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In this thesis, we set up and solved a multi-period stochastic portfolio optimization and 

hedging model with futures from an airline company's point of view, by taking into account 

all the specific EU ETS (EU Emission Trading Scheme) regulatory and board-defined 

trading and risk constraints. That is, in order to hedge the natural physical short position in 

CO2 emission allowances, we developed an optimal hedging strategy consisting of futures 

contracts. We thereby successively and comprehensively derived all the mathematical 

formulations for the system of equations with regard to the specific composition of the 

profit function and all the underlying real-world constraints in the model. In order to span 

the space of all possible states, in addition to the modeling of constraints, we also run 

Monte-Carlo (MC) simulations of correlated geometric Brownian motions (GBM) for 

traded EUA (EU Emission Allowance) and CER (Certified Emission Reduction) futures 

prices of different CO2 delivery time periods. Based on the constructed scenario-trees of 

EUA and CER futures prices and space of feasible states, the optimal buy-hold-sell 
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decision (i.e., futures trading strategy) were determined and the corresponding earnings 

calculated. Based on the distribution of the revenues, the Value-at-Risk (VaR) measure for 

the 95% and 99% confidence level was calculated, in order to measure the risk exposure of 

the portfolio manager. 

Our contribution to existing academic literature is multiple. As the first ever case, we  will 

apply the multi-stage stochastic programming technique to the aviation sector, which is a 

brand new included sector within the EU ETS. The methodology and mathematical 

formulation for the optimization problem including the MC simulated multi-correlated 

GBMs of EUA and CER financial futures of different CO2 delivery time periods and the 

resulting system of equations have been self-developed. That is, the consideration of all the 

actually valid EU ETS regulatory and real-world oriented, managerial, trading constraints 

in the airline sector, makes our model to a real-life application, which in the constellation 

and idea, set up in this thesis, has not been applied in academic research before. Hence, the 

developed methodology in thesis could be widely used implemented, adapted and extended 

to other academic problems and practical applications. 

The thesis ends with a conclusion and outlook to future studies. 

 

 

Keywords: Multi-stage stochastic portfolio optimization, correlated geometric Brownian 

motion, Monte-Carlo simulation, futures prices, value-at-risk
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ÖZ 
 
 
 
 
 

 
 

EU ETS HAVACILIK SEKTÖRÜ İÇİN UYGULAMALI ÇOKLU SÜREÇLİ 

STOKASTİK PORTFÖY OPTİMİZASYON VE KORUMA MODELI 
 
 
 

 

 
Kalaycı, Erkan 

 
Doktora, Finansal Matematik Bolümü 

 
Tez Yöneticisi      :  Yrd. Doc. Dr. Esma Gaygısız 

Ortak Tez Yöneticisi   :  Prof. Dr. Gerhard-Wilhelm Weber 
 
 

 

Ağustos 2013, 104 sayfa 
 

 

 

Bu tezde, bütün spesifik EU ETS (AB Emisyon Ticaret Şeması) düzenlemeleri ve kurul 

tanımlı ticaret ve risk kısıtlamaları hesaba katılarak bir hava yolu şirketinin bakış açısından 

vadeli işlem kontratları kullanarak çoklu süreçli stokastik portföy optimizasyon ve koruma 

modeli kuracak ve çözümleyeceğiz. Buna göre, CO2 emisyon haklarındaki doğal fiziksel 

kısa posizyonları korumak için vadeli işlem kontratları içeren en uygun koruma stratejisini 

geliştireceğiz. Böylece modelde, kar fonksiyonu ve tüm temel gerçek dünya 

kısıtlamalarının spesifik bileşimine istinaden başarılı ve kapsamlı bir şekilde denklem 

sistemine yönelik tüm matematiksel formülasyonları elde edeceğiz. Olası tüm durumların 

uzayını kurabilmek için, kısıtlamaların modellemesine ek olarak, farklı CO2 teslim 

periyodlarında işlem yapılan EUA (AB Emisyon Hakkı) ve CER (Sertifikalandırılmış 

Emisyon Azaltım) için ilişkili geometrik Brownian hareketlerinin (GBM) Monte-Carlo 

(MC) simülasyonlarını çalıştıracağız. Vadeli EUA ve CER fiyatları ve olası tüm durumların 

uzayına göre kurgulanmış senaryo ağacına dayalı olarak, en uygun satın alma, tutma ve 

satma kararları (örneğin, vadeli işlem stratejisi)  belirlenecek ve buna karşılık gelen 

kazanımlar hesaplanacaktır. Portföy yöneticisinin maruz kaldığı riski ölçebilmek için gelir 
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dağılımına dayalı olarak, %95 ve %99 güven düzeyi için riske-maruz-değer (VaR) 

hesaplanacaktır. 

Akademik literatüre çoklu katkıda bulunacağız. İlk olarak, EU ETS içine dahil edilen 

yepyeni bir sektör olan havacılığa çoklu süreçli stokastik programlama tekniğini 

uygulayacağız. MC simülasyonu yapılmış çoklu-ilişkili, farklı CO2 teslim periyodlarında 

işlem yapılan EUA ve CER finansal vadeli işlem kontratların GBM’lerinin içinde 

bulunduğu optimizasyon problemi ve ortaya çıkan denklem sistemi için metodoloji ve 

matematik formülasyonu kendimiz geliştirireceğiz. Buna göre, gerçekten geçerli EU ETS 

düzenlemeleri ve havayolu sektöründeki gerçek dünya amaçlı, yönetsel ticari kısıtlamaların 

göz önünde bulundurulması bu tezde oluşturulan modelimizi daha önce akademik 

araştırmalarda uygulanmamış gerçek bir hayat uygulaması yapıyor. Sonuç olarak, bu tezde 

geliştirilen metodoloji yaygın olarak diğer akademik konular ve pratik uygulamalarda 

kullanilabilir, uyarlanabilir ve genişletilebilir. 

Tez bir sonuç ve gelecekti çalışmalara görünüm.ile bitecektir. 

 

 

Anahtar Kelimeler: Çoklu süreçli stokastik portföy optimizasyon, ilişkili geometrik 

Brownian hareketi (GBM), Monte-Carlo simülasyonu, vadeli fiyatlar, riske-maruz-değer 
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CHAPTER 1 
 
 
 
 
 

INTRODUCTION 
 
 
 
 
 
 
 
At 1 January 2012, the global airline sector, being responsible for 2% of the global CO2 

emissions [57] and 3% of the EU’s total greenhouse gas emissions [16], was included into 

the European Union Emission Trading Scheme (EU ETS), being forced by law to 

compensate all the CO2 emissions resulting from their flights to and from Europe [13]. The 

legal practice until now has prescribed that, from 1 January 2005, all large-scale energy- 

and industrial-intensive EU installations and sectors such as power and heat, refineries, 

metals, minerals or pulp and paper has to be mandatorily included in the EU ETS [12]. 

With this new legal enforcement [13] in the airline sector, for the first time also non-EU 

companies are obliged to control their CO2 emissions. According to this directive, apart 

from 1 January 2012, airline companies are obliged to cap their CO2 emissions to 97% of 

their average 2004-2006 emission levels (baseline), and from 2013, to 95% of their average 

2004-2006 emission levels (baseline), respectively. The EU ETS allocation plan for the 

airline sector prescribes that approximately 85% of the EU Emission Allowances (EUAs) 

are distributed for free to airline companies with respect to their average 2004-2006 

baseline. Therefore, this regulatory feature results in an obligation for airline companies to 

purchase the remaining 15% of CO2 emission allowances from the market to mandatorily 

offset their yearly CO2 emissions and hold the regulatory cap. This means that an airline 

company initially faces a natural short position in CO2 emission allowances, thereby 

suffering from an increase in CO2 prices and gaining from their decrease, respectively. To 

fulfill their yearly regulatory obligation (i.e., CO2 compliance period), airline companies 

are allowed to surrender EUAs, and up to a regulatory-defined limit, Certified Emission 

Reductions (CERs). If airline companies fail to fully compensate their occurred CO2 

emissions at the end of each CO2 compliance year, they are forced to pay a penalty fee in 
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the amount of 100 EUR for each missing ton of CO2 to the EU administering authority. 

Another important feature of the EU ETS is the banking and borrowing possibility of EUAs 

between CO2 compliance periods.  

Empirical evidence shows a doubling of CO2 emissions between 2005 and 2020 [19], 

forcing airline companies to buy an increasing amount of emission allowances [37]. Until 

2050, the CO2 emissions from the aviation industry are even estimated to grow by a further 

300-700% according to 2005 levels [57]. Hence, despite its most recent inclusion in the EU 

ETS, the aviation sector is expected to face a large growth in CO2 emissions, illustrating its 

current and future importance in the EU ETS. 

This new regulatory obligation has the crucial implication that, in addition to the well-

known existing cost factor kerosene, the new cost factor CO2 has occurred, which has also 

to be considered in the business practices and operations of airline companies from now on. 

Today, in academic research [2, 7, 41, 49, 53, 60, 53] the concept of risk management and 

hedging of kerosene, as the major cost factor for airlines, is well understood and mainly 

operationally implemented. However, this empirical evidence does not yet hold for the new 

cost factor CO2. In contrast to kerosene, where optimal hedging strategies through financial 

derivatives such as options, forwards/futures and swaps are implemented, the CO2 emission 

allowances are mainly bought in spot markets for current prices, though being fully 

exposed to their market price and volume risk. The airline companies fully pass on the 

actual purchasing (spot) price of CO2 emission allowances to their current ticket prices, 

resulting in an overall increase in their ticket prices. Thus, in order to increase their 

competitiveness in the airline market, airline companies could design and execute optimal 

hedging strategies through financial derivatives (e.g., futures strategies) to hedge the price 

and volume risk. In this way, the additional cost for CO2 allowances and, therefore, the 

additional increase in ticket prices could be minimized. 

There exists a well-researched academic field with regard to the Kyoto Protocol and 

emission sector with regard to game theory and mechanical design [21, 35, 40, 55]. 

However, all these works deal with equilibrium price models for emissions trading. That is, 

they consider agents being able to influence the emission price and analyze, simulate and 

optimize the emissions market from a macro perspective where prices are outcomes from 

different strategies of emission market participants. In our case, we consider the case for a 
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single airline company, within the airline sector which is a specific sector in the EU ETS, 

and assume that the prices are given from the airline company’s point of view and the 

company cannot influence the whole EU ETS by its strategy. Moreover, no cooperation 

with another company is allowed. Therefore, as compared to the widely academically 

applied game-theoretical approach for emissions trading, the objective and information of 

our work are of a much different nature. 

In this thesis, we apply a multi-period stochastic portfolio optimization model for the 

derivation of an optimal hedging strategy for CO2 emission allowances from an airline 

company's point of view. That is, rather than the optimization of the whole emission market 

and system, we focus on a constrained revenue maximization of one single airline company 

by taking into account realistic, airline sector-specific and given financial market 

restrictions. 

Our model specifically focuses on the aviation sector due to its brand new status and 

increasing importance within the EU ETS, implying a large stimulation potential for 

academic and applied research in this area as well as its adoption potential by other sectors 

to be included in the EU ETS in future. 

In academic research, multi-period stochastic portfolio optimization technique finds a broad 

application for the energy sector such as the determination of optimal running (i.e., 

dispatch) strategies of hydro power plants [1, 14, 18, 22, 25, 43] or the valuation and 

optimization of natural gas storage and value chains [23, 44, 57, 58, 65, 66]. With regard to 

the emissions sector, until now, the multi-period stochastic portfolio optimization models 

have been either applied for the derivation of optimal SO2 compliance planning issues in 

the US, where mainly technical power plant / engineering constraints have been considered 

[6, 30, 38, 59] or for the combined heat and power (CHP) sector, which, in addition to the 

airline sector, is another sector included in the EU ETS [50, 54].  

However, these academic works consider technical and physical rather than financial 

features, or they are set up for short-term planning issues. But, for the management of its 

cash flow streams from assets, a company should also consider the medium term 

perspective. Today, likewise other commodities, also CO2 emission allowances can be 

traded at liquid energy exchanges such as ICE, Bluenext, Nordpool, etc., or over-the-

counter (i.e., brokers) such as Spectron, GFI, ICAP, etc., in the form of day-ahead spot or 
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for longer trading horizons in the form of derivatives. Therefore, optimal medium-term 

hedging strategies should be developed, which is also true for the CO2 sector.  

Additionally, previous academic works do not take into account the existence of different 

types of CO2 emission allowances such as EUA or CER, nor do they address the potential 

of trading CO2 emissions allowances as optimal (EUA, CER) portfolios. Furthermore, they 

do not consider any stochasticity of emissions allowances prices and any cross correlations 

between each other.  

Therefore, our contribution to existing academic literature is multiple. As the first ever 

case, we apply the multi-stage stochastic programming technique to the aviation sector, 

which is a brand new included sector within the EU ETS. The methodology and 

mathematical formulation for the optimization problem and the resulting system of 

equations are self-developed according to the actually valid EU ETS regulation for the 

aviation sector and in line with real-world oriented managerial trading constraints, which in 

the constellation and idea, set up in this thesis, has not been applied in academic research 

before. This makes our model to a real-life application, which could easily be adapted and 

extended to other future sectors to be included in the EU ETS such as the shipping sector. 

Furthermore, more than only incorporating physical and technical (“engineering”) features 

and focusing on short-term planning issues, we particularly address financial pricing 

features and focus on mid-term planning issues. That is, unlike the common feature of 

hedging and optimizing an open position in a physical asset against short-term oriented spot 

prices, we use mid-term oriented futures prices of different CO2 delivery time periods, in 

order to take into account flexibility. Therefore, by the use of existing exchange-traded 

emission allowance types EUA and CER futures, we result in two main contributions to 

academic research with regard to emission allowance prices. First, we use not only one 

unspecified type of emission allowance, but two types of real-world emission allowance 

prices, namely EUAs and CERs. Secondly, EUA and CER futures for various CO2 delivery 

periods are considered, implying an increase in the number of correlated emission 

allowances. 

We note that the stochastic model input parameters EUA and CER are modeled by the 

stochastic price process geometric Brownian motion (GBM), whereas the stochastic model 

input parameter CO2 emissions are modeled by given deterministic scenarios due to the fact 
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that otherwise more specific fundamental airline data, such as type and the corresponding 

capacity of owned airplanes, current and future flight plans to and from the specific EU 

locations, sold flight tickets of the airplanes, weight of the transported luggage etc. would 

be required. This would necessitate a much more comprehensive, fundamental analysis, 

airplane engineering and detailed modeling of technical airplane parameters, and thus 

explode the scope of this thesis. Hence, in our model, the CO2 emissions prices EUA and 

CER are considered as endogenous variables, whereas CO2 emissions represent exogenous 

variables. 

As a result, this model will contribute to the change in paradigm, by combining the 

“financial” with the “physical (engineering)” world, rather than considering them 

separately, and be applied to a completely new area within the emissions sector, 

incorporating a huge research potential. The developed methodology in this thesis could be 

widely used, adapted and extended to other academic problems with regard to hedging of 

physical assets against other financial derivatives than futures such as options or swaps. 

Moreover, it could be practically applied to other future sectors to be included in the EU 

ETS such as the shipping sector, or other sectors within the cap-and trade carbon market 

regimes such as the US RGGI.   

This thesis is organized as follows: In Chapter 2, the functioning of EU ETS and the 

inclusion of the aviation sector to the EU ETS will be highlighted. In Chapter 3, we will 

explain the idea of the natural short position in CO2 emission allowances and the design of 

an optimal hedging strategy with EUA and CER futures. Chapter 4 incorporates the 

mathematical derivation and formulation of the geometric Brownian motion (GBM) of 

correlated EUA and CER futures prices and MC simulation of them, as basis for the 

construction of the EUA and CER futures price scenario tree. Chapter 5 gives general 

mathematical foundations with regard to the multi-stage stochastic programming technique. 

In Chapter 6, the multi-stage stochastic programming technique will be concretely applied 

to an airline company in the EU ETS, where the decision (i.e., futures trading) algorithm 

will be methodologically developed and the optimization problem including the whole the 

system of equations successively derived. Chapter 7 contains the time-series properties of 

the applied GBM model and the input parameters in our model. In Chapter 8, the MC 

simulation for the GBMs of the correlated EUA and CER futures prices will be conducted 

and the optimization model according to the methodological and mathematical procedure, 
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described in Chapter 6, solved and the resulting output including the trading strategy, 

earnings and value-at-risk measure for each scenario presented. The thesis will be 

terminated with Chapter 9, where conclusions and outlook for further research in this area 

will be made.      

 

 

 

 

 

 



7 
 

 
 
 

CHAPTER 2 
 
 
 
 
 

THE EUROPEAN UNION EMISSION TRADING SCHEME 
(EU ETS) AND THE AVIATION SECTOR 

 
 
 
 
 
 
2.1 Functioning of the European Union Emission Trading Scheme  

(EU ETS) 

 

The Kyoto Protocol, agreed in 1997, as an immense and pioneering regulatory framework 

to combat climate change by reducing global greenhouse gas emissions (GHG)1, initiated 

the launch of the global carbon market which consists of the regulated and the voluntary 

carbon market. Whereas the first implies to the mandatory obligation of companies being 

under CO2 compliance to reduce their GHG to a pre-defined regulatory limit (i.e., cap), the 

latter one refers to the voluntary commitment of companies to reduce their GHG, seeking to 

manage their emission exposure for non-regulatory purposes such as for corporate social 

and climate responsibility issues. 

With a global market value of 147.5 bn. US$ and share of 84.0 % [15, 63], the European 

Union Emission Trading Scheme (EU ETS), established in 2005 as the first international 

emission trading scheme, has worldwide become by far the most important, liquid and 

well-functioning cap-and-trade system to reduce industrial GHG. At the launch at 1 January 

2005, the EU ETS covered all large-scale energy- and industrial-intensive EU installations 

and sectors such as power and heat, refineries, metals, minerals or pulp and paper.   

At 1 January 2012, the airline sector has been included in the EU ETS as the most recent 

(infant) sector. As per January 2013, more than 11,000 installations with a net heat capacity 

above 20 MW were mandatorily included in the EU ETS [16]. The EU ETS covers 31 
                                                            
1 Carbon dioxide (CO2), Methane (CH4), Nitrous oxide (N2O), Hydrofluorocarbons (HFCs), 
Perfluorocarbons (PFCs) and Sulphur hexafluoride (SF6). 
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countries, which refers to all 27 EU member countries, including Norway, Croatia, Iceland 

and Liechtenstein; they all are fully responsible for about 45% of the total GHG within the 

EU [17, 61].  

