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ABSTRACT

OSCILLATION CRITERIA FOR FIRST AND SECOND ORDER
IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

ALZabut, Jehad
M.S., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Agacik ZAFER

August 1999, 64 pages.

There exists a well-developed oscillation theory of delay differential equa-
tions. The theory of ordinary differential equations with impulses has also
been developed extensively over the past few years. However, oscillation of de-

lay differential equations with impulses seem to have rarely been considered.

In this thesis, we first give a survey on oscillation of solutions of first and
second order delay differential equations with impulses having similarities with
delay differential equations without impulses. Next, in view of the known re-
sults obtained for delay differential equations without impulses, we derived
new oscillation and nonoacillation criteria for delay differential equations with

impulse effect.

Keywords: Impulsive delay differential equation, Oscillation, Nonoscillation.
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oY/

BiRiNCi VE iKiNCi DERECEDEN iMPULSIVE VE
GECIKMELI DIFERENSIYEL DENKLEMLER ICIN SALINIM
KRITERLERI

ALZabut, Jehad
Yiiksek Lisans, Matematik Bolimu

Tez Yoneticisi: Dog. Dr. Agacik ZAFER

Agustos 1999, 64 sayfa.

Gecikmeli diferensiyel denklemlerin salinimi  iizerinde ¢ok sayida aragtirma
vardir. Impulsive diferensiyel denklemler teorisi son zamanlarda hizli bir
sekilde geligtirilmesine ragmen, impulsive ve gecikmeli diferensiyel denklem-
ler alaninda yeterli ¢aligma yoktur. Ozellikle, salinim alaninda, simdiye kadar

cok az sayida galigma yapilmstir.

Bu tezde, amacimz impulsive denklemlerin salimimi konusunda yapilmuig
olan baz1 c¢aligmalar sunuduktan sonra, impulsive ve gecikmeli diferensiyel

denklemlerin salimimi  igin yeni gerek ve yeter kogullar elde etmektir.

Anahtar kelimeler: impulsive ve gecikmeli diferensiyel denklem, Salinimh

¢ozlim, Salinimsiz ¢6zim.

v



Dedicated To My Parents FAYZEH and OTHMAN



ACKNOWLEDGMENTS

I would like to express my sincere appreciation and deepest regards to
my supervisor Assoc. Prof. Dr. Agacik ZAFER for his motivation, guidance

and encouragement throughout the research.

I offer sincere thanks to Professor Dr. Marat AKHMETOYV for his un-
shakable faith in me and his willingness to endure with me the vicissitudes of

my endeavors.

Thanks also go to my friends who helped me during the preparation of
the thesis and finally special thanks to my parents for patience, understanding

and for personal, moral and financial support.

vi



TABLE OF CONTENTS

ABS T R ACT i i e et e e e iii
O oo iv
DEDICATION .....vuvteieieieiiiis e e e e e v
ACKNOWLEDGEMENTS ...ttt cieieenes vi
TABLE OF CONTENTS ... it e i vii
1. INTRODUCTION AND PRELIMINARIES ......c.ccociiiiiiiiinnnnnn, 1
1.1 Introduction ......c.ooiiiiiiniiiiiiii it 1
1.2 Existence and Uniqueness of Solutions of IDDEs ................. 4
1.3 Definition of Oscillation .........ccvvvieiiiiiiiiiiiiiiiiniiinn... 5
1.4 Basic Definitions and Fixed Point Theorem ...................... 6
2. FIRST ORDER IMPULSIVE DELAY EQUATIONS .................. 10
2.1 Introduction ........ccoiiiuiiiiiniii ittt 10
2.2 Oscillatory Behavior ........c.vveiiiineniiinnienneneennnnnns 12
2.3 Nonoscillatory Behavior ........c.coiiiiiiiiiiiii i, 31
2.4 New Oscillation Criteria ........ccovviiiiiiiiiiiiiniinenennnn.. 33
3. SECOND ORDER IMPULSIVE DELAY EQUATIONS ............... 38
3.1 Introduction...... ..ot 38
3.2 Oscillatory Behavior ........c.coiiiiiiiiiiiiiniinnnineneannen. 39
3.3 New Oscillation Criteria .........cooviiiiiiii i, 48
4. CONCLUSION .ttt e e e e e et 59
REFERENCES ...ttt ce e 61

vii



CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Many evolution process in nature are charactrized by the fact that at certain
moments of time they experience an abrupt change of state. This has been
the main reason for the development of the theory of impulsive ordinary dif-
ferential equations, and now this theory has been elaborated to a considerable

extent.

In the last few years the theory of impulsive differential equations and delay
differential equations has been studied by many authors[2, 3, 5, 8, 9, 15, 20].
However, not much has been developed in the direction of delay differential

equations with impulses[13, 23, 26, 32].

A differential equation of the form

o' = f(t,z(t),2(r(2))), T(t)<t,t>to (1.1)

in which the right-hand side depends not only on the instantanous position
z(t), but also on z(7(t)), is called a delay differential equation DDE or as in

the Russian Literature a differential equation with retarded argument.
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The basic initial value function for (1.1) is posed as follows: For ¢ > to, we

seek a continuous function z(¢) that satisfies (1.1) and an initial condition

z(t) = §(t), te€ Ey (1.2)

where t is the initial point and E;, = tocU{7(¢) : 7(t) < to,t > o} is the initial
set, the known function ¢(t) on E,, is called the initial function. Usually, it
is assumed that z(to+) = ¢(to). We always mean a one-sided derivative when
we speak of the derivative at an endpoint of an interval. If it is required to

determine the solution on the interval [to, 7], T' < 400, then the initial set

Ewr = {te}U{r(t): 7(t) <t, t, <t<LT}

is needed.

Example 1.1.1 Consider the equation

z'(t) = f(t,z(t),z(t — cos®t)).

Here to = 0, Eq = [—1,0], therefore the initial function ¢(f) must be given on

the interval [-1,0].



If in a real process described by equation (1.1) certain impulses occur at
fixed times, the mathematical model of this process could be given by the

following initial value function

o(t) = f(t,2(t),2(r(1)),  t#06;
Az(t)li=0; = Li(2(8:)),

o(t) = $(t), t€Ey, (tet)=ro, (1.3)

where

f:Ry xRxR— R, [;:R— R, 7:[tg,00)— [to,00), 7(t)<t.

The differential equation in (1.3) is called impulsive delay differential equation

IDDE. It can be shown that the problem (1.3) is equivalent to

z(t) = zo + /t: f(s,z(s),z(r(s)))ds + E I;(z(6;)),

to<Oi<t
z(t) = ¢(t), tE€ Ey. (1.4)

The process defined by system (1.3) goes as follows: The point P;(t,z(t)),
starting at (fo,z0), moves along the curve defined by the solution z(t) =

z(t, 1o, zo) of the equation

'(t) = f(t,2(t), 2(r(¢))) (1.5)

The motion along this curve terminates at time ¢ = 6; when the point P;

arrives at the point of disconinuity ¢ = 6,. At that moment the point P,



performs a jump Az|i—p, = I}(z(61)) and proceeds to move along the curve
described by the solution z(t,8y,z(f,+)) of equation (1.5), until it meets the

next point of discontinuity, and so on.

A solution of system (1.3) is such a piecewise continuous function that has
discontiuities of the first kind at ¢ = §; such that ¢'(t) = f(¢, ¢(t), #(7(¢))) for

all t # 6; and, for t = 0;, satisfying the jumps condition, i.e,

Ad(t)|e=o; = P(0:i+) — S(0:i—) = Li((8:—))
where
¢(02_) = tli)lél;l— ¢(t)7
and
o0:4) = i, 0

We assume that ¢(0;—) = ¢(6;) so that ¢ is left continuous.

1.2 Existence and Uniqueness of Solutions of IDDEs

Let Q C R? be an open set and let D = R, x §). Suppose that for each

1=1,2,..., 0; < 05.{,1 and lim;_, 6; = oo.

