### COMPARISON OF METHODS FOR ROBUST PARAMETER DESIGN OF PRODUCTS AND PROCESSES WITH AN ORDERED CATEGORICAL RESPONSE

### A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

# GONCA BACANLI KARABULUT

# IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

### COMPARISON OF METHODS FOR ROBUST PARAMETER DESIGN OF PRODUCTS AND PROCESSES WITH AN ORDERED CATEGORICAL RESPONSE

submitted by GONCA BACANLI KARABULUT in partial fulfillment of the requirement for the degree of Master of Science in Industrial Engineering Department, Middle East Technical University by,

| Prof. Dr. Canan Özgen<br>Dean, Graduate School of <b>Natural and Applied Sciences</b> |            |
|---------------------------------------------------------------------------------------|------------|
| Prof. Dr. Murat Köksalan<br>Head of Department, <b>Industrial Engineering</b>         |            |
| Prof. Dr. Gülser Köksal<br>Supervisor, <b>Industrial Engineering Dept., METU</b>      |            |
| Examining Committee Members                                                           |            |
| Assoc. Prof. Dr. Sinan Gürel<br>Industrial Engineering Dept., METU                    |            |
| Prof. Dr. Gülser Köksal<br>Industrial Engineering Dept., METU                         |            |
| Asst. Prof. Dr. Seçil Savaşaneril<br>Industrial Engineering Dept., METU               |            |
| Asst. Prof. Dr. Özgen Karaer<br>Industrial Engineering Dept., METU                    |            |
| Assoc. Prof. Dr. Özlem İlk<br>Statistics Dept., METU                                  |            |
| Date:                                                                                 | 04.09.2013 |

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Gonca BACANLI KARABULUT

Signature :

### ABSTRACT

### COMPARISON OF METHODS FOR ROBUST PARAMETER DESIGN OF PRODUCTS AND PROCESSES WITH AN ORDERED CATEGORICAL RESPONSE

Bacanlı Karabulut, Gonca M.S., Department of Industrial Engineering Supervisor: Prof. Dr. Gülser Köksal

September 2013, 208 pages

Robust design of products or processes with categorical response has more momentous role in industrial experiments for quality improvements, because ordinal categorical quality characteristics are encountered more frequent than continuous ones in industry. In this study, five optimization methods for an ordered categorical response are compared with each other: Logistic Regression Model Optimization (LRMO), Accumulation Analysis (AA), Weighted Signal-to-noise Ratio (WSNR), Scoring Scheme (SS), and Weighted Probability Scoring Scheme (WPSS). In order to compare performance of these methods for different types of robust design problems, each method is individually applied on two different types of problems: smaller-the-better and larger-the-better. All examples are studied to find the optimal parameter settings of statistically significant controllable factors and trying to optimize both location and dispersion of the results. To compare the optimal levels derived from these five methods, three performance criteria are used: SNR at optimal parameter settings, estimated by ANOVA model of continuous version of data or true model (if applicable); probability of observing target category, estimated by LR models; and that of observing target category estimated by ANOVA models of cumulative percentage of categories. According to the results, LRMO and AA methods have the best performance results in most of the examples analyzed in this study. Since AA is criticized as not allowing analysis of location and dispersion effects separately but not LRMO, WPSS and SS, more examples and further analysis might be studied to show this discrepancy of the methods.

KEY WORDS: Robust Parameter Design; Ordinal Categorical Response; Ordinal Logistic Regression; Accumulation Analysis; Signal-to-noise Ratio.

# SIRALI KATEGORİK ÇIKTILI ÜRÜN VE PROSES PARAMETRE TASARIMI İÇİN YÖNTEM KARŞILAŞTIRMASI

Bacanlı Karabulut, Gonca M.S., Endüstri Mühendisliği Departmanı Tez Danışmanı: Prof. Dr. Gülser Köksal

Eylül 2013, 208 sayfa

Kategorik çıktısı olan ürün veya prosesin robust tasarımın kalite iyilestirmeleri için yapılan endüstriyel deneylerde önemli rolü vardır. Cünkü endüstride sıralı kategorik kalite karakteristiklerine sürekli kalite karakteristiklerinden daha sık rastlanır. Bu çalışmada, sıralı kategorik çıktılar için kullanılan beş optimizasyon metodu birbiriyle karsılastırılmıştır: Lojiştik Regresyon Model Optimizasyonu (LRMO), Birikim Analizi (AA), Ağırlıklı Sinyal Gürültü Oranı (WSNR), Skor Tasarısı (SS), ve Ağırlıklı Olasılık Skor Tasarısı (WPSS). Bu metotların farklı robust tasarım problemlerinde davranışlarını gözlemlemek için herbir metot iki farklı tip problem üzerinde uygulanmıştır: en küçük-en iyi ve en büyük-en iyi. Kontrol edilebilir faktörlerin istatistiksel olarak anlamlı en uygun parametre değerlerini bulabilmek ve konum ve dağılım sonuçlarını optimize edebilmek için bütün örnekler çalışılmıştır. Bu beş metodun elde ettiği en uygun seviyeleri karşılaştırmak için üç performans kriteri kullanılmıştır: Sürekli verilerin (eğer uygulanabilirse) en uygun parametre değerlerindeki ANOVA modeli veya doğru model ile tahmin edilmiş SNR; hedef kategorinin LR modeli ile tahmin edilmiş görülme olasılığı; ve kategorilerin kümülatif yüzdeleri üzerinde ANOVA modeli ile tahmin edilmiş hedef kategorilerin görülme olasılığı. Sonuçlara dayanarak, bu çalışmada LRMO ve AA metotları çoğu örnekte en iyi performans sonuçlarını vermiştir. AA metodu LRMO, WPSS ve SS metotlarının aksine, konum ve dağılım etkilerinin ayrı analizine izin vermediği için elestirildiğinden dolayı metotların farklılığını gösterebilmek için daha fazla örnek çalışılabilir ve ileri analizler yapılabilir.

ANAHTAR KELİMELER: Robust Parametre Tasarımı; Sıralı Kategorik Çıktı; Sıralı Lojistik Regresyon; Birikim Analizi; Sinyal Gürültü Oranı

To My Husband

### ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor Prof. Dr. Gülser Köksal for her continuous support and precious guidance. I am also grateful to her for her generosity on sharing her knowledge and experience during this study.

I would like to express my deepest thanks to my mother Sıdıka Nalçacı and Yurdanur Er for their invaluable support, endless understanding and patience.

I would like to thank my friend Ayşem Çağlar Oran for her invaluable support, her heartfelt friendship and sharing all the great moments during my M.S. study.

I am also grateful to my friend Diclehan Tezcaner Öztürk for her great support and sharing valuable moments during my M.S. study.

Finally, I wish to express my deepest love to my husband Ali Kemal Karabulut for his invaluable and endless support, incredibly valuable understanding and patience.

# TABLE OF CONTENTS

| ABSTRACT                                                           |
|--------------------------------------------------------------------|
| ÖZvi                                                               |
| ACKNOWLEDGEMENTS viii                                              |
| TABLE OF CONTENTSix                                                |
| LIST OF TABLES xiii                                                |
| LIST OF FIGURESxxii                                                |
| CHAPTERS                                                           |
| 1. INTRODUCTION1                                                   |
| 2. LITERATURE SURVEY                                               |
| 2.1. Background on Methods                                         |
| 2.1.1. Logistic Regression Model Optimization5                     |
| 2.1.2. Accumulation Analysis Method                                |
| 2.1.3. Weighted Signal-to-noise Ratio Method11                     |
| 2.1.4. Scoring Scheme Method                                       |
| 2.1.5. Weighted Probability Scoring Scheme Method17                |
| 3. APPLICATION AND COMPARISON OF METHODS ON EXAMPLE                |
| PROBLEMS                                                           |
| 3.1. Surface Defect Example                                        |
| 3.1.1. Taguchi's Robust Design Method for the Surface Defect       |
| Example24                                                          |
| 3.1.2. Logistic Regression Model Optimization for Surface Defect   |
| Example                                                            |
| 3.1.3. Accumulation Analysis Method for Surface Defect Example34   |
| 3.1.4. Weighted Signal-to-noise Ratio for Surface Defect Example42 |
| 3.1.5. Scoring Scheme Method for Surface Defect Example46          |
| 3.1.6. Weighted Probability Scoring Scheme Method for Surface      |

| Defect Example                                                     |
|--------------------------------------------------------------------|
| 3.2. Thick-Film Resistor Production Example                        |
| 3.2.1. Logistic Regression Model Optimization for Thick-film       |
| Resistor Production Example61                                      |
| 3.2.2. Accumulation Analysis Method for Thick-film Resistor        |
| Production Example63                                               |
| 3.2.3. Weighted Signal-to-noise Ratio for Thick-film Resistor      |
| Production Example64                                               |
| 3.2.4. Scoring Scheme Method for Thick-film Resistor Production    |
| Example65                                                          |
| 3.2.5. Weighted Probability Scoring Scheme Method (WPSS) for       |
| Thick-film Resistor Production Example68                           |
| 3.3. Simulated Example in Foam Molding Experiment72                |
| 3.3.1. Logistic Regression Model Optimization for Simulated        |
| Example78                                                          |
| 3.3.2. Accumulation Analysis Method for Simulated Example80        |
| 3.3.3. Weighted Signal-to-noise Ratio for Simulated Example81      |
| 3.3.4. Scoring Scheme Method for Simulated Example82               |
| 3.3.5. Weighted Probability Scoring Scheme Method for Simulated    |
| Example                                                            |
| 3.4. Inkjet Printer Example                                        |
| 3.4.1. Logistic Regression Model Optimization for Inkjet Printer   |
| Example                                                            |
| 3.4.2. Accumulation Analysis Method for Inkjet Printer Example91   |
| 3.4.3. Weighted Signal-to-noise Ratio for Inkjet Printer Example93 |
| 3.4.4. Scoring Scheme Method for Inkjet Printer Example94          |
| 3.4.5. Weighted Probability Scoring Scheme Method for Inkjet       |
| Printer Example96                                                  |
| 3.5. Duplicator Example101                                         |
| 3.5.1. Logistic Regression Model Optimization for Duplicator       |
| Example104                                                         |
| 3.5.2. Accumulation Analysis Method for Duplicator Example107      |

| 3.5.3. Weighted Signal-to-noise Ratio for Duplicator Example108    |
|--------------------------------------------------------------------|
| 3.5.4. Scoring Scheme Method for Duplicator Example109             |
| 3.5.5. Weighted Probability Scoring Scheme Method for Duplicator   |
| Example112                                                         |
| 3.6. Overall Comparison                                            |
| 4. DISCUSSION117                                                   |
| 5. CONCLUSION AND FURTHER STUDIES121                               |
| REFERENCES                                                         |
| APPENDICES                                                         |
| A. GRAPHS FOR RESIDUAL ASSUMPTIONS OF ANOVA125                     |
| <b>B. RESULTS FOR THICK-FILM RESISTOR PRODUCTION</b>               |
| EXAMPLE129                                                         |
| B.1 Results of Logistic Regression Model Optimization in           |
| Thick-film Resistor Production Example129                          |
| B.2 Results of Accumulation Analysis Method in Thick-film          |
| Resistor Production Example171                                     |
| B.3 Results of Weighted Signal-to-noise Ratio Method in            |
| Thick-film Resistor Production Example177                          |
| B.4 Results of Scoring Scheme Method in Thick-film Resistor        |
| Production Example179                                              |
| B.5 Results of Weighted Probability Scoring Scheme Method in       |
| Thick-film Resistor Production Example                             |
| C. RESULTS FOR SIMULATED EXAMPLE IN FOAM MOLDING                   |
| EXPERIMENT                                                         |
| C.1 Results of Logistic Regression Model Optimization for          |
| Simulated Example                                                  |
| C.2 Results of Accumulation Analysis Method for Simulated          |
| Example                                                            |
| C.3 Results of Weighted Signal-to-noise Ratio Method for Simulated |
| Example                                                            |
| C.4 Results of Scoring Scheme Method for Simulated Example         |

|    | C.5 Results of Weighted Probability Scoring Scheme Method for      |
|----|--------------------------------------------------------------------|
|    | Simulated Example                                                  |
| D. | RESULTS FOR INKJET PRINTER EXAMPLE191                              |
|    | D.1 Results of Logistic Regression Model Optimization for          |
|    | Inkjet Printer Example191                                          |
|    | D.2 Results of Accumulation Analysis Method for Inkjet Printer     |
|    | Example191                                                         |
|    | D.3 Results of Weighted Signal-to-noise Ratio Method for Inkjet    |
|    | Printer Example195                                                 |
|    | D.4 Results of Scoring Scheme Method for Inkjet Printer Example196 |
|    | D.5 Results of Weighted Probability Scoring Scheme Method for      |
|    | Inkjet Printer Example197                                          |
| E. | RESULTS FOR DUPLICATOR EXAMPLE199                                  |
|    | E1. Results of Logistic Regression Model Optimization for          |
|    | Duplicator Example199                                              |
|    | E2. Results of Accumulation Analysis Method for Duplicator         |
|    | Example                                                            |
|    | E3. Results of Weighted Signal-to-noise Ratio Method for           |
|    | Duplicator Example                                                 |
|    | E4. Results of Scoring Scheme Method for Duplicator Example205     |
|    | E5. Results of Weighted Probability Scoring Scheme Method for      |
|    | Duplicator Example                                                 |

# LIST OF TABLES

# TABLES

| Table 3.1  | Controllable Factors and Their Levels for the Surface Defect          |   |
|------------|-----------------------------------------------------------------------|---|
|            | Example                                                               | Į |
| Table 3.2  | Experimental Design for the Surface Defect Example                    | 2 |
| Table 3.3  | Surface Defect Data of the Surface Defect Example                     | 3 |
| Table 3.4  | Signal to Noise Ratios of Surface Defects                             | ŀ |
| Table 3.5  | Analysis of Surface Defect Data25                                     | 5 |
| Table 3.6  | Optimum Levels of Factors and Predicted Signal to Noise Ratio for     |   |
|            | Surface Defect Example                                                | 5 |
| Table 3.7  | Range of Surface Defect Numbers for Each Category27                   | 7 |
| Table 3.8  | Categorized Surface Defect Data                                       | 7 |
| Table 3.9  | Modified Levels of Factor C                                           | 3 |
| Table 3.10 | Estimated Probabilities and Signal to Noise Ratios based on Ordinal   |   |
|            | Logistic Regression Models of Categorized Surface Defect Data30       | ) |
| Table 3.11 | Predicted SNR Values for Optimal Parameter Settings Found by          |   |
|            | LRMO and Taguchi based on Taguchi's Prediction Equation               | 3 |
| Table 3.12 | Estimated Probability for each Category and Signal-to-noise Ratio for |   |
|            | Optimal Levels for the Surface Defect Example                         | ł |
| Table 3.13 | Cumulative Frequencies for the Cumulative Categories                  | ŀ |
| Table 3.14 | Cumulative Rate of Occurrences for the Cumulative Categories for      |   |
|            | Surface Defect Example                                                | 5 |
| Table 3.15 | Weights, Correction Factors and Proportions of Cumulative Frequencies |   |
|            | in Relevant Category for Surface Defect Example                       | 5 |
| Table 3.16 | Sum of Squares for Each Factor and Category for Surface Defect        |   |
|            | Example                                                               | 7 |
| Table 3.17 | Analysis of Variance (ANOVA) Results for AA Method in Surface         |   |
|            | Defect Example                                                        | 7 |

| Table 3.18 Optimal Solution Alternatives found by AA Method for Surface                                  |
|----------------------------------------------------------------------------------------------------------|
| Defect Example                                                                                           |
| Table 3.19 Predicted SNR Values for Optimal Parameter Settings Found by AA                               |
| and Taguchi according to Taguchi's Method                                                                |
| Table 3.20 Estimated Frequency for each Category and each Factor and Total                               |
| Estimated Frequencies for each Category for Surface Defect                                               |
| Example                                                                                                  |
| Table 3.21 Logit Transformation Values for Estimated Frequencies and Overall                             |
| Estimated Frequencies for each Category for Surface Defect                                               |
| Example40                                                                                                |
| Table 3.22 Estimated Percentage in decibels for each Category for Optimal Levels                         |
| for Surface Defect Example41                                                                             |
| Table 3.23 Estimated Percentage $\hat{P}_i^{ANOVA(CP)}$ for each Category for Optimal Levels             |
| for Surface Defect Example42                                                                             |
| Table 3.24 Weighted Signal to Noise Ratios for Surface Defects                                           |
| Table 3.25 Averages of Signal-to-noise Ratios for each Significant Factor and Level                      |
| for Surface Defect Example45                                                                             |
| Table 3.26 Predicted SNR Values for Optimal Parameter Settings Found by WSNR                             |
| and Taguchi according to Taguchi's Method for Surface Defect                                             |
| Example45                                                                                                |
| Table 3.27 Calculated Data and Location Scores                                                           |
| Table 3.28 Sum of Numbers of Observation in each Category and Overall Sum of                             |
| Numbers of Each Category for Surface Defect Example47                                                    |
| Table 3.29 Calculated Data and Dispersion Scores                                                         |
| Table 3.30 Location and Dispersion Pseudo-observations for each Experiment48                             |
| Table 3.31 Averages of Location and Dispersion Pseudo-observations for each                              |
| Factor                                                                                                   |
| Table 3.32 Predicted SNR Values for Optimal Parameter Settings Found by SS and                           |
| Taguchi according to Taguchi's Method52                                                                  |
| Table 3.33 Proportions of observations $p_{ij}$ for each category <i>i</i> and set <i>j</i> of parameter |
| settings for Surface Defect Example53                                                                    |

| Table 3.34 Location, Dispersion and Mean Squared Deviation Scores for each          |
|-------------------------------------------------------------------------------------|
| Experiment54                                                                        |
| Table 3.35 Averages of Mean Square Deviation Scores for each Significant Factor in  |
| Surface Defect Example55                                                            |
| Table 3.36 Predicted SNR Values for Optimal Parameter Settings Found by WPSS        |
| and Taguchi according to Taguchi's Method56                                         |
| Table 3.37 Comparison Table According to Prediction Depending on Taguchi's          |
| Method in Surface Defect Example57                                                  |
| Table 3.38 Comparison Table According to Prediction Depending on LRMO in            |
| Surface Defect Example57                                                            |
| Table 3.39 Comparison Table According to Prediction Depending on Observed           |
| Percentages of a Category in Surface Defect Example57                               |
| Table 3.40 Controllable Factors and Their Levels for the Thick-film Resistor        |
| Production Example                                                                  |
| Table 3.41 Percentage Deviation Range from Target    59                             |
| Table 3.42 Numbers of occurrences of each category for each set of parameter        |
| settings in the Thick-film Resistor Production Example59                            |
| Table 3.43 Experimental Design for the Thick-film Resistor Production Example $60$  |
| Table 3.44 Estimated Probability for each Category and Signal-to-noise Ratios for   |
| Optimal Levels for the Thick-film Resistor Production Example                       |
| Table 3.45 Analysis of Variance (ANOVA) Results for Thick-film Resistor             |
| Production Example                                                                  |
| Table 3.46 Estimated Percentage for each Category for Optimal Levels for Thick-film |
| Resistor Production Example64                                                       |
| Table 3.47 Comparison Table According to Prediction Depending on LRMO in            |
| Thick-film Resistor Production Example70                                            |
| Table 3.48 Comparison Table According to Prediction Depending on Percentages of     |
| Observing a Category in Thick-film Resistor Production Example71                    |
| Table 3.49 Controllable and Uncontrollable Factors and Their Levels for Simulated   |
| Example72                                                                           |
| Table 3.50 Numbers of Occurrences of Each Category for Each Set of Parameter        |
| Settings in Foam Molding Experiment73                                               |

| Table 3.51 Numbers of Occurrences of Each Category for Each Set of Parameter             |
|------------------------------------------------------------------------------------------|
| Settings for Foam Molding Experiment73                                                   |
| Table 3.52 Optimal Parameter Settings and the Estimated Probabilities Found by           |
| Köksal et al. (2006)75                                                                   |
| Table 3.53 200 Standard Normally and Randomly Generated Errors                           |
| Table 3.54 Modified Foam Molding Experimental Design in Simulated Example77              |
| Table 3.55 Estimated Probability for Each Category and Signal-to-noise Ratios for        |
| Optimal Levels in Simulated Example79                                                    |
| Table 3.56 Analysis of Variance (ANOVA) Results    80                                    |
| Table 3.57 Estimated Probability for Each Category and Signal-to-noise Ratios for        |
| Optimal Levels for AA Results in Simulated Example81                                     |
| Table 3.58 Estimated Probability for Each Category and Signal-to-noise Ratios for        |
| Optimal Levels for WNSR Results in Simulated Example82                                   |
| Table 3.59 Estimated Probability for Each Category and Signal-to-noise Ratios for        |
| Optimal Levels for SS Results in Simulated Example                                       |
| Table 3.60 Estimated Probability for Each Category and Signal-to-noise Ratios for        |
| Optimal Levels for WPSS Results in Simulated Example                                     |
| Table 3.61 Comparison Table According to Prediction Depending on LRMO in                 |
| Simulated Example                                                                        |
| Table 3.62 Controllable Factors and Their Levels for Inkjet Printer Example           87 |
| Table 3.63 Experimental Design for the Inkjet Printer Example                            |
| Table 3.64 Numbers of Rubs Counted for Each Sample and Experimental Runs for             |
| Inkjet Printer Example                                                                   |
| Table 3.65 Ranges for Numbers of Rubs in Inkjet Example                                  |
| Table 3.66 Numbers of Occurrences in Each Category for each Set of Parameter             |
| Settings in Inkjet Printer Example                                                       |
| Table 3.67 Estimated Probability for Each Category and Signal-to-noise Ratios for        |
| Optimal Levels in Inkjet Printer Example                                                 |
| Table 3.68 Analysis of Variance (ANOVA) Results                                          |
| Table 3.69 Estimated Percentage for each Category for Optimal Levels for Inkjet          |
| Printer Example                                                                          |
| Table 3.70 Comparison Table According to Prediction Depending on LRMO in                 |

| Inkjet Printer Example10                                                              | 0   |
|---------------------------------------------------------------------------------------|-----|
| Table 3.71 Comparison Table According to Prediction Depending on Estimated            |     |
| Percentage of Target Category in Inkjet Printer Example10                             | )() |
| Table 3.72 Control Factors and Their Levels for Duplicator Example                    | )1  |
| Table 3.73 Experimental Design for the Duplicator Example    10                       | )2  |
| Table 3.74 Numbers of Successful Paper Sheet Feeds for Duplicator Example10           | )2  |
| Table 3.75 Ranges for Numbers of Successful Paper Sheet Feeds for Duplicator          |     |
| Example10                                                                             | 13  |
| Table 3.76 Numbers of Occurrences in Each Category for Each Set of Parameter          |     |
| Settings for Duplicator Example10                                                     | )4  |
| Table 3.77 Estimated Probability for Each Category and Signal-to-noise Ratios for     |     |
| Optimal Levels in Duplicator Example10                                                | )6  |
| Table 3.78 Analysis of Variance (ANOVA) Results                                       | )7  |
| Table 3.79 Estimated Percentage for each Category for Optimal Levels for              |     |
| Duplicator Example10                                                                  | )8  |
| Table 3.80 Comparison Table According to Prediction Depending on LRMO in              |     |
| Duplicator Example11                                                                  | 3   |
| Table 3.81 Comparison Table According to Prediction Depending on Estimated            |     |
| Percentage of Target Category in Duplicator Example11                                 | 3   |
| Table 3.82 Overall Comparison Table According to the Best Results                     | 5   |
| Table 3.83 Goodness-of-fit Results for Each Example in LRMO11                         | 6   |
| Table B.1 Estimated Probabilities of Observing a Category and the Signal to Noise     |     |
| Ratios based on Ordinal Logistic Regression Models for Thick-film                     |     |
| Resistor Production Example12                                                         | 29  |
| Table B.2 Cumulative Frequencies for the Cumulative Categories for Thick-film         |     |
| Resistor Production Example17                                                         | '1  |
| Table B.3 Cumulative Rates of Occurrences for the Cumulative Categories for           |     |
| Thick-film Resistor Production Example17                                              | '2  |
| Table B.4 Weights, Correction Factors and Proportions of Cumulative Frequencies       |     |
| in Relevant Category for Thick-film Resistor Production Example17                     | '4  |
| Table B.5         Sum of Squares for Each Factor and Category for Thick-film Resistor |     |
| Production Example17                                                                  | '4  |

| Table B.6  | Estimated Frequencies for each Category and each Factor and Total                              |
|------------|------------------------------------------------------------------------------------------------|
|            | Estimated Frequencies for each Category for Thick-film Resistor                                |
|            | Production Example                                                                             |
| Table B.7  | Logit Transformation Values for Estimated Frequencies and Overall                              |
|            | Estimated Frequencies for each Category for Thick-film Resistor                                |
|            | Production Example                                                                             |
| Table B.8  | Weighted Signal to Noise Ratios for Resistors for Thick-film Resistor                          |
|            | Production Example                                                                             |
| Table B.9  | Averages of Weighted Signal-to-noise Ratios for each Level of Factors                          |
|            | for Thick-film Resistor Production Example178                                                  |
| Table B.10 | Calculated Data and Location Scores for Thick-film Resistor Production                         |
|            | Example179                                                                                     |
| Table B.1  | Calculated Data and Dispersion Scores for Thick-film Resistor Production                       |
|            | Example179                                                                                     |
| Table B.12 | 2 Location and Dispersion Pseudo-observations for each set of parameter                        |
|            | settings for Thick-film Resistor Production Example179                                         |
| Table B.13 | 3 Averages of Location and Dispersion Pseudo-observations for each                             |
|            | Actual Factor for Thick-film Resistor Production Example180                                    |
| Table B.14 | 4 Proportions of observation $p_{ij}$ for each category <i>i</i> and set <i>j</i> of parameter |
|            | settings for Thick-film Resistor Production Example181                                         |
| Table B.15 | 5 Location, Dispersion and Mean Squared Deviation Scores for each set of                       |
|            | parameter settings for Thick-film Resistor Production Example                                  |
| Table B.16 | 5 Averages of Mean Square Deviation for each Factor for Thick-film                             |
|            | Resistor Production Example                                                                    |
| Table C.1  | Estimated Probabilities of Observing a Category and Signal to Noise                            |
|            | Ratios based on Ordinal Logistic Regression Models of Simulated                                |
|            | Data                                                                                           |
| Table C.2  | Cumulative Frequencies for the Cumulative Categories for Simulated                             |
|            | Example                                                                                        |
| Table C.3  | Cumulative Rates of Occurrences for the Cumulative Categories for                              |
|            | Simulated Example                                                                              |
| Table C.4  | Weights, Correction Factors and Proportions of Cumulative Frequencies                          |

| in Relevant Category for Simulated Example18                                                                                                                                                                                          | 36                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Table C.5         Sum of Squares for Each Factor and Category in Simulated Example18                                                                                                                                                  | 36                                         |
| Table C.6 Weighted Signal to Noise Ratios for Simulated Example                                                                                                                                                                       | 37                                         |
| Table C.7 Averages of Weighted Signal-to-noise Ratios for each Level of Factors i                                                                                                                                                     | n                                          |
| Simulated Example18                                                                                                                                                                                                                   | 37                                         |
| Table C.8         Calculated Data and Location Scores for Simulated Data         18                                                                                                                                                   | 38                                         |
| Table C.9         Calculated Data and Dispersion Scores for Simulated Example                                                                                                                                                         | 38                                         |
| Table C.10 Location and Dispersion Pseudo-observations for each set of parameter                                                                                                                                                      |                                            |
| settings in Simulated Example18                                                                                                                                                                                                       | 38                                         |
| Table C.11 Averages of Location and Dispersion Pseudo-observations for each                                                                                                                                                           |                                            |
| Actual Factor in Simulated Example18                                                                                                                                                                                                  | 39                                         |
| Table C.12 Proportions of observation $p_{ij}$ for each category <i>i</i> and set <i>j</i> of parameter                                                                                                                               |                                            |
| settings for Simulated Example18                                                                                                                                                                                                      | 39                                         |
| Table C.13 Location, Dispersion and Mean Squared Deviation Scores for each set of                                                                                                                                                     | of                                         |
| parameter settings for Simulated Example                                                                                                                                                                                              | <del>)</del> 0                             |
| Table C.14 Averages of Mean Square Deviation for each Factor for Simulated                                                                                                                                                            |                                            |
| Example                                                                                                                                                                                                                               | <del>)</del> 0                             |
| Table D.1 Estimated Probabilities of Observing a Category and Signal to Noise                                                                                                                                                         |                                            |
| Ratios based on Ordinal Logistic Regression Models for Inkjet Printer                                                                                                                                                                 |                                            |
| Example                                                                                                                                                                                                                               | <b>)</b> 1                                 |
| Table D.2 Cumulative Frequencies for the Cumulative Categories for Inkjet Printer                                                                                                                                                     | r                                          |
| Example                                                                                                                                                                                                                               | €1                                         |
| Table D.3 Cumulative Rates of Occurrences for the Cumulative Categories for                                                                                                                                                           |                                            |
| Inkjet Printer Example19                                                                                                                                                                                                              | <del>)</del> 2                             |
| Table D.4         Weights, Correction Factors and Proportions of Cumulative Frequencies                                                                                                                                               | in                                         |
| Relevant Category for Inkjet Printer Example                                                                                                                                                                                          |                                            |
| Table D.5         Sum of Squares for Each Factor and Category for Inkjet Printer                                                                                                                                                      | 93                                         |
|                                                                                                                                                                                                                                       | 93                                         |
| Example                                                                                                                                                                                                                               | 93<br>93                                   |
| Example                                                                                                                                                                                                                               | 93<br>93                                   |
| Example       19         Table D.6       Estimated Frequencies for each Category and each Factor and Total         Estimated Frequencies for each Category for Inkjet Printer Example19                                               | <ul><li>Э3</li><li>Э3</li><li>Э3</li></ul> |
| Example19Table D.6Estimated Frequencies for each Category and each Factor and Total<br>Estimated Frequencies for each Category for Inkjet Printer Example19Table D.7Logit Transformation Values for Estimated Frequencies and Overall | 93<br>93<br>93                             |

| Table D.8  | Weighted Signal to Noise Ratios for Inkjet Printer Example195                                  |
|------------|------------------------------------------------------------------------------------------------|
| Table D.9  | Averages of Weighted Signal-to-noise Ratios for each Level of Factors in                       |
|            | Inkjet Printer Example195                                                                      |
| Table D.10 | Calculated Data and Location Scores for Inkjet Printer Example196                              |
| Table D.11 | Calculated Data and Dispersion Scores for Inkjet Printer Example196                            |
| Table D.12 | 2 Location and Dispersion Pseudo-observations for Each Set of Parameter                        |
|            | Settings in Inkjet Printer Example196                                                          |
| Table D.13 | 3 Averages of Location and Dispersion Pseudo-observations for each                             |
|            | Actual Factor for Inkjet Printer Example197                                                    |
| Table D.14 | Averages of Location Pseudo-observations for Interactions in Inkjet                            |
|            | Printer Example197                                                                             |
| Table D.15 | 5 Proportions of observation $p_{ij}$ for each category <i>i</i> and set <i>j</i> of parameter |
|            | settings197                                                                                    |
| Table D.16 | 5 Location, Dispersion and Mean Squared Deviation Scores for Each Set                          |
|            | of Parameter Settings in Inkjet Printer Example                                                |
| Table D.17 | 7 Averages of Mean Square Deviation for each Factor in Inkjet Printer                          |
|            | Example                                                                                        |
| Table E.1  | Estimated Probabilities of Observing a Category and Signal to Noise                            |
|            | based on Ordinal Logistic Regression Models for Duplicator                                     |
|            | Example                                                                                        |
| Table E.2  | Cumulative Frequencies for the Cumulative Categories for Duplicator                            |
|            | Example                                                                                        |
| Table E.3  | Cumulative Rates of Occurrences for the Cumulative Categories for                              |
|            | Duplicator Example                                                                             |
| Table E.4  | Weights, Correction Factors and Proportions of Cumulative Frequencies                          |
|            | in Relevant Category for Duplicator Example202                                                 |
| Table E.5  | Sum of Squares for Each Factor and Category for Duplicator                                     |
|            | Example                                                                                        |
| Table E.6  | Estimated Frequencies for each Category and each Factor and Total                              |
|            | Estimated Frequencies for each Category for Duplicator Example203                              |
| Table E.7  | Logit Transformation Values for Estimated Frequencies and Overall                              |
|            | Estimated Frequencies for each Category for Duplicator Example203                              |

| Table E.8    Weighted Signal-to-noise Ratios for Duplicator Example                                              |  |  |
|------------------------------------------------------------------------------------------------------------------|--|--|
| Table E.9 Averages of Weighted Signal-to-noise Ratios for each Level of Factors for                              |  |  |
| Duplicator Example                                                                                               |  |  |
| Table E.10 Calculated Data and Location Scores for Duplicator Example         205                                |  |  |
| Table E.11 Calculated Data and Dispersion Scores for Duplicator Example         205                              |  |  |
| Table E.12 Location and Dispersion Pseudo-observations for Each Set of Parameter                                 |  |  |
| Settings for Duplicator Example                                                                                  |  |  |
| Table E.13 Averages of Location and Dispersion Pseudo-observations for each Actual                               |  |  |
| Factor for Duplicator Example206                                                                                 |  |  |
| Table E.14 Proportions of observation $p_{ij}$ for each category <i>i</i> and set <i>j</i> of parameter settings |  |  |
| for Duplicator Example                                                                                           |  |  |
| Table E.15 Location, Dispersion and Mean Squared Deviation Scores for each set of                                |  |  |
| parameter settings for Duplicator Example207                                                                     |  |  |
| Table E.16 Averages of Mean Square Deviation for each Factor for Duplicator                                      |  |  |
| Example                                                                                                          |  |  |

# LIST OF FIGURES

# FIGURES

| Figure 2.1  | Predicted location pseudo-observations versus predicted dispersion          |
|-------------|-----------------------------------------------------------------------------|
|             | pseudo-observations graph & selected efficient solution for                 |
|             | smaller-the-better type of problem16                                        |
| Figure 2.2  | Predicted location pseudo-observations versus predicted dispersion          |
|             | pseudo-observations graph & selected efficient solution for                 |
|             | larger-the-better type of problem17                                         |
| Figure 3.1  | Ordinal Logistic Regression Results for Categorized Surface Defect          |
|             | Data28                                                                      |
| Figure 3.2  | Goodness-of-fit for the Model for Surface Defect Example29                  |
| Figure 3.3  | Analysis of Variance (ANOVA) Results according to SNR1 for WSNR             |
|             | Method in Surface Defect Example44                                          |
| Figure 3.4  | Analysis of Variance (ANOVA) Results according to SNR <sub>2</sub> for WSNR |
|             | Method in Surface Defect Example44                                          |
| Figure 3.5  | Analysis of Variance (ANOVA) Results according to L Scores for SS           |
|             | Method in Surface Defect Example49                                          |
| Figure 3.6  | Analysis of Variance (ANOVA) Results according to D Scores for SS           |
|             | Method in Surface Defect Example50                                          |
| Figure 3.7  | Predicted Location versus Dispersion Scores for Surface Defect              |
|             | Example                                                                     |
| Figure 3.8  | Analysis of Variance (ANOVA) Results according to MSD Scores for            |
|             | WPSS Method in Surface Defect Example55                                     |
| Figure 3.9  | Ordinal Logistic Regression Results for Thick-film Resistor Production      |
|             | Example61                                                                   |
| Figure 3.10 | Goodness-of-fit for the model for Thick-film Resistor Production            |
|             | Example                                                                     |
| Figure 3.11 | Analysis of Variance (ANOVA) Results according to SNR Scores for            |
|             | WSNR Method in Thick-film Resistor Production Example65                     |

| Figure 3.12 | Analysis of Variance (ANOVA) Results according to L Scores for SS   |
|-------------|---------------------------------------------------------------------|
|             | Method in Thick-film Resistor Production Example                    |
| Figure 3.13 | Analysis of Variance (ANOVA) Results according to D Scores for SS   |
|             | Method in Thick-film Resistor Production Example                    |
| Figure 3.14 | Predicted Location versus Dispersion Scores for Thick-film Resistor |
|             | Production Example                                                  |
| Figure 3.15 | Analysis of Variance (ANOVA) Results according to MSD Scores for    |
|             | WPSS Method in Thick-film Resistor Production Example69             |
| Figure 3.16 | Ordinal Logistic Regression Results for Foam Molding                |
|             | Experiment74                                                        |
| Figure 3.17 | Goodness-of-fit for the model for Data of Foam Molding              |
|             | Experiment75                                                        |
| Figure 3.18 | Ordinal Logistic Regression Results for Simulated Data78            |
| Figure 3.19 | Goodness of fit for the model for Simulated Data79                  |
| Figure 3.20 | Analysis of Variance (ANOVA) Results according to SNRs for          |
|             | WSNR Method in Simulated Example81                                  |
| Figure 3.21 | Analysis of Variance (ANOVA) Results according to L Scores for SS   |
|             | Method in Simulated Example83                                       |
| Figure 3.22 | Analysis of Variance (ANOVA) Results according to D Scores for SS   |
|             | Method in Simulated Example83                                       |
| Figure 3.23 | Ordinal Logistic Regression Results for Inkjet Printer Example90    |
| Figure 3.24 | Goodness-of-fit for the Model for Inkjet Printer Example90          |
| Figure 3.25 | Analysis of Variance (ANOVA) Results according to SNR Scores for    |
|             | WSNR Method in Inkjet Printer Example93                             |
| Figure 3.26 | Analysis of Variance (ANOVA) Results according to L Scores for SS   |
|             | Method in Inkjet Printer Example94                                  |
| Figure 3.27 | Analysis of Variance (ANOVA) Results according to D Scores for SS   |
|             | Method in Inkjet Printer Example95                                  |
| Figure 3.28 | Predicted Location versus Dispersion Scores for Inkjet Printer      |
|             | Example                                                             |
| Figure 3.29 | Residual vs. Fitted Value Plot for MSD in Inkjet Printer Example97  |
| Figure 3.30 | Residual vs. Fitted Value Plot for logMSD in Inkjet Printer         |

|             | Example                                                              | 8 |
|-------------|----------------------------------------------------------------------|---|
| Figure 3.31 | Analysis of Variance (ANOVA) Results according to MSD Scores for     |   |
|             | WPSS Method in Inkjet Printer Example98                              | 8 |
| Figure 3.32 | Interaction Graph or factors A and B99                               | 9 |
| Figure 3.33 | Interaction Graph or factors A and C99                               | 9 |
| Figure 3.34 | Ordinal Logistic Regression Results for Duplicator Example103        | 5 |
| Figure 3.35 | Goodness of fit for the model omitted factor L10                     | 5 |
| Figure 3.36 | Goodness of fit for the model included factor L10                    | 6 |
| Figure 3.37 | Analysis of Variance (ANOVA) Results according to SNR Scores for     |   |
|             | WSNR Method in Duplicator Example109                                 | 9 |
| Figure 3.38 | Analysis of Variance (ANOVA) Results according to L Scores for SS    |   |
|             | Method in Duplicator Example110                                      | 0 |
| Figure 3.39 | Analysis of Variance (ANOVA) Results according to D Scores for SS    |   |
|             | Method in Duplicator Example110                                      | 0 |
| Figure 3.40 | Predicted Location versus Dispersion Scores for Duplicator           |   |
|             | Example                                                              | 1 |
| Figure 3.41 | Analysis of Variance (ANOVA) Results according to MSD Scores         |   |
|             | for WPSS Method in Duplicator Example112                             | 2 |
| Figure A.1  | Normal Probability Plot of Residuals for SNR1 in Surface Defect      |   |
|             | Example12:                                                           | 5 |
| Figure A.2  | Residual vs. Fitted Value Plot for SNR1 in Surface Defect Example 12 | 6 |
| Figure A.3  | Normal Probability Plot of Residuals for SNR2 in Surface Defect      |   |
|             | Example120                                                           | 6 |
| Figure A.4  | Residual vs. Fitted Value Plot for SNR2 in Surface Defect Example 12 | 7 |

### **CHAPTER 1**

### **INTRODUCTION**

In industry, experiments are conducted in order to analyze and improve product quality and process performance by considering economical requirements. If quality responses (characteristics) are continuous variables, measuring and analyzing such characteristics are relatively easier than that of categorical variables. However, in many industries quality characteristics are measured as ordered categorical responses, because collecting such data is easier and cost-effective as mentioned by Wu and Yeh (2006). Due to these facts, it is important to find out ways to analyze ordered categorical data effectively. In this study, some design optimization methods that can be applied on naturally ordered categorical response data are compared.

While optimizing the design, methods deal with two types of factors that affect the quality characteristics: controllable and uncontrollable (noise) factors. All robust design methods focus on location effects of the controllable factors which help adjusting the mean of the quality responses to the target value. In addition to the location effects, methods also focus on dispersion effects of the controllable factors which help minimizing the variance of the quality characteristics. Considering these two effects, optimal parameter settings are detected, which lead to the robustness of the quality characteristics. In other words, reaching these goals minimizes the effects of uncontrollable factors on the quality of products and processes.

In order to analyze ordered categorical response data for the purpose of design optimization, several different methods are proposed as presented in Chapter 2. In this study, five such methods are selected for comparison. These optimization methods are Logistic Regression Model Optimization (LRMO), Accumulation Analysis (AA), Weighted Signal-to-noise Ratio (WSNR), Scoring Scheme (SS), and Weighted Probability Scoring Scheme (WPSS).

The selected methods are applied on five different example problems that are chosen from the following types; smaller-the-better and larger-the better. Three of them are of smallerthe-better type and two of them are of larger-the-better type, since, it is aimed to compare performance of these methods for different types of problems. These examples, called as surface defect, thick-film resistor, simulation, inkjet printer and duplicator examples are explained in Chapter 3.

LRMO differs from the other methods by also providing empirical models of the response location and dispersion in order to evaluate the performance of a given parameter setting.

LRMO also estimates the probability of observing each response category and signal-tonoise ratio for the given parameter settings to determine the performance. For the purpose of comparing the methods to each other, the optimal settings estimated by five different methods are evaluated using the estimated probabilities of observing target response category and estimated signal-to-noise ratios at optimal parameter settings found. In addition to the use of LR's prediction models, ANOVA models of cumulative percentage of categories is used for the comparison of five methods. In this latter model, predicted percentages of categories for the given parameter settings, calculated from the raw collected data, are used as the performance measure. Moreover, SNRs at optimal parameter settings, estimated by ANOVA model of continuous version of data (if applicable) are used for the comparison of five methods.

All these three performance criteria are used to compare the methods and the methods that have the best performance steadily are determined in the study. All the results derived from the analysis are given in Chapter 3. According to these results, methods are discussed, and the advantages and weaknesses of methods are mentioned in Chapter 4. Then, in the light of all these studies and results, some conclusions are presented and some further studies are proposed in Chapter 5.

### **CHAPTER 2**

#### LITERATURE SURVEY

As ordered categorical response data may need to be analyzed more frequently than continuous response data, some robust design methods are developed suitable for such data.

Taguchi (1974) is the pioneer in introducing a robust design method for ordered categorical response data, which is the AA method. This method uses cumulative frequencies of each category and each parameter setting to analyze data, determine optimal levels and apply analysis of variance (ANOVA). In addition to the location effects of the factors, Taguchi proposed to focus on dispersion effects of the predictor variables as well. It is tried to determine factors that minimize variance of the response. In AA method, it is claimed that both location and dispersion effects of factors are focused on and aims of making the mean close to target value and minimizing variance are tried to be achieved simultaneously.

However, Taguchi's accumulation analysis method is criticized by Nair (1986) claiming that this method does not allow analysis of location and dispersion effects separately for a given set of parameter settings (or controllable factor levels). Moreover, Nair (1986), Box and Jones (1986) criticize that accumulation analysis method is unnecessarily complicated. Furthermore, Hamada and Wu (1989) show that spurious effects can be determined. In other words, significance of factors can be wrongly detected. For instance, among all factors introduced, factor A may be detected as significant factor on response data even though factor A has no effect on response data actually. In addition, in their study it is concluded that accumulation analysis may reverse the order of factor E as the second most important factor even though that factor is the least important one.

Nair (1986) proposes the SS method instead of AA due to his criticism that accumulation analysis method does not allow analysis of location and dispersion effects separately for a given set of parameter settings. Nair (1986) proposes two types of scores for location and dispersion effects in order to identify these effects separately. However, Jeng and Guo (1996), and Wu and Yeh (2006) criticize scoring scheme method about having complicated computation. Furthermore, this method does not propose a way to compromise between optimal levels found depending on location and dispersion effects of predictor variables.

Jeng and Guo (1996) develop the WPSS method in order to recover from the complexity of the SS method. In this method, two types of scores for location and dispersion effects are introduced in order to identify these effects separately similar to the SS method. This method determines weights of categories depending on the importance of categories as distinct from scoring scheme method. Moreover, in order to avoid compromising between optimal levels found depending on location and dispersion effects, mean square deviation (MSD) is calculated using location and dispersion scores.

Chipman and Hamada (1996) develop Bayesian Analysis method in order to avoid difficulties like inaccurate results and infinite factor effect predictions in modeling. In this method, Gibbs sampler is used and complex computation applications are done to fit the model. This method is strong in analyzing location and dispersion effects of factors.

Wu and Yeh (2006) introduce a WSNR method claiming that it was presented by Taguchi to make the AA simpler. The original source of this method is not given by Wu and Yeh (2006). In this method, weights are given to categories proportional to the quality loss. Then, by using these weights and frequencies of occurrence of categories signal-to-noise ratios are calculated, which are used to find the optimal levels of factors.

Asiabar and Ghomi (2006) develop minimization of expected loss (MEL) method which is determined as being more accurate than the AA method. In this method, probability distribution function of data in categories is determined. Then, proportional to the quality loss, coefficients of categories are defined. By using these probabilities and coefficients, expected loss for levels of factors are calculated and used to find the optimal levels of the factors.

Köksal et al. (2006) develop a design optimization method based on logistic regression for a categorical response. In this method, an ordinal logistic regression model is fit to response data. Then, by using this model probability of observing each category, mean and variance of response data for each set of parameter settings are estimated. Then, by using estimated mean and variance, signal-to-noise ratios for each set of parameter settings are calculated. Both signal-to-noise ratios and the estimated probability of target category are used to find the optimal levels of controllable factors. One of the advantages of this method is that this method can allow analysis of location and dispersion effects separately for a given set of parameter settings. Another advantage is that without compromising it can find the optimal levels by the help of signal-to-noise ratios and estimated probabilities. The final advantage is that this method can use response surface optimization to find better parameter settings than the methods choosing the best design from only possible combinations of tested parameter levels especially if design parameters are defined on a continuous scale.

#### 2.1. BACKGROUND ON METHODS

Among all these methods given in literature survey, Logistic Regression Model Optimization, Accumulation Analysis, Weighted Signal-to-noise Ratio, Scoring Scheme, and Weighted Probability Scoring Scheme methods are selected to compare in this study.

### 2.1.1. Logistic Regression Model Optimization

The method is developed by Köksal et al. (2006) and it is based on logistic regression models of the categorical response, mean and variance. A model is fit for the probability of observing each category using ordinal logistic regression. It allows the analysis of location and dispersion effects separately for a given set of parameter settings by estimating expected response category and variance of the categories. Using this method, it is possible to find the parameter design solution following an approach similar to Taguchi's signal-to-noise ratio approach as well as a response surface optimization approach. This method's performance depends on adequacy of the fitted models and the optimization method used. It is applied in the following steps.

# Step 1. By using ordinal logistic regression, fitting a model for the probability of observing a category

Since the response data are ordered categorical, ordinal logistic regression is used to fit a model to the data. In this method, full enumeration approach can be used. In other words, using logistic regression models, estimates of probabilities of observing the response categories at each of the parameter settings generated by a full factorial design are obtained. In this estimation, equations (2.1) and (2.2) are used. Then, optimal parameter settings among all possible parameter settings generated are found.

$$\hat{P}(Y_i \le j) = \hat{\pi} = \frac{e^{(\hat{\beta}_j + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki})}}{1 + e^{(\hat{\beta}_j + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki})}}, \qquad i=1,\dots,m, \ j=1,\dots,J-1$$
(2.1)

$$\hat{P}(Y_i = j) = \hat{P}(Y_i \le j) - \hat{P}(Y_i \le j - 1), \qquad i = 1, ..., m, \ j = 1, ..., J$$
(2.2)

where,

*Y<sub>i</sub>*: Quality response at a given set *i* of parameter settings (or controllable factor levels)

 $x_{1i}, x_{2i}, \ldots, x_{ki}, i=1, \ldots, m.$ 

*j*: Response category , j=1,...,J

 $\hat{P}(Y_i \leq j)$ : Estimator for probability of observing the quality response at category *j* or below for set *i* of parameter settings.

 $\hat{\beta}_i$ : Intercept for the probability model for category *j*.

 $\hat{\beta}_l$ : Coefficient estimate for the probability models of all categories for factor  $x_l$ , l=1,2,...,k.

#### Step 2. Estimating expected category and variance of the category

For each set of parameter settings generated in the full factorial design, expected category and variance of the category are estimated by using equations (2.3) and (2.4), respectively. Expected category shows the location effect of factors whereas variance of the category represents the dispersion effect of these factors. By this way, this method can observe location and dispersion effects of factors, separately.

$$\hat{E}(Y_i) = \sum_{j=1}^J j \hat{P}(Y_i = j),$$
  $i=1,...,m$  (2.3)

$$\hat{V}(Y_i) = \hat{E}[Y_i^2] - \left(\hat{E}[Y_i]\right)^2 = \left[\sum_{j=1}^J j^2 \hat{P}(Y_i = j)\right] - \left(\hat{E}[Y_i]\right)^2, \quad i = 1, ..., m$$
(2.4)

 $\hat{E}(Y_i)$  = Estimator for the expected category at set *i* of parameter settings.

 $\hat{V}(Y_i)$  = Estimator for the variance of the category at set *i* of parameter settings.

# Step 3. Find the optimal factor levels for target category and minimum deviation from the target category

By using one of the following alternate ways, the optimal levels for the factors can be determined.

# Way 1. Calculating signal-to-noise ratios (SNRs) for each set of parameter settings generated in full factorial design and finding the set of parameter settings based on the SNR values

As it is mentioned before, the robust design problem can be one of the following two types: smaller-the-better and larger-the-better. If smaller-the-better or larger-the-better type of a response is considered, then signal-to-noise ratio for each set i of parameter settings can be calculated by using equation (2.5) or (2.6), respectively.

$$SNR_i = -10 \times \log(\left(\hat{E}[Y_i]\right)^2 + \hat{V}(Y_i))$$
(2.5)

$$SNR_{i} = -10 \times \log\left[\left(\frac{1}{(\hat{E}[Y_{i}])^{2}}\right) \times \left(1 + 3 \times \left(\frac{\hat{V}(Y_{i})}{(\hat{E}[Y_{i}])^{2}}\right)\right)\right]$$
(2.6)

For both types of the robust design problem, the set of parameter settings that has the maximum SNR value among all parameter settings in the full factorial design gives the optimal solution.

# Way 2. Finding the set of parameter settings that has the maximum estimated probability for target category

For two different types of problems, another way to find out the optimal levels is to maximize the probability of the target category. Therefore, the probabilities of observing each response category for each set of parameter settings generated in full factorial design are estimated by using equations (2.1) and (2.2). After this estimation, the set of parameter

settings that has the maximum probability of target category is selected as the optimal solution.

Estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category and estimated signal-to-noise ratio are also used in this study as performance measures for the optimal solutions found by the methods.

### Way 3. Finding the optimal solution using a response surface optimization approach

This method can find a better solution in the feasible space of design parameters by using a response surface optimization method. In this method, problem is formulated as a nonlinear multi-objective optimization problem. In other words, optimization model is formulated in order to make the mean category close to the target and minimize the variance of the response. This model can be formulated according to the following two types of the problem; smaller-the-better and larger-the-better. The design parameters that achieve estimated desired mean and minimum variance give the optimal solution.

Optimization Model for Smaller-the-better Type of Problem

$$\begin{array}{l} \operatorname{Min} \hat{E}(Y) = f_1(x_1, x_2, \ldots, x_k) \\ \operatorname{Min} \hat{V}(Y) = f_2(x_1, x_2, \ldots, x_k) \\ s.t. \\ \overrightarrow{x} = (x_1, x_2, \ldots, x_k) \in D \qquad \hat{E}(Y) \geq 0 \\ \hat{V}(Y) \geq 0 \\ \text{where,} \\ x_i: \text{ Setting of parameter (control factor)} \quad i, i=1,2, \ldots, k \text{ settings} \\ f_1 \& f_2: \operatorname{Empirical model for} \hat{E}(Y) \text{ and } \hat{V}(Y), \text{ respectively.} \\ D: \text{ Design space for parameters } 1,2, \ldots, k \\ \underbrace{\text{Optimization Model for Larger-the-better Type of Problem} \\ \operatorname{Max} \hat{E}(Y) = f_1(x_1, x_2, \ldots, x_k) \\ \operatorname{Min} \hat{V}(Y) = f_2(x_1, x_2, \ldots, x_k) \\ s.t. \\ \overrightarrow{x} = (x_1, x_2, \ldots, x_k) \in D \end{array}$$

 $\widehat{E}(Y) \ge 0$ 

 $\hat{V}(Y) \geq 0$ 

In this study, all the other methods used in the comparison search for the best solution among all possible combinations of given control factor levels, even though a factor (or design parameter) is defined on a continuous scale. In order to compare the methods, this third approach is not utilized, in spite of the fact that it would be more advantageous for especially continuous design parameters.

### 2.1.2. Accumulation Analysis Method

Accumulation analysis method is developed by Taguchi (as cited in Box & Jones, 1986) and it is based on analyzing cumulative frequencies of categories. It is also explained by Logothetis and Wynn (1989). Generally it is not necessary to have dependency between the categories for a given data. This method tries to detect the factors affecting the outputs of the experiment by creating dependency between these categories. By accumulating frequencies of category occurrences for the given parameter settings, it is able to prepare a data structure elements of which are dependent. Based on this principle, AA method consists of five steps.

# Step 1. Creating cumulative frequency table by summing the frequencies of occurrence.

In this step, the response data is arranged by adding frequencies of occurrence for one category to the frequencies for the next category. These sums which are cumulative frequencies are created for each set of parameter settings.

# Step 2. Creating frequency and cumulative frequency table for each level

In this step, frequencies and cumulative frequencies of each level for each factor are individually summed. By this way, aggregate frequencies and cumulative of levels for each factor are calculated. If interactions of factors are considered, frequencies and cumulative frequencies are individually summed for each level combinations of interacting factors. For instance, let interaction of factors A and B be taken into consideration and each factor has two levels. Then, frequencies and cumulative frequencies are individually summed for  $A_1B_1$ ,  $A_1B_2$ ,  $A_2B_1$  and  $A_2B_2$ .

### Step 3. Applying analysis of variance (ANOVA) for all factors.

In order to determine significance of factors, analysis of variance calculations are implemented by using these aggregate cumulative frequencies as given in the procedure below. In these calculations, cumulative frequencies of last category are not used, due to their being the aggregate of whole frequencies.

First of all, weights of each category are calculated by using equation (2.7) where P(i) is the proportion of cumulative frequency in category *i*.

$$W_{(i)} = \frac{1}{P(i)(1 - P(i))}$$
(2.7)

Then the correction factor  $CF_i$  of each category *i* and overall correction factor CF are calculated by using equations (2.8) and (2.9), respectively.

$$CF_{i} = \frac{Total \ Cumulative \ Frequency \ of \ Category \ i}{Total \ Cumulative \ Frequency}$$
(2.8)

$$CF = \sum_{i=1}^{I} CF_i \times W_i \tag{2.9}$$

Sum of squares  $S_{ij}$  for each factor *i* and category *j* and sum of squares  $S_i$  for each factor *i* are calculated by using equations (2.10) and (2.11), respectively. In addition, degree of freedom  $df_i$  for each factor *i* is calculated as shown in equation (2.12).

$$S_{ij} = \sum_{k=1}^{K} \frac{CFR_{ijk}^2}{CFR_{ijk}} - \frac{\left(\sum_{k=1}^{K} CFR_{ijk}\right)^2}{\left(\sum_{k=1}^{K} CFR_{ijk}\right)^2}$$
(2.10)

where,

 $CFR_{ijk}$  = Cumulative frequency for factor *i*, category *j* and level *k* 

 $CFR_{iJk}$  = Cumulative frequency for factor *i*, category *J* (the last category) and level *k* 

$$S_i = \sum_{j=1}^J S_{ij} \times W_j \tag{2.11}$$

$$df_i = (Number of categories - 1) \times (Number of Levels - 1)$$
(2.12)

If interactions of factors are considered, sum of squares  $S_{i\times t}$  for interaction of factors *i* and *t* are calculated by using equations (2.13). In addition, degree of freedom  $df_{i\times t}$  for interaction of factors *i* and *t* is calculated as shown in equation (2.14).

$$S_{i\times t} = \left(\sum_{j=1}^{J} \left[\sum_{k=1,l=1}^{K,L} \frac{CFR_{i\times tjk\times l}}{CFR_{i\times tjk\times l}}\right] \times W_j\right) - CF - S_i - S_t$$
(2.13)

where,

 $CFR_{i \times tjk \times l}$  = Cumulative frequency for factor *i* and level *k* of factor *i*, and factor *t* and level *l* of factor *t* in category *j*.

 $CFR_{i \times tJk \times l}$  = Cumulative frequency for factor *i* and level *k* of factor *i*, and factor *t* and level *l* of factor *t* in category *J* (the last category).

$$df_{i\times t} = (Number of categories - 1) \times (Number of Levels for factor i - 1) \times (Number of Levels for factor t - 1)$$
(2.14)

Total sum of squares *TSS* is calculated by using equation (2.15). Furthermore, total degree of freedom  $df_T$  is calculated as shown in equation (2.16).

$$TSS = (Number of categories - 1) \times (Number of experiments) \times (Number of repetitions)$$
(2.15)

$$df_T = (Number of categories - 1) \times ((Number of experiments \times Number of repetitions) - 1)$$
(2.16)

Sum of squares  $S_e$  and degrees of freedom  $df_e$  for error are calculated by using equations (2.17) and (2.18).

$$S_e = TSS - \sum_{i=1}^{I} S_i \tag{2.17}$$

$$df_e = df_T - \sum_{i=1}^{I} df_i$$
 (2.18)

Mean sum of squares  $MS_i$  for each factor *i* is calculated as given in equation (2.19). Moreover, critical F value  $F_i$  for each factor *i* is calculated by using equation (2.20).

$$MS_i = \frac{S_i}{df_i} \tag{2.19}$$

$$F_i = \frac{MS_i}{MS_e} \tag{2.20}$$

If F value of a factor is greater than  $F^{df_{i}}_{dfe(0.10)}$ , then the relevant factor has a significant effect on the quality characteristic.

#### Step 4. Determining the optimal factor levels

After significant factors are detected by the help of ANOVA, for these significant factors the set of parameter settings that has the maximum frequencies among all levels of significant factors in target category give the optimum conditions for each factor. For interactions of factors, which are detected as significant, set of parameter settings that has the maximum frequencies among all level combinations of interacting factors in target category give the optimum conditions for each factors.

### Step 5. Estimating long-run performance of optimal levels of factors

In addition to LRMO's prediction model, another prediction model is used for comparison of five methods. This model, calculations of which are given in this step, is used also by the AA method in order to estimate the long-run performance.

Estimated frequency  $\widehat{FR}_{ij}$  for each category *j* and each factor *i* is calculated by using equation (2.21).

$$\widehat{FR}_{ij} = \frac{CFR_{ij}}{CFR_{ij}}$$
 for optimal levels (2.21)

*J* : Number of categories

Overall estimated frequency  $\hat{T}_i$  for each category *j* is calculated by using equation (2.22).

$$\hat{T}_j = \frac{\sum_{k=1}^{K} CFR_{ij}}{\sum_{k=1}^{K} CFR_{ij}} \qquad \text{for optimal levels}$$
(2.22)

J: Number of categories

By using logit (omega) transformation (equation (2.23)) estimated frequency and overall estimated frequency for each category are transformed into decibels.

$$LT = -10\log_{10}\left\{\frac{1}{p} - 1\right\}$$
(2.23)

where

p: Estimated cumulative frequency for each category j and each factor i or overall estimated frequency for each category j

Then, by using equation (2.24) long –run performance (model prediction for category *j*)  $\hat{\mu}_j$  is estimated for each category *j* in decibels.  $\hat{\mu}_j$  is estimated cumulative percentage for category *j*. Then, again by using logit (omega) transformation, these estimations are transformed into cumulative percentages  $\widehat{CP}_j$  for each category *j*. Then, cumulative estimated percentage  $\widehat{CP}_j$  value is converted to estimated percentage  $\hat{P}_j$  for each category *j* by using equation (2.25).

$$\hat{\mu}_{j} = \hat{T}_{j} + \sum_{i=1}^{I} (\widehat{FR}_{ij} - \hat{T}_{j}) + \sum_{i=1,k=1}^{I,K} \left[ (\widehat{FR}_{ikj} - \hat{T}_{j}) - (\widehat{FR}_{ij} - \hat{T}_{j}) - (\widehat{FR}_{kj} - \hat{T}_{j}) \right]$$
(2.24)

where

 $\widehat{FR}_{ijk}$ : Estimated frequency for each category j and each interaction of factors i and k

$$\widehat{P}_j = \widehat{CP}_j - \widehat{CP}_{j-1} \tag{2.25}$$

J= Number of significant factors

If  $\widehat{CP}_j \leq \widehat{CP}_{j-1}$ , then  $\widehat{CP}_j = \widehat{CP}_{j-1}$ . Therefore, according to equation (2.25),  $\widehat{P}_j = \widehat{CP}_{j-1} - \widehat{CP}_{j-1} = 0$ .

The logit (omega) transformation is used in this method because values of estimated cumulative frequencies are between 0 and 1, which does not satisfy normality assumption of ANOVA. By using logit transformation range of percentages is widen from [0, 1] to  $[-\infty, \infty]$ 

Estimated percentage  $\hat{P}_t^{ANOVA(CP)}$  of target category is chosen as the performance criterion for optimal solutions.

#### 2.1.3. Weighted Signal-to-noise Ratio Method

Weighted signal-to-noise ratio method is also developed by Taguchi. Then, Wu and Yeh (2006) introduced this method and compared it with four other robust parameter design methods. WSNR method consists of five steps. Weights of categories are added to the traditional SNR method in order to represent quality loss in each category. Then, this method tries to determine the optimal parameter settings that can reach the category with minimum quality loss.

### Step 1. Giving each category a weight

In this step, weights are given to categories proportional to the quality loss. In other words, the targeted category has the smallest weight due to having the smallest quality loss, whereas the least desired category has the largest weight. If equal weights are assigned to the categories, this method cannot be used properly. However, there is no guidance given for determining scale of weights and spacing between weights.

### Step 2. Calculating signal-to-noise ratios for each set of parameter settings

After weights are given to categories, signal to noise ratios are calculated for each set of parameter settings by using these weights and frequencies of the categories. The signal to noise ratio formula is given in equation (2.26).

(2.26)

$$\eta_i = -10 \times \log\left(\frac{1}{n}\sum_{j=1}^J w_j^2 f_{ij}\right)$$

where,

 $\eta_i$ =Signal-to-noise ratio for set *i* of parameter settings.

 $w_i$ =Weight for category *j*.

 $f_{ij}$ =Frequency for category *j* at set *i* of parameter settings.

n=Total number of experiments conducted for each set of parameter settings.

### Step 3. Applying analysis of variance (ANOVA) for all factors.

In this method, originally, ANOVA is not applied in order to determine significant factors and interactions of factors. Therefore, optimal parameter settings for all factors are found by ignoring significance of factors. Moreover, no way is introduced for determining optimal parameter settings for interacting factors. However, in this study ANOVA is applied on weighted signal-to-noise ratios in order to detect the significant factors and their optimal levels.

# Step 4. Calculating average signal-to-noise ratios for each level among all parameter settings

In order to see how signal to noise ratio behaves for each level of significant factors, the averages of signal to noise ratios for each significant factor are calculated for each level. In addition, for significant interactions of factors, the averages of signal to noise ratios for each level combination of interacting factors are calculated. By this way, signal to noise ratio data which represent each level for each significant factor and each level combination for interacting factors, can be obtained.
#### Step 5. Determining the optimal factor levels

The level for each significant factor and the level combination for interacting factors that have the maximum signal noise is the optimal level for that factor.

Moreover, for this method, no way is introduced for estimating performance of the optimal solution. Even though ANOVA prediction model could be used here, too, it has not been utilized to compare the model performances.

#### 2.1.4. Scoring Scheme Method

Scoring scheme method is developed by Nair (1986). This method consists of eight steps. The major steps of this method are calculating two sets of scores that represent location and dispersion effects of factors. These two scores allow analysis of location and dispersion effects separately for a given set of parameter settings. This method can find out optimal parameter settings that shift mean close to the target by the help of location effects whereas it can determine the optimal solution that minimize variance of the category.

## Step 1. Calculating the midrank for each category

The midrank  $\tau_p$  for each category p is calculated by using equation (2.27).

$$\tau_p = \sum_{i=1}^{p-1} q_i + q_p/2 \tag{2.27}$$

where

 $q_i$ =Overall proportion of observations that is involved in category *i*.

#### Step 2. Calculating the set of location scores

In order to observe location effects of factors, first of all location score  $l_p$  for each category p is calculated by using equations (2.28) and (2.29).

$$l_p = \frac{\tilde{\tau}_p}{\left[\sum_{i=1}^p q_i \tilde{\tau}_i^2\right]^{1/2}}$$
(2.28)

where,

$$\tilde{\tau}_p = \tau_p - \sum_{i=1}^{P} q_i \tau_i = \tau_p - 0.5$$
(2.29)

#### Step 3. Calculating location pseudo-observations

By using the set of location scores  $l_p$  calculated and frequencies of occurrence  $f_{ip}$  for each category p, location pseudo-observation  $L_i$  for the  $i^{th}$  set of parameter settings is calculated as seen in equation (2.30).

$$L_i = \sum_{p=1}^{P} f_{ip} l_p, \qquad i=1,...,P$$
(2.30)

#### Step 4. Calculating the set of dispersion scores

In order to observe dispersion effect of factors, first of all dispersion score  $d_p$  for each category p is calculated by using equations (2.31) and (2.32).

$$d_p = \frac{e_p}{\left[\sum_{i=1}^{p} q_i e_i^2\right]^{1/2}}$$
(2.31)

where,

$$e_p = l_p (l_p - \sum_{i=1}^p q_i {l_i}^3) - 1$$
(2.32)

## Step 5. Calculating dispersion pseudo-observations

By using the set of dispersion scores calculated and frequencies for each category, dispersion pseudo-observation  $D_i$  for the  $i^{th}$  set of parameter settings is calculated as seen in equation (2.33).

$$D_i = \sum_{p=1}^{P} f_{ip} d_p, \ i=1,...,P$$
(2.33)

## Step 6. Applying analysis of variance (ANOVA) for all factors.

In this method, originally ANOVA is not applied in order to determine significant factors and interactions of factors. Therefore, optimal parameter settings for all factors are found by ignoring significance of factors. Moreover, no way is introduced for determining optimal parameter settings for interacting factors. However, in this study ANOVA is applied on both location and dispersion pseudo-observations in order to detect the significant factors on location and dispersion effects separately.

# Step 7. Calculating average location and dispersion pseudo-observations of each level for each factor among all location and dispersion pseudo-observations

In order to see how location and dispersion pseudo-observations of each level behave for each significant factor, the averages of location and dispersion pseudo-observations for each factor are calculated according to each level. Similarly, for each significant interaction of factors, the averages of location and dispersion pseudo-observations for each level combination of interacting factors are calculated. By this way, location and dispersion pseudo-observation data which represent each level of factors and level combination of interacting factors, can be obtained.

#### **Step 8. Determining the optimal parameter settings**

If the problem is smaller-the-better type, then the level of a factor that has both the minimum location and dispersion pseudo-observations is the optimal level for that factor. On the contrary, if the problem is larger-the-better type, then the level of a factor that has the maximum location and minimum dispersion pseudo-observations is the optimal level for that factor.

If an interaction of factors have significant effects on location or dispersion pseudoobservations, in this study prediction equation for averages of location and dispersion pseudo-observations are used to find optimal parameter settings by using equations (2.34) and (2.35).

$$\hat{L} = \bar{L} + \sum_{k=1}^{K} (\bar{L}_{k} - \bar{L}) + \sum_{i=1,j=1}^{I,J} \left[ (\bar{L}_{ij} - \bar{L}) - (\bar{L}_{i} - \bar{L}) - (\bar{L}_{j} - \bar{L}) \right]$$
(2.34)

$$\widehat{D} = \overline{D} + \sum_{k=1}^{K} (\overline{D_k} - \overline{D}) + \sum_{i=1,j=1}^{I,j} \left[ \left( \overline{D_{ij}} - \overline{D} \right) - \left( \overline{D_i} - \overline{D} \right) - \left( \overline{D_j} - \overline{D} \right) \right]$$
(2.35)

where

 $\hat{L}$ : Predicted location pseudo-observation

 $\widehat{D}$ : Predicted dispersion pseudo-observation

 $\overline{L}$ : Average of all location pseudo-observations

 $\overline{L_k}$ : Average of location pseudo-observations for factor k at optimal level

 $\overline{L_{ij}}$ : Average of location pseudo-observations for interaction of factors *i* and *j* at these factors' optimal levels

 $\overline{D}$ : Average of all dispersion pseudo-observations

 $\overline{D_k}$ : Average of dispersion pseudo-observations for factor k at optimal level

 $\overline{D_{ij}}$ : Average of dispersion pseudo-observations for interaction of factors *i* and *j* at these factors' optimal levels

By using full enumeration approach, predicted location and dispersion pseudoobservations are calculated for all possible level combinations of interacting factors. Then, if the problem is smaller-the-better type, the parameter settings of interacting factors that lead to the minimum predicted location and dispersion pseudo-observations are selected. If the problem is larger-the-better type, the parameter settings of interacting factors that lead to the maximum predicted location and the minimum predicted dispersion pseudoobservations are selected.

If a factor has significant effect on both location and dispersion pseudo-observations and both of these observations give the same optimal parameter setting for that factor, then these setting is the exact solution. However, if the optimal parameter setting of a factor according to location and dispersion pseudo-observations differ, then it is required to compromise between these two different levels of the factor. No method is suggested for compromising between two such different levels and estimating the performance of the optimal solution. In this study, a way is introduced for compromising between two different levels as explained below. Moreover, if an interaction of factors has significant effect on both location and dispersion pseudo-observations and the optimal parameter setting of that interaction according to predicted location and dispersion pseudoobservations differ, then the same way is used in this study.

# Way of reaching a compromise between two different optimal levels based on predicted location and dispersion pseudo-observations

If a factor or an interaction has significant effect on both location and dispersion pseudoobservations and the optimal parameter settings for that factor or interaction according to location and dispersion pseudo-observations differ, predicted location and dispersion pseudo-observations for all possible parameter settings of that factor or interaction are calculated. Then, predicted location pseudo-observations versus predicted dispersion pseudo-observations graph is drawn. For smaller-the-better type of problem, the elbow point that decrease both predicted location and dispersion pseudo-observations give the selected efficient solution as shown on Figure 2.1. For larger-the-better type of problem, the elbow point that increase predicted location and decrease predicted dispersion pseudoobservations give the selected efficient solution as shown on Figure 2.2.



Figure 2.1. Predicted location pseudo-observations versus predicted dispersion pseudoobservations graph & selected efficient solution for smaller-the-better type of problem



Figure 2.2. Predicted location pseudo-observations versus predicted dispersion pseudoobservations graph & selected efficient solution for larger-the-better type of problem

### 2.1.5. Weighted Probability Scoring Scheme Method

Weighted probability-scoring scheme method is recommended by Jeng and Guo (1996). Similar to SS method, this method calculates two sets of scores that represent location and dispersion effects of factors. These two scores allow analysis of location and dispersion effects separately for a given set of parameter settings. In addition to Nair's scoring scheme method, this method merges two scores for location and dispersion effects in one score, mean square deviation (MSD). By this way, it introduces a way to compromise between optimal levels detected depending on location and dispersion effects of factors. This method has seven steps which are explained below.

### Step 1. Determining the weights of the categories

This method gives the target category the largest weight, thus location effect behaves as larger-the-better type. Therefore, the weights decrease as the categories move away from the target category.

# Step 2. Calculating location scores for each set of parameter settings

In this step, location score  $L_j$  for each set j of parameter settings are calculated as seen in equation (2.36) by using weights  $w_i$  given and proportion  $p_{ij}$  of observation j for each category i.

$$L_{j} = \sum_{i=1}^{l} w_{i} p_{ij} \tag{2.36}$$

#### Step 3. Calculating dispersion scores for each set of parameter settings

Before calculating dispersion scores, a target value set is determined. In this set, a value is given to each category directly proportional to total number of desired observations. Hence, total number of observations at each set of parameter settings is given to target category whereas zero value is given to other categories. For example, a smaller-the-better type of problem has five response categories. Therefore, weight set of categories should be defined as  $\{5, 4, 3, 2, 1\}$  and desired proportions of observations should be as  $\{1, 0, 0, 0, 0\}$ . Hence, the target value set should be defined as  $\{5, 0, 0, 0, 0\}$  by multiplying weights given and desired proportions of observations. Then, dispersion scores  $D_j$  are calculated as seen in equation (2.37) by using weights  $w_i$ , proportion  $p_i$  of observation and target value for each category *i*.

$$D_{i}^{2} = \sum_{i=1}^{I} [w_{i}p_{i} - (Target \, Value)_{i}]^{2}$$
(2.37)

## Step 4. Calculating Mean Square Deviation (MSD) Scores

Instead of compromising between optimal levels depending on location and dispersion scores, in this method mean square deviation scores  $MSD_j$  are calculated by using location and dispersion scores as seen in equation (2.38) in order to determine the selected efficient solution.

$$E(MSD_j) = E\left[\frac{1}{n}\sum_{i=1}^{I}\frac{1}{y_i^2}\right] \cong \frac{1}{\mu^2}\left(1 + \frac{3\sigma^2}{\mu^2}\right) \cong \frac{1}{L_j^2}\left(1 + \frac{3D_j^2}{L_j^2}\right)$$
(2.38)

## Step 5. Applying analysis of variance (ANOVA) for all factors.

In this method, originally ANOVA is not applied in order to determine significant factors and interactions of factors. Therefore, optimal parameter settings for all factors are found by ignoring significance of factors. Moreover, no way is introduced for determining optimal parameter settings for interacting factors. However, in this study ANOVA is applied on mean square deviation scores in order to detect the significant factors.

# Step 6. Calculating average of mean square deviation scores for each level of factors among all mean square deviation scores

In order to see how mean square deviation scores of each level behaves for each significant factor, the averages of them for each factor are calculated according to each level. In addition, for significant interactions of factors, the averages of mean square deviation scores for each level combination of interacting factors are calculated. By this way, mean square deviation scores which represent each level of significant factor and each level combination for interacting factors, can be obtained.

#### **Step 7. Determining the optimal factor levels**

The levels for each significant factor and the level combination for interacting factors that have the minimum mean square deviation scores are the optimal levels for that factor.

For this method, no way is introduced about estimating performance of the optimal solution. Even though ANOVA prediction model could be used here, too, it has not been utilized to compare the model performances.

## CHAPTER 3

# APPLICATION AND COMPARISON OF METHODS ON EXAMPLE PROBLEMS

Comparisons of methods are illustrated on five different examples as explained in the following subsections. Three of these examples are chosen to be of smaller-the-better type and two of them larger-the-better type. In addition, while choosing examples, problems are preferred in which sets of parameter settings of 8, 16 or 18 experimental runs are designed and analyzed. Moreover, while choosing examples, problems are preferred in which different numbers of factors are considered. Furthermore, in these problems factors have two or three levels. These choices are made to be able to see how the methods behave on data that have different properties.

## **3.1. SURFACE DEFECT EXAMPLE**

Polysilicon deposition process is analyzed by using Taguchi's robust design method by Phadke (1989). In this experiment, number of surface defects, which is the quality characteristic, is detected on the wafers after the polysilicon deposition process is applied. In this case, six controllable factors are considered and their levels are tabulated in Table 3.1.

|   | FACTORS                     |                             | LEVELS                      | 5                          |
|---|-----------------------------|-----------------------------|-----------------------------|----------------------------|
|   | FACIORS                     | 1                           | 2                           | 3                          |
| Α | Deposition Temperature (°C) | <i>T</i> <sub>0</sub> - 25  | $T_0$                       | $T_0 + 25$                 |
| B | Deposition Pressure (mtorr) | <i>P</i> <sub>0</sub> - 200 | $P_0$                       | $P_0 + 200$                |
| С | Nitrogen Flow (sccm)        | $N_0$                       | <i>N</i> <sub>0</sub> - 150 | <i>N</i> <sub>0</sub> - 75 |
| D | Silane Flow (sccm)          | <i>S</i> <sub>0</sub> - 100 | <i>S</i> <sub>0</sub> - 50  | $S_0$                      |
| Ε | Settling Time (min)         | t <sub>0</sub>              | $t_0 + 8$                   | $t_0 + 16$                 |
| F | Cleaning Method             | None                        | $CM_2$                      | $CM_3$                     |

Table 3.1. Controllable Factors and Their Levels for the Surface Defect Example

For these factors, a total of 18 experimental runs are designed and conducted at the selected factor levels according to the  $L_{18}$  orthogonal array shown in Table 3.2.

| Exp. No | Α | В | С | D | Ε | F |
|---------|---|---|---|---|---|---|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 |
| 2       | 1 | 2 | 2 | 2 | 2 | 2 |
| 3       | 1 | 3 | 3 | 3 | 3 | 3 |
| 4       | 2 | 1 | 1 | 2 | 2 | 3 |
| 5       | 2 | 2 | 2 | 3 | 3 | 1 |
| 6       | 2 | 3 | 3 | 1 | 1 | 2 |
| 7       | 3 | 1 | 2 | 1 | 3 | 3 |
| 8       | 3 | 2 | 3 | 2 | 1 | 1 |
| 9       | 3 | 3 | 1 | 3 | 2 | 2 |
| 10      | 1 | 1 | 3 | 3 | 2 | 1 |
| 11      | 1 | 2 | 1 | 1 | 3 | 2 |
| 12      | 1 | 3 | 2 | 2 | 1 | 3 |
| 13      | 2 | 1 | 2 | 3 | 1 | 2 |
| 14      | 2 | 2 | 3 | 1 | 2 | 3 |
| 15      | 2 | 3 | 1 | 2 | 3 | 1 |
| 16      | 3 | 1 | 3 | 2 | 3 | 2 |
| 17      | 3 | 2 | 1 | 3 | 1 | 3 |
| 18      | 3 | 3 | 2 | 1 | 2 | 1 |

 Table 3.2. Experimental Design for the Surface Defect Example

As a result of the experiments, the number of surface defects measured on three areas of three wafers are given in Table 3.3.

In this example, it is targeted to achieve wafers that have minimum number of surface defects. Therefore, this is a smaller-the better type of problem.

