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ABSTRACT 

 

 

 

 

FREE CONVECTION HEAT TRANSFER  

IN A STRATIFIED MEDIUM – CAVITY PROBLEM 

 

Kayserilioğlu, Yavuz Selim 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Rüknettin Oskay 

Co-Supervisor: Assoc. Prof. Dr. Tuba Okutucu Özyurt 

September 2013, 133 Pages 

 

 

A numerical study is performed in order to simulate a 2D cavity filled with water having 

one inlet and one outlet. Relatively warm water is fed to the cavity to charge it while 

relatively cooler water is drained from the outlet. The top surface of the cavity is exposed 

to ambient air. Bottom surface is insulated while vertical side surfaces are cooled. 

 

Mathematical model comprised of laminar 2D transient flow of an incompressible fluid. 

Momentum and energy equations are solved simultaneously with Boussinesq 

approximation since both forced and natural convection occur within cavity. 

 

The charging period of the cavity with relatively hot charging water is examined. 

Velocity and temperature fields for cavity are presented. Effects of initial temperature, 

ambient air temperature, inlet charging temperature, and solar radiation on free surface 

are examined. It is found that lower initial storage temperature, higher ambient air 

temperature, higher charging water temperature, and existence of solar radiation have 

positive effects on the performance of cavity. 

 

Heat removal period from cavity is examined. Basic heat removal tubes with rectangular 

cross-sections are modeled as negative heat generation sources. Heat removal process 

affects regions below the tubes more than regions above the tubes. The effect of heat 

removal is seen all the way down to bottom of the cavity whereas only a couple of 

centimeters above the heat removal tubes are affected. As a result, when heat is removed 

from a lower layer, stored energy content of cavity at the end of heat removal is higher. 

 

Keywords: Sensible Heat Storage, Thermal Stratification, Warm Water Storage, Finite 

Volume Method, SIMPLE Algorithm 
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ÖZ 

 

 

 

 

ISIL TABAKALANMIŞ ORTAMDA DOĞAL ISI TRANSFERİ 

– BOŞLUK PROBLEMİ 

 

Kayserilioğlu, Yavuz Selim 

Doktora, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Rüknettin Oskay 

Ortak Tez Yöneticisi: Doç. Dr. Tuba Okutucu Özyurt 

Eylül 2013, 133 Sayfa 

 

 

İki boyutlu, bir girişi bir de çıkışı olan, içi su dolu bir boşluğu simüle etmek için sayısal 

çalışma yapılmıştır. Görece sıcak su boşluğu yüklemek için girişten verilirken görece 

soğuk su çıkıştan çekilir. Boşluğun üst yüzü ortam havası ile temas halindedir. Alt yüzey 

ısıl yalıtılmışken dikey yan yüzeyler soğutulmaktadır. 

 

Matematik model sıkıştırılamaz bir akışkanın laminer, geçici, iki boyutlu akışından 

oluşmaktadır. Boşlukta hem zorlama hem doğal taşınım olduğu için momentum ve enerji 

denklemleri Boussinesq yaklaştırımı yardımıyla eşzamanlı çözülmektedir. 

 

Boşluğun sıcak suyla yüklendiği yükleme süreci incelenmektedir. Boşluğun hız ve 

sıcaklık alanı sunulmaktadır. İlk sıcaklığın, ortam hava sıcaklığının, yükleme suyu 

sıcaklığının ve su yüzeyine güneş ışınımının etkileri incelenmektedir. Daha soğuk ilk 

sıcaklığın, daha sıcak ortam hava sıcaklığının, daha sıcak yükleme sıcaklığının ve güneş 

ışınımının bulunmasının boşluk performansına olumlu etkisi olduğu görülmektedir. 

 

Boşluktan ısı çekme süreci incelenmektedir. Basit dikdörtgen kesitli ısı çekme tüpleri 

negatif ısı jenerasyonu kaynağı olarak modellenmektedir. Isı çekmenin tüplerin altında 

kalan kısımları tüplerin üzerinde kalan kısımlardan daha çok etkilediği gözlemlenmiştir. 

Isı çekmenin etkisinin tabana kadar etkili olduğu, ancak tüplerin üzerinde sadece birkaç 

santimetrelik bir bölgeyi etkilediği görülmektedir. Sonuç olarak boşluğun daha 

aşağılarından ısı çekildiğinde, ısı çekme sonuçlandığında boşlukta kalan ısıl enerji daha 

fazladır. 

 

Anahtar Kelimeler: Duyulur Isı Depolama, Isıl Tabakalanma, Sıcak Su Deposu, Sonlu 

Hacimler Yöntemi, SIMPLE Algoritması 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

 

Energy storage systems involve the collection and retention of readily available energy 

for later use. There are four main modes of energy storage; electrical, mechanical, 

chemical, and thermal. Among these, thermal energy storage is attractive for the 

applications related to waste heat recovery, solar energy utilization, and peak electricity. 

 

Thermal energy can be stored as sensible heat, as latent heat of phase change, or in a 

reversible chemical reaction. Latent heat can be stored within a medium undergoing a 

phase change. For example, during boiling of a liquid, heat of vaporization is stored in its 

vapor and this stored energy can be released during the condensation of the vapor. 

Thermal energy can be stored in a reversible chemical reaction. During an endothermic 

reaction, energy is stored and when the reaction is reversed, the exothermic reaction 

releases the stored energy. 

 

Sensible heat storage systems utilize materials that store energy as sensible heat, thus the 

temperature of storage medium changes as it stores or discharges thermal energy. The 

sensible heat gained or lost by a material during a change in temperature from 
1

T to 
2

T can 

be written as; 

 

2

1

T

T

Q V cdT   (1.1) 

 

Where Q  : Sensible heat gained or lost 

 T  : Temperature of the material 

   : Density of the material 

 V  : Volume of the material 

 c  : Specific heat capacity of the material 

 

Liquids and solids are used as the storage media. Most commonly used solids as the solid 

storage media are rocks and pebble beds. Water is the most common liquid used as liquid 

storage media. 
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Some of the advantages of using water as the sensible heat storage medium are: 

 

 it is cheap and abundant, 

 has relatively high heat capacity (five times more than that of granite), 

 has lower density compared to rocks, 

 non-toxic, non-combustible. 

 

General operational problems of sensible heat storage systems can be summarized as [1]: 

 

 Temperature of the storage medium continually rises during charging which 

results in greater heat loss. 

 Temperature of the storage medium continually drops during heat removal which 

results in smaller heat flux deliveries. 

 Heat storage occurs at temperatures higher than ambient temperature. Therefore 

insulation is required which increases system cost. 

 

The temperature distribution within the sensible liquid storage medium can be isothermal 

as it is in a well-mixed liquid storage or can be non-uniform as it is in thermally stratified 

storage.  

 

Thermal stratification is a kind of non-uniform temperature distribution in a body. It 

occurs especially in the vertical direction within a water storage tank. The relatively 

warmer water entering the storage unit is lighter than the relatively colder water inside the 

storage tank and remains on top of the relatively cold water of the storage, resulting in 

non-uniform temperature distribution in the vertical direction. The benefit of thermal 

stratification in a water storage is that liquid at a higher temperature than the overall 

mixed temperature can be stored at the top of the storage medium. 

 

The main objective of the present study is to simulate numerically a rectangular 

parallelepiped cavity. The cavity is a flow through reservoir containing water in it as the 

working fluid, and charged from a single inlet by relatively warm water and discharged 

by a single outlet from the opposite side of the inlet. The two side walls along the inlet 

and the outlet are cooled to attain thermal stratification whereas the remaining two side 

walls are kept at a constant wall temperature, while the bottom surface is assumed to be 

insulated. The top surface is a free surface permitting interaction of the fluid filling the 

cavity with the ambient air. 

 

The three dimensional Navier-Stokes equations and the energy equation will be solved 

for unsteady conditions for an incompressible fluid with constant viscosity and thermal 

conductivity. The method used in the discretization of the governing equations is the 

Finite Volume Method. SIMPLE algorithm will be the solution algorithm. 

 

There will be two stages of the simulations. In the first stage, the cavity (the relative 

dimensions of the cavity will be changed) will be charged (with different charging 



 3 

temperatures, starting from different initial temperatures, with/without solar radiation on 

the free-surface) until a steady-state flow field and temperature field is established within 

the cavity. This state corresponds to the equilibrium state at which thermal energy input 

to the cavity equals heat losses from the cavity. At this time, the highest amount of 

thermal energy is stored within the cavity.  

 

Next, the heat extraction stage begins; thermal energy in the cavity will be used with the 

help of heat-exchangers. Equal amount of heat will be extracted from different depths of 

the cavity in order the observe the resulting effect of heat removal on the flow and 

temperature fields. The flow field and the temperature field within the cavity will 

converge to yet another steady-state. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

 

 

Some of the aspects that are important in the evaluation of storage performance of a 

sensible storage may be classified as follows; the velocity and temperature of the inlet 

flow charging the storage medium, relative locations of the inlet and outlet channels or 

ports with respect to the storage geometry, boundary conditions of the storage medium, 

especially at the surface if there is a free surface with the ambient, aspect ratio dictated by 

the storage medium ( L / D  for cylindrical geometries, L / H  for rectangular geometries) 

and the thermal stratification inside the storage medium. Following is a review of some of 

the papers available in the literature dealing with these aspects. 

 

Oberkampf and Crow [2] simulated the velocity and temperature fields in a reservoir by 

using a finite difference procedure. They assumed the flow inside the reservoir to be two-

dimensional in a vertical plane and solved the vorticity transport, stream function and 

energy equations. The inflow was set at a temperature and velocity to simulate thermal 

discharge from a power plant and occurred at the surface at one end of the reservoir and 

outflow occurred on the opposite end at different depths. Wind shear, thermal radiation, 

evaporation, and convection at the surface of the reservoir were considered. They 

discussed the effects of inflow-outflow, wind shear and heat transfer on the reservoir. 

 

Lavan and Thompson [3] studied thermal stratification in hot water storage systems. 

Cylindrical plastic vessels with various length-to-diameter ratios were charged with 

varying inlet-outlet temperature differences and mass flow rates. They also studied inlet 

and exit port configuration on thermal stratification. They concluded that, even at very 

large flow rates, thermal stratification could be maintained in cylindrical water tanks. 

Increasing L / D  and inlet and outlet port diameter, decreasing mass flow rate improved 

thermal stratification. They obtained best results when the inlet and outlet ports were near 

the end walls of the storage tank. 

 

Çömez [4] designed and constructed a sensible heat storage unit as part of his M.S. study. 

Author observed the development of temperature and velocity profiles experimentally 

within the storage unit. The main parameters investigated for the evaluation of 

performance of the storage unit were the charging flow rate, charging temperature and 

aspect ratio ( /A H L ) of the water body. Two dimensionless parameters were defined, 
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the effectiveness,  , was related to the percentage of input energy which could be stored 

inside the storage unit and a dimensionless temperature  , represented a mean bulk 

temperature for the storage medium. The main conclusions that the author derived were 

as follows. The storage medium could be thermally stratified for all of the charging mass 

flow rates. Better stratification was observed at lower charging rates. Aspect ratio was an 

important parameter affecting the performance of the storage unit. Lower aspect ratios 

gave better storage performance. Slow moving convective currents were observed during 

the flow visualization tests.  

 

Jaluria and Gupta [5] carried out an experimental study of the temperature decay in a 

thermally stratified water body. Water body was initially stratified by the recirculating 

flow of hot water discharge and by the addition of hot water at the top of the colder fluid. 

After the fluid was stratified, it was allowed to cool without any external charging of the 

storage. They also investigated the cooling of an isothermal water region. Greater 

buoyancy-induced mixing was observed in isothermal case, since stratified region 

inhibited mixing currents and energy transfer in this region was mainly by thermal 

diffusion. They concluded that stratified medium was a better energy storage system 

compared to the isothermal one. Experimental results indicated that the temperature field 

was largely one-dimensional and they formulated a simple analytical model. Analytical 

results were in good agreement with the experimental results. 

 

Jaluria and O’Mara [6] studied experimentally the recirculating flow in an enclosed water 

region due to the discharge of heated, buoyant, surface jets, coupled with withdrawal of 

cold fluid at the other end of the region. They determined both the transient and steady-

state temperature fields. Effects of inflow conditions, flow configuration, enclosure 

dimensions and the outlet location on the temperature field were examined. They 

investigated the downward penetration of the flow and thermal stratification in the region. 

They found that the temperature field in the water body undergoes a rapid transient 

behavior at the beginning of the flow, followed by a gradual variation to steady-state 

conditions. Inlet conditions and outlet location determined the transient behavior. An 

interesting finding was that the temperature field they obtained was mainly two-

dimensional, only a small variation was observed in the transverse direction. Buoyancy 

affected mainly the temperature distribution inside the water body. It was the cause of 

fairly good horizontal temperature homogeneity except the proximity of inlet and outlet 

channels. 

 

Yoo and Pak [7] studied a theoretical model of the charging process to provide an upper 

limit of the performance for stratified thermal storage tanks. They reached a closed-form 

solution for the transient temperature as a function of Peclet number Pe , assuming perfect 

piston flow together with appropriate boundary conditions and applying Laplace 

transform. They compared the model with those from heat conduction between two semi-

infinite regions in contact with the moving interface. They concluded that the model 

could be used for a wider range of Pe , and predicted the thermal behavior of storage tank 

better compared to the semi-infinite case. 
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Safi and Loc [8] performed a numerical study for the determination of thermal 

stratification in an open cavity with one heated discharge. Hot laminar jet entered 

horizontally into the square cavity at the top of one end, the outlet was at the bottom of 

the opposite end. They used a finite difference scheme to solve two-dimensional flow 

described by the Navier-Stokes and energy equations. The influences of non-dimensional 

parameters of Reynolds, Peclet and Richardson numbers on the flow and thermal 

stratification were observed. Authors concluded that the flow was strongly dependent on 

Richardson and Peclet numbers. 

 

Eames and Norton [9] performed a theoretical and experimental study to investigate the 

thermal performance of stratified hot water stores. They compared their transient three-

dimensional finite volume model with the experiments they performed. Variations in inlet 

velocities, temperatures and initial store stratification were the main concerns. Authors 

reported that store charging was more efficient when H / D  of the store increased and 

inlet port located near to the top of the store. 

 

Hahne and Chen [10] investigated numerically the flow and heat transfer characteristics 

of a cylindrical store during charging under adiabatic conditions. The study is 

concentrated on the effects of charging temperature differences, charging velocities, 

charging flow rates and length to diameter ratios on the charging efficiency. The 

conclusions were; charging efficiency depended mainly on Richardson number, Peclet 

number and aspect ratio of the storage. An increase in Richardson number or aspect ratio 

revealed an increase in charging efficiency. An increase in Peclet number while keeping 

Richardson number constant increased charging efficiency. 