Definition 1.2.1 A function z : (to,t0 + 1) — R,te > 0, T > 0, is said to be
a solution of (1.3) if

(I) z(to+) = zo and (¢, z(t),z(7(¢))) € D for t € [to,t0 + T),



(II) z(t) is continuously differentiable and satisfies z'(t) = f(t, z(t), z(r(t)))
and z(t) = ¢(t), for t € [to,t0 + 1) and ¢ # 0;,

(III) z(t+) = z(t) + L(z(t)) , for t € (to,to + T] and ¢t = 6; where z(t) is

assumed to be left continuous.

Theorem 1.2.1 [22] Assume that f,T and ¢ are continuous in their domains
of definition, except possibly at t = 6; i=1,2,.... Then, for each (to,zo,.) € D,
there exists a solution x : [to,to + &) — R of the initial value problem (1.3) for

some a > 0.

1.3 Definition of Oscillation

A non-trivial function z(t) is called oscillatory if there exists a sequence
{t,} such that lim¢, = oo and z(¢,)z(t,+) < 0. Otherwise, z(t) is said to
be nonoscillatory. A nonoscillatory function is either eventually positive or

eventually negative, i.e, there exists ¢; such that a:(t) #0, for all t > t;.

We say that a differential equation is oscillatory if every solution of the
equation is oscillatory and nonoscillatory if it has at least one nonoscillatory

solution,




It is clear that in oscillation theory the solutions must exist on an infinite
interval of the form [t.,00) for some ¢.. The following theorem provides con-

ditions for such solution to exist [22].

Theorem 1.3.1 [22] Assume that the hypothesis of Theorem 1.2.1 hold. Sup-
pose further that

If(t,:c,y)l < g(ta le)) (tamay) € Ry X Rx R,

o+ I(a)| < [¢], z€R,

where g € C[Ry X Ry, Ry, g(t,u) is nondecreasing in u for eacht € R, . Let

r(t) = r(t,to, uo) be the mazimal solution of

u' = g(t,u), u(te)=wuo >0,

existing on [to,00). Then the interval of existence of any solution z(t) =

z(t,to, zo) of (1.8) such that |zo| < ug is [to, 00).

1.4 Basic Definitions and Fixed Point Theorem

Before starting the main results, we need to mention some basic definitions

and theorems that we will rely on later.



Definition 1.4.1 A subset S of a normed linear space X is called bounded if
there is a number M such that |[z|| < M for all z € S.

Definition 1.4.2 A set S in a vector space X is called convez if, for any
z,y € S,z + (1 — Ay € S for all X € [0,1].

Definition 1.4.3 Let N, M be normed linear space, and X be subset of N,
An operator ¢ : X — M is continuous at a point ¢ € X if and only if for
any € > 0 there is a § > 0 such that ||¢z — ¢y|| < € for all y € X such that
lz — yl| < 8. ¢ is continuous on X, or simply continuous, if it is continuous
at all points of X. '
Definition 1.4.4 A subset S of a normed linear space B is compact if and only
if every infinite sequence of elements of S has a subsequence which converges
to an element of S.

Definition 1.4.5 A subset S of a normed linear space N is a relatively com-
pact if and only if every sequence in S has a subsequence converging to an
element of N.

Definition 1.4.6 A function f : R — R is bounded on an interval I if and
only if there is a positive real number M such that |f(z)| < M for all z € I.
A family F of functions is uniformly bounded on I if there is an M such that
|f(z)| < M for all z € [ and all of f € F.

Definition 1.4.7 A family F of functions is equicontinuous on an interval [ if
and only if for every e > 0 there is 4 such that for all f € F, |f(z) — f(y)| <e

whenever |z — y| < §,z,y € I.



Lemma 1.4.1 (Arzela-Ascoli) A set of functions in C([a,b]) with ||f|| =
supgelanll f(2)|| is a relatively compact if and only if it is uniformly bounded

and equicontinuous in [a, b].

Remark 1.4.1 If the interval is not finite, one should be very careful in using
the above Lemma. To show that a certain family of functions is equicontinuous
in an infinite interval one can make use of Levitan’s result. According to this
result, a family of functions is equicontinuous on [tg, 00) if for any given € > 0,
the interval [to,00) can be decomposed into a finite number of subintervals in
such a way that on each subinterval all functions of the family have variations

less than .

Theorem 1.4.1 (Schauder’s Fized Point Theorem) Let S be a closed,

convez and non-emply subset of a Banach space X. Let

¢:5— S

be continuous such that ¢S is a relatively compact subset of X. Then ¢ has at

least one fixed point in S. That is there exists an x € S such that ¢z = .

At last we present the statement of the Lebesque dominated convergence the-

orem.




Theorem 1.4.2 (Lebesque’s Dominated Convergence Theorem ) Let

{f»} be a sequence of integrable functions such that

lim fa(z) = f(z) almost everywhere in A

and such that for every n=1,2,3,...

|fa(z)] < g(z) almost everywhere in A

where g is integrable on A. Then

Jim /;1 fo(z)dp = A f(z)dp.



CHAPTER 2
FIRST ORDER IMPULSIVE DELAY EQUATIONS

2.1 Introduction

In this chapter sufficient conditions for oscillation of impulsive delay differen-
tial equations of first order are established. Moreover, conditions on existence

of at least one nonoscillatory solution are obtained.

First we analyze the oscillatory behavior of solutions of DDEs of the form

z'(t) + p(t)z(r(t)) =0 (2.1)
and oscillatory and nonoscillarory properties of solutions of the corresponding

IDDEs of the type

Z(t)+pt)a(r(t)) =0, t#6;

We will consider equation (2.1) and system (2.2) when p(¢) = p > 0 and

7(t) = t — 7. That is, we consider

Z'(t)+pz(t — 1) =0, (2.3)

and

() +pz(t—~7)=0, t#6;,

10




Az(6;) = b;z(6;). (2.4)

It will be shown that the oscillation of a linear impulsive delay differential
equation of the type (2.2) is equivalent to the oscillation of a corresponding
linear delay differential equation without impulses
gdt)+pt) [ Q+8) " z(r() =0, (2.5)
T(t)<bi<t
where it is assumed that the product equals unity if the number of factors is

equal to zero.

The characteristic equations of equation (2.3) and system (2.4) are defined

respectively as,

FA)=X+pe™ =0,
and

FA)=Xx+p J] Q+b)e? =0. (2.6)

t—7<0;<t
We will see in Theorem 2.2.6 and Theorem 2.2.8 that equation (2.3) and (2.4)

have nonoscillatory solutions if and only if their charactristic equations have a

real root.

11



2.2 Oscillatory Behavior

In this section we shall state and prove some theorems which provide con-
ditions for the oscillation of solutions of DDEs and the corresponding IDDEs.

Let us start with the following theorems:

Theorem 2.2.1 [20] Assume that p € [Ry, Ry], 7 € [R4+, Ry], 7(t) < ¢, and
limy o0 7(t) = o0,
If
t 1
liminf | p(s)ds > p (2.7)

t~300 T(t)

then (2.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that (2.1) has an eventually
positive solution z(t) such that z(7(t)) for t > t,. Because of (2.7), there exists

a t; > t; such that

t
/()p(s)ds > c>% for t>t (2.8)
T(t

Dividing (2.1) by z(t) and integrating from 7(¢) to ¢, we obtain

In E”T(g)) / p(s)ds =0, t>1,

and hence
:c(r(t)) t
In—* = >t
n @) /T(t) p(s)ds >¢c, t2>t,

Since e* > ez, for z > 0, it follows that

z(7(t) > ec

z(t) — 7

12

t >t

EC. Yils:
DOKUW TASYON

"M KURgLY
fmmg




Repeating the above procedure, there exists a sequence {¢x} such that

z(7(t)
20 > (ec)*, t > t. (2.9)

From (2.8), there exists a t* such that

" p(s)ds > & d [ ps)ds > & >
/T(t)p(s) s25 an /t-‘p(s) $2 5 for t 2>t

Integrating (2.1) from 7(¢) to t* yields

z(t*) — z(r(?)) + [:(:) p(s)z(7(s))ds <0.