Before explaining the optimization methods for ordered categorical data, Taguchi's robust design method is demonstrated to be able to obtain a benchmark solution to be used in the comparison of the selected methods. It should be noted that the original data are continuous and Taguchi's robust design method can be applied on this continuous response data set. On the other hand, ordered categorical data sets are under consideration it this study. Because of this reason, these continuous data are converted to ordered categorical data as explained later in this subsection. Due to this categorization, Taguchi's robust design method is expected to yield better results than all of the other methods applied on the categorical data.

| Exp. | Т    | est Wafe | r 1    | Т    | est Wafe | r 2    | Т    | Test Wafer 3 |        |  |
|------|------|----------|--------|------|----------|--------|------|--------------|--------|--|
| No   | Тор  | Center   | Bottom | Тор  | Center   | Bottom | Тор  | Center       | Bottom |  |
| 1    | 1    | 0        | 1      | 2    | 0        | 0      | 1    | 1            | 0      |  |
| 2    | 1    | 2        | 8      | 180  | 5        | 0      | 126  | 3            | 1      |  |
| 3    | 3    | 35       | 106    | 360  | 38       | 135    | 315  | 50           | 180    |  |
| 4    | 6    | 15       | 6      | 17   | 20       | 16     | 15   | 40           | 18     |  |
| 5    | 1720 | 1980     | 2000   | 487  | 810      | 400    | 2020 | 360          | 13     |  |
| 6    | 135  | 360      | 1620   | 2430 | 207      | 2      | 2500 | 270          | 35     |  |
| 7    | 360  | 810      | 1215   | 1620 | 117      | 30     | 1800 | 720          | 315    |  |
| 8    | 270  | 2730     | 5000   | 360  | 1        | 2      | 9999 | 225          | 1      |  |
| 9    | 5000 | 1000     | 1000   | 3000 | 1000     | 1000   | 3000 | 2800         | 2000   |  |
| 10   | 3    | 0        | 0      | 3    | 0        | 0      | 1    | 0            | 1      |  |
| 11   | 1    | 0        | 1      | 5    | 0        | 0      | 1    | 0            | 1      |  |
| 12   | 3    | 1620     | 90     | 216  | 5        | 4      | 270  | 8            | 3      |  |
| 13   | 1    | 25       | 270    | 810  | 16       | 1      | 225  | 3            | 0      |  |
| 14   | 3    | 21       | 162    | 90   | 6        | 1      | 63   | 15           | 39     |  |
| 15   | 450  | 1200     | 1800   | 2530 | 2080     | 2080   | 1890 | 180          | 25     |  |
| 16   | 5    | 6        | 40     | 54   | 0        | 8      | 14   | 1            | 1      |  |
| 17   | 1200 | 3500     | 3500   | 1000 | 3        | 1      | 9999 | 600          | 8      |  |
| 18   | 8000 | 2500     | 3500   | 5000 | 1000     | 1000   | 5000 | 2000         | 2000   |  |

 Table 3.3. Surface Defect Data of the Surface Defect Example

## 3.1.1. Taguchi's Robust Design Method for the Surface Defect Example

In this method, signal to noise ratio of surface defects for each set of parameter settings is calculated and tabulated in Table 3.4 by using equation (3.1);

$$\eta = -10 \log_{10} \left[ \frac{1}{9} \sum_{i=1}^{3} \sum_{j=1}^{3} y_{ij}^{2} \right]$$
(3.1)

| Exp. No | Α | В | С | D | Ε | F | SNR      |
|---------|---|---|---|---|---|---|----------|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 | 0.5115   |
| 2       | 1 | 2 | 2 | 2 | 2 | 2 | -37.3042 |
| 3       | 1 | 3 | 3 | 3 | 3 | 3 | -45.1685 |
| 4       | 2 | 1 | 1 | 2 | 2 | 3 | -25.7609 |
| 5       | 2 | 2 | 2 | 3 | 3 | 1 | -62.5372 |
| 6       | 2 | 3 | 3 | 1 | 1 | 2 | -62.2312 |
| 7       | 3 | 1 | 2 | 1 | 3 | 3 | -59.8819 |
| 8       | 3 | 2 | 3 | 2 | 1 | 1 | -71.6858 |
| 9       | 3 | 3 | 1 | 3 | 2 | 2 | -68.1543 |
| 10      | 1 | 1 | 3 | 3 | 2 | 1 | -3.46787 |
| 11      | 1 | 2 | 1 | 1 | 3 | 2 | -5.08155 |
| 12      | 1 | 3 | 2 | 2 | 1 | 3 | -54.8543 |
| 13      | 2 | 1 | 2 | 3 | 1 | 2 | -49.3814 |
| 14      | 2 | 2 | 3 | 1 | 2 | 3 | -36.5371 |
| 15      | 2 | 3 | 1 | 2 | 3 | 1 | -64.1759 |
| 16      | 3 | 1 | 3 | 2 | 3 | 2 | -27.3051 |
| 17      | 3 | 2 | 1 | 3 | 1 | 3 | -71.5052 |
| 18      | 3 | 3 | 2 | 1 | 2 | 1 | -71.9957 |

Table 3.4. Signal to Noise Ratios of Surface Defects

By taking averages of SNR values for each level of factors, the average signal to noise ratios given in Table 3.5 are determined. According to Taguchi's robust design method, the largest average SNR values among three levels give the optimal levels for each factor. Hence, Taguchi finds the optimum conditions as  $A_1B_1C_1D_1E_2F_2$  which can be seen in Table 3.5.

| Factor | Average  | Average η by Factor Level |          |         | Sum of     | Mean      | Е       | n      |
|--------|----------|---------------------------|----------|---------|------------|-----------|---------|--------|
| ractor | 1        | 2                         | 3        | Freedom | Squares    | Square    | Г       | Р      |
| Α      | -24.2275 | -50.1039                  | -61.7547 | 2       | 4427.2384  | 2213.6192 | 27.2585 | 0.0020 |
| В      | -27.5476 | -47.4418                  | -61.0967 | 2       | 3415.5487  | 1707.7743 | 21.0295 | 0.0037 |
| С      | -39.0277 | -55.9925                  | -41.0659 | 2       | 1029.5174  | 514.7587  | 6.3387  | 0.0423 |
| D      | -39.2027 | -46.8477                  | -50.0357 | 2       | 371.9324   | 185.9662  | 2.2900  | 0.1962 |
| Ε      | -51.5244 | -40.5367                  | -44.0250 | 2       | 378.2794   | 189.1397  | 2.3291  | 0.1922 |
| F      | -45.5585 | -41.5763                  | -48.9513 | 2       | 163.5189   | 81.7595   | 1.0100  | 0.4283 |
| Error  |          |                           |          | 5       | 404.9398   | 60.3535   |         |        |
| Total  |          |                           |          | 17      | 10190.9751 | 564.8370  |         |        |

 Table 3.5.
 Analysis of Surface Defect Data

Although, Taguchi finds the optimal levels for all factors, analysis of variance (ANOVA) also presented in Table 3.5 shows that factors D, E and F cannot be found significant with 90% confidence.

According to these conditions, the optimum predicted signal to noise ratio  $\eta_{opt}$  is calculated by using the equation (3.2). The optimal parameter settings determined and the signal to noise ratio estimated at these optimal parameter settings are given in Table 3.6.

$$\eta_{opt} = m + (m_{A_1} - m) + (m_{B_1} - m) + (m_{C_1} - m)$$
(3.2)

where

m: Average of all SNRs = -45.3620,

 $m_{i_i}$ : Average of SNRs belonging to  $j^{th}$  level of  $i^{th}$  factor

It should be noted that Phadke (1989) assumes a different prediction model by including D and E effects also in the model.

# Table 3.6. Optimum Levels of Factors and Predicted Signal to Noise Ratio for Surface Defect Example

| Α | В | С | SNR     |
|---|---|---|---------|
| 1 | 1 | 1 | -0.0788 |

Since the methods that are compared in this study are robust design methods for ordered categorical response data, continuous data given in Table 3.3 are categorized. While categorizing, the ranges which are introduced by Phadke (1989) and given in Table 3.7 are used.

| Categories | <b>Range of Surface Defect Numbers</b> |
|------------|----------------------------------------|
| Ι          | 0-3                                    |
| II         | 4-30                                   |
| III        | 31-300                                 |
| IV         | 301-1000                               |
| V          | ≥1001                                  |

Table 3.7. Range of Surface Defect Numbers for Each Category

Depending on these ranges, the categorized surface defect data are tabulated in Table 3.8. This process created naturally ordered response data: quality improves while category decreases. Hence, this problem is of smaller-the-better type.

| Even No | Numb | er of Ob | servatio | ns by Cat | egories |
|---------|------|----------|----------|-----------|---------|
| Exp. No | Ι    | II       | III      | IV        | V       |
| 1       | 9    | 0        | 0        | 0         | 0       |
| 2       | 5    | 2        | 2        | 0         | 0       |
| 3       | 1    | 0        | 6        | 2         | 0       |
| 4       | 0    | 8        | 1        | 0         | 0       |
| 5       | 0    | 1        | 0        | 4         | 4       |
| 6       | 1    | 0        | 4        | 1         | 3       |
| 7       | 0    | 1        | 1        | 4         | 3       |
| 8       | 3    | 0        | 2        | 1         | 3       |
| 9       | 0    | 0        | 0        | 4         | 5       |
| 10      | 9    | 0        | 0        | 0         | 0       |
| 11      | 8    | 1        | 0        | 0         | 0       |
| 12      | 2    | 3        | 3        | 0         | 1       |
| 13      | 4    | 2        | 2        | 1         | 0       |
| 14      | 2    | 3        | 4        | 0         | 0       |
| 15      | 0    | 1        | 1        | 1         | 6       |
| 16      | 3    | 4        | 2        | 0         | 0       |
| 17      | 2    | 1        | 0        | 2         | 4       |
| 18      | 0    | 0        | 0        | 2         | 7       |

Table 3.8. Categorized Surface Defect Data

### 3.1.2. Logistic Regression Model Optimization for Surface Defect Example

Before applying the method, the order of levels of factor C is changed. The original levels of factor C are not increasing or decreasing order. Since the levels of factors should be ordered in order to use ordinal logistic regression model, levels of factor C are arranged as given in Table 3.9. Hence, this modified factor is referred to C'.

| Level               | Taguchi | LRMO |
|---------------------|---------|------|
| N <sub>0</sub> -150 | 2       | 1    |
| N <sub>0</sub> -75  | 3       | 2    |
| No-0                | 1       | 3    |

Table 3.9. Modified Levels of Factor C

As explained in step 1 of subsection 2.1, an ordinal logistic regression model is fit to the response data by using MINITAB. Then, it is observed that factors D and F have no significant effect on the surface defect categories as shown in Figure 3.1, because the other factors' p values are smaller than 0.10 depending on 90% confidence. Also, on this figure the intercept of this model and coefficients of each factor are given.

| Logistic Regression Table |                           |           |         |         |        |         |         |  |
|---------------------------|---------------------------|-----------|---------|---------|--------|---------|---------|--|
|                           |                           |           |         |         | odds   | 95%     | CI      |  |
| Predictor                 | Coef                      | SE Coef   | Z       | P       | Ratio  | Lower   | Upper   |  |
| Const(1)                  | 5.42467                   | 0.895899  | 6.06    | 0.000   |        |         |         |  |
| Const(2)                  | 6.62957                   | 0.947982  | 6.99    | 0.000   |        |         |         |  |
| Const(3)                  | 7.87702                   | 1.00259   | 7.86    | 0.000   |        |         |         |  |
| Const(4)                  | 8.95482                   | 1.04769   | 8.55    | 0.000   |        |         |         |  |
| A                         | -1.81619                  | 0.235898  | -7.70   | 0.000   | 0.16   | 0.10    | 0.26    |  |
| В                         | -1.60309                  | 0.229317  | -6.99   | 0.000   | 0.20   | 0.13    | 0.32    |  |
| c'                        | 0.470517                  | 0.200074  | 2.35    | 0.019   | 1.60   | 1.08    | 2.37    |  |
| E                         | -0.477380                 | 0.186217  | -2.56   | 0.010   | 0.62   | 0.43    | 0.89    |  |
|                           |                           |           |         |         |        |         |         |  |
| Log-Likeli                | Log-Likelihood = -194.815 |           |         |         |        |         |         |  |
| Test that                 | all slopes                | are zero: | G = 118 | .754, D | F = 4, | P-Value | = 0.000 |  |



Although some factors are found to be significant, the model does not fit the data adequately according to Pearson and Deviance test results as shown in Figure 3.2. Because, p-values of both tests are smaller than 0.10 as seen on Figure 3.2. The tests reject the null hypothesis that the model fits the response data adequately at  $\alpha$ =0.10. Hence, interactions of factors are tried to be involved in the model, but no interaction is found as significant. In addition, it is observed that involvement of interactions in the model does not improve the goodness-of-fit.

| Goodness- | of-Fit Tests |    |       |
|-----------|--------------|----|-------|
| Method    | Chi-Square   | DF | P     |
| Pearson   | 102.184      | 64 | 0.002 |
| Deviance  | 111.623      | 64 | 0.000 |

Figure 3.2. Goodness-of-fit for the Model for Surface Defect Example

Parameter settings for significant factors in a full factorial design are generated by MATLAB as tabulated in Table 3.10. Then, probability of observing each response category and signal-to-noise ratios are estimated by using these parameter settings based on the model fit to the response data. Equations (2.1) and (2.2) are used in estimation of probability of observing each response category. These calculations are illustrated below for the first trial.

$$\begin{split} \hat{P}(Y_1 \leq 1) &= \frac{e^{(5.42467 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}}{1 + e^{(5.42467 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}} \\ \hat{P}(Y_1 \leq 1) &= 0.8806 \\ \hat{P}(Y_1 \leq 2) &= \frac{e^{(6.62957 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}}{1 + e^{(6.62957 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}} \\ \hat{P}(Y_1 \leq 2) &= 0.9609 \\ \hat{P}(Y_1 \leq 2) &= 0.9609 - 0.8806 = 0.0803 \\ \hat{P}(Y_1 \leq 3) &= \frac{e^{(7.87702 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}}{1 + e^{(7.87702 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}} \\ \hat{P}(Y_1 \leq 3) &= 0.9884 \end{split}$$

 $\hat{P}(Y_1 = 3) = 0.9884 - 0.9609 = 0.0275$ 

$$\hat{P}(Y_1 \le 4) = \frac{e^{(8.95482 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}}{1 + e^{(8.95482 - 1.81619 \times 1 - 1.60309 \times 1 + 0.470517 \times 1 - 0.477380 \times 1)}}$$

$$\hat{P}(Y_1 \le 4) = 0.9960$$

$$\hat{P}(Y_1 = 4) = 0.9960 - 0.9884 = 0.0076$$

$$\hat{P}(Y_1 = 5) = 1 - 0.9960 = 0.0040$$

In addition, since it is smaller-the-better type of problem, equations (2.3), (2.4) and (2.5) are used to calculate the signal-to-noise ratios.

 $\hat{E}(Y_1) = 1 \times 0.8806 + 2 \times 0.0803 + 3 \times 0.0275 + 4 \times 0.0076 + 5 \times 0.0040 = 1.1741$  $\hat{V}(Y_1) = [1^2 \times 0.8806 + 2^2 \times 0.0803 + 3^2 \times 0.0275 + 4^2 \times 0.0076 + 5^2 \times 0.0040] - (1.1741)^2 = 0.2924$ 

 $SNR_1 = -10 \times \log((1.1741)^2 + 0.2924) = -2.2295$ 

 Table 3.10. Estimated Probabilities and Signal to Noise Ratios based on Ordinal Logistic

 Regression Models of Categorized Surface Defect Data

| TDIAL :         |   | FACTORS P(Yi=j) |    |   |        |        | CND    |        |        |          |
|-----------------|---|-----------------|----|---|--------|--------|--------|--------|--------|----------|
| I KIAL <i>l</i> | Α | В               | C' | Ε | Ι      | II     | III    | IV     | V      | SINK     |
| 1               | 1 | 1               | 1  | 1 | 0.8806 | 0.0803 | 0.0275 | 0.0076 | 0.0040 | -2.2295  |
| 2               | 2 | 1               | 1  | 1 | 0.5455 | 0.2547 | 0.1329 | 0.0431 | 0.0238 | -6.0702  |
| 3               | 3 | 1               | 1  | 1 | 0.1633 | 0.2311 | 0.2995 | 0.1756 | 0.1305 | -9.9368  |
| 4               | 1 | 2               | 1  | 1 | 0.5976 | 0.2345 | 0.1131 | 0.0354 | 0.0193 | -5.5686  |
| 5               | 2 | 2               | 1  | 1 | 0.1945 | 0.2517 | 0.2910 | 0.1546 | 0.1082 | -9.5416  |
| 6               | 3 | 2               | 1  | 1 | 0.0378 | 0.0781 | 0.1975 | 0.2595 | 0.4272 | -12.2940 |
| 7               | 1 | 3               | 1  | 1 | 0.2301 | 0.2692 | 0.2771 | 0.1343 | 0.0893 | -9.1286  |
| 8               | 2 | 3               | 1  | 1 | 0.0464 | 0.0932 | 0.2213 | 0.2630 | 0.3761 | -12.0470 |
| 9               | 3 | 3               | 1  | 1 | 0.0078 | 0.0179 | 0.0584 | 0.1284 | 0.7875 | -13.4921 |
| 10              | 1 | 1               | 2  | 1 | 0.9219 | 0.0533 | 0.0175 | 0.0048 | 0.0025 | -1.5559  |
| 11              | 2 | 1               | 2  | 1 | 0.6577 | 0.2074 | 0.0921 | 0.0279 | 0.0150 | -4.9656  |
| 12              | 3 | 1               | 2  | 1 | 0.2381 | 0.2723 | 0.2736 | 0.1303 | 0.0857 | -9.0405  |
| 13              | 1 | 2               | 2  | 1 | 0.7039 | 0.1841 | 0.0770 | 0.0228 | 0.0122 | -4.4752  |
| 14              | 2 | 2               | 2  | 1 | 0.2788 | 0.2845 | 0.2546 | 0.1117 | 0.0704 | -8.6067  |

| 15 | 3 | 2 | 2 | 1 | 0.0592 | 0.1143 | 0.2487 | 0.2600 | 0.3178 | -11.7205 |
|----|---|---|---|---|--------|--------|--------|--------|--------|----------|
| 16 | 1 | 3 | 2 | 1 | 0.3236 | 0.2912 | 0.2327 | 0.0948 | 0.0577 | -8.1568  |
| 17 | 2 | 3 | 2 | 1 | 0.0722 | 0.1339 | 0.2686 | 0.2517 | 0.2735 | -11.4273 |
| 18 | 3 | 3 | 2 | 1 | 0.0125 | 0.0280 | 0.0877 | 0.1735 | 0.6983 | -13.2526 |
| 19 | 1 | 1 | 3 | 1 | 0.9498 | 0.0346 | 0.0111 | 0.0030 | 0.0015 | -1.0530  |
| 20 | 2 | 1 | 3 | 1 | 0.7546 | 0.1566 | 0.0616 | 0.0178 | 0.0094 | -3.9019  |
| 21 | 3 | 1 | 3 | 1 | 0.3334 | 0.2919 | 0.2279 | 0.0915 | 0.0553 | -8.0613  |
| 22 | 1 | 2 | 3 | 1 | 0.7919 | 0.1351 | 0.0509 | 0.0145 | 0.0076 | -3.4497  |
| 23 | 2 | 2 | 3 | 1 | 0.3823 | 0.2914 | 0.2041 | 0.0769 | 0.0452 | -7.5935  |
| 24 | 3 | 2 | 3 | 1 | 0.0915 | 0.1600 | 0.2876 | 0.2355 | 0.2254 | -11.0463 |
| 25 | 1 | 3 | 3 | 1 | 0.4337 | 0.2850 | 0.1802 | 0.0642 | 0.0368 | -7.1129  |
| 26 | 2 | 3 | 3 | 1 | 0.1108 | 0.1828 | 0.2977 | 0.2182 | 0.1904 | -10.7092 |
| 27 | 3 | 3 | 3 | 1 | 0.0199 | 0.0435 | 0.1272 | 0.2183 | 0.5912 | -12.9250 |
| 28 | 1 | 1 | 1 | 2 | 0.8207 | 0.1178 | 0.0430 | 0.0121 | 0.0064 | -3.0784  |
| 29 | 2 | 1 | 1 | 2 | 0.4268 | 0.2862 | 0.1834 | 0.0658 | 0.0379 | -7.1777  |
| 30 | 3 | 1 | 1 | 2 | 0.1080 | 0.1797 | 0.2967 | 0.2207 | 0.1948 | -10.7553 |
| 31 | 1 | 2 | 1 | 2 | 0.4795 | 0.2750 | 0.1600 | 0.0546 | 0.0308 | -6.6879  |
| 32 | 2 | 2 | 1 | 2 | 0.1303 | 0.2030 | 0.3018 | 0.2013 | 0.1636 | -10.4015 |
| 33 | 3 | 2 | 1 | 2 | 0.0238 | 0.0514 | 0.1454 | 0.2335 | 0.5459 | -12.7695 |
| 34 | 1 | 3 | 1 | 2 | 0.1564 | 0.2258 | 0.3007 | 0.1806 | 0.1364 | -10.0290 |
| 35 | 2 | 3 | 1 | 2 | 0.0293 | 0.0622 | 0.1680 | 0.2478 | 0.4928 | -12.5705 |
| 36 | 3 | 3 | 1 | 2 | 0.0049 | 0.0112 | 0.0378 | 0.0895 | 0.8566 | -13.6618 |
| 37 | 1 | 1 | 2 | 2 | 0.8799 | 0.0808 | 0.0277 | 0.0076 | 0.0040 | -2.2372  |
| 38 | 2 | 1 | 2 | 2 | 0.5438 | 0.2553 | 0.1336 | 0.0434 | 0.0240 | -6.0863  |
| 39 | 3 | 1 | 2 | 2 | 0.1624 | 0.2304 | 0.2997 | 0.1762 | 0.1313 | -9.9492  |
| 40 | 1 | 2 | 2 | 2 | 0.5959 | 0.2352 | 0.1137 | 0.0357 | 0.0195 | -5.5847  |
| 41 | 2 | 2 | 2 | 2 | 0.1935 | 0.2511 | 0.2913 | 0.1553 | 0.1089 | -9.5546  |
| 42 | 3 | 2 | 2 | 2 | 0.0376 | 0.0776 | 0.1967 | 0.2592 | 0.4289 | -12.3016 |
| 43 | 1 | 3 | 2 | 2 | 0.2289 | 0.2687 | 0.2776 | 0.1350 | 0.0898 | -9.1421  |
| 44 | 2 | 3 | 2 | 2 | 0.0461 | 0.0927 | 0.2206 | 0.2630 | 0.3777 | -12.0553 |
| 45 | 3 | 3 | 2 | 2 | 0.0078 | 0.0177 | 0.0581 | 0.1278 | 0.7886 | -13.4950 |
| 46 | 1 | 1 | 3 | 2 | 0.9214 | 0.0536 | 0.0176 | 0.0048 | 0.0025 | -1.5644  |
| 47 | 2 | 1 | 3 | 2 | 0.6561 | 0.2081 | 0.0926 | 0.0281 | 0.0151 | -4.9816  |
| 48 | 3 | 1 | 3 | 2 | 0.2368 | 0.2719 | 0.2741 | 0.1309 | 0.0863 | -9.0542  |
| 49 | 1 | 2 | 3 | 2 | 0.7025 | 0.1849 | 0.0775 | 0.0229 | 0.0123 | -4.4908  |

 Table 3.10 (cont'd) Estimated Probabilities and Signal to Noise Ratios based on Ordinal

 Logistic Regression Models of Categorized Surface Defect Data

| 50 | 2 | 2 | 3 | 2 | 0.2775 | 0.2842 | 0.2552 | 0.1122 | 0.0709 | -8.6210  |
|----|---|---|---|---|--------|--------|--------|--------|--------|----------|
| 51 | 3 | 2 | 3 | 2 | 0.0588 | 0.1137 | 0.2480 | 0.2602 | 0.3193 | -11.7296 |
| 52 | 1 | 3 | 3 | 2 | 0.3221 | 0.2911 | 0.2334 | 0.0953 | 0.0581 | -8.1716  |
| 53 | 2 | 3 | 3 | 2 | 0.0717 | 0.1333 | 0.2681 | 0.2520 | 0.2749 | -11.4371 |
| 54 | 3 | 3 | 3 | 2 | 0.0124 | 0.0278 | 0.0872 | 0.1728 | 0.6998 | -13.2567 |
| 55 | 1 | 1 | 1 | 3 | 0.7396 | 0.1650 | 0.0660 | 0.0192 | 0.0102 | -4.0764  |
| 56 | 2 | 1 | 1 | 3 | 0.3160 | 0.2905 | 0.2364 | 0.0975 | 0.0597 | -8.2324  |
| 57 | 3 | 1 | 1 | 3 | 0.0699 | 0.1305 | 0.2656 | 0.2534 | 0.2806 | -11.4773 |
| 58 | 1 | 2 | 1 | 3 | 0.3637 | 0.2923 | 0.2131 | 0.0821 | 0.0488 | -7.7699  |
| 59 | 2 | 2 | 1 | 3 | 0.0851 | 0.1517 | 0.2825 | 0.2412 | 0.2396 | -11.1672 |
| 60 | 3 | 2 | 1 | 3 | 0.0149 | 0.0331 | 0.1014 | 0.1910 | 0.6596 | -13.1399 |
| 61 | 1 | 3 | 1 | 3 | 0.1032 | 0.1742 | 0.2946 | 0.2250 | 0.2030 | -10.8374 |
| 62 | 2 | 3 | 1 | 3 | 0.0184 | 0.0404 | 0.1198 | 0.2112 | 0.6103 | -12.9872 |
| 63 | 3 | 3 | 1 | 3 | 0.0030 | 0.0070 | 0.0241 | 0.0600 | 0.9059 | -13.7758 |
| 64 | 1 | 1 | 2 | 3 | 0.8197 | 0.1185 | 0.0433 | 0.0122 | 0.0064 | -3.0918  |
| 65 | 2 | 1 | 2 | 3 | 0.4251 | 0.2865 | 0.1841 | 0.0662 | 0.0381 | -7.1933  |
| 66 | 3 | 1 | 2 | 3 | 0.1074 | 0.1790 | 0.2964 | 0.2213 | 0.1959 | -10.7664 |
| 67 | 1 | 2 | 2 | 3 | 0.4778 | 0.2755 | 0.1607 | 0.0550 | 0.0310 | -6.7038  |
| 68 | 2 | 2 | 2 | 3 | 0.1295 | 0.2022 | 0.3017 | 0.2020 | 0.1645 | -10.4132 |
| 69 | 3 | 2 | 2 | 3 | 0.0236 | 0.0511 | 0.1447 | 0.2329 | 0.5476 | -12.7756 |
| 70 | 1 | 3 | 2 | 3 | 0.1555 | 0.2251 | 0.3009 | 0.1813 | 0.1373 | -10.0413 |
| 71 | 2 | 3 | 2 | 3 | 0.0291 | 0.0618 | 0.1673 | 0.2474 | 0.4945 | -12.5773 |
| 72 | 3 | 3 | 2 | 3 | 0.0048 | 0.0111 | 0.0376 | 0.0890 | 0.8574 | -13.6638 |
| 73 | 1 | 1 | 3 | 3 | 0.8792 | 0.0813 | 0.0279 | 0.0077 | 0.0040 | -2.2483  |
| 74 | 2 | 1 | 3 | 3 | 0.5421 | 0.2559 | 0.1343 | 0.0436 | 0.0242 | -6.1025  |
| 75 | 3 | 1 | 3 | 3 | 0.1614 | 0.2297 | 0.2999 | 0.1769 | 0.1321 | -9.9616  |
| 76 | 1 | 2 | 3 | 3 | 0.5943 | 0.2359 | 0.1144 | 0.0359 | 0.0196 | -5.6009  |
| 77 | 2 | 2 | 3 | 3 | 0.1924 | 0.2505 | 0.2917 | 0.1559 | 0.1095 | -9.5676  |
| 78 | 3 | 2 | 3 | 3 | 0.0373 | 0.0772 | 0.1959 | 0.2590 | 0.4306 | -12.3091 |
| 79 | 1 | 3 | 3 | 3 | 0.2277 | 0.2682 | 0.2781 | 0.1356 | 0.0904 | -9.1557  |
| 80 | 2 | 3 | 3 | 3 | 0.0458 | 0.0922 | 0.2198 | 0.2630 | 0.3793 | -12.0636 |
| 81 | 3 | 3 | 3 | 3 | 0.0077 | 0.0176 | 0.0577 | 0.1272 | 0.7898 | -13.4979 |

 Table 3.10 (cont'd) Estimated Probabilities and Signal to Noise Ratios based on Ordinal

 Logistic Regression Models of Categorized Surface Defect Data

Since quality improves as the category decreases, probability of observing category 1 is desired to be maximized. Likewise, signal-to-noise ratio is tried to be maximized, too.

As seen in Table 3.10,  $19^{\text{th}}$  set of parameter settings gives both maximum SNR value with -1.0530 and maximum estimated probability of observing category 1 with 0.9498. Therefore, the optimal levels are found as  $A_1B_1C'_3E_1$ .

Due to the changes made in order of the levels for factor C, the optimum settings for the original data set are  $A_1B_1C'_3E_1$ . By using Taguchi's prediction equation (3.2), the predicted SNR values for these optimal parameter settings are found as given in Table 3.11.

| I | FACTOR | S | SND     | METHODS          |  |  |
|---|--------|---|---------|------------------|--|--|
| Α | В      | С | SINK    | METHODS          |  |  |
| 1 | 1      | 1 | -0.0788 | LRMO             |  |  |
| 1 | 1      | 1 | -0.0788 | Taguchi's Method |  |  |

 
 Table 3.11. Predicted SNR Values for Optimal Parameter Settings Found by LRMO and Taguchi based on Taguchi's Prediction Equation

According to these predictions, LRMO has the same optimal parameter settings and estimated SNR value as ones found by Taguchi's method.

In addition to comparison according to Taguchi's prediction equation, results are compared according to performance criteria chosen by Logistic Regression Model Optimization. As it is mentioned before, estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category and signal-to-noise ratio are the performance measure to evaluate the performance of optimal levels. Hence, probability of observing category 1 and signal-to-noise ratio for optimal levels found by Taguchi's method and LRMO are given in Table 3.12. Since Taguchi finds factor E as insignificant, alternative levels of factor E are tried. Then, the alternative levels that give the best results of estimated probability of target category and estimated SNR are tabulated in Table 3.12.

| Table 3.12. Estimated Probability for each Category and Signal-to-noise Ratio for Optimal |
|-------------------------------------------------------------------------------------------|
| Levels for the Surface Defect Example                                                     |

| F | FAC1 | <b>FOR</b> | 5 |        |        | $\widehat{P}_i^{LR(P)}$ |        |        | SNR     | METHOD  |  |
|---|------|------------|---|--------|--------|-------------------------|--------|--------|---------|---------|--|
| A | B    | C'         | Е | 1      | 2      | 3                       | 4      | 5      |         |         |  |
| 1 | 1    | 3          | 1 | 0.9498 | 0.0346 | 0.0111                  | 0.0030 | 0.0015 | -1.0530 | Taguchi |  |
| 1 | 1    | 3          | 1 | 0.9498 | 0.0346 | 0.0111                  | 0.0030 | 0.0015 | -1.0530 | LRMO    |  |

According to estimated probability of target category and signal-to-noise ratio, LRMO shows equal performance with Taguchi's method.

# 3.1.3. Accumulation Analysis Method for Surface Defect Example

In accumulation analysis method, as explained in subsection 2.2, cumulative frequencies are created by adding frequencies of occurrence given in Table 3.8 for one category to the frequencies for the next category as seen in Table 3.13.

|         | <b>Cumulative Frequencies for the Cumulative</b> |    |            |    |   |  |  |  |  |  |
|---------|--------------------------------------------------|----|------------|----|---|--|--|--|--|--|
| Exp. No |                                                  |    | Categories | 1  |   |  |  |  |  |  |
|         | Ι                                                | II | III        | IV | V |  |  |  |  |  |
| 1       | 9                                                | 9  | 9          | 9  | 9 |  |  |  |  |  |
| 2       | 5                                                | 7  | 9          | 9  | 9 |  |  |  |  |  |
| 3       | 1                                                | 1  | 7          | 9  | 9 |  |  |  |  |  |
| 4       | 0                                                | 8  | 9          | 9  | 9 |  |  |  |  |  |
| 5       | 0                                                | 1  | 1          | 5  | 9 |  |  |  |  |  |
| 6       | 1                                                | 1  | 5          | 6  | 9 |  |  |  |  |  |
| 7       | 0                                                | 1  | 2          | 6  | 9 |  |  |  |  |  |
| 8       | 3                                                | 3  | 5          | 6  | 9 |  |  |  |  |  |
| 9       | 0                                                | 0  | 0          | 4  | 9 |  |  |  |  |  |
| 10      | 9                                                | 9  | 9          | 9  | 9 |  |  |  |  |  |
| 11      | 8                                                | 9  | 9          | 9  | 9 |  |  |  |  |  |
| 12      | 2                                                | 5  | 8          | 8  | 9 |  |  |  |  |  |
| 13      | 4                                                | 6  | 8          | 9  | 9 |  |  |  |  |  |

Table 3.13. Cumulative Frequencies for the Cumulative Categories

| 14 | 2 | 5 | 9 | 9 | 9 |
|----|---|---|---|---|---|
| 15 | 0 | 1 | 2 | 3 | 9 |
| 16 | 3 | 7 | 9 | 9 | 9 |
| 17 | 2 | 3 | 3 | 5 | 9 |
| 18 | 0 | 0 | 0 | 2 | 9 |

Table 3.13 (cont'd) Cumulative Frequencies for the Cumulative Categories

Frequencies and cumulative frequencies of each level of each factor given in Tables 3.8 and 3.13, respectively, are individually summed. By this way, aggregate frequencies and cumulative frequencies of levels for each factor are calculated as given in Table 3.14.

|                       | F  | RE( | QUEN | ICIE | S  | CUMULATIVE<br>FREQUENCIES |    |     |    |    |
|-----------------------|----|-----|------|------|----|---------------------------|----|-----|----|----|
| Categories<br>Factors | Ι  | Π   | III  | IV   | v  | Ι                         | п  | III | IV | V  |
| A <sub>1</sub>        | 34 | 6   | 11   | 2    | 1  | 34                        | 40 | 51  | 53 | 54 |
| $\mathbf{A}_2$        | 7  | 15  | 12   | 7    | 13 | 7                         | 22 | 34  | 41 | 54 |
| $A_3$                 | 8  | 6   | 5    | 13   | 22 | 8                         | 14 | 19  | 32 | 54 |
| <b>B</b> <sub>1</sub> | 25 | 15  | 6    | 5    | 3  | 25                        | 40 | 46  | 51 | 54 |
| <b>B</b> <sub>2</sub> | 20 | 8   | 8    | 7    | 11 | 20                        | 28 | 36  | 43 | 54 |
| <b>B</b> <sub>3</sub> | 4  | 4   | 14   | 10   | 22 | 4                         | 8  | 22  | 32 | 54 |
| C <sub>1</sub>        | 19 | 11  | 2    | 7    | 15 | 19                        | 30 | 32  | 39 | 54 |
| <b>C</b> <sub>2</sub> | 11 | 9   | 8    | 11   | 15 | 11                        | 20 | 28  | 39 | 54 |
| <b>C</b> <sub>3</sub> | 19 | 7   | 18   | 4    | 6  | 19                        | 26 | 44  | 48 | 54 |
| $\mathbf{D}_1$        | 20 | 5   | 9    | 7    | 13 | 20                        | 25 | 34  | 41 | 54 |
| $\mathbf{D}_2$        | 13 | 18  | 11   | 2    | 10 | 13                        | 31 | 42  | 44 | 54 |

 Table 3.14. Cumulative Rate of Occurrences for the Cumulative Categories for Surface

 Defect Example

| $\mathbf{D}_3$ | 16 | 4  | 8  | 13 | 13 | 16 | 20 | 28 | 41 | 54 |
|----------------|----|----|----|----|----|----|----|----|----|----|
| $\mathbf{E_1}$ | 21 | 6  | 11 | 5  | 11 | 21 | 27 | 38 | 43 | 54 |
| $\mathbf{E}_2$ | 16 | 13 | 7  | 6  | 12 | 16 | 29 | 36 | 42 | 54 |
| $\mathbf{E}_3$ | 12 | 8  | 10 | 11 | 13 | 12 | 20 | 30 | 41 | 54 |
| $\mathbf{F}_1$ | 21 | 2  | 3  | 8  | 20 | 21 | 23 | 26 | 34 | 54 |
| $\mathbf{F}_2$ | 21 | 9  | 10 | 6  | 8  | 21 | 30 | 40 | 46 | 54 |
| $\mathbf{F}_3$ | 7  | 16 | 15 | 8  | 8  | 7  | 23 | 38 | 46 | 54 |

 Table 3.14 (cont'd) Cumulative Rate of Occurrences for the Cumulative Categories for

 Surface Defect Example

In order to determine significance of factors, as illustrated in Step 3 of subsection 2.2, ANOVA is preferred. First of all, weights, correction factors and proportions of cumulative frequencies in relevant category are calculated by using equations (2.7), (2.8) and (2.9) as given in Table 3.1.

In order to determine significance of factors, as illustrated in Step 3 of subsection 2.2, ANOVA is preferred. First of all, weights, correction factors and proportions of cumulative frequencies in relevant category are calculated by using equations (2.7), (2.8) and (2.9) as given in Table 3.15.

| VALUES                                                          | CATEGORIES |         |         |         |  |  |  |
|-----------------------------------------------------------------|------------|---------|---------|---------|--|--|--|
| VALUES                                                          | Ι          | II      | III     | IV      |  |  |  |
| Weights (W)                                                     | 4.7398     | 4.0153  | 4.3508  | 5.7857  |  |  |  |
| Correction Factors (CF)                                         | 14.8210    | 35.6543 | 66.7654 | 98.0000 |  |  |  |
| Proportions of cumulative frequency<br>in relevant category (P) | 0.3025     | 0.4691  | 0.6420  | 0.7778  |  |  |  |

 

 Table 3.15. Weights, Correction Factors and Proportions of Cumulative Frequencies in Relevant Category for Surface Defect Example

Then, sum of squares for each factor and category are calculated by using equation (2.10) as given in Table 3.16.

| Categories<br>Factors | Ι       | II      | III     | IV       |
|-----------------------|---------|---------|---------|----------|
| Α                     | 23.5000 | 42.2222 | 76.2593 | 102.1111 |
| В                     | 19.2778 | 45.3333 | 72.1481 | 101.3704 |
| С                     | 15.6111 | 36.5926 | 69.3333 | 99.0000  |
| D                     | 15.2778 | 36.7778 | 68.5926 | 98.1111  |
| Ε                     | 15.5741 | 36.4815 | 67.4074 | 98.0370  |
| F                     | 17.2407 | 36.2593 | 68.8889 | 99.7778  |

 Table 3.16. Sum of Squares for Each Factor and Category for Surface Defect Example

Then, by using these sum of squares as shown in equation (2.11), sum of squares for each factor are calculated. Furthermore, by using equation (2.15), total sum of squares is calculated. Moreover, by using equations (2.17) and (2.19), sum of squares for error and mean sum of squares are calculated. Finally, critical F values for each factor are calculated by using equation (2.20). All these results are given in Table 3.17.

| Factors | df  | S        | MS      | F       |
|---------|-----|----------|---------|---------|
| Α       | 8   | 132.5999 | 16.5750 | 29.9869 |
| В       | 8   | 102.9073 | 12.8634 | 23.2721 |
| С       | 8   | 24.4706  | 3.0588  | 5.5339  |
| D       | 8   | 15.2685  | 1.9086  | 3.4529  |
| Ε       | 8   | 9.8981   | 1.2373  | 2.2384  |
| F       | 8   | 33.4225  | 4.1778  | 7.5584  |
| Error   | 596 | 329.4331 | 0.5527  |         |
| Total   | 644 | 648      | 1.0062  |         |

 Table 3.17. Analysis of Variance (ANOVA) Results for AA Method in Surface Defect

 Example

Since  $F_{596(0.10)}^{8}$  is equal to 1.6805 and all the critical F values given in Table 3.17 are greater than 1.6805, all the factor effects are determined as significant. Therefore, the levels for factors that have maximum frequencies in category 1 as seen in Table 3.14 give the optimal solution alternatives as tabulated in Table 3.18. Factors C and F have two alternative optimal levels due to having same frequencies at these levels.

| FACTORS |   |   |   |   |   |  |  |
|---------|---|---|---|---|---|--|--|
| Α       | В | С | D | Ε | F |  |  |
| 1       | 1 | 1 | 1 | 1 | 1 |  |  |
| 1       | 1 | 1 | 1 | 1 | 2 |  |  |
| 1       | 1 | 3 | 1 | 1 | 1 |  |  |
| 1       | 1 | 3 | 1 | 1 | 2 |  |  |

 Table 3.18. Optimal Solution Alternatives found by AA Method for Surface Defect

 Example

By using Taguchi's prediction equation (3.2), the predicted SNR values for these optimal parameter settings are found as given in Table 3.19.

| Table 3.19. Predicted SNR Values for Optimal Parameter Settings Found by AA and |
|---------------------------------------------------------------------------------|
| Taguchi according to Taguchi's Method                                           |

| F | ACTORS |   | SND     | METHODS          |  |
|---|--------|---|---------|------------------|--|
| Α | В      | С | SINK    |                  |  |
| 1 | 1      | 1 | -0.0788 | AA (C=1)         |  |
| 1 | 1      | 3 | -2.1170 | AA (C=3)         |  |
| 1 | 1      | 1 | -0.0788 | Taguchi's Method |  |

Since Taguchi determines factors D, E and F as insignificant, in comparison by using Taguchi's prediction equation, optimal levels of factor D, E and F found in accumulation analysis method are not used. According to these predictions, optimal levels with C=1

found by AA method has the same optimal parameter settings and estimated SNR value as the ones found by Taguchi's method.

In addition to comparison according to Taguchi's prediction equation, results are compared according to performance criterion explained in step 5 of subsection 2.1.2. As it is mentioned before, estimated percentage of target category is the performance criterion for the optimal parameter settings. In order to calculate this percentage, estimated frequency for each category and each factor and total estimated frequencies for each category are calculated by using equations (2.21) and (2.22), respectively. These results are tabulated in Table 3.20. In this method, until this part all calculations are made in MATLAB.

| EACTOPS | IEVEIS | CATEGORIES |         |         |         |          |  |  |
|---------|--------|------------|---------|---------|---------|----------|--|--|
| FACIORS |        | Ι          | II      | III     | IV      | V        |  |  |
|         | 1      | 62.9630    | 74.0741 | 94.4444 | 98.1481 | 100.0000 |  |  |
| Α       | 2      | 12.9630    | 40.7407 | 62.9630 | 75.9259 | 100.0000 |  |  |
|         | 3      | 14.8148    | 25.9259 | 35.1852 | 59.2593 | 100.0000 |  |  |
|         | 1      | 46.2963    | 74.0741 | 85.1852 | 94.4444 | 100.0000 |  |  |
| В       | 2      | 37.0370    | 51.8519 | 66.6667 | 79.6296 | 100.0000 |  |  |
|         | 3      | 7.4074     | 14.8148 | 40.7407 | 59.2593 | 100.0000 |  |  |
|         | 1      | 35.1852    | 55.5556 | 59.2593 | 72.2222 | 100.0000 |  |  |
| С       | 2      | 20.3704    | 37.0370 | 51.8519 | 72.2222 | 100.0000 |  |  |
|         | 3      | 35.1852    | 48.1481 | 81.4815 | 88.8889 | 100.0000 |  |  |
|         | 1      | 37.0370    | 46.2963 | 62.9630 | 75.9259 | 100.0000 |  |  |
| D       | 2      | 24.0741    | 57.4074 | 77.7778 | 81.4815 | 100.0000 |  |  |
|         | 3      | 29.6296    | 37.0370 | 51.8519 | 75.9259 | 100.0000 |  |  |
|         | 1      | 38.8889    | 50.0000 | 70.3704 | 79.6296 | 100.0000 |  |  |
| Е       | 2      | 29.6296    | 53.7037 | 66.6667 | 77.7778 | 100.0000 |  |  |
|         | 3      | 22.2222    | 37.0370 | 55.5556 | 75.9259 | 100.0000 |  |  |
|         | 1      | 38.8889    | 42.5926 | 48.1481 | 62.9630 | 100.0000 |  |  |
| F       | 2      | 38.8889    | 55.5556 | 74.0741 | 85.1852 | 100.0000 |  |  |
|         | 3      | 12.9630    | 42.5926 | 70.3704 | 85.1852 | 100.0000 |  |  |
| ТОТ     | AL     | 30.2469    | 46.9136 | 64.1975 | 77.7778 | 100.0000 |  |  |

**Table 3.20.** Estimated Frequency for each Category and each Factor and Total Estimated

 Frequencies for each Category for Surface Defect Example

By using logit (omega) transformation (equation (2.23)) estimated frequencies and overall estimated frequencies for each category are transformed into decibels as tabulated in Table 3.21.

| FACTORS | IEVEIS | CATEGORIES |         |         |         |          |  |  |  |
|---------|--------|------------|---------|---------|---------|----------|--|--|--|
| FACIONS | LEVELS | Ι          | II      | III     | IV      | V        |  |  |  |
|         | 1      | 2.3043     | 4.5593  | 12.3049 | 17.2440 | $\infty$ |  |  |  |
| Α       | 2      | -8.2691    | -1.6267 | 2.3043  | 4.9882  | 8        |  |  |  |
|         | 3      | -7.5958    | -4.5583 | -2.6518 | 1.6277  | $\infty$ |  |  |  |
|         | 1      | -0.6436    | 4.5593  | 7.5968  | 12.3049 | x        |  |  |  |
| В       | 2      | -2.3033    | 0.3218  | 3.0103  | 5.9210  | 00       |  |  |  |
|         | 3      | -10.9683   | -7.5958 | -1.6267 | 1.6277  | x        |  |  |  |
|         | 1      | -2.6518    | 0.9690  | 1.6277  | 4.1499  | 00       |  |  |  |
| С       | 2      | -5.9200    | -2.3033 | 0.3218  | 4.1499  | 8        |  |  |  |
|         | 3      | -2.6518    | -0.3208 | 6.4346  | 9.0311  | x        |  |  |  |
|         | 1      | -2.3033    | -0.6436 | 2.3043  | 4.9882  | $\infty$ |  |  |  |
| D       | 2      | -4.9872    | 1.2963  | 5.4405  | 6.4346  | $\infty$ |  |  |  |
|         | 3      | -3.7558    | -2.3033 | 0.3218  | 4.9882  | x        |  |  |  |
|         | 1      | -1.9620    | 0.0000  | 3.7603  | 5.9210  | x        |  |  |  |
| ${f E}$ | 2      | -3.7558    | 0.6446  | 3.0103  | 5.4405  | 8        |  |  |  |
|         | 3      | -5.4395    | -2.3033 | 0.9690  | 4.9882  | x        |  |  |  |
|         | 1      | -1.9620    | -1.2953 | -0.3208 | 2.3043  | 00       |  |  |  |
| F       | 2      | -1.9620    | 0.9690  | 4.5593  | 7.5968  | 00       |  |  |  |
|         | 3      | -8.2691    | -1.2953 | 3.7603  | 7.5968  | 00       |  |  |  |
| TOTAL   |        | -3.6276    | -0.5357 | 2.5365  | 5.4405  | $\infty$ |  |  |  |

**Table 3.21.** Logit Transformation Values for Estimated Frequencies and Overall Estimated

 Frequencies for each Category for Surface Defect Example

Then, by using equation (2.24) long–run performance is estimated for each category in decibels for optimal solutions found by Taguchi's method and AA method as tabulated in Table 3.22.

To illustrate, calculation for optimal parameter settings found by AA, where levels of factors C and F are 1, is shown as follows.

For Category 1:

$$\hat{\mu}_{1} = -3.6276 + (2.3043 - (-3.6276)) + (-0.6436 - (-3.6276)) + (-2.6518 - (-3.6276)) + (-2.3033 - (-3.6276)) + (-1.9620 - (-3.6276)) + (-1.9620 - (-3.6276)) \hat{\mu}_{1} = 10.9196$$

 Table 3.22. Estimated Percentage in decibels for each Category for Optimal Levels for

 Surface Defect Example

| FACTORSESTIMATED CUMULATIVE<br>PERCENTAGES |   |   |   |   |   |         |         |         | METHODS |          |                  |
|--------------------------------------------|---|---|---|---|---|---------|---------|---------|---------|----------|------------------|
| Α                                          | B | С | D | E | F | Ι       | II      | III     | IV      | VI       |                  |
| 1                                          | 1 | 1 | 1 | 1 | 1 | 10.9196 | 10.8272 | 14.5907 | 19.7098 | $\infty$ | AA (C=1) & (F=1) |
| 1                                          | 1 | 1 | 1 | 1 | 2 | 10.9196 | 13.0915 | 19.4708 | 25.0023 | $\infty$ | AA (C=1) & (F=2) |
| 1                                          | 1 | 3 | 1 | 1 | 1 | 10.9196 | 9.5374  | 19.3976 | 24.5910 | $\infty$ | AA (C=3) & (F=1) |
| 1                                          | 1 | 3 | 1 | 1 | 2 | 10.9196 | 11.8017 | 24.2777 | 29.8835 | $\infty$ | AA (C=3) & (F=2) |

Then, these estimates are transformed back by using again logit transformation as tabulated in Table 3.23. To illustrate, calculations for estimation of percentages are shown below for the first level combination of AA method where levels of factors C and F are 1.

For Category 1:

 $\hat{\mu}_1 = 10.9196 \ decibels \rightarrow \widehat{CP}_1 = \hat{P}_1 = 92.5137\%$ 

For Category 2:

 $\hat{\mu}_2 = 10.8272 \ decibels \rightarrow \widehat{CP}_2 = 92.3758\%$ 

However, since  $\widehat{CP}_2 = 92.3758\%$  is smaller than  $\widehat{CP}_1 = 92.5137\%$ ,  $\widehat{P}_2$  is assumed to be equal to  $\widehat{CP}_1$ .

Then, by using equation (2.25);

 $\hat{P}_2 = 92.5137 - 92.5137 = 0\%$ 

For Category 3:

 $\hat{\mu}_3 = 14.5907 \ decibels \rightarrow \widehat{CP}_3 = 96.6416\%$ 

By using equation (2.25);

 $\hat{P}_3 = 96.6416 - 92.5137 = 4.1279\%$ 

For Category 4:

 $\hat{\mu}_4 = 19.7098 \ decibels \rightarrow \widehat{CP}_4 = 98.9411\%$ 

By using equation (2.25);

 $\hat{P}_4 = 98.9411 - 96.6416 = 2.2995\%$ 

For Category 5:

 $\hat{\mu}_5 = \infty \ decibels \rightarrow \widehat{CP}_5 = 100\%$ 

By using equation (2.25);

 $\hat{P}_5 = 100 - 98.9411 = 1.0589\%$ 

**Table 3.23.** Estimated Percentage  $\hat{P}_i^{ANOVA(CP)}$  for each Category for Optimal Levels forSurface Defect Example

| <b>FACTORS</b> $\hat{P}_i^{ANOVA(CP)}$ |   |   |   |   |   |         |        | METHODS |        |        |                  |
|----------------------------------------|---|---|---|---|---|---------|--------|---------|--------|--------|------------------|
| A                                      | B | С | D | Ε | F | Ι       | Π      | III     | IV     | VI     |                  |
| 1                                      | 1 | 1 | 1 | 1 | 1 | 92.5137 | 0.0000 | 4.1279  | 2.2995 | 1.0589 | AA (C=1) & (F=1) |
| 1                                      | 1 | 1 | 1 | 1 | 2 | 92.5137 | 2.8082 | 3.5605  | 0.8006 | 0.3170 | AA (C=1) & (F=2) |
| 1                                      | 1 | 3 | 1 | 1 | 1 | 92.5137 | 0.0000 | 6.3495  | 0.7870 | 0.3498 | AA (C=3) & (F=1) |
| 1                                      | 1 | 3 | 1 | 1 | 2 | 92.5137 | 1.2912 | 5.8203  | 0.2711 | 0.1037 | AA (C=3) & (F=2) |

#### 3.1.4. Weighted Signal-to-noise Ratio for Surface Defect Example

In this method, first of all weights are given to categories proportional to the quality loss. However, there is no guidance given for determining scale of weights and spacing between weights. Therefore, two different weight sets are compared to see the effect of choosing different weights on the optimal solution.  $W_1 = (1 \ 2 \ 3 \ 4 \ 5)$  $W_2 = (0 \ 4 \ 31 \ 301 \ 1001)$ 

By using equation (2.26), signal-to-noise ratios are calculated for each set of parameter settings by using both weight alternatives and numbers of observations by category as tabulated in Table 3.24.

| Even No. | Numbe | er of Ob | servatio | SND | SND. |          |          |
|----------|-------|----------|----------|-----|------|----------|----------|
| Exp. No  | Ι     | II       | III      | IV  | V    | SINK1    | SINK2    |
| 1        | 9     | 0        | 0        | 0   | 0    | 0.0000   | 0.5012   |
| 2        | 5     | 2        | 2        | 0   | 0    | -5.3712  | -23.3668 |
| 3        | 1     | 0        | 6        | 2   | 0    | -9.8528  | -43.1752 |
| 4        | 0     | 8        | 1        | 0   | 0    | -6.5854  | -20.8279 |
| 5        | 0     | 1        | 0        | 4   | 4    | -12.7107 | -56.8628 |
| 6        | 1     | 0        | 4        | 1   | 3    | -11.5297 | -55.3718 |
| 7        | 0     | 1        | 1        | 4   | 3    | -12.2760 | -55.7331 |
| 8        | 3     | 0        | 2        | 1   | 3    | -10.9498 | -55.3691 |
| 9        | 0     | 0        | 0        | 4   | 5    | -13.2222 | -57.7593 |
| 10       | 9     | 0        | 0        | 0   | 0    | 0.0000   | 0.5012   |
| 11       | 8     | 1        | 0        | 0   | 0    | -1.2494  | -2.4988  |
| 12       | 2     | 3        | 3        | 0   | 1    | -8.6530  | -50.4789 |
| 13       | 4     | 2        | 2        | 1   | 0    | -7.0852  | -40.1216 |
| 14       | 2     | 3        | 4        | 0   | 0    | -7.4473  | -26.3593 |
| 15       | 0     | 1        | 1        | 1   | 6    | -12.9861 | -58.3134 |
| 16       | 3     | 4        | 2        | 0   | 0    | -6.1396  | -23.4374 |
| 17       | 2     | 1        | 0        | 2   | 4    | -11.8564 | -56.6789 |
| 18       | 0     | 0        | 0        | 2   | 7    | -13.6173 | -59.0280 |

Table 3.24. Weighted Signal to Noise Ratios for Surface Defects

Before ANOVA is applied, residual normality assumption is checked for  $SNR_1$  and  $SNR_2$  as shown on Figures A.1 and A.3, respectively. As seen on these figures, normality assumption is not violated for neither of the SNR values. Then, residual's homogeneity of variance assumption is checked for  $SNR_1$  and  $SNR_2$  as shown on Figures A.2 and A.4,

respectively. As seen on these figures, residuals do not show any pattern, therefore homogeneity of variance assumption is not unrealistic for both SNR values.

Then, ANOVA is applied on  $SNR_1$  and  $SNR_2$  in order to detect the significant factors as shown in Figures 3.3 and 3.4, respectively. Factors A, B and C have significant effects on numbers of surface defects for both  $SNR_1$  and  $SNR_2$  with 90% confidence.

| Analysis                                | s of                     | Variance                                                    | for                              | SNR1,                            | using                                         | Adjusted                    | ss for                       | Tests |
|-----------------------------------------|--------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------------------|-----------------------------|------------------------------|-------|
| Source<br>A<br>B<br>C<br>Error<br>Total | DF<br>2<br>2<br>11<br>17 | Seq SS<br>168.959<br>119.126<br>21.172<br>38.729<br>347.987 | Ad<br>168.<br>119.<br>21.<br>38. | j 55<br>959<br>126<br>172<br>729 | Adj MS<br>84.479<br>59.563<br>10.586<br>3.521 | F<br>23.99<br>16.92<br>3.01 | P<br>0.000<br>0.000<br>0.091 |       |
| 5 = 1.87                                | 7639                     | R-Sq =                                                      | 88.8                             | 87%                              | R-Sq(ad                                       | ij) = 82.                   | 80%                          |       |



| Analysi                                 | s of                     | Varianc                                                 | e for SN                                      | R2, usin                                     | g Adjus                     | ted SS                       | for | Tests |
|-----------------------------------------|--------------------------|---------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------|------------------------------|-----|-------|
| Source<br>A<br>B<br>C<br>Error<br>Total | DF<br>2<br>2<br>11<br>17 | Seq SS<br>3213.1<br>2864.6<br>830.4<br>1228.4<br>8136.5 | Adj SS<br>3213.1<br>2864.6<br>830.4<br>1228.4 | Adj MS<br>1606.6<br>1432.3<br>415.2<br>111.7 | F<br>14.39<br>12.83<br>3.72 | P<br>0.001<br>0.001<br>0.058 |     |       |
| 5 = 10.                                 | 5674                     | R-Sq                                                    | = 84.90%                                      | R-Sq(                                        | adj) =                      | 76.67%                       |     |       |

| Figure 3.4. Analysis of Variance (ANOVA) Results according to SNR <sub>2</sub> for WSNI |
|-----------------------------------------------------------------------------------------|
| Method in Surface Defect Example                                                        |

Then, the averages of signal to noise ratios for each significant factor are calculated according to each level as tabulated in Table 3.25. In this method, all calculations are made in MATLAB.

|                  | FACTORS          |          |          |  |  |  |  |  |  |
|------------------|------------------|----------|----------|--|--|--|--|--|--|
|                  | For Weight Set 1 |          |          |  |  |  |  |  |  |
| LEVELS           | EVELS A B C      |          |          |  |  |  |  |  |  |
| 1                | -4.1877          | -5.3477  | -7.6499  |  |  |  |  |  |  |
| 2                | -9.7240          | -8.2641  | -9.9522  |  |  |  |  |  |  |
| 3                | -11.3435         | -11.6435 | -7.6532  |  |  |  |  |  |  |
| For Weight Set 2 |                  |          |          |  |  |  |  |  |  |
| LEVELS           | Α                | В        | С        |  |  |  |  |  |  |
| 1                | -19.7529         | -23.1862 | -32.5962 |  |  |  |  |  |  |
| 2                | -42.9761         | -36.8560 | -47.5985 |  |  |  |  |  |  |
| 3                | -51.3343         | -54.0211 | -33.8686 |  |  |  |  |  |  |

 Table 3.25. Averages of Signal-to-noise Ratios for each Significant Factor and Level for

 Surface Defect Example

As seen in Table 3.25, parameter settings that have the maximum weighted signal-to-noise ratios are same for both weight sets. This fact shows that changes in scale of weights and spacing between weights have not had impact on optimal levels which are  $A_1B_1C_1$ .

By using Taguchi's prediction equation (3.2), the predicted SNR values for these optimum levels are found as given in Table 3.26.

| Table 3.26. Predicted SNR Values for Optimal Parameter Settings Found by WSNR an |
|----------------------------------------------------------------------------------|
| Taguchi according to Taguchi's Method for Surface Defect Example                 |

|   | FACTORS |   | SND     | METHODS          |  |
|---|---------|---|---------|------------------|--|
| Α | В       | С | 5111    | METHODS          |  |
| 1 | 1       | 1 | -0.0788 | Taguchi's Method |  |
| 1 | 1       | 1 | -0.0788 | WSNR             |  |

According to Table 3.26, WSNR method can find same result as parameter settings found by Taguchi's method.

# 3.1.5. Scoring Scheme Method for Surface Defect Example

In this method first of all, midranks for each category are calculated by using equation (2.27). Then, location score for each category is calculated by using equations (2.28) and (2.29). These calculated data are tabulated in Table 3.27. To illustrate, these calculations for category 1 is shown below.

# For Category 1;

As seen in Table 3.28, sum of numbers of observations in category 1 is 49 and overall sum of numbers of observations is 162. Then,

$$q_{1} = \frac{49}{162} = 0.3025$$

$$\tau_{1} = \frac{0.3025}{2} = 0.1512$$

$$\tilde{\tau}_{1} = 0.1512 - 0.5 = -0.3488$$

$$l_{1} = \frac{-0.3488}{(0.3025 \times (-0.3488)^{2} + 0.1667 \times (-0.1142)^{2} + 0.1728 \times 0.0556^{2} + 0.1358 \times 0.2099^{2} + 0.2222 \times 0.3889^{2})^{1/2}}$$

$$l_{1} = -1.2402$$

|                    | CATEGORIES |         |        |        |        |  |  |  |
|--------------------|------------|---------|--------|--------|--------|--|--|--|
|                    | Ι          | Π       | III    | IV     | V      |  |  |  |
| $q_i$              | 0.3025     | 0.1667  | 0.1728 | 0.1358 | 0.2222 |  |  |  |
| $	au_{\mathrm{i}}$ | 0.1512     | 0.3858  | 0.5556 | 0.7099 | 0.8889 |  |  |  |
| $\tilde{\tau_i}$   | -0.3488    | -0.1142 | 0.0556 | 0.2099 | 0.3889 |  |  |  |
| $l_i$              | -1.2402    | -0.4061 | 0.1975 | 0.7463 | 1.3828 |  |  |  |

Table 3.27. Calculated Data and Location Scores

| Ewn No             | Numbers of Observations by Categories |    |     |    |    |  |  |  |
|--------------------|---------------------------------------|----|-----|----|----|--|--|--|
| Exp. NO            | Ι                                     | II | III | IV | V  |  |  |  |
| 1                  | 9                                     | 0  | 0   | 0  | 0  |  |  |  |
| 2                  | 5                                     | 2  | 2   | 0  | 0  |  |  |  |
| 3                  | 1                                     | 0  | 6   | 2  | 0  |  |  |  |
| 4                  | 0                                     | 8  | 1   | 0  | 0  |  |  |  |
| 5                  | 0                                     | 1  | 0   | 4  | 4  |  |  |  |
| 6                  | 1                                     | 0  | 4   | 1  | 3  |  |  |  |
| 7                  | 0                                     | 1  | 1   | 4  | 3  |  |  |  |
| 8                  | 3                                     | 0  | 2   | 1  | 3  |  |  |  |
| 9                  | 0                                     | 0  | 0   | 4  | 5  |  |  |  |
| 10                 | 9                                     | 0  | 0   | 0  | 0  |  |  |  |
| 11                 | 8                                     | 1  | 0   | 0  | 0  |  |  |  |
| 12                 | 2                                     | 3  | 3   | 0  | 1  |  |  |  |
| 13                 | 4                                     | 2  | 2   | 1  | 0  |  |  |  |
| 14                 | 2                                     | 3  | 4   | 0  | 0  |  |  |  |
| 15                 | 0                                     | 1  | 1   | 1  | 6  |  |  |  |
| 16                 | 3                                     | 4  | 2   | 0  | 0  |  |  |  |
| 17                 | 2                                     | 1  | 0   | 2  | 4  |  |  |  |
| 18                 | 0                                     | 0  | 0   | 2  | 7  |  |  |  |
| Total              | 49                                    | 27 | 28  | 22 | 36 |  |  |  |
| <b>Overall Sum</b> | 162                                   |    |     |    |    |  |  |  |

 Table 3.28. Sum of Numbers of Observation in each Category and Overall Sum of

 Numbers of Each Category for Surface Defect Example

Then, by using equation (2.30), location pseudo-observations are calculated as tabulated in Table 3.30 for each set of parameter settings.

Moreover, by using equations (2.31) and (2.32) dispersion scores are calculated for each category as shown in Table 3.29. To illustrate, these calculations for category 1 is shown below.

For Category 1;

$$e_1 = -1.2402 \times (-1.2402 - (0.3025 \times (-1.2402)^3 + 0.1667 \times (-0.4061)^3 + 0.1728 \times 0.1975^3 + 0.1358 \times 0.7463^3 + 0.2222 \times 1.3828^3)) - 1$$

$$e_1 = 0.6091$$

$$d_1 =$$

0.6091

 $\overline{(0.3025 \times (0.6091)^2 + 0.1667 \times (-0.8118)^2 + 0.1728 \times (-0.9723)^2 + 0.1358 \times (-0.4858)^2 + 0.2222 \times 0.8330^2)^{1/2}}$ 

 $d_1 = 0.8056$ 

|    | CATEGORIES |         |         |         |        |  |  |
|----|------------|---------|---------|---------|--------|--|--|
|    | Ι          | II      | III     | IV      | V      |  |  |
| ei | 0.6091     | -0.8118 | -0.9723 | -0.4858 | 0.8330 |  |  |
| di | 0.8056     | -1.0737 | -1.2859 | -0.6425 | 1.1017 |  |  |

Table 3.29. Calculated Data and Dispersion Scores

In addition, by using equation (2.33), dispersion pseudo-observations are calculated as tabulated in Table 3.30 for each set of parameter settings.

| Exp. No | Α | В | С | D | Е | F | Li      | Di     |
|---------|---|---|---|---|---|---|---------|--------|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 | -11.169 | 7.254  |
| 2       | 1 | 2 | 2 | 2 | 2 | 2 | -6.616  | -0.69  |
| 3       | 1 | 3 | 3 | 3 | 3 | 3 | 1.44    | -8.196 |
| 4       | 2 | 1 | 1 | 2 | 2 | 3 | -3.05   | -9.878 |
| 5       | 2 | 2 | 2 | 3 | 3 | 1 | 8.11    | 0.762  |
| 6       | 2 | 3 | 3 | 1 | 1 | 2 | 4.447   | -1.675 |
| 7       | 3 | 1 | 2 | 1 | 3 | 3 | 6.925   | -1.626 |
| 8       | 3 | 2 | 3 | 2 | 1 | 1 | 1.571   | 2.509  |
| 9       | 3 | 3 | 1 | 3 | 2 | 2 | 9.899   | 2.938  |
| 10      | 1 | 1 | 3 | 3 | 2 | 1 | -11.16  | 7.254  |
| 11      | 1 | 2 | 1 | 1 | 3 | 2 | -10.326 | 5.374  |
| 12      | 1 | 3 | 2 | 2 | 1 | 3 | -1.721  | -4.366 |
| 13      | 2 | 1 | 2 | 3 | 1 | 2 | -4.63   | -2.139 |

Table 3.30. Location and Dispersion Pseudo-observations for each Experiment
| 14 | 2 | 2 | 3 | 1 | 2 | 3 | -2.906 | -6.754 |
|----|---|---|---|---|---|---|--------|--------|
| 15 | 2 | 3 | 1 | 2 | 3 | 1 | 8.836  | 3.609  |
| 16 | 3 | 1 | 3 | 2 | 3 | 2 | -4.948 | -4.45  |
| 17 | 3 | 2 | 1 | 3 | 1 | 3 | 4.138  | 3.66   |
| 18 | 3 | 3 | 2 | 1 | 2 | 1 | 11.173 | 6.428  |

Table 3.30 (cont'd) Location and Dispersion Pseudo-observations for each Experiment

After residual normality and homogeneity of variance assumptions are checked for L and D scores, ANOVA is applied for L and D as shown on Figure 3.5 and 3.6, respectively.

| Analysi                   | s of               | Varianc                              | e for Li                             | , using                             | Adjuste             | d SS for            | Tests |
|---------------------------|--------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------|---------------------|-------|
| Source<br>A<br>B<br>Error | DF<br>2<br>2<br>13 | Seq SS<br>418.03<br>330.53<br>173.83 | Adj 55<br>418.03<br>330.53<br>173.83 | Adj MS<br>209.01<br>165.26<br>13.37 | F<br>15.63<br>12.36 | P<br>0.000<br>0.001 |       |
| Total                     | 17                 | 922.39                               | 1,5105                               | 10107                               |                     |                     |       |
| 5 = 3.6                   | 5670               | R-Sq                                 | = 81.15%                             | R-Sq(                               | (adj) =             | 75.36%              |       |

Figure 3.5. Analysis of Variance (ANOVA) Results according to L Scores for SS Method in Surface Defect Example

As seen on Figure 3.5, only factors A and B have significant effect on location scores with p values smaller than 0.10.

| Analysis                                     | s of                         | Variance                                                             | for Di,                                                   | using Adj                                                | usted S                            | s for Te                              | sts |
|----------------------------------------------|------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------|---------------------------------------|-----|
| Source<br>A<br>C<br>D<br>F<br>Error<br>Total | DF<br>2<br>2<br>2<br>9<br>17 | Seq SS<br>65.306<br>49.751<br>45.886<br>251.968<br>64.189<br>477.099 | Adj 55<br>65.306<br>49.751<br>45.886<br>251.968<br>64.189 | Adj MS<br>32.653<br>24.875<br>22.943<br>125.984<br>7.132 | F<br>4.58<br>3.49<br>3.22<br>17.66 | P<br>0.043<br>0.076<br>0.088<br>0.001 |     |
| 5 = 2.67                                     | 7060                         | R-Sq =                                                               | 86.55%                                                    | R-Sq(adj                                                 | ) = 74.                            | 59%                                   |     |

Figure 3.6. Analysis of Variance (ANOVA) Results according to D Scores for SS Method in Surface Defect Example

As seen on Figure 3.6, factors A, C, D and F have significant effect on dispersion scores with p values smaller than 0.10.

Then, the averages of location and dispersion pseudo-observations for each significant factor are calculated according to each level as seen in Table 3.31. In this method, all calculations are made in MATLAB.

| Level      | Α      | В      | С      | D      | F      |
|------------|--------|--------|--------|--------|--------|
| Location   |        |        |        |        |        |
| 1          | -6.592 | -4.672 |        |        |        |
| 2          | 1.801  | -1.005 |        |        |        |
| 3          | 4.793  | 5.679  |        |        |        |
| Dispersion |        |        |        |        |        |
| 1          | 1.103  |        | 2.160  | 1.500  | 4.636  |
| 2          | -2.679 |        | -0.272 | -2.211 | -0.107 |
| 3          | 1.576  |        | -1.885 | 0.713  | -4.526 |

Table 3.31. Averages of Location and Dispersion Pseudo-observations for each Factor

Since this is smaller-the-better type of a problem, the minimum average value for both location and dispersion pseudo-observations for each significant factor gives the optimal parameter settings. Hence, as seen in Table 3.31, optimal parameter settings are estimated to be  $A_1B_1$  and  $A_2C_3D_2F_3$  according to location and dispersion results, respectively. Since

the optimal parameter settings of factor A for location and dispersion results differ, it is necessary to compromise between two different levels for the factor A. No method is suggested for compromising between two such different levels. Therefore, as explained in subsection 2.1.4, estimated location and dispersion scores are calculated for all possible levels of factor A by using equations (2.34) and (2.35), respectively. To illustrate, these calculations are shown below for level of 1 for factor A.

$$\overline{\text{For Level of A} = 1};$$

$$\overline{L} = \frac{\sum_{i=1}^{18} L_i}{18} = 0.0007$$

$$\overline{D} = \frac{\sum_{i=1}^{18} D_i}{18} = 0.0008$$

$$\widehat{L} = 0.0007 + (-6.592 - 0.0007) + (-4.672 - 0.0007) = -11.2646$$

$$\widehat{D} = 0.0008 + (1.103 - 0.0008) + (-1.885 - 0.0008) + (-2.211 - 0.0008) + (-4.526 - 0.0008) = -7.5224$$

When the calculations are done for all possible (1, 2, 3) levels of factor A, predicted location versus dispersion scores graph are shown on Figure 3.7.



Figure 3.7. Predicted Location versus Dispersion Scores for Surface Defect Example

It is tried to determine the point that reduce both predicted location and dispersion scores. Hence, as seen on this figure there is too much difference between predicted location scores for level 1 and 2 of factor A whereas there is not too much difference between predicted dispersion scores for level 1 and 2. Therefore, it is better to choose the level 1 of A which has minimum predicted location score.

According to these results, the optimal parameter settings are A<sub>1</sub>B<sub>1</sub>C<sub>3</sub>D<sub>2</sub>F<sub>3</sub>.

The predicted SNR values found by using Taguchi's prediction equation (3.2), for these optimum levels are given in Table 3.32.

 

 Table 3.32. Predicted SNR Values for Optimal Parameter Settings Found by SS and Taguchi according to Taguchi's Method

| F | ACTORS |   | SND     | METHODS          |  |
|---|--------|---|---------|------------------|--|
| Α | В      | С | SIVIN   | WIETHODS         |  |
| 1 | 1      | 3 | -2.1170 | SS               |  |
| 1 | 1      | 1 | -0.0788 | Taguchi's Method |  |

As seen in Table 3.32, SS method cannot find the optimal parameter settings same as ones found by Taguchi.

#### 3.1.6. Weighted Probability Scoring Scheme Method for Surface Defect Example

First of all, this method gives the target category the largest weight, thus location effect behaves as larger-the-better type. Therefore, since category 1 is the most desired category, the weights are chosen as given below.

 $Weights = (5 \ 4 \ 3 \ 2 \ 1)$ 

Then, proportions of observation  $p_{ij}$  for each category *i* and set *j* of parameter settings are calculated as tabulated in Table 3.33. To illustrate, proportions of observations for first experiment are calculated as shown below.

$$p_{11} = \frac{9}{9} = 1$$
$$p_{21} = p_{31} = p_{41} = p_{51} = \frac{0}{9} = 0$$

| E N     |      | CATEGORIES |      |      |      |  |  |  |  |  |  |  |
|---------|------|------------|------|------|------|--|--|--|--|--|--|--|
| Exp. No | Ι    | II         | III  | IV   | V    |  |  |  |  |  |  |  |
| 1       | 1.00 | 0.00       | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 2       | 0.56 | 0.22       | 0.22 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 3       | 0.11 | 0.00       | 0.67 | 0.22 | 0.00 |  |  |  |  |  |  |  |
| 4       | 0.00 | 0.89       | 0.11 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 5       | 0.00 | 0.11       | 0.00 | 0.44 | 0.44 |  |  |  |  |  |  |  |
| 6       | 0.11 | 0.00       | 0.44 | 0.11 | 0.33 |  |  |  |  |  |  |  |
| 7       | 0.00 | 0.11       | 0.11 | 0.44 | 0.33 |  |  |  |  |  |  |  |
| 8       | 0.33 | 0.00       | 0.22 | 0.11 | 0.33 |  |  |  |  |  |  |  |
| 9       | 0.00 | 0.00       | 0.00 | 0.44 | 0.56 |  |  |  |  |  |  |  |
| 10      | 1.00 | 0.00       | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 11      | 0.89 | 0.11       | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 12      | 0.22 | 0.33       | 0.33 | 0.00 | 0.11 |  |  |  |  |  |  |  |
| 13      | 0.44 | 0.22       | 0.22 | 0.11 | 0.00 |  |  |  |  |  |  |  |
| 14      | 0.22 | 0.33       | 0.44 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 15      | 0.00 | 0.11       | 0.11 | 0.11 | 0.67 |  |  |  |  |  |  |  |
| 16      | 0.33 | 0.44       | 0.22 | 0.00 | 0.00 |  |  |  |  |  |  |  |
| 17      | 0.22 | 0.11       | 0.00 | 0.22 | 0.44 |  |  |  |  |  |  |  |
| 18      | 0.00 | 0.00       | 0.00 | 0.22 | 0.78 |  |  |  |  |  |  |  |

**Table 3.33.** Proportions of observations  $p_{ij}$  for each category i and set j of parametersettings for Surface Defect Example

Then, location scores are calculated depending on equation (2.36) as tabulated in Table 3.34 by using these weights and proportions of observations. To illustrate, location score is calculated for first set of parameter settings as shown below.

 $L_1 = 5 \times 1 + 4 \times 0 + 3 \times 0 + 2 \times 0 + 1 \times 0 = 5$ 

Before calculating dispersion scores, target value set is determined as given below. In this set, all the observations are expected to be in category 1, therefore 5 is assigned for category 1.

 $Target = (5 \ 0 \ 0 \ 0 \ 0)$ 

Then, dispersion scores are calculated as tabulated in Table 3.34 according to equation (2.37) by using weights, proportion of observation for each category and target value set. To illustrate, dispersion score is calculated for first set of parameter settings as shown below.

$$D_1^2 = (5 \times 1 - 5)^2 + (4 \times 0 - 0)^2 + (3 \times 0 - 0)^2 + (2 \times 0 - 0)^2 + (1 \times 0 - 0)^2 = 0$$

Instead of compromising between optimal levels for location and dispersion scores, mean square deviation (MSD) scores are calculated based on equation (2.38) by using location and dispersion scores in order to determine the optimal solution as given in Table 3.34. To illustrate, MSD score is calculated for first set of parameter settings as shown below.

$$E(MSD_1) \cong \frac{1}{5^2} \left( 1 + \frac{3 \times 0^2}{5^2} \right) = 0.04$$

| Table 3.34. Location, | Dispersion a | nd Mean  | Squared | Deviation | Scores | for e | each |
|-----------------------|--------------|----------|---------|-----------|--------|-------|------|
|                       | E            | xperimei | nt      |           |        |       |      |

| Exp. No | Α | B | С | D | Ε | F | $\mathbf{L}_{\mathbf{i}}$ | $d_i^2$ | MSD     |
|---------|---|---|---|---|---|---|---------------------------|---------|---------|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 | 5.0000                    | 0.0000  | 0.0400  |
| 2       | 1 | 2 | 2 | 2 | 2 | 2 | 4.3333                    | 6.1728  | 0.1058  |
| 3       | 1 | 3 | 3 | 3 | 3 | 3 | 3.0000                    | 23.9506 | 0.9982  |
| 4       | 2 | 1 | 1 | 2 | 2 | 3 | 3.8889                    | 37.7531 | 0.5613  |
| 5       | 2 | 2 | 2 | 3 | 3 | 1 | 1.7778                    | 26.1852 | 8.1808  |
| 6       | 2 | 3 | 3 | 1 | 1 | 2 | 2.4444                    | 21.6914 | 1.9899  |
| 7       | 3 | 1 | 2 | 1 | 3 | 3 | 2.0000                    | 26.2099 | 5.1644  |
| 8       | 3 | 2 | 3 | 2 | 1 | 1 | 2.8889                    | 11.7160 | 0.6245  |
| 9       | 3 | 3 | 1 | 3 | 2 | 2 | 1.4444                    | 26.0988 | 18.4654 |
| 10      | 1 | 1 | 3 | 3 | 2 | 1 | 5.0000                    | 0.0000  | 0.0400  |
| 11      | 1 | 2 | 1 | 1 | 3 | 2 | 4.8889                    | 0.5062  | 0.0445  |
| 12      | 1 | 3 | 2 | 2 | 1 | 3 | 3.5556                    | 17.9136 | 0.4154  |
| 13      | 2 | 1 | 2 | 3 | 1 | 2 | 4.0000                    | 9.0000  | 0.1680  |
| 14      | 2 | 2 | 3 | 1 | 2 | 3 | 3.7778                    | 18.6790 | 0.3452  |
| 15      | 2 | 3 | 1 | 2 | 3 | 1 | 1.6667                    | 25.8025 | 10.3920 |
| 16      | 3 | 1 | 3 | 2 | 3 | 2 | 4.1111                    | 14.7160 | 0.2137  |
| 17      | 3 | 2 | 1 | 3 | 1 | 3 | 2.4444                    | 15.7160 | 1.4879  |
| 18      | 3 | 3 | 2 | 1 | 2 | 1 | 1.2222                    | 25.8025 | 35.3576 |

After residual normality and homogeneity of variance assumptions are checked for MSD scores, ANOVA is applied for MSD as shown on Figure 3.8.

| Analysi                                           | s of                                   | Variance                                                                      | for                                                 | MSD,                                   | using                                                           | Adjusted                                   | l ss | for                             | Tests |
|---------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|--------------------------------------------|------|---------------------------------|-------|
| Source<br>A<br>B<br>C<br>E<br>F<br>Error<br>Total | DF<br>2<br>2<br>2<br>2<br>2<br>7<br>17 | Seq SS<br>307.47<br>390.25<br>172.06<br>212.15<br>186.75<br>134.73<br>1403.41 | Adj<br>307.<br>390.<br>172.<br>212.<br>186.<br>134. | SS<br>47<br>25<br>06<br>15<br>75<br>73 | Adj MS<br>153.73<br>195.13<br>86.03<br>106.07<br>93.38<br>19.25 | F<br>7.99<br>10.14<br>4.47<br>5.51<br>4.85 | 0.0  | P<br>16<br>09<br>56<br>37<br>48 |       |
| 5 = 4.3                                           | 8711                                   | R-Sq =                                                                        | 90.4                                                | 40%                                    | R-Sq(a                                                          | adj) = 70                                  | 5.69 | %                               |       |

Figure 3.8. Analysis of Variance (ANOVA) Results according to MSD Scores for WPSS Method in Surface Defect Example

As seen on Figure 3.8, only factor D has no significant effect on MSD scores with 90% confidence.

In order to see how MSD scores for each level of significant factors behave, the averages of them for each significant factor are calculated according to each level as shown in Table 3.35.

|        | FACTORS |         |        |        |        |  |  |  |  |
|--------|---------|---------|--------|--------|--------|--|--|--|--|
| LEVELS | А       | В       | С      | Ε      | F      |  |  |  |  |
| 1      | 0.2740  | 1.0312  | 5.1652 | 0.7876 | 9.1058 |  |  |  |  |
| 2      | 3.6062  | 1.7981  | 8.2320 | 9.1459 | 3.4979 |  |  |  |  |
| 3      | 10.2189 | 11.2698 | 0.7019 | 4.1656 | 1.4954 |  |  |  |  |

 Table 3.35. Averages of Mean Square Deviation Scores for each Significant Factor in

 Surface Defect Example

Since levels that have the lowest MSD give the optimal levels, optimal levels are  $A_1B_1C_3E_1F_3$ .

The predicted SNR values found by using Taguchi's prediction equation (3.2), for these optimal parameter settings are given in Table 3.36. In this method, all calculations are made in MATLAB.

|   | Factors |   | SND     | Mathada          |
|---|---------|---|---------|------------------|
| Α | В       | С | SINK    | Ivietiious       |
| 1 | 1       | 3 | -2.1170 | WPSS             |
| 1 | 1       | 1 | -0.0788 | Taguchi's Method |

 

 Table 3.36. Predicted SNR Values for Optimal Parameter Settings Found by WPSS and Taguchi according to Taguchi's Method

As seen in Table 3.36, WPSS method cannot find the optimal parameter settings same as the ones found by Taguchi.

The methods are compared according to three different performance measures which are predicted SNRs calculated depending on Taguchi's Method, estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category calculated depending on LRMO and estimated percentage  $\hat{P}_t^{ANOVA(CP)}$  of target category as tabulated in Tables 3.37, 3.38 and 3.39, respectively.

As seen in Table 3.37, LRMO, AA and WSNR show the best performance according to performance criterion of Taguchi's method.

As seen in Table 3.38, LRMO, AA and WSNR show the best performance according to performance criteria of LRMO.

