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ABSTRACT

FREE CONVECTION HEAT TRANSFER
IN A STRATIFIED MEDIUM — CAVITY PROBLEM

Kayserilioglu, Yavuz Selim
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Riiknettin Oskay
Co-Supervisor: Assoc. Prof. Dr. Tuba Okutucu Ozyurt
September 2013, 133 Pages

A numerical study is performed in order to simulate a 2D cavity filled with water having
one inlet and one outlet. Relatively warm water is fed to the cavity to charge it while
relatively cooler water is drained from the outlet. The top surface of the cavity is exposed
to ambient air. Bottom surface is insulated while vertical side surfaces are cooled.

Mathematical model comprised of laminar 2D transient flow of an incompressible fluid.
Momentum and energy equations are solved simultaneously with Boussinesq
approximation since both forced and natural convection occur within cavity.

The charging period of the cavity with relatively hot charging water is examined.
Velocity and temperature fields for cavity are presented. Effects of initial temperature,
ambient air temperature, inlet charging temperature, and solar radiation on free surface
are examined. It is found that lower initial storage temperature, higher ambient air
temperature, higher charging water temperature, and existence of solar radiation have
positive effects on the performance of cavity.

Heat removal period from cavity is examined. Basic heat removal tubes with rectangular
cross-sections are modeled as negative heat generation sources. Heat removal process
affects regions below the tubes more than regions above the tubes. The effect of heat
removal is seen all the way down to bottom of the cavity whereas only a couple of
centimeters above the heat removal tubes are affected. As a result, when heat is removed
from a lower layer, stored energy content of cavity at the end of heat removal is higher.

Keywords: Sensible Heat Storage, Thermal Stratification, Warm Water Storage, Finite
Volume Method, SIMPLE Algorithm
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ISIL TABAKALANMIS ORTAMDA DOGAL ISI TRANSFERI
— BOSLUK PROBLEMI

Kayserilioglu, Yavuz Selim
Doktora, Makine Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Riiknettin Oskay
Ortak Tez Yéneticisi: Dog. Dr. Tuba Okutucu Ozyurt
Eyliil 2013, 133 Sayfa

Iki boyutlu, bir girisi bir de ¢ikis1 olan, i¢i su dolu bir boslugu simiile etmek icin sayisal
calisma yapilmistir. Gorece sicak su boslugu yiiklemek icin giristen verilirken gorece
soguk su cikistan ¢ekilir. Boglugun st yiizii ortam havasi ile temas halindedir. Alt yilizey
1s1l yalitilmigken dikey yan yiizeyler sogutulmaktadir.

Matematik model sikigtirllamaz bir akigkanin laminer, gegici, iki boyutlu akigindan
olugmaktadir. Boslukta hem zorlama hem dogal tasinim oldugu i¢in momentum ve enerji
denklemleri Boussinesq yaklastirimi yardimiyla eszamanl ¢oziilmektedir.

Boslugun sicak suyla yiiklendigi yiikleme siireci incelenmektedir. Boglugun hiz ve
sicaklik alan1 sunulmaktadir. ilk sicakhigin, ortam hava sicakligmin, yiikleme suyu
sicakligiin ve su yiizeyine giines 1simiminin etkileri incelenmektedir. Daha soguk ilk
sicakligin, daha sicak ortam hava sicakliginin, daha sicak yiikleme sicakliginin ve giines
1siniminin bulunmasinin bosluk performansina olumlu etkisi oldugu goriilmektedir.

Bosluktan 1s1 ¢ekme siireci incelenmektedir. Basit dikdortgen kesitli 1s1 ¢ekme tiipleri
negatif 1s1 jenerasyonu kaynagi olarak modellenmektedir. Is1 ¢gekmenin tiiplerin altinda
kalan kisimlar tiiplerin iizerinde kalan kisimlardan daha c¢ok etkiledigi gozlemlenmistir.
Is1 ¢ekmenin etkisinin tabana kadar etkili oldugu, ancak tiiplerin {izerinde sadece birkag
santimetrelik bir bolgeyi etkiledigi goriilmektedir. Sonu¢ olarak boslugun daha
asagilarindan 1s1 ¢ekildiginde, 1s1 ¢gekme sonuglandiginda boslukta kalan 1s1l enerji daha
fazladir.

Anahtar Kelimeler: Duyulur Ist Depolama, Isil Tabakalanma, Sicak Su Deposu, Sonlu
Hacimler Yontemi, SIMPLE Algoritmasi
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NOMENCLATURE

area, m’
aspect ratio, H/L

width of storage medium, m

Cp constant pressure specific heat, J/kgK

c, constant volume specific heat, J/kgK

D diffusion conductance, kg/s

D,. binary diffusion coefficient, m%/s

d relative location of heat removal tubes
from free surface, m

E energy, J

e specific energy, J/kg

F strength of convection, kg/s

H height of storage medium, m

H enthalpy, J

H enthalpy flow rate, W

h specific enthalpy, J/kg

h convective heat transfer coefficient, W/m?K

hy latent heat of vaporization, J/kg

k thermal conductivity, W/mK

L length of storage medium, m

Le Lewis number, o/D,,

m mass, kg
mass flow rate, kg/s

Nu Nusselt number, hL / k

P pressure, Pa

Pe Peclet number, uL/«
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Pr Prandtl number, v/«

Q heat transfer, J

rate of heat transfer, W
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Ra Rayleigh number, gg(T, -T, )L}, /v
Re Reynolds number, uL/v

Ri Richardson number, gB(T -T,)L/u?
S source function

T temperature, °C

t time, s

U internal energy, J

u specific internal energy, J/kg

V velocity, m/s

\Y; volume, m®

\Y; velocity vector, m/s

W work, J

w specific humidity ratio, kg,, /kg,
X Cartesian coordinate along length
y Cartesian coordinate along width
z Cartesian coordinate along depth
Greek Symbols

a under-relaxation factor

a thermal diffusivity, m?/s

Jij thermal expansion coefficient, 1/K
¢ generic transport variable

¢ relative humidity, %

r generic diffusion coefficient

1% kinematic viscosity, m?/s
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P density, kg/m’

0 dimensionless bulk temperature, (T, =T, )/(T;, - T;.)
Subscripts

a air
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b bulk

b,B bottom

ch characteristic
conv convective
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f film
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L limiting value
m mass transfer
n,N north

out outlet
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S surface
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w water

w,W west

wl wall
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00 free stream

Xviii



Abbreviations

B.C.
C.S.
C.V.
CFD
CHT
FVM
I.C.
TDMA
SIMPLE

boundary condition

control surface

control volume

Computational Fluid Dynamics
Computational Heat Transfer
Finite Volume Method

initial condition

Tri-Diagonal Matrix Algorithm

Semi-Implicit Method for Pressure-Linked Equations

XiX



XX



CHAPTER 1

INTRODUCTION

Energy storage systems involve the collection and retention of readily available energy
for later use. There are four main modes of energy storage; electrical, mechanical,
chemical, and thermal. Among these, thermal energy storage is attractive for the
applications related to waste heat recovery, solar energy utilization, and peak electricity.

Thermal energy can be stored as sensible heat, as latent heat of phase change, or in a
reversible chemical reaction. Latent heat can be stored within a medium undergoing a
phase change. For example, during boiling of a liquid, heat of vaporization is stored in its
vapor and this stored energy can be released during the condensation of the vapor.
Thermal energy can be stored in a reversible chemical reaction. During an endothermic
reaction, energy is stored and when the reaction is reversed, the exothermic reaction
releases the stored energy.

Sensible heat storage systems utilize materials that store energy as sensible heat, thus the
temperature of storage medium changes as it stores or discharges thermal energy. The
sensible heat gained or lost by a material during a change in temperature from T, to T, can

be written as;
T2
Q=vjpch (1.1)
Tl

Where Q : Sensible heat gained or lost

: Temperature of the material

: Density of the material

: Volume of the material

: Specific heat capacity of the material

o< x -

Liquids and solids are used as the storage media. Most commonly used solids as the solid
storage media are rocks and pebble beds. Water is the most common liquid used as liquid
storage media.



Some of the advantages of using water as the sensible heat storage medium are:

e itis cheap and abundant,

e has relatively high heat capacity (five times more than that of granite),
e has lower density compared to rocks,

e non-toxic, non-combustible.

General operational problems of sensible heat storage systems can be summarized as [1]:

o Temperature of the storage medium continually rises during charging which
results in greater heat loss.

e Temperature of the storage medium continually drops during heat removal which
results in smaller heat flux deliveries.

o Heat storage occurs at temperatures higher than ambient temperature. Therefore
insulation is required which increases system cost.

The temperature distribution within the sensible liquid storage medium can be isothermal
as it is in a well-mixed liquid storage or can be non-uniform as it is in thermally stratified
storage.

Thermal stratification is a kind of non-uniform temperature distribution in a body. It
occurs especially in the vertical direction within a water storage tank. The relatively
warmer water entering the storage unit is lighter than the relatively colder water inside the
storage tank and remains on top of the relatively cold water of the storage, resulting in
non-uniform temperature distribution in the vertical direction. The benefit of thermal
stratification in a water storage is that liquid at a higher temperature than the overall
mixed temperature can be stored at the top of the storage medium.

The main objective of the present study is to simulate numerically a rectangular
parallelepiped cavity. The cavity is a flow through reservoir containing water in it as the
working fluid, and charged from a single inlet by relatively warm water and discharged
by a single outlet from the opposite side of the inlet. The two side walls along the inlet
and the outlet are cooled to attain thermal stratification whereas the remaining two side
walls are kept at a constant wall temperature, while the bottom surface is assumed to be
insulated. The top surface is a free surface permitting interaction of the fluid filling the
cavity with the ambient air.

The three dimensional Navier-Stokes equations and the energy equation will be solved
for unsteady conditions for an incompressible fluid with constant viscosity and thermal
conductivity. The method used in the discretization of the governing equations is the
Finite Volume Method. SIMPLE algorithm will be the solution algorithm.

There will be two stages of the simulations. In the first stage, the cavity (the relative
dimensions of the cavity will be changed) will be charged (with different charging



temperatures, starting from different initial temperatures, with/without solar radiation on
the free-surface) until a steady-state flow field and temperature field is established within
the cavity. This state corresponds to the equilibrium state at which thermal energy input
to the cavity equals heat losses from the cavity. At this time, the highest amount of
thermal energy is stored within the cavity.

Next, the heat extraction stage begins; thermal energy in the cavity will be used with the
help of heat-exchangers. Equal amount of heat will be extracted from different depths of
the cavity in order the observe the resulting effect of heat removal on the flow and
temperature fields. The flow field and the temperature field within the cavity will
converge to yet another steady-state.






CHAPTER 2

LITERATURE REVIEW

Some of the aspects that are important in the evaluation of storage performance of a
sensible storage may be classified as follows; the velocity and temperature of the inlet
flow charging the storage medium, relative locations of the inlet and outlet channels or
ports with respect to the storage geometry, boundary conditions of the storage medium,
especially at the surface if there is a free surface with the ambient, aspect ratio dictated by
the storage medium (L/ D for cylindrical geometries, L/ H for rectangular geometries)
and the thermal stratification inside the storage medium. Following is a review of some of
the papers available in the literature dealing with these aspects.

Oberkampf and Crow [2] simulated the velocity and temperature fields in a reservoir by
using a finite difference procedure. They assumed the flow inside the reservoir to be two-
dimensional in a vertical plane and solved the vorticity transport, stream function and
energy equations. The inflow was set at a temperature and velocity to simulate thermal
discharge from a power plant and occurred at the surface at one end of the reservoir and
outflow occurred on the opposite end at different depths. Wind shear, thermal radiation,
evaporation, and convection at the surface of the reservoir were considered. They
discussed the effects of inflow-outflow, wind shear and heat transfer on the reservoir.

Lavan and Thompson [3] studied thermal stratification in hot water storage systems.
Cylindrical plastic vessels with various length-to-diameter ratios were charged with
varying inlet-outlet temperature differences and mass flow rates. They also studied inlet
and exit port configuration on thermal stratification. They concluded that, even at very
large flow rates, thermal stratification could be maintained in cylindrical water tanks.
Increasing L/ D and inlet and outlet port diameter, decreasing mass flow rate improved
thermal stratification. They obtained best results when the inlet and outlet ports were near
the end walls of the storage tank.

Comez [4] designed and constructed a sensible heat storage unit as part of his M.S. study.
Author observed the development of temperature and velocity profiles experimentally
within the storage unit. The main parameters investigated for the evaluation of
performance of the storage unit were the charging flow rate, charging temperature and
aspect ratio (A=H /L) of the water body. Two dimensionless parameters were defined,



the effectiveness, ¢, was related to the percentage of input energy which could be stored
inside the storage unit and a dimensionless temperature &, represented a mean bulk
temperature for the storage medium. The main conclusions that the author derived were
as follows. The storage medium could be thermally stratified for all of the charging mass
flow rates. Better stratification was observed at lower charging rates. Aspect ratio was an
important parameter affecting the performance of the storage unit. Lower aspect ratios
gave better storage performance. Slow moving convective currents were observed during
the flow visualization tests.

Jaluria and Gupta [5] carried out an experimental study of the temperature decay in a
thermally stratified water body. Water body was initially stratified by the recirculating
flow of hot water discharge and by the addition of hot water at the top of the colder fluid.
After the fluid was stratified, it was allowed to cool without any external charging of the
storage. They also investigated the cooling of an isothermal water region. Greater
buoyancy-induced mixing was observed in isothermal case, since stratified region
inhibited mixing currents and energy transfer in this region was mainly by thermal
diffusion. They concluded that stratified medium was a better energy storage system
compared to the isothermal one. Experimental results indicated that the temperature field
was largely one-dimensional and they formulated a simple analytical model. Analytical
results were in good agreement with the experimental results.

Jaluria and O’Mara [6] studied experimentally the recirculating flow in an enclosed water
region due to the discharge of heated, buoyant, surface jets, coupled with withdrawal of
cold fluid at the other end of the region. They determined both the transient and steady-
state temperature fields. Effects of inflow conditions, flow configuration, enclosure
dimensions and the outlet location on the temperature field were examined. They
investigated the downward penetration of the flow and thermal stratification in the region.
They found that the temperature field in the water body undergoes a rapid transient
behavior at the beginning of the flow, followed by a gradual variation to steady-state
conditions. Inlet conditions and outlet location determined the transient behavior. An
interesting finding was that the temperature field they obtained was mainly two-
dimensional, only a small variation was observed in the transverse direction. Buoyancy
affected mainly the temperature distribution inside the water body. It was the cause of
fairly good horizontal temperature homogeneity except the proximity of inlet and outlet
channels.

Yoo and Pak [7] studied a theoretical model of the charging process to provide an upper
limit of the performance for stratified thermal storage tanks. They reached a closed-form
solution for the transient temperature as a function of Peclet number Pe , assuming perfect
piston flow together with appropriate boundary conditions and applying Laplace
transform. They compared the model with those from heat conduction between two semi-
infinite regions in contact with the moving interface. They concluded that the model
could be used for a wider range of Pe, and predicted the thermal behavior of storage tank
better compared to the semi-infinite case.