This implies that

2(r(t)) 2 a(r(t")5. (2.10)

Similarly, we obtain

o(t) ~ 2(t) + [ pls)alr(s))ds <0,

and consequently

z(t*) > x(r(t))%. (2.11)

Combining (2.10) and (2.11), there results in the inequality

2(t") 2 a(r(t)(5)" (2.12)

13



From (2.9) and (2.12), it follows that

(g)2 > %T(—(t?))—) > (ec)f, for all t>t. (2.13)

Now we choose k sufficiently large such that

2
ko (2)2
(ee)t > (3%,
which is possible because ec > 1. Therefore (2.13) is a contradiction. A parallel

argument holds if z() is assumed to be eventually negative solution, therefore

we obtain that all solutions of (2.1) are oscillatory.

Consider now system (2.2), that is, the same delay differential equation (2.1)
but when it is subject to impulses. In the following theorem we will modify the

conditions of Theorem 2.2.1 in order to get an oscillation criterion for (2.2).

Theorem 2.2.2 [13]Let 7(t) =t — 7, T € R, and assume that

(H1) for someT > 0,040 —6; >T,i=1,2,... and 7 < T}
(H2) there is an M > 0 such that0 < b; < M, i=1,2,...;
(H3) p is continuous on [0,00) and p(¢) > 0 fort > 0.

If

t
liminf [ p(s)ds > L -:M, (2.14)

t—~»0o0 t—r

then (2.2) is oscillatory .

14




Proof. Suppose the result is not true. Without loss of generality, there exists

an eventually positive solution say z(t) > 0 for ¢t > ¢*. Define

_x(t—r1) .
w(t)_—_:c(i)—’ for t>t" 4T

Considering the interval [t — 7,t] and 6; € (¢t — 7, 1),

o(t—1) > 2(0) = - ! el 2 _Il_bim(t),

implying

_z(t—r1) 1 1
w(t) = z(t) 2 1+bz~21+M°

We shall show that w(¢) is bounded above. Let 6; be a jump point in

[t — 27,t — 7]. Integrating (2.2) on [t — 7, 1],

2(t) — t— Ty + / s)a(s — 7)ds = 0. (2.15)

It follows from (2.15) that

z(t — %) > /: p(s)z(s —7)ds

> /i’jr—o p(s)z(s —r)ds + / p(s):t: s—T)ds

MG

On integrating (2.2) over [ ¢t — 7,1 — 7],

13



2t —7) > ot 377) | i" p(s) ds.

Thus

2(t—3) > 2t - —)[/ p(s) ds][/ P(s) ds]l M

and, hence

z(t —3) < 1+ M
2t —5) 7 [[2F pls) dsllfig pls)ds]
We have from (2.2) for large enough t,

to2(s) z(s —7)
ﬂrx(S)d S g t—7 (S) :17(3) et

But

e) , _ Aol L [ )
A—T z(s) & /t—‘r z(s) d +/o+o :c(s)
n z(6; —0) =z(t) z(t) 1

From (2.16) and (2.17),

z(t — 1)

N O
o (b= IR =0

In )s

If

l= litlg(ixrjlfw(t),

16

< N.

z(t —7) z(6; +0) nx(t—r)1+bk'

(2.16)

(2.17)

(2.18)




then [ is finite and positive and (2.18) leads to

lnl(1+ Myw()] 21 [ p(s) ds,

which implies that

13
LS l"[(le)l] > liminf [ p(s) ds. (2.19)

t—71
Since (2.19) contradicts (2.14). The proof is complete.

Below we provide sufficient conditions for the solutions of equation (2.1) and

system (2.2) to be oscillatory

Theorem 2.2.3 [20] Assume that p, T € C[Ry, Ry], 7(t) < t and it is non-
decreasing, lim;_,o, 7(t) = +00,

if

1
lim sup p(s)ds > 1, (2.20)
t

t—oo  J7(t)

then (2.1) is oscillatory .

Proof. Without loss of generality, let (t) > 0 be a nonoscillatory solution

such that z(7(¢)) > 0, ¢ > ¢;. Integrating (2.1) from 7(¢) to t, we have
t
2(t) — 2(+(t)) + f o PE)e(r(e) ds =0,

17




or equivalently

2(t) + o(r ()] ’(t) p(s)ds —1] < 0. (2.21)

For ¢ is sufficiently large (2.21) is a contradiction. The proof is complete.

Theorem 2.2.4 Assume that p € C[Ry, Ry, 7(t) =t — 7 <t and it is non-
decreasing and T < inf(6;41 — 6;),

If

¢
limsup [ p(s)ds > 1,

t—o0 -7

then (2.2) is oscillatory .

Proof. Without loss of generality, let (¢) > 0 be a nonoscillatory solution
such that (¢ — 7) > 0, ¢t > ¢;. The condition 7 < inf(f;+1 — 0;) means that
there is no discontinuity point between ¢ — 7 and t, i.e, the impulse points have

no contribution to this interval. Integrating (2.1) from ¢ — 7 to t, we have

z(t) —z(t—7)+ /t; p(s)z(s —7)ds =0,

or equivalently

2(8) + ot - T)[/t p(s)ds — 1] < 0.

t—r

18



For ¢ is sufficiently large, the last inequality is a contradiction. The proof is

complete.

Theorem 2.2.5 [13]Let 7(t) =t — 7, T € R, and assume that

(H4) p is continuous on [0,00) and p(t) > 0 fort > 0;

(H5) there is T > 0 such that 0,4, —0; > T,i=1,2,3,....

If either
8;+T
limsup(1 + bi)_lfe p(s)ds>1 if 72>T, (2.22)
=00 f
or
i+
lim sup(1 + bi)“l/o p(s)ds>1 if 0<7<T, (2.23)
=00 4

then (2.2) is oscillatory.

Proof. Suppose the conclusion is not true, then there exists a nonoscillatory
solution z(t) of (2.2). We shall assume that z(t) > 0 for all ¢ > t*. Since
eventually z() > 0, z'(t) < 0 for all large t, = is nonincreasing on intervals
of the form (8;,0;41),5 = 1,2,3,... We shall prove the result in the case of
T>T.

It follows from (2.2) by an integration on (8;,6; + T'),
0;+T
z(0; + T)— z(6; + 0) + /o'+6 p(s)z(s —7)ds = 0. (2.24)

19



By the nonincreasing nature of z, we have from (2.24),

0;4+T
2(0; + T) — 2(6; +0) + /é ., P&)dsle(@i+T~7) <0,

and hence

0;+T
2(0; + T) — z(6; + 0) + z(6; — 0) L . ple)ds <o. (2.25)

Now using the jump conditions of (2.2) in (2.25),

1
14b;

But (2.26) is impossible due to the eventual positivity of z and (2.22). By a

z(0; +T) + =(6; + 0)[

0:;+T
/é. p(s)ds—1] <0. (2.26)

similar analysis one can derive a contradiction if (2.23) holds. The proof is

complete.

In the following two theorems we will give necessary and suflicient conditions
for equation (2.3) and system (2.4) to be oscillatory. The technique is based

on the study of the characteristic equations of these equations.

Theorem 2.2.6 [20] Assume that p and T are positive numbers.
If

pre<l,

then (2.8) is nonoscillatory.

20



Proof. Let us look at a solution of (2.3) of the form z(¢) = €. It follows

that

F(A) = X +pe™ =0.

Observe that F(0) = p > 0 and F(—1) = ~1 4 pe = 27¢= < 0. Hence there
exists a negative real number A € [—1,0], such that ¢ is a nonoscillatory

solution of (2.3).

Corollary 2.2.1 pre > 1 is a necessary and sufficient condition for oscilla-

tion of (2.3).

The following corollary which is a substantial improvement of Theorem (2.3.1)

helps in proving the next theorem.

Corollary 2.2.2 [13, 23] Assume that b; > 0 fori=1,2,..., and pre < 1.
Then (2.4) is nonoscillatory.

The next theorem provides a necessary and sufficient condition for (2.4) to

have a nonoscillatory solution.