 

According to Bouhdjar and Harhad [11], thermal stratification generated in the sensible 

heat storage should be promoted in order to improve thermodynamic system efficiency of 

the storage. They presented a numerical study of transient mixed convection. The use of 

different fluids (Torada oil, ethylene glycol, and water) as a heat storage medium in 

cylindrical cavities with different aspect ratios (3 to 1/3) was examined. The effect of 

different fluids was observed by changing the physical properties represented by the 

Prandtl number. Fluid was injected from the top and discharged from the bottom. They 

solved conservation equations for laminar natural convection flow with Boussinesq 

approximation and superimposed forced convection using finite volume method. They 

presented the performances of the thermal energy storage through the transient thermal 

storage efficiency. 

 

Ersoy [12] performed a numerical study of mixed convection in cavities. The flow was 

two-dimensional, incompressible, steady flow of a Newtonian fluid. Gauss-Seidel 

iteration was used to solve the non-dimensional vorticity transport, stream function, and 

energy equations for cavities without any inlets or outlets and with single inlet and outlet 

configurations. Author emphasizes that “Rayleigh number has considerable influence on 

every variable of the flow.” Also for the numerical computations, the author reports that 

convergence is affected by Rayleigh and Prandtl numbers. 
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Saha et. al. [13] performed a numerical study on a 2D cavity with one inlet and two exits. 

Ambient air is fed to the cavity from the inlet located at the bottom of one vertical side 

wall and the exits are located at the top of the two side walls. The bottom wall of the 

cavity is heated with constant heat flux while the other three walls of the cavity are 

adiabatic. Laminar flow of air within the cavity is solved by a control volume based finite 

element technique. At low Reynolds and Richardson numbers, they observed a large eddy 

within the cavity. The governing parameter affecting heat transfer is found to be 

Richardson number. 

 

Das et. al. [14] investigated a rectangular cavity heated symmetrically from the vertical 

side walls both numerically and experimentally. The numerical model is 2D FVM, while 

the experimental set-up has two heated opposite side-walls and the remaining side walls 

are glass. The bottom of cavity is insulated while the top surface is left open. They find a 

well-mixed zone near the top of the cavity whereas the lower region of the cavity is 

thermally stratified. 

 

Rahman et. al. [15] studied combined forced and free convection within a rectangular 

cavity which has an inlet in the middle of the left wall and an outlet at the top of the right 

wall. The remaining right side wall is heated with constant heat flux and a horizontal 

conducting cylinder is placed at different locations within the cavity. The numerical 

method used is Galerkin Finite Element Method. They report that as the diameter of the 

conductive cylinder increases, the average Nusselt number of the heated wall increases 

and the average fluid temperature within the cavity decreases. 

 

Papanicolaou and Belessiotis [16] studied numerically a real-scale underground hot-water 

storage tank. The simulated storage tank has a volume of 38m , concrete bottom and side 

walls, a free-surface at the top which is covered by an other concrete lid 8 cm above the 

free-surface. The storage has an inlet at the top of one of the side walls and an exit at the 

bottom of the same vertical side wall. The storage is charged with constant mass flow rate 

of water with either at constant temperature, or at transient temperature due to solar-

collector heating, or at transient temperature due to electrical heating. The numerical 

model used is either 2D low Re k   or two-layer turbulence model. When constant 

temperature charging is used, the inlet velocity is 0.022m s , the inlet temperature is 

50 C , and the initial temperature of the storage is 20 C . Zero-shear velocity B.C. is 

used at the free-surface. The fluid region and the thick concrete walls are solved together. 

The streamlines and isotherms at different times are presented. The isotherms reveal 

thermal stratification in the vertical direction.  

 

In his M. Sc. study, Kayserilioğlu [17] performed an experimental study on the same set-

up of [4] with some major alterations. The charging of the storage unit until reaching a 

steady-state flow field and temperature field was followed by thermal energy extraction 

from the storage unit by passing cooler water inside coils suspended into the storage unit. 

During this energy extraction, charging is either continued or ceased. Fig. 2.1 shows the 

vertical thermal strafication during the charging period of the storage unit, Fig. 2.2, 
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during the heat removal period of the storage unit whilst the charging is continued, and 

Fig. 2.3, during the heat removal period of the storage unit whilst the charging is ceased. 

A steady thermal stratification is achieved (Fig. 2.1) when the total energy input is 

equaled by heat losses from the storage unit. When the heat removal is started with the 

continuation of energy charging, temperature field converges another steady profile, not 

far from the first steady profile (mainly due to lack of complex heat removal equipment 

and/or not utilizing higher mass flow rates within the heat removal coils). 

 

On the contrary, when the heat removal was in the absence of further charging of the 

storage unit, decay of thermal stratification was abrupt. 

 

 

 

 

 
Fig. 2.1 Development of Vertical Temperature Profile within the Storage Unit 

During Charging, from [17] 
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Fig. 2.2 Development of Vertical Temperature Profile within the Storage Unit 

During Heat Removal with Charging Continued, from [17] 
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Fig. 2.3 Development of Vertical Temperature Profile within the Storage Unit 

During Heat Removal without Charging Continued, from [17] 
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CHAPTER 3 

 

 

 

 

MATHEMATICAL FORMULATION 

 

 

 

 

 

 

The schematic of the cavity is presented in Fig. 3.1. A cross section of the cavity at 0z   

plane is presented in Fig. 3.2. The cavity dimensions are 2L H B  . Side walls are 

cooled while the bottom surface is assumed to be insulated. The top surface is a free 

surface interacting with the ambient air. Warm water enters the cavity from the inlet 

which is at the 0x   plane, h  far from the free surface. Relatively cooler water is 

drained from the bottom of the opposite side of the cavity. 

 

 

 

 
Fig. 3.1 Schematic of the Cavity 
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Fig. 3.2 Cross Section of the Cavity at a Constant zplane 

 

 

 

The flow is assumed to be laminar, 3 dimensional, unsteady; the fluid is incompressible 

(liquid water) and has constant properties. The governing equations with the employment 

of the Boussinesq approximation are (from Jaluria [18] and Yang [19]) 

 

 

0
u v w

x y z

  
  

  
       (3.1) 

 
2 2 2

2 2 2

u u u u p u u u
u v w

t x y z x x y z
    

        
        

        
  (3.2) 

 

 
2 2 2

2 2 2 ic

v v v v p v v v
u v w g T T

t x y z y x y z
      
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          

        
 

          (3.3) 

 
2 2 2

2 2 2

w w w w p w w w
u v w

t x y z z x y z
    
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        

        
  (3.4) 

 

2 2 2

2 2 2

T T T T T T T
c cu cv cw k

t x y z x y z
   

       
      

       
  (3.5) 
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Where, 
icT  is the initial uniform temperature of the cavity,   is the coefficient of thermal 

expansion of the fluid, and g  is the gravitational acceleration. 

 

The initial condition for the cavity is quiescent water in thermal equilibrium. 

 

( , , ,0) ( , , ,0) ( , , ,0) 0

( , , ,0) ic

u x y z v x y z w x y z

T x y z T

  


    (3.6) 

 

And the boundary conditions are; no slip and transient cooling boundaries at the vertical 

walls along the inlet and outlet and no-slip and constant wall temperature boundaries for 

the remaining two vertical side walls. 

 

 
(0, , , ) (0, , , ) (0, , , )

( , , , ) ( , , , ) ( , , , ) 0

u y z t v y z t w y z t

u L y z t v L y z t w L y z t

 

   
 

 
 

(0, , , ) ( , , , )
wlq tT T

y z t L y z t
x x k

 
 

 
     (3.7) 

 

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , ) 0

( , , , ) ( , , , ) wl

u x y B t v x y B t w x y B t

u x y B t v x y B t w x y B t

T x y B t T x y B t T

    

   

  

    (3.8) 

 

Or instead of using one of the , 0 , 0z B x L y H      boundaries, the symmetry at 

0z   plane can be used 

 

 ( , ,0, ) ( , ,0, ) ( , ,0, ) ( , ,0, ) 0
u v w T

x y t x y t x y t x y t
z z z z

   
   

   
  (3.9) 

 

The bottom surface will be treated as thermally insulated with the usual no-slip condition; 

 

( , , , ) ( , , , ) ( , , , ) ( , , , ) 0
T

u x H z t v x H z t w x H z t x H z t
z


   


  (3.10) 

 

The velocity and the temperature of the fluid entering the cavity are specified 

 

inu u  and 
inT T         (3.11) 

 

at the inlet. 

 

And the velocity at the outlet is equal to the velocity at the inlet and zero temperature 

gradient in the x direction. 
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inu u  and 0
T

x





        (3.12) 

 

though in the computations, velocity outlet is an unknown extrapolated from the exterior 

solution and balanced by overall mass balance for the cavity. 

 

For the top surface, Jaluria [18] recommended no-shear velocity condition for the 

tangential directions of this surface; 

 

( ,0, , ) ( ,0, , ) ( ,0, , ) 0
u w

x z t v x z t x z t
y y

 
  

 
    (3.13) 

 

The thermal boundary condition at the free surface is due to the total heat loss from this 

surface which changes with respect to time as the flow develops. 

 

( )
( ,0, , ) sq tT
x z t

y k





       (3.14) 

 

Heat flux through the free surface includes evaporative and convective losses and solar 

gain. 

 

( ) ( ) ( ) ( )s conv evap solarq t q t q t q t        (3.15) 

 

The convective heat transfer from the free-surface can be calculated by approximating the 

free surface to the upper surface of a heated plate at constant temperature although 

temperature of the free-surface varies. The Rayleigh number for the free surface is 

 

  
  air s

L

air air

g T t T L
Ra t



 


       (3.16) 

 

The thermophysical properties of air are evaluated at   2f sT T T   and L  is the 

characteristic length of the free-surface defined by 
sL A P . 

sA  is the surface area and 

P  is the perimeter of the free-surface. The following average Nusselt number 

correlations recommended by Incropera [20] are used. 

 

       
1 4 4 70.54 10 10L L LNu t Ra t Ra      (3.17) 

 

       
1 3 7 110.15 10 10L L LNu t Ra t Ra      (3.18) 

 

Hence the overall convective heat transfer coefficient and the convective heat transfer 

through the free surface are 
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  ( ) air
conv L

k
h t Nu t

L
        (3.19) 

 

   ( ) ( )conv conv s sq t h t A T t T        (3.20) 

 

The computation of mass transfer coefficient involves utilization of heat and mass 

transfer analogy 

 

 

1

( )

( ) air

n

conv air
air P

evap AB

h t
c

h t D






 
  

 
      (3.21) 

 

Where 
ABD  is the binary diffusion coefficient of water vapor in atmospheric air. The 

recommended ([20]) value of n  is 1 3 . Once the mass convection coefficient is 

computed, then the rate of vaporization is calculated 

 

          @ @evap evap s w s wm t h t A T t T       (3.22) 

 

In the above equation,  is relative humidity. The heat transfer accompanying the mass 

transfer is  

 

     ( ) @evap evap fg sq t m t h T t       (3.23) 

 

The last term in equation (3.15) is heat transfer due to solar radiation. Solar radiation 

could be time dependent or assumed to be constant during the simulations. 

 

 ( ) ( )solar solar sq t q t A        (3.24) 

 

 

To non-dimensionalize the governing equations, the height of the inlet d , the velocity of 

the charging fluid 
inu , the temperature difference of the charging fluid, and the uniform 

initial temperature of the water body ( )in icT T  will be used; 

 

 
2

, , , , ,

, ,

in in in

ic

in in ic

in

x y z u v w
X Y Z U V W

d d d u u u

T Tt p
P

d u T T

u

 


     


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

   (3.25) 

 

The governing equations become; 
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Where  

1

inu d Re


         (3.31) 
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1 1

in inu d u d Pr Re
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The initial condition becomes 

 

( , , ,0) ( , , ,0) ( , , ,0) 0

( , , ,0) 0
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The boundary conditions become; 

Side surfaces containing the inlet and outlet: 
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The other two side surfaces: 
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Or the symmetry condition at 0Z   plane 

 

( , ,0, ) ( , ,0, ) ( , ,0, ) ( , ,0, ) 0
U V W

X Y X Y X Y X Y
Z Z Z Z


   

   
   

   
  (3.37) 

 

The bottom surface: 

 

( , / , , ) ( , / , , ) ( , / , , )

( , / , , ) 0

U X H d Z V X H d Z W X H d Z

X H d Z
Z

  




 


 


   (3.38) 

 

The top surface: 

 

( ,0, , ) ( ,0, , ) ( ,0, , ) 0
U W

X Z V X Z X Z
Y Y

  
 

  
 

  

( ,0, , )
( )

s

in ic

q d
X Z

Y k T T







 
      (3.39) 

 

 

At the inlet 

 

1U   and 1         (3.40) 

 

And at the exit 

1U   and 0
X





       (3.41) 
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CHAPTER 4 

 

 

 

 

FINITE VOLUME METHOD 

 

 

 

 

 

 

4.1 Discretization of the Governing Equations 

 

The momentum equations (3.2) to (3.4) are non-linear. Furthermore the y-momentum 

equation, equation (3.3) is coupled with the energy equation, equation (3.5). They are to 

be solved simultaneously in a continuous iterative manner. The transport equations (3.2) 

to (3.5) can be represented by the following general transport equation 

 

 
2 2 2

2 2 2
u v w S

t x y z x y z

      
   

       
        

       
  (4.1) 

 

where   is the transport variable,   is the diffusion coefficient, and S  is called the 

source function. The corresponding counterparts within the governing equations are 

tabulated in Table 4.1. 

 

 

 

Table 4.1 Transport Variables, Diffusion Coefficients, 

and Source Functions for Governing Equations 

     S  

x -momentum Equation u    p

x





 

y -momentum Equation v    ( )ic

p
g T T

y
 


  


 

z -momentum Equation w    p

z





 

Energy Equation T  
k

c
 0 
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If in equation (4.1) velocities , ,u v  and z  are known, or in the solution of continuously 

iterative FVM they assumed to be equal to the velocity values of the previous iteration, 

the non-linearities of equation (4.1) can be avoided. 

 

In the discretization process of the general transport equation, the following (Fig. 4.1) 

arbitrary three-dimensional rectangular control volume is to be used. A two-dimensional 

grid is also shown in Fig. 4.2 for clarity. 

 

 

 

 
Fig. 4.1 An Arbitrary Portion of the 3D Grid 

 

 

 

A general grid point (or node) P  has east ( E ) and west (W ) neighbors in x direction, 

north ( N ) and south ( S ) neighbors in y  direction, and top (T ) and bottom ( B ) 

neighbors in zdirection. The grid point P  is located beforehand and the cell faces e , 

w , n , s , t , and b  are placed such that they are positioned midway between grid points 

(hence 
wPx  need not equal to 

Pex , yet 
wP Wwx x    and 

Pe eEx x  ). This is called 

cell-vertex scheme. 

