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Thin-walled section is the one which is made of thin plates. The thickness of thin plates is 

quite small compared to other cross-sectional dimensions as well as overall length of the 

member or substructure. Elements made of thin-walled sections are used extensively in 

steel and concrete bridges, ships, aircraft, mining head frames, and gantry cranes. One 

common feature of these members made of thin-walled sections is that they are very light 

compared with alternative sections and, therefore, they are used extensively in long-span 

structures where the economy is of prime consideration. Thin-walled sections may have a 

closed or open form. The open thin-walled sections possess small torsional rigidity and 

they undergo warping deformation when subjected to torsional moments. The warping 

deformation in turn generates significant normal stresses that are to be considered in the 

design of such sections. In this thesis, at first an optimum design algorithm is developed 

for thin-walled beams with open sections when they are subjected to bi-axial bending and 

torsion. The dimensions of thin plates joined together to constitute the thin-walled section 

including their thickness are taken as design variables. The displacement, stress and local 

buckling constraints are considered in the formulation of the design problem. Vlasov’s 

theory is used to calculate the normal and shear stresses that occur due to warping. 

Besides, this study also aims to produce optimum design of cold-formed thin-walled open 

sections and optimum design of steel frame made of these kinds of sections given in 

AISI-LRFD. For this purpose, a different optimum design algorithm is developed which 

imposes the behavioral and performance constraints in accordance with AISI-LRFD. 

Moreover, due to the slenderness and the presence of imperfections in cold-formed thin-

walled open sections and steel frames built up with these sections, it is necessary to take 

cognizance of the geometric nonlinearity into account in the prediction of their response 

under the external loading in both cases. Afterwards, the optimum design problems 

obtained turn out to be mixed integer and discrete programming problem. Artificial bee 

colony algorithm is used to obtain their solution. This technique is a recent numerical 
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optimization technique which mimics the intelligent behavior of honey bee swarm. The 

recent studies with the artificial bee colony method have shown its effectiveness and 

robustness in finding the optimum solution of combinatorial optimization problems. 

Number of design examples is included to demonstrate the competence of the optimum 

design algorithms developed. 
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İnce cidarlı kesitler ince levhalardan yapılırlar. İnce levhaların kalınlıkları, diğer kesitsel 

boyutlarının yanında elemanın toplam uzunluğu ile karşılaştırıldığında oldukça küçüktür. 

İnce cidarlı kesitlerden yapılmış olan elemanlar çelik ve beton köprülerde, gemilerde, 

uçaklarda, maden şövalmanlarında ve gezer vinçlerde yaygın olarak kullanılırlar. İnce 

cidarlı kesitlerden yapılmış olan bu elemanların ortak bir özelliği, alternatif kesitlerle 

karşılaştırıldıklarında çok hafif olmaları ve bu yüzden ekonominin asıl etken olduğu uzun 

açıklıklı yapılarda yaygın olarak kullanılmalarıdır. İnce cidarlı kesitler kapalı veya açık 

formda olabilirler. Açık ince cidarlı kesitler küçük burulma direncine sahiptirler ve 

burulma momentine tabi tutuldukları zaman çarpılma deformasyonuna maruz kalırlar. 

Çarpılma deformasyonu bu tip kesitlerin tasarımında önemli ölçüde dikkate alınması 

gereken normal gerilmeler oluşturur. Bu tezde, ilk olarak çift eksenli eğilme ve 

burulmaya maruz bırakılan ince cidarlı açık kesitlerin optimum tasarımını yapan bir 

algoritma geliştirilmiştir. İnce cidarlı kesiti oluşturmak için kalınlıklarını muhteva ederek 

birleştirilmiş ince plakaların ölçüleri tasarım değişkenleri olarak alınırlar. Tasarım 

probleminin formülasyonunda yer değiştirme, gerilme ve lokal burkulma sınırlayıcıları 

göz önünde tutulur. Çarpılmadan dolayı oluşan normal ve kesme gerilmelerinin hesabında 

Vlasov teoremi kullanılır. Bunun yanında, bu çalışmanın diğer bir amacı da soğuk 

şekillendirilmiş ince cidarlı açık kesitlerin ve bu tür kesitlerden yapılmış olan çelik 

çerçevelerin optimum tasarımlarını AISI-LRFD tasarım yönetmeliğine göre yapmaktır. 

Bu amaçla, geliştirilen farklı bir optimum tasarım algoritması AISI-LRFD’ye uygun olan 

davranış ve performans sınırlayıcılarını uygular. Soğuk şekillendirilmiş ince cidarlı açık 

kesitlerde ve bu kesitlerden inşa edilen çelik çerçevelerde narinlikten ve kusurların var 

olmasından dolayı, bu yapıların dış yükler altında vereceği tepkiyi tahmin ederken 

geometrik doğrusalsızlığı göz önüne almak gerekmektedir. Daha sonra, elde edilen 

optimum tasarım problemleri tam sayı ve ayrık programlama probleminin karışımına 

döner. Bu problemlerin çözümlerini elde etmek için yapay arı kolonisi yöntemi 
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kullanılmıştır. Bu teknik bal arısı kolonilerinin zeka davranışlarını taklit eden yeni 

optimizasyon tekniklerinden biridir. Yapay arı kolonisi metodu ile yapılan güncel 

çalışmalar bu tekniğin birleşimsel optimizasyon problemlerinin çözümünde ne kadar 

etkin ve sağlam olduğunu göstermiştir. Geliştirilen optimum tasarım algoritmalarının 

yetkinliği belirli tasarım örnekleri çözülerek gösterilmiştir.      

 

 

 

Anahtar Sözcükler: Soğuk Şekillendirilmiş İnce Cidarlı Açık Kesitler, Optimum Boyut 

Tasarımı, Yapay Arı Kolonisi Algoritması, Çarpılma, Geometrik Doğrusalsızlık, Çelik 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Cold-Formed Thin-Walled Steel Sections 

 

Thin-walled sections are defined as those where the wall thickness is assumed to be much 

smaller than a representative dimension of the cross section. This means that the 

thickness over the width of the section must be much smaller than one. Thin-walled 

structures may consist of closed or open sections, or a combination of both. Obviously for 

a beam theory to be reasonable approximation to the structural behavior, the thin-walled 

beam must be long which means that the ratio of the width over length of the beam must 

be much smaller than one. Sections of this kind are used extensively in steel and concrete 

bridges, ships, aircraft, mining head frames, and gantry cranes. They are seen in the form 

of box girders, plate girders, box columns, purlins (Z and channel (C) sections), pallet 

stacks, and stud walls [1]. Thin-walled sections can be designed to exhibit great torsional 

rigidity, for example, as box girders, or they have very little torsional rigidity as, for 

example, in the case of a plate girder. However, one property they all have in common is 

that they are very light compared with alternative sections and, therefore, they are used 

extensively in log-span bridges and other sections where weight and cost are prime 

considerations. 

 

Structural members used in steel construction can be grouped in two main families. The 

first and most known group is so-called hot-rolled shapes and members built up of plates. 

The other, less familiar but of growing importance, is composed of sections cold-formed 

from steel sheet, strip, plates, or flat bars in roll-forming machines or by press brake or 

bending brake operations [2]. These are cold-formed steel structural members. The 

thickness of steel sheets or strip generally used in cold-formed steel structural members 

ranges from 0.0149 in. (0.4 mm) to about 0.25 in. (6.4 mm). Steel plates and bars with a 

thickness of 1 in. (25 mm) can be successfully formed into a structural shape by using 

cold forming process. 

 

The cold-formed steel sections are produced from steel coils by roll-formers or hydraulic 

press machine. Production with roll-formers is faster and more accurate because in roll-

formers the whole production process is controlled by a computer. Today it is possible by 

the developments in roll-former technology (Figure 1.1 (courtesy of custompart.net)) to 

produce the frames of several houses in a day and finish hundreds of houses in a few 

months. Especially the wall frames are assembled in factory and transported to the site as 

frames and at site these frames are assembled to each other. According to scale of project, 

the roll-formers can be moved to site and the production can be done in a workshop at 

site, which results in great savings in transportation costs. 
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Figure 1.1. A Typical Roll-Former. 

 

 

Cold-formed steel sections has been widely used in construction of residential districts all 

over the world and light gauge steel housing is becoming very popular in the world since 

last severe earthquakes occurred. The main advantages of such construction are its high 

strength, low weight ratio, short construction time, extraordinary standing to earthquake 

due to its low weight, environmentally friendly, high sound and heat isolation.        

(Figure 1.2 (courtesy of structure.com)).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2. Steel Frame Skeleton Made of Cold-Formed Thin-Walled Open Sections. 
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The above advantages increased the utilization of cold-formed steel sections in the 

construction of new residential buildings in last two decades. As the cold-formed steel 

sections bring into play increasingly, it will become even more indispensable for design 

procedures and methods to accurately predict the behavior of such structural elements. 

This will guarantee structures constructed with cold-formed steel sections to be safe and 

cost-effective [3]. 

 

Thin-walled box-sections are also replacing massive reinforced concrete beams in many 

types of bridge construction and torsionally stiff thin-walled cellular decks are replacing 

conventional lattice girder designs suspension bridges. Thin-walled hollow box-sections 

are also used as columns and beams in building construction while many forms of crane 

framework include this type of structural member [4]. Thin-walled sections are not, of 

course, restricted box-sections; built-up plate girders form open I-section thin-walled 

beams and even heavy rolled steel joists may be analyzed by thin-walled theory in certain 

circumstances.  

 

The sections which are subjected to general loading can be classified in two groups;         

i ) Closed Sections, ii ) Open Sections.  

 

Another classification concerning the sections is given in the following; 

 

1) If the thickness of the section is not very small comparatively to its width, they are 

called Thick-Walled sections. 

 

2) If the ratio of thickness over depth is small, they are called Thin-Walled sections.  

 

 

1.2. Literature Survey  

 

Many studies have been conducted on design of cold-formed thin-walled steel sections; 

 

In 1961, the behavior of uniform thin-walled beams under bending and torsion is studied 

by Vlasov [5]. The derivations of the differential equations of non-uniform torsion for 

thin-walled members with open cross-section were given in 1961 by Timoshenko [6, 7].  

 

Paz et al. [8], in 1976, developed a computer program which determines the properties of 

open and closed thin-walled steel section areas of rectangular segments and in a similar 

vein for determination of torsional and flexural properties of thin-walled beams, Ghersi et 

al. [9] calculated geometrical properties using a computer code in 2002.  

 

In 1982, Pedersen and Gunnlaugsson [10] offered a finite element model for calculation 

of stresses and deformations of beams with thin-walled steel cross-sections. Warping 

effect is considered by a modified sectorial coordinate formulation. Prismatic elements 

with seven degree of freedom on each node were used in the theory. As a means of 
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transition matrices, various types of prismatic beam segments could be represented in the 

global stiffness matrix with efficient kinetic compatibility. 

 

Meek and Ho [11], in 1983, introduced another finite element method for the solution of 

warping torsion problems of thin-walled structures including the stiffness equations with 

warping displacements.  

 

Tralli [12], in 1986, tackled a hybrid finite element model for calculation of stresses and 

deformations of steel beams constructed with thin-walled open, closed and mixed cross 

sections. The suggested model considers shear deformations and lets one to deal with 

beams with sharp variations of the cross section. Uniform and mixed type thin-walled 

structures searched.   

 

A solution for torsional analysis of open cross-section beams is studied by Eisenberger 

[13], in 1995. This study focused on an analytical method to form the stiffness matrix of 

the beam including the warping effect. The method proposed based upon the solution of 

the differential equation for any polynomial variation of the cross-section properties.  

 

Al-Mosawi and Saka [14], in 1999, developed an algorithm which obtains the optimum 

cross-sectional dimensions of cold-formed thin-walled steel beams subjected to general 

loading. This study includes the effect of warping in the calculation of normal stresses 

which is included using Vlasov’s theory. 

 

Lee et al. [15, 16], in 2004 and 2006, presented a micro genetic algorithm to find an 

optimum cross-section of cold-formed steel beams and columns. The shape optimization 

of cold-formed steel channel sections under uniformly distributed load and axial 

compression were presented for beams and columns, respectively. The design curves are 

generated for optimum values of the thickness, the web flat-depth-to-thickness ratio, and 

the flange flat-width-to-thickness ratio for beams and columns under uniformly 

distributed load.  

 

Magnucki and Monczak [17], in 2000, Magnucki [18] in 2002, Magnucka et al. [19] in 

2004 determined optimum shapes of selected mono-symmetrical open cross-sections of 

cold-formed thin-walled beams. In these studies, optimal design of thin-walled beams 

under strength and stability constraints is investigated. 

 

Adeli and Karim [20] applied the neural network method to optimize cold-formed steel 

beams and Karim and Adeli [21] implemented the optimization for the hat section of 

cold-formed steel beams under uniformly distributed loading via a comprehensive 

parametric study. The beams may be fully braced, unbraced, or braced at a specified 

number of points according to the AISI-ASD and the LRFD specifications. 

 

In 2006, a global optimization method for designing the cross-section of channel beams 

under uniformly distributed transverse loading is presented by Tran and Li [22]. The 

optimization of the cross-section is managed by using the trust-region method (TRM) 



 

 

5 

 

based on the failure modes of yielding strength, deflection limitation, local buckling, 

distortional buckling and lateral–torsional buckling. 

 

Geometric nonlinear analysis of thin-walled space frames is investigated by Chang et al. 

[23] using of incremental equilibrium equations based on the updated Lagrangian 

formulation and Vlasov’s assumption. In this study, the improved displacement field for 

non-symmetric thin-walled cross-sections is demonstrated based upon inclusion of second 

order terms of finite rotations and the potential energy corresponding to the semi-

tangential rotations and moments. 

 

Stasiewicz et al. [24] formulated local buckling of a bent flange of a thin-walled beam. In 

classical approach each segment of the flange is considered as a simple plate. However, 

an analytical description of the whole flange as a thin-walled structure with the use of an 

energetic method is introduced by the authors. Silvestre and Camotim [25,26] presented 

the derivation of generalized beam theory based on full analytical formula to provide 

distortional critical length and bifurcation stress resultant estimates in cold-formed steel 

C-section and Z-section members; (i) subjected to uniform compression (columns), pure 

bending (beams) or a combination of both (beam–columns), (ii) with arbitrary sloping 

single-lip stiffeners and (iii) displaying four end support conditions. These formulas 

incorporate genuine folded-plate theory, which is a feature that is responsible for their 

generality and high accuracy. Camotim et al. [27] presented the general beam theory 

(GBT) formulation, and corresponding finite element implementation to analyze local and 

global buckling behavior of thin-walled members with arbitrary loading and support 

conditions. Macdonald et al. [28] described the main types of cold-formed steel members 

and discussed the particular characteristics affecting their design. 

 

Lim and Nethercot [29] defined some of the benefits of using a cold-formed steel portal 

framing system over conventional hot-rolled steel portal frames and authors considered 

the behavior and design of bolted moment-connections between cold-formed steel 

members, formed by using brackets bolted to the webs of the section [30]. 

  

 

1.3. Objectives  

 

In this study, an optimum design algorithm is developed for cold-formed thin-walled 

open sections where the effect of geometric nonlinearity as well as effect of warping is 

taken into consideration when they are subjected to axial load, bi-axial bending and 

torsion. Due to the slenderness and the presence of imperfections in cold-formed thin-

walled steel sections it is necessary to consider the geometric nonlinearity in the 

prediction of their response to external loading in order to attain realistic results in their 

design. The dimensions of thin plates of cold-formed sections such as their length and 

thickness are treated as design variables. The displacement and stress constraints are 

included in the formulation of the design problem. The effect of cross sectional warping 

in the computation of normal and shear stresses is considered by using Vlasov’s theory.  
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Moreover, a different design algorithm is proposed to optimum design of cold-formed 

thin-walled open sections and low-rise steel frames made use of these sections to AISI-

LRFD design provisions. The strength and stability constraints are adapted from the 

design provisions of the 2007 edition of the North American (AISI) specification for the 

design of beam–columns. It is estimated that cold-formed steel beam-column members 

will be comprised of standard C-sections with lips. Once the loading of the beam-column 

members is established then the design problem turns out to be the selection of 

appropriate C-sections from the available section list.   

 

The objective function is selected as the minimum weight for both cases. The optimum 

design problem obtained in such formulation turns out to be mixed integer and discrete 

programming problem. The Artificial Bee Colony (ABC) algorithm which is one of the 

recent metaheuristic techniques is used to obtain the solution of the optimum design 

problem. The optimum design algorithm developed is used to determine the optimum 

dimensions of number of steel members and frames made of cold-formed thin-walled 

open sections. 

 

 

1.4. Outline 

 

The outline of thesis can be categorized as follows; 

 

In Chapter I, a cursory definition is given about cold-formed thin-walled steel sections 

and advantageous of these sections to be selected as structural component is mentioned. 

Addition to this, manufacturing procedure and application areas of cold-formed thin-

walled steel sections is discussed briefly. Besides, a literature survey on the design of 

cold-formed thin-walled steel sections and structures made of using these sections is 

included. At last, objectives and outline of the current study is stated. 

 

In Chapter II, engineering design optimization, structural optimization and the methods of 

structural optimization are discussed. Also, general definitions about optimization, 

elements of optimization problems that are used in optimization problems are pointed out 

in this chapter. In addition, mathematical formulation of a typical optimization problem is 

defined.  

 

In Chapter III, the matrix displacement method for 3D frames and the theory of the effect 

of warping are described. In addition to these, a computer program encoded in 

FORTRAN which has the feature of analysis of cold-formed thin-walled open sections 

excluding or including effect of warping is developed.  

 

In Chapter IV, a detail derivation and definition of stability functions used to calculate the 

nonlinear stiffness matrix of a three dimensional steel structure is figured out. Besides, 

geometric nonlinearity is described in this section. 
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In Chapter V, the optimum design of cold-formed thin-walled beams with open steel 

sections is formulated and defined. Besides, optimum design of cold-formed thin-walled 

open sections including geometric nonlinearity that are subjected to axial load as well as 

biaxial bending moments according to design code AISI-LRFD is described. In addition, 

optimum design of low-rise steel frames built up with cold-formed thin-walled sections to 

AISI-LRFD is represented. The objective function and design constraint functions of 

these kinds of steel frames are described in detail.  

 

In Chapter VI, artificial bee colony algorithm is adopted to obtain the solution of the 

optimum design problem described and formulated in Chapter 5. Also, optimum design 

algorithm based on artificial bee colony is defined in this chapter.   

 

In Chapter VII, the robustness and effectiveness of proposed ABC algorithm is tested on 

design examples related with the optimization process defined in Chapter 5. 

 

In Chapter VIII, principal conclusions and remarks summarized of this study is provided. 
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CHAPTER 2 

 

 

STRUCTURAL OPTIMIZATION 

 

 

 

2.1. A Brief Introduction to Optimization 

 

The engineering design optimization has emerged in the middle of 20
th 

century and it has 

found many applications almost in every branch of industry involving civil, mechanical, 

and industrial and aerospace engineering.  The applications covered complete systems as 

well as components for products ranging from steel sections to wings of aircrafts. In 

today’s world, optimization has been broadly implemented in operational research, 

artificial intelligence and computer science, and is used to develop processes in the field 

of management and various other disciplines other than engineering. The main objective 

of the optimization is to find values of the decision or design variables that minimize or 

maximize the objective function while satisfying the certain limitations or constraints. 

The basic objective of the optimization process is to reach the best solution from the 

possible combination of variables defined in mathematical problem. Objective function of 

an optimization problem represents some quantity, such as profit or cost that is to be 

maximized or minimized. The first step in formulating the mathematical model of an 

optimization problem is to identify the design variables and describe the constraints in 

terms of these design variables. Design variables depend on the class of problems and 

requirements. Constraints usually composed of either system restrictions or physical and 

economic rules that the solution must satisfy. A general optimization problem can be 

defined as selecting optimal values of the design variables so that the specified objective 

function has the minimum value and constraints which are generally functions of these 

variables, are satisfied. 

 

Over the past decade, with the development of computer-based analysis methods, the 

enhancement of optimization subjects has been revolutionized. In conjunction with the 

quick progress of high-performance computers and development of computational 

methods, it became possible to deal with more and more large-scale optimization 

problems that designers face every day’s practice.  

 

 

2.2. Mathematical Model of a Typical Optimization Problem 

 

The mathematical statement of an optimization problem includes determination of design 

variables, and expression of objective function and constraints. The general mathematical 

formulation of an optimal design problem may be phrased as follows; 

 

Minimize     F (x)               (2.1)             
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Subject to: 

 

 

ml (x) = 0 ,       l = 1,2,….,0             (2.2) 

 

gj (x) ≤  0 ,        j = q+1,….,n             (2.3)  

 

xk €  X   ,         X = {x1, x2,…, xd}            (2.4) 

 

 

where F(x) is the objective function and x is design variable vector. In general 

optimization problems, some constraints can be expressed as equality constraints ml and 

some others may be stated as inequality constraints gj. Furthermore some optimization 

problems requires the use of lower and upper bound constraints for each or some design 

variables that vary depending on the type of the problem. X represents the set of design 

variables and d is the total number of these variables. Number of constraints which limit 

the objective function is presented by n [31]. 