The EU ETS consists of three trading phases. Phase I, which was a three-year pilot phase, 

lasted from 1 January 2005 to 31 December 2007, which acted as a market establishing 

period. Phase II, as the first “real” commitment phase, lasted from 1 January 2008 to 31 

December 2012, where the market matured and liquidity increased. The actual phase III, as 

the longer trading and commitment period, is running from 1 January 2013 to 31 December 

2020, where EU ETS market participants as well as financial institutions are performing 

CO2 trading strategies, taking risk positions providing liquidity.  

The EU ETS imposes a mandatory “cap” or limit on the total amount of the specified GHG 

that are allowed to be emitted by power facilities, factories and other installations, 

mandatorily included in the cap-and-trade system. By this means, a shortage in CO2 

emission allowances in the market is achieved to launch their trading. Within this 

regulatory cap, up to a certain amount of CO2 emission allowances, called EU Allowances 

(EUAs2), are distributed for free to companies, dependent on the national target levels of 

the each country and National Allocation Plans (NAP), respectively. This implies the 

allocation of CO2 emission allowances on a national basis according to the national 

promises of the EU burden sharing. The remaining and missing difference between the cap 

and the free distributed CO2 emission allowances are to be bought from the market. Thus, 

the EU ETS ensures the cost-effective selling and buying of CO2 emission allowances 

between companies up to the predefined regulatory cap. Hence, the regulatory limit on the 

total number of CO2 emission allowances available put a real price on CO2 emissions.  

To fulfill the yearly regulatory CO2 emission cap requirement (i.e., CO2 compliance), at the 

end of each year, companies have to surrender enough EUAs to cover all their occurred and 

verified emissions. Otherwise, they are fined with a penalty of 100 EUR for each missing 

ton of CO2, simultaneously being obligated to buy the missing emission allowances from 

the market at the then existing market price. Up to 1.5% of their yearly occurred CO2 

emissions, the companies are allowed to meet their yearly regulatory compliance with 

Certified Emission Reductions (CERs), generated through CDM projects in developing 

                                                            
2 A European Union Allowance (EUA) is an assigned amount unit for the EU ETS. An EUA is a 
tradable unit of 1 tCO2e. 
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2.2  Inclusion of the Aviation Sector in the EU ETS 

 

At 1 January 2012, the global airline sector was included into the EU ETS, being 

responsible for 2% of the global GHG and 3% of the EU’s total GHG. Table 2.1 illustrates 

the percentage shares of classified sectors on the total CO2 emissions within the EU ETS 

[16].  
 

Sectors Percentage Share (%) 
Energy industries 31.9 
Transport (excl. aviation) 21.3 
Industry (energy and process related) 20.0 
Household and solvents 12.4 
Agriculture 8.6 
Aviation 3.0 
Waste 2.6 
Solvents 0.2 
Total 100.0 

Table 2.1. Percentage shares of sectors on the total CO2 emissions within the EU ETS. 

At first glance, aviation sector’s percentage share of 3% seems relatively low, as compared 

to energy industries, transport activities (excl. aviation) or industry. However, all these 

represent the sum of individual sectors together, i.e., energy industries involves power and 

heat production from various fossil fuel types such as gas or coal etc. or industry 

incorporates cement, lime, glass, pulp and paper industries etc., such that the aviation sector 

as one single sector within the classified sectors gains significant weight. Moreover, the 

extensive expansion plans and growth expectation of airline companies, and the resulting 

estimated growth of CO2 emissions by 300-700% until 2050, as compared to 2005 levels, 

clearly shows the aviation sector’s substantially increasing importance within EU ETS [57]. 

The global aviation sector is therefore considered as one of the fastest growing polluters. 

Nevertheless, the actual small percentage share of the airline companies in total CO2 

emissions indicates that these companies are price takers rather than price setters. We take 

this fact into account in the modeling of behaviors of these companies in the carbon market.  

According to Directive 2008/101/EC, all airline companies are forced by law to 

compensate all the CO2 emissions resulting from their flights to and from Europe. 

Therefore, as compared to the legal practice until now, where only large-scale energy- and 
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natural short position in CO2 emission allowances, which can even increase if the yearly 

occurred CO2 emissions are higher than planned, such that in addition to these 15 % more 

CO2 allowances have to be bought from the market (see Section 3.1). 
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CHAPTER 3 
 
 
 
 

 
 NATURAL SHORT POSITION AND HEDGING   

 
 
 
 
 
 
3.1  Natural Short Position in CO2 Emission Allowances 

 

As in the case for kerosene, as the major cost factor for an airline company, an airline's 

initial physical position with regard to CO2 is a natural short position, indicating that the 

15% of the missing amount of CO2 emission allowances has to be purchased from the 

market to mandatorily offset the remaining CO2 emissions in their yearly CO2 account. 

Hence, by implementing pure spot trading strategies, an airline company would suffer from 

an increase in prices of CO2 emission allowances and gain from their decrease, 

respectively. However, due to the various growth targets, expansion strategies and plans of 

the global airlines, the natural short position of the airlines is even expected to be further 

broadened. This implies that, in addition to market price risk, the airline companies are also 

fully exposed to volume risk of CO2 emission allowances. Lufthansa reports, that for the 

year 2012, it has to purchase more than 40% of its CO2 exposure from the market [37], 

which is much more than the regulatory set of 15%. Furthermore, due to the mature 

technological status of the airline sector, the aircrafts delivered to the global airlines until 

2020 are not expected to have a fundamental impact on the improvement of fuel efficiency 

[5, 24, 42, 43, 52]. Empirical evidence shows a doubling of CO2 emissions between 2005 

and 2020, forcing airline companies to buy an increasing amount of CO2 emission 

allowances [19].  Until 2050, the CO2 emissions from the aviation industry are even 

estimated to grow by a further 300-700%, as compared to 2005 levels [57], implying a 

substantial widening of the natural short position in CO2 allowances and thus increase of 

the amount of CO2 allowances to be purchased from the market by an airline company. 
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The following Section 3.2 illustrates how an airline company can design and set up an 

optimal hedging strategy in practice for the closing of its natural short position in CO2 

emission allowances with EUA and CER futures. 

 

3.2  Design of an Optimal Hedging Strategy with EUA and CER Futures 

 

To avoid the variability in the price for CO2 emission allowances, we in the following 

design and set an optimal hedging (i.e., reduction) strategy and hedging (i.e., reduction) 

optimization of the natural short position in CO2 emission allowances consisting of EUA 

and CER futures of various delivery periods to be purchased from the market, over a 

trading period of n-years (i.e., compliance periods). That is, the physical short position of 

the airline company is hedged with financial EUA and CER futures, traded at liquid carbon 

exchanges (see Chapter 1). The traded futures thereby ensure an airline company to apply 

in tranches a net purchasing strategy in CO2 emission allowances at a specified future time 

at a price agreed upon today, therefore serving as cash flow hedge. A net purchasing 

strategy in this sense means that, despite of the implementation of optimal buy-sell 

strategies, in total, more buying than selling strategies result in the amount of offsetting the 

natural short position in CO2 emission allowances. The set up and execution of a net 

purchasing strategy is therefore dependent on optimal buy-sell decisions of the portfolio 

manager. 

The management of an airline company defines the trading rules for the portfolio manager 

such as the hedging strategy and the upper purchasing and lower selling limits. To 

guarantee its portfolio manager a certain degree of hedging flexibility and optimization of 

his hedging position, the board also allows short selling, dependent on the portfolio 

manager’s view(s) of decreasing (and according to his expectations favorable) market 

situations.  Hence, within those trading rules, the portfolio manager has to apply an optimal 

trading strategy for the closing of the short position in CO2 emission allowances, which we 

call in the following reduction tactics.  

Figure 3.2 illustrates the systematics of the reference strategy, hedging strategy and 

hedging optimization from an airline company's point of view.  
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Hedging (i.e., reduction) strategy 

A hedging strategy is an active strategy, conducted by an airline company's advisory 

committee, independent from the board, and which is based on market expectations for the 

reduction of the short position in CO2 emission allowances. The hedging strategy, 

incorporates of a defined percentage amounts of CO2 emission allowances to be closed by 

the portfolio manager through hedging (i.e., reduction) optimization over the periods 

1,..., .nt T=  It also contains binding upper purchasing limits ,i tu and binding lower selling 

limits ,i tv , for 1, 2,i =  which denotes the index for EUAs and CER, respectively. Thus, the 

upper and lower trading limits sets limits the possibilities of the reduction of the short 

position in CO2 allowances (i.e., corridor). The trading limits are periodically determined 

by the advisory committee, and could be the same for all periods, i.e., ,1 ,2 ,...
ni i i Tu u u= = =

and ,1 ,2 ,... ,
ni i i Tv v v= = = or vary for each period t, respectively. Here, the upper and lower 

trading limits are presented as corrugated, dashed lines, and the reduction strategy is 

represented as a piece-wise increasing line. 

 

Hedging (i.e., reduction) optimization 

The hedging (i.e., reduction) optimization, which we can also shortly denote reduction 

tactics refer to the trading actions taken by the portfolio manager for the implementation of 

the board-defined reduction strategy within the binding limits in operative business (trading 

business unit). The portfolio manager defines, conducts and is the only responsible for the 

reduction tactics, which consist of optimal futures-spot trading strategies over the whole 

trading period 1,..., ,nt T=  based on his market expectations. That is, within the defined 

trading rules, the portfolio manager is allowed to implement any futures trading action 

which optimizes his value of the portfolio over the whole trading period 1,..., .nt T=  Here, 

the reduction tactics is illustrated as a wavy, bold line, beginning in a short (i.e., negative) 

position in CO2 emission allowances and ending in a just offsetting position at the last point 

in time of the trading period .nT  We remark that in this illustrative Figure 5, the increase of 

the wavy, bold line means that the short is being closed by purchasing of CO2 emission 

allowances, and the its decrease refers to their sales, implying an re-increase of the short 

position. 
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CHAPTER 4 
 
 
 
 
 

 GEOMETRIC BROWNIAN MOTION OF CORRELATED 
EUA AND CER FUTURES PRICES  

 
 
 
 
 
 
 
Due to our multi-period hedging optimization problem of the short position in CO2 

emission allowances, i.e., the consideration of n-CO2 compliance periods, we will use 

futures instead of spot prices. Thereby, we will use EUA and CER futures contracts of 

various delivery periods. 

Empirical evidence [4, 11, 29] shows that unlike electricity or gas prices, EUA and CER 

prices do neither exhibit a mean-reversion (i.e. long-term trend path) nor any seasonal 

patterns nor any jumps. For that purpose, we model the stochasticity of the EUA and CER 

futures prices by correlated geometric Brownian motion (GBM) processes, rather than 

applying the traditional Ornstein-Uhlenbeck (O-U) mean-reversion process, as applied for 

energy prices [8, 20, 56, 32]. In Chapter 7, we will empirically justify the use of the GBM 

in our model. 

Figure 4.1 and 4.2 illustrate the historical yearly EUA and CER futures prices for various 

CO2 delivery periods for the period 23/03/2009–16/11/2012, traded at the Intercontinental 

Exchange (ICE), London. There is a relatively strong correlation between EUA and CER 

futures prices, whereas the futures prices for CERs are fundamentally less than the market 

prices for EUAs (see Section 2.1). Therefore, developments in these two markets are 

influencing each other significantly. For the first sub period from 3 March 2009 to 11 May 

2011 both the EUA and CER market faced a slightly increasing growth with partially 

volatile periods. For the second period from 12 May 2011 to 16 November 2012, however, 

there exists another picture. Due to the worldwide actual discussions and uncertainty about 
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In the next sections, we will first give theoretical foundations for multi-correlated GBM for 

spot prices and determine the explicit solutions for the Stochastic Differential Equations 

(SDE's). Based on them, we will derive the explicit solutions for n-correlated futures prices, 

which have not found enough emphasis in academic finance literature until now. However, 

instead of using spot prices for MC simulation and facing the problem of modeling risk 

premia, for mid-term planning and hedging issues, taking directly observable futures prices 

(including risk premia) from a liquid exchange seems to be more purposeful. In the last part 

of this chapter, we will explain and set up the MC simulation method, used in the next 

chapters. 

  

4.1 Multi-Correlated Brownian Motions: Theoretical Foundations 

 

Since we will use a mid-term hedging optimization horizon, the evolution of the underlying 

EUA and CER futures prices, which incorporate strong correlations with each other, will be 

modeled and developed in the following. The model thereby used will be the geometric 

Brownian motion (GBM) process of correlated EUA and CER futures prices. 

The GBM dynamics of n-correlated asset prices is given by the following stochastic 

differential equations (SDEs) [8, 20, 46, 56]: 

 

,
,

,

,j t
j j j t

j t

dS
dt dW

S
μ σ= +

           

(4.1)

      
where ( ) 0t t

W
≥

are n-dimensional correlated Brownian motion, with correlation matrix 

( )
1 ,

,jk j k n
ρ ρ

≤ ≤
=

 

with 1 1,jkρ− ≤ ≤  ,j tS represent spot prices for assets 1,..., ,j n=

 

at time 

0,t ≥

 

the parameters jμ ∈

 

and 0jσ >  are the drift and the volatility of asset ,j

respectively, both being constants. Thus, the returns of ,j tS are correlated with ρ. 

The correlation structure of ,j tS  will be analyzed in the following and prepared for Monte-

Carlo simulation.  

For that purpose, let us firstly give a general definition for an n-dimensional Brownian 

motion. 
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Definition 4.1.1. n-Dimensional Brownian Motion: A standard Brownian motion (or a 

standard Wiener process) in ,n or a standard n-dimensional Brownian motion, is a 

stochastic process ( ) 0t t
Z

≥  whose value at time t is simply a vector of n independent 

Brownian motions t, such that 

 

( )1, ,,..., .t t n tZ Z=
 

 
Each ,k tZ  represents the value of one-dimensional Brownian motion at time 0.t ≥  

Additionally, the various elements ( ), ,,j t k tZ Z j k≠  
are independent for all times *, 0.t t ≥  

Now, for simplicity let us consider the case of two independent Brownian motions 1,tQ  
and 

2 ,tQ with 1 1ρ− ≤ ≤  as constant. We define for 0 t T≤ ≤  a new process 

 
2

1, 2,1 .t t tZ Q Qρ ρ= + −                                                   (4.2) 

 

We will see later how equation (4.2) is derived and how its relation to our formulation 

above is. Equation (4.2) says, that at each time step t, tZ  is a linear combination of 

independent normals ( )1, 2,,t tQ Q . Thus, tZ is normally distributed.  

We have to show that tZ is a Brownian motion such that [ ] 0,tE Z = [ ] ,tVar Z t= (0, ),tZ N t∼
(0, ).t sZ Z N t s− −∼ We know that 1, 0tE Q⎡ ⎤ =⎣ ⎦  

and 2, 0.tE Q⎡ ⎤ =⎣ ⎦  
Thus, the expected value 

of tZ is 

 

[ ] 2
1, 2 ,1t t tE Z E Q Qρ ρ⎡ ⎤= + −⎣ ⎦

 

                 
2

1, 2,1t tE Q E Qρ ρ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  

                                                               
20 1 0ρ ρ= ⋅ + − ⋅

 

      0.=  

 
The variance of tZ is 

 

[ ] 2
1, 2,1t t tVar Z Var Q Qρ ρ⎡ ⎤= + −⎣ ⎦  
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2

1, 2,1 .t tVar Q Var Qρ ρ⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  

 
Since both random variables 1,tQρ and 2

2,1 tQρ− are independent, we know that 

1,tVar Q t⎡ ⎤ =⎣ ⎦  and 2, .tVar Q t⎡ ⎤ =⎣ ⎦  Therefore,  

 

[ ] ( )2
2 2

1, 2,1t t tVar Z Var Q Var Qρ ρ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  

                         
2 2(1 )t tρ ρ= + −

 

                          .t=  

As a next step, we consider the increment 

 
2 2

1, 2, 1, 2,1 1t s t t s t s t tZ Z Q Q Q Qρ ρ ρ ρ+ + +
⎡ ⎤ ⎡ ⎤− = + − − + −⎣ ⎦ ⎣ ⎦  

             
2

1, 1, 2, 2,1 .t s t t s tQ Q Q Qρ ρ+ +⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦   

The expressions 1, 1,t s tQ Q+ −  and 2, 2,t s tQ Q+ − are the independent random increment of 

Brownian motions 1Q and 2 ,Q respectively, over the time interval s. Since both random 

increments are independent, through multiplication by a constant, the variance of the sum 

gets the sum of the variance 

 

  
[ ] { }2

1, 1, 2, 2,1t s t t s s t s sVar Z Z Var Q Q Q Qρ ρ+ + +⎡ ⎤ ⎡ ⎤− = − + − −⎣ ⎦ ⎣ ⎦         

{ } { }2
1, 1, 2, 2,1t s s t s sVar Q Q Var Q Qρ ρ+ +⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦

( )2
2 2

1, 1, 1, 2, 2, 2,1t s t t s tVar Q Q Q Var Q Q Qρ ρ⎡ ⎤ ⎡ ⎤= − − + − − −⎣ ⎦ ⎣ ⎦

( )2
2 2

1, 2,1 .s sVar Q Var Qρ ρ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  

Since 1,sVar Q s⎡ ⎤ =⎣ ⎦ and 2, ,sVar Q s⎡ ⎤ =⎣ ⎦   

 
[ ] 2 2(1 )t s tVar Z Z s sρ ρ+ − = + −  

                                        .s=  
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Consequently, the variance does not depend on the starting time t of the increment s, and is 

equal to the length of the interval. Therefore, tZ follows a Brownian motion. The variance 

of the random increment 1, 1,t s tQ Q+ −  
is  

 

1, 1, 1, 1, 1, 1,2 ,t s t t s t t s tVar Q Q Var Q Var Q Cov Q Q+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

                                        ( ) 2 min( , )t s t t s t= + + − +  

                        ( ) 2t s t t= + + −  

                  
.s=
 

The Brownian motions 1Q  and Z are correlated at time t. According to Itô's product rule, 

 

( )1, 1, 1, 1,t t t t t t t td Q Z Q dZ Z dQ dQ dZ= + +
 

              1, 1, .t t t tQ dZ Z dQ tρ= + +
 

 

By integrating, we get 

 