Safi and Loc [8] performed a numerical study for the determination of thermal
stratification in an open cavity with one heated discharge. Hot laminar jet entered
horizontally into the square cavity at the top of one end, the outlet was at the bottom of
the opposite end. They used a finite difference scheme to solve two-dimensional flow
described by the Navier-Stokes and energy equations. The influences of non-dimensional
parameters of Reynolds, Peclet and Richardson numbers on the flow and thermal
stratification were observed. Authors concluded that the flow was strongly dependent on
Richardson and Peclet numbers.

Eames and Norton [9] performed a theoretical and experimental study to investigate the
thermal performance of stratified hot water stores. They compared their transient three-
dimensional finite volume model with the experiments they performed. Variations in inlet
velocities, temperatures and initial store stratification were the main concerns. Authors
reported that store charging was more efficient when H /D of the store increased and
inlet port located near to the top of the store.

Hahne and Chen [10] investigated numerically the flow and heat transfer characteristics
of a cylindrical store during charging under adiabatic conditions. The study is
concentrated on the effects of charging temperature differences, charging velocities,
charging flow rates and length to diameter ratios on the charging efficiency. The
conclusions were; charging efficiency depended mainly on Richardson number, Peclet
number and aspect ratio of the storage. An increase in Richardson number or aspect ratio
revealed an increase in charging efficiency. An increase in Peclet number while keeping
Richardson number constant increased charging efficiency.

According to Bouhdjar and Harhad [11], thermal stratification generated in the sensible
heat storage should be promoted in order to improve thermodynamic system efficiency of
the storage. They presented a numerical study of transient mixed convection. The use of
different fluids (Torada oil, ethylene glycol, and water) as a heat storage medium in
cylindrical cavities with different aspect ratios (3 to 1/3) was examined. The effect of
different fluids was observed by changing the physical properties represented by the
Prandtl number. Fluid was injected from the top and discharged from the bottom. They
solved conservation equations for laminar natural convection flow with Boussinesq
approximation and superimposed forced convection using finite volume method. They
presented the performances of the thermal energy storage through the transient thermal
storage efficiency.

Ersoy [12] performed a numerical study of mixed convection in cavities. The flow was
two-dimensional, incompressible, steady flow of a Newtonian fluid. Gauss-Seidel
iteration was used to solve the non-dimensional vorticity transport, stream function, and
energy equations for cavities without any inlets or outlets and with single inlet and outlet
configurations. Author emphasizes that “Rayleigh number has considerable influence on
every variable of the flow.” Also for the numerical computations, the author reports that
convergence is affected by Rayleigh and Prandtl numbers.



Saha et. al. [13] performed a numerical study on a 2D cavity with one inlet and two exits.
Ambient air is fed to the cavity from the inlet located at the bottom of one vertical side
wall and the exits are located at the top of the two side walls. The bottom wall of the
cavity is heated with constant heat flux while the other three walls of the cavity are
adiabatic. Laminar flow of air within the cavity is solved by a control volume based finite
element technique. At low Reynolds and Richardson numbers, they observed a large eddy
within the cavity. The governing parameter affecting heat transfer is found to be
Richardson number.

Das et. al. [14] investigated a rectangular cavity heated symmetrically from the vertical
side walls both numerically and experimentally. The numerical model is 2D FVM, while
the experimental set-up has two heated opposite side-walls and the remaining side walls
are glass. The bottom of cavity is insulated while the top surface is left open. They find a
well-mixed zone near the top of the cavity whereas the lower region of the cavity is
thermally stratified.

Rahman et. al. [15] studied combined forced and free convection within a rectangular
cavity which has an inlet in the middle of the left wall and an outlet at the top of the right
wall. The remaining right side wall is heated with constant heat flux and a horizontal
conducting cylinder is placed at different locations within the cavity. The numerical
method used is Galerkin Finite Element Method. They report that as the diameter of the
conductive cylinder increases, the average Nusselt number of the heated wall increases
and the average fluid temperature within the cavity decreases.

Papanicolaou and Belessiotis [16] studied numerically a real-scale underground hot-water

storage tank. The simulated storage tank has a volume of 8m?, concrete bottom and side
walls, a free-surface at the top which is covered by an other concrete lid 8 cm above the
free-surface. The storage has an inlet at the top of one of the side walls and an exit at the
bottom of the same vertical side wall. The storage is charged with constant mass flow rate
of water with either at constant temperature, or at transient temperature due to solar-
collector heating, or at transient temperature due to electrical heating. The numerical
model used is either 2D low Re k —¢& or two-layer turbulence model. When constant
temperature charging is used, the inlet velocity is 0.022m/s, the inlet temperature is

50°C, and the initial temperature of the storage is 20°C. Zero-shear velocity B.C. is
used at the free-surface. The fluid region and the thick concrete walls are solved together.
The streamlines and isotherms at different times are presented. The isotherms reveal
thermal stratification in the vertical direction.

In his M. Sc. study, Kayserilioglu [17] performed an experimental study on the same set-
up of [4] with some major alterations. The charging of the storage unit until reaching a
steady-state flow field and temperature field was followed by thermal energy extraction
from the storage unit by passing cooler water inside coils suspended into the storage unit.
During this energy extraction, charging is either continued or ceased. Fig. 2.1 shows the
vertical thermal strafication during the charging period of the storage unit, Fig. 2.2,



during the heat removal period of the storage unit whilst the charging is continued, and
Fig. 2.3, during the heat removal period of the storage unit whilst the charging is ceased.
A steady thermal stratification is achieved (Fig. 2.1) when the total energy input is
equaled by heat losses from the storage unit. When the heat removal is started with the
continuation of energy charging, temperature field converges another steady profile, not
far from the first steady profile (mainly due to lack of complex heat removal equipment
and/or not utilizing higher mass flow rates within the heat removal coils).

On the contrary, when the heat removal was in the absence of further charging of the
storage unit, decay of thermal stratification was abrupt.
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CHAPTER 3

MATHEMATICAL FORMULATION

The schematic of the cavity is presented in Fig. 3.1. A cross section of the cavity at z=0
plane is presented in Fig. 3.2. The cavity dimensions areLxH x2B. Side walls are
cooled while the bottom surface is assumed to be insulated. The top surface is a free
surface interacting with the ambient air. Warm water enters the cavity from the inlet
which is at the x=0 plane, h far from the free surface. Relatively cooler water is
drained from the bottom of the opposite side of the cavity.

Fig. 3.1 Schematic of the Cavity
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Fig. 3.2 Cross Section of the Cavity at a Constant z—plane

The flow is assumed to be laminar, 3 dimensional, unsteady; the fluid is incompressible
(liquid water) and has constant properties. The governing equations with the employment
of the Boussinesq approximation are (from Jaluria [18] and Yang [19])

@+@+8—W=0 (3.1)
ox oy oz
ou au ou ou  op o’'u du
pP—t+tpU—+pN—+pW—=——"—F | —+—+— (3.2)
ot OX oy 0z OX oX~ oy° oz
ov ov v N op ov oV o
—+pU—+pN—+ W—=——+ Y| —+—+— |- T-T,
PR TP Ty /{axz P P9B(T-T,)
(3.3
ow ow ow ow  op o°’'w  0*w  o°w
Pt pU—+pN—+ pW—=——+ U] — +——+—; (3.4)
ot OX oy 0 oz ox® oy® oz
oT oT oT oT o°T 0T 07T
PC——+ pCU—+ pCV— + pCW—=K| —+—+— (3.5)
ot OX oy 0z ox~ oy oz
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Where, T, is the initial uniform temperature of the cavity, £ is the coefficient of thermal
expansion of the fluid, and g is the gravitational acceleration.

The initial condition for the cavity is quiescent water in thermal equilibrium.

u(x,y,z,0)=v(x,v,z,0) =w(x,y,z,0)=0

T(x,y,2,0)=T, (3.6)

And the boundary conditions are; no slip and transient cooling boundaries at the vertical
walls along the inlet and outlet and no-slip and constant wall temperature boundaries for
the remaining two vertical side walls.

u(0,y,z,t)=v(0,y,z,t) =w(0, y, z,t)
=u(L,y,z,t)=v(L,y,z,t)=w(L,y,z,t) =0

aT _ﬂ _ qwl (t)
&(0! y,Z,t)— ox (L,y,Z,t)— K (37)

u(x,y,—B,t) =v(x,y,-B,t) =w(x, y,—B,1)
=u(x,y,B,t)=v(x,y,B,t) =w(x,y,B,t) =0 (3.8)
T(x,y,-B,t)=T(x,y,B,t)=T,

Or instead of using one of the z=+B, 0<x<L,0<y<H boundaries, the symmetry at
z =0 plane can be used

N y,00) =X 061,00 = (%, y,0,8) = T (x,,0,8) =0 (3.9)
oz oz 0z oz

The bottom surface will be treated as thermally insulated with the usual no-slip condition;
oT
u(x,H,zt)=v(x,H,z,t)=w(x,H,z,t) :a_(x, H,z,t)=0 (3.10)
z

The velocity and the temperature of the fluid entering the cavity are specified
u=u, and T =T, (3.11)
at the inlet.

And the velocity at the outlet is equal to the velocity at the inlet and zero temperature
gradient in the x — direction.

15



u=u, and ﬂ=0 (3.12)
OX

though in the computations, velocity outlet is an unknown extrapolated from the exterior
solution and balanced by overall mass balance for the cavity.

For the top surface, Jaluria [18] recommended no-shear velocity condition for the
tangential directions of this surface;

%u(x,o,z,t)zv(x,o,z,t)=%(x,0,z,t)=0 (3.13)

The thermal boundary condition at the free surface is due to the total heat loss from this
surface which changes with respect to time as the flow develops.

ar _4®
E(X,O,z,t) == (3.14)

Heat flux through the free surface includes evaporative and convective losses and solar
gain.

qs (t) = qconv (t) + qevap (t) - qsolar (t) (315)

The convective heat transfer from the free-surface can be calculated by approximating the
free surface to the upper surface of a heated plate at constant temperature although
temperature of the free-surface varies. The Rayleigh number for the free surface is

_ 9B (T ()-T. )L

V.

air “air

Ra, (t) (3.16)

The thermophysical properties of air are evaluated at T, =(TS +T, )/2 and L is the

characteristic length of the free-surface defined by L=A/P. A is the surface area and

P is the perimeter of the free-surface. The following average Nusselt number
correlations recommended by Incropera [20] are used.

V4

Nu, (t)=0.54(Ray(t)) (10* <Ra, <107) (3.17)

13

Nu, (t)=0.15(Ra, (t)) (10" <Ra, <10%) (3.18)

Hence the overall convective heat transfer coefficient and the convective heat transfer
through the free surface are
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(3.19)

k..
hconv (t) = NuL (t) Er

Qeonv (t) = hv:onv (t) '% (Ts (t) _Too ) (320)

The computation of mass transfer coefficient involves utilization of heat and mass

transfer analogy

1-n
hconv (t) — pairCPair [aair J (321)
hevap (t) DAB

Where D, is the binary diffusion coefficient of water vapor in atmospheric air. The
recommended ([20]) value of n is 1/3. Once the mass convection coefficient is

computed, then the rate of vaporization is calculated

(3.22)

— Tevap

Meap (t) =h (t) A ('DW (@Ts (t)) — PP (@Tw ))

In the above equation, ¢ is relative humidity. The heat transfer accompanying the mass

transfer is

Oep (1) = My (1) N (@T, (1)) (3.23)
The last term in equation (3.15) is heat transfer due to solar radiation. Solar radiation

could be time dependent or assumed to be constant during the simulations.

Usotar (t) = q;’olar (t)AE (324)

To non-dimensionalize the governing equations, the height of the inlet d , the velocity of

the charging fluid u,,, the temperature difference of the charging fluid, and the uniform

initial temperature of the water body (T, —T,..) will be used,

x=2,y=Y z-2 y-L v-2X w2
d d d uin uin uin
_T 3.25
ol pob T @29
i PU;, Tln_Tic
U.

The governing equations become;
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Where
v _1
u,d Re
gﬂd(Tin _Tic) _ gﬂdS(Tm _Tic) Vz _ Gr
U V2 uzd® Re?
a _av 11
u.d vu,d PrRe

The initial condition becomes

U(X,Y,Z,0)=V(X,Y,Z,0)=W(X,Y,Z,0)=0
0(X,Y,Z,0)=0

The boundary conditions become;
Side surfaces containing the inlet and outlet:

u(@,Y,Z,7)=V(0,Y,Z,7)=W(0,Y,Z,7)

=U(L/d,Y,Z,7)=V(L/d,Y,Z,z)=W(L/d,Y,Z,7) =0

%(O,Y,Z,r) :%(L/d,Y,Z,T) :L(t)
oX oX k(Tin _Tic)
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



The other two side surfaces:

U(X,Y,-B/d,z)=V(X,Y,-B/d,z) =W(X,Y,-B/d,7)
—U(X,Y,B/d,7)=V(X,Y,B/d,7) =W(X,Y,B/d,z) =0

o(X,Y,~B/d,7)=6(X,Y,B/d,7) = I 1 (3.36)

in ic

Or the symmetry condition at Z =0 plane
ouU oV oW 00
—(X,Y,0,7) =—(X,Y,0,7) =—(X,Y,0,7) =—(X,Y,0,7) =0 3.37
-7 ¢ )= )=, =2 7) (3.37)

The bottom surface:

U(X,H/d,Z,7)=V(X,H/d,Z,z) =W (X,H/d,Z,7)

3.38
_90 (X H1d,Z,r)=0 (3:38)
oL

The top surface:

@(x,o,z,r)=V(x,o,z,r)=‘2—\’¥(x,o,z,f)=o

—(x 0z7-—%d (3.39)

I((-I—Il'l TIC)

At the inlet

U=1land #=1 (3.40)
And at the exit

U =1and %=o (3.41)

oX
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CHAPTER 4

FINITE VOLUME METHOD

4.1 Discretization of the Governing Equations

The momentum equations (3.2) to (3.4) are non-linear. Furthermore the y-momentum
equation, equation (3.3) is coupled with the energy equation, equation (3.5). They are to
be solved simultaneously in a continuous iterative manner. The transport equations (3.2)
to (3.5) can be represented by the following general transport equation

op op 09 op (%9 % &
—+pu—+ pVN—+ pW—=| —+—+—|+S 4.1
Pa M Py P (axzayzaz2 (4.1)

where ¢ is the transport variable, T is the diffusion coefficient, and S is called the

source function. The corresponding counterparts within the governing equations are
tabulated in Table 4.1.

Table 4.1 Transport Variables, Diffusion Coefficients,
and Source Functions for Governing Equations

¢ r S

. op
X -momentum Equation u H "

. op
y -momentum Equation v )7 —5 -pgBT-T.)