 

 

2.3. A General Outlook on the Issue of Structural Optimization 

 

Contemporary structural optimization has its roots in the 1960s [32]. Early structural 

optimization algorıthms were based on mathematical programming techniques.  

Structural design problems are formulated as decision making problems where the 

objective function is selected as the minimum cost or weight of the structure. The 

displacement and allowable stress constraints are introduced to the mathematical model. 

The cross sectional areas of structural members are treated as design variables. Such 

formulation has transformed the structural design problem into a decision making 

problem. The design constraints in these structural design problems are nonlinear 

functions of the design variables. Therefore one of the nonlinear programming techniques 

can be used to obtain the solution of these programming problems. By making use of 

mathematical programming techniques several structural optimization algorithms were 

developed and they were applied wide area of structural design problems [33]. Initially 

the design problems solved were small size problems were the total number of design 

variables were not more than ten. Later when these techniques are applied to large size 

structural design problems designed faced with convergence difficulties. Furthermore one 

of the assumption which is necessary to be made in mathematical programming 

techniques is the assumption of continuous design variables which produced optimum 

solutions for the cross sectional areas that were not available in the steel sections list. The 

techniques that were based on mathematical programming techniques which were capable 

of handling discrete variables were complicated and not easy to code for programming. 

Hence researchers had to move to develop another kind of optimization techniques which 

did not suffer the above discrepancies [34, 35]. 
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To remove all of these drawbacks of mathematical programming a-state-of-art 

optimization methods, so-called Metaheuristic or Stochastic search techniques were 

brought into play. These methods are class of search methods which includes heuristics 

and an element of non-determinism in traversing the search space [36]. Unlike the search 

algorithms introduced so far, a metaheuristic and/or stochastic search algorithm moves 

from one point to another in the search space in a nondeterministic manner, guided by 

heuristics. The next move is partly determined by the outcome of the previous move. 

These search techniques deal with situations where some or all of the parameters of the 

optimization problem are described by random or probabilistic variables rather than by 

deterministic quantities. The source of random variables may be several, depending on 

the nature and the type of problem.  

 

These techniques do not require gradient information of the objective function and 

constraints, and use probabilistic transition rules not deterministic ones. They employ 

random number call, and incorporate a set of parameters that require to be adjusted prior 

to their use. These novel and innovative metaheuristic search algorithms make use of 

ideas inspired from the nature. The essential phenomena lay over the behind of these 

methods is to mimic the natural events, such as survival of the fittest, immune system, 

swarm intelligence and the cooling process of molten metals through annealing into a 

numerical algorithm [37-44]. The optimum structural design algorithms that are based on 

these techniques are robust and quite effective in finding solutions to discrete 

programming problems. A detailed review of these algorithms as well as their 

applications in optimum structural design is carried out by Saka [45].  

 

 

2.3.1. Structural Optimization Techniques 

 

Optimum structural design algorithms provide a useful tool to steel designers. The 

optimum topology, the optimum geometry and the optimum steel profiles for the 

members of a steel structure can be determined such that the steel structure can be 

constructed by using adequate steel material but not more. Structural design optimization 

achieves these aims such that design constraints defined by steel design standards are 

satisfied under the applied loads and the weight or the cost of the steel structure under 

consideration is the minimum. When formulated, two types of structural optimization 

problems may be categorized. In some design problems the design variables might have 

continuous values. But in some others it is required that the values of design variables 

have to be chosen from a set of discrete values. The optimum design problem of steel 

structures falls into the second class. Designer has to select steel sections for the members 

of steel frames from a discrete set which contains certain designations of steel profiles 

that are produced by steel mills. Hence the formulation of the steel frame design 

optimization problem turns out to be a discrete programming problem [46]. Obtaining 

solutions to discrete programming problems is more difficult than finding solutions to 

programming problems with continuous variables [47]. This may be one of the reasons 

why early mathematical programming techniques developed have dealt with continuous 

variables [48-50]. Later some of these algorithms have been extended to address discrete 
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optimization problems as well. The algorithms that are based on mathematical 

programming techniques are deterministic. They need an initial design point to initiate a 

search for the optimum solution and require gradient computations in the exploration 

process. Some of the recent metaheuristic techniques are summarized in the following. 

 

 

2.3.1.1. Genetic Algorithms (GAs) 

 

Genetic algorithm (GA) is one of the recent metaheuristic search algorithm inspired by 

evolutionary biology such as inheritance, mutation, selection, and crossover. GAs is a 

particular class of evolutionary algorithms that categorized as global search heuristics. 

The basic techniques of the GAs are designed to simulate processes in natural systems 

necessary for evolution, especially those following the first laid down by Charles Darwin 

of survival of the fittest [51, 52]. GAs is composed of three essential phases [53]. These 

are, (i) coding and decoding variables into strings, (ii) evaluating the fitness of each 

solution string, and (iii) applying genetic operators to generate the next generation of 

solution strings.  

 

GAs are used to determine the optimum solution of large amount of optimization 

problems, such as optimal control problems, job scheduling, transportation problems, 

economic models, structural engineering, etc. This technique is implemented to handle 

optimization problems including both discrete and continuous variables. GA has been 

quite successful in finding the optimum solutions of both constrained and unconstrained 

optimization problems [54]. Therefore this technique is one of famous optimization 

method applied for structural engineering problems. 

 

 

2.3.1.2. Evolutionary Strategies (ES) 

 

The evolution strategies (ES) were developed by Rechenberg [55] and Schwefel [56] in 

1964. These algorithms were originally developed for continuous optimization problems. 

This optimization technique is based upon phenomena of adaptation and evolution has 

very complex mutation and replacement functions. Initial populations consisting of μ 

parent individuals are randomly generated in evolution strategies algorithm. After 

generating process, a new population is produced by mutation, recombination, and 

selection operators. 

 

Rajasekaran et al. [57] has used evolutionary strategies technique to determine the 

optimum solution of large size steel frames. It is reported in this study that ES presents 

good performance in the optimum design of large size structures. Ebenaua et al. [58] and 

Hasançebi et al. [59] also used ES in the optimum design of large scale structures. It is 

reported in these studies that ES performed effectively to obtain the optimum solutions of 

large scale structures. It is concluded that ES is one of the robust and efficient 

optimization methods that can be employed for finding the optimum solutions of 

structural optimization problems. 

http://en.wikipedia.org/wiki/Categorize
http://en.wikipedia.org/wiki/Optimization_(mathematics)
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2.3.1.3. Evolutionary Programming (EP) 

 

Evolutionary programming (EP) is one of the stochastic search techniques introduced by 

Fogel [60]. This method is alike to ES. EP has three basic steps that are listed as follows 

[61, 62]; (i) Initial design is generated randomly, (ii) each design variable in the design is 

reproduced into new designs as off springs. Each of this off-spring is mutated according 

to a distribution of mutation types, ranging from minor to extreme with a continuum of 

mutation types between. The acuteness of mutation is judged on the basis of the 

functional change forced upon parents, (iii) each off-spring solution is assessed by 

computing its values. Typically a stochastic tournament is held to determine those to be 

retained in the next population. There is no requirement that the population size be held 

constant or that only a single off spring be generated from each parent [63]. 

 

 

2.3.1.4. Simulating Annealing (SA) 

 

Simulated annealing (SA) [64] employs a simulative model of the annealing process of 

physical systems, establishing a direct analogy to the elementary principles of 

thermodynamics and statistical mechanics. It simulates the cooling process of a physical 

system, taking advantage of the fact that if this cooling procedure is performed slowly 

enough, the system will end up in the optimum state (e.g., a flawless crystal). Name of 

this method comes from annealing strategy in metallurgy. This technique involves 

heating and controlled cooling of a material in order to expand the size of its crystals and 

decrease their defects. The heat causes the atoms to leave from their initial positions (a 

local minimum of the internal energy) and move randomly through states of higher 

energy; the slow cooling gives the atoms enough time to find positions that minimize a 

steady state is reached. Simulating Annealing algorithm starts with initial design which is 

randomly created. Then initial value of the temperature is set. Candidate designs are 

generated in the close neighbor of the current design. Candidate designs are evaluated and 

temperature is decreased. This process is repeated when the system is frozen in the 

optimum state at a low temperature. 

 

There are many applications of SA in structural optimization problems. In 1991 and 1992, 

Balling [65, 66] used SA for the discrete optimum design of three dimensional steel 

frames. Topping [67], Hasançebi and Erbatur [68, 69] applied simulated annealing 

method for optimum design truss systems. It can be concluded that this method is 

efficient tool for structural optimization problems.  

 

 

2.3.1.5. Particle Swarm Optimizer (PSO) 

 

Particle swarm optimizer is based on the social behavior of animals such as fish 

schooling, insect swarming and birds flocking. The method considers an artificial swarm 

which consists of particles (agents). The behavior of each agent in the swarm is simulated 

http://en.wikipedia.org/wiki/Annealing_%28metallurgy%29
http://en.wikipedia.org/wiki/Metallurgy
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Crystallographic_defect
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Internal_energy
http://www.tureng.com/search/neighbour


 

 

14 

 

according to three rules. This method is originated in 1995 by James Kennedy and 

Russell C. Eberhant [70] inspiring social behavior of bird flocking or fish schooling. 

 

The particle swarm optimizer selects a number of particles to represent a swarm. Each 

particle in the swarm is a potential solution to the optimization problem under 

consideration. A particle explores the search domain by moving around. This move is 

decided by making use of its own experience and the collective experience of the swarm. 

Best candidate solution is defined as the local best or the best particle. Each individual 

stores value of its best candidate solution and where its best success is stored. This 

information can be also seen from its neighbors. These in formations guide the 

movements in the design space, with the population usually converging, by the end of a 

trial, on a problem solution better than that of non-swarm approach using the same 

methods. 

 

In the past fifteen years, there are many studies have been done with PSO method. Fourie 

and Groenwold [71] used particle swarm optimization method for optimum design of 

structures with sizing and shape variables. Perez and Behdinan [72] presented a study 

about optimum design algorithm for pin jointed steel frames by using particle swarm 

optimization method. It is reported from studies that PSO shows good performance in 

structural optimization method. 

 

 

2.3.1.6. Tabu Search (TS) 

 

Tabu search (TS) implements a simple yet an efficient iterative based local search 

strategy for solving combinatorial optimization problems. At each step a number of 

candidate solutions are sampled in the close vicinity of the current design by perturbing a 

single design variable called a move. The best candidate is chosen and replaced with the 

current design even if it offers a non-improving solution, and the move leading to this 

candidate is recognized as a successful move. To protect the search against cycling within 

the same subset of solutions, information regarding most recently visited solutions is 

collected in a list referred to as tabu list. It is actually a set of restricted moves the search 

is prohibited to be transmitted to. This method was first developed by Glover [73] in 

1989. TS uses a neighbor search procedure. New solution is obtained by moving 

iteratively from a solution in the neighborhood [74]. 

 

Degertekin et al. conducted some studies about optimum design of steel frames using TS 

[75-79]. Hasançebi et al. [59] have applied TS method in optimum design of real-sized 

pin-jointed structures. Similar to aforementioned stochastic search methods TS is very 

popular among designers for structural optimization problems.  
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2.3.1.7. Ant Colony Optimization (ACO)  

 

Ant colony optimization (ACO) [80] simulates the foraging behavior of social ants. ACO 

uses pheromone as a chemical messenger and the pheromone concentration as the 

indicator of quality solutions to a problem of interest. Since the solution is often linked 

with the pheromone concentration, the search algorithms often produce routes and paths 

signed by the higher pheromone concentrations, and therefore, ants-based algorithms are 

particular suitable for discrete optimization problems. 

 

The movement of an ant is controlled by pheromone which vaporizes over time. Without 

such time-dependent evaporation, the algorithms cause premature convergence to the 

(often infeasible) solutions. With proper pheromone evaporation, they usually act very 

well. 

 

There are two fundamental issues here: the probability of choosing a path, and the 

vaporization rate of pheromone. There are few ways of solving these problems, although it 

has popularity as a field of active research. Camp and Bichon [81] first developed a design 

algorithm with ACO to size steel space trusses for minimum weight subject to stress and 

deflection limitations. Later, they extended this work to optimize rigid steel frames in 

Camp et al. [82]. Kaveh and Shojaee [83] also presented an ACO integrated solution 

algorithm for discrete optimum design problem of steel frames with design constraints 

consisting of combined bending and compression, combined bending and tension and 

deflection limitations. In some studies in the literature, attempts were made to accelerate 

the performance of ACO by hybridizing it with another meta-heuristic technique, namely 

particle swarm method [84-86].  In Aydogdu and Saka [87], ACO is employed to seek 

optimum design of three dimensional (3D) irregular steel frames, taking into account 

warping deformations of thin-walled sections.  

 

 

2.3.1.8. Firefly Algorithm (FFA) 

 

The Firefly Algorithm (FFA) is a very recent heuristic optimization algorithm developed 

by Yang [88] and is inspired by the flashing behavior of fireflies. According to Yang 

[88], FFA algorithm has three basic rules; (i) All fireflies are unisex, so that one firefly is 

attracted to other fireflies regardless of their sex, (ii) Attractiveness is proportional to 

brightness, so for any two flashing fireflies, the less bright firefly will move towards the 

brighter firefly. Both attractiveness and brightness decrease as the distance between 

fireflies increases. If there is no firefly brighter than a particular firefly, that firefly will 

move randomly, (iii) The brightness of a firefly is affected or determined by the 

landscape of the objective function. There are two essential components of FFA; the 

variation of light intensity and the formulation of attractiveness. The latter is assumed to 

be determined by the brightness of the firefly, which in turn is related to the objective 

function of the problem under study. As light intensity and attractiveness decrease and the 

distance from the source increases, the variation of light intensity and attractiveness 

should be a monotonically decreasing function.  
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Engineering design application of firefly algorithm is given in [89, 90]. Firefly Algorithm 

[FA] is used to determine optimum solution of six engineering design problem that are 

taken from the literature and its performance is compared with other metaheuristic 

algorithms such as particle swarm optimizer, differential evolution, genetic algorithm, 

simulated annealing, harmony search method and others [89]. It is stated that the results 

attained from the optimum solutions of these design examples, firefly algorithm is more 

efficient than particle swarm optimizer, genetic algorithm, simulated annealing and 

harmony search method. In [90], the permutation flow shop is formulated as a mixed 

integer programming problem which is classified as hard to solve nonlinear programming 

problem.  

 

 

2.3.1.9. Cuckoo Search (CS) 

 

Cuckoo search (CS) algorithm is firstly introduced by Yang and Deb [91]. This technique 

mimics the reproduction mechanism of some kind of cuckoo birds. A cuckoo bird 

deposits its eggs in another bird’s nest in order that the eggs are hatched and fledglings 

are fed by the other birds. This type of cuckoo birds, sometimes, chucks out the host 

birds’ eggs from nest to create more hatching chance to their own eggs. Some female 

cuckoos has very special characteristic to simulate the color and pattern of the eggs of a 

host birds so that its eggs are not recognized to be alien eggs and safely hatched by the 

host bird. If a host bird perceives conflict with the intruding different eggs in its nest, the 

cuckoos’ eggs can be removed away or host bird can rebuilt its nest on a different place. 

In cuckoo search (CS) algorithm cuckoo egg represents a potential solution to the design 

problem which has a fitness value. The algorithm uses three idealized rules as given in 

[91]. These are: a) each cuckoo lays one egg at a time and dumps it in a randomly 

selected nest. b) the best nest with high quality eggs will be carried over to the next 

generation. c) the number of available host nests is fixed and a host bird can discover an 

alien egg with a probability of Pa€[0,1]. The performance of cuckoo search algorithm is 

compared with particle swarm optimizer, differential evolution and artificial bee colony 

algorithms in [92]. Fifty different benchmark problems are taken from literature and 

solved using the above mentioned metaheuristic algorithms. Optimum design of tall steel 

frames based on cuckoo search algorithm is carried out in [93]. The design problem is 

formulated according to Load and Resistance Factor Design code of American Institute of 

Steel Construction. The optimum designs obtained by cuckoo search algorithm are 

compared with those attained by other algorithms on benchmark frames. Cuckoo search 

algorithm is extended to deal with multi-objective optimization problems under complex 

nonlinear constraints in [94]. 

 

 

2.3.1.10. Bee-Inspired Algorithms  

 

Bee-inspired algorithms are various and some use pheromone and most do not [95-98]. 

Almost all bee-inspired algorithms imitate the foraging behavior of honey bees in nature. 

Interesting features such as waggle dance, polarization and nectar maximization are often 
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used to mimic the allocation of the foraging bee along flower patches and thus different 

search regions in the search space. In order to comprehend this process, one should 

understand well the life of the Parpinelli and Honey bees in a colony and the foraging and 

storing the honey in their constructed colony. Honeybees make contact by pheromone and 

‘waggle dance’. As an example, an alarming bee may release a chemical message 

(pheromone) to warn attack response in other bees. Moreover, when some bees find a 

good food source and bring some nectar back to the hive, they will communicate the 

location of the food source by performing the so-called ‘waggle dances’ as a signal 

system. Such signaling dances vary from species to species; on the other hand, they try to 

conscript more bees by using directional dancing with varying strength so as to contact 

with the direction and distance of the found food resource. For multiple food sources such 

as flower patches, studies present that a bee colony is capable of allocating forager bees 

among different flower patches so as to maximize their total nectar intake. 

 

In the honeybee-based algorithm, forager bees are allocated to different food sources 

(or flower patches) so as to maximize the total nectar intake. The colony has to 

‘optimize’ the overall efficiency of nectar collection; the allocation of the bees is thus 

depending on many factors such as the nectar richness and the proximity to the hive. 

 

The most popular bee-inspired algorithm is known as “Artificial Bee Colony (ABC)” 

which is widely applied to every branch of engineering design optimization problems.  

 

 

2.3.1.10.1 Artificial Bee Colony (ABC) Algorithm 

 

The artificial bee colony (ABC) algorithm is originated by Karaboga and Basturk [99-

102]. This algorithm is based on characteristic behavior of honey bee swarms. ABC 

algorithm uses only common control parameters such as colony size and maximum cycle 

number as in Particle Swarm Optimizer and Ant Colony Optimization methods. ABC as 

an optimization tool provides a population-based search procedure in which individuals 

called foods positions are modified by the artificial bees with time and the bee’s aim is to 

discover the places of food sources with high nectar amount and finally the one with the 

highest nectar. In ABC system, artificial bees fly around in a multidimensional search 

space and some (employed and onlooker bees) choose food sources depending on the 

experience of themselves and their nest mates, and adjust their positions. Some (scouts) 

fly and choose the food sources randomly without using experience. If the nectar amount 

of a new source is higher than that of the previous one in their memory, they memorize 

the new position and forget the previous one. Thus, ABC system combines local search 

methods, carried out by employed and onlooker bees, with global search methods, 

managed by onlookers and scouts, attempting to balance exploration and exploitation 

process. 

 

In this study, optimum design of low-rise steel frames made of cold-formed steel sections 

is determined by using artificial bee colony algorithm. The main steps of this technique 

are discussed in detail in Chapter 6. 
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CHAPTER 3 

 

 

TORSIONAL ANALYSIS OF THIN-WALLED SECTIONS 

 

 

 

3.1. General Definition of Torsion 

 

Torsion can be expressed as twisting of a structural member, when it is loaded by couples 

that produce rotation about its longitudinal axis [103] as shown in Figure 3.1. 

 

       T1    =    P1d1  ; T2    =    P2d2          (3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Definition of Torsion. 

 

 

where the couples  T1 and T2  are called torques, twisting couples or twisting moments 

(Figure 3.2.). The unit of T is N-m and/or lb-ft. 

 

 

 

 

 

 

 

a ) Torques Occured; T1 and T2.                    b)  A circular member subjected to torsion. 

 

 

Figure 3.2. Torsion in a circular member. 
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Analysis of more complicated steel section shapes required more advanced method than a 

simple solution process. This chapter first introduces the matrix displacement method for 

3D frames, and then summarizes the theory of thin-walled members including warping 

effect and cross-sectional properties of thin-walled sections and finally extends the matrix 

displacement method for thin-walled members so that effect of warping can be taken into 

consideration in the analysis of steel frames having such members.  

 

 

3.2. Matrix Displacement Method for 3D Steel Structures 

 

A 3D steel frame is shown in Figure 3.3. The coordinates of joints in this frame are 

defined according to the XYZ Cartesian system which is called global axis system. Each 

joint of this frame has six degrees of freedom as shown in the figure.  These are the usual 

three translations 1 2 3( , , )d d d  along   X, Y, and Z axes and three rotations 4 5 6( , , )d d d

about these axes as shown Figure 3.3. Therefore, the displacement vector of any joint i  in 

the frame is 1 2 3 4 5 6iD d d d d d d  in the global axis. The corresponding loading vector 

applied on joint i  has the form of  1 2 3 4 5 6iP p p p p p p , where, 1 2 3( , , )p p p  are the 

force components along   X, Y, and Z axis respectively and 4 5 6( , , )p p p  are moment 

components along   X, Y, and Z axis, respectively. 