      1, 1, 1,0 0
.

t t

t t u u u uQ Z Q dZ Z dQ tρ= + +∫ ∫                      
(4.3) 

 

By taking the expectation of expression (4.3), we come up with the covariance between 

1,tQ and ,tZ such that 

 

1, 1, 1,0 0
.

t t

t t u u u uQ Z Q dZ Z dQ tρ⎡ ⎤ ⎡ ⎤⎡ ⎤Ε = Ε +Ε +⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫
 

 

We know, that the expectation of an Itô integral is zero, i.e.,  

 

1,0
0

t

u uQ dZ⎡ ⎤Ε =⎢ ⎥⎣ ⎦∫   
and  1,0

0.
t

u uZ dQ⎡ ⎤Ε =⎢ ⎥⎣ ⎦∫  

 

Hence, the covariance between 1,tQ and tZ becomes  

 

1, ,t tE Q Z tρ⎡ ⎤ =⎣ ⎦   



25 
 

for 1 1.ρ− ≤ ≤ Let the covariance 1,t tE Q Z⎡ ⎤⎣ ⎦  
denote as 1, ,t tCov Q Z⎡ ⎤⎣ ⎦ then correlation 

between 1,tQ and tZ is defined as  

 

[ ]
1,

1,

1,

,
, .t t

t t

t t

Cov Q Z
Corr Q Z

Var Q Var Z

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦
⎡ ⎤⎣ ⎦  

 

Since  

 

1, 1, , ,t t t tE dQ dZ Cov Q Z tρ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ 1,tVar Q t⎡ ⎤ =⎣ ⎦   
and  [ ] ,tVar Q t=

 

 

we obtain 

 

1, , .t t
tC orr Q Z

t t
ρ ρ⎡ ⎤ = =⎣ ⎦

 

 

Consequently, at all times t the Brownian motions 1,tQ and tZ  have correlation .ρ  

Now, let us generalize our two-asset case to n correlated asset prices, which are based on n 

correlated Brownian motions. Their main components are correlated normal random 

variables, beginning with a vector of n uncorrelated standard normal variables for each 

0,t ≥ , i.e., ( )1, ,,..., .t t n tZ Z= Through these, we create normal random variables which 

are correlated by pre-defined constant correlation coefficient by linear combinations of 

, .j tZ We denote the weights as .jkα Then 

 

1, 11 1, 1 , 1 ,

, 1 1, , ,

, 1 1, , ,

... ... ,

... ... ,

... ... ,

t t k k t n n t

j t j t jk k t jn n t

n t n t nk k t nn n t

X Z Z Z

X Z Z Z

X Z Z Z

α α α

α α α

α α α

= + + + +

= + + + +

= + + + +

      

 

such that 

  , ,1
,n

j t jk k tk
X Zα

=
= ∑
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or, written in matrix notation, 

 

,t tX AZ=             (4.4) 

 
where 

11 1 1

1

1

... ...
... ... ...

... ... ,
... ... ...

... ...

k n

j jk jn

n nk nn

A

α α α

α α α

α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1,

,

,

...
,

...

t

j tt

n t

Z

ZZ

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1,

,

,

...
.

...

t

j tt

n t

X

XX

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 

We know that the random variables ,j tX  and ,k tX are correlated with , .jk tρ Then, for one 

single element, we have  
 

  , , , .j t k t jk tE X X ρ⎡ ⎤ =⎣ ⎦                (4.5) 

 

Putting all the corresponding expected values together into a matrix, results in the 

correlation matrix ρ  such that 
 

1, 1, 1, , 1, ,

, 1, , , , ,

, 1, , , , ,

... ...

... ...

... ...

t t t k t t n t

j t t j t k t j t n t

n t t n t k t n t n t

X X X X X X

X X X X X XE

X X X X X X

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

        

1, 1, 1, , 1, ,

, 1, , , , ,

, 1, , , , ,

... ...

... ...

... ...

t t t k t t n t

j t t j t k t j t n t

n t t n t k t n t n t

E X X E X X E X X

E X X E X X E X X

E X X E X X E X X

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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1 , 1 ,

1, ,

1, ,

1 ... ...

... 1 ... .

... ... 1

k t n t

j t jn t

n t nk t

ρ ρ

ρ ρ

ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 

We can also write the matrix  

 

   

1, 1, 1, , 1, ,

, 1, , , , ,

, 1, , , , ,

... ...

... ...

... ...

t t t k t t n t

j t t j t k t j t n t

n t t n t k t n t n t

X X X X X X

X X X X X X

X X X X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 

as the matrix product of tX and its transpose ,T
tX   i.e., .T

t tX X  By using equation (4.4), 

we get 

 

( )( ) ( )( ) ( ) .TT T T T T
t t t t t t t tX X A Z A Z A Z Z A A Z Z A= = =

 
 

Based on that, the expected value is 

 

( ) .T T T T T
t t t t t tE X X E A Z Z A AE Z Z A⎡ ⎤⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦⎣ ⎦  

 

The matrix T
t tE Z Z⎡ ⎤⎣ ⎦  

is the correlation matrix of standard normal variables Zt. Since all of 

these are uncorrelated, this results in the identity matrix I, implying 

 
[ ] .T T T

t tE X X AE I A AA⎡ ⎤ = =⎣ ⎦  
 

Therefore, according equation (4.5), we have 

 
.TAAρ =  

 

The correlation matrix ( )
1 ,jk j k n

ρ ρ
≤ ≤

=  is symmetric, i.e., [ ]1,1 ,jk kjρ ρ= ∈ −  and positive 

definite, i.e., 
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, , ,1 1
0,n n

ij t j t k tj k
X Xρ

= =
≥∑ ∑  

 

for all ( )1, 1, 0
, ..., ,t t t t

X X X
≥

= implying that all eigenvalues of ρ are positive. 

Consequently, ρ  can be decomposed into the product of a lower-triangular matrix A and its 

transpose ,TA which is called the Cholesky decomposition, i.e.,  

 

 

1 , 1 ,

1, ,

1, ,

1 ... ...

... 1 ...

... ... 1

k t n t

j t jn t

n t nk t

ρ ρ

ρ ρρ

ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

     

21 31 1

21 22 22 32 2

31 32 33 33

1 2

1 0 0 0 0 1 ...
0 0 0 0

0 0 0 0 .

0 0 0

n

n

nn

n n nn nn nn

α α α
α α α α α
α α α α α

α α α α α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ×
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 

If we use the elements of A, we get the correlated random variables iX as 
 

1, 1, 1,

2, 21 1, 22 2,

3, 31 1, 32 2, 33 2,

, 1 1, , ,

1 ,
,

,

... ... .

t t t

t t t

t t t t

n t n t nj j t nn n t

X Z Z
X Z Z
X Z Z Z

X Z Z Z

α α

α α α

α α α

= =

= +

= + +

= + + + +
 

 

In academic literature, there are many numerical algorithms for conducting the Cholesky 

decomposition [9, 27, 33, 36, 45, 48]. We conducted it with the formula provided in 

MATLAB. For the two-asset case 2,n= we have  
 

2 2

1 0 1 1
, , ,

11 0 1
T TA A AA

ρ ρ
ρρ ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 2
21 22, 1 ,α ρ α ρ= = −  
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Therefore,  

 

1, 1,

2
2, 1, 2,

,

1 ,

t t

t t t

X Z

X Z Zρ ρ

=

= + −  
 

which just equals equation (4.1). 

Since in financial mathematics ,i tW  is used for Brownian motion notation, we define and 

use from now on  

 

, , .i t i tX W=  
 

Now, denoting  ( )1, ,,...,t t n tZ Z=
 
as the standard n-dimensional Brownian motion and 

by use of the lower-triangular matrix ( )
1 ,

,jk j k n
A α

≤ ≤
=

 

which is the Cholesky 

decomposition of ρ, a vector consisting of correlated Brownian motions 

( )1, , 0
, ...,t t n t t

W W W
≥

= can be defined, such that   

 
,t tW A=  

 
or, with regard to individual elements in the system,   

 

      , ,1
,n

j t jk k tk
W Zα

=
= ∑                                               

(4.6) 

  

        

Now, turning back to equation (4.1), by rearranging we get, 

 

   , , , ,j t j j t j j t j tdS S dt S dWμ σ= +                                       (4.7)

 

 

   

By inserting the elements of equation (4.6) in equation (4.7) we get  

        , , ,1

n
j t j j t j j jk k tk

dS S dt S a Zμ σ
=

= + ∑                                    
(4.8)       

resulting in the following system of SDE's, 
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( )

( )

1, 1 1, 1 1, 11 1, 1 ,

, , , 1 1, ,

... ,

... ,

t t t t n n t

n t n n t n n t n t nn n t

dS S dt S dZ dZ

dS S dt S dZ dZ

μ σ α α

μ σ α α

= + + +

= + + +
                    

(4.9) 

      

In order to solve for , ,j tS we can rewrite equation (4.7) in integral form 

 

                                      , ,0 , , ,0 0
,

t t

j t j j j s j j s j sS S S ds S dWμ σ= + +∫ ∫                             
(4.10)      

         

We can solve equation (4.10) by the well-known Itô formula 

( )
2

2 2
, , , , , 2

, , ,

1 .
2j t j j t j j t j t j j t

j t j t j t

f f ff S S dt S dW S dt
S S S

μ σ σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

By use ( ), ,log ,j t j tf S S= we get 

2
2 2

, , , , , 2
, , ,

1log .
2j t j j t j j t j t j j t

j t j t j t

f f fd S S dt S dW S dt
S S S

μ σ σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

By determining 
, ,

1

j t j t

f
S S
∂

=
∂

 and 
,

2

2 2
,

1 ,
j tj t

f
S S
∂

= −
∂  we result in 

2 2
, , , , , 2

, , ,

1 1 1 1log
2j t j j t j j t j t j j t

j t j t j t

d S S dt S dW S dt
S S S

μ σ σ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

      

2
,

1
2j j j t jdt dW dtμ σ σ= + −

 

                         

2
,

1 .
2j j j j tdt dWμ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠  

Thus, we get  

, ,0 ,0
log log log

t

j t j j rS S d S− = ∫  
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2
,0 0

1
2

t t

j j j j rdr dWμ σ σ⎛ ⎞= − +⎜ ⎟
⎝ ⎠∫ ∫

 

                                              
 

                                              

2
,

1 .
2j j j j tt Wμ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠

 
Hence, we get the explicit solution of the SDE's  

 

, ,0 ,
1exp .
2j t j j j j j tS S t Wμ σ σ⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠                                       

(4.11)     
 

By inserting our system in equation (4.9) into equation (4.11), we result in the following 

systems of equations 
 

     

( )

( )

1, 1,0 1 1 1 11 1, 1 ,

, ,0 1 1, ,

1exp ... ,
2

1exp ... .
2

t t n n t

n t n n n n n t nn n t

S S t Z Z

S S t Z Z

μ σ σ α α

μ σ σ α α

⎛ ⎞⎛ ⎞= − + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= − + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  
 

Finally, in general form, we can write  

 

                              
( ), ,0 ,1

1exp .
2

n
j t j j j j jk k tk

S S t Zμ σ σ α
=

⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

                             
(4.12)     

 

4.2 Multi-Correlated Brownian Motions of Futures Prices 

 

As explained several times before, in our model, due to mid-term planning and 

hedging issues of the natural physical short position in CO2 allowances, we will use 

futures contracts and therefore, futures prices instead of spot prices.  

Futures contracts allow the exchange of future unconditional obligations on terms 

which are defined in advance. Thus, they enable market participants to make 

planned transactions prematurely to smooth cash flows and thus to generate added 

value. Hence, futures are considered as instruments that are purely used to obtain an 
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optimal risk allocation in the market. In addition to that, futures contracts meet the 

other two functions of financial markets: information processing and investment 

motive. 

In academic research as well as in practice, carbon meets all the properties that are 

typical for commodities: It is a consumer good, which is standardized in terms of 

quality, place of delivery and delivery period. That is why, carbon is clearly 

considered as a commodity [31, 62]. It is important to note that in the case of 

commodities, since a delivery period is usually defined, at which physical delivery 

takes place, they are associated with embedded option(s). We refer on that issue in 

more detail in Section 6.1. 

The well-known fundamental, non-arbitrage relation between spot and futures 

prices used for the pricing of commodities is  
 

( ), , ,exp ( )( ) ,t T t T T t T t TF S r u y q T t= + − − −  
                          (4.13) 

 

where ,t TF  
is the futures prices of a commodity at time 1, ...,t T=  for delivery in 

period (i.e., maturity) T, tS
 
is the spot price at t, Tr  

is the risk-free for period T, Tu
 

is the storage cost for T, ,t Ty
 
is the convenience yield for holding the asset through 

the period t and T, and ,t Tq
 
is the accrued dividend yield of the asset through the 

period t and T. The expression in the bracket at the right hand-side of equation 

(4.13) represents the risk premium of an investor of holding an asset through the 

period t until the maturity T. 

There are traded futures of various delivery periods at liquid exchanges such as ICE 

(London), European Energy Exchange (Leipzig) or Nordpool (Scandinavia), such 

that for our further purpose, we do not have to care about the determination and 

consideration of any risk premiums since these are directly incorporated in the 

futures prices. Thus, we can directly make use of the liquidly traded futures prices 

, .t TF  

Therefore, the explicit solution for the SDE's in equation (4.12) can be reformulated 

to 
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( ),( , ) ,(0, ) ,( , )1

1exp
2

n
j t T j T j j j jk k t Tk

F F t Zμ σ σ α
=

⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

                      
(4.14)    

          

In case of n-delivery periods of futures prices (i.e., maturities), we can set nT T=  such that 

equation (4.14) becomes 

 

                     
( ),( , ) ,(0, ) ,( , )1

1exp
2n n n

n
j t T j T j j j jk k t Tk

F F t Zμ σ σ α
=

⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

                    
(4.15) 

                

In order, to set up explicit solutions for correlated GBM's of futures prices for different 

maturities between any observed time t and maturity Tn, we can adjust equation (4.15) to  

 

                 
( ),( , ) ,( , ) ,( , )1

1exp ,
2n n n

n
j t t T j t T j j j jk k t t Tk

F F t Zμ σ σ α+Δ +Δ=

⎛ ⎞⎛ ⎞= − Δ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

            

(4.16)                           

where tΔ  is the discrete time step. 
 

4.3  Monte-Carlo Simulation  

 

According to equation (4.6), by substituting , , ,j t j tW ε= we get 

 

, ,1
.n

j t jk k tk
Zε α

=
= ∑  

 

Thus, after having created correlated normal random variables ,j tε
 
by the calculated jkα

 
from the given correlation matrix ρ and the standard n-dimensional Brownian motion ,k tZ  

(see Section 4.1), it is now possible to compute the correlated Brownian motions for any 

given time step tΔ  through multiplication of each correlated random variable ,j tε
 
by .tΔ  

Knowing this, to perform MC simulation of correlated EUA and CER futures prices for any 

t to maturity nT  (i.e., delivery period), we can construct equation (4.16) as a system of 

SDE's with a more notation convenient form as 
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1,( , ) 1,( , ) 1 1 1 1,( , )

,( , ) ,( , ) ,( , )

,( , ) ,( , ) ,( , )

1exp ,
2

1exp ,
2

1exp ,
2

n n n

n n n

n n n

t t T t T t T

j t t T j t T j j j j t T

n t t T n t T n n n n t T

F F t t

F F t t

F F t t

μ σ σ ε

μ σ σ ε

μ σ σ ε

+Δ

+Δ

+Δ

⎛ ⎞⎛ ⎞= − Δ + Δ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= − Δ + Δ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= − Δ + Δ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

           (4.17)

 

      1, ..., .t n∀ =                   

where ( ) ( )1, , , ,,...,
n nt t T n t t TF F+Δ +Δ  are the corresponding futures prices to be obtained by MC 

simulation, Δt is the discrete time step, and 1,( , ) ,( , ),...,
n nt T n t Tε ε

 are standard normal 

variables, i.e., ( )1,( , ) ,( , ),..., 0,1 .
n nt T n t T Nε ε ∼   

Thus, we can state ( ) ( )1,( , ) ,( , ), ..., 0,
n nt T n t TE t t Nε ε= Δ Δ Σ∼ with  

 

2
1 1 2 12 1 1 1 1

2
2 1 21 2 2 2 2 2

1 1

2
1 1

... ...

... ...

,
.. ...

... ... ...

k k n n

k k n n

j j j k jk j n jn

n n n k nk n

σ σ σ ρ σ σ ρ σ σ ρ

σ σ ρ σ σ σ ρ σ σ ρ

σ σ ρ σ σ ρ σ σ ρ

σ σ ρ σ σ ρ σ

Σ =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

being is the variance-covariance matrix between the n-futures prices. We note that for 

,j k=  the terms j k jkσ σ ρ becomes 2 2,j j jj k k kk j kσ σ ρ σ σ ρ σ σ= = =  which is the variance of 

futures price j or k, respectively. For all ,j k≠ the term j k jkσ σ ρ denotes the covariance 

between futures prices j and k.  

Hence, in order to generate one sample value of ( ) ( )1, , , ,,...,
n nt t T n t t TF F+Δ +Δ we have to 

generate one sample value of ( )1,( , ) ,( , ), ..., .
n nt T n t TE t tε ε= Δ Δ Thus, by taking the 

Cholesky lower triangular matrix A, derived and explained in more detail in Section 4.1, 

and the generated random vector of independent unit normals ( )0, ,Z N I∼  where I  is the 

unit matrix, we obtain a correlated random vector E AZ= .   
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For our further purpose, by use of the standard MC method, we will generate a finite 

number of s scenarios for 
( ) ( )( )1, , , ,, ...,

n n

s s
t t T n t t TF F+Δ +Δ

with 1,..., ,s n= each considered with 

equal probability 1.sp n−=   

The concrete procedure for MC simulation, which will be performed in Chapter 8, looks as 

follows: 

Step 1:  Collection of historical EUA and CER futures price data of relevant delivery 

periods (i.e., maturities). 

Step 2:  Estimation of the relevant GBM parameters ( ),j jμ σ and determination of the 

variance-covariance matrix ∑  from historical EUA and CER futures price data.  

Step 3:  Determination of the discretization size ,tΔ starting time point t and maturity .nT  

Step 4: Generation of uniformly distributed random numbers between 0 and 1. 