Theorem 2.2.7 [23] Assume the following:
(H6) 6,41 —6; >T, T>0,i=1,2,...and 7 < T}

(H7) b;>0,i=1,2,... and lim;_,, b; = 0.
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Then (2.4) is nonoscillatory if and only if pre < 1.

Proof. From Corollary 2.2.2, we know that we only have to show the neces-
sity. If pre > 1, then there exists a positive constant M suth that pre > 14+ M.
By (HT), there exists a positive integer K such that 0 < b; < M whenever
i > K. Therefore by Theorem 2.2.2, we know that every solution of (2.4) is
oscillatory. Hence, if (2.4) is nonoscillatory, we must have pr e < 1. The proof

is complete.

In the next theorem, we will need the following lemmas.

Lemma 2.2.1 [32] Assume that z : [0 — 7,00) = R is a positive function

such that

¢'(t) <0, t>a, t#0;

z(0;+) — x(6;) = bz(0;), 1=1,2,...

Then for any o < t. < t* < o0,

2t <olt) I (1+b),

te<O; <1*

z(t)+ Y bz(f) <z(t) [ @+8),

ttsai <t* tusoi <t*

and

inf z(t)>z(t) [[ Q+8)7,

ta<t<te
Tt te<0; <t*
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where b = max{0, ;}.

Lemma 2.2.2 [32] Assume that z : [0 — T,00) — R is a positive solution of

(2.4). Then, fort> o+ (3)r,

pPPriz(t—r)<4 [ Q+8)x(t),
t~7<0; <t

where b} = max{0,b;}.

Theorem 2.2.8 [32] The following statements are equivalent:

(a) Equation (2.4) is nonoscillatory.

(b) The characteristic equation (2.6) has a real root.

Proof. To prove (b) = (a), assume that Ao is a real root of (2.6) and define

z(t)= ] (L+b)e™, for t>t.

t1<6;<t
It is obvious that z(t) is left continuous on [t1,00) and is differentiable on

[t1 + 7,00) — {6;}. Furthermore, for t > t; + 7 and ¢ # 6;,

KO tpalt—r)=do T[ (1+5)e+p T[ (1+b)eC
ilse,'(t t1$9.‘<t—7’

= II a+8)Do+p I (1+b) ]

11 <0; <t t—7<8; <t

=0
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and for 6; > t; + 7,

m(0,+) — .’E(@) = bzm(a.,)

Thus, z(t) is a positive solution of (2.4) .
To prove (a) = (b), without loss of generality, asssume that z(t) is an even-
tually positive solution of (2.4). So there exists o > t; + 7 such that z(t) > 0

fort > o —1,. Set

A={A>0:2'(t)+ Az(t) < 0 eventually for t+#6;}.

From (2.4) and Lemma 2.2.1, we have

gty +p I Q+06)'2(@) <0, for t>0+7 and t#6;
t—7<6; <t

Thus,p J[ (1+&)~" € A. Also from Lemma 2.2.2, we get

t—7<6; <t

0=2'(t)+pz(t—1)

4 (1 +0b])?
<z'(t) +p( Ht_fgi‘);:_g +57) )x(t), for t>o+ gr, t £ 6;.

+32
4Ht—‘r<9.‘<c(1+bi )
272

Therefore, p ( ) is an upper bound for A. Since A is nonempty
and bounded, we may set Ag = supA.
Let A € A be given and define y on [0 — 7,00) by y(¢) = z(t)e*. Then, there

is a suitable T € (o, 00) such that

y'(t) = (2'(t) + dz(t)eM <0, for t>T and t#4;.

24



On the other hand,

y(0i+) — y(0:) = biy(0;), for 0;> T,

So by Lemma 2.2.1, we know

yit—-7)>y@) JI Q+b)" for t>Th+r

t—7<0; <t
Hence, for t > T\ + 7 and t # 6;,

0=2'(t)+pz(t—7)
= &'(t) + py(t — 7))

> z'(t) + py(t) H 1+ bi)_le_’\(t_T)

t—7<0;<t

=z(t)+p [I (Q+b) e z(t).

t—7<6; <t
This shows that p H (14 b:)7'e* € A, and hence PIli—r<oice(l +

t—7<6;<t
b;)"1e*” < Xo. Since A € A is arbitrary, we conclude that
. Y

P H (1+ bz-)‘le’\” < Ao

t—7<6; <t
Therefore, F(—Xo) = —Xo + pIli—r<a<:(l + 8;)7'e™™ < 0. Noticing that

F(400) = 400, we know that (2.6) has a real root. The proof of the the-

orem is complete.

Remark 2.2.1 It follows from Theorem 2.2.8 that a necessary and sufficient

condition for oscillation of (2.4) is that the characteristic equation given by
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(2.6) has no real roots.

From the Theorem 2.2.8 we can immediately obtain the following results

Corollary 2.2.8 The following condition is necessary and sufficient for the
oscillation of (2.4):

1
p ] (1+b,~)7'>;.

t—7<6;<t

Corollary 2.2.4 Assume thatp >0, 7> 0,b> —1, 1 > 0 and 0; = 1o+ o7

fori=1,2,.... Then a necessary and sufficient condition for the nonoscilla-

tion of (2.4) is

pre<b+1.

The next two theorems show that the oscillation of a linear impulsive delay
differential equation (2.2) is equivalent to the oscillation of a corresponding

linear delay differential equation (2.5) without impulses .
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These two theorems will enable us to reduce the oscillation and non-
oscillation of solutions of (2.2) to the corresponding problem for a delay dif-

ferential equation without impulses. Before we proceed assume the following
conditions:

(A.1) p, T € C([to,0), RY), 7(t) < t and 7(t) = 0o as t — oo;
(A.2) b; € (—oo,—1) U (~1,00) are constants for 1=1,2...;

(A3) 0<to < by <0y <...<6; <... and limj e 0; = 00.

Theorem 2.2.9 [30] Assume that (A.1)-(A.3) hold.

(H8) If z(t,0,4) is a solution of (2.5), then y(t,o,0)= [ A +b)z(t,0,9)

o<;<t
is a solution of (2.2).

(H9) Ify(t,o,d) is a solution of (2.2), then z(t,0,0)= [[ (146;)"y(t, 0, 9)

o< <t
is a solution of (2.5).

Proof. Let z(t) = z(t,0,¢) and y(t) = y(¢,0,¢). First, we prove (1). It

is easy to see that y(t) = J[ (1 + b;)x(t) is absolutely continuous on each
o<b;<t
interval (0;,0;4+1) and for any ¢ # 6;, i=1,2,...

v +pt)y(r@) = I Q+8)d@+p@) I O +0)e(7()

o<t o<bi<7(t)

= [ a+b){e'@+p) TI Q+b)"z(r(#)}=0. (2.27)

0<8;:<t (t) <0<t
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On the other hand, for every 8; € {6;},

y(0it) = lim ] (A +b)et)= [I (1+8)=(6)

=0 o<0;<t 0<6;<b;

and

y(0:) = JI (1+05)=(8).

0<8;<b;

Thus, for every 1=1,2,...,

y(0:i+) = (1 + b;)y(8:). (2.28)

It follows from (2.27) and (2.28) that y(¢) is the solution of (2.2) corresponding

to initial condition (1.2) .

Next we prove (ii). Since y(t) is absolutely continuous on each interval
(0;,0;+1] and, in view of (2.28), it follows that, for any 1 = 1,2,.. .,
e(@4+)= I @+6)7'yl:i+)= TI (1+6)7"y(6:) = =(6:)
0<8; <0 o<0;<b;

and

207 = JI (1+8)'y6)=206:), i=12,...,
<8 <b;1

which implies that z(¢) is continuous on [o,00), It is easy to prove that
z(t) is also absolutely continuous in [o,00). Now, one can easily check that

z(t) = I,<o,<:(1 + b;)"y(t) is a solution of (2.5) corresponding to initial con-
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dition (1.2). The proof is complete.

By applying Theorem 2.2.9 we can prove that the oscillation of (2.2) is equiv-

alent to the oscillation of (2.5).