As seen in Table 3.39, LRMO, AA and WSNR show the best performance according to performance criterion which is target category's percentage. In this comparison, since all factors are found as significant depending on ANOVA results depending on frequencies of categories and LRMO, WSNR, SS and WPSS find some factors as insignificant, some alternative optimal solutions for these methods are considered. In Table 3.39, optimal solution alternatives that give the best percentage of target category among all possible alternatives are tabulated for these methods.

|   | Factors |   | SND     | Mathada          |
|---|---------|---|---------|------------------|
| Α | B       | С | SINK    | Wiethous         |
| 1 | 1       | 1 | -0.0788 | Taguchi's Method |
| 1 | 1       | 1 | -0.0788 | LRMO             |
| 1 | 1       | 1 | -0.0788 | AA (C=1)         |
| 1 | 1       | 1 | -0.0788 | WSNR             |
| 1 | 1       | 3 | -2.1170 | SS               |
| 1 | 1       | 3 | -2.1170 | WPSS             |

 

 Table 3.37. Comparison Table According to Prediction Depending on Taguchi's Method in Surface Defect Example

 Table 3.38. Comparison Table According to Prediction Depending on LRMO in Surface

 Defect Example

| F | AC | ТОІ | RS |        |        | $\hat{P}_i^{LR(P)}$ |        |        | SNR     | METHODS    |
|---|----|-----|----|--------|--------|---------------------|--------|--------|---------|------------|
| Α | B  | C′  | Е  | 1      | 2      | 3                   | 4      | 5      |         |            |
| 1 | 1  | 3   | 1  | 0.9498 | 0.0346 | 0.0111              | 0.0030 | 0.0015 | -1.0530 | LRMO       |
| 1 | 1  | 3   | 1  | 0.9498 | 0.0346 | 0.0111              | 0.0030 | 0.0015 | -1.0530 | AA (C'=3)  |
| 1 | 1  | 3   | 1  | 0.9498 | 0.0346 | 0.0111              | 0.0030 | 0.0015 | -1.0530 | WSNR (E=1) |
| 1 | 1  | 2   | 1  | 0.9219 | 0.0533 | 0.0175              | 0.0048 | 0.0025 | -1.5559 | SS (E=1)   |
| 1 | 1  | 2   | 1  | 0.9219 | 0.0533 | 0.0175              | 0.0048 | 0.0025 | -1.5559 | WPSS       |

**Table 3.39.** Comparison Table According to Prediction Depending on Observed

 Percentages of a Category in Surface Defect Example

|   | FA | СТ | OI | RS |   |         | $\widehat{P}_i^A$ | METHODS |        |        |                  |
|---|----|----|----|----|---|---------|-------------------|---------|--------|--------|------------------|
| Α | B  | С  | D  | E  | F | Ι       | II                | III     | IV     | V      | METHODS          |
| 1 | 1  | 1  | 1  | 1  | 1 | 02 5137 | 0.0000            | 6 3/05  | 0 7870 | 0 3/08 | LRMO (D=1) &     |
| 1 | 1  | 1  | 1  | 1  | 1 | 92.3137 | 0.0000            | 0.3495  | 0.7870 | 0.3490 | (F=1)            |
| 1 | 1  | 1  | 1  | 1  | 2 | 02 5127 | 1 2012            | 5 8203  | 0 2711 | 0 1027 | LRMO (D=1) &     |
| 1 | 1  | 1  | 1  | 1  | 2 | 92.3137 | 1.2912            | 5.8205  | 0.2711 | 0.1037 | (F=2)            |
| 1 | 1  | 1  | 1  | 1  | 1 | 92.5137 | 0.0000            | 4.1279  | 2.2995 | 1.0589 | AA (C=1) & (F=1) |
| 1 | 1  | 1  | 1  | 1  | 2 | 92.5137 | 2.8082            | 3.5605  | 0.8006 | 0.3170 | AA (C=1) & (F=2) |

| 1 | 1 | 3 | 1 | 1 | 1 | 92.5137 | 0.0000  | 6.3495 | 0.7870 | 0.3498 | AA (C=3) & (F=1) |
|---|---|---|---|---|---|---------|---------|--------|--------|--------|------------------|
| 1 | 1 | 3 | 1 | 1 | 2 | 92.5137 | 1.2912  | 5.8203 | 0.2711 | 0.1037 | AA (C=3) & (F=2) |
| 1 | 1 | 1 | 1 | 1 | 1 | 92.5137 | 0.0000  | 4.1279 | 2.2995 | 1.0589 | WSNR (D=E=F=1)   |
| 1 | 1 | 3 | 2 | 1 | 3 | 60.9242 | 32.4319 | 6.4232 | 0.2207 | 0.0000 | SS (E=1)         |
| 1 | 1 | 3 | 1 | 1 | 3 | 74.3068 | 15.6836 | 9.5599 | 0.3460 | 0.1037 | WPSS (D=1)       |

 Table 3.39 (cont'd). Comparison Table According to Prediction Depending on Observed

 Percentages of a Category in Surface Defect Example

## **3.2. THICK-FILM RESISTOR PRODUCTION EXAMPLE**

In this case, another data set, which is analyzed by Jeng and Guo (1996), is used to make another comparison of the methods. In this experiment, quality of chip resistor RC06 is tried to be improved. Manufacturers of resistors target to produce resistors that have resistance of 10 $\Omega$ . Then, in this problem, amount of deviation from this target value is chosen as quality characteristics. Therefore, eight controllable factors that affect the amount of deviation from this target value are determined, and tabulated in Table 3.40. Moreover, percentage deviations from this target value are calculated and categorized into six categories by using Table 3.41 for different set of parameter settings.

| F | ACTORS            |           | LEVELS     |            |
|---|-------------------|-----------|------------|------------|
| ľ | ACTORS            | 1         | 2          | 3          |
| Α | Paste blends      | 70%:30%   | 80%:20%    | -          |
| В | Printing speed    | 62 mm/s   | 123mm/s    | 183mm/s    |
| С | Printing height   | 2×0.5mm   | 2×0.64mm   | 3×0.5mm    |
| D | Squeegee pressure | Scale 1   | Scale 2    | Scale 3    |
| Ε | Screen tension    | 25 psi    | 22 psi     | 19 psi     |
| F | Temperature       | Profile 1 | Profile 2  | Profile 3  |
| G | Conveyor speed    | 80 mm/min | 100 mm/min | 120 mm/min |
| Н | Operator shift    | 1         | 2          | 3          |

 Table 3.40. Controllable Factors and Their Levels for the Thick-film Resistor Production

 Example

| Category | Percentage Deviation | n Range from Target | Degree of<br>Modification |
|----------|----------------------|---------------------|---------------------------|
| Ι        | 0                    | -15                 | slightly                  |
| II       | -16                  | -30                 | moderately                |
| III      | -31                  | -45                 | fairly                    |
| IV       | -46                  | -60                 | heavily                   |
| V        | -60                  | -∞-                 | none (scrapped)           |
| VI       | ×                    | 0                   | none (scrapped)           |

Table 3.41. Percentage Deviation Range from Target

Numbers of occurrence of each category for 18 experimental runs are tabulated in Table 3.42. In addition, set of parameter settings of these 18 experimental runs are designed and applied at the selected factor levels according to the  $L_{18}$  orthogonal array as given in Table 3.43. Factor H is not taken into consideration by Jeng and Guo (1996) in their study. Factor H is not included while applying the methods in this study.

| Table 3.42.         Numbers | of occurrences | of each | category   | for e  | each set of | f parameter | settings in |
|-----------------------------|----------------|---------|------------|--------|-------------|-------------|-------------|
|                             | the Thick-film | Resisto | or Product | tion I | Example     |             |             |

| Ewn No  |      |      | CATI | EGORIES |     |     |
|---------|------|------|------|---------|-----|-----|
| Exp. NO | Ι    | II   | III  | IV      | V   | VI  |
| 1       | 256  | 2250 | 2791 | 337     | 5   | 31  |
| 2       | 0    | 51   | 1791 | 3825    | 3   | 0   |
| 3       | 1    | 180  | 2404 | 3081    | 4   | 0   |
| 4       | 0    | 70   | 2085 | 3504    | 1   | 10  |
| 5       | 9    | 233  | 3665 | 1733    | 3   | 27  |
| 6       | 32   | 616  | 3878 | 1104    | 37  | 3   |
| 7       | 3    | 116  | 2945 | 2378    | 208 | 20  |
| 8       | 0    | 1    | 176  | 5477    | 16  | 0   |
| 9       | 17   | 325  | 5299 | 25      | 0   | 4   |
| 10      | 448  | 4323 | 892  | 6       | 0   | 1   |
| 11      | 1993 | 2798 | 559  | 14      | 0   | 306 |
| 12      | 1362 | 4226 | 38   | 1       | 0   | 43  |
| 13      | 13   | 1072 | 4570 | 6       | 0   | 9   |

| 14 | 2020 | 2723 | 486  | 74 | 2 | 365 |
|----|------|------|------|----|---|-----|
| 15 | 768  | 4382 | 485  | 11 | 0 | 24  |
| 16 | 313  | 2735 | 2591 | 19 | 0 | 12  |
| 17 | 19   | 3997 | 1067 | 2  | 0 | 18  |
| 18 | 249  | 3755 | 1613 | 53 | 0 | 0   |

 Table 3.42 (cont'd) Numbers of occurrences of each category for each set of parameter settings in the Thick-film Resistor Production Example

 Table 3.43. Experimental Design for the Thick-film Resistor Production Example

| Exp. No | Α | В | С | D | Ε | F | G | Η |
|---------|---|---|---|---|---|---|---|---|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2       | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3       | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4       | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 |
| 5       | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 1 |
| 6       | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
| 7       | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 3 |
| 8       | 1 | 3 | 2 | 3 | 2 | 1 | 3 | 1 |
| 9       | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 2 |
| 10      | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 1 |
| 11      | 2 | 1 | 2 | 1 | 1 | 3 | 3 | 2 |
| 12      | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 3 |
| 13      | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 2 |
| 14      | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 3 |
| 15      | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 1 |
| 16      | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 2 |
| 17      | 2 | 3 | 2 | 1 | 3 | 1 | 2 | 3 |
| 18      | 2 | 3 | 3 | 2 | 1 | 2 | 3 | 1 |

In this example, since it is targeted to achieve minimum percentage deviation from target, the most desired category is category 1. Therefore, it is smaller-the-better type of a problem.

# **3.2.1.** Logistic Regression Model Optimization for Thick-film Resistor Production Example

As explained in step 1 of subsection 2.1, an ordinal logistic regression model is fit by using MINITAB and all factors and three interactions except factor B have significant effect on the percentage deviation from the target value as shown in Figure 3.9. Because these factors' p values are smaller than 0.10 depending on 90% confidence. Since interaction of factors A and B has significant effect on the percentage deviation from target value, factor B is not omitted from the model. Also, on this figure the intercept of this model and coefficients of each factor are given.

| Logistic R      | Regression Ta | ble        |           |        |              |          |         |
|-----------------|---------------|------------|-----------|--------|--------------|----------|---------|
|                 |               |            |           |        |              | 95       | % CI    |
| Predictor       | Coef          | SE Coef    | Z         | P      | Odds Ratio   | Lower    | Upper   |
| Const(1)        | -9.58516      | 0.0974090  | -98.40    | 0.000  |              |          |         |
| Const(2)        | -5.98730      | 0.0932686  | -64.19    | 0.000  |              |          |         |
| Const(3)        | -2.28962      | 0.0921678  | -24.84    | 0.000  |              |          |         |
| Const(4)        | 1.79114       | 0.0949946  | 18.86     | 0.000  |              |          |         |
| Const(5)        | 2.06968       | 0.09646/0  | 21.45     | 0.000  |              |          |         |
| A               | 6.894/6       | 0.0/49910  | 91.94     | 0.000  | 987.09       | 852.16   | 1143.38 |
| B               | -0.01519/1    | 0.025/8/8  | -0.59     | 0.556  | 0.98         | 0.94     | 1.04    |
| C               | 1./8355       | 0.0422295  | 42.23     | 0.000  | 5.95         | 5.48     | 6.46    |
| D_              | 2,02061       | 0.001.0000 | 00.70     | 0 000  | 0.12         | 0.13     | 0.14    |
| 2               | -2.02961      | 0.0218809  | -92.76    | 0.000  | 0.13         | 0.13     | 0.14    |
| _3              | -2.3/834      | 0.0283523  | -83.89    | 0.000  | 0.09         | 0.09     | 0.10    |
| E               | -0./00388     | 0.0133812  | -00.09    | 0.000  | 0.47         | 0.46     | 0.48    |
| F               | 2 62122       | 0 0827500  | 21 69     | 0 000  | 0.07         | 0.06     | 0.00    |
| 2               | 1 69207       | 0.0827309  | -51.00    | 0.000  | 5.29         | 4.57     | 6 22    |
| c <sup>2</sup>  | _0_080784     | 0.0025151  | -114 22   | 0.000  | 0.27         | 4.37     | 0.32    |
| A*P             | -0.381750     | 0.0166506  | -22 01    | 0.000  | 0.57         | 0.5/     | 0.30    |
| A 6<br>A*C      | -0.002215     | 0.0277063  | -22.91    | 0.000  | 0.00         | 0.00     | 0.71    |
|                 | -0.902213     | 0.0277003  | -32.30    | 0.000  | 0.41         | 0.50     | 0.45    |
| '2 <sup>°</sup> | 1 79222       | 0 0539103  | 33 24     | 0 000  | 6.00         | 5 40     | 6 67    |
| 3               | -1,11130      | 0.0536476  | -20.71    | 0.000  | 0.33         | 0.30     | 0.37    |
| -               |               |            | 20072     | 0.000  | 0.00         | 0.00     | 0.57    |
|                 | hand occo     | 1 222      |           |        |              |          |         |
| Log-L1Kel1      | nood = -8630  | 1.322      | 02000 0   | 25 05  | 12 p. v-1.   |          | 0       |
| rest that       | all slopes a  | re zero: G | = 93988.0 | 23, DF | = 13, P-Valu | e = 0.00 | 0       |

## Figure 3.9. Ordinal Logistic Regression Results for Thick-film Resistor Production Example

Although some factors are found to be significant, the model does not fit the data adequately according to Pearson and Deviance test results as shown in Figure 3.10. Because, p-values of both tests are smaller than 0.10 as seen on Figure 3.10. The tests reject the null hypothesis that the model fits the response data adequately at  $\alpha$ =0.10.

| Goodness- | of-Fit Tests |    |       |
|-----------|--------------|----|-------|
| Method    | Chi-Square   | DF | P     |
| Pearson   | 2363357      | 72 | 0.000 |
| Deviance  | 20422        | 72 | 0.000 |

Figure 3.10. Goodness-of-fit for the model for Thick-film Resistor Production Example

Parameter settings for significant factors in a full factorial design are generated by MATLAB as tabulated in Table B.1. Then, probability of observing each response category and signal-to-noise ratios are estimated by using these parameter settings based on the model fit to the response data. Equations (2.1) and (2.2) are used in estimation of probability of observing each response category. In addition, since it is smaller-the-better type of problem, equation (2.5) is used to calculate the signal-to-noise ratios. Both estimated probabilities of observing each category and the SNR values are tabulated in Table B.1.

As it is mentioned before, estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category and the signal-to-noise ratio are the performance measure to evaluate the performance of optimal levels. Therefore, 164<sup>th</sup> trial gives both the maximum SNR value with -0.8406 and maximum estimated probability of observing category 1 with 0.9322 as seen in Table B.1 in Appendix. Therefore, the optimal parameter settings are found as A<sub>2</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>E<sub>1</sub>F<sub>2</sub>G<sub>1</sub> as given in Table 3.44.

|   | FACTORS |   |   |   |   |   | $\hat{P}_i^{LR(P)}$ |                  |        |   |   |   | SNR     |  |
|---|---------|---|---|---|---|---|---------------------|------------------|--------|---|---|---|---------|--|
| Α | B       | С | D | Ε | F | G | Ι                   | I II III IV V VI |        |   |   |   |         |  |
| 2 | 1       | 1 | 1 | 1 | 2 | 1 | 0.9322              | 0.0658           | 0.0019 | 0 | 0 | 0 | -0.8406 |  |

**Table 3.44.** Estimated Probability for each Category and Signal-to-noise Ratios for

 Optimal Levels for the Thick-film Resistor Production Example

#### **3.2.2.** Accumulation Analysis Method for Thick-film Resistor Production Example

In accumulation analysis method, as explained in subsection 2.2 cumulative frequencies are created by adding frequencies of occurrence given in Table 3.42 for one category to the frequencies for the next category as shown in Table B.2.

Frequencies and cumulative frequencies are calculated by summing the frequencies in Table 3.42 and cumulative frequencies in Table B.2 for relevant level of each factor as given in Table B.3. Before determining the optimal parameter settings, analysis of variance (ANOVA) calculations are implemented as shown in Table B.4, B.5 and ANOVA table is given in Table 3.45. Since  $F_{\infty(0.10)}^5$  is equal to 1.85 and critical F values for factor A given in Table 3.45 is greater than 1.85, factor A effect is determined as significant. Similarly, due to the fact that  $F_{\infty(0.10)}^{10}$  is equal to 1.60 and critical F values for other factors given in Table 3.45 are greater than 1.60, other factor effects are determined as significant.

| Factors | df     | S           | MS         | F          |
|---------|--------|-------------|------------|------------|
| Α       | 5      | 77069.6764  | 15413.9353 | 21688.8777 |
| В       | 10     | 6092.1994   | 609.2199   | 857.2306   |
| С       | 10     | 9913.8922   | 991.3892   | 1394.9792  |
| D       | 10     | 5962.9123   | 596.2912   | 839.0387   |
| E       | 10     | 15129.0110  | 1512.9011  | 2128.7962  |
| F       | 10     | 928.9801    | 92.8980    | 130.7164   |
| G       | 10     | 12708.1811  | 1270.8181  | 1788.1623  |
| A×B     | 10     | 3269.6908   | 326.9691   | 460.0767   |
| A×C     | 10     | 12652.5378  | 1265.2538  | 1780.3328  |
| A×F     | 10     | 3161.8036   | 316.1804   | 444.8959   |
| Error   | 507365 | 360576.1154 | 0.7107     |            |
| Total   | 507460 | 507465      | 1.0000     |            |

 Table 3.45. Analysis of Variance (ANOVA) Results for Thick-film Resistor Production

 Example

Since the parameter settings that have the maximum frequencies in category 1 give the optimal solution, optimal levels are  $A_2B_1C_2D_1E_1F_3G_1$  as seen in Table B.3.

Estimated frequencies for each category and factor and total estimated frequencies for each category are calculated by using equations (2.21) and (2.22), respectively. These results are tabulated in Table B.6.

By using logit (omega) transformation (Equation (2.23)) estimated frequencies and overall estimated frequencies for each category transformed into decibels as tabulated in Table B.7.

Then, by using equation (2.24) long–run performance is estimated for each category in decibels. Then, these estimates are transformed back by using again logit transformation.

The long-run performances in decibels and percentages  $\hat{P}_i^{ANOVA(CP)}$  are tabulated in Table 3.46. Percentage of category 1 gives the performance of optimal parameter settings given in Table 3.46.

In this method, calculations are made in MATLAB.

| Table 3.46. Estimated Percentage for each Category for Optimal Levels for Thick-film |
|--------------------------------------------------------------------------------------|
| Resistor Production Example                                                          |

|       |   | F | FA( | CTO | OR | S |   |         |         | $\hat{P}_i^{ANOVA}$ | (CP)   |        |       |
|-------|---|---|-----|-----|----|---|---|---------|---------|---------------------|--------|--------|-------|
|       | A | B | С   | D   | E  | F | G | Ι       | II      | III                 | IV     | V      | VI    |
| In dB | 2 | 1 | 2   | 1   | 1  | 3 | 1 | 4.8110  | 16.5295 | 22.2551             | 5.7897 | 3.5637 | 0.000 |
| In %  | 2 | 1 | 2   | 1   | 1  | 3 | 1 | 75.1708 | 22.6536 | 1.5835              | 0.5921 | 0.0000 | 0.000 |

## 3.2.3.Weighted Signal-to-noise Ratio for Thick-film Resistor Production Example

In this method, first of all weights are given to categories proportional to the quality loss. However, there is no guidance given for determining scale of weights and spacing between weights. But, in the surface defect example the results are not changed when two different weight sets are compared to see the effect of choosing different weights on the optimal solution. Therefore, the weights are given to categories as shown below.

 $W = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$ 

By using equation (2.26), signal-to-noise ratios are calculated for each set of parameter settings by using weights and number of observations by category as tabulated in Table B.8.

Before ANOVA is applied, residual assumptions are checked for SNR values. Normality and residual's homogeneity of variance assumptions are not violated for SNR values.

Then, ANOVA is applied on SNR values in order to detect the significant factors as shown on Figure 3.11. As seen on this figure, factors A, C, D and G have significant effects on response data with 90% confidence.

| Analysi                                      | s of                     | Variance                                                             | for SNR,                                                  | using Ad                                                  | justed S                            | S for Tes                             | sts |
|----------------------------------------------|--------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|---------------------------------------|-----|
| Source<br>A<br>C<br>D<br>G<br>Error<br>Total | DF<br>2<br>2<br>10<br>17 | Seq SS<br>51.9367<br>3.5113<br>2.8883<br>6.1533<br>4.8946<br>69.3842 | Adj SS<br>51.9367<br>3.5113<br>2.8883<br>6.1533<br>4.8946 | Adj MS<br>51.9367<br>1.7557<br>1.4442<br>3.0766<br>0.4895 | F<br>106.11<br>3.59<br>2.95<br>6.29 | P<br>0.000<br>0.067<br>0.098<br>0.017 |     |
| 5 = 0.6                                      | 9961:                    | 1 R-Sq :                                                             | = 92.95%                                                  | R-Sq(ad                                                   | j) = 88.                            | 01%                                   |     |

Figure 3.11. Analysis of Variance (ANOVA) Results according to SNR Scores for WSNR Method in Thick-film Resistor Production Example

Then, the averages of signal to noise ratios for each significant factor are calculated according to each level as tabulated in Table B.9. In this method, all calculations are made in MATLAB.

As seen in Table B.9, parameter settings that have the maximum averages of signal-tonoise ratios give the optimal solution which is  $A_2C_3D_1G_1$ .

### 3.2.4. Scoring Scheme Method for Thick-film Resistor Production Example

In this method first of all, midranks for each category are calculated by using equation (2.27). Then, location score for each category is calculated by using equations (2.28) and (2.29). These calculated data are tabulated in Table B.10. Then, by using equation (2.30), location pseudo-observations are calculated as tabulated in Table B.12 for each set of parameter settings.

Moreover, by using equations (2.31) and (2.32) dispersion scores are calculated for each category as shown in Table B.11. In addition, by using equation (2.33), dispersion pseudo-observations are calculated as tabulated in Table B.12 for each set of parameter settings.

After residual normality and homogeneity of variance assumptions are checked for L and D scores, ANOVA is applied for L and D as shown on Figure 3.12 and 3.13, respectively.

| Analysi | s of  | Variance f | or Li, usin | g Adjusted  | SS for T | ests  |
|---------|-------|------------|-------------|-------------|----------|-------|
| Source  | DF    | Seq SS     | Adj SS      | Adj MS      | F        | Р     |
| A       | 1     | 268017276  | 268017276   | 268017276   | 345.41   | 0.000 |
| В       | 2     | 10754701   | 10754701    | 5377350     | 6.93     | 0.028 |
| C       | 2     | 9372164    | 9372164     | 4686082     | 6.04     | 0.037 |
| D       | 2     | 16189241   | 16189241    | 8094620     | 10.43    | 0.011 |
| E       | 2     | 16431201   | 16431201    | 8215600     | 10.59    | 0.011 |
| G       | 2     | 32390510   | 32390510    | 16195255    | 20.87    | 0.002 |
| Error   | 6     | 4655617    | 4655617     | 775936      |          |       |
| Total   | 17    | 357810709  |             |             |          |       |
|         |       |            |             |             |          |       |
| 5 = 880 | . 872 | R-Sq = 9   | 8.70% R-5   | q(adj) = 96 | . 31%    |       |

Figure 3.12. Analysis of Variance (ANOVA) Results according to L Scores for SS Method in Thick-film Resistor Production Example

As seen on Figure 3.12, only factor F has no significant effect on location scores with 90% confidence.

| Analysi                            | s of                | Variance fo                                             | or Di,                            | using                      | Adjuste                                 | d ss f            | or Tests            |
|------------------------------------|---------------------|---------------------------------------------------------|-----------------------------------|----------------------------|-----------------------------------------|-------------------|---------------------|
| Source<br>C<br>E<br>Error<br>Total | DF<br>2<br>13<br>17 | Seq SS<br>42948045<br>45875472<br>66078811<br>154902328 | Adj<br>429480<br>458754<br>660788 | 55<br>045 2<br>72 2<br>311 | Adj MS<br>1474023<br>2937736<br>5082985 | F<br>4.22<br>4.51 | P<br>0.039<br>0.032 |
| 5 = 225                            | 4.55                | R-Sq = 57                                               | 7.34%                             | R-Sq                       | (adj) =                                 | 44.22%            |                     |

Figure 3.13. Analysis of Variance (ANOVA) Results according to D Scores for SS Method in Thick-film Resistor Production Example

As seen on Figure 3.13, factors C and E have significant effect on dispersion scores with p values smaller than 0.10.

Then, the averages of location and dispersion pseudo-observations for each significant factor are calculated according to each level as seen in Table B.13. In this method, all calculations are made in MATLAB.

Since this experiment is smaller-the-better type of problem, the minimum average value for both location and dispersion pseudo-observations for each significant factor gives the optimal parameter settings. Hence, as seen in Table B.13, optimal parameter settings are estimated to be  $A_2B_1C_3D_1E_1G_1$  and  $C_1E_3$  according to location and dispersion results, respectively. Since the optimal parameter settings of factors C and E for location and dispersion results differ, it is necessary to compromise between two different levels for the factors C and E. No method is suggested for compromising between two such different levels. Therefore, as explained in subsection 2.1.4, estimated location and dispersion scores are calculated for all possible levels of factors C and E by using equations (2.34) and (2.35), respectively.

When the calculations are done for all possible (1, 2, 3) levels of factors C and E, predicted location versus dispersion scores graph are shown on Figure 3.14.



Figure 3.14. Predicted Location versus Dispersion Scores for Thick-film Resistor Production Example

It is tried to determine the point that achieve minimize both predicted location and dispersion scores. Hence, as seen on Figure 3.14 there is too much difference between predicted dispersion scores for point 1 (C=3&E=1) and 2 (C=1&E=3) whereas there is not too much difference between predicted location scores for point 1 and 2. Therefore, it is better to choose the level 1 and 3 of factors C and E respectively.

According to these results, the optimal parameter settings are  $A_2B_1C_1D_1E_3G_1$ .

## 3.2.5. Weighted Probability Scoring Scheme Method (WPSS) for Thick-film Resistor Production Example

First of all, this method gives the target category the largest weight, thus location effect behaves as larger-the-better type. Therefore, since category 1 is the most desired category, the weights are chosen as given below.

 $Weights = (6 \ 5 \ 4 \ 3 \ 2 \ 1)$ 

Then, proportions of observation  $p_{ij}$  for each category *i* and set *j* of parameter settings are calculated as tabulated in Table B.14. Then, location scores are calculated depending on equation (2.36) as tabulated in Table B.15 by using these weights and proportions of observations. Before calculating dispersion scores, target value set is determined as given below. In this set, all the observations are expected to be in category 1, therefore 6 is assigned for category 1.

 $Target = (6 \ 0 \ 0 \ 0 \ 0 \ 0)$ 

Then, dispersion scores are calculated as tabulated in Table B.15 according to equation (2.37) by using weights, proportion of observation for each category and target value set.

Instead of compromising between optimal levels for location and dispersion scores, mean square deviation (MSD) scores are calculated based on equation (2.38) by using location and dispersion scores in order to determine the optimal solution as given in Table B.15.

After residual normality and homogeneity of variance assumptions are checked for MSD scores, ANOVA is applied for MSD as shown on Figure 3.15.

| Analysis of                                                                | Variance                                                                                       | for MSD,                                                                            | using Ad                                                                            | justed S                                              | S for Tests                                             |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| Source DF<br>A 1<br>B 2<br>C 2<br>D 2<br>E 2<br>G 2<br>Error 6<br>Total 17 | Seq SS<br>1.71100<br>0.12795<br>0.13698<br>0.14803<br>0.36144<br>0.41613<br>0.06742<br>2.96895 | Adj SS<br>1.71100<br>0.12795<br>0.13698<br>0.14803<br>0.36144<br>0.41613<br>0.06742 | Adj MS<br>1.71100<br>0.06398<br>0.06849<br>0.07401<br>0.18072<br>0.20807<br>0.01124 | F<br>152.27<br>5.69<br>6.10<br>6.59<br>16.08<br>18.52 | P<br>0.000<br>0.041<br>0.036<br>0.031<br>0.004<br>0.003 |
| S = 0.10600                                                                | 2 R-SQ :                                                                                       | = 97.73%                                                                            | R-Sq(ad                                                                             | j) = 93.                                              | 57%                                                     |

Figure 3.15. Analysis of Variance (ANOVA) Results according to MSD Scores for WPSS Method in Thick-film Resistor Production Example

As seen on Figure 3.15, only factor F has no significant effect on MSD scores with 90% confidence.

In order to see how MSD scores for each level of significant factors behaves, the averages of them for each factor are calculated according to each level as shown in Table B.16. As seen in this table, levels that have the lowest MSD scores give the optimal levels. Then, the optimal parameter settings are  $A_2B_1C_3D_1E_1G_1$ . In this method, all calculations are made in MATLAB.

The methods are compared according to two different performance measures which are estimated probability  $\hat{P}_i^{LR(P)}$  of observing target category calculated depending on LRMO and estimated percentage  $\hat{P}_i^{ANOVA(CP)}$  of target category as tabulated in Table 3.47 and 3.48 respectively.

As seen in Table 3.47, LRMO shows the best performance according to performance criteria of LRMO.

|   |   | FA | СТС | ORS |   |   |        |        | $\widehat{P}_i^{LR}$ | (P)    |        |        | SNR     | METHOD   |
|---|---|----|-----|-----|---|---|--------|--------|----------------------|--------|--------|--------|---------|----------|
| Α | B | C  | D   | E   | F | G | 1      | 2      | 3                    | 4      | 5      | 6      |         | S        |
| 2 | 1 | 1  | 1   | 1   | 2 | 1 | 0.9322 | 0.0658 | 0.0019               | 0.0000 | 0.0000 | 0.0000 | -0.8406 | LRMO     |
| 2 | 1 | 2  | 1   | 1   | 3 | 1 | 0.7497 | 0.2412 | 0.0088               | 0.0002 | 0.0000 | 0.0000 | -2.5473 | AA       |
|   |   |    |     |     |   |   |        |        |                      |        |        |        |         | WSNR     |
| 2 | 1 | 3  | 1   | 1   | 2 | 1 | 0.9296 | 0.0684 | 0.0020               | 0.0001 | 0.0000 | 0.0000 | -0.8709 | (B=1&E=1 |
|   |   |    |     |     |   |   |        |        |                      |        |        |        |         | &F=2)    |
| 2 | 1 | 1  | 1   | 3   | 2 | 1 | 0.7519 | 0.2391 | 0.0087               | 0.0002 | 0.0000 | 0.0000 | -2.5300 | SS (F=2) |
|   |   |    |     |     |   |   | 0.0206 | 0.0684 | 0.0020               | 0.0001 | 0.0000 | 0.0000 | 0.8700  | WPSS     |
| 2 | 1 | 3  | 1   | 1   | 2 | 1 | 0.9290 | 0.0004 | 0.0020               | 0.0001 | 0.0000 | 0.0000 | -0.8709 | (F=2)    |

 Table 3.47.Comparison Table According to Prediction Depending on LRMO in Thick-film Resistor Production Example

|   |   | FA | СТС | RS |   |   |         |         | METHODS |        |        |        |            |
|---|---|----|-----|----|---|---|---------|---------|---------|--------|--------|--------|------------|
| Α | B | С  | D   | Ε  | F | G | 1       | 2       | 3       | 4      | 5      | 6      |            |
| 2 | 1 | 1  | 1   | 1  | 2 | 1 | 27.6800 | 64.9877 | 7.3323  | 0.0000 | 0.0000 | 0.0000 | LRMO       |
| 2 | 1 | 2  | 1   | 1  | 3 | 1 | 75.1708 | 22.6536 | 1.5835  | 0.5921 | 0.0000 | 0.0000 | AA         |
|   |   |    |     |    |   |   |         |         |         |        |        |        | WSNR       |
| 2 | 1 | 3  | 1   | 1  | 2 | 1 | 56.6300 | 42.0517 | 1.1465  | 0.0000 | 0.0000 | 0.1718 | (B=1&E=1)  |
|   |   |    |     |    |   |   |         |         |         |        |        |        | &F=2)      |
| 2 | 1 | 1  | 1   | 3  | 2 | 1 | 3.6519  | 82.1264 | 14.2217 | 0.0000 | 0.0000 | 0.0000 | SS (F=2)   |
| 2 | 1 | 3  | 1   | 1  | 2 | 1 | 56.6300 | 42.0517 | 1.1465  | 0.0000 | 0.0000 | 0.1718 | WPSS (F=2) |

 Table 3.48. Comparison Table According to Prediction Depending on Percentages of Observing a Category in Thick-film Resistor

 Production Example

As seen in Table 3.48, AA shows the best performance according to performance criterion which is target category's percentage.

In this comparison, since all factors are found as significant depending on ANOVA results depending on frequencies of categories and depending on LRMO and WSNR, SS and WPSS find some factors as insignificant, some alternative optimal solutions for these methods are considered. In Table 3.47 and 3.48, optimal solution alternatives that give the best performance measure among all possible alternatives are tabulated for these methods.

## 3.3. SIMULATED EXAMPLE IN FOAM MOLDING EXPERIMENT

In this case, quality of urethane-foam product is tried to be improved and experiment is formed to decrease voids in this product. These data are originally analyzed by Jinks (1987). Then, Bayesian analysis method is applied on these data by Chipman and Hamada (1996). Later on, Logistic Regression Model Optimization is applied on these data by Köksal et al. (2006). In this data set, response data, which is quality of urethane-foam product, contain three levels which are very good (I), acceptable (II), needs repair (III). In addition, controllable and uncontrollable (noise) factors considered in this experiment are given in Table 3.49. In this example, it is targeted to achieve to produce product included in category 1. Therefore, it is smaller-the-better type of a problem. In addition to this, H and I are the uncontrollable (noise) factors.

| CONTR  | ΟΙ Ι ΑΡΙ Ε ΕΛΟΤΟΡΟ  | LEV    | ELS        |
|--------|---------------------|--------|------------|
| CONTR  | OLLADLE FACTORS     | 0      | 1          |
| А      | Shot Weight         | 185    | 250        |
| В      | Mold Temperature    | 70 °F  | 120 °F     |
| С      | Foam Block          | use    | do not use |
| D      | RTV Insert          | use    | do not use |
| Е      | Vent Shell          | vented | unvented   |
| F      | Spray Wax Viscosity | 2:1    | 4:1        |
| G      | Tool Elevation      | level  | elevated   |
| UNCONT | ROLLABLE FACTORS    | 0      | 1          |
| Н      | Shift               | Second | Third      |
| Ι      | Shell quality       | Good   | Bad        |

 Table 3.49. Controllable and Uncontrollable Factors and Their Levels for Simulated Example

8 different experimental runs are conducted for different parameter settings of controllable and uncontrollable factors. For each experimental run, numbers of occurrences are tabulated for different parameter settings of uncontrollable factors (H and I) in Table 3.50. In addition, set of parameter settings of these 8 experimental runs are designed and applied at the selected factor levels according to the  $L_8$  orthogonal array as given in Table 3.50.

| Exp. | FACTORS |   |   |   |   |   |   | Η | (1)/ | I (1) | H | H (0) / I (1) H (1) / I (0 |   |   |   |     | H | (0) / <b>I</b> | (0) |
|------|---------|---|---|---|---|---|---|---|------|-------|---|----------------------------|---|---|---|-----|---|----------------|-----|
| No   | A       | B | С | D | E | F | G | Ι | Π    | Ш     | Ι | Π                          | Ш | Ι | Π | III | Ι | Π              | III |
| 1    | 0       | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 6    | 1     | 6 | 4                          | 0 | 1 | 4 | 5   | 0 | 10             | 0   |
| 2    | 0       | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 3    | 7     | 3 | 4                          | 3 | 0 | 6 | 4   | 0 | 7              | 3   |
| 3    | 0       | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0    | 10    | 0 | 1                          | 9 | 0 | 0 | 10  | 0 | 0              | 10  |
| 4    | 0       | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0    | 10    | 0 | 10                         | 0 | 0 | 3 | 7   | 0 | 9              | 1   |
| 5    | 1       | 0 | 1 | 0 | 1 | 0 | 1 | 3 | 5    | 2     | 3 | 7                          | 0 | 3 | 5 | 2   | 1 | 6              | 3   |
| 6    | 1       | 0 | 1 | 1 | 0 | 1 | 0 | 2 | 8    | 0     | 4 | 5                          | 1 | 0 | 5 | 5   | 1 | 5              | 4   |
| 7    | 1       | 1 | 0 | 0 | 1 | 1 | 0 | 2 | 7    | 1     | 2 | 5                          | 3 | 2 | 7 | 1   | 1 | 6              | 3   |
| 8    | 1       | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 4    | 6     | 1 | 7                          | 2 | 0 | 4 | 6   | 0 | 3              | 7   |

 Table 3.50. Numbers of Occurrences of Each Category for Each Set of Parameter Settings in Foam Molding Experiment

Since noise factors cannot be included in calculations, numbers of occurrences are summed for each category as shown in Table 3.51.

| Table 3.51. Numbers of Occurrences of Each Category for Each Set of Parameter Settings |
|----------------------------------------------------------------------------------------|
| for Foam Molding Experiment                                                            |

| Exp. |   | FACTORS |   |   |   |   |   | CATEGORIES |    |     |  |
|------|---|---------|---|---|---|---|---|------------|----|-----|--|
| No   | Α | В       | С | D | Ε | F | G | Ι          | II | III |  |
| 1    | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 10         | 24 | 6   |  |
| 2    | 0 | 0       | 0 | 1 | 1 | 1 | 1 | 3          | 20 | 17  |  |
| 3    | 0 | 1       | 1 | 0 | 0 | 1 | 1 | 0          | 1  | 39  |  |
| 4    | 0 | 1       | 1 | 1 | 1 | 0 | 0 | 0          | 22 | 18  |  |
| 5    | 1 | 0       | 1 | 0 | 1 | 0 | 1 | 10         | 23 | 7   |  |

 Table 3.51 (cont'd) Numbers of Occurrences of Each Category for Each Set of Parameter

 Settings for Foam Molding Experiment

| 6 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 7 | 23 | 10 |
|---|---|---|---|---|---|---|---|---|----|----|
| 7 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 7 | 25 | 8  |
| 8 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 18 | 21 |

When Köksal et al. (2006) fit an ordinal logistic regression model on the response data, the estimated coefficients of model are shown on Figure 3.16. In addition, the optimal parameter settings and the estimated probability of observing each category for these optimal parameter settings are given in Table 3.52. In Köksal's study, it is found that Factor D does not have significant effect on quality characteristics of product. Moreover, the estimated probability of observing targeted category is found as 0.7864.

| L           | ogistic R                      | egression T                 | able                            |                    |                     |               |              |             |   |
|-------------|--------------------------------|-----------------------------|---------------------------------|--------------------|---------------------|---------------|--------------|-------------|---|
| P<br>C<br>C | redictor<br>onst(1)<br>onst(2) | Coef<br>-1.13122<br>1.82540 | SE Coef<br>0.319809<br>0.330082 | Z<br>-3.54<br>5.53 | P<br>0.000<br>0.000 | Odds<br>Ratio | 95%<br>Lower | CI<br>Upper |   |
| Ĉ           | 1                              | 1.38742                     | 0.279459                        | 4.96               | 0.000               | 4.00          | 2.32         | 6.93        |   |
| В           | 1                              | -1.82512                    | 0.286177                        | -6.38              | 0.000               | 0.16          | 0.09         | 0.28        |   |
|             | 1                              | -0.976926                   | 0.276184                        | -3.54              | 0.000               | 0.38          | 0.22         | 0.65        |   |
| E           | 1                              | 1.04737                     | 0.276648                        | 3.79               | 0.000               | 2.85          | 1.66         | 4.90        |   |
| F           | 1                              | -1.02634                    | 0.277629                        | -3.70              | 0.000               | 0.36          | 0.21         | 0.62        |   |
| G           | 1                              | -1.53620                    | 0.281162                        | -5.46              | 0.000               | 0.22          | 0.12         | 0.37        |   |
| L<br>T      | og-Likeli<br>est that          | hood = -255<br>all slopes   | .082<br>are zero:               | G = 110            | .806, D             | F = 6,        | P-Value      | = 0.00      | 0 |

Figure 3.16. Ordinal Logistic Regression Results for Foam Molding Experiment

In addition, the model fits the data adequately according to Pearson and Deviance test results. Because, p-values of both tests are larger than 0.10 as seen on Figure 3.17. Hence, the tests fail to reject the null hypothesis that the model fits that data adequately at  $\alpha$ =0.10.

| Goodness-                     | of-Fit Tests                     |         |                |
|-------------------------------|----------------------------------|---------|----------------|
| Method<br>Pearson<br>Deviance | Chi-Square<br>4.21124<br>6.38399 | DF<br>8 | 0.838<br>0.604 |

Figure 3.17. Goodness-of-fit for the model for Data of Foam Molding Experiment

 Table 3.52. Optimal Parameter Settings and the Estimated Probabilities Found by Köksal et al. (2006)

|   | F | AC | CTORS $P_i$ SNP |   |   |        |        |        |        |
|---|---|----|-----------------|---|---|--------|--------|--------|--------|
| A | B | С  | Ε               | F | G | Ι      | II     | III    | SIVIN  |
| 1 | 0 | 0  | 1               | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289 |

We use the same experimental design of Table 3.51 and take the probability models generated by Köksal et al. (2006) as "true models", and add them random error to generate a new data set, and measure performances of all models on this new data. Standard normally distributed errors are randomly generated as tabulated in Table 3.53. To illustrate, procedure for generation of error values is explained below.

Table 3.53. Standard Normally and Randomly Generated Errors

| TDIAL |         | EXP. NO |         |         |         |         |         |        |  |  |  |  |  |  |
|-------|---------|---------|---------|---------|---------|---------|---------|--------|--|--|--|--|--|--|
| INIAL | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8      |  |  |  |  |  |  |
| 1     | -1.0149 | -0.4677 | 0.2696  | 0.8123  | 0.1769  | -1.2833 | -0.4140 | 0.4759 |  |  |  |  |  |  |
| 2     | -0.4711 | -0.1249 | 0.4943  | 0.5455  | -0.3075 | -2.3290 | -0.4383 | 1.4122 |  |  |  |  |  |  |
| 3     | 0.1370  | 1.4790  | -1.4831 | -1.0516 | -0.1318 | 0.9019  | 2.0034  | 0.0226 |  |  |  |  |  |  |

| -  | 0.0040  | 0.0000  | 4 0 0 0 0 | 0.0075  | 0 5054  | 4.0056  | 0.0540  | 0.0470  |
|----|---------|---------|-----------|---------|---------|---------|---------|---------|
| 4  | -0.2919 | -0.8608 | -1.0203   | 0.3975  | 0.5954  | -1.8356 | 0.9510  | -0.0479 |
| 5  | 0.3018  | 0.7847  | -0.4470   | -0.7519 | 1.0468  | 0.0668  | -0.4320 | 1.7013  |
| 6  | 0.3999  | 0.3086  | 0.1097    | 1.5163  | -0.1980 | 0.0355  | 0.6489  | -0.5097 |
| 7  | -0.9300 | -0.2339 | 1.1287    | -0.0326 | 0.3277  | 2.2272  | -0.3601 | -0.0029 |
| 8  | -0.1768 | -1.0570 | -0.2900   | 1.6360  | -0.2383 | -0.0692 | 0.7059  | 0.9199  |
| 9  | -2.1321 | -0.2841 | 1.2616    | -0.4251 | 0.2296  | -0.5073 | 1.4158  | 0.1498  |
| 10 | 1.1454  | -0.0867 | 0.4754    | 0.5894  | 0.4400  | 0.2358  | -1.6045 | 1.4049  |
| 11 | -0.6291 | -1.4694 | 1.1741    | -0.0628 | -0.6169 | 0.2458  | 1.0289  | 1.0341  |
| 12 | -1.2038 | 0.1922  | 0.1269    | -2.0220 | 0.2748  | 0.0700  | 1.4580  | 0.2916  |
| 13 | -0.2539 | -0.8223 | -0.6568   | -0.9821 | 0.6011  | -0.6086 | 0.0475  | -0.7777 |
| 14 | -1.4286 | -0.0942 | -1.4814   | 0.6125  | 0.0923  | -1.2226 | 1.7463  | 0.5667  |
| 15 | -0.0209 | 0.3362  | 0.1555    | -0.0549 | 1.7298  | 0.3165  | 0.1554  | -1.3826 |
| 16 | -0.5607 | -0.9047 | 0.8186    | -1.1187 | -0.6086 | -1.3429 | -1.2371 | 0.2445  |
| 17 | 2.1778  | -0.2883 | -0.2926   | -0.6264 | -0.7371 | -1.0322 | -2.1935 | 0.8084  |
| 18 | 1.1385  | 0.3501  | -0.5408   | 0.2495  | -1.7499 | 1.3312  | -0.3334 | 0.2130  |
| 19 | -2.4969 | -1.8359 | -0.3086   | -0.9930 | 0.9105  | -0.4189 | 0.7135  | 0.8797  |
| 20 | 0.4413  | 1.0360  | -1.0966   | 0.9750  | 0.8671  | -0.1403 | 0.3174  | 2.0389  |
| 21 | -1.3981 | 2.4245  | -0.4930   | -0.6407 | -0.0799 | 0.8998  | 0.4136  | 0.9239  |
| 22 | -0.2551 | 0.9594  | -0.1807   | 1.8089  | 0.8985  | -0.3001 | -0.5771 | 0.2669  |
| 23 | 0.1644  | -0.3158 | 0.0458    | -1.0799 | 0.1837  | 1.0294  | 0.1440  | 0.6417  |
| 24 | 0.7477  | 0.4286  | -0.0638   | 0.1992  | 0.2908  | -0.3451 | -1.6387 | 0.4255  |
| 25 | -0.2730 | -1.0360 | 0.6113    | -1.5210 | 0.1129  | 1.0128  | -0.7601 | -1.3147 |
| 26 | 1.5763  | 1.8779  | 0.1093    | -0.7236 | 0.4400  | 0.6293  | -0.8188 | -0.4164 |
| 27 | -0.4809 | 0.9407  | 1.8140    | -0.5933 | 0.1017  | -0.2130 | 0.5197  | 1.2247  |
| 28 | 0.3275  | 0.7873  | 0.3120    | 0.4013  | 2.7873  | -0.8657 | -0.0142 | -0.0436 |
| 29 | 0.6647  | -0.8759 | 1.8045    | 0.9421  | -1.1667 | -1.0431 | -1.1555 | 0.5824  |
| 30 | 0.0852  | 0.3199  | -0.7231   | 0.3005  | -1.8543 | -0.2701 | -0.0095 | -1.0065 |
| 31 | 0.8810  | -0.5583 | 0.5265    | -0.3731 | -1.1407 | -0.4381 | -0.6898 | 0.0645  |
| 32 | 0.3232  | -0.3114 | -0.2603   | 0.8155  | -1.0933 | -0.4087 | -0.6667 | 0.6003  |
| 33 | -0.7841 | -0.5700 | 0.6001    | 0.7989  | -0.4336 | 0.9835  | 0.8641  | -1.3615 |
| 34 | -1.8054 | -1.0257 | 0.5939    | 0.1202  | -0.1685 | -0.2977 | 0.1134  | 0.3476  |
| 35 | 1.8586  | -0.9087 | -2.1860   | 0.5712  | -0.2185 | 1.1437  | 0.3984  | -0.1818 |
| 36 | -0.6045 | -0.2099 | -1.3270   | 0.4128  | 0.5413  | -0.5316 | 0.8840  | -0.9395 |
| 37 | 0.1034  | -1.6989 | -1.4410   | -0.9870 | 0.3893  | 0.9726  | 0.1803  | -0.0375 |
| 38 | 0.5632  | 0.6076  | 0.4018    | 0.7596  | 0.7512  | -0.5223 | 0.5509  | -1.8963 |
| 39 | 0.1136  | -0.1178 | 1.4702    | -0.6572 | 1.7783  | 0.1766  | 0.6830  | -2.1280 |
| 40 | -0.9047 | 0.6992  | -0.3268   | -0.6039 | 1.2231  | 0.9707  | 1.1706  | -1.1769 |

 Table 3.53 (cont'd) Standard Normally and Randomly Generated Errors

$$\begin{aligned} Logit[P(Y = 1)] \\ &= -1.131 + 1.387A - 1.825B - 0.977C + 1.047E - 1.026F - 1.536G \\ &+ \epsilon \end{aligned}$$

$$Logit[P(Y = 2)] = 1.825 + 1.387A - 1.825B - 0.977C + 1.047E - 1.026F - 1.536G + \epsilon$$

where  $\epsilon \sim N(0,1)$ 

 $P(Y = 1) = \frac{e^{-1.131 + 1.387A - 1.825B - 0.977C + 1.047E - 1.026F - 1.536G + \epsilon}}{1 + e^{-1.131 + 1.387A - 1.825B - 0.977C + 1.047E - 1.026F - 1.536G + \epsilon}}$   $P(Y = 2) = \frac{e^{1.825 + 1.387A - 1.825B - 0.977C + 1.047E - 1.026F - 1.536G + \epsilon}}{1 + e^{1.825 + 1.387A - 1.825B - 0.977C + 1.047E - 1.026F - 1.536G + \epsilon}}$  P(Y = 3) = 1 - P(Y = 1) - P(Y = 2)

For the first error value (-1.0149) and the first trial {0 0 0 0 0 0}, probability values of observing each category are calculated as following;

$$P(Y = 1) = 0.1047$$
  $P(Y = 2) = 0.5875$   $P(Y = 3) = 0.3078$ 

Therefore, for the first trial, the experiment gives response as 2. Because estimated probability of observing category 2 has the maximum value among all three probabilities.

When it is applied for all error values and trials, the response data are determined as given in Table 3.54.

Trial Ε G III A B С F Ι Π 

Table 3.54. Modified Foam Molding Experimental Design in Simulated Example

Then, all methods are applied on these simulated data, the methods that can have the closest estimated probability and same optimal parameter settings given in Table 3.52, are considered as methods that have the best performance.

#### 3.3.1. Logistic Regression Model Optimization for Simulated Example

As explained in step 1 of subsection 2.1, an ordinal logistic regression model is fit to the response data by using MINITAB. All factors have significant effect on quality of product with 90% confidence as shown in Figure 3.18. Also, on this figure the intercept of this model and coefficients of each factor are given.

#### Logistic Regression Table

|                                   |                             |                                 |                    |                     | Odds  | 95%   | CI    |
|-----------------------------------|-----------------------------|---------------------------------|--------------------|---------------------|-------|-------|-------|
| Predictor<br>Const(1)<br>Const(2) | Coef<br>-2.17613<br>2.95922 | SE Coef<br>0.459466<br>0.514106 | Z<br>-4.74<br>5.76 | P<br>0.000<br>0.000 | Ratio | Lower | Upper |
| <u>_</u> 1                        | 2.77901                     | 0.443075                        | 6.27               | 0.000               | 16.10 | 6.76  | 38.38 |
| ຼິ 1                              | -3.01943                    | 0.459484                        | -6.57              | 0.000               | 0.05  | 0.02  | 0.12  |
| 1                                 | -1.85186                    | 0.444141                        | -4.17              | 0.000               | 0.16  | 0.07  | 0.37  |
| 1                                 | 1.89602                     | 0.444149                        | 4.27               | 0.000               | 6.66  | 2.79  | 15.90 |
| 1                                 | -2.03791                    | 0.456902                        | -4.46              | 0.000               | 0.13  | 0.05  | 0.32  |
| 1                                 | -2.83337                    | 0.443649                        | -6.39              | 0.000               | 0.06  | 0.02  | 0.14  |
|                                   |                             |                                 |                    |                     |       |       |       |

Log-Likelihood = -171.071Test that all slopes are zero: G = 171.643, DF = 6, P-Value = 0.000

Figure 3.18. Ordinal Logistic Regression Results for Simulated Data

In addition, the model fits to the response data adequately, according to Pearson and Deviance test results. Because, p-values of both tests are larger than 0.10 as seen on Figure 3.19. Hence, the tests fail to rejects the null hypothesis that the model fits to these data adequately at  $\alpha$ =0.10. Since these p values are greater than p values given in Figure 3.17, this model fits to the data more adequately.

| Goodness-of-Fit Tests |            |    |       |  |  |  |  |  |
|-----------------------|------------|----|-------|--|--|--|--|--|
| Method                | Chi-Square | DF | P     |  |  |  |  |  |
| Pearson               | 1.81138    | 8  | 0.986 |  |  |  |  |  |
| Deviance              | 2.45634    | 8  | 0.964 |  |  |  |  |  |

Figure 3.19. Goodness of fit for the model for Simulated Data

Parameter settings for significant factors in a full factorial design are generated by MATLAB as tabulated in Table C.1. Then, probability of observing each response category and signal-to-noise ratios are estimated by using these parameter settings based on the model fit to the response data. Equations (2.1) and (2.2) are used in estimation of probability of observing each response category. In addition, since it is smaller-the-better type of problem, equation (2.5) is used to calculate signal-to-noise ratios. Both estimated probabilities of observing each category and SNR values are tabulated in Table C.1.

As it is mentioned before, estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category and signal-to-noise ratio are the performance measure to evaluate the performance of optimal levels. Therefore, 37<sup>th</sup> trial gives both maximum SNR value with -0.8998 and maximum estimated probability of observing category 1 with 0.9241 as seen in Table C.1. Therefore, the optimal parameter settings are found as A<sub>1</sub>B<sub>0</sub>C<sub>0</sub>E<sub>1</sub>F<sub>0</sub>G<sub>0</sub> by using simulated data as given in Table 3.55 same as the optimal levels found by Köksal et al. (2006) models. This optimal solution is the same as the solution obtained by the true model.

|   | F | FAC. | FOR | S |   |        | $P_i$  |        | SNR    | DATA<br>ANAL VZED             |
|---|---|------|-----|---|---|--------|--------|--------|--------|-------------------------------|
| Α | B | С    | Ε   | F | G | Ι      | II     | III    |        | ANAL I LED                    |
| 1 | 0 | 0    | 1   | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289 | True model,<br>Simulated Data |

 Table 3.55. True Probability for Each Category and Signal-to-noise Ratios for Optimal

 Levels in Simulated Example

#### **3.3.2.** Accumulation Analysis Method for Simulated Example

In accumulation analysis method, as explained in subsection 2.2 cumulative frequencies are created by adding frequencies of occurrence given in Table 3.54 for one category to the frequencies for the next category as seen in Table C.2.

Frequencies and cumulative frequencies are calculated by summing the frequencies in Table 3.54 and cumulative frequencies in Table C.2 for relevant level of each factor as given in Table C.3. Before determining the optimal parameter settings, analysis of variance (ANOVA) calculations are implemented as shown in Tables C.4 and C.5 and ANOVA table is given in Table 3.56. Since  $F_{626(0,10)}^2$  is equal to 2.31 and critical F values for all factors given in Table 3.56 are greater than 2.31, all factor effects are determined as significant.

| Factors | df  | S        | MS      | F       |
|---------|-----|----------|---------|---------|
| Α       | 2   | 37.5671  | 18.7836 | 23.6486 |
| В       | 2   | 43.6631  | 21.8316 | 27.4860 |
| С       | 2   | 6.1721   | 3.0861  | 3.8854  |
| Ε       | 2   | 7.9289   | 3.9645  | 4.9913  |
| F       | 2   | 8.5996   | 4.2998  | 5.4135  |
| G       | 2   | 38.8500  | 19.4250 | 24.4561 |
| Error   | 626 | 497.2190 | 0.7943  |         |
| Total   | 638 | 640      | 1.0031  |         |

 Table 3.56. Analysis of Variance (ANOVA) Results

Since the parameter settings that have maximum frequencies in category 1 give the optimal solution, optimal levels are  $A_1B_0C_0E_1F_0G_0$  as seen in Table C.3.

This optimal solution is the same as the solution obtained by the true model as tabulated in Table 3.57.

| Table 3.57. True Probability for Each Category and Signal-to-n | oise Ratios for Optimal |
|----------------------------------------------------------------|-------------------------|
| Levels for AA Results in Simulated Examp                       | ole                     |

| FACTORS |   |   |   |   |   | $P_i$  |        |        | SNR    | DATA                          |
|---------|---|---|---|---|---|--------|--------|--------|--------|-------------------------------|
| Α       | B | С | Ε | F | G | Ι      | II     | III    |        | ANALYZED                      |
| 1       | 0 | 0 | 1 | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289 | True model,<br>Simulated Data |

#### 3.3.3. Weighted Signal-to-noise Ratio for Simulated Example

In this method, first of all weights are given to categories proportional to the quality loss. However, there is no guidance given for determining scale of weights and spacing between weights. But, in the surface defect example the results are not changed when two different weight sets are compared to see the effect of choosing different weights on the optimal solution. Therefore, the weights are given to categories as shown below.

 $W = (1 \ 2 \ 3)$ 

By using equation (2.26), signal-to-noise ratios are calculated for each set of parameter settings by using weights and number of observations by category as tabulated in Table C.6.

Before ANOVA is applied, residual normality and homogeneity of variance assumptions are checked for SNR scores. Then, ANOVA is applied on SNR values in order to detect the significant factors as shown on Figure 3.20. Factors A, B and G are found significant effects on response data with 90% confidence.

| Analysi                                 | s of                   | Variance                                                  | for                                 | SNR,                           | using                                          | Adjuste                   | ed SS for                    | Tests |
|-----------------------------------------|------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------------|------------------------------------------------|---------------------------|------------------------------|-------|
| Source<br>A<br>B<br>G<br>Error<br>Total | DF<br>1<br>1<br>4<br>7 | Seq S5<br>2.9803<br>3.6020<br>3.0493<br>2.7751<br>12.4068 | Adj<br>2.98<br>3.60<br>3.04<br>2.77 | 55<br>303<br>)20<br>193<br>751 | Adj MS<br>2.9803<br>3.6020<br>3.0493<br>0.6938 | F<br>4.30<br>5.19<br>4.40 | P<br>0.107<br>0.085<br>0.104 |       |
| 5 = 0.8                                 | 32938                  | 8 R-Sq=                                                   | = 77.                               | 63%                            | R-Sq                                           | (adj) =                   | 60.86%                       |       |

Figure 3.20. Analysis of Variance (ANOVA) Results according to SNRs for WSNR Method in Simulated Example

Then, the averages of signal to noise ratios for each factor are calculated according to each level as tabulated in Table C.7. In this method, all calculations are made in MATLAB.

As seen in Table C.7, parameter settings that have maximum averages of signal-to-noise ratios give the optimal solution which is  $A_1B_0G_0$  same as the optimal levels found by Köksal et al. (2006) models.

Since factors C, E and F are insignificant factors and all factors are included in the logistic regression model, alternative parameter settings are tried for factors C, E and F. The best combination of levels are  $C_0E_1F_0$ .

This optimal solution is the same as the solution obtained by the true model as tabulated in Table 3.58.

| Table 3.58. True Probability for Each Category and Signal-to-noise Ratios for Optimal |
|---------------------------------------------------------------------------------------|
| Levels for WNSR Results in Simulated Example                                          |

| FACTORS |   |   |   |   |   | $P_i$  |        |        | SNR    | DATA                          |
|---------|---|---|---|---|---|--------|--------|--------|--------|-------------------------------|
| Α       | B | С | Ε | F | G | Ι      | II     | III    |        | ANAL I LED                    |
| 1       | 0 | 0 | 1 | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289 | True model,<br>Simulated Data |

## 3.3.4. Scoring Scheme Method for Simulated Example

In this method first of all, midranks for each category are calculated by using equation (2.27). Then, location score for each category is calculated by using equations (2.28) and (2.29). These calculated data are tabulated in Table C.8. Then, by using equation (2.30), location pseudo-observations are calculated as tabulated in Table C.10 for each set of parameter settings.

Moreover, by using equations (2.31) and (2.32) dispersion scores are calculated for each category as shown in Table C.9. In addition, by using equation (2.33), dispersion pseudo-observations are calculated as tabulated in Table C.10 for each set of parameter settings.

After residual normality and homogeneity of variance assumptions are checked for L and D scores, ANOVA is applied for L and D as shown on Figure 3.21 and 3.22, respectively.

Analysis of Variance for Li, using Adjusted SS for Tests Source DF Seq SS Adj SS Adj MS F P A B 1369.4 4.90 0.091 1 1369.4 1369.4 1 1617.2 1617.2 1617.2 5.79 0.074 G 1438.3 1 1438.3 1438.3 5.15 0.086 Error 4 1117.3 279.3 1117.3Total 7 5542.1 5 = 16.7129R-Sq = 79.84%R-Sq(adj) = 64.72%

Figure 3.21. Analysis of Variance (ANOVA) Results according to L Scores for SS Method in Simulated Example

As seen on Figure 3.21, factors A, B and G have significant effect on location scores with 90% confidence.

| Analysis of                                   | Variance for Di                                                          | , using Adjust                                 | ed SS for Tests     |
|-----------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|---------------------|
| Source DF<br>A 1<br>G 1<br>Error 5<br>Total 7 | Seq SS Adj SS<br>104.70 104.70<br>45.24 45.24<br>242.84 242.84<br>392.78 | Adj MS F<br>104.70 2.16<br>45.24 0.93<br>48.57 | P<br>0.202<br>0.379 |
| 5 = 6.96902                                   | R-Sq = 38.17%                                                            | R-Sq(adj) =                                    | 13.44%              |

Figure 3.22. Analysis of Variance (ANOVA) Results according to D Scores for SS Method in Simulated Example

As seen on Figure 3.22, all factors are found as insignificant. However, p values of factors A and G are not so much greater than 0.10. Therefore, factors A and G are considered as significant.

Then, the averages of location and dispersion pseudo-observations for each significant factor are calculated according to each level as seen in Table C.11. In this method, all calculations are made in MATLAB.

Since this experiment is smaller-the-better type of problem, the minimum average value for both location and dispersion pseudo-observations for each significant factor gives the optimal parameter settings as seen in Table C.11 which are  $A_0B_1G_1$  and  $A_0G_1$ , respectively.

Furthermore, estimated probabilities of observing each category by SS method after simulation is calculated. In the comparison, since all factors are found as significant depending on true model and SS finds some factors as insignificant, some alternative optimal solutions for these methods are considered. In Table 3.59, optimal solution alternative that gives the best performance measure among all possible alternatives is tabulated for SS methods.

Then, this optimal solution is worse than the solution obtained by the true model as tabulated in Table 3.59.

| Table 3.59. True Probability for Each Category and Signal-to-noise Ratios for Optimal |
|---------------------------------------------------------------------------------------|
| Levels for SS Results in Simulated Example                                            |

| FACTORS |   |   |   |   |   | $P_i$  |        |        | SND     | DATA           |
|---------|---|---|---|---|---|--------|--------|--------|---------|----------------|
| Α       | B | С | Ε | F | G | Ι      | II     | III    | SINK    | ANALYZED       |
| 1       | 0 | 0 | 1 | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289  | True model     |
| 0       | 1 | 0 | 1 | 0 | 1 | 0.0309 | 0.3493 | 0.6198 | -8.4548 | Simulated Data |

## 3.3.5. Weighted Probability Scoring Scheme Method for Simulated Example

First of all, this method gives the target category the largest weight, thus location effect behaves as larger-the-better type. Therefore, since category 1 is the most desired category, the weights are chosen as given below.

Weights =  $(3 \ 2 \ 1)$ 

Then, proportions of observation  $p_{ij}$  for each category *i* and set *j* of parameter settings are calculated as tabulated in Table C.12. Then, location scores are calculated depending on equation (2.36) as tabulated in Table C.13 by using these weights and proportions of observations. Before calculating dispersion scores, target value set is determined as given below. In this set, all the observations are expected to be in category 1, therefore 3 is assigned for category 1.

 $Target = (3 \quad 0 \quad 0)$
Then, dispersion scores are calculated as tabulated in Table C.13 according to equation (2.37) by using weights, proportion of observation for each category and target value set. Instead of compromising between optimal levels for location and dispersion scores, mean square deviation (MSD) scores are calculated based on equation (2.38) by using location and dispersion scores in order to determine the optimal solution as given in C.13.

Before ANOVA is applied, residual normality and homogeneity of variance assumptions are checked for MSD values. Then, ANOVA is applied on MSD values in order to detect the significant factors. All factors are found insignificant effects on response data with 90% confidence. Therefore, this method should not be applied on this example. Even so, optimal parameter settings are found by ignoring ANOVA results in order to see performance of WPSS method on this data if it found effects of all factors as significant.

In order to see how MSD scores for each level of factors behaves, the averages of them for each factor are calculated according to each level as shown in Table C.14. As seen in this table, levels that have the lowest MSD scores give the optimal levels which are  $A_1B_0C_0E_1F_0G_0$  same as the optimal levels found by Köksal et al. (2006) models. In this method, all calculations are made in MATLAB.

This optimal solution is the same as the solution obtained by the true model as tabulated in Table 3.60.

 Table 3.60. True Probability for Each Category and Signal-to-noise Ratios for Optimal

 Levels for WPSS Results in Simulated Example

| FACTORS |   |   |   |   | <i>P</i> <sub>i</sub> |        |        | SNR    | DATA   |                               |
|---------|---|---|---|---|-----------------------|--------|--------|--------|--------|-------------------------------|
| Α       | B | С | Ε | F | G                     | Ι      | Π      | Ш      |        | ANALYZED                      |
| 1       | 0 | 0 | 1 | 0 | 0                     | 0.7864 | 0.1996 | 0.0139 | 5.9289 | True model,<br>Simulated Data |

The methods are compared according to true probabilities calculated by using true model as seen in Table 3.61.

|   | F. | AC | ſOŖ | S |   |        | $P_i$  |        | SND     | METHODS     |  |
|---|----|----|-----|---|---|--------|--------|--------|---------|-------------|--|
| Α | B  | С  | E   | F | G | 1      | 2      | 3      | SINK    | METHODS     |  |
| 1 | 0  | 0  | 1   | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289  | True models |  |
| 1 | 0  | 0  | 1   | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289  | LRMO        |  |
| 1 | 0  | 0  | 1   | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289  | AA          |  |
| 1 | 0  | 0  | 1   | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289  | WSNR        |  |
| 0 | 1  | 0  | 1   | 0 | 1 | 0.0309 | 0.3493 | 0.6198 | -8.4548 | SS          |  |
| 1 | 0  | 0  | 1   | 0 | 0 | 0.7864 | 0.1996 | 0.0139 | 5.9289  | WPSS*       |  |

Table 3.61. Comparison Table According to True Models in Simulated Example

As seen in Table 3.61, all methods except SS method show the best performance according to true models.

In this comparison, since all factors are found as significant depending on true model, and WSNR and SS find some factors as insignificant, some alternative optimal solutions for these methods are considered. In Table 3.61, optimal solution alternative that gives the best performance measure among all possible alternatives is tabulated for SS and WSNR methods.

## **3.4. INKJET PRINTER EXAMPLE**

In this case, another data set, which is analyzed by Logothetis (1992), is used to make another comparison of the methods. In this experiment, an ink mixture that is used in inkjet printer, is tried to be prepared in order to have high adhesion property. In order to evaluate the quality of ink's adhesion, ten printed samples are kept overnight for fixed time period under same conditions. Then, the samples are rubbed and the numbers of rubs are counted until prints turn to unreadable writings. If a printer does not turn to unreadable format in 26 rubs, then this ink mixture is considered in good adhesion quality. The controllable factors that affect the quality of adhesion are tabulated in Table 3.62. These factors are the ingredients of ink mixture and levels are the percentage amounts of these substances. When the percentage amounts of these controllable factors are estimated, the remaining percentage amount is accepted for methanol (MeOH).

<sup>\*</sup> WPSS finds all factors as insignificant. These optimal parameter settings are found by ignoring ANOVA results.

| FAC | TOPS     | LEVELS |      |  |
|-----|----------|--------|------|--|
| FAC |          | 1      | 2    |  |
| Α   | Dye      | 1%     | 3%   |  |
| В   | Carbitol | 1.5%   | 2.5% |  |
| С   | PM       | 6.5%   | 9.5% |  |
| D   | Resin    | 8%     | 12%  |  |
| E   | Water    | 10%    | 20%  |  |

Table 3.62. Controllable Factors and Their Levels for Inkjet Printer Example

Sets of parameter settings of 8 experimental runs are designed and applied at the selected factor levels according to the  $L_8$  as given in Table 3.63. In addition, numbers of rubs counted for these 8 experimental runs and 10 samples are tabulated in Table 3.64.

| Exp.<br>No | Α | В | С | D | Е |
|------------|---|---|---|---|---|
| 1          | 0 | 0 | 0 | 0 | 0 |
| 2          | 0 | 0 | 1 | 1 | 1 |
| 3          | 0 | 1 | 0 | 1 | 1 |
| 4          | 0 | 1 | 1 | 0 | 0 |
| 5          | 1 | 0 | 0 | 0 | 1 |
| 6          | 1 | 0 | 1 | 1 | 0 |
| 7          | 1 | 1 | 0 | 1 | 0 |
| 8          | 1 | 1 | 1 | 0 | 1 |

Table 3.63. Experimental Design for the Inkjet Printer Example

| Exp. |     | Samples |     |    |     |     |     |     |     |     |
|------|-----|---------|-----|----|-----|-----|-----|-----|-----|-----|
| No   | 1   | 2       | 3   | 4  | 5   | 6   | 7   | 8   | 9   | 10  |
| 1    | 2   | 9       | 5   | 25 | 2   | 19  | 15  | 17  | 26  | 13  |
| 2    | >26 | 11      | 20  | 11 | >26 | 18  | 11  | 10  | 16  | 6   |
| 3    | 1   | 2       | 2   | 5  | >26 | 11  | 1   | 2   | 4   | 3   |
| 4    | 15  | 3       | 3   | 19 | >26 | 19  | 14  | 3   | 18  | 14  |
| 5    | 19  | 5       | 2   | 1  | 2   | 2   | 6   | 3   | >26 | 4   |
| 6    | 9   | 6       | 8   | 7  | 3   | 5   | 3   | 7   | 2   | 1   |
| 7    | >26 | 20      | >26 | 20 | >26 | >26 | >26 | >26 | 24  | 10  |
| 8    | >26 | >26     | 1   | 15 | 19  | >26 | >26 | 26  | 3   | >26 |

 Table 3.64. Numbers of Rubs Counted for Each Sample and Experimental Runs for Inkjet

 Printer Example

Then, by using ranges for numbers of rubs given in Table 3.65, the response data given in Table 3.64 are categorized. Then, numbers of occurrences of each category for 8 experiments are tabulated in Table 3.66.

Table 3.65. Ranges for Numbers of Rubs in Inkjet Example

| Catagory | Range |          |  |  |  |
|----------|-------|----------|--|--|--|
| Category | Min   | Max      |  |  |  |
| Ι        | 1     | 10       |  |  |  |
| II       | 11    | 18       |  |  |  |
| III      | 19    | 26       |  |  |  |
| IV       | 26    | $\infty$ |  |  |  |

| Exp. |    | CATE | GORIES |    |
|------|----|------|--------|----|
| No   | Ι  | II   | III    | IV |
| 1    | 4  | 3    | 3      | 0  |
| 2    | 2  | 5    | 1      | 2  |
| 3    | 8  | 1    | 0      | 1  |
| 4    | 3  | 4    | 2      | 1  |
| 5    | 8  | 0    | 1      | 1  |
| 6    | 10 | 0    | 0      | 0  |
| 7    | 1  | 0    | 3      | 6  |
| 8    | 2  | 1    | 1      | 6  |

 
 Table 3.66. Numbers of Occurrences in Each Category for each Set of Parameter Settings in Inkjet Printer Example

In this example, it is targeted to have prints that included in category IV, therefore this case is larger-the better type of problem.

## 3.4.1. Logistic Regression Model Optimization for Inkjet Printer Example

As explained in step 1 of subsection 2.1, an ordinal logistic regression model is fit by using MINITAB and all factors except factors D and E, and two interactions have significant effect on quality of ink adhesion with 90% confidence as seen on Figure 3.23. Also, on this figure the intercept of this model and coefficients of each factor are given.

|                                               |                                         |                                             |                           |                              | Odds   | 95%    | CI      |
|-----------------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------|------------------------------|--------|--------|---------|
| Predictor<br>Const(1)<br>Const(2)<br>Const(3) | Coef<br>0.0488407<br>1.16995<br>2.20485 | SE Coef<br>0.528516<br>0.552725<br>0.604785 | Z<br>0.09<br>2.12<br>3.65 | P<br>0.926<br>0.034<br>0.000 | Ratio  | Lower  | Upper   |
| 2                                             | 1.66124                                 | 0.924073                                    | 1.80                      | 0.072                        | 5.27   | 0.86   | 32.21   |
| 2                                             | 0.800176                                | 0.607265                                    | 1.32                      | 0.188                        | 2.23   | 0.68   | 7.32    |
| 2                                             | -1.11110                                | 0.612561                                    | -1.81                     | 0.070                        | 0.33   | 0.10   | 1.09    |
| 2*2                                           | -5.43671                                | 1.12200                                     | -4.85                     | 0.000                        | 0.00   | 0.00   | 0.04    |
| 2*2                                           | 2.02185                                 | 0.986952                                    | 2.05                      | 0.041                        | 7.55   | 1.09   | 52.26   |
| Log-Likeli<br>Test that                       | hood = -79.<br>all slopes               | 301<br>are zero:                            | G = 43.                   | 089, DF                      | = 5, P | -Value | = 0.000 |

Figure 3.23. Ordinal Logistic Regression Results for Inkjet Printer Example

Moreover, the model fits the response data adequately, according to Pearson and Deviance test results. Because, p-values of both tests are larger than 0.10 as seen on Figure 3.24. Hence, the tests fail to reject the null hypothesis that the model fits to these data adequately with 90% confidence.

| Goodness- | of-Fit Tests |    |       |
|-----------|--------------|----|-------|
| Method    | Chi-Square   | DF | P     |
| Pearson   | 20.0683      | 16 | 0.217 |
| Deviance  | 21.5168      | 16 | 0.159 |

Figure 3.24. Goodness-of-fit for the Model for Inkjet Printer Example

Parameter settings for significant factors in a full factorial design are generated by MATLAB as tabulated in Table D.1. Then, probability of observing each response category and signal-to-noise ratios are estimated by using these parameter settings based on the model fit to the data. Equations (2.1) and (2.2) are used in estimation of probability

of observing each response category. In addition, since it is larger-the-better type of problem, equation (2.6) is used to calculate the signal-to-noise ratios. Both estimated probabilities of observing each category and SNR values are tabulated in Table D.1.

As it is mentioned before, estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category and signal-to-noise ratio are the performance measure to evaluate the performance of optimal levels. Therefore, 7<sup>th</sup> trial gives both maximum SNR value with 10.1376 and maximum estimated probability for category 4 with 0.6836 as seen in Table D.1. Therefore, the optimal levels are found as A<sub>1</sub>B<sub>1</sub>C<sub>0</sub> as given in Table 3.67.

 Table 3.67. Estimated Probability for Each Category and Signal-to-noise Ratios for

 Optimal Levels in Inkjet Printer Example

| FA | <b>ACTORS</b> $\hat{P}_i^{LR(P)}$ |   |        |           |        | SNR    |         |
|----|-----------------------------------|---|--------|-----------|--------|--------|---------|
| Α  | В                                 | С | Ι      | II III IV |        |        |         |
| 1  | 1                                 | 0 | 0.0509 | 0.0903    | 0.1752 | 0.6836 | 10.1376 |

#### 3.4.2. Accumulation Analysis Method for Inkjet Printer Example

In accumulation analysis method, as explained in subsection 2.2 cumulative frequencies are created by adding frequencies of occurrence given in Table 3.66 for one category to the frequencies for the next category as seen in Table D.2.

Frequencies and cumulative frequencies are calculated by summing the frequencies in Table 3.66 and cumulative frequencies in Table D.2 for relevant level of each factor as given in Table D.3. Before determining the optimal parameter settings, analysis of variance (ANOVA) calculations are implemented as shown in Table D.4, D.5 and ANOVA table is given in Table 3.68. Since  $F_{216(0.10)}^3$  is equal to 2.11 and critical F values for all factors except factors C, D and E given in Table 3.68 are greater than 2.11, all factors except factors C, D and E are determined as significant. Since interaction between factors A and C has significant effect on quality characteristics, C is included in the model.

| Factors | df  | S        | MS      | F       |
|---------|-----|----------|---------|---------|
| Α       | 3   | 10.3689  | 3.4563  | 4.8615  |
| В       | 3   | 21.9629  | 7.3210  | 10.2974 |
| A×B     | 3   | 43.1543  | 14.3848 | 20.2331 |
| С       | 3   | 1.0965   | 0.3655  | 0.5141  |
| A×C     | 3   | 7.6628   | 2.5543  | 3.5928  |
| D       | 3   | 1.0965   | 0.3655  | 0.5141  |
| Ε       | 3   | 1.0926   | 0.3642  | 0.5122  |
| Error   | 216 | 153.5655 | 0.7110  |         |
| Total   | 237 | 240      | 1.0127  |         |

Table 3.68. Analysis of Variance (ANOVA) Results

Since the parameter settings that have maximum frequencies in category 4 give the optimal solution, optimal parameter settings are  $A_1B_1C_0$  as seen in Table D.3.

Estimated frequencies for each category and factor and total estimated frequencies for each category are calculated by using equations (2.21) and (2.22), respectively. These results are tabulated in Table D.6.

By using logit (omega) transformation (Equation (2.23)), estimated frequencies and overall estimated frequencies for each category transformed into decibels as tabulated in Table D.7.

Then, by using equation (2.24), long-run performance is estimated for each category in decibels. Then, these estimates are transformed back by using again logit transformation. The long-run performances in decibels and percentages  $\hat{P}_i^{ANOVA(CP)}$  are tabulated in Table 3.69. Percentage of category 4 gives the performance of optimal parameter settings given in Table 3.69.

In this method, calculations are made in MATLAB.

| Table 3.69. Estimated Percentage for each Category for Optimal Levels for Inkjet Printer |
|------------------------------------------------------------------------------------------|
| Example                                                                                  |

|               | FA | СТС | ORS | $\hat{P}_i^{ANOVA(CP)}$ |         |         |          |  |
|---------------|----|-----|-----|-------------------------|---------|---------|----------|--|
|               | Α  | B   | C   | Ι                       | II      | III     | IV       |  |
| In decibel    | 1  | 1   | 0   | -7.9690                 | -9.5790 | -4.7610 | $\infty$ |  |
| In percentage | 1  | 1   | 0   | 13.7622                 | 0.0000  | 11.2769 | 74.9609  |  |

#### 3.4.3. Weighted Signal-to-noise Ratio for Inkjet Printer Example

In this method, first of all weights are given to categories proportional to the quality loss. However, there is no guidance given for determining scale of weights and spacing between weights. But, in the surface defect example the results are not changed when two different weight sets are compared to see the effect of choosing different weights on the optimal solution. Therefore, the weights are given to categories as shown below.

 $W = (4 \ 3 \ 2 \ 1)$ 

By using equation (2.26), the signal-to-noise ratios are calculated for each set of parameter settings by using weights and number of observations by category as tabulated in Table D.8.

Before ANOVA is applied, residual normality and homogeneity of variance assumptions are checked for SNR values. Normality and residual's homogeneity of variance assumptions are not violated for SNR values.

Then, ANOVA is applied on SNR values in order to detect the significant factors as shown on Figure 3.25. As seen on this figure, factors A, B, C and E, and interactions of factors A and B, A and C have significant effects on response data with 90% confidence.

| Analysis                                                   | 5 of                             | Variance                                                                                  | for SNR,                                                                       | using Ad                                                                       | djusted SS                                                   | for Tests                                               |
|------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|
| Source<br>A<br>B<br>C<br>E<br>A*B<br>A*C<br>Error<br>Total | DF<br>1<br>1<br>1<br>1<br>1<br>7 | Seq SS<br>2.7997<br>10.4077<br>0.0010<br>0.3761<br>20.0142<br>3.3998<br>0.0041<br>37.0026 | Adj SS<br>2.7997<br>10.4077<br>0.0010<br>0.3761<br>20.0142<br>3.3998<br>0.0041 | Adj MS<br>2.7997<br>10.4077<br>0.0010<br>0.3761<br>20.0142<br>3.3998<br>0.0041 | F<br>677.66<br>2519.18<br>0.23<br>91.04<br>4844.41<br>822.91 | P<br>0.024<br>0.013<br>0.713<br>0.066<br>0.009<br>0.022 |
| 5 = 0.06                                                   | 54270                            | 50 R-Sq                                                                                   | = 99.99%                                                                       | R-Sq(a                                                                         | adj) = 99.9                                                  | 92%                                                     |

Figure 3.25. Analysis of Variance (ANOVA) Results according to SNR Scores for WSNR Method in Inkjet Printer Example

Then, the averages of signal to noise ratios for each significant factor and interaction are calculated according to each level as tabulated in Table D.9. In this method, all calculations are made in MATLAB.

As seen in Table D.9, parameter settings that have maximum averages of signal-to-noise ratios give the optimal solution. However, according to averages of SNRs for actual factor and interaction, the optimal levels for factor C differentiate. Optimal level for factor C is 1 for results of actual factor whereas it is 0 for results of interaction. Since difference between averages of two levels for actual factor is too small, optimal level of factor C is assumed to be 0. Then, the optimal solution is determined as  $A_1B_1C_0E_0$ .