. ap
z-momentum Equation w H e

. k

Energy Equation T c 0
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If in equation (4.1) velocities u, v, and z are known, or in the solution of continuously

iterative FVM they assumed to be equal to the velocity values of the previous iteration,
the non-linearities of equation (4.1) can be avoided.

In the discretization process of the general transport equation, the following (Fig. 4.1)
arbitrary three-dimensional rectangular control volume is to be used. A two-dimensional
grid is also shown in Fig. 4.2 for clarity.
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Fig. 4.1 An Arbitrary Portion of the 3D Grid

A general grid point (or node) P has east (E ) and west (W ) neighbors in x — direction,
north (N ) and south (S) neighbors in y—direction, and top (T ) and bottom (B)
neighbors in z —direction. The grid point P is located beforehand and the cell faces e,
w, n, s, t,and b are placed such that they are positioned midway between grid points
(hence Ax,, need not equal to AXx,,, Yet AX,, =AX,, and Ax,, =Ax. ). This is called
cell-vertex scheme.

The grid point P could also be put on the geometric center of a control volume and that
approach is called cell-centered scheme. Since in Finite Volume Method, values at the
grid points are assumed to be the representative values of the whole control volume, cell-
centered scheme has the advantage of better representing grid point values over the
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control volume whereas cell-vertex scheme has the advantage of approximating the flux
values at the control surfaces better.

Fig. 4.2 An Arbitrary Portion of the 2D Grid

The control volume integration (the key step of the finite volume method that
distinguishes it from all other CFD techniques, Versteeg and Malalasekera [21]) of the
general transport equation, equation (4.1) is performed spatially over this control volume
defined by cell-vertex scheme and also temporally over a time increment At. The
integrated form of equation (4.1) is

t+At

g Tz

o

t

+At

a t 62 t+At 62
Ucvaa—fdvjdt= ! (jcvrydv)du ! Ucvray—fdv]dt (4.2)

t+At 62
+ ! [jcvrgfvadu ! ([, sav )t
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Assuming the value of ¢ at the grid point P prevails over the whole control volume and
changing the order of integration for the unsteady term, the unsteady term becomes

t+At

| p%dtJdv =p(¢, —42)AV (4.3)

t+At

[ (1 oZav)a-f,|

t

Where ¢, and ¢ are the values of ¢ at the grid point P at time t+At and t
respectively.

In the treatment of the diffusion terms, the volume integrals are converted to surface
integrals by the divergence theorem, for example the diffusion term in the x— direction
becomes

TUCV rgxifdv Jdt = THFA%)E - (rAg—fM dt (4.4)

t

The diffusion coefficient is constant according to our previous assumptions, also the
eastern and western control surface areas are the same (A, = A, = A, ). The gradient of ¢

at the control surfaces is approximated by central differencing

(%j — ¢E _¢P (4 5)

6X e AXPE .

(%j - P~ (4.6)
aX w AX\NP .

Equation (4.4) now becomes

Mot 42 5

t t

In the evaluation of the time integral, if the temporal variation of ¢ is assumed such that

the new value (value at time is equal to t+ At) prevails during the time increment, the
temporal discretization is called the fully implicit discretization scheme. The fully
implicit scheme is unconditionally stable and it is the preferred scheme in numerical
analysis. The diffusion term is now transformed to its final discretized form as

o @ — ¢E_¢P _ ¢P_¢N
| Ucvraxz vadt_r@ZAt{( o j ( o H (4.8)

t
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Similarly the diffusion terms in the y— and z —directions are;

Hft(j r—- dvjdt_FAaAt (¢NA>/_.:N¢P]_[¢PA>ZSH (4.9)

](LV Zdejdt TA At (@AZ ¢P] ( v e H (4.10)

t

When the divergence theorem is applied to the first convective term of equation (4.2) and
fully implicit scheme is utilized for the temporal variation of ¢ .

HJ.M( pu% jdt:tTt[(pquﬁ)e—(pquﬁ)w]dt

! (4.11)
= pueAyz¢eAt - puwAyz¢wAt

The values ¢, and ¢, are the values of ¢ at the east and west control surfaces of the

control volume. They must be interpolated from the grid point values by a suitable
scheme. Several schemes of interpolation exist such as central differencing scheme,
upwind scheme (upstream difference scheme, donor-cell method), the hybrid differencing
scheme of Spalding [22], the power law scheme of Patankar [23], the quadratic upstream
interpolation for convective kinetics (QUICK) scheme of Leonard [24].

In upwind differencing scheme, the face values (or control surface values) are simply
replaced by the grid point values from where the flow approaches to the control faces of
the control volume, hence,

¢ =4 if u, >0 (4.12)
b =, if u, <0 (4.13)
B = dhy if u, >0 (4.14)
B = o if u, <0 (4.15)

In other words

b= max(u,,0) 4 max(—u,,0) (4.16)
ue ue
4 = maxL(ju ) 4 max(u u,,0) 4.17)
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where the function max is simply

=xif x>y

max(Xx, y){ (4.18)

The convective term of equation (4.11) becomes

=yif x<y

t+At

[ ( [, pu %dv jdt - pAyzAtVP max(U,,0) = max(~4.0) } (4.19)

t — ¢, max(u,,,0) + ¢, max(-u,,0)

Similar treatment for the other two convective terms reveals,

t+At

o¢ B ¢, max(u,,0) — 4, max(-u,,0)
-!. Ucv » Vadv Jdt =7 '%At[_% max(u,,0) + ¢, max(—uS,O)} (4.20)

bt max(u,,0) — ¢ max(-u,,0
| (j pw%dvjdt :pAWAtV" (1, 0) =y max(=4,0) } (4.21)
v oz —¢@ max(u,,0) + g, max(-u,,0)
The last term in equation (4.2) is the source term and it could be discretized as
t+At _
[ ( [ SdV)dt:SAtAV (4.22)
Ccv

t

where S is the C.V. average value of S at time t + At. Actually embedding the pressure
gradient within the source function is only sufficient for the time being. During the
primitive variables formulation, the pressure gradient will be dealt separately.

Plugging in the discretized unsteady, convective, diffusive, and source terms into the
finite volume integrated general transport equation (4.2)
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¢, max(u,,0) — ¢, max(-u,,0)
—¢, max(u,,,0) + ¢, max(-u,,,0)

¢, max(v_,0) — 4, max(-v,,0)
| —¢s max(v,,0) + g, max(-v, ,0)}

[ ¢ max(w;,0) — ¢ max(—w;,0)

| —¢s Max(w,,0) + ¢, max(-w,, O)}

p(d —95)AV +p/sz{
+PAAL

+pA At

_ I ¢E_¢P - ¢P_¢N
_FAYZAt_( AXpe j [ AXyp H

¢N _¢P _ ¢P_¢S
mWK o } ( Mo ﬂ

+TA, At K @A_ % ] - [¢P s H +SAtAV

ZPT AZBP

(4.23)

To simplify the formulation, F indicating the strength of convection and D, the
diffusion conductance are defined (Patankar [23])

F = puA (4.24)
_TAs
D=—= (4.25)

With the help of equations (4.24) and (4.25) and some rearrangements, equation (4.23)
becomes

ads =@ +a, 4y +a @y +ash +acd +agd, +b (4.26)
where
ag =max(-F,,0)+ D, (4.27)
a, =max(F,,0)+ D, (4.28)
a, =max(-F,,0)+ D, (4.29)
a; =max(F,,0)+ D, (4.30)
a; =max(—F,0)+ D, (4.31)
ag =max(F,,0)+ D, (4.32)
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AV

al=p-r 4.33
p=p At ( )
b=pd; % +SAV (4.34)

and
a, =a; +a, +ay +as+a +a; +a3 +(F, —F,)+(F,—F,)+(F, -F,) (4.35)

The form of the final discretized equation (equation (4.26)) of the control volume
integrated general transport equation (equation 4.2) does not change together with
equations (4.33) through (4.35) when a different interpolation scheme is used for the
discretization of convective terms, only the coefficients in equations (4.27) through (4.32)
change. Patankar’s [23] hybrid differencing scheme (which is favored over the upwind
differencing scheme [21], [23]) for example will yield the following neighboring nodal
coefficients.

ag = max{—Fe,[De —%j,o (4.36)
- EN T

a, =max FW,(DW+7WJ,O (4.37)
i F

a, = max —Fn,(Dn —7“],0} (4.38)
i F

a; = max FS,(DS +?SJ,O} (4.39)
_ .

a; =max| -k, D, Y ,0 (4.40)
- ;.

ag =max| k| D, +? ,0 (4.41)

The definition of the hybrid differencing scheme and the derivation of the corresponding
coefficients, equations (4.36) through (4.41), are supplied in APPENDIX A.
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4.2 Staggered Grid

In the solution of the coupled governing equations using primitive variables, staggered
grid utilization is recommended [23, 21]. The velocities and scalar variables (pressure and
temperature) are stored at different locations of the grid. Simply u velocity nodes are
defined at the western and eastern faces of a scalar control volume (correspondingly the
scalar nodes are defined at the western and eastern faces of a u velocity control volume),
similarly v velocity nodes are defined at the northern and southern faces of a scalar
control volume and w velocity nodes are defined at the top and bottom faces of a scalar
control volume. Fig. 4.3 demonstrates a 2D backward staggered grid.

In the 2D staggered grid, scalar grid point is at (1,J), scalar control volume (or scalar
cell) is in the region i<x<i+land j<y< j+1. The u velocity grid point is at (i,J),
and the u—cell is in the region 1 —1<x<1 and j<y< j+1. The v velocity grid point is
at (1,j), and the v—cell is in the region i<x<i+land J—1<y<J. The neighbor
nodes and face nodes for the four cells are presented in Table 4.2.

The strength of convection, for example, at the west face of a u—cell is

Foop =P tRax

w_u 1-1,J,K
- 2

by linear interpolation since the west face node of a u—cell is a scalar node and does not
contain u velocity data. Strength of convection at the west face of a scalar cell is simply

since the west face of a scalar cell is a u velocity node which contains the u velocity
data.

29



41 ® = i —H
-1 +1) (I-1J+1) @i7+1) N[ (LJ+1) J+17+1) (I+1,7+1)

i i e

r(l_+ 1;+ 1)

y ¢ % -
(i-17) W (T+1,0)
U A /1)
: panzay i gt
/ V1
R Smtutate Tk 178 rutalint e

| (1-1.j) | ST @) l (1+1.))
| | I
| | I
| | |

#1 ¢ -7 ¢ - ? »
j-1I-1) (I-1,J-1) @ir-1) S| @a-1) I(i+1,J—1) (I+1,J-1)

R g N (2

| | |
| | |
| | |
| | |
J-2 O =t © =lp © =i ©
| | |
| | |
-2 i-1 I-1 i I i+1 I+1
u—cell : v—cell I | scalar—cell/ /

u—node ==p  y—node 1 scalar —node @
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Table 4.2 Staggered Grid Point Locations for the Velocity Cells
and the Scalar Cell

u—cell v—cell w—cell T —cell
P (i,3,K) (1,i.K) (1,3,k) (1,3,K)
E (i+1J,K) (1+1,j,K) (1+1,3,k) (1+1,3,K)
w (i-1,3,K) (1-1,j,K) (1-1,3,k) (1-1,3,K)
N (1,3 +1K) (1,j+1K) (1,3+1k) (1,3 +1,K)
S (i, -1,K) (1,i-1K) (1,3-1k) (1,J-1K)
T (i,3,K +1) (1,j,K+1) (1,3,k+1) (1,3,K +1)
B (i,3,K-1) (1,j,K-1) (1,3,k-1) (1,J,K-1)
e (1,3,K) (i+1],K) (1+1,3,k) (i+1J,K)
w (1-1,3,K) (i-1j,K) (1-1,3,k) (i,3,K)
n (i, j+LK) (1,3,K) (1,j+1k) (1,j+1K)
s (i, i -1K) (1,J-1K) (1,j-1k) (1,j-1K)
t (i,d,k+1) (1,j,k+1) (1,3,K) (1,3,k+1)
b (i,9,k-1) (1,j.k-1) (1,J,K-1) (1,3,k-1)

4.3 The Discretized Forms of the Governing Equations in Staggered Grid

Equation (4.26) can be modified in order to conform to the backward staggered grid. The
three momentum equations and the energy equation when the pressure gradient terms are
extracted from the source terms can be written as

80U si = 2 Bl F(Prso = Prow ) Auk Bk (4.42)
8 Vi = 2BV +(Pry sk = Pros ) Ak +B1 sk (4.43)
85 Wik = D BWoy +(Prs s = Pro ) Ak +01 50 (4.44)
a5k Tk =D 8T + 05k (4.45)

4.4 The SIMPLE Algorithm

In the above equations, pressure should be known in order to calculate the other transport
variables. The Semi-Implicit Method for Pressure-Linked Equations was first described
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by Patankar and Spalding [25] which is a guess-and-correct algorithm to calculate the
pressure. At first, a pressure field p* is guessed and the momentum equations (4.42) to

(4.44) are solved to obtain velocity components corresponding to the guessed pressure
field.

a5 Uy :Za‘nbu:b "‘( Prlask — Prox )A,J,K +b 5« (4.46)
al,j,KVI*,j,K Zzanbv:b +( Pk — Prox )Al,j,K +by i« (4.47)
g Wy = Zaan:b +(pI*,J,K—l — Pk )A1,J,k +D0y 54 (4.48)

Hence, there are differences between the correct velocity components and the ones
computed from the guessed pressure field. Also, there is a difference between the correct
pressure and the guessed pressure.

D=p +p (4.49)
u=u"+u’ (4.50)
V=V +V (4.51)
W=W +W (4.52)

The primed velocities and the pressure are the velocity corrections and pressure
correction. If equations (4.46) to (4.48) are subtracted from equations (4.42) to (4.44), the
following equations are gained

ai,J,Kui',J,K zzanbur:b +( pI’—l,J,K - p;,J,K )A,J,K (4-53)
RV zzanbvr:b +( Plyak — Pl )A1,j,K (4.54)
I/ :Zanbe +( Ploka— Pl )A,J,k (4.55)

The main approximation of the SIMPLE method is the omission of the first terms on the
right hand side of equations (4.53) to (4.55). The reasons of this omission are discussed
by the developer of the procedure [23]. The velocity correction equations now become:

’

Ui sk :di,J,K(pl,—l,J,K - p;,J,K) (4.56)

!