 

The grid point P  could also be put on the geometric center of a control volume and that 

approach is called cell-centered scheme. Since in Finite Volume Method, values at the 

grid points are assumed to be the representative values of the whole control volume, cell-

centered scheme has the advantage of better representing grid point values over the 
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control volume whereas cell-vertex scheme has the advantage of approximating the flux 

values at the control surfaces better. 

 

 

 

 
Fig. 4.2 An Arbitrary Portion of the 2D Grid 

 

 

 

The control volume integration (the key step of the finite volume method that 

distinguishes it from all other CFD techniques, Versteeg and Malalasekera [21]) of the 

general transport equation, equation (4.1) is performed spatially over this control volume 

defined by cell-vertex scheme and also temporally over a time increment t . The 

integrated form of equation (4.1) is 

 

 

 

 

2 2

2 2

2

2

t t t t t t

CV CV CV
t t t

t t t t t t

CV CV CV
t t t

t t t t

CV CV
t t

dV dt u dV dt v dV dt
t x y

w dV dt dV dt dV dt
z x y

dV dt SdV dt
z

  
  

  




  

  

 

      
      

       

      
        

       

 
   

 

     

     

   

 (4.2) 
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Assuming the value of   at the grid point P  prevails over the whole control volume and 

changing the order of integration for the unsteady term, the unsteady term becomes 

 

  0

t t t t

P P
CV CV

t t

dV dt dt dV V
t t

 
    

    
     

    
      (4.3) 

 

Where 
P  and 0

P  are the values of   at the grid point P  at time t t   and t  

respectively. 

 

In the treatment of the diffusion terms, the volume integrals are converted to surface 

integrals by the divergence theorem, for example the diffusion term in the x direction 

becomes 

 

2

2

t t t t

CV
e wt t

dV dt A A dt
x x x

  
         

          
        

      (4.4) 

 

The diffusion coefficient is constant according to our previous assumptions, also the 

eastern and western control surface areas are the same ( e w yzA A A  ). The gradient of   

at the control surfaces is approximated by central differencing 

 

 E P

e PEx x

   
 

  
       (4.5) 

 

 P W

w WPx x

   
 

  
       (4.6) 

 

Equation (4.4) now becomes 

 

2

2

t t t t

P WE P
yz

CV
PE WPt t

dV dt A dt
x x x

  
       

       
         

     (4.7) 

 

In the evaluation of the time integral, if the temporal variation of   is assumed such that 

the new value (value at time is equal to t t  ) prevails during the time increment, the 

temporal discretization is called the fully implicit discretization scheme. The fully 

implicit scheme is unconditionally stable and it is the preferred scheme in numerical 

analysis. The diffusion term is now transformed to its final discretized form as 

 

 
2

2

t t

P WE P
yz

CV
PE WPt

dV dt A t
x x x

  
      

        
         

     (4.8) 
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Similarly the diffusion terms in the y   and zdirections are; 

 

2

2

t t

N P P S
xz

CV
PN SPt

dV dt A t
y y y

   
        

         
         

     (4.9) 

 

2

2

t t

T P P B
xy

CV
PT BPt

dV dt A t
z z z

   
        

        
        

     (4.10) 

 

When the divergence theorem is applied to the first convective term of equation (4.2) and 

fully implicit scheme is utilized for the temporal variation of  . 

 

   
t t t t

e wCV
t t

e yz e w yz w

u dV dt uA uA dt
x

u A t u A t


    

   

 
 

      

   

  
   (4.11) 

 

The values 
e  and 

w  are the values of   at the east and west control surfaces of the 

control volume. They must be interpolated from the grid point values by a suitable 

scheme. Several schemes of interpolation exist such as central differencing scheme, 

upwind scheme (upstream difference scheme, donor-cell method), the hybrid differencing 

scheme of Spalding [22], the power law scheme of Patankar [23], the quadratic upstream 

interpolation for convective kinetics (QUICK) scheme of Leonard [24]. 

 

In upwind differencing scheme, the face values (or control surface values) are simply 

replaced by the grid point values from where the flow approaches to the control faces of 

the control volume, hence, 

 

e P    if 0eu        (4.12) 

 

e E    if 0eu        (4.13) 

 

w W   if 0wu        (4.14) 

 

w P    if 0wu        (4.15) 

 

In other words 

 

 
max( ,0) max( ,0)e e

e P E

e e

u u

u u
  


       (4.16) 

 

max( ,0) max( ,0)w w
w W P

w w

u u

u u
  


       (4.17) 
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where the function max is simply 

 

 
if

max( , )
if

x x y
x y

y x y

 

 

       (4.18) 

The convective term of equation (4.11) becomes 

 

 
max( ,0) max( ,0)

max( ,0) max( ,0)

t t
P e E e

yz
CV

W w P wt

u u
u dV dt A t

u ux

 
 

 

    
    

     
    (4.19) 

 

Similar treatment for the other two convective terms reveals, 

 

max( ,0) max( ,0)

max( ,0) max( ,0)

t t
P n N n

xz
CV

S s P st

u u
v dV dt A t

u uy
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 

 

    
    

     
     (4.20) 

 

max( ,0) max( ,0)

max( ,0) max( ,0)

t t
P t T t

xy
CV

B b P bt

u u
w dV dt A t

u uz
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 

 

    
    

     
    (4.21) 

 

The last term in equation (4.2) is the source term and it could be discretized as 

 

  
t t

CV
t

SdV dt S t V



           (4.22) 

 

where S  is the C.V. average value of S  at time t t  . Actually embedding the pressure 

gradient within the source function is only sufficient for the time being. During the 

primitive variables formulation, the pressure gradient will be dealt separately. 

 

Plugging in the discretized unsteady, convective, diffusive, and source terms into the 

finite volume integrated general transport equation (4.2) 
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 0
max( ,0) max( ,0)
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      

     
      

      

     
         

     

   (4.23) 

 

 

To simplify the formulation, F  indicating the strength of convection and D , the 

diffusion conductance are defined (Patankar [23]) 

 

 
CSF uA         (4.24) 

 

 CSA
D

x





        (4.25) 

 

With the help of equations (4.24) and (4.25) and some rearrangements, equation (4.23) 

becomes 

 

 
P P E E W W N N S S T T B Ba a a a a a a b                (4.26) 

 

where 

 max( ,0)E e ea F D          (4.27) 

 

 max( ,0)W w wa F D         (4.28) 

 

 max( ,0)N n na F D          (4.29) 

 

 max( ,0)S s sa F D         (4.30) 

 

 max( ,0)T t ta F D          (4.31) 

 

 max( ,0)B b ba F D         (4.32) 
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 0

P

V
a

t






        (4.33) 

 

 0

P

V
b S V

t



  


       (4.34) 

and 

      0

P E W N S T B P e w n s t ba a a a a a a a F F F F F F              (4.35) 

 

The form of the final discretized equation (equation (4.26)) of the control volume 

integrated general transport equation (equation 4.2) does not change together with 

equations (4.33) through (4.35) when a different interpolation scheme is used for the 

discretization of convective terms, only the coefficients in equations (4.27) through (4.32) 

change. Patankar’s [23] hybrid differencing scheme (which is favored over the upwind 

differencing scheme [21], [23]) for example will yield the following neighboring nodal 

coefficients. 
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E e e

F
a F D

  
    
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F
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S s s

F
a F D
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   

  
      (4.39) 

 

max , ,0
2
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F
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  
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max , ,0
2

b
B b b

F
a F D

  
   
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      (4.41) 

 

The definition of the hybrid differencing scheme and the derivation of the corresponding 

coefficients, equations (4.36) through (4.41), are supplied in APPENDIX A. 
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4.2 Staggered Grid 

 

In the solution of the coupled governing equations using primitive variables, staggered 

grid utilization is recommended [23, 21]. The velocities and scalar variables (pressure and 

temperature) are stored at different locations of the grid. Simply u  velocity nodes are 

defined at the western and eastern faces of a scalar control volume (correspondingly the 

scalar nodes are defined at the western and eastern faces of a u  velocity control volume), 

similarly v  velocity nodes are defined at the northern and southern faces of a scalar 

control volume and w  velocity nodes are defined at the top and bottom faces of a scalar 

control volume. Fig. 4.3 demonstrates a 2D backward staggered grid. 

 

In the 2D staggered grid, scalar grid point is at  ,I J , scalar control volume (or scalar 

cell) is in the region 1and 1i x i j y j      . The u velocity grid point is at  ,i J , 

and the u cell is in the region 1 and 1I x I j y j      . The v velocity grid point is 

at  ,I j , and the v cell is in the region 1and 1i x i J y J      . The neighbor 

nodes and face nodes for the four cells are presented in Table 4.2. 

 

The strength of convection, for example, at the west face of a u cell is 

 

 
1, , , ,

_ 1, ,
2

i J K i J K

w u I J K

F F
F F






   

 

by linear interpolation since the west face node of a u cell is a scalar node and does not 

contain u  velocity data. Strength of convection at the west face of a scalar cell is simply 

 

 _ , ,w T i J KF F  

 

since the west face of a scalar cell is a u  velocity node which contains the u  velocity 

data. 
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Fig. 4.3 2D Backward Staggered Grid 
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Table 4.2 Staggered Grid Point Locations for the Velocity Cells  

and the Scalar Cell 

 u cell v cell wcell T  cell 

P   , ,i J K   , ,I j K   , ,I J k   , ,I J K  

E   1, ,i J K   1, ,I j K   1, ,I J k   1, ,I J K  

W   1, ,i J K   1, ,I j K   1, ,I J k   1, ,I J K  

N   , 1,i J K   , 1,I j K   , 1,I J k   , 1,I J K  

S   , 1,i J K   , 1,I j K   , 1,I J k   , 1,I J K  

T   , , 1i J K    , , 1I j K    , , 1I J k    , , 1I J K   

B   , , 1i J K    , , 1I j K    , , 1I J k    , , 1I J K   

e   , ,I J K   1, ,i j K   1, ,I J k   1, ,i J K  

w   1, ,I J K   1, ,i j K   1, ,I J k   , ,i J K  

n   , 1,i j K   , ,I J K   , 1,I j k   , 1,I j K  

s   , 1,i j K   , 1,I J K   , 1,I j k   , 1,I j K  

t   , , 1i J k    , , 1I j k    , ,I J K   , , 1I J k   

b   , , 1i J k    , , 1I j k    , , 1I J K    , , 1I J k   

 

 

 

4.3 The Discretized Forms of the Governing Equations in Staggered Grid 

 

Equation (4.26) can be modified in order to conform to the backward staggered grid. The 

three momentum equations and the energy equation when the pressure gradient terms are 

extracted from the source terms can be written as 

 

  , , , , 1, , , , , , , ,i J K i J K nb nb I J K I J K i J K i J Ka u a u p p A b       (4.42) 

 

  , , , , , 1, , , , , , ,I j K I j K nb nb I J K I J K I j K I j Ka v a v p p A b       (4.43) 

 

 , , , , , , 1 , , , , , ,I J k I J k nb nb I J K I J K I J k I J ka w a w p p A b       (4.44) 

 

, , , , , ,I J K I J K nb nb I J Ka T a T b        (4.45) 

 

 

4.4 The SIMPLE Algorithm 

 

In the above equations, pressure should be known in order to calculate the other transport 

variables. The Semi-Implicit Method for Pressure-Linked Equations was first described 
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by Patankar and Spalding [25] which is a guess-and-correct algorithm to calculate the 

pressure. At first, a pressure field p  is guessed and the momentum equations (4.42) to 

(4.44) are solved to obtain velocity components corresponding to the guessed pressure 

field.  

 

 , , , , 1, , , , , , , ,i J K i J K nb nb I J K I J K i J K i J Ka u a u p p A b   

       (4.46) 

 

  , , , , , 1, , , , , , ,I j K I j K nb nb I J K I J K I j K I j Ka v a v p p A b   

       (4.47) 

 

 , , , , , , 1 , , , , , ,I J k I J k nb nb I J K I J K I J k I J ka w a w p p A b   

       (4.48) 

 

Hence, there are differences between the correct velocity components and the ones 

computed from the guessed pressure field. Also, there is a difference between the correct 

pressure and the guessed pressure. 

 

 p p p           (4.49) 

 

u u u           (4.50) 

 

v v v           (4.51) 

 

w w w           (4.52)  

 

The primed velocities and the pressure are the velocity corrections and pressure 

correction. If equations (4.46) to (4.48) are subtracted from equations (4.42) to (4.44), the 

following equations are gained 

 

  , , , , 1, , , , , ,i J K i J K nb nb I J K I J K i J Ka u a u p p A
          (4.53) 

 

 , , , , , 1, , , , ,I j K I j K nb nb I J K I J K I j Ka v a v p p A
          (4.54) 

 

 , , , , , , 1 , , , ,I J k I J k nb nb I J K I J K I J ka w a w p p A
          (4.55) 

 

The main approximation of the SIMPLE method is the omission of the first terms on the 

right hand side of equations (4.53) to (4.55). The reasons of this omission are discussed 

by the developer of the procedure [23]. The velocity correction equations now become: 

 

  , , , , 1, , , ,i J K i J K I J K I J Ku d p p
          (4.56) 

 

 , , , , , 1, , ,I j K I j K I J K I J Kv d p p
          (4.57) 
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 , , , , , , 1 , ,I J k I J k I J K I J Kw d p p
          (4.58) 

 

Equations (4.50) to (4.52) now become 

 

  , , , , , , 1, , , ,i J K i J K i J K I J K I J Ku u d p p


         (4.59) 

 

 , , , , , , , 1, , ,I j K I j K I j K I J K I J Kv v d p p


         (4.60) 

 

 , , , , , , , , 1 , ,I J k I J k I J k I J K I J Kw w d p p


         (4.61) 

 

Thus, if the pressure correction can be calculated e.g. from the continuity equation, 

equations (4.59) to (4.61) could be used in order to compute the correct velocity field. For 

this purpose, mass conservation equation (equation (3.1)) is discretized for the scalar cell 

(T  cell). 