### 3.4.4. Scoring Scheme Method for Inkjet Printer Example

In this method first of all, midranks for each category are calculated by using equation (2.27). Then, location score for each category is calculated by using equations (2.28) and (2.29). These calculated data are tabulated in Table D.10. Then, by using equation (2.30), location pseudo-observations are calculated as tabulated in Table D.12 for each set of parameter settings.

Moreover, by using equations (2.31) and (2.32) dispersion scores are calculated for each category as shown in Table D.11. In addition, by using equation (2.33), dispersion pseudo-observations are calculated as tabulated in Table C.12 for each set of parameter settings.

After residual normality and homogeneity of variance assumptions are checked for L and D scores, ANOVA is applied for L and D as shown on Figure 3.26 and 3.27, respectively.

| Analysi                                               | s of                        | Variance                                                                    | for Li,                                                          | using Adj                                                        | usted SS                                      | for Tests                                      |
|-------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Source<br>A<br>B<br>C<br>A*B<br>A*C<br>Error<br>Total | DF<br>1<br>1<br>1<br>2<br>7 | Seq SS<br>3.986<br>85.179<br>2.316<br>204.546<br>38.058<br>3.869<br>337.953 | Adj SS<br>3.986<br>85.179<br>2.316<br>204.546<br>38.058<br>3.869 | Adj MS<br>3.986<br>85.179<br>2.316<br>204.546<br>38.058<br>1.935 | F<br>2.06<br>44.03<br>1.20<br>105.73<br>19.67 | P<br>0.288<br>0.022<br>0.388<br>0.009<br>0.047 |
| 5 = 1.3                                               | 9092                        | R-Sq =                                                                      | 98.86%                                                           | R-Sq(adj                                                         | ) = 95.99                                     | 9%                                             |

Figure 3.26. Analysis of Variance (ANOVA) Results according to L Scores for SS Method in Inkjet Printer Example

As seen on Figure 3.26, factors A, B, C and interactions of A and B, A and C have significant effect on location scores with 90% confidence.

| Analysi                            | s of              | Variance                                         | for Di,                               | using Adj                            | usted S            | s for               | Tests |
|------------------------------------|-------------------|--------------------------------------------------|---------------------------------------|--------------------------------------|--------------------|---------------------|-------|
| Source<br>A<br>B<br>Error<br>Total | DF<br>1<br>5<br>7 | Seq SS<br>139.809<br>15.869<br>47.036<br>202.714 | Adj SS<br>139.809<br>15.869<br>47.036 | Adj MS<br>139.809<br>15.869<br>9.407 | F<br>14.86<br>1.69 | P<br>0.012<br>0.251 |       |
| 5 = 3.00                           | 5711              | R-Sq =                                           | 76.80%                                | R-Sq(adj                             | ) = 67.            | 52%                 |       |

Figure 3.27. Analysis of Variance (ANOVA) Results according to D Scores for SS Method in Inkjet Printer Example

As seen on Figure 3.27, only factor A has significant effect on dispersion scores with p values smaller than 0.10.

Then, the averages of location and dispersion pseudo-observations for each actual factor and the averages of location pseudo-observations for the interactions are calculated according to each level as seen in Table D.13 and D.14, respectively. In this method, all calculations are made in MATLAB.

Since this experiment is larger-the-better type of problem, the maximum average value for location and the minimum dispersion pseudo-observations for each factor gives the optimal parameter settings. Hence, as seen in Table D.13 and D.14, the optimal levels for location and dispersion results for factor A differ, it is necessary to compromise between two different levels of factor A.

When compromising is implemented based on subsection 2.1.4, estimated location and dispersion scores are calculated for all possible levels of factors A, B and C by using equations (2.34) and (2.35), respectively.

When the calculations are done for all possible (1, 2, 3) levels of factors A, B and C, predicted location versus dispersion scores graph are shown on Figure 3.28.



Figure 3.28. Predicted Location versus Dispersion Scores for Inkjet Printer Example

It is tried to determine the point that achieve maximize predicted location and minimize dispersion scores. Hence, as seen on this figure there is too much difference between predicted location scores for point 7 ( $A_0 \times B_0 \& A_0 \times C_0$ ) and 8 ( $A_1 \times B_1 \& A_1 \times C_0$ ) whereas there is not so much difference between predicted dispersion scores for point 7 and 8. Therefore, it is better to choose point 8 ( $A_1 \times B_1 \& A_1 \times C_0$ ).

Then, optimal parameter settings are found as A<sub>1</sub>B<sub>1</sub>C<sub>0</sub> by SS method.

## 3.4.5. Weighted Probability Scoring Scheme Method for Inkjet Printer Example

First of all, this method gives the target category the largest weight, thus location effect behaves as larger-the-better type. Therefore, the weights are chosen as given below.

 $Weights = (1 \ 2 \ 3 \ 4)$ 

Then, proportions of observation  $p_{ij}$  for each category *i* and set *j* of parameter settings are calculated as tabulated in Table D.15. Then, location scores are calculated depending on equation (2.36) as tabulated in Table D.16 by using these weights and proportions of observations. Before calculating dispersion scores, target value set is determined as given below. In this set, all the observations are expected to be in category 4, therefore 4 is assigned for category 4.

 $Target = (0 \ 0 \ 0 \ 4)$ 

Then, dispersion scores are calculated as tabulated in Table D.16 according to equation 2.37 by using weights, proportion of observation for each category and target value set. Instead of compromising between optimal levels for location and dispersion scores, mean

square deviation (MSD) scores are calculated based on equation (2.38) by using location and dispersion scores in order to determine the optimal solution as given in Table D.16.

Before ANOVA is applied, residual normality and homogeneity of variance assumptions are checked for MSD scores. Then, it is seen that homogeneity of variance assumption is not satisfied as shown on Figure 3.29.



Figure 3.29. Residual vs. Fitted Value Plot for MSD in Inkjet Printer Example

Therefore, logarithm of MSD scores are taken in order to satisfy homogeneity of variance assumption as tabulated in Table D.16. Then, this assumption is not violated as seen on Figure 3.30.



Figure 3.30. Residual vs. Fitted Value Plot for logMSD in Inkjet Printer Example

Then, ANOVA is applied on logMSD scores as shown in Figure 3.31.

| Analysi                                               | s of                        | Varianc                                                                      | e for lo                                                           | gMSD, us                                                           | ing Adj                                     | usted SS                                       | for | Tests |
|-------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-----|-------|
| Source<br>A<br>B<br>C<br>A*B<br>A*C<br>Error<br>Total | DF<br>1<br>1<br>1<br>2<br>7 | Seq SS<br>0.1409<br>1.5353<br>0.0107<br>2.8813<br>0.5040<br>0.1346<br>5.2068 | Adj SS<br>0.1409<br>1.5353<br>0.0107<br>2.8813<br>0.5040<br>0.1346 | Adj MS<br>0.1409<br>1.5353<br>0.0107<br>2.8813<br>0.5040<br>0.0673 | F<br>2.09<br>22.82<br>0.16<br>42.83<br>7.49 | P<br>0.285<br>0.041<br>0.729<br>0.023<br>0.112 |     |       |
| s = 0.259384                                          |                             |                                                                              |                                                                    |                                                                    |                                             |                                                |     |       |

Figure 3.31. Analysis of Variance (ANOVA) Results according to MSD Scores for WPSS Method in Inkjet Printer Example

As seen on Figure 3.31, factors A, B, C and interactions of A and B, A and C have significant effect on logMSD scores with 90% confidence.

In order to see how logarithm of MSD scores for each level of significant factors behaves, the logarithm of averages of MSD for each significant factor are calculated according to each level as shown in Table D.17. In order to decide the levels of factors A and B interacted and factors A and C interacted, logMSD interaction graphs are drawn for  $A \times B$  and  $A \times C$  as shown on Figures 3.32 and 3.33, respectively. Since the point that has the minimum logMSD value, the optimal parameter settings are  $A_1B_1C_0$ .



Figure 3.32. Interaction Graph or factors A and B



Figure 3.33. Interaction Graph or factors A and C

In this method, all calculations are made in MATLAB. Moreover, according to WPSS method, no way is suggested to examine performance of optimal levels.

The methods are compared according to two different performance measures which are estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category calculated depending on LRMO and estimated percentage  $\hat{P}_t^{ANOVA(CP)}$  of target category as tabulated in Table 3.70 and 3.71 respectively.

| FA | СТО | RS | S      |        | ( <i>P</i> ) |        | SNR     | METHODS |
|----|-----|----|--------|--------|--------------|--------|---------|---------|
| Α  | B   | С  | 1      | 2      | 3            | 4      |         |         |
| 1  | 1   | 0  | 0.0509 | 0.0903 | 0.1752       | 0.6836 | 10.1376 | LRMO    |
| 1  | 1   | 0  | 0.0509 | 0.0903 | 0.1752       | 0.6836 | 10.1376 | AA      |
| 1  | 1   | 0  | 0.0509 | 0.0903 | 0.1752       | 0.6836 | 10.1376 | WSNR    |
| 1  | 1   | 0  | 0.0509 | 0.0903 | 0.1752       | 0.6836 | 10.1376 | SS      |
| 1  | 1   | 0  | 0.0509 | 0.0903 | 0.1752       | 0.6836 | 10.1376 | WPSS    |

 Table 3.70.Comparison Table According to Prediction Depending on LRMO in Inkjet

 Printer Example

As seen in Table 3.70, all methods show the best performance according to performance criteria of LRMO.

**Table 3.71.** Comparison Table According to Prediction Depending on Estimated

 Percentage of Target Category in Inkjet Printer Example

| FA | СТО | RS |         | $\widehat{P}_i^{ANO}$ |         | METHODS |         |
|----|-----|----|---------|-----------------------|---------|---------|---------|
| Α  | B   | С  | 1       | 2                     | 3       | 4       | METHODS |
| 1  | 1   | 0  | 13.7622 | 0.0000                | 11.2769 | 74.9609 | LRMO    |
| 1  | 1   | 0  | 13.7622 | 0.0000                | 11.2769 | 74.9609 | AA      |
| 1  | 1   | 0  | 13.7622 | 0.0000                | 11.2769 | 74.9609 | WSNR    |
| 1  | 1   | 0  | 13.7622 | 0.0000                | 11.2769 | 74.9609 | SS      |
| 1  | 1   | 0  | 13.7622 | 0.0000                | 11.2769 | 74.9609 | WPSS    |

As seen in Table 3.71, all methods show the best performance depending on this performance measure.

# **3.5. DUPLICATOR EXAMPLE**

In this case, another data set, which is analyzed by Logothetis and Wynn (1989), is used to make another comparison of the methods. In this experiment, paper sheets are fed to the duplicator and it is aimed to detect the optimal operating conditions that provide successful feeding through duplicator. The controllable factors that affect the success of feeding are tabulated in Table 3.72. These factors are the operating conditions for paper feeding operation.

In this problem, sets of parameter settings of 16 experimental runs are designed and applied at the selected factor levels according to the  $L_{16}$  orthogonal array as given in Table 3.73. In addition, numbers of successful paper sheet feeds through duplicator for these 16 experimental runs are tabulated in Table 3.74.

|   | FACTORS                   | LEV      | ELS         |
|---|---------------------------|----------|-------------|
|   | FACIORS                   | 0        | 1           |
| Α | Vacuum Header Type        | Normal   | Lightweight |
| В | Feed cam type             | Normal   | Smoothed    |
| С | Master cylinder cam       | Smoothed | Normal      |
| D | Air rifle setting         | Normal   | High        |
| Е | Chain gripper release cam | Normal   | Advanced    |
| F | Paper weight bar spring   | Without  | With        |
| G | Release blowdown spray    | Off      | On          |
| Н | Buckle setting            | Normal   | High        |
| Ι | Paperweight bar           | Light    | Heavy       |
| J | Paperweight bar position  | Normal   | Back        |
| K | Impression roller setting | Normal   | High        |
| L | Vacuum setting            | Normal   | High        |

 Table 3.72. Control Factors and Their Levels for Duplicator Example

| Exp. No | Α | B | С | D | E | F | G | Η | FxI | Ι | J | K | L |
|---------|---|---|---|---|---|---|---|---|-----|---|---|---|---|
| 1       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0 | 0 | 0 | 0 |
| 2       | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1   | 1 | 1 | 1 | 1 |
| 3       | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0   | 1 | 1 | 1 | 1 |
| 4       | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1   | 0 | 0 | 0 | 0 |
| 5       | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1   | 0 | 0 | 1 | 1 |
| 6       | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0   | 1 | 1 | 0 | 0 |
| 7       | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1   | 1 | 1 | 0 | 0 |
| 8       | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0   | 0 | 0 | 1 | 1 |
| 9       | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0   | 0 | 1 | 0 | 1 |
| 10      | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1   | 1 | 0 | 1 | 0 |
| 11      | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0   | 1 | 0 | 1 | 0 |
| 12      | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1   | 0 | 1 | 0 | 1 |
| 13      | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1   | 0 | 1 | 1 | 0 |
| 14      | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0   | 1 | 0 | 0 | 1 |
| 15      | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1   | 1 | 0 | 0 | 1 |
| 16      | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0   | 0 | 1 | 1 | 0 |

 Table 3.73. Experimental Design for the Duplicator Example

 Table 3.74. Numbers of Successful Paper Sheet Feeds for Duplicator Example

| Exp. | Tests |      |     |      |  |  |  |  |  |
|------|-------|------|-----|------|--|--|--|--|--|
| No   | 1     | 2    | 3   | 4    |  |  |  |  |  |
| 1    | 2     | 9    | 0   | 3    |  |  |  |  |  |
| 2    | 124   | 46   | 0   | 3    |  |  |  |  |  |
| 3    | 21    | 7    | 0   | 2    |  |  |  |  |  |
| 4    | 3     | 9    | 0   | 6    |  |  |  |  |  |
| 5    | *377  | 13   | 7   | 7    |  |  |  |  |  |
| 6    | *379  | *359 | 0   | *341 |  |  |  |  |  |
| 7    | *372  | 43   | 0   | 184  |  |  |  |  |  |
| 8    | 330   | 5    | 143 | *337 |  |  |  |  |  |
| 9    | 2     | 3    | 0   | 4    |  |  |  |  |  |
| 10   | 1     | 3    | 0   | 0    |  |  |  |  |  |
| 11   | 4     | 34   | 3   | 0    |  |  |  |  |  |
| 12   | 1     | 3    | 3   | 3    |  |  |  |  |  |

| 13 | *500 | *500 | 219  | 77   |
|----|------|------|------|------|
| 14 | *500 | *500 | *500 | *500 |
| 15 | *500 | 489  | 9    | 8    |
| 16 | 45   | 46   | 0    | 218  |

Table 3.74. (cont'd) Numbers of Successful Paper Sheet Feeds for Duplicator Example

Then, by using ranges for numbers of successful paper sheet feeds through duplicator given in Table 3.75, the response data given in Table 3.74 are categorized. Then, numbers of occurrences in each category for each set of parameter settings are tabulated in Table 3.76.

| Table 3.75. Ranges | for Numbers | of Successful | Paper Sheet | Feeds for Du | uplicator Exam | ple |
|--------------------|-------------|---------------|-------------|--------------|----------------|-----|
| 0                  |             |               |             |              | 1              |     |

| Cotogory | Rar | nge      |
|----------|-----|----------|
| Category | Min | Max      |
| Ι        | 0   | 0        |
| II       | 1   | 168      |
| III      | 169 | 336      |
| IV       | 337 | $\infty$ |

<sup>\*</sup>Test is stopped after these numbers of paper-sheet fed

| Exp. |   | CATEG | ORIES |    |
|------|---|-------|-------|----|
| No   | Ι | II    | III   | IV |
| 1    | 1 | 3     | 0     | 0  |
| 2    | 1 | 3     | 0     | 0  |
| 3    | 1 | 3     | 0     | 0  |
| 4    | 1 | 3     | 0     | 0  |
| 5    | 0 | 3     | 0     | 1  |
| 6    | 1 | 0     | 0     | 3  |
| 7    | 1 | 1     | 1     | 1  |
| 8    | 0 | 2     | 1     | 1  |
| 9    | 1 | 3     | 0     | 0  |
| 10   | 2 | 2     | 0     | 0  |
| 11   | 1 | 3     | 0     | 0  |
| 12   | 0 | 4     | 0     | 0  |
| 13   | 0 | 1     | 1     | 2  |
| 14   | 0 | 0     | 0     | 4  |
| 15   | 0 | 2     | 0     | 2  |
| 16   | 1 | 2     | 1     | 0  |

 Table 3.76. Numbers of Occurrences in Each Category for Each Set of Parameter Settings for Duplicator Example

In this example, it is targeted to have number of successful feeds that included in category IV, therefore this case is larger-the better type of problem.

# 3.5.1. Logistic Regression Model Optimization for Duplicator Example

As explained in step 1 of subsection 2.1, ordinal logistic regression model is fit by using SPSS program instead of MINITAB. Because an ordinal logistic regression model can include up to 9 factors and 50 covariates in MINITAB and in this example there are twelve factors. One by one all factors except factors B (VAR00002), F (VAR00006), K (VAR000012), and L (VAR000013) are omitted because these factors have no significant effect on number of successful paper fed as shown on Figure 3.34. Also, on this figure the intercept of this model and coefficients of each factor are given.

|           |              |    |          |            |        |    |      | 95% Confide | ence Interval |
|-----------|--------------|----|----------|------------|--------|----|------|-------------|---------------|
|           |              |    | Estimate | Std. Error | Wald   | df | Siq. | Lower Bound | Upper Bound   |
| Threshold | [VAR00014 =  | 1] | -4,300   | ,877       | 24,042 | 1  | ,000 | -6,019      | -2,581        |
|           | [VAR00014 =  | 2] | -,531    | ,570       | ,869   | 1  | ,351 | -1,648      | ,586          |
|           | [VAR00014 =  | 3] | ,012     | ,568       | ,000   | 1  | ,983 | -1,101      | 1,125         |
| Location  | [VAR00002=0] |    | -3,044   | ,713       | 18,204 | 1  | ,000 | -4,443      | -1,646        |
|           | [VAR00002=1] |    | 0ª       |            |        | 0  |      |             |               |
|           | [VAR00006=0] |    | -1,015   | ,518       | 3,833  | 1  | ,050 | -2,030      | ,001          |
|           | [VAR00006=1] |    | 0ª       |            |        | 0  |      |             |               |
|           | [VAR00012=0] |    | ,889     | ,516       | 2,973  | 1  | ,085 | -,122       | 1,900         |
|           | [VAR00012=1] |    | 0ª       |            |        | 0  |      |             |               |
|           | [VAR00013=0] |    | -,546    | ,510       | 1,144  | 1  | ,285 | -1,545      | ,454          |
|           | [VAR00013=1] |    | 0ª       |            |        | 0  |      |             |               |

Parameter Estimates

Link function: Logit.

a. This parameter is set to zero because it is redundant.



Although, p value (0.285) of factor L shows that factor L has no significant effect on number of successful paper fed, this factor is assumed to be included in the model. Because 0.285 is not considerably larger than 0.10. Moreover, when factor L is omitted, the Pearson test result shows that model does not fit the data adequately as seen on Figure 3.35 whereas model included factor L can fit the data adequately according to Pearson test as shown on Figure 3.36.

| Goodness-of-Fit |            |    |      |  |  |  |  |
|-----------------|------------|----|------|--|--|--|--|
|                 | Chi-Square | df | Sig. |  |  |  |  |
| Pearson         | 29,199     | 18 | ,046 |  |  |  |  |
| Deviance        | 20,289     | 18 | ,317 |  |  |  |  |

Link function: Logit.

Figure 3.35. Goodness of fit for the model omitted factor L

| 000011C33-01-1 K |            |    |      |  |  |  |  |  |
|------------------|------------|----|------|--|--|--|--|--|
|                  | Chi-Square | df | Sig. |  |  |  |  |  |
| Pearson          | 50,878     | 41 | ,139 |  |  |  |  |  |
| Deviance         | 31,730     | 41 | ,850 |  |  |  |  |  |

Goodness.of.Fit

Link function: Logit.

Figure 3.36. Goodness of fit for the model included factor L

Parameter settings for significant factors in a full factorial design are generated by MATLAB as tabulated in Table D.1. Then, probability of observing each response category and signal-to-noise ratios are estimated by using these parameter settings based on the model fit to the data. Equations (2.1) and (2.2) are used in estimation of probability of observing each response category. In addition, since it is larger-the-better type of problem, equation (2.6) is used to calculate the signal-to-noise ratios. Both estimated probabilities of observing each category and SNR values are tabulated in Table E.1.

As it is mentioned before, estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category and signal-to-noise ratio are the performance measure to evaluate the performance of optimal levels. Therefore, 14th trial gives both maximum SNR value with 11.9835 and maximum estimated probability for category 4 with 0.9900 as seen in Table E.1. Therefore, the optimal parameter settings are found as  $B_1F_1K_0L_1$  as given in Table 3.77.

|   | FAC | ΓORS |   |        | $\widehat{P}_i^L$ | LR(P)  |        | SNR     |  |
|---|-----|------|---|--------|-------------------|--------|--------|---------|--|
| B | F   | K    | L | Ι      | II                | III    | IV     |         |  |
| 1 | 1   | 0    | 1 | 0.0001 | 0.0057            | 0.0042 | 0.9900 | 11.9835 |  |

Table 3.77. Estimated Probability for Each Category and Signal-to-noise Ratios for Optimal Levels in Duplicator Example

#### **3.5.2.** Accumulation Analysis Method for Duplicator Example

In accumulation analysis method, as explained in subsection 2.2, cumulative frequencies are created by adding frequencies of occurrence given in Table 3.76 for one category to the frequencies for the next category as seen in Table E.2.

Frequencies and cumulative frequencies are calculated by summing the frequencies in Table 3.76 and cumulative frequencies in Table E.2 for relevant level as given in Table E.3. Before determining the optimal parameter settings, analysis of variance (ANOVA) calculations are implemented as shown in Table E.5, E.6 and ANOVA table is given in Table 3.78. Since  $F_{150(0.10)}^3$  is equal to 2.12, factors B, F and I have significant effect on quality characteristics. In addition, factors D and K are assumed to be significant due to having reasonably small difference between 1.9860 and 2.12.

| Factors | df  | S        | MS      | F       |
|---------|-----|----------|---------|---------|
| Α       | 3   | 0,7847   | 0,2616  | 0,3360  |
| В       | 3   | 45,7079  | 15,2360 | 19,5730 |
| С       | 3   | 0,7847   | 0,2616  | 0,3360  |
| D       | 3   | 4,6379   | 1,5460  | 1,9860  |
| Ε       | 3   | 1,7122   | 0,5707  | 0,7332  |
| F       | 3   | 5,5161   | 1,8387  | 2,3621  |
| G       | 3   | 0,7847   | 0,2616  | 0,3360  |
| Н       | 3   | 0,7847   | 0,2616  | 0,3360  |
| Ι       | 3   | 5,5161   | 1,8387  | 2,3621  |
| J       | 3   | 0,4755   | 0,1585  | 0,2036  |
| K       | 3   | 4,6379   | 1,5460  | 1,9860  |
| L       | 3   | 3,1101   | 1,0367  | 1,3318  |
| F*I     | 3   | 0,7847   | 0,2616  | 0,3360  |
| Error   | 150 | 116,7628 | 0,7784  |         |
| Total   | 189 | 192      | 1,0159  |         |

Table 3.78. Analysis of Variance (ANOVA) Results

Since the levels that have maximum frequencies in category 4 give the optimal solution, optimal levels are  $B_1D_0F_1I_1K_0$  as seen in Table E.3.

Estimated frequencies for each category and factor and total estimated frequencies for each category are calculated by using equations (2.21) and (2.22), respectively. These results are tabulated in Table E.6.

By using logit (omega) transformation (Equation (2.23)) estimated frequencies and overall estimated frequencies for each category transformed into decibels as tabulated in Table E.7.

Then, by using equation (2.24) long-run performance is estimated for each category in decibels. Then, these estimates are transformed back by using again logit transformation. The long-run performances in decibels and percentages  $\hat{P}_i^{ANOVA(CP)}$  are tabulated in Table 3.79. Percentage of category 4 gives the performance of optimal parameter settings given in Table 3.79.

| Table 3.79. Estimated Percentage for | each Category | for Optimal | Levels for | Duplicator |
|--------------------------------------|---------------|-------------|------------|------------|
|                                      | Example       |             |            |            |

|               | FACTORS |   |   |   |   | $\begin{array}{c c} \hat{P}_i^{ANOVA(CP)} \\ \hline \mathbf{I} & \mathbf{II} & \mathbf{III} & \mathbf{IV} \end{array}$ |         |         |         |
|---------------|---------|---|---|---|---|------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|
|               | B       | D | F | Ι | K | Ι                                                                                                                      | II      | III     | IV      |
| In decibel    | 1       | 0 | 1 | 1 | 0 | -10.5826                                                                                                               | -6.1125 | -7.3265 | 0.0000  |
| In percentage | 1       | 0 | 1 | 1 | 0 | 8.0397                                                                                                                 | 11.6192 | 0.0000  | 80.3411 |

## 3.5.3. Weighted Signal-to-noise Ratio for Duplicator Example

In this method, first of all weights are given to categories proportional to the quality loss. However, there is no guidance given for determining scale of weights and spacing between weights. But, in the surface defect example the results are not changed when two different weight sets are compared to see the effect of choosing different weights on the optimal solution. Therefore, the weights are given to categories as shown below.

 $W = (4 \ 3 \ 2 \ 1)$ 

By using equation (2.26), the signal-to-noise ratios are calculated for each set of parameter settings by using weights and number of observations by category as tabulated in Table E.8.

Before ANOVA is applied, residual normality and homogeneity of variance assumptions are checked for SNR values. Normality and residual's homogeneity of variance assumptions are not violated for SNR values.

Then, ANOVA is applied on SNR values in order to detect the significant factors as shown on Figure 3.37. As seen on this figure, factors B, D, F and K have significant effects on response data with 90% confidence. Although, p values of factors D and K are greater than 0.10, 0.181 and 0.191 are not considerably larger than 0.10. Therefore, effects of factors D and K are assumed to be significant.

| Analysi                                      | s of                          | Variance                                                          | for                                  | SNR                                   | , using                                               | Adjusted                           | SS for                                | Tests |
|----------------------------------------------|-------------------------------|-------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------|---------------------------------------|-------|
| Source<br>B<br>D<br>F<br>K<br>Error<br>Total | DF<br>1<br>1<br>1<br>11<br>15 | Seq S5<br>50,139<br>7,195<br>11,531<br>6,871<br>38,843<br>114,578 | Adj<br>50,<br>7,<br>11,<br>6,<br>38, | 55<br>139<br>195<br>531<br>871<br>843 | Adj MS<br>50,139<br>7,195<br>11,531<br>6,871<br>3,531 | F<br>14,20<br>2,04<br>3,27<br>1,95 | P<br>0,003<br>0,181<br>0,098<br>0,191 |       |
| 5 = 1,8                                      | 7913                          | R-Sq =                                                            | 66,:                                 | 10%                                   | R-Sq(a                                                | adj) = 53                          | ,77%                                  |       |

Figure 3.37. Analysis of Variance (ANOVA) Results according to SNR Scores for WSNR Method in Duplicator Example

Then, the averages of signal to noise ratios for each significant factor are calculated according to each level as tabulated in Table E.9. In this method, all calculations are made in MATLAB.

As seen in Table E.9, parameter settings that have maximum averages of signal-to-noise ratios give the optimal solution which is  $B_1D_0F_1K_0$ . According to WSNR method, no way is suggested to examine performance of optimal parameter settings.

## 3.5.4. Scoring Scheme Method for Duplicator Example

In this method first of all, midranks for each category are calculated by using equation (2.27). Then, location score for each category is calculated by using equations (2.28) and (2.29). These calculated data are tabulated in Table E.10. Then, by using equation (2.30), location pseudo-observations are calculated as tabulated in Table D.12 for each set of parameter settings.

Moreover, by using equations (2.31) and (2.32) dispersion scores are calculated for each category as shown in Table E.11. In addition, by using equation (2.33), dispersion pseudo-observations are calculated as tabulated in Table E.12 for each set of parameter settings.

After residual normality and homogeneity of variance assumptions are checked for L and D scores, ANOVA is applied for L and D as shown on Figure 3.38 and 3.39, respectively.

| Analysi                                      | s of                    | Variance                                                         | for Li.                                               | using /                                              | Adjusted                           | ss for                                | Tests |
|----------------------------------------------|-------------------------|------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------|---------------------------------------|-------|
| Source<br>B<br>F<br>K<br>L<br>Error<br>Total | DF<br>1<br>1<br>1<br>11 | Seq S5<br>78.196<br>9.014<br>5.360<br>3.947<br>17.403<br>113.920 | Adj SS<br>78.196<br>9.014<br>5.360<br>3.947<br>17.403 | Adj MS<br>78.196<br>9.014<br>5.360<br>3.947<br>1.582 | F<br>49.43<br>5.70<br>3.39<br>2.49 | P<br>0.000<br>0.036<br>0.093<br>0.143 |       |
| 5 = 1.2                                      | 5780                    | R-Sq =                                                           | 84.72%                                                | R-Sq(                                                | adj) = 79                          | 9.17%                                 |       |

Figure 3.38. Analysis of Variance (ANOVA) Results according to L Scores for SS Method in Duplicator Example

As seen on Figure 3.38, factors B, F, K and L have significant effect on location scores with 90% confidence. Although, p value of factor L is greater than 0.10, 0.143 is not considerably larger than 0.10. Therefore, effect of factor L is assumed to be significant.

```
Analysis of Variance for Di, using Adjusted SS for Tests
Source
        DF
            Seq SS
                    Adj SS
                            Adj MS
                                        F
                                     5.50 0.036
В
         1
            17.402
                    17.402
                            17.402
         1
             3.321
                    3.321
                             3.321
                                    1.05 0.325
к
Error
        13
           41.169
                    41.169
                              3.167
Total
        15
            61.892
S = 1.77957
            R-Sq = 33.48\%
                              R-Sq(adj) = 23.25\%
```

Figure 3.39. Analysis of Variance (ANOVA) Results according to D Scores for SS Method in Duplicator Example

As seen on Figure 3.39, only factor B has significant effect on dispersion scores with p values smaller than 0.10.

Then, the averages of location and dispersion pseudo-observations for each significant factor are calculated according to each level as seen in Table E.13. In this method, all calculations are made in MATLAB.

Since this experiment is larger-the-better type of problem, the maximum average value for location and minimum dispersion pseudo-observations for each significant factor gives the optimal parameter settings. Hence, as seen in Table E.13, the optimal parameter settings for location and dispersion results for factor B differ, it is necessary to compromise between two different levels of factor B.

When compromising is implemented based on subsection 2.1.4, estimated location and dispersion scores are calculated for all possible levels of factor B (0 or 1) by using equations (2.34) and (2.35), respectively.

When the calculations are done for all possible (0, 1) levels of factor B, predicted location versus dispersion scores graph are shown on Figure 3.40.



Figure 3.40. Predicted Location versus Dispersion Scores for Duplicator Example

It is tried to determine the point that achieve maximize predicted location and minimize dispersion scores. Hence, as seen on this figure there is too much difference between predicted location scores for point 1 (B=1) and 2 (B=0) whereas there is not so much difference between predicted dispersion scores for point 1 and 2. Therefore, it is better to choose point 2 (B=1).

According to these facts, the overall parameter settings are estimated as B<sub>0</sub>F<sub>0</sub>K<sub>1</sub>L<sub>0</sub>.

### 3.5.5. Weighted Probability Scoring Scheme Method for Duplicator Example

This method gives the target category the largest weight, thus location effect behaves as larger-the-better type. Therefore, the weights are chosen as given below.

 $Weights = (1 \ 2 \ 3 \ 4)$ 

Then, proportions of observation  $p_{ij}$  for each category *i* and set *j* of parameter settings are calculated as tabulated in Table E.14. Then, location scores are calculated depending on equation (2.36) as tabulated in Table E.15 by using these weights and proportions of observations. Before calculating dispersion scores, target value set is determined as given below. In this set, all the observations are expected to be in category 4, therefore 4 is assigned for category 4.

 $Target = (0 \quad 0 \quad 0 \quad 4)$ 

Then, dispersion scores are calculated as tabulated in Table D.15 according to equation (2.37) by using weights, proportion of observation for each category and target value set. Instead of compromising between optimal levels for location and dispersion scores, mean square deviation (MSD) scores are calculated based on equation (2.38) by using location and dispersion scores in order to determine the optimal solution as given in Table E.15.

Before ANOVA is applied, residual normality and homogeneity of variance assumptions are checked for MSD scores. Then, it is seen that none of these assumptions is violated. Then, ANOVA is applied on MSD values as shown on Figure 3.41.

| Analysi                                      | s of                          | Variance                                                          | for MSD,                                               | using Ad                                              | justed S                            | 5 for Tes                             | ts |
|----------------------------------------------|-------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------|---------------------------------------|----|
| Source<br>B<br>F<br>K<br>L<br>Error<br>Total | DF<br>1<br>1<br>1<br>11<br>15 | Seq SS<br>125,898<br>7,140<br>7,230<br>5,544<br>13,513<br>159,325 | Adj S5<br>125,898<br>7,140<br>7,230<br>5,544<br>13,513 | Adj MS<br>125,898<br>7,140<br>7,230<br>5,544<br>1,228 | F<br>102,49<br>5,81<br>5,89<br>4,51 | P<br>0,000<br>0,035<br>0,034<br>0,057 |    |
| 5 = 1,1                                      | 0834                          | R-Sq =                                                            | 91,52%                                                 | R-Sq(adj                                              | ) = 88,4                            | 3%                                    |    |

Figure 3.41. Analysis of Variance (ANOVA) Results according to MSD Scores for WPSS Method in Duplicator Example

As seen on Figure 3.41, factors B, F, K and L have significant effect on MSD scores with 90% confidence.

In order to see how MSD scores for each level of significant factors behave, the averages of them for each significant factor are calculated according to each level as shown in Table E.16. As seen in this table, levels that have the lowest MSD scores give the optimal parameter settings which are  $B_1F_1K_0L_1$ . In this method, all calculations are made in MATLAB. Moreover, According to WPSS method, no way is suggested to examine performance of optimal parameter settings.

The methods are compared according to two different performance measures which are estimated probability  $\hat{P}_t^{LR(P)}$  of observing target category calculated depending on LRMO and estimated percentage  $\hat{P}_t^{ANOVA(CP)}$  of target category as tabulated in Table 3.80 and 3.81 respectively.

|   |     | -          |          |   |                  |     |     | 1       |  |
|---|-----|------------|----------|---|------------------|-----|-----|---------|--|
| ł | FAC | <b>FOR</b> | <b>S</b> |   | $\hat{P}_i^{LI}$ | (F) | SNR | METHODS |  |
| R | F   | K          | I.       | 1 | 2                | 3   | 4   |         |  |

0.0042

0.0042

0.0042

0.1226

0.0042

0.9900

0.9900

0.9900

0.2888

0.9900

11.9835

11.9835

11.9835

7.1775

11.9835

LRMO

AA(L=1)

WSNR (L=1)

SS

WPSS

0

0

0

1

0

1

1

1

0

1

1

1

1

0

1

1

1

1

0

1

0.0001

0.0001

0.0001

0.0320

0.0001

0.0057

0.0057

0.0057

0.5566

0.0057

 
 Table 3.80. Comparison Table According to Prediction Depending on LRMO in Duplicator Example

| Table 3.81. Compari | son Table According   | to Prediction Depen  | ding on Estimated |
|---------------------|-----------------------|----------------------|-------------------|
| Percent             | age of Target Categor | ry in Duplicator Exa | mple              |

|   | FAG | CTC | RS |   |         | $\widehat{P}_i^{ANOV}$ | METHODS |         |                  |
|---|-----|-----|----|---|---------|------------------------|---------|---------|------------------|
| В | D   | F   | Ι  | K | 1       | 2                      | 3       | 4       | WIE I HODS       |
| 1 | 0   | 1   | 1  | 0 | 8.0397  | 11.6192                | 0.0000  | 80.3411 | LRMO (D=0 & I=1) |
| 1 | 0   | 1   | 1  | 0 | 8.0397  | 11.6192                | 0.0000  | 80.3411 | AA               |
| 1 | 0   | 1   | 1  | 0 | 8.0397  | 11.6192                | 0.0000  | 80.3411 | WSNR (I=1)       |
| 0 | 0   | 0   | 1  | 1 | 42.8639 | 57.1361                | 0.0000  | 0.0000  | SS               |
| 1 | 0   | 1   | 1  | 0 | 8.0397  | 11.6192                | 0.0000  | 80.3411 | WPSS             |

As seen in Table 3.80, LRMO, AA, WSNR and WPSS methods show the best performance according to performance criteria of LRMO.

As seen in Table 3.81, LRMO, AA, WSNR and WPSS methods show the best performance according to this performance measure.

# **3.6. OVERALL COMPARISON**

In the light of these results given above, in order to determine which methods are the best methods in robust parameter design of products and processes with ordered categorical response among these five methods, overall comparison table is given in Table 3.82.

In Table 3.82, performance measure according to probability  $\hat{P}_t^{LR(P)}$  of observing target category calculated depending on LR, estimated percentage  $\hat{P}_t^{ANOVA(CP)}$  of target category, for all methods and problems except simulated example, and true  $P_i$  models for simulated example and Taguchi SNR model of continuous data for surface defect example are tabulated.

As seen in this table, LRMO has the best results for all examples depending on its own performance measure  $\hat{P}_t^{LR(P)}$  whereas AA provides the best results in all examples except thick-film resistor example depending on this performance measure. AA has the best results for all examples depending on performance measure which is the estimated percentage  $\hat{P}_t^{ANOVA(CP)}$  of target category while LRMO provides the best results in all examples in all examples except thick-film resistor example depending on this performance measure. Moreover, LRMO and AA methods are capable of providing the best results with strong steadiness whereas the other methods do not provide similar level of steadiness in the examples of this study.

Moreover, as seen in Table 3.82, LRMO, AA and WSNR can find the best results according to predicted SNR results depending on Taguchi's SNR model and true probability models. Although, WPSS seems to be capable of providing the best result in simulated example, it cannot find any factors significant in this example.

Finally, the goodness-of-fit test results for Pearson and Deviance tests are tabulated in Table 3.83. As seen in this table, ordinal logistic regression model cannot fit the response data adequately for surface defect and thick-film resistor examples.

| Enomelaa               | T-ma |        |        | $\hat{P}_i^{LR(P)}$ |          |        |         | Ì       | )       |         |         |
|------------------------|------|--------|--------|---------------------|----------|--------|---------|---------|---------|---------|---------|
| Examples               | туре | LRMO   | AA     | WSNR                | WPSS     | SS     | LRMO    | AA      | WSNR    | WPSS    | SS      |
| Surface<br>Defect      | STB  | 0.9498 | 0.9498 | 0.9498              | 0.9219   | 0.9219 | 92.5137 | 92.5137 | 92.5137 | 74.3068 | 60.9242 |
| Thick-film<br>Resistor | STB  | 0.9322 | 0.7497 | 0.9296              | 0.9296   | 0.7519 | 27.6800 | 75.1708 | 56.6300 | 3.6500  | 56.6300 |
| Inkjet<br>Printer      | LTB  | 0.6836 | 0.6836 | 0.6836              | 0.6836   | 0.6836 | 74.9609 | 74.9609 | 74.9609 | 74.9609 | 74.9609 |
| Duplicator             | LTB  | 0.9900 | 0.9900 | 0.9900              | 0.9900   | 0.2888 | 80.3411 | 80.3411 | 80.3411 | 80.3411 | 0.0000  |
| Examples               | Туре |        |        | $P_i^*$             |          |        |         |         | SNR*    |         |         |
| Surface<br>Defect      | STB  |        |        |                     |          |        | -0.0788 | -0.0788 | -0.0788 | -2.1170 | -2.1170 |
| Simulated              | STB  | 0.7864 | 0.7864 | 0.7864              | 0.7864** | 0.0309 |         |         |         |         |         |

 Table 3.82.
 Overall Comparison Table According to the Best Results

\* Comparison is done using true *P<sub>i</sub>* models for simulated example and Taguchi SNR model of continuous data for surface defect example.

\*\* WPSS finds all factors as insignificant. These optimal parameter settings are found by ignoring ANOVA results.

| LRMO                | Goodness-of-fit |         |          |  |
|---------------------|-----------------|---------|----------|--|
| Example             | Туре            | Pearson | Deviance |  |
| Surface Defect      | STB             | 0.0020  | 0.0000   |  |
| Thick-film Resistor | STB             | 0.0000  | 0.0000   |  |
| Simulated           | STB             | 0.9860  | 0.9640   |  |
| Inkjet Printer      | LTB             | 0.2170  | 0.1590   |  |
| Duplicator          | LTB             | 0.1390  | 0.8500   |  |

Table 3.83. Goodness-of-fit Results for Each Example in LRMO

### **CHAPTER 4**

# DISCUSSION

In the light of these studies for comparison of optimization methods for ordered categorical data, LRMO method finds the optimal settings for statistically significant parameters, which have the best results in the examples analyzed above depending on its own performance measure. In addition, AA method finds the optimal settings for statistically significant parameters that have the best results in the examples analyzed above depending on estimated percentage of target category by ANOVA model. However, for the thick-film resistor problem, these methods cannot find the optimal solutions that give the best performance measure according to other performance measures. Moreover, for the surface defect example, LRMO, AA and WSNR methods can find the optimal parameter settings that have the best predicted signal to noise ratio results at optimal parameter settings, estimated by ANOVA model of continuous version of data.

These results can be explained with the goodness-of-fit test results for LRMO. In other words, ordinal logistic regression model cannot fit to the response data adequately in surface defect and thick film resistor examples. Although this method can give the best performance measure according to LRMO's performance criteria in thick film resistor example, it cannot give best performance measure according to estimated percentage of target category by ANOVA model in this example. This undesired result may be due to the lack of model fit to the response data. These results show that goodness of fit, existence of which is an important factor for LRMO, can be considered as a weakness of the method.

On the other hand, in surface defect example LRMO can find optimal parameter settings that have the best performance measure depending on all three performance measures even if the model cannot fit the response data adequately. This shows us that the goodness-of-fit is not a significant requirement.

Similar to LRMO, AA method cannot find the best performance measure if LRMO's performance criteria is considered for comparison in thick-film resistor example. These facts can be explained with method's nature. Namely, contrary to LRMO, SS and WPSS methods, AA method cannot allow analysis of location and dispersion effects separately for a given set of parameter settings. Instead, both location and dispersion effects of factors are focused and aims of making mean close to target value and minimizing variance are tried to be achieved simultaneously in this method. However, AA method may not be able to achieve these purposes in the thick film resistor example.

Moreover, as Logothetis (1992) criticizes, independency in frequencies of the cumulative categories cannot be provided in AA method. In addition to this fact, as Hamada and Wu (1989) criticizes, spurious effects of some factors may occur. These weaknesses of this method may cause the low performance in the thick film resistor example.

Another method examined in this study is Scoring Scheme Method. SS method can allow analysis of location and dispersion effects separately for a given set of parameter settings. This may lead to finding two contradicting optimal parameter settings for the same problem. As seen in all examples except simulated example, optimal parameter settings found depending on location and dispersion effects differ. However, in this method no way is introduced to compromise between optimal levels found depending on location and dispersion effects. Therefore, despite the fact that this method shows ways to minimize variance and make mean close to the target value, it cannot introduce a way to find overall optimal solution that achieve these goals simultaneously. Thus, a way to compromise between optimal parameter settings is introduced in this study. As seen in section 3, SS method by using this way can find out the optimal parameter settings that show the best performance according to probability of observing target category, estimated by LR models, and that of observing target category estimated by ANOVA models of cumulative percentage of categories in inkjet printer example whereas it cannot show similar success in other examples.

Furthermore, ANOVA is not introduced for application of SS method. However, factors may not have significant effect or may have different effects on location and dispersion effects. Therefore, ANOVA is suggested and applied in this method for SS method.

Moreover, SS method can find the best performance measure only in one smaller-thebetter and one larger-the-better type of problems used in this study after compromising. Therefore, there is no evidence that this method can be successful at a certain type of problem.

In addition, similar to SS method, WPSS method can allow analysis of location and dispersion effects separately for a given set of parameter settings. Contrary to SS method, this method calculates mean squared deviation (MSD) to compromise between the optimal parameter settings found depending on location and dispersion effects. Nevertheless, this method cannot show steady success in examples explained in Section 3. In other words, WPSS can estimate optimal parameter settings that show the best performance in simulated, inkjet printer and duplicator examples whereas it cannot show the similar success in other examples. Although WPSS can estimate optimal parameter settings that show the best performance in simulated example, it cannot find any factors as statistically significant.

Moreover, this method can find the best performance data according to probability of observing target category, estimated by LR models only in one smaller-the-better and two

larger-the-better type examples used in this study. In addition, this method can find the best performance data according to estimated percentage of observing target category by ANOVA model only in one smaller-the-better and one larger-the-better type examples used in this study. Therefore, there is no evidence that this method can be successful at a certain type of problem.

Furthermore, ANOVA is not introduced for application of WPSS method. However, factors may not have significant effect on MSD scores. Therefore, ANOVA is suggested and applied in this method for WPSS method.

Same as AA method, WSNR method cannot allow analysis of location and dispersion effects separately for a given set of parameter settings. Instead, both location and dispersion effects of factors are focused and aims of making mean close to target value and minimizing variance are tried to be achieved simultaneously in this method. However, WSNR method can find the optimal parameter settings that illustrate the best performance depending on both performance measures in surface defect, simulated, inkjet printer and duplicator examples except thick-film resistor example. The undesired result in thick-film resistor example may occur due to not being able to achieve purposes of making mean close to target value and minimizing variance simultaneously in these examples.

Moreover, WSNR method gives categories weights proportional to the quality loss, but no rule is suggested for determining scale of weights and spacing between weights. This fact may cause not to be able to define importance of target category sufficiently.

In addition to LRMO and AA methods, WSNR method shows almost same performance as ones of LRMO and AA methods. Furthermore, WSNR is a quite practical method. However, unlike LRMO and AA methods, WSNR cannot find the best result in thick-film resistor example according to both performance measures which are probability of observing target category calculated depending on LR and estimated percentage of observing target category by ANOVA model.

The final fact that should be mentioned is that in some examples factors are categorized in levels. However, some factors such as temperature can be analyzed by using their levels in continuous scale. In order to use such data in comparison of methods, continuous scale of these factor levels are not considered. However, LRMO can analyze continuous data by using response surface optimization method. By the help of this property, this method can improve the performance of optimal parameter settings in thick film resistor example which is the example that has factors that can be considered in continuous scale. This property is the great advantage over against the other methods compared in this study.
#### CHAPTER 5

#### **CONCLUSION AND FURTHER STUDIES**

In this study, it is aimed to find the best robust parameter design method for products and processes with ordered categorical response that can find the best performed optimal parameter settings among five methods; Logistic Regression Model Optimization (LRMO), accumulation analysis method (AA), weighted signal-to-noise ratio method (WSNR), scoring scheme method (SS) and weighted probability scoring scheme method (WPSS). LRMO and AA methods have the best performance among these methods when methods are applied on five different examples.

Moreover, WSNR method shows almost same performance as ones of LRMO and AA methods. However, unlike LRMO and AA methods, WSNR cannot find the best result in thick-film resistor example according to both performance measures. If more examples are analyzed in further studies, WSNR may pass beyond other methods.

In addition, LRMO has clear advantage over AA method, since it can allow analysis of location and dispersion effects separately for a given set of parameter settings. Further analysis might be studied to show this discrepancy of the methods. On the other hand, it is determined that being in need of fitting the model to the data adequately is a weakness of LRMO. Therefore, this fact should be investigated by applying this method on much more examples in further studies. Even so, in the examples that models are not fit the response data adequately, optimal levels found by the method can give the best estimated probability of observing target category among all the optimization methods compared in this study.

Furthermore, in order to investigate methods' behavior on different types of problem, examples are chosen in smaller-the-better and larger-the-better types of problem. However, there is no statement found that a certain method is successful or unsuccessful on a certain type of problem. Hence, in further studies much more examples should be analyzed in these two types of problems to investigate the behaviors of the methods against certain type of problems.

In addition, five different examples which are chosen in comparisons of methods, have different properties such as numbers of experimental runs, numbers of factors. These choices are made to be able to see how the methods behave on data that have different properties. However, when the problems analyzed by using the methods compared in this study, there is no evidence found that the methods can be successful at a certain type of property.

Moreover, all methods can be applied on an ordered response data which means that data should in monotonically decreasing or increasing order. However, sometimes nominal data is needed to be analyzed. For this type of data, Erdural (2006) suggests to use two alternative treatments: binary and ordinal treatment. In the binary treatment, data is clustered in two groups (desired, not desired) depending on target. In the ordinal treatment, data is arranged in order to make data in monotonically decreasing or increasing order. In further studies, an addition to smaller-the-better and larger-the-better examples, nominal-the-best examples can be studied for comparison of these methods by using these treatments.

Since in this study factors that have ordered categorical levels are analyzed, LRMO is also applied on these factors in examples. However, LRMO can also be applied on continuous data by using response surface optimization method which is a great advantage over against other methods. Therefore, this method may find better results if continuous data analyses is performed on the examples by considering factors such as temperature that can take continuous value. Hence, behavior and success of this method on the continuous data can be investigated in further studies.

In addition to these conclusions, as it is mentioned before it may be necessary to compromise between optimal levels for location and dispersion scores found by SS method in order to determine overall optimal levels. However, no way is introduced for compromising between these two optimal levels. In this study, a way is introduced for compromising. Then, performance results found depending on this way do not show steady success in the examples. Hence, alternative compromising methods can be investigated in further studies to find an effective way for choosing the optimal level.

Moreover, in this study comparison is made depending on performance criteria which are SNR at optimal parameter settings, estimated by ANOVA model of continuous version of data (if applicable), probability of observing target category, estimated by LR models, and that of observing target category estimated by ANOVA models of cumulative percentage of categories. In order to strengthen the statements provided in this study, alternative comparison methods can be used in further studies.

In conclusion, five robust parameter design methods for products and processes with ordered categorical response are compared in this study on examples that have categorical parameter settings and among these methods LRMO and AA show the best performance on the ordered categorical data. Therefore, it is better to choose LRMO and AA methods in order to analyze ordered categorical data. In addition, if there is a necessity to analyze continuous data, then LRMO can be used for robust parameter design. To sum up, since LRMO has the best performance in this study similar to AA method and it is able to analyze continuous data, it can be more advantageous to prefer using LRMO in robust parameter design for products and processes.

#### REFERENCES

Asiabar, M.H., & Ghomi, S. M. T. F. (2006). "Analysis of Ordered Categorical Data Using Expected Loss Minimization". *Quality Engineering*. *18*(2), 117-121. Box, G., & Jones, S. (1986). Discussion of "Testing in industrial experiments with ordered categorical data" *Technometrics*, *28*(4), 295-301.

Chipman, H., & Hamada, M. (1996). "Bayesian analysis of ordered categorical data from industrial experiments." *Technometrics*. *35*(1), 1-10.

Erdural, S. (2006). A Method for Robust Design of Products or Processes with Categorical Response. Unpublished master's thesis, Middle East Technical University, Ankara, Turkey.

Fowlkes, W.Y., & Creveling, C.M. (1995). *Engineering Methods for Robust Product Design*. Massachusetts: Addison-Wesley Publishing Company.

Green, S.B., & Salkind, N.J. (2005). *Using SPSS for Windows and Macintosh*. New Jersey: Prentice-Hall.

Hamada, M., & Wu, C. F. J. (1989). "A critical look at accumulation analysis and related methods." *Technometrics*. *32*(2), 119-130.

Hosmer, D.W., & Lemeshow, S. (2000). *Applied Logistic Regression*. United States of America : Wiley-Interscience Publication.

Jeng, Y. C., & Guo, S. M. (1996). "Quality improvement for RC06 chip resistor." *Quality* and *Reliability Engineering International*, 12(6), 439-445.

Jinks, J. (1987). "Reduction of Voids in a Urethane-Foam Product," in *Fifth Symposium on Taguchi Methods*. Dearborn, MI: American Suppliers Institute, Inc., pp. 135-148.

Köksal, G., Erdural, S., and İlk, Ö. (2006) "A Method for Analysis of Categorical Data for Robust Product and Process Design", Proceedings in Computational Statistics, *17th Symposium of the IASC*, Rome, Italy, Rizzi, A. and Vichi, M. (Eds.) Physica-Verlag, 573-580, 2006.

Logothetis, N., & Wynn, H.P. (1989). Quality Through Design. Oxford: Clarendon Press

Logothetis, N. (1992). Managing For Total Quality. United Kingdom: Prentice-Hall.

Minitab (Version 16) [Software]. (2010). State College, PA: Minitab.

Montgomery, D.C. (2009). *Statistical Quality Control: A Modern Introduction*. Asia: John Wiley & Sons, Inc.

Nair, V. N. (1986). "Testing in industrial experiments with ordered categorical data" *Technometrics*, 28(4), 283-291.

Phadke, M.S. (1989). Quality engineering using robust design. New York: Prentice-Hall.

Ross, P. J. (1996). *Taguchi Techniques for Quality Engineering*. United States of America: McGraw-Hill.

Roy, R. (1990). A primier on the Taguchi method. New York: Van Nostrand Reinhold.

SPSS Statistics (Version 17.0) [Software]. (2008). Armonk, NY: IBM Corporation.

Taguchi, G., Chowdhury, S., & Wu, Y. (2004). *Taguchi's Quality Engineering Handbook*. New Jersey: Wiley.

Wu, F., & Yeh, C. (2006). "A comparative study on optimization methods for experiments with ordered categorical data". *Computers & Industrial Engineering*. *50*(2006) 220-232.

Zang, C., Friswell, M. I., & Mottershead, J.E. (2004) "A review of robust optimal design and its application in dynamics". *Computers and Structures*. *83*, 315-326.

## **APPENDIX A**

## **GRAPHS FOR RESIDUAL ASSUMPTIONS OF ANOVA**



Figure A.1. Normal Probability Plot of Residuals for SNR<sub>1</sub> in Surface Defect Example



Figure A.2. Residual vs. Fitted Value Plot for SNR1 in Surface Defect Example



Figure A.3. Normal Probability Plot of Residuals for SNR<sub>2</sub> in Surface Defect Example



Figure A.4. Residual vs. Fitted Value Plot for SNR<sub>2</sub> in Surface Defect Example

## **APPENDIX B**

## **RESULTS FOR THICK-FILM RESISTOR PRODUCTION EXAMPLE**

# **B.1** Results of Logistic Regression Model Optimization in Thick-film Resistor Production Example

| <b>Table B.1.</b> Estimated Probabilities of | Observing a Category  | and the Signal to N   | loise Ratios |
|----------------------------------------------|-----------------------|-----------------------|--------------|
| based on Ordinal Logistic Regression         | Models for Thick-film | n Resistor Production | on Example   |

| Trial |   | ł | FAC | CT( | )R | 5 |   |        |        | SNR    |        |        |        |          |
|-------|---|---|-----|-----|----|---|---|--------|--------|--------|--------|--------|--------|----------|
| 11141 | Α | B | С   | D   | E  | F | G | Ι      | II     | III    | IV     | V      | VI     |          |
| 1     | 1 | 1 | 1   | 1   | 1  | 1 | 1 | 0.0189 | 0.3935 | 0.5536 | 0.0335 | 0.0001 | 0.0005 | -8.5314  |
| 2     | 2 | 1 | 1   | 1   | 1  | 1 | 1 | 0.8401 | 0.1548 | 0.0051 | 0.0001 | 0.0000 | 0.0000 | -1.7803  |
| 3     | 1 | 2 | 1   | 1   | 1  | 1 | 1 | 0.0128 | 0.3078 | 0.6295 | 0.0490 | 0.0002 | 0.0007 | -8.8783  |
| 4     | 2 | 2 | 1   | 1   | 1  | 1 | 1 | 0.7068 | 0.2820 | 0.0109 | 0.0003 | 0.0000 | 0.0000 | -2.8731  |
| 5     | 1 | 3 | 1   | 1   | 1  | 1 | 1 | 0.0086 | 0.2322 | 0.6867 | 0.0711 | 0.0003 | 0.0010 | -9.1909  |
| 6     | 2 | 3 | 1   | 1   | 1  | 1 | 1 | 0.5253 | 0.4506 | 0.0235 | 0.0006 | 0.0000 | 0.0000 | -4.0643  |
| 7     | 1 | 1 | 2   | 1   | 1  | 1 | 1 | 0.0443 | 0.5845 | 0.3568 | 0.0142 | 0.0001 | 0.0002 | -7.6554  |
| 8     | 2 | 1 | 2   | 1   | 1  | 1 | 1 | 0.8372 | 0.1575 | 0.0052 | 0.0001 | 0.0000 | 0.0000 | -1.8063  |
| 9     | 1 | 2 | 2   | 1   | 1  | 1 | 1 | 0.0302 | 0.5022 | 0.4462 | 0.0209 | 0.0001 | 0.0003 | -8.0634  |
| 10    | 2 | 2 | 2   | 1   | 1  | 1 | 1 | 0.7025 | 0.2861 | 0.0112 | 0.0003 | 0.0000 | 0.0000 | -2.9049  |
| 11    | 1 | 3 | 2   | 1   | 1  | 1 | 1 | 0.0205 | 0.4131 | 0.5350 | 0.0308 | 0.0001 | 0.0004 | -8.4503  |
| 12    | 2 | 3 | 2   | 1   | 1  | 1 | 1 | 0.5201 | 0.4553 | 0.0240 | 0.0006 | 0.0000 | 0.0000 | -4.0952  |
| 13    | 1 | 1 | 3   | 1   | 1  | 1 | 1 | 0.1007 | 0.7028 | 0.1905 | 0.0059 | 0.0000 | 0.0001 | -6.7434  |
| 14    | 2 | 1 | 3   | 1   | 1  | 1 | 1 | 0.8344 | 0.1602 | 0.0053 | 0.0001 | 0.0000 | 0.0000 | -1.8325  |
| 15    | 1 | 2 | 3   | 1   | 1  | 1 | 1 | 0.0700 | 0.6633 | 0.2578 | 0.0088 | 0.0000 | 0.0001 | -7.1505  |
| 16    | 2 | 2 | 3   | 1   | 1  | 1 | 1 | 0.6981 | 0.2902 | 0.0114 | 0.0003 | 0.0000 | 0.0000 | -2.9368  |
| 17    | 1 | 3 | 3   | 1   | 1  | 1 | 1 | 0.0482 | 0.6008 | 0.3378 | 0.0130 | 0.0001 | 0.0002 | -7.5642  |
| 18    | 2 | 3 | 3   | 1   | 1  | 1 | 1 | 0.5149 | 0.4600 | 0.0245 | 0.0006 | 0.0000 | 0.0000 | -4.1260  |
| 19    | 1 | 1 | 1   | 2   | 1  | 1 | 1 | 0.0025 | 0.0819 | 0.7037 | 0.2073 | 0.0011 | 0.0034 | -10.0569 |
| 20    | 2 | 1 | 1   | 2   | 1  | 1 | 1 | 0.4083 | 0.5535 | 0.0372 | 0.0010 | 0.0000 | 0.0000 | -4.7321  |
| 21    | 1 | 2 | 1   | 2   | 1  | 1 | 1 | 0.0017 | 0.0567 | 0.6560 | 0.2789 | 0.0016 | 0.0051 | -10.3417 |
| 22    | 2 | 2 | 1   | 2   | 1  | 1 | 1 | 0.2405 | 0.6799 | 0.0774 | 0.0021 | 0.0000 | 0.0000 | -5.6724  |

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 23 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 0.0011 | 0.0389 | 0.5871 | 0.3629 | 0.0024 | 0.0075 | -10.6368 |
|----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 24 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 0.1269 | 0.7146 | 0.1538 | 0.0046 | 0.0000 | 0.0001 | -6.4793  |
| 25 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0.0061 | 0.1760 | 0.7178 | 0.0983 | 0.0005 | 0.0014 | -9.4476  |
| 26 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 0.4033 | 0.5578 | 0.0379 | 0.0010 | 0.0000 | 0.0000 | -4.7599  |
| 27 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 0.0041 | 0.1261 | 0.7278 | 0.1393 | 0.0007 | 0.0021 | -9.7220  |
| 28 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0.2368 | 0.6821 | 0.0789 | 0.0021 | 0.0000 | 0.0000 | -5.6952  |
| 29 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | 0.0027 | 0.0887 | 0.7110 | 0.1935 | 0.0010 | 0.0031 | -9.9956  |
| 30 | 2 | 3 | 2 | 2 | 1 | 1 | 1 | 0.1246 | 0.7141 | 0.1566 | 0.0047 | 0.0000 | 0.0001 | -6.5004  |
| 31 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 0.0145 | 0.3350 | 0.6064 | 0.0433 | 0.0002 | 0.0006 | -8.7686  |
| 32 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 0.3983 | 0.5620 | 0.0387 | 0.0010 | 0.0000 | 0.0000 | -4.7876  |
| 33 | 1 | 2 | 3 | 2 | 1 | 1 | 1 | 0.0098 | 0.2556 | 0.6704 | 0.0630 | 0.0003 | 0.0009 | -9.0919  |
| 34 | 2 | 2 | 3 | 2 | 1 | 1 | 1 | 0.2330 | 0.6843 | 0.0805 | 0.0022 | 0.0000 | 0.0000 | -5.7179  |
| 35 | 1 | 3 | 3 | 2 | 1 | 1 | 1 | 0.0066 | 0.1888 | 0.7120 | 0.0909 | 0.0004 | 0.0013 | -9.3857  |
| 36 | 2 | 3 | 3 | 2 | 1 | 1 | 1 | 0.1224 | 0.7135 | 0.1593 | 0.0048 | 0.0000 | 0.0001 | -6.5214  |
| 37 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 0.0018 | 0.0593 | 0.6630 | 0.2695 | 0.0015 | 0.0048 | -10.3067 |
| 38 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 0.3274 | 0.6193 | 0.0519 | 0.0014 | 0.0000 | 0.0000 | -5.1775  |
| 39 | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 0.0012 | 0.0407 | 0.5964 | 0.3522 | 0.0023 | 0.0072 | -10.6008 |
| 40 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 0.1826 | 0.7082 | 0.1061 | 0.0030 | 0.0000 | 0.0000 | -6.0423  |
| 41 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 0.0008 | 0.0278 | 0.5141 | 0.4433 | 0.0034 | 0.0107 | -10.8991 |
| 42 | 2 | 3 | 1 | 3 | 1 | 1 | 1 | 0.0930 | 0.6963 | 0.2042 | 0.0065 | 0.0000 | 0.0001 | -6.8328  |
| 43 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 0.0043 | 0.1314 | 0.7280 | 0.1337 | 0.0006 | 0.0020 | -9.6891  |
| 44 | 2 | 1 | 2 | 3 | 1 | 1 | 1 | 0.3228 | 0.6229 | 0.0529 | 0.0014 | 0.0000 | 0.0000 | -5.2028  |
| 45 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | 0.0029 | 0.0926 | 0.7144 | 0.1862 | 0.0010 | 0.0030 | -9.9622  |
| 46 | 2 | 2 | 2 | 3 | 1 | 1 | 1 | 0.1795 | 0.7092 | 0.1081 | 0.0030 | 0.0000 | 0.0000 | -6.0639  |
| 47 | 1 | 3 | 2 | 3 | 1 | 1 | 1 | 0.0019 | 0.0643 | 0.6749 | 0.2529 | 0.0014 | 0.0044 | -10.2432 |
| 48 | 2 | 3 | 2 | 3 | 1 | 1 | 1 | 0.0913 | 0.6945 | 0.2075 | 0.0066 | 0.0000 | 0.0001 | -6.8541  |
| 49 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 0.0103 | 0.2646 | 0.6638 | 0.0603 | 0.0003 | 0.0008 | -9.0546  |
| 50 | 2 | 1 | 3 | 3 | 1 | 1 | 1 | 0.3183 | 0.6263 | 0.0539 | 0.0014 | 0.0000 | 0.0000 | -5.2280  |
| 51 | 1 | 2 | 3 | 3 | 1 | 1 | 1 | 0.0069 | 0.1962 | 0.7083 | 0.0870 | 0.0004 | 0.0012 | -9.3513  |
| 52 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 0.1765 | 0.7102 | 0.1101 | 0.0031 | 0.0000 | 0.0000 | -6.0853  |
| 53 | 1 | 3 | 3 | 3 | 1 | 1 | 1 | 0.0047 | 0.1416 | 0.7274 | 0.1239 | 0.0006 | 0.0018 | -9.6290  |
| 54 | 2 | 3 | 3 | 3 | 1 | 1 | 1 | 0.0896 | 0.6927 | 0.2109 | 0.0067 | 0.0000 | 0.0001 | -6.8754  |
| 55 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0.0089 | 0.2388 | 0.6823 | 0.0687 | 0.0003 | 0.0010 | -9.1626  |
| 56 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 0.7114 | 0.2776 | 0.0107 | 0.0003 | 0.0000 | 0.0000 | -2.8392  |
| 57 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 0.0060 | 0.1753 | 0.7181 | 0.0988 | 0.0005 | 0.0014 | -9.4511  |
| 58 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 0.5308 | 0.4455 | 0.0230 | 0.0006 | 0.0000 | 0.0000 | -4.0312  |

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 59 | 1 | 3 | 1 | 1 | 2 | 1 | 1 | 0.0041 | 0.1255 | 0.7277 | 0.1399 | 0.0007 | 0.0021 | -9.7254  |
|----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 60 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 0.3418 | 0.6081 | 0.0488 | 0.0013 | 0.0000 | 0.0000 | -5.0980  |
| 61 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 0.0213 | 0.4216 | 0.5269 | 0.0297 | 0.0001 | 0.0004 | -8.4150  |
| 62 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 0.7071 | 0.2817 | 0.0109 | 0.0003 | 0.0000 | 0.0000 | -2.8709  |
| 63 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 0.0144 | 0.3339 | 0.6074 | 0.0435 | 0.0002 | 0.0006 | -8.7730  |
| 64 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 0.5256 | 0.4502 | 0.0235 | 0.0006 | 0.0000 | 0.0000 | -4.0622  |
| 65 | 1 | 3 | 2 | 1 | 2 | 1 | 1 | 0.0097 | 0.2546 | 0.6711 | 0.0633 | 0.0003 | 0.0009 | -9.0958  |
| 66 | 2 | 3 | 2 | 1 | 2 | 1 | 1 | 0.3371 | 0.6118 | 0.0498 | 0.0013 | 0.0000 | 0.0000 | -5.1238  |
| 67 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 0.0499 | 0.6075 | 0.3298 | 0.0125 | 0.0001 | 0.0002 | -7.5251  |
| 68 | 2 | 1 | 3 | 1 | 2 | 1 | 1 | 0.7028 | 0.2858 | 0.0112 | 0.0003 | 0.0000 | 0.0000 | -2.9027  |
| 69 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 0.0341 | 0.5293 | 0.4177 | 0.0185 | 0.0001 | 0.0002 | -7.9366  |
| 70 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 0.5204 | 0.4550 | 0.0240 | 0.0006 | 0.0000 | 0.0000 | -4.0931  |
| 71 | 1 | 3 | 3 | 1 | 2 | 1 | 1 | 0.0232 | 0.4414 | 0.5077 | 0.0273 | 0.0001 | 0.0004 | -8.3316  |
| 72 | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 0.3325 | 0.6154 | 0.0507 | 0.0013 | 0.0000 | 0.0000 | -5.1494  |
| 73 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 0.0012 | 0.0403 | 0.5944 | 0.3546 | 0.0023 | 0.0073 | -10.6086 |
| 74 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 0.2446 | 0.6774 | 0.0759 | 0.0021 | 0.0000 | 0.0000 | -5.6479  |
| 75 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 0.0008 | 0.0275 | 0.5117 | 0.4458 | 0.0034 | 0.0108 | -10.9069 |
| 76 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0.1294 | 0.7150 | 0.1510 | 0.0045 | 0.0000 | 0.0001 | -6.4568  |
| 77 | 1 | 3 | 1 | 2 | 2 | 1 | 1 | 0.0005 | 0.0187 | 0.4220 | 0.5379 | 0.0050 | 0.0159 | -11.1986 |
| 78 | 2 | 3 | 1 | 2 | 2 | 1 | 1 | 0.0639 | 0.6498 | 0.2765 | 0.0097 | 0.0000 | 0.0001 | -7.2526  |
| 79 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 0.0029 | 0.0917 | 0.7137 | 0.1878 | 0.0010 | 0.0030 | -9.9695  |
| 80 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 0.2408 | 0.6797 | 0.0773 | 0.0021 | 0.0000 | 0.0000 | -5.6708  |
| 81 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 0.0019 | 0.0637 | 0.6736 | 0.2549 | 0.0014 | 0.0045 | -10.2508 |
| 82 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 0.1271 | 0.7146 | 0.1537 | 0.0046 | 0.0000 | 0.0001 | -6.4778  |
| 83 | 1 | 3 | 2 | 2 | 2 | 1 | 1 | 0.0013 | 0.0438 | 0.6107 | 0.3354 | 0.0021 | 0.0067 | -10.5431 |
| 84 | 2 | 3 | 2 | 2 | 2 | 1 | 1 | 0.0626 | 0.6467 | 0.2806 | 0.0099 | 0.0000 | 0.0001 | -7.2744  |
| 85 | 1 | 1 | 3 | 2 | 2 | 1 | 1 | 0.0069 | 0.1945 | 0.7091 | 0.0878 | 0.0004 | 0.0013 | -9.3589  |
| 86 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 0.2370 | 0.6820 | 0.0788 | 0.0021 | 0.0000 | 0.0000 | -5.6936  |
| 87 | 1 | 2 | 3 | 2 | 2 | 1 | 1 | 0.0046 | 0.1404 | 0.7275 | 0.1251 | 0.0006 | 0.0019 | -9.6363  |
| 88 | 2 | 2 | 3 | 2 | 2 | 1 | 1 | 0.1248 | 0.7141 | 0.1564 | 0.0047 | 0.0000 | 0.0001 | -6.4989  |
| 89 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 0.0031 | 0.0992 | 0.7191 | 0.1749 | 0.0009 | 0.0028 | -9.9089  |
| 90 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 0.0614 | 0.6436 | 0.2847 | 0.0101 | 0.0000 | 0.0001 | -7.2961  |
| 91 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 0.0008 | 0.0288 | 0.5223 | 0.4346 | 0.0033 | 0.0103 | -10.8710 |
| 92 | 2 | 1 | 1 | 3 | 2 | 1 | 1 | 0.1860 | 0.7070 | 0.1041 | 0.0029 | 0.0000 | 0.0000 | -6.0192  |
| 93 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 0.0006 | 0.0195 | 0.4329 | 0.5270 | 0.0048 | 0.0152 | -11.1640 |

| 94  | 2 | 2 | 1 | 3 | 2 | 1 | 1 | 0.0949 | 0.6980 | 0.2006 | 0.0063 | 0.0000 | 0.0001 | -6.8100  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 95  | 1 | 3 | 1 | 3 | 2 | 1 | 1 | 0.0004 | 0.0132 | 0.3441 | 0.6129 | 0.0070 | 0.0224 | -11.4423 |
| 96  | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 0.0459 | 0.5915 | 0.3487 | 0.0137 | 0.0001 | 0.0002 | -7.6167  |
| 97  | 1 | 1 | 2 | 3 | 2 | 1 | 1 | 0.0020 | 0.0666 | 0.6797 | 0.2460 | 0.0014 | 0.0043 | -10.2162 |
| 98  | 2 | 1 | 2 | 3 | 2 | 1 | 1 | 0.1828 | 0.7081 | 0.1060 | 0.0030 | 0.0000 | 0.0000 | -6.0408  |
| 99  | 1 | 2 | 2 | 3 | 2 | 1 | 1 | 0.0014 | 0.0459 | 0.6194 | 0.3250 | 0.0020 | 0.0064 | -10.5073 |
| 100 | 2 | 2 | 2 | 3 | 2 | 1 | 1 | 0.0931 | 0.6964 | 0.2039 | 0.0065 | 0.0000 | 0.0001 | -6.8313  |
| 101 | 1 | 3 | 2 | 3 | 2 | 1 | 1 | 0.0009 | 0.0313 | 0.5412 | 0.4142 | 0.0030 | 0.0094 | -10.8053 |
| 102 | 2 | 3 | 2 | 3 | 2 | 1 | 1 | 0.0450 | 0.5876 | 0.3532 | 0.0139 | 0.0001 | 0.0002 | -7.6385  |
| 103 | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 0.0048 | 0.1462 | 0.7267 | 0.1199 | 0.0006 | 0.0018 | -9.6032  |
| 104 | 2 | 1 | 3 | 3 | 2 | 1 | 1 | 0.1797 | 0.7092 | 0.1080 | 0.0030 | 0.0000 | 0.0000 | -6.0624  |
| 105 | 1 | 2 | 3 | 3 | 2 | 1 | 1 | 0.0033 | 0.1036 | 0.7215 | 0.1681 | 0.0008 | 0.0026 | -9.8757  |
| 106 | 2 | 2 | 3 | 3 | 2 | 1 | 1 | 0.0914 | 0.6946 | 0.2073 | 0.0066 | 0.0000 | 0.0001 | -6.8526  |
| 107 | 1 | 3 | 3 | 3 | 2 | 1 | 1 | 0.0022 | 0.0722 | 0.6900 | 0.2304 | 0.0013 | 0.0039 | -10.1536 |
| 108 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 0.0441 | 0.5836 | 0.3578 | 0.0142 | 0.0001 | 0.0002 | -7.6602  |
| 109 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 0.0042 | 0.1297 | 0.7280 | 0.1355 | 0.0007 | 0.0020 | -9.6997  |
| 110 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 0.5364 | 0.4405 | 0.0225 | 0.0006 | 0.0000 | 0.0000 | -3.9979  |
| 111 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 0.0028 | 0.0913 | 0.7133 | 0.1885 | 0.0010 | 0.0030 | -9.9730  |
| 112 | 2 | 2 | 1 | 1 | 3 | 1 | 1 | 0.3469 | 0.6041 | 0.0478 | 0.0013 | 0.0000 | 0.0000 | -5.0703  |
| 113 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 0.0019 | 0.0634 | 0.6729 | 0.2558 | 0.0014 | 0.0045 | -10.2545 |
| 114 | 2 | 3 | 1 | 1 | 3 | 1 | 1 | 0.1960 | 0.7030 | 0.0982 | 0.0027 | 0.0000 | 0.0000 | -5.9519  |
| 115 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 0.0101 | 0.2616 | 0.6660 | 0.0612 | 0.0003 | 0.0008 | -9.0667  |
| 116 | 2 | 1 | 2 | 1 | 3 | 1 | 1 | 0.5312 | 0.4452 | 0.0230 | 0.0006 | 0.0000 | 0.0000 | -4.0291  |
| 117 | 1 | 2 | 2 | 1 | 3 | 1 | 1 | 0.0068 | 0.1938 | 0.7095 | 0.0882 | 0.0004 | 0.0013 | -9.3625  |
| 118 | 2 | 2 | 2 | 1 | 3 | 1 | 1 | 0.3421 | 0.6078 | 0.0487 | 0.0013 | 0.0000 | 0.0000 | -5.0962  |
| 119 | 1 | 3 | 2 | 1 | 3 | 1 | 1 | 0.0046 | 0.1397 | 0.7276 | 0.1256 | 0.0006 | 0.0019 | -9.6397  |
| 120 | 2 | 3 | 2 | 1 | 3 | 1 | 1 | 0.1927 | 0.7044 | 0.1001 | 0.0028 | 0.0000 | 0.0000 | -5.9737  |
| 121 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 0.0241 | 0.4498 | 0.4993 | 0.0263 | 0.0001 | 0.0004 | -8.2954  |
| 122 | 2 | 1 | 3 | 1 | 3 | 1 | 1 | 0.5260 | 0.4499 | 0.0235 | 0.0006 | 0.0000 | 0.0000 | -4.0601  |
| 123 | 1 | 2 | 3 | 1 | 3 | 1 | 1 | 0.0163 | 0.3609 | 0.5835 | 0.0386 | 0.0002 | 0.0005 | -8.6641  |
| 124 | 2 | 2 | 3 | 1 | 3 | 1 | 1 | 0.3375 | 0.6115 | 0.0497 | 0.0013 | 0.0000 | 0.0000 | -5.1220  |
| 125 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 0.0110 | 0.2784 | 0.6532 | 0.0563 | 0.0002 | 0.0008 | -8.9978  |
| 126 | 2 | 3 | 3 | 1 | 3 | 1 | 1 | 0.1895 | 0.7057 | 0.1019 | 0.0028 | 0.0000 | 0.0000 | -5.9954  |
| 127 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 0.0006 | 0.0193 | 0.4305 | 0.5294 | 0.0048 | 0.0154 | -11.1716 |
| 128 | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 0.1320 | 0.7154 | 0.1482 | 0.0044 | 0.0000 | 0.0001 | -6.4342  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 129 | 1 | 2 | 1 | 2 | 3 | 1 | 1 | 0.0004 | 0.0131 | 0.3418 | 0.6150 | 0.0071 | 0.0227 | -11.4494 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 130 | 2 | 2 | 1 | 2 | 3 | 1 | 1 | 0.0652 | 0.6529 | 0.2722 | 0.0095 | 0.0000 | 0.0001 | -7.2294  |
| 131 | 1 | 3 | 1 | 2 | 3 | 1 | 1 | 0.0003 | 0.0088 | 0.2612 | 0.6861 | 0.0102 | 0.0334 | -11.7087 |
| 132 | 2 | 3 | 1 | 2 | 3 | 1 | 1 | 0.0310 | 0.5081 | 0.4402 | 0.0204 | 0.0001 | 0.0003 | -8.0365  |
| 133 | 1 | 1 | 2 | 2 | 3 | 1 | 1 | 0.0013 | 0.0454 | 0.6175 | 0.3273 | 0.0020 | 0.0064 | -10.5151 |
| 134 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 0.1296 | 0.7151 | 0.1508 | 0.0045 | 0.0000 | 0.0001 | -6.4553  |
| 135 | 1 | 2 | 2 | 2 | 3 | 1 | 1 | 0.0009 | 0.0310 | 0.5389 | 0.4166 | 0.0030 | 0.0095 | -10.8132 |
| 136 | 2 | 2 | 2 | 2 | 3 | 1 | 1 | 0.0640 | 0.6500 | 0.2762 | 0.0097 | 0.0000 | 0.0001 | -7.2511  |
| 137 | 1 | 3 | 2 | 2 | 3 | 1 | 1 | 0.0006 | 0.0211 | 0.4504 | 0.5093 | 0.0044 | 0.0141 | -11.1082 |
| 138 | 2 | 3 | 2 | 2 | 3 | 1 | 1 | 0.0304 | 0.5035 | 0.4449 | 0.0208 | 0.0001 | 0.0003 | -8.0576  |
| 139 | 1 | 1 | 3 | 2 | 3 | 1 | 1 | 0.0032 | 0.1026 | 0.7210 | 0.1696 | 0.0009 | 0.0027 | -9.8830  |
| 140 | 2 | 1 | 3 | 2 | 3 | 1 | 1 | 0.1272 | 0.7146 | 0.1535 | 0.0046 | 0.0000 | 0.0001 | -6.4764  |
| 141 | 1 | 2 | 3 | 2 | 3 | 1 | 1 | 0.0022 | 0.0715 | 0.6888 | 0.2322 | 0.0013 | 0.0040 | -10.1611 |
| 142 | 2 | 2 | 3 | 2 | 3 | 1 | 1 | 0.0627 | 0.6469 | 0.2803 | 0.0099 | 0.0000 | 0.0001 | -7.2729  |
| 143 | 1 | 3 | 3 | 2 | 3 | 1 | 1 | 0.0015 | 0.0493 | 0.6327 | 0.3088 | 0.0019 | 0.0059 | -10.4501 |
| 144 | 2 | 3 | 3 | 2 | 3 | 1 | 1 | 0.0298 | 0.4989 | 0.4497 | 0.0212 | 0.0001 | 0.0003 | -8.0786  |
| 145 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 0.0004 | 0.0137 | 0.3522 | 0.6053 | 0.0068 | 0.0216 | -11.4168 |
| 146 | 2 | 1 | 1 | 3 | 3 | 1 | 1 | 0.0969 | 0.6997 | 0.1971 | 0.0062 | 0.0000 | 0.0001 | -6.7873  |
| 147 | 1 | 2 | 1 | 3 | 3 | 1 | 1 | 0.0003 | 0.0093 | 0.2704 | 0.6784 | 0.0098 | 0.0318 | -11.6783 |
| 148 | 2 | 2 | 1 | 3 | 3 | 1 | 1 | 0.0469 | 0.5956 | 0.3438 | 0.0134 | 0.0001 | 0.0002 | -7.5934  |
| 149 | 1 | 3 | 1 | 3 | 3 | 1 | 1 | 0.0002 | 0.0063 | 0.2008 | 0.7321 | 0.0141 | 0.0466 | -11.9247 |
| 150 | 2 | 3 | 1 | 3 | 3 | 1 | 1 | 0.0221 | 0.4300 | 0.5188 | 0.0287 | 0.0001 | 0.0004 | -8.3798  |
| 151 | 1 | 1 | 2 | 3 | 3 | 1 | 1 | 0.0009 | 0.0325 | 0.5492 | 0.4055 | 0.0029 | 0.0091 | -10.7771 |
| 152 | 2 | 1 | 2 | 3 | 3 | 1 | 1 | 0.0950 | 0.6982 | 0.2004 | 0.0063 | 0.0000 | 0.0001 | -6.8086  |
| 153 | 1 | 2 | 2 | 3 | 3 | 1 | 1 | 0.0006 | 0.0221 | 0.4614 | 0.4982 | 0.0042 | 0.0134 | -11.0730 |
| 154 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 0.0460 | 0.5918 | 0.3484 | 0.0136 | 0.0001 | 0.0002 | -7.6152  |
| 155 | 1 | 3 | 2 | 3 | 3 | 1 | 1 | 0.0004 | 0.0150 | 0.3715 | 0.5871 | 0.0062 | 0.0199 | -11.3567 |
| 156 | 2 | 3 | 2 | 3 | 3 | 1 | 1 | 0.0216 | 0.4253 | 0.5233 | 0.0292 | 0.0001 | 0.0004 | -8.3996  |
| 157 | 1 | 1 | 3 | 3 | 3 | 1 | 1 | 0.0023 | 0.0748 | 0.6941 | 0.2239 | 0.0012 | 0.0038 | -10.1269 |
| 158 | 2 | 1 | 3 | 3 | 3 | 1 | 1 | 0.0933 | 0.6965 | 0.2037 | 0.0064 | 0.0000 | 0.0001 | -6.8298  |
| 159 | 1 | 2 | 3 | 3 | 3 | 1 | 1 | 0.0015 | 0.0516 | 0.6406 | 0.2988 | 0.0018 | 0.0056 | -10.4146 |
| 160 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 0.0451 | 0.5878 | 0.3529 | 0.0139 | 0.0001 | 0.0002 | -7.6370  |
| 161 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 0.0010 | 0.0353 | 0.5673 | 0.3854 | 0.0026 | 0.0083 | -10.7113 |
| 162 | 2 | 3 | 3 | 3 | 3 | 1 | 1 | 0.0212 | 0.4206 | 0.5279 | 0.0298 | 0.0001 | 0.0004 | -8.4194  |
| 163 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 0.0083 | 0.2261 | 0.6907 | 0.0735 | 0.0003 | 0.0010 | -9.2172  |

