the challenges of Statistical Learning methods and in particular, Decision
Fusion approaches, can be studied under two headings: i) technical challenges and ii) concep-
tual challenges. Both challenges can be observed in theoretical and practical works. Technical
difficulties of solving theoretical problems are usually observed in the development of better

bounds for algorithm performances or computational complexities. For this purpose, new
inter-disciplinary methods, such as stochastic optimization methods and probabilistic graphi-
cal models inspired from Physics, are used to solve the problems of Statistical Learning.

In order to achieve theoretical performance or computational complexity bounds of the algo-
rithms implemented in real-world applications, we need to satisfy the theoretical requirements
of the algorithms such as collecting impractically large number of samples. In addition, the
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real-world systems which implement the algorithms may require the implementation of the
algorithms in reasonable running times. By the development of new technologies such as in-
ternet and high precision and multi-modal sensors, the requirements on the sample sizes can
be satisfied. By the development of new high performance computing platforms such as Cloud
and GPU, algorithms with polynomial time complexity can be implemented in reasonable
running times.

However, the fundamental conceptual problems such as defining class or segment labels, sim-
ilarity or difference measures, choosing learning paradigms (e.g. algorithmic or statistical
learning), approaches for a specific paradigm (e.g. Bayesian or frequentist approaches of sta-
tistical learning) or methods (e.g. transductive, discriminative or generative methods) for a
given problem is still a challenge.

In real-world applications, the conceptual problems are approximated according to the re-
quirements of the systems which solve the practical problems. Therefore, application specific
solutions are proposed, for instance, labeling of the building pixels by the domain experts, in
remote sensing applications, or approaching to the problem from the Bayesian or frequentist
point of view if data and observations (hypothesis and learning models) are fixed (repeatable)
or repeatable (fixed), respectively in large scale data mining applications.

In theoretical aspect, new conceptual paradigms are needed. For instance, learning problem
may be redefined by analyzing the relationship between the properties of data, hypotheses,
and algorithms that generate hypotheses using data extending Algorithmic and Statistical
Learning Theories with new theories. Moreover, the fundamental concepts such as class,
distance, similarity, and difference should be revised. For instance, the relationships between
data, hypothesis and algorithms can be used to define the distance between two samples
according to their (dis)similarity with respect to a criterion, as defined in maximum margin
learning algorithms.

Besides providing approximate solutions to these existing problems, new technical and con-
ceptual problems emerged by the development of new technologies mentioned above, such as
decomposition of problems and algorithms, defining the knowledge of samples and extracting
information to achieve the knowledge by mining large scale datasets.

In the end, we spent an effort to have approximate solutions to our daily problems for the
sake of understanding the nature or understand the nature for the sake of having approximate
solutions to our daily problems.
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