Step 5: Generation of correlated random vectors ( )1,( , ) ,( , ), ...,
n nt T n t TE t tε ε= Δ Δ  by 

using the variance-covariance matrix .∑  

Step 6: Determination of the scenario size n and generation of 1,...,s n=  scenarios for

( ) ( )( )1, , , ,, ..., ,
n n

s s
t t T n t t TF F+Δ +Δ

based on the use of the MC simulation parameters ( ), ,j jμ σ Σ

and ( )1,( , ) ,( , ), ..., .
n nt T n t TE t tε ε= Δ Δ  

Step 7: Determination of the weights 1sp n−= and weighting each scenario s by .sp  

 

We note that the MC simulation in Chapter 8 will be done for concrete, liquidly traded 

EUA and CER futures contracts of specific delivery periods, which will defined in Chapter 

7, such that our general theoretical framework, derived above, will be applied to a concrete 

optimization problem.    
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CHAPTER 5 
 
 
 
 

 
 MULTI-STAGE STOCHASTIC PROGRAMMING  

 
 
 
 
 
 
 

There is a huge academic literature on multi-stage stochastic programming. We will only 

highlight the main issues and set up, which will be relevant for our purposes in next 

chapters. 

The basic idea of a multi-stage stochastic programming model is that an agent makes 

optimal decisions for T-stages, given the uncertainty of events (i.e., random event). Let an 

agent make a decision in the first stage. After that decision a random event appears 

influencing the outcome of the first-stage decision. The agent can then make a recourse 

decision in the second stage which offsets any unfavorable outcomes that might have been 

resulted from the decision of the first-stage. Therefore, the optimal decision policy results 

in making the best decision in stage 1t − , taken into account both the possible realizations 

of random outcomes and the best recourse decision in stage t for each random outcome. 

This procedure is then sequentially repeated for T-stages. All the possible random events 

are assigned with weights, called probability measure over the events. 

In the following, we will only concentrate on the linear case of multi-stage stochastic 

programming, where the objective function is linear and set of feasible solutions are 

expressed by linear the constraints. For the generic formulation and all the other forms, 

cases and more detailed discussions of multi-stage stochastic programming, we refer to [3, 

10, 34, 51]. 
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5.1 Linear Multi-Stage Stochastic Programming  

 

In multi-stage stochastic programming, we deal with optimized decision-making for several 

periods, given the uncertainty of events, which can be described by random vectors. Let us 

firstly give a definition for a random vector.  
 

Definition 5.1.1. Random Vector:  Let us consider a finite space of T-stages (i.e., finite 

time horizon), 1,..., ,t T= then a random vector { }1,..., ,Tξ ξ ξ= td
tξ ∈  (with td  as a 

positive integer), is an underlying process of discrete-time stochastic data, defined on the 

filtered probability space ( ), , ,FΩ Ρ and whose realizations are of d-dimensional data 

vectors.  

 

The set of all possible realizations of tξ  for 1, ...,t T=  is defined as the state space 
1: TΩ =Ω × ×Ω with .td

tΩ ⊆  Thus, Ω  limits the range of all possible outcomes of a 

random experiment. The σ-algebras incorporate the available tξ  for the decision maker at 

time t, such that  

 

1 2 ... ...tF F F F⊆ ⊆ ⊆ ⊆ ⊆  ( 1, ..., ),t T=  
 

denoting that the set of information is increasing with time t. Hence, σ-algebras incorporate 

a sum of tξ  and subset of .Ω Each tξ  is associated with an occurrence probability 

[ ]: 0,1 .tP ξ →  

The discrete-time stochastic data tξ  have to be modeled and generated through a stochastic 

process. Now, according to each tξ  optimal decisions should be undertaken by the decision 

maker. These could be represented by a vector of stochastic decision process, which we can 

define as follows. 

 
Definition 5.1.2. Vector of Stochastic Decision Process:  A vector of stochastic decision 

process [ ]1,..., Tx x x=  is an Ft-measurable function of .ξ
  

 
This means, that x contains for all 1, ...,t T= the sequence of stochastic decisions ,tx
which are assumed to be measurable with respect to the filtration 
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       { }1: ,...,t tF σ ξ ξ=       ( 1,..., ).t T=  

 

A sequence of possible decisions tx  is commonly called a policy which responds 

conditionally to the random events tξ  of the state space .Ω Therefore, a policy can be 

considered as a contingency plan and only incorporates the embedded flexibility in the 

system, which is a crucial feature in option pricing (see Section 6.1). 

We assume that the probability distribution P of ξ  is known and independent of .x  That is, 

using the notation in [28], for 1,..., ,t T= we can define the probability distribution of the 

random vector .ξ  
 

Definition 5.1.3. Probability Distribution of the Random Vector :ξ  A Probability 

distribution of the random vector ξ  can be defined as 1P ξ−=Ρ and its tth marginal 

probability distribution by tP
 such that 

 
( ) ( )1

1 1 1 ,t t t t t TP B Bξ −
− += Ρ Ξ × ×Ξ ×Ξ × ×Ξ  ( ) ,t tB ∈Β Ξ  

 

where d
tΞ ∈ stands for the support of tξ  and ( )tΒ Ξ  is the σ-field of its Borel subsets. 

Specifically, 1
dΞ ∈ stands for { }1 1 .ξΞ =  

 

We note that 1ξ  is deterministic, such that for 1,t = 1,x
 this defines the (deterministic, non-

recursive) decision in the first stage. For all 1,t > ,tx
 which incorporates the corrective or 

recursive decisions in the following stages. Therefore, all the decisions and realizations can 

be represented as the sequence 

 
( ) ( ) ( )1 1 2 1 1 2 2 1 1 2 1 1 1, , , , , , , ,..., , ,..., ,T Tx x x x x x xξ ξ ξ ξ ξ ξ ξ −  

 

meaning that the process of decisions incorporates nonanticipativity. Or, in other words, 

any decision xt taken at time t depends only from the past information of the random values 

tξ  and not from their future realizations, i.e.,  

 

    ( )1 1, ,t t t tx x x Pξ− −=    ( 1,..., ).t T=  
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Let us define [ ] ( )1,..., ttξ ξ ξ= to indicate the history of the stochastic data process up to time 

t. Then, the general multi-stage stochastic programming model can be formulated as [51]:  

 

( ) [ ]( )( ) [ ]( )( )
1

1 1 2 1 22,...,
min , ... , ,

T
T T TTx x

f x f x f xξ ξ ξ ξ⎡ ⎤Ε + + +⎢ ⎥⎣ ⎦           (5.1)  

subject to  1 1,x X∈        

[ ]( ) [ ]( ) [ ]( )1 1 ,t t tt t tx X xξ ξ ξ− −∈  ( 2,..., ),t T=    

 

 with 

 

( ), : ,T
t t t tf x c xξ = { }1 1 1 1 1: : , 0 ,X x Ax b x= = ≥

 

( ) { }1 1, : : , 0t t t t t t t t t tX x x B x Ax b xξ− −= + = ≥  ( 2,..., ).t T=  

 

The data vector ( )1 1 1 1: , ,c A bξ = is known at the first stage and thus is deterministic. We can 

define 

 

   ( ): , , , td
t t t t tc A B bξ = ∈    ( 2,..., ),t T=  

 

which implies that all or some elements of tξ  can be random. We note that in formulation 

(5.1) 2,..., Tx x  are functions of the data process, and thus are suitable functional spaces, 

while 1
1

nx ∈  is a deterministic vector. For the whole sequence of policies (i.e., 

measurable mappings) 1: ... .t td nd
tx × × → Likewise for the functions ft we have 

1
1 : ,nf → which is deterministic, and 1 1: ,d n

tf × → which are continuous. Since 

for our purposes, the discrete-time stochastic data process 1,..., Tξ ξ  has a finite number of 

realizations, formulation (5.1) will result in a finite dimensional optimization problem. That 

is, all tξ  have a finite distribution and Ω is the set of all possible combinations of 

realizations of ,tξ  which we call scenarios. Thus, we can replace tξ  by ,s
tξ such that 

{ }1,...,
s s s

Tξ ξ ξ= for 1, ..., .s n= Therefore, with each scenario 1, ...,s n=  of tξ we can 

associate an occurrence probability 
 

( ) ,s sp P ξ= 0,sp ≥  
1

1.S s
s

p
=

=∑  
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Based on the notations and terminology above and by the use of scenarios s, the general 

linear multi-stage stochastic programming model with recourse and with a finite number of 

scenarios can be formulated as [51] 
 

 1, ,
1 1 2 21,...,

min ( ) ... ( ) ,
s T s

S s T s s T s s T s
T Tsx x

p c x c x c x
=

⎡ ⎤+ + +⎣ ⎦∑             (5.2)  

subject to  

 

1 1 1

2 1 2 2
2
3 2 3 3 3

1 1

,
,
,

,

s

s s s s s
s

s s s s

s s s s s
T T T T T

A x b
B x A x b

B x A x b

B x A x b− −

=
+ =

+ =

+ =

 

 1 0,x ≥  0s
tx ≥   ( 2,..., ; ),t T s= ∈Ω   

 
*

0,s s
t tx x− =   ( ) ( )* *

, : , ..., , ..., ,s s s s
t t t ts s ξ ξ ξ ξ∗∀ ∈Ω =  ( 2,..., ),t T=   

 

where the latter constraint denotes the non-anticipativity condition, mentioned above, 

implying that the decisions made at 1t >  are equal for the whole set of scenarios that have 

the same history until stage 1.t >  Accordingly to above, we replaced tx by ,s
tx such that 

{ }1,...,
s s s

Tx x x= for 1, ..., .s n=  This model set up guarantees that all elements of the stochastic 

decision vector sx  may depend on all elements of the stochastic data vector .sξ  

Consequently, each element of tx  may only depend on the stochastic data known tξ  until 

stage t. 

 

5.2 Constructing a Scenario-Tree  

 

Let us denote from now on the first stage as 0,t =  where 0ξ  is deterministic, i.e., the initial 

state is given, and the decision 0x  is known. The random vector including scenarios 

1, ...,s T= can then be defined as { }0, ,..., ,s s s
t t Tξ ξ ξ ξ= and stochastic decision vector as 

{ }0 , ,..., .s s s
t t Tx x x x= Thus, all realizations of s

tξ  in 0t >  incorporate recursive decisions tx  
in the subsequent stages. Possible realizations of s

tξ for 0t >  can be represented by a 

scenario tree, which consists of nodes constructed in levels referring to decision stages 

1,..., .t T=  Thus, a scenario can be defined as a generated (i.e., random) path from the root 
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node at stage 0t =  to a node at the last stage T, incorporating a history of the stochastic data 

process .s
tξ  At level 0t =  the value of 0ξ  is known, such that in the next level 1t =  the root 

node is then connected with θ  possible realizations of 1 ,sξ  called θ  nodes, with 

1,..., nθ =  and ,tOθ ∈  where tO  is the set of all nodes at level 1,..., .t T=  This procedure 

is then repeated until the association of the generated nodes in the level 1T −  with the ones 

in level T. The connection from one node to the next node is called arc, where the 

stochastic decisions sx are made. A conditional probability θπ  can then be related with 

each node θ  at the tth level such that  
 

   { }1 2... ,t tpθπ ξ ξ ξ−=  0,θπ > 1
tO θθ
π

∈
=∑    ( 1,..., ),t T=  

 

Therefore, the arcs in the scenario tree illustrate the finite probability distribution of .s
tξ  As 

t and s increases, the number of arcs and consequently, the scenario-tree increases. 

For simplified illustration issues, let us only concentrate on the objective function of 

general linear multi-stage stochastic program 

 

( )min ; ,s s

x X
f x ξ

∈   
 

where { }1 ,...,s s s
Tx x x= and { }1 ,...,s s s

Tξ ξ ξ= for 1, ...,t T= and 1, ..., .s n=  That is, in order to 

generate all the decision possibilities s
tx with regard to scenarios s, all the possible s 

realizations of the random variables s
tξ  

must be modeled.  

Therefore, to construct a scenario-tree we set an initial value c for 0,ξ  i.e., 0 cξ =  and 

then, for all scenarios 1,..., ,s n=  generate paths with 0,ξ taken as a root. 

Thereby, for our stochastic optimization model, we use the Monte Carlo simulation 

technique, which requires historical data, number of stages 1,..., .t T=  and scenarios 

1,..., .s n=  Concretely, we apply the GBM method of correlated futures prices of EUA and 

CER (i.e., random variables), explained in detail in Sections 4.2 and 4.3.  

For more theoretical background and discussion with regard to the construction and 

handling of scenario trees, we refer to [28, 34, 51]. 
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CHAPTER 6  

 
 
 
 
 

APPLICATION TO AN AIRLINE COMPANY IN THE EU ETS 
 
 
 
 
 
 
 
6.1 Optimized Decision-Making: Option Pricing 

 

Classic option pricing refers to the valuation of financial contracts with option rights. Due 

to their abstract nature, this can be of any forms, whereas a market for standardized (plain-

vanilla) and exotic products has been established.  

We have seen in Section 6.2, that commodities incorporate implicit flexibilities (i.e., 

embedded option(s)). That is, through the proper disposition of assets, added value can be 

generated. Difficulty in valuation arises from the consideration of dependencies 

(contingencies).  

Options, as derivatives (derivative transactions), require a special valuation methodology. 

This is based on the principle of arbitrage - the so-called risk-neutral valuation method 

(Black-Scholes-Merton approach). Traditional approaches are based on a stochastic 

influencing variable (state variable), the price. By the conditional payoff function of a 

contingent, the typical non-linear payout structure results. Hence, the option theoretical 

difficulties of multiple exercise before maturity (American style) and path dependence 

(Asian style) arise.  

The resulting analytical problems (non-time additivity) can be solved, by adding a further 

dimension in the state space [26, 47]. This eliminates the dependence of previous decisions.  

Option pricing methods imply the solution to a stochastic dynamic optimization problem. 

This means that, in the option pricing model, the value-maximizing decision is made for 
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each state. Through the expansion of the action possibilities by a new action, the number of 

action possibilities per state increases significantly. Along the time axis, the correct action 

must be determined for each state. The introduction of restrictions (constraints) of various 

kinds, results in a reduction of the state space, i.e., certain states may (must) not be reached. 

This is a central assumption of option pricing theory.  
 

6.2 Modeling of the State Space  

 

As explained in Chapter 2, the main risk factors (i.e., random parameters) for an airline 

company within the EU ETS are the uncertain EUA futures and CER prices as well as its 

yearly CO2 emissions from flights from and to EU countries.  

Hence, according to our notation in Chapter 5, our stochastic data process can be 

represented as of { }1, 2,, , ,s s s s
t t t tp p cξ = for each stage (i.e., trading time horizon) 1,...,t T=

and scenario 1,..., ,s n=  where 1,
s

tp  denote the stochastic futures prices for EUA, 2,
s

tp

denote the stochastic futures prices for CER, and s
tc stands for the periodic stochastic CO2 

emissions. We note that in our model s
tc will be represented as stochastic constraints 

parameter, explained later.  

Thus, our modeling procedure consists of the set up of the optimization model including the 

constraints, the scenario generation of ,s
tξ  setting of the state space Ω  and solving of the 

model through the CPLEX, which is available in MATLAB. 

The scenarios for s
tξ and constraints are needed to specify all the possible and feasible 

stochastic decisions  
 

   
( ) ( )1, 2, 1, 2,, ,..., ,s s s s s

t t t T Tx x x x x⎡ ⎤= ⎣ ⎦     
( 1,..., ; 1,..., ),t T s n= =  

 

to be taken within a two-dimensional state space, where 1,
s
tx  denote the stochastic purchase, 

holding or selling decision of EUA futures contract and 2,
s

tx  denote the stochastic purchase, 

holding or selling decision of a CER futures contract, respectively. That is, along the time 

axis t for each state ( 1, 2,,s s
t tp p combinations) and s, the value-maximizing decision must be 

made out of the decision matrix s
tD  which consists of nine possible combinations of trading 

decisions, , 0s
i tx <  denoting selling decision, , 0s

i tx >  purchasing decision and , 0s
i tx =  holding 
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decision of the portfolio manager such hat 

 

1, 2, 1, 2, 1, 2,

1, 2, 1, 2, 1, 2,

1, 2, 1, 2, 1, 2,

0, 0 0, 0 0, 0
0, 0 0, 0 0, 0 .
0, 0 0, 0 0, 0

s s s s s s
t t t t t t

s s s s s s s
t t t t t t t

s s s s s s
t t t t t t

x x x x x x
D x x x x x x

x x x x x x

⎧ ⎫> > > = > <
⎪ ⎪= = > = = = <⎨ ⎬
⎪ ⎪< > < = < <⎩ ⎭

 

  

For simplifying notation, for further purpose, let us denote, for 1,2,i =  , 0s
i tx <  (i.e., selling 

decision) and , 0s
i tx >  (i.e., purchase decision) as , ,

s
i tx− and , , ,

s
i tx+  respectively, such that 

 

, , max , ,
0

i t i t

s sx x
+ +

≤ ≤
 

1,..., ,t T∀ = 1,..., ,s n∀ =
 

, , max , ,
0

i t i t

s sx x
− −

≤ ≤
 

1,..., ,t T∀ = 1,..., ,s n∀ =  

where 
max , ,i t

sx
+

denotes the maximum selling and 
max , ,i t

sx
−

the maximum purchasing amount 

of 1,2,i =  respectively.  

Actually, the decision matrix s
tD  contains a strip of call and put options, with EUA and 

CER futures as underlying, giving the portfolio manager the right of purchasing and selling 

EUA and CER futures at each point in time t, based on his market expectations and the 

modeled state space .Ω The concrete decision algorithm is described in Section 6.3. 

In fact, the state space Ω consists of a product and a market state. The product state refers 

to internal factors of the product that influence the income, e.g., regulatory, managerial and 

trading constraints including the periodic stochastic emissions ,s
tc whereas the market state 

refers to external factors, the product’s underlying, that influence the income. In our case, 

these are the correlated EUA and CER futures prices for different delivery periods. The 

regulatory, managerial and trading constraints, which will be explained in more details in 

the Section 6.4, results in a diminishment of the state space, such that certain states may 

(must) not be attained. In general, the evolution of the product state is affected by the 

evolution of the market state, but vice-versa is not true. Therefore, the market state's 

evolution can be described independently of any product state. For our purpose, we assume 

the future realizations of different product states as independent, whereas future realizations 

of the market variables EUA and CER futures prices are considered correlated (see Chapter 

4). 
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Step 3:  Given the valuation for each state, the uncertainty of the earnings is determined by 

the MC simulation. This is conducted by forward induction and be called as the risk 

perspective. 