| 164 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 0.9322 | 0.0658 | 0.0019 | 0.0000 | 0.0000 | 0.0000 | -0.8406  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 165 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0.0056 | 0.1651 | 0.7218 | 0.1054 | 0.0005 | 0.0015 | -9.5020  |
| 166 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 0.8633 | 0.1324 | 0.0042 | 0.0001 | 0.0000 | 0.0000 | -1.5608  |
| 167 | 1 | 3 | 1 | 1 | 1 | 2 | 1 | 0.0038 | 0.1178 | 0.7266 | 0.1488 | 0.0007 | 0.0023 | -9.7753  |
| 168 | 2 | 3 | 1 | 1 | 1 | 2 | 1 | 0.7435 | 0.2471 | 0.0091 | 0.0002 | 0.0000 | 0.0000 | -2.5958  |
| 169 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 0.0198 | 0.4052 | 0.5425 | 0.0319 | 0.0001 | 0.0004 | -8.4832  |
| 170 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 0.9309 | 0.0671 | 0.0020 | 0.0000 | 0.0000 | 0.0000 | -0.8556  |
| 171 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 0.0134 | 0.3186 | 0.6205 | 0.0466 | 0.0002 | 0.0006 | -8.8347  |
| 172 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 0.8608 | 0.1348 | 0.0043 | 0.0001 | 0.0000 | 0.0000 | -1.5847  |
| 173 | 1 | 3 | 2 | 1 | 1 | 2 | 1 | 0.0091 | 0.2414 | 0.6805 | 0.0678 | 0.0003 | 0.0009 | -9.1515  |
| 174 | 2 | 3 | 2 | 1 | 1 | 2 | 1 | 0.7395 | 0.2509 | 0.0093 | 0.0002 | 0.0000 | 0.0000 | -2.6268  |
| 175 | 1 | 1 | 3 | 1 | 1 | 2 | 1 | 0.0466 | 0.5943 | 0.3454 | 0.0135 | 0.0001 | 0.0002 | -7.6010  |
| 176 | 2 | 1 | 3 | 1 | 1 | 2 | 1 | 0.9296 | 0.0684 | 0.0020 | 0.0001 | 0.0000 | 0.0000 | -0.8709  |
| 177 | 1 | 2 | 3 | 1 | 1 | 2 | 1 | 0.0318 | 0.5136 | 0.4343 | 0.0199 | 0.0001 | 0.0003 | -8.0106  |
| 178 | 2 | 2 | 3 | 1 | 1 | 2 | 1 | 0.8583 | 0.1372 | 0.0044 | 0.0001 | 0.0000 | 0.0000 | -1.6089  |
| 179 | 1 | 3 | 3 | 1 | 1 | 2 | 1 | 0.0216 | 0.4249 | 0.5237 | 0.0293 | 0.0001 | 0.0004 | -8.4011  |
| 180 | 2 | 3 | 3 | 1 | 1 | 2 | 1 | 0.7355 | 0.2548 | 0.0095 | 0.0002 | 0.0000 | 0.0000 | -2.6579  |
| 181 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 0.0011 | 0.0376 | 0.5802 | 0.3709 | 0.0025 | 0.0078 | -10.6633 |
| 182 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 0.6439 | 0.3412 | 0.0145 | 0.0004 | 0.0000 | 0.0000 | -3.3159  |
| 183 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 0.0007 | 0.0256 | 0.4956 | 0.4628 | 0.0037 | 0.0116 | -10.9612 |
| 184 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 0.4535 | 0.5146 | 0.0311 | 0.0008 | 0.0000 | 0.0000 | -4.4797  |
| 185 | 1 | 3 | 1 | 2 | 1 | 2 | 1 | 0.0005 | 0.0174 | 0.4054 | 0.5542 | 0.0054 | 0.0171 | -11.2506 |
| 186 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 0.2758 | 0.6571 | 0.0653 | 0.0017 | 0.0000 | 0.0000 | -5.4665  |
| 187 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0.0027 | 0.0859 | 0.7082 | 0.1990 | 0.0010 | 0.0033 | -10.0202 |
| 188 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 0.6390 | 0.3457 | 0.0148 | 0.0004 | 0.0000 | 0.0000 | -3.3482  |
| 189 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 0.0018 | 0.0595 | 0.6636 | 0.2687 | 0.0015 | 0.0048 | -10.3036 |
| 190 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 0.4483 | 0.5191 | 0.0318 | 0.0008 | 0.0000 | 0.0000 | -4.5088  |
| 191 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 0.0012 | 0.0409 | 0.5972 | 0.3513 | 0.0023 | 0.0072 | -10.5976 |
| 192 | 2 | 3 | 2 | 2 | 1 | 2 | 1 | 0.2717 | 0.6599 | 0.0666 | 0.0018 | 0.0000 | 0.0000 | -5.4902  |
| 193 | 1 | 1 | 3 | 2 | 1 | 2 | 1 | 0.0064 | 0.1836 | 0.7145 | 0.0938 | 0.0004 | 0.0013 | -9.4107  |
| 194 | 2 | 1 | 3 | 2 | 1 | 2 | 1 | 0.6342 | 0.3502 | 0.0152 | 0.0004 | 0.0000 | 0.0000 | -3.3804  |
| 195 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 0.0043 | 0.1319 | 0.7280 | 0.1332 | 0.0006 | 0.0020 | -9.6862  |
| 196 | 2 | 2 | 3 | 2 | 1 | 2 | 1 | 0.4432 | 0.5236 | 0.0324 | 0.0008 | 0.0000 | 0.0000 | -4.5378  |
| 197 | 1 | 3 | 3 | 2 | 1 | 2 | 1 | 0.0029 | 0.0930 | 0.7147 | 0.1855 | 0.0010 | 0.0030 | -9.9592  |
| 198 | 2 | 3 | 3 | 2 | 1 | 2 | 1 | 0.2676 | 0.6627 | 0.0679 | 0.0018 | 0.0000 | 0.0000 | -5.5139  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 199 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 0.0008 | 0.0268 | 0.5063 | 0.4516 | 0.0035 | 0.0110 | -10.9254 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 200 | 2 | 1 | 1 | 3 | 1 | 2 | 1 | 0.5605 | 0.4185 | 0.0205 | 0.0005 | 0.0000 | 0.0000 | -3.8516  |
| 201 | 1 | 2 | 1 | 3 | 1 | 2 | 1 | 0.0005 | 0.0182 | 0.4163 | 0.5435 | 0.0051 | 0.0163 | -11.2163 |
| 202 | 2 | 2 | 1 | 3 | 1 | 2 | 1 | 0.3692 | 0.5861 | 0.0435 | 0.0011 | 0.0000 | 0.0000 | -4.9474  |
| 203 | 1 | 3 | 1 | 3 | 1 | 2 | 1 | 0.0004 | 0.0123 | 0.3285 | 0.6273 | 0.0075 | 0.0241 | -11.4913 |
| 204 | 2 | 3 | 1 | 3 | 1 | 2 | 1 | 0.2118 | 0.6957 | 0.0900 | 0.0025 | 0.0000 | 0.0000 | -5.8495  |
| 205 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 0.0019 | 0.0623 | 0.6703 | 0.2595 | 0.0015 | 0.0046 | -10.2687 |
| 206 | 2 | 1 | 2 | 3 | 1 | 2 | 1 | 0.5553 | 0.4232 | 0.0209 | 0.0005 | 0.0000 | 0.0000 | -3.8831  |
| 207 | 1 | 2 | 2 | 3 | 1 | 2 | 1 | 0.0013 | 0.0428 | 0.6062 | 0.3408 | 0.0022 | 0.0068 | -10.5616 |
| 208 | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 0.3644 | 0.5900 | 0.0444 | 0.0012 | 0.0000 | 0.0000 | -4.9740  |
| 209 | 1 | 3 | 2 | 3 | 1 | 2 | 1 | 0.0008 | 0.0292 | 0.5255 | 0.4311 | 0.0032 | 0.0101 | -10.8599 |
| 210 | 2 | 3 | 2 | 3 | 1 | 2 | 1 | 0.2083 | 0.6974 | 0.0917 | 0.0025 | 0.0000 | 0.0000 | -5.8716  |
| 211 | 1 | 1 | 3 | 3 | 1 | 2 | 1 | 0.0045 | 0.1374 | 0.7278 | 0.1278 | 0.0006 | 0.0019 | -9.6532  |
| 212 | 2 | 1 | 3 | 3 | 1 | 2 | 1 | 0.5502 | 0.4279 | 0.0213 | 0.0005 | 0.0000 | 0.0000 | -3.9146  |
| 213 | 1 | 2 | 3 | 3 | 1 | 2 | 1 | 0.0030 | 0.0971 | 0.7177 | 0.1785 | 0.0009 | 0.0028 | -9.9259  |
| 214 | 2 | 2 | 3 | 3 | 1 | 2 | 1 | 0.3596 | 0.5939 | 0.0453 | 0.0012 | 0.0000 | 0.0000 | -5.0005  |
| 215 | 1 | 3 | 3 | 3 | 1 | 2 | 1 | 0.0020 | 0.0675 | 0.6815 | 0.2433 | 0.0013 | 0.0042 | -10.2056 |
| 216 | 2 | 3 | 3 | 3 | 1 | 2 | 1 | 0.2049 | 0.6991 | 0.0934 | 0.0026 | 0.0000 | 0.0000 | -5.8936  |
| 217 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 0.0039 | 0.1217 | 0.7273 | 0.1442 | 0.0007 | 0.0022 | -9.7496  |
| 218 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 0.8659 | 0.1299 | 0.0041 | 0.0001 | 0.0000 | 0.0000 | -1.5355  |
| 219 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 0.0026 | 0.0855 | 0.7078 | 0.1998 | 0.0010 | 0.0033 | -10.0238 |
| 220 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0.7477 | 0.2431 | 0.0089 | 0.0002 | 0.0000 | 0.0000 | -2.5628  |
| 221 | 1 | 3 | 1 | 1 | 2 | 2 | 1 | 0.0018 | 0.0592 | 0.6629 | 0.2697 | 0.0015 | 0.0049 | -10.3073 |
| 222 | 2 | 3 | 1 | 1 | 2 | 2 | 1 | 0.5764 | 0.4039 | 0.0192 | 0.0005 | 0.0000 | 0.0000 | -3.7532  |
| 223 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 0.0094 | 0.2482 | 0.6757 | 0.0655 | 0.0003 | 0.0009 | -9.1229  |
| 224 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 0.8635 | 0.1322 | 0.0042 | 0.0001 | 0.0000 | 0.0000 | -1.5592  |
| 225 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 0.0063 | 0.1828 | 0.7148 | 0.0942 | 0.0004 | 0.0014 | -9.4143  |
| 226 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 0.7438 | 0.2469 | 0.0091 | 0.0002 | 0.0000 | 0.0000 | -2.5937  |
| 227 | 1 | 3 | 2 | 1 | 2 | 2 | 1 | 0.0043 | 0.1313 | 0.7280 | 0.1338 | 0.0006 | 0.0020 | -9.6896  |
| 228 | 2 | 3 | 2 | 1 | 2 | 2 | 1 | 0.5713 | 0.4086 | 0.0196 | 0.0005 | 0.0000 | 0.0000 | -3.7850  |
| 229 | 1 | 1 | 3 | 1 | 2 | 2 | 1 | 0.0224 | 0.4334 | 0.5154 | 0.0282 | 0.0001 | 0.0004 | -8.3654  |
| 230 | 2 | 1 | 3 | 1 | 2 | 2 | 1 | 0.8610 | 0.1346 | 0.0043 | 0.0001 | 0.0000 | 0.0000 | -1.5831  |
| 231 | 1 | 2 | 3 | 1 | 2 | 2 | 1 | 0.0152 | 0.3451 | 0.5976 | 0.0414 | 0.0002 | 0.0006 | -8.7279  |
| 232 | 2 | 2 | 3 | 1 | 2 | 2 | 1 | 0.7398 | 0.2507 | 0.0093 | 0.0002 | 0.0000 | 0.0000 | -2.6247  |
| 233 | 1 | 3 | 3 | 1 | 2 | 2 | 1 | 0.0103 | 0.2644 | 0.6639 | 0.0603 | 0.0003 | 0.0008 | -9.0552  |

| 234 | 2 | 3 | 3 | 1 | 2 | 2 | 1 | 0.5662 | 0.4133 | 0.0200 | 0.0005 | 0.0000 | 0.0000 | -3.8167  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 235 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0.0005 | 0.0180 | 0.4139 | 0.5458 | 0.0052 | 0.0165 | -11.2238 |
| 236 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 0.4590 | 0.5097 | 0.0305 | 0.0008 | 0.0000 | 0.0000 | -4.4483  |
| 237 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 0.0003 | 0.0122 | 0.3263 | 0.6293 | 0.0076 | 0.0243 | -11.4983 |
| 238 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 0.2803 | 0.6540 | 0.0639 | 0.0017 | 0.0000 | 0.0000 | -5.4410  |
| 239 | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 0.0002 | 0.0082 | 0.2478 | 0.6970 | 0.0110 | 0.0358 | -11.7545 |
| 240 | 2 | 3 | 1 | 2 | 2 | 2 | 1 | 0.1517 | 0.7155 | 0.1290 | 0.0037 | 0.0000 | 0.0000 | -6.2703  |
| 241 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 0.0012 | 0.0424 | 0.6042 | 0.3431 | 0.0022 | 0.0069 | -10.5695 |
| 242 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 0.4538 | 0.5143 | 0.0311 | 0.0008 | 0.0000 | 0.0000 | -4.4777  |
| 243 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 0.0008 | 0.0289 | 0.5232 | 0.4336 | 0.0032 | 0.0102 | -10.8678 |
| 244 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 0.2761 | 0.6569 | 0.0652 | 0.0017 | 0.0000 | 0.0000 | -5.4648  |
| 245 | 1 | 3 | 2 | 2 | 2 | 2 | 1 | 0.0006 | 0.0196 | 0.4339 | 0.5260 | 0.0048 | 0.0151 | -11.1610 |
| 246 | 2 | 3 | 2 | 2 | 2 | 2 | 1 | 0.1490 | 0.7158 | 0.1314 | 0.0038 | 0.0000 | 0.0000 | -6.2915  |
| 247 | 1 | 1 | 3 | 2 | 2 | 2 | 1 | 0.0030 | 0.0961 | 0.7171 | 0.1800 | 0.0009 | 0.0029 | -9.9332  |
| 248 | 2 | 1 | 3 | 2 | 2 | 2 | 1 | 0.4487 | 0.5188 | 0.0317 | 0.0008 | 0.0000 | 0.0000 | -4.5068  |
| 249 | 1 | 2 | 3 | 2 | 2 | 2 | 1 | 0.0020 | 0.0669 | 0.6802 | 0.2452 | 0.0014 | 0.0043 | -10.2132 |
| 250 | 2 | 2 | 3 | 2 | 2 | 2 | 1 | 0.2720 | 0.6597 | 0.0665 | 0.0018 | 0.0000 | 0.0000 | -5.4886  |
| 251 | 1 | 3 | 3 | 2 | 2 | 2 | 1 | 0.0014 | 0.0460 | 0.6201 | 0.3241 | 0.0020 | 0.0063 | -10.5042 |
| 252 | 2 | 3 | 3 | 2 | 2 | 2 | 1 | 0.1464 | 0.7159 | 0.1338 | 0.0039 | 0.0000 | 0.0001 | -6.3126  |
| 253 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 0.0004 | 0.0128 | 0.3365 | 0.6199 | 0.0072 | 0.0232 | -11.4661 |
| 254 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 0.3744 | 0.5818 | 0.0426 | 0.0011 | 0.0000 | 0.0000 | -4.9187  |
| 255 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 0.0002 | 0.0086 | 0.2566 | 0.6899 | 0.0105 | 0.0342 | -11.7243 |
| 256 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 0.2155 | 0.6938 | 0.0882 | 0.0024 | 0.0000 | 0.0000 | -5.8258  |
| 257 | 1 | 3 | 1 | 3 | 2 | 2 | 1 | 0.0002 | 0.0058 | 0.1895 | 0.7395 | 0.0150 | 0.0500 | -11.9689 |
| 258 | 2 | 3 | 1 | 3 | 2 | 2 | 1 | 0.1120 | 0.7096 | 0.1730 | 0.0053 | 0.0000 | 0.0001 | -6.6229  |
| 259 | 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0.0009 | 0.0303 | 0.5336 | 0.4224 | 0.0031 | 0.0098 | -10.8318 |
| 260 | 2 | 1 | 2 | 3 | 2 | 2 | 1 | 0.3696 | 0.5858 | 0.0435 | 0.0011 | 0.0000 | 0.0000 | -4.9455  |
| 261 | 1 | 2 | 2 | 3 | 2 | 2 | 1 | 0.0006 | 0.0206 | 0.4448 | 0.5150 | 0.0046 | 0.0144 | -11.1262 |
| 262 | 2 | 2 | 2 | 3 | 2 | 2 | 1 | 0.2120 | 0.6956 | 0.0899 | 0.0025 | 0.0000 | 0.0000 | -5.8480  |
| 263 | 1 | 3 | 2 | 3 | 2 | 2 | 1 | 0.0004 | 0.0139 | 0.3554 | 0.6022 | 0.0067 | 0.0213 | -11.4068 |
| 264 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 0.1099 | 0.7086 | 0.1760 | 0.0054 | 0.0000 | 0.0001 | -6.6440  |
| 265 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 0.0021 | 0.0699 | 0.6860 | 0.2366 | 0.0013 | 0.0041 | -10.1787 |
| 266 | 2 | 1 | 3 | 3 | 2 | 2 | 1 | 0.3647 | 0.5898 | 0.0443 | 0.0012 | 0.0000 | 0.0000 | -4.9722  |
| 267 | 1 | 2 | 3 | 3 | 2 | 2 | 1 | 0.0014 | 0.0482 | 0.6285 | 0.3139 | 0.0019 | 0.0060 | -10.4684 |
| 268 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 0.2086 | 0.6973 | 0.0916 | 0.0025 | 0.0000 | 0.0000 | -5.8701  |

 Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estim | ated Probabilities of Observing a Category and the Signal to |
|---------------------------|--------------------------------------------------------------|
| Noise Ratios based on O   | dinal Logistic Regression Models for Thick-film Resistor     |
|                           | Production Example                                           |

| 269 | 1 | 3 | 3 | 3 | 2 | 2 | 1 | 0.0010 | 0.0329 | 0.5522 | 0.4021 | 0.0028 | 0.0089 | -10.7660 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 270 | 2 | 3 | 3 | 3 | 2 | 2 | 1 | 0.1079 | 0.7075 | 0.1790 | 0.0055 | 0.0000 | 0.0001 | -6.6652  |
| 271 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 0.0018 | 0.0614 | 0.6682 | 0.2625 | 0.0015 | 0.0047 | -10.2800 |
| 272 | 2 | 1 | 1 | 1 | 3 | 2 | 1 | 0.7519 | 0.2391 | 0.0087 | 0.0002 | 0.0000 | 0.0000 | -2.5300  |
| 273 | 1 | 2 | 1 | 1 | 3 | 2 | 1 | 0.0012 | 0.0422 | 0.6033 | 0.3442 | 0.0022 | 0.0069 | -10.5733 |
| 274 | 2 | 2 | 1 | 1 | 3 | 2 | 1 | 0.5818 | 0.3989 | 0.0188 | 0.0005 | 0.0000 | 0.0000 | -3.7192  |
| 275 | 1 | 3 | 1 | 1 | 3 | 2 | 1 | 0.0008 | 0.0288 | 0.5221 | 0.4347 | 0.0033 | 0.0103 | -10.8716 |
| 276 | 2 | 3 | 1 | 1 | 3 | 2 | 1 | 0.3897 | 0.5692 | 0.0401 | 0.0010 | 0.0000 | 0.0000 | -4.8346  |
| 277 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 0.0044 | 0.1356 | 0.7279 | 0.1295 | 0.0006 | 0.0019 | -9.6639  |
| 278 | 2 | 1 | 2 | 1 | 3 | 2 | 1 | 0.7480 | 0.2428 | 0.0089 | 0.0002 | 0.0000 | 0.0000 | -2.5607  |
| 279 | 1 | 2 | 2 | 1 | 3 | 2 | 1 | 0.0030 | 0.0957 | 0.7168 | 0.1807 | 0.0009 | 0.0029 | -9.9367  |
| 280 | 2 | 2 | 2 | 1 | 3 | 2 | 1 | 0.5767 | 0.4036 | 0.0192 | 0.0005 | 0.0000 | 0.0000 | -3.7510  |
| 281 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 0.0020 | 0.0666 | 0.6796 | 0.2462 | 0.0014 | 0.0043 | -10.2168 |
| 282 | 2 | 3 | 2 | 1 | 3 | 2 | 1 | 0.3848 | 0.5733 | 0.0409 | 0.0011 | 0.0000 | 0.0000 | -4.8619  |
| 283 | 1 | 1 | 3 | 1 | 3 | 2 | 1 | 0.0107 | 0.2716 | 0.6585 | 0.0582 | 0.0003 | 0.0008 | -9.0257  |
| 284 | 2 | 1 | 3 | 1 | 3 | 2 | 1 | 0.7441 | 0.2466 | 0.0091 | 0.0002 | 0.0000 | 0.0000 | -2.5916  |
| 285 | 1 | 2 | 3 | 1 | 3 | 2 | 1 | 0.0072 | 0.2019 | 0.7052 | 0.0841 | 0.0004 | 0.0012 | -9.3249  |
| 286 | 2 | 2 | 3 | 1 | 3 | 2 | 1 | 0.5716 | 0.4083 | 0.0196 | 0.0005 | 0.0000 | 0.0000 | -3.7828  |
| 287 | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 0.0048 | 0.1461 | 0.7267 | 0.1200 | 0.0006 | 0.0018 | -9.6038  |
| 288 | 2 | 3 | 3 | 1 | 3 | 2 | 1 | 0.3798 | 0.5774 | 0.0417 | 0.0011 | 0.0000 | 0.0000 | -4.8890  |
| 289 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 0.0002 | 0.0085 | 0.2547 | 0.6914 | 0.0106 | 0.0345 | -11.7309 |
| 290 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 0.2848 | 0.6508 | 0.0626 | 0.0017 | 0.0000 | 0.0000 | -5.4153  |
| 291 | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 0.0002 | 0.0058 | 0.1879 | 0.7405 | 0.0152 | 0.0505 | -11.9753 |
| 292 | 2 | 2 | 1 | 2 | 3 | 2 | 1 | 0.1545 | 0.7152 | 0.1266 | 0.0036 | 0.0000 | 0.0000 | -6.2477  |
| 293 | 1 | 3 | 1 | 2 | 3 | 2 | 1 | 0.0001 | 0.0039 | 0.1352 | 0.7662 | 0.0213 | 0.0733 | -12.2175 |
| 294 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 0.0774 | 0.6765 | 0.2380 | 0.0079 | 0.0000 | 0.0001 | -7.0385  |
| 295 | 1 | 1 | 2 | 2 | 3 | 2 | 1 | 0.0006 | 0.0204 | 0.4424 | 0.5174 | 0.0046 | 0.0146 | -11.1338 |
| 296 | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 0.2806 | 0.6538 | 0.0639 | 0.0017 | 0.0000 | 0.0000 | -5.4393  |
| 297 | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 0.0004 | 0.0138 | 0.3531 | 0.6044 | 0.0067 | 0.0216 | -11.4139 |
| 298 | 2 | 2 | 2 | 2 | 3 | 2 | 1 | 0.1518 | 0.7155 | 0.1289 | 0.0037 | 0.0000 | 0.0000 | -6.2689  |
| 299 | 1 | 3 | 2 | 2 | 3 | 2 | 1 | 0.0003 | 0.0093 | 0.2712 | 0.6778 | 0.0098 | 0.0317 | -11.6756 |
| 300 | 2 | 3 | 2 | 2 | 3 | 2 | 1 | 0.0759 | 0.6741 | 0.2418 | 0.0081 | 0.0000 | 0.0001 | -7.0600  |
| 301 | 1 | 1 | 3 | 2 | 3 | 2 | 1 | 0.0014 | 0.0477 | 0.6267 | 0.3162 | 0.0019 | 0.0061 | -10.4762 |
| 302 | 2 | 1 | 3 | 2 | 3 | 2 | 1 | 0.2764 | 0.6567 | 0.0651 | 0.0017 | 0.0000 | 0.0000 | -5.4632  |
| 303 | 1 | 2 | 3 | 2 | 3 | 2 | 1 | 0.0010 | 0.0326 | 0.5500 | 0.4045 | 0.0029 | 0.0090 | -10.7739 |

| 304 | 2 | 2 | 3 | 2 | 3 | 2 | 1 | 0.1492 | 0.7157 | 0.1312 | 0.0038 | 0.0000 | 0.0000 | -6.2900  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 305 | 1 | 3 | 3 | 2 | 3 | 2 | 1 | 0.0006 | 0.0222 | 0.4623 | 0.4972 | 0.0042 | 0.0134 | -11.0699 |
| 306 | 2 | 3 | 3 | 2 | 3 | 2 | 1 | 0.0745 | 0.6716 | 0.2455 | 0.0082 | 0.0000 | 0.0001 | -7.0816  |
| 307 | 1 | 1 | 1 | 3 | 3 | 2 | 1 | 0.0002 | 0.0060 | 0.1953 | 0.7358 | 0.0145 | 0.0482 | -11.9461 |
| 308 | 2 | 1 | 1 | 3 | 3 | 2 | 1 | 0.2193 | 0.6919 | 0.0864 | 0.0024 | 0.0000 | 0.0000 | -5.8020  |
| 309 | 1 | 2 | 1 | 3 | 3 | 2 | 1 | 0.0001 | 0.0041 | 0.1409 | 0.7644 | 0.0205 | 0.0701 | -12.1878 |
| 310 | 2 | 2 | 1 | 3 | 3 | 2 | 1 | 0.1142 | 0.7106 | 0.1699 | 0.0051 | 0.0000 | 0.0001 | -6.6003  |
| 311 | 1 | 3 | 1 | 3 | 3 | 2 | 1 | 0.0001 | 0.0027 | 0.0996 | 0.7686 | 0.0282 | 0.1008 | -12.4400 |
| 312 | 2 | 3 | 1 | 3 | 3 | 2 | 1 | 0.0559 | 0.6278 | 0.3050 | 0.0111 | 0.0000 | 0.0001 | -7.4009  |
| 313 | 1 | 1 | 2 | 3 | 3 | 2 | 1 | 0.0004 | 0.0145 | 0.3637 | 0.5945 | 0.0064 | 0.0206 | -11.3810 |
| 314 | 2 | 1 | 2 | 3 | 3 | 2 | 1 | 0.2158 | 0.6937 | 0.0881 | 0.0024 | 0.0000 | 0.0000 | -5.8243  |
| 315 | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 0.0003 | 0.0098 | 0.2805 | 0.6698 | 0.0093 | 0.0303 | -11.6449 |
| 316 | 2 | 2 | 2 | 3 | 3 | 2 | 1 | 0.1121 | 0.7097 | 0.1728 | 0.0053 | 0.0000 | 0.0001 | -6.6214  |
| 317 | 1 | 3 | 2 | 3 | 3 | 2 | 1 | 0.0002 | 0.0066 | 0.2091 | 0.7263 | 0.0134 | 0.0444 | -11.8928 |
| 318 | 2 | 3 | 2 | 3 | 3 | 2 | 1 | 0.0548 | 0.6244 | 0.3093 | 0.0114 | 0.0000 | 0.0001 | -7.4227  |
| 319 | 1 | 1 | 3 | 3 | 3 | 2 | 1 | 0.0010 | 0.0342 | 0.5601 | 0.3934 | 0.0027 | 0.0086 | -10.7378 |
| 320 | 2 | 1 | 3 | 3 | 3 | 2 | 1 | 0.2123 | 0.6955 | 0.0897 | 0.0025 | 0.0000 | 0.0000 | -5.8464  |
| 321 | 1 | 2 | 3 | 3 | 3 | 2 | 1 | 0.0007 | 0.0232 | 0.4733 | 0.4860 | 0.0040 | 0.0128 | -11.0346 |
| 322 | 2 | 2 | 3 | 3 | 3 | 2 | 1 | 0.1101 | 0.7087 | 0.1758 | 0.0054 | 0.0000 | 0.0001 | -6.6426  |
| 323 | 1 | 3 | 3 | 3 | 3 | 2 | 1 | 0.0005 | 0.0158 | 0.3831 | 0.5759 | 0.0059 | 0.0189 | -11.3204 |
| 324 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 0.0537 | 0.6209 | 0.3136 | 0.0116 | 0.0000 | 0.0002 | -7.4445  |
| 325 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 0.0329 | 0.5210 | 0.4265 | 0.0192 | 0.0001 | 0.0003 | -7.9759  |
| 326 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 0.7536 | 0.2375 | 0.0087 | 0.0002 | 0.0000 | 0.0000 | -2.5166  |
| 327 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 0.0223 | 0.4326 | 0.5162 | 0.0283 | 0.0001 | 0.0004 | -8.3686  |
| 328 | 2 | 2 | 1 | 1 | 1 | 3 | 1 | 0.5840 | 0.3968 | 0.0186 | 0.0005 | 0.0000 | 0.0000 | -3.7052  |
| 329 | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 0.0151 | 0.3444 | 0.5982 | 0.0415 | 0.0002 | 0.0006 | -8.7308  |
| 330 | 2 | 3 | 1 | 1 | 1 | 3 | 1 | 0.3919 | 0.5673 | 0.0397 | 0.0010 | 0.0000 | 0.0000 | -4.8226  |
| 331 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 0.0759 | 0.6740 | 0.2420 | 0.0081 | 0.0000 | 0.0001 | -7.0612  |
| 332 | 2 | 1 | 2 | 1 | 1 | 3 | 1 | 0.7497 | 0.2412 | 0.0088 | 0.0002 | 0.0000 | 0.0000 | -2.5473  |
| 333 | 1 | 2 | 2 | 1 | 1 | 3 | 1 | 0.0523 | 0.6161 | 0.3195 | 0.0119 | 0.0001 | 0.0002 | -7.4740  |
| 334 | 2 | 2 | 2 | 1 | 1 | 3 | 1 | 0.5790 | 0.4015 | 0.0190 | 0.0005 | 0.0000 | 0.0000 | -3.7371  |
| 335 | 1 | 3 | 2 | 1 | 1 | 3 | 1 | 0.0358 | 0.5396 | 0.4066 | 0.0176 | 0.0001 | 0.0002 | -7.8865  |
| 336 | 2 | 3 | 2 | 1 | 1 | 3 | 1 | 0.3869 | 0.5715 | 0.0405 | 0.0011 | 0.0000 | 0.0000 | -4.8500  |
| 337 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 0.1654 | 0.7132 | 0.1180 | 0.0034 | 0.0000 | 0.0000 | -6.1656  |
| 338 | 2 | 1 | 3 | 1 | 1 | 3 | 1 | 0.7458 | 0.2450 | 0.0090 | 0.0002 | 0.0000 | 0.0000 | -2.5781  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 339 | 1 | 2 | 3 | 1 | 1 | 3 | 1 | 0.1176 | 0.7119 | 0.1654 | 0.0050 | 0.0000 | 0.0001 | -6.5674  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 340 | 2 | 2 | 3 | 1 | 1 | 3 | 1 | 0.5739 | 0.4062 | 0.0194 | 0.0005 | 0.0000 | 0.0000 | -3.7689  |
| 341 | 1 | 3 | 3 | 1 | 1 | 3 | 1 | 0.0822 | 0.6837 | 0.2266 | 0.0074 | 0.0000 | 0.0001 | -6.9712  |
| 342 | 2 | 3 | 3 | 1 | 1 | 3 | 1 | 0.3820 | 0.5756 | 0.0413 | 0.0011 | 0.0000 | 0.0000 | -4.8772  |
| 343 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | 0.0044 | 0.1358 | 0.7279 | 0.1293 | 0.0006 | 0.0019 | -9.6627  |
| 344 | 2 | 1 | 1 | 2 | 1 | 3 | 1 | 0.2867 | 0.6495 | 0.0621 | 0.0017 | 0.0000 | 0.0000 | -5.4047  |
| 345 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 0.0030 | 0.0959 | 0.7169 | 0.1805 | 0.0009 | 0.0029 | -9.9356  |
| 346 | 2 | 2 | 1 | 2 | 1 | 3 | 1 | 0.1557 | 0.7150 | 0.1256 | 0.0036 | 0.0000 | 0.0000 | -6.2384  |
| 347 | 1 | 3 | 1 | 2 | 1 | 3 | 1 | 0.0020 | 0.0667 | 0.6798 | 0.2459 | 0.0014 | 0.0043 | -10.2156 |
| 348 | 2 | 3 | 1 | 2 | 1 | 3 | 1 | 0.0781 | 0.6776 | 0.2364 | 0.0078 | 0.0000 | 0.0001 | -7.0291  |
| 349 | 1 | 1 | 2 | 2 | 1 | 3 | 1 | 0.0107 | 0.2719 | 0.6582 | 0.0581 | 0.0003 | 0.0008 | -9.0244  |
| 350 | 2 | 1 | 2 | 2 | 1 | 3 | 1 | 0.2824 | 0.6525 | 0.0633 | 0.0017 | 0.0000 | 0.0000 | -5.4288  |
| 351 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | 0.0072 | 0.2022 | 0.7051 | 0.0840 | 0.0004 | 0.0012 | -9.3237  |
| 352 | 2 | 2 | 2 | 2 | 1 | 3 | 1 | 0.1530 | 0.7154 | 0.1279 | 0.0037 | 0.0000 | 0.0000 | -6.2596  |
| 353 | 1 | 3 | 2 | 2 | 1 | 3 | 1 | 0.0049 | 0.1463 | 0.7267 | 0.1198 | 0.0006 | 0.0018 | -9.6027  |
| 354 | 2 | 3 | 2 | 2 | 1 | 3 | 1 | 0.0766 | 0.6752 | 0.2401 | 0.0080 | 0.0000 | 0.0001 | -7.0506  |
| 355 | 1 | 1 | 3 | 2 | 1 | 3 | 1 | 0.0254 | 0.4620 | 0.4872 | 0.0250 | 0.0001 | 0.0003 | -8.2428  |
| 356 | 2 | 1 | 3 | 2 | 1 | 3 | 1 | 0.2782 | 0.6555 | 0.0646 | 0.0017 | 0.0000 | 0.0000 | -5.4528  |
| 357 | 1 | 2 | 3 | 2 | 1 | 3 | 1 | 0.0172 | 0.3728 | 0.5727 | 0.0367 | 0.0002 | 0.0005 | -8.6160  |
| 358 | 2 | 2 | 3 | 2 | 1 | 3 | 1 | 0.1503 | 0.7156 | 0.1302 | 0.0038 | 0.0000 | 0.0000 | -6.2808  |
| 359 | 1 | 3 | 3 | 2 | 1 | 3 | 1 | 0.0116 | 0.2890 | 0.6449 | 0.0535 | 0.0002 | 0.0007 | -8.9545  |
| 360 | 2 | 3 | 3 | 2 | 1 | 3 | 1 | 0.0751 | 0.6727 | 0.2439 | 0.0081 | 0.0000 | 0.0001 | -7.0722  |
| 361 | 1 | 1 | 1 | 3 | 1 | 3 | 1 | 0.0031 | 0.1001 | 0.7196 | 0.1736 | 0.0009 | 0.0027 | -9.9023  |
| 362 | 2 | 1 | 1 | 3 | 1 | 3 | 1 | 0.2209 | 0.6910 | 0.0857 | 0.0023 | 0.0000 | 0.0000 | -5.7922  |
| 363 | 1 | 2 | 1 | 3 | 1 | 3 | 1 | 0.0021 | 0.0697 | 0.6856 | 0.2372 | 0.0013 | 0.0041 | -10.1811 |
| 364 | 2 | 2 | 1 | 3 | 1 | 3 | 1 | 0.1152 | 0.7110 | 0.1686 | 0.0051 | 0.0000 | 0.0001 | -6.5911  |
| 365 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 0.0014 | 0.0480 | 0.6279 | 0.3147 | 0.0019 | 0.0061 | -10.4709 |
| 366 | 2 | 3 | 1 | 3 | 1 | 3 | 1 | 0.0564 | 0.6293 | 0.3031 | 0.0110 | 0.0000 | 0.0001 | -7.3913  |
| 367 | 1 | 1 | 2 | 3 | 1 | 3 | 1 | 0.0076 | 0.2099 | 0.7007 | 0.0804 | 0.0004 | 0.0011 | -9.2889  |
| 368 | 2 | 1 | 2 | 3 | 1 | 3 | 1 | 0.2173 | 0.6929 | 0.0873 | 0.0024 | 0.0000 | 0.0000 | -5.8145  |
| 369 | 1 | 2 | 2 | 3 | 1 | 3 | 1 | 0.0051 | 0.1523 | 0.7255 | 0.1149 | 0.0005 | 0.0017 | -9.5695  |
| 370 | 2 | 2 | 2 | 3 | 1 | 3 | 1 | 0.1130 | 0.7101 | 0.1716 | 0.0052 | 0.0000 | 0.0001 | -6.6122  |
| 371 | 1 | 3 | 2 | 3 | 1 | 3 | 1 | 0.0034 | 0.1082 | 0.7236 | 0.1615 | 0.0008 | 0.0025 | -9.8421  |
| 372 | 2 | 3 | 2 | 3 | 1 | 3 | 1 | 0.0553 | 0.6259 | 0.3074 | 0.0113 | 0.0000 | 0.0001 | -7.4131  |
| 373 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 0.0180 | 0.3834 | 0.5629 | 0.0350 | 0.0002 | 0.0005 | -8.5726  |

| 374 | 2 | 1 | 3 | 3 | 1 | 3 | 1 | 0.2138 | 0.6947 | 0.0890 | 0.0024 | 0.0000 | 0.0000 | -5.8368  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 375 | 1 | 2 | 3 | 3 | 1 | 3 | 1 | 0.0122 | 0.2986 | 0.6371 | 0.0512 | 0.0002 | 0.0007 | -8.9154  |
| 376 | 2 | 2 | 3 | 3 | 1 | 3 | 1 | 0.1110 | 0.7091 | 0.1745 | 0.0053 | 0.0000 | 0.0001 | -6.6333  |
| 377 | 1 | 3 | 3 | 3 | 1 | 3 | 1 | 0.0082 | 0.2244 | 0.6918 | 0.0742 | 0.0003 | 0.0010 | -9.2245  |
| 378 | 2 | 3 | 3 | 3 | 1 | 3 | 1 | 0.0542 | 0.6224 | 0.3117 | 0.0115 | 0.0000 | 0.0002 | -7.4349  |
| 379 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 0.0157 | 0.3525 | 0.5910 | 0.0401 | 0.0002 | 0.0005 | -8.6981  |
| 380 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 0.5895 | 0.3918 | 0.0182 | 0.0005 | 0.0000 | 0.0000 | -3.6711  |
| 381 | 1 | 2 | 1 | 1 | 2 | 3 | 1 | 0.0106 | 0.2709 | 0.6590 | 0.0584 | 0.0003 | 0.0008 | -9.0284  |
| 382 | 2 | 2 | 1 | 1 | 2 | 3 | 1 | 0.3972 | 0.5629 | 0.0389 | 0.0010 | 0.0000 | 0.0000 | -4.7933  |
| 383 | 1 | 3 | 1 | 1 | 2 | 3 | 1 | 0.0072 | 0.2014 | 0.7055 | 0.0844 | 0.0004 | 0.0012 | -9.3274  |
| 384 | 2 | 3 | 1 | 1 | 2 | 3 | 1 | 0.2322 | 0.6848 | 0.0808 | 0.0022 | 0.0000 | 0.0000 | -5.7225  |
| 385 | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 0.0371 | 0.5474 | 0.3982 | 0.0170 | 0.0001 | 0.0002 | -7.8479  |
| 386 | 2 | 1 | 2 | 1 | 2 | 3 | 1 | 0.5844 | 0.3965 | 0.0186 | 0.0005 | 0.0000 | 0.0000 | -3.7030  |
| 387 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 0.0252 | 0.4609 | 0.4884 | 0.0251 | 0.0001 | 0.0003 | -8.2478  |
| 388 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 0.3922 | 0.5671 | 0.0396 | 0.0010 | 0.0000 | 0.0000 | -4.8208  |
| 389 | 1 | 3 | 2 | 1 | 2 | 3 | 1 | 0.0171 | 0.3716 | 0.5737 | 0.0368 | 0.0002 | 0.0005 | -8.6205  |
| 390 | 2 | 3 | 2 | 1 | 2 | 3 | 1 | 0.2285 | 0.6868 | 0.0823 | 0.0022 | 0.0000 | 0.0000 | -5.7451  |
| 391 | 1 | 1 | 3 | 1 | 2 | 3 | 1 | 0.0851 | 0.6875 | 0.2202 | 0.0071 | 0.0000 | 0.0001 | -6.9327  |
| 392 | 2 | 1 | 3 | 1 | 2 | 3 | 1 | 0.5793 | 0.4012 | 0.0190 | 0.0005 | 0.0000 | 0.0000 | -3.7349  |
| 393 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 0.0589 | 0.6366 | 0.2938 | 0.0106 | 0.0000 | 0.0001 | -7.3436  |
| 394 | 2 | 2 | 3 | 1 | 2 | 3 | 1 | 0.3873 | 0.5712 | 0.0405 | 0.0011 | 0.0000 | 0.0000 | -4.8481  |
| 395 | 1 | 3 | 3 | 1 | 2 | 3 | 1 | 0.0403 | 0.5652 | 0.3785 | 0.0156 | 0.0001 | 0.0002 | -7.7575  |
| 396 | 2 | 3 | 3 | 1 | 2 | 3 | 1 | 0.2249 | 0.6889 | 0.0839 | 0.0023 | 0.0000 | 0.0000 | -5.7676  |
| 397 | 1 | 1 | 1 | 2 | 2 | 3 | 1 | 0.0021 | 0.0690 | 0.6844 | 0.2391 | 0.0013 | 0.0041 | -10.1886 |
| 398 | 2 | 1 | 1 | 2 | 2 | 3 | 1 | 0.1587 | 0.7145 | 0.1232 | 0.0035 | 0.0000 | 0.0000 | -6.2157  |
| 399 | 1 | 2 | 1 | 2 | 2 | 3 | 1 | 0.0014 | 0.0476 | 0.6261 | 0.3169 | 0.0019 | 0.0061 | -10.4787 |
| 400 | 2 | 2 | 1 | 2 | 2 | 3 | 1 | 0.0797 | 0.6801 | 0.2325 | 0.0076 | 0.0000 | 0.0001 | -7.0061  |
| 401 | 1 | 3 | 1 | 2 | 2 | 3 | 1 | 0.0009 | 0.0325 | 0.5493 | 0.4053 | 0.0029 | 0.0091 | -10.7765 |
| 402 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0.0382 | 0.5539 | 0.3911 | 0.0165 | 0.0001 | 0.0002 | -7.8157  |
| 403 | 1 | 1 | 2 | 2 | 2 | 3 | 1 | 0.0050 | 0.1510 | 0.7258 | 0.1160 | 0.0005 | 0.0017 | -9.5768  |
| 404 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | 0.1559 | 0.7150 | 0.1254 | 0.0036 | 0.0000 | 0.0000 | -6.2370  |
| 405 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | 0.0034 | 0.1072 | 0.7232 | 0.1629 | 0.0008 | 0.0025 | -9.8493  |
| 406 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 0.0782 | 0.6777 | 0.2362 | 0.0078 | 0.0000 | 0.0001 | -7.0276  |
| 407 | 1 | 3 | 2 | 2 | 2 | 3 | 1 | 0.0023 | 0.0748 | 0.6942 | 0.2237 | 0.0012 | 0.0038 | -10.1263 |
| 408 | 2 | 3 | 2 | 2 | 2 | 3 | 1 | 0.0375 | 0.5496 | 0.3958 | 0.0168 | 0.0001 | 0.0002 | -7.8373  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table | B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|-------|---------------------------------------------------------------------------------|
| Nois  | se Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor   |
|       | Production Example                                                              |

| 409 | 1 | 1 | 3 | 2 | 2 | 3 | 1 | 0.0121 | 0.2965 | 0.6388 | 0.0517 | 0.0002 | 0.0007 | -8.9240  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 410 | 2 | 1 | 3 | 2 | 2 | 3 | 1 | 0.1532 | 0.7153 | 0.1277 | 0.0037 | 0.0000 | 0.0000 | -6.2582  |
| 411 | 1 | 2 | 3 | 2 | 2 | 3 | 1 | 0.0081 | 0.2226 | 0.6929 | 0.0749 | 0.0003 | 0.0011 | -9.2323  |
| 412 | 2 | 2 | 3 | 2 | 2 | 3 | 1 | 0.0767 | 0.6754 | 0.2399 | 0.0080 | 0.0000 | 0.0001 | -7.0492  |
| 413 | 1 | 3 | 3 | 2 | 2 | 3 | 1 | 0.0055 | 0.1624 | 0.7227 | 0.1073 | 0.0005 | 0.0016 | -9.5162  |
| 414 | 2 | 3 | 3 | 2 | 2 | 3 | 1 | 0.0367 | 0.5452 | 0.4006 | 0.0172 | 0.0001 | 0.0002 | -7.8588  |
| 415 | 1 | 1 | 1 | 3 | 2 | 3 | 1 | 0.0015 | 0.0498 | 0.6343 | 0.3068 | 0.0019 | 0.0058 | -10.4431 |
| 416 | 2 | 1 | 1 | 3 | 2 | 3 | 1 | 0.1174 | 0.7119 | 0.1656 | 0.0050 | 0.0000 | 0.0001 | -6.5686  |
| 417 | 1 | 2 | 1 | 3 | 2 | 3 | 1 | 0.0010 | 0.0341 | 0.5594 | 0.3942 | 0.0027 | 0.0086 | -10.7403 |
| 418 | 2 | 2 | 1 | 3 | 2 | 3 | 1 | 0.0576 | 0.6329 | 0.2985 | 0.0108 | 0.0000 | 0.0001 | -7.3680  |
| 419 | 1 | 3 | 1 | 3 | 2 | 3 | 1 | 0.0007 | 0.0232 | 0.4725 | 0.4868 | 0.0040 | 0.0128 | -11.0371 |
| 420 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 0.0273 | 0.4786 | 0.4705 | 0.0232 | 0.0001 | 0.0003 | -8.1698  |
| 421 | 1 | 1 | 2 | 3 | 2 | 3 | 1 | 0.0036 | 0.1118 | 0.7250 | 0.1565 | 0.0008 | 0.0024 | -9.8163  |
| 422 | 2 | 1 | 2 | 3 | 2 | 3 | 1 | 0.1153 | 0.7111 | 0.1684 | 0.0051 | 0.0000 | 0.0001 | -6.5897  |
| 423 | 1 | 2 | 2 | 3 | 2 | 3 | 1 | 0.0024 | 0.0782 | 0.6990 | 0.2156 | 0.0012 | 0.0036 | -10.0922 |
| 424 | 2 | 2 | 2 | 3 | 2 | 3 | 1 | 0.0564 | 0.6295 | 0.3028 | 0.0110 | 0.0000 | 0.0001 | -7.3898  |
| 425 | 1 | 3 | 2 | 3 | 2 | 3 | 1 | 0.0016 | 0.0541 | 0.6484 | 0.2889 | 0.0017 | 0.0053 | -10.3786 |
| 426 | 2 | 3 | 2 | 3 | 2 | 3 | 1 | 0.0267 | 0.4740 | 0.4752 | 0.0237 | 0.0001 | 0.0003 | -8.1905  |
| 427 | 1 | 1 | 3 | 3 | 2 | 3 | 1 | 0.0085 | 0.2309 | 0.6876 | 0.0716 | 0.0003 | 0.0010 | -9.1966  |
| 428 | 2 | 1 | 3 | 3 | 2 | 3 | 1 | 0.1132 | 0.7102 | 0.1714 | 0.0052 | 0.0000 | 0.0001 | -6.6108  |
| 429 | 1 | 2 | 3 | 3 | 2 | 3 | 1 | 0.0058 | 0.1689 | 0.7205 | 0.1028 | 0.0005 | 0.0015 | -9.4827  |
| 430 | 2 | 2 | 3 | 3 | 2 | 3 | 1 | 0.0553 | 0.6261 | 0.3071 | 0.0113 | 0.0000 | 0.0001 | -7.4116  |
| 431 | 1 | 3 | 3 | 3 | 2 | 3 | 1 | 0.0039 | 0.1207 | 0.7271 | 0.1454 | 0.0007 | 0.0022 | -9.7563  |
| 432 | 2 | 3 | 3 | 3 | 2 | 3 | 1 | 0.0262 | 0.4693 | 0.4799 | 0.0242 | 0.0001 | 0.0003 | -8.2111  |
| 433 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 0.0074 | 0.2073 | 0.7021 | 0.0815 | 0.0004 | 0.0012 | -9.3002  |
| 434 | 2 | 1 | 1 | 1 | 3 | 3 | 1 | 0.4026 | 0.5584 | 0.0380 | 0.0010 | 0.0000 | 0.0000 | -4.7637  |
| 435 | 1 | 2 | 1 | 1 | 3 | 3 | 1 | 0.0050 | 0.1503 | 0.7259 | 0.1165 | 0.0006 | 0.0017 | -9.5803  |
| 436 | 2 | 2 | 1 | 1 | 3 | 3 | 1 | 0.2362 | 0.6824 | 0.0791 | 0.0022 | 0.0000 | 0.0000 | -5.6983  |
| 437 | 1 | 3 | 1 | 1 | 3 | 3 | 1 | 0.0034 | 0.1067 | 0.7230 | 0.1636 | 0.0008 | 0.0026 | -9.8528  |
| 438 | 2 | 3 | 1 | 1 | 3 | 3 | 1 | 0.1243 | 0.7140 | 0.1569 | 0.0047 | 0.0000 | 0.0001 | -6.5032  |
| 439 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 0.0178 | 0.3800 | 0.5661 | 0.0355 | 0.0002 | 0.0005 | -8.5868  |
| 440 | 2 | 1 | 2 | 1 | 3 | 3 | 1 | 0.3976 | 0.5626 | 0.0388 | 0.0010 | 0.0000 | 0.0000 | -4.7914  |
| 441 | 1 | 2 | 2 | 1 | 3 | 3 | 1 | 0.0120 | 0.2955 | 0.6397 | 0.0519 | 0.0002 | 0.0007 | -8.9281  |
| 442 | 2 | 2 | 2 | 1 | 3 | 3 | 1 | 0.2325 | 0.6846 | 0.0807 | 0.0022 | 0.0000 | 0.0000 | -5.7209  |
| 443 | 1 | 3 | 2 | 1 | 3 | 3 | 1 | 0.0081 | 0.2218 | 0.6935 | 0.0752 | 0.0003 | 0.0011 | -9.2361  |

| 444 | 2 | 3 | 2 | 1 | 3 | 3 | 1 | 0.1221 | 0.7134 | 0.1597 | 0.0048 | 0.0000 | 0.0001 | -6.5243  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 445 | 1 | 1 | 3 | 1 | 3 | 3 | 1 | 0.0418 | 0.5727 | 0.3702 | 0.0150 | 0.0001 | 0.0002 | -7.7185  |
| 446 | 2 | 1 | 3 | 1 | 3 | 3 | 1 | 0.3926 | 0.5668 | 0.0396 | 0.0010 | 0.0000 | 0.0000 | -4.8189  |
| 447 | 1 | 2 | 3 | 1 | 3 | 3 | 1 | 0.0285 | 0.4888 | 0.4601 | 0.0222 | 0.0001 | 0.0003 | -8.1243  |
| 448 | 2 | 2 | 3 | 1 | 3 | 3 | 1 | 0.2288 | 0.6867 | 0.0822 | 0.0022 | 0.0000 | 0.0000 | -5.7435  |
| 449 | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 0.0194 | 0.3995 | 0.5479 | 0.0327 | 0.0001 | 0.0004 | -8.5068  |
| 450 | 2 | 3 | 3 | 1 | 3 | 3 | 1 | 0.1199 | 0.7127 | 0.1625 | 0.0049 | 0.0000 | 0.0001 | -6.5454  |
| 451 | 1 | 1 | 1 | 2 | 3 | 3 | 1 | 0.0010 | 0.0337 | 0.5572 | 0.3966 | 0.0028 | 0.0087 | -10.7482 |
| 452 | 2 | 1 | 1 | 2 | 3 | 3 | 1 | 0.0813 | 0.6824 | 0.2286 | 0.0075 | 0.0000 | 0.0001 | -6.9832  |
| 453 | 1 | 2 | 1 | 2 | 3 | 3 | 1 | 0.0007 | 0.0229 | 0.4701 | 0.4893 | 0.0041 | 0.0129 | -11.0448 |
| 454 | 2 | 2 | 1 | 2 | 3 | 3 | 1 | 0.0391 | 0.5584 | 0.3861 | 0.0161 | 0.0001 | 0.0002 | -7.7927  |
| 455 | 1 | 3 | 1 | 2 | 3 | 3 | 1 | 0.0004 | 0.0155 | 0.3800 | 0.5789 | 0.0060 | 0.0191 | -11.3300 |
| 456 | 2 | 3 | 1 | 2 | 3 | 3 | 1 | 0.0183 | 0.3869 | 0.5597 | 0.0345 | 0.0001 | 0.0005 | -8.5585  |
| 457 | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 0.0024 | 0.0775 | 0.6980 | 0.2174 | 0.0012 | 0.0036 | -10.0997 |
| 458 | 2 | 1 | 2 | 2 | 3 | 3 | 1 | 0.0798 | 0.6802 | 0.2322 | 0.0076 | 0.0000 | 0.0001 | -7.0047  |
| 459 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 0.0016 | 0.0535 | 0.6467 | 0.2910 | 0.0017 | 0.0054 | -10.3863 |
| 460 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 0.0383 | 0.5541 | 0.3908 | 0.0165 | 0.0001 | 0.0002 | -7.8143  |
| 461 | 1 | 3 | 2 | 2 | 3 | 3 | 1 | 0.0011 | 0.0367 | 0.5751 | 0.3766 | 0.0025 | 0.0080 | -10.6824 |
| 462 | 2 | 3 | 2 | 2 | 3 | 3 | 1 | 0.0179 | 0.3822 | 0.5640 | 0.0352 | 0.0002 | 0.0005 | -8.5775  |
| 463 | 1 | 1 | 3 | 2 | 3 | 3 | 1 | 0.0057 | 0.1675 | 0.7210 | 0.1038 | 0.0005 | 0.0015 | -9.4901  |
| 464 | 2 | 1 | 3 | 2 | 3 | 3 | 1 | 0.0783 | 0.6779 | 0.2359 | 0.0078 | 0.0000 | 0.0001 | -7.0262  |
| 465 | 1 | 2 | 3 | 2 | 3 | 3 | 1 | 0.0038 | 0.1196 | 0.7269 | 0.1467 | 0.0007 | 0.0022 | -9.7635  |
| 466 | 2 | 2 | 3 | 2 | 3 | 3 | 1 | 0.0375 | 0.5499 | 0.3955 | 0.0168 | 0.0001 | 0.0002 | -7.8358  |
| 467 | 1 | 3 | 3 | 2 | 3 | 3 | 1 | 0.0026 | 0.0839 | 0.7061 | 0.2030 | 0.0011 | 0.0033 | -10.0381 |
| 468 | 2 | 3 | 3 | 2 | 3 | 3 | 1 | 0.0176 | 0.3776 | 0.5683 | 0.0359 | 0.0002 | 0.0005 | -8.5963  |
| 469 | 1 | 1 | 1 | 3 | 3 | 3 | 1 | 0.0007 | 0.0240 | 0.4810 | 0.4781 | 0.0039 | 0.0123 | -11.0093 |
| 470 | 2 | 1 | 1 | 3 | 3 | 3 | 1 | 0.0588 | 0.6364 | 0.2940 | 0.0106 | 0.0000 | 0.0001 | -7.3448  |
| 471 | 1 | 2 | 1 | 3 | 3 | 3 | 1 | 0.0005 | 0.0163 | 0.3908 | 0.5685 | 0.0057 | 0.0183 | -11.2964 |
| 472 | 2 | 2 | 1 | 3 | 3 | 3 | 1 | 0.0279 | 0.4836 | 0.4654 | 0.0227 | 0.0001 | 0.0003 | -8.1476  |
| 473 | 1 | 3 | 1 | 3 | 3 | 3 | 1 | 0.0003 | 0.0110 | 0.3049 | 0.6485 | 0.0083 | 0.0269 | -11.5660 |
| 474 | 2 | 3 | 1 | 3 | 3 | 3 | 1 | 0.0130 | 0.3116 | 0.6264 | 0.0482 | 0.0002 | 0.0007 | -8.8629  |
| 475 | 1 | 1 | 2 | 3 | 3 | 3 | 1 | 0.0017 | 0.0560 | 0.6541 | 0.2814 | 0.0016 | 0.0052 | -10.3510 |
| 476 | 2 | 1 | 2 | 3 | 3 | 3 | 1 | 0.0576 | 0.6331 | 0.2983 | 0.0108 | 0.0000 | 0.0001 | -7.3665  |
| 477 | 1 | 2 | 2 | 3 | 3 | 3 | 1 | 0.0011 | 0.0384 | 0.5846 | 0.3658 | 0.0024 | 0.0076 | -10.6463 |
| 478 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 0.0273 | 0.4790 | 0.4701 | 0.0232 | 0.0001 | 0.0003 | -8.1684  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| T | able B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---|--------------------------------------------------------------------------------------|
|   | Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor     |
|   | Production Example                                                                   |

| 479 | 1 | 3 | 2 | 3 | 3 | 3 | 1 | 0.0008 | 0.0262 | 0.5006 | 0.4576 | 0.0036 | 0.0113 | -10.9444 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 480 | 2 | 3 | 2 | 3 | 3 | 3 | 1 | 0.0127 | 0.3073 | 0.6300 | 0.0491 | 0.0002 | 0.0007 | -8.8802  |
| 481 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 0.0040 | 0.1247 | 0.7276 | 0.1408 | 0.0007 | 0.0021 | -9.7306  |
| 482 | 2 | 1 | 3 | 3 | 3 | 3 | 1 | 0.0565 | 0.6298 | 0.3025 | 0.0110 | 0.0000 | 0.0001 | -7.3883  |
| 483 | 1 | 2 | 3 | 3 | 3 | 3 | 1 | 0.0027 | 0.0877 | 0.7100 | 0.1954 | 0.0010 | 0.0032 | -10.0045 |
| 484 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | 0.0268 | 0.4743 | 0.4749 | 0.0237 | 0.0001 | 0.0003 | -8.1891  |
| 485 | 1 | 3 | 3 | 3 | 3 | 3 | 1 | 0.0018 | 0.0608 | 0.6668 | 0.2644 | 0.0015 | 0.0047 | -10.2872 |
| 486 | 2 | 3 | 3 | 3 | 3 | 3 | 1 | 0.0125 | 0.3030 | 0.6335 | 0.0501 | 0.0002 | 0.0007 | -8.8975  |
| 487 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0.0071 | 0.1997 | 0.7064 | 0.0852 | 0.0004 | 0.0012 | -9.3348  |
| 488 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 0.6612 | 0.3249 | 0.0135 | 0.0003 | 0.0000 | 0.0000 | -3.1973  |
| 489 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 0.0048 | 0.1444 | 0.7270 | 0.1215 | 0.0006 | 0.0018 | -9.6132  |
| 490 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 0.4726 | 0.4978 | 0.0289 | 0.0007 | 0.0000 | 0.0000 | -4.3713  |
| 491 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 0.0032 | 0.1022 | 0.7208 | 0.1702 | 0.0009 | 0.0027 | -9.8857  |
| 492 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | 0.2914 | 0.6462 | 0.0608 | 0.0016 | 0.0000 | 0.0000 | -5.3781  |
| 493 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0.0169 | 0.3694 | 0.5758 | 0.0372 | 0.0002 | 0.0005 | -8.6297  |
| 494 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 0.6565 | 0.3293 | 0.0138 | 0.0003 | 0.0000 | 0.0000 | -3.2295  |
| 495 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 0.0115 | 0.2859 | 0.6473 | 0.0543 | 0.0002 | 0.0007 | -8.9669  |
| 496 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 0.4674 | 0.5024 | 0.0295 | 0.0008 | 0.0000 | 0.0000 | -4.4010  |
| 497 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 0.0077 | 0.2138 | 0.6984 | 0.0786 | 0.0004 | 0.0011 | -9.2712  |
| 498 | 2 | 3 | 2 | 1 | 1 | 1 | 2 | 0.2871 | 0.6492 | 0.0620 | 0.0017 | 0.0000 | 0.0000 | -5.4023  |
| 499 | 1 | 1 | 3 | 1 | 1 | 1 | 2 | 0.0400 | 0.5632 | 0.3808 | 0.0158 | 0.0001 | 0.0002 | -7.7681  |
| 500 | 2 | 1 | 3 | 1 | 1 | 1 | 2 | 0.6518 | 0.3338 | 0.0141 | 0.0004 | 0.0000 | 0.0000 | -3.2618  |
| 501 | 1 | 2 | 3 | 1 | 1 | 1 | 2 | 0.0272 | 0.4782 | 0.4709 | 0.0233 | 0.0001 | 0.0003 | -8.1718  |
| 502 | 2 | 2 | 3 | 1 | 1 | 1 | 2 | 0.4622 | 0.5070 | 0.0301 | 0.0008 | 0.0000 | 0.0000 | -4.4305  |
| 503 | 1 | 3 | 3 | 1 | 1 | 1 | 2 | 0.0185 | 0.3888 | 0.5579 | 0.0342 | 0.0001 | 0.0005 | -8.5507  |
| 504 | 2 | 3 | 3 | 1 | 1 | 1 | 2 | 0.2829 | 0.6522 | 0.0632 | 0.0017 | 0.0000 | 0.0000 | -5.4264  |
| 505 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 0.0009 | 0.0322 | 0.5472 | 0.4076 | 0.0029 | 0.0092 | -10.7842 |
| 506 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0.2041 | 0.6994 | 0.0938 | 0.0026 | 0.0000 | 0.0000 | -5.8987  |
| 507 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 0.0006 | 0.0219 | 0.4592 | 0.5004 | 0.0043 | 0.0136 | -11.0799 |
| 508 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 0.1053 | 0.7060 | 0.1830 | 0.0056 | 0.0000 | 0.0001 | -6.6926  |
| 509 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 0.0004 | 0.0148 | 0.3694 | 0.5890 | 0.0063 | 0.0200 | -11.3632 |
| 510 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | 0.0513 | 0.6124 | 0.3239 | 0.0122 | 0.0001 | 0.0002 | -7.4961  |
| 511 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 0.0023 | 0.0741 | 0.6931 | 0.2255 | 0.0012 | 0.0038 | -10.1336 |
| 512 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 0.2007 | 0.7010 | 0.0956 | 0.0026 | 0.0000 | 0.0000 | -5.9206  |
| 513 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 0.0015 | 0.0512 | 0.6391 | 0.3008 | 0.0018 | 0.0057 | -10.4215 |

| 514 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 0.1034 | 0.7047 | 0.1861 | 0.0058 | 0.0000 | 0.0001 | -6.7138  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 515 | 1 | 3 | 2 | 2 | 1 | 1 | 2 | 0.0010 | 0.0350 | 0.5654 | 0.3875 | 0.0027 | 0.0084 | -10.7184 |
| 516 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 0.0503 | 0.6087 | 0.3283 | 0.0124 | 0.0001 | 0.0002 | -7.5179  |
| 517 | 1 | 1 | 3 | 2 | 1 | 1 | 2 | 0.0054 | 0.1610 | 0.7232 | 0.1083 | 0.0005 | 0.0016 | -9.5233  |
| 518 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 0.1974 | 0.7024 | 0.0974 | 0.0027 | 0.0000 | 0.0000 | -5.9425  |
| 519 | 1 | 2 | 3 | 2 | 1 | 1 | 2 | 0.0037 | 0.1147 | 0.7258 | 0.1527 | 0.0008 | 0.0024 | -9.7963  |
| 520 | 2 | 2 | 3 | 2 | 1 | 1 | 2 | 0.1014 | 0.7034 | 0.1892 | 0.0059 | 0.0000 | 0.0001 | -6.7350  |
| 521 | 1 | 3 | 3 | 2 | 1 | 1 | 2 | 0.0025 | 0.0803 | 0.7018 | 0.2108 | 0.0011 | 0.0035 | -10.0717 |
| 522 | 2 | 3 | 3 | 2 | 1 | 1 | 2 | 0.0493 | 0.6050 | 0.3328 | 0.0127 | 0.0001 | 0.0002 | -7.5397  |
| 523 | 1 | 1 | 1 | 3 | 1 | 1 | 2 | 0.0007 | 0.0229 | 0.4702 | 0.4892 | 0.0041 | 0.0129 | -11.0446 |
| 524 | 2 | 1 | 1 | 3 | 1 | 1 | 2 | 0.1532 | 0.7153 | 0.1277 | 0.0037 | 0.0000 | 0.0000 | -6.2582  |
| 525 | 1 | 2 | 1 | 3 | 1 | 1 | 2 | 0.0004 | 0.0155 | 0.3801 | 0.5788 | 0.0060 | 0.0191 | -11.3299 |
| 526 | 2 | 2 | 1 | 3 | 1 | 1 | 2 | 0.0767 | 0.6754 | 0.2399 | 0.0080 | 0.0000 | 0.0001 | -7.0492  |
| 527 | 1 | 3 | 1 | 3 | 1 | 1 | 2 | 0.0003 | 0.0105 | 0.2952 | 0.6571 | 0.0087 | 0.0282 | -11.5972 |
| 528 | 2 | 3 | 1 | 3 | 1 | 1 | 2 | 0.0367 | 0.5452 | 0.4006 | 0.0172 | 0.0001 | 0.0002 | -7.8588  |
| 529 | 1 | 1 | 2 | 3 | 1 | 1 | 2 | 0.0016 | 0.0535 | 0.6468 | 0.2910 | 0.0017 | 0.0054 | -10.3861 |
| 530 | 2 | 1 | 2 | 3 | 1 | 1 | 2 | 0.1505 | 0.7156 | 0.1300 | 0.0038 | 0.0000 | 0.0000 | -6.2794  |
| 531 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 0.0011 | 0.0367 | 0.5751 | 0.3766 | 0.0025 | 0.0080 | -10.6823 |
| 532 | 2 | 2 | 2 | 3 | 1 | 1 | 2 | 0.0752 | 0.6729 | 0.2436 | 0.0081 | 0.0000 | 0.0001 | -7.0707  |
| 533 | 1 | 3 | 2 | 3 | 1 | 1 | 2 | 0.0007 | 0.0250 | 0.4899 | 0.4688 | 0.0038 | 0.0119 | -10.9799 |
| 534 | 2 | 3 | 2 | 3 | 1 | 1 | 2 | 0.0360 | 0.5409 | 0.4053 | 0.0175 | 0.0001 | 0.0002 | -7.8803  |
| 535 | 1 | 1 | 3 | 3 | 1 | 1 | 2 | 0.0038 | 0.1196 | 0.7269 | 0.1466 | 0.0007 | 0.0022 | -9.7634  |
| 536 | 2 | 1 | 3 | 3 | 1 | 1 | 2 | 0.1479 | 0.7158 | 0.1324 | 0.0038 | 0.0000 | 0.0001 | -6.3005  |
| 537 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 0.0026 | 0.0839 | 0.7061 | 0.2030 | 0.0011 | 0.0033 | -10.0379 |
| 538 | 2 | 2 | 3 | 3 | 1 | 1 | 2 | 0.0738 | 0.6704 | 0.2474 | 0.0083 | 0.0000 | 0.0001 | -7.0923  |
| 539 | 1 | 3 | 3 | 3 | 1 | 1 | 2 | 0.0017 | 0.0581 | 0.6600 | 0.2736 | 0.0016 | 0.0050 | -10.3220 |
| 540 | 2 | 3 | 3 | 3 | 1 | 1 | 2 | 0.0353 | 0.5365 | 0.4100 | 0.0179 | 0.0001 | 0.0002 | -7.9018  |
| 541 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 0.0033 | 0.1057 | 0.7226 | 0.1650 | 0.0008 | 0.0026 | -9.8599  |
| 542 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 0.4781 | 0.4929 | 0.0283 | 0.0007 | 0.0000 | 0.0000 | -4.3395  |
| 543 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 0.0022 | 0.0738 | 0.6925 | 0.2264 | 0.0012 | 0.0038 | -10.1372 |
| 544 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 0.2960 | 0.6428 | 0.0595 | 0.0016 | 0.0000 | 0.0000 | -5.3521  |
| 545 | 1 | 3 | 1 | 1 | 2 | 1 | 2 | 0.0015 | 0.0509 | 0.6382 | 0.3018 | 0.0018 | 0.0057 | -10.4253 |
| 546 | 2 | 3 | 1 | 1 | 2 | 1 | 2 | 0.1618 | 0.7140 | 0.1207 | 0.0034 | 0.0000 | 0.0000 | -6.1924  |
| 547 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 0.0080 | 0.2201 | 0.6945 | 0.0760 | 0.0003 | 0.0011 | -9.2437  |
| 548 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 0.4729 | 0.4975 | 0.0289 | 0.0007 | 0.0000 | 0.0000 | -4.3693  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 549 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 0.0054 | 0.1603 | 0.7234 | 0.1088 | 0.0005 | 0.0016 | -9.5269  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 550 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 0.2917 | 0.6460 | 0.0607 | 0.0016 | 0.0000 | 0.0000 | -5.3764  |
| 551 | 1 | 3 | 2 | 1 | 2 | 1 | 2 | 0.0036 | 0.1142 | 0.7257 | 0.1534 | 0.0008 | 0.0024 | -9.7998  |
| 552 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 0.1590 | 0.7145 | 0.1229 | 0.0035 | 0.0000 | 0.0000 | -6.2136  |
| 553 | 1 | 1 | 3 | 1 | 2 | 1 | 2 | 0.0192 | 0.3972 | 0.5501 | 0.0330 | 0.0001 | 0.0004 | -8.5163  |
| 554 | 2 | 1 | 3 | 1 | 2 | 1 | 2 | 0.4677 | 0.5021 | 0.0294 | 0.0008 | 0.0000 | 0.0000 | -4.3990  |
| 555 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 0.0130 | 0.3112 | 0.6267 | 0.0483 | 0.0002 | 0.0007 | -8.8646  |
| 556 | 2 | 2 | 3 | 1 | 2 | 1 | 2 | 0.2874 | 0.6490 | 0.0619 | 0.0017 | 0.0000 | 0.0000 | -5.4007  |
| 557 | 1 | 3 | 3 | 1 | 2 | 1 | 2 | 0.0088 | 0.2351 | 0.6848 | 0.0701 | 0.0003 | 0.0010 | -9.1785  |
| 558 | 2 | 3 | 3 | 1 | 2 | 1 | 2 | 0.1562 | 0.7149 | 0.1252 | 0.0036 | 0.0000 | 0.0000 | -6.2348  |
| 559 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 0.0004 | 0.0154 | 0.3777 | 0.5811 | 0.0060 | 0.0193 | -11.3372 |
| 560 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 0.1074 | 0.7072 | 0.1797 | 0.0055 | 0.0000 | 0.0001 | -6.6700  |
| 561 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 0.0003 | 0.0104 | 0.2931 | 0.6589 | 0.0088 | 0.0285 | -11.6040 |
| 562 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 0.0524 | 0.6163 | 0.3192 | 0.0119 | 0.0001 | 0.0002 | -7.4728  |
| 563 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 0.0002 | 0.0070 | 0.2196 | 0.7187 | 0.0127 | 0.0418 | -11.8540 |
| 564 | 2 | 3 | 1 | 2 | 2 | 1 | 2 | 0.0247 | 0.4561 | 0.4931 | 0.0256 | 0.0001 | 0.0003 | -8.2684  |
| 565 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0.0011 | 0.0363 | 0.5730 | 0.3790 | 0.0026 | 0.0081 | -10.6902 |
| 566 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 0.1055 | 0.7061 | 0.1828 | 0.0056 | 0.0000 | 0.0001 | -6.6912  |
| 567 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 0.0007 | 0.0247 | 0.4875 | 0.4712 | 0.0038 | 0.0120 | -10.9877 |
| 568 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 0.0513 | 0.6127 | 0.3236 | 0.0122 | 0.0001 | 0.0002 | -7.4946  |
| 569 | 1 | 3 | 2 | 2 | 2 | 1 | 2 | 0.0005 | 0.0168 | 0.3974 | 0.5621 | 0.0056 | 0.0177 | -11.2759 |
| 570 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 0.0242 | 0.4514 | 0.4978 | 0.0261 | 0.0001 | 0.0003 | -8.2887  |
| 571 | 1 | 1 | 3 | 2 | 2 | 1 | 2 | 0.0026 | 0.0831 | 0.7052 | 0.2047 | 0.0011 | 0.0034 | -10.0453 |
| 572 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 0.1035 | 0.7048 | 0.1859 | 0.0057 | 0.0000 | 0.0001 | -6.7124  |
| 573 | 1 | 2 | 3 | 2 | 2 | 1 | 2 | 0.0017 | 0.0576 | 0.6585 | 0.2757 | 0.0016 | 0.0050 | -10.3297 |
| 574 | 2 | 2 | 3 | 2 | 2 | 1 | 2 | 0.0503 | 0.6090 | 0.3280 | 0.0124 | 0.0001 | 0.0002 | -7.5164  |
| 575 | 1 | 3 | 3 | 2 | 2 | 1 | 2 | 0.0012 | 0.0395 | 0.5903 | 0.3593 | 0.0024 | 0.0074 | -10.6244 |
| 576 | 2 | 3 | 3 | 2 | 2 | 1 | 2 | 0.0237 | 0.4467 | 0.5024 | 0.0267 | 0.0001 | 0.0004 | -8.3090  |
| 577 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | 0.0003 | 0.0109 | 0.3028 | 0.6504 | 0.0084 | 0.0272 | -11.5728 |
| 578 | 2 | 1 | 1 | 3 | 2 | 1 | 2 | 0.0783 | 0.6779 | 0.2359 | 0.0078 | 0.0000 | 0.0001 | -7.0262  |
| 579 | 1 | 2 | 1 | 3 | 2 | 1 | 2 | 0.0002 | 0.0074 | 0.2278 | 0.7126 | 0.0121 | 0.0399 | -11.8245 |
| 580 | 2 | 2 | 1 | 3 | 2 | 1 | 2 | 0.0375 | 0.5498 | 0.3955 | 0.0168 | 0.0001 | 0.0002 | -7.8358  |
| 581 | 1 | 3 | 1 | 3 | 2 | 1 | 2 | 0.0001 | 0.0050 | 0.1664 | 0.7531 | 0.0173 | 0.0582 | -12.0664 |
| 582 | 2 | 3 | 1 | 3 | 2 | 1 | 2 | 0.0176 | 0.3776 | 0.5683 | 0.0359 | 0.0002 | 0.0005 | -8.5964  |
| 583 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 0.0007 | 0.0259 | 0.4983 | 0.4600 | 0.0036 | 0.0114 | -10.9520 |