 

 
       

   

1, , , , , 1, , ,

, , 1 , ,
0

i J K i J K I j K I j K

I J k I J k

uA uA vA vA

wA wA

   

 

 



    
   

   
 

  (4.62) 

 

Putting the correct velocities (with necessary indicial operations) of equations (4.59) to 

(4.61) into the discretized continuity equation (4.62) gives 

 

    

    

    

    

 

1, , 1, , , , 1, ,1, ,

, , , , 1, , , ,, ,

, 1, , 1, , , , 1,, 1,

, , , , , 1, , ,, ,

, ,, , 1

i J K i J K I J K I J Ki J K

i J K i J K I J K I J Ki J K

I j K I j K I J K I J KI j K

I j K I j K I J K I J KI j K

I J kI J k

A u d p p

A u d p p

A v d p p

A v d p p

A w













  







  







   
 
    
 

   
 
    
 


  

    

1 , , 1 , , , , 1

, , , , , , 1 , ,, ,

0
I J k I J K I J K

I J k I J k I J K I J KI J k

d p p

A w d p p



 





   
  
    
 

   (4.63) 

 

After some rearrangements, the pressure correction equation is obtained 

 

, , , , 1, , 1, , 1, , 1, , , 1, , 1,

, 1, , 1, , , 1 , , 1 , , 1 , , 1 , ,

I J K I J K I J K I J K I J K I J K I J K I J K

I J K I J K I J K I J K I J K I J K I J K

a p a p a p a p

a p a p a p b

     

     

     

      
 (4.64) 

where 

 , , 1, , 1, , , 1, , 1, , , 1 , , 1I J K I J K I J K I J K I J K I J K I J Ka a a a a a a             (4.65) 

 

 1, , 1, ,I J K i J K
a dA 

        (4.66) 
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 1, , 1, ,I J K i J K
a dA 

        (4.67) 

 

 , 1, , 1,I J K I j K
a dA 

        (4.68) 

 

 , 1, , 1,I J K I j K
a dA 

        (4.69) 

 

 , , 1 , , 1I J K I J k
a dA 

        (4.70) 

 

 , , 1 , , 1I J K I J k
a dA 

        (4.71) 

 

       

   

, , , , 1, , , , , 1,

, , , , 1

I J K i J K i J K I j K I j K

I J k I J k

b u A u A v A v A

w A w A

   

 

   

 

 



      
    

  
 

 (4.72) 

 

 

The SIMPLE algorithm flow chart is presented in Fig. 4.4. 
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Fig. 4.4 The SIMPLE Algorithm (Adapted from [21]) 
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4.5 Boundary Conditions 

 

A portion of the inlet to the cavity is shown in Fig. 4.5 in 2D viewpoint for ease of 

demonstration. The inlet is at 1i  . The inlet boundary value 
inu  is stored at the grids 

with 1i  , and the solution of xmomentum equation (4.42) is started from 2i   

onwards in the x direction. Hence in the figure a typical u cell feeling the effect of 

the inlet boundary condition at first hand is at  2, 1,i nw K  , and its western neighbor 

grid is simply the inlet boundary condition. The rest of the boundary conditions are stored 

at 0I   ( 0in in inv w p    and the specified inlet temperature 
inT ) and the governing 

equations are solved from 1I   onwards. Furthermore, for the pressure correction 

equation at the scalar grid point 0wa   and W Wu u   in equation (4.72). 

 

 

 

 
Fig. 4.5 Inlet Boundary Discretization 
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Exit boundary is shown in Fig. 4.6. The u  velocity B.C. is kept at 1i NX  . Thus the 

xmomentum equation is solved up to the grids having i NX . 

 

 

 

 
Fig. 4.6 Exit Boundary Discretization 

 

 

 

Since the velocity B.C. at the inlet is set as a velocity-inlet, velocity B.C. at the exit can 

either be a velocity-outlet or a pressure-outlet. In both of these exit B.C. conditions, the 

exit flow is assumed to reach a fully developed state and hence the gradients of flow 

variables (except pressure and normal velocity) are zero normal to the exit plane meaning 

1, , , ,NX j k NX j kv v  , 1, , , ,NX j k NX j kw w  , and 1, , , ,NX j k NX j kT T  . The right hand sides of these 

equations are set from the previous time step values. Defining zero gradient to the normal 

velocity at the exit plane does not necessarily ensure mass conservation, so overall mass 

balance correction is applied if velocity-outlet (outflow) B.C. is used. 
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1, , , ,
in

NX j k NX j k

out

m
u u

m
          (4.73) 

 

In the above equation, 
inm  and 

outm are the corresponding mass flow rates at the inlet and 

exit of the C.V. computed at every outer iteration, though calculation of the inlet mass 

flow rate at the inlet at every outer iteration is trivial for the problem at hand. 

 

Also when velocity-outlet B.C. is used, for the p  equation, 
Ea  is set to zero and 

E Eu u   in equation (4.72). 

 

If pressure-outlet B.C. is applied at the exit, the pressure correction at the scalar-cell in 

Fig. 4.6 is set to zero and the outlet normal velocity 
outu  is computed from interior values 

by writing mass conservation for the same scalar-cell. 

 

 1, , , , , , , 1,out NX j k NX j k NX j k NX j ku u u y v x v x y            (4.74) 

 

 

 

The bottom wall and the four side walls of the cavity except the inlet and exit are wall 

boundaries. Fig. 4.7 presents a wall boundary portion where x direction is along the 

main flow direction, and y  direction is normal to the main flow. At the wall 0v  , the 

y momentum equations are solved from 2j   onwards. For the pressure correction 

equations at 1J  , 0Sa   and S Sv v   in equation (4.72). 

 

The bottom side of the u cell is the wall and there is the shear interaction between the 

fluid and the wall since the fluid is viscous. The shear force in the x direction, acting on 

the south face of the u cell is, by assuming laminar flow and a fine enough mesh, 

 

 
,2,i K

xy w cell cell

P

u
F A A

y
    


      (4.75) 

 

Hence  
P cell

P

S A
y


 


 is a source term which should be included in the computation of 

, ,i J K Pa a  coefficient of equation (4.42) for the necessary nodes (Node ( , 1, )i J K in 

Fig. 4.7). Since 0PS  and  0US   always positive coefficients rule (see Section 4.9) is 

ensured automatically for wall B.C. treatment of momentum equations. 
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Fig. 4.7 Wall Boundary Discretization 

 

 

 

Similar treatment could be applied for the zdirection velocity component (equation 

(4.44)) for the same wall boundary. The southern coefficients (
Sa ) are also set to zero for 

these x  and z  momentum equations. 

 

For the energy equation, first of all, the southern coefficient 
Sa  is set to zero. If the 

boundary condition is specified as constant temperature, the heat flow through the 

southern face of the scalar node  , 1,I J K  is 

 

 
 ,1,wall I K

S cell

P

T T
q k A

y





      (4.76) 

 

This heat transfer contributes to the discretized energy equation as a source term 

(equation (4.26) and (4.34)). The form of the source is 

 

 
 ,1,

,1,

wall I K cell
U P I K

P P

T T Ak
S S S T

c y V


  

 
    (4.77) 
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Hence if wall temperature is higher than the grid point temperature of the fluid, fluid 

gains energy (positive source), and if wall temperature is lower than the grid point 

temperature of the fluid, fluid loses energy (negative source). 

In either case 
P cell

P

k
S A

y
 


 and it should be included in the computation of , ,I J Ka  

coefficient of equation (4.45) of the nodes  , 1,I J K . Also 
u wall cell

P

k
S T A

y



 and this 

should be included in the computation of , ,I J Kb  coefficient of the same equation of the 

same nodes. Just like the source terms of the momentum equation of a u cell, the source 

terms of the energy equation of a scalar cell in the vicinity of a wall satisfies 0PS   and  

0US   regardless of the direction of the heat flow. 

 

If the thermal boundary condition on the wall is isoflux, energy balance on the bottom 

surface of the C.V. yields 

 

 
S wall cellq q A         (4.78) 

 

when the fluid gains energy from the wall. The source terms are 0PS  and 
u wall cellS q A  

and both of them satisfy the always positive coefficients rule. On the contrary, if the fluid 

would lose energy to the wall, energy balance on the interface surface would be 

 

 
S wall cellq q A          (4.79) 

 

yielding 0PS  and 
u wall cellS q A   contradicting the always positive coefficients rule. 

Once again special treatment required for the source terms of the discretized energy 

equation of the C.V. in the vicinity of a wall. 

 

If the surface were to be insulated, both 0P uS S  . Hence the always positive 

coefficients rule is always satisfied for the discretization of the energy equation of a fluid 

C.V. in the vicinity of an adiabatic wall. 

 

Top surface of the cavity is a free-surface exposed to atmosphere. In Fig. 4.8, the grid 

arrangement near a free-surface is shown. Although there is mass transfer through the 

interface due to evaporation, this mass transfer will be neglected in the solution of 

momentum equations near the boundary, hence 0v   at 1j NY  . The y momentum 

equations are solved up to j NY . For the pressure correction equations at J NY , 

0Na   and N Nv v   in equation (4.72). 
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Fig. 4.8 Free-Surface Boundary Discretization 

 

 

 

Air imposes almost no friction over water flowing under the free-surface interface hence 

no-shear (or slip) B.C. condition is modeled on the top surface of a u cell in the vicinity 

of the air-water interface. Since no-shear is assumed, 0xyF   and there is no need for 

source term manipulations for the x  and zmomentum equations. The northern 

coefficients (
Na ) are also set to zero for the x  and zmomentum equations. 

 

In the discretization of the energy equation of a grid near the free surface, the top surface 

of the cell coincides with the interface and the heat transfers through the surface should 

be incorporated into the source terms of the discretized energy equation. There are three 

different heat transfer mechanisms occurring through the air-water interface. Convective 

heat transfer due to temperature difference between water and air, evaporative heat 

transfer due to concentration difference across the interface and solar irradiation over the 

interface. The first two heat transfers are always transient unless a steady temperature 

field within the cavity is attained. Solar irradiation can be selected constant or time 

varying. 

 

        S conv evap solarq t q t q t q t        (4.80) 
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If we emphasize on the convective component only and assume that the surface 

temperature of the grid is equal to its nodal value , ,I NY KT  

 

  , ,conv conv cell I NY Kq h A T T        (4.81) 

 

Giving 0conv cell
P

P

h A
S

c V
  


 and conv cell

u

P

h A T
S

c V




. Hence, the always positive coefficients 

rule can be satisfied regardless of the direction of heat flow. For the treatment of the heat 

transfer source due to evaporation, see Section 4.9. 

 

The northern coefficient 
Na of the discretized energy equation is also set to zero. 

 

 

4.6 Solution of Discretized Equations 

 

The general discretized equation (4.26) has to be solved five times during each iteration 

of the SIMPLE algorithm (momentum equations (4.53-4.55), pressure correction equation 

(4.64) and the energy equation). Any solution method of linear systems of equations, e.g. 

matrix inversion, Gauss elimination, Gauss-Seidel iteration could be used but since the 

system of equations of equation (4.26) is hepta-diagonal, hence, the coefficient matrix is 

full of nulls (a sparse matrix), a simple algorithm for a tri-diagonal matrix system with 

Gaussian elimination is frequently preferred. The algorithm is called Tri-Diagonal Matrix 

Algorithm (TDMA) or Thomas algorithm (after Thomas [26]). 

 

A tri-diagonal system with N  unknowns could be written as 

 

 1 1i i iW i P i E i ia a a b            (4.82) 

 

where 
1

0Wa   and 0
NEa  . Gaussian elimination demands  3O N  operations whereas 

TDMA requires  O N  operations only. Two sweeps of the domain is necessary to solve 

(4.82). In the forward sweep, the coefficients are modified 
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     (4.83) 
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     (4.84) 
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The solution is achieved by the backward substitution sweep 

 

1 1, 2, ,1

N

i

i i i

B i N

B A i N N


 


 

   
    (4.85) 

 

The TDMA can be applied to equation (4.26) in a line-by-line fashion. If equation (4.26) 

is written as follows (the selection of western and eastern neighbors is arbitrary) 

 

W W P P E E N N S S T T B Ba a a a a a a b                 (4.86) 

 

It is identical to the tri-diagonal system of equation (4.82) if the right hand side of 

equation (4.86) is assumed to be temporarily known from their previous values. Equation 

(4.86) is than changed in order to regard another pair (say the northern and southern 

neighbors) to be the unknowns of the TDMA. It is recommended to alter the TDMA 

sweep sequence during the solution; hence, the effect of the boundary conditions could be 

felt rapidly within the solution domain. 

 

Although TDMA is recommended by many references, it is seen in the computations that 

Gauss-Seidel iteration is not inferior to TDMA when both algorithms are used for 2D 

domains. It's an iterative algorithm which uses initial values from the previous step and 

these initial values are updated as the domain is being swept. 

 

 P W W E E S S N N B B T T Pa a a a a a b a                (4.87) 

 

For both of the algorithms it should be noted that the domain should be swept many times 

more for the pressure correction equations, actually only 1 sweep of the domain seems 

sufficient for the momentum equations and energy equation whereas less than 50 sweeps 

for the pressure correction equations are found to be insufficient. 

 

 

4.7 Monitoring Convergence 

 

Convergence of the solution within a time step should be monitored in order to be able to 

advance in time. This can be achieved by checking how well the discretization equation 

(4.26) is satisfied [23]. The difference of the LHS and the RHS of equation (4.26) is 

called the residual of the discretization equation. 

 

 
E E W W N N S S T T B B P PR a a a a a a b a                 (4.88) 

 

Obviously the residual should vanish when the solution converges. The absolute value of 

this residual could be used as a convergence criterion. However, commercial CFD codes 

(e.g. ANSYS FLUENT [27]) use scaled residuals over the whole solution domain. 
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ANSYS FLUENT’s default criterion of convergence is the decreasing of scaled residuals 

below 310  for momentum equations and below 610  for the energy equation [27]. 

 

For the continuity equation, residual for a grid point is 

 

   e w s nR y u u x v v            (4.90) 

 

The scaled residual over the whole domain is; 

 

   
allgrids

e w s n

scaling

y u u x v v

R
R



     




     (4.91) 

 

scalingR can be selected as the maximum cumulative absolute residuals over the whole 

domain in the first five iterations of the first time step of the computation. Default 

criterion of convergence is the decreasing of scaled residuals below 310  for the 

continuity equation. 

 

 

4.8 Under-Relaxation 

 

Under-relaxation, restraining the speed of solution by balancing the newly achieved 

solution with the previous solution is a must for the SIMPLE algorithm. If under-

relaxation is not performed, the algorithm is susceptible to divergence [21, 23]. At the 

end of each iteration, pressure and velocity are under-relaxed as 

 

 
*

pp p p           (4.92) 

 

 (1 )new old

u uu u u           (4.93) 

 

(1 )new old

v vv v v           (4.94) 

 

(1 )new old

w ww w w          (4.95) 

 

The under-relaxation factors , , , andp u v w     are all between zero and unity. Pressure-

correction equation needed the highest under-relaxation with a value of 0.3, whereas 

momentum equations needed under-relaxations of 0.7 during the simulations. 
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Under-relaxation can also be applied to the energy equation yet it is not as crucial as the 

other flow equations. Only slight under-relaxation 0.9T   could be used if it is needed 

though no under-relaxation of the energy equation is necessary in our computations. 