Viik zdl,j,K(p;,J—LK - pI’,J,K) (4.57)
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\NI,,J,k :dI,J,k(pI’,J,K—l_ pII,J,K) (4.58)

Equations (4.50) to (4.52) now become

Ui 5 k :ui*,J,K +di,J,K ( pI’—l,J,K - p;,J,K) (4.59)
Viik :Vl*,j,K +d|,j,K ( pI’,J—l,K - p;,J,K) (4.60)
Wik = T,J,k +dl,J,k ( pI’,J,K—l - p;,J,K) (4.61)

Thus, if the pressure correction can be calculated e.g. from the continuity equation,
equations (4.59) to (4.61) could be used in order to compute the correct velocity field. For
this purpose, mass conservation equation (equation (3.1)) is discretized for the scalar cell
(T —cell).

|:('OUA)|+1J K ('DUA)i,J,K:|+|:(pVA)I,j+1,K _(pVA)I,j,K:|

+[(owA), , ., ~(pWA),,, =0 (4.62)

Putting the correct velocities (with necessary indicial operations) of equations (4.59) to
(4.61) into the discretized continuity equation (4.62) gives

!
|+1JK u|+lJK+d|+1JK(pIJK pl+l,.],K))

pA ,JK(uu IJK pl—l,J,K_pI',J,K))
pA I 1K(V| jrk T 0, J+1K(pl',J,K_pl,,J+1,K))
n I (4.63)
!
.JK V|jK |jK pI,J—l,K_pI,J,K))
’
| Ikl | J,k+1 +dl J k+1( p| J.K pI,J,K+1))
+ =
|Jk( IJk+dIJk leK -1 pI,J,K))
After some rearrangements, the pressure correction equation is obtained
aI,J,K p;,J,K = a'I+1,J,K p;+1,J,K + aIfl,J.K pll—l,J,K + a'I,J+1,K pI’,J+1,K (4 64)
' ' ’ 2 )
+ a‘I,J—l,K pI,J—l,K + a‘I,J,K+1 pI,J,K+1 + a‘I,J,K—l pI,J,K—l + bI,J,K
where
a'I,J,K :al+l,J,K +al—l,J,K +aI,J+1,K +aI,J—1,K +aI,J,K+l +aI,J,K—1 (465)
a1k =(PIA), ) (4.66)
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345k =(PdA), 4
351k =(PAA), 1
351 =(PdA),
3 k0 =(PAA), ;.

A 5 ka z(pdA)l,J,k—l

bl’yJ,K =|:(pu*A)i,J,K _(pu*A)i+1,J,K:|+|:('DV*A)I,J',K _(pV*A)I,JH,K}
{(pw*A)m _(pw*A)mJ

The SIMPLE algorithm flow chart is presented in Fig. 4.4.
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Fig. 4.4 The SIMPLE Algorithm (Adapted from [21])
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4.5 Boundary Conditions

A portion of the inlet to the cavity is shown in Fig. 4.5 in 2D viewpoint for ease of
demonstration. The inlet is at i=1. The inlet boundary value u,, is stored at the grids

with i=1, and the solution of x—momentum equation (4.42) is started from i=2
onwards in the x—direction. Hence in the figure a typical u— cell feeling the effect of

the inlet boundary condition at first hand is at (i =2, nw+1, K), and its western neighbor
grid is simply the inlet boundary condition. The rest of the boundary conditions are stored
at 1=0 (v, =w, =p{, =0 and the specified inlet temperature T, ) and the governing
equations are solved from | =1 onwards. Furthermore, for the pressure correction
equation at the scalar grid point a, =0 and uy, =u,, inequation (4.72).
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Fig. 4.5 Inlet Boundary Discretization
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Exit boundary is shown in Fig. 4.6. The u velocity B.C. is kept at i=NX +1. Thus the
X—momentum equation is solved up to the grids having i = NX .
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Fig. 4.6 Exit Boundary Discretization

Since the velocity B.C. at the inlet is set as a velocity-inlet, velocity B.C. at the exit can
either be a velocity-outlet or a pressure-outlet. In both of these exit B.C. conditions, the
exit flow is assumed to reach a fully developed state and hence the gradients of flow
variables (except pressure and normal velocity) are zero normal to the exit plane meaning
Vi ik = Vi ik Waenjk = W, jwr @nd Ty i =Tax - The right hand sides of these

equations are set from the previous time step values. Defining zero gradient to the normal
velocity at the exit plane does not necessarily ensure mass conservation, so overall mass
balance correction is applied if velocity-outlet (outflow) B.C. is used.
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My (4.73)

Unxcs, ik = Unxjkc m
out

In the above equation, m, and m,, are the corresponding mass flow rates at the inlet and

exit of the C.V. computed at every outer iteration, though calculation of the inlet mass
flow rate at the inlet at every outer iteration is trivial for the problem at hand.

Also when velocity-outlet B.C. is used, for the p’—equation, a. is set to zero and

Ug =Ug inequation (4.72).

If pressure-outlet B.C. is applied at the exit, the pressure correction at the scalar-cell in
Fig. 4.6 is set to zero and the outlet normal velocity u_. is computed from interior values

by writing mass conservation for the same scalar-cell.

out

Ut =Unoar 1 = (U, &Y +Vie ;o AX =V (.1, AX) /Ay (4.74)

The bottom wall and the four side walls of the cavity except the inlet and exit are wall
boundaries. Fig. 4.7 presents a wall boundary portion where x—direction is along the
main flow direction, and y —direction is normal to the main flow. At the wall v=0, the

y —momentum equations are solved from j=2 onwards. For the pressure correction

equationsat J =1, a; =0 and vg = vy in equation (4.72).

The bottom side of the u—cell is the wall and there is the shear interaction between the
fluid and the wall since the fluid is viscous. The shear force in the x —direction, acting on
the south face of the u—cell is, by assuming laminar flow and a fine enough mesh,

ui, ‘
ny :_Twﬂell :_:uj: '%ell (475)

Hence S, =—Ai A, is a source term which should be included in the computation of
P

a,, « =a, coefficient of equation (4.42) for the necessary nodes (Node (i,J =1, K)in
Fig. 4.7). Since S, <0and S, =0 always positive coefficients rule (see Section 4.9) is
ensured automatically for wall B.C. treatment of momentum equations.
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Fig. 4.7 Wall Boundary Discretization

Similar treatment could be applied for the z—direction velocity component (equation
(4.44)) for the same wall boundary. The southern coefficients (& ) are also set to zero for

these x— and z— momentum equations.

For the energy equation, first of all, the southern coefficient ag is set to zero. If the
boundary condition is specified as constant temperature, the heat flow through the
southern face of the scalar node (1,J =1, K) is

T =T,
gs = k%/\; (4.76)
=]

This heat transfer contributes to the discretized energy equation as a source term
(equation (4.26) and (4.34)). The form of the source is

T, —T
S =S, +S:T 1k =£( it ~Tiax) A (4.77)
Cp Ay, AV
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Hence if wall temperature is higher than the grid point temperature of the fluid, fluid
gains energy (positive source), and if wall temperature is lower than the grid point
temperature of the fluid, fluid loses energy (negative source).

In either case S, __ K A, and it should be included in the computation of a, ; .
Ay, B

coefficient of equation (4.45) of the nodes (1,J =1, K). Also S, =ALTWalll A, and this
y

P
should be included in the computation of b, ; , coefficient of the same equation of the

same nodes. Just like the source terms of the momentum equation of a u — cell, the source
terms of the energy equation of a scalar cell in the vicinity of a wall satisfies S, <0 and

Sy >0 regardless of the direction of the heat flow.

If the thermal boundary condition on the wall is isoflux, energy balance on the bottom
surface of the C.V. yields

s :q‘;a” I (4.78)

when the fluid gains energy from the wall. The source terms are S, =0and S, =0, A.;

and both of them satisfy the always positive coefficients rule. On the contrary, if the fluid
would lose energy to the wall, energy balance on the interface surface would be

Qs :_q\:\’/all ell (4-79)

yielding S, =0and S, =-q,, A, contradicting the always positive coefficients rule.

Once again special treatment required for the source terms of the discretized energy
equation of the C.V. in the vicinity of a wall.

If the surface were to be insulated, both S,=S,=0. Hence the always positive

coefficients rule is always satisfied for the discretization of the energy equation of a fluid
C.V. in the vicinity of an adiabatic wall.

Top surface of the cavity is a free-surface exposed to atmosphere. In Fig. 4.8, the grid
arrangement near a free-surface is shown. Although there is mass transfer through the
interface due to evaporation, this mass transfer will be neglected in the solution of
momentum equations near the boundary, hence v=0 at j=NY +1. The y—momentum

equations are solved up to j=NY . For the pressure correction equations at J =NY ,

a, =0 and vy =V, inequation (4.72).

40



J=NY +1 . 2 T @ T T P
| | |
| | 0 ()l
| =01 V= q (1) 1
o R I — .
e V z | v |//" /] | V A
| 19 4%
| V/;// Ay,
J=NY ¢ #I ¢ l//,'/ N
I A X LN
I DA UVA VD,
I ) d //////////1
o | 14V 84 ]
R e M= o S
| I |
| k |
J=NY-1 —@ > % L L ®
| | |
| | |
| | |
S il S s e s ey
| | |
I1-2 i-1 I-1 i 1 i+l I+1
u- cell : v-celll | scalar - cell / /

u=-node ==p y- nodet scalar - node @

Fig. 4.8 Free-Surface Boundary Discretization

Air imposes almost no friction over water flowing under the free-surface interface hence
no-shear (or slip) B.C. condition is modeled on the top surface of a u—cell in the vicinity
of the air-water interface. Since no-shear is assumed, F, =0 and there is no need for

source term manipulations for the x— and z—momentum equations. The northern
coefficients (a, ) are also set to zero for the x— and z—momentum equations.

In the discretization of the energy equation of a grid near the free surface, the top surface
of the cell coincides with the interface and the heat transfers through the surface should
be incorporated into the source terms of the discretized energy equation. There are three
different heat transfer mechanisms occurring through the air-water interface. Convective
heat transfer due to temperature difference between water and air, evaporative heat
transfer due to concentration difference across the interface and solar irradiation over the
interface. The first two heat transfers are always transient unless a steady temperature
field within the cavity is attained. Solar irradiation can be selected constant or time
varying.

qS (t) = qconv (t) + qevap (t) - qsolar (t) (480)
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If we emphasize on the convective component only and assume that the surface
temperature of the grid is equal to its nodal value T, \, «

Qv = Iﬂlconv Atell (Too _TI ,NY,K) (4.81)

. h h T . -

Giving S, :—LA*"<0 and S, :m. Hence, the always positive coefficients
AV Co

rule can be satisfied regardless of the direction of heat flow. For the treatment of the heat

transfer source due to evaporation, see Section 4.9.

The northern coefficient a,, of the discretized energy equation is also set to zero.

4.6 Solution of Discretized Equations

The general discretized equation (4.26) has to be solved five times during each iteration
of the SIMPLE algorithm (momentum equations (4.53-4.55), pressure correction equation
(4.64) and the energy equation). Any solution method of linear systems of equations, e.g.
matrix inversion, Gauss elimination, Gauss-Seidel iteration could be used but since the
system of equations of equation (4.26) is hepta-diagonal, hence, the coefficient matrix is
full of nulls (a sparse matrix), a simple algorithm for a tri-diagonal matrix system with
Gaussian elimination is frequently preferred. The algorithm is called Tri-Diagonal Matrix
Algorithm (TDMA) or Thomas algorithm (after Thomas [26]).

A tri-diagonal system with N unknowns could be written as
Ay, ¢+ a, ¢+ a, ¢ =b, (4.82)

where a, =0 and a; =0. Gaussian elimination demands O(NS) operations whereas

TDMA requires O(N) operations only. Two sweeps of the domain is necessary to solve
(4.82). In the forward sweep, the coefficients are modified

aEl i=1
A={" (4.83)
ac .
' i=23...,N
\apI - Ai—laW,
a& =1
R
B =3 (4.84)
' b —-B
|~ Py i=23...,N
a — Ai—laWi
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The solution is achieved by the backward substitution sweep

By i=N

¢ = . (4.85)
B, —A¢., i=N-LN-2,...,1

The TDMA can be applied to equation (4.26) in a line-by-line fashion. If equation (4.26)

is written as follows (the selection of western and eastern neighbors is arbitrary)

—ayfy + 3P — AP =AyPy +as¢s +ar g +350; +b (4.86)

It is identical to the tri-diagonal system of equation (4.82) if the right hand side of
equation (4.86) is assumed to be temporarily known from their previous values. Equation
(4.86) is than changed in order to regard another pair (say the northern and southern
neighbors) to be the unknowns of the TDMA. It is recommended to alter the TDMA
sweep sequence during the solution; hence, the effect of the boundary conditions could be
felt rapidly within the solution domain.

Although TDMA is recommended by many references, it is seen in the computations that
Gauss-Seidel iteration is not inferior to TDMA when both algorithms are used for 2D
domains. It's an iterative algorithm which uses initial values from the previous step and
these initial values are updated as the domain is being swept.

28 :(aW% +agde +ashs +aydy +agds +ard +b)/ap (4.87)

For both of the algorithms it should be noted that the domain should be swept many times
more for the pressure correction equations, actually only 1 sweep of the domain seems
sufficient for the momentum equations and energy equation whereas less than 50 sweeps
for the pressure correction equations are found to be insufficient.

4.7 Monitoring Convergence
Convergence of the solution within a time step should be monitored in order to be able to
advance in time. This can be achieved by checking how well the discretization equation

(4.26) is satisfied [23]. The difference of the LHS and the RHS of equation (4.26) is
called the residual of the discretization equation.

RzaE¢E +8\N% +aN¢N +as¢s +aT¢r +aB¢B +b_aP¢P (4-88)

Obviously the residual should vanish when the solution converges. The absolute value of
this residual could be used as a convergence criterion. However, commercial CFD codes
(e.g. ANSYS FLUENT [27]) use scaled residuals over the whole solution domain.
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2. |acde +ayd, +aydy +ashs +ardy +agdy +b-ayd|
R¢ — allgrids (489)

2 [aeds]

allgrids

ANSYS FLUENT’s default criterion of convergence is the decreasing of scaled residuals
below 10~ for momentum equations and below 107 for the energy equation [27].

For the continuity equation, residual for a grid point is
R= pAy(u, —u, )+ pAX(v, —V,) (4.90)

The scaled residual over the whole domain is;

> |eAy(u, —u, )+ pAX(v, - V,)

R :allgrids 4.91
’ . (4.91)

scaling

Ryeaing CAN be selected as the maximum cumulative absolute residuals over the whole

domain in the first five iterations of the first time step of the computation. Default

criterion of convergence is the decreasing of scaled residuals below 107° for the
continuity equation.

4.8 Under-Relaxation

Under-relaxation, restraining the speed of solution by balancing the newly achieved
solution with the previous solution is a must for the SIMPLE algorithm. If under-
relaxation is not performed, the algorithm is susceptible to divergence [21, 23]. At the
end of each iteration, pressure and velocity are under-relaxed as

p: p*+ap p/ (4.92)
u™ =g u+(1—a,)u™ (4.93)
vV = v+ (1-a, )V (4.94)
W™ = W+ (1-a, )W (4.95)

The under-relaxation factors «,, «,, a,, and «,, are all between zero and unity. Pressure-

correction equation needed the highest under-relaxation with a value of 0.3, whereas
momentum equations needed under-relaxations of 0.7 during the simulations.
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Under-relaxation can also be applied to the energy equation yet it is not as crucial as the
other flow equations. Only slight under-relaxation ¢, =0.9 could be used if it is needed

though no under-relaxation of the energy equation is necessary in our computations.