| 584 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 0.0768 | 0.6755 | 0.2396 | 0.0080 | 0.0000 | 0.0001 | -7.0477  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 585 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | 0.0005 | 0.0176 | 0.4082 | 0.5515 | 0.0053 | 0.0169 | -11.2418 |
| 586 | 2 | 2 | 2 | 3 | 2 | 1 | 2 | 0.0368 | 0.5455 | 0.4002 | 0.0172 | 0.0001 | 0.0002 | -7.8574  |
| 587 | 1 | 3 | 2 | 3 | 2 | 1 | 2 | 0.0003 | 0.0119 | 0.3209 | 0.6341 | 0.0078 | 0.0250 | -11.5151 |
| 588 | 2 | 3 | 2 | 3 | 2 | 1 | 2 | 0.0172 | 0.3730 | 0.5725 | 0.0366 | 0.0002 | 0.0005 | -8.6152  |
| 589 | 1 | 1 | 3 | 3 | 2 | 1 | 2 | 0.0018 | 0.0602 | 0.6654 | 0.2663 | 0.0015 | 0.0048 | -10.2947 |
| 590 | 2 | 1 | 3 | 3 | 2 | 1 | 2 | 0.0753 | 0.6731 | 0.2434 | 0.0081 | 0.0000 | 0.0001 | -7.0693  |
| 591 | 1 | 2 | 3 | 3 | 2 | 1 | 2 | 0.0012 | 0.0413 | 0.5995 | 0.3486 | 0.0023 | 0.0071 | -10.5884 |
| 592 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 0.0360 | 0.5412 | 0.4050 | 0.0175 | 0.0001 | 0.0002 | -7.8788  |
| 593 | 1 | 3 | 3 | 3 | 2 | 1 | 2 | 0.0008 | 0.0282 | 0.5177 | 0.4395 | 0.0033 | 0.0105 | -10.8867 |
| 594 | 2 | 3 | 3 | 3 | 2 | 1 | 2 | 0.0169 | 0.3684 | 0.5767 | 0.0374 | 0.0002 | 0.0005 | -8.6339  |
| 595 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 0.0016 | 0.0528 | 0.6443 | 0.2941 | 0.0017 | 0.0055 | -10.3976 |
| 596 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 0.3007 | 0.6394 | 0.0583 | 0.0015 | 0.0000 | 0.0000 | -5.3259  |
| 597 | 1 | 2 | 1 | 1 | 3 | 1 | 2 | 0.0011 | 0.0361 | 0.5720 | 0.3801 | 0.0026 | 0.0081 | -10.6940 |
| 598 | 2 | 2 | 1 | 1 | 3 | 1 | 2 | 0.1648 | 0.7133 | 0.1184 | 0.0034 | 0.0000 | 0.0000 | -6.1696  |
| 599 | 1 | 3 | 1 | 1 | 3 | 1 | 2 | 0.0007 | 0.0246 | 0.4864 | 0.4724 | 0.0038 | 0.0121 | -10.9915 |
| 600 | 2 | 3 | 1 | 1 | 3 | 1 | 2 | 0.0831 | 0.6848 | 0.2247 | 0.0073 | 0.0000 | 0.0001 | -6.9596  |
| 601 | 1 | 1 | 2 | 1 | 3 | 1 | 2 | 0.0038 | 0.1180 | 0.7266 | 0.1486 | 0.0007 | 0.0023 | -9.7740  |
| 602 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 0.2963 | 0.6426 | 0.0594 | 0.0016 | 0.0000 | 0.0000 | -5.3504  |
| 603 | 1 | 2 | 2 | 1 | 3 | 1 | 2 | 0.0025 | 0.0827 | 0.7047 | 0.2055 | 0.0011 | 0.0034 | -10.0488 |
| 604 | 2 | 2 | 2 | 1 | 3 | 1 | 2 | 0.1620 | 0.7139 | 0.1206 | 0.0034 | 0.0000 | 0.0000 | -6.1909  |
| 605 | 1 | 3 | 2 | 1 | 3 | 1 | 2 | 0.0017 | 0.0573 | 0.6577 | 0.2766 | 0.0016 | 0.0050 | -10.3334 |
| 606 | 2 | 3 | 2 | 1 | 3 | 1 | 2 | 0.0815 | 0.6827 | 0.2282 | 0.0075 | 0.0000 | 0.0001 | -6.9811  |
| 607 | 1 | 1 | 3 | 1 | 3 | 1 | 2 | 0.0091 | 0.2417 | 0.6803 | 0.0677 | 0.0003 | 0.0009 | -9.1501  |
| 608 | 2 | 1 | 3 | 1 | 3 | 1 | 2 | 0.2920 | 0.6457 | 0.0606 | 0.0016 | 0.0000 | 0.0000 | -5.3748  |
| 609 | 1 | 2 | 3 | 1 | 3 | 1 | 2 | 0.0061 | 0.1776 | 0.7171 | 0.0973 | 0.0005 | 0.0014 | -9.4395  |
| 610 | 2 | 2 | 3 | 1 | 3 | 1 | 2 | 0.1592 | 0.7145 | 0.1228 | 0.0035 | 0.0000 | 0.0000 | -6.2122  |
| 611 | 1 | 3 | 3 | 1 | 3 | 1 | 2 | 0.0041 | 0.1273 | 0.7278 | 0.1379 | 0.0007 | 0.0021 | -9.7141  |
| 612 | 2 | 3 | 3 | 1 | 3 | 1 | 2 | 0.0799 | 0.6804 | 0.2319 | 0.0076 | 0.0000 | 0.0001 | -7.0025  |
| 613 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 0.0002 | 0.0073 | 0.2260 | 0.7140 | 0.0123 | 0.0403 | -11.8309 |
| 614 | 2 | 1 | 1 | 2 | 3 | 1 | 2 | 0.0535 | 0.6201 | 0.3146 | 0.0117 | 0.0000 | 0.0002 | -7.4495  |
| 615 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 0.0001 | 0.0049 | 0.1649 | 0.7538 | 0.0174 | 0.0588 | -12.0728 |
| 616 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 0.0253 | 0.4611 | 0.4881 | 0.0251 | 0.0001 | 0.0003 | -8.2467  |
| 617 | 1 | 3 | 1 | 2 | 3 | 1 | 2 | 0.0001 | 0.0033 | 0.1176 | 0.7697 | 0.0243 | 0.0850 | -12.3182 |
| 618 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 0.0118 | 0.2912 | 0.6431 | 0.0530 | 0.0002 | 0.0007 | -8.9453  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 619 | 1 | 1 | 2 | 2 | 3 | 1 | 2 | 0.0005 | 0.0174 | 0.4058 | 0.5538 | 0.0054 | 0.0171 | -11.2493 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 620 | 2 | 1 | 2 | 2 | 3 | 1 | 2 | 0.0524 | 0.6165 | 0.3189 | 0.0119 | 0.0001 | 0.0002 | -7.4713  |
| 621 | 1 | 2 | 2 | 2 | 3 | 1 | 2 | 0.0003 | 0.0118 | 0.3187 | 0.6361 | 0.0078 | 0.0252 | -11.5221 |
| 622 | 2 | 2 | 2 | 2 | 3 | 1 | 2 | 0.0248 | 0.4564 | 0.4928 | 0.0256 | 0.0001 | 0.0003 | -8.2670  |
| 623 | 1 | 3 | 2 | 2 | 3 | 1 | 2 | 0.0002 | 0.0079 | 0.2413 | 0.7022 | 0.0113 | 0.0370 | -11.7768 |
| 624 | 2 | 3 | 2 | 2 | 3 | 1 | 2 | 0.0115 | 0.2871 | 0.6464 | 0.0540 | 0.0002 | 0.0007 | -8.9622  |
| 625 | 1 | 1 | 3 | 2 | 3 | 1 | 2 | 0.0012 | 0.0409 | 0.5975 | 0.3509 | 0.0023 | 0.0072 | -10.5963 |
| 626 | 2 | 1 | 3 | 2 | 3 | 1 | 2 | 0.0514 | 0.6129 | 0.3233 | 0.0122 | 0.0001 | 0.0002 | -7.4931  |
| 627 | 1 | 2 | 3 | 2 | 3 | 1 | 2 | 0.0008 | 0.0279 | 0.5154 | 0.4419 | 0.0034 | 0.0106 | -10.8946 |
| 628 | 2 | 2 | 3 | 2 | 3 | 1 | 2 | 0.0243 | 0.4517 | 0.4975 | 0.0261 | 0.0001 | 0.0003 | -8.2874  |
| 629 | 1 | 3 | 3 | 2 | 3 | 1 | 2 | 0.0005 | 0.0190 | 0.4257 | 0.5342 | 0.0049 | 0.0157 | -11.1868 |
| 630 | 2 | 3 | 3 | 2 | 3 | 1 | 2 | 0.0113 | 0.2830 | 0.6497 | 0.0551 | 0.0002 | 0.0008 | -8.9790  |
| 631 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 0.0001 | 0.0052 | 0.1716 | 0.7502 | 0.0167 | 0.0562 | -12.0436 |
| 632 | 2 | 1 | 1 | 3 | 3 | 1 | 2 | 0.0383 | 0.5544 | 0.3905 | 0.0165 | 0.0001 | 0.0002 | -7.8128  |
| 633 | 1 | 2 | 1 | 3 | 3 | 1 | 2 | 0.0001 | 0.0035 | 0.1227 | 0.7691 | 0.0234 | 0.0813 | -12.2879 |
| 634 | 2 | 2 | 1 | 3 | 3 | 1 | 2 | 0.0180 | 0.3825 | 0.5637 | 0.0351 | 0.0002 | 0.0005 | -8.5762  |
| 635 | 1 | 3 | 1 | 3 | 3 | 1 | 2 | 0.0001 | 0.0023 | 0.0861 | 0.7633 | 0.0318 | 0.1163 | -12.5482 |
| 636 | 2 | 3 | 1 | 3 | 3 | 1 | 2 | 0.0083 | 0.2264 | 0.6905 | 0.0734 | 0.0003 | 0.0010 | -9.2161  |
| 637 | 1 | 1 | 2 | 3 | 3 | 1 | 2 | 0.0004 | 0.0123 | 0.3289 | 0.6269 | 0.0075 | 0.0241 | -11.4901 |
| 638 | 2 | 1 | 2 | 3 | 3 | 1 | 2 | 0.0376 | 0.5501 | 0.3952 | 0.0168 | 0.0001 | 0.0002 | -7.8344  |
| 639 | 1 | 2 | 2 | 3 | 3 | 1 | 2 | 0.0002 | 0.0083 | 0.2500 | 0.6952 | 0.0108 | 0.0354 | -11.7468 |
| 640 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 0.0176 | 0.3779 | 0.5680 | 0.0359 | 0.0002 | 0.0005 | -8.5951  |
| 641 | 1 | 3 | 2 | 3 | 3 | 1 | 2 | 0.0002 | 0.0056 | 0.1842 | 0.7428 | 0.0155 | 0.0517 | -11.9906 |
| 642 | 2 | 3 | 2 | 3 | 3 | 1 | 2 | 0.0082 | 0.2228 | 0.6928 | 0.0748 | 0.0003 | 0.0011 | -9.2316  |
| 643 | 1 | 1 | 3 | 3 | 3 | 1 | 2 | 0.0008 | 0.0292 | 0.5259 | 0.4307 | 0.0032 | 0.0101 | -10.8586 |
| 644 | 2 | 1 | 3 | 3 | 3 | 1 | 2 | 0.0368 | 0.5458 | 0.3999 | 0.0171 | 0.0001 | 0.0002 | -7.8559  |
| 645 | 1 | 2 | 3 | 3 | 3 | 1 | 2 | 0.0006 | 0.0199 | 0.4367 | 0.5232 | 0.0047 | 0.0150 | -11.1521 |
| 646 | 2 | 2 | 3 | 3 | 3 | 1 | 2 | 0.0172 | 0.3733 | 0.5722 | 0.0366 | 0.0002 | 0.0005 | -8.6139  |
| 647 | 1 | 3 | 3 | 3 | 3 | 1 | 2 | 0.0004 | 0.0135 | 0.3476 | 0.6095 | 0.0069 | 0.0221 | -11.4311 |
| 648 | 2 | 3 | 3 | 3 | 3 | 1 | 2 | 0.0080 | 0.2193 | 0.6950 | 0.0763 | 0.0003 | 0.0011 | -9.2471  |
| 649 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 0.0031 | 0.0991 | 0.7190 | 0.1751 | 0.0009 | 0.0028 | -9.9100  |
| 650 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 0.8364 | 0.1582 | 0.0052 | 0.0001 | 0.0000 | 0.0000 | -1.8135  |
| 651 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 0.0021 | 0.0690 | 0.6843 | 0.2392 | 0.0013 | 0.0041 | -10.1891 |
| 652 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 0.7012 | 0.2872 | 0.0112 | 0.0003 | 0.0000 | 0.0000 | -2.9137  |
| 653 | 1 | 3 | 1 | 1 | 1 | 2 | 2 | 0.0014 | 0.0475 | 0.6260 | 0.3170 | 0.0020 | 0.0061 | -10.4792 |

| 654 | 2 | 3 | 1 | 1 | 1 | 2 | 2 | 0.5186 | 0.4566 | 0.0242 | 0.0006 | 0.0000 | 0.0000 | -4.1038  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 655 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0.0075 | 0.2081 | 0.7017 | 0.0812 | 0.0004 | 0.0012 | -9.2969  |
| 656 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 0.8336 | 0.1610 | 0.0053 | 0.0001 | 0.0000 | 0.0000 | -1.8398  |
| 657 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 0.0050 | 0.1509 | 0.7258 | 0.1160 | 0.0005 | 0.0017 | -9.5772  |
| 658 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 0.6969 | 0.2914 | 0.0115 | 0.0003 | 0.0000 | 0.0000 | -2.9456  |
| 659 | 1 | 3 | 2 | 1 | 1 | 2 | 2 | 0.0034 | 0.1071 | 0.7232 | 0.1630 | 0.0008 | 0.0025 | -9.8497  |
| 660 | 2 | 3 | 2 | 1 | 1 | 2 | 2 | 0.5134 | 0.4613 | 0.0247 | 0.0006 | 0.0000 | 0.0000 | -4.1345  |
| 661 | 1 | 1 | 3 | 1 | 1 | 2 | 2 | 0.0178 | 0.3809 | 0.5652 | 0.0354 | 0.0002 | 0.0005 | -8.5827  |
| 662 | 2 | 1 | 3 | 1 | 1 | 2 | 2 | 0.8306 | 0.1638 | 0.0054 | 0.0001 | 0.0000 | 0.0000 | -1.8663  |
| 663 | 1 | 2 | 3 | 1 | 1 | 2 | 2 | 0.0121 | 0.2964 | 0.6389 | 0.0517 | 0.0002 | 0.0007 | -8.9245  |
| 664 | 2 | 2 | 3 | 1 | 1 | 2 | 2 | 0.6924 | 0.2956 | 0.0117 | 0.0003 | 0.0000 | 0.0000 | -2.9776  |
| 665 | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 0.0081 | 0.2225 | 0.6930 | 0.0749 | 0.0003 | 0.0011 | -9.2328  |
| 666 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0.5082 | 0.4660 | 0.0252 | 0.0006 | 0.0000 | 0.0000 | -4.1652  |
| 667 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 0.0004 | 0.0143 | 0.3616 | 0.5964 | 0.0065 | 0.0208 | -11.3875 |
| 668 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 0.4019 | 0.5590 | 0.0381 | 0.0010 | 0.0000 | 0.0000 | -4.7676  |
| 669 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 0.0003 | 0.0097 | 0.2787 | 0.6714 | 0.0094 | 0.0306 | -11.6509 |
| 670 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 0.2357 | 0.6827 | 0.0794 | 0.0022 | 0.0000 | 0.0000 | -5.7015  |
| 671 | 1 | 3 | 1 | 2 | 1 | 2 | 2 | 0.0002 | 0.0065 | 0.2076 | 0.7274 | 0.0135 | 0.0448 | -11.8985 |
| 672 | 2 | 3 | 1 | 2 | 1 | 2 | 2 | 0.1240 | 0.7139 | 0.1573 | 0.0047 | 0.0000 | 0.0001 | -6.5062  |
| 673 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 0.0010 | 0.0339 | 0.5581 | 0.3956 | 0.0028 | 0.0087 | -10.7449 |
| 674 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 0.3969 | 0.5632 | 0.0389 | 0.0010 | 0.0000 | 0.0000 | -4.7953  |
| 675 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 0.0007 | 0.0230 | 0.4711 | 0.4882 | 0.0041 | 0.0129 | -11.0415 |
| 676 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 0.2320 | 0.6849 | 0.0809 | 0.0022 | 0.0000 | 0.0000 | -5.7242  |
| 677 | 1 | 3 | 2 | 2 | 1 | 2 | 2 | 0.0004 | 0.0156 | 0.3810 | 0.5779 | 0.0060 | 0.0190 | -11.3269 |
| 678 | 2 | 3 | 2 | 2 | 1 | 2 | 2 | 0.1218 | 0.7133 | 0.1601 | 0.0048 | 0.0000 | 0.0001 | -6.5273  |
| 679 | 1 | 1 | 3 | 2 | 1 | 2 | 2 | 0.0024 | 0.0778 | 0.6984 | 0.2166 | 0.0012 | 0.0036 | -10.0965 |
| 680 | 2 | 1 | 3 | 2 | 1 | 2 | 2 | 0.3919 | 0.5674 | 0.0397 | 0.0010 | 0.0000 | 0.0000 | -4.8228  |
| 681 | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 0.0016 | 0.0538 | 0.6474 | 0.2901 | 0.0017 | 0.0054 | -10.3830 |
| 682 | 2 | 2 | 3 | 2 | 1 | 2 | 2 | 0.2283 | 0.6870 | 0.0824 | 0.0023 | 0.0000 | 0.0000 | -5.7467  |
| 683 | 1 | 3 | 3 | 2 | 1 | 2 | 2 | 0.0011 | 0.0368 | 0.5760 | 0.3756 | 0.0025 | 0.0080 | -10.6791 |
| 684 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 0.1195 | 0.7126 | 0.1629 | 0.0049 | 0.0000 | 0.0001 | -6.5483  |
| 685 | 1 | 1 | 1 | 3 | 1 | 2 | 2 | 0.0003 | 0.0101 | 0.2881 | 0.6632 | 0.0090 | 0.0292 | -11.6200 |
| 686 | 2 | 1 | 1 | 3 | 1 | 2 | 2 | 0.3216 | 0.6238 | 0.0532 | 0.0014 | 0.0000 | 0.0000 | -5.2098  |
| 687 | 1 | 2 | 1 | 3 | 1 | 2 | 2 | 0.0002 | 0.0068 | 0.2155 | 0.7217 | 0.0130 | 0.0428 | -11.8692 |
| 688 | 2 | 2 | 1 | 3 | 1 | 2 | 2 | 0.1787 | 0.7095 | 0.1087 | 0.0031 | 0.0000 | 0.0000 | -6.0698  |

 Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 689 | 1 | 3 | 1 | 3 | 1 | 2 | 2 | 0.0001 | 0.0046 | 0.1566 | 0.7579 | 0.0184 | 0.0623 | -12.1106 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 690 | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 0.0908 | 0.6940 | 0.2084 | 0.0066 | 0.0000 | 0.0001 | -6.8600  |
| 691 | 1 | 1 | 2 | 3 | 1 | 2 | 2 | 0.0007 | 0.0241 | 0.4820 | 0.4770 | 0.0039 | 0.0123 | -11.0060 |
| 692 | 2 | 1 | 2 | 3 | 1 | 2 | 2 | 0.3170 | 0.6273 | 0.0542 | 0.0014 | 0.0000 | 0.0000 | -5.2350  |
| 693 | 1 | 2 | 2 | 3 | 1 | 2 | 2 | 0.0005 | 0.0164 | 0.3918 | 0.5675 | 0.0057 | 0.0182 | -11.2933 |
| 694 | 2 | 2 | 2 | 3 | 1 | 2 | 2 | 0.1756 | 0.7105 | 0.1107 | 0.0031 | 0.0000 | 0.0000 | -6.0913  |
| 695 | 1 | 3 | 2 | 3 | 1 | 2 | 2 | 0.0003 | 0.0111 | 0.3058 | 0.6477 | 0.0083 | 0.0268 | -11.5631 |
| 696 | 2 | 3 | 2 | 3 | 1 | 2 | 2 | 0.0891 | 0.6922 | 0.2119 | 0.0068 | 0.0000 | 0.0001 | -6.8813  |
| 697 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 0.0017 | 0.0562 | 0.6548 | 0.2805 | 0.0016 | 0.0051 | -10.3478 |
| 698 | 2 | 1 | 3 | 3 | 1 | 2 | 2 | 0.3125 | 0.6307 | 0.0553 | 0.0015 | 0.0000 | 0.0000 | -5.2600  |
| 699 | 1 | 2 | 3 | 3 | 1 | 2 | 2 | 0.0011 | 0.0386 | 0.5855 | 0.3648 | 0.0024 | 0.0076 | -10.6430 |
| 700 | 2 | 2 | 3 | 3 | 1 | 2 | 2 | 0.1726 | 0.7114 | 0.1128 | 0.0032 | 0.0000 | 0.0000 | -6.1127  |
| 701 | 1 | 3 | 3 | 3 | 1 | 2 | 2 | 0.0008 | 0.0263 | 0.5016 | 0.4565 | 0.0036 | 0.0113 | -10.9411 |
| 702 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 0.0874 | 0.6903 | 0.2153 | 0.0069 | 0.0000 | 0.0001 | -6.9027  |
| 703 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0.0015 | 0.0492 | 0.6324 | 0.3091 | 0.0019 | 0.0059 | -10.4513 |
| 704 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 0.7059 | 0.2828 | 0.0110 | 0.0003 | 0.0000 | 0.0000 | -2.8797  |
| 705 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 0.0010 | 0.0337 | 0.5571 | 0.3967 | 0.0028 | 0.0087 | -10.7487 |
| 706 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 0.5242 | 0.4516 | 0.0236 | 0.0006 | 0.0000 | 0.0000 | -4.0708  |
| 707 | 1 | 3 | 1 | 1 | 2 | 2 | 2 | 0.0007 | 0.0229 | 0.4700 | 0.4894 | 0.0041 | 0.0130 | -11.0453 |
| 708 | 2 | 3 | 1 | 1 | 2 | 2 | 2 | 0.3359 | 0.6128 | 0.0500 | 0.0013 | 0.0000 | 0.0000 | -5.1309  |
| 709 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 0.0035 | 0.1107 | 0.7246 | 0.1580 | 0.0008 | 0.0025 | -9.8239  |
| 710 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 0.7015 | 0.2869 | 0.0112 | 0.0003 | 0.0000 | 0.0000 | -2.9115  |
| 711 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 0.0024 | 0.0774 | 0.6979 | 0.2175 | 0.0012 | 0.0036 | -10.1001 |
| 712 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0.5190 | 0.4563 | 0.0241 | 0.0006 | 0.0000 | 0.0000 | -4.1017  |
| 713 | 1 | 3 | 2 | 1 | 2 | 2 | 2 | 0.0016 | 0.0535 | 0.6466 | 0.2911 | 0.0017 | 0.0054 | -10.3867 |
| 714 | 2 | 3 | 2 | 1 | 2 | 2 | 2 | 0.3312 | 0.6164 | 0.0510 | 0.0013 | 0.0000 | 0.0000 | -5.1565  |
| 715 | 1 | 1 | 3 | 1 | 2 | 2 | 2 | 0.0085 | 0.2290 | 0.6889 | 0.0724 | 0.0003 | 0.0010 | -9.2049  |
| 716 | 2 | 1 | 3 | 1 | 2 | 2 | 2 | 0.6972 | 0.2911 | 0.0115 | 0.0003 | 0.0000 | 0.0000 | -2.9435  |
| 717 | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 0.0057 | 0.1674 | 0.7211 | 0.1039 | 0.0005 | 0.0015 | -9.4905  |
| 718 | 2 | 2 | 3 | 1 | 2 | 2 | 2 | 0.5138 | 0.4610 | 0.0246 | 0.0006 | 0.0000 | 0.0000 | -4.1324  |
| 719 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 0.0038 | 0.1195 | 0.7269 | 0.1467 | 0.0007 | 0.0022 | -9.7639  |
| 720 | 2 | 3 | 3 | 1 | 2 | 2 | 2 | 0.3266 | 0.6200 | 0.0520 | 0.0014 | 0.0000 | 0.0000 | -5.1820  |
| 721 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0002 | 0.0068 | 0.2137 | 0.7230 | 0.0131 | 0.0432 | -11.8756 |
| 722 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 0.2397 | 0.6804 | 0.0777 | 0.0021 | 0.0000 | 0.0000 | -5.6772  |
| 723 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 0.0001 | 0.0046 | 0.1553 | 0.7585 | 0.0186 | 0.0629 | -12.1171 |

| 724 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 0.1264 | 0.7145 | 0.1544 | 0.0046 | 0.0000 | 0.0001 | -6.4837  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 725 | 1 | 3 | 1 | 2 | 2 | 2 | 2 | 0.0001 | 0.0031 | 0.1103 | 0.7699 | 0.0258 | 0.0908 | -12.3647 |
| 726 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 0.0623 | 0.6458 | 0.2817 | 0.0099 | 0.0000 | 0.0001 | -7.2804  |
| 727 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 0.0005 | 0.0162 | 0.3894 | 0.5698 | 0.0058 | 0.0184 | -11.3007 |
| 728 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 0.2360 | 0.6826 | 0.0792 | 0.0022 | 0.0000 | 0.0000 | -5.6999  |
| 729 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0.0003 | 0.0110 | 0.3037 | 0.6496 | 0.0084 | 0.0271 | -11.5700 |
| 730 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0.1242 | 0.7140 | 0.1571 | 0.0047 | 0.0000 | 0.0001 | -6.5047  |
| 731 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 0.0002 | 0.0074 | 0.2285 | 0.7121 | 0.0121 | 0.0397 | -11.8218 |
| 732 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 0.0611 | 0.6427 | 0.2859 | 0.0101 | 0.0000 | 0.0001 | -7.3021  |
| 733 | 1 | 1 | 3 | 2 | 2 | 2 | 2 | 0.0011 | 0.0382 | 0.5834 | 0.3671 | 0.0024 | 0.0077 | -10.6509 |
| 734 | 2 | 1 | 3 | 2 | 2 | 2 | 2 | 0.2322 | 0.6848 | 0.0808 | 0.0022 | 0.0000 | 0.0000 | -5.7226  |
| 735 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 0.0008 | 0.0260 | 0.4993 | 0.4590 | 0.0036 | 0.0114 | -10.9489 |
| 736 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 0.1219 | 0.7134 | 0.1599 | 0.0048 | 0.0000 | 0.0001 | -6.5258  |
| 737 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 0.0005 | 0.0176 | 0.4092 | 0.5505 | 0.0053 | 0.0168 | -11.2388 |
| 738 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 0.0599 | 0.6395 | 0.2900 | 0.0104 | 0.0000 | 0.0001 | -7.3239  |
| 739 | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 0.0001 | 0.0048 | 0.1616 | 0.7555 | 0.0178 | 0.0602 | -12.0878 |
| 740 | 2 | 1 | 1 | 3 | 2 | 2 | 2 | 0.1820 | 0.7084 | 0.1066 | 0.0030 | 0.0000 | 0.0000 | -6.0468  |
| 741 | 1 | 2 | 1 | 3 | 2 | 2 | 2 | 0.0001 | 0.0032 | 0.1151 | 0.7699 | 0.0248 | 0.0869 | -12.3339 |
| 742 | 2 | 2 | 1 | 3 | 2 | 2 | 2 | 0.0927 | 0.6959 | 0.2049 | 0.0065 | 0.0000 | 0.0001 | -6.8372  |
| 743 | 1 | 3 | 1 | 3 | 2 | 2 | 2 | 0.0001 | 0.0022 | 0.0806 | 0.7596 | 0.0336 | 0.1240 | -12.5986 |
| 744 | 2 | 3 | 1 | 3 | 2 | 2 | 2 | 0.0448 | 0.5865 | 0.3545 | 0.0140 | 0.0001 | 0.0002 | -7.6445  |
| 745 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 0.0003 | 0.0115 | 0.3136 | 0.6408 | 0.0080 | 0.0258 | -11.5384 |
| 746 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 0.1789 | 0.7095 | 0.1085 | 0.0031 | 0.0000 | 0.0000 | -6.0683  |
| 747 | 1 | 2 | 2 | 3 | 2 | 2 | 2 | 0.0002 | 0.0078 | 0.2369 | 0.7056 | 0.0116 | 0.0379 | -11.7921 |
| 748 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 0.0909 | 0.6941 | 0.2082 | 0.0066 | 0.0000 | 0.0001 | -6.8585  |
| 749 | 1 | 3 | 2 | 3 | 2 | 2 | 2 | 0.0001 | 0.0052 | 0.1736 | 0.7491 | 0.0165 | 0.0554 | -12.0347 |
| 750 | 2 | 3 | 2 | 3 | 2 | 2 | 2 | 0.0439 | 0.5825 | 0.3591 | 0.0143 | 0.0001 | 0.0002 | -7.6663  |
| 751 | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 0.0008 | 0.0273 | 0.5099 | 0.4477 | 0.0034 | 0.0109 | -10.9131 |
| 752 | 2 | 1 | 3 | 3 | 2 | 2 | 2 | 0.1758 | 0.7104 | 0.1106 | 0.0031 | 0.0000 | 0.0000 | -6.0898  |
| 753 | 1 | 2 | 3 | 3 | 2 | 2 | 2 | 0.0005 | 0.0185 | 0.4201 | 0.5398 | 0.0051 | 0.0161 | -11.2045 |
| 754 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 0.0892 | 0.6923 | 0.2116 | 0.0068 | 0.0000 | 0.0001 | -6.8798  |
| 755 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | 0.0004 | 0.0125 | 0.3320 | 0.6240 | 0.0074 | 0.0237 | -11.4802 |
| 756 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 0.0430 | 0.5784 | 0.3637 | 0.0146 | 0.0001 | 0.0002 | -7.6880  |
| 757 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 0.0007 | 0.0238 | 0.4785 | 0.4807 | 0.0039 | 0.0125 | -11.0176 |
| 758 | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 0.5298 | 0.4465 | 0.0231 | 0.0006 | 0.0000 | 0.0000 | -4.0377  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal | to |
|------------------------------------------------------------------------------------|----|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor   | 2  |
| Production Example                                                                 |    |

| 759 | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 0.0005 | 0.0161 | 0.3883 | 0.5709 | 0.0058 | 0.0185 | -11.3042 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 760 | 2 | 2 | 1 | 1 | 3 | 2 | 2 | 0.3408 | 0.6089 | 0.0490 | 0.0013 | 0.0000 | 0.0000 | -5.1034  |
| 761 | 1 | 3 | 1 | 1 | 3 | 2 | 2 | 0.0003 | 0.0109 | 0.3026 | 0.6505 | 0.0084 | 0.0272 | -11.5733 |
| 762 | 2 | 3 | 1 | 1 | 3 | 2 | 2 | 0.1918 | 0.7047 | 0.1006 | 0.0028 | 0.0000 | 0.0000 | -5.9797  |
| 763 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 0.0017 | 0.0554 | 0.6524 | 0.2836 | 0.0017 | 0.0052 | -10.3592 |
| 764 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 0.5246 | 0.4512 | 0.0236 | 0.0006 | 0.0000 | 0.0000 | -4.0687  |
| 765 | 1 | 2 | 2 | 1 | 3 | 2 | 2 | 0.0011 | 0.0380 | 0.5824 | 0.3683 | 0.0025 | 0.0077 | -10.6547 |
| 766 | 2 | 2 | 2 | 1 | 3 | 2 | 2 | 0.3362 | 0.6125 | 0.0500 | 0.0013 | 0.0000 | 0.0000 | -5.1292  |
| 767 | 1 | 3 | 2 | 1 | 3 | 2 | 2 | 0.0007 | 0.0259 | 0.4981 | 0.4602 | 0.0036 | 0.0114 | -10.9527 |
| 768 | 2 | 3 | 2 | 1 | 3 | 2 | 2 | 0.1886 | 0.7060 | 0.1025 | 0.0029 | 0.0000 | 0.0000 | -6.0014  |
| 769 | 1 | 1 | 3 | 1 | 3 | 2 | 2 | 0.0040 | 0.1235 | 0.7275 | 0.1421 | 0.0007 | 0.0022 | -9.7382  |
| 770 | 2 | 1 | 3 | 1 | 3 | 2 | 2 | 0.5193 | 0.4559 | 0.0241 | 0.0006 | 0.0000 | 0.0000 | -4.0995  |
| 771 | 1 | 2 | 3 | 1 | 3 | 2 | 2 | 0.0027 | 0.0868 | 0.7091 | 0.1972 | 0.0010 | 0.0032 | -10.0122 |
| 772 | 2 | 2 | 3 | 1 | 3 | 2 | 2 | 0.3315 | 0.6161 | 0.0510 | 0.0013 | 0.0000 | 0.0000 | -5.1548  |
| 773 | 1 | 3 | 3 | 1 | 3 | 2 | 2 | 0.0018 | 0.0602 | 0.6652 | 0.2665 | 0.0015 | 0.0048 | -10.2953 |
| 774 | 2 | 3 | 3 | 1 | 3 | 2 | 2 | 0.1854 | 0.7072 | 0.1044 | 0.0029 | 0.0000 | 0.0000 | -6.0230  |
| 775 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 0.0001 | 0.0032 | 0.1141 | 0.7699 | 0.0250 | 0.0878 | -12.3406 |
| 776 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 0.1289 | 0.7150 | 0.1516 | 0.0045 | 0.0000 | 0.0001 | -6.4612  |
| 777 | 1 | 2 | 1 | 2 | 3 | 2 | 2 | 0.0001 | 0.0021 | 0.0798 | 0.7590 | 0.0338 | 0.1252 | -12.6060 |
| 778 | 2 | 2 | 1 | 2 | 3 | 2 | 2 | 0.0636 | 0.6491 | 0.2774 | 0.0097 | 0.0000 | 0.0001 | -7.2572  |
| 779 | 1 | 3 | 1 | 2 | 3 | 2 | 2 | 0.0000 | 0.0014 | 0.0552 | 0.7239 | 0.0440 | 0.1754 | -12.9005 |
| 780 | 2 | 3 | 1 | 2 | 3 | 2 | 2 | 0.0302 | 0.5022 | 0.4462 | 0.0209 | 0.0001 | 0.0003 | -8.0634  |
| 781 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 0.0002 | 0.0077 | 0.2351 | 0.7070 | 0.0117 | 0.0383 | -11.7986 |
| 782 | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 0.1266 | 0.7145 | 0.1542 | 0.0046 | 0.0000 | 0.0001 | -6.4822  |
| 783 | 1 | 2 | 2 | 2 | 3 | 2 | 2 | 0.0001 | 0.0052 | 0.1722 | 0.7499 | 0.0167 | 0.0559 | -12.0411 |
| 784 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 0.0624 | 0.6461 | 0.2815 | 0.0099 | 0.0000 | 0.0001 | -7.2789  |
| 785 | 1 | 3 | 2 | 2 | 3 | 2 | 2 | 0.0001 | 0.0035 | 0.1231 | 0.7690 | 0.0233 | 0.0810 | -12.2852 |
| 786 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 0.0296 | 0.4976 | 0.4510 | 0.0214 | 0.0001 | 0.0003 | -8.0844  |
| 787 | 1 | 1 | 3 | 2 | 3 | 2 | 2 | 0.0005 | 0.0183 | 0.4177 | 0.5421 | 0.0051 | 0.0162 | -11.2121 |
| 788 | 2 | 1 | 3 | 2 | 3 | 2 | 2 | 0.1243 | 0.7140 | 0.1569 | 0.0047 | 0.0000 | 0.0001 | -6.5033  |
| 789 | 1 | 2 | 3 | 2 | 3 | 2 | 2 | 0.0004 | 0.0124 | 0.3298 | 0.6261 | 0.0075 | 0.0240 | -11.4873 |
| 790 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 0.0612 | 0.6429 | 0.2856 | 0.0101 | 0.0000 | 0.0001 | -7.3006  |
| 791 | 1 | 3 | 3 | 2 | 3 | 2 | 2 | 0.0002 | 0.0084 | 0.2508 | 0.6946 | 0.0108 | 0.0352 | -11.7441 |
| 792 | 2 | 3 | 3 | 2 | 3 | 2 | 2 | 0.0290 | 0.4930 | 0.4558 | 0.0218 | 0.0001 | 0.0003 | -8.1054  |
| 793 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | 0.0001 | 0.0023 | 0.0834 | 0.7616 | 0.0327 | 0.1200 | -12.5725 |

| 794 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 0.0945 | 0.6977 | 0.2013 | 0.0063 | 0.0000 | 0.0001 | -6.8145  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 795 | 1 | 2 | 1 | 3 | 3 | 2 | 2 | 0.0000 | 0.0015 | 0.0578 | 0.7294 | 0.0427 | 0.1686 | -12.8631 |
| 796 | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 0.0457 | 0.5907 | 0.3496 | 0.0137 | 0.0001 | 0.0002 | -7.6213  |
| 797 | 1 | 3 | 1 | 3 | 3 | 2 | 2 | 0.0000 | 0.0010 | 0.0396 | 0.6744 | 0.0532 | 0.2317 | -13.1856 |
| 798 | 2 | 3 | 1 | 3 | 3 | 2 | 2 | 0.0215 | 0.4240 | 0.5246 | 0.0294 | 0.0001 | 0.0004 | -8.4051  |
| 799 | 1 | 1 | 2 | 3 | 3 | 2 | 2 | 0.0002 | 0.0054 | 0.1790 | 0.7460 | 0.0160 | 0.0535 | -12.0119 |
| 800 | 2 | 1 | 2 | 3 | 3 | 2 | 2 | 0.0928 | 0.6960 | 0.2046 | 0.0065 | 0.0000 | 0.0001 | -6.8357  |
| 801 | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 0.0001 | 0.0037 | 0.1283 | 0.7680 | 0.0224 | 0.0775 | -12.2551 |
| 802 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 0.0448 | 0.5867 | 0.3542 | 0.0140 | 0.0001 | 0.0002 | -7.6430  |
| 803 | 1 | 3 | 2 | 3 | 3 | 2 | 2 | 0.0001 | 0.0025 | 0.0903 | 0.7655 | 0.0306 | 0.1111 | -12.5125 |
| 804 | 2 | 3 | 2 | 3 | 3 | 2 | 2 | 0.0211 | 0.4192 | 0.5291 | 0.0300 | 0.0001 | 0.0004 | -8.4248  |
| 805 | 1 | 1 | 3 | 3 | 3 | 2 | 2 | 0.0004 | 0.0130 | 0.3400 | 0.6166 | 0.0071 | 0.0229 | -11.4550 |
| 806 | 2 | 1 | 3 | 3 | 3 | 2 | 2 | 0.0910 | 0.6943 | 0.2080 | 0.0066 | 0.0000 | 0.0001 | -6.8570  |
| 807 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 0.0002 | 0.0088 | 0.2597 | 0.6873 | 0.0103 | 0.0336 | -11.7139 |
| 808 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 0.0439 | 0.5827 | 0.3588 | 0.0143 | 0.0001 | 0.0002 | -7.6648  |
| 809 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 0.0002 | 0.0059 | 0.1920 | 0.7379 | 0.0148 | 0.0492 | -11.9589 |
| 810 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 0.0207 | 0.4145 | 0.5336 | 0.0306 | 0.0001 | 0.0004 | -8.4445  |
| 811 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 0.0125 | 0.3033 | 0.6333 | 0.0501 | 0.0002 | 0.0007 | -8.8965  |
| 812 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 0.5320 | 0.4445 | 0.0229 | 0.0006 | 0.0000 | 0.0000 | -4.0241  |
| 813 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 0.0084 | 0.2284 | 0.6892 | 0.0726 | 0.0003 | 0.0010 | -9.2074  |
| 814 | 2 | 2 | 1 | 1 | 1 | 3 | 2 | 0.3429 | 0.6072 | 0.0486 | 0.0013 | 0.0000 | 0.0000 | -5.0921  |
| 815 | 1 | 3 | 1 | 1 | 1 | 3 | 2 | 0.0057 | 0.1669 | 0.7212 | 0.1042 | 0.0005 | 0.0015 | -9.4928  |
| 816 | 2 | 3 | 1 | 1 | 1 | 3 | 2 | 0.1932 | 0.7042 | 0.0998 | 0.0028 | 0.0000 | 0.0000 | -5.9702  |
| 817 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 0.0296 | 0.4974 | 0.4513 | 0.0214 | 0.0001 | 0.0003 | -8.0856  |
| 818 | 2 | 1 | 2 | 1 | 1 | 3 | 2 | 0.5268 | 0.4492 | 0.0234 | 0.0006 | 0.0000 | 0.0000 | -4.0551  |
| 819 | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 0.0201 | 0.4082 | 0.5397 | 0.0315 | 0.0001 | 0.0004 | -8.4709  |
| 820 | 2 | 2 | 2 | 1 | 1 | 3 | 2 | 0.3382 | 0.6109 | 0.0495 | 0.0013 | 0.0000 | 0.0000 | -5.1179  |
| 821 | 1 | 3 | 2 | 1 | 1 | 3 | 2 | 0.0136 | 0.3213 | 0.6182 | 0.0461 | 0.0002 | 0.0006 | -8.8236  |
| 822 | 2 | 3 | 2 | 1 | 1 | 3 | 2 | 0.1900 | 0.7055 | 0.1016 | 0.0028 | 0.0000 | 0.0000 | -5.9919  |
| 823 | 1 | 1 | 3 | 1 | 1 | 3 | 2 | 0.0686 | 0.6604 | 0.2619 | 0.0090 | 0.0000 | 0.0001 | -7.1734  |
| 824 | 2 | 1 | 3 | 1 | 1 | 3 | 2 | 0.5216 | 0.4539 | 0.0239 | 0.0006 | 0.0000 | 0.0000 | -4.0861  |
| 825 | 1 | 2 | 3 | 1 | 1 | 3 | 2 | 0.0472 | 0.5967 | 0.3426 | 0.0133 | 0.0001 | 0.0002 | -7.5873  |
| 826 | 2 | 2 | 3 | 1 | 1 | 3 | 2 | 0.3336 | 0.6146 | 0.0505 | 0.0013 | 0.0000 | 0.0000 | -5.1436  |
| 827 | 1 | 3 | 3 | 1 | 1 | 3 | 2 | 0.0322 | 0.5165 | 0.4313 | 0.0196 | 0.0001 | 0.0003 | -7.9973  |
| 828 | 2 | 3 | 3 | 1 | 1 | 3 | 2 | 0.1868 | 0.7067 | 0.1036 | 0.0029 | 0.0000 | 0.0000 | -6.0136  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 829 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 0.0017 | 0.0555 | 0.6527 | 0.2833 | 0.0017 | 0.0052 | -10.3579 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 830 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 0.1300 | 0.7151 | 0.1504 | 0.0044 | 0.0000 | 0.0001 | -6.4520  |
| 831 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 0.0011 | 0.0381 | 0.5828 | 0.3679 | 0.0025 | 0.0077 | -10.6534 |
| 832 | 2 | 2 | 1 | 2 | 1 | 3 | 2 | 0.0642 | 0.6504 | 0.2756 | 0.0096 | 0.0000 | 0.0001 | -7.2477  |
| 833 | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 0.0007 | 0.0259 | 0.4985 | 0.4598 | 0.0036 | 0.0114 | -10.9514 |
| 834 | 2 | 3 | 1 | 2 | 1 | 3 | 2 | 0.0305 | 0.5042 | 0.4442 | 0.0207 | 0.0001 | 0.0003 | -8.0542  |
| 835 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 0.0040 | 0.1237 | 0.7275 | 0.1419 | 0.0007 | 0.0022 | -9.7371  |
| 836 | 2 | 1 | 2 | 2 | 1 | 3 | 2 | 0.1276 | 0.7147 | 0.1531 | 0.0045 | 0.0000 | 0.0001 | -6.4730  |
| 837 | 1 | 2 | 2 | 2 | 1 | 3 | 2 | 0.0027 | 0.0869 | 0.7093 | 0.1969 | 0.0010 | 0.0032 | -10.0110 |
| 838 | 2 | 2 | 2 | 2 | 1 | 3 | 2 | 0.0629 | 0.6474 | 0.2797 | 0.0098 | 0.0000 | 0.0001 | -7.2694  |
| 839 | 1 | 3 | 2 | 2 | 1 | 3 | 2 | 0.0018 | 0.0603 | 0.6655 | 0.2662 | 0.0015 | 0.0048 | -10.2940 |
| 840 | 2 | 3 | 2 | 2 | 1 | 3 | 2 | 0.0299 | 0.4996 | 0.4489 | 0.0212 | 0.0001 | 0.0003 | -8.0753  |
| 841 | 1 | 1 | 3 | 2 | 1 | 3 | 2 | 0.0096 | 0.2515 | 0.6734 | 0.0644 | 0.0003 | 0.0009 | -9.1089  |
| 842 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 0.1253 | 0.7142 | 0.1557 | 0.0046 | 0.0000 | 0.0001 | -6.4941  |
| 843 | 1 | 2 | 3 | 2 | 1 | 3 | 2 | 0.0065 | 0.1855 | 0.7136 | 0.0927 | 0.0004 | 0.0013 | -9.4014  |
| 844 | 2 | 2 | 3 | 2 | 1 | 3 | 2 | 0.0617 | 0.6443 | 0.2838 | 0.0100 | 0.0000 | 0.0001 | -7.2911  |
| 845 | 1 | 3 | 3 | 2 | 1 | 3 | 2 | 0.0044 | 0.1334 | 0.7280 | 0.1317 | 0.0006 | 0.0020 | -9.6772  |
| 846 | 2 | 3 | 3 | 2 | 1 | 3 | 2 | 0.0293 | 0.4950 | 0.4537 | 0.0216 | 0.0001 | 0.0003 | -8.0962  |
| 847 | 1 | 1 | 1 | 3 | 1 | 3 | 2 | 0.0012 | 0.0398 | 0.5921 | 0.3571 | 0.0023 | 0.0074 | -10.6173 |
| 848 | 2 | 1 | 1 | 3 | 1 | 3 | 2 | 0.0953 | 0.6984 | 0.1999 | 0.0063 | 0.0000 | 0.0001 | -6.8052  |
| 849 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 0.0008 | 0.0272 | 0.5092 | 0.4485 | 0.0035 | 0.0109 | -10.9156 |
| 850 | 2 | 2 | 1 | 3 | 1 | 3 | 2 | 0.0461 | 0.5924 | 0.3477 | 0.0136 | 0.0001 | 0.0002 | -7.6117  |
| 851 | 1 | 3 | 1 | 3 | 1 | 3 | 2 | 0.0005 | 0.0184 | 0.4193 | 0.5405 | 0.0051 | 0.0161 | -11.2069 |
| 852 | 2 | 3 | 1 | 3 | 1 | 3 | 2 | 0.0217 | 0.4260 | 0.5226 | 0.0291 | 0.0001 | 0.0004 | -8.3965  |
| 853 | 1 | 1 | 2 | 3 | 1 | 3 | 2 | 0.0028 | 0.0908 | 0.7129 | 0.1895 | 0.0010 | 0.0031 | -9.9775  |
| 854 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 0.0935 | 0.6968 | 0.2032 | 0.0064 | 0.0000 | 0.0001 | -6.8264  |
| 855 | 1 | 2 | 2 | 3 | 1 | 3 | 2 | 0.0019 | 0.0630 | 0.6720 | 0.2571 | 0.0015 | 0.0045 | -10.2592 |
| 856 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 0.0452 | 0.5885 | 0.3522 | 0.0139 | 0.0001 | 0.0002 | -7.6335  |
| 857 | 1 | 3 | 2 | 3 | 1 | 3 | 2 | 0.0013 | 0.0433 | 0.6086 | 0.3379 | 0.0021 | 0.0067 | -10.5518 |
| 858 | 2 | 3 | 2 | 3 | 1 | 3 | 2 | 0.0213 | 0.4213 | 0.5271 | 0.0297 | 0.0001 | 0.0004 | -8.4162  |
| 859 | 1 | 1 | 3 | 3 | 1 | 3 | 2 | 0.0068 | 0.1928 | 0.7100 | 0.0887 | 0.0004 | 0.0013 | -9.3672  |
| 860 | 2 | 1 | 3 | 3 | 1 | 3 | 2 | 0.0918 | 0.6950 | 0.2065 | 0.0066 | 0.0000 | 0.0001 | -6.8477  |
| 861 | 1 | 2 | 3 | 3 | 1 | 3 | 2 | 0.0046 | 0.1390 | 0.7276 | 0.1263 | 0.0006 | 0.0019 | -9.6442  |
| 862 | 2 | 2 | 3 | 3 | 1 | 3 | 2 | 0.0443 | 0.5845 | 0.3568 | 0.0142 | 0.0001 | 0.0002 | -7.6553  |
| 863 | 1 | 3 | 3 | 3 | 1 | 3 | 2 | 0.0031 | 0.0982 | 0.7185 | 0.1766 | 0.0009 | 0.0028 | -9.9169  |

| 964 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 0.0000 | 0.4166 | 0 5217 | 0.0202 | 0.0001 | 0.0004 | 0 4250   |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 864 | 2 | 3 | 3 | 3 | 1 | 3 | 2 | 0.0208 | 0.4166 | 0.5317 | 0.0303 | 0.0001 | 0.0004 | -8.4359  |
| 865 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 0.0059 | 0.1721 | 0.7193 | 0.1007 | 0.0005 | 0.0015 | -9.4666  |
| 866 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 0.3479 | 0.6032 | 0.0475 | 0.0012 | 0.0000 | 0.0000 | -5.0644  |
| 867 | 1 | 2 | 1 | 1 | 2 | 3 | 2 | 0.0040 | 0.1231 | 0.7275 | 0.1426 | 0.0007 | 0.0022 | -9.7406  |
| 868 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 0.1967 | 0.7027 | 0.0978 | 0.0027 | 0.0000 | 0.0000 | -5.9469  |
| 869 | 1 | 3 | 1 | 1 | 2 | 3 | 2 | 0.0027 | 0.0865 | 0.7088 | 0.1977 | 0.0010 | 0.0032 | -10.0146 |
| 870 | 2 | 3 | 1 | 1 | 2 | 3 | 2 | 0.1011 | 0.7031 | 0.1899 | 0.0059 | 0.0000 | 0.0001 | -6.7393  |
| 871 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 0.0141 | 0.3292 | 0.6114 | 0.0444 | 0.0002 | 0.0006 | -8.7918  |
| 872 | 2 | 1 | 2 | 1 | 2 | 3 | 2 | 0.3432 | 0.6070 | 0.0485 | 0.0013 | 0.0000 | 0.0000 | -5.0903  |
| 873 | 1 | 2 | 2 | 1 | 2 | 3 | 2 | 0.0095 | 0.2506 | 0.6740 | 0.0647 | 0.0003 | 0.0009 | -9.1128  |
| 874 | 2 | 2 | 2 | 1 | 2 | 3 | 2 | 0.1935 | 0.7041 | 0.0996 | 0.0028 | 0.0000 | 0.0000 | -5.9687  |
| 875 | 1 | 3 | 2 | 1 | 2 | 3 | 2 | 0.0064 | 0.1848 | 0.7139 | 0.0931 | 0.0004 | 0.0013 | -9.4050  |
| 876 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 0.0992 | 0.7017 | 0.1930 | 0.0060 | 0.0000 | 0.0001 | -6.7605  |
| 877 | 1 | 1 | 3 | 1 | 2 | 3 | 2 | 0.0334 | 0.5246 | 0.4228 | 0.0189 | 0.0001 | 0.0003 | -7.9591  |
| 878 | 2 | 1 | 3 | 1 | 2 | 3 | 2 | 0.3385 | 0.6107 | 0.0495 | 0.0013 | 0.0000 | 0.0000 | -5.1162  |
| 879 | 1 | 2 | 3 | 1 | 2 | 3 | 2 | 0.0227 | 0.4364 | 0.5125 | 0.0279 | 0.0001 | 0.0004 | -8.3528  |
| 880 | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 0.1902 | 0.7054 | 0.1015 | 0.0028 | 0.0000 | 0.0000 | -5.9904  |
| 881 | 1 | 3 | 3 | 1 | 2 | 3 | 2 | 0.0154 | 0.3479 | 0.5951 | 0.0409 | 0.0002 | 0.0006 | -8.7164  |
| 882 | 2 | 3 | 3 | 1 | 2 | 3 | 2 | 0.0973 | 0.7001 | 0.1963 | 0.0061 | 0.0000 | 0.0001 | -6.7817  |
| 883 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 0.0008 | 0.0269 | 0.5069 | 0.4510 | 0.0035 | 0.0110 | -10.9234 |
| 884 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 0.0655 | 0.6536 | 0.2713 | 0.0094 | 0.0000 | 0.0001 | -7.2245  |
| 885 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 0.0005 | 0.0183 | 0.4169 | 0.5429 | 0.0051 | 0.0163 | -11.2145 |
| 886 | 2 | 2 | 1 | 2 | 2 | 3 | 2 | 0.0312 | 0.5091 | 0.4391 | 0.0203 | 0.0001 | 0.0003 | -8.0317  |
| 887 | 1 | 3 | 1 | 2 | 2 | 3 | 2 | 0.0004 | 0.0123 | 0.3290 | 0.6267 | 0.0075 | 0.0240 | -11.4895 |
| 888 | 2 | 3 | 1 | 2 | 2 | 3 | 2 | 0.0146 | 0.3359 | 0.6057 | 0.0431 | 0.0002 | 0.0006 | -8.7652  |
| 889 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | 0.0019 | 0.0624 | 0.6706 | 0.2590 | 0.0015 | 0.0046 | -10.2668 |
| 890 | 2 | 1 | 2 | 2 | 2 | 3 | 2 | 0.0642 | 0.6506 | 0.2753 | 0.0096 | 0.0000 | 0.0001 | -7.2462  |
| 891 | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 0.0013 | 0.0429 | 0.6067 | 0.3402 | 0.0022 | 0.0068 | -10.5597 |
| 892 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 0.0306 | 0.5045 | 0.4438 | 0.0207 | 0.0001 | 0.0003 | -8.0528  |
| 893 | 1 | 3 | 2 | 2 | 2 | 3 | 2 | 0.0008 | 0.0293 | 0.5261 | 0.4305 | 0.0032 | 0.0101 | -10.8580 |
| 894 | 2 | 3 | 2 | 2 | 2 | 3 | 2 | 0.0143 | 0.3314 | 0.6095 | 0.0440 | 0.0002 | 0.0006 | -8.7830  |
| 895 | 1 | 1 | 3 | 2 | 2 | 3 | 2 | 0.0045 | 0.1377 | 0.7277 | 0.1275 | 0.0006 | 0.0019 | -9.6514  |
| 896 | 2 | 1 | 3 | 2 | 2 | 3 | 2 | 0.0630 | 0.6476 | 0.2794 | 0.0098 | 0.0000 | 0.0001 | -7.2679  |
| 897 | 1 | 2 | 3 | 2 | 2 | 3 | 2 | 0.0030 | 0.0973 | 0.7179 | 0.1781 | 0.0009 | 0.0028 | -9.9241  |
| 898 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 0.0299 | 0.4999 | 0.4486 | 0.0211 | 0.0001 | 0.0003 | -8.0738  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 899 | 1 | 3 | 3 | 2 | 2 | 3 | 2 | 0.0020 | 0.0677 | 0.6818 | 0.2429 | 0.0013 | 0.0042 | -10.2037 |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 900 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 0.0140 | 0.3270 | 0.6133 | 0.0449 | 0.0002 | 0.0006 | -8.8008  |
| 901 | 1 | 1 | 1 | 3 | 2 | 3 | 2 | 0.0005 | 0.0191 | 0.4279 | 0.5320 | 0.0049 | 0.0155 | -11.1800 |
| 902 | 2 | 1 | 1 | 3 | 2 | 3 | 2 | 0.0471 | 0.5965 | 0.3428 | 0.0133 | 0.0001 | 0.0002 | -7.5885  |
| 903 | 1 | 2 | 1 | 3 | 2 | 3 | 2 | 0.0004 | 0.0129 | 0.3393 | 0.6173 | 0.0071 | 0.0229 | -11.4573 |
| 904 | 2 | 2 | 1 | 3 | 2 | 3 | 2 | 0.0222 | 0.4311 | 0.5177 | 0.0285 | 0.0001 | 0.0004 | -8.3752  |
| 905 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 0.0002 | 0.0087 | 0.2591 | 0.6878 | 0.0104 | 0.0337 | -11.7160 |
| 906 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 0.0103 | 0.2653 | 0.6632 | 0.0600 | 0.0003 | 0.0008 | -9.0514  |
| 907 | 1 | 1 | 2 | 3 | 2 | 3 | 2 | 0.0013 | 0.0449 | 0.6154 | 0.3298 | 0.0021 | 0.0065 | -10.5238 |
| 908 | 2 | 1 | 2 | 3 | 2 | 3 | 2 | 0.0462 | 0.5926 | 0.3473 | 0.0136 | 0.0001 | 0.0002 | -7.6103  |
| 909 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 0.0009 | 0.0307 | 0.5365 | 0.4193 | 0.0031 | 0.0096 | -10.8219 |
| 910 | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 0.0217 | 0.4264 | 0.5223 | 0.0291 | 0.0001 | 0.0004 | -8.3951  |
| 911 | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 0.0006 | 0.0208 | 0.4478 | 0.5120 | 0.0045 | 0.0143 | -11.1166 |
| 912 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 0.0101 | 0.2614 | 0.6662 | 0.0612 | 0.0003 | 0.0008 | -9.0677  |
| 913 | 1 | 1 | 3 | 3 | 2 | 3 | 2 | 0.0032 | 0.1016 | 0.7205 | 0.1712 | 0.0009 | 0.0027 | -9.8909  |
| 914 | 2 | 1 | 3 | 3 | 2 | 3 | 2 | 0.0453 | 0.5887 | 0.3519 | 0.0139 | 0.0001 | 0.0002 | -7.6320  |
| 915 | 1 | 2 | 3 | 3 | 2 | 3 | 2 | 0.0021 | 0.0708 | 0.6875 | 0.2343 | 0.0013 | 0.0040 | -10.1693 |
| 916 | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 0.0213 | 0.4216 | 0.5268 | 0.0297 | 0.0001 | 0.0004 | -8.4149  |
| 917 | 1 | 3 | 3 | 3 | 2 | 3 | 2 | 0.0014 | 0.0488 | 0.6307 | 0.3112 | 0.0019 | 0.0060 | -10.4587 |
| 918 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 0.0099 | 0.2575 | 0.6690 | 0.0624 | 0.0003 | 0.0009 | -9.0839  |
| 919 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 0.0028 | 0.0895 | 0.7117 | 0.1919 | 0.0010 | 0.0031 | -9.9884  |
| 920 | 2 | 1 | 1 | 1 | 3 | 3 | 2 | 0.2003 | 0.7012 | 0.0959 | 0.0027 | 0.0000 | 0.0000 | -5.9236  |
| 921 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 0.0019 | 0.0621 | 0.6699 | 0.2600 | 0.0015 | 0.0046 | -10.2705 |
| 922 | 2 | 2 | 1 | 1 | 3 | 3 | 2 | 0.1031 | 0.7045 | 0.1865 | 0.0058 | 0.0000 | 0.0001 | -6.7167  |
| 923 | 1 | 3 | 1 | 1 | 3 | 3 | 2 | 0.0013 | 0.0427 | 0.6057 | 0.3413 | 0.0022 | 0.0068 | -10.5634 |
| 924 | 2 | 3 | 1 | 1 | 3 | 3 | 2 | 0.0501 | 0.6082 | 0.3289 | 0.0125 | 0.0001 | 0.0002 | -7.5209  |
| 925 | 1 | 1 | 2 | 1 | 3 | 3 | 2 | 0.0067 | 0.1904 | 0.7112 | 0.0900 | 0.0004 | 0.0013 | -9.3783  |
| 926 | 2 | 1 | 2 | 1 | 3 | 3 | 2 | 0.1970 | 0.7026 | 0.0977 | 0.0027 | 0.0000 | 0.0000 | -5.9454  |
| 927 | 1 | 2 | 2 | 1 | 3 | 3 | 2 | 0.0045 | 0.1371 | 0.7278 | 0.1280 | 0.0006 | 0.0019 | -9.6549  |
| 928 | 2 | 2 | 2 | 1 | 3 | 3 | 2 | 0.1012 | 0.7032 | 0.1896 | 0.0059 | 0.0000 | 0.0001 | -6.7379  |
| 929 | 1 | 3 | 2 | 1 | 3 | 3 | 2 | 0.0030 | 0.0968 | 0.7176 | 0.1788 | 0.0009 | 0.0028 | -9.9276  |
| 930 | 2 | 3 | 2 | 1 | 3 | 3 | 2 | 0.0491 | 0.6045 | 0.3334 | 0.0127 | 0.0001 | 0.0002 | -7.5427  |
| 931 | 1 | 1 | 3 | 1 | 3 | 3 | 2 | 0.0160 | 0.3561 | 0.5878 | 0.0394 | 0.0002 | 0.0005 | -8.6836  |
| 932 | 2 | 1 | 3 | 1 | 3 | 3 | 2 | 0.1937 | 0.7040 | 0.0995 | 0.0028 | 0.0000 | 0.0000 | -5.9672  |
| 933 | 1 | 2 | 3 | 1 | 3 | 3 | 2 | 0.0108 | 0.2741 | 0.6566 | 0.0575 | 0.0003 | 0.0008 | -9.0153  |

| 934 | 2 | 2 | 3 | 1 | 3 | 3 | 2 | 0.0993 | 0.7018 | 0.1928 | 0.0060 | 0.0000 | 0.0001 | -6.7591  |
|-----|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 935 | 1 | 3 | 3 | 1 | 3 | 3 | 2 | 0.0073 | 0.2040 | 0.7041 | 0.0831 | 0.0004 | 0.0012 | -9.3154  |
| 936 | 2 | 3 | 3 | 1 | 3 | 3 | 2 | 0.0482 | 0.6007 | 0.3379 | 0.0130 | 0.0001 | 0.0002 | -7.5645  |
| 937 | 1 | 1 | 1 | 2 | 3 | 3 | 2 | 0.0004 | 0.0128 | 0.3370 | 0.6194 | 0.0072 | 0.0232 | -11.4643 |
| 938 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 0.0319 | 0.5140 | 0.4340 | 0.0199 | 0.0001 | 0.0003 | -8.0091  |
| 939 | 1 | 2 | 1 | 2 | 3 | 3 | 2 | 0.0002 | 0.0087 | 0.2571 | 0.6895 | 0.0105 | 0.0341 | -11.7227 |
| 940 | 2 | 2 | 1 | 2 | 3 | 3 | 2 | 0.0149 | 0.3406 | 0.6015 | 0.0422 | 0.0002 | 0.0006 | -8.7459  |
| 941 | 1 | 3 | 1 | 2 | 3 | 3 | 2 | 0.0002 | 0.0058 | 0.1899 | 0.7392 | 0.0150 | 0.0499 | -11.9673 |
| 942 | 2 | 3 | 1 | 2 | 3 | 3 | 2 | 0.0069 | 0.1951 | 0.7088 | 0.0875 | 0.0004 | 0.0013 | -9.3560  |
| 943 | 1 | 1 | 2 | 2 | 3 | 3 | 2 | 0.0009 | 0.0304 | 0.5342 | 0.4217 | 0.0031 | 0.0097 | -10.8298 |
| 944 | 2 | 1 | 2 | 2 | 3 | 3 | 2 | 0.0312 | 0.5094 | 0.4387 | 0.0203 | 0.0001 | 0.0003 | -8.0303  |
| 945 | 1 | 2 | 2 | 2 | 3 | 3 | 2 | 0.0006 | 0.0206 | 0.4454 | 0.5144 | 0.0045 | 0.0144 | -11.1243 |
| 946 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 0.0146 | 0.3362 | 0.6054 | 0.0431 | 0.0002 | 0.0006 | -8.7639  |
| 947 | 1 | 3 | 2 | 2 | 3 | 3 | 2 | 0.0004 | 0.0140 | 0.3560 | 0.6017 | 0.0066 | 0.0213 | -11.4050 |
| 948 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 0.0067 | 0.1919 | 0.7104 | 0.0892 | 0.0004 | 0.0013 | -9.3709  |
| 949 | 1 | 1 | 3 | 2 | 3 | 3 | 2 | 0.0021 | 0.0701 | 0.6863 | 0.2361 | 0.0013 | 0.0041 | -10.1768 |
| 950 | 2 | 1 | 3 | 2 | 3 | 3 | 2 | 0.0306 | 0.5048 | 0.4435 | 0.0207 | 0.0001 | 0.0003 | -8.0514  |
| 951 | 1 | 2 | 3 | 2 | 3 | 3 | 2 | 0.0014 | 0.0483 | 0.6289 | 0.3134 | 0.0019 | 0.0060 | -10.4665 |
| 952 | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 0.0143 | 0.3317 | 0.6093 | 0.0440 | 0.0002 | 0.0006 | -8.7818  |
| 953 | 1 | 3 | 3 | 2 | 3 | 3 | 2 | 0.0010 | 0.0330 | 0.5528 | 0.4014 | 0.0028 | 0.0089 | -10.7641 |
| 954 | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 0.0066 | 0.1888 | 0.7120 | 0.0909 | 0.0004 | 0.0013 | -9.3858  |
| 955 | 1 | 1 | 1 | 3 | 3 | 3 | 2 | 0.0003 | 0.0091 | 0.2661 | 0.6820 | 0.0100 | 0.0325 | -11.6923 |
| 956 | 2 | 1 | 1 | 3 | 3 | 3 | 2 | 0.0227 | 0.4361 | 0.5128 | 0.0279 | 0.0001 | 0.0004 | -8.3539  |
| 957 | 1 | 2 | 1 | 3 | 3 | 3 | 2 | 0.0002 | 0.0061 | 0.1973 | 0.7344 | 0.0144 | 0.0476 | -11.9381 |
| 958 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 0.0105 | 0.2696 | 0.6600 | 0.0588 | 0.0003 | 0.0008 | -9.0339  |
| 959 | 1 | 3 | 1 | 3 | 3 | 3 | 2 | 0.0001 | 0.0041 | 0.1424 | 0.7638 | 0.0202 | 0.0692 | -12.1798 |
| 960 | 2 | 3 | 1 | 3 | 3 | 3 | 2 | 0.0049 | 0.1467 | 0.7266 | 0.1195 | 0.0006 | 0.0018 | -9.6005  |
| 961 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 0.0006 | 0.0216 | 0.4564 | 0.5033 | 0.0043 | 0.0137 | -11.0892 |
| 962 | 2 | 1 | 2 | 3 | 3 | 3 | 2 | 0.0222 | 0.4314 | 0.5174 | 0.0285 | 0.0001 | 0.0004 | -8.3739  |
| 963 | 1 | 2 | 2 | 3 | 3 | 3 | 2 | 0.0004 | 0.0146 | 0.3666 | 0.5917 | 0.0063 | 0.0203 | -11.3720 |
| 964 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 0.0103 | 0.2656 | 0.6630 | 0.0600 | 0.0003 | 0.0008 | -9.0503  |
| 965 | 1 | 3 | 2 | 3 | 3 | 3 | 2 | 0.0003 | 0.0099 | 0.2831 | 0.6676 | 0.0092 | 0.0299 | -11.6365 |
| 966 | 2 | 3 | 2 | 3 | 3 | 3 | 2 | 0.0048 | 0.1441 | 0.7270 | 0.1217 | 0.0006 | 0.0018 | -9.6148  |
| 967 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 0.0015 | 0.0506 | 0.6370 | 0.3034 | 0.0018 | 0.0057 | -10.4309 |
| 968 | 2 | 1 | 3 | 3 | 3 | 3 | 2 | 0.0218 | 0.4267 | 0.5220 | 0.0291 | 0.0001 | 0.0004 | -8.3937  |

 Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example
| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 969  | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 0.0010 | 0.0346 | 0.5628 | 0.3904 | 0.0027 | 0.0085 | -10.7279 |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 970  | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 0.0101 | 0.2617 | 0.6660 | 0.0611 | 0.0003 | 0.0008 | -9.0666  |
| 971  | 1 | 3 | 3 | 3 | 3 | 3 | 2 | 0.0007 | 0.0235 | 0.4762 | 0.4830 | 0.0040 | 0.0126 | -11.0249 |
| 972  | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 0.0047 | 0.1416 | 0.7274 | 0.1239 | 0.0006 | 0.0018 | -9.6292  |
| 973  | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 0.0026 | 0.0857 | 0.7080 | 0.1993 | 0.0010 | 0.0033 | -10.0218 |
| 974  | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 0.4204 | 0.5432 | 0.0354 | 0.0009 | 0.0000 | 0.0000 | -4.6647  |
| 975  | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 0.0018 | 0.0594 | 0.6633 | 0.2691 | 0.0015 | 0.0048 | -10.3052 |
| 976  | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 0.2498 | 0.6742 | 0.0740 | 0.0020 | 0.0000 | 0.0000 | -5.6174  |
| 977  | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 0.0012 | 0.0408 | 0.5968 | 0.3518 | 0.0023 | 0.0072 | -10.5992 |
| 978  | 2 | 3 | 1 | 1 | 1 | 1 | 3 | 0.1326 | 0.7155 | 0.1475 | 0.0043 | 0.0000 | 0.0001 | -6.4288  |
| 979  | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 0.0064 | 0.1832 | 0.7146 | 0.0940 | 0.0004 | 0.0014 | -9.4122  |
| 980  | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 0.4154 | 0.5475 | 0.0362 | 0.0009 | 0.0000 | 0.0000 | -4.6930  |
| 981  | 1 | 2 | 2 | 1 | 1 | 1 | 3 | 0.0043 | 0.1316 | 0.7280 | 0.1334 | 0.0006 | 0.0020 | -9.6877  |
| 982  | 2 | 2 | 2 | 1 | 1 | 1 | 3 | 0.2459 | 0.6766 | 0.0754 | 0.0020 | 0.0000 | 0.0000 | -5.6404  |
| 983  | 1 | 3 | 2 | 1 | 1 | 1 | 3 | 0.0029 | 0.0928 | 0.7145 | 0.1859 | 0.0010 | 0.0030 | -9.9608  |
| 984  | 2 | 3 | 2 | 1 | 1 | 1 | 3 | 0.1302 | 0.7152 | 0.1501 | 0.0044 | 0.0000 | 0.0001 | -6.4499  |
| 985  | 1 | 1 | 3 | 1 | 1 | 1 | 3 | 0.0152 | 0.3457 | 0.5970 | 0.0413 | 0.0002 | 0.0006 | -8.7254  |
| 986  | 2 | 1 | 3 | 1 | 1 | 1 | 3 | 0.4103 | 0.5518 | 0.0369 | 0.0010 | 0.0000 | 0.0000 | -4.7210  |
| 987  | 1 | 2 | 3 | 1 | 1 | 1 | 3 | 0.0103 | 0.2650 | 0.6635 | 0.0602 | 0.0003 | 0.0008 | -9.0530  |
| 988  | 2 | 2 | 3 | 1 | 1 | 1 | 3 | 0.2421 | 0.6790 | 0.0768 | 0.0021 | 0.0000 | 0.0000 | -5.6633  |
| 989  | 1 | 3 | 3 | 1 | 1 | 1 | 3 | 0.0069 | 0.1965 | 0.7081 | 0.0868 | 0.0004 | 0.0012 | -9.3499  |
| 990  | 2 | 3 | 3 | 1 | 1 | 1 | 3 | 0.1278 | 0.7148 | 0.1528 | 0.0045 | 0.0000 | 0.0001 | -6.4709  |
| 991  | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 0.0003 | 0.0122 | 0.3269 | 0.6287 | 0.0076 | 0.0243 | -11.4964 |
| 992  | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 0.0870 | 0.6898 | 0.2161 | 0.0069 | 0.0000 | 0.0001 | -6.9076  |
| 993  | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 0.0002 | 0.0083 | 0.2483 | 0.6966 | 0.0109 | 0.0357 | -11.7527 |
| 994  | 2 | 2 | 1 | 2 | 1 | 1 | 3 | 0.0419 | 0.5731 | 0.3697 | 0.0150 | 0.0001 | 0.0002 | -7.7162  |
| 995  | 1 | 3 | 1 | 2 | 1 | 1 | 3 | 0.0002 | 0.0056 | 0.1828 | 0.7437 | 0.0156 | 0.0522 | -11.9963 |
| 996  | 2 | 3 | 1 | 2 | 1 | 1 | 3 | 0.0197 | 0.4034 | 0.5442 | 0.0321 | 0.0001 | 0.0004 | -8.4906  |
| 997  | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 0.0008 | 0.0290 | 0.5238 | 0.4329 | 0.0032 | 0.0102 | -10.8657 |
| 998  | 2 | 1 | 2 | 2 | 1 | 1 | 3 | 0.0854 | 0.6878 | 0.2196 | 0.0071 | 0.0000 | 0.0001 | -6.9290  |
| 999  | 1 | 2 | 2 | 2 | 1 | 1 | 3 | 0.0006 | 0.0197 | 0.4345 | 0.5254 | 0.0048 | 0.0151 | -11.1589 |
| 1000 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 0.0411 | 0.5690 | 0.3743 | 0.0153 | 0.0001 | 0.0002 | -7.7379  |
| 1001 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 0.0004 | 0.0133 | 0.3456 | 0.6115 | 0.0070 | 0.0223 | -11.4375 |
| 1002 | 2 | 3 | 2 | 2 | 1 | 1 | 3 | 0.0193 | 0.3987 | 0.5486 | 0.0328 | 0.0001 | 0.0004 | -8.5099  |
| 1003 | 1 | 1 | 3 | 2 | 1 | 1 | 3 | 0.0020 | 0.0671 | 0.6806 | 0.2447 | 0.0014 | 0.0043 | -10.2111 |

| 1004 | 2 | 1 | 3 | 2 | 1 | 1 | 3 | 0.0838 | 0.6857 | 0.2231 | 0.0072 | 0.0000 | 0.0001 | -6.9504  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1005 | 1 | 2 | 3 | 2 | 1 | 1 | 3 | 0.0014 | 0.0462 | 0.6206 | 0.3235 | 0.0020 | 0.0063 | -10.5020 |
| 1006 | 2 | 2 | 3 | 2 | 1 | 1 | 3 | 0.0403 | 0.5648 | 0.3790 | 0.0156 | 0.0001 | 0.0002 | -7.7595  |
| 1007 | 1 | 3 | 3 | 2 | 1 | 1 | 3 | 0.0009 | 0.0315 | 0.5427 | 0.4125 | 0.0030 | 0.0094 | -10.8000 |
| 1008 | 2 | 3 | 3 | 2 | 1 | 1 | 3 | 0.0189 | 0.3940 | 0.5530 | 0.0334 | 0.0001 | 0.0005 | -8.5292  |
| 1009 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | 0.0002 | 0.0087 | 0.2571 | 0.6894 | 0.0105 | 0.0341 | -11.7225 |
| 1010 | 2 | 1 | 1 | 3 | 1 | 1 | 3 | 0.0630 | 0.6476 | 0.2794 | 0.0098 | 0.0000 | 0.0001 | -7.2679  |
| 1011 | 1 | 2 | 1 | 3 | 1 | 1 | 3 | 0.0002 | 0.0058 | 0.1900 | 0.7392 | 0.0150 | 0.0499 | -11.9671 |
| 1012 | 2 | 2 | 1 | 3 | 1 | 1 | 3 | 0.0299 | 0.4999 | 0.4486 | 0.0211 | 0.0001 | 0.0003 | -8.0739  |
| 1013 | 1 | 3 | 1 | 3 | 1 | 1 | 3 | 0.0001 | 0.0039 | 0.1368 | 0.7657 | 0.0211 | 0.0724 | -12.2092 |
| 1014 | 2 | 3 | 1 | 3 | 1 | 1 | 3 | 0.0140 | 0.3270 | 0.6133 | 0.0449 | 0.0002 | 0.0006 | -8.8009  |
| 1015 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 0.0006 | 0.0206 | 0.4455 | 0.5144 | 0.0045 | 0.0144 | -11.1241 |
| 1016 | 2 | 1 | 2 | 3 | 1 | 1 | 3 | 0.0618 | 0.6445 | 0.2835 | 0.0100 | 0.0000 | 0.0001 | -7.2897  |
| 1017 | 1 | 2 | 2 | 3 | 1 | 1 | 3 | 0.0004 | 0.0140 | 0.3561 | 0.6017 | 0.0066 | 0.0213 | -11.4048 |
| 1018 | 2 | 2 | 2 | 3 | 1 | 1 | 3 | 0.0293 | 0.4953 | 0.4534 | 0.0216 | 0.0001 | 0.0003 | -8.0948  |
| 1019 | 1 | 3 | 2 | 3 | 1 | 1 | 3 | 0.0003 | 0.0094 | 0.2738 | 0.6756 | 0.0096 | 0.0313 | -11.6671 |
| 1020 | 2 | 3 | 2 | 3 | 1 | 1 | 3 | 0.0137 | 0.3226 | 0.6171 | 0.0458 | 0.0002 | 0.0006 | -8.8186  |
| 1021 | 1 | 1 | 3 | 3 | 1 | 1 | 3 | 0.0014 | 0.0483 | 0.6290 | 0.3133 | 0.0019 | 0.0060 | -10.4663 |
| 1022 | 2 | 1 | 3 | 3 | 1 | 1 | 3 | 0.0606 | 0.6414 | 0.2876 | 0.0102 | 0.0000 | 0.0001 | -7.3114  |
| 1023 | 1 | 2 | 3 | 3 | 1 | 1 | 3 | 0.0010 | 0.0330 | 0.5528 | 0.4014 | 0.0028 | 0.0089 | -10.7639 |
| 1024 | 2 | 2 | 3 | 3 | 1 | 1 | 3 | 0.0287 | 0.4907 | 0.4581 | 0.0220 | 0.0001 | 0.0003 | -8.1157  |
| 1025 | 1 | 3 | 3 | 3 | 1 | 1 | 3 | 0.0006 | 0.0225 | 0.4654 | 0.4941 | 0.0042 | 0.0132 | -11.0601 |
| 1026 | 2 | 3 | 3 | 3 | 1 | 1 | 3 | 0.0134 | 0.3182 | 0.6208 | 0.0467 | 0.0002 | 0.0006 | -8.8361  |
| 1027 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 0.0012 | 0.0423 | 0.6038 | 0.3435 | 0.0022 | 0.0069 | -10.5711 |
| 1028 | 2 | 1 | 1 | 1 | 2 | 1 | 3 | 0.2540 | 0.6716 | 0.0724 | 0.0020 | 0.0000 | 0.0000 | -5.5927  |
| 1029 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 0.0008 | 0.0288 | 0.5227 | 0.4341 | 0.0032 | 0.0103 | -10.8695 |
| 1030 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 0.1352 | 0.7158 | 0.1448 | 0.0042 | 0.0000 | 0.0001 | -6.4063  |
| 1031 | 1 | 3 | 1 | 1 | 2 | 1 | 3 | 0.0006 | 0.0196 | 0.4334 | 0.5265 | 0.0048 | 0.0152 | -11.1626 |
| 1032 | 2 | 3 | 1 | 1 | 2 | 1 | 3 | 0.0669 | 0.6568 | 0.2669 | 0.0092 | 0.0000 | 0.0001 | -7.2006  |
| 1033 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 0.0030 | 0.0960 | 0.7169 | 0.1803 | 0.0009 | 0.0029 | -9.9347  |
| 1034 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 0.2501 | 0.6740 | 0.0739 | 0.0020 | 0.0000 | 0.0000 | -5.6158  |
| 1035 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 0.0020 | 0.0667 | 0.6800 | 0.2456 | 0.0014 | 0.0043 | -10.2147 |
| 1036 | 2 | 2 | 2 | 1 | 2 | 1 | 3 | 0.1327 | 0.7155 | 0.1473 | 0.0043 | 0.0000 | 0.0001 | -6.4273  |
| 1037 | 1 | 3 | 2 | 1 | 2 | 1 | 3 | 0.0014 | 0.0459 | 0.6197 | 0.3246 | 0.0020 | 0.0063 | -10.5058 |
| 1038 | 2 | 3 | 2 | 1 | 2 | 1 | 3 | 0.0656 | 0.6539 | 0.2709 | 0.0094 | 0.0000 | 0.0001 | -7.2223  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| ] | Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---|---------------------------------------------------------------------------------------|
|   | Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
|   | Production Example                                                                    |

| 1039 | 1 | 1 | 3 | 1 | 2 | 1 | 3 | 0.0072 | 0.2023 | 0.7050 | 0.0839 | 0.0004 | 0.0012 | -9.3229  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1040 | 2 | 1 | 3 | 1 | 2 | 1 | 3 | 0.2462 | 0.6765 | 0.0753 | 0.0020 | 0.0000 | 0.0000 | -5.6388  |
| 1041 | 1 | 2 | 3 | 1 | 2 | 1 | 3 | 0.0049 | 0.1464 | 0.7267 | 0.1197 | 0.0006 | 0.0018 | -9.6018  |
| 1042 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 0.1304 | 0.7152 | 0.1500 | 0.0044 | 0.0000 | 0.0001 | -6.4484  |
| 1043 | 1 | 3 | 3 | 1 | 2 | 1 | 3 | 0.0033 | 0.1038 | 0.7216 | 0.1679 | 0.0008 | 0.0026 | -9.8743  |
| 1044 | 2 | 3 | 3 | 1 | 2 | 1 | 3 | 0.0644 | 0.6509 | 0.2749 | 0.0096 | 0.0000 | 0.0001 | -7.2440  |
| 1045 | 1 | 1 | 1 | 2 | 2 | 1 | 3 | 0.0002 | 0.0058 | 0.1884 | 0.7402 | 0.0151 | 0.0504 | -11.9735 |
| 1046 | 2 | 1 | 1 | 2 | 2 | 1 | 3 | 0.0428 | 0.5775 | 0.3647 | 0.0147 | 0.0001 | 0.0002 | -7.6930  |
| 1047 | 1 | 2 | 1 | 2 | 2 | 1 | 3 | 0.0001 | 0.0039 | 0.1355 | 0.7661 | 0.0213 | 0.0731 | -12.2157 |
| 1048 | 2 | 2 | 1 | 2 | 2 | 1 | 3 | 0.0201 | 0.4084 | 0.5395 | 0.0314 | 0.0001 | 0.0004 | -8.4699  |
| 1049 | 1 | 3 | 1 | 2 | 2 | 1 | 3 | 0.0001 | 0.0026 | 0.0956 | 0.7675 | 0.0292 | 0.1050 | -12.4700 |
| 1050 | 2 | 3 | 1 | 2 | 2 | 1 | 3 | 0.0093 | 0.2467 | 0.6768 | 0.0659 | 0.0003 | 0.0009 | -9.1290  |
| 1051 | 1 | 1 | 2 | 2 | 2 | 1 | 3 | 0.0004 | 0.0138 | 0.3538 | 0.6038 | 0.0067 | 0.0215 | -11.4120 |
| 1052 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 0.0420 | 0.5734 | 0.3694 | 0.0150 | 0.0001 | 0.0002 | -7.7147  |
| 1053 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 0.0003 | 0.0093 | 0.2717 | 0.6773 | 0.0097 | 0.0316 | -11.6738 |
| 1054 | 2 | 2 | 2 | 2 | 2 | 1 | 3 | 0.0197 | 0.4037 | 0.5439 | 0.0321 | 0.0001 | 0.0004 | -8.4893  |
| 1055 | 1 | 3 | 2 | 2 | 2 | 1 | 3 | 0.0002 | 0.0063 | 0.2019 | 0.7313 | 0.0140 | 0.0463 | -11.9204 |
| 1056 | 2 | 3 | 2 | 2 | 2 | 1 | 3 | 0.0091 | 0.2430 | 0.6794 | 0.0672 | 0.0003 | 0.0009 | -9.1449  |
| 1057 | 1 | 1 | 3 | 2 | 2 | 1 | 3 | 0.0010 | 0.0327 | 0.5506 | 0.4038 | 0.0029 | 0.0090 | -10.7718 |
| 1058 | 2 | 1 | 3 | 2 | 2 | 1 | 3 | 0.0411 | 0.5693 | 0.3740 | 0.0153 | 0.0001 | 0.0002 | -7.7364  |
| 1059 | 1 | 2 | 3 | 2 | 2 | 1 | 3 | 0.0006 | 0.0222 | 0.4630 | 0.4966 | 0.0042 | 0.0133 | -11.0678 |
| 1060 | 2 | 2 | 3 | 2 | 2 | 1 | 3 | 0.0193 | 0.3990 | 0.5483 | 0.0327 | 0.0001 | 0.0004 | -8.5086  |
| 1061 | 1 | 3 | 3 | 2 | 2 | 1 | 3 | 0.0004 | 0.0151 | 0.3730 | 0.5856 | 0.0062 | 0.0197 | -11.3518 |
| 1062 | 2 | 3 | 3 | 2 | 2 | 1 | 3 | 0.0090 | 0.2392 | 0.6820 | 0.0686 | 0.0003 | 0.0010 | -9.1608  |
| 1063 | 1 | 1 | 1 | 3 | 2 | 1 | 3 | 0.0001 | 0.0041 | 0.1412 | 0.7643 | 0.0204 | 0.0699 | -12.1861 |
| 1064 | 2 | 1 | 1 | 3 | 2 | 1 | 3 | 0.0306 | 0.5048 | 0.4435 | 0.0207 | 0.0001 | 0.0003 | -8.0514  |
| 1065 | 1 | 2 | 1 | 3 | 2 | 1 | 3 | 0.0001 | 0.0027 | 0.0998 | 0.7687 | 0.0281 | 0.1005 | -12.4381 |
| 1066 | 2 | 2 | 1 | 3 | 2 | 1 | 3 | 0.0143 | 0.3317 | 0.6093 | 0.0440 | 0.0002 | 0.0006 | -8.7819  |
| 1067 | 1 | 3 | 1 | 3 | 2 | 1 | 3 | 0.0001 | 0.0019 | 0.0695 | 0.7485 | 0.0375 | 0.1426 | -12.7136 |
| 1068 | 2 | 3 | 1 | 3 | 2 | 1 | 3 | 0.0066 | 0.1888 | 0.7120 | 0.0909 | 0.0004 | 0.0013 | -9.3859  |
| 1069 | 1 | 1 | 2 | 3 | 2 | 1 | 3 | 0.0003 | 0.0098 | 0.2811 | 0.6693 | 0.0093 | 0.0302 | -11.6431 |
| 1070 | 2 | 1 | 2 | 3 | 2 | 1 | 3 | 0.0300 | 0.5003 | 0.4483 | 0.0211 | 0.0001 | 0.0003 | -8.0724  |
| 1071 | 1 | 2 | 2 | 3 | 2 | 1 | 3 | 0.0002 | 0.0066 | 0.2096 | 0.7259 | 0.0134 | 0.0443 | -11.8910 |
| 1072 | 2 | 2 | 2 | 3 | 2 | 1 | 3 | 0.0140 | 0.3273 | 0.6131 | 0.0448 | 0.0002 | 0.0006 | -8.7997  |
| 1073 | 1 | 3 | 2 | 3 | 2 | 1 | 3 | 0.0001 | 0.0045 | 0.1520 | 0.7600 | 0.0190 | 0.0644 | -12.1325 |