 

(1 )new old

T TT T T          (4.96) 

 

 

 

4.9. Linearization of the Source Term and Always Positive Coefficients Rule 

 

Although it was mentioned in the temporal discretization of the general transport equation 

that fully implicit scheme is unconditionally stable, it is actually not correct.  Transient 

SIMPLE algorithm is susceptible to divergence [21, 23]. To ensure stable solution during 

time marching, always positive coefficients rule for the final discretized equation of the 

control volume integrated general transport equation should be employed. Combining 

equations (4.26) and (4.34) 

 

0

P P E E W W N N S S T T B B P

V
a a a a a a a S V

t
       


        


 (4.97) 

 

In the above equation, all of the coefficients should be positive (actually non-negative) to 

ensure stable solutions. The coefficients , , , , ,E W N S T Ba a a a a a , and 
Pa are always 

positive irrespective of the selected discretization scheme for the convective terms. The 

source term S  can be a zeroth, first, or higher order polynomial of the transport variable 

P . In any case, the source term can be linearized in the form of  

 

U P PS S S           (4.98) 

 

The second coefficient on the right hand side of the above equation, 
PS  is subtracted 

from the coefficient of 
P  in equation (4.97). Hence the coefficient of 

P  becomes 

P Pa S . Thus, in order to assure positive coefficients for the general discretized equation, 

US  should be non-negative and 
PS  should be non-positive. 

  

0 and 0U PS S         (4.99) 

 

To exemplify source term linearization, the near boundary cells affected by the Dirichlet 

or von Neumann boundary conditions could be examined. In Fig. 4.9, a typical near 

boundary temperature cell is represented. The heat flux shown in the figure could also be 

in the opposite direction (heat loss from the cell). The heat flux could originate from a 

specified temperature, heat flux, or convective heat flux. 

 

When the specified heat flux is into the temperature cell, the source is positive 
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      (4.100) 

 

Since q is positive (into the cell). Hence the non-trivial selection of 
1

U

P

q y
S

V c





 and 

0PS   would satisfy the criterion in equation (4.99). 

 

 

 

 
Fig. 4.9 A Typical Near Boundary Temperature Cell 

 

 

 

If the specified heat flux on the boundary is from the cell to the boundary, then the source 

is negative. 

 

 
1
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P

q y
S S S T

V c


    


      (4.101) 

 

Equation (4.99) cannot be satisfied automatically. Source term linearization should be 

tried. Equation (4.101) can be rewritten as 
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2 P
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  (4.102) 

 

If instead of using the variable 
PT in the denominator on the last term of the above 

equation, the previously known temperature value *

PT from the previous time step is used, 

the above equation will be achieved approximately and equation (4.99) is satisfied. 
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When the boundary of Fig. 4.9 is an isothermal wall boundary, the source term will be: 
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     (4.103) 
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Regardless of the direction of the heat transfer. So equation (4.99) would be satisfied.  

 

When the boundary of Fig. 4.9 is a convective heat transfer boundary, the source term 

will be: 

 

 
 1 p
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h T T y
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     (4.104) 
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Satisfying equation (4.99) regardless of the heat transfer direction.  

 

When at the boundary there is also evaporative heat transfer, the contribution of the 

evaporative heat transfer to the source term of the discretized energy equation would be 
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Since the evaporative heat transfer from the water body to air, 0S  , the simple selection 

of  
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would contradict equation (4.99). Actually evaporative and convective heat transfers 

occur simultaneously through a free-surface and if the magnitude of 
1

U

P

hT y
S

V c




 

from the convective heat transfer is higher than the magnitude of 
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 from the evaporative heat transfer, 
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addition of the two components may or may not give 0US  . So, to be on the safe side, 

source term linearization should be applied to equation (4.105). The following form 
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is sufficient in order to yield 
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CHAPTER 5 

 

 

 

 

THE COMPUTER CODE 

 

 

 

 

 

 

The computer code is written in standard C++ programming language. Any standard C++ 

compiler (e.g. Visual C++, GNU's GCC) would compile the code. The IDE used is a 

freeware IDE named Dev-C++ 4.9.9.2 [28]. The IDE is bundled with the freeware GNU 

compiler collection GCC. The version of the compiler set is 4.5.0. It is only necessary to 

open the "main.cpp" file of the code inside the IDE and compile and run. For other IDE's 

and other operating system environments (Dev-C++ is a Windows based IDE), a makefile 

may be necessary to prepare in order to compile and run the code. 

 

The flow chart of the program is presented in Fig. 5.1. The flow chart is in essence 

parallel to the transient SIMPLE algorithm (Fig. 4.4) and is represented one to one in the 

main function of the code. Prior to the main function, the constants of the flow, the 

variables and the functions are declared with a header file "cavity_2D.h". The constants 

of the flow, geometry parameters, parameters of algorithms used are all read into the 

program from an input file named "input.cpp". Hence once the code is compiled 

successfully and an executable file is gained, only the parameters inside the input file is 

altered to have different simulations.    

 

Three sets of variables for ( , ,u v P , and T ) are needed to be stored in memory for a 

transient SIMPLE code, one set is the working variable set, the values of which change 

within a time step at every iteration (or inner loop in Fig. 5.1). One set stores the values 

of the previous iterative step and is renewed with the values of the working variable set at 

the end of each iteration of a time step. Last set stores the values of the previous time step 

and is renewed at the end of each time step (outer loop). These three sets of variables 

(along with other variables such as coefficients naturally) are initiated by the setIC (set 

initial condition) function. At this level the real time is at zero. The function setBCs (set 

boundary conditions) sets the boundary conditions of the flow. 

 

The algorithm is started with the outer loop (time marching) and the time is incremented 

by the time step. At this step an auxiliary function named startAnOuterIteration is called 

in order to do the processing of some data necessary to be done before inner iterations of 

the time step is started. These processing of data is the computation of convective and 

evaporative heat transfer coefficients from the free-surface temperature data, temporal 
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determination of the heat flux lost from the cavity to its two vertical side walls, 

computation of the various heat loss items and thermal energy storage rate of the cavity. 

 

The inner loop starts. The inner loop is intended to achieve an acceptable solution 

(bounded by the residual limits) of a specific time step. The set_u_Coefficients function, 

as the name implies, sets the coefficients of the discretized xmomentum equation 

(4.46). Then the discretized xmomentum equation is solved using the Tri-Diagonal 

Matrix Algorithm or Gauss-Seidel Iteration. Hence with these two functions, the 

discretized xmomentum equation is solved using the guessed pressure and velocity 

fields and an intermediate u  velocity field. This u  velocity field along with the guessed 

v  velocity field and guessed pressure field are used in the calculation of the y   

momentum equation. After a guess for the velocity field is gotten, the outlet boundary 

condition should be updated with updateOutletBC function (see Section 4.5) which 

extrapolates the outlet BC variables from the interior solution. 

 

Next the coefficients of the pressure-correction equation are determined, and pressure 

correction field is solved. With this pressure-correction field, the pressure field and 

velocity field are corrected by correct_and_underrelax_P_u_v_w function in accordance 

with equations (4.49) and (4.59) to (4.61). This function also performs under-relaxation to 

pressure and velocity fields. The under-relaxation factors used in the code are the default 

values of ANSYS FLUENT for a wide-variety of problems. 

 

The coefficients of the energy equation are computed with the corrected pressure and 

velocity values with set_T_Coefficients, and the energy equation is solved with TDMA 

or Gauss-Seidel Iteration. 

 

The computeResiduals function computes the residuals according to equations (4.89) and 

(4.91). If all of the residual values are less than the desired limiting values (also taken 

from ANSYS FLUENT) the inner loop is terminated, outer loop operates, time is 

forwarded one step. If the residuals are not small enough, inner loop turns once again.  

 

Finally, the function checkSteadiness will check whether steady conditions are reached 

within the medium. In the experiments, steadiness criterion was almost no change in 

temperature field in 15 minutes. In the program, the energy conservation equation in the 

rate form for the cavity can be traced (equation 7.28). When the time rate derivative term 

vanishes, it can be concluded that steady-state condition within the cavity is achieved. 

Actually, in the runs the program is let go to run further beyond steady-state in order to be 

conservative. 

 

Even the 2D simulations last for hours of computation time. To avoid loss of data if a 

power loss occurs, at every 10 minutes of simulation time, flow variables are stored to 

backup files. The simulation can be restarted from a backup file if the program is 

informed the simulation time and the backup file of that simulation time. 
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Also at every 10 minutes of the simulation time, output files appropriate for post-

processing within MATLAB and Tecplot software packages are written onto the hard-

drive. MATLAB is easier to use and more flexible to automate post-processing while 

Tecplot outputs better looking graphs. 
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Fig. 5.1 Flow Chart of the Program 
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CHAPTER 6 

 

 

 

 

VALIDATION OF THE CODE 

 

 

 

 

 

 

6.1 2D Laminar Steady Flow within a Lid-Driven Cavity 

 

The validation of the 2D code is started with the simplest benchmark problem for 2D 

flows, the famous lid-driven cavity problem. The boundaries of the square cavity are 

walls. The top wall moves to the right horizontally while the three other walls are 

stationary. The velocity of the wall and the kinematic viscosity of the hypothetical fluid 

inside the cavity are selected such that the flow inside the cavity is laminar. The 

governing equations are as follows; 

 

0
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x y
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2 2

2 2

u u p u u
u v

x y x x y
  

     
     

     
     (6.2) 

 
2 2

2 2

v v p v v
u v

x y y x y
  

     
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     (6.3) 

 

 

The comparison of the results with the results from literature is satisfactory (see Fig. 6.1). 

The next step is to increase the complexity of the cavity by adding an inlet and an outlet 

to the cavity hence introducing two types of momentum equation boundaries to the code. 

The flow inside the cavity is 2D laminar steady flow without energy equation and the 

model is next section’s model without energy equation. The result is the same as next 

section’s 0Ri   case with only the momentum equations and continuity equation are 

solved. 
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Fig. 6.1 Comparison of Streamlines for Lid-Driven Cavity, 100Re  , 

On the Left, Output of the Code, On the Right, from [29] 

 

 

 

6.2 2D Laminar Steady Flow with Energy Equation within a Cavity  

with 1 Inlet and 1 Outlet 

 

Next, laminar steady flow and energy equation within a 2D cavity with 1 inlet and 1 exit 

is modeled. Model is based on the study of Saha et. al. [30] from the literature in order to 

make comparison easily. The geometry of the flow is shown in Fig. 6.2. 

 

 

 

 
Fig. 6.2 Schematic Configuration of the Cavity, from [30] 
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Cooler fluid ( 1iT  ) is fed from the inlet at the upper left corner (which has a height of 

0.1h H ), entrains the cavity which has no-slip wall boundaries and adiabatic thermal 

boundaries except the right vertical wall which is heated with a constant heat flux 1q   

and leaves the cavity from the outlet at the lower right corner which has the same height 

as the inlet.  

 

The governing equations are; 
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The non-dimensional forms are as follows; 
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Where, 
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In the study of Saha et. al. [30], Reynolds number and Prandtl numbers are kept constant 

at values 100Re   and 0.71Pr   whereas Richardson number is varied. Our code is 
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tuned to reveal these dimensionless parameters by utilizing a hypothetical fluid with 

desired thermophysical properties. The flow variables and cavity geometry are also input 

as the dimensionless values from the paper. For example inputting 1iu  , 1H  , and 

hypothetical 0.01   and 1/71  yields 100Re   and 0.71Pr  . 

 

Variation of Richardson number is achieved by changing the gravitational acceleration 

while keeping , ,q k  values unity. For example zero gravity gives 0Gr   and 0Ri   

while 5g   gives 50000Gr   and 5Ri  . 

 

The streamlines and isotherms for different Richardson numbers from [30] is presented in 

Fig. 6.3. Saha et. al. used their code which was written with FEM. Our FVM code’s 

corresponding streamlines and isotherms (generated from the output files of the code with 

Tecplot) are presented in Fig. 6.4 thru Fig. 6.7. 

 

The matching of the streamlines and isotherms from Saha et. al. [30] and our code seems 

quite satisfactory. 
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Fig. 6.3 Variation of Streamlines and Isotherm Contours  

for Different Ri  values, from [30] 
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Fig. 6.4 Streamlines and Isotherms for 0Ri   ( 100Re  , 0.71Pr  ) 

 

 

 

 
Fig. 6.5 Streamlines and Isotherms for 1Ri  ( 100Re  , 0.71Pr  ) 

 

 

 

 
Fig. 6.6 Streamlines and Isotherms for 5Ri   ( 100Re  , 0.71Pr  ) 
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Fig. 6.7 Streamlines and Isotherms for 10Ri   ( 100Re  , 0.71Pr  ) 
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CHAPTER 7 

 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

 

 

 

7.1 The Geometry, Initial Condition, and Boundary Conditions 

 

The geometry and the boundary conditions of the 2D cavity is shown in Fig. 7.1. Initially 

stagnant water at a uniform temperature fills the cavity up to a height of H . The cavity is 

flow-through having one inlet at the top of one side and one outlet at the bottom of the 

opposite side. Warmer water is fed to the cavity from the inlet and relatively cooler water 

is drained from the outlet. The I.C. and B.C.'s in mathematical formulation are as follows: 

 

 

 

 
Fig. 7.1 2D Cavity Geometry 

 

 

 

At 0t  ;  

 

0u v   and 
icT T        (7.1) 

 

for the cavity, the inlet, and the outlet. 

 

For 0t  ;  

  

The inlet BC's are; 

 

inu u   and 
inT T       (7.2) 
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for , 0x l y h    

 

The upper and lower walls of inlet have no-slip boundary and no heat transfer; 

 

0
T

u v
y


  


        (7.3) 

 

for 0, 0 andl x y y h      

 

The upper and lower walls of outlet also have no-slip and no heat transfer; 

 

0
T
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y


  
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        (7.4) 

 

for , andL x L l y H h y H       

 

The outlet boundary conditions are; 

 

( )outu U y         (7.5) 

 

( )outT T y         (7.6) 

 

for ,x L l H h y H      

 

The variations of the velocity profile and the temperature profile at the outlet are 

computed iteratively from the interior solutions during the computations. The velocity 

profile can be computed by assuming the outlet either as a velocity outlet or a pressure 

outlet. The discretization of both of the outlet types are presented in Section 4.5. The 

crucial point at the solution of the outlet velocity profile is that the selected outlet type 

must satisfy mass conservation.  

 

The bottom of the cavity has no-slip and is adiabatic; 

 

0
T

u v
y


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
        (7.7)  

 

for 0 ,x L y H    

 

Top surface is a free surface with no-shear velocity boundary and has a transient heat 

transfer through the surface. This transient surface has convective and evaporative losses, 

losses since in all of the simulations the temperature of the ambient air is cooler than 

surface temperature of water, and a solar gain, if applicable. 
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for 0 , 0x L y    

 

The vertical walls of the cavity have no-slip boundary condition; 

 

0u v          (7.9) 

 

for 0, and , 0x h y H x L y H h        

 

 

 

 
Fig. 7.2 Schematic Drawing of Experimental Set-up  

Showing the Water Jackets, Front and Side Views 

 

 

 

For the treatment of the thermal boundary condition of the vertical walls, the schematic 

drawing of the experimental set-up, presented in Fig. 7.2 should be considered. In the 

experiments, in order to attain a strong thermal stratification within the cavity, large 

amount of heat is transferred from the cavity by circulating high mass flow rates of 

relatively cool water through the side wall jackets. This, in fact, induces complex thermal 

boundary conditions on the vertical side walls, which cannot be merely represented by a 

simple isothermal or isoflux boundary condition. The situation is examined profoundly in 

the following section. 