T =T+ )T™ (4.96)

4.9. Linearization of the Source Term and Always Positive Coefficients Rule

Although it was mentioned in the temporal discretization of the general transport equation
that fully implicit scheme is unconditionally stable, it is actually not correct. Transient
SIMPLE algorithm is susceptible to divergence [21, 23]. To ensure stable solution during
time marching, always positive coefficients rule for the final discretized equation of the
control volume integrated general transport equation should be employed. Combining
equations (4.26) and (4.34)

A\VAR
Ao =8P +ayhy tAPy TAP + P + 0 +p¢8?’[+ SAV (4.97)

In the above equation, all of the coefficients should be positive (actually non-negative) to
ensure stable solutions. The coefficients a., a,, a,, &, &, a;, and a,are always
positive irrespective of the selected discretization scheme for the convective terms. The
source term S can be a zeroth, first, or higher order polynomial of the transport variable
& - Inany case, the source term can be linearized in the form of

S =S, +Spds (4.98)

The second coefficient on the right hand side of the above equation, S, is subtracted
from the coefficient of ¢, in equation (4.97). Hence the coefficient of ¢, becomes
a, —S,. Thus, in order to assure positive coefficients for the general discretized equation,
Sy should be non-negative and S, should be non-positive.

Sy =0and S, <0 (4.99)
To exemplify source term linearization, the near boundary cells affected by the Dirichlet
or von Neumann boundary conditions could be examined. In Fig. 4.9, a typical near
boundary temperature cell is represented. The heat flux shown in the figure could also be
in the opposite direction (heat loss from the cell). The heat flux could originate from a

specified temperature, heat flux, or convective heat flux.

When the specified heat flux is into the temperature cell, the source is positive
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(9]

_s, +S,T, =$qC—Ay>o (4.100)
P

Since q" is positive (into the cell). Hence the non-trivial selection of S, ZAiq_Ay and
CP

S, =0 would satisfy the criterion in equation (4.99).

'
4, el e & araiia S
)0,,/,(/ : i A
([/Y-l '
L '
/A
q i P :
e °

] : Ay

Y

Fig. 4.9 A Typical Near Boundary Temperature Cell

If the specified heat flux on the boundary is from the cell to the boundary, then the source
is negative.

S—5,+S,T, :—ﬁqc—&ko (4.101)
P

wn

Equation (4.99) cannot be satisfied automatically. Source term linearization should be
tried. Equation (4.101) can be rewritten as

S=S +S.T z_iq”Ayziq”Ay_zimT_P
PP AV ¢ AV ¢, AV ¢, T

P

(]

(4.102)

If instead of using the variable T,in the denominator on the last term of the above

equation, the previously known temperature value T, from the previous time step is used,

the above equation will be achieved approximately and equation (4.99) is satisfied.
RN

Suziq—Ay>0and Sp=— -<0
AV ¢, AV ¢, T,

46



When the boundary of Fig. 4.9 is an isothermal wall boundary, the source term will be:

S = SU + SPTP :NT (4103)
2 P
_ L Klady >0and S __ 1 Ky
YAV AX P AV AX
—c, —Cp
2 2

Regardless of the direction of the heat transfer. So equation (4.99) would be satisfied.

When the boundary of Fig. 4.9 is a convective heat transfer boundary, the source term
will be:

S=S, +S,Tp=——"t "0~ 4.104
U PP AV Cp ( )
U:iM>O and sz_iw<o
AV  ¢c, AV ¢,

Satisfying equation (4.99) regardless of the heat transfer direction.

When at the boundary there is also evaporative heat transfer, the contribution of the
evaporative heat transfer to the source term of the discretized energy equation would be

=5, +5,T, =L Tn(#(0T:)- (O, )y (BT, )y (4.105)

Since the evaporative heat transfer from the water body to air, S <0, the simple selection
of

1 h, (¢pw(@T°0)_pw(@TP ))hfg (@T, ) Ay
AV Co

S, = <0and S, =0

would contradict equation (4.99). Actually evaporative and convective heat transfers
1 hT Ay

occur simultaneously through a free-surface and if the magnitude of S, =
CP

from the convective heat transfer is higher than the magnitude of

i h, (¢Pw(@Tw)_pw(@TP ))hfg (@Tp)Ay
AV Co

Sy = from the evaporative heat transfer,

47



addition of the two components may or may not give S, >0. So, to be on the safe side,
source term linearization should be applied to equation (4.105). The following form

3 1 h(p,(@T,)-¢p,(@T,))h, (@T,)Ay
AV c

1 hm (,DW(@TP)_¢pW(@T°O ))hfg (@TP)AyT_P

AV Cp Ts

(4.106)

is sufficient in order to yield

S _ihm(pw(@TP)_¢pW(@Tw))hfg(@TP)Ay>0
YAV Co

and

S, =—2——
AV Cp

1 M (P (@Te) -0, (O, )Ny (@Te)ay 1
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CHAPTER 5

THE COMPUTER CODE

The computer code is written in standard C++ programming language. Any standard C++
compiler (e.g. Visual C++, GNU's GCC) would compile the code. The IDE used is a
freeware IDE named Dev-C++ 4.9.9.2 [28]. The IDE is bundled with the freeware GNU
compiler collection GCC. The version of the compiler set is 4.5.0. It is only necessary to
open the "main.cpp” file of the code inside the IDE and compile and run. For other IDE's
and other operating system environments (Dev-C++ is a Windows based IDE), a makefile
may be necessary to prepare in order to compile and run the code.

The flow chart of the program is presented in Fig. 5.1. The flow chart is in essence
parallel to the transient SIMPLE algorithm (Fig. 4.4) and is represented one to one in the
main function of the code. Prior to the main function, the constants of the flow, the
variables and the functions are declared with a header file "cavity_2D.h". The constants
of the flow, geometry parameters, parameters of algorithms used are all read into the
program from an input file named "input.cpp". Hence once the code is compiled
successfully and an executable file is gained, only the parameters inside the input file is
altered to have different simulations.

Three sets of variables for (u,v,P, and T ) are needed to be stored in memory for a

transient SIMPLE code, one set is the working variable set, the values of which change
within a time step at every iteration (or inner loop in Fig. 5.1). One set stores the values
of the previous iterative step and is renewed with the values of the working variable set at
the end of each iteration of a time step. Last set stores the values of the previous time step
and is renewed at the end of each time step (outer loop). These three sets of variables
(along with other variables such as coefficients naturally) are initiated by the setlC (set
initial condition) function. At this level the real time is at zero. The function setBCs (set
boundary conditions) sets the boundary conditions of the flow.

The algorithm is started with the outer loop (time marching) and the time is incremented
by the time step. At this step an auxiliary function named startAnOuterlteration is called
in order to do the processing of some data necessary to be done before inner iterations of
the time step is started. These processing of data is the computation of convective and
evaporative heat transfer coefficients from the free-surface temperature data, temporal
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determination of the heat flux lost from the cavity to its two vertical side walls,
computation of the various heat loss items and thermal energy storage rate of the cavity.

The inner loop starts. The inner loop is intended to achieve an acceptable solution
(bounded by the residual limits) of a specific time step. The set_u_Coefficients function,
as the name implies, sets the coefficients of the discretized x—momentum equation
(4.46). Then the discretized x—momentum equation is solved using the Tri-Diagonal
Matrix Algorithm or Gauss-Seidel Iteration. Hence with these two functions, the
discretized x—momentum equation is solved using the guessed pressure and velocity
fields and an intermediate u velocity field. This u velocity field along with the guessed
v velocity field and guessed pressure field are used in the calculation of the y-—

momentum equation. After a guess for the velocity field is gotten, the outlet boundary
condition should be updated with updateOutletBC function (see Section 4.5) which
extrapolates the outlet BC variables from the interior solution.

Next the coefficients of the pressure-correction equation are determined, and pressure
correction field is solved. With this pressure-correction field, the pressure field and
velocity field are corrected by correct_and_underrelax_P_u_v_w function in accordance
with equations (4.49) and (4.59) to (4.61). This function also performs under-relaxation to
pressure and velocity fields. The under-relaxation factors used in the code are the default
values of ANSYS FLUENT for a wide-variety of problems.

The coefficients of the energy equation are computed with the corrected pressure and
velocity values with set_T_Coefficients, and the energy equation is solved with TDMA
or Gauss-Seidel Iteration.

The computeResiduals function computes the residuals according to equations (4.89) and
(4.91). If all of the residual values are less than the desired limiting values (also taken
from ANSYS FLUENT) the inner loop is terminated, outer loop operates, time is
forwarded one step. If the residuals are not small enough, inner loop turns once again.

Finally, the function checkSteadiness will check whether steady conditions are reached
within the medium. In the experiments, steadiness criterion was almost no change in
temperature field in 15 minutes. In the program, the energy conservation equation in the
rate form for the cavity can be traced (equation 7.28). When the time rate derivative term
vanishes, it can be concluded that steady-state condition within the cavity is achieved.
Actually, in the runs the program is let go to run further beyond steady-state in order to be
conservative.

Even the 2D simulations last for hours of computation time. To avoid loss of data if a
power loss occurs, at every 10 minutes of simulation time, flow variables are stored to
backup files. The simulation can be restarted from a backup file if the program is
informed the simulation time and the backup file of that simulation time.
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Also at every 10 minutes of the simulation time, output files appropriate for post-
processing within MATLAB and Tecplot software packages are written onto the hard-
drive. MATLARB is easier to use and more flexible to automate post-processing while
Tecplot outputs better looking graphs.
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total time = 0

v

setIC()

setBCs ()

total time = total_time + dt

\ 4

set_u_Coefficients()
u = useTDMA ()

v

set_v_Coefficients()
v = useTDMA()

v

set_w_Coefficients()
A w = useTDMA()

v

set_P_p Coefficients()
P p = useTDMA()

v

correct_and underrelax P u v _w()

v

set T Coefficients()
T = useTDMA()

computeResiduals ()

checkSteadiness ()

Fig. 5.1 Flow Chart of the Program
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CHAPTER 6

VALIDATION OF THE CODE

6.1 2D Laminar Steady Flow within a Lid-Driven Cavity

The validation of the 2D code is started with the simplest benchmark problem for 2D
flows, the famous lid-driven cavity problem. The boundaries of the square cavity are
walls. The top wall moves to the right horizontally while the three other walls are
stationary. The velocity of the wall and the kinematic viscosity of the hypothetical fluid
inside the cavity are selected such that the flow inside the cavity is laminar. The
governing equations are as follows;

ou ov

R, 6.1)
2 2

pua—u+pva—u:—@+y 6_[21+6_l21 (6.2)
OX oy OX ox* oy
ov o op v oV

Ut pV— == | ——+ — 6.3

Py Ty ”(axz ayZJ ©9

The comparison of the results with the results from literature is satisfactory (see Fig. 6.1).
The next step is to increase the complexity of the cavity by adding an inlet and an outlet
to the cavity hence introducing two types of momentum equation boundaries to the code.
The flow inside the cavity is 2D laminar steady flow without energy equation and the
model is next section’s model without energy equation. The result is the same as next
section’s Ri=0 case with only the momentum equations and continuity equation are
solved.
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Fig. 6.1 Comparison of Streamlines for Lid-Driven Cavity, Re =100,
On the Left, Output of the Code, On the Right, from [29]

6.2 2D Laminar Steady Flow with Energy Equation within a Cavity

with 1 Inlet and 1

Outlet

Next, laminar steady flow and energy equation within a 2D cavity with 1 inlet and 1 exit
is modeled. Model is based on the study of Saha et. al. [30] from the literature in order to
make comparison easily. The geometry of the flow is shown in Fig. 6.2.

| S
+ ?,..u,i_ T, adiabatic/u=v=20 :
/ -
//’/adiahatic ::
H /-u:m'zﬂ o u=v=0 q
V] ] ) -—
ﬁ ¥ —
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X —
/ o 4l
vy V adiabatic fu=v=10 w:: CBC
Py
- L »

Fig. 6.2 Schematic Configuration of the Cavity, from [30]
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Cooler fluid (T, =1) is fed from the inlet at the upper left corner (which has a height of

h=0.1H), entrains the cavity which has no-slip wall boundaries and adiabatic thermal
boundaries except the right vertical wall which is heated with a constant heat flux q=1

and leaves the cavity from the outlet at the lower right corner which has the same height
as the inlet.

The governing equations are;

‘2_“%:0 (6.4)
X
ou ou  op o’u %
P Ty T ex "’[ax2 8y2j (69)
ov 0 ov 0%
pu&ervE:—Eptu[vayj—pgﬂ(T—Ti) (6.6)
oT or T o°T
pCU& + IDCVE = (y + W} (67)

The non-dimensional forms are as follows;

M N _, (6.8)
oX oY
2] 2
g M M __P 110U U (6.9)
oX oY  oX Relax? oy
2
oN NV _ ok T 52\’2+5V2 By (6.10)
oX oY oY RelaX? oY?) Re
2 2
o ,yo0_ L [00 09 (6.12)
oX Y RePr\ox? oy

4
Where, Grzgﬂ#, Re=—"—, Pr:i, Ri=
kv 1% a

In the study of Saha et. al. [30], Reynolds number and Prandtl numbers are kept constant
at values Re=100 and Pr=0.71 whereas Richardson number is varied. Our code is

55



tuned to reveal these dimensionless parameters by utilizing a hypothetical fluid with
desired thermophysical properties. The flow variables and cavity geometry are also input
as the dimensionless values from the paper. For example inputting u, =1, H =1, and

hypothetical v =0.01 and « =1/71yields Re=100 and Pr=0.71.

Variation of Richardson number is achieved by changing the gravitational acceleration
while keeping £, g, k values unity. For example zero gravity gives Gr=0 and Ri=0

while g =5 gives Gr =50000 and Ri=5.

The streamlines and isotherms for different Richardson numbers from [30] is presented in
Fig. 6.3. Saha et. al. used their code which was written with FEM. Our FVM code’s
corresponding streamlines and isotherms (generated from the output files of the code with
Tecplot) are presented in Fig. 6.4 thru Fig. 6.7.