Based on Step 3, the well-known risk measure Value-at-Risk (VaR), which is commonly 

implemented in academic finance research as well as in practice, can be determined. VaR 

tells a portfolio manager how much money he is likely to loose over a specific holding 

period at a given confidence interval .α We can mathematically define VaR of a portfolio 

X as follows: 

 

Definition 6.2.1. Value-at-Risk (VaR):  Given a confidence level ( )0,1 ,α ∈  the VaR at 

level α of a portfolio X with distribution ,P  is defined as the specified negative deviation 

(i.e., loss) j, ,j∈  from the expected value or return of X, such that the probability that a 

given loss J is greater than the critical loss value or return j is at least ,α i.e., 
 

[ ]{ }( ) : inf .VaR J j P J jα α= ∈ > ≥  

 

Therefore, for our purpose, the ,XVaR α  
of a portfolio X at a specified confidence level α

can be calculated as the expected $-value of the portfolio X minus the product of $-standard 

deviation Xσ of portfolio X and the given confidence level α and, i.e., 
 

( ), $ $ ,X X XVaR α μ σ α= −
 

 

where the term in brackets denotes the maximal at loss j at α confidence level according 

to Definition of 6.2.1. 

We will use the widely used 95% and 99% α-confidence interval, which have z-values of 

1.645 and 2.33, respectively. The $-standard deviation Xσ  of portfolio X can directly be 

derived after determination of the distribution of revenues for each single trading strategy 

and their corresponding final expected value through MC simulation. Hence, in addition to 

the optimal trading strategies and expected values, we will determine how much the 

portfolio manager at least will gain with 95% and 99% probability, respectively. VaR of the 

various trading strategies will be calculated in Chapter 8.  
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6.3  Decision Algorithm for a Portfolio Manager  

 

The value of the CO2 trading strategy s
tV  at 1, ...,t T=  and for 1, ...,s n=  is a function of 

the state variables 1, ,s
tp 2,

s
tp and ,s

tc  where 1,
s
tp  and 2,

s
tp  denote stochastic futures prices for 

EUA and CER, respectively, and s
tc are the stochastic periodic CO2 emissions, i.e., 

 

( )1, 2,, , ,s s s s
t t t tV f t p p c=

 

( 1,..., ; 1,..., ),t T s n= =  
 

The decision mechanism is based on the valuation methodology of American options. We 

remark that the Asian property “path dependence” is already incorporated by the extension 

of the state space. The concrete decision algorithm is as follows: 

Step 1:  At a given CO2 emission level s
tc for scenario 1, ...,s n= the option value is 

calculated by numeric integration.  

Step 2:  The s
tC  stochastically change the constraints when switching to the next stage 

1,..., .t T= Based on that, the transition probabilities between the states are derived. The 

( 1) ( 1)n n+ × + transition matrix s
tM  for each 1, ...,t T=  and 1, ...,s n= can be 

represented as 
 

0 1 2 1

1 0 1 2 1

2 1 0 3 2

1 2 3 0 1

1 2 1 0

...

...

,

...

...

n n

n n

n ns
t

n n n

n n n

p p p p p
p p p p p
p p p p p

M

p p p p p
p p p p p

≤ − ≥

≤− − ≥ −

≤− − − ≥ −

≤− + ≤− + ≤− + ≥

≤− ≤− + ≤− + − ≥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠  

 

where, for each scenario 1,..., ,s n= the entry s
ijm  stands for the probability to migrate to 

state j given the state is equal to k, with , 1,..., ,j k n=  within the period from t from 1,t+  as 

a result of changing stochastic periodic CO2  emissions .s
tc   

Step 3:  Let us denote , ,i tF+ and , ,i tF− as price thresholds for sales and purchases of EUA 

and CERs futures for each t, respectively, with , , , ,, .i t i tF F+ + ∈  Hence, the decision 
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algorithm for a portfolio manager in order to maximize net income can be described by 
 

   

{ }, , , ,max ;0 ,s
i t i t i tp F x+−     in the case of a Call option,       

    (6.1) 
{ }, , , ,max ;0 ,s

i t i t i tF p x+ −     in the case of a Put option,   

1, 2,i∀ = 1,..., ,t T∀ = 1, ..., .s n∀ =  
 

In expression (6.1), the first expression refers to a Call option and the second expression to 

a Put option, which means that at each point in time t, the portfolio manager has the right 

of purchasing or selling EUA and CER futures. Thus, summarized, the illustrated trading 

strategy allows both selling and purchasing of EUA and CER futures against a (board)-

defined price thresholds , ,i tF+ and , , .i tF−    

For our further purpose, we assume that the (board)-defined price thresholds are equal for 

the call and put option, i.e., 
 

, , , , , ,i t i t i tF F F+ −= =
 

( 1, 2; 1,..., ),i t T= =  

 

Thus, according to expression (6.1), we can formulate for each time t, 
 

( )( ) ( )( )( )
, , , , , , , ,

r T t s s
i t i t i t i t i t i t i t i tCall Put e p F x F p x− −

+ +
⎡ ⎤− = − − −⎣ ⎦

 
( 1, 2; 1,..., ; 1,..., ),i t T s n= = =

 

where r is the constant risk-free rate. If at time t for each scenario s, , , , ,s
i t i tp F+> then the call 

option is exercised, and the put option is not exercised, such that we result in 

 

    
( )( )

, , , , ,
r T t s

i t i t i t i t i tCall Put e p F x− − ⎡ ⎤− = −⎣ ⎦                          
(6.2)

 
( 1, 2; 1,..., ; 1,..., ),i t T s n= = =
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If at time t for each scenario s, , , , ,s
i t i tp F+< then the put option is exercised, and the call option 

is not exercised, which implies  
 

         
( ) ( )( ) ( )

, , , , , , , ,
r T t s r T t s

i t i t i t i t i t i t i t i tCall Put e F p x e p F x− − − −⎡ ⎤ ⎡ ⎤− = − − = −⎣ ⎦ ⎣ ⎦          (6.3) 

( 1, 2; 1,..., ; 1,..., ),i t T s n= = =
                    

which is equal to expression (6.2). Since we consider a portfolio view of EUAs and CERs 

over a time horizon 1,..., ,t n=  , we can just build the sum of these, resulting in 
 

( ) ( )2 2( )
, , , , ,1 1 1 1

.T Tr T t s
i t i t i t i t i ti t i t

Call Put e p F x− −
= = = =

⎡ ⎤− = −⎣ ⎦∑ ∑ ∑ ∑
          

(6.4) 

 

We will make use the right hand side of expression (6.4) in Subsection 6.4.4, when deriving 

the portfolio manager's optimal trading budget for the for each CO2 compliance period and 

the profit function in our optimization model. 
 

6.4  Formulation of the Optimization Model  

 

In the following, we will successively develop and set up our linear multi-stage stochastic 

portfolio optimization model for the closing of the natural short position in CO2 emission 

allowances with EUA and CER futures. 

 

6.4.1  The CO2 Trading Period  

 

The total trading period in our model consists of 1n −  CO2 compliance periods, where 

0,1, ..., 1k n= −  stands for the (k+1)th CO2 compliance period. The last discrete point in 

time of the corresponding terminating (k+1)th CO2 compliance period is denoted by 1,kT +

such that 1 1,..., .k nT T T+ =  Additionally, the board defines a percentage amount of the short 

position in CO2 certificates, which should be mandatorily closed by the airline’s portfolio 

manager until a defined discrete point in time 1kτ + within the CO2 compliance period  

1,k + where 1 1,..., .k nτ τ τ+ = Therefore, the total trading time horizon (i.e., stages) is t, that 

can be represented as 0 1 1 1 1( 0),1,2..., ,..., ,..., ,..., ,..., ,..., .k k n nt T T T Tτ τ τ+ += = We note that 



 

for 0,k =

1k kT τ +< <

trading tim
 

6.4.2  CO

 

Now, let u

a given tra
 

where ,i tx

Let 1, 1kx + b

the regulat

the total a

which are 

we have  

0 0kT T= =

1kT +< for ea

me horizon t w

Figure 6.2

O2 Trading 

us consider a

ading time ho

t  for 1,2i =  

e the yearly 

tory authorit

amount of st

set as determ

0, and 0τ do

ach 0,1,k =

which the po

. Systematic

Strategy 

a portfolio m

orizon t, his o

∑

is the amoun

 fix amount 

ty, valid for t

ochastic CO

ministic (esti

50

es not exist

, ..., 1.n −  Fi

ortfolio mana

s of the CO2

manager of an

optimal total

1 2

0 1

n

k i

−

= =∑ ∑ ∑

nt of EUAs a

of EUAs di

the whole CO

O2 emissions 

mated) scena

    

1

2

1

:

:

:

d

d

d
k

C

C

C +

=

=

=

∑
∑

∑

0 

t. For all k

igure 6.2 ill

ager faces. 

2 compliance

n airline com

l hedge portf

1

,1
,k

k

T
i tt T

x+

= +∑  

and CERs, re

istributed for

O2 complian

in t for the 

arios by the 

1

2

1

1

11

21

1

,

,

,k

k

T d
t

T d
t T

T d
tt T

c

c

c+

=

= +

= +∑
    

k∀ =

0,k > 1,k Tτ +

lustrates the

 and trading 

mpany who h

folio 

espectively, t

r free to the 

nce period n. 

emissions s

airline comp

                   

0,1, ..., 1n −

1 .kT + ∈ He

e systematics

periods. 

has to determ

traded in each

airline com

 Let also de

scenarios d =

pany for each

                    

, 1,...,d∀ =

ence, for 

s of the 

 

mine over 

h t.  

mpany by 

enote d
tc  

1,..., ,n=  

h t. Then 

  
(6.5)

 

,n
        

 



51 
 

where 1
d
kC +  is the total amount of stochastic CO2 emissions for each emissions scenario 

1,..., ,d n=  in the corresponding terminating CO2 compliance period 1.k + We remark that, 

unlike Section 6.3, from now on, we use index d for the denotation of the CO2 emissions 

scenarios in order to separate their notation and number from those of EUA and CER 

futures prices scenarios (see Section 6.3).  

Thus, according to definition (6.5), the optimal CO2 trading strategy of the portfolio 

manager for the (k+1)th CO2 compliance period can be defined as 
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0,1, ..., 1,k n∀ = − 1,..., ,d n∀ =
         

 

where the right hand side of equation (6.6) stands for the natural short position in CO2 

emission allowances for each emissions scenario d to be closed by the portfolio manager in 

each 1.k + Let us define the natural short position in CO2 emission allowances for each 

emissions scenario d and for each 1k +  as 1
d
k +Δ  such that 
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(6.7) 

0,1, ..., 1,k n∀ = − 1,..., .d n∀ =             

Then, according to equation (6.6), the sum of all CO2 compliance periods 0,1,..., 1k n= −  
the total CO2 trading strategy for each emissions scenario d be stated as 
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For each CO2 compliance period 1,k + the regulatory CO2 emission cap 1kRC +  
can be 

represented as 
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                              (6.9)
 

       
0,1, ..., 1,k n∀ = − 1,..., ,d n∀ =         

due to the fact that the cap has been determined by the regulatory authority in such a way 

that the airline companies should face a yearly physical short position in CO2 emission 

allowances, disciplining them to control their CO2 emissions by compensating the missing 

amount of CO2 emissions by 
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T
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By rearranging the system in (6.6), we get 
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0,1, ..., 1,k n∀ = − 1,..., .d n∀ =  

Therefore, by including the possibility of banking and borrowing for each 1,k +  our 

equilibrium amount of CO2 emissions for each emissions scenario d  becomes 
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0,1, ..., 1,k n∀ = − 1,..., ,d n∀ =  
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0,1, ..., 1,k n∀ = − 1,..., .d n∀ =  

Depending on the portfolio manager’s strategy, for each emissions scenario d the banking 

decision of the portfolio manager with 0b <  can be described as 
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                         (6.12) 

0,1, ..., 1,k n∀ = − 1,..., ,d n∀ =     

and the borrowing decision of the portfolio manager with 0b >  can be stated as 
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0,1, ..., 1,k n∀ = − 1,..., ,d n∀ =       
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We remark that for 0b =  the systems of equations in (6.11) just equal the systems of 

equations in (6.10). 

In the special case, where 
 

1, 1 1
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Then, we have 
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(6.14) 

0,1, ..., 1,k n∀ = − 1,..., ,d n∀ =      

which illustrates the situation that in the CO2 compliance period 1k +  the amount of CO2 

emissions is less than the CO2 emission allowances distributed for free, which implies a 

long position in CO2 emission allowances and both sales of EUAs and CERs in 1k +  or 

banking of b-amount of free distributed EUAs to 2 .k + . 

There is an important regulatory requirement that over the sum of all CO2 compliance 

periods, the total amount of banked and borrowed free distributed EUAs 1, 1kx +  
should be 

equal to zero, such that 
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(6.15)
 

 

and therefore, implying that whole system should be in equilibrium over the sum of all 

trading and CO2 compliance periods for each emissions scenario d, 
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EU ETS regulatory limit for CERs 

The EU ETS imposes a regulatory trading (i.e., CO2 compliance) limit for CERs. Let the 

regulatory CER limit of total amount the short position 1
d
k +Δ  be m, [ ]0,1 ,m ∈  which can 

be used for compliance by the airline company for each 1.k + Hence, the regulatory CER 

limit constraint can be represented as 
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0,1, ..., 1,k n∀ = − 1,..., .d n∀ =  
     

Accordingly, the remaining amount of 1
d
k +Δ  has to be closed by EUAs such that 
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0,1, ..., 1,k n∀ = − 1,..., .d n∀ =  
     

Upper and lower trading limits 

Although, the portfolio manager has to implement purchasing strategies to close the natural 

short position in CO2 emission allowances 1
d
k +Δ , to ensure him a certain trading flexibility, 

we assume that short selling of emission allowances is allowed. Therefore, the board of the 

airline company defines for each 1,... nt T= , 1,2i =  and 0,1,..., 1k n= −  both the binding 

upper purchasing limits 
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and the binding lower selling limits  
 

[ ], 0, 1 ,i tv ∈ −  
1

,1
,k

k

T
i tt T

v L+

= +
=∑  

respectively, where U and L are defined scalars, with , .U L∈ That is, the portfolio 

manager is allowed to increase his long (short) position in CO2 emission allowances to a 

factor of U (L) for each CO2 compliance period 1.k +  
 

Therefore, the upper trading limits for EUAs and CERs can be represented as 
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(6.19) 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = −  1,..., .d n∀ =      

 

and their lower trading limits as 
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(6.20) 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1,..., .d n∀ =      

 

Risk constraint 

The board also predetermines a percentage amount of the natural open position in CO2 

emissions, and therefore in CO2 allowances, that has to be closed until a specific point in 

time. In this way, the volume and liquidity risk, and therefore the exposure, can be reduced 

and the portfolio manager disciplined (i.e., controlled). Let us denote, for each 1, 2,i =  
a 

percentage 
1, ,

kiq τ +
[ ]

1, 0,1 ,
kiq τ +
∈ of the total amount of the short position 1,k+Δ  that has to be 

closed until a board-defined point in time 1,kτ + where 1 1,k k kT Tτ + +< <  for each

0,1, ..., 1k n= − .  
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This implies for CERs that 
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 1,..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1,..., .d n∀ =     

 

and accordingly for EUAs 
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(6.22) 

             1, ..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1,..., .d n∀ =         

 

6.4.4  Derivation of the Profit Function 

 

Now, we have to derive the total profit function for the portfolio manager's CO2 trading 

strategy. By rearranging the system of equations (6.10), we get 
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1,..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1,..., ,d n∀ =         
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which states that for each 0,1,..., 1k n= −  the difference between the amount of traded 

CO2 emission allowances (including banking and borrowing possibility) and the airline's 

verified CO2 emissions should equal to zero. However, if the at the end of the (k+1)th CO2 

compliance period, i.e., at the point in time 1,kT + the verified CO2 emissions exceed the 

amount of existing CO2 emission allowances to be delivered to the regulatory authority 

such that 
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(6.24)
 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1, ..., ,d n∀ =       

 

i.e., still a short position in CO2 emission allowances exists, then the airline has to pay a 

penalty fee g to the authority in the amount of the missing CO2 emission allowances. The 

penalty paid is then deducted as an additionally occurred cost from the profit of the 

portfolio manager. Let us define { }[ ] : max 0, ,a a− = − for each ,a∈ then we can 

formulate the penalty term as 
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(6.25)

 

( 0,1,..., 1; 1,..., ).k n d n= − =  

 

In equation (6.41), this term will be introduced as a penalty term in the profit function of 

the portfolio manager. 

In order to span a two-dimensional state space of EUA and CER futures prices (i.e., 

forward scenario-tree), described in detail in Section 5.2, through the use of the MC 

simulation method, we will generate price s scenarios for EUA and CER futures prices for 

each stage 1,..., ,nt T= denoted by ,
s
i tp , with 1,..., .s n= The price scenarios ,

s
i tp  will be 
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weighted by their occurrence probabilities sπ with [ ]0,1sπ ∈ and 
1

1.n s
s
π

=
=∑ Therefore, 

the revenues can be described as 
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( 0,1,..., 1; 1,..., ).k n s n= − =

      

 

 

The board also determines the maximum trading budget 1kB +
+ ∈  to be spent by the 

portfolio manager for the net purchase of EUAs and CERs in order to compensate the short 

position 1k+Δ  for each CO2 compliance period 1k + . This trading budget 1kB +  occurs as a 

cost parameter in the profit function. Or, in other words, the portfolio manager has to 

generate income that exceeds 1kB +  in order to result in successful trading strategies such 

that for each 1k +  
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(6.27)
 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = −  1,..., .d n∀ =  

 

Or, by rearranging 
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(6.28)
 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = −  1,..., .d n∀ =   
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The board usually determines the trading budget 1,kB +  based on his market expectation 

about his expected futures prices and the corresponding amount of CO2 allowances which 

is expected to be bought from the market in order to close the natural short position in CO2 

allowances (see Section 3.1). Thus, the board indirectly sets a threshold price ,i tF  
against 

which EUAs and CERs could be bought or sold in the market to optimize the value of the 

portfolio (see Section 6.3). However, 1kB +  varies for each CO2 emissions scenario 

1,..., ,d n=  such that, from now on,  
 

1 1.
d

k kB B+ +=  

Therefore, for each k+1th CO2 compliance period 1
d
kB +  could be defined as the weighted 

product of the expected average yearly EUA and CER futures prices times the 

corresponding expected amount of EUAs and CERs for each CO2 emissions scenario 

1,..., ,d n=  to be bought from the market by the portfolio manager, i.e., 
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( 1,..., ; 0,1,..., 1; 1,..., ).t T k n d n= = − =   

where 1,tF  and 1,tF  are the threshold futures prices for EUAs and CERs, respectively, m is 

the import limit of CERs, 1
d
kC +  are CO2 emissions scenarios and 1, 1kx +  are free distributed 

EUAs for each k+1th CO2 compliance period. 