 

 

 

 

 

 
Figure 3.3. 3-D frame. 
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Figure 3.4. Joint end displacements, end forces and end moments of a space frame 

member. 

 

 

When a space structure is subjected to external forces its joints moves in the three 

dimensional space and internal forces occur at the ends of its members. Joint 

displacements and end forces are defined in local axis as shown in Figure 3.4. In this 

figure, first end forces and moments of the member k , are represented as vector

1 2 3 4 5 6kF f f f f f f where; 1 2 3( , , )f f f are the axial force, shear forces y and z axis 

respectively and 4 5 6( , , )f f f are end moments of the first end of the member k. The 

member end displacement vector in the first end of member k is described as 

1 2 3 4 5 6iU u u u u u u in the local coordinate system. Consequently, six end joint 

displacements and six end forces develop at each end of the member.  

 

 

3.2.1 Relationship Between Member End Forces and Member End Displacements 

 

The relationship between member end forces and member end deformations is described 

as follows. 

F k U
i i i          (3.2) 

 

where, [ki] is the stiffness matrix of member i , in the local coordinate system. Member 

stiffness matrix has twelve rows and twelve columns for 3D space frames systems. Each 

row of this matrix can be obtained by assigning unit value to the each degree of freedom, 

while restraining the remaining degree of freedoms, respectively. When unit value is 

assigned to the degree of freedom, i, twelve end forces and end moments are obtained 

which constitutes the i
th

 column of the stiffness matrix. By assigning unit value to all the 

degree of freedoms as shown in Figure 3.5., the member stiffness matrix shown in 

Equation (3.3) is obtained. 

http://www.tureng.com/search/as+a+consequence
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(b) 

 

 
 

(c)  

 
 

 

 
 

(d) 
 

 

 
 

(e) 
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Figure 3.5. Member forces and moments for each degree of freedom; (a) u1=1 and u7=1, 

(b) u2=1 and u8=1, (c) ) u3=1 and u9=1, (d) u4=1 and u10=1, (e) u5=1 and u11=1, (f) u6=1 

and u12=1. 

 

 

 

 

 

 

 

 

 

 

 

                  (3.3) 

 

 

 

 

 

 

 

 

 

 

 
3.2.2 Coordinate Transformation 

 

The joint displacements in the local axis and the joint displacements in the global axis are 

related to each other given below. This relation is obtained by carrying out coordinate 

transformations between the local and global axis. 

 

                              U B D
i i i          (3.4) 
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where, Bi is coordinate transformation matrix obtained from multiplication of the 

[ ],[ ],[ ]x y zB B B  matrices. [ ],[ ],[ ]x y zB B B  matrices are called the transformation matrices 

corresponding to the rotation about  x, y, z local axis, respectively. These matrices are 

obtained as described in the following. 

 

 

3.2.2.1. Rotation of γ about x axis 

 

Consider that x axis is rotated amount of γ. In this case the new coordinates of point A 

can be expressed in terms of the old ones as in the following. 

 

 

sincos

sincos

YZBDADABz

ZYBCOCOBy

Xx

              (3.5) 

 

 

by writing Equations (3.5) in matrix form: 

 

 

1 0 0

0 cos sin

0 sin cos

x X

y Y

z Z

                             (3.6) 

 

 

Hence, transformation matrix corresponding to the rotation γ about x axis is obtained as; 

 

 

1 0 0

0 cos sin

0 sin cos
x

B          (3.7) 
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Figure 3.6. Rotation of γ about x axis. 

 

 

 

3.2.2.2. Rotation of α about y axis 

 

For this case y axis is rotated by the amount of  the coordinates of point A in both x, z 

and X, Z axis are related to each other as follows:     

 

In AED sinZSinADEDBC ,   

In ODC CosXCosODOC .  

 

It follows that: 

SinYCosZBDADABz

Yy

SinZCosYBCOCOBx
       (3.8) 

 

 

by writing Equations (3.8) in matrix form; 

 

 
cos 0 sin

0 1 0  

sin 0 cos

x X

y Y

z Z

        (3.9) 

 



 

 

26 

 

Hence, transformation matrix corresponding to the rotation α about y axis is obtained as; 

 

 

                                            
cos 0 sin

0 1 0

sin 0 cos
y

B       (3.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Rotation of α about y axis. 

 

 

 

3.2.2.3. Rotation of β about z axis 

 

In this case the coordinates of point A can be expressed in terms of the old ones as in the 

following. 

 

In AED SinYSinAEEDED , CosYAD    

InODE CosXCosOEOC , CosXOECEBD cos  

 

It follows that: 

Zz

YXBDADABy

YXEDOCOBx

sincos

sincos

                   (3.11) 
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by writing write equations (3.11) in matrix form; 

 

 

     

Z

Y

X

z

y

x

100

0cossin

0sincos
                    (3.12) 

 

 

Hence, transformation matrix corresponding to the rotation β about z axis is obtained as; 

 

 

cos sin 0

sin cos 0

0 0 1
z

B                   (3.13) 

 

 

The overall transformation matrix which corresponds to the case where the x axis rotates 

amount of γ, y axis amount of α and z axis amount of β is obtained by multiplying the 

above three transformation matrices [ ], [ ], [ ]x y zB B B  as shown in Equation (3.14). 

 

 

1 0 0 cos 0 sin cos sin 0

0 cos sin . 0 1 0 . sin cos 0

0 sin cos sin 0 cos 0 0 1

B      (3.14) 

 

 

 

 

   B

sinsinsincoscossincossinsincoscossin

cossinsinsincoscoscoscossincossinsin

sincossincoscos
  (3.15) 
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Figure 3.8. Rotation of β about z axis. 

 

  

 

 

 

Figure 3.9. Coordinate transformation from local axis to global axis. 

 

 

It is apparent from Equations (3.14) and (3.15) that terms of the coordinate transformation 

matrix depend on angles α, β, and γ. γ angle is not related to the joint coordinates of a 

space frame member. Therefore, value of γ angle is entered manually in the program. 
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Whereas, α and β angles are related to joint coordinates of space frame member. It is 

possible to re-write the coordinate transformation matrix in terms of length of space 

frame members by using relationships between α and β angles and joint coordinates as 

shown in the following. 

 

The length of a space frame member as shown Figure 3.10 is calculated as follows. 

 

 

2 2 2
AB l x y z        (3.16) 

 

 

2 2
1 1 1

A B l x z         (3.17) 

 

 

When the terms cos α, cos β, sin α, sin β are written in terms of the length of element. 

 

 

( )

1

x
Cos Cos

l , ( ) sin

1

z
Sin

l                     (3.18) 

 

1
l

Cos
l

,
1

z
Sin

l         (3.19) 

 

 

where, Δx, Δy, and Δz are shown in Figure 3.10. When these terms are substituted in to the 

coordinate transformation matrix, following expression is obtained. 

 

 

 

cossin cos sin cos1*

1 1

cossin cos sin cos1

1 1

x y z

l l l

ll z x y l x z y
B

l l l l l

lx y l z l x z y

l l l l l
         (3.20) 
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Figure 3.10. Calculation of the length of an element in space. 

 

 

The coordinate transformation matrix described in Equation (3.20) represents 

transformations at one end of the space frame member. The complete displacement 

transformation matrix for the degrees of freedom of both ends of the frame member has 

twelve columns and twelve rows as shown in Equation (3.21). 

 

 

                      

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0 0 0 0
31 32 33

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0 0 0 0
31 32 33

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0 0 0 0
31 32 33

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

b b b

b b b

b b b

b b b

b b b

b b b
B

b b b

b b b

b b b

b b b

b b b

0 0 0 0 0 0 0 0 0
31 32 33

b b b

                  (3.21) 
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where, 
,i jb , i=1, 2, 3 and j=1, 2, 3 are the terms of the coordinate transformation matrix  

described as follows. 
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z
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x
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           (3.22) 

 

 

 
3.2.2.4. Space Frame Members Along the Y-Axis 

 

It is apparent from Equations (3.16) and (3.17) that for a frame member along Y-axis, 

Δx=Δy=0, Δz=l and l1=0. This causes division by zero in the expressions given in Equation 

(3.22) which turns them to undefined and indeterminate form as shown in Equation 

(3.23). In order eliminate this discrepancy displacement transformation matrix is required 

to be re-constructed. These special matrices are given in Equations (3.24) and (3.25). 

When x axis of space frame member is along to +Y axis, transformation matrix of 

Equation (3.24) is used. When x axis of space frame member is along to -Y axis, the 

transformation matrix of Equation (3.25) is used. Directions of these members are shown 

in Figures 3.11 and 3.12. [104]. 

 

 

       

0 1 0

0 0
0

0 0

0 0
0

0 0

B

                   (3.23) 

     

 

 



 

 

32 

 

 
 

 

Figure 3.11. Local coordinates of vertical member in +Y direction. 
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Figure 3.12. Local coordinates of vertical member in -Y direction. 
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B

n

  (3.25) 

 

 

 

3.2.3 Relationship between External Loads and Member End Forces 

 

The relationship between member end forces and member end deformations at joint i  is 

given as i i iF k u . This equation can be generalized as U B D for the 

whole frame when all the members are included in the above expression. In this equation, 

dimension of vectors F  and u  is 6*m where, m is total number of members in the 

space frame. Stiffness matrix k  in that equation is obtained by collecting the local 

stiffness matrices of frame members. This matrix has dimension of (6*m x 6*m). When 

this equation is expanded to include all the members in the frame, it follows that
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U B D . In this expression, the dimension of matrix B  is (6*m x 6*m) and the 

dimension of the displacement matrix D  is also (6*m x 1). 

 

When an elastic frame is subjected to external loads, frame joints are displaced and frame 

members are deflected. In this case, work done by the external loads acting on frame 

joints is equal to the strain energy stored in frame members on due to the law of 

conservation of energy. It follows that: 

 

1 1

2 2

T T
P D F U        (3.26) 

 

where; P  is the external load vector, D  is the joint displacements vector, F  is the 

vector of member end forces, and U  is the vector of member end displacement. 

Remembering from Equation (3.27) that U B D , it follows that  

 

1 1

2 2

T T T T
P D F B D P F B      (3.27) 

 

Transpose of Equation (3.28) yields;  

 
T

P B F         (3.28) 

 

This equation represents the relationship between the external load vector and member 

end forces. 
T

B  in this equation is the transpose of the displacement transformation 

matrix B .  

 

 

3.2.4 Overall Stiffness Matrix 

 

The external load vector P can be related to joint displacement vector D using the 

relationships U B D  and i i iF k u . When these expressions are 

substituted in Equation (3.29);  

 
T

P B k B D K D       (3.29) 

 

is obtained. Here, K  is called overall stiffness matrix of the structure in global 

coordinate system. This matrix is constructed by carrying out triple matrix multiplication 

shown in Equation (3.29). It is apparent that the overall stiffness matrix can be obtained 

by collecting the contributions of each member to this matrix.  
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1 1

Tm m

S i i i i

i i

K K B k B        (3.30) 

 

where, m is the number of members in space frame. Overall stiffness matrix of a structure 

is diagonally symmetric. Therefore, it is sufficient for structure to build the half of this 

matrix.  

 

 

3.2.5 Member End Conditions 

 

In some cases, beams of steel frames are connected to columns with hinge connections 

where bending moment transfer is not possible. In such a case, value of the bending 

moment is equal to zero at that joint. Therefore, end displacements and end forces should 

be recalculated by equating bending moment to the zero at the hinged joint. 

Consequently, member stiffness matrix for a member having a hinge connection at one 

end is not same as the one which is rigidly connected to columns. In general, there can be 

4 types of members in a steel frame. These members depending on the end conditions are 

tabulated in Table 3.1 and described in the following. 

 

 

Table 3.1. Hinge condition types. 

 

 

Type Member End Types 

Type 1 Both ends are moment resisting 

Type 2 First end is hinged 

Type 3 Far end is hinged 

Type 4 Both ends are hinged 

 

 

 

3.2.5.1. Type 1: Frame member both ends are moment resisting 

 

Stiffness and transformation matrices for that condition were given in Equations (3.3) and 

(3.21).  
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3.2.5.2. Type 2: Frame member having a hinge connection at its first end 

  

 
 

Figure 3.13. 3-D frame member having a hinge connection at its first end. 

 
 

It is clear from Figure 3.13. that when first end of a frame member is hinged the bending 

moment about z axis becomes zero at that joint 0ziM .  This condition yields the 

following Equation (3.31). 

 

       
2 2

6 4 6 2 3 3
0

2 2 2

zjz z z z
i zi j zj zi i j

EI EI EI EI
v v v v

L L L L L L
        (3.31) 

 

In Equation (3.31), if  zi  equality is substituted in to stiffness equations following 

equations are obtained. 

 

EA EA
P u u
xi i jL L                                                                                        

  

12 6 12 63 3

3 2 3 22 2 2

EI EI EI EIzjz z z zP v v v v
yi i i j j zjL LL L L L

 

 

3 3 3

3 3 2

EI EI EI
z z zP v v

yi i j zj
L L L
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3 2 3 2

EI EI EI EI
y y y y

P
zi i yi j yj

L L L L
                                                           (3.32)     
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EA EA
P u u
xj i jL L   

12 6 12 63 3

3 2 3 22 2 2

EI EI EI EIzjz z z zP v v v v
yj i i j j zjL LL L L L

 

 

 

After simplification, the relationships between end forces and displacements are obtained 

as follows. 

 

3 3 3

3 3 2

EI EI EI
z z zP v v

yj i j zj
L L L

 

 

12 6 12 6

3 2 3 2

EI EI EI EI
y y y y

P
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GJ GJ
M

xj xi jiL L
                                                                                                     (3.33) 

 

6 2 6 4

2 2

EI EI EI EI
y y y y

M
yj i yi j yjL LL L

 

 

6 2 6 43 3

2 22 2 2

EI EI EI EIzjz z z zM v v v v
zj i i j j zjL L L LL L

 

 

3 3 3

2 2

EI EI EI
z z zM v v

zj i j zjLL L
 

 

 

When these are expressed in a matrix form, following stiffness matrix is obtained for a 

frame member having a hinge at its first end. 
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0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

3 2 3 2

12 6 12 6
0 0 0 0 0 0 0 0

3 2 3 2

0 0 0 0 0 0 0 0 0 0

6 4 6 2
0 0 0 0 0 0 0 0

2 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

3 2 3

EA EA

L L

EI EI EI EI
z z z z
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EI EI EI EI
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EI EI EI EI
y y y y

L L L L
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EI EI EI
z z z

L L L 2

12 6 12 6
0 0 0 0 0 0 0 0

3 2 3 2

0 0 0 0 0 0 0 0 0 0

6 2 6 4
0 0 0 0 0 0 0 0

2 2

3 3 3
0 0 0 0 0 0 0 0 0

2 2

EI
z

L

EI EI EI EI
y y y y

L L L L

GJ GJ

L L

EI EI EI EI
y y y y

L L L L

EI EI EI
z z z

LL L

 (3.34) 

 

 

Displacement transformation matrix of a frame member having a hinge at its first end is 

given in the Equation (3.35). Only difference between this matrix and displacement 

transformation matrix for Type 1 given in Equation (3.21) is that all terms in line parallel 

to zi  be equal to zero. Since zi  term, representing rotation on hinged joint is eliminated 

from stiffness equations. Transformation matrix for that case becomes in the following.  

 

 

 

                         

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0 0 0 0
31 32 33

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0 0 0 0
31 32 33

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0
21 22 23

0 0 0 0 0 0

b b b

b b b

b b b

b b b

b b b

B
b b b

b b b

b b b

b b b

b b b

0 0 0
31 32 33

b b b

                 (3.35) 

 

 

 

where, 
,i jb , 1,2,3i , 1,2,3j  terms are given in Equation (3.22). Transformation 

matrix of vertical member in +Y direction is given in the following. 
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0 1 0 0 0 0 0 0 0 0 0 0

sin 0 cos 0 0 0 0 0 0 0 0 0

cos 0 sin 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 sin 0 cos 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 sin 0 cos 0 0 0

0 0 0 0 0 0 cos 0 sin 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 sin 0 cos

0 0 0 0 0 0 0 0 0 cos 0 sin

B

    (3.36) 

 

 

Similarly, transformation matrix of vertical member in -Y direction is given in the 

following. 

 

   

0 1 0 0 0 0 0 0 0 0 0 0

sin 0 cos 0 0 0 0 0 0 0 0 0

cos 0 sin 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 sin 0 cos 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 sin 0 cos 0 0 0

0 0 0 0 0 0 cos 0 sin 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 sin 0 cos

0 0 0 0 0 0 0 0 0 cos 0 sin

B

     (3.37) 

 

 

3.2.5.3. Type 3: Frame member having a hinge connection at its second end 

 

When second end of a frame member is hinged, as shown in Figure 3.14., bending 

moment about z axis will be zero at that joint 0zjM .  From this equation rotation 

about z axis of that end of frame member zj  is obtained as follows. 

 

 

2 2

6 2 6 4 3 3
0

2 2 2

ziz z z z
i zi j zj zj i j

EI EI EI EI
v v v v

L L L L L L
     (3.38) 
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Figure 3.14. 3-D frame member having a hinge connection at its second end. 

 

 

Substituting 
zj

in Equation (3.1), following equations are obtained 

 

EA EA
P u u
xi i jL L   

 

12 6 12 6 3 3

3 2 3 2 2 2 2

EI EI EI EI zjz z z zP v v v v
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3 3 3

3 2 3

EI EI EI
z z zP v v

yi i zi j
L L L

 

 

12 6 12 6

3 2 3 2

EI EI EI EI
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P
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After simplification, the relationships between end forces and displacements are obtained. 

 

EA EA
P u u
xj i jL L   

 

12 6 12 6 3 3

3 2 3 2 2 2 2

EI EI EI EI zjz z z zP v v v v
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3 3 3
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yj i zj j
L L L

           (3.40) 
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xj xi jiL L  

 

6 2 6 4

2 2

EI EI EI EI
y y y y

M
yj i yi j yjL LL L

 

 

 

When they are written in matrix form, following equation system is obtained 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                 

(3.41) 

 

 

Displacement transformation matrix for a frame member having a hinge connection at its 

second end is given in Equation (3.41). Difference between this matrix and 

transformation matrix given in Equation (3.21) is that all terms, corresponding to zj , 
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term is equal to zero. Because, 
zj

 is eliminated from the equation system given in 

Equations (3.40).  

 

Therefore, displacement transformation matrix changes to the following form.  

 

 

 

                              

(3.42) 

 

 

For a frame member along the +Y axis displacement transformation matrix has the 

following form. 

 

 

000000000000

cos0sin000000000

010000000000

000sin0cos000000

000cos0sin000000

000010000000

000000sin0cos000

000000cos0sin000

000000010000

000000000sin0cos

000000000cos0sin

000000000010

B

 

   

(3.43) 

 

 

If the frame member is along the -Y axis displacement transformation becomes.  
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cos0sin000000000

010000000000

000sin0cos000000

000cos0sin000000

000010000000

000000sin0cos000

000000cos0sin000

000000010000

000000000sin0cos

000000000cos0sin

000000000010

B

   (3.44) 

 

 

 
3.2.5.4. Type 4: Frame member having a hinge connections at both ends  

 

 

 

Figure 3.15. 3-D frame member having a hinge connections at both ends. 

 

When both ends of a frame member are hinged, member becomes an axial member. It 

only transfers axial forces. In this case, , , , , , , , , ,i j i j xi xj yi yj zi zjv v w w M M M M M M  terms 

become equal to zero. Thus, relationships between end forces and joint displacements are 

reduced to those given in the following Equation (3.45). 

 

 

   ,   xi i j xj i j

EA EA EA EA
P u u P u u

L L L L
      (3.45) 

 

 

when these equations are written in matrix form, the following stiffness matrix is 

obtained. 
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

EA EA

L L

k
EA EA

L L     (3.46) 

         

 

The displacement transformation matrix for this case is given in Equation (3.43). In this 

displacement transformation matrix all terms corresponding to

, , , , , , , , ,i j i j xi xj yi yj zi zjv v w w  are equal to zero. Consequently the displacement 

transformation takes the following form.  

 

 

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
11 12 13

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

b b b

B
b b b

     (3.47) 

 

 

When the member along the +Y axis displacement transformation matrix becomes. 
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0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

B

      (3.48) 

 

For a frame member along –Y axis displacement transformation matrix has following 

form. 