The matching of the streamlines and isotherms from Saha et. al. [30] and our code seems
quite satisfactory.
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Fig. 6.3 Variation of Streamlines and Isotherm Contours
for Different Ri values, from [30]
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Fig. 6.4 Streamlines and Isotherms for Ri=0 (Re=100,Pr=0.71)
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Fig. 6.5 Streamlines and Isotherms for Ri=1(Re =100, Pr=0.71)
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Fig. 6.6 Streamlines and Isotherms for Ri=5 (Re=100, Pr=0.71)
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Fig. 6.7 Streamlines and Isotherms for Ri=10 (Re =100, Pr=0.71)
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CHAPTER 7

RESULTS AND DISCUSSIONS

7.1 The Geometry, Initial Condition, and Boundary Conditions

The geometry and the boundary conditions of the 2D cavity is shown in Fig. 7.1. Initially
stagnant water at a uniform temperature fills the cavity up to a height of H . The cavity is
flow-through having one inlet at the top of one side and one outlet at the bottom of the
opposite side. Warmer water is fed to the cavity from the inlet and relatively cooler water
is drained from the outlet. The I.C. and B.C.'s in mathematical formulation are as follows:

Y 00)
u., T, Yo
o A/l f
H g
| h: L - Ui TL”
S A L 1 &
Fig. 7.1 2D Cavity Geometry
Att=0;
u=v=0 and T=T, (7.1)

for the cavity, the inlet, and the outlet.
Fort>0;
The inlet BC's are;

u=u and T=T (7.2)
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for x=-l, 0<y<h

The upper and lower walls of inlet have no-slip boundary and no heat transfer;

oT
oy
for —1<x<0, y=0and y=h

The upper and lower walls of outlet also have no-slip and no heat transfer;

_aT
o

u=v 0 (7.4)

for L<x<L+l, y=H-hand y=H
The outlet boundary conditions are;
u :Uout(y) (75)

T :TOUt(y) (7'6)

for x=L+l, H-h<y<H

The variations of the velocity profile and the temperature profile at the outlet are
computed iteratively from the interior solutions during the computations. The velocity
profile can be computed by assuming the outlet either as a velocity outlet or a pressure
outlet. The discretization of both of the outlet types are presented in Section 4.5. The
crucial point at the solution of the outlet velocity profile is that the selected outlet type

must satisfy mass conservation.

The bottom of the cavity has no-slip and is adiabatic;

u=v=—-=0 (7.7)

for 0<x<L, y=H

Top surface is a free surface with no-shear velocity boundary and has a transient heat
transfer through the surface. This transient surface has convective and evaporative losses,
losses since in all of the simulations the temperature of the ambient air is cooler than

surface temperature of water, and a solar gain, if applicable.
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au aT(x,0) _a:(t)

—=v=0 and (7.8)
oy oy Ky

for 0<x<L, y=0

The vertical walls of the cavity have no-slip boundary condition;
u=v=0 (7.9

for x=0, h<y<H and x=L, 0<y<H-h

u,,T,, W -

s T )
Water
Jacket

Phies D )

R

Fig. 7.2 Schematic Drawing of Experimental Set-up
Showing the Water Jackets, Front and Side Views

Water
Jacket

For the treatment of the thermal boundary condition of the vertical walls, the schematic
drawing of the experimental set-up, presented in Fig. 7.2 should be considered. In the
experiments, in order to attain a strong thermal stratification within the cavity, large
amount of heat is transferred from the cavity by circulating high mass flow rates of
relatively cool water through the side wall jackets. This, in fact, induces complex thermal
boundary conditions on the vertical side walls, which cannot be merely represented by a
simple isothermal or isoflux boundary condition. The situation is examined profoundly in
the following section.

7.2 Examination of the Thermal Boundary Condition on the Vertical Side Walls

In this section, different thermal boundary conditions on the vertical side walls will be
examined and the optimum amongst them will be selected in order to be able to use as the
selected thermal B.C. on the vertical side walls in the subsequent sections. The selection
criterion will be the comparison of the results with experimental data obtained by the
author previously. In order to see solely the effect of different thermal B.C.'s on the
vertical side walls, in the following simulations, all of the thermophysical properties of
water, geometry parameters of the 2D cavity, and every other hydrodynamic and thermal
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boundary conditions of the cavity will be kept constant. All of the simulations will be run
for 600 minutes. The geometry and flow parameters of all simulations can be found in
Table B.1.

The thermophysical properties of water used in the simulations are

p:997k—gg, y:855><10’6ﬁ, k:0.613ﬂ,
m ms mK
Co =4179L, ,B=276.1x10’61
kgK K

. o m
And the gravitational acceleration is g =9.81—.
S

The geometric parameters, initial condition and boundary conditions are selected similar
to a set of experiments performed by the author [17] in his master thesis.

L=2m, 1=0.2m, H=05m, h=0.04m

Te =Ta =20°C, T, =50°C, u,, =1.5x10° 2 or m, = 215%
S r

In the first simulation, the vertical side walls will be regarded as isothermal walls;
T =T,, =const. (7.10)
for x=0, h<y<H and x=L, 0<y<H-h

The constant temperature value assigned to the vertical walls in Simulation 1 is
T, =10°C . The development of the vertical temperature profile at the middle of the

cavity, i.e. at x=L/2=1m, can be seen in Fig. 7.3. The profiles are plotted at 30 minute
intervals. The slow penetration of the effect of relatively hot inlet water within the cavity
can be seen clearly even in this first simulation. Although at intermittent profiles some
strong levels of vertical thermal stratification can be seen, as time goes by and the cavity
approaches a steady thermal field, at around t =450min or so, there is only weak vertical
thermal stratification left in the cavity. Comparison of Fig. 7.3 and experimental data of
Fig. 7.4 shows that isothermal vertical wall boundary condition (or at least the wall
temperature of T, =10°C ) is not sufficient to generate a strong thermal stratification in
the cavity. Strong vertical thermal stratification in a body can be achieved by large heat
losses in horizontal directions hence first thing to do to improve the situation is to lower
the wall temperature so that more heat will be lost through the vertical side walls. In
Simulation 2, wall temperature is decreased to 0°C and the resulting vertical temperature

development is presented in Fig. 7.5.
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Fig. 7.3 Development of Vertical Temperature Profile within Cavity at x=1m

for Simulation 1
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Fig. 7.4 Development of Vertical Temperature Profile within Cavity, from [17]

66



Comparison of Fig. 7.3 and 7.5 reveals that by decreasing the isothermal wall temperature
10°C, a slightly stronger thermal stratification could be achieved. The temperature

values near the surface for the two simulations are quite comparable yet the bottom
temperature of Simulation 2 is around 35°C whereas it is around 37°C for Simulation 1.

The overall effect is yet insufficient when Simulation 2 is compared with the
experimental data of Fig. 7.4. It can be concluded that isothermal wall BC for the vertical
side walls is not sufficient to exert a heat transfer potent enough to induce a strong
vertical thermal stratification in the cavity. Decreasing further the value of the isothermal
wall temperature would be trivial since two-phase flow model is not used in the
simulations.

One thing to mention for the temperature profiles of Fig. 7.3 and 7.5 is that near the free
surface, the effect of convective heat transfer to the environment is obvious. This trend
could not be captured during experimentation due to lack of enough thermocouples near
the surface.

Another thermal boundary condition that could be applied upon the vertical walls would
be linearly decreasing (with depth) wall temperature

T

T=T,(¥) =T +—TW'2|; Ly (7.11)

for x=0, h<y<H and x=L, 0<y<H-h
where T, =T,(0)>T,, =T, (H)

A sample simulation for T, =10°C>T,,, =0°Cis run and the development of vertical
temperature profile within the cavity is supplied in Fig. B.1 in Appendix.
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The next form of thermal boundary to be applied to the vertical walls is isoflux thermal
boundary condition.

oT 1
. 7.12
5 k qwl ( )

W

for x=0, h<y<H and x=L, 0<y<H-h

In Simulation 4 (see Fig. 7.6), a constant and steady value of gy, =4000W/m? is applied

to the vertical side walls. The numerical value for the heat flux is the maximum measured
value in a similar experiment. The maximum value in an experiment during the charging
period occurs when a steady temperature distribution within the cavity is attained, since
by this time the cavity is at its maximum load and its losses are at their maxima.

First thing to notice in the figure that a stronger vertical thermal stratification at the end of
the charging period could be achieved. The temperature near the surface, just like the
previous simulations stays around 45°C but the bottom temperatures falls down to

around 29°C . Although the level of stratification is still not enough, it is promising.

Another thing worth noting is that the cooling of the cavity during the charging period
well behind the initial temperature of the cavity which is 20°C. This is a direct

consequence of extracting g, =4000W/m? from the very start of the simulation when

there should be almost no heat loss due to low thermal energy content of the cavity. In
reality, when a cavity is charged by relatively warm inlet water and cooled from the side
walls by circulating cooling water inside some heat exchangers attached onto the side
walls, the heat transferred from the cavity should slowly develop as the thermal energy
stored within the storage slowly increases. This issue will be addressed in the following
simulations.

Before a transient wall heat flux is applied to the vertical side walls, the effect of a higher
wall heat flux on the cavity is examined. A higher constant and steady heat flux of

g/, =6000W/m? is applied in Simulation 6 and the temperature profiles of Fig. 7.7 is
obtained.

As the heat flux extracted from the side surfaces is increased one half, the resulting steady
vertical temperature profile is quite stratified and in fact it is close to experimental results.
But the cooling of the lower portions of the cavity below the initial temperature is also
more pronounced.
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Altering the constant and steady heat flux boundary on the side walls to constant yet
transient boundary seems more reasonable in order to better simulate the heat exchangers
attached to the vertical side walls of the cavity. In order to do that, the transient change of
the side wall heat flux will be approximated to experimental data. Wall heat flux variation
with time in a typical experiment can be found in Table B.2 in Appendix. The data in the
table is actually coarsened data from an experiment. The number of data points is
lowered. The wall heat flux in the experiments would not change after about t =300min
(before the cavity attains a steady thermal profile) so the same trend is also followed in
the computations.

In the Simulation 8, this data from Table B.2 is used and the resulting vertical
temperature profiles are presented in Fig. 7.8. By comparing Fig. 7.6 and 7.8, it is seen
that by using a temporally changing but spatially non-changing wall heat flux improves
somewhat the problem of the cooling of the water in the lower regions of the cavity way
below the initial water temperature. Yet it is insufficient. On top of changing the wall heat
flux temporally, the heat flux should be changed spatially too. Also, just like increasing
the constant heat flux value of Simulation 6 (Fig. 7.6) gives a stronger steady thermal
stratification than of Simulation 4 (Fig. 7.5), the values of Table B.2 can be accentuated
to a desired maximum heat flux rate by simply multiplying the values of Table B.2 by the
desired value and dividing all of the values by the maximum value at the table (which is

3900W/m?).

Out_max
— qwl _TableB.1 (t) (713)

4 t —
G ) 3900 W/m?

As an example, if a temporal wall heat flux distribution with a maximum heat flux value

of 6000W/m2is desired, utilizing equation (7.13) will yield a heat flux which is
presented in Fig. 7.9.a. The figure shows the wall heat flux applied to the vertical side
walls at different times up to 300min, at that time q, reaches its maximum value of

6000 W/m? and stays at that value until the end of the charging process.

When a time-varying heat flux characterized by the values in Table B.2 or in Fig. 7.9.a is
applied to the cavity, we simply extract equal amounts of thermal energy from the higher
and lower regions of the cavity. Yet thermal stratification in vertical direction exists in the
medium, water temperature is highest near the free surface and lowest near the bottom
surface. Hence extracting equal amounts of thermal energy in the vertical direction is
erroneous. In Fig. 7.9.b, ¢, and d, three different heat flux variations are presented that
have not only temporal variations, but also spatial variations.

72



0.15

0.2

y (Om)

0.3

0.4

0.45

0.5

==e==180 min
210 min
240 min
270 min

300 min H

330 min
360 min
390 min
420 min
450 min
===== 480 min

570 min
==600 min

45

Fig. 7.8 Development of Vertical Temperature Profile within Cavity at x=1m

for Simulation 8

73

50



0.05
01
0.15
02
-
-, 025
>
03
035
04
Q min
——— 30 min
60 min
0.45 nmes 120 min
180 min
====== 240 min
=300 min
P

05 A 1 1
3000 3500 4000 4500 5000 5500 6000

G (W/m?)

(@)

0.05

0.15

02

03

035

04

0.45

0.5 L

q,, (W/m?)

(©)

0 2000 4000 6000 8000

0 min
=30 min
60 min
==m=== 120 min
180 min

=300 min

10000 12000

0.05

01

0.15

02

y (om)

03

035

04

0.45

0.5
0

0.35

04

0.45!

05
0

0 min
w30 min
60 min
==w=== 120 min
180 min
=== 240 min
| === 300 min

1 I
6000 8000 10000

L 1
2000 4000

G, (W/m?)

(b)

0 min
=30 min
60 min

180 min
====== 240 min
== 300 min

1 1 1
2000 4000 6000 8000 10000 12000

qu (W/m?)

(d)

Fig. 7.9 Different Spatial & Temporal Heat Flux Patterns for Vertical Side Walls



All of the thermal boundary conditions in Fig. 7.9 have the same area under the g, (y,t)
vs. y at any equal time. That is, the area under the perpendicular trapezoidal region at

any time of Fig. 7.9.b is equal to the rectangular area of Fig 7.9.a at the same time, and
the vertex of the triangle of Fig 7.9.c at the free-surface is twice the value of the value of
the heat flux of Fig. 7.9.a at the same time. Also for the triangular variation of Fig. 7.9.d,
the penetration depth is calculated such that the area of the triangles bounded by the
penetration depth and twice the value of the heat flux of Fig. 7.9.a are once again equal to
the areas of rectangles of Fig. 7.9.a.

Development of vertical temperature profile figures for the four side heat flux patterns
shown in Fig. 7.9 are shown in Figures 7.10 to 7.13. By looking at the figures we may
conclude that all of them shows final strongly stratified thermal profiles towards the end
of simulations. The over-cooling of the lower regions of the cavity is least pronounced in
Fig. 7.13. This simulation devices the B.C. depicted in Fig. 7.9.d. A slowly penetrating in
depth heat flux boundary on the vertical side surfaces.

Thus from now on, in the simulations the selected vertical side wall thermal B.C. will be
the one depicted in Fig. 7.9.d.
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7.3 Conservation of Energy Equation for the Cavity in Time-Rate Form

The 1st Law of Thermodynamics for the cavity in the time-rate form could be written as;

dE, . .
—t_E _E 7.14
dt n out ( )

The energy inflow to the CV is simply the enthalpy of hot water that is supplied to the
cavity.

E =H. (7.15)

The energy outflow from the C.V. is the summation of the total heat loss rates and the
enthalpy outflow of the relatively cooler water exiting the outlet. Heat losses are from the
free surface to the ambient and from the two vertical side walls.

Eout = Hout + eree_surface + Qside_walll + Qside_wallz (716)

Hence the energy equation becomes;

dE, . , ,
dtt = Hin - Hout _eree_sun‘ace _Qside_walll - Qside_wallz (717)

The enthalpy transfer terms can be grouped as;

H
Hi, = oy =ty 0, —mhoihy, = phugh, —p [ u(L+Ly)h(L+1,y)dy  (7.18)
H-

in out — "lin"lin
h
Since u, and h, are constants, they can be put within the integral in equation (7.18)

H
By =My =2 [ [Ughy, —u(L+1y)h(L+1,y)]dy (7.19)
H-

in"lin
h

At this moment, if the velocity profile at the outlet, u(L+1,y), is roughly approximated
to be equal to the inlet velocity

u(L+1y)=u, (7.20)

Then the net enthalpy transfer rate to the cavity becomes;
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H
|_.|in - |_-|out = pu;, _[ [hin _h(L+|!y)]dy
- (7.21)

= pCol, [ [Ty =T (L+1,y)]dy
H-h
An average outlet temperature can be computed with the computational data at any time.

l H
Tou ZELI T(L+l,y)dy} (7.22)

~h
In the end the net enthalpy transfer becomes;
I_.|in - |_.|out = pCPhui (T Tout) (723)

There are convective and evaporative heat losses from the free surface. Also there may be
solar radiation onto the free surface.