 

 

7.2 Examination of the Thermal Boundary Condition on the Vertical Side Walls 

 

In this section, different thermal boundary conditions on the vertical side walls will be 

examined and the optimum amongst them will be selected in order to be able to use as the 

selected thermal B.C. on the vertical side walls in the subsequent sections. The selection 

criterion will be the comparison of the results with experimental data obtained by the 

author previously. In order to see solely the effect of different thermal B.C.'s on the 

vertical side walls, in the following simulations, all of the thermophysical properties of 

water, geometry parameters of the 2D cavity, and every other hydrodynamic and thermal 
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boundary conditions of the cavity will be kept constant. All of the simulations will be run 

for 600 minutes. The geometry and flow parameters of all simulations can be found in 

Table B.1. 

 

The thermophysical properties of water used in the simulations are 

 

6

3

6

kg kg W
997 , 855 10 , 0.613 ,

m ms mK

J 1
4179 , 276.1 10

kgK K
P

k

c

 







   

  

 

 

And the gravitational acceleration is 
2

m
9.81

s
g  . 

 

The geometric parameters, initial condition and boundary conditions are selected similar 

to a set of experiments performed by the author [17] in his master thesis. 

 

2m, 0.2m, 0.5m, 0.04mL l H h     

 

 3 m
20°C, 50°C, 1.5 10

s
ic amb in inT T T u       or 

kg
215

hr
inm   

 

In the first simulation, the vertical side walls will be regarded as isothermal walls; 

 

 const.wlT T           (7.10)     

 

 for 0, and , 0x h y H x L y H h        

 

The constant temperature value assigned to the vertical walls in Simulation 1 is 

10°CwlT  . The development of the vertical temperature profile at the middle of the 

cavity, i.e. at  2 1mx L  , can be seen in Fig. 7.3. The profiles are plotted at 30 minute 

intervals. The slow penetration of the effect of relatively hot inlet water within the cavity 

can be seen clearly even in this first simulation. Although at intermittent profiles some 

strong levels of vertical thermal stratification can be seen, as time goes by and the cavity 

approaches a steady thermal field, at around 450mint  or so, there is only weak vertical 

thermal stratification left in the cavity. Comparison of Fig. 7.3 and experimental data of 

Fig. 7.4 shows that isothermal vertical wall boundary condition (or at least the wall 

temperature of 10°CwlT  ) is not sufficient to generate a strong thermal stratification in 

the cavity. Strong vertical thermal stratification in a body can be achieved by large heat 

losses in horizontal directions hence first thing to do to improve the situation is to lower 

the wall temperature so that more heat will be lost through the vertical side walls. In 

Simulation 2, wall temperature is decreased to 0°C and the resulting vertical temperature 

development is presented in Fig. 7.5. 
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Fig. 7.3 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 1 
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Fig. 7.4 Development of Vertical Temperature Profile within Cavity, from [17] 
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Comparison of Fig. 7.3 and 7.5 reveals that by decreasing the isothermal wall temperature 

10°C , a slightly stronger thermal stratification could be achieved. The temperature 

values near the surface for the two simulations are quite comparable yet the bottom 

temperature of Simulation 2 is around 35 C whereas it is around 37°C for Simulation 1. 

The overall effect is yet insufficient when Simulation 2 is compared with the 

experimental data of Fig. 7.4. It can be concluded that isothermal wall BC for the vertical 

side walls is not sufficient to exert a heat transfer potent enough to induce a strong 

vertical thermal stratification in the cavity. Decreasing further the value of the isothermal 

wall temperature would be trivial since two-phase flow model is not used in the 

simulations. 

 

One thing to mention for the temperature profiles of Fig. 7.3 and 7.5 is that near the free 

surface, the effect of convective heat transfer to the environment is obvious. This trend 

could not be captured during experimentation due to lack of enough thermocouples near 

the surface. 

 

Another thermal boundary condition that could be applied upon the vertical walls would 

be linearly decreasing (with depth) wall temperature 

 

 2 1
1( ) wl wl

wl wl

T T
T T y T y

H


          (7.11) 

 

for 0, and , 0x h y H x L y H h        

 

where 
1 2(0) ( )wl wl wl wlT T T T H    

 

A sample simulation for 
1 210°C 0°Cwl wlT T   is run and the development of vertical 

temperature profile within the cavity is supplied in Fig. B.1 in Appendix. 
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Fig. 7.5 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 2 
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The next form of thermal boundary to be applied to the vertical walls is isoflux thermal 

boundary condition.  

 

 
1

wl

w

T
q

x k


 


        (7.12)   

 

for 0, and , 0x h y H x L y H h        

 

In Simulation 4 (see Fig. 7.6), a constant and steady value of 24000W mwlq  is applied 

to the vertical side walls. The numerical value for the heat flux is the maximum measured 

value in a similar experiment. The maximum value in an experiment during the charging 

period occurs when a steady temperature distribution within the cavity is attained, since 

by this time the cavity is at its maximum load and its losses are at their maxima. 

 

First thing to notice in the figure that a stronger vertical thermal stratification at the end of 

the charging period could be achieved. The temperature near the surface, just like the 

previous simulations stays around 45°C  but the bottom temperatures falls down to 

around 29°C . Although the level of stratification is still not enough, it is promising. 

 

Another thing worth noting is that the cooling of the cavity during the charging period 

well behind the initial temperature of the cavity which is 20°C . This is a direct 

consequence of extracting 24000W mwlq  from the very start of the simulation when 

there should be almost no heat loss due to low thermal energy content of the cavity. In 

reality, when a cavity is charged by relatively warm inlet water and cooled from the side 

walls by circulating cooling water inside some heat exchangers attached onto the side 

walls, the heat transferred from the cavity should slowly develop as the thermal energy 

stored within the storage slowly increases. This issue will be addressed in the following 

simulations. 

 

Before a transient wall heat flux is applied to the vertical side walls, the effect of a higher 

wall heat flux on the cavity is examined. A higher constant and steady heat flux of 
26000W mwlq  is applied in Simulation 6 and the temperature profiles of Fig. 7.7 is 

obtained. 

 

As the heat flux extracted from the side surfaces is increased one half, the resulting steady 

vertical temperature profile is quite stratified and in fact it is close to experimental results. 

But the cooling of the lower portions of the cavity below the initial temperature is also 

more pronounced. 
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Fig. 7.6 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 4 
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Fig. 7.7 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 6 
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Altering the constant and steady heat flux boundary on the side walls to constant yet 

transient boundary seems more reasonable in order to better simulate the heat exchangers 

attached to the vertical side walls of the cavity. In order to do that, the transient change of 

the side wall heat flux will be approximated to experimental data. Wall heat flux variation 

with time in a typical experiment can be found in Table B.2 in Appendix. The data in the 

table is actually coarsened data from an experiment. The number of data points is 

lowered. The wall heat flux in the experiments would not change after about 300mint   

(before the cavity attains a steady thermal profile) so the same trend is also followed in 

the computations. 

 

In the Simulation 8, this data from Table B.2 is used and the resulting vertical 

temperature profiles are presented in Fig. 7.8. By comparing Fig. 7.6 and 7.8, it is seen 

that by using a temporally changing but spatially non-changing wall heat flux improves 

somewhat the problem of the cooling of the water in the lower regions of the cavity way 

below the initial water temperature. Yet it is insufficient. On top of changing the wall heat 

flux temporally, the heat flux should be changed spatially too. Also, just like increasing 

the constant heat flux value of Simulation 6 (Fig. 7.6) gives a stronger steady thermal 

stratification than of Simulation 4 (Fig. 7.5), the values of Table B.2 can be accentuated 

to a desired maximum heat flux rate by simply multiplying the values of Table B.2 by the 

desired value and dividing all of the values by the maximum value at the table (which is 
23900W m ). 

 

  _

_ .12
( )

3900W m

wl max

wl wl TableB

q
q t q t


       (7.13) 

 

As an example, if a temporal wall heat flux distribution with a maximum heat flux value 

of 
26000W m is desired, utilizing equation (7.13) will yield a heat flux which is 

presented in Fig. 7.9.a. The figure shows the wall heat flux applied to the vertical side 

walls at different times up to 300min , at that time 
wlq reaches its maximum value of 

26000W m and stays at that value until the end of the charging process. 

 

When a time-varying heat flux characterized by the values in Table B.2 or in Fig. 7.9.a is 

applied to the cavity, we simply extract equal amounts of thermal energy from the higher 

and lower regions of the cavity. Yet thermal stratification in vertical direction exists in the 

medium, water temperature is highest near the free surface and lowest near the bottom 

surface. Hence extracting equal amounts of thermal energy in the vertical direction is 

erroneous. In Fig. 7.9.b, c, and d, three different heat flux variations are presented that 

have not only temporal variations, but also spatial variations. 

 

 

 



 73 

 
Fig. 7.8 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 8 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.9 Different Spatial & Temporal Heat Flux Patterns for Vertical Side Walls 
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All of the thermal boundary conditions in Fig. 7.9 have the same area under the ( , )wlq y t  

vs. y  at any equal time. That is, the area under the perpendicular trapezoidal region at 

any time of Fig. 7.9.b is equal to the rectangular area of Fig 7.9.a at the same time, and 

the vertex of the triangle of Fig 7.9.c at the free-surface is twice the value of the value of 

the heat flux of Fig. 7.9.a at the same time. Also for the triangular variation of Fig. 7.9.d, 

the penetration depth is calculated such that the area of the triangles bounded by the 

penetration depth and twice the value of the heat flux of Fig. 7.9.a are once again equal to 

the areas of rectangles of Fig. 7.9.a. 

 

Development of vertical temperature profile figures for the four side heat flux patterns 

shown in Fig. 7.9 are shown in Figures 7.10 to 7.13. By looking at the figures we may 

conclude that all of them shows final strongly stratified thermal profiles towards the end 

of simulations. The over-cooling of the lower regions of the cavity is least pronounced in 

Fig. 7.13. This simulation devices the B.C. depicted in Fig. 7.9.d. A slowly penetrating in 

depth heat flux boundary on the vertical side surfaces. 

 

Thus from now on, in the simulations the selected vertical side wall thermal B.C. will be 

the one depicted in Fig. 7.9.d. 
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Fig. 7.10 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 10 
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Fig. 7.11 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 12 
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Fig. 7.12 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 13 
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Fig. 7.13 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 14 
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7.3 Conservation of Energy Equation for the Cavity in Time-Rate Form 

 

The 1st Law of Thermodynamics for the cavity in the time-rate form could be written as; 

 

st
in out

dE
E E

dt
         (7.14)   

 

The energy inflow to the CV is simply the enthalpy of hot water that is supplied to the 

cavity. 

 

 in inE H         (7.15)   

 

The energy outflow from the C.V. is the summation of the total heat loss rates and the 

enthalpy outflow of the relatively cooler water exiting the outlet. Heat losses are from the 

free surface to the ambient and from the two vertical side walls. 

 

 _ _ 1 _ 2out out free surface side wall side wallE H Q Q Q        (7.16)   

 

Hence the energy equation becomes; 

 

 _ _ 1 _ 2
st

in out free surface side wall side wall

dE
H H Q Q Q

dt
        (7.17)   

 

The enthalpy transfer terms can be grouped as; 

 

( , ) ( , )

H

in out in in out out in in

H h

H H m h m h hu h u L l y h L l y dy 


        (7.18)   

 

Since  
inu and 

inh  are constants, they can be put within the integral in equation (7.18) 

 

  ( , ) ( , )

H

in in out out in in

H h

m h m h u h u L l y h L l y dy


        (7.19)   

 

At this moment, if the velocity profile at the outlet, ( , )u L l y , is roughly approximated 

to be equal to the inlet velocity 

 

 ( , ) inu L l y u          (7.20) 

 

Then the net enthalpy transfer rate to the cavity becomes; 
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    (7.21)   

 

An average outlet temperature can be computed with the computational data at any time. 

 

 
1

( , )

H
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H h

T T L l y dy
h



 
  

 
       (7.22)   

 

In the end the net enthalpy transfer becomes; 

 

 in out P in in outH H c hu T T         (7.23)   

 

There are convective and evaporative heat losses from the free surface. Also there may be 

solar radiation onto the free surface.  
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 (7.24) 

        

The heat loss rate from the vertical side walls can be computed from the appropriate wall 

heat flux function over the walls; 

 

   _ 1 _ 2

0

0, ,

H H h

side wall side wall wl wl

h

Q Q q y dy q L y dy



         (7.25)   

 

Finally, the energy conservation equation becomes; 
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  (7.26)   

 

Monitoring of the rate of energy storage term stdE

dt
 is a mean for determination of 

steadiness in the computation. As the rate of energy storage vanishes (during charging), 
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no more energy is stored within the cavity, the energy input rate to the cavity is equal to 

energy output rate from the cavity, and hence steady velocity and temperature fields are 

achieved within the cavity. 

 

 

 

 
Fig. 7.14 Variation of Components of Energy Equation  

in Time-Rate Form for Simulation 14 

 

 

The temporal variations of the components in the Conservation of Energy Equation for 

Simulation 14 is plotted in Fig. 7.14. The heat removal rate plot is redundant since there 

is no heat removal in this simulation. Also there is no solar radiation on the free-surface. 

The heat loss from the side walls show a stepwise variation up to 300min due to the 

stepwise variation of the heat flux boundary condition applied on the vertical walls. This 

stepwise variation is directly transferred to the rate of change of energy storage. The 

energy storage rate reaches negative values at around 350mint  , thus cavity loses 

energy at that interval. Furthermore the rate of energy storage decreases until a bottom is 

reached before 400mint  . After this time negative energy storage rate slowly 

diminishes and the cavity reaches steady flow around 550mint  . The variations after 

600mint   up to 1200mint  can be found in Fig. B.2 in Appendix, emphasizing the 

steadiness of the flow after around 550mint  . 

 

The cause of the negative storage rate interval can be seen in Fig. 7.13. Around this 

350mint  , the temperature of the region adjacent to the bottom surface increases fast, 

yielding a rapid increase in the enthalpy loss from the cavity through the outlet. In 

addition, in Fig. B.6, development of vertical temperature profile nearest the side wall at  

2mx  for Simulation 14 is presented. These are the vertical temperature profiles 

developing within the cavity closest to the outlet. Same trend can also be followed in this 

figure. 
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Examination of Fig. 7.14 reveals that the rate of convective and evaporative heat losses 

attains steady values way before the flow reaches steady-state. Though these losses are 

calculated from the interface temperature that is updated at every time interval, the losses 

reach their steady and maximum values at around 50mint  , indicating that the near 

surface regions reach steady-state early in the simulations. 