 

                                

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

B

         (3.49) 

 

 

 

3.3 Theory of Thin-Walled Open Members Including Warping Effect 

 

Cold-formed thin-walled open steel sections are generally subjected to in-plane and out-

of-plane loads. Due to this general loading condition, high levels of torsional moments 

develop in thin-walled members in addition to other internal actions. These may arise 

from eccentrically applied loads with respect to their shear centre or in some cases due to 

bending of members in the transverse direction. In most of cases, the lateral 

displacements of these beams are completely restrained while the rotations are elastically 

restrained at the loading points by slabs or other structural elements. The simple beam 

theory becomes inadequate to predict the behavior of such thin-walled beams [105]. This 

is due to the fact that the larger axial warping deformations take place in the cross-section 

because of torsional moments, as a result of which the plane section no longer remains 
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plane. It becomes necessary in this case to consider the stresses developed in the section 

due to flexural twist in addition to stresses due to other internal actions. Computation of 

these stresses requires more complex theory than the simple beam theory. The most 

rigorous theory in this regard is due to Vlasov [106, 107]. Vlasov’s theory is based on the 

assumption that the outline of a section of a thin-walled beam remains unchanged under 

an action of external loading. In Figure 3.16., the meaning of this assumption is 

illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Clarification of Vlasov’s Theory. 

 

 

The simplicity of this approach is that it includes additional terms similar to simple 

bending expressions to accommodate the effect of warping restraint. This additional term 

contains bi-moment acting on section, sectorial co-ordinate and warping constant of the 

section. Hence, use of Vlasov’s theorems makes it necessary to compute the sectorial 

properties of the cross-section in addition to section properties [107, 108]. 

 

 

3.3.1. Twisting Moment and Bimoment  

 

The theory of St. Venant is perfectly valid only for a beam of circular solid cross section. 

The application of the theory can be accepted only when additional stresses caused by the 

warping of a beam can be ignored. When bending on the beam element due to torsion acts 

round the minor axis of a component rectangle, its effect becomes very important. 

Distortion due to twisting moment applied at the unrestrained end of an I-beam is 

illustrated in Figure 3.17. 

 

The web and each flange are rotated by an angle  round their respective centers of 

gravity and each flange is deflected by an amount of Δ. The first distortion is caused by a 

St. Venant’s Twist where the second is caused by a bending twist. Because of the 

considerable rigidity of these flanges the twisting component producing deflection Δ may 

x 

y 
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be several times greater than the component producing a rotation angle . This twisting 

moment causing bending of rectangular components of beam round their respective minor 

axes of symmetry is called flexural twist (Tw).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. I-section beam distorted by twisting moment. 

 

 

 

A flexural twist does not include the twisting moment causing the warping of each 

component of the beam. This component is very small for a thin-walled beam so it can be 

neglected. In sum, twisting moment acting on a thin-walled beam is composed of flexural 

and pure twisting moments and may be written as:  

 

 

                                                    T = Tw + Tv                                                                  (3.50) 
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A flexural twist causes a pair or pairs of bending moments. Such a pair of bending 

moments is called Bimoment (Mw). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Physical interpretation of bimoment. 

 

 

A bending moment is defined as a pair of forces. Bimoment is a pair of equal but opposite 

bending moments acting in two parallel planes. The numerical value of a bimoment is 

given by the product of the distance of these parallel planes times the moment on one of 

them. 

 

 

3.3.2. Cross-Sectional Properties of a Thin-Walled Section  

 

Considering a thin-walled section as in Figure 3.19, sectorial coordinate of a section is 

defined as the center line of an outline of a cross section of a thin-walled beam. Sectorial 

coordinate is denoted as ωDOS
 
and called as, sectorial coordinate of S with respect to the 

pole D and origin O. 
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Figure 3.19. Sectorial co-ordinate on a thin-walled section. 

 

 

First subscript of ωDOS
 
denotes a point called a pole of the sectorial coordinates from 

which lines radiate to every point on the center line of the outline, where the second 

subscript denotes a point of intersection of initial radius of the sectorial coordinate with 

the centerline of the outline of the section and third subscript refers to a particular point S 

on the center line of an outline and its unit is area unit. The sectorial coordinate has a sign 

and if the angle ODS is measured from the radius DO in a counterclockwise direction, the 

sign of sectorial coordinate is negative and the sign is positive when the angle is 

measured in a clockwise direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Thin-walled structure and a rectangular coordinate system’s origin on its 

centroid. 
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A statical moment about xx axis 

A statical moment about yy axis 

A product moment of inertia about xy axis 

2A moment of inertia about xx axis 

A moment of inertia abou

S ydAx
A

S xdA
y

A

I xydA
xy
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I y dA
xx
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2t yy axis I x dAyy
A

DO

A

Sw wdA
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A

Swx ywdA

DO

A

Swy xwdA

In Figure 3.20., a thin-walled structure’s cross section with a rectangular cross section 

passing through its centroid is demonstrated. Linear coordinates of this section can be 

used to find the following properties of a section. 

 

 

 

 

 

 

 

            (3.51) 

 

    

  

                                                                                                 

                                                                                                                                          

           

For the analysis of internal stresses due to bi-moment and flexural twist some additional 

properties are needed. These additional properties can be found by the help of a sectorial 

coordinate and a linear coordinate.  

 

The sectorial statical moment of a section from a pole D and initial radius DO: 

 

                                        (3.52) 

 

 

The sectorial linear statical moment of a section about xx axis: 

 

                        (3.53) 

 

 

The sectorial linear statical moment of a section about yy axis: 

 

                                 (3.54) 

 

 

The sectorial moment of inertia of a section for a pole D on initial radius DO: 

 

                                 (3.55) 

 

 

The origin of the principal linear coordinates is called as center of gravity of a section and 

denoted as C.G. In the same way pole of the sectorial coordinates is called the shear 

center. A principal sectorial moment of inertia is found from Equation (3.55) using the 

principal sectorial coordinates. 
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Figure 3.21. The cross-section of a thin-walled beam. 

 

 

The method of finding a position of the principal pole (shear centre) resembles that of 

finding of the principal radius. An arbitrarily placed initial pole B and an initial radius are 

assumed as shown in Figure 3.21. Using the sectorial co-ordinates of the shear centre of 

this system the Cartesian co-ordinates of the shear centre A can be found from Equations 

(3.56) and (3.57).   

 

 

                                                                                                                                      (3.56) 

 

 

and 

 

                                              
2

xx BO xy BO

y y

xx yy xy

I Swy I Swx
a b

I I I
                                   (3.57) 

 

 

where;                                   xy

A

I xydA  

 

xa  and 
ya  are the linear co-ordinates of principal pole A, xb and 

yb  are the linear co-

ordinates of arbitrarily placed pole B, xxI and 
yyI are the moment of inertia of a given 

section about its respective principal axes xx and yy, BOSwx  and BOSwy  represent 

sectorial static moments of  a section calculated from pole B shown in Figure 3.21.              
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The above formulas are valid only if the given axis xx and yy do not coincide with the 

principal axes of a section (Ixy≠0), but they pass through the centre of gravity. In the case 

where the axes xx and yy are identical (Ixy=0) Equations (3.58) and (3.59) must be used.  

  

                                              BO
x x

xx

Swx
a b

I
                                                            (3.58) 

 

and 

                                             BO
y y

yy

Swy
a b

I
                                                              (3.59) 

 

 

3.3.3. Stresses Due to Bi-moment and Flexural Twist  

 

A thin-walled beam in Figure 3.16 is under the action of external forces. Based on the 

Vlasov’s [90] theory, thin-walled beam theory is valid as long as the cross section of the 

beam retains the same outline before and after the application of these forces. This 

assumption refers only to distortions of the outline in planes perpendicular to a 

longitudinal axis of beam, also strains in these planes are neglected.  

 

Beam’s longitudinal distortion, including warping can even be large and in the plane 

perpendicular to the longitudinal axis, rotations and translations are permitted for the 

cross section as long as the shape of its outline remains unchanged.  

 

Thin-walled beam theory is valid under the assumption of no excessive deformations. 

Compared to other dimensions thickness is very small, so normal stress can be taken 

uniform over thickness. The material of the thin-walled beam has a linear elastic behavior 

characterized by the longitudinal modulus of elasticity (E), the modulus of rigidity (G), 

and Poisson’s ratio (ν). Because of these assumptions in thin-walled beam theory there 

will be a few percents of error is introduced in analysis, which is acceptable from the 

analysis point of view. 

 

The stress in a longitudinal fiber of a thin-walled beam due to a bi-moment is equal to a 

product of this bi-moment multiplied by the principal sectorial coordinate of this fiber and 

divided by the principal sectorial moment of inertia of its cross section. Equation (3.60) 

expresses this statement where σB(s) is longitudinal stress of fiber caused by bi-moment 

Mω: 

 

                                                 
B

( )
s =M  

s

I
                                                         (3.60) 

 

Shear stress in a fiber of a thin-walled beam caused by a flexural twist is equal to the 

product of this flexural twist multiplied by the sectorial statical moment of this point and 

divided by the wall thickness at this point and the principal sectorial moment of inertia. 
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Equation (3.61) expresses this statement where τω(s) is the shear stress due to a flexural 

twist a fiber and ts is thickness of the wall at the section at point s, and s is a variable 

representing a coordinate measured along the center line of an outline of the section. 

 

                                        

( )
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s
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s s

s dA
S s
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t I t I

                                           (3.61) 

 

The stresses introduced by Equations (3.60) and (3.61) can added algebraically to other 

stresses caused by axial, shear forces and bending moments about the principal axes of a 

section. Stress equations for a thin-walled beam are given as: 

 

 

                                  
( ) ( ) ( )

s = +M +M +Mxx yy

xx yy

P y s x s s

A I I I
                           (3.62) 

 

                                  
( )( ) ( )( )

( )
yx

y x v

s xx s yy s s

S sS s S st s
s Q Q T T

t I t I I t I
                   (3.63) 

 

 
 

 

Figure 3.22. The sign convention of internal forces on a thin-walled beam. 

 

 

For the Equations (3.62) and (3.63) the moments of inertia are calculated with respect to 

the principal axes and so for the moments are also taken about principal axes. Shear 

forces Qx
 
and Qy

 
are also acting along their respective principal axes. 

  



 

 

54 

 

Equations (3.60) to (3.61) are valid only for the elastic range. When the beam is in the 

plastic or elasto-plastic range their value and distribution will change. Even in the plastic 

stage, stresses due to bi-moment and flexural twist will not disappear, only their 

magnitude and distribution will change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Thin-walled section subjected to torsion 

 

 

The solution of the problem shown in Figure 3.23 can be obtained by the differential 

equation formulating the relation between the angle of twist of a beam and the external 

load. In Equation (3.50) if the definitions of 
v

d
T GJ

dz
 and 

3

3

d
T EI

dz
 are used T can 

be expressed as; 

 

                                                       

3

3

d d
T GJ EI

dz dz
                                         (3.64) 

 

In case of distributed torque along the beam; 

 

                                                

2 4

2 4w

dT d d
t GJ EI

dz dz dz
                                     (3.65) 

 

Dividing both sides by wEI ;  

 

                  

4 2

4 2

d GJ d t

dz EI dz EI
                                              (3.66) 
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If 
2 GJ

k
EI

 is taken; 

                                                    

4 2
2

4 2

d d t
k

dz dz EI
                                           (3.67) 

 

where Ө is the angle of twist of a beam over distance z, t is the distributed torque per unit 

length at the point given by co-ordinate z, Iω is the principal sectorial moment of inertia of 

a section at point z. In the formulation of k, G denotes shear modulus, J denotes torsional 

moment of inertia (torsional constant), E denotes Young’s modulus. The definition of J 

and Iω can be given as 
3

1 3

n
i i

i

b t
J  and 2

w

A

I w dA . ib , it  and n are the length of a single 

element, the mean thickness of a single element, and the number of elements in a thin-

walled section, respectively. 

  

Solving the differential Equation (3.67), one can find in turn, values of the internal bi-

moment and flexural twist as represented in Equations (3.68) and (3.69). 

 

                                                     

2

2

d
M EI

dz
                                                    (3.68) 

 

                                                     

3

3

( )d M d
T EI

dz dz
                                     (3.69)  

 

Finally, the value of an internal St. Venant twist can be found from ; 

 

                                                    ( ) ( ) ( )vT z T z T z                                               (3.70) 

 

 

3.3.4. Torsional Stiffness Matrix 

 

The total torque acting on a member is a vector that is in the longitudinal direction of a 

member [88]. In Figure 3.24, for example xiM   and xjM  are applied The St. Venant 

torques, and xi  and xj  are the resulting displacement parameters. The St Venant torque 

is a vector that acts in the same direction as these end-torsional moments. However, 

warping torque wT  vector does not act in the same direction. For thin-walled members 

the warping torque can be represented in terms of the pair of bending moments, and these 

moments can be represented as a vector that acts in the direction of Y axis (Figure 3.25.). 

These moments (
wiM  and 

wjM  ) are called as bi moment. General definition of a bi 

moment is a pair equal but opposite bending moments acting in two parallel planes. The 

resulting displacement parameters of the warping torque ( wi  and wj )  can be 
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represented as vector which are the first derivative of  the resulting displacement 

parameters of the St Venant torque ( xi  and 
xj

). Relationship between the resulting 

displacement parameters   ( xi , xj
, wi  and 

wj
) and torsional moments ( xiM , 

xjM ,

wiM  and 
wjM  ) can be represented by using equilibrium equations which yields to the 

following form. 

 

wj

xj

wi

xi

wj

xj

wi

xi

M

M

M

M

TSTS

TSTS












2,21,2

2,11,1

       (3.71) 

 

where, 
ijTS   is the torsional stiffness matrix. Terms of this matrix are calculated in the 

following 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Beam element subjected to the torsion. 
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Figure 3.25. Twisting torque acting on beam element. 

 

 

If the torque is constant along the beam then t becomes zero in Equation (3.67).  

 

4 2
2

4 2
0

d d
k

dz dz
        (3.72) 

 

Solution of the differential equation given in (3.72) is obtained as, 

 

sinh coshA kz B kz Cz D                                     (3.73) 

 

where A, B, C and D are integration constants that are determined using the boundary 

conditions of the beam element.  

 

Let us consider a beam with the boundary conditions which is subjected to the torsional 

moment shown in the Figure 3.25.  The terms of the torsional stiffness matrix of this 

beam element are obtained by applying the following boundary conditions to Equation 

(3.67) as carried out in the following. 

 

First boundary condition ( 1 ; 0 ; 0 ; 0xi xj wi wj
); After applying these 

boundary conditions and solving the linear system of equations obtained, end moments 

are obtained as in the following: 

 

sinh( )

2cosh( ) cosh( ) 2

GJ l
M M GJ

xi xj EI l l l
w

                 (3.74) 

 

and  
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cosh( ) 1

2cosh( ) cosh( ) 2

l
M M GJ

wi wj l l l      (3.75) 

 

Second boundary conditions ( 0 ; 0 ; 1 ; 0xi xj wi wj
) yield to the 

following end moments are obtained: 

 

cosh( ) 1

2 cosh( ) cosh( ) 2

l
M M GJ

wi wj l l l       (3.76) 

 

sinh( ) cosh( )

2 cosh( ) cosh( ) 2

GJ l l l
M

wi l l l          (3.77) 

 

sinh( )

2cosh( ) cosh( ) 2

GJ l l
M

wj l l l
      (3.78) 

 

If Equations (3.74), (3.75), (3.76), (3.77), and (3.78) are written in matrix form, the 

torsional stiffness matrix of the beam element is obtained which takes into account the 

effect of cross sectional warping. 

 

wj

xj

wi

xi

wj

xj

wi

xi

M

M

M

M

TTTT

TTTT

TTTT

TTTT

3242

2121

4232

2121

      (3.79) 

where; 

sinh( )
1 2cosh( ) cosh( ) 2

l
T GJ

l l l        (3.80) 

cosh( ) 1
2 2cosh( ) cosh( ) 2

l
T GJ

l l l       (3.81) 

sinh( ) cosh( )
3 2cosh( ) cosh( ) 2

GJ l l l
T

l l l       (3.82) 

sinh( )
4 2cosh( ) cosh( ) 2

GJ l l
T

l l l       (3.83) 

 

 

These terms are added to the local stiffness matrix of the three dimensional beam element 

which has twelve rows and twelve columns as shown in Equation (3.3). This brings the 

total number of degrees of freedom to seven at a joint of space frame. These degrees of 

freedoms are the usual three translations along   X, Y, and Z axes, three rotations about 
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the global axes and additional warping deformation. Consequently, the member stiffness 

matrix in local coordinate system has fourteen rows and fourteen columns which are 

shown in Equation (3.84). Three dimensional steel structures are analyzed includes 

warping effect by using this stiffness matrix. At the end of the analysis, in addition to the 

member end forces and end moments, bi-moments are also obtained. 

 

 

 

 

 

 

 

 

 

                                                        

(3.84) 
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CHAPTER 4 

 

 

GEOMETRIC NONLINEARITY AND STABILITY FUNCTIONS 

 

 

 

4.1. Geometric Nonlinearity 

 

A variety of classifications may be used to describe the deformational response of 

structures; for example, small or large, elastic or inelastic, etc. In general, deformations of 

structures under the external loads are small, and hence the application of the equilibrium 

equations on the undeformed shape of the structure does not introduce large errors. 

However, when structure consists of slender members, the deformations become large 

and small deflection theory is no longer valid. The equilibrium equations are required to 

be written in such structures on the deformed shape of its elements. In other words, the 

deflected shape of the structure should be taken into account. When this is considered in 

the displacement computations, the relationship between the external loads and 

displacements become nonlinear. 

    

Geometric nonlinearity is required to be considered in the analysis of a structure, if its 

deflections are large compared with its initial dimensions. In structures with large 

displacements, although the material behaves linear elastic, the response of the structure 

becomes nonlinear [109]. Under certain types of loading, namely, even when small 

deformations are presumed, nonlinear behavior can be predicted. Changes in stiffness and 

loads occur as the structure deforms. When geometric nonlinearity occurs in a structure, 

the effect of axial forces to member stiffness must be taken into account. This is called 

second-order analysis of structures which is also known as P-Delta analysis. The Second-

order analysis when accounting for P-Delta combines two effects to reach a solution: 

 

• Large displacement theory - the resulting forces and moments take full account of the 

effects due to the deformed shape of both the structure and its members, 

 

• The effect of element axial loads on structure stiffness. Tensile loads straighten the 

geometry of an element thereby stiffening it. Compressive loads accentuate deformation 

thereby reducing the stiffness of the element. 

 

P-Delta is a non-linear effect that occurs in every structure where elements are subject to 

axial load. It is associated with the magnitude of the applied axial load (P) and a 

displacement (delta) as shown in Figure 4.1. 
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Figure 4.1. P-Delta effects. 

 

 

There are two P-Delta effects: 

 

• P-“BIG” delta (P-Δ) - a structure effect 

 

• P-“little” delta (P-δ) - a member effect 

 

The magnitude of the P-Delta effect is related to the magnitude of axial load P, 

stiffness/slenderness of the structure as a whole and the slenderness of individual 

elements. The axial forces in a member have a significant effect on its flexural bending 

that cause nonlinearity in the behavior of structures. This is called geometric nonlinearity. 

The developments occurred in the computational structures technology and the design 

methods have yielded ever more slender and more flexible structures which make it 

necessary to consider the geometric nonlinearity namely the P-Delta effects in their 

analysis if more accurate and realistic structural responses under the external loads are 

desired to be obtained. Noticing the fact that cold-formed steel sections are quite slender 

elements, the prediction of the structural response of frames made of such members also 

necessitates the consideration of the geometric nonlinearity in their analysis. 

 

Structural elements subjected to both axial forces and bending moments are called beam-

columns. Such members are exposed to the interaction of these effects. The lateral 

deflection of a member causes additional bending moment when an axial force is applied. 

This changes the flexural stiffness of the member. Similarly, the presence of bending 

moments also affects the axial stiffness of the member due to shortening of the member 

caused by the bending deformations. If the deformations are small, the interaction 

between bending and axial forces can be ignored. In such a case, the force-deformation 

relationship for a beam-column is the same as Equation (3.2). However, if the 

deformations are large, the stiffness matrix k is affected by the interaction between 

bending and axial forces, and it is not linear anymore [110]. The nonlinear stiffness 

matrix can be derived by using stability functions. 
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4.2. Stability Functions 

 

The stability functions are the modification factors from 1s  to 9s . These functions can be 

defined with respect to member length, cross-sectional properties, axial force, and the end 

moments. The effect of axial force on torsional stiffness and the effect of torsional 

moment on axial stiffness are neglected [110].    

 

where; 

 

1s  :  stability function for the effect of flexure on axial stiffness, 

 

2s  : stability function for the effect of axial force on flexural stiffness against 

rotation of near end about z-axis, 

3s  : stability function for the effect of axial force on flexural stiffness against 

rotation of far end about z-axis, 

  

 4s  : stability function for the effect of axial force on flexural stiffness against 

rotation of near end about y-axis, 

 

5s  : stability function for the effect of axial force on flexural stiffness against 

rotation of far end about y-axis, 

 

6s  : stability function for the effect of axial force on flexural stiffness (about z-axis) 

against translation in y-direction, 

 

7s  : stability function for the effect of axial force on shear stiffness in y-direction 

against translation in y-direction, 

8s  : stability function for the effect of axial force on flexural stiffness (about y-axis) 

against translation in z-direction, 

 

9s  : stability function for the effect of axial force on shear stiffness in z-direction 

against translation in z-direction. 