L
eree surface Qconv evap solar Ihconv T (X 0) Tamb)
° (7.24)

L
+ Ihevap (pw (@T (X! O)) - ¢pw (@Tamb )) hfg (@T (X! O))dX - qs”olar L
0
The heat loss rate from the vertical side walls can be computed from the appropriate wall
heat flux function over the walls;

H

Qsidefwalll side_wall2 — _[ 0 y dy+ I q )dy (725)

h

Finally, the energy conservation equation becomes;

L
EtSt =,OCPhU out +J.hconv T(X 0) Tamb)
0
L
J. evap pw @T(X O)) ¢pw(@Tamb))hfg (@T(X,O))dx _qgolarL (726)
0

H-h

T (0,y)dy+ j Ay (L, y)dy
h

o dE, . I
Monitoring of the rate of energy storage term d_tSt is a mean for determination of

steadiness in the computation. As the rate of energy storage vanishes (during charging),
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no more energy is stored within the cavity, the energy input rate to the cavity is equal to
energy output rate from the cavity, and hence steady velocity and temperature fields are
achieved within the cavity.
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Fig. 7.14 Variation of Components of Energy Equation
in Time-Rate Form for Simulation 14

The temporal variations of the components in the Conservation of Energy Equation for
Simulation 14 is plotted in Fig. 7.14. The heat removal rate plot is redundant since there
is no heat removal in this simulation. Also there is no solar radiation on the free-surface.
The heat loss from the side walls show a stepwise variation up to 300min due to the
stepwise variation of the heat flux boundary condition applied on the vertical walls. This
stepwise variation is directly transferred to the rate of change of energy storage. The
energy storage rate reaches negative values at around t=350min, thus cavity loses
energy at that interval. Furthermore the rate of energy storage decreases until a bottom is
reached before t=400min. After this time negative energy storage rate slowly
diminishes and the cavity reaches steady flow around t=550min. The variations after
t=600min up to t=1200min can be found in Fig. B.2 in Appendix, emphasizing the
steadiness of the flow after around t =550min .

The cause of the negative storage rate interval can be seen in Fig. 7.13. Around this
t =350min , the temperature of the region adjacent to the bottom surface increases fast,
yielding a rapid increase in the enthalpy loss from the cavity through the outlet. In
addition, in Fig. B.6, development of vertical temperature profile nearest the side wall at
x=2mfor Simulation 14 is presented. These are the vertical temperature profiles
developing within the cavity closest to the outlet. Same trend can also be followed in this
figure.
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Examination of Fig. 7.14 reveals that the rate of convective and evaporative heat losses
attains steady values way before the flow reaches steady-state. Though these losses are
calculated from the interface temperature that is updated at every time interval, the losses
reach their steady and maximum values at around t=50min, indicating that the near
surface regions reach steady-state early in the simulations.

The steadiness check can be also done by comparison of the velocity fields at successive
time periods. The streamlines of the flow field supplied in the next section can be a tool
for this steadiness check.

Yet another tool for the steadiness check of the flow can be the comparison of the
temperature field of the flow at successive time periods. Temperature field at different
times for a simulation will also be presented in the next section. Also as previously done,
monitoring the development of vertical temperature profile within the cavity can be a tool
at determining the flow steadiness. As flow approaches steadiness, successive vertical
temperature profiles almost coincide.

7.4 The Flow Field

The developing velocity vectors within the cavity (excluding the inlet and the outlet) for
Simulation 14 are presented in Fig. 7.15. From the start until the end, velocity vectors
with highest magnitudes occur near the free-surface, since a free surface has no friction to
the flow. Actually velocity magnitudes of around 0.0085m/s, more than 5.5 times the

inlet velocity magnitude of 0.0015m/s are seen at the interface.

The regions close to the other three boundaries have high velocity magnitudes also.
Region on top of the bottom surface has high velocity magnitudes due the suction effect
of the outlet whereas regions close to the vertical side walls have high velocity
magnitudes due the cooling of these regions with natural convection.

The region away from the boundaries, roughly 0.2<x<1.8m and 0.2<y<0.45m is
almost motionless.
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Streamlines within the cavity and the inlet and the outlet during charging are shown in
Fig. 7.16 for Simulation 14. At first glance, the flow does not seem to reach steady-state,
since the streamlines do change towards the end of the simulation within the region away
from the boundaries. But as previously noted, flow is almost motionless within this
region and any minute change in velocity within this region is reflected in the streamlines
of Fig. 7.16 as some considerable change.

The flow near the top surface makes a back and forth motion, first it entrains in the
vicinity of the interface, reaches the vertical side wall, changes direction and slides down
under the newly coming fluid layer from the inlet. Actually at t=30min this reversed
flow even goes all the way across the cavity and leaves from the outlet. As the time goes
on, this back and forth motion becomes quite steady and can be seen within around first
40% of the depth as the simulation comes close to the end.

Transient development of temperature distribution within the cavity is presented in Fig.
7.17. A layer by layer temperature development is seen in all of the simulation. Region in
the vicinity of the free-surface attains steady temperature values in the very beginning of
the run due to the relatively fast convective currents. Away from the boundaries,
development is slow indicating that the main heat transfer mode is diffusion.

Away from the vertical side walls, the thermal stratification within the y —direction is

quite uniform and does not change with x—direction. This almost uniform temperature
distribution in x—direction can also be seen by comparing the vertical temperature
profile development of Fig. 7.13 (which is plotted at x=1m of the cavity) with four
different vertical temperature profile development graphs, Fig. B.3 thru B.6 plotted at
x=0m, x=0.25m, x=1.75m, and x=2.0m in Appendix.
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7.5 Dimensionless Bulk Temperature, 6

Dimensionless Bulk Temperature, €, is defined as the ratio of the difference of bulk
temperature, T,, of the storage medium at any time t and initial temperatureT, ., to the

ic?
difference between inlet charging temperature, T, , and initial water temperature T, .

in?

INOE
o)=L _ic 7.27
( ) Tin _Tic ( )
Bulk temperature for a rectangular 2D cavity at any time can be defined as;
T, ()= E® +T. (7.28)
pC-HL
Stored thermal energy within the cavity at any time can be calculated by;
LH
E, = pC, j J[T 0y, t) =T, Jdyex (7.29)
00
Hence the bulk temperature becomes;
1 LH 1 LH
T,®)=—1|||T(X Yy, t) =T, [dydx+T,, =—| | T(X, y,t)dydx 7.30
(1) HL!![(y) dy HLH(V” (7.30)

Dimensionless bulk temperature is bounded by unity from above. It gets its steady value,
6, , after the charging of the cavity is complete.

Dimensionless bulk temperature represents the available energy that can be stored within
the storage unit. When @ reaches its steady value of 4, during the charging process, no
further energy storage within the storage unit is possible. A steady-state temperature
distribution is achieved in the storage unit at this time and heat removal process can be
started. During the heat removal process, if simultaneous charging of the storage unit is
stopped, the calculation of € becomes meaningless by its definition, since charging
temperature, T, , is undefined. On the other hand, if simultaneous charging of the storage
unit is continued during the heat removal process, 8 decreases asymptotically to another
steady value. From this time on energy input rate to the storage unit becomes equal to the
heat removal rate from the storage unit plus the rate of total heat loss.

Variation of the dimensional bulk temperature of the cavity for Simulation 14 is

presented in Fig. 7.18. It reaches a peak value of 0.36 at t =330min and after reaches a
steady value of 0.33. Thus, the trend of losing, rather than gaining, energy for the cavity

91



for an interval before reaching a steady-state mentioned before in Section 7.3 can also be
seen in the variation of dimensionless bulk temperature of the cavity.
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Fig. 7.18 Variation of Dimensionless Bulk Temperature Distribution within the Cavity
during Charging for Simulation 14

7.6 Effect of Initial Temperature

Fig. 7.19 thru 7.21 show the vertical temperature development of three simulations,
whose only differences from Simulation 14 (see Fig. 7.13) are the initial and ambient
temperatures. The initial and ambient temperatures are T_=16°C, T, =16°C in

' Tamb

Simulation 15, T, =20°C, T, =16°C in Simulation 16, and T, =24°C, T_, =16°C in

1 Tamb 1 Tamb

Simulation 17.

Comparison of the figures reveal that, as the initial temperature increased, the final steady
temperature profile shows almost no change from the bottom surface to the free surface.
Hence it can easily be concluded that cavity with lower initial temperature stores more
energy.

The initial temperature profile is away from the final temperature profile in Fig. 7.19, but
as the initial temperature increases, the difference between the steady temperature profile
and the initial temperature profile decreases. In fact, in Fig. 7.21 the two profiles even
intersect. It can be concluded that in a relative sense, more energy is stored when the
initial temperature of the cavity is lower.

The variations of dimensionless bulk temperature are shown in Fig. 7.22. Again the
higher storage performance of a cavity with lower initial temperature can be seen.
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7.7 Effect of Ambient Temperature

Fig. 7.23 shows the vertical temperature development of Simulation 19, whose only
difference from Simulation 14 (see Fig. 7.13) and from Simulation 16 (see Fig. 7.20) is
the ambient temperature. The ambient temperatures are T, =24°C in Simulation 14,

T =16°C in Simulation 16, and T,,, =10°C in Simulation 19.

Comparison of the figures reveals that, the steady vertical temperature profile for
Simulation 19 has the lowest temperature values from top to bottom. As the ambient
temperature decreases, the temperature difference between the surface of the cavity and
the ambient increases, contributing to a higher heat loss through the free-surface.

The variations of dimensionless bulk temperature are shown in Fig. 7.24. Again the
higher storage performance of a cavity with higher ambient temperature can be seen.
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7.8 Effect of Inlet Temperature

The effect of inlet temperature on the charging of the cavity is examined by comparing
two simulations that differ only in the inlet temperature of water. In Simulation 14 (see
Fig. 7.13) inlet temperature is 50°Cwhile in Simulation 20, the inlet temperature is
40°C . The vertical temperature development of Simulation 20 can be found in Fig. 7.25.
The comparison of the variations of dimensionless bulk temperature of Simulations 14
and 20 are shown in Fig. 7.26.

The steady-state vertical temperature profile of Simulation 20 shows lower values than
the steady-state vertical temperature profile of Simulation 14. If a one-to-one comparison
of temperature values at same depths is performed, the temperature difference is found to
be around 8-9°C which is lower than the charging temperature difference of the
simulations. This is due to the fact that losses from the free-surface increase as the
charging temperature is increased.

Comparison of the time variations of dimensionless bulk temperature within the cavity in

Fig. 7.26 shows that when every other parameter is kept constant, increasing the charging
temperature results in a better thermal storage performance.
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7.9 Effect of Solar Radiation

The effect of constant solar radiation on the free-surface of cavity can be examined by
comparing the vertical temperature profiles of Fig. 7.13 (no solar radiation), Fig. 7.27

(constant solar radiation of 200W/m?), and Fig. 7.28 (constant solar radiation of
400W/m?).

Increasing the solar radiation on the free-surface of the cavity increases the rate of
penetration of energy into lower levels of the cavity. If temperature profiles at the same
time are selected, higher the solar radiation, deeper the effect on energy storage.
Dimensionless bulk temperature variation curves (Fig. 7.29) confirm the simple
expectation that higher the solar radiation, higher the storage performance.
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7.10 Lower Aspect Ratio

The aspect ratio for all the simulations so far was A=H/L=0.5/2.0=0.25. A lower

aspect ratio, A=0.15, is simulated by decreasing the height of the cavity to 0.3m while
keeping the length unchanged. The development of vertical temperature profiles within
this shallower cavity is presented in Fig. 7.30. For a comparison with experimental data,
Fig. 2.1 could be used.

Although the simulation is run up to t =600min , steady-state is achieved way before this
time, at around t =330-360min.
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7.11 Heat Removal Period

Heat removal from a cavity will be performed by four rectangular tubes located at the
same depth, separated from each other with an equal distance of 0.5m. The first tube is
located at 0.25m. The height and the width of the tubes are equal and are 2cm. The
depths of the tubes are changed at different simulations.

In the code, the tubes are regarded as fluid regions with negative volumetric internal
energy generation rates. Hence the tubes are regarded as negative sources in the Finite
Volume Equations. In all of the simulations, this negative source is set a constant value,
750000W/m?® , in order to gain a constant total heat removal rate of 1200W per unit

depth of the cavity. This heat removal rate is an average value from the experiments
performed and though it would change within an experiment temporally and between
different experiments due to different sets of flow inputs, in the simulations, it is assumed
that it does not change. Actually this means that in the simulations, the heat removal rate
is not an output gained from different flow fields, different flow inputs and initial and
boundary conditions but rather an equal input to different sets of cavities in order to see
their response.

AVA
[ 2cm
"l i B
B i i
N 0.25 m_| 0.5m ‘ 0.5m 0.5m

Fig. 7.31 Schematic Drawing of 2D Cavity
Showing the Heat Removal Tubes

In the following simulations, the starting point, that is the charged cavity, is the same. It is
the steady-state of Simulation 14, or the state of Simulation 14 at t=600min (see Fig.
7.13 thru 7.18). The heat removal is performed for another period of 600 minutes.

The effect of heat removal on the vertical temperature profiles can be seen in Fig. 7.31
and 7.32. The depth of heat removal tubes is 0.18m for Simulation 14.1 and 0.06 m for
Simulation 14.3. The effect of heat removal is felt more in the layers below the tubes than
the layers above the tubes. In fact the effect of heat removal is felt all the way down to the
bottom of the cavity whereas only a couple of centimeters above the tubes feel the effect.
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Cavity reaches a steady-state in both of the simulations by compensating the extra heat
loss due the heat removal by decreasing its enthalpy output due to cooling of the lower
layers. The time to reach steady-state is around 360 minutes.
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=0.18m in the first half of the heat
removal period and from h_ ,=0.06m in the second half. The vertical temperature

profiles for the first half of this simulation are the same as the first half of Simulation
14.1. The profiles for the second half are presented in Fig. 7.34. When the heat removal
tubes are relocated, the cavity is not at a steady-state (it needs another hour to reach
steadiness), when the heat removal is ceased at the end of the simulation, the cavity is not
at steady-state either. As it can be seen from the figure, the relocation of the tubes
disturbs the flow field fundamentally.