Now, we remember the right hand side of expression from (6.4) as 
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which, adjusted for 1,..., ,t T= and written out for 1,2,i =  gets  
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Building the sum for all k+1 CO2 compliance periods, results in 
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 ( 0,1,..., 1; 1,..., ).k n s n= − =         

 

We can write out and rearrange expression (6.31) as 
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Concentrating only on the second rounded bracket in (6.32) and adjusting for the regulatory 

import limit of CERs denoted by m, we have  
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( 0,1,..., 1).k n= −                      

  

Since we know that for each k+1 CO2 compliance period, the total amount CO2 emissions 

has to be compensated by the yearly total amount of EUAs and CERs, we can define 
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(6.34) 

( 0,1,..., 1; 1,..., ).k n d n= − =         

 

By using the right hand side of definition (6.34) and deducting the free distributed EUAs 

1, 1,kx + we can adjust definition (6.34) to 
 

( )( ) ( )1 1, 1 1 1, 11 d d
k k k km C x m C x+ + + +− − + −

           
(6.35) 

( 0,1,..., 1; 1,..., ).k n d n= − =         
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Thus, combining expression (6.35) and (6.33), results in 

 

( ) ( ) ( )1, 1 1 1, 1 2, 1 1 1, 11 d d
k k k k k kF m C x F m C x+ + + + + +− − + −

           
(6.36) 

( 0,1,..., 1; 1,..., ),k n d n= − =         

 

which is just the left hand side expression in (6.29), such that, as result, 

 

( )( ) ( )1 1, 1 1 1, 1 2, 1 1 1, 11d d d
k k k k k k kB F m C x F m C x+ + + + + + += − − + −                     (6.37) 

( 0,1,..., 1; 1,..., ).k n d n= − =         

 

Thus, the budget 1
d
kB +  implicitly contains the futures prices threshold values 1,tF  and 2, ,tF  

the CER import limit m, the CO2 emission scenarios  1
d
kC + and the free distributed EUAs 

1, 1.kx + Since these are all know scalars, 1
d
kB +  can easily be calculated and directly used in the 

formulation of our optimization model. 

Accordingly, we can sum the two terms in the first rounded bracket in expression (6.32) to 
 

12
, ,1 1

k

k

T s
i t i ti t T

p x+

= = +∑ ∑                
(6.38)

 
( 0,1,..., 1; 1,..., ),k n s n= − =         

 

which serves as the revenue term in our profit function, which according to (iii) gets 

 

12
, ,1 1

T s s
i t i ti t

p xπ
= =∑ ∑                

(6.39)

 
( 0,1,..., 1; 1,..., ).k n s n= − =

       

 

Then, according to expression (6.32), the profit of a trading strategy for each k+1 CO2 

compliance period, can be state as 
 

11
2( ( 1))

, , 11 1
kk k

k

Tr T T s s d
i t i t ki t T

e p x Bπ++− − +
+= = +

⎡ ⎤−⎣ ⎦∑ ∑
           

(6.40)
 

( 0,1,..., 1; 1,..., ).k n s n= − =
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We remember that we defined above, that for 0,k = 0 0,kT T= = and 0τ does not exist, and 

for each 0,k > 1 1,k k kT Tτ + +< < 1 1, .k kTτ + + ∈  We remember that for the penalty term in 

expression (6.25), we defined  { }[ ] : max 0, ,a a− = − for each .a ∈  

Then the total profit function z, including the penalty term, in our optimization model for 

the sum of all CO2 compliance periods can be stated as 
 

11

1

1 2( ( 1))
, , 10 1 1

2
, 1, 1 11 1

(1 ) ,

kk k

k

k

k

n Tr T T s s
i t i t kk i t T

T d
i t k ki t T

z e p x B

g x b x C

π++

+

− − − +
+= = = +

−

+ += = +

⎡ ⎡ ⎤= −⎢ ⎣ ⎦⎣
⎤⎡ ⎤− + + − ⎥⎣ ⎦ ⎦

∑ ∑ ∑

∑ ∑  
      (6.41)

 

                           
 

where the expression in the sub bracket of the function z stands for the paid penalty by the 

airline company, if the expression is negative. 

Now, let us denote the EUA and CER futures prices from equation (4.17) in Section 4.3 for 

each scenario s as ,( , ) ,n

s
i t t TF +Δ  then according to the notations above, ,( , )n

s
i t t TF +Δ  has the same 

meaning as , ,s
i tp that is, the MC simulated EUA and CER futures prices over the trading 

time horizon 0 1 1( 0),1,2.., ,..., ,..., .k nt T T T T+= = Then, we can just set  
 

,( , ) , ,
n

s s
i t t T i tF p+Δ =  

and thus 

,( , ) , ,
n

s s
i t T i tF F=  

then expression (6.40) gets 

11

1

1 2( ( 1))
, , ,0 1 1

2
1 , 1, 1 11 1

1
2

(1 ) ,

kk k

k

k

k

n Tr T T s s
i t i i i i t i tk i t T

T d
k i t k ki t T

z e F t t x

B g x b x C

π μ σ σ ε++

+

− − − +
= = = +

−

+ + += = +

⎡ ⎛ ⎞⎛ ⎞= − Δ + Δ⎢ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣
⎤⎡ ⎤− − + + − ⎥⎣ ⎦ ⎦

∑ ∑ ∑

∑ ∑
 

 
 (6.42) 

where is tΔ discrete time-step used in the MC simulation. 
 6.4.5  Optimization Model 
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Given the formulations above, we can formulate our multi-period stochastic portfolio 

optimization model as the following profit maximization problem with regard to derived 

corresponding constraints: 
 

maximize 
1, 2, 1,...,( , )

nt t t Tx x =  

11

1

1 2( ( 1))
, , ,0 1 1

2
1 , 1, 1 11 1

1
2

(1 ) ,

kk k

k

k

k

n Tr T T s s
i t i i i i t i tk i t T

T d
k i t k ki t T

z e F t t x

B g x b x C

π μ σ σ ε++

+

− − − +
= = = +

−

+ + += = +

⎡ ⎛ ⎞⎛ ⎞= − Δ + Δ⎢ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣
⎤⎡ ⎤− − + + − ⎥⎣ ⎦ ⎦

∑ ∑ ∑

∑ ∑
 

 

(6.42)

 subject to    

EU ETS regulatory limit for CERs:       

( )
( )

( )

1

2

1

1

2, 1 1,11

2, 2 1,21

2, 1 1, 11

,

,

,k

k

T d
tt

T d
tt T

T d
t k kt T

x m C x

x m C x

x m C x+

=

= +

+ += +

≤ −

≤ −

≤ −

∑
∑

∑               

(6.17)
 

0,1,..., 1,k n∀ = − 1,..., ,d n∀ =  

( )( )
( )( )

( )( )

1

2

1

1

1, 1 1,11

1, 2 1,21

1, 1 1, 11

1 ,

1 ,

1 ,k

k

T d
tt

T d
tt T

T d
t k kt T

x m C x

x m C x

x m C x+

=

= +

+ += +

≤ − −

≤ − −

≤ − −

∑
∑

∑

                   
(6.18) 

0,1,..., 1,k n∀ = − 1,..., ,d n∀ =    

 
 
Regulatory banking and borrowing constraints: 
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, 1, 1 11 1

2
, 1, 1 21 1
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, 1, 1 11 1
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           (6.11) 

0,1,..., 1,k n∀ = − 1,..., ,d n∀ =   

11 2 1 1
, 1, 10 1 1 0

(1 ) ,k

k

n T n k
i t kk i t T k

x b x C+− − +
+= = = + =

⎡ ⎤+ + =⎣ ⎦∑ ∑ ∑ ∑            
(6.16) 

        

1
1, 10

0,n
kk

bx−

+=
=∑           

(6.15)
 

Upper (i.e,. purchasing) trading constraints: 

( )
( )( )

1, 1, 1 1, 1

2, 2, 1 1, 1

,

1 ,

d
t t k k

d
t t k k

x u m C x

x u m C x

+ +

+ +

⎡ ⎤≤ −⎣ ⎦
⎡ ⎤≤ − −⎣ ⎦           

(6.19)
 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1,..., ,d n∀ =  

Lower (i.e., selling) trading constraints: 

( )
( )( )

1, 1, 1 1, 1

2, 2, 1 1, 1

,

1 ,

d
t t k k

d
t t k k

x v m C x

x v m C x

+ +

+ +

⎡ ⎤− ≥ −⎣ ⎦
⎡ ⎤− ≥ − −⎣ ⎦           

(6.20) 

1,..., ,nt T∀ = 0,1,..., 1,k n∀ = − 1,..., ,d n∀ =  

Risk constraints: 
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( )
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τ
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⎡ ⎤≤ −⎣ ⎦
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∑
∑

∑
                               

(6.21) 

 0,1,..., 1,k n∀ = − 1,..., ,d n∀ =  
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∑                                 

(6.22) 

0,1,..., 1,k n∀ = − 1,..., .d n∀ =
 

 

                  

Therefore, our optimization problem consists of a two-dimensional modeled state space for 

the stages 1,..., ,nt T=  consisting of the stochastic variables 1,
s
tF  (EUA futures price) and 

2,
s
tF  (CER futures price), with 1,..., ,s n=  and the stochastic variable 

d
tc  (CO2 emissions), 

for 1,..., ,s n=  representing possible states for each stage t. We remember that ,
s
i tp  is 

influenced by random processes, whereas d
tc  occurs as stochastic constraint scalars, 

modeled through deterministic scenarios 1,..., .d n=  by the airline company. 
Hence, the optimization results will result in optimal futures hedging strategies, with the 

remaining part of the CO2 short position to be closed by spot contracts. 

The structure of the optimization model is illustrated in Figure 6.4. The model input 

parameters include market parameters for MC simulation such as expected return, 

volatilities, variance-covariance matrix and EUA and CER initial futures prices of various 

specified delivery periods (see Section 4.3). Furthermore, optimization parameters (scalars) 

such as regulatory usage limits, upper / lower trading limits, banking / borrowing limits, 

amount of free allowances, penalty fee and trading budget will be used, whereas the 

amount of yearly CO2 emissions will be modeled by deterministic scenarios. The model 

algorithm consists as follows: 

Step 1: MC simulation of possible 1,...,s n=  paths for correlated EUA and CER futures 

prices (see Section 4.3). As a consequence, the scenarios become tree-structured with 

nodes θ from a finite set O, i.e., forward scenario-tree. Each node θ therefore denotes a 

decision point (i.e., state), corresponding to the realization of ,
s
i tp  

up to θ, represented by 

the trading time ste 1,..., nt T= . Or, in other words, each state θ represents a combination 

(“couple”) of simulated EUA and CER futures prices at the trading time instant t. 

Step 2: Set up of the multi-stage stochastic optimization model (see above).  
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CHAPTER 7 
 
 
 
 

 
 TIME-SERIES PROPERTIES AND M ODEL INPUT 

PARAMETERS  
 
 
 
 
 
 
 
In our analysis, we use EUA and CER futures prices, traded at the Intercontinental 

Exchange (ICE) in London, which today, by far, is the most liquid electronic platform for 

CO2 emissions trading, representing more than 80% of the exchange-traded volume of 

EUAs and CERs in the European carbon market [39].  

 

7.1 Time-Series Properties  

 

In the introduction part of Chapter 4, we mentioned that carbon prices follow a GBM 

process, whose fundamental assumption is the normal distribution. We will apply the well-

known Jarque-Bera (JB) test for normality in returns of EUA and CER futures prices for 

various CO2 compliance periods. Here, the null hypothesis is tested, that the skewness of 

the distribution together with its excess kurtosis (i.e., kurtosis minus 3) are both zero, and 

therefore follows a normal distribution, against the alternative hypothesis of non-normal 

distribution. 

For all EUA and CER retruns, the p-values of the received JB test statistics are both larger 

than 0.01 and 0.05, such that all probability levels the null hypothesis of a normal 

distribution in returns can clearly not be rejected. The corresponding EViews values can be 

found in Appendix B.1. 

The GBM process is nothing else than a random walk plus drift model. We will justify its 

application in our model, by the use of the Dickey-Fuller test for testing the unit root 
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property in the EUA and CER futures prices, and therefore, their non-stationarity. This 

implies that they are perennially subject of random shocks and thus depend on their drift 

and volatilities. Hence, we will test the null hypothesis of EUA and CER futures prices 

having a root unit and therefore following random walk plus drift model (i.e. non-

stationary), against the alternative hypothesis of not incorporating a unit root (i.e. 

stationary), such that the EUA and CER futures prices will converge at a long-term mean. 

In that case, the use of the Ornstein-Uhlenbeck (O-U) process would be appropriate. 

Now, starting with a price model ty with a constant drift 

 

1 ,t t ty c ay ε−= + +
 

 

where c denotes the constant drift term and tε denotes the error term, by differentiating 

both sides by 1ty −  we get,  

 

1 ,t t ty c by ε−Δ = + +
 

 

where  

 

1.b a= −
 

 
Consequently, our hypothesis testing becomes 

 

0

1

: 0,
: 0.

H b
H b

=
<

 

For all EUA and CER futures prices, the absolute value of the Augmented-Dickey-Fuller 

(ADF) unit root test statistics are less than the 1%, 5% and 10% critical values. Hence, the 

null hypothesis cannot be rejected, justifying the use of the random walk plus drift model, 

and therefore the GBM model, as the underlying price process in our model. Appendix B.2 

contains the resulting EViews outputs for the ADF tests, verifying the non-rejection of the 

null hypothesis. Additionally, these results have been cross checked by also applying other 

unit root tests such as Philipps-Perron, Ng-Perron or Elliott-Rothenberg-Stock-Point 
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Optimal tests. All their outcomes support the ADF test results, and thus verify the use of 

the GBM model as our underlying price model.. 

 

7.2  Model Input Parameters 

 

7.2.1  Input Parameters for MC Simulation 

 

Our optimization model is assumed to have a three-year CO2 compliance period for the 

years 2013, 2014, and 2015, i.e.,  1,2,3.k=  We consider monthly trading steps 1,2,...,36,t =  

i.e., the discrete time-step tΔ used in the MC simulation is 1, resulting in a total trading time 

horizon of 36 months results. Hence, the last trading period within each CO2 compliance 

period is 1 12,T =  1 24T =  and 1 36.T =  

For all of those CO2 compliance periods there are yearly EUA and CER traded futures 

contracts available, implying Dec'13, Dec'14 and Dec'15 futures contracts for both CO2 

emission allowance types. Therefore, we can subdivide the traded amount of EUA futures 

and CER futures, which we denoted as ,i tx  in Subsection 6.4.5, specifically into EUA and 

CER Dec'13, Dec'14 and Dec'15 futures contracts with the following notation of the 

variables: 

- EUA Dec'13 futures contracts: 11, ,tx   1,...,12,t∀ =  

- EUA Dec'14 futures contracts: 12, ,tx   13,...,24,t∀ =  

- EUA Dec'15 futures contracts: 13, ,tx   25,...,36,t∀ =  

- CER Dec'13 futures contracts: 21, ,tx   1,...,12,t∀ =  

- CER Dec'14 futures contracts: 22, ,tx   13,...,24,t∀ =  

- CER Dec'15 futures contracts: 23, ,tx    25,...,36,t∀ =  

 

Accordingly, we can do the same for the prices of the traded amount of EUA futures and 

CER futures, which we denoted as ,
s

i tF  in Subsection 6.4.5, such that the following new 

variables for the MC simulated correlated futures prices for 10.000n = scenarios result: 

 

- EUA Dec'13 futures prices: 11, ,s
tF   1,...,12,t∀ = 1,...,250,s∀ =  

- EUA Dec'14 futures prices: 12, ,s
tF   13,...,24,t∀ = 1,...,250,s∀ =  

- EUA Dec'15 futures prices: 13, ,s
tF   25,...,36,t∀ = 1,...,250,s∀ =  
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- CER Dec'13 futures prices: 21, ,s
tF   1,...,12,t∀ = 1,...,250,s∀ =  

- CER Dec'14 futures prices: 22, ,s
tF   13,...,24,t∀ = 1,...,250,s∀ =  

- CER Dec'15 futures prices: 23, ,s
tF   25,...,36,t∀ = 1,...,250,s∀ =  

 

We assume that the MC scenarios for  

 

{ }11, 12, 13, 21, 22, 23, 1,...,36
, , ; , , ,s s s s s s s

t t t t t t t t
F F F F F F F

=
=

 

 

with 1,...,250,s=  are uniformly distributed, i.e.,  

 
250

1

1 1 , 1.
250

s s
sn

π π
=

= = =∑  

 

The market parameters for the modeling of the market state space (i.e., MC simulation) are 

correspondingly denoted as follows: 

 

- Average return  / volatility EUA Dec'13 futures prices: 11μ  / 11,σ  

- Average return  / volatility EUA Dec'14 futures prices: 12μ  / 12,σ    

- Average return  / volatility EUA Dec'15 futures prices: 13μ  / 13,σ    

- Average return  / volatility CER Dec'13 futures prices: 21μ  / 21,σ    

- Average return  / volatility CER Dec'14 futures prices: 22μ  / 22,σ    

- Average return  / volatility CER Dec'15 futures prices: 23μ  / 23,σ    
 

The existence of 6 different futures prices data which are all cross-correlated with each 

other, thereby implying a 6 6×  variance-covariance matrix 
 

2
11 11 12 11,12 11 13 11,13 11 21 11,21 11 22 11,22 11 23 11,23

2
11 12 11,12 12 12 13 12,13 12 21 12,21 12 22 12,22 12 23 12,23

2
11 13 11,13 12 13 12,13 13 13 21 13,21 13 22 13,22 13 23 13,23

11 21

σ σ σ ρ σ σ ρ σ σ ρ σ σ ρ σ σ ρ
σ σ ρ σ σ σ ρ σ σ ρ σ σ ρ σ σ ρ
σ σ ρ σ σ ρ σ σ σ ρ σ σ ρ σ σ ρ
σ σ

Σ = 2
11,21 12 21 12,21 13 21 13,21 21 21 22 21,22 21 23 21,23

2
11 22 11,22 12 22 12,22 13 22 13,22 21 22 21,22 22 22 23 22,23

2
11 23 11,23 12 23 12,23 13 23 13,23 21 23 13,23 22 23 22,23 23

ρ σ σ ρ σ σ ρ σ σ σ ρ σ σ ρ
σ σ ρ σ σ ρ σ σ ρ σ σ ρ σ σ σ ρ
σ σ ρ σ σ ρ σ σ ρ σ σ ρ σ σ ρ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜
⎜
⎜⎜
⎝ ⎠

.
⎟
⎟
⎟
⎟
⎟⎟
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According to the specified CO2 trading and compliance periods and adjusted notation of the 

all the variables above, the detailed formulation of the optimization model in Subsection 

6.4.5 could be written out (see Appendix A). 