 

 

4.2.1. Effect of Flexure on Axial Stiffness 

 

The axial stiffness of the beam in the absence of end moments is given by EA/L, and the 

axial deformation due to axial loading P is given by PL/(EA). However, the end moments 

produce an additional axial deformation in the beam. In order to include the effect of 

flexure on axial deformation, the axial stiffness of the beam-column must be modified. 
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For this purpose, the modified axial stiffness can be illustrated as 1s (EA/L). An 

expression for 1s  is derived as follows [110]. 

 

 

 
 

 

 
 

  

Figure 4.2. Effect of Flexure on Axial Stiffness: (a) Bending in X-Y plane;                     

(b) Bending in X-Z plane. 

 

 

From Figure 4.2. (a) and (b); 

 

2 2 2 2ds dx dy dz                            (4.1) 

 

by rearranging this equation, 

 
2 2 2

2 2 2
1

ds dy dz

dx dx dx
             (4.2) 

 

Shortening due to bending can approximately be defined as, 

 

bd ds dx               (4.3) 

 

dividing equation (4.3) by dx, 
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1bd ds

dx dx
              (4.4) 

 

Neglecting higher order terms, 

 
2 2

1

2

bd dy dz

dx dx dx
            (4.5) 

 

Therefore, the shortening of the beam-column due to bending is, 

 

0

L

b
b

d
dx

dx
              (4.6) 

 

2 2

0

1

2

L

b

dy dz
dx

dx dx
                        (4.7) 

 

Total shortening of the beam-column is expressed,  

 

t shortening due to axial load ( a ) + shortening due to bending ( b ) 

 
2 2

0

1

2

L

t

PL dy dz
dx

EA dx dx
                       (4.8) 

 

2 2

0

1
2

L

t

PL EA dy dz
dx

EA PL dx dx
                      (4.9) 

 

1

t

P

EA
s

L

                                    (4.10) 

 

and 
1 2 2

0

1

1
2

L
s

EA dy dz
dx

PL dx dx

                                 (4.11)  

 

The curvature 

2

2

d y

dx
 can be defined from Figure 4.2 (a), 
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2

2

1
( )za za zb

z

d y x
M M M Py

dx EI L
                    (4.12) 

 

Let 
2

z

P

EI
                        (4.13) 

 

Substituting equation (4.13) in equation (4.12) and rearranging the terms,  

 

2 2 2
2

2 za zb za

d y
y M M x M

dx PL P
                    (4.14) 

 

The solution for equation (4.14) is given by the summation of complementary function 

and particular integral; 

 

sin cos ( ) za
za zb

Mx
y A x B x M M

PL P
                               (4.15)  

Substituting the boundary conditions y=0 at x=0 and x=L, 

 

1
cosec cos

and

za zb

za

A L M L M
P

M
B

P

                    (4.16) 

 

The slope of beam in the X-Y plane is given by, 

 

1
cos sin za zb

dy
A x B x M M

dx PL
                   (4.17) 

 

Similarly, the equation of the beam-column for bending in the X-Z plane is  

 

sin sin
ya

ya yb

Mx
z C x D x M M

PL P
                  (4.18) 

 

where 
2

y

P

EI
                       (4.19)  

 

Substituting the boundary conditions z=0 at x=0 and x=L, 
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1
cosec cos

and

ya yb

ya

C L M L M
P

M
D

P

                                                                 (4.20)  

 

The slope of the beam in the X-Z plane is given by, 

 

1
cos sin ya yb

dz
C x D x M M

dx PL
                   (4.21) 

 

Now the integrals in equation (4.11) can be evaluated. The final result of the integration 

is; 

 

2

2 2 2

2

0

1
[ cot cosec

2

L

za zb

dy
dx L M M L L L

dx P L
 

2
2 2 cosec 1 cot ]za zb za zbM M LM M L L L                                 

(4.22) 

 

 

where; 2 2 2[ cot cosecz za zbH L M M L L L  

 
2

2 2 cosec 1 cot ]za zb za zbM M LM M L L L  

2

1

2
zH

P L
                        (4.23) 

 

and 

 

2

2 2 2

2

0

1
[ cot cosec

2

L

ya yb

dz
dx L M M L L L

dx P L
 

2

2 2 cosec 1 cot ]ya yb ya ybM M LM M L L L                               (4.24)  

 

 

where; 2 2 2[ cot cosecy ya ybH L M M L L L  

                   
2

2 2 cosec 1 cot ]ya yb ya ybM M LM M L L L  

 

2

1

2
yH

P L
                        (4.25) 
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Therefore, equation (4.11) becomes, 

 

1

3 2

1

1
4 y z

s
EA

P L H H

                      (4.26) 

 

A similar approach can be used to derive an expression for 1s  for a beam-column with 

axial tensile force P. The final expression is as follows: 

 

1

3 2 ' '

1

1
4 y z

s
EA

P L H H

                      (4.27) 

 

where; ' 2 2 2coth cosechy ya ybH L M M L L L  

 
2

2 2 cosech 1 cothya yb ya ybM M LM M L L L
         

(4.28) 

 

and 

 

' 2 2 2coth cosechz za zbH L M M L L L  

2
2 2 cosech 1 cothza zb za zbM M LM M L L L                  (4.29) 

 

 

4.2.2. Effect of Axial Force on Flexural Stiffness 

 

 

4.2.2.1. Bending in X-Y Plane 

 

From Figure 4.2 (a), the differential equation of the beam-column bending in the X-Y 

plane is given by Equation (4.14) for which the solution is given by equation (4.15). The 

constants A and B are obtained from Equation (4.16). The end slopes of the beam-column 

are obtained by substituting x=0 and x=L in equation (4.17); 

 

0

1
za za zb

x

dy
A M M

dx PL
                                 (4.30) 

 

1
cos sinzb ya yb

x L

dy
A L B L M M

dx PL
                  (4.31) 

 

Equations (4.30) and (4.31) can be rearranged and rewritten in matrix form as; 



 

 

69 

 

 

2 3

3 2

4 2

2 4

z z

za za

zb zbz z

EI EI
s s

L LM

M EI EI
s s

L L

                    (4.32) 

 

when P is compressive, the 2s  and 3s  functions take the following form; 

 

2

sin cos1

4 2 2cos sin

L L L
s L

L L L
                                               (4.33) 

 

3

sin1

2 2 2cos sin

L L
s L

L L L
                                 (4.34) 

 

For members subject to axial tensile force P and bending in the X-Y plane, P is replaced 

by –P in equation (4.12). Solving the resulting differential equation, equation (4.32) can 

again be obtained as; 

 

2

cosh L sinh1

4 2 2cosh sinh

L L
s L

L L L
                    (4.35) 

 

3

sinh1

2 2 2cosh sin

L L
s L

L L L
                          (4.36) 

 

 

4.2.2.2. Bending in X-Z Plane 

 

From Figure 4.2(b), and following the same procedure previously mentioned, the stability 

functions for bending in X-Z plane can be derived. The relationship between end 

moments and end slopes is given by; 

 

4 5

5 4

4 2

2 4

y y

ya ya

yb yby y

EI EI
s s

L LM

M EI EI
s s

L L

                    (4.37) 

 

where; 

 

4

sin cos1

4 2 2cos sin

L L L
s L

L L L
 for compressive P                       (4.38) 
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4

cosh sinh1

4 2 2cosh sinh

L L L
s L

L L L
 for tensile P                   (4.39) 

 

and 

 

5

sin1

2 2 2cos sin

L L
s L

L L L
 for compressive P                              (4.40) 

 

5

sinh1

2 2 2cosh sinh

L L
s L

L L L
 for tensile P                   (4.41) 

 

 

 

4.2.2.3. Effect of Axial Force on Stiffness Against Translation 

 

If both of the ends of a beam-column are restrained against rotation, but one end is 

translated trough a distance  relative to the other, the flexural and shear stiffnesses of 

the beam against this translation are affected by the axial force P.  

 

 

 
 

 

Figure 4.3. Effect of Axial Force on Stiffness Against Translation. 
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4.2.2.3.1. Translation in X-Y Plane 

 

From Figure 4.3 and using the slope-deflection equation; 

 

2 3

4 2y yz z
za

EI EI
M s s

L L L L
                                 (4.42) 

         
2 32

6 2 1

3 3

z
y

EI
s s

L
                                 (4.43) 

 

       
6 2

6 z
y

EI
s

L
                                   (4.44) 

 

where; 

 

6 2 3

2 1

3 3
s s s                                    (4.45) 

 

Substituting the values of 2s  and 3s  from equations (4.33) and (4.34) when the axial 

force is compressive, and from equations (4.35) and (4.36) when the axial force is tensile, 

the expressions for 6s  can be obtained as; 

 

When P is compressive; 

 
2 2

6

1 (1 cos )

6 (2 2cos sin )

L L
s

L L L
                     (4.46)  

 

When P is tensile; 

 

2 2

6

1 (cosh 1)

6 (2 2cosh sinh )

L L
s

L L L
                                 (4.47) 

 

Once again from Figure 4.2., 

 

ya

M
F

L
                        (4.48) 

 

where;  

 

za zb yM M M P                       (4.49) 
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and 

                 

2 3

4 2y yz z
za

EI EI
M s s

L L L L
                     (4.50) 

3 2

2 4y yz z
zb

EI EI
M s s

L L L L
                     (4.51)  

 

Thus, 

 

2 33 3

8 4z z
ya y

EI EI P
F s s

L L L
                    (4.52) 

 

If 
2

z

P

EI
 is taken; 

 

2 2

2 3 73 3

12 122 1

3 3 12

z z
ya

EI EIL
F s s s

L L
                   (4.53) 

 

where; 

 

2 2

7 2 3

2 1

3 3 12

L
s s s                                   (4.54) 

 

Substituting for 2s  and 3s  from equations (4.35) and (4.36) when axial force is 

compressive; 

 

2 2 2 2

7

1 cos1

6 2 2cos sin 12

L L L
s

L L L
                    (4.55) 

 

When the axial force P is tensile, P is replaced by –P in equation (4.49) and values of  2s  

and 3s  are obtained from equations (4.35) and (4.36); 

 

2 2 2 2

7

cosh 11

6 2 2cosh sinh 12

L L L
s

L L L
                    (4.56)  
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4.2.2.3.2. Translation in X-Z Plane 

 

Proceeding as in the previous section, 8s  can be given; 

 

8 4 5

2 1

3 3
s s s                                    (4.57) 

 

Substituting the values of  4s  and 5s from equations (4.38) and (4.40) when the axial 

force is compressive, and from equations (4.39) and (4.41) when the axial force is tensile, 

the expressions for 8s  is shown as; 

 

2 2

8

1 cos1

6 2 2cos sin

L L
s

L L L
                     (4.58) 

 

When P is tensile; 

 

2 2

8

cosh 11

6 2 2cosh sinh

L L
s

L L L
                     (4.59) 

 

Proceeding as in the previous section, 9s  can be derived; 

 

2 2

9 4 5

2 1

3 3 12

L
s s s   when the axial force P is compressive                               (4.60) 

 

2 2

9 4 5

2 1

3 3 12

L
s s s   when the axial force P is tensile                  (4.61) 

 

Substituting the values of  4s  and 5s from equations (4.38) and (4.40) when the axial 

force is compressive, and from equations (4.39) and (4.41) when the axial force is tensile, 

the expressions for 9s  is shown as; 

 

When P is compressive; 

 

2 2 2

9

1 cos1

6 2 2cos sin 12

L L L
s

L L L
                               (4.62) 

 

When P is tensile; 
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2 2 2 2

9

cosh 11

6 2 2cosh sinh 12

L L L
s

L L L
                    (4.63)  

 

The nonlinear stiffness matrix of a three dimensional steel structure, including warping 

effect, using the stability functions 1s  through 9s  is shown below in Figure 4.4. 
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Figure 4.4. Nonlinear stiffness matrix of a three-dimensional steel element. 
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4.3. Analysis of 3-D Frames Including Geometric Nonlinearity 

 

The nonlinear response of a structure is obtained through successive linear elastic 

analysis as shown in the flow chart of Figure 4.5. Initially the axial forces are presumed 

to be zero. With zero values of axial forces, stability functions become equal to 1. Linear 

elastic analysis of the structure is carried out and axial forces in members are determined. 

With these values of axial forces the stability functions are calculated and structural 

analysis is repeated. This process is continued until the convergence is obtained in the 

axial force values of members. The joint displacements and member forces obtained at 

this final iteration yields the accurate response of the structure to external loads where the 

geometric nonlinearity of its members in local coordinate system is taken into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Nonlinear response of a structure obtained through successive elastic linear 

analysis. 

START 1 
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Calculate the member end forces using P=kTX  

Use the axial loads in the members and calculate their stability functions 

Calculate the  

stability functions  
using the new  

member axial forces   

Yes 

No Is there convergence on  

member axial forces? 

INPUT DATA 

Construct the overall stiffness matrix K  

Solve the joint equilibrium equations L=KX for the joint displacements X 

(where; L=(L1,L2,…) applied forces, loads, and/or moments acting on structure.)  

END 

Axial Forces=0     Stability Functions (s1-s9)=1      
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4.4. Numerical Examples  

 

4.4.1. Example 1 

 

8-member, 4m x 4m one bay, three dimensional steel frame consisting of W150x13.5 

cross-section for all frame members is chosen as a first numerical example to demonstrate 

the effect of geometric nonlinearity. The loading and geometric properties of the frame 

are shown in Figure 4.6. Consideration of geometric nonlinearity in the response of cold-

formed steel structures is a necessity if realistic results are desired to be obtained in their 

design. The commercial structural analysis program SAP2000 v14 [111] which has the 

facility of carrying out P-Delta analysis has been used to check the results those obtained 

with proposed algorithm in this study. It is apparent from Table 4.1 that the joint 

displacements calculated by carrying out nonlinear analysis in this work are almost same 

as the ones obtained by SAP2000 v14.  

 

 
 

    

 
 

 

 

 
 

   

 

 

Sectional Designation:   

W150x13.5 
 

               

             

 
 

 

 

 

 

 

 

Figure 4.6. 8-member three dimensional steel frame. 
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1 
2 

3 4 

Table 4.1. Joint displacements obtained by the nonlinear analysis using SAP2000 v14 

and nonlinear analysis by the routine developed in this study for 8-members three 

dimensional steel frame. 

 

 

 

 

 

4.4.2. Example 2 

 

 

 

 

 
 

 

 
 

 

                               Sectional Designation:                 
10CS2.5x105 

 

                

  

 

 

 

 

 

 

 

 

 

Figure 4.7. 8-member, 3D steel frame with crosswise columns. 

Joint Displacements   

Joint displacements obtained by carrying out the 

nonlinear analysis explained in this study 
Joint displacements obtained by carrying out 

the nonlinear analysis using SAP2000 v14 

# of 

joint 

X-DISP 

(m) 

Y-DISP 

(m) 

Z-DISP 

(m) 

X-DISP 

(m) 

Y-DISP 

(m) 

Z-DISP 

(m) 

1 0.14392E-04  0.32517E+00 -0.58206E-03   0.1459E-04  0.3320E+00  -0.600E-03 

2 0.13080E-04  0.32476E+00 -0.16912E-02   0.1322E-04  0.3314E+00  -0.170E-02 

3 0.14392E-04  0.32517E+00 -0.58206E-03   0.1459E-04  0.3320E+00  -0.600E-03 

4 0.13080E-04  0.32476E+00 -0.16912E-02   0.1322E-04  0.3314E+00  -0.170E-02 

A   = 1077.42 mm
2
 

H   = 254 mm 

T    = 2.67 mm 

c    = 22.48 mm 

B1  = 63.5 mm 

B2  = 63.5 mm 

Ix    = 9.69x10
6 
mm

4
 

Iy   = 0.53x10
6 
mm

4
 

x 
y 
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In order to reflect the effect of geometric nonlinearity in a clearer manner, a 3D steel 

frame with crosswise columns is selected as a second numerical example. This frame has 

5 kN concentrated loading on each joint and 5 kN horizontal loads on two joints as shown 

in Figure 4.7. The cold-formed 10CS2.5x105 cross-section, which is taken from AISI 

Design Manual 2007 Excerpts-Gross Section Property Tables [112], is assigned to all 

frame members. The frame has 4m x 4m top area and 8m x 8m basement area. Similar to 

first example, the joint displacements calculated by carrying out nonlinear analysis in this 

work are almost same as the ones obtained by SAP2000 v14 [111] as tabulated in     

Table 4.2. 

 

 

Table 4.2. Joint displacements obtained by the nonlinear analysis using SAP2000 v14 

and nonlinear analysis by the routine developed in this study for 8-member, 3D steel 

frame with crosswise columns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joint Displacements   

Joint displacements obtained by carrying out the 

nonlinear analysis proposed in this study 
Joint displacements obtained by carrying out 
the nonlinear analysis using SAP2000 v14 

# of 

joint 

X-DISP 

(m) 

Y-DISP 

(m) 

Z-DISP 

(m) 

X-DISP 

(m) 

   Y-DISP 

      (m) 

Z-DISP 

(m) 

1 -0.12323E-01  0.24354E-05 -0.62881E-02 -0.1240E-01  0.2439E-05 -0.630E-02 

2 -0.12234E-01  0.41895E-04  0.58946E-02 -0.1230E-01  0.4180E-04  0.590E-02 

3 -0.12323E-01 -0.24354E-05 -0.62881E-02 -0.1240E-01 -0.2439E-05 -0.630E-02 

4 -0.12234E-01 -0.41895E-04  0.58946E-02 -0.1230E-01 -0.4180E-04  0.590E-02 
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CHAPTER 5 

 

 

OPTIMUM DESIGN OF COLD-FORMED THIN-WALLED OPEN SECTIONS  

 

 

 

5.1. Definitions 

 

Cold-formed steel products are just what the name connotes; products that are made by 

bending a flat sheet of steel at room temperature into a shape that will support more load 

than the flat sheet itself. 

 

It is a fact that material properties play an important role in the performance of structural 

members. Designers should be familiar with the mechanical properties of the steel sheets, 

strip, plates, or flat bars generally used in cold-formed steel construction in designing this 

type of steel structural members. Besides, since mechanical properties are greatly affected 

by temperature, special attention must be given by the designer for extreme conditions 

that is temperature below −34
o
C and above 93

o
C. Sixteen steels are specified in the 

current edition of the North American Specification [113] for structural applications. 

These steels are identified in ASTM standards for sheet material as SS or, in the case of 

high-strength, low-alloy steels, as HSLAS or HSLAS-F steels [2, 117]. 

 

 

5.1.1. Yield Point, Tensile Strength, and Stress-Strain  

 

The strength of cold-formed steel structural members depends on the yield point or yield 

strength, except in connections and in those cases where elastic local buckling or overall 

buckling is critical. 

 

There are two general types of stress–strain curves, as shown in Figure 5.1. One is of the 

sharp-yielding type (Figure 5.1. (a)) and the other is of the gradual-yielding type     

(Figure 5.1. (b)). Steels produced by hot rolling are usually sharp-yielding. For this type 

of steel, the yield point is defined by the level at which the stress–strain curve becomes 

horizontal. Steels that are cold-formed or cold-worked show gradual-yielding. For 

gradual-yielding steel, the stress–strain curve is rounded out at the ‘‘knee’’ and the yield 

strength is determined by either the offset method or the strain-under-load method. 
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(a) 

 

 

 

 

 

 

 

 

                                                        

      

 

(b) 

 

 

Figure 5.1. Stress–strain curves of carbon steel sheet or strip (a) Sharp-yielding;                              

(b) Gradual-yielding. 

 

 

5.1.2. Modulus of Elasticity, Tangent Modulus, and Shear Modulus 

 

 

5.1.2.1. Modulus of Elasticity, E 

 

The strength of members that fail by buckling depends not only on the yield point but 

also on the modulus of elasticity E and the tangent modulus Et. The modulus of elasticity 

is defined by the slope of the initial straight portion of the stress–strain curve. The values 

of E on the basis of the standard methods usually range from 200 to 208 GPa. A value of 

203 GPa is recommended by AISI (American Iron and Steel Institute) in its specification 

for design purposes [113]. This value is slightly higher than 200 GPa currently used in the 

AISC (American Institute of Steel Construction) specification [114]. 
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5.1.2.2. Tangent Modulus, Et 

 

The tangent modulus is defined by the slope of the stress–strain curve at any point, as 

shown in Figure 5.1.(b). For sharp yielding, Et=E up to the yield point, but with gradual 

yielding, Et=E only up to the proportional limit. Once the stress exceeds the proportional 

limit, the tangent modulus Et becomes progressively smaller than the initial modulus of 

elasticity. For this reason, for moderate slenderness the sharp-yielding steels have larger 

buckling strengths than gradual-yielding steels. Various buckling provisions of the AISI 

specification [113] have been written for gradual-yielding steels whose proportional limit 

is usually not lower than about 70% of the specified minimum yield point. 