In Simulation 14.5, heat is removed from h

reml

The temporal variations of the components in the Conservation of Energy Equation for
Simulation 14.1 is plotted in Fig. 7.35 from the beginning of the charging process to the
end of the heat removal. The introduction of heat removal changes the steady zero value

dE . . .
of d_tSt to negative values at 600 minutes. As the drained water temperature drops due

to the heat removal from the cavity, the net enthalpy input to the cavity increases
contributing an increase in the time rate of energy storage within the cavity until another
steady-state achieved.
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Fig. 7.35 Variation of Components of Energy Equation
in Time-Rate Form for Simulation 14.1

The variation of dimensionless bulk temperature for seven different heat removal periods
of seven simulations are presented in Fig. 7.36. In the first three simulations the heat
removal tubes are at one location throughout the whole heat removal period whereas in
the last four simulations the tubes are located at the specified depths for the indicated heat
removal periods. At the end of the heat removal periods, when exactly same amount of
heat is extracted from different depths and time interval combinations, it is found that
Simulation 14.1 retains its stored energy most. Thus, it is better to extract heat from the
lower levels of a charged cavity in order to disturb temperature field within the cavity
less. Yet, heat removal from lower regions means a smaller temperature difference for the
heat removal tubes to extract heat.

109



0.35

T T
h__=0.18m, 600 < t < 1200min, Sim14.1
rem

e = 0.12m, 600 < £ < 1200min, Sim14.2
e = 0.06m, 600 < £ <1200min, Sim14.3

rei
oy = 0.18m, 600 < t < 900min, h _ . =0.12m, 900 < t < 1200min, Sim14.4

h =0.18m, 600 < t < 900min, h =0.06m, 900 < t < 1200min, Sim14.5
rem1 ) ’rem2 ’ !
=0.06m, 900 < t < 1200min, Sim14.6

h =0.12m, 600 < t < 900min, h
rem?1 rem2
03k homys =0.18m, 600 < t<810min, A, =0.12m, 810 < t < 990min, A . =0.12m, 990 <t < 1200min, Sim14.7 ||

O 025+

02+

o1 gOO 7(;0 8(‘JO 9(;0 1 O‘OO 1 1‘00 1200
t (min)
Fig. 7.36 Variation of Dimensionless Bulk Temperature within the Cavity

during Charging for Simulations 14.1 thru 14.7

110



CHAPTER 8

CONCLUSIONS

A numerical study is performed in order to simulate a sensible energy storage filled with
water with one inlet and one outlet. Relatively warm water is fed to the cavity to charge it
while relatively cooler water is drained from the outlet. The top surface of the cavity is
exposed to the ambient air, hence the interaction between the relatively warmer surface of
the cavity and the cooler ambient air is inspected.

The mathematical model of the cavity comprised of laminar 2D transient flow of an
incompressible fluid. Both the momentum equations and energy equation need to be
solved simultaneously to model cavity flow since both forced and natural convection
occur in a flow-through storage unit. Boussinesq Approximation is utilized in order to
simplify the momentum and energy equations coupling.

Finite Volume Method is chosen to model the governing equations since FVM is the most
widely used method of solution, has a rich literature to get help from, and is used by a
huge portion of both the CFD/CHT coders and commercial software packages. The
solution algorithm for the FVM is Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) which is known for its adequacy for the solution of incompressible flows
including natural convection.

The code is written in Standard C++ computer programming language. C++ is a fast,
reliable, and easy to code programming language used widely by CFD/CHT
programmers. Actually it is one of the two programming languages (the other one is
FORTRAN) recommended for CFD/CHT coding by different sources if MATLAB is
excluded since it is not an actual computer programming language.

The coding is started from the simplest form of fluid flow, namely the lid-driven cavity
flow and advanced step by step introducing complexity to the model. Ports, energy
equation, coupling of momentum and energy equations, complex boundary conditions,
transient solution are all introduced one by one to the code. If the full mathematical
model is attacked at the beginning of the coding, facing lots of errors is inevitable.

Under-relaxation should be introduced to the code at the very beginning. FVM is
susceptible to divergence unless under-relaxation (under-relaxation for the momentum
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equations and the pressure-correction equation is a must) is used. In all of the simulations
presented in CHAPTER 7, the under-relaxation factor is 0.7 for momentum equations and
0.3 for the pressure-correction equation. The energy equation does not necessarily need
under-relaxation and the under-relaxation factor is 1.0 (i.e. no under-relaxation) for the
energy equation in the simulations.

Source term linearization and always positive coefficients rule are also crucial for the FV
Method. When dealing with complex boundary conditions with source terms, if the
source is a specified heat flux and its direction is not into the solution domain (i.e. the
source is negative or is from the grid to outside), the solution will definitely diverge.

In the simulations of CHAPTER 7, rectangular grids with constant Ax and Ay values are

used which simplified the code considerably. Yet a grid of 100x100 size resulted in a
computation time around 20,000 seconds of one core of a powerful desktop PC. If in the
future, the code is to be advanced such that it can also solve 3D cavities, special grid
refinement techniques are required.

The time increment in the simulations has a constant value of 0.1 seconds (a trial-and-
error value). It was tried to be increased during the iterations based on the drop in the
number of iterations of the inner loop of the SIMPLE algorithm. When the number of
iterations dropped to less than a few iterations, the time increment was increased. Yet the
trials were all unripe and resulted in divergence of the solution.

Experimental results (obtained during the M. S. study of the author) are used for
comparison. The experiments were conducted with a 3D set-up naturally and the set-up
utilized complex water jackets in order to remove heat from the vertical side walls at the
inlet and outlet of the storage unit. Modeling these heat exchangers in a 2D code is the
most problematic part of the computer simulations. A simple Dirichlet or von Neumann
boundary condition would not work. A long section is devoted for the selection of the
vertical side wall thermal boundary conditions. At the end, both temporally and spatially
varying thermal boundary form is selected.

The charging period of the cavity with relatively hot charging water entering the cavity
through the inlet is examined. The velocity and temperature fields for the cavity are
presented. The flow in the cavity reaches steady-state when the energy input to the cavity
is equated by the energy losses from the cavity. At this steady-state, the storage has the
highest energy content and is ready for heat extraction. The effects of initial temperature
of the cavity, ambient air temperature, inlet charging temperature, and solar radiation on
the free surface of the cavity are examined on the performance of the energy storage unit.
It is found that lower initial storage temperature, higher ambient air temperature, higher
charging water temperature, and existence of solar radiation have positive effects on the
performance of the cavity.

Heat removal period from the cavity is examined. In all of the simulations with heat
removal, the charging of the cavity is continued. Basic heat removal tubes with
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rectangular cross-sections are modeled as negative volumetric internal energy generation
sources. Physical heat removal tubes are not modeled. In the simulations, constant heat
removal rate is applied irrespective of the location of the tubes. The effect of removing
equal amounts of heat from the cavity from different depths on the thermal field of the
cavity is examined. It is found that (actually the finding is in accordance with
experimental data) the heat removal process affects the regions below the tubes more than
the regions above the tubes. The effect of heat removal is seen all the way down to the
bottom of the cavity whereas only a couple of centimeters above the heat removal tubes
feel any disturbance. As a result, when heat is removed from a lower layer, the stored
energy content of the cavity at the end of the heat removal is higher.

The present 2D code can be used as a basis for a 3D code simulating the heat removal
tubes (or heat exchangers) more realistically. Simulation of an incompressible flow in 3D
with combined natural and forced convection needs a lot of computer power. Instead of
using CPU computation, the newly emerging GPU computing could be tried to shorten
computation times.

The effect of wind on the free surface (which is actually a minor improvement) can be
added. The Boussinesq approximation could be disregarded; the y —momentum equation

can be solved as is since the temperature dependence of the water density can be
implemented to the code quite easily.

A couple of commercial codes were tried for benchmark purposes without any success.
ANSYS FLUENT does not have the exact same slip (no-shear) boundary condition (see
equation (3.13)), ANSYS CFX finds the thermal field but the velocity field does not
reach a steady pattern rather than a chaotically fluctuating one continuously. COMSOL
Multiphysics cannot even maintain a solution. So for a commercial code user moderate as
the author himself, it may be concluded that learning and perfecting a commercial code,
using it to solve a complicated flow problem, failing to achieve a solution, changing the
commercial code and starting from the beginning could be more time consuming than
writing one's own CFD/CHT code.

To double-check the comparison of simulations with experimental data, three more
simulations are run with the data of Experiment 1 from [17]. The parameters of the

experiment are A=H/L=0.26, m,6 =206kg/hr, T, =475°C, T_ =25.2°C,
T,, =24°C, and an average maximum q, =3700W/m*. The vertical temperature
development curves for the three different vertical side wall thermal B.C.'s of Fig. 7.9.b,

¢, and d are presented in Fig. B.7, 8, and 9 respectively. The sole difference of the
simulations from the experiment is that in the simulations, the mean side wall heat flux

value is somewhat higher, qy, =5000W/m?. The temperature data points of the

experiment are also presented in the figures. Comparison of the figures yields the same
conclusion as of Section 7.2, vertical side wall thermal B.C. depicted in Fig. 7.9.d is the
better choice among these three different side wall thermal B.C.'s.
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APPENDIX A

DISCRETIZATION OF THE GENERAL TRANSPORT EQUATION WITH
HYBRID DIFFERENCING SCHEME

The hybrid differencing scheme is a combination of second order accurate central
differencing, which lacks the appropriate flow direction information (transportiveness)
and the first order accurate upwind differencing scheme, which has the transportiveness
property. The local Peclet number is the parameter that discriminates when to use the
aforementioned two interpolation schemes. The Peclet number for the west face of a 3D
C.V.(seeFig. 4.1) is

A
pe _ (PUA), _F, (A1)
! (FWA)W DW
A P

When the local Peclet number is large, the flow is convection dominated and the upwind
differencing scheme is used. When the local Peclet number is low, the flow is diffusion
dominated and the central differencing is used.

& if Pe, <2
4, =14, it Pe,>2 (A2)
w if  —2<Pe, <2

The net flux through the west face is the summation of the convective and diffusive
fluxes

(¢P _%)
A

P

q\;:/ = (pUA¢)W - (FA)W = I:w¢w - DW (¢P - ﬂN ) (A3)

If Pe, <—2, equation (A.3) becomes:
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" o_ _ _ — i i — .
q, =Fuf- =D, (4 m)—aﬂupewyﬁpewm} Fido +0-d

(A4)

Assuming 1 — 0. Hence
Pe,

W

a, =0 (A5)

If Pe, >2, equation (A.3) becomes:
14 1 1
Or = Fudy — Dy (¢ — by ) = FWHHEJ% —Efﬁp} Futhy +0-4  (A6)

Assuming Pi — 0. Hence

W

a, =F, (A7)
If —2<Pe, <2, equation (A.3) becomes:
R CRORLNCSV AR LS R LA TR

Hence

a, = %+ D, (A9)

Similar treatments to the other five control surfaces will yield the coefficients in equation
(4.35).
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APPENDIX B

ILLUSTRATIVE MATERIAL
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Table B.1 Geometry and Flow Parameters of the Simulations

Sim. H L A=ﬂ T, U, T T q e Wall B.C.
ey et eo] e | col cof wm)

1 0.5 20 | 025 50 0.0015 20 20 0 T, =10°C

2 0.5 20 | 025 50 0.0015 20 20 0 T, =0°C

3 0.5 20 | 025 50 0.0015 20 20 0 T, =10-0°C

4 0.5 20 | 025 50 0.0015 20 20 0 q,, = 4000W/m?

5 0.5 20 | 025 50 0.0015 20 20 0 q,, = 7000W/m?

6 0.5 20 | 025 50 0.0015 20 20 0 q,, = 6000W/m?

7 0.5 20 | 025 50 0.0015 20 20 0 g,, = 5000W/m?

8 0.5 20 | 025 50 0.0015 20 20 0 g, =4000W/m? -

9 0.5 20 | 025 50 0.0015 20 20 0 g,, = 7000W/m? -
10 0.5 20 | 025 50 0.0015 20 20 0 g,, = 6000W/m? -
11 0.5 20 | 025 50 0.0015 20 20 0 q,, =5000W/m? -
12 0.5 20 | 025 50 0.0015 20 20 0 q,, = 6000W/m? -
13 0.5 20 | 025 50 0.0015 20 20 0 q,, = 6000W/m? «-
14 0.5 20 | 025 50 0.0015 20 20 0 0, = 6000W/m? w=
15 0.5 2.0 0.25 50 0.0015 16 16 0 0, =6000W/m? «s
16 0.5 20 | 025 50 0.0015 20 16 0 0, = 6000W/m? w=
17 0.5 20 | 025 50 0.0015 24 16 0 0, = 6000W/m? w-
18 0.5 20 | 025 50 0.0015 24 24 0 0, = 6000W/m? w-
19 0.5 20 | 025 50 0.0015 20 10 0 0, = 6000W/m? w-
20 0.5 20 | 025 40 0.0015 20 20 0 0, = 6000W/m? ~=
21 0.5 20 | 025 50 0.0015 20 20 200 0, = 6000W/m? w=
22 0.5 20 | 025 50 0.0015 20 20 400 0, = 6000W/m? ws
23 0.3 20 | 0.15 50 0.0015 18 18 0 0,y =5500W/m? s
24 0.3 20 | 0.15 50 0.0015 18 18 0 0, =5000W/m? w
25 0.3 20 | 0.15 50 0.0015 18 18 0 0, = 4500W/m? ws
26 0.3 20 | 0.15 50 0.0015 18 18 0 0, = 4000W/m? ws
27 0.3 20 | 0.15 50 0.0015 18 18 0 0, = 3000W/m? w
28 0.3 20 | 0.15 50 0.0015 24 24 0 0,y =5500W/m? w-
29 0.3 20 | 0.15 50 0.0015 24 24 0 0, =5000W/m? <
30 0.3 20 | 0.15 50 0.0015 24 24 0 0, = 4500W/m? ws
31 0.3 20 | 0.15 50 0.0015 24 24 0 0, = 4000W/m? ws
32 0.3 20 | 0.15 50 0.0015 24 24 0 0, = 3000W/m? ws
33 0.3 20 | 0.15 50 0.0015 20 20 0 0, =5500W/m? ws
= Asin Fig. 7.9.a
« As in Fig. 7.9.b
=+ As in Fig. 7.9.c
~+ As in Fig. 7.9.d
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Table B.2 Wall Heat Flux Variation with Time in a Typical Experiment

qwl (t) T |
(W/mz) ime Interva

2000 0<t<15min
2100 15<t<30min
2300 30<t<45min
2650 45<t<60min
2850 60<t<75min
2950 75<t<90min
3100 90 <t <105min
3200 105<t<120min
3250 120<t<135min
3350 135<t<150min
3450 150 <t <165min
3500 165<t<180min
3500 180 <t <195min
3550 195<t<210min
3650 210<t<225min
3700 225<t<240min
3700 240 <t <255min
3750 255<t<270min
3800 270<t<285min
3850 285 <t <300min
3900 t >300min
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