Two market scenarios, consisting of the optimistic and pessimistic scenario, have been 

defined. The optimistic market scenario incorporates the historical expected returns, 

volatilities, correlations and the resulting variance-covariance matrix of Dec’09, Dec’10 

and Dec’11 EUA and CER futures for the period 03/03/2009–28/05/2009, a 60-trading day 

period where the market was rapidly increasing with a relative high level of volatility. The 

pessimistic market scenario contains the historical expected returns, volatilities, correlations 

and the variance-covariance matrix of Dec’13, Dec’14 and Dec’15 EUA and CER futures 

for the period 22/02/2010–19/05/2010, a 60-trading day period where the market was 

rapidly decreasing with a medium level of volatility. Hence, the underlying historical 

market data of the delivered Dec’09, Dec’10 and Dec’11 EUA and CER futures contracts 

as well as those for Dec’13, Dec’14 and Dec’15 EUA and CER futures contracts will be 

used as market input parameters for MC simulation of correlated Dec’13, Dec’14 and 

Dec’15 EUA and CER futures prices. 

Through the log returns of the historical ICE ECX data for the corresponding time period of 

the optimistic and pessimistic scenario, the average historical returns, volatilities, 

correlations and the variance-covariance matrix as input for MC simulation of Dec’13, 

Dec’14 and Dec’15 EUA and CER futures prices have been determined. Those values as 

well as the initial values for EUA and CER prices are shown in Tables 7.1–7.9.    

As it can be seen from Tables 7.1–7.9, the main characteristic difference between the 

optimistic and pessimistic scenario are that, in the one hand, the expected returns of the 

optimistic scenario, in absolute terms, are smaller than those of the pessimistic scenario, 

and in the other hand, the volatilities of the optimistic scenario are relatively higher than 

those of the pessimistic scenario. All the EUA futures prices among themselves as well as 

with CER futures prices exhibit a high correlation. Nevertheless, the variance-covariance 

matrix is positive definite and therefore, is appropriate for conducting the Cholesky 

decomposition. 
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Initial Values (EUR/tCO2) Dec'13 Dec'14 Dec'15 
EUA price 7.52 7.91 8.47 
CER price 0.51 0.61 0.69 

Table 7.1. Initial values for EUA and CER futures prices for both the optimistic and 
pessimistic scenarios. 

 

Returns  Dec'13 Dec'14 Dec'15 
EUA price 0.12002 0.11909 0.l1763 
CER price 0.08846 0.09479 0.08449 

Table 7.2. Optimistic scenario: Monthly historical returns of EUA and CER prices. 
 

Volatilities  Dec'13 Dec'14 Dec'15 
EUA price 0.15338 0.15625 0.15685 
CER price 0.14811 0.18284 0.15717 

Table 7.3. Optimistic scenario: Monthly historical volatilities of EUA and CER prices. 
 

Correlations  EUA 
Dec'13 

EUA 
Dec'14 

EUA 
Dec'15 

CER 
Dec'13 

CER 
Dec'14 

CER 
Dec'15 

EUA Dec'13 1 0.96240 0.93721 0.88269 0.72905 0.67272 
EUA Dec'14 0.96240 1 0.94731 0.89447 0.76678 0.68829 
EUA Dec'15 0.93721 0.94731 1 0.87826 0.70615 0.67974 
CER Dec'13 0.88269 0.89447 0.87826 1 0.84407 0.77595 
CER Dec'14 0.72905 0.76678 0.70615 0.84407 1 0.84180 
CER Dec'15 0.67272 0.68829 0.67974 0.77595 0.84180 1 

Table 7.4. Optimistic scenario: Correlations of EUA and CER prices. 
 

Covariance  EUA 
Dec'13 

EUA 
Dec'14 

EUA 
Dec'15 

CER 
Dec'13 

CER 
Dec'14 

CER 
Dec'15 

EUA Dec'13 0.023525 0.023065 0.022547 0.020052 0.020445 0.016217 
EUA Dec'14 0.023065 0.024415 0.023265 0.020701 0.021906 0.016904 
EUA Dec'15 0.022547 0.023265 0.024602 0.020403 0.020251 0.016757 
CER Dec'13 0.020052 0.020701 0.020403 0.021937 0.022858 0.018063 
CER Dec'14 0.020445 0.021906 0.020251 0.022858 0.033430 0.024191 
CER Dec'15 0.016217 0.016904 0.016757 0.018063 0.024191 0.024703 

Table 7.5. Optimistic scenario: Variance-covariance matrix. 
 

Returns  Dec'13 Dec'14 Dec'15 
EUA price -0.16058 -0.16454 -0.16421 
CER price -0.17643 -0.18260 -0.17948 

Table 7.6. Pessimistic scenario: Monthly historical returns of EUA and CER prices. 
 



75 
 

Volatilities  Dec'13 Dec'14 Dec'15 
EUA price 0.09305 0.09696 0.09556 
CER price 0.09901 0.10629 0.10632 

Table 7.7. Pessimistic scenario: Monthly historical volatilities of EUA and CER prices. 
 

Correlations  EUA 
Dec'13 

EUA 
Dec'14 

EUA 
Dec'15 

CER 
Dec'13 

CER 
Dec'14 

CER 
Dec'15 

EUA Dec'13 1 0.97623 0.94138 0.85855 0.84396 0.79106 
EUA Dec'14 0.97623 1 0.85855 0.90275 0.85094 0.78401 
EUA Dec'15 0.94138 0.85855 1 0.88199 0.80699 0.77599 
CER Dec'13 0.89644 0.90275 0.88199 1 0.85660 0.77984 
CER Dec'14 0.84396 0.85094 0.80699 0.85660 1 0.82439 
CER Dec'15 0.79106 0.77599 0.77599 0.77984 0.82439 1 

Table 7.8. Pessimistic scenario: Correlations of EUA and CER prices. 
 

Covariance  EUA 
Dec'13 

EUA 
Dec'14 

EUA 
Dec'15 

CER 
Dec'13 

CER 
Dec'14 

CER 
Dec'15 

EUA Dec'13 0.008659 0.008898 0.008637 0.008259 0.009133 0.008562 
EUA Dec'14 0.008898 0.009400 0.010923 0.008666 0.009594 0.008842 
EUA Dec'15 0.008637 0.010923 0.009131 0.008345 0.008967 0.008625 
CER Dec'13 0.008259 0.008666 0.008345 0.009804 0.010093 0.009212 
CER Dec'14 0.009133 0.009594 0.008967 0.010093 0.013523 0.011287 
CER Dec'15 0.008562 0.008842 0.008625 0.009212 0.011287 0.013530 

Table 7.9. Pessimistic scenario: Variance-covariance matrix. 

 

7.2.2  Optimization Parameters (Scalars) 

 

We assume that the amount of free distributed EUAs by the EU ETS regulatory authority is 

constant for each CO2 compliance period k as 800,000, i.e., 1,1 1,2 1,3 800, 000.x x x= = =  
Let the penalty fee 100g =  EUR for each missing ton of CO2. We intentionally use the 

actually valid regulatory EUA banking and borrowing constraints 0.025b = for the free 

distributed EUAs 1, 1kx +  for each (k+1)th CO2 compliance and the CER import limit 

constraint 0.01m =  to reveal the true regulatory situation in the EU ETS.  

The board-defined upper and lower trading limits for EUAs and CERS are assumed to be 

constant for all  1,...,36t =  as , , 0.15i t i tu u= =  
and , , 0.15,i t i tv v= =−  

respectively.  

For three-year CO2 compliance period the airline company estimates yearly CO2 emissions 

1 2 3, ,d d dC C C  for 1,2,3d =  deterministic scenarios which are provided in Table 10. The board 

also provides the portfolio manager with a total trading budget for the three-year CO2 
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compliance period 2
10
,d

kk
B +=∑  dependent of scenarios d for the yearly CO2 emissions 

1 2 3, , .d d dC C C    According to equation (6.27), taking the given scalars above, we result in the 

total budget values for 
2

10
d
kk

B +=∑  in Table 7.6. 
 

Scenario d  1
dC  2

dC  2
dC  

2
10

d
kk

B +=∑  

1 900.000 1.000.000 1.200.000 7.5 Mio. EUR 
2 1.000.000 1.200.000 1.400.000 10.0 Mio. EUR 
3 1.100.000 1.300.000 1.400.000 12.5 Mio. EUR 

 
Table 7.10. Deterministic scenarios for CO2 emissions and the resulting trading budget. 

 

The board also predetermines the percentage amount of the natural open position in CO2 

emissions for EUAs as 
1 2 31, 1, 1,, ,q q qτ τ τ and for CERs as 

1 2 32, 2 , 2,, ,q q qτ τ τ to be closed up to 

time 1τ  and 2τ to limit the risk exposure of the open position of the portfolio manager. 

Various risk levels for the open position and board-defined point in time 1 2 3, ,τ τ τ  are 

defined in Table 7.11. Here, 1 6,τ =  2 18τ =  and 3 27τ =  denotes that, until the half of each 

CO2 compliance period, a percentage amount of the open position in EUAs and CERs, 

respectively, should have been closed by the portfolio manager. The indices 1 9,τ =

2 21τ =  and 3 33τ =  denote the end of the third quarter of each CO2 compliance period. 
 

%-amount to be 
closed

 1τ  2τ  3τ  

1 6τ =  1 9τ =  2 18τ =  2 21τ =  3 30τ =  3 33τ =  

1 2 31, 1, 1,, ,q q qτ τ τ 0.5 0.5 0.5 0.5 0.5 0.5 

1 2 31, 1, 1,, ,q q qτ τ τ 0.75 0.75 0.75 0.75 0.75 0.75 

1 2 32, 2 , 2 ,, ,q q qτ τ τ 0.5 0.5 0.5 0.5 0.5 0.5 

1 2 32, 2 , 2 ,, ,q q qτ τ τ 0.75 0.75 0.75 0.75 0.75 0.75 

 
Table 7.11. Various risk levels for the open position and board-defined points in time. 

 

For our optimization model, we make following assumptions with regard to the EU ETS 

market: 

- No transaction costs are considered. 

- No liquidity constraints are considered. That is, all transactions are carried out 

without being able to influence the market price. 

- No margins (and margin calls) are considered. 
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corresponding total trading budgets 2
10
,d

kk
B +=∑  provided in Table 7.10, and the various risk 

levels of the open position in CO2 emission allowances and board-defined points in time, 

provided in Table 7.11. 
 
 
Budget

 
1τ  2τ  3τ  1 2,q q  

1
dC  

2
dC  

3
dC  z  95%,VaR  99%,VaR  

7.5 
Mio. € 

6 18 30 0.50 900,000 1,000,000 1,200,000 322,724 165,878 101,238 
6 18 30 0.75 900,000 1,000,000 1,200,000 269,149 132,716 76,489 
9 21 33 0.50 900,000 1,000,000 1,200,000 334,639 156,850 83,579 
9 21 33 0.75 900,000 1,000,000 1,200,000 307,871 182,900 131,397 

10.0 
Mio. € 

6 18 30 0.50 1,000,000 1,200,000 1,400,000 550,573 371,959 298,348 
6 18 30 0.75 1,000,000 1,200,000 1,400,000 455,142 270,024 193,733 
9 21 33 0.50 1,000,000 1,200,000 1,400,000 605,740 353,672 249,789 
9 21 33 0.75 1,000,000 1,200,000 1,400,000 503,589 342,037 275,459 

12.5 
Mio. € 

6 18 30 0.50 1,100,000 1,300,000 1,500,000 763,237 537,682 444,726 
6 18 30 0.75 1,100,000 1,300,000 1,500,000 635,230 394,677 295,540 
9 21 33 0.50 1,100,000 1,300,000 1,500,000 794,794 496,086 372,982 
9 21 33 0.75 1,100,000 1,300,000 1,500,000 730,794 526,340 442,080 

Table 8.1. Optimistic scenario: Expected revenues and VaR values. 

 

Budget
 

1τ  2τ  3τ  1 2,q q  
1
dC  

2
dC  

3
dC  z  95%,VaR  99%,VaR  

7.5 
Mio. € 

6 18 30 0.50 900,000 1,000,000 1,200,000 255,698 170,962 136,041 
6 18 30 0.75 900,000 1,000,000 1,200,000 238,979 149,887 113,170 
9 21 33 0.50 900,000 1,000,000 1,200,000 267,189 196,385 167,205 
9 21 33 0.75 900,000 1,000,000 1,200,000 247,557 162,283 127,140 

10.0 
Mio. € 

6 18 30 0.50 1,000,000 1,200,000 1,400,000 402,757 283,148    233,854 
6 18 30 0.75 1,000,000 1,200,000 1,400,000 395,803 292,649    250,137 
9 21 33 0.50 1,000,000 1,200,000 1,400,000 427,129 358,261    329,880 
9 21 33 0.75 1,000,000 1,200,000 1,400,000 396,216 276,580    227,276 

12.5 
Mio. € 

6 18 30 0.50 1,100,000 1,300,000 1,500,000 601,153 454,555 394,138 
6 18 30 0.75 1,100,000 1,300,000 1,500,000 579,687 419,247 353,126 
9 21 33 0.50 1,100,000 1,300,000 1,500,000 662,089 562,459 521,400 
9 21 33 0.75 1,100,000 1,300,000 1,500,000 598,598 454,944 395,742 

 
Table 8.2. Pessimistic scenario: Expected revenues and VaR values. 

We see that, for both the optimistic and pessimistic market scenario, the revenues are 

higher, either, if all else equal, the lower 1 2, 0.5,q q =  or, if all else equal, the higher 

1 2 3, , .τ τ τ Hence, the highest revenues for the portfolio manager results throughout all CO2 

emissions scenarios and trading budgets for 1 9τ =  2 21,τ = 2 33τ =  and 1 2, 0.5.q q =

Accordingly, for all scenarios the corresponding VaR values are highest for 1 9τ =  2 21,τ =

2 33τ =  and 1 2, 0.5.q q = This result was to expect since, on the one hand, it reveals the 

situation where the portfolio manager faces the lowest board-defined amount of CO2 

emission allowances to be mandatorily traded from the market up to a board-defined in 

time, and on the other hand, that this board-defined point in time is the end of the third 
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quarter and, thus near the end, of each CO2 compliance period. Or, in other words, this 

combination of 1 2 3, ,τ τ τ  and 1 2,q q guarantees the portfolio manager the highest trading 

flexibility or highest possible risk position, respectively. Consequently, throughout all CO2 

emissions scenarios and trading budgets for 1 9,τ =  2 21τ =  and 2 33,τ =  the lower 1 2,q q
 

are, the higher are the resulting revenues for the portfolio manager, and vice versa. Thus, 

from the board's point of view it does significantly matter if it limits the risk position of the 

portfolio manager to the end of the third quarter of each CO2 compliance year or to the half 

of each CO2 compliance year.  

Due to the existence of higher volatilities in the optimistic market scenario, the underlying 

VaR values at the 95% and 99% confidence level are relatively higher than those for the 

pessimistic market scenario. For the same trading budget, the revenues are relatively higher 

for the optimistic market scenario than for the pessimistic market scenario. This is very 

likely due to the relatively higher volatilities in the optimistic scenario, implying a higher 

gain potential. That is, the portfolio manager can make use of the relatively higher 

difference between low and high prices.   

Figures 8.17–8.18 illustratively shows, both for the optimistic and pessimistic market 

scenario, the distribution and the expected revenues of the EUA and CER trading strategies 

of the portfolio manager for a total trading budget of 10.0 Mio. EUR, 1 9,τ = 2 21,τ =  
2 33τ =  and 1 2, 0.5.q q =

 

Figure 8.17. Optimistic scenario: Distribution and expected revenues of EUA and CER 
trading strategies, trading budget of 10.0 Mio. EUR, 1 9,τ = 2 21,τ = 2 33,τ = 1 2, 0.5.q q =  
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Figure 8.18. Pessimistic scenario: Distribution and expected revenues of EUA and CER 
trading strategies, trading budget of 10.0 Mio. EUR, 1 9,τ = 2 21,τ = 2 33,τ = 1 2, 0.5.q q =  

 

From both figures we can see that the distribution of revenues seem to incorporate a 

relatively low kurtosis with a more rounded peak and shorter, thinner tails. Moreover, 

neither any positive or negative skewness in the distribution can be detected. These 

attributes imply a bell-shaped distribution (red line). Hence, the distribution of the revenues 

can be considered as approximating a normal distribution, which justifies the application of 

the VaR measure. This feature has been tested by applying JB test in EViews for the 

existence of a normal distribution in the revenues. All p-values of the received JB test 

statistics are larger than 0.05 (and 0.01).  Hence, for the optimistic market scenario as well 

as for the pessimistic scenario, the null hypothesis of normal distribution can clearly not be 

rejected. The corresponding EViews values can be found in Appendix B.3. 

The revenues in the optimistic market scenario in Figure 8.17 range between 110,862 and 

1,071,004 EUR for the whole trading period of three years. The corresponding values for 

the pessimistic market scenario in Figure 8.18 are 294,036 and 570,487 EUR. 