 

The steadiness check can be also done by comparison of the velocity fields at successive 

time periods. The streamlines of the flow field supplied in the next section can be a tool 

for this steadiness check. 

 

Yet another tool for the steadiness check of the flow can be the comparison of the 

temperature field of the flow at successive time periods. Temperature field at different 

times for a simulation will also be presented in the next section. Also as previously done, 

monitoring the development of vertical temperature profile within the cavity can be a tool 

at determining the flow steadiness. As flow approaches steadiness, successive vertical 

temperature profiles almost coincide. 

 

 

7.4 The Flow Field 

 

The developing velocity vectors within the cavity (excluding the inlet and the outlet) for 

Simulation 14 are presented in Fig. 7.15. From the start until the end, velocity vectors 

with highest magnitudes occur near the free-surface, since a free surface has no friction to 

the flow. Actually velocity magnitudes of around 0.0085m s , more than 5.5 times the 

inlet velocity magnitude of 0.0015m s  are seen at the interface. 

 

The regions close to the other three boundaries have high velocity magnitudes also. 

Region on top of the bottom surface has high velocity magnitudes due the suction effect 

of the outlet whereas regions close to the vertical side walls have high velocity 

magnitudes due the cooling of these regions with natural convection. 

 

The region away from the boundaries, roughly 0.2 1.8mx   and 0.2 0.45my   is 

almost motionless. 
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Fig. 7.15 Velocity Vectors within the Cavity during Charging, for Simulation 14 



 85 

 

 

 

 

 

Fig. 7.15 (cont’d) 
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Streamlines within the cavity and the inlet and the outlet during charging are shown in 

Fig. 7.16 for Simulation 14. At first glance, the flow does not seem to reach steady-state, 

since the streamlines do change towards the end of the simulation within the region away 

from the boundaries. But as previously noted, flow is almost motionless within this 

region and any minute change in velocity within this region is reflected in the streamlines 

of Fig. 7.16 as some considerable change. 

 

The flow near the top surface makes a back and forth motion, first it entrains in the 

vicinity of the interface, reaches the vertical side wall, changes direction and slides down 

under the newly coming fluid layer from the inlet. Actually at 30mint  this reversed 

flow even goes all the way across the cavity and leaves from the outlet. As the time goes 

on, this back and forth motion becomes quite steady and can be seen within around first 

40% of the depth as the simulation comes close to the end. 

 

 

Transient development of temperature distribution within the cavity is presented in Fig. 

7.17. A layer by layer temperature development is seen in all of the simulation. Region in 

the vicinity of the free-surface attains steady temperature values in the very beginning of 

the run due to the relatively fast convective currents. Away from the boundaries, 

development is slow indicating that the main heat transfer mode is diffusion. 

 

Away from the vertical side walls, the thermal stratification within the y  direction is 

quite uniform and does not change with x direction. This almost uniform temperature 

distribution in x direction can also be seen by comparing the vertical temperature 

profile development of Fig. 7.13 (which is plotted at 1mx   of the cavity) with four 

different vertical temperature profile development graphs, Fig. B.3 thru B.6 plotted at 

0mx  , 0.25mx  , 1.75mx  , and 2.0mx   in Appendix. 
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Fig. 7.16 Streamlines within the Cavity during Charging for Simulation 14 
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Fig. 7.16 (cont’d) 
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Fig. 7.17 Temperature Distribution within the Cavity and the Inlet and the Outlet 

during Charging for Simulation 14 
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Fig. 7.17 (cont’d) 
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7.5 Dimensionless Bulk Temperature,   

 

Dimensionless Bulk Temperature,  , is defined as the ratio of the difference of bulk 

temperature, 
bT , of the storage medium at any time t  and initial temperature

icT , to the 

difference between inlet charging temperature, 
inT , and initial water temperature 

icT . 

 

 
( )

( ) b ic

in ic

T t T
t

T T






       (7.27) 

 

Bulk temperature for a rectangular 2D cavity at any time can be defined as; 

 

( )
( ) st

b ic

P

E t
T t T

c HL
         (7.28) 

 

Stored thermal energy within the cavity at any time can be calculated by; 

 

  
0 0

( , , )

L H

st P icE c T x y t T dydx        (7.29) 

 

Hence the bulk temperature becomes;       

    

  
0 0 0 0

1 1
( ) ( , , ) ( , , )

L H L H

b ic icT t T x y t T dydx T T x y t dydx
HL HL

         (7.30) 

 

Dimensionless bulk temperature is bounded by unity from above. It gets its steady value, 

L ,  after the charging of the cavity is complete. 

 

Dimensionless bulk temperature represents the available energy that can be stored within 

the storage unit. When   reaches its steady value of 
L  during the charging process, no 

further energy storage within the storage unit is possible. A steady-state temperature 

distribution is achieved in the storage unit at this time and heat removal process can be 

started. During the heat removal process, if simultaneous charging of the storage unit is 

stopped, the calculation of   becomes meaningless by its definition, since charging 

temperature, 
inT , is undefined. On the other hand, if simultaneous charging of the storage 

unit is continued during the heat removal process,   decreases asymptotically to another 

steady value. From this time on energy input rate to the storage unit becomes equal to the 

heat removal rate from the storage unit plus the rate of total heat loss. 

 

Variation of the dimensional bulk temperature of the cavity for Simulation 14 is 

presented in Fig. 7.18. It reaches a peak value of 0.36 at 330mint  and after reaches a 

steady value of 0.33. Thus, the trend of losing, rather than gaining, energy for the cavity 
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for an interval before reaching a steady-state mentioned before in Section 7.3 can also be 

seen in the variation of dimensionless bulk temperature of the cavity. 

 

 

  

 
Fig. 7.18 Variation of Dimensionless Bulk Temperature Distribution within the Cavity  

during Charging for Simulation 14 

 

 

 

7.6 Effect of Initial Temperature 

 

Fig. 7.19 thru 7.21 show the vertical temperature development of three simulations, 

whose only differences from Simulation 14 (see Fig. 7.13) are the initial and ambient 

temperatures. The initial and ambient temperatures are 16°C, 16°Cic ambT T   in 

Simulation 15, 20°C, 16°Cic ambT T   in Simulation 16, and 24°C, 16°Cic ambT T   in 

Simulation 17. 

 

Comparison of the figures reveal that, as the initial temperature increased, the final steady 

temperature profile shows almost no change from the bottom surface to the free surface. 

Hence it can easily be concluded that cavity with lower initial temperature stores more 

energy. 

 

The initial temperature profile is away from the final temperature profile in Fig. 7.19, but 

as the initial temperature increases, the difference between the steady temperature profile 

and the initial temperature profile decreases. In fact, in Fig. 7.21 the two profiles even 

intersect. It can be concluded that in a relative sense, more energy is stored when the 

initial temperature of the cavity is lower. 

 

The variations of dimensionless bulk temperature are shown in Fig. 7.22. Again the 

higher storage performance of a cavity with lower initial temperature can be seen. 
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Fig. 7.19 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 15, 16°C, 16°Cic ambT T   
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Fig. 7.20 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 16, 20°C, 16°Cic ambT T    
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Fig. 7.21 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 17, 24°C, 16°Cic ambT T   
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Fig. 7.22 Variation of Dimensionless Bulk Temperature Distribution within the Cavity  

during Charging for Simulations 15, 16, and 17 

 

 

 

7.7 Effect of Ambient Temperature 

 

Fig. 7.23 shows the vertical temperature development of Simulation 19, whose only 

difference from Simulation 14 (see Fig. 7.13) and from Simulation 16 (see Fig. 7.20) is 

the ambient temperature. The ambient temperatures are 24°CambT   in Simulation 14, 

16°CambT   in Simulation 16, and 10°CambT   in Simulation 19. 

 

Comparison of the figures reveals that, the steady vertical temperature profile for 

Simulation 19 has the lowest temperature values from top to bottom. As the ambient 

temperature decreases, the temperature difference between the surface of the cavity and 

the ambient increases, contributing to a higher heat loss through the free-surface. 

 

The variations of dimensionless bulk temperature are shown in Fig. 7.24. Again the 

higher storage performance of a cavity with higher ambient temperature can be seen. 
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Fig. 7.23 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 19, 20°C, 10°Cic ambT T   
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Fig. 7.24 Variation of Dimensionless Bulk Temperature Distribution within the Cavity  

during Charging for Simulations 14, 16, and 19 

 

 

 

7.8 Effect of Inlet Temperature 

 

The effect of inlet temperature on the charging of the cavity is examined by comparing 

two simulations that differ only in the inlet temperature of water. In Simulation 14 (see 

Fig. 7.13) inlet temperature is 50°C while in Simulation 20, the inlet temperature is 

40°C . The vertical temperature development of Simulation 20 can be found in Fig. 7.25. 

The comparison of the variations of dimensionless bulk temperature of Simulations 14 

and 20 are shown in Fig. 7.26. 

 

The steady-state vertical temperature profile of Simulation 20 shows lower values than 

the steady-state vertical temperature profile of Simulation 14. If a one-to-one comparison 

of temperature values at same depths is performed, the temperature difference is found to 

be around 8 9°C  which is lower than the charging temperature difference of the 

simulations. This is due to the fact that losses from the free-surface increase as the 

charging temperature is increased. 

 

Comparison of the time variations of dimensionless bulk temperature within the cavity in 

Fig. 7.26 shows that when every other parameter is kept constant, increasing the charging 

temperature results in a better thermal storage performance. 
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Fig. 7.25 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 20, 40°CinT   
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Fig. 7.26 Variation of Dimensionless Bulk Temperature within the Cavity 

during Charging for Simulations 14 and 20 

 

 

 

7.9 Effect of Solar Radiation 

 

The effect of constant solar radiation on the free-surface of cavity can be examined by 

comparing the vertical temperature profiles of Fig. 7.13 (no solar radiation), Fig. 7.27 

(constant solar radiation of 2200W m ), and Fig. 7.28 (constant solar radiation of 

2400W m ). 

 

Increasing the solar radiation on the free-surface of the cavity increases the rate of 

penetration of energy into lower levels of the cavity. If temperature profiles at the same 

time are selected, higher the solar radiation, deeper the effect on energy storage. 

Dimensionless bulk temperature variation curves (Fig. 7.29) confirm the simple 

expectation that higher the solar radiation, higher the storage performance. 

 

 

 



 101 

 
Fig. 7.27 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 21, 2200W msolarq   
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Fig. 7.28 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 22, 2400W msolarq   
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Fig. 7.29 Variation of Dimensionless Bulk Temperature within the Cavity 

during Charging for Simulations 14, 21 and 22 

 

 

 

7.10 Lower Aspect Ratio 

 

The aspect ratio for all the simulations so far was 0.5 2.0 0.25A H L   . A lower 

aspect ratio, 0.15A  , is simulated by decreasing the height of the cavity to 0.3m  while 

keeping the length unchanged. The development of vertical temperature profiles within 

this shallower cavity is presented in Fig. 7.30. For a comparison with experimental data, 

Fig. 2.1 could be used. 

 

Although the simulation is run up to 600mint  , steady-state is achieved way before this 

time, at around 330 360mint   . 
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Fig. 7.30 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 23, 0.15A   
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7.11 Heat Removal Period 

 

Heat removal from a cavity will be performed by four rectangular tubes located at the 

same depth, separated from each other with an equal distance of 0.5m . The first tube is 

located at 0.25m . The height and the width of the tubes are equal and are 2cm . The 

depths of the tubes are changed at different simulations. 

 

In the code, the tubes are regarded as fluid regions with negative volumetric internal 

energy generation rates. Hence the tubes are regarded as negative sources in the Finite 

Volume Equations. In all of the simulations, this negative source is set a constant value, 
3750000W m , in order to gain a constant total heat removal rate of 1200W per unit 

depth of the cavity. This heat removal rate is an average value from the experiments 

performed and though it would change within an experiment temporally and between 

different experiments due to different sets of flow inputs, in the simulations, it is assumed 

that it does not change. Actually this means that in the simulations, the heat removal rate 

is not an output gained from different flow fields, different flow inputs and initial and 

boundary conditions but rather an equal input to different sets of cavities in order to see 

their response. 

 

 

 

 
Fig. 7.31 Schematic Drawing of 2D Cavity  

Showing the Heat Removal Tubes 

 

 

 

In the following simulations, the starting point, that is the charged cavity, is the same. It is 

the steady-state of Simulation 14, or the state of Simulation 14 at 600mint   (see Fig. 

7.13 thru 7.18). The heat removal is performed for another period of 600 minutes. 

 

The effect of heat removal on the vertical temperature profiles can be seen in Fig. 7.31 

and 7.32. The depth of heat removal tubes is 0.18m  for Simulation 14.1 and 0.06m  for 

Simulation 14.3. The effect of heat removal is felt more in the layers below the tubes than 

the layers above the tubes. In fact the effect of heat removal is felt all the way down to the 

bottom of the cavity whereas only a couple of centimeters above the tubes feel the effect. 
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Cavity reaches a steady-state in both of the simulations by compensating the extra heat 

loss due the heat removal by decreasing its enthalpy output due to cooling of the lower 

layers. The time to reach steady-state is around 360 minutes. 

 

 

 

 

 
Fig. 7.32 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 14.1, 0.18mremh   
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Fig. 7.33 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 14.3, 0.06mremh   
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Fig. 7.34 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 14.5, 
1 20.18m, 0.06mrem remh h   
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In Simulation 14.5, heat is removed from 
1 0.18mremh   in the first half of the heat 

removal period and from 
2 0.06mremh   in the second half. The vertical temperature 

profiles for the first half of this simulation are the same as the first half of Simulation 

14.1. The profiles for the second half are presented in Fig. 7.34. When the heat removal 

tubes are relocated, the cavity is not at a steady-state (it needs another hour to reach 

steadiness), when the heat removal is ceased at the end of the simulation, the cavity is not 

at steady-state either. As it can be seen from the figure, the relocation of the tubes 

disturbs the flow field fundamentally. 

 

The temporal variations of the components in the Conservation of Energy Equation for 

Simulation 14.1 is plotted in Fig. 7.35 from the beginning of the charging process to the 

end of the heat removal. The introduction of heat removal changes the steady zero value 

of  stdE

dt
 to negative values at 600 minutes. As the drained water temperature drops due 

to the heat removal from the cavity, the net enthalpy input to the cavity increases 

contributing an increase in the time rate of energy storage within the cavity until another 

steady-state achieved.  