| 1074 | 2 | 3 | 2 | 3 | 2 | 1 | 3 | 0.0065 | 0.1856 | 0.7135 | 0.0926 | 0.0004 | 0.0013 | -9.4007  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1075 | 1 | 1 | 3 | 3 | 2 | 1 | 3 | 0.0007 | 0.0233 | 0.4739 | 0.4854 | 0.0040 | 0.0127 | -11.0325 |
| 1076 | 2 | 1 | 3 | 3 | 2 | 1 | 3 | 0.0294 | 0.4957 | 0.4530 | 0.0215 | 0.0001 | 0.0003 | -8.0934  |
| 1077 | 1 | 2 | 3 | 3 | 2 | 1 | 3 | 0.0005 | 0.0158 | 0.3838 | 0.5753 | 0.0059 | 0.0188 | -11.3183 |
| 1078 | 2 | 2 | 3 | 3 | 2 | 1 | 3 | 0.0137 | 0.3229 | 0.6168 | 0.0457 | 0.0002 | 0.0006 | -8.8173  |
| 1079 | 1 | 3 | 3 | 3 | 2 | 1 | 3 | 0.0003 | 0.0107 | 0.2985 | 0.6542 | 0.0086 | 0.0277 | -11.5865 |
| 1080 | 2 | 3 | 3 | 3 | 2 | 1 | 3 | 0.0063 | 0.1826 | 0.7149 | 0.0944 | 0.0004 | 0.0014 | -9.4155  |
| 1081 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 0.0006 | 0.0203 | 0.4419 | 0.5179 | 0.0046 | 0.0146 | -11.1354 |
| 1082 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | 0.1378 | 0.7159 | 0.1420 | 0.0042 | 0.0000 | 0.0001 | -6.3837  |
| 1083 | 1 | 2 | 1 | 1 | 3 | 1 | 3 | 0.0004 | 0.0138 | 0.3527 | 0.6049 | 0.0067 | 0.0216 | -11.4154 |
| 1084 | 2 | 2 | 1 | 1 | 3 | 1 | 3 | 0.0683 | 0.6598 | 0.2627 | 0.0090 | 0.0000 | 0.0001 | -7.1775  |
| 1085 | 1 | 3 | 1 | 1 | 3 | 1 | 3 | 0.0003 | 0.0093 | 0.2708 | 0.6781 | 0.0098 | 0.0318 | -11.6770 |
| 1086 | 2 | 3 | 1 | 1 | 3 | 1 | 3 | 0.0326 | 0.5189 | 0.4287 | 0.0194 | 0.0001 | 0.0003 | -7.9858  |
| 1087 | 1 | 1 | 2 | 1 | 3 | 1 | 3 | 0.0014 | 0.0476 | 0.6263 | 0.3166 | 0.0019 | 0.0061 | -10.4779 |
| 1088 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 0.1353 | 0.7158 | 0.1446 | 0.0042 | 0.0000 | 0.0001 | -6.4048  |
| 1089 | 1 | 2 | 2 | 1 | 3 | 1 | 3 | 0.0009 | 0.0325 | 0.5496 | 0.4050 | 0.0029 | 0.0091 | -10.7756 |
| 1090 | 2 | 2 | 2 | 1 | 3 | 1 | 3 | 0.0670 | 0.6570 | 0.2666 | 0.0092 | 0.0000 | 0.0001 | -7.1991  |
| 1091 | 1 | 3 | 2 | 1 | 3 | 1 | 3 | 0.0006 | 0.0221 | 0.4618 | 0.4977 | 0.0042 | 0.0134 | -11.0715 |
| 1092 | 2 | 3 | 2 | 1 | 3 | 1 | 3 | 0.0319 | 0.5144 | 0.4335 | 0.0198 | 0.0001 | 0.0003 | -8.0070  |
| 1093 | 1 | 1 | 3 | 1 | 3 | 1 | 3 | 0.0034 | 0.1073 | 0.7233 | 0.1627 | 0.0008 | 0.0025 | -9.8485  |
| 1094 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 0.1329 | 0.7155 | 0.1472 | 0.0043 | 0.0000 | 0.0001 | -6.4259  |
| 1095 | 1 | 2 | 3 | 1 | 3 | 1 | 3 | 0.0023 | 0.0749 | 0.6943 | 0.2235 | 0.0012 | 0.0038 | -10.1254 |
| 1096 | 2 | 2 | 3 | 1 | 3 | 1 | 3 | 0.0657 | 0.6541 | 0.2706 | 0.0094 | 0.0000 | 0.0001 | -7.2208  |
| 1097 | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 0.0015 | 0.0517 | 0.6409 | 0.2984 | 0.0018 | 0.0056 | -10.4131 |
| 1098 | 2 | 3 | 3 | 1 | 3 | 1 | 3 | 0.0313 | 0.5099 | 0.4383 | 0.0202 | 0.0001 | 0.0003 | -8.0282  |
| 1099 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 0.0001 | 0.0027 | 0.0989 | 0.7684 | 0.0284 | 0.1015 | -12.4450 |
| 1100 | 2 | 1 | 1 | 2 | 3 | 1 | 3 | 0.0206 | 0.4135 | 0.5347 | 0.0308 | 0.0001 | 0.0004 | -8.4490  |
| 1101 | 1 | 2 | 1 | 2 | 3 | 1 | 3 | 0.0001 | 0.0018 | 0.0688 | 0.7476 | 0.0378 | 0.1438 | -12.7213 |
| 1102 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 0.0095 | 0.2508 | 0.6739 | 0.0646 | 0.0003 | 0.0009 | -9.1119  |
| 1103 | 1 | 3 | 1 | 2 | 3 | 1 | 3 | 0.0000 | 0.0012 | 0.0474 | 0.7031 | 0.0483 | 0.1999 | -13.0289 |
| 1104 | 2 | 3 | 1 | 2 | 3 | 1 | 3 | 0.0044 | 0.1347 | 0.7279 | 0.1304 | 0.0006 | 0.0020 | -9.6694  |
| 1105 | 1 | 1 | 2 | 2 | 3 | 1 | 3 | 0.0002 | 0.0065 | 0.2079 | 0.7272 | 0.0135 | 0.0447 | -11.8975 |
| 1106 | 2 | 1 | 2 | 2 | 3 | 1 | 3 | 0.0201 | 0.4087 | 0.5392 | 0.0314 | 0.0001 | 0.0004 | -8.4685  |
| 1107 | 1 | 2 | 2 | 2 | 3 | 1 | 3 | 0.0001 | 0.0044 | 0.1507 | 0.7606 | 0.0191 | 0.0651 | -12.1389 |
| 1108 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 0.0094 | 0.2470 | 0.6766 | 0.0659 | 0.0003 | 0.0009 | -9.1279  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 1109 | 1 | 3 | 2 | 2 | 3 | 1 | 3 | 0.0001 | 0.0030 | 0.1069 | 0.7697 | 0.0265 | 0.0938 | -12.3878 |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1110 | 2 | 3 | 2 | 2 | 3 | 1 | 3 | 0.0043 | 0.1323 | 0.7280 | 0.1328 | 0.0006 | 0.0020 | -9.6837  |
| 1111 | 1 | 1 | 3 | 2 | 3 | 1 | 3 | 0.0004 | 0.0156 | 0.3814 | 0.5775 | 0.0060 | 0.0190 | -11.3257 |
| 1112 | 2 | 1 | 3 | 2 | 3 | 1 | 3 | 0.0197 | 0.4040 | 0.5436 | 0.0320 | 0.0001 | 0.0004 | -8.4880  |
| 1113 | 1 | 2 | 3 | 2 | 3 | 1 | 3 | 0.0003 | 0.0106 | 0.2964 | 0.6560 | 0.0087 | 0.0280 | -11.5933 |
| 1114 | 2 | 2 | 3 | 2 | 3 | 1 | 3 | 0.0092 | 0.2432 | 0.6792 | 0.0671 | 0.0003 | 0.0009 | -9.1438  |
| 1115 | 1 | 3 | 3 | 2 | 3 | 1 | 3 | 0.0002 | 0.0071 | 0.2224 | 0.7167 | 0.0125 | 0.0411 | -11.8439 |
| 1116 | 2 | 3 | 3 | 2 | 3 | 1 | 3 | 0.0042 | 0.1299 | 0.7280 | 0.1352 | 0.0007 | 0.0020 | -9.6980  |
| 1117 | 1 | 1 | 1 | 3 | 3 | 1 | 3 | 0.0001 | 0.0019 | 0.0720 | 0.7514 | 0.0366 | 0.1380 | -12.6863 |
| 1118 | 2 | 1 | 1 | 3 | 3 | 1 | 3 | 0.0146 | 0.3365 | 0.6051 | 0.0430 | 0.0002 | 0.0006 | -8.7627  |
| 1119 | 1 | 2 | 1 | 3 | 3 | 1 | 3 | 0.0000 | 0.0013 | 0.0496 | 0.7097 | 0.0470 | 0.1923 | -12.9899 |
| 1120 | 2 | 2 | 1 | 3 | 3 | 1 | 3 | 0.0068 | 0.1922 | 0.7103 | 0.0891 | 0.0004 | 0.0013 | -9.3699  |
| 1121 | 1 | 3 | 1 | 3 | 3 | 1 | 3 | 0.0000 | 0.0009 | 0.0339 | 0.6464 | 0.0572 | 0.2616 | -13.3239 |
| 1122 | 2 | 3 | 1 | 3 | 3 | 1 | 3 | 0.0031 | 0.0992 | 0.7191 | 0.1749 | 0.0009 | 0.0028 | -9.9090  |
| 1123 | 1 | 1 | 2 | 3 | 3 | 1 | 3 | 0.0001 | 0.0046 | 0.1569 | 0.7578 | 0.0184 | 0.0622 | -12.1096 |
| 1124 | 2 | 1 | 2 | 3 | 3 | 1 | 3 | 0.0143 | 0.3320 | 0.6090 | 0.0439 | 0.0002 | 0.0006 | -8.7806  |
| 1125 | 1 | 2 | 2 | 3 | 3 | 1 | 3 | 0.0001 | 0.0031 | 0.1115 | 0.7699 | 0.0255 | 0.0898 | -12.3568 |
| 1126 | 2 | 2 | 2 | 3 | 3 | 1 | 3 | 0.0066 | 0.1890 | 0.7119 | 0.0908 | 0.0004 | 0.0013 | -9.3848  |
| 1127 | 1 | 3 | 2 | 3 | 3 | 1 | 3 | 0.0001 | 0.0021 | 0.0780 | 0.7575 | 0.0344 | 0.1279 | -12.6237 |
| 1128 | 2 | 3 | 2 | 3 | 3 | 1 | 3 | 0.0030 | 0.0974 | 0.7179 | 0.1779 | 0.0009 | 0.0028 | -9.9235  |
| 1129 | 1 | 1 | 3 | 3 | 3 | 1 | 3 | 0.0003 | 0.0111 | 0.3062 | 0.6474 | 0.0083 | 0.0267 | -11.5620 |
| 1130 | 2 | 1 | 3 | 3 | 3 | 1 | 3 | 0.0140 | 0.3276 | 0.6128 | 0.0448 | 0.0002 | 0.0006 | -8.7984  |
| 1131 | 1 | 2 | 3 | 3 | 3 | 1 | 3 | 0.0002 | 0.0075 | 0.2306 | 0.7104 | 0.0120 | 0.0393 | -11.8143 |
| 1132 | 2 | 2 | 3 | 3 | 3 | 1 | 3 | 0.0065 | 0.1859 | 0.7134 | 0.0925 | 0.0004 | 0.0013 | -9.3997  |
| 1133 | 1 | 3 | 3 | 3 | 3 | 1 | 3 | 0.0001 | 0.0050 | 0.1686 | 0.7518 | 0.0170 | 0.0573 | -12.0564 |
| 1134 | 2 | 3 | 3 | 3 | 3 | 1 | 3 | 0.0030 | 0.0956 | 0.7167 | 0.1810 | 0.0009 | 0.0029 | -9.9379  |
| 1135 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 0.0012 | 0.0394 | 0.5900 | 0.3596 | 0.0024 | 0.0074 | -10.6257 |
| 1136 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 0.6552 | 0.3306 | 0.0138 | 0.0004 | 0.0000 | 0.0000 | -3.2385  |
| 1137 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 0.0008 | 0.0269 | 0.5067 | 0.4511 | 0.0035 | 0.0110 | -10.9239 |
| 1138 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 0.4659 | 0.5036 | 0.0297 | 0.0008 | 0.0000 | 0.0000 | -4.4092  |
| 1139 | 1 | 3 | 1 | 1 | 1 | 2 | 3 | 0.0005 | 0.0182 | 0.4168 | 0.5430 | 0.0051 | 0.0163 | -11.2149 |
| 1140 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 0.2859 | 0.6501 | 0.0623 | 0.0017 | 0.0000 | 0.0000 | -5.4090  |
| 1141 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | 0.0028 | 0.0899 | 0.7121 | 0.1912 | 0.0010 | 0.0031 | -9.9853  |
| 1142 | 2 | 1 | 2 | 1 | 1 | 2 | 3 | 0.6505 | 0.3350 | 0.0141 | 0.0004 | 0.0000 | 0.0000 | -3.2708  |
| 1143 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 0.0019 | 0.0624 | 0.6705 | 0.2591 | 0.0015 | 0.0046 | -10.2672 |

| 1144 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 0.4607 | 0.5082 | 0.0303 | 0.0008 | 0.0000 | 0.0000 | -4.4387  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1145 | 1 | 3 | 2 | 1 | 1 | 2 | 3 | 0.0013 | 0.0429 | 0.6066 | 0.3403 | 0.0022 | 0.0068 | -10.5601 |
| 1146 | 2 | 3 | 2 | 1 | 1 | 2 | 3 | 0.2817 | 0.6530 | 0.0635 | 0.0017 | 0.0000 | 0.0000 | -5.4331  |
| 1147 | 1 | 1 | 3 | 1 | 1 | 2 | 3 | 0.0067 | 0.1911 | 0.7109 | 0.0896 | 0.0004 | 0.0013 | -9.3751  |
| 1148 | 2 | 1 | 3 | 1 | 1 | 2 | 3 | 0.6457 | 0.3395 | 0.0144 | 0.0004 | 0.0000 | 0.0000 | -3.3031  |
| 1149 | 1 | 2 | 3 | 1 | 1 | 2 | 3 | 0.0045 | 0.1377 | 0.7278 | 0.1275 | 0.0006 | 0.0019 | -9.6518  |
| 1150 | 2 | 2 | 3 | 1 | 1 | 2 | 3 | 0.4555 | 0.5128 | 0.0309 | 0.0008 | 0.0000 | 0.0000 | -4.4681  |
| 1151 | 1 | 3 | 3 | 1 | 1 | 2 | 3 | 0.0030 | 0.0972 | 0.7178 | 0.1782 | 0.0009 | 0.0028 | -9.9245  |
| 1152 | 2 | 3 | 3 | 1 | 1 | 2 | 3 | 0.2775 | 0.6560 | 0.0648 | 0.0017 | 0.0000 | 0.0000 | -5.4570  |
| 1153 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 0.0002 | 0.0054 | 0.1777 | 0.7468 | 0.0161 | 0.0539 | -12.0177 |
| 1154 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 0.1998 | 0.7014 | 0.0961 | 0.0027 | 0.0000 | 0.0000 | -5.9267  |
| 1155 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 0.0001 | 0.0036 | 0.1273 | 0.7682 | 0.0226 | 0.0782 | -12.2610 |
| 1156 | 2 | 2 | 1 | 2 | 1 | 2 | 3 | 0.1028 | 0.7043 | 0.1869 | 0.0058 | 0.0000 | 0.0001 | -6.7197  |
| 1157 | 1 | 3 | 1 | 2 | 1 | 2 | 3 | 0.0001 | 0.0024 | 0.0895 | 0.7651 | 0.0308 | 0.1120 | -12.5189 |
| 1158 | 2 | 3 | 1 | 2 | 1 | 2 | 3 | 0.0500 | 0.6077 | 0.3296 | 0.0125 | 0.0001 | 0.0002 | -7.5240  |
| 1159 | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 0.0004 | 0.0129 | 0.3380 | 0.6185 | 0.0072 | 0.0231 | -11.4613 |
| 1160 | 2 | 1 | 2 | 2 | 1 | 2 | 3 | 0.1965 | 0.7028 | 0.0979 | 0.0027 | 0.0000 | 0.0000 | -5.9485  |
| 1161 | 1 | 2 | 2 | 2 | 1 | 2 | 3 | 0.0002 | 0.0087 | 0.2579 | 0.6888 | 0.0104 | 0.0339 | -11.7199 |
| 1162 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 0.1009 | 0.7030 | 0.1901 | 0.0059 | 0.0000 | 0.0001 | -6.7409  |
| 1163 | 1 | 3 | 2 | 2 | 1 | 2 | 3 | 0.0002 | 0.0059 | 0.1906 | 0.7388 | 0.0149 | 0.0497 | -11.9646 |
| 1164 | 2 | 3 | 2 | 2 | 1 | 2 | 3 | 0.0490 | 0.6040 | 0.3340 | 0.0128 | 0.0001 | 0.0002 | -7.5458  |
| 1165 | 1 | 1 | 3 | 2 | 1 | 2 | 3 | 0.0009 | 0.0305 | 0.5352 | 0.4207 | 0.0031 | 0.0097 | -10.8265 |
| 1166 | 2 | 1 | 3 | 2 | 1 | 2 | 3 | 0.1932 | 0.7042 | 0.0998 | 0.0028 | 0.0000 | 0.0000 | -5.9703  |
| 1167 | 1 | 2 | 3 | 2 | 1 | 2 | 3 | 0.0006 | 0.0207 | 0.4464 | 0.5134 | 0.0045 | 0.0143 | -11.1210 |
| 1168 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 0.0990 | 0.7015 | 0.1933 | 0.0060 | 0.0000 | 0.0001 | -6.7621  |
| 1169 | 1 | 3 | 3 | 2 | 1 | 2 | 3 | 0.0004 | 0.0140 | 0.3570 | 0.6008 | 0.0066 | 0.0212 | -11.4019 |
| 1170 | 2 | 3 | 3 | 2 | 1 | 2 | 3 | 0.0480 | 0.6002 | 0.3385 | 0.0130 | 0.0001 | 0.0002 | -7.5676  |
| 1171 | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 0.0001 | 0.0038 | 0.1327 | 0.7669 | 0.0217 | 0.0748 | -12.2310 |
| 1172 | 2 | 1 | 1 | 3 | 1 | 2 | 3 | 0.1498 | 0.7157 | 0.1307 | 0.0038 | 0.0000 | 0.0000 | -6.2852  |
| 1173 | 1 | 2 | 1 | 3 | 1 | 2 | 3 | 0.0001 | 0.0026 | 0.0935 | 0.7668 | 0.0297 | 0.1073 | -12.4865 |
| 1174 | 2 | 2 | 1 | 3 | 1 | 2 | 3 | 0.0748 | 0.6722 | 0.2447 | 0.0082 | 0.0000 | 0.0001 | -7.0767  |
| 1175 | 1 | 3 | 1 | 3 | 1 | 2 | 3 | 0.0000 | 0.0017 | 0.0650 | 0.7422 | 0.0394 | 0.1517 | -12.7673 |
| 1176 | 2 | 3 | 1 | 3 | 1 | 2 | 3 | 0.0358 | 0.5397 | 0.4066 | 0.0176 | 0.0001 | 0.0002 | -7.8863  |
| 1177 | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 0.0003 | 0.0091 | 0.2670 | 0.6813 | 0.0100 | 0.0324 | -11.6895 |
| 1178 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 0.1471 | 0.7159 | 0.1331 | 0.0039 | 0.0000 | 0.0001 | -6.3064  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 1179 | 1 | 2 | 2 | 3 | 1 | 2 | 3 | 0.0002 | 0.0061 | 0.1980 | 0.7339 | 0.0143 | 0.0474 | -11.9354 |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1180 | 2 | 2 | 2 | 3 | 1 | 2 | 3 | 0.0734 | 0.6697 | 0.2484 | 0.0084 | 0.0000 | 0.0001 | -7.0983  |
| 1181 | 1 | 3 | 2 | 3 | 1 | 2 | 3 | 0.0001 | 0.0041 | 0.1430 | 0.7636 | 0.0202 | 0.0690 | -12.1770 |
| 1182 | 2 | 3 | 2 | 3 | 1 | 2 | 3 | 0.0351 | 0.5353 | 0.4113 | 0.0180 | 0.0001 | 0.0002 | -7.9077  |
| 1183 | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 0.0006 | 0.0217 | 0.4574 | 0.5023 | 0.0043 | 0.0137 | -11.0859 |
| 1184 | 2 | 1 | 3 | 3 | 1 | 2 | 3 | 0.1445 | 0.7160 | 0.1355 | 0.0039 | 0.0000 | 0.0001 | -6.3275  |
| 1185 | 1 | 2 | 3 | 3 | 1 | 2 | 3 | 0.0004 | 0.0147 | 0.3676 | 0.5908 | 0.0063 | 0.0202 | -11.3689 |
| 1186 | 2 | 2 | 3 | 3 | 1 | 2 | 3 | 0.0720 | 0.6671 | 0.2523 | 0.0085 | 0.0000 | 0.0001 | -7.1199  |
| 1187 | 1 | 3 | 3 | 3 | 1 | 2 | 3 | 0.0003 | 0.0099 | 0.2840 | 0.6668 | 0.0092 | 0.0298 | -11.6336 |
| 1188 | 2 | 3 | 3 | 3 | 1 | 2 | 3 | 0.0344 | 0.5308 | 0.4161 | 0.0184 | 0.0001 | 0.0002 | -7.9291  |
| 1189 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 0.0005 | 0.0189 | 0.4253 | 0.5345 | 0.0049 | 0.0157 | -11.1880 |
| 1190 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 0.4715 | 0.4987 | 0.0290 | 0.0007 | 0.0000 | 0.0000 | -4.3775  |
| 1191 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 0.0004 | 0.0128 | 0.3369 | 0.6195 | 0.0072 | 0.0232 | -11.4647 |
| 1192 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 0.2905 | 0.6468 | 0.0610 | 0.0016 | 0.0000 | 0.0000 | -5.3832  |
| 1193 | 1 | 3 | 1 | 1 | 2 | 2 | 3 | 0.0002 | 0.0086 | 0.2570 | 0.6895 | 0.0105 | 0.0341 | -11.7231 |
| 1194 | 2 | 3 | 1 | 1 | 2 | 2 | 3 | 0.1582 | 0.7146 | 0.1236 | 0.0035 | 0.0000 | 0.0000 | -6.2195  |
| 1195 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 0.0013 | 0.0444 | 0.6134 | 0.3322 | 0.0021 | 0.0066 | -10.5321 |
| 1196 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 0.4663 | 0.5033 | 0.0296 | 0.0008 | 0.0000 | 0.0000 | -4.4072  |
| 1197 | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 0.0009 | 0.0303 | 0.5341 | 0.4219 | 0.0031 | 0.0097 | -10.8303 |
| 1198 | 2 | 2 | 2 | 1 | 2 | 2 | 3 | 0.2862 | 0.6499 | 0.0622 | 0.0017 | 0.0000 | 0.0000 | -5.4074  |
| 1199 | 1 | 3 | 2 | 1 | 2 | 2 | 3 | 0.0006 | 0.0206 | 0.4453 | 0.5146 | 0.0045 | 0.0144 | -11.1247 |
| 1200 | 2 | 3 | 2 | 1 | 2 | 2 | 3 | 0.1554 | 0.7150 | 0.1258 | 0.0036 | 0.0000 | 0.0000 | -6.2407  |
| 1201 | 1 | 1 | 3 | 1 | 2 | 2 | 3 | 0.0032 | 0.1005 | 0.7199 | 0.1728 | 0.0009 | 0.0027 | -9.8986  |
| 1202 | 2 | 1 | 3 | 1 | 2 | 2 | 3 | 0.4611 | 0.5079 | 0.0302 | 0.0008 | 0.0000 | 0.0000 | -4.4367  |
| 1203 | 1 | 2 | 3 | 1 | 2 | 2 | 3 | 0.0021 | 0.0701 | 0.6862 | 0.2362 | 0.0013 | 0.0041 | -10.1773 |
| 1204 | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 0.2820 | 0.6528 | 0.0635 | 0.0017 | 0.0000 | 0.0000 | -5.4314  |
| 1205 | 1 | 3 | 3 | 1 | 2 | 2 | 3 | 0.0014 | 0.0483 | 0.6288 | 0.3135 | 0.0019 | 0.0060 | -10.4669 |
| 1206 | 2 | 3 | 3 | 1 | 2 | 2 | 3 | 0.1527 | 0.7154 | 0.1281 | 0.0037 | 0.0000 | 0.0000 | -6.2619  |
| 1207 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 0.0001 | 0.0025 | 0.0926 | 0.7665 | 0.0300 | 0.1083 | -12.4936 |
| 1208 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 0.1049 | 0.7057 | 0.1836 | 0.0057 | 0.0000 | 0.0001 | -6.6971  |
| 1209 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 0.0000 | 0.0017 | 0.0643 | 0.7412 | 0.0397 | 0.1530 | -12.7752 |
| 1210 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 0.0511 | 0.6116 | 0.3248 | 0.0122 | 0.0001 | 0.0002 | -7.5007  |
| 1211 | 1 | 3 | 1 | 2 | 2 | 2 | 3 | 0.0000 | 0.0011 | 0.0442 | 0.6926 | 0.0502 | 0.2118 | -13.0886 |
| 1212 | 2 | 3 | 1 | 2 | 2 | 2 | 3 | 0.0241 | 0.4501 | 0.4991 | 0.0263 | 0.0001 | 0.0004 | -8.2944  |
| 1213 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 0.0002 | 0.0061 | 0.1964 | 0.7350 | 0.0144 | 0.0479 | -11.9418 |

| 1214 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 0.1030 | 0.7044 | 0.1867 | 0.0058 | 0.0000 | 0.0001 | -6.7182  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1215 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 0.0001 | 0.0041 | 0.1417 | 0.7641 | 0.0204 | 0.0696 | -12.1835 |
| 1216 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 0.0500 | 0.6080 | 0.3293 | 0.0125 | 0.0001 | 0.0002 | -7.5225  |
| 1217 | 1 | 3 | 2 | 2 | 2 | 2 | 3 | 0.0001 | 0.0028 | 0.1002 | 0.7687 | 0.0280 | 0.1002 | -12.4353 |
| 1218 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 0.0236 | 0.4454 | 0.5037 | 0.0268 | 0.0001 | 0.0004 | -8.3146  |
| 1219 | 1 | 1 | 3 | 2 | 2 | 2 | 3 | 0.0004 | 0.0146 | 0.3652 | 0.5930 | 0.0064 | 0.0204 | -11.3761 |
| 1220 | 2 | 1 | 3 | 2 | 2 | 2 | 3 | 0.1011 | 0.7031 | 0.1899 | 0.0059 | 0.0000 | 0.0001 | -6.7394  |
| 1221 | 1 | 2 | 3 | 2 | 2 | 2 | 3 | 0.0003 | 0.0098 | 0.2819 | 0.6686 | 0.0093 | 0.0301 | -11.6403 |
| 1222 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 0.0491 | 0.6042 | 0.3337 | 0.0128 | 0.0001 | 0.0002 | -7.5443  |
| 1223 | 1 | 3 | 3 | 2 | 2 | 2 | 3 | 0.0002 | 0.0066 | 0.2103 | 0.7255 | 0.0133 | 0.0441 | -11.8885 |
| 1224 | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 0.0231 | 0.4406 | 0.5084 | 0.0274 | 0.0001 | 0.0004 | -8.3347  |
| 1225 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 0.0001 | 0.0018 | 0.0673 | 0.7455 | 0.0384 | 0.1469 | -12.7395 |
| 1226 | 2 | 1 | 1 | 3 | 2 | 2 | 3 | 0.0764 | 0.6748 | 0.2406 | 0.0080 | 0.0000 | 0.0001 | -7.0537  |
| 1227 | 1 | 2 | 1 | 3 | 2 | 2 | 3 | 0.0000 | 0.0012 | 0.0463 | 0.6996 | 0.0489 | 0.2039 | -13.0490 |
| 1228 | 2 | 2 | 1 | 3 | 2 | 2 | 3 | 0.0366 | 0.5443 | 0.4016 | 0.0173 | 0.0001 | 0.0002 | -7.8633  |
| 1229 | 1 | 3 | 1 | 3 | 2 | 2 | 3 | 0.0000 | 0.0008 | 0.0316 | 0.6327 | 0.0589 | 0.2758 | -13.3877 |
| 1230 | 2 | 3 | 1 | 3 | 2 | 2 | 3 | 0.0171 | 0.3717 | 0.5737 | 0.0368 | 0.0002 | 0.0005 | -8.6204  |
| 1231 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 0.0001 | 0.0043 | 0.1476 | 0.7619 | 0.0195 | 0.0666 | -12.1540 |
| 1232 | 2 | 1 | 2 | 3 | 2 | 2 | 3 | 0.0749 | 0.6724 | 0.2444 | 0.0082 | 0.0000 | 0.0001 | -7.0752  |
| 1233 | 1 | 2 | 2 | 3 | 2 | 2 | 3 | 0.0001 | 0.0029 | 0.1046 | 0.7695 | 0.0270 | 0.0959 | -12.4038 |
| 1234 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | 0.0358 | 0.5400 | 0.4063 | 0.0176 | 0.0001 | 0.0002 | -7.8848  |
| 1235 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 0.0001 | 0.0019 | 0.0730 | 0.7525 | 0.0362 | 0.1363 | -12.6756 |
| 1236 | 2 | 3 | 2 | 3 | 2 | 2 | 3 | 0.0168 | 0.3671 | 0.5779 | 0.0376 | 0.0002 | 0.0005 | -8.6390  |
| 1237 | 1 | 1 | 3 | 3 | 2 | 2 | 3 | 0.0003 | 0.0103 | 0.2914 | 0.6604 | 0.0089 | 0.0287 | -11.6094 |
| 1238 | 2 | 1 | 3 | 3 | 2 | 2 | 3 | 0.0735 | 0.6699 | 0.2482 | 0.0083 | 0.0000 | 0.0001 | -7.0968  |
| 1239 | 1 | 2 | 3 | 3 | 2 | 2 | 3 | 0.0002 | 0.0070 | 0.2182 | 0.7197 | 0.0128 | 0.0421 | -11.8591 |
| 1240 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 0.0351 | 0.5356 | 0.4110 | 0.0180 | 0.0001 | 0.0002 | -7.9062  |
| 1241 | 1 | 3 | 3 | 3 | 2 | 2 | 3 | 0.0001 | 0.0047 | 0.1588 | 0.7569 | 0.0181 | 0.0614 | -12.1006 |
| 1242 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 0.0164 | 0.3625 | 0.5820 | 0.0383 | 0.0002 | 0.0005 | -8.6576  |
| 1243 | 1 | 1 | 1 | 1 | 3 | 2 | 3 | 0.0003 | 0.0090 | 0.2640 | 0.6837 | 0.0101 | 0.0329 | -11.6994 |
| 1244 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | 0.2951 | 0.6435 | 0.0598 | 0.0016 | 0.0000 | 0.0000 | -5.3572  |
| 1245 | 1 | 2 | 1 | 1 | 3 | 2 | 3 | 0.0002 | 0.0061 | 0.1956 | 0.7356 | 0.0145 | 0.0481 | -11.9449 |
| 1246 | 2 | 2 | 1 | 1 | 3 | 2 | 3 | 0.1612 | 0.7141 | 0.1212 | 0.0035 | 0.0000 | 0.0000 | -6.1968  |
| 1247 | 1 | 3 | 1 | 1 | 3 | 2 | 3 | 0.0001 | 0.0041 | 0.1411 | 0.7643 | 0.0204 | 0.0700 | -12.1866 |
| 1248 | 2 | 3 | 1 | 1 | 3 | 2 | 3 | 0.0811 | 0.6821 | 0.2292 | 0.0075 | 0.0000 | 0.0001 | -6.9870  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 1249 | 1 | 1 | 2 | 1 | 3 | 2 | 3 | 0.0006 | 0.0214 | 0.4538 | 0.5059 | 0.0044 | 0.0139 | -11.0973 |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1250 | 2 | 1 | 2 | 1 | 3 | 2 | 3 | 0.2908 | 0.6466 | 0.0609 | 0.0016 | 0.0000 | 0.0000 | -5.3815  |
| 1251 | 1 | 2 | 2 | 1 | 3 | 2 | 3 | 0.0004 | 0.0145 | 0.3641 | 0.5940 | 0.0064 | 0.0205 | -11.3796 |
| 1252 | 2 | 2 | 2 | 1 | 3 | 2 | 3 | 0.1584 | 0.7146 | 0.1234 | 0.0035 | 0.0000 | 0.0000 | -6.2180  |
| 1253 | 1 | 3 | 2 | 1 | 3 | 2 | 3 | 0.0003 | 0.0098 | 0.2809 | 0.6695 | 0.0093 | 0.0302 | -11.6436 |
| 1254 | 2 | 3 | 2 | 1 | 3 | 2 | 3 | 0.0795 | 0.6798 | 0.2329 | 0.0077 | 0.0000 | 0.0001 | -7.0085  |
| 1255 | 1 | 1 | 3 | 1 | 3 | 2 | 3 | 0.0015 | 0.0500 | 0.6352 | 0.3057 | 0.0018 | 0.0058 | -10.4391 |
| 1256 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 0.2865 | 0.6497 | 0.0621 | 0.0017 | 0.0000 | 0.0000 | -5.4057  |
| 1257 | 1 | 2 | 3 | 1 | 3 | 2 | 3 | 0.0010 | 0.0342 | 0.5605 | 0.3930 | 0.0027 | 0.0086 | -10.7363 |
| 1258 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 0.1556 | 0.7150 | 0.1257 | 0.0036 | 0.0000 | 0.0000 | -6.2393  |
| 1259 | 1 | 3 | 3 | 1 | 3 | 2 | 3 | 0.0007 | 0.0233 | 0.4737 | 0.4856 | 0.0040 | 0.0127 | -11.0331 |
| 1260 | 2 | 3 | 3 | 1 | 3 | 2 | 3 | 0.0780 | 0.6775 | 0.2366 | 0.0078 | 0.0000 | 0.0001 | -7.0300  |
| 1261 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 0.0000 | 0.0012 | 0.0459 | 0.6981 | 0.0492 | 0.2056 | -13.0577 |
| 1262 | 2 | 1 | 1 | 2 | 3 | 2 | 3 | 0.0521 | 0.6155 | 0.3202 | 0.0120 | 0.0001 | 0.0002 | -7.4773  |
| 1263 | 1 | 2 | 1 | 2 | 3 | 2 | 3 | 0.0000 | 0.0008 | 0.0313 | 0.6307 | 0.0592 | 0.2779 | -13.3970 |
| 1264 | 2 | 2 | 1 | 2 | 3 | 2 | 3 | 0.0246 | 0.4551 | 0.4941 | 0.0257 | 0.0001 | 0.0003 | -8.2727  |
| 1265 | 1 | 3 | 1 | 2 | 3 | 2 | 3 | 0.0000 | 0.0005 | 0.0213 | 0.5475 | 0.0666 | 0.3641 | -13.7521 |
| 1266 | 2 | 3 | 1 | 2 | 3 | 2 | 3 | 0.0115 | 0.2859 | 0.6473 | 0.0543 | 0.0002 | 0.0007 | -8.9669  |
| 1267 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 0.0001 | 0.0029 | 0.1036 | 0.7694 | 0.0272 | 0.0968 | -12.4107 |
| 1268 | 2 | 1 | 2 | 2 | 3 | 2 | 3 | 0.0511 | 0.6119 | 0.3245 | 0.0122 | 0.0001 | 0.0002 | -7.4992  |
| 1269 | 1 | 2 | 2 | 2 | 3 | 2 | 3 | 0.0001 | 0.0019 | 0.0723 | 0.7517 | 0.0365 | 0.1375 | -12.6832 |
| 1270 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 0.0241 | 0.4504 | 0.4988 | 0.0262 | 0.0001 | 0.0004 | -8.2930  |
| 1271 | 1 | 3 | 2 | 2 | 3 | 2 | 3 | 0.0000 | 0.0013 | 0.0498 | 0.7103 | 0.0469 | 0.1917 | -12.9865 |
| 1272 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 0.0112 | 0.2818 | 0.6505 | 0.0554 | 0.0002 | 0.0008 | -8.9837  |
| 1273 | 1 | 1 | 3 | 2 | 3 | 2 | 3 | 0.0002 | 0.0069 | 0.2165 | 0.7210 | 0.0129 | 0.0425 | -11.8655 |
| 1274 | 2 | 1 | 3 | 2 | 3 | 2 | 3 | 0.0501 | 0.6082 | 0.3290 | 0.0125 | 0.0001 | 0.0002 | -7.5210  |
| 1275 | 1 | 2 | 3 | 2 | 3 | 2 | 3 | 0.0001 | 0.0046 | 0.1574 | 0.7575 | 0.0183 | 0.0620 | -12.1070 |
| 1276 | 2 | 2 | 3 | 2 | 3 | 2 | 3 | 0.0236 | 0.4457 | 0.5034 | 0.0268 | 0.0001 | 0.0004 | -8.3132  |
| 1277 | 1 | 3 | 3 | 2 | 3 | 2 | 3 | 0.0001 | 0.0031 | 0.1120 | 0.7699 | 0.0254 | 0.0894 | -12.3541 |
| 1278 | 2 | 3 | 3 | 2 | 3 | 2 | 3 | 0.0110 | 0.2777 | 0.6537 | 0.0565 | 0.0003 | 0.0008 | -9.0003  |
| 1279 | 1 | 1 | 1 | 3 | 3 | 2 | 3 | 0.0000 | 0.0008 | 0.0328 | 0.6398 | 0.0581 | 0.2684 | -13.3547 |
| 1280 | 2 | 1 | 1 | 3 | 3 | 2 | 3 | 0.0374 | 0.5489 | 0.3965 | 0.0169 | 0.0001 | 0.0002 | -7.8403  |
| 1281 | 1 | 2 | 1 | 3 | 3 | 2 | 3 | 0.0000 | 0.0006 | 0.0223 | 0.5582 | 0.0659 | 0.3530 | -13.7089 |
| 1282 | 2 | 2 | 1 | 3 | 3 | 2 | 3 | 0.0175 | 0.3766 | 0.5692 | 0.0361 | 0.0002 | 0.0005 | -8.6003  |
| 1283 | 1 | 3 | 1 | 3 | 3 | 2 | 3 | 0.0000 | 0.0004 | 0.0151 | 0.4671 | 0.0694 | 0.4480 | -14.0610 |

| 1284 | 2 | 3 | 1 | 3 | 3 | 2 | 3 | 0.0081 | 0.2218 | 0.6934 | 0.0752 | 0.0003 | 0.0011 | -9.2359  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1285 | 1 | 1 | 2 | 3 | 3 | 2 | 3 | 0.0001 | 0.0020 | 0.0755 | 0.7552 | 0.0353 | 0.1319 | -12.6487 |
| 1286 | 2 | 1 | 2 | 3 | 3 | 2 | 3 | 0.0366 | 0.5446 | 0.4012 | 0.0172 | 0.0001 | 0.0002 | -7.8618  |
| 1287 | 1 | 2 | 2 | 3 | 3 | 2 | 3 | 0.0000 | 0.0014 | 0.0521 | 0.7165 | 0.0456 | 0.1844 | -12.9481 |
| 1288 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 0.0171 | 0.3720 | 0.5734 | 0.0368 | 0.0002 | 0.0005 | -8.6191  |
| 1289 | 1 | 3 | 2 | 3 | 3 | 2 | 3 | 0.0000 | 0.0009 | 0.0357 | 0.6558 | 0.0560 | 0.2516 | -13.2785 |
| 1290 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 0.0079 | 0.2183 | 0.6956 | 0.0767 | 0.0003 | 0.0011 | -9.2513  |
| 1291 | 1 | 1 | 3 | 3 | 3 | 2 | 3 | 0.0001 | 0.0049 | 0.1638 | 0.7544 | 0.0176 | 0.0592 | -12.0778 |
| 1292 | 2 | 1 | 3 | 3 | 3 | 2 | 3 | 0.0359 | 0.5403 | 0.4060 | 0.0176 | 0.0001 | 0.0002 | -7.8833  |
| 1293 | 1 | 2 | 3 | 3 | 3 | 2 | 3 | 0.0001 | 0.0033 | 0.1168 | 0.7698 | 0.0245 | 0.0856 | -12.3234 |
| 1294 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 0.0168 | 0.3674 | 0.5776 | 0.0375 | 0.0002 | 0.0005 | -8.6378  |
| 1295 | 1 | 3 | 3 | 3 | 3 | 2 | 3 | 0.0001 | 0.0022 | 0.0818 | 0.7605 | 0.0332 | 0.1222 | -12.5871 |
| 1296 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 0.0078 | 0.2148 | 0.6977 | 0.0782 | 0.0004 | 0.0011 | -9.2667  |
| 1297 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 0.0047 | 0.1417 | 0.7274 | 0.1238 | 0.0006 | 0.0018 | -9.6284  |
| 1298 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 0.2970 | 0.6421 | 0.0593 | 0.0016 | 0.0000 | 0.0000 | -5.3465  |
| 1299 | 1 | 2 | 1 | 1 | 1 | 3 | 3 | 0.0031 | 0.1002 | 0.7197 | 0.1733 | 0.0009 | 0.0027 | -9.9009  |
| 1300 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | 0.1624 | 0.7138 | 0.1202 | 0.0034 | 0.0000 | 0.0000 | -6.1875  |
| 1301 | 1 | 3 | 1 | 1 | 1 | 3 | 3 | 0.0021 | 0.0698 | 0.6858 | 0.2368 | 0.0013 | 0.0041 | -10.1797 |
| 1302 | 2 | 3 | 1 | 1 | 1 | 3 | 3 | 0.0817 | 0.6830 | 0.2277 | 0.0074 | 0.0000 | 0.0001 | -6.9776  |
| 1303 | 1 | 1 | 2 | 1 | 1 | 3 | 3 | 0.0112 | 0.2816 | 0.6507 | 0.0555 | 0.0002 | 0.0008 | -8.9846  |
| 1304 | 2 | 1 | 2 | 1 | 1 | 3 | 3 | 0.2927 | 0.6452 | 0.0604 | 0.0016 | 0.0000 | 0.0000 | -5.3709  |
| 1305 | 1 | 2 | 2 | 1 | 1 | 3 | 3 | 0.0076 | 0.2102 | 0.7005 | 0.0802 | 0.0004 | 0.0011 | -9.2874  |
| 1306 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 0.1596 | 0.7144 | 0.1224 | 0.0035 | 0.0000 | 0.0000 | -6.2088  |
| 1307 | 1 | 3 | 2 | 1 | 1 | 3 | 3 | 0.0051 | 0.1526 | 0.7254 | 0.1147 | 0.0005 | 0.0017 | -9.5681  |
| 1308 | 2 | 3 | 2 | 1 | 1 | 3 | 3 | 0.0802 | 0.6808 | 0.2313 | 0.0076 | 0.0000 | 0.0001 | -6.9991  |
| 1309 | 1 | 1 | 3 | 1 | 1 | 3 | 3 | 0.0266 | 0.4732 | 0.4759 | 0.0238 | 0.0001 | 0.0003 | -8.1936  |
| 1310 | 2 | 1 | 3 | 1 | 1 | 3 | 3 | 0.2884 | 0.6483 | 0.0616 | 0.0016 | 0.0000 | 0.0000 | -5.3952  |
| 1311 | 1 | 2 | 3 | 1 | 1 | 3 | 3 | 0.0181 | 0.3839 | 0.5625 | 0.0349 | 0.0002 | 0.0005 | -8.5708  |
| 1312 | 2 | 2 | 3 | 1 | 1 | 3 | 3 | 0.1568 | 0.7148 | 0.1247 | 0.0036 | 0.0000 | 0.0000 | -6.2300  |
| 1313 | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 0.0122 | 0.2990 | 0.6368 | 0.0511 | 0.0002 | 0.0007 | -8.9138  |
| 1314 | 2 | 3 | 3 | 1 | 1 | 3 | 3 | 0.0787 | 0.6785 | 0.2349 | 0.0078 | 0.0000 | 0.0001 | -7.0206  |
| 1315 | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 0.0006 | 0.0214 | 0.4542 | 0.5055 | 0.0044 | 0.0139 | -11.0961 |
| 1316 | 2 | 1 | 1 | 2 | 1 | 3 | 3 | 0.0526 | 0.6171 | 0.3182 | 0.0119 | 0.0001 | 0.0002 | -7.4678  |
| 1317 | 1 | 2 | 1 | 2 | 1 | 3 | 3 | 0.0004 | 0.0145 | 0.3645 | 0.5937 | 0.0064 | 0.0205 | -11.3785 |
| 1318 | 2 | 2 | 1 | 2 | 1 | 3 | 3 | 0.0248 | 0.4572 | 0.4920 | 0.0255 | 0.0001 | 0.0003 | -8.2638  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---------------------------------------------------------------------------------------|
| Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
| Production Example                                                                    |

| 1319 | 1 | 3 | 1 | 2 | 1 | 3 | 3 | 0.0003 | 0.0098 | 0.2812 | 0.6692 | 0.0093 | 0.0302 | -11.6425 |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1320 | 2 | 3 | 1 | 2 | 1 | 3 | 3 | 0.0116 | 0.2877 | 0.6459 | 0.0539 | 0.0002 | 0.0007 | -8.9595  |
| 1321 | 1 | 1 | 2 | 2 | 1 | 3 | 3 | 0.0015 | 0.0501 | 0.6354 | 0.3053 | 0.0018 | 0.0058 | -10.4379 |
| 1322 | 2 | 1 | 2 | 2 | 1 | 3 | 3 | 0.0516 | 0.6135 | 0.3226 | 0.0121 | 0.0001 | 0.0002 | -7.4896  |
| 1323 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 0.0010 | 0.0343 | 0.5608 | 0.3926 | 0.0027 | 0.0086 | -10.7350 |
| 1324 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 0.0243 | 0.4525 | 0.4967 | 0.0260 | 0.0001 | 0.0003 | -8.2841  |
| 1325 | 1 | 3 | 2 | 2 | 1 | 3 | 3 | 0.0007 | 0.0233 | 0.4741 | 0.4852 | 0.0040 | 0.0127 | -11.0318 |
| 1326 | 2 | 3 | 2 | 2 | 1 | 3 | 3 | 0.0113 | 0.2836 | 0.6491 | 0.0549 | 0.0002 | 0.0008 | -8.9763  |
| 1327 | 1 | 1 | 3 | 2 | 1 | 3 | 3 | 0.0036 | 0.1125 | 0.7252 | 0.1556 | 0.0008 | 0.0024 | -9.8114  |
| 1328 | 2 | 1 | 3 | 2 | 1 | 3 | 3 | 0.0506 | 0.6098 | 0.3270 | 0.0124 | 0.0001 | 0.0002 | -7.5114  |
| 1329 | 1 | 2 | 3 | 2 | 1 | 3 | 3 | 0.0024 | 0.0787 | 0.6997 | 0.2144 | 0.0011 | 0.0036 | -10.0872 |
| 1330 | 2 | 2 | 3 | 2 | 1 | 3 | 3 | 0.0239 | 0.4478 | 0.5014 | 0.0265 | 0.0001 | 0.0004 | -8.3044  |
| 1331 | 1 | 3 | 3 | 2 | 1 | 3 | 3 | 0.0016 | 0.0544 | 0.6495 | 0.2875 | 0.0017 | 0.0053 | -10.3733 |
| 1332 | 2 | 3 | 3 | 2 | 1 | 3 | 3 | 0.0111 | 0.2795 | 0.6523 | 0.0560 | 0.0002 | 0.0008 | -8.9931  |
| 1333 | 1 | 1 | 1 | 3 | 1 | 3 | 3 | 0.0004 | 0.0152 | 0.3751 | 0.5835 | 0.0061 | 0.0195 | -11.3452 |
| 1334 | 2 | 1 | 1 | 3 | 1 | 3 | 3 | 0.0377 | 0.5508 | 0.3945 | 0.0167 | 0.0001 | 0.0002 | -7.8309  |
| 1335 | 1 | 2 | 1 | 3 | 1 | 3 | 3 | 0.0003 | 0.0103 | 0.2908 | 0.6610 | 0.0089 | 0.0288 | -11.6115 |
| 1336 | 2 | 2 | 1 | 3 | 1 | 3 | 3 | 0.0177 | 0.3787 | 0.5673 | 0.0357 | 0.0002 | 0.0005 | -8.5921  |
| 1337 | 1 | 3 | 1 | 3 | 1 | 3 | 3 | 0.0002 | 0.0069 | 0.2177 | 0.7201 | 0.0128 | 0.0422 | -11.8611 |
| 1338 | 2 | 3 | 1 | 3 | 1 | 3 | 3 | 0.0082 | 0.2234 | 0.6925 | 0.0746 | 0.0003 | 0.0011 | -9.2292  |
| 1339 | 1 | 1 | 2 | 3 | 1 | 3 | 3 | 0.0010 | 0.0359 | 0.5707 | 0.3816 | 0.0026 | 0.0082 | -10.6989 |
| 1340 | 2 | 1 | 2 | 3 | 1 | 3 | 3 | 0.0369 | 0.5465 | 0.3992 | 0.0171 | 0.0001 | 0.0002 | -7.8524  |
| 1341 | 1 | 2 | 2 | 3 | 1 | 3 | 3 | 0.0007 | 0.0244 | 0.4849 | 0.4739 | 0.0038 | 0.0121 | -10.9963 |
| 1342 | 2 | 2 | 2 | 3 | 1 | 3 | 3 | 0.0173 | 0.3740 | 0.5716 | 0.0365 | 0.0002 | 0.0005 | -8.6109  |
| 1343 | 1 | 3 | 2 | 3 | 1 | 3 | 3 | 0.0005 | 0.0166 | 0.3947 | 0.5646 | 0.0056 | 0.0179 | -11.2840 |
| 1344 | 2 | 3 | 2 | 3 | 1 | 3 | 3 | 0.0080 | 0.2198 | 0.6947 | 0.0761 | 0.0003 | 0.0011 | -9.2446  |
| 1345 | 1 | 1 | 3 | 3 | 1 | 3 | 3 | 0.0025 | 0.0823 | 0.7042 | 0.2065 | 0.0011 | 0.0034 | -10.0534 |
| 1346 | 2 | 1 | 3 | 3 | 1 | 3 | 3 | 0.0362 | 0.5422 | 0.4039 | 0.0174 | 0.0001 | 0.0002 | -7.8739  |
| 1347 | 1 | 2 | 3 | 3 | 1 | 3 | 3 | 0.0017 | 0.0569 | 0.6568 | 0.2779 | 0.0016 | 0.0051 | -10.3381 |
| 1348 | 2 | 2 | 3 | 3 | 1 | 3 | 3 | 0.0169 | 0.3694 | 0.5758 | 0.0372 | 0.0002 | 0.0005 | -8.6296  |
| 1349 | 1 | 3 | 3 | 3 | 1 | 3 | 3 | 0.0011 | 0.0391 | 0.5881 | 0.3618 | 0.0024 | 0.0075 | -10.6331 |
| 1350 | 2 | 3 | 3 | 3 | 1 | 3 | 3 | 0.0079 | 0.2164 | 0.6968 | 0.0775 | 0.0004 | 0.0011 | -9.2600  |
| 1351 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 0.0022 | 0.0723 | 0.6901 | 0.2302 | 0.0013 | 0.0039 | -10.1529 |
| 1352 | 2 | 1 | 1 | 1 | 2 | 3 | 3 | 0.1655 | 0.7132 | 0.1179 | 0.0034 | 0.0000 | 0.0000 | -6.1647  |
| 1353 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 0.0015 | 0.0499 | 0.6346 | 0.3064 | 0.0019 | 0.0058 | -10.4416 |

| 1354 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 0.0834 | 0.6853 | 0.2238 | 0.0073 | 0.0000 | 0.0001 | -6.9547  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1355 | 1 | 3 | 1 | 1 | 2 | 3 | 3 | 0.0010 | 0.0341 | 0.5598 | 0.3937 | 0.0027 | 0.0086 | -10.7388 |
| 1356 | 2 | 3 | 1 | 1 | 2 | 3 | 3 | 0.0401 | 0.5640 | 0.3799 | 0.0157 | 0.0001 | 0.0002 | -7.7639  |
| 1357 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 0.0053 | 0.1574 | 0.7242 | 0.1109 | 0.0005 | 0.0016 | -9.5422  |
| 1358 | 2 | 1 | 2 | 1 | 2 | 3 | 3 | 0.1626 | 0.7138 | 0.1201 | 0.0034 | 0.0000 | 0.0000 | -6.1860  |
| 1359 | 1 | 2 | 2 | 1 | 2 | 3 | 3 | 0.0036 | 0.1120 | 0.7250 | 0.1562 | 0.0008 | 0.0024 | -9.8149  |
| 1360 | 2 | 2 | 2 | 1 | 2 | 3 | 3 | 0.0819 | 0.6832 | 0.2274 | 0.0074 | 0.0000 | 0.0001 | -6.9762  |
| 1361 | 1 | 3 | 2 | 1 | 2 | 3 | 3 | 0.0024 | 0.0784 | 0.6992 | 0.2153 | 0.0011 | 0.0036 | -10.0908 |
| 1362 | 2 | 3 | 2 | 1 | 2 | 3 | 3 | 0.0393 | 0.5598 | 0.3846 | 0.0160 | 0.0001 | 0.0002 | -7.7856  |
| 1363 | 1 | 1 | 3 | 1 | 2 | 3 | 3 | 0.0127 | 0.3066 | 0.6305 | 0.0493 | 0.0002 | 0.0007 | -8.8829  |
| 1364 | 2 | 1 | 3 | 1 | 2 | 3 | 3 | 0.1598 | 0.7143 | 0.1223 | 0.0035 | 0.0000 | 0.0000 | -6.2073  |
| 1365 | 1 | 2 | 3 | 1 | 2 | 3 | 3 | 0.0086 | 0.2312 | 0.6874 | 0.0715 | 0.0003 | 0.0010 | -9.1950  |
| 1366 | 2 | 2 | 3 | 1 | 2 | 3 | 3 | 0.0803 | 0.6810 | 0.2310 | 0.0076 | 0.0000 | 0.0001 | -6.9976  |
| 1367 | 1 | 3 | 3 | 1 | 2 | 3 | 3 | 0.0058 | 0.1692 | 0.7204 | 0.1026 | 0.0005 | 0.0015 | -9.4813  |
| 1368 | 2 | 3 | 3 | 1 | 2 | 3 | 3 | 0.0385 | 0.5555 | 0.3893 | 0.0164 | 0.0001 | 0.0002 | -7.8072  |
| 1369 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 0.0003 | 0.0102 | 0.2887 | 0.6628 | 0.0090 | 0.0291 | -11.6183 |
| 1370 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 0.0254 | 0.4622 | 0.4870 | 0.0249 | 0.0001 | 0.0003 | -8.2420  |
| 1371 | 1 | 2 | 1 | 2 | 2 | 3 | 3 | 0.0002 | 0.0069 | 0.2159 | 0.7214 | 0.0129 | 0.0427 | -11.8676 |
| 1372 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 0.0118 | 0.2922 | 0.6423 | 0.0527 | 0.0002 | 0.0007 | -8.9415  |
| 1373 | 1 | 3 | 1 | 2 | 2 | 3 | 3 | 0.0001 | 0.0046 | 0.1570 | 0.7577 | 0.0184 | 0.0622 | -12.1090 |
| 1374 | 2 | 3 | 1 | 2 | 2 | 3 | 3 | 0.0055 | 0.1615 | 0.7230 | 0.1079 | 0.0005 | 0.0016 | -9.5205  |
| 1375 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 0.0007 | 0.0242 | 0.4826 | 0.4764 | 0.0039 | 0.0123 | -11.0041 |
| 1376 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 0.0249 | 0.4575 | 0.4917 | 0.0255 | 0.0001 | 0.0003 | -8.2624  |
| 1377 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 0.0005 | 0.0164 | 0.3924 | 0.5669 | 0.0057 | 0.0181 | -11.2914 |
| 1378 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 0.0116 | 0.2880 | 0.6456 | 0.0538 | 0.0002 | 0.0007 | -8.9584  |
| 1379 | 1 | 3 | 2 | 2 | 2 | 3 | 3 | 0.0003 | 0.0111 | 0.3064 | 0.6472 | 0.0083 | 0.0267 | -11.5614 |
| 1380 | 2 | 3 | 2 | 2 | 2 | 3 | 3 | 0.0053 | 0.1588 | 0.7238 | 0.1099 | 0.0005 | 0.0016 | -9.5350  |
| 1381 | 1 | 1 | 3 | 2 | 2 | 3 | 3 | 0.0017 | 0.0564 | 0.6552 | 0.2800 | 0.0016 | 0.0051 | -10.3458 |
| 1382 | 2 | 1 | 3 | 2 | 2 | 3 | 3 | 0.0244 | 0.4528 | 0.4964 | 0.0260 | 0.0001 | 0.0003 | -8.2827  |
| 1383 | 1 | 2 | 3 | 2 | 2 | 3 | 3 | 0.0011 | 0.0387 | 0.5860 | 0.3642 | 0.0024 | 0.0076 | -10.6410 |
| 1384 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 0.0113 | 0.2839 | 0.6489 | 0.0549 | 0.0002 | 0.0008 | -8.9752  |
| 1385 | 1 | 3 | 3 | 2 | 2 | 3 | 3 | 0.0008 | 0.0263 | 0.5022 | 0.4559 | 0.0036 | 0.0112 | -10.9391 |
| 1386 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 0.0052 | 0.1560 | 0.7246 | 0.1120 | 0.0005 | 0.0016 | -9.5495  |
| 1387 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 0.0002 | 0.0072 | 0.2240 | 0.7155 | 0.0124 | 0.0407 | -11.8381 |
| 1388 | 2 | 1 | 1 | 3 | 2 | 3 | 3 | 0.0180 | 0.3836 | 0.5627 | 0.0350 | 0.0002 | 0.0005 | -8.5719  |

**Table B.1 (cont'd).** Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

| Т | Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to |
|---|---------------------------------------------------------------------------------------|
|   | Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor      |
|   | Production Example                                                                    |

| 1389 | 1 | 2 | 1 | 3 | 2 | 3 | 3 | 0.0001 | 0.0049 | 0.1634 | 0.7546 | 0.0176 | 0.0594 | -12.0798 |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1390 | 2 | 2 | 1 | 3 | 2 | 3 | 3 | 0.0084 | 0.2272 | 0.6900 | 0.0731 | 0.0003 | 0.0010 | -9.2126  |
| 1391 | 1 | 3 | 1 | 3 | 2 | 3 | 3 | 0.0001 | 0.0033 | 0.1164 | 0.7698 | 0.0245 | 0.0859 | -12.3256 |
| 1392 | 2 | 3 | 1 | 3 | 2 | 3 | 3 | 0.0039 | 0.1200 | 0.7270 | 0.1461 | 0.0007 | 0.0022 | -9.7606  |
| 1393 | 1 | 1 | 2 | 3 | 2 | 3 | 3 | 0.0005 | 0.0172 | 0.4032 | 0.5564 | 0.0054 | 0.0173 | -11.2575 |
| 1394 | 2 | 1 | 2 | 3 | 2 | 3 | 3 | 0.0177 | 0.3790 | 0.5670 | 0.0357 | 0.0002 | 0.0005 | -8.5908  |
| 1395 | 1 | 2 | 2 | 3 | 2 | 3 | 3 | 0.0003 | 0.0116 | 0.3163 | 0.6383 | 0.0079 | 0.0255 | -11.5297 |
| 1396 | 2 | 2 | 2 | 3 | 2 | 3 | 3 | 0.0082 | 0.2236 | 0.6923 | 0.0745 | 0.0003 | 0.0010 | -9.2281  |
| 1397 | 1 | 3 | 2 | 3 | 2 | 3 | 3 | 0.0002 | 0.0079 | 0.2392 | 0.7038 | 0.0114 | 0.0375 | -11.7840 |
| 1398 | 2 | 3 | 2 | 3 | 2 | 3 | 3 | 0.0038 | 0.1179 | 0.7266 | 0.1487 | 0.0007 | 0.0023 | -9.7749  |
| 1399 | 1 | 1 | 3 | 3 | 2 | 3 | 3 | 0.0012 | 0.0405 | 0.5953 | 0.3535 | 0.0023 | 0.0072 | -10.6049 |
| 1400 | 2 | 1 | 3 | 3 | 2 | 3 | 3 | 0.0173 | 0.3743 | 0.5713 | 0.0364 | 0.0002 | 0.0005 | -8.6096  |
| 1401 | 1 | 2 | 3 | 3 | 2 | 3 | 3 | 0.0008 | 0.0276 | 0.5128 | 0.4446 | 0.0034 | 0.0107 | -10.9032 |
| 1402 | 2 | 2 | 3 | 3 | 2 | 3 | 3 | 0.0080 | 0.2201 | 0.6945 | 0.0760 | 0.0003 | 0.0011 | -9.2435  |
| 1403 | 1 | 3 | 3 | 3 | 2 | 3 | 3 | 0.0005 | 0.0187 | 0.4231 | 0.5368 | 0.0050 | 0.0159 | -11.1951 |
| 1404 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 0.0037 | 0.1157 | 0.7261 | 0.1514 | 0.0007 | 0.0023 | -9.7892  |
| 1405 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 0.0010 | 0.0354 | 0.5675 | 0.3851 | 0.0026 | 0.0083 | -10.7106 |
| 1406 | 2 | 1 | 1 | 1 | 3 | 3 | 3 | 0.0852 | 0.6875 | 0.2201 | 0.0071 | 0.0000 | 0.0001 | -6.9319  |
| 1407 | 1 | 2 | 1 | 1 | 3 | 3 | 3 | 0.0007 | 0.0241 | 0.4814 | 0.4776 | 0.0039 | 0.0123 | -11.0078 |
| 1408 | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 0.0410 | 0.5685 | 0.3749 | 0.0154 | 0.0001 | 0.0002 | -7.7408  |
| 1409 | 1 | 3 | 1 | 1 | 3 | 3 | 3 | 0.0005 | 0.0163 | 0.3912 | 0.5680 | 0.0057 | 0.0182 | -11.2950 |
| 1410 | 2 | 3 | 1 | 1 | 3 | 3 | 3 | 0.0192 | 0.3981 | 0.5492 | 0.0329 | 0.0001 | 0.0004 | -8.5125  |
| 1411 | 1 | 1 | 2 | 1 | 3 | 3 | 3 | 0.0025 | 0.0811 | 0.7028 | 0.2091 | 0.0011 | 0.0035 | -10.0644 |
| 1412 | 2 | 1 | 2 | 1 | 3 | 3 | 3 | 0.0835 | 0.6855 | 0.2236 | 0.0073 | 0.0000 | 0.0001 | -6.9533  |
| 1413 | 1 | 2 | 2 | 1 | 3 | 3 | 3 | 0.0017 | 0.0561 | 0.6544 | 0.2810 | 0.0016 | 0.0051 | -10.3495 |
| 1414 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 0.0402 | 0.5643 | 0.3796 | 0.0157 | 0.0001 | 0.0002 | -7.7625  |
| 1415 | 1 | 3 | 2 | 1 | 3 | 3 | 3 | 0.0011 | 0.0385 | 0.5850 | 0.3653 | 0.0024 | 0.0076 | -10.6448 |
| 1416 | 2 | 3 | 2 | 1 | 3 | 3 | 3 | 0.0188 | 0.3934 | 0.5536 | 0.0335 | 0.0001 | 0.0005 | -8.5318  |
| 1417 | 1 | 1 | 3 | 1 | 3 | 3 | 3 | 0.0060 | 0.1745 | 0.7184 | 0.0993 | 0.0005 | 0.0014 | -9.4550  |
| 1418 | 2 | 1 | 3 | 1 | 3 | 3 | 3 | 0.0820 | 0.6833 | 0.2272 | 0.0074 | 0.0000 | 0.0001 | -6.9747  |
| 1419 | 1 | 2 | 3 | 1 | 3 | 3 | 3 | 0.0040 | 0.1249 | 0.7277 | 0.1406 | 0.0007 | 0.0021 | -9.7292  |
| 1420 | 2 | 2 | 3 | 1 | 3 | 3 | 3 | 0.0394 | 0.5601 | 0.3843 | 0.0160 | 0.0001 | 0.0002 | -7.7841  |
| 1421 | 1 | 3 | 3 | 1 | 3 | 3 | 3 | 0.0027 | 0.0878 | 0.7101 | 0.1951 | 0.0010 | 0.0032 | -10.0030 |
| 1422 | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 0.0185 | 0.3887 | 0.5580 | 0.0342 | 0.0001 | 0.0005 | -8.5509  |
| 1423 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 0.0001 | 0.0048 | 0.1620 | 0.7553 | 0.0178 | 0.0600 | -12.0862 |

| 1424 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 0.0121 | 0.2967 | 0.6387 | 0.0516 | 0.0002 | 0.0007 | -8.9233  |
|------|---|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|
| 1425 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 0.0001 | 0.0032 | 0.1154 | 0.7698 | 0.0247 | 0.0867 | -12.3323 |
| 1426 | 2 | 2 | 1 | 2 | 3 | 3 | 3 | 0.0056 | 0.1645 | 0.7220 | 0.1058 | 0.0005 | 0.0015 | -9.5050  |
| 1427 | 1 | 3 | 1 | 2 | 3 | 3 | 3 | 0.0001 | 0.0022 | 0.0808 | 0.7597 | 0.0335 | 0.1237 | -12.5967 |
| 1428 | 2 | 3 | 1 | 2 | 3 | 3 | 3 | 0.0026 | 0.0834 | 0.7055 | 0.2040 | 0.0011 | 0.0034 | -10.0424 |
| 1429 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 0.0003 | 0.0115 | 0.3141 | 0.6403 | 0.0080 | 0.0258 | -11.5367 |
| 1430 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 0.0118 | 0.2925 | 0.6421 | 0.0527 | 0.0002 | 0.0007 | -8.9403  |
| 1431 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 0.0002 | 0.0078 | 0.2374 | 0.7052 | 0.0116 | 0.0378 | -11.7905 |
| 1432 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 0.0055 | 0.1617 | 0.7229 | 0.1078 | 0.0005 | 0.0016 | -9.5196  |
| 1433 | 1 | 3 | 2 | 2 | 3 | 3 | 3 | 0.0001 | 0.0052 | 0.1740 | 0.7489 | 0.0165 | 0.0553 | -12.0331 |
| 1434 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 0.0025 | 0.0819 | 0.7037 | 0.2074 | 0.0011 | 0.0034 | -10.0571 |
| 1435 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 0.0008 | 0.0273 | 0.5105 | 0.4471 | 0.0034 | 0.0108 | -10.9111 |
| 1436 | 2 | 1 | 3 | 2 | 3 | 3 | 3 | 0.0116 | 0.2883 | 0.6454 | 0.0537 | 0.0002 | 0.0007 | -8.9572  |
| 1437 | 1 | 2 | 3 | 2 | 3 | 3 | 3 | 0.0005 | 0.0185 | 0.4207 | 0.5392 | 0.0050 | 0.0160 | -11.2026 |
| 1438 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 0.0054 | 0.1590 | 0.7238 | 0.1098 | 0.0005 | 0.0016 | -9.5341  |
| 1439 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 0.0004 | 0.0126 | 0.3326 | 0.6235 | 0.0074 | 0.0237 | -11.4785 |
| 1440 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 0.0025 | 0.0803 | 0.7018 | 0.2108 | 0.0011 | 0.0035 | -10.0718 |
| 1441 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 0.0001 | 0.0034 | 0.1203 | 0.7694 | 0.0238 | 0.0830 | -12.3018 |
| 1442 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 0.0086 | 0.2310 | 0.6875 | 0.0716 | 0.0003 | 0.0010 | -9.1959  |
| 1443 | 1 | 2 | 1 | 3 | 3 | 3 | 3 | 0.0001 | 0.0023 | 0.0844 | 0.7623 | 0.0323 | 0.1186 | -12.5634 |
| 1444 | 2 | 2 | 1 | 3 | 3 | 3 | 3 | 0.0039 | 0.1224 | 0.7274 | 0.1434 | 0.0007 | 0.0022 | -9.7453  |
| 1445 | 1 | 3 | 1 | 3 | 3 | 3 | 3 | 0.0000 | 0.0015 | 0.0585 | 0.7308 | 0.0424 | 0.1668 | -12.8530 |
| 1446 | 2 | 3 | 1 | 3 | 3 | 3 | 3 | 0.0018 | 0.0604 | 0.6659 | 0.2656 | 0.0015 | 0.0048 | -10.2917 |
| 1447 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 0.0002 | 0.0082 | 0.2460 | 0.6984 | 0.0111 | 0.0361 | -11.7606 |
| 1448 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | 0.0084 | 0.2274 | 0.6899 | 0.0730 | 0.0003 | 0.0010 | -9.2115  |
| 1449 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 0.0002 | 0.0055 | 0.1809 | 0.7448 | 0.0158 | 0.0528 | -12.0040 |
| 1450 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 0.0039 | 0.1202 | 0.7270 | 0.1460 | 0.0007 | 0.0022 | -9.7596  |
| 1451 | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 0.0001 | 0.0037 | 0.1298 | 0.7677 | 0.0222 | 0.0766 | -12.2469 |
| 1452 | 2 | 3 | 2 | 3 | 3 | 3 | 3 | 0.0018 | 0.0593 | 0.6630 | 0.2696 | 0.0015 | 0.0049 | -10.3069 |
| 1453 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 0.0006 | 0.0194 | 0.4316 | 0.5283 | 0.0048 | 0.0153 | -11.1681 |
| 1454 | 2 | 1 | 3 | 3 | 3 | 3 | 3 | 0.0082 | 0.2239 | 0.6921 | 0.0744 | 0.0003 | 0.0010 | -9.2270  |
| 1455 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 0.0004 | 0.0132 | 0.3429 | 0.6140 | 0.0070 | 0.0226 | -11.4461 |
| 1456 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 0.0038 | 0.1180 | 0.7266 | 0.1486 | 0.0007 | 0.0023 | -9.7739  |
| 1457 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 0.0003 | 0.0089 | 0.2622 | 0.6853 | 0.0102 | 0.0332 | -11.7056 |
| 1458 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 0.0017 | 0.0581 | 0.6600 | 0.2736 | 0.0016 | 0.0050 | -10.3222 |

 Table B.1 (cont'd). Estimated Probabilities of Observing a Category and the Signal to

 Noise Ratios based on Ordinal Logistic Regression Models for Thick-film Resistor

 Production Example

# **B.2** Results of Accumulation Analysis Method in Thick-film Resistor Production Example

| Evn No  | Cum  | ulative Fre | equencies fo | or the Cun | ulative Ca | tegories |
|---------|------|-------------|--------------|------------|------------|----------|
| Exp. No | Ι    | II          | III          | IV         | V          | VI       |
| 1       | 256  | 2506        | 5297         | 5634       | 5639       | 5670     |
| 2       | 0    | 51          | 1842         | 5667       | 5670       | 5670     |
| 3       | 1    | 181         | 2585         | 5666       | 5670       | 5670     |
| 4       | 0    | 70          | 2155         | 5659       | 5660       | 5670     |
| 5       | 9    | 242         | 3907         | 5640       | 5643       | 5670     |
| 6       | 32   | 648         | 4526         | 5630       | 5667       | 5670     |
| 7       | 3    | 119         | 3064         | 5442       | 5650       | 5670     |
| 8       | 0    | 1           | 177          | 5654       | 5670       | 5670     |
| 9       | 17   | 342         | 5641         | 5666       | 5666       | 5670     |
| 10      | 448  | 4771        | 5663         | 5669       | 5669       | 5670     |
| 11      | 1993 | 4791        | 5350         | 5364       | 5364       | 5670     |
| 12      | 1362 | 5588        | 5626         | 5627       | 5627       | 5670     |
| 13      | 13   | 1085        | 5655         | 5661       | 5661       | 5670     |
| 14      | 2020 | 4743        | 5229         | 5303       | 5305       | 5670     |
| 15      | 768  | 5150        | 5635         | 5646       | 5646       | 5670     |
| 16      | 313  | 3048        | 5639         | 5658       | 5658       | 5670     |
| 17      | 19   | 4016        | 5083         | 5085       | 5085       | 5103     |
| 18      | 249  | 4004        | 5617         | 5670       | 5670       | 5670     |

**Table B.2.** Cumulative Frequencies for the Cumulative Categories for Thick-film Resistor

 Production Example

|                       |      |       | Freque | encies |     |     |      | Cum   | nulative | Freque | ncies |       |
|-----------------------|------|-------|--------|--------|-----|-----|------|-------|----------|--------|-------|-------|
| Categories<br>Factors | Ι    | Π     | III    | IV     | V   | VI  | Ι    | II    | ш        | IV     | V     | VI    |
| A <sub>1</sub>        | 318  | 3842  | 25034  | 21464  | 277 | 95  | 318  | 4160  | 29194    | 50658  | 50935 | 51030 |
| $A_2$                 | 7185 | 30011 | 12301  | 186    | 2   | 778 | 7185 | 37196 | 49497    | 49683  | 49685 | 50463 |
| <b>B</b> <sub>1</sub> | 4060 | 13828 | 8475   | 7264   | 12  | 381 | 4060 | 17888 | 26363    | 33627  | 33639 | 34020 |
| <b>B</b> <sub>2</sub> | 2842 | 9096  | 15169  | 6432   | 43  | 438 | 2842 | 11938 | 27107    | 33539  | 33582 | 34020 |
| <b>B</b> <sub>3</sub> | 601  | 10929 | 13691  | 7954   | 224 | 54  | 601  | 11530 | 25221    | 33175  | 33399 | 33453 |
| C1                    | 1033 | 10566 | 15874  | 6250   | 214 | 83  | 1033 | 11599 | 27473    | 33723  | 33937 | 34020 |
| C <sub>2</sub>        | 4041 | 9803  | 7744   | 11125  | 24  | 716 | 4041 | 13844 | 21588    | 32713  | 32737 | 33453 |
| C <sub>3</sub>        | 2429 | 13484 | 13717  | 4275   | 41  | 74  | 2429 | 15913 | 29630    | 33905  | 33946 | 34020 |
| $\mathbf{D}_1$        | 3053 | 13822 | 12286  | 3893   | 6   | 393 | 3053 | 16875 | 29161    | 33054  | 33060 | 33453 |
| <b>D</b> <sub>2</sub> | 1636 | 9453  | 14622  | 7996   | 214 | 99  | 1636 | 11089 | 25711    | 33707  | 33921 | 34020 |
| <b>D</b> <sub>3</sub> | 2814 | 10578 | 10427  | 9761   | 59  | 381 | 2814 | 13392 | 23819    | 33580  | 33639 | 34020 |
| E <sub>1</sub>        | 4553 | 12258 | 12272  | 3960   | 252 | 725 | 4553 | 16811 | 29083    | 33043  | 33295 | 34020 |
| E <sub>2</sub>        | 2443 | 11465 | 7166   | 12837  | 20  | 89  | 2443 | 13908 | 21074    | 33911  | 33931 | 34020 |
| E <sub>3</sub>        | 507  | 10130 | 17897  | 4853   | 7   | 59  | 507  | 10637 | 28534    | 33387  | 33394 | 33453 |
| F <sub>1</sub>        | 1682 | 12162 | 12520  | 6927   | 58  | 104 | 1682 | 13844 | 26364    | 33291  | 33349 | 33453 |
| F <sub>2</sub>        | 2734 | 11247 | 12166  | 7487   | 6   | 380 | 2734 | 13981 | 26147    | 33634  | 33640 | 34020 |
| F <sub>3</sub>        | 3087 | 10444 | 12649  | 7236   | 215 | 389 | 3087 | 13531 | 26180    | 33416  | 33631 | 34020 |
| G1                    | 3977 | 12492 | 14870  | 2189   | 10  | 482 | 3977 | 16469 | 31339    | 33528  | 33538 | 34020 |
| G <sub>2</sub>        | 1270 | 13485 | 11058  | 7326   | 248 | 66  | 1270 | 14755 | 25813    | 33139  | 33387 | 33453 |
| G <sub>3</sub>        | 2256 | 7876  | 11407  | 12135  | 21  | 325 | 2256 | 10132 | 21539    | 33674  | 33695 | 34020 |
| $A_1B_1$              | 257  | 2481  | 6986   | 7243   | 12  | 31  | 257  | 2738  | 9724     | 16967  | 16979 | 17010 |

**Table B.3.** Cumulative Rates of Occurrences for the Cumulative Categories for Thick-film Resistor Production Example

| $A_1B_2$ | 41   | 919   | 9628  | 6341  | 41  | 40  | 41   | 960   | 10588 | 16929 | 16970 | 17010 |
|----------|------|-------|-------|-------|-----|-----|------|-------|-------|-------|-------|-------|
| $A_1B_3$ | 20   | 442   | 8420  | 7880  | 224 | 24  | 20   | 462   | 8882  | 16762 | 16986 | 17010 |
| $A_2B_1$ | 3803 | 11347 | 1489  | 21    | 0   | 350 | 3803 | 15150 | 16639 | 16660 | 16660 | 17010 |
| $A_2B_2$ | 2801 | 8177  | 5541  | 91    | 2   | 398 | 2801 | 10978 | 16519 | 16610 | 16612 | 17010 |
| $A_2B_3$ | 581  | 10487 | 5271  | 74    | 0   | 30  | 581  | 11068 | 16339 | 16413 | 16413 | 16443 |
| $A_1C_1$ | 259  | 2436  | 7821  | 6219  | 214 | 61  | 259  | 2695  | 10516 | 16735 | 16949 | 17010 |
| $A_1C_2$ | 9    | 285   | 5632  | 11035 | 22  | 27  | 9    | 294   | 5926  | 16961 | 16983 | 17010 |
| $A_1C_3$ | 50   | 1121  | 11581 | 4210  | 41  | 7   | 50   | 1171  | 12752 | 16962 | 17003 | 17010 |
| $A_2C_1$ | 774  | 8130  | 8053  | 31    | 0   | 22  | 774  | 8904  | 16957 | 16988 | 16988 | 17010 |
| $A_2C_2$ | 4032 | 9518  | 2112  | 90    | 2   | 689 | 4032 | 13550 | 15662 | 15752 | 15754 | 16443 |
| $A_2C_3$ | 2379 | 12363 | 2136  | 65    | 0   | 67  | 2379 | 14742 | 16878 | 16943 | 16943 | 17010 |
| $A_1F_1$ | 288  | 2867  | 6845  | 6918  | 58  | 34  | 288  | 3155  | 10000 | 16918 | 16976 | 17010 |
| $A_1F_2$ | 17   | 446   | 9175  | 7354  | 4   | 14  | 17   | 463   | 9638  | 16992 | 16996 | 17010 |
| $A_1F_3$ | 13   | 529   | 9014  | 7192  | 215 | 47  | 13   | 542   | 9556  | 16748 | 16963 | 17010 |
| $A_2F_1$ | 1394 | 9295  | 5675  | 9     | 0   | 70  | 1394 | 10689 | 16364 | 16373 | 16373 | 16443 |
| $A_2F_2$ | 2717 | 10801 | 2991  | 133   | 2   | 366 | 2717 | 13518 | 16509 | 16642 | 16644 | 17010 |
| $A_2F_3$ | 3074 | 9915  | 3635  | 44    | 0   | 342 | 3074 | 12989 | 16624 | 16668 | 16668 | 17010 |