Theorem 2.2.10 [30] Assume that (A;) — (As) hold and
bi>—1, i=12,.... (2.29)

Then (2.2) is oscillatory if and only if (2.5) is oscillatory.

Proof. Suppose that z(t) is a solution of (2.5) on [T,00), T' > to. Let
y(t)= [[ (1+0b)z(t),t> T, From Theorem 2.2.9, y(t) is a solution of (2.2)
on [T, :os)ﬁiétince [o<aict(1+8) >0, t2>T,y(t)is oscillatory if and only
if z(t) is oscillatory.

Conversely, suppose that y(t) is a solution of (2.2) on [T,00),T > to. Let
z(t)= [l (1+&)"y(t), t>T. Thus, from Theorem 2.2.9, z(t) is a solu-
tion of i(ggjton [T,00), T > to, and in view of (2.29), z(t) is oscillatory if and

only if y(¢) is oscillatory . The proof is complete.

Consider the IDDE

() +pet—1)=0, t>t
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Am(&,,) = bzw(az), 1= 1,2, ‘e (230)

where p is constant and 7 is positive constant.

Corollary 2.2.5 Assume that (A;) — (As) and (2.29) hold and for t > to

H (1+bi)=a.

t—7<0;<t
Then (2.30) is oscillatory if and only if the delay differential equation

)+ apz(t—7)=0 (2.31)

is oscillatory or, equivalently, the characteristic equation

Adape™ =0

of (2.31) has no real roots.

Example 2.2.1 [30/Let 7 > 0 and b > —1 be constants and let 0,4, — 0; =

>0,7=1,2,.... Consider the equation

@)+ pz(t—mr)=0 t >t

Aw(al) = b:l?(az) 1= 1,2, cee (2.32)
where m is a positive integer. By Corollary 2.2.5, (2.32) is oscillatory if and
only if the delay differential equation
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Zt)+p(l+b)"z(t—m7)=0

is oscillatory or, equivalently, if and only if

1
p(14+0)"mr> <

2.3 Nonoscillatory Behavior

It is possible that the first order linear homogenous delay differential equa-
tions have both nonoscillatory and oscillatory solutions, unlike the first order
linear homogenous ordinary differential equations, which have only nonoscil-
latory solutions. This is one of the reasons why the nonoscillatory and oscil-
latory theory of delay differential equations has recieved extensive attention.
It is not difficult to see that when a delay differential equation is subject to
impulse perturbations, its nonoscillatory solutions may or may not continue to
persist. Thus the question as how one determines the type of delay differen-
tial equation for its nonoscillatory solution to persist under certain impulsive
perturbations naturally arises. The following theorem gives an answer to this

question.

Theorem 2.3.1 [13] Suppose that the functions p(t) and 7(t) satisfy the fol-

lowing:
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(H10) there exists a positive number ¢ such that

pre<l—eg,

(HI]) b;>0,0=12,... and Z?olb,‘<00.

=

Then (2.2) is nonoscillatory.

Proof. We will prove this theorem for the particular case 7(t) = ¢t — 7. Let
to be a real number and let L;[to — 7,00) denote the space of all equivalence

classes of real valued functions defined on [to — 7, 00) such that

Lifto— 7,00) = {f : [to — T, 00) = R| [:T |f()|dt < oo}.

It is known that L, is a complete metric space with the metric p defined by

p(f 9) = /:i |f () — g(t)] dt.

0

Consider a set A C L, defined as

A={f € Lilto—T,00)|e™* < f(t) < €™} 1 > p2 > 0},
where pu, satisfies pe*?” < (1 — ¢)uz. Define a map ¢,
¢ A — Ll[to - T,OO),

where

00

#@)(t) = [ [pa(s =) = 2 bie(6;-)8(s — 0;)]ds, 210

J=1
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#(2)(t) = /t:o[pa:(s 1) = S bja(0,-)6(s — 0;)]ds, to—T <t < ta.

i=1
It is easy to see that ¢(A) C A; for instance,

pel“27' s
$(z)(t) < ——e" 4 ) bieT L e,
K n(?)
provided B‘f—:: <1—cand X,4b; < c. This is possible since we can choose

to sufficiently large so that n(t) will be a large enough positive integer. There

exists a g1 > 0 such that

pe”’lT
P(z)(t) > ——e™H1" > 7M1,
t
For instance, if we let p; = -i—, we get pre < 1 — ¢ from 7’—65;2: <1-—ec. It is easy
to see that ¢(z) € Ly for x € A. Thus ¢(A) C A. Since ¢ maps the bounded
closed subset A of L, into itself, ¢ is a compact map. By the Schauder’s fired
point theorem, ¢ has a fixed point z* satisfying ¢z* = z* and implies that z*

is a nonoscillatory solution.

2.4 New Oscillation Criteria

In this section we obtain new oscillation criteria for solution of

Z'(t) +p(t)a(r(t)) =0, t#0;,

33



Theorem 2.4.1 Assume that p(t), 7(t) € C([0,00)), p(t) > 0, for ¢t >0,
and 7(t) < t, limyyeo 7(2) = 00.

If

¢
1imsup[/ p(s)ds+ > b]>1, (2.34)
t—ro0 7(?) T(t)<i<t

then (2.33) is oscillatory.

Proof. Without loss of generality, let z(¢) > 0 be a nonoscillatory solution

such that z(7(t)) > 0, t > ¢;. Integrating (2.33) from 7(t) to t we have

/T(t) z'(s)ds + /;(t) p(s)z(r(s))ds = 0. (2.35)
We can write
/:(t) z'(s)ds = z(t) — z(7(t)) + Zj;b,z(o,) (2.36)

Substitute (2.36) in (2.35) we get

t(t)—e(r®)+ 3 biz(6:) + f t(t) p(8)2(r(s)) ds = 0.

7(1)<6:<¢t

It follows from (2.33) that z(t) is nonincreasing, so

2(t) + 2(r ()] /:(t) ps)ds+ Y bi—1]<0. (2.37)

T(t)<0:i<t

For t is sufficiently large (2.37) is a contradiction. The proof is complete.
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Example 2.4.1 Assume that p(t) = 1 and 7(t) =t —1 in equation (2.1), that
is, we consider

2(t) + éw(t 1) =0 (2.38)
Equation (2.38) does not satisfy condition (2.20) of Theorem 2.2.3. Therefore

(2.38) is nonoscillatory.

Example 2.4.2 Consider the equation (2.33) where p(t) = 1, 7(t) =t — 1,

0; =1 and bi:2—%, that is,

2(t) + %:c(t —1)=0, t#i

Ac(i) + (2 - %):c(i) ~0, (2.39)

The condition (2.34) of Theorem 2.4.1 becomes
1

i 1 1
-+ (2~—)=—+2——=2>1
e t—%d e e e

Therefore (2.39) is oscillatory.

Remark 2.4.1 In the Example 2.4.1 we find that (2.38) is nonoscillatory.
However, if this equation is subject to impulsive effect as in Example 2.4.2
then every solution of (2.39) becomes oscillatory. That is, impulse causes

solutions to oscillate.
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Lastly, we consider

o)+ p)e(t —7) =0,  t+6;

A.’B(ez) + b,.’l)(az — 0') =0, (240)

where the impulse condition involves a delay as well.

Theorem 2.4.2 Assume that p(t) > 0, for t >0, end 7(t) =t—7 < ,
limy o0 T(t) = 00.

If

0i—o+T1
lim sup[/ p(s)ds +b;] > 1, (2.41)

=00 i—~0

then (2.40) is oscillatory .