 

 

5.1.2.3. Shear Modulus, G 

 

By definition, shear modulus, G, is the ratio between the shear stress and the shear strain. 

It is the slope of the straight line portion of the shear stress–strain curve. Based on the 

theory of elasticity, the shear modulus can be computed by the following equation, 

 

                                                     
2*(1 )

E
G                                                          (5.1) 

 

where E is the tensile modulus of elasticity and  is the Poisson’s ratio. By using    

E=203 GPa and =0.3 for steel in the elastic range, the value of shear modulus, G, is 

taken as 78 GPa in the AISI Specification. This G value is used for computing the 

torsional buckling stress for the design of beams, columns, and wall studs. 

 

 

5.2. Optimum Design of Cold-Formed Thin-Walled Beams with Open Steel Sections 

 

The calculations of geometrical properties of a thin-walled beam with a complex cross-

section are tiresome and tough as described comprehensively in Chapter 3.3.2. The 

proposed algorithm in this study supplies a facility for an automatic evaluation of open 

cross-sectional properties of thin-walled beams. The geometrical data which need to be 

entered to perform the analysis have been brought to the minimum; i.e. the coordinates of 

joints, the elements connecting them and their thickness [115]. So, the determination of 

the torsional and flexural properties of thin-walled beams with arbitrary open cross-

sections is easily reified.  

 

The optimum design problem of a cold-formed thin-walled open cross-section shown in 

Figure 5.2. can be formulated as given in the following. Consider that this section is used 

in a simply supported beam which is laterally supported and is subjected to general 

loading. The design variables can be selected as the cross-sectional dimensions of the 

section as shown in Figure 5.2. If the objective function is taken as the weight of the 

beam to be minimized then;  
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                                         1 2 3 4[ *( )]* *W x x x x l                                             (5.2) 

 

 

where, l is the span of the beam and  is the density of steel. 

 

 

 

 

 

 

 

 

 

 

a) Simply supported thin-walled steel beam. 

 

         

 

 

 

 

 

 

 

 

 

  

 

 

 

b) Thin-walled cross-section. 

 

 

Figure 5.2. Thin-walled steel beam with unsymmetrical channel shape. 

 

 

Consider the simply supported beam shown in Figure 5.2. (a) subjected to general 

loading. Assume that the beam is made of thin-walled open section shown in Figure 5.2. 

(b). The optimum design problem of the simply supported beam considered necessities 

selection of the dimensions of thin plates used in the upper and lower flanges as well as 

web of the thin-walled section shown in Figure 5.2. (b) such that maximum displacement 

and stress occur in the beam under the general loading are less than their upper bounds 

and the weight of the beam is minimum. The mathematical model of this problem can be 

expressed as 
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 ( ),                          1,.....,iMin W f x i n                                                    (5.3)  

  

Subjected to; 

 

                                              (5.4)                            

 

                                                                                        

  

                                              (5.5)      

 

 

                                                                                           

                                              (5.6)
  

 

 

          li i uix x x                                                                                                       (5.7) 

 

 

where  ( )if x  represents the weight of the beam which is taken as objective function. xi is 

the i
th
 design variable. lix  and uix  are the lower and upper bounds imposed on the design 

variable i. n is the total number of variables. ( )j ig x is the displacement constraint. The 

simply supported beam modeled as three dimensional structure as shown in Figure 5.2. 

(a) in order to be able to consider general loading conditions that may act along any axis. 

Beam is subdivided into number of elements and joint displacements are computed using 

matrix displacement analysis which takes into account the effect of warping. 
j
is the 

displacement of joint j which is required to be restricted and 
ju

is its upper bound. p is 

the total number of restricted displacements in the design problem. ( )s ig x represents 

normal stress constraints. 
max

s
is the maximum normal stress occurs in the beam. This 

stress is obtained by calculating the normal stresses for each element using Equations 

(3.62) and (3.63) and selecting the largest one. 
y

is the yield stress of the steel. r is the 

total number of elements considered along the beam. ( )k ig x is the local buckling 

constraints that is to be imposed on the web of the thin-walled section to prevent web 

buckling. Among the design variables 1x represents the thickness of the steel plate out of 

which thin-walled section is formed. Steel plates are produced within a certain thickness 

in practice. Hence in the optimum design, the algorithm should select appropriate values 

from a discrete set. Similar tables can be presented for the flange, width and web depths 

which consist of list of practically preferable values. Therefore the optimum design 

problem turns out to be a discrete programming problem. The design algorithm is 

expected to select appropriate values for the design variables such that the design 

constraints are satisfied and the weight of the beam is minimum. This is a combinatorial 

max

1

( ) 1 0,                    1,.....,

( ) 1 0,                s 1,.....,

( ) 0,                  k 1,.....,

j

j i

ju

s
s i

y

k
k i k

g x j p

g x r

x
g x u m

x
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optimum design problem and recent meta-heuristic techniques are shown to be quite 

effective in finding the solution of such problems [116].  

 

 

5.3. Optimum Design of Steel Frames of Cold-Formed Thin-Walled Open Sections 

to AISI-LRFD 

 

The members of steel frames made of cold-formed thin-walled open sections are 

subjected bending moments in addition to axial forces. Structural members are subject to 

combined compressive axial load and bending, this type of member is usually referred to 

as a beam-column [117]. In the case of individual member made of cold-formed thin-

walled steel section the bending may result from eccentric loading as shown in Figure 

5.3. (a), transverse loads as shown in Figure 5.3 (b), or applied moments as shown in 

Figure 5.3. (c). Such members are often found in framed structures, trusses, and exterior 

wall studs. In steel structures, beams are usually supported by columns through framing 

angles or brackets on the sides of the columns. The reactions of beams can be considered 

as eccentric loading, which produces bending moments. The structural behavior of beam–

columns depends on the shape and dimensions of the cross section, the location of the 

applied eccentric load, the column length, and the condition of bracing, and so on. 

 

 

 

 

 

 

 

 

 

 

                            (a)                      (b)                          (c) 

 

 

Figure 5.3. Beam–columns; (a) subject to eccentric loads, (b) subject to axial and 

transverse loads, (c) subject to axial loads and end moments. 

 

 

5.3.1. Discrete Optimum Design Process 

 

The optimum design problem of steel frames made of cold-formed thin-walled open 

sections necessitates consideration of satisfaction of the design limitations defined by the 

provisions of AISI-LRFD [113]. In this study, it is assumed that cold-formed steel beam-

column members will be made of standard C-sections with lips. The optimum design 

problem of such frames requires selection of appropriate C-sections from the available 

list of steel C-sections for its members. This selection should be carried out in such way 

that the beam-column members of the frame should satisfy the serviceability and strength 
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requirements specified by the code of practice while the economy is observed in the 

overall or material cost of the beam-column. When the design constraints are 

implemented from AISI-LRFD [113] the following discrete programming problem is 

obtained. 

 

 

5.3.1.1. Objective Function 

 

The objective function is taken as the minimum weight of the steel structure which is 

expressed as in the following. 

 

                            

isng

i j

i=1 j=1

min W = m  l                                                                       (5.8) 

 

where im  in Equation (5.8) gives the unit weight of the C-section with lip selected from 

AISI Design Manual 2007 Excerpts-Gross Section Property Tables [112] for the beam-

column members belonging to group i, is  is the total number of members in group i, and 

ng  is the total number of groups. 
jl  is the length of the beam-column member j. 

 

 

5.3.1.2. Strength Constraints 

 
The following are the design provisions adapted from Section C5.2 of the 2007 edition of 

the North American (AISI) specification for the strength capacity of beam–columns 

[113]. 

 

 

5.3.1.2.1. Effective Slenderness Ratio 

 

The maximum allowable slenderness ratio of compression members has been preferably 

limited to 200. 

 

**
 or  < 200

y yx x

x y

K LK L

r r
         (5.9) 

 

where, 

 

Kx = effective length factor for buckling about x axis 

Lx = unbraced length for bending about x axis 

Ky = effective length factor for buckling about y axis 

Ly = unbraced length for bending about y axis 

rx, ry = radius of gyration of cross section about x and y axes 
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The governed slenderness ratio is selected as the maximum of those about x and y axis as 

mentioned in Equation (5.9). 

 

 

5.3.1.2.2. Computation of Nominal Axial Strength, Pn 

 

5.3.1.2.2.1. Nominal Buckling Stress, Fn 

 

5.3.1.2.2.1.1. Elastic Flexural Buckling Stress 

 

The elastic flexural buckling stress Fe, was calculated as follows: 

 

2

2( / )
e

E
F

KL r
                    (5.10) 

 

where, 

 

E = modulus of elasticity of steel 

K = effective length factor 

L = laterally unbraced length of member 

r = radius of gyration of full, unreduced cross section about axis of buckling 

 

 

5.3.1.2.2.1.2. Elastic Flexural-Torsional Buckling Stress 

 

For single symmetric sections subject to flexural–torsional buckling, Fe is taken as 

 

21
( ) ( ) 4

2
e ex t ex t ex tF      (5.11) 

 

where, 

 

0

0

1
x

r
          (5.12) 

 

here, x0 and r0 are directly calculated by the equations given in Part I of the AISI Design 

Manual [113]. 

 

 

2

2( / )
ex

x x x

E

K L r
         (5.13) 
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here, ex  is the effective slenderness ratio about x axis as described in Equation (5.13). 

 

2

2 2

0

1

( )

w
t

t t

EC
GJ

Ar K L
       (5.14) 

 

here, G is shear modulus, J is Saint-Venant torsion constant of cross-section, Cw is 

torsional warping constant of cross-section, Kt is effective length factors for twisting, Lt is 

unbraced length of member for twisting. 

 

Fe, is taken as the smaller of those calculated in Equations (5.10) and (5.11).  

 

Afterwards the nominal buckling stress is calculated as follows, 

 

For 1.5c ; 

 
2

0.658 c

n yF F        (5.15) 

 

For 1.5c ; 

 

2

0.877
n y

c

F F         (5.16) 

 

where, 

 

y

c

e

F

F
        (5.17) 

 

here, Fy is the yield stress and Fe is the least of the applicable elastic flexural and elastic 

flexural-torsional buckling stress determined by Equations (5.10) and/or (5.11).  

 

 

5.3.1.2.2.2. Nominal Load, Pn, Based On Flexural Buckling 

 

The nominal axial strength [compressive resistance], Pn, is calculated in accordance with 

Equation (5.18). 

 

Pn = AeFn         (5.18) 

 

where, Ae is the effective area calculated at stress Fn. Effective area Ae can be computed 

according to Section B4 of the 2007 edition of the North American Specification [113]. 
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5.3.1.2.2.3. Nominal Load, Pn, Based On Distortional Buckling 

 

The nominal load Pn for distortional buckling can be computed according to Section 

C4.2(b) of the AISI [113].  

 

For 0.561d  

 

Pn=Py         (5.19) 

 

For 0.561d  

 

0.6 0.6

1 0.25 crd crd
n y

y y

P P
P P

P P
       (5.20) 

where, 

 

 /d y crdP P  

 

Pn   = Nominal axial strength 

 

Py   = AgFy (where, Ag is the gross area of the cross-section and Fy is the yield stress) 

 

Pcrd = AgFd (where, Fd is the elastic distortional buckling stress calculated according to 

Section C4.2(a), (b) or (c) of the AISI [113]) 

 

Pn, is taken as the smaller of those calculated in Equations (5.18) and (5.19 or 5.20).  

 

 

5.3.1.2.3. Computation of Allowable Strength, Mn 

 

5.3.1.2.3.1. Nominal Section Strength, Mn 

 

The nominal section strength for initiation of yielding is calculated by using Equation 

(5.21): 

 

n e yM S F        (5.21) 

 

where, 

 

Fy = design yield stress. 

 

Se = elastic section modulus of effective section calculated with extreme compression or 

tension fiber at Fy. 
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5.3.1.2.3.2. Distortional Buckling Strength, Mn 

 

The nominal load Pn for distortional buckling can be computed according to Section 

C4.2(b) of the AISI [113].  

 

For 0.673d  

 

Mn=My         (5.22) 

 

For 0.673d  

 

0.5 0.5

1 0.22 crd crd
n y

y y

M M
M M

M M
      (5.23) 

 

where, 

 

 /d y crdM M  

 

My   = SfyFy (where, Sfy is the elastic section modulus of full unreduced section relative to 

extreme fiber in first yield) 

 

Mcrd = SfFd (where, Sf is the elastic section modulus of full unreduced section relative to 

extreme compression fiber and Fd is the elastic distortional buckling stress calculated 

according to Section C4.2(a), (b) or (c) of the AISI [113]) 

 

Mn, is taken as the smaller of those calculated in Equations (5.21) and (5.22 or 5.23).  

 

 

5.3.1.2.4. Checking Combined Tension Axial Load and Bending 

 

For axially loaded tension members, the nominal tensile strength, Tn, is the value obtained 

in accordance with the Equation (5.24).  

 

 Tn = AgFy        (5.24) 

 

where, 

 

Tn = nominal tensile strength 

 

Ag = gross area of the cross-section 

 

Fy = design yield stress 
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When cold-formed steel members are subject to concurrent bending and tensile axial 

load, the member shall satisfy the interaction equations given below which are prescribed 

in Section C5.1 of the North American Specification for the LRFD methods [113]. 

 

The required strengths (factored tension and moments) T , Mx , and My shall satisfy the 

following interaction equations: 

 

1.0

1.0

uyux u

b nxt b nyt t n

uyux u

b nx b ny t n

MM T

M M T

MM T

M M T

      (5.25) 

 

where,  

 

Mux , Muy = the required flexural strengths [factored moments] with respect to centroidal 

axes. 

Øb = for flexural strength [moment resistance] equals 0.90 or 0.95 (LRFD). 

 

Mnxt,Mnyt = SftFy (where, Sft is the section modulus of full unreduced section relative to 

extreme tension fiber about appropriate axis and Fy is the design yield stress). 

 

Tu = required tensile axial strength [factored tension]. 

 

Øt = 0.95 (LRFD). 

 

Tn = nominal tensile axial strength [resistance]. 

 

Mnx,Mny = nominal flexural strengths [moment resistances] about centroidal axes. 

 

 

5.3.1.2.5. Checking Combined Compressive Axial Load and Bending (Beam-

Columns) 

 

The following are the design provisions adapted from Section C5.2 of the 2007 edition of 

the North American specification [113] for the design of beam–columns. 
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      (5.26) 

 

For 0.15u

c n

P

P
, 
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where, 

 

Pu = required compressive axial strength [factored compressive force]. 

 

Øc = 0.85 (LRFD). 

 

Mux , Muy = the required flexural strengths [factored moments] with respect to centroidal 

axes of effective section. 

 

Øb = for flexural strength [moment resistance] equals 0.90 or 0.95 (LRFD). 

 

Mnx,Mny = the nominal flexural strengths [moment resistances] about centroidal axes. 

 

and 
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where, 
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where, 

 

Ix = moment of inertia of full unreduced cross section about x axis. 

 

Kx = effective length factor for buckling about x axis. 

 

Lx = unbraced length for bending about x axis. 

 

Iy = moment of inertia of full unreduced cross section about y axis. 

 

Ky = effective length factor for buckling about y axis. 

 

Ly = unbraced length for bending about y axis. 

 

Pno = nominal axial strength [resistance] determined in accordance with Section C4 of 

AISI [113], with Fn = Fy. 

 

Cmx, Cmy = coefficients taken as 0.85 or 1.0. 

 

  

5.3.1.3. Deflection and Drift Constraints 

 
The deflection, top-storey drift and inter-storey drift constraints functions are given in the 

following Equations (5.30), (5.31) and (5.32), respectively [118]. 

 

( ) 1.0 0     1,2, ,     1,2, ,
/

jl
g x j n l n

d sm lcL Ratio
                    (5.30) 

 

  1.0 0     1, 2, ,     1, 2, ,
/

top
jl

g j n l n
td jtop lcH Ratio

         (5.31) 

    

 1.0 0     1,2, ,     1,2, ,
/

oh
jl

g j n l n
id st lch Ratio

sx

(5.32)

      

where, δjl is the maximum deflection of j
th

 member under the l
th
 load case, L is the length 

of member, nsm is the total number of members where deflections limitations are to be 

imposed, nlc is the number of load cases, H is the height of the frame, ntop is the number of 

joints on the top storey, Δ
top

jl is the top storey displacement of the j
th

 joint under l
th
 load 

case, nst is the number of storey, nlc is the number of load cases and  Δ
oh

jl is the storey drift 

of the j
th
 storey under l

th
 load case, hsx is the storey height and Ratio is limitation ratio for  

lateral displacements described in ASCE Ad Hoc Committee report [120] .  
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5.3.1.4. Serviceability Constraints 

 

The accepted range of drift limits by first-order analysis is 1/750 to 1/250 times the 

building height H with a recommended value of H/400 [120]. The typical limits on the 

inter-storey drift are 1/500 to 1/200 times the storey height. The deflection limits 

recommended for general use which is repeated in Table 5.1. 

 

 

Table 5.1. Displacement limitations for steel frames. 

 

 

 Item Deflection Limit 

 Floor  girder deflection for service live load L/360 

 Roof girder deflection L/240 

 Lateral drift for service wind load H/400 

 Inter storey drift for service wind load H/300 

 
 

 

5.3.1.5. Geometric Constraints 

 
Geometric limitations as shown in Figure 5.4. are included in the design problem as in the 

Equations (5.33) and (5.34); where nccj is the number of column-to-column geometric 

constraints defined in the problem , m
a

i is the unit weight of C-section selected for  above 

storey, m
b
i is the unit weight of C-section selected for below storey, D

a
i is the depth of       

C-section selected for above storey, D
b
i is the depth of C-section selected for below 

storey, nj1 is the number of joints where beams are connected to the web of a column, nj2 

is the number of joints where beams connected to the flange of a column, D
ci
 is the depth 

of C-section selected for the column at joint i, t
ci

b is the flange thickness of C-section 

selected for the column at joint i, B
ci

f is the flange width of C-section selected for the 

column at joint i and B
bi

f  is the flange width of C-section selected for the beam at joint i. 

  

 

       

(5.33) 

 

   

 
                                                                                                            

   (5.34) 
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Figure 5.4. Geometric constraints for a typical beam-column. 
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CHAPTER 6 

 

 

ARTIFICIAL BEE COLONY OPTIMIZATION 

 

 

 

6.1. Introduction 

 

In the artificial bee colony algorithm, all bees are categorized in three main groups. These 

are employed bees, onlooker bees and scout bees. The first group of bees is the employed 

bees that locate food source, evaluate its amount of nectar and keep the location of better 

sources in their memory. These bees when fly back to hive they share this information to 

other bees in the dancing area by dancing. The dancing time represents the amount of 

nectar in the food source. The second group is the onlooker bees who observe the dance 

and may decide to fly to the food source if they find it is worthwhile to visit the food 

source. Therefore, foods sources reach in the amount of nectar attract more onlooker bees 

(Figure 6.1. (courtesy of researchgate.net)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Sharing the fitness of solutions between employed bees and onlooker bees. 

 

 

The third group is scout bees that explore new food sources in the vicinity of the hive 

randomly. The employed bee whose food source has been abandoned by the bees 

becomes a scout bee. A typical bee colony model is shown in Figure 6.2. (courtesy of 

researchgate.net). Each employed bee in the colony goes to one food source and this food 

source is selected only by one employed bee. Therefore, number of employed bees in the 

artificial bee colony algorithm is equal to number of food sources. By the time the food 

source is exhausted, onlooker and employed bees of this food source are replaced by 

scout bees. Then, these bees start finding new food sources by making random search. 

For structural design problems, all available designs are represented as food sources 

which are used by bee swarms in the artificial bee colony algorithm. Amount of each 

food source represents weight of structure [118].  
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Figure 6.2. A Bee Colony Model. 

 

 

6.2. Mathematical Formulation of Structural Optimization Problem 

 

The design of steel structures requires the selection of members from a standard steel pipe 

section table such that the structure satisfies the strength and serviceability requirements 

specified by a chosen code of practice, while the economy is observed in the overall or 

material cost of the structure. For a steel structure which consists of Nm members grouped 

into Nd design variables, this problem can be formulated as follows [119]. 

 

 

6.2.1. Objective Function 

 

Find a vector of integer values I (Equation 6.1) representing the sequence numbers of 

standard sections in a given section table 

 

                                                    I
T
 = 

1 2[ , ,..., ]
dNI I I

                                                     
(6.1) 

 

to generate a vector of cross-sectional areas A for Nm members of the truss 

 

                                            A
T
 = 

1 2[ , ,..., ]
mNA A A

                                               
(6.2) 

 

such that A minimizes the objective function 

 

                                                      1

mN

m m m

m

W L A

                                                      

(6.3) 
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where W refers to the weight of the frame or a steel section; ρm, Am, Lm are cross-sectional 

area, length and unit weight of the m-th member, respectively. 