 

 

 

 
Fig. 7.35 Variation of Components of Energy Equation  

in Time-Rate Form for Simulation 14.1 

 

 

 

The variation of dimensionless bulk temperature for seven different heat removal periods 

of seven simulations are presented in Fig. 7.36. In the first three simulations the heat 

removal tubes are at one location throughout the whole heat removal period whereas in 

the last four simulations the tubes are located at the specified depths for the indicated heat 

removal periods. At the end of the heat removal periods, when exactly same amount of 

heat is extracted from different depths and time interval combinations, it is found that 

Simulation 14.1 retains its stored energy most. Thus, it is better to extract heat from the 

lower levels of a charged cavity in order to disturb temperature field within the cavity 

less. Yet, heat removal from lower regions means a smaller temperature difference for the 

heat removal tubes to extract heat.  
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Fig. 7.36 Variation of Dimensionless Bulk Temperature within the Cavity 

during Charging for Simulations 14.1 thru 14.7 
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CHAPTER 8 

 

 

 

 

CONCLUSIONS 

 

 

 

 

 

 

A numerical study is performed in order to simulate a sensible energy storage filled with 

water with one inlet and one outlet. Relatively warm water is fed to the cavity to charge it 

while relatively cooler water is drained from the outlet. The top surface of the cavity is 

exposed to the ambient air, hence the interaction between the relatively warmer surface of 

the cavity and the cooler ambient air is inspected. 

 

The mathematical model of the cavity comprised of laminar 2D transient flow of an 

incompressible fluid. Both the momentum equations and energy equation need to be 

solved simultaneously to model cavity flow since both forced and natural convection 

occur in a flow-through storage unit. Boussinesq Approximation is utilized in order to 

simplify the momentum and energy equations coupling. 

 

Finite Volume Method is chosen to model the governing equations since FVM is the most 

widely used method of solution, has a rich literature to get help from, and is used by a 

huge portion of both the CFD/CHT coders and commercial software packages. The 

solution algorithm for the FVM is Semi-Implicit Method for Pressure-Linked Equations 

(SIMPLE) which is known for its adequacy for the solution of incompressible flows 

including natural convection. 

 

The code is written in Standard C++ computer programming language. C++ is a fast, 

reliable, and easy to code programming language used widely by CFD/CHT 

programmers. Actually it is one of the two programming languages (the other one is 

FORTRAN) recommended for CFD/CHT coding by different sources if MATLAB is 

excluded since it is not an actual computer programming language. 

 

The coding is started from the simplest form of fluid flow, namely the lid-driven cavity 

flow and advanced step by step introducing complexity to the model. Ports, energy 

equation, coupling of momentum and energy equations, complex boundary conditions, 

transient solution are all introduced one by one to the code. If the full mathematical 

model is attacked at the beginning of the coding, facing lots of errors is inevitable. 

 

Under-relaxation should be introduced to the code at the very beginning. FVM is 

susceptible to divergence unless under-relaxation (under-relaxation for the momentum 
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equations and the pressure-correction equation is a must) is used. In all of the simulations 

presented in CHAPTER 7, the under-relaxation factor is 0.7 for momentum equations and 

0.3 for the pressure-correction equation. The energy equation does not necessarily need 

under-relaxation and the under-relaxation factor is 1.0 (i.e. no under-relaxation) for the 

energy equation in the simulations. 

 

Source term linearization and always positive coefficients rule are also crucial for the FV 

Method. When dealing with complex boundary conditions with source terms, if the 

source is a specified heat flux and its direction is not into the solution domain (i.e. the 

source is negative or is from the grid to outside), the solution will definitely diverge. 

 

In the simulations of CHAPTER 7, rectangular grids with constant x  and y  values are 

used which simplified the code considerably. Yet a grid of 100 100  size resulted in a 

computation time around 20,000 seconds of one core of a powerful desktop PC. If in the 

future, the code is to be advanced such that it can also solve 3D cavities, special grid 

refinement techniques are required. 

 

The time increment in the simulations has a constant value of 0.1 seconds (a trial-and-

error value). It was tried to be increased during the iterations based on the drop in the 

number of iterations of the inner loop of the SIMPLE algorithm. When the number of 

iterations dropped to less than a few iterations, the time increment was increased. Yet the 

trials were all unripe and resulted in divergence of the solution. 

 

Experimental results (obtained during the M. S. study of the author) are used for 

comparison. The experiments were conducted with a 3D set-up naturally and the set-up 

utilized complex water jackets in order to remove heat from the vertical side walls at the 

inlet and outlet of the storage unit. Modeling these heat exchangers in a 2D code is the 

most problematic part of the computer simulations. A simple Dirichlet or von Neumann 

boundary condition would not work. A long section is devoted for the selection of the 

vertical side wall thermal boundary conditions. At the end, both temporally and spatially 

varying thermal boundary form is selected. 

 

The charging period of the cavity with relatively hot charging water entering the cavity 

through the inlet is examined. The velocity and temperature fields for the cavity are 

presented. The flow in the cavity reaches steady-state when the energy input to the cavity 

is equated by the energy losses from the cavity. At this steady-state, the storage has the 

highest energy content and is ready for heat extraction. The effects of initial temperature 

of the cavity, ambient air temperature, inlet charging temperature, and solar radiation on 

the free surface of the cavity are examined on the performance of the energy storage unit. 

It is found that lower initial storage temperature, higher ambient air temperature, higher 

charging water temperature, and existence of solar radiation have positive effects on the 

performance of the cavity. 

 

Heat removal period from the cavity is examined. In all of the simulations with heat 

removal, the charging of the cavity is continued. Basic heat removal tubes with 
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rectangular cross-sections are modeled as negative volumetric internal energy generation 

sources. Physical heat removal tubes are not modeled. In the simulations, constant heat 

removal rate is applied irrespective of the location of the tubes. The effect of removing 

equal amounts of heat from the cavity from different depths on the thermal field of the 

cavity is examined. It is found that (actually the finding is in accordance with 

experimental data) the heat removal process affects the regions below the tubes more than 

the regions above the tubes. The effect of heat removal is seen all the way down to the 

bottom of the cavity whereas only a couple of centimeters above the heat removal tubes 

feel any disturbance. As a result, when heat is removed from a lower layer, the stored 

energy content of the cavity at the end of the heat removal is higher. 

 

The present 2D code can be used as a basis for a 3D code simulating the heat removal 

tubes (or heat exchangers) more realistically. Simulation of an incompressible flow in 3D 

with combined natural and forced convection needs a lot of computer power. Instead of 

using CPU computation, the newly emerging GPU computing could be tried to shorten 

computation times. 

 

The effect of wind on the free surface (which is actually a minor improvement) can be 

added. The Boussinesq approximation could be disregarded; the y momentum equation 

can be solved as is since the temperature dependence of the water density can be 

implemented to the code quite easily. 

 

A couple of commercial codes were tried for benchmark purposes without any success. 

ANSYS FLUENT does not have the exact same slip (no-shear) boundary condition (see 

equation (3.13)), ANSYS CFX finds the thermal field but the velocity field does not 

reach a steady pattern rather than a chaotically fluctuating one continuously. COMSOL 

Multiphysics cannot even maintain a solution. So for a commercial code user moderate as 

the author himself, it may be concluded that learning and perfecting a commercial code, 

using it to solve a complicated flow problem, failing to achieve a solution, changing the 

commercial code and starting from the beginning could be more time consuming than 

writing one's own CFD/CHT code. 

 

To double-check the comparison of simulations with experimental data, three more 

simulations are run with the data of Experiment 1 from [17]. The parameters of the 

experiment are 0.26A H L  , 206kg hrinm  , 47.5°CinT  , 25.2°CicT  , 

24°CambT  , and an average maximum 23700W mwlq  . The vertical temperature 

development curves for the three different vertical side wall thermal B.C.'s of Fig. 7.9.b, 

c, and d are presented in Fig. B.7, 8, and 9 respectively. The sole difference of the 

simulations from the experiment is that in the simulations, the mean side wall heat flux 

value is somewhat higher, 25000W mwlq  . The temperature data points of the 

experiment are also presented in the figures. Comparison of the figures yields the same 

conclusion as of Section 7.2, vertical side wall thermal B.C. depicted in Fig. 7.9.d is the 

better choice among these three different side wall thermal B.C.'s. 
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APPENDIX A 

 

 

 

 

 

 

DISCRETIZATION OF THE GENERAL TRANSPORT EQUATION WITH 

HYBRID DIFFERENCING SCHEME 

 

 

 

 

 

 

The hybrid differencing scheme is a combination of second order accurate central 

differencing, which lacks the appropriate flow direction information (transportiveness) 

and the first order accurate upwind differencing scheme, which has the transportiveness 

property. The local Peclet number is the parameter that discriminates when to use the 

aforementioned two interpolation schemes. The Peclet number for the west face of a 3D 

C.V. (see Fig. 4.1) is  
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When the local Peclet number is large, the flow is convection dominated and the upwind 

differencing scheme is used. When the local Peclet number is low, the flow is diffusion 

dominated and the central differencing is used. 
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The net flux through the west face is the summation of the convective and diffusive 

fluxes 
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If 2wPe   , equation (A.3) becomes: 
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Assuming 
1

0
wPe
 . Hence  
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If 2wPe  , equation (A.3) becomes: 
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Assuming 
1

0
wPe
 . Hence  
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If 2 2wPe   , equation (A.3) becomes: 
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Hence  
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Similar treatments to the other five control surfaces will yield the coefficients in equation 

(4.35). 
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ILLUSTRATIVE MATERIAL 
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Fig. B.1 Development of Vertical Temperature Profile within Cavity at 1mx   

for Simulation 3 
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Fig. B.3 Development of Vertical Temperature Profile within Cavity at 0mx   

for Simulation 14 
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Fig. B.4 Development of Vertical Temperature Profile within Cavity at 0.25mx   

for Simulation 14 
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Fig. B.5 Development of Vertical Temperature Profile within Cavity at 1.75mx   

for Simulation 14 
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Fig. B.6 Development of Vertical Temperature Profile within Cavity at 2mx   

for Simulation 14 
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Fig. B.7 Comparison of Experimental Data (Experiment 1 from [17]) with Simulation 

Data, 0.26A H L  , 206kg hrinm  , 47.5°CinT  , 25.2°CicT  , 24°CambT  , 

25000W mwlq  as of Fig. 7.9.b 
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Fig. B.8 Comparison of Experimental Data (Experiment 1 from [17]) with Simulation 

Data, 0.26A H L  , 206kg hrinm  , 47.5°CinT  , 25.2°CicT  , 24°CambT  , 

25000W mwlq  as of Fig. 7.9.c 
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Fig. B.9 Comparison of Experimental Data (Experiment 1 from [17]) with Simulation 

Data, 0.26A H L  , 206kg hrinm  , 47.5°CinT  , 25.2°CicT  , 24°CambT  , 

25000W mwlq  as of Fig. 7.9.d 
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Table B.1 Geometry and Flow Parameters of the Simulations 
Sim. 

# 
H  

 m  

L  

 m

 

H
A

L


 

inT  

 °C

 

inu  

 m s  

icT  

 °C

 

ambT  

 °C

 

solarq  

 2W m

 

Wall B.C. 

1 0.5 2.0 0.25 50 0.0015 20 20 0 10°CwlT   

2 0.5 2.0 0.25 50 0.0015 20 20 0 0°CwlT   

3 0.5 2.0 0.25 50 0.0015 20 20 0 10 0°CwlT    

4 0.5 2.0 0.25 50 0.0015 20 20 0 24000W mwlq   

5 0.5 2.0 0.25 50 0.0015 20 20 0 27000W mwlq   

6 0.5 2.0 0.25 50 0.0015 20 20 0 26000W mwlq   

7 0.5 2.0 0.25 50 0.0015 20 20 0 25000W mwlq   

8 0.5 2.0 0.25 50 0.0015 20 20 0 24000W mwlq  * 

9 0.5 2.0 0.25 50 0.0015 20 20 0 27000W mwlq  * 

10 0.5 2.0 0.25 50 0.0015 20 20 0 26000W mwlq  * 

11 0.5 2.0 0.25 50 0.0015 20 20 0 25000W mwlq  * 

12 0.5 2.0 0.25 50 0.0015 20 20 0 26000W mwlq  ** 

13 0.5 2.0 0.25 50 0.0015 20 20 0 26000W mwlq  *** 

14 0.5 2.0 0.25 50 0.0015 20 20 0 26000W mwlq  **** 

15 0.5 2.0 0.25 50 0.0015 16 16 0 26000W mwlq  **** 

16 0.5 2.0 0.25 50 0.0015 20 16 0 26000W mwlq  **** 

17 0.5 2.0 0.25 50 0.0015 24 16 0 26000W mwlq  **** 

18 0.5 2.0 0.25 50 0.0015 24 24 0 26000W mwlq  **** 

19 0.5 2.0 0.25 50 0.0015 20 10 0 26000W mwlq  **** 

20 0.5 2.0 0.25 40 0.0015 20 20 0 26000W mwlq  **** 

21 0.5 2.0 0.25 50 0.0015 20 20 200 26000W mwlq  **** 

22 0.5 2.0 0.25 50 0.0015 20 20 400 26000W mwlq  **** 

23 0.3 2.0 0.15 50 0.0015 18 18 0 25500W mwlq  **** 

24 0.3 2.0 0.15 50 0.0015 18 18 0 25000W mwlq  **** 

25 0.3 2.0 0.15 50 0.0015 18 18 0 24500W mwlq  **** 

26 0.3 2.0 0.15 50 0.0015 18 18 0 24000W mwlq  **** 

27 0.3 2.0 0.15 50 0.0015 18 18 0 23000W mwlq  **** 

28 0.3 2.0 0.15 50 0.0015 24 24 0 25500W mwlq  **** 

29 0.3 2.0 0.15 50 0.0015 24 24 0 25000W mwlq  **** 

30 0.3 2.0 0.15 50 0.0015 24 24 0 24500W mwlq  **** 

31 0.3 2.0 0.15 50 0.0015 24 24 0 24000W mwlq  **** 

32 0.3 2.0 0.15 50 0.0015 24 24 0 23000W mwlq  **** 

33 0.3 2.0 0.15 50 0.0015 20 20 0 25500W mwlq  **** 

* As in Fig. 7.9.a 
** As in Fig. 7.9.b 

*** As in Fig. 7.9.c 

**** As in Fig. 7.9.d 



 132 

Table B.2 Wall Heat Flux Variation with Time in a Typical Experiment 

 wlq t  

 2W m  
Time Interval 

2000 0 15mint   

2100 15 30mint   

2300 30 45mint   

2650 45 60mint   

2850 60 75mint   

2950 75 90mint   

3100 90 105mint   

3200 105 120mint   

3250 120 135mint   

3350 135 150mint   

3450 150 165mint   

3500 165 180mint   

3500 180 195mint   

3550 195 210mint   

3650 210 225mint   

3700 225 240mint   

3700 240 255mint   

3750 255 270mint   

3800 270 285mint   

3850 285 300mint   

3900 300mint   
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