Proof. Without loss of generality, let z(¢) > 0 be a nonoscillatory solution
such that z(r(t)) > 0, ¢ > t;. Let i be fixed and integrate (2.40) from o to g

where a = 0; — o and 8 = 0; — 0 + 7, we have

2Bi—ot+r)—2(B:=0)+ Y ba(®i—o)+ [ 9_”' p(s)z(s — 7)ds = 0.

a<d;<p8

Since z(t) is nonincreasing,

d;—o+T
~z(ti—o)+ Y, bz(8;— o)+ z(b; — o) p(s)ds < 0.
a<;j<p bi—a
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If j = ¢ then we will have only one impulse point, thus no summation is

involved, and so
Gi—o+T
—z(0; — o)+ b;z(0; — o) + 2(0; — 0')/; p(s)ds <0,

or

2(8; — o) /é f':“ p(s)ds +b; — 1] 0. (2.42)

When ¢ is sufficiently large, (2.42) is a contradiction. The proof is complete.
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CHAPTER 3
SECOND ORDER IMPULSIVE DELAY EQUATIONS

3.1 Introduction

In this chapter we will introduce some oscillation criteria for bounded solu-

tions of second order DDEs of the type

(r(®)a'(t)) = p(t)=(r(¢)) (3.1)

and for the corresponding IDDEs of the form

(r@)a'(t)) = pt)z(7(t)), t#6:;, 1€N

A(r(0:)2'(6:)) = biz(7(6:)),

Az(6;) = 0. (3.2)
We will also give new necessary and sufficient conditions for oscillation of all

bounded solutions of the following nonlinear impulsive system

(r()a'(t)) + p(t) f(z(r(2))) =0, t#6; i€N
A(r(;)2'(65)) + big(z(6:)) = 0,
Aa(8;) = 0. (33)

The following lemma proves very helpful
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We will start with the following two theorems which provide sufficient
conditions for oscillation of all bounded solutions of (3.1) and (3.2), respec-

tively. Before we proceed, we suppose that

z(0i+) = 2(6:i-); 2'(0:i—) =2'(6:);  r(0:—) =r(6),

and

0<b,<b;<..., lim 6; = +o0.

21—r00

Theorem 3.2.1 [20] Assume the following:

(H12) p> 0, r >0 are continuous;

(H13) T € C[Ry, Ry], 7(t) is nondecreasing, 7(t) <t, andlim; e 7(t) =

Oy

. [t d
(H14) tlg&/tor—(ss—)=oo
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If

limsu
iseo” 7(2) r(t)

then all bounded solutions of (3.1 ) are oscillatory.

( —7(t))p(u) du > 1, (3.4)

Proof. Suppose that the conclusion is not true. Without loss of generality,
let z(¢) > 0 be a bounded nonoscillatory solution of (3.1) for all ¢ > T'. Hence
(r(t)z'(t)) > 0, i.e., r(t)z'(t) is nondecreasing .

Case 1. r(t)z'(t) > ¢ > 0 for t > Ty > T. Divide this inequality by r(¢) and
then integrate from Ty to ¢ we see in view of (H14) that z(¢) is unbounded, a

contradiction.

Case 2. r(t)z'(t) <0. Then 2'(t) < 0. Integrating (3.1) from s to ¢, we have

r(t)z'(t) = r(s)z'(s) + /: p(u)z(r(u)) du. (3.5)

Integrating (3.5) from 7(t) to ¢ we see that

/(t s)m(sds+/ [/ z(7(u)) dulds < 0.

Changing the order of integration we get

/(t) r(s)z'(s)ds +/ u ~ 7(t))p(w)z(r(uw)) du < 0.

Now, using integration by parts and that z(¢) is nonoincreasing function, it

follows

r(t)e(t) = r(Ba(r(®) + 2(1) [ (w=r(Op()du <0,

40



which means

2(t) — a(r(t)) + "’(T(g” [ (= TO)plu)du <0,

ie.,

z(t)
w(T(t)) T(t) /(t)( P(u) du — 1] <0

But this inequality contradicts the condition (3.4) and hence the proof is com-

plete.

Remark 3.2.1 If we do not require [* -—“L = 00, but assume that r(¢) is non-
decreasing and (3.4) is satisfied, then the conclusion of Theorem 3.2.1 remains

valid.

Theorem 3.2.2 [5] Let the following conditions be fulfilled:

(H15) p > 0,7 > 0 are continuous;
(H16) T € C[Ry, Ry], 7(t) is nondecreasing, 7(t) < t, and limy,o, 7(t) = 00
(H17) lim;_yoo ffo rdT:)' =+4oco and r'(t) >0 for te€ Ry;

(H18) b; > 0,i€ N.
If

. 1
limsup oo / ROV OLEND SR USLO) S ES NI CE)

t—oo T(t)<Bi<t
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then all bounded solution of the (3.2) are oscillatory.

Proof.Let z(t) be a nonoscillatory bounded solution of the equation (3.2).
Without loss of generality, we may suppose that z(¢) > 0 for ¢t > ¢; > 0 and
z(t) < M, M = const > 0. It is clear that z(7(t)) > 0, hence (r(t)z'(t))’ > 0,
i.e., r(t)z'(t) is nondecreasing function, then two cases are possible

Case 1. r(t)z'(t) > ¢ > 0 for t > t5. It follows that lims o z(t) = oo, which
contradicts the boundedness of the solution.

Case 2. r(t)z'(t) < 0. Clearly, z(t) is nonincreasing. Integrating (3.2) from s

to ¢, we obtain

r(t)z'(t) = r(s)z'(s) + /: p(w)z(r(v))du+ > biz(r(6;)) <O0.

s<8; <t

We integrate again the above inequality from 7(¢) to ¢ and arrive at the in-

equality

/ r(s)z'(s) d.s+/ / (wz(r(v))du+ D bix(r(6:))]ds < 0.

s<0i<t

Changing the order of integration and using Lemma 3.1.1 we get

/t (s)z’ (3)d3+/ (u—7(t))p(w)z(r(u)) dut+ D, (Bi—7(t))biz(r(6;)) <O.

7(t)<b; <t

Now, from the fact that r(¢) is nondecreasing function and z(t) is nonincreas-

ing function, it follows

r(r(1)[2(t) —2(r(8)]+2(7(2)) [/ (u—r@)p(w)dut 3, (G:—7(t)b] <0,

T(t)<8:<t
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which means

z(r(t)) / (u=r()p(w)dut > (0i—7(t))b] < r(r(1))a(r () < r(t)=(r (1)),

T(8)<8i<t

ie.,

—l (U—T(t))P(U) dut Y (0:i—T(t)b] <1.

7°(t) r(t)<8i<t

The last inequality is a contradiction. The proof is complete.

Consider the delay diferential equation

z"(t) + p(t)x(r(t)) = 0. (3.7)

Theorem 3.2.3 [20] Assume the following:
(H19) 7(t) € C[Ry, Ry] and limyoo 7(1) = 00

(H20) p € C[R4,Ry] and p(t) >0 for t2>0.

Then

f ~ tp(t)dt = 0o (3.8)
is a necessary and sufficient condition for oscillation of all bounded solutions
of (3.7).
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Proof.(Necessity) Suppose that (3.8) fails. Then there exists T such that

/T  tp(t)dt < i. (3.9)
Set To = infi>7(7(t)), and let X be the space of bounded continuous func-
tions on [Tg, 00) with the sup norm ||z|| = sup{|z(¢)] : ¢t > to}. Let S C X be
defined by S = {z € X : a < ||z|| < 2a}. Then S is a bounded convex closed

subset of X. Define an operator ¢ on S by

o)) =5+ [ (= )p(s)a(r(s))ds, t>T

(¢2)(t) = 3?“ + [T - s)pla)lr(s))ds, To<t<T

We will show that
¢: S — S

is continuous such that ¢S is a relatively compact subset of X, So we can

apply Shauder fized point theorem in order to get nonoscillatory solution.

(i) ¢ maps S into S : In fact, knowing that ¢ > T and for s > t > 0

t—s<s+s=2s we have

Be@)l = 15+ [7 (6= 9)p(e) 2(r(s)) dsl < 5 +4a [ |op(s)]ds = 20,

and

|pz(t)| = |—+/ (t—s)p(s)z(r(s))ds| > — —4(1/°<> | sp(s)|ds = a.
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Hence ¢z € S

(ii) ¢ is continuous. To prove this, let {z,} be a Cauchy sequence in S,
and let lim,yeo ||zn — z|| = 0. Because S is closed, £ € S . To prove the

continuity of ¢, we see that

#5n — gl < [ (L= 9)p()lan(r(s)) — a(r(s)]ds <2 [ sp(s)len — alds.