 

 

6.2.2. Design Constraints 

 

The structural behavior and performance limitations of steel structure can be formulated 

as follows: 

 

                                            

1 0   ;   s 1,...,
( )

s
s s

s all

g N

                                  

(6.4) 

 

                                          1 0   ;   d 1,...,
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d
g N

d
                                  

(6.5)

      

 

                                        1 0   ;    v 1,...,
( )

v
v v

v all

g N

                                     

(6.6) 

 

 

In Equations (6.4) – (6.6), the functions gs , gd and gv are referred to as constraints being 

bounds on strength, deflection, and , geometric constraints, respectively; σs and (σs)all are 

the computed and allowable axial stresses for the s-th member, respectively; and dd , and 

(dd )all, are the deflections computed the displacement of the d-th joint and its permissible 

value; finally, λv and (λv)all are the geometric constraint and its upper limit for v-th 

member, respectively. 

 

 

6.3. Steps of Artificial Bee Colony Algorithm 

 

Steps of artificial bee colony algorithm for optimum design of structural engineering 

problems are defined as: 

 

Step1: Search parameters of artificial bee colony algorithm are defined in this step. These 

are number of employed bees (NEB), number of onlooker bees (NOB), number of cycles 

and control parameter adjusting the food source (limit). In the algorithm, number of 

onlooker bees is equal to number of employed bees. 

 

 

Step2: After defining search parameters, all foragers in the colony search food source 

randomly. This means NEB+NOB frame designs are generated randomly. Generated steel 

structure designs are evaluated and penalized in accordance with their weights and 

constraints violations. Penalized weight of each steel structure design is calculated by 

following function. 
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.(1 )pW W C          (6.7) 

 

where, W is the value of objective function of optimization problem. Wp is the penalized 

weight of structure, C is the total constraint violation value calculated from the sum of the 

values of constraints violation functions of objective function, ε is penalty coefficient 

taken as 2.0.  

 

               s d vC g g g         (6.8) 

 

where, gs, gd, and gv, are the constraints violation functions for strength, deflection and 

geometric constraints functions. In general form, constraints violation functions can be 

expressed as: 

 

       
i j

i
i j i j

0 if g (x ) 0 i 1, NC
C

g (x ) if g (x ) 0 j 1, NG                         (6.9) 

 

where, )(xgi  is i
th 

constraints function, x  is  the vector of design variables, NC is the 

number of constraint functions and NG is the total number of member groups in the 

optimization problem. 

 

 

Step3: After evaluation process, bees having the best steel structure designs become 

employed bees. Then, employed bees start to generate a new steel structure designs by 

using the old one as follows:  

 

.( ), , 1,2, , , 1,2, ,ij ij ij ij kjv x x x i k NEB j NG       (6.10) 

 

where, i represents employed bee number index, k and j are randomly chosen indexes. 

Although k is generated randomly, it is not equal to k.  Øij is a uniformly distributed 

random number between [-1, 1]. This parameter adjusts size of neighborhood steel 

structure design region. Then, new steel structure designs generated from employed bees 

are evaluated and their penalized weights are calculated by using aforementioned process. 

After evaluation process, penalized weights of new steel structure designs and old steel 

structure designs are compared. If penalized weight of the new steel structure design is 

better than the old one, the old steel structure design is replaced with the new one. This 

process is called greedy selection. 

 

Step 4: After finding new steel structure designs and replacements, all employed bees 

return their hive and start their waggle dance. Waggle dance of employed bees are related 

to penalized weight of structural design. The remainders of the bees (onlooker bees) 

watch the waggle dance and make a decision. This decision process of each onlooker bee 

depends on its probability value associated with steel structure design. Probability of i
th
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steel structure design is calculated according to i
th
 onlooker bee by using following 

function; 

 

          

1

( )

( )

p i
i NOB

p i
i

W
P

W
        (6.11) 

 

Then onlooker bees generate new steel structure designs by using Equation (6.11) and 

make greedy selection the same as the case of employed bees. 

 

 

Step 5: If steel structure design cannot be replaced with the old steel structure design, this 

steel structure design is abandoned and the employed bee associated with that fame 

design becomes a scout bee. Scout bees generate new steel structure designs by using 

random selection process the same as step 2.  

 

 

Step 6: The steps 3 and 5 are repeated until a pre-assigned maximum iteration number is 

reached. 

 

 

The flowchart shown in Figure 6.3. demonstrates the artificial bee colony (ABC) 

algorithm for a maximum cycle number (MCN) of iterations. 
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Figure 6.3. Flowchart of the Artificial Bee Colony (ABC) algorithm. 

 

 

6.4. Optimum Design Algorithm 

 

The optimum design algorithm developed for steel frames made of cold-formed thin-

walled steel sections is based on artificial bee colony method. In the case of single span 

beams, it treats the geometric dimensions of cold-formed thin-walled section as design 

variables. In the optimum design, artificial bee colony algorithm initiates the design 

process by first selecting values randomly for the geometric dimensions of thin steel 

plates which make the cold-formed thin-walled section from the design pool. Once the 

dimensions are decided, the geometry of a cold-formed thin-walled steel section then 

becomes available. Artificial bee colony algorithm is then proceeds to apply its steps that 

are listed above until the convergence is obtained. 
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In the case of steel frames, the sequence number of the C-sections selected for each 

member group from the available list is treated as design variable. Artificial bee colony 

algorithm randomly selects sequence numbers for the C-sections for the frame member 

groups. Selection these numbers makes the sectional designations and cross sectional 

properties of C-sections available for the algorithm. The design algorithm consists of the 

following steps for both cases; 

 

 

1. Select the values of artificial bee colony parameters. These parameters are the bee 

colony size, the maximum cycle number and the value for limit by which if there is 

no improvement in the amount of nectar from a food source after a predefined 

iteration (limit), this food source is discarded by its employed bee. These values are 

decided after carrying out several trials in the design examples. 

 

2. Generate a solution (population) matrix. Select randomly dimensions for a steel 

section in the case of single span beam and sequence numbers of C-sections from the 

discrete list for each group in the case of frames. 

  

3. Generate the geometrical data such as member incidences, joint coordinates 

automatically using the values selected. 

 

4. Carry out the successive linear elastic analysis to obtain nonlinear response of a steel 

member or the frame until the convergence is reached in the axial force values of 

members. In the case of steel frames the loss of stability at any stage of this 

nonlinear analysis is checked. If the loss of stability occurs then this selected design 

vector is taken out from solution matrix and replaced by a new design vector that is 

selected randomly again. This replacement process is repeated until a design vector 

is determined that does not have instability problem. This vector is then checked 

whether it satisfies the design constraints. If it does not it is once more discarded. 

However, if it is slightly infeasible it is considered for the solution matrix. 

 

5. Calculate the objective function value for the newly selected design vector. If this 

value is better than the worst vector in the solution matrix, it is then included in the 

solution matrix while the worst one is taken out of this matrix. The solution matrix is 

then sorted in descending order by the objective function value. 

 

6. Repeat steps 2 and 6 are until the pre-selected maximum number of iterations is 

reached. The maximum number of iterations is selected large enough such that 

within this number of design cycles no further improvement is observed in the 

objective function. 
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CHAPTER 7 

 

 

DESIGN EXAMPLES 

 

 

 

7.1. Introduction 

 

In this chapter, the design algorithm developed is used to determine the optimum designs 

of number of cold-formed thin-walled open sections and steel frames having these 

sections, subjected to various external loading. The modulus of elasticity and shear 

modulus of steel are taken as E=203.000 GPa and G=78.000 GPa respectively in the 

design examples considered as recommended in Chapter 5 for cold-formed steel sections. 

 

One of the advantages of the artificial bee colony (ABC) algorithm is that it requires pre-

determination of only three parameters. These are the bee colony size, the maximum 

cycle number (MCN), and the limit. In the first six design examples considered in this 

chapter the bee colony size is taken as 30 and the maximum cycle number (MCN) is 

chosen as 1000. With these selections the total objective function evaluations become is 

30000. The value of the limit which is used to abandone the food source is selected as 30. 

For the last two design examples, bee colony size, the maximum cycle number (MCN), 

and the limit value are selected as 50, 2000, and 250, respectively. The maximum number 

of iterations is limited to 5000 for first six design examples and 75000 for last two design 

examples. Each design example has been re-designed 5 times; each run starting from a 

random population with different seed values in order to investigate the variance of 

optimum results. Among these, the best optimum designs are presented here. 

 

 

7.2. A Thin-Walled Z-Lip Cantilever Beam  

 

 

 

 

 

 

                                 

                 

 

 

 

               (a) Z-lip cantilever beam.                     (b) Design variables. 

 

Figure 7.1. A thin-walled Z-lip cantilever beam; (a) Z-lip cantilever beam, (b) Design 

variables. 
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In the first design example, a thin-walled Z-lip cantilever beam shown in Figure 7.1 (a) is 

designed by the optimum design algorithm developed for thin-walled beams with 

arbitrary open sections. L is the length of the beam and taken as 1.5 m. The design 

variables x1, x2, x3, and x4 that are the geometric dimensions of thin plates are shown in 

Figure 7.1 (b). A design pool is prepared that contains separate values for each design 

variable. First column of the pool contains values from 1 mm to 3 mm with the increment 

of 0.25 mm for x1 which represents the thickness (t) of the section. The second column of 

the pool has values starting from 15 mm to 30 mm with the increment of 0.25 mm for x2 

which represents the depth (d) of the section. The third column of the pool contains 

values from 30 mm to 90 mm with the increment of 0.25 mm for x3 which represents 

flange width (b) of the section, and finally the last column has values from 85 mm to 305 

mm with the increment of 0.25 mm for x4 which represents the depth (h) of the section. 

The beam is subjected to 25N equipment load through its x-axis as shown in Figure 7.2. 

and 250 N through its y-axis as well as 180 Nm moment through its x-axis at its free end 

(Joint 2). Besides, the beam is subjected to two different distributed loading; i) 250 N/m 

and ii) 200N/m with 0.05 m eccentricity to all over the beam. The latter distributed 

loading causes 10Nm distributed torque throughout the beam along x-axis. The details of 

loading to which beam is subjected is presented in Figure 7.2. The yield stress of steel is 

taken as 345N/mm
2
 (50 ksi) [113] which is considered the upper bound for the normal 

stresses in the beam. The deflection is limited to length /360 which is 4.167 mm as 

recommended in the ASCE Ad Hoc Committee report [120] for the lateral displacements 

and deflection of beams in steel frames. 

 

                                               

                                                

 

 

 

 

 

 

 

 

 

Figure 7.2. Loading of thin-walled Z-lip cantilever beam. 

 

 

Additionally, the following geometric limits are applied as size constraints [117] to the 

cold-formed thin-walled Z-section in order to control local buckling of thin walls;          

50 < h/t < 200, 25 < b/t < 100, 6.25 < d/t < 50, 2 < h/b <8. 

 

The optimum design problem of the above thin-walled section is solved by the design 

algorithm developed. The design constraints are taken as those explained in Chapter 5.2. 

that are not taken from AISI-LRFD design code. They are the stress, displacement and 

local buckling constraints. The optimum designs with and without considering the effects 
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of warping are listed in Table 7.1. When warping is not taken into account, the ABC 

algorithm attains the least weight of the cold-formed thin-walled Z-section as 45.34 N 

(4.623 kg). The minimum weight of the beam is obtained as 50.83 N (5.183 kg) when the 

effect of warping is considered in the design process. It is clear that consideration of the 

warping effect increases the minimum weight 12.11%. The normal stress reaches to  

344.6 MPa for the case where warping is considered which is almost at its upper bound. 

This stress value includes both warping and bending stresses which are 325.53MPa and 

19.07 MPa, respectively. It is interesting to note that the normal stress due to warping 

constitutes 94.36% of the total stress. Exclusion of warping effects in this problem 

certainly yields to unsafe designs. It is also apparent from Table 7.1 that stress constraints 

are dominant in the design problem. The optimum designs obtained by ABC algorithm 

are shown in Figure 7.3. The convergence history showing variation of the best feasible 

design generated so far throughout the optimization process with ABC technique for each 

warping case is plotted in Figure 7.4. 

 

 

Table 7.1. Optimum design results of thin-walled Z-lip cantilever beam. 

 

 

Design Variables 
ABC algorithm 

without warping 

ABC algorithm 

with warping 

x1 (t) 1 mm 1 mm 

x2 (d) 20 mm 30 mm 

x3 (b) 77.5 mm 90 mm 

x4 (h) 197.5 mm 200 mm 

Minimum weight (N (kg))  45.34 (4.623) 50.83 (5.183) 

Maximum displacement (mm) 0.0764 0.607 

Maximum stress (MPa) 28.15 344.60 

Maximum number of iterations 5000 5000 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

    a) without warping.                                                   b) with warping.  

 

Figure 7.3. Optimum designs of cold-formed thin-walled Z-lip cantilever beam;             
a) without warping, b) with warping. 
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Figure 7.4. Design history graph of cold-formed thin-walled Z-lip cantilever beam. 

 

 

7.3. A Thin-Walled Simply Supported Beam with an Arbitrary Open Section  

 

As a second design example a thin-walled simply supported beam with an arbitrary open 

section is selected as shown in Figure 7.5. The length (L) of the beam is selected as       

1.5 m. The design variables are assigned as geometric dimensions of thin plates and the 

prepared design pool that contains separate values for each design variable are taken 

exactly same as first example. Namely, first column of the pool contains values from       

1 mm to 3 mm with the increment of 0.25 mm for x1 which represents the thickness (t) of 

the section. The second column of the pool has values starting from 15 mm to 30 mm 

with the increment of 0.25 mm for x2 which represents the depth (d) of the section. The 

third column of the pool contains values from 30 mm to 90 mm with the increment of 

0.25 mm for x3 which represents flange width (b) of the section, and finally the last 

column has values from 85 mm to 305 mm with the increment of 0.25 mm for x4 which 

represents the depth (h) of the section. Moreover, similar to first design example the 

following geometric limits are applied as size constraints [117] to the cold-formed thin-

walled arbitrary open section in order to control local buckling of thin walls;                  

50 < h/t < 200, 25 < b/t < 100, 6.25 < d/t < 50, 2 < h/b <8. The optimum design 

problem of the arbitrary thin-walled section is solved by the design algorithm developed. 

The design constraints are taken as those explained in Chapter 5.2 which are not taken 

from AISI-LRFD code. The design constraints are the stress, displacement and local 

buckling constraints. 
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Figure 7.5. A thin-walled simply supported beam with arbitrary open section. 

 

 

The beam is subjected to 8 kN equipment load through its x- and y-axes as shown in 

Figure 7.6. and 1 kNm moment through its x-axis at its free end. The yield stress of steel 

is taken as 345 MPa [113] which is considered the upper bound for the normal stresses in 

the beam. The deflection is limited to length /360 which is 4.167 mm as recommended in 

the ASCE Ad Hoc Committee report [120] for the lateral displacements and deflection of 

beams in steel frames. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. Loading of thin-walled simply supported beam with arbitrary open section. 

 

 

The ABC algorithm attains the least weight of the beam with cold-formed thin-walled 

arbitrary section as 47.36 N (4.828 kg) when warping is not taken into account. The 

minimum weight of the beam is obtained as 64.98 N (6.624 kg) when the effect of 

warping is considered in the design process. It is clear that consideration of the warping 
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effect increases the minimum weight 37.21%. The normal stress reaches to 344.8 MPa for 

the case where warping is considered which is almost at its upper bound. This stress value 

includes both warping and bending stresses which are 199.2MPa and 145.6 MPa, 

respectively. Exclusion of warping effects in this design example certainly yields to 

unsafe designs. It is obvious from Table 7.2. that while stress constraint is dominant in 

the case warping is considered, the displacement constraint is dominant in the case 

warping is not considered. The convergence history showing the variation of the best 

feasible design generated so far throughout the optimization process with ABC technique 

for each warping case is plotted in Figure 7.7. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 7.7. Design history graph of cold-formed thin-walled simply supported beam with 

an arbitrary open section. 

 

 

 

Table 7.2. Optimum design results of cold-formed thin-walled simply supported beam 

with an arbitrary open section. 

 

 

 

Design Variables 
ABC algorithm 

without warping 

ABC algorithm 

with warping 

x1 (t) 1 mm 1 mm 

x2 (d) 15 mm 15 mm 

x3 (b) 45 mm 85 mm 

x4 (h) 200 mm 192.5 mm 

Minimum weight (N (kg))  47.36 (4.828) 64.98 (6.624) 

Maximum displacement (mm) 4.10 2.79 

Maximum stress (MPa) 227.2 344.8 

Maximum number of iterations 5000 5000 



 

 

111 

 

 

7.4. A Thin-Walled Column with a L-Lip Open Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

            (a) Design variables.                                             (b) Loading of the column. 

 

 

Figure 7.8. A thin-walled L-lip column; (a) Design variables, (b) Loading of the column. 

 

 

The third design example is selected as a cold-formed thin-walled column with L-lip open 

cross-section as shown in Figure 7.8. The length (L) of the column is assigned as 1.5 m. 

The design variables are assigned as geometric dimensions of thin plates (Figure 7.8. (a)) 

and the prepared design pool that contains separate values for each design variable are 

exactly same as above two design examples and these are not repeated here. Also stress, 

displacement and local buckling constraints are taken exactly same as mentioned in first 

two design examples.  The column is subjected to 25N equipment load through its x-axis 

and 250 N equipment load through its y-axis as well as a 10 Nm moment through its      

x-axis at its free end. Besides, a 200 N concentrated load is applied with 0.05 m 

eccentricity through y-axis at free end of the column and 250 N/m distributed load is 

applied all over the column. The loading of the column is represented in Figure 7.8. (b). 
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Table 7.3. Optimum design results of thin-walled column with L-lip cross-section. 

 

 

 

 

 

 

 

 

 

 

 

The least weight produced by the ABC algorithm for cold-formed thin-walled column 

with L-lip open cross-section is 26.57 N (2.709 kg) when warping is not taken into 

account. The minimum weight of the column is obtained as 45.92 N (4.683 kg) when the 

effect of warping is taken into account in the design process. It is clear that consideration 

of the warping effect increases the minimum weight 72.87%. The total normal stress 

reaches to 344.5 MPa for the case where warping is considered which is almost at its 

upper bound. This stress value includes both warping and bending stresses which are 

329.3 MPa and 15.2 MPa, respectively. The normal stress due to warping constitutes 

95.45% of the total stress. It is obvious that including warping produces very higher 

normal stress along the column. Exclusion of warping effects in this design example 

certainly yields to unsafe designs. It is obvious from Table 7.3. that while stress constraint 

is dominant in the case warping is considered, the displacement constraint is dominant in 

the case warping is not considered. Design histories of the optimum solutions accordance 

with warping are shown in Figure 7.9. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9. Design history graph of thin-walled column with L-lip cross-section. 

 

Design Variables 
ABC algorithm 

without warping 

ABC algorithm 

with warping 

x1 (t) 1 mm 1 mm 

x2 (d) 15 mm 30 mm 

x3 (b) 35 mm 82.5 mm 

x4 (h) 130.0 mm 172.5 mm 

Minimum weight (N (kg))  26.57 (2.709) 45.92 (4.683) 

Maximum displacement (mm) 4.156 1.38 

Maximum stress (MPa) 91.0 344.5 

Maximum number of iterations 5000 5000 
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Among three design examples mentioned above, thin-walled column with L-lip open 

section has the least weight as 2.709 kg which is obtained by ABC algorithm without 

warping. When warping effect is taken into account ABC algorithm yielded the same 

weight as 4.683 kg. In the case of cantilever beam with Z-lip open section, the optimum 

design weights are obtained as 4.623 kg and 5.183 kg by ABC algorithm with and 

without warping effect, respectively. The heavier design weights are obtained for simply 

supported beam with an arbitrary thin-walled open section by ABC algorithm including 

and excluding warping effect as 4.828 kg and 6.624 kg, respectively. It can be concluded 

from these results that the optimum design weights obtained are directly dependent to 

section geometry and external loading condition. All design weights are comparatively 

demonstrated in Figure 7.10. 

 

 

 
 

 

Figure 7.10. Comparison of the optimum design weights obtained by ABC algorithm. 

 

 

7.5. Cold-Formed Thin-Walled Cantilever Beam with C-sections with Lips to        

AISI-LRFD 

 

The forth design example shown in Figure 7.11. is a cantilever beam made of cold-

formed thin-walled C-sections with lips accordance with AISI [113]. The C-sections with 

lips are to be selected from a section list consisting of 85 independent C-shaped cold-

formed thin-walled steel sections taken from AISI Design Manual 2007 Excerpts-Gross 

Section Property Tables [112]. The combined strength and stability constraints adapted 

from 2007 edition of the North American (AISI) specification [113] are imposed as 

explained in Chapter 5.3. This example is designed by Artificial Bee Colony (ABC) 

algorithm to find optimum C-section. 
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Figure 7.11. Cold-formed thin-walled cantilever beam with C-section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12. Loading of cold-formed thin-walled cantilever beam with C-section. 