Consequently, depending on each budget-risk position combination of the portfolio 

manager, by implementing common futures buy-hold-sell strategies of EUA and CERs, he 

additionally generates revenues between 110,862 and 1,071,004 EUR in the optimistic 

market scenario and, between 294,036 and 570,487 EUR for the airline company in the 

pessimistic scenario, respectively, instead of only buying all the missing amount of CO2 

emission allowances in the spot. Or, in other words, the operative use of the portfolio 

manager was beneficial for the airline company.  
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CHAPTER 9 
 
 
 
 
 

 CONCLUSION AND OUTLOOK 
 
 
 
 
 
 
 
In this thesis, we set up and solved a multi-period stochastic portfolio optimization model 

from an airline company's point of view, by considering all the existing EU ETS (EU 

Emission Trading Scheme) regulatory and board-defined trading and risk constraints. In 

order to hedge the natural physical short position in CO2 emission allowances, we 

developed an optimal hedging strategy consisting of futures contracts. 

After the comprehensive mathematical derivation of the whole system of equations 

consisting of the profit function and constraints, in order to model the whole space of 

feasible states, we run Monte-Carlo (MC) simulations of correlated geometric Brownian 

motions (GBMs) for traded EUA (EU Emission Allowance) and CER (Certified Emission 

Reduction) futures prices of different CO2 delivery time periods (i.e., maturities). We 

modeled two market scenarios, an optimistic and a pessimistic market scenario, based on 

which the corresponding a forward-scenario trees were constructed. We thereby justified 

the use of the GBM as the appropriate price process in our model, by empirically showing 

that the returns are normally distributed and contains a unit root, implying their non-

stationary. Based on the generated scenario-trees, we determined optimal buy-hold-sell 

decisions (i.e., futures trading strategy) and calculated the corresponding earnings. This 

procedure was conducted by backward induction, where according to the American option 

pricing methodology, starting from the last stage moving backward to the previous stage, 

valuation was conducted for each stage (i.e., value perspective). The Asian property “path 

dependence” thereby was already taken into account by the extension of the whole state 

space. Thereafter, given the valuation for each state, the uncertainty (i.e., distribution) of 

the revenues was determined by the MC simulation, which was conducted by forward 
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induction (i.e., risk perspective). Based on the distribution of the revenues, the Value-at-

Risk (VaR) measure for the 95% and 99% confidence level was then determined, in order 

to measure the risk exposure of the portfolio manager. 

Concretely, in order to include the existence of various CO2 emission allowance types, the 

existence of their futures prices and their stochasticity, we run n = 250 Monte-Carlo 

simulations for the optimistic and pessimistic market scenario, by considering all cross 

correlations (i.e., correlated GBM) and solved our linear multi-stage stochastic program 

based on the constructed forward-scenario tree, generated by simulated correlated price 

paths for EUA and CER futures. Therefore, our model algorithm was composed of a MC 

simulation of correlated GBM (EUA and CER futures) part and an optimization model part. 

We thereby used simulation (expected returns, volatilities, covariance matrix, initial futures 

prices) as well as optimization parameters (upper / lower trading limits, banking / 

borrowing limits, amount of free allowances, risk constraints, amount of stochastic CO2 

emissions, penalty fee, budget) as model input parameters. As model output, we received 

optimal futures trading strategies, distribution of revenues and their corresponding VaR. 

The normal distribution of the revenues has been empirically shown, and therefore, the 

justified application of the VaR values as suitable risk measure. 

We solved our model with the CPLEX solver, which is available in MATLAB. For each 

EUA and CER futures price scenario, we found an optimal feasible solution, satisfying all 

the required constraints. Thus, our portfolio manager never ends paying penalties, and can 

therefore optimize his revenues from trading strategies. Due to the maximum difference in 

the price level between the first and third CO2 compliance period, the portfolio manager, in 

the optimistic market scenario, banks free distributed EUAs in the first and borrows the 

corresponding amount in the third CO2 compliance period, and vice versa for the 

pessimistic market scenario. The portfolio manager mainly uses EUA buy strategies to 

close his initial short position in CO2 emission allowances, which significantly differ for the 

optimistic and pessimistic market scenario. However, to optimize his portfolio, the 

portfolio manager very actively buys and sells CERs. The higher the flexibility for the 

portfolio manager, that is, the closer the point in time to the end of each CO2 compliance 

period, up to which he has to mandatorily close the board-defined percentage amount of his 

natural short position, and the lower this board-defined percentage amount, the higher the 

revenues he generates, and vice versa. As a result, since all scenarios and constellations 
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implied positive revenues for the portfolio manager, the airline company benefited from the 

use of a portfolio manager implementing active futures trading strategies instead of 

applying simple spot buying strategies at the end of each CO2 compliance period. 

With this thesis, our contribution to the existing academic literature thereby was of various 

nature. Until now, the multi-period stochastic portfolio optimization technique has found a 

broad application for the energy sector (i.e., hydro power and gas value chain optimization) 

and for optimal SO2 compliance issues in the US. As the first ever case, we specifically 

applied this technique to the airline sector, which is a brand new included sector within the 

European Union Emission Trading Scheme (EU ETS). Furthermore, more than mainly 

incorporating physical and technical (“engineering”) features and focusing on short-term 

planning issues within the optimization model, especially we also addressed financial 

features and focused on mid-term planning issues. That is, by taking into account actually 

traded futures prices for CO2 emission allowances for longer trading horizons (i.e., different 

CO2 delivery periods) and the derivation of optimal trading strategies, based on futures 

rather than spot contracts, we particularly highlighted an airline company's need to plan and 

manage its cash flow streams from a medium term's perspective. In contribution to the 

existing academic literature, we thereby specifically referred to the two actually existing 

CO2 emission allowances types, EUA (EU Emission Allowance) and CER (Certified 

Emission Reduction), and their traded futures prices for various CO2 delivery time periods. 

Based on them, we run Monte-Carlo simulations, by considering all cross correlations 

between the EUA and CER futures prices, which is a further contributing feature to 

previous academic works, which mainly used one single, unspecified type of a CO2 

emission allowance for an undefined trading period. That is, unlike our separation of the 

total trading period to real-world oriented sub trading periods (i.e., CO2 compliance 

periods), where specific exchange-traded futures of different maturities are available and 

various EU ETS regulatory, managerial and trading constraints have to be taken into 

account, the academic literature mainly focused on the assumption of unspecified CO2 

emission allowances and not detailed trading periods.  

As a result, our model contributes both to the change in paradigm, by integrating the 

“financial” with the “physical” world, rather than considering them separately, and to the 

application of the multi-period stochastic portfolio optimization technique to a completely 
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new area within the emissions sector, specifically within European Emission Trading 

Scheme (EU ETS).  

This thesis may serve as stimulation for further research in this area, not only due its 

actuality and real-world orientation, but especially due to its openness and academic 

generalization and development potential. Firstly, the emissions trading horizon can be 

expanded to more CO2 compliance years, depending on the board's decision and/or 

increasing future liquidity of the exchange-traded EUA and CER futures. In addition to 

that, other board-defined constraints such as upper and lower trading constraints could be 

stressed and varied for each trading period t. Furthermore, since implied volatilities of 

vanilla options are available for both EUAs and CERs and due to their sufficient and more 

and more increasing liquidity, the market data can be used for the calibration of the MC 

input parameters. Also GARCH models could be set up to model the volatility as an 

important model input parameter. A crucial assumption in the thesis was the amount of CO2 

emissions for CO2 compliance, given as deterministic scenarios. These could also be 

modeled by a suitable CO2 emission production function or on the basis of fundamental 

airline data, such as type and the corresponding capacity of owned airplanes, current and 

future flight plans to and from the specific EU locations, sold flight tickets of the airplanes, 

weight of the transported luggage etc. However, this procedure would require a much more 

comprehensive, fundamental analysis and detailed modeling of technical airplane 

parameters. Additionally, the time-series properties of the underlying price model could be 

changed such that stochastic drift and volatility parameters could be incorporated. For 

constructing a forward-scenario tree, EUA and CER futures price scenarios could also be 

generated through other scenario generation techniques such as ARMA, VAR, property 

matching methods, bootstrapping or Markov Chains. 

As a consequence, the self-developed system of real-world oriented equations in this thesis, 

could be easily developed, adapted and extended to either other future sectors to be 

included in the EU ETS such as the shipping sector, or other sectors within the cap-and 

trade carbon market regimes such as the US RGGI. Based on the methodology derived in 

this thesis, the hedging procedure of physical assets could be further developed and 

implemented against other financial derivatives than futures such as options or swaps. 
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Detailed formulation of the optimization model in Subsection 6.4.5 
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APPENDIX B 
 
 
 
 
 

Statistical Tests and EViews Outputs  

 

B.1 Jarque-Bera Test for Normality of Returns of EUA and CER Futures Prices 

 
H0: Normal distribution, skewness and excess kurtosis (i.e., kurtosis minus 3) are jointly zero  

H1: No normal distribution 
 

Returns EUA Dec'11 futures  
Sample: 1 686 

 R_EUA_DEC11

 Mean -0.000026 
 Median -0.000694 
 Maximum  0.046762 
 Minimum -0.046762 
 Std. Dev.  0.016500 
 Skewness  0.099686 
 Kurtosis  3.081921 

  
 Jarque-Bera  1.327997 
 Probability  0.514789 

  
 Sum -0.018248 
 Sum Sq. Dev.  0.186490 

  
 Observations  686 

 
 

Returns CER Dec'11 futures 
 
Sample: 1 686 

 R_CER_DEC11 

 Mean -0.000146 
 Median  0.000000 
 Maximum  0.045876 
 Minimum -0.045294 
 Std. Dev.  0.016910 
 Skewness  0.000740 
 Kurtosis  3.060593 

  
 Jarque-Bera  0.105312 
 Probability  0.948706 

  
 Sum -0.100355 
 Sum Sq. Dev.  0.196448 

  
 Observations  686 
 

 

 
 
 
 
 
 



98 
 

 
Returns CER Dec'14 futures 

 
Sample: 1 466 

 R_EUA_DEC14

 Mean -0.001224 
 Median -0.001259 
 Maximum  0.044452 

Minimum -0.044901 
 Std. Dev.  0.019603 
 Skewness  0.045591 
 Kurtosis  2.536536 

  
 Jarque-Bera  3.960247 
 Probability  0.138052 

  
 Sum -0.521635 
 Sum Sq. Dev.  0.163313 

  
 Observations  466 

 
 
 

Returns CER Dec'14 futures 
 
Sample: 1 466 

 R_CER_DEC14 

 Mean -0.001470 
 Median -0.000773 
 Maximum  0.045810 
 Minimum -0.045359 
 Std. Dev.  0.020325 
 Skewness  0.104044 
 Kurtosis  2.616543 

  
 Jarque-Bera  3.013718 
 Probability  0.221605 

  
 Sum -0.558638 
 Sum Sq. Dev.  0.156564 

  
 Observations  466 
 

 

 
B.2 ADF Unit Root Tests 

 
H0: Unit root (i.e. non-stationary), prices follow a random walk plus drift model  

H1: No unit root (stationary), prices converge to a long-term mean unequal to zero 
 

EUA Dec'13 futures  

Null Hypothesis: EUA_DEC13 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=17) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -0.954451  0.7703 
Test critical values: 1% level  -3.444219  

 5% level  -2.867549  
 10% level  -2.570034  

*MacKinnon (1996) one-sided p-values.  
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(EUA_DEC13)  
Method: Least Squares   
Date: 08/14/13   Time: 18:22   
Sample (adjusted): 3 466   
Included observations: 464 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   
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EUA_DEC13(-1) -0.002798 0.002931 -0.954451 0.3404 
D(EUA_DEC13(-1)) 0.199849 0.045721 4.371040 0.0000 

C 0.015514 0.033545 0.462486 0.6440 

R-squared 0.041232    Mean dependent var -0.017845 
Adjusted R-squared 0.037072    S.D. dependent var 0.250537 
S.E. of regression 0.245849    Akaike info criterion 0.038244 
Sum squared resid 27.86357    Schwarz criterion 0.065010 
Log likelihood -5.872514    Hannan-Quinn criter. 0.048780 
F-statistic 9.912682    Durbin-Watson stat 1.992059 
Prob(F-statistic) 0.000061    

 

EUA Dec'14 futures 

Null Hypothesis: EUA_DEC14 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=17) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -0.894503  0.7897 
Test critical values: 1% level  -3.444219  

 5% level  -2.867549  
 10% level  -2.570034  

*MacKinnon (1996) one-sided p-values.  
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(EUA_DEC14)  
Method: Least Squares   
Date: 08/14/13   Time: 18:23   
Sample (adjusted): 3 466   
Included observations: 464 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

EUA_DEC14(-1) -0.002679 0.002995 -0.894503 0.3715 
D(EUA_DEC14(-1)) 0.166127 0.046022 3.609723 0.0003 

C 0.014494 0.036644 0.395540 0.6926 

R-squared 0.028791    Mean dependent var -0.019224 
Adjusted R-squared 0.024577    S.D. dependent var 0.274139 
S.E. of regression 0.270749    Akaike info criterion 0.231199 
Sum squared resid 33.79372    Schwarz criterion 0.257965 
Log likelihood -50.63809    Hannan-Quinn criter. 0.241735 
F-statistic 6.833049    Durbin-Watson stat 2.004736 
Prob(F-statistic) 0.001190    

 

EUA Dec'15 futures 

Null Hypothesis: EUA_DEC15 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=17) 



100 
 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -0.879275  0.7945 
Test critical values: 1% level  -3.444219  

 5% level  -2.867549  
 10% level  -2.570034  

*MacKinnon (1996) one-sided p-values.  
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(EUA_DEC15)  
Method: Least Squares   
Date: 08/14/13   Time: 18:25   
Sample (adjusted): 3 466   
Included observations: 464 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

EUA_DEC15(-1) -0.002841 0.003232 -0.879275 0.3797 
D(EUA_DEC15(-1)) 0.113788 0.046398 2.452427 0.0146 

C 0.016597 0.041900 0.396106 0.6922 

R-squared 0.014246    Mean dependent var -0.020129 
Adjusted R-squared 0.009970    S.D. dependent var 0.307817 
S.E. of regression 0.306279    Akaike info criterion 0.477805 
Sum squared resid 43.24501    Schwarz criterion 0.504572 
Log likelihood -107.8509    Hannan-Quinn criter. 0.488342 
F-statistic 3.331204    Durbin-Watson stat 1.998596 
Prob(F-statistic) 0.036613    

 

CER Dec'13 futures 

Null Hypothesis: CER_DEC13 has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=17) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -0.220890  0.9330 
Test critical values: 1% level  -3.444219  

 5% level  -2.867549  
 10% level  -2.570034  

*MacKinnon (1996) one-sided p-values.  
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CER_DEC13)  
Method: Least Squares   
Date: 08/14/13   Time: 18:05   
Sample (adjusted): 3 466   
Included observations: 464 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

CER_DEC13(-1) -0.000458 0.002073 -0.220890 0.8253 
D(CER_DEC13(-1)) 0.188949 0.045802 4.125295 0.0000 

C -0.014778 0.015864 -0.931537 0.3521 
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R-squared 0.035602    Mean dependent var -0.021940 
Adjusted R-squared 0.031418    S.D. dependent var 0.174851 
S.E. of regression 0.172082    Akaike info criterion -0.675242 
Sum squared resid 13.65130    Schwarz criterion -0.648475 
Log likelihood 159.6561    Hannan-Quinn criter. -0.664705 
F-statistic 8.509199    Durbin-Watson stat 1.989933 
Prob(F-statistic) 0.000235    

 

CER Dec'14 futures 

Null Hypothesis: CER_DEC14 has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=17) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic  0.036950  0.9604 
Test critical values: 1% level  -3.444189  

 5% level  -2.867536  
 10% level  -2.570027  

*MacKinnon (1996) one-sided p-values.  
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CER_DEC14)  
Method: Least Squares   
Date: 08/14/13   Time: 18:26   
Sample (adjusted): 2 466   
Included observations: 465 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

CER_DEC14(-1) 8.04E-05 0.002176 0.036950 0.9705 
C -0.023940 0.018224 -1.313681 0.1896 

R-squared 0.000003    Mean dependent var -0.023355 
Adjusted R-squared -0.002157    S.D. dependent var 0.194290 
S.E. of regression 0.194499    Akaike info criterion -0.432483 
Sum squared resid 17.51531    Schwarz criterion -0.414667 
Log likelihood 102.5522    Hannan-Quinn criter. -0.425470 
F-statistic 0.001365    Durbin-Watson stat 1.847737 
Prob(F-statistic) 0.970540    

 

CER Dec'15 futures 

Null Hypothesis: CER_DEC15 has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=17) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic  0.022281  0.9592 
Test critical values: 1% level  -3.444189  

 5% level  -2.867536  
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 10% level  -2.570027  

*MacKinnon (1996) one-sided p-values.  
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CER_DEC15)  
Method: Least Squares   
Date: 08/14/13   Time: 18:18   
Sample (adjusted): 2 466   
Included observations: 465 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

CER_DEC15(-1) 5.24E-05 0.002352 0.022281 0.9822 
C -0.024179 0.020224 -1.195544 0.2325 

R-squared 0.000001    Mean dependent var -0.023785 
Adjusted R-squared -0.002159    S.D. dependent var 0.211934 
S.E. of regression 0.212162    Akaike info criterion -0.258640 
Sum squared resid 20.84092    Schwarz criterion -0.240825 
Log likelihood 62.13380    Hannan-Quinn criter. -0.251628 
F-statistic 0.000496    Durbin-Watson stat 1.989906 
Prob(F-statistic) 0.982234    

 
 

B.3 Jarque-Bera Test for Testing Normal Distribution of Revenues 

 

Distribution of Revenues for the 
Optimistic Market Scenario   

Sample: 1 250 

 REVENUES 

 Mean  602019.8 
 Median  601228.2 
 Maximum  1071004. 
 Minimum  110862.3 
 Std. Dev.  156494.9 
 Skewness  0.095077 
 Kurtosis  3.194482 

  
 Jarque-Bera  0.767562 
 Probability  0.681280 

  
 Sum  1.50E+08 
 Sum Sq. Dev.  6.07E+12 

  
 Observations  250 
  

Distribution of Revenues for the 
Pessimistic Market Scenario   

Sample: 1 250 

 REVENUES 

 Mean  435152.7 
 Median  432654.5 
 Maximum  570487.2 
 Minimum  294036.0 
 Std. Dev.  47212.71 
 Skewness  0.093690 
 Kurtosis  2.914110 

  
 Jarque-Bera  0.442584 
 Probability  0.801483 

  
 Sum  1.09E+08 
 Sum Sq. Dev.  5.55E+11 

  
 Observations  250 
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