Set

Gu(s) = 2sp(s)|z, — z|.

Then the above inequality reduces to

|z, — Pz| < /;o Gn(s)ds. (3.10)

Noting the fact that G,(s) = sp(s)|zn — | < 4asp(s). It is obvious that
lim,, 0o Gr(8) = 0. Since ¢p(t) is integrable on [T, 00), by Lebesgue conver-

gence theorem we have

lim ||¢z, — ¢z|| =0,

which means that ¢ is continuous .

(iii) To show that ¢S is precompact, we see that (¢(z)), z € S, is unifor-
maly bounded. Now we will prove that ¢S is an equicontinuous family of

functions on [Tp,00). Let € S and 3 > ¢;. Since
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(go(ts) - do(t)| = | [ (ta=5)pls) o(r(s)) ds = [~ (1 = 5) p(s) a((s)) ds
<17 ta = yp(s) a(r()dsl +1 [ (1 = 5)pls) (r(s)) sl
<17 =) ps)(r()dsl +1 [ (6= ) pls) a(r(s)) ds

< Sa/too | s p(s)| ds.
1

For a given € > 0, there exists 7™ > T such that

/;oslp(s)lds <e.

So if t; > t; > T™*, we have

|pz(ts) — gz(t1)] <€ for all x€S.

Now suppose that T < ¢; < t < T*. Then

[ga(ts) — galt)l = | [ (ta=)p(s)a(r(s))ds = [ (1 = 9)p(s) a(r(s)) ds
< 2alty —t4| /Too p(s)ds + 4a/:2 | s p(s)| ds.

Hence, for any given € > 0, there exists a § > 0 such that

|pz(t2) — dz(t1)| <€, [t2—t|<$, for all z€S.

That is, the interval [Tp, 00) can be divided into two subintervals [Ty, T*] and

[T™, 00) on which every (¢z)(t), ¢ € S, has variation less than e.
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Therefore, ¢S is equicontinuous family on [Tp, 00). Hence ¢S is a compact
subset of S. According to the Shauder fized point theorem, there exists an

z € S such that ¢z = z. This z is a bounded nonoscillatory solution.

(Sufficiency) Suppose that (3.8) holds and there is a nonoscillatory solution of
(3.7). Without loss of generality, we may assume that z(¢) > 0 and z(7(¢)) > 0
for ¢ > to, hence z"(t) < 0, i.e., 2(t) is nonincreasing. The following cases are
possible

Case 1. z'(t) < 0. Since (t) is nonincreasing and concave down, we will
have a contradiction with the positivity of z(¢).

Case 2. z'(t) > 0. Since z(t) is nondecreasing and positive there exists ¢ and
T such that z(¢) > ¢ and z(7(¢)) > c for all t > T. Integrating the above

equation from s to ¢, we have

(t) ~2/(s) + [ p(w)a(r(w)du =0,

or

z'(s) > /: p(u)z(7(u))du.

Integrate again from T to ¢, we obtain

z(t) — z(T) > /Tt[/: p(u)z(r(u))dulds.

Changing the order of integration, we get

2(t) — 2(T) > th (= T)p(u)a(r(u))du.
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Using the nondecreasing nature of z(t) we have

z(t) — z(T) > c/Tt(u — Tp(u)du.

Hence,
: z(t) — =(T)
L (u = T)p(u)du < Z2—22,
Since
lim —— T =1,
U—$00 LT3

it follows that v — T > %u if u > 2T. Therefore, we have

%/;up(u)du = /2;(u ~T)p(u)du < /Tt(“ —T)p(u)du < it)“_;—m(T—)

K

which contradicts (3.8). Then all bounded solutions of (3.7) are oscillatory.

3.3 New Oscillation Criteria

The following is a new contribution that gives a necessary and sufficient

condition for oscillation of all solutions of (3.3).

Theorem 3.3.1 Assume the following:

(H21) 7(t) € C[R+, R4] and limy_o, 7(t) = 00;
(H22) p(t) € C[Ry, Ry] fort > 0;

(H23) f and g are nondecresing and continuous functions;
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(H24) r(t) € C[R4, Ry], r(t) >0 fort >to,t0 € Ry and limy0o R(t,u) = 00
where R(t,u) = [} ﬁds;

(H25) b;> 0, i € N;

(H26) zf(z) > 0 and zg(z) > 0 for z #0.
Then

/ ” R(u,0)p(u) du + 3 R(6;,0)b; = o0 (3.11)
is necessary and sufficient condition for oscillation of all bounded solutions of

(3.3).

Proof.(Necessity) Suppose that (3.11) fails. Then one can find a sufficiently

large T such that

oo a
R(u,0)p(u)du + R(6;,0)b; <
fy RmOta)du+ 35 ROs00 < gy
Set Tp = infi>77(t) and let X be the space of bounded continuous functions
on [Tp,00) with the sup norm ||z|| = sup{|z(t)| : t > to}. Let S C X be
defined by S = {z € X : a < ||z|| £ 2a}. Clearly, S is bounded convex closed

subset of X. Define an operator ¢ on S by

600 = T+ [ Rt wp)f(e(r(w) du

t<f; <00
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(@)0) = 2+ [T BT wpu)f(a(r() du

T<6;<00

We will show that
p:5— S

is continuous such that ¢S is relatively compact subset of X so we can apply

Shauder fired point theorem in order to get nonoscillatory solution.

(1) ¢ maps S into itslef:In fact

ge)l < 54| 7RG wp@ @) dit D R(0)bg(a(6)

t<0; <0

From (H23), fort > T,

62(0)] < 5+ max{f(20), g2} [ 1RG wpw)ldu+ Y[Rt 095])

T<b; <0
Since

|R(¢,u)| < 2|R(u,0)|] forall u>t,

we have

B(t)] < S+2max(f(2a),92a)}| [~ R(w,0)p(u)dut 3 R(0:0)8] =2,
T<0;<00
and

ge)] > 51 [ R wpfe(r@))dut 3 Rt 0)bg(=(6)]

t<f; <o
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v

3 amax{f(2), 620} [ 1R@,0)p()du+ ¥ IR 0)4]

2 T T<0:; <00
= a.

Therefore, ¢z € S.

(ii) ¢ is continuous. To prove this, let {z,} be Cauchy sequence in S, and let
limy, 00 ||Zn — z|| = 0. Because S is closed, £ € S. To prove the continuity of

¢, we first see that

(gan =l < [ R(,up(w)|f(an) - £(a)]du
+ Y. R(t,0:)bilg(zn) — g()|

t<6; <oo

< 27 R(w,0p(w)lf(zn) - f(c)ldu
+2 Y R(8:;,0)bi|g(zn — g(z))|.

t<6; <0

Set

Gr(u) = R(u,0)p(w)|f(zs) — f(z)],
and

H.(6:) = R(0;,0)bi|g(2n) — 9(2)|-

Then the above inequality reduces to

bz, — dz| < 2 L T Ga(uw)du+2 Y Ha(6) (3.12)

T<6; <0
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Notice that G,(u) = R(u,0)p(u)|f(zn) — f(z)| < 2f(2a¢)R(v,0)p(v) and
H,.(6;) = R(0:,0)b;|g(z.)—g(z)| < 29(2a)R(6;,0)b;, and that lim, o Gr(u) =
0 and lim, . Hn(6;) = 0. Applying Lebesque Convergence theorem on integral

and the uniform convergence on the sum, we have

lim, 420 — gl = 0.

Hence ¢ is continuous.