 

 

The length (L) of the beam is 2.0 m and the upper limit of the maximum displacement is 

L/360 which is 5.556 mm. Furthermore, both concentrated and distributed loads are 

considered in designing the beam as shown in Figure 7.12. The beam is subjected to 5 kN 

concentrated load along x- and y-axis as well as a 10 kN equipment load is applied with 

0.05 m eccentricity through y-axis at free end of the beam. Besides, the beam is subjected 

to 4kN/m distributed loading. 

 

 

Table 7.4. Optimum design results of cold-formed thin-walled cantilever beam. 

 

 

 

 

 

 

 
 

Algorithm Used ABC 

Minimum weight (N (kg)) 218.58 (22.28) 

Selected section ID 12CS4X105 

Maximum displacement (mm) 5.326 

Maximum strength ratio 0.60 

Maximum number of iterations 5000 

z 

y 

x 

L=2.0 m 

10 kN 
5 kN 

5 kN 

2 1 

e=0.05 m 

4 kN/m 



 

 

115 

 

20.000 

25.000 

30.000 

35.000 

40.000 

0 1000 2000 3000 4000 5000 

B
es

t 
F

ea
si

b
le

 D
es

ig
n
 (

k
g
) 

Number of Analyses 

ABC 

algorithm 

The optimum results obtained by ABC algorithm is tabulated in Table 7.4.  The proposed 

design algorithm selects the 12CS4x105 cold-formed C-section from section list under 

mentioned loading. The optimum weight of the beam is obtained as 218.58 N         

(22.281 kg). The maximum strength ratio and the maximum displacement are 0.60 and 

5.326 mm, respectively. From this result, it can be concluded that the displacement 

constraint governs the optimization process for this example. The optimum design 

obtained by ABC algorithm is shown in Figure 7.13. Design history of the optimum 

solution is plotted in Figure 7.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13. Optimum design of cold-formed thin-walled cantilever beam with C-section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14. Design history graph of thin-walled cantilever beam with C-section. 
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7.6. Cold-Formed Thin-Walled Column with C-sections with Lips to AISI-LRFD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

                a) Column with C-section.                                      b) Loading of the column. 

 

 

Figure 7.15. Cold-formed thin-walled column; a) Column with C-section, b) Loading of 

the column. 

 

 

The fifth design example is selected as a column made of cold-formed thin-walled         

C-sections with lips accordance with AISI [113] as shown in Figure 7.15 (a). The           

C-sections and the strength constraints are considered in accordance with AISI [112,113] 

which are exactly same as previous example. 

  

 

The length (L) of the column is 1.5 m and the upper limit of the maximum displacement 

is L/360 which is 4.166 mm. The section is subjected to 5 kN concentrated load along x- 

and y-axis as well as a 5 kN equipment load is applied with 0.05 m eccentricity through 

y-axis at free end of the beam as shown in Figure 7.15. (b).  
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Table 7.5. Optimum design results of cold-formed thin-walled column. 

 

 

Algorithm Used ABC 

Minimum weight (N (kg)) 83.46 (8.51) 

Selected section ID 10CS2.5x070 

Maximum displacement (mm) 4.152 

Maximum strength ratio 0.633 

Maximum number of iterations 5000 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16. Optimum designs of cold-formed thin-walled column with C-section. 

 

 

The optimum results obtained by ABC algorithm is tabulated in Table 7.5. The proposed 

design algorithm selects the 10CS2.5x070 cold-formed C-section from section list under 

mentioned loading. The optimum weight of the beam is obtained as 83.46 N (8.51 kg). 

The maximum strength ratio and the maximum displacement are 0.633 and 4.152 mm, 

respectively. From this result, it is apparent that the displacement constraint governs the 

optimization process in this example. The optimum design obtained by ABC algorithm is 

shown in Figure 7.16. Design history of the optimum solution which shows the 

convergence variation of the best feasible design generated so far is plotted in          

Figure 7.17. 
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Figure 7.17. Design history graph of cold-formed thin-walled column with C-section. 

 

 

7.7. Plane Portal Frame Design to AISI-LRFD 

 

The optimum design algorithm based on ABC technique developed for geometrically 

nonlinear plane portal frames with cold-formed steel channel (C)-sections is used to 

determine the optimum design of the pitched roof frame shown in Fig. 7.18. The cold-

formed channel steel section designations (C-sections) are treated as design variables in 

the optimization process by considering that the span (Lf), the height of eaves (hf), the 

pitch angle (Øf) are given. The design constraints are implemented from AISI-LRFD 

(American Iron and Steel Institute - Load and Resistance Factor Design) [113] as 

explained in detail in Chapter 5.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18. Geometry of a plane portal frame with cold-formed steel sections. 
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The specific values of span (Lf), height of eaves (hf), and pitch angle (Øf) and the external 

loading are shown in Figure 7.19. The frame is subjected to two 2 kN and a 4 kN 

concentrated loads on its joints at eaves and apex. The members of the portal frame are 

grouped together to achieve the minimum construction cost for the structure. The column 

members are assigned as the first group and the rafter members are assigned as the second 

group. Moreover, the modulus of elasticity (E) for the steel is taken as 203 kN/mm
2
 and 

the shear modulus (G) is taken as 78 kN/mm
2
 for cold-formed steel sections. The 

complete C-section with lips list given in AISI Design Manual 2007 [112] which consists 

of 85 section designations is considered as a design pool for design variables. The inter-

storey drift and top-storey drift are restricted as 10 mm. Maximum deflections of rafters 

are limited as 28.33 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19. Loading and geometry of the plane portal frame. 

 

 

The bee colony size is taken as 30 and the maximum cycle number (MCN) is chosen as 

1000. With these selections the total objective function evaluations become is 30000. The 

value of the limit which is used to abandone the food source is selected as 30. The 

maximum number of iterations is limited to 5000.  

 

 

Table 7.6. Optimum design results of plane portal frame.  

 
 

 

 

 

 
 

 

 

 

 

Group Number Group type 
Section selected by           

ABC algorithm 

1 Rafter 12CS4x105 

2 Column 12CS4x085 

Minimum weight (kN (kg)) 2.9365 (299.239) 

Maximum top storey drift (mm) 5.535 

Maximum inter-storey drift (mm) 5.535 

Maximum deflection (mm) 27.63 

Maximum strength ratio 0.36 

Maximum number of iterations 5000 

Lf =20 m 

hf =4 m 

Øf =11.310 
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The minimum weight, maximum constraints values and cold-formed steel section 

designations of optimum design obtained by the ABC algorithm are illustrated in      

Table 7.6. It is apparent from this table that the minimum weight obtained by proposed 

ABC algorithm is 2.9365 kN (299.24 kg). Moreover, artificial bee colony algorithm 

selects the 12CS4x105 cold-formed C-section with lips for rafter members and 

12CS4x085 cold-formed C-section with lips for column members of the plane portal 

frame. The maximum strength ratio and the maximum deflection values are 0.36 and 

27.63 mm, respectively. From these results, it is obvious that the displacement constraint 

is dominant on the optimization process for this example. Optimum design of the portal 

frame obtained by ABC algorithm is demonstrated in Figure 7.20. Design history of the 

optimum solution is graphed in Figure 7.21. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 7.20. Optimum design of plane portal frame. 
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Figure 7.21. Design history graph of plane portal frame. 

 

 

7.8. 302-Member Lightweight Steel Frame Built Up With Cold-Formed Thin-Walled 

Sections  

 

Two storey low-rise braced lightweight steel frame composed of 183 joints and 302 

members is considered as a seventh design example. An economical and effective 

stiffening of the frame against lateral forces is achieved through exterior diagonal bracing 

members, which also participate in transmitting the gravity forces. The 302 frame 

members are collected in 8 different member groups considering the symmetry of the 

structure and practical fabrication requirements. The member grouping details are 

depicted in Figure 7.22. (d). The C-shaped profile list consisting of 85 cold-formed thin-

walled ready sections is used to size column, beam, and diagonal members.  

 

 

The frame is subjected to a gravity loading condition which is applied as 2.0 kN/m
2
 to 

floors and 1.0 kN/m
2
 to roof of the frame. Besides, the wind in the x-direction is 

considered for design purpose, and the corresponding wind force is applied as 0.5 kN to 

all joints of windward side of the frame. The joint displacements in x and z directions are 

restricted to 10 mm, which is obtained as height of frame/400. Furthermore, storey drift 

constraints are applied to each story of the frame, which is equal to height of each 

storey/400. Also, maximum deflection of a frame member is equal to member length/360. 
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a ) 3D View.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b ) Front View.  
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c ) Side View.  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d ) Member Grouping. 

  

 

Figure 7.22. 302-Member Lightweight Steel Frame; a) 3D View, b) Front View,            

c) Side View, d) Member Grouping. 
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A five independent runs are performed with the ABC algorithm using different values of 

the parameter set, and the best run of the algorithm has been obtained when bee colony 

size is taken as 50, maximum cycle number (MCN) is taken as 2000, and the limit is 

taken as 250. The ABC algorithm has yielded the optimum solution of the problem, 

producing a design with the weight of 44.22 kN (4507.146 kg) for the building. This 

optimum design is tabulated in Table 7.7. The convergence history showing the variation 

of the best feasible design generated throughout the optimization process with ABC 

technique is plotted in Figure 7.23.  

 

 

 

Table 7.7. Optimum design results of 302-member lightweight steel frame.  

 

 

Group Number Group type 
Section selected by           

ABC algorithm 

1 Beam 7CS4x105 

2 Beam 12CS4x105 

3 Beam 8CS4x105 

4 Beam 4CS4x085 

5 Beam 6CS2.5x059 

6 Column 8CS4x105 

7 Bracing 4CS2x059 

8 Bracing 4CS2x059 

Minimum weight (kN (kg)) 44.225 (4509.690) 

Maximum top storey drift (mm) 5.346 

Maximum inter-storey drift (mm) 5.0 

Maximum deflection (mm) 10.38 

Maximum strength ratio 0.478 

Maximum number of iterations 75000 

 

 

 

From Table 7.7, it is clear that inter-storey drift and deflection constraints, which are 

almost at their upper limits indicating the dominance of deflection constraints in the 

optimum design problem. The ABC algorithm yields the optimum design weight of  

44.225 kN (4509.69 kg). The maximum strength ratio and the maximum top-storey drift 

values are 0.478 and 5.346 mm, respectively. The steel section designations assigned to 

frame member groups are given in the table.   
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Figure 7.23. Design history graph of 302-Member Lightweight Steel Frame. 

 

 
7.9. 106-Member Industrial Building Made of Cold-Formed Thin-Walled Sections to 

AISI-LRFD 

 

The last design example is an industrial building consisting of 65 joints and 106 

members. Shown in Figure 7.24. are the plan, side and 3D views of this structure. The 

main system of the structure consists of five identical frameworks lying 6.0 m (19.685 ft) 

apart from each other in the y-z plane and 4.0 m (13.123 ft) in x-y plane. Each framework 

consists of two side frames and a gable roof in between them, as depicted in Figure 7.24. 

(b). The lateral stability against wind loads in the y-z plane is provided through columns 

fixed at the base along with the rigid connections of the side frames. Hence, all the beams 

and columns in the side frames are designed as moment-resisting axial-flexural members.  

 

Two different types of loads are considered for design of the industrial building; namely 

gravity and wind loads. A design gravity load of 150 N/m
2
 is assumed to be acting on 

both roof and floors of the frame. Only the wind in the x-direction is considered for 

design purpose, and the corresponding wind force is applied as 50 N to all joints of 

windward side of the frame. 

 

Considering symmetry of the structure as well as fabrication requirements of structural 

members, 106 members are collected in 15 member groups, Figure 7.23. (e). Section lists 

consisting of 85 independent C-shaped with lips cold-formed steel sections are used to 

size the columns and beams, respectively. Combined strength, stability and geometric 

constraints are imposed according to the provisions of AISI-LRFD [113]. In addition, 

displacements of all the joints at top storey in x and z directions are limited to 20 mm 

(0.79 in), and the upper limit of inter-story drifts is set to 10 mm (0.394 in).      
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a ) 3D View. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b ) Front View.  
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c )  First Floor Plan View and Column Orientations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d ) Side View. 
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e ) Member Grouping. 

 

 

Figure 7.24. 106-member industrial building; a) 3D view, b) front view, c) first floor plan 

and column orientations view, d) side view, e) member grouping. 

 

 

Several independent runs are performed with the ABC algorithm using different seed 

values, and the best run of the algorithm has been obtained once again when bee colony 

size is taken as 50, the maximum cycle number (MCN) is chosen as 2000, and the limit 

which is used to abandone the food source is selected as 250. The optimum design 

determined is given in Table 7.8. The minimum weight for the frame is obtained as 

21.579 kN (2200.446 kg). It is apparent that in optimum design problems where the 

number of design variables relatively large, ABC algorithm worked efficiently without 

any problem. The maximum strength ratio, the maximum top storey drift and the 

maximum inter-storey drift values are 0.964, 19.18 mm and 9.812 mm, respectively. 

From these results, it can be concluded that the all constraints are almost at their upper 

bounds and both displacement and strength constraints are dominant in the optimization 

process. The convergence history showing the variation of the best feasible design by the 

ABC technique is plotted in Figure 7.25.  
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Table 7.8. Optimum design results of 106-member industrial building.  

 
 

Group Number Group type 
Section selected by           

ABC algorithm 

1 Beam 4CS2X059 

2 Beam 12CS3.5X070 

3 Beam 8CS2X059 

4 Rafter 9CS2.5X059 

5 Rafter 12CS3.5X070 

6 Rafter 6CS2.5X059 

7 Beam 4CS2X059 

8 Beam 4CS2X059 

9 Beam 4CS2X059 
10 Column 4CS2X059 

11 Column 6CS4X059 

12 Column 4CS2X059 

13 Column 12CS2.5X070 

14 Column 8CS4X059 

15 Column 4CS2.5X065 

Minimum weight (kN (kg)) 221.59 (2200.446) 

Maximum top storey drift (mm) 19.180 

Maximum inter-storey drift (mm) 9.812 

Maximum strength ratio 0.964 

Maximum number of iterations 75000 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.25. Design history graph of 106-member industrial building. 
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CHAPTER 8 

 

 

SUMMARY AND CONCLUSIONS 

 

 

 

In this thesis the artificial bee colony algorithm is used to develop an optimum design for 

the steel frames made of cold-formed thin-walled steel sections. Because cold-formed 

thin-walled sections do have small torsional and flexural stiffness, they may undergo 

large deformations. Hence, the algorithm developed should consider geometric 

nonlinearity. Furthermore warping effects are also taken into account due to the fact that 

excessive torsional deformations generate large normal stresses. The design algorithm 

presented is used to determine number of single span beam-columns as well as two and 

three dimensional space steel frames made of cold-formed thin-walled steel section. It is 

shown that artificial bee colony algorithm is efficient enough to obtain the optimum 

designs of all these problems. It is important to notice that the optimum design problem 

of structures made of cold-formed thin-walled sections is a complex design problem due 

to the necessity of considering the geometric nonlinearity as well as the warping effect in 

the prediction of structural response to external loads. 

 

The artificial bee colony algorithm mimics the foraging behavior of a bee colony. To 

increase the gathered pollen in apiary, bees search for a fruitful food resource. Artificial 

Bee Colony technique simulates this elementary foraging strategy of a bee colony 

consisting of employed bees, onlooker bees and scouts. The task of an employed bee in 

the colony is to find food sources and to identify the pollen content of each new source 

and to keep in mind the better one (greedy selection). Employed bees carry this data into 

the hive and inform other bees by dancing in the dance area. The dancing time represents 

the amount of pollen in the food source. Related with this information onlooker bees 

attain the new food sources. Then onlooker bees select the most fertile food source 

(probabilistic selection) among all food resources. In order to detect the most productive 

food source, a greedy selection is carried out. When a food source is unworthy to gain, it 

is absconded by the bees. This is a real characteristic of bees, and the employed bee of 

that source becomes a scout bee and starts searching the environment arbitrarily or 

instinctively to find a new source. This technique requires pre-determination of only three 

parameters. These are the bee colony size, the maximum cycle number (MCN), and the 

limit (predefined iteration) by which if there is no improvement in the amount of nectar 

from a food source, this food source is discarded by its employed bee. So, the design 

algorithm developed does not need an initial starting value for the design variables. 

 

The behavior of steel structures made of cold-formed thin-walled open steel sections is 

nonlinear due to excessive change of their geometry under external loads. This is due to 

the weak torsional and flexural stiffness of cold-formed-thin-walled sections. It is also 

necessary to check the overall stability during the analysis to ensure that the structure 

does not lose its load carrying capacity due to instability. The elastic instability analysis 
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of steel frames involves iterative linear elastic analysis of the structure and determination 

of axial forces in structural members. After this identification, the stability functions are 

calculated and structural analysis is repeated. When the specific convergence is reached at 

the axial forces of the members, this operation is terminated. The final values of internal 

actions and displacements obtained at the outlet of the nonlinear analysis of the structure. 

The details of a nonlinear stiffness matrix of a space member are given in Chapter IV. 

 

In this thesis two different optimum design algorithms are developed. The first one  finds 

out the optimum cross sectional dimensions of a cold-formed thin-walled open section 

subjected to any general external loading which may consist of axial load, bi-axial 

bending moment and torsional moment. The optimum design problem in this part of the 

study is formulated such that the objective function is taken to be the minimum weight of 

the cold-formed thin-walled section and the design constraints are considered to be the 

displacement and normal stress limitations.  Furthermore, in order to prevent the local 

buckling the on the depth to thickness ratios are also considered. The yield stress of the 

steel material is imposed as upper bound on the flexural stresses.   The warping effect in 

the computation of the flexural stresses is taken into account. It is noticed in the design 

examples that in the case the torsional moments are dominant, the normal stress values 

become extremely large. Therefore in such cases ignoring the warping effect yields 

unsafe design.  The program developed has a subroutine which computes the sectorial 

coordinate and warping moment of inertia of a cold-formed thin-walled open section of 

arbitrary shape. This subroutine takes the geometric dimensions of the cross section as 

data and computes all the required cross sectional properties such as center of gravity of 

the section, moment of inertias about both axis and other necessary properties 

automatically.  

 

In the second part of the study, another optimum design algorithm is developed which 

determines the optimum design of two or three dimensional steel frames subjected to any 

general loading whose members are made of cold-formed thin-walled open sections. The 

design constraints in this optimum design problem are implemented from AISI Design 

Manual 2007 [112]. The design algorithm selects the optimum cold-formed thin-walled 

sections from the discrete set of the same code given in Excerpts-Gross Section Property 

Tables for the members of the frame. This profile list consists of 85 independent C-

shaped with lips sections. The combined strength and stability constraints adapted from 

2007 edition of the North American (AISI) specification [113] are imposed as explained 

in Chapter 5.3. It can be concluded from design examples that the strength limitations are 

dominant in the 106-members industrial building. The optimum design results obtained 

for this example show that the strength ratios were very close to 1 and the values of the 

restricted deflections were almost at their upper bounds. But in plane portal frame and 

302-members lightweight steel frame displacement constraints governed the optimization 

process which were almost at their upper limits. This is due to consideration of geometric 

nonlinearity which affects the behavior of these steel frames drastically.  
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It is observed that the warping effect in the optimum design of cold-formed thin-walled 

steel members is very important. This second order torsional effect leads significant stress 

increase in thin-walled members. It is obvious that excluding warping effect from 

optimum design of cold-formed thin-walled sections and steel frames made of these 

sections would be unsafe. In Z-lip cantilever beam the normal stress has reached to 

344.60 MPa when effect of warping is taken into account in the computation of normal 

stresses.  94.47% of this stress was due to warping and the rest of which was due to 

bending. In simply supported beam with an arbitrary cold-formed thin-walled open 

section the normal stress is determined as 344.812 MPa when effect of warping is 

considered in optimum design. This stress is 51.78% higher than the one when the effect 

of warping is not considered in the optimization process. The normal stress reaches 

344.544 MPa in the column with L-lip cold-formed thin-walled open section including 

both warping and bending stresses which are 329.314 MPa and 15.23 MPa, respectively. 

These results verify that exclusion of warping effect in the optimum design of cold-

formed thin-walled open sections yields unsafe designs. 

 

It can be concluded that the Artificial Bee Colony (ABC), which is a biologically inspired 

stochastic search technique is promising in finding the optimum design of cold-formed 

thin-walled open sections and as well as low-rise steel frames made use of these steel 

sections. No difficulty is observed in obtaining the optimum design even in the design 

example of 302- member frame which is a relatively large design example. The use of 

other metaheuristic optimization techniques on the efficiency of the solutions obtained 

will be the subject of a future work. 
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