(1ii) To show ¢ is precompact, we see that (¢(z)), z € S is uniformaly bounded.
Now we will prove that ¢S is equicontinous family of functions on [T, cc). For

x € S, and t; > t;, we have

Iga(ta) — ga(t)] = | / R(ta, u)p(u)f(a(r(v))) du
+ Y E(t,0)big(a(6)

t2<9. £ 00

_/ R(ty, w)p(w) f(z(r(v))) du
— 3 R(ts,0:)big(z(65))]

t1<6; <0
< 2f 2a)/ R(t,u)p(u)|du +2g(2a) > |R(2,0:)b;]
t1<0; <00
< 4f(20) [ |R(u,0)p(w)] du +49(20) 3 IR(6:, 00
1 11 <6; <0

For a given € > 0, there exists T* > T such that

L " R(u,0)p(wdu+ 3 R(8:,0)b: <

T*<; <0
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So if T* < t; < t; we have

|px(ts) — d(z1)| <€ for all z€S.

Now, suppose that T' < t; < t; < T*. Clearly,

ga(ts) — do(t)] = | [ (Bltayu) = R(ts,u))p(w) f(o(r(u) du
+ Y (Rlt20) = R(t1,0))lig(2(69)

t2<6; <00
- /tt R(t,u)p(u) f(z(7(v))) du
— Y R(t1,0:)big(2(8:))I.

11<6:<t2

From (H23) and

R(tg,u) — R(ty,u) = /tz F(ls_)ds _ /‘1 _1__d3 = /:2 %ds = R(ts,t1),

Ju u 7“(3)

we have

(ga(ts) — da(t)] < fCa)R(at) [ Ip(s)lds
+g(2a)R(tz,t1) D, bl

ty<h;<oo
+ £(2a) [ |R(t w)p(u)| du

+9(2a) Y |R(t,0:)bil,

$1<0; <tz
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or

ga(ts) — ga(t)] < max{f(20),gCa)}|R(ts I [ pw)du+ 3 b

+2f(20) [ |R(u,0)p(u) du
+29(20) 3 IR0, 00

11 <0<t

Clearly,

/w plwydu+ D, b < / R(u,0)p(u)du+ Y. R(8;,0)b;
T T<6:i<o0 T T<6; <00
a

2 max{f(2a),g(2a)}

Hence, for any given € > 0, there exists a § such that

|pz(t2) — dz(tr)| <€, [ta—ti|<é for all z€S§

That is, the interval [Ty, 00) can be divided into two subintervals [T, T*] and

[T™*, c0) on which every (¢z)(t), z € S, has variation less than e.

Therefore ¢S is an equicontinuous family on [Tp, 00), Hence ¢S is a compact
subset of S. According to the Schauder fired point theorem there exists a z

€ S such that ¢ = ¢z. This z is bounded nonoscillatory solution.

(Sufficiency) Suppose that (3.11) holds and there exists a nonoscillatory so-
lution of (3.3). We may without loss of generality assume that z(¢) > 0 and
z(7(t)) > 0 for t > to, hence (r(¢)z'(¢)) < 0, i.e., r(¢)z’(t) is nonincreasing.

The following cases are possible
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Case 1. r(t)z'(t) < 0. Since (r(t)z'(t)) < 0, r(t)z'(t) is nonincreasing.

Integrating from Z, to ¢ we get

( ) < r(to)m (to) (t)

Integrating again from T to ¢t we have

2(t) — 2(T) < r(to)z' (to) / —(-sjds.

But r(to)z'(t0) < 0 and [}. ;ﬁds — 00 as t = 00. Therefore we have a contra-
diction with the positivity of = .

Case 2. r(t)z'(t) > 0. Integrating (3.3) from s to ¢,

r(0)2'(t) = r(s)2(s) + [ @) dut Y bigla(8)) =0,

s<0;<t
then

r(s)e/(s) > [ p)falr) du+ 3 bigla(0))

s<8; <t

Divide the above inequality by r(s) and Integrate again from T to ¢,

o) =2(T) > [[ 1= [ pf(a(r() du + ()sz big(a(6:))]ds

<6<t

Changing the order of integration and using Lemma 3.1.1 we get

2(t) = o(1) > [ R(w, Thp(w)f(a(r(w)du+ ¥ RO, Thug(a(6:).

T<6:<t

We know that z is positive and increasing so it is bounded from below by a

positive real number. This means that by increasing the size of T if necessary
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there exists ¢ > 0 such that z(7(¢)) > ¢ and z(6;) > cfor all ¢ > T. Since f

and g are nondecreasing then f(z(7(t))) > f(c) and g(z(6;)) > g(c), hence

5 [} Bl Tpw)du+ 9(e) 3 R8T < a(t) = 2(T),

T<0i<t
! T\ z(t)
/T R(u, T)p(x) du + T_g;« R0 T) < iy (3.13)
Since .
R(u,T) _

wreo R(u,0)
it follows that R(u,T) > k R(u,0) for some k € (0,1) if u is sufficiently large,
say u > T, > T. Thus
¢ ¢
k| f R(u,0)p(u)dut+ ¥ R(6:,0)b] < f R(u, T.)p(u)du+ ¥ R(0:,T.)b.
T To<0; <t T T, <6;<t
In view of (3.11), we see that
t
/ R(u,T.)p(v)du + Y R(6;,T.)b; = o,
L T.<;<t

which, on replacing T by T, contradicts (3.13). Therefore all bounded solu-

tions must be oscillatory.

Consider the following system which is a particular varient of system (3.3)

g"(t) + p(t) f(x((t))) =0, t#6; ieN
Az'(0;) + big(z(6;)) =0,
Az(6;) = 0. (3.14)
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The following theorem is a particular case of Theorem 3.3.1 and it is the cor-

responding result to the Theorem 3.2.3.

Theorem 3.3.2 Assume the following:
(H27) 7(t) € C[Rs, R4] and lim,o 7(t) = 00;
(H28) p € C[R4, Ry] and p(t)> 0 for t >0;
(H29) f and g are nondecresing and continuous functions;
(H30) b; > 0 fori € N;

(H31) zf(z) > 0 and zg(z) > 0 for z # 0.

Then

/oo up(u)du +_ 0;b; = 0o (3.15)
is necessary and sufficient condition for oscillation of all bounded solutions of

(8.14)

Proof.lt is similar to the proof of Theorem 3.3.1, and hence omitted.

Example 3.3.1 Assume that p(t) = & , 7(t) =t —7, 0, =4, b; = :1%" and
r(t) = 1, that is, consider

S(0) + et —T) =0, £

AL(i) + é—x(i) =0,

Az(3) = 0. (3.16)
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Then condition (3.15) is satisfied, since

[

Therefore, (3.16) is oscillatory.

We note that if the equation is not subject to impulse condition, then

o ]
/ —2-du<oo
u

and so,

2(t) + 5 Let-n=0

is nonoscillatory by Theorem 3.2.3.
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CHAPTER 4
CONCLUSIONS

There is a well-developed theory of delay differential equations without im-
pulses. The theory of ordinary impulsive equations with impulses has also been
developed over the past few years. However, the contributions in the direction

of delay differential equations with impulses are limited.

In view of the known results obtained for delay differential equations with-
out impulses, we derived new oscillation and nonoscillation criteria for delay
differential equations with impulses. The first result we obtaind is the corre-
sponding theorem to Theorem 2.2.3. The beauty of this theorem can be seen
in examples 2.4.1 and 2.4.2. We deduced that for a delay differential equation
which is nonoscillatory we can obtain oscillatory solution by imposing impulse
condition, that is, impulses causes oscillatory solution. The second result we
established is Theorem 2.4.2 in which we give sufficient condition for oscillation

of system (2.40) where the impulse condition involves a delay as well.

For second order, we derived a new oscillation criterion that provides neces-
sary and sufficient condition for oscillation of all bounded solutions of system
(3.3). Similar result of this theorem can be obtained for linear impulsive sys-
tem. Example 3.3.1 shows the importance of this result, that is, impulses

provides oscillatory solution.

' The oscillation theory of the impulsive differential equations is not yet elab-

orated in contrast to the oscillation theory of ordinary differential equations
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with deviating arguments. The first paper published in this area is in 1987 [13].
Since that time, this subject has been developed extensively. The problems

related to oscillation and stability seem to be chalenging and interesting.
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