 Table B.3. (cont'd) Cumulative Rates of Occurrences for the Cumulative Categories for Thick-film Resistor Production Example

| Table B.4. | Veights, Correction Factors and Proportions of Cumulative Frequencies in |
|------------|--------------------------------------------------------------------------|
|            | elevant Category for Thick-film Resistor Production Example              |

| VALUES                                                             |          | C          | CATEGORIE  | S          |            |
|--------------------------------------------------------------------|----------|------------|------------|------------|------------|
| VALUES                                                             | Ι        | II         | III        | IV         | V          |
| Weights (W)                                                        | 14.6068  | 4.1418     | 5.7408     | 89.1130    | 117.2664   |
| Correction Factors (CF)                                            | 554.6689 | 16851.5931 | 61011.8282 | 99202.0758 | 99754.5092 |
| Proportions of<br>cumulative frequency<br>in relevant category (P) | 0.0739   | 0.4075     | 0.7753     | 0.9886     | 0.9914     |

# **Table B.5.** Sum of Squares for Each Factor and Category for Thick-film Resistor Production Example

| Categories<br>Factors | I         | II         | III        | IV         | V          |
|-----------------------|-----------|------------|------------|------------|------------|
| Α                     | 1024.9931 | 27756.0932 | 65251.2288 | 99203.7682 | 99759.1715 |
| В                     | 732.7421  | 17568.7985 | 61042.8394 | 99202.6509 | 99756.9933 |
| С                     | 692.9331  | 17127.1346 | 61923.6739 | 99208.3508 | 99762.6881 |
| D                     | 590.0612  | 17398.6992 | 61527.8410 | 99202.3295 | 99756.1719 |
| E                     | 792.4593  | 17375.2404 | 62255.2421 | 99217.5373 | 99762.7874 |
| F                     | 584.4033  | 16856.5864 | 61019.9645 | 99204.8877 | 99756.0159 |
| G                     | 662.7367  | 17498.1014 | 62424.0393 | 99202.5816 | 99757.0640 |
| A×B                   | 1336.0224 | 28535.8880 | 65341.2149 | 99209.7728 | 99763.7532 |
| A×C                   | 1360.7284 | 29115.9378 | 66694.9308 | 99223.0534 | 99776.4276 |
| A×F                   | 1112.5932 | 28224.9936 | 65263.1948 | 99208.6878 | 99762.2587 |

| Footors | Lovola |         |         | Cate    | gories  |         |          |
|---------|--------|---------|---------|---------|---------|---------|----------|
| ractors | Levels | Ι       | II      | III     | IV      | V       | VI       |
| •       | 1      | 0.6232  | 8.1521  | 57.2095 | 99.2710 | 99.8138 | 100.0000 |
| A       | 2      | 14.2382 | 73.7095 | 98.0857 | 98.4543 | 98.4583 | 100.0000 |
|         | 1      | 11.9342 | 52.5808 | 77.4927 | 98.8448 | 98.8801 | 100.0000 |
| В       | 2      | 8.3539  | 35.0911 | 79.6796 | 98.5861 | 98.7125 | 100.0000 |
|         | 3      | 1.7966  | 34.4663 | 75.3923 | 99.1690 | 99.8386 | 100.0000 |
|         | 1      | 3.0364  | 34.0947 | 80.7554 | 99.1270 | 99.7560 | 100.0000 |
| С       | 2      | 12.0796 | 41.3834 | 64.5323 | 97.7879 | 97.8597 | 100.0000 |
|         | 3      | 7.1399  | 46.7754 | 87.0958 | 99.6620 | 99.7825 | 100.0000 |
|         | 1      | 9.1262  | 50.4439 | 87.1701 | 98.8073 | 98.8252 | 100.0000 |
| D       | 2      | 4.8089  | 32.5955 | 75.5761 | 99.0800 | 99.7090 | 100.0000 |
|         | 3      | 8.2716  | 39.3651 | 70.0147 | 98.7066 | 98.8801 | 100.0000 |
|         | 1      | 13.3833 | 49.4150 | 85.4879 | 97.1282 | 97.8689 | 100.0000 |
| Ε       | 2      | 7.1811  | 40.8818 | 61.9459 | 99.6796 | 99.7384 | 100.0000 |
|         | 3      | 1.5156  | 31.7968 | 85.2958 | 99.8027 | 99.8236 | 100.0000 |
|         | 1      | 5.0279  | 41.3834 | 78.8091 | 99.5157 | 99.6891 | 100.0000 |
| F       | 2      | 8.0364  | 41.0964 | 76.8577 | 98.8654 | 98.8830 | 100.0000 |
|         | 3      | 9.0741  | 39.7737 | 76.9547 | 98.2246 | 98.8566 | 100.0000 |
|         | 1      | 11.6902 | 48.4098 | 92.1193 | 98.5538 | 98.5832 | 100.0000 |
| G       | 2      | 3.7964  | 44.1067 | 77.1620 | 99.0614 | 99.8027 | 100.0000 |
|         | 3      | 6.6314  | 29.7825 | 63.3128 | 98.9830 | 99.0447 | 100.0000 |
|         | 1×1    | 1.5109  | 16.0964 | 57.1664 | 99.7472 | 99.8178 | 100.0000 |
|         | 1×2    | 0.2410  | 5.6437  | 62.2457 | 99.5238 | 99.7648 | 100.0000 |
| Δ×Β     | 1×3    | 0.1176  | 2.7160  | 52.2163 | 98.5420 | 99.8589 | 100.0000 |
| АЛД     | 2×1    | 22.3574 | 89.0653 | 97.8189 | 97.9424 | 97.9424 | 100.0000 |
|         | 2×2    | 16.4668 | 64.5385 | 97.1135 | 97.6484 | 97.6602 | 100.0000 |
|         | 2×3    | 3.5334  | 67.3113 | 99.3675 | 99.8176 | 99.8176 | 100.0000 |
|         | 1×1    | 1.5226  | 15.8436 | 61.8225 | 98.3833 | 99.6414 | 100.0000 |
|         | 1×2    | 0.0529  | 1.7284  | 34.8383 | 99.7119 | 99.8413 | 100.0000 |
| A×C     | 1×3    | 0.2939  | 6.8842  | 74.9677 | 99.7178 | 99.9588 | 100.0000 |
| Ant     | 2×1    | 4.5503  | 52.3457 | 99.6884 | 99.8707 | 99.8707 | 100.0000 |
|         | 2×2    | 24.5211 | 82.4059 | 95.2503 | 95.7976 | 95.8098 | 100.0000 |
|         | 2×3    | 13.9859 | 86.6667 | 99.2240 | 99.6061 | 99.6061 | 100.0000 |

**Table B.6.** Estimated Frequencies for each Category and each Factor and Total Estimated

 Frequencies for each Category for Thick-film Resistor Production Example

|     | 1×1 | 1.6931  | 18.5479 | 58.7889 | 99.4591 | 99.8001 | 100.0000 |
|-----|-----|---------|---------|---------|---------|---------|----------|
|     | 1×2 | 0.0999  | 2.7219  | 56.6608 | 99.8942 | 99.9177 | 100.0000 |
| AxE | 1×3 | 0.0764  | 3.1864  | 56.1787 | 98.4597 | 99.7237 | 100.0000 |
| A^r | 2×1 | 8.4778  | 65.0064 | 99.5196 | 99.5743 | 99.5743 | 100.0000 |
|     | 2×2 | 15.9730 | 79.4709 | 97.0547 | 97.8366 | 97.8483 | 100.0000 |
|     | 2×3 | 18.0717 | 76.3610 | 97.7307 | 97.9894 | 97.9894 | 100.0000 |
| ТОТ | TAL | 7.39    | 40.75   | 77.53   | 98.86   | 99.14   | 100.00   |

**Table B.6. (cont'd)** Estimated Frequencies for each Category and each Factor and Total

 Estimated Frequencies for each Category for Thick-film Resistor Production Example

| Table B.7. Logit Transformation Values for Estimated Frequencies and Overall Estimated |
|----------------------------------------------------------------------------------------|
| Frequencies for each Category for Thick-film Resistor Production Example               |

| Factors             | Lovolo |          |          | Catego  | ries    |         |          |
|---------------------|--------|----------|----------|---------|---------|---------|----------|
| r actors            | Levels | Ι        | II       | III     | IV      | V       | VI       |
| ٨                   | 1      | -22.0349 | -10.5168 | 1.2616  | 21.3494 | 27.3971 | $\infty$ |
| Factors A B C D E F | 2      | -7.7972  | 4.4772   | 17.0965 | 18.0432 | 18.0432 | $\infty$ |
|                     | 1      | -8.6790  | 0.4487   | 5.3692  | 19.3271 | 19.4620 | $\infty$ |
| В                   | 2      | -10.4013 | -2.6697  | 5.9345  | 18.4089 | 18.8480 | x        |
|                     | 3      | -17.3756 | -2.7894  | 4.8622  | 20.7740 | 28.1448 | $\infty$ |
|                     | 1      | -15.0425 | -2.8611  | 6.2285  | 20.5573 | 26.2044 | x        |
| С                   | 2      | -8.6194  | -1.5110  | 2.5991  | 16.4552 | 16.6026 | $\infty$ |
|                     | 3      | -11.1407 | -0.5602  | 8.2924  | 24.7395 | 26.6721 | $\infty$ |
|                     | 1      | -9.9804  | 0.0769   | 8.3213  | 19.1839 | 19.2523 | x        |
| D                   | 2      | -12.9646 | -3.1539  | 4.9055  | 20.3256 | 25.3749 | $\infty$ |
|                     | 3      | -10.4482 | -1.8753  | 3.6829  | 18.8272 | 19.4620 | $\infty$ |
|                     | 1      | -8.1093  | -0.1005  | 7.7018  | 15.2923 | 16.6216 | $\infty$ |
| Ε                   | 2      | -11.1135 | -1.6013  | 2.1163  | 24.9602 | 25.8938 | x        |
|                     | 3      | -18.1277 | -3.3136  | 7.6346  | 27.0624 | 27.6925 | $\infty$ |
|                     | 1      | -12.7616 | -1.5110  | 5.7044  | 23.1418 | 25.0793 | $\infty$ |
| F                   | 2      | -10.5845 | -1.5626  | 5.2157  | 19.4058 | 19.4731 | $\infty$ |
|                     | 3      | -10.0077 | -1.8007  | 5.2389  | 17.4302 | 19.3722 | $\infty$ |
|                     | 1      | -8.7811  | -0.2753  | 10.6776 | 18.3204 | 18.4010 | 00       |
| G                   | 2      | -14.0373 | -1.0278  | 5.2875  | 20.2397 | 27.0624 | x        |
|                     | 3      | -11.4850 | -3.7237  | 2.3694  | 19.8849 | 20.1625 | $\infty$ |

|              | 1×1 | -18.1410 | -7.1692  | 1.2540  | 26.0491 | 27.5177  | $\infty$ |
|--------------|-----|----------|----------|---------|---------|----------|----------|
|              | 1×2 | -26.2564 | -12.2312 | 2.1712  | 26.3597 | 26.3597  | $\infty$ |
|              | 1×3 | -29.4644 | -15.5401 | 0.3849  | 18.2881 | 28.7568  | x        |
| A^D          | 2×1 | -5.4057  | 9.1094   | 16.5181 | 16.7776 | 16.7776  | $\infty$ |
|              | 2×2 | -7.0516  | 2.6003   | 15.2692 | 16.1840 | 16.2064  | $\infty$ |
|              | 2×3 | -14.3449 | 3.1371   | 21.9733 | 27.5116 | 27.5116  | $\infty$ |
|              | 1×1 | -18.1078 | -7.2516  | 2.0933  | 17.8442 | 24.4812  | $\infty$ |
|              | 1×2 | x        | -17.5481 | -2.7187 | 25.4260 | 28.2262  | $\infty$ |
|              | 1×3 | -25.3227 | -11.3107 | 4.7636  | 25.5302 | x        | $\infty$ |
| A^C          | 2×1 | -13.2167 | 0.4078   | 25.0705 | 29.1126 | 29.1126  | $\infty$ |
|              | 2×2 | -4.8819  | 6.7058   | 13.0223 | 13.5784 | 13.5917  | $\infty$ |
|              | 2×3 | -7.8881  | 8.1293   | 21.0744 | 24.0385 | 24.0385  | $\infty$ |
|              | 1×1 | -17.6385 | -6.4251  | 1.5430  | 22.6630 | 26.9840  | 8<br>S   |
|              | 1×2 | $\infty$ | -15.5305 | 1.1639  | 29.8211 | $\infty$ | $\infty$ |
| A <b>∠</b> F | 1×3 | $\infty$ | -14.8254 | 1.0792  | 18.0585 | 25.6343  | $\infty$ |
| A^r          | 2×1 | -10.3314 | 2.6893   | 23.1797 | 23.7119 | 23.7119  | $\infty$ |
| -            | 2×2 | -7.2096  | 5.8784   | 15.1796 | 16.5548 | 16.5790  | $\infty$ |
|              | 2×3 | -6.5632  | 5.0926   | 16.3425 | 16.8791 | 16.8791  | x        |
| ТОТ          | ΓAL | -10.98   | -1.63    | 5.38    | 19.39   | 20.62    | x        |

**Table B.7. (cont'd)** Logit Transformation Values for Estimated Frequencies and Overall

 Estimated Frequencies for each Category for Thick-film Resistor Production Example

# **B.3** Results of Weighted Signal-to-noise Ratio Method in Thick-film Resistor Production Example

## Table B.8. Weighted Signal to Noise Ratios for Resistors for Thick-film Resistor Production Example

| Exp. |     | SND  |      |      |   |    |          |
|------|-----|------|------|------|---|----|----------|
| No   | Ι   | II   | III  | IV   | V | VI | SINK     |
| 1    | 256 | 2250 | 2791 | 337  | 5 | 31 | -8.5929  |
| 2    | 0   | 51   | 1791 | 3825 | 3 | 0  | -11.3627 |
| 3    | 1   | 180  | 2404 | 3081 | 4 | 0  | -11.0226 |
| 4    | 0   | 70   | 2085 | 3504 | 1 | 10 | -11.2433 |

| 5  | 9    | 233  | 3665 | 1733 | 3   | 27  | -10.4369 |
|----|------|------|------|------|-----|-----|----------|
| 6  | 32   | 616  | 3878 | 1104 | 37  | 3   | -9.9534  |
| 7  | 3    | 116  | 2945 | 2378 | 208 | 20  | -10.9731 |
| 8  | 0    | 1    | 176  | 5477 | 16  | 0   | -11.9882 |
| 9  | 17   | 325  | 5299 | 25   | 0   | 4   | -9.4148  |
| 10 | 448  | 4323 | 892  | 6    | 0   | 1   | -6.5972  |
| 11 | 1993 | 2798 | 559  | 14   | 0   | 306 | -7.1559  |
| 12 | 1362 | 4226 | 38   | 1    | 0   | 43  | -5.5117  |
| 13 | 13   | 1072 | 4570 | 6    | 0   | 9   | -9.0777  |
| 14 | 2020 | 2723 | 486  | 74   | 2   | 365 | -7.4693  |
| 15 | 768  | 4382 | 485  | 11   | 0   | 24  | -6.2118  |
| 16 | 313  | 2735 | 2591 | 19   | 0   | 12  | -7.9429  |
| 17 | 19   | 3997 | 1067 | 2    | 0   | 18  | -7.1197  |
| 18 | 249  | 3755 | 1613 | 53   | 0   | 0   | -7.3262  |

 Table B.8. (cont'd) Weighted Signal to Noise Ratios for Resistors for Thick-film Resistor

 Production Example

 Table B.9. Averages of Weighted Signal-to-noise Ratios for each Level of Factors for

 Thick-film Resistor Production Example

| IEVEIS | FACTORS  |         |         |         |  |  |  |
|--------|----------|---------|---------|---------|--|--|--|
|        | Α        | С       | D       | G       |  |  |  |
| 1      | -10.5542 | -9.0712 | -8.2897 | -8.2281 |  |  |  |
| 2      | -7.1569  | -9.2554 | -9.1147 | -8.7030 |  |  |  |
| 3      |          | -8.2401 | -9.1623 | -9.6356 |  |  |  |

#### B.4 Results of Scoring Scheme Method in Thick-film Resistor Production Example

|                    | CATEGORIES |         |        |        |        |        |  |
|--------------------|------------|---------|--------|--------|--------|--------|--|
|                    | Ι          | II      | III    | IV     | V      | VI     |  |
| $q_i$              | 0.0739     | 0.3336  | 0.3679 | 0.2133 | 0.0027 | 0.0086 |  |
| $	au_{\mathrm{i}}$ | 0.0370     | 0.2407  | 0.5914 | 0.8820 | 0.9900 | 0.9957 |  |
| $\tilde{\tau_i}$   | -0.4630    | -0.2593 | 0.0914 | 0.3820 | 0.4900 | 0.4957 |  |
| $l_i$              | -1.6880    | -0.9453 | 0.3332 | 1.3925 | 1.7863 | 1.8070 |  |

 Table B.10. Calculated Data and Location Scores for Thick-film Resistor Production

 Example

 Table B.11. Calculated Data and Dispersion Scores for Thick-film Resistor Production

 Example

|    |        | CATEGORIES |         |        |        |        |  |  |  |  |  |  |
|----|--------|------------|---------|--------|--------|--------|--|--|--|--|--|--|
|    | Ι      | II         | III     | IV     | V      | VI     |  |  |  |  |  |  |
| ei | 1.8809 | -0.0887    | -0.8952 | 0.9129 | 2.1574 | 2.2314 |  |  |  |  |  |  |
| di | 2.1130 | -0.0997    | -1.0057 | 1.0256 | 2.4236 | 2.5067 |  |  |  |  |  |  |

 
 Table B.12. Location and Dispersion Pseudo-observations for each set of parameter settings for Thick-film Resistor Production Example

| Exp. No | Α | В | C | D | Е | F | G | Li       | Di       |
|---------|---|---|---|---|---|---|---|----------|----------|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1094.71 | -2054.81 |
| 2       | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 5880.31  | 2123.86  |
| 3       | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 4926.69  | 736.01   |
| 4       | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 5527.81  | 1517.30  |
| 5       | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 3453.16  | -1837.77 |
| 6       | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 2264.75  | -2664.42 |
| 7       | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 4585.70  | 26.11    |
| 8       | 1 | 3 | 2 | 3 | 2 | 1 | 3 | 7713.10  | 5478.80  |

| 9  | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 1471.82  | -5289.96 |
|----|---|---|---|---|---|---|---|----------|----------|
| 10 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | -4535.14 | -372.76  |
| 11 | 2 | 1 | 2 | 1 | 1 | 3 | 3 | -5250.20 | 4151.50  |
| 12 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | -6201.87 | 2527.20  |
| 13 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 512.14   | -4646.69 |
| 14 | 2 | 2 | 2 | 3 | 1 | 2 | 1 | -5055.47 | 4503.72  |
| 15 | 2 | 2 | 3 | 1 | 2 | 3 | 2 | -5218.15 | 769.61   |
| 16 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | -2202.10 | -2167.46 |
| 17 | 2 | 3 | 2 | 1 | 3 | 1 | 2 | -3419.39 | -1384.22 |
| 18 | 2 | 3 | 3 | 2 | 1 | 2 | 3 | -3358.45 | -1416.03 |

**Table B.12. (cont'd)** Location and Dispersion Pseudo-observations for each set of parameter settings for Thick-film Resistor Production Example

 Table B.13. Averages of Location and Dispersion Pseudo-observations for each Actual

 Factor for Thick-film Resistor Production Example

| Level      | Α        | В        | С        | D        | Ε        | G        |
|------------|----------|----------|----------|----------|----------|----------|
| Location   |          |          |          |          |          |          |
| 1          | 3858.74  | -1045.82 | 465.62   | -1330.47 | -1318.06 | -1604.86 |
| 2          | -3858.74 | 247.37   | 553.58   | 811.83   | 916.52   | -73.65   |
| 3          |          | 798.45   | -1019.20 | 518.64   | 401.55   | 1678.52  |
| Dispersion |          |          |          |          |          |          |
| 1          |          |          | -1283.05 |          | 424.35   |          |
| 2          |          |          | 2172.65  |          | 1708.22  |          |
| 3          |          |          | -889.60  |          | -2132.57 |          |

| Exp. |        | CATEGORIES |        |        |        |        |  |  |  |  |  |  |  |
|------|--------|------------|--------|--------|--------|--------|--|--|--|--|--|--|--|
| No   | Ι      | II         | III    | IV     | V      | VI     |  |  |  |  |  |  |  |
| 1    | 0.0451 | 0.3968     | 0.4922 | 0.0594 | 0.0009 | 0.0055 |  |  |  |  |  |  |  |
| 2    | 0.0000 | 0.0090     | 0.3159 | 0.6746 | 0.0005 | 0.0000 |  |  |  |  |  |  |  |
| 3    | 0.0002 | 0.0317     | 0.4240 | 0.5434 | 0.0007 | 0.0000 |  |  |  |  |  |  |  |
| 4    | 0.0000 | 0.0123     | 0.3677 | 0.6180 | 0.0002 | 0.0018 |  |  |  |  |  |  |  |
| 5    | 0.0016 | 0.0411     | 0.6464 | 0.3056 | 0.0005 | 0.0048 |  |  |  |  |  |  |  |
| 6    | 0.0056 | 0.1086     | 0.6840 | 0.1947 | 0.0065 | 0.0005 |  |  |  |  |  |  |  |
| 7    | 0.0005 | 0.0205     | 0.5194 | 0.4194 | 0.0367 | 0.0035 |  |  |  |  |  |  |  |
| 8    | 0.0000 | 0.0002     | 0.0310 | 0.9660 | 0.0028 | 0.0000 |  |  |  |  |  |  |  |
| 9    | 0.0030 | 0.0573     | 0.9346 | 0.0044 | 0.0000 | 0.0007 |  |  |  |  |  |  |  |
| 10   | 0.0790 | 0.7624     | 0.1573 | 0.0011 | 0.0000 | 0.0002 |  |  |  |  |  |  |  |
| 11   | 0.3515 | 0.4935     | 0.0986 | 0.0025 | 0.0000 | 0.0540 |  |  |  |  |  |  |  |
| 12   | 0.2402 | 0.7453     | 0.0067 | 0.0002 | 0.0000 | 0.0076 |  |  |  |  |  |  |  |
| 13   | 0.0023 | 0.1891     | 0.8060 | 0.0011 | 0.0000 | 0.0016 |  |  |  |  |  |  |  |
| 14   | 0.3563 | 0.4802     | 0.0857 | 0.0131 | 0.0004 | 0.0644 |  |  |  |  |  |  |  |
| 15   | 0.1354 | 0.7728     | 0.0855 | 0.0019 | 0.0000 | 0.0042 |  |  |  |  |  |  |  |
| 16   | 0.0552 | 0.4824     | 0.4570 | 0.0034 | 0.0000 | 0.0021 |  |  |  |  |  |  |  |
| 17   | 0.0037 | 0.7833     | 0.2091 | 0.0004 | 0.0000 | 0.0035 |  |  |  |  |  |  |  |
| 18   | 0.0439 | 0.6623     | 0.2845 | 0.0093 | 0.0000 | 0.0000 |  |  |  |  |  |  |  |

**Table B.14.** Proportions of observation  $p_{ij}$  for each category i and set j of parametersettings for Thick-film Resistor Production Example

B.5 Results of Weighted Probability Scoring Scheme Method in Thick-film Resistor

**Production Example** 

| Exp. No | Α | В | С | D | Е | F | G | Li     | $d_i^2$ | MSD    |
|---------|---|---|---|---|---|---|---|--------|---------|--------|
| 1       | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4.4095 | 40.6680 | 0.3741 |
| 2       | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3.3333 | 41.6942 | 1.1032 |
| 3       | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3.4873 | 41.5461 | 0.9250 |
| 4       | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3.3887 | 41.6046 | 1.0336 |
| 5       | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 3.7233 | 43.4538 | 0.7505 |
| 6       | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 3.9106 | 43.7159 | 0.6262 |
| 7       | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 3.5182 | 41.8773 | 0.9008 |
| 8       | 1 | 3 | 2 | 3 | 2 | 1 | 3 | 3.0286 | 44.4132 | 1.6928 |
| 9       | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 4.0568 | 49.8414 | 0.6128 |
| 10      | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 4.9189 | 45.4645 | 0.2743 |
| 11      | 2 | 1 | 2 | 1 | 1 | 3 | 3 | 5.0321 | 21.3863 | 0.1396 |
| 12      | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 5.2028 | 34.6706 | 0.1789 |
| 13      | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 4.1878 | 47.1228 | 0.5166 |
| 14      | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 4.9859 | 20.8076 | 0.1412 |
| 15      | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 5.0291 | 41.9572 | 0.2363 |
| 16      | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 4.5831 | 41.2932 | 0.3284 |
| 17      | 2 | 3 | 2 | 1 | 3 | 1 | 2 | 4.7797 | 51.7695 | 0.3413 |
| 18      | 2 | 3 | 3 | 2 | 1 | 2 | 3 | 4.7407 | 45.1678 | 0.3128 |

**Table B.15.** Location, Dispersion and Mean Squared Deviation Scores for each set of parameter settings for Thick-film Resistor Production Example

 Table B.16. Averages of Mean Square Deviation for each Factor for Thick-film Resistor

 Production Example

| IEVEIS | FACTORS |        |        |        |        |        |  |  |  |  |  |  |
|--------|---------|--------|--------|--------|--------|--------|--|--|--|--|--|--|
|        | Α       | В      | С      | D      | Ε      | G      |  |  |  |  |  |  |
| 1      | 0.8910  | 0.4992 | 0.5713 | 0.4563 | 0.4158 | 0.3977 |  |  |  |  |  |  |
| 2      | 0.2744  | 0.5507 | 0.6948 | 0.6271 | 0.7622 | 0.5804 |  |  |  |  |  |  |
| 3      |         | 0.6981 | 0.4820 | 0.6646 | 0.5701 | 0.7700 |  |  |  |  |  |  |

### **APPENDIX C**

### **RESULTS FOR SIMULATED EXAMPLE IN FOAM MOLDING EXPERIMENT**

## C.1 Results of Logistic Regression Model Optimization for Simulated Example

| Trial | FACTORS |   |   |   |   |   | $\widehat{P}_{i}^{LR(P)}$ |        |        | SND     |
|-------|---------|---|---|---|---|---|---------------------------|--------|--------|---------|
| 11111 | Α       | В | С | Ε | F | G | Ι                         | II     | III    | SINK    |
| 1     | 0       | 0 | 0 | 0 | 0 | 0 | 0.1019                    | 0.8488 | 0.0493 | -5.9558 |
| 2     | 0       | 0 | 0 | 0 | 0 | 1 | 0.0066                    | 0.5248 | 0.4686 | -8.0092 |
| 3     | 0       | 0 | 0 | 0 | 1 | 0 | 0.0146                    | 0.7007 | 0.2847 | -7.3076 |
| 4     | 0       | 0 | 0 | 0 | 1 | 1 | 0.0009                    | 0.1279 | 0.8713 | -9.2188 |
| 5     | 0       | 0 | 0 | 1 | 0 | 0 | 0.4304                    | 0.5618 | 0.0077 | -4.3891 |
| 6     | 0       | 0 | 0 | 1 | 0 | 1 | 0.0426                    | 0.8405 | 0.1169 | -6.4904 |
| 7     | 0       | 0 | 0 | 1 | 1 | 0 | 0.0896                    | 0.8540 | 0.0564 | -6.0347 |
| 8     | 0       | 0 | 0 | 1 | 1 | 1 | 0.0058                    | 0.4902 | 0.5040 | -8.1310 |
| 9     | 0       | 0 | 1 | 0 | 0 | 0 | 0.0175                    | 0.7341 | 0.2484 | -7.1511 |
| 10    | 0       | 0 | 1 | 0 | 0 | 1 | 0.0010                    | 0.1501 | 0.8489 | -9.1600 |
| 11    | 0       | 0 | 1 | 0 | 1 | 0 | 0.0023                    | 0.2805 | 0.7172 | -8.7961 |
| 12    | 0       | 0 | 1 | 0 | 1 | 1 | 0.0001                    | 0.0225 | 0.9773 | -9.4872 |
| 13    | 0       | 0 | 1 | 1 | 0 | 0 | 0.1060                    | 0.8467 | 0.0473 | -5.9310 |
| 14    | 0       | 0 | 1 | 1 | 0 | 1 | 0.0069                    | 0.5355 | 0.4576 | -7.9707 |
| 15    | 0       | 0 | 1 | 1 | 1 | 0 | 0.0152                    | 0.7090 | 0.2758 | -7.2699 |
| 16    | 0       | 0 | 1 | 1 | 1 | 1 | 0.0009                    | 0.1329 | 0.8662 | -9.2056 |
| 17    | 0       | 1 | 0 | 0 | 0 | 0 | 0.0055                    | 0.4794 | 0.5150 | -8.1682 |
| 18    | 0       | 1 | 0 | 0 | 0 | 1 | 0.0003                    | 0.0521 | 0.9475 | -9.4135 |
| 19    | 0       | 1 | 0 | 0 | 1 | 0 | 0.0007                    | 0.1086 | 0.8907 | -9.2693 |
| 20    | 0       | 1 | 0 | 0 | 1 | 1 | 0.0000                    | 0.0071 | 0.9928 | -9.5250 |
| 21    | 0       | 1 | 0 | 1 | 0 | 0 | 0.0356                    | 0.8269 | 0.1375 | -6.6096 |
| 22    | 0       | 1 | 0 | 1 | 0 | 1 | 0.0022                    | 0.2673 | 0.7306 | -8.8346 |
| 23    | 0       | 1 | 0 | 1 | 1 | 0 | 0.0048                    | 0.4449 | 0.5504 | -8.2849 |

**Table C.1.** Estimated Probabilities of Observing a Category and Signal to Noise Ratios

 based on Ordinal Logistic Regression Models of Simulated Data

| 24 | 0 | 1 | 0 | 1 | 1 | 1 | 0.0003 | 0.0456 | 0.9542 | -9.4299 |
|----|---|---|---|---|---|---|--------|--------|--------|---------|
| 25 | 0 | 1 | 1 | 0 | 0 | 0 | 0.0009 | 0.1279 | 0.8713 | -9.2188 |
| 26 | 0 | 1 | 1 | 0 | 0 | 1 | 0.0001 | 0.0086 | 0.9914 | -9.5215 |
| 27 | 0 | 1 | 1 | 0 | 1 | 0 | 0.0001 | 0.0188 | 0.9811 | -9.4964 |
| 28 | 0 | 1 | 1 | 0 | 1 | 1 | 0.0000 | 0.0011 | 0.9989 | -9.5397 |
| 29 | 0 | 1 | 1 | 1 | 0 | 0 | 0.0058 | 0.4902 | 0.5040 | -8.1310 |
| 30 | 0 | 1 | 1 | 1 | 0 | 1 | 0.0003 | 0.0544 | 0.9453 | -9.4079 |
| 31 | 0 | 1 | 1 | 1 | 1 | 0 | 0.0008 | 0.1129 | 0.8863 | -9.2580 |
| 32 | 0 | 1 | 1 | 1 | 1 | 1 | 0.0000 | 0.0074 | 0.9925 | -9.5243 |
| 33 | 1 | 0 | 0 | 0 | 0 | 0 | 0.6463 | 0.3505 | 0.0032 | -3.1746 |
| 34 | 1 | 0 | 0 | 0 | 0 | 1 | 0.0970 | 0.8510 | 0.0519 | -5.9862 |
| 35 | 1 | 0 | 0 | 0 | 1 | 0 | 0.1923 | 0.7836 | 0.0241 | -5.4945 |
| 36 | 1 | 0 | 0 | 0 | 1 | 1 | 0.0138 | 0.6903 | 0.2959 | -7.3544 |
| 37 | 1 | 0 | 0 | 1 | 0 | 0 | 0.9241 | 0.0755 | 0.0005 | -0.8998 |
| 38 | 1 | 0 | 0 | 1 | 0 | 1 | 0.4172 | 0.5747 | 0.0082 | -4.4550 |
| 39 | 1 | 0 | 0 | 1 | 1 | 0 | 0.6132 | 0.3831 | 0.0037 | -3.3821 |
| 40 | 1 | 0 | 0 | 1 | 1 | 1 | 0.0853 | 0.8553 | 0.0594 | -6.0648 |
| 41 | 1 | 0 | 1 | 0 | 0 | 0 | 0.2229 | 0.7570 | 0.0201 | -5.3554 |
| 42 | 1 | 0 | 1 | 0 | 0 | 1 | 0.0166 | 0.7248 | 0.2586 | -7.1962 |
| 43 | 1 | 0 | 1 | 0 | 1 | 0 | 0.0360 | 0.8279 | 0.1361 | -6.6013 |
| 44 | 1 | 0 | 1 | 0 | 1 | 1 | 0.0022 | 0.2697 | 0.7281 | -8.8274 |
| 45 | 1 | 0 | 1 | 1 | 0 | 0 | 0.6563 | 0.3406 | 0.0031 | -3.1098 |
| 46 | 1 | 0 | 1 | 1 | 0 | 1 | 0.1010 | 0.8492 | 0.0498 | -5.9615 |
| 47 | 1 | 0 | 1 | 1 | 1 | 0 | 0.1993 | 0.7776 | 0.0231 | -5.4626 |
| 48 | 1 | 0 | 1 | 1 | 1 | 1 | 0.0144 | 0.6988 | 0.2868 | -7.3164 |
| 49 | 1 | 1 | 0 | 0 | 0 | 0 | 0.0819 | 0.8562 | 0.0619 | -6.0891 |
| 50 | 1 | 1 | 0 | 0 | 0 | 1 | 0.0052 | 0.4662 | 0.5286 | -8.2134 |
| 51 | 1 | 1 | 0 | 0 | 1 | 0 | 0.0115 | 0.6524 | 0.3361 | -7.5173 |
| 52 | 1 | 1 | 0 | 0 | 1 | 1 | 0.0007 | 0.1034 | 0.8959 | -9.2827 |
| 53 | 1 | 1 | 0 | 1 | 0 | 0 | 0.3727 | 0.6175 | 0.0098 | -4.6699 |
| 54 | 1 | 1 | 0 | 1 | 0 | 1 | 0.0338 | 0.8221 | 0.1441 | -6.6458 |
| 55 | 1 | 1 | 0 | 1 | 1 | 0 | 0.0719 | 0.8575 | 0.0706 | -6.1675 |
| 56 | 1 | 1 | 0 | 1 | 1 | 1 | 0.0045 | 0.4317 | 0.5638 | -8.3284 |
| 57 | 1 | 1 | 1 | 0 | 0 | 0 | 0.0138 | 0.6903 | 0.2959 | -7.3544 |
| 58 | 1 | 1 | 1 | 0 | 0 | 1 | 0.0008 | 0.1219 | 0.8772 | -9.2343 |

**Table C.1. (cont'd)** Estimated Probabilities of Observing a Category and Signal to Noise

 Ratios based on Ordinal Logistic Regression Models of Simulated Data

 Table C.1. (cont'd) Estimated Probabilities of Observing a Category and Signal to Noise

 Ratios based on Ordinal Logistic Regression Models of Simulated Data

| 59 | 1 | 1 | 1 | 0 | 1 | 0 | 0.0018 | 0.2349 | 0.7633 | -8.9271 |
|----|---|---|---|---|---|---|--------|--------|--------|---------|
| 60 | 1 | 1 | 1 | 0 | 1 | 1 | 0.0001 | 0.0178 | 0.9821 | -9.4988 |
| 61 | 1 | 1 | 1 | 1 | 0 | 0 | 0.0853 | 0.8553 | 0.0594 | -6.0648 |
| 62 | 1 | 1 | 1 | 1 | 0 | 1 | 0.0055 | 0.4769 | 0.5176 | -8.1767 |
| 63 | 1 | 1 | 1 | 1 | 1 | 0 | 0.0120 | 0.6617 | 0.3263 | -7.4783 |
| 64 | 1 | 1 | 1 | 1 | 1 | 1 | 0.0007 | 0.1076 | 0.8917 | -9.2719 |

### C.2 Results of Accumulation Analysis Method for Simulated Example

|--|

| Exp. | Cumulative Frequencies for the Cumulative Categories |    |     |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------|----|-----|--|--|--|--|--|--|--|--|
| No   | Ι                                                    | II | III |  |  |  |  |  |  |  |  |
| 1    | 5                                                    | 37 | 40  |  |  |  |  |  |  |  |  |
| 2    | 0                                                    | 20 | 40  |  |  |  |  |  |  |  |  |
| 3    | 0                                                    | 0  | 40  |  |  |  |  |  |  |  |  |
| 4    | 0                                                    | 20 | 40  |  |  |  |  |  |  |  |  |
| 5    | 4                                                    | 38 | 40  |  |  |  |  |  |  |  |  |
| 6    | 1                                                    | 35 | 40  |  |  |  |  |  |  |  |  |
| 7    | 3                                                    | 37 | 40  |  |  |  |  |  |  |  |  |
| 8    | 0                                                    | 19 | 40  |  |  |  |  |  |  |  |  |

 Table C.3. Cumulative Rates of Occurrences for the Cumulative Categories for Simulated

 Example

|                       | FRE | QUEN | CIES | CUMULA | TIVE FREQ | UENCIES |
|-----------------------|-----|------|------|--------|-----------|---------|
| Categories<br>Factors | Ι   | Π    | III  | Ι      | II        | III     |
| A <sub>0</sub>        | 5   | 72   | 83   | 5      | 77        | 160     |

| <b>A</b> <sub>1</sub> | 8  | 121 | 31 | 8  | 129 | 160 |
|-----------------------|----|-----|----|----|-----|-----|
| B <sub>0</sub>        | 10 | 120 | 30 | 10 | 130 | 160 |
| <b>B</b> <sub>1</sub> | 3  | 73  | 84 | 3  | 76  | 160 |
| C <sub>0</sub>        | 8  | 105 | 47 | 8  | 113 | 160 |
| C <sub>1</sub>        | 5  | 88  | 67 | 5  | 93  | 160 |
| E <sub>0</sub>        | 6  | 85  | 69 | 6  | 91  | 160 |
| E <sub>1</sub>        | 7  | 108 | 45 | 7  | 115 | 160 |
| Fo                    | 9  | 105 | 46 | 9  | 114 | 160 |
| F <sub>1</sub>        | 4  | 88  | 68 | 4  | 92  | 160 |
| G <sub>0</sub>        | 9  | 120 | 31 | 9  | 129 | 160 |
| G <sub>1</sub>        | 4  | 73  | 83 | 4  | 77  | 160 |

 Table C.3. (cont'd) Cumulative Rates of Occurrences for the Cumulative Categories for

 Simulated Example

 

 Table C.4. Weights, Correction Factors and Proportions of Cumulative Frequencies in Relevant Category for Simulated Example

| VALUES                                                          | CATEC   | GORIES   |
|-----------------------------------------------------------------|---------|----------|
| VALUES                                                          | Ι       | II       |
| Weights (W)                                                     | 25.6577 | 4.3604   |
| Correction Factors (CF)                                         | 0.5281  | 132.6125 |
| Proportions of cumulative<br>frequency in relevant category (P) | 0.0406  | 0.6438   |

Table C.5. Sum of Squares for Each Factor and Category in Simulated Example

| Categories<br>Factors | Ι      | П      |
|-----------------------|--------|--------|
| Α                     | 0.0281 | 8.4500 |
| В                     | 0.1531 | 9.1125 |
| С                     | 0.0281 | 1.2500 |

| Ε | 0.0031 | 1.8000 |
|---|--------|--------|
| F | 0.0781 | 1.5125 |
| G | 0.0781 | 8.4500 |

Table C.5. (cont'd) Sum of Squares for Each Factor and Category in Simulated Example

### C.3 Results of Weighted Signal-to-noise Ratio Method for Simulated Example

| Euro No | CA | TEGORI | ES  | SND     |
|---------|----|--------|-----|---------|
| Exp. No | Ι  | Π      | III | SINK    |
| 1       | 5  | 32     | 3   | -6.0206 |
| 2       | 0  | 20     | 20  | -8.1291 |
| 3       | 0  | 0      | 40  | -9.5424 |
| 4       | 0  | 20     | 20  | -8.1291 |
| 5       | 4  | 34     | 2   | -5.9660 |
| 6       | 1  | 34     | 5   | -6.5801 |
| 7       | 3  | 34     | 3   | -6.1805 |
| 8       | 0  | 19     | 21  | -8.2119 |

 Table C.6. Weighted Signal to Noise Ratios for Simulated Example

 Table C.7. Averages of Weighted Signal-to-noise Ratios for each Level of Factors in

 Simulated Example

| IEVELS |         | FACTORS |         |
|--------|---------|---------|---------|
| LEVELS | Α       | В       | G       |
| 0      | -7.9553 | -6.6740 | -6.7276 |
| 1      | -6.7346 | -8.0160 | -7.9623 |

## C.4 Results of Scoring Scheme Method for Simulated Example

|                  |         | CATEGORIES | 5      |
|------------------|---------|------------|--------|
|                  | Ι       | II         | III    |
| $q_i$            | 0.0406  | 0.6031     | 0.3563 |
| $	au_{ m i}$     | 0.0203  | 0.3422     | 0.8219 |
| $\tilde{\tau_i}$ | -0.4797 | -0.1578    | 0.3219 |
| $l_i$            | -1.9378 | -0.6375    | 1.3003 |

Table C.8. Calculated Data and Location Scores for Simulated Data

Table C.9. Calculated Data and Dispersion Scores for Simulated Example

|       | CATEGORIES |         |        |  |
|-------|------------|---------|--------|--|
|       | Ι          | II      | III    |  |
| ei    | 3.3971     | -0.3824 | 0.2599 |  |
| $d_i$ | 4.4565     | -0.5016 | 0.3410 |  |

 Table C.10. Location and Dispersion Pseudo-observations for each set of parameter settings in Simulated Example

| Exp. No | Α | В | С | Ε | F | G | Li       | Di       |
|---------|---|---|---|---|---|---|----------|----------|
| 1       | 0 | 0 | 0 | 0 | 0 | 0 | -26.1887 | 7.2543   |
| 2       | 0 | 0 | 0 | 1 | 1 | 1 | 13.2553  | -3.2119  |
| 3       | 0 | 1 | 1 | 0 | 1 | 1 | 52.0113  | 13.6402  |
| 4       | 0 | 1 | 1 | 1 | 0 | 0 | 13.2553  | -3.2119  |
| 5       | 1 | 0 | 1 | 1 | 0 | 1 | -26.8262 | 1.4536   |
| 6       | 1 | 0 | 1 | 0 | 1 | 0 | -17.1120 | -10.8929 |
| 7       | 1 | 1 | 0 | 1 | 1 | 0 | -23.5881 | -2.6619  |
| 8       | 1 | 1 | 0 | 0 | 0 | 1 | 15.1931  | -2.3693  |

| Level      | Α        | В        | G        |
|------------|----------|----------|----------|
| Location   |          |          |          |
| 0          | -13.0833 | 14.2179  | 13.4084  |
| 1          | 13.0833  | -14.2179 | -13.4084 |
| Dispersion |          |          |          |
| 0          | -3.6177  |          | 2.3781   |
| 1          | 3.6177   |          | -2.3781  |

 Table C.11. Averages of Location and Dispersion Pseudo-observations for each Actual

 Factor in Simulated Example

#### C.5 Results of Weighted Probability Scoring Scheme Method for Simulated Example

| Exp. | CATEGORIES |        |        |  |  |  |  |
|------|------------|--------|--------|--|--|--|--|
| No   | I          | II     | III    |  |  |  |  |
| 1    | 0.1250     | 0.8000 | 0.0750 |  |  |  |  |
| 2    | 0.0000     | 0.5000 | 0.5000 |  |  |  |  |
| 3    | 0.0000     | 0.0000 | 1.0000 |  |  |  |  |
| 4    | 0.0000     | 0.5000 | 0.5000 |  |  |  |  |
| 5    | 0.1000     | 0.8500 | 0.0500 |  |  |  |  |
| 6    | 0.0250     | 0.8500 | 0.1250 |  |  |  |  |
| 7    | 0.0750     | 0.8500 | 0.0750 |  |  |  |  |
| 8    | 0.0000     | 0.4750 | 0.5250 |  |  |  |  |

**Table C.12.** Proportions of observation  $p_{ij}$  for each category i and set j of parametersettings for Simulated Example

| Exp.<br>No | A | В | С | Ε | F | G | $\mathbf{L}_{\mathbf{i}}$ | $d_i^2$ | MSD     |
|------------|---|---|---|---|---|---|---------------------------|---------|---------|
| 1          | 0 | 0 | 0 | 0 | 0 | 0 | 2.0500                    | 9.4563  | 1.8442  |
| 2          | 0 | 0 | 0 | 1 | 1 | 1 | 1.5000                    | 10.2500 | 6.5185  |
| 3          | 0 | 1 | 1 | 0 | 1 | 1 | 1.0000                    | 10.0000 | 31.0000 |
| 4          | 0 | 1 | 1 | 1 | 0 | 0 | 1.5000                    | 10.2500 | 6.5185  |
| 5          | 1 | 0 | 1 | 1 | 0 | 1 | 2.0500                    | 10.1825 | 1.9676  |
| 6          | 1 | 0 | 1 | 0 | 1 | 0 | 1.9000                    | 11.4613 | 2.9154  |
| 7          | 1 | 1 | 0 | 1 | 1 | 0 | 2.0000                    | 10.5963 | 2.2368  |
| 8          | 1 | 1 | 0 | 0 | 0 | 1 | 1.4750                    | 10.1781 | 6.9105  |

 Table C.13. Location, Dispersion and Mean Squared Deviation Scores for each set of parameter settings for Simulated Example

Table C.14. Averages of Mean Square Deviation for each Factor for Simulated Example

| LEVELS | FACTORS |         |         |         |         |         |  |  |
|--------|---------|---------|---------|---------|---------|---------|--|--|
|        | Α       | В       | С       | Ε       | F       | G       |  |  |
| 1      | 11.4703 | 3.3114  | 4.3775  | 10.6675 | 4.3102  | 3.3787  |  |  |
| 2      | 3.5076  | 11.6665 | 10.6004 | 4.3104  | 10.6677 | 11.5992 |  |  |

#### **APPENDIX D**

### **RESULTS FOR INKJET PRINTER EXAMPLE**

#### D.1 Results of Logistic Regression Model Optimization for Inkjet Printer Example

| Trial | FACTORS |   |   |        | SNR    |        |        |         |
|-------|---------|---|---|--------|--------|--------|--------|---------|
|       | Α       | B | C | Ι      | II     | III    | IV     |         |
| 1     | 0       | 0 | 0 | 0.5122 | 0.2509 | 0.1375 | 0.0993 | 2.3959  |
| 2     | 0       | 0 | 1 | 0.2569 | 0.2578 | 0.2344 | 0.2509 | 5.7984  |
| 3     | 0       | 1 | 0 | 0.7004 | 0.1773 | 0.0752 | 0.0472 | 0.4443  |
| 4     | 0       | 1 | 1 | 0.4349 | 0.2676 | 0.1667 | 0.1308 | 3.3227  |
| 5     | 1       | 0 | 0 | 0.8468 | 0.0975 | 0.0352 | 0.0205 | -0.5989 |
| 6     | 1       | 0 | 1 | 0.9322 | 0.0447 | 0.0148 | 0.0084 | -0.7003 |
| 7     | 1       | 1 | 0 | 0.0509 | 0.0903 | 0.1752 | 0.6836 | 10.1376 |
| 8     | 1       | 1 | 1 | 0.1176 | 0.1726 | 0.2449 | 0.4650 | 8.3888  |

**Table D.1.** Estimated Probabilities of Observing a Category and Signal to Noise Ratios

 based on Ordinal Logistic Regression Models for Inkjet Printer Example

#### D.2 Results of Accumulation Analysis Method for Inkjet Printer Example

## Table D.2. Cumulative Frequencies for the Cumulative Categories for Inkjet Printer Example

| Exp. | Cumulative Frequencies for the Cumulative Categories |    |     |    |  |  |  |
|------|------------------------------------------------------|----|-----|----|--|--|--|
| No   | Ι                                                    | II | III | IV |  |  |  |
| 1    | 4                                                    | 7  | 10  | 10 |  |  |  |
| 2    | 2                                                    | 7  | 8   | 10 |  |  |  |
| 3    | 8                                                    | 9  | 9   | 10 |  |  |  |

| Table D.2. (cont'd) Cumulative Frequencies for the C | umulative Categories for Inkjet |
|------------------------------------------------------|---------------------------------|
| Printer Example                                      |                                 |

| 4 | 3  | 7  | 9  | 10 |
|---|----|----|----|----|
| 5 | 8  | 8  | 9  | 10 |
| 6 | 10 | 10 | 10 | 10 |
| 7 | 1  | 1  | 4  | 10 |
| 8 | 2  | 3  | 4  | 10 |

 Table D.3. Cumulative Rates of Occurrences for the Cumulative Categories for Inkjet

 Printer Example

|                                | FREQUENCIES |    |     |    | CUMULATIVE<br>FREQUENCIES |    |    |    |
|--------------------------------|-------------|----|-----|----|---------------------------|----|----|----|
| Categories<br>Factors          | Ι           | II | III | IV | Ι                         | II | ш  | IV |
| A                              | 17          | 13 | 6   | 4  | 17                        | 30 | 36 | 40 |
| A <sub>1</sub>                 | 21          | 1  | 5   | 13 | 21                        | 22 | 27 | 40 |
| B <sub>0</sub>                 | 24          | 8  | 5   | 3  | 24                        | 32 | 37 | 40 |
| <b>B</b> <sub>1</sub>          | 14          | 6  | 6   | 14 | 14                        | 20 | 26 | 40 |
| $A_0^*B_0$                     | 6           | 8  | 4   | 2  | 6                         | 14 | 18 | 20 |
| $A_0^*B_1$                     | 11          | 5  | 2   | 2  | 11                        | 16 | 18 | 20 |
| A <sub>1</sub> *B <sub>0</sub> | 18          | 0  | 1   | 1  | 18                        | 18 | 19 | 20 |
| $A_1 * B_1$                    | 3           | 1  | 4   | 12 | 3                         | 4  | 8  | 20 |
| C <sub>0</sub>                 | 21          | 4  | 7   | 8  | 21                        | 25 | 32 | 40 |
| C1                             | 17          | 10 | 4   | 9  | 17                        | 27 | 31 | 40 |
| A <sub>0</sub> *C <sub>0</sub> | 12          | 4  | 3   | 1  | 12                        | 16 | 19 | 20 |
| A <sub>0</sub> *C <sub>1</sub> | 5           | 9  | 3   | 3  | 5                         | 14 | 17 | 20 |
| A <sub>1</sub> *C <sub>0</sub> | 9           | 0  | 4   | 7  | 9                         | 9  | 13 | 20 |
| $A_1 * C_1$                    | 12          | 1  | 1   | 6  | 12                        | 13 | 14 | 20 |
| D <sub>0</sub>                 | 17          | 8  | 7   | 8  | 17                        | 25 | 32 | 40 |
| <b>D</b> <sub>1</sub>          | 21          | 6  | 4   | 9  | 21                        | 27 | 31 | 40 |
| E <sub>0</sub>                 | 18          | 7  | 8   | 7  | 18                        | 25 | 33 | 40 |
| E <sub>1</sub>                 | 20          | 7  | 3   | 10 | 20                        | 27 | 30 | 40 |
| VALUES                                                          | CATEGORIES |         |         |  |
|-----------------------------------------------------------------|------------|---------|---------|--|
| VALUES                                                          | Ι          | II      | III     |  |
| Weights (W)                                                     | 4.0100     | 4.3956  | 5.9757  |  |
| Correction Factors (CF)                                         | 18.0500    | 33.8000 | 49.6125 |  |
| Proportions of cumulative frequency<br>in relevant category (P) | 0.4750     | 0.6500  | 0.7875  |  |

**Table D.4.** Weights, Correction Factors and Proportions of Cumulative Frequencies in Relevant Category for Inkjet Printer Example

Table D.5. Sum of Squares for Each Factor and Category for Inkjet Printer Example

| Categories<br>Factors | Ι    | II   | III    |
|-----------------------|------|------|--------|
| Α                     | 0.2  | 0.8  | 1.0125 |
| В                     | 1.25 | 1.8  | 1.5125 |
| A×B                   | 24.5 | 39.6 | 53.65  |
| С                     | 0.2  | 0.05 | 0.0125 |
| A×C                   | 19.7 | 35.1 | 50.75  |
| D                     | 0.2  | 0.05 | 0.0125 |
| E                     | 0.05 | 0.05 | 0.1125 |

**Table D.6.** Estimated Frequencies for each Category and each Factor and Total Estimated

 Frequencies for each Category for Inkjet Printer Example

| FACTORS | IEVEIS | CATEGORIES |       |       |        |  |  |
|---------|--------|------------|-------|-------|--------|--|--|
| FACIORS | LEVELS | Ι          | II    | III   | IV     |  |  |
| •       | 0      | 42.50      | 75.00 | 90.00 | 100.00 |  |  |
| А       | 1      | 52.50      | 55.00 | 67.50 | 100.00 |  |  |
| В       | 0      | 60.00      | 80.00 | 92.50 | 100.00 |  |  |
|         | 1      | 35.00      | 50.00 | 65.00 | 100.00 |  |  |
|         | 0×0    | 30.00      | 70.00 | 90.00 | 100.00 |  |  |
| A×B     | 0×1    | 55.00      | 80.00 | 90.00 | 100.00 |  |  |
|         | 1×0    | 90.00      | 90.00 | 95.00 | 100.00 |  |  |
|         | 1×1    | 15.00      | 20.00 | 40.00 | 100.00 |  |  |

| C   | 0   | 52.50 | 62.50 | 80.00 | 100.00 |
|-----|-----|-------|-------|-------|--------|
| C   | 1   | 42.50 | 67.50 | 77.50 | 100.00 |
|     | 0×0 | 60.00 | 80.00 | 95.00 | 100.00 |
| AxC | 0×1 | 25.00 | 70.00 | 85.00 | 100.00 |
| AAC | 1×0 | 45.00 | 45.00 | 65.00 | 100.00 |
|     | 1×1 | 60.00 | 65.00 | 70.00 | 100.00 |
| ТОТ | AL  | 47.50 | 65.00 | 78.75 | 100.00 |

**Table D.6. (cont'd)** Estimated Frequencies for each Category and each Factor and Total

 Estimated Frequencies for each Category for Inkjet Printer Example

| Table D.7. Logit Transformation Values for Estimated Frequencies and Overall Estimated |
|----------------------------------------------------------------------------------------|
| Frequencies for each Category for Inkjet Printer Example                               |

| FACTORS | IEVEIS | CATEGORIES |        |        |          |  |  |
|---------|--------|------------|--------|--------|----------|--|--|
| FACIORS | LEVELS | Ι          | II     | III    | IV       |  |  |
| Α       | 0      | -1.312     | 4.771  | 9.542  | x        |  |  |
|         | 1      | 0.435      | 0.872  | 3.174  | x        |  |  |
| р       | 0      | 1.761      | 6.021  | 10.911 | $\infty$ |  |  |
| В       | 1      | -2.687     | 0.000  | 2.688  | x        |  |  |
|         | 0×0    | -3.679     | 3.680  | 9.542  | x        |  |  |
| A×B     | 0×1    | 0.872      | 6.021  | 9.542  | $\infty$ |  |  |
|         | 1×0    | 9.542      | 9.542  | 12.783 | x        |  |  |
|         | 1×1    | -7.532     | -6.020 | -1.760 | x        |  |  |
| C       | 0      | 0.435      | 2.218  | 6.021  | $\infty$ |  |  |
| C       | 1      | -1.312     | 3.174  | 5.371  | x        |  |  |
|         | 0×0    | 1.761      | 6.021  | 12.783 | $\infty$ |  |  |
| A×C     | 0×1    | -4.770     | 3.680  | 7.533  | $\infty$ |  |  |
|         | 1×0    | -0.871     | -0.871 | 2.688  | x        |  |  |
|         | 1×1    | 1.761      | 2.688  | 3.680  | $\infty$ |  |  |
| ТОТ     | AL     | -0.434     | 2.688  | 5.689  | $\infty$ |  |  |

## D.3 Results of Weighted Signal-to-noise Ratio Method for Inkjet Printer Example

| Exp. |    | SNP |     |    |          |
|------|----|-----|-----|----|----------|
| No   | Ι  | II  | III | IV | 5111     |
| 1    | 4  | 3   | 3   | 0  | -10.1284 |
| 2    | 2  | 5   | 1   | 2  | -9.1908  |
| 3    | 8  | 1   | 0   | 1  | -11.3988 |
| 4    | 3  | 4   | 2   | 1  | -9.6848  |
| 5    | 8  | 0   | 1   | 1  | -11.2385 |
| 6    | 10 | 0   | 0   | 0  | -12.0412 |
| 7    | 1  | 0   | 3   | 6  | -5.3148  |
| 8    | 2  | 1   | 1   | 6  | -7.0757  |

Table D.8. Weighted Signal to Noise Ratios for Inkjet Printer Example

 

 Table D.9. Averages of Weighted Signal-to-noise Ratios for each Level of Factors in Inkjet Printer Example

| Lovola | Factors           |         |         |         |  |  |
|--------|-------------------|---------|---------|---------|--|--|
| Levels | A B               |         | С       | Ε       |  |  |
| 0      | -10.1007 -10.6497 |         | -9.5201 | -9.2923 |  |  |
| 1      | -8.9176           | -8.3685 | -9.4981 | -9.7259 |  |  |
|        |                   | ions    |         |         |  |  |
|        | A×B               |         | A>      | «C      |  |  |
| 0×0    | -9.6596           |         | -10.7   | 636     |  |  |
| 0×1    | -9.7297           |         | -9.1    | 777     |  |  |
| 1×0    | -11.6399          |         | -8.2    | 767     |  |  |
| 1×1    | -6.1              | .952    | -9.5    | 585     |  |  |

## **D.4 Results of Scoring Scheme Method for Inkjet Printer Example**

|                  | CATEGORIES |        |        |        |  |  |
|------------------|------------|--------|--------|--------|--|--|
|                  | Ι          | II     | III    | IV     |  |  |
| $q_i$            | 0.4750     | 0.1750 | 0.1375 | 0.2125 |  |  |
| $	au_i$          | 0.2375     | 0.5625 | 0.7188 | 0.8938 |  |  |
| $\tilde{\tau_i}$ | -0.2625    | 0.0625 | 0.2188 | 0.3938 |  |  |
| li               | -0.9720    | 0.2314 | 0.8100 | 1.4579 |  |  |

Table D.10. Calculated Data and Location Scores for Inkjet Printer Example

Table D.11. Calculated Data and Dispersion Scores for Inkjet Printer Example

|    | CATEGORIES |         |         |        |  |  |
|----|------------|---------|---------|--------|--|--|
|    | Ι          | II      | III     | IV     |  |  |
| ei | 0.2340     | -1.0153 | -0.5850 | 0.6917 |  |  |
| di | 0.3926     | -1.7038 | -0.9817 | 1.1607 |  |  |

 Table D.12. Location and Dispersion Pseudo-observations for Each Set of Parameter

 Settings in Inkjet Printer Example

| Exp. No | Α | В | С | D | Ε | Li      | Di      |
|---------|---|---|---|---|---|---------|---------|
| 1       | 0 | 0 | 0 | 0 | 0 | -0.7637 | -6.4859 |
| 2       | 0 | 0 | 1 | 1 | 1 | 2.9390  | -6.3939 |
| 3       | 0 | 1 | 0 | 1 | 1 | -6.0863 | 2.5979  |
| 4       | 0 | 1 | 1 | 0 | 0 | 1.0877  | -6.4399 |
| 5       | 1 | 0 | 0 | 0 | 1 | -5.5078 | 3.3200  |
| 6       | 1 | 0 | 1 | 1 | 0 | -9.7196 | 3.9262  |
| 7       | 1 | 1 | 0 | 1 | 0 | 10.2056 | 4.4117  |
| 8       | 1 | 1 | 1 | 0 | 1 | 7.8451  | 5.0639  |

| Level      | Α       | В       | С       |
|------------|---------|---------|---------|
| Location   |         |         |         |
| 0          | -0.7058 | -3.2630 | -0.5380 |
| 1          | 0.7058  | 3.2630  | 0.5380  |
| Dispersion |         |         |         |
| 0          | -4.1804 |         |         |
| 1          | 4.1804  |         |         |

 Table D.13. Averages of Location and Dispersion Pseudo-observations for each Actual

 Factor for Inkjet Printer Example

 Table D.14. Averages of Location Pseudo-observations for Interactions in Inkjet Printer

 Example

| Level    | A×B     | A×C     |
|----------|---------|---------|
| Location |         |         |
| 0×0      | 1.0877  | -3.4250 |
| 0×1      | -0.8967 | 1.3596  |
| 1×0      | -7.6137 | 2.3489  |
| 1×1      | 9.0253  | -0.9372 |

# **D.5** Results of Weighted Probability Scoring Scheme Method for Inkjet Printer Example

**Table D.15.** Proportions of observation  $p_{ij}$  for each category i and set j of parametersettings

| Exp. No | CATEGORIES |        |        |        |  |  |  |  |  |
|---------|------------|--------|--------|--------|--|--|--|--|--|
|         | I          | II     | III    | IV     |  |  |  |  |  |
| 1       | 0.4000     | 0.3000 | 0.3000 | 0.0000 |  |  |  |  |  |
| 2       | 0.2000     | 0.5000 | 0.1000 | 0.2000 |  |  |  |  |  |
| 3       | 0.8000     | 0.1000 | 0.0000 | 0.1000 |  |  |  |  |  |

| 4 | 0.3000 | 0.4000 | 0.2000 | 0.1000 |
|---|--------|--------|--------|--------|
| 5 | 0.8000 | 0.0000 | 0.1000 | 0.1000 |
| 6 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
| 7 | 0.1000 | 0.0000 | 0.3000 | 0.6000 |
| 8 | 0.2000 | 0.1000 | 0.1000 | 0.6000 |

**Table D.15. (cont'd)** Proportions of observation  $p_{ij}$  for each category i and set j ofparameter settings

 Table D.16. Location, Dispersion and Mean Squared Deviation Scores for Each Set of

 Parameter Settings in Inkjet Printer Example

| Exp. No | Α | B | С | D | Е | Li  | $\mathbf{d_i}^2$ | MSD    | logMSD  |
|---------|---|---|---|---|---|-----|------------------|--------|---------|
| 1       | 0 | 0 | 0 | 0 | 0 | 1.9 | 17.33            | 4.2664 | 0.6301  |
| 2       | 0 | 0 | 1 | 1 | 1 | 2.3 | 11.37            | 1.4079 | 0.1486  |
| 3       | 0 | 1 | 0 | 1 | 1 | 1.4 | 13.64            | 11.162 | 1.0477  |
| 4       | 0 | 1 | 1 | 0 | 0 | 2.1 | 14.05            | 2.3941 | 0.3791  |
| 5       | 1 | 0 | 0 | 0 | 1 | 1.5 | 13.69            | 8.557  | 0.9323  |
| 6       | 1 | 0 | 1 | 1 | 0 | 1   | 17               | 52     | 1.7160  |
| 7       | 1 | 1 | 0 | 1 | 0 | 3.4 | 3.38             | 0.1624 | -0.7894 |
| 8       | 1 | 1 | 1 | 0 | 1 | 3.1 | 2.73             | 0.1927 | -0.7151 |

Table D.17. Averages of Mean Square Deviation for each Factor in Inkjet Printer Example

| Levels |        | Factors |        | Levels | Interactions |        |  |
|--------|--------|---------|--------|--------|--------------|--------|--|
|        | Α      | В       | С      |        | A×B          | A×C    |  |
| 0      | 0.6819 | 1.2190  | 0.7808 | 0×0    | 0.4529       | 0.8873 |  |
| 1      | 1.1826 | 0.5413  | 1.1461 | 0×1    | 1.0415       | 0.9327 |  |
|        |        |         |        | 1×0    | 1.4811       | 0.6395 |  |
|        |        |         |        | 1×1    | -0.7506      | 1.4166 |  |

#### **APPENDIX E**

## **RESULTS FOR DUPLICATOR EXAMPLE**

## E.1 Results of Logistic Regression Model Optimization for Duplicator Example

| Table E.1. Estimated Probabilities of Observing a Category and Signal to N | Noise base | ed on |
|----------------------------------------------------------------------------|------------|-------|
| Ordinal Logistic Regression Models for Duplicator Example                  |            |       |

| Trial | F | 'ACT | ORS | 5 |        | $\widehat{P}_{i}^{LR(P)}$ |        |        |         |
|-------|---|------|-----|---|--------|---------------------------|--------|--------|---------|
| 11141 | В | F    | K   | L | Ι      | II                        | III    | IV     |         |
| 1     | 0 | 0    | 0   | 0 | 0.0134 | 0.3569                    | 0.1327 | 0.4970 | 8.8030  |
| 2     | 0 | 0    | 0   | 1 | 0.0078 | 0.2463                    | 0.1155 | 0.6304 | 9.7421  |
| 3     | 0 | 0    | 1   | 0 | 0.0320 | 0.5566                    | 0.1226 | 0.2888 | 7.1775  |
| 4     | 0 | 0    | 1   | 1 | 0.0188 | 0.4344                    | 0.1347 | 0.4122 | 8.1667  |
| 5     | 0 | 1    | 0   | 0 | 0.0049 | 0.1708                    | 0.0927 | 0.7316 | 10.4112 |
| 6     | 0 | 1    | 0   | 1 | 0.0028 | 0.1070                    | 0.0654 | 0.8248 | 10.9983 |
| 7     | 0 | 1    | 1   | 0 | 0.0118 | 0.3296                    | 0.1301 | 0.5285 | 9.0309  |
| 8     | 0 | 1    | 1   | 1 | 0.0069 | 0.2241                    | 0.1098 | 0.6593 | 9.9363  |
| 9     | 1 | 0    | 0   | 0 | 0.0006 | 0.0266                    | 0.0187 | 0.9540 | 11.7744 |
| 10    | 1 | 0    | 0   | 1 | 0.0004 | 0.0156                    | 0.0112 | 0.9728 | 11.8842 |
| 11    | 1 | 0    | 1   | 0 | 0.0016 | 0.0622                    | 0.0412 | 0.8950 | 11.4253 |
| 12    | 1 | 0    | 1   | 1 | 0.0009 | 0.0371                    | 0.0256 | 0.9364 | 11.6709 |
| 13    | 1 | 1    | 0   | 0 | 0.0002 | 0.0098                    | 0.0071 | 0.9828 | 11.9421 |
| 14    | 1 | 1    | 0   | 1 | 0.0001 | 0.0057                    | 0.0042 | 0.9900 | 11.9835 |
| 15    | 1 | 1    | 1   | 0 | 0.0006 | 0.0235                    | 0.0167 | 0.9592 | 11.8049 |
| 16    | 1 | 1    | 1   | 1 | 0.0003 | 0.0138                    | 0.0099 | 0.9760 | 11.9024 |

## E.2 Results of Accumulation Analysis Method for Duplicator Example

|         | Cumulative Frequencies for the Cumulative |    |     |    |  |  |  |  |  |
|---------|-------------------------------------------|----|-----|----|--|--|--|--|--|
| Exp. No | Categories                                |    |     |    |  |  |  |  |  |
|         | Ι                                         | II | III | IV |  |  |  |  |  |
| 1       | 1                                         | 4  | 4   | 4  |  |  |  |  |  |
| 2       | 1                                         | 4  | 4   | 4  |  |  |  |  |  |
| 3       | 1                                         | 4  | 4   | 4  |  |  |  |  |  |
| 4       | 1                                         | 4  | 4   | 4  |  |  |  |  |  |
| 5       | 0                                         | 3  | 3   | 4  |  |  |  |  |  |
| 6       | 1                                         | 1  | 1   | 4  |  |  |  |  |  |
| 7       | 1                                         | 2  | 3   | 4  |  |  |  |  |  |
| 8       | 0                                         | 2  | 3   | 4  |  |  |  |  |  |
| 9       | 1                                         | 4  | 4   | 4  |  |  |  |  |  |
| 10      | 2                                         | 4  | 4   | 4  |  |  |  |  |  |
| 11      | 1                                         | 4  | 4   | 4  |  |  |  |  |  |
| 12      | 0                                         | 4  | 4   | 4  |  |  |  |  |  |
| 13      | 0                                         | 1  | 2   | 4  |  |  |  |  |  |
| 14      | 0                                         | 0  | 0   | 4  |  |  |  |  |  |
| 15      | 0                                         | 2  | 2   | 4  |  |  |  |  |  |
| 16      | 1                                         | 3  | 4   | 4  |  |  |  |  |  |

Table E.2. Cumulative Frequencies for the Cumulative Categories for Duplicator Example

|                                    | Frequencies |    |   |    | Cumulative Frequencies |    |     |    |
|------------------------------------|-------------|----|---|----|------------------------|----|-----|----|
| Categories<br>Factors              | Ι           | Π  | Ш | IV | Ι                      | Π  | III | IV |
| $\mathbf{A}_{0}$                   | 6           | 18 | 2 | 6  | 6                      | 24 | 26  | 32 |
| $\mathbf{A}_{1}$                   | 5           | 17 | 2 | 8  | 5                      | 22 | 24  | 32 |
| B <sub>0</sub>                     | 8           | 24 | 0 | 0  | 8                      | 32 | 32  | 32 |
| <b>B</b> <sub>1</sub>              | 3           | 11 | 4 | 14 | 3                      | 14 | 18  | 32 |
| C <sub>0</sub>                     | 5           | 17 | 2 | 8  | 5                      | 22 | 24  | 32 |
| C1                                 | 6           | 18 | 2 | 6  | 6                      | 24 | 26  | 32 |
| $\mathbf{D}_0$                     | 6           | 15 | 1 | 10 | 6                      | 21 | 22  | 32 |
| <b>D</b> <sub>1</sub>              | 5           | 20 | 3 | 4  | 5                      | 25 | 28  | 32 |
| E <sub>0</sub>                     | 5           | 20 | 1 | 6  | 5                      | 25 | 26  | 32 |
| E <sub>1</sub>                     | 6           | 15 | 3 | 8  | 6                      | 21 | 24  | 32 |
| Fo                                 | 7           | 18 | 3 | 4  | 7                      | 25 | 28  | 32 |
| F <sub>1</sub>                     | 4           | 17 | 1 | 10 | 4                      | 21 | 22  | 32 |
| G <sub>0</sub>                     | 5           | 19 | 2 | 6  | 5                      | 24 | 26  | 32 |
| G <sub>1</sub>                     | 6           | 16 | 2 | 8  | 6                      | 22 | 24  | 32 |
| $\mathbf{H}_{0}$                   | 6           | 18 | 2 | 6  | 6                      | 24 | 26  | 32 |
| $\mathbf{H}_{1}$                   | 5           | 17 | 2 | 8  | 5                      | 22 | 24  | 32 |
| Io                                 | 4           | 21 | 3 | 4  | 4                      | 25 | 28  | 32 |
| $\mathbf{I}_1$                     | 7           | 14 | 1 | 10 | 7                      | 21 | 22  | 32 |
| $\mathbf{J}_0$                     | 5           | 18 | 1 | 8  | 5                      | 23 | 24  | 32 |
| $J_1$                              | 6           | 17 | 3 | 6  | 6                      | 23 | 26  | 32 |
| K <sub>0</sub>                     | 5           | 16 | 1 | 10 | 5                      | 21 | 22  | 32 |
| $\mathbf{K}_1$                     | 6           | 19 | 3 | 4  | 6                      | 25 | 28  | 32 |
| $L_0$                              | 8           | 15 | 3 | 6  | 8                      | 23 | 26  | 32 |
| L <sub>1</sub>                     | 3           | 20 | 1 | 8  | 3                      | 23 | 24  | 32 |
| F <sub>0</sub> ×I <sub>0</sub>     | 3           | 10 | 2 | 1  | 3                      | 13 | 15  | 16 |
| $\mathbf{F}_1 \times \mathbf{I}_0$ | 4           | 8  | 1 | 3  | 4                      | 12 | 13  | 16 |
| F <sub>0</sub> ×I <sub>1</sub>     | 1           | 11 | 1 | 3  | 1                      | 12 | 13  | 16 |
| $\mathbf{F}_1 \times \mathbf{I}_1$ | 3           | 6  | 0 | 7  | 3                      | 9  | 9   | 16 |

**Table E.3.** Cumulative Rates of Occurrences for the Cumulative Categories for Duplicator

 Example

| VALUES                                                       | CATEGORIES |         |         |  |  |
|--------------------------------------------------------------|------------|---------|---------|--|--|
| VALUES                                                       | Ι          | II      | III     |  |  |
| Weights (W)                                                  | 7.0257     | 4.9469  | 5.8514  |  |  |
| Correction Factors (CF)                                      | 1.8906     | 33.0625 | 39.0625 |  |  |
| Proportions of cumulative frequency in relevant category (P) | 0.1719     | 0.7188  | 0.7813  |  |  |

**Table E.4.** Weights, Correction Factors and Proportions of Cumulative Frequencies in Relevant Category for Duplicator Example

**Table E.5.** Sum of Squares for Each Factor and Category for Duplicator Example

| Categories<br>Factors | Ι      | II      | III     |
|-----------------------|--------|---------|---------|
| Α                     | 0.0156 | 0.0625  | 0.0625  |
| В                     | 0.3906 | 5.0625  | 3.0625  |
| С                     | 0.0156 | 0.0625  | 0.0625  |
| D                     | 0.0156 | 0.2500  | 0.5625  |
| E                     | 0.0156 | 0.2500  | 0.0625  |
| F                     | 0.1406 | 0.2500  | 0.5625  |
| G                     | 0.0156 | 0.0625  | 0.0625  |
| Н                     | 0.0156 | 0.0625  | 0.0625  |
| Ι                     | 0.1406 | 0.2500  | 0.5625  |
| J                     | 0.0156 | 0.0000  | 0.0625  |
| K                     | 0.0156 | 0.2500  | 0.5625  |
| L                     | 0.3906 | 0.0000  | 0.0625  |
| F×I                   | 2.1875 | 33.6250 | 40.2500 |

| FACTORS | IEVEIS | CATEGORIES |          |          |          |  |
|---------|--------|------------|----------|----------|----------|--|
| FACIORS |        | Ι          | II       | III      | IV       |  |
| р       | 0      | 25.0000    | 100.0000 | 100.0000 | 100.0000 |  |
| D       | 1      | 9.3750     | 43.7500  | 56.2500  | 100.0000 |  |
| р       | 0      | 18.7500    | 65.6250  | 68.7500  | 100.0000 |  |
| D       | 1      | 15.6250    | 78.1250  | 87.5000  | 100.0000 |  |
| Б       | 0      | 21.8750    | 78.1250  | 87.5000  | 100.0000 |  |
| Г       | 1      | 12.5000    | 65.6250  | 68.7500  | 100.0000 |  |
| т       | 0      | 12.5000    | 78.1250  | 87.5000  | 100.0000 |  |
| 1       | 1      | 21.8750    | 65.6250  | 68.7500  | 100.0000 |  |
| K       | 0      | 15.6250    | 65.6250  | 68.7500  | 100.0000 |  |
| N N     | 1      | 18.7500    | 78.1250  | 87.5000  | 100.0000 |  |
| ТОТ     | AL     | 17.1875    | 71.8750  | 78.1250  | 100.0000 |  |

**Table E.6.** Estimated Frequencies for each Category and each Factor and Total Estimated

 Frequencies for each Category for Duplicator Example

**Table E.7.** Logit Transformation Values for Estimated Frequencies and Overall Estimated

 Frequencies for each Category for Duplicator Example

| FACTORS | IEVEIS |         | CATEG   | GORIES |          |
|---------|--------|---------|---------|--------|----------|
| FACIORS |        | Ι       | II      | III    | IV       |
| в       | 0      | -4.7700 | x       | x      | $\infty$ |
| B       | 1      | -9.8518 | -1.0455 | 1.0915 | $\infty$ |
| р       | 0      | -6.3670 | 2.8080  | 3.4240 | $\infty$ |
| D       | 1      | -7.6978 | 5.5285  | 8.4510 | $\infty$ |
| F       | 0      | -5.5275 | 5.5285  | 8.4510 | $\infty$ |
| r       | 1      | -8.4500 | 2.8080  | 3.4240 | $\infty$ |
| т       | 0      | -8.4500 | 5.5285  | 8.4510 | $\infty$ |
|         | 1      | -5.5275 | 2.8080  | 3.4240 | $\infty$ |
| К       | 0      | -7.6978 | 2.8080  | 3.4240 | $\infty$ |
|         | 1      | -6.3670 | 5.5285  | 8.4510 | $\infty$ |
| ТОТ     | AL     | -6.8279 | 4.0748  | 5.5285 | $\infty$ |

## E.3 Results of Weighted Signal-to-noise Ratio Method for Duplicator Example

| Exp. |   | SND |     |    |          |
|------|---|-----|-----|----|----------|
| No   | Ι | II  | III | IV | SINK     |
| 1    | 1 | 3   | 0   | 0  | -10.3141 |
| 2    | 1 | 3   | 0   | 0  | -10.3141 |
| 3    | 1 | 3   | 0   | 0  | -10.3141 |
| 4    | 1 | 3   | 0   | 0  | -10.3141 |
| 5    | 0 | 3   | 0   | 1  | -8.4510  |
| 6    | 1 | 0   | 0   | 3  | -6.7669  |
| 7    | 1 | 1   | 1   | 1  | -8.7506  |
| 8    | 0 | 2   | 1   | 1  | -7.5967  |
| 9    | 1 | 3   | 0   | 0  | -10.3141 |
| 10   | 2 | 2   | 0   | 0  | -10.9691 |
| 11   | 1 | 3   | 0   | 0  | -10.3141 |
| 12   | 0 | 4   | 0   | 0  | -9.5424  |
| 13   | 0 | 1   | 1   | 2  | -5.7403  |
| 14   | 0 | 0   | 0   | 4  | 0.0000   |
| 15   | 0 | 2   | 0   | 2  | -6.9897  |
| 16   | 1 | 2   | 1   | 0  | -9.7772  |

Table E.8. Weighted Signal-to-noise Ratios for Duplicator Example

 Table E.9. Averages of Weighted Signal-to-noise Ratios for each Level of Factors for

 Duplicator Example

| Levels | Factors  |         |         |         |  |  |  |  |  |
|--------|----------|---------|---------|---------|--|--|--|--|--|
|        | В        | D       | F       | K       |  |  |  |  |  |
| 0      | -10.2995 | -7.8587 | -9.3782 | -7.8740 |  |  |  |  |  |
| 1      | -6.7591  | -9.1999 | -7.6804 | -9.1846 |  |  |  |  |  |

## E.4 Results of Scoring Scheme Method for Duplicator Example

|                  | CATEGORIES |         |        |        |  |  |  |  |  |
|------------------|------------|---------|--------|--------|--|--|--|--|--|
|                  | Ι          | II      | III    | IV     |  |  |  |  |  |
| $q_i$            | 0.1719     | 0.5469  | 0.0625 | 0.2188 |  |  |  |  |  |
| $	au_{i}$        | 0.0859     | 0.4453  | 0.7500 | 0.8906 |  |  |  |  |  |
| $\tilde{\tau_i}$ | -0.4141    | -0.0547 | 0.2500 | 0.3906 |  |  |  |  |  |
| li               | -1.5833    | -0.2091 | 0.9560 | 1.4937 |  |  |  |  |  |

Table E.10. Calculated Data and Location Scores for Duplicator Example

 Table E.11. Calculated Data and Dispersion Scores for Duplicator Example

|         | CATEGORIES  |         |         |        |  |  |  |  |  |  |
|---------|-------------|---------|---------|--------|--|--|--|--|--|--|
|         | I II III IV |         |         |        |  |  |  |  |  |  |
| ei      | 1.6596      | -0.9361 | -0.1783 | 1.0872 |  |  |  |  |  |  |
| $d_{i}$ | 1.5068      | -0.8499 | -0.1618 | 0.9871 |  |  |  |  |  |  |

 Table E.12. Location and Dispersion Pseudo-observations for Each Set of Parameter

 Settings for Duplicator Example

| Exp.<br>No | A | В | С | D | Е | F | G | Н | Ι | J | K | L | Li      | Di      |
|------------|---|---|---|---|---|---|---|---|---|---|---|---|---------|---------|
| 1          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.2107 | -1.0429 |
| 2          | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | -2.2107 | -1.0429 |
| 3          | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | -2.2107 | -1.0429 |
| 4          | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -2.2107 | -1.0429 |
| 5          | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0.8664  | -1.5626 |
| 6          | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 2.8978  | 4.4680  |
| 7          | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0.6572  | 1.4821  |
| 8          | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2.0315  | -0.8746 |
| 9          | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | -2.2107 | -1.0429 |

| 10 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -3.5849 | 1.3138  |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---------|---------|
| 11 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | -2.2107 | -1.0429 |
| 12 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | -0.8365 | -3.3996 |
| 13 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 3.7343  | 0.9624  |
| 14 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 5.9749  | 3.9483  |
| 15 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 2.5692  | 0.2744  |
| 16 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | -1.0456 | -0.3548 |

 Table E.12. (cont'd) Location and Dispersion Pseudo-observations for Each Set of

 Parameter Settings for Duplicator Example

| Table E.13. Averages of Location and Dispersion Pseudo-observations for each Actual |
|-------------------------------------------------------------------------------------|
| Factor for Duplicator Example                                                       |

| Level      | В       | F       | K       | L       |  |
|------------|---------|---------|---------|---------|--|
| Location   |         |         |         |         |  |
| 0          | 2.2107  | 0.7506  | -0.5788 | 0.4967  |  |
| 1          | -2.2107 | -0.7506 | 0.5788  | -0.4967 |  |
| Level      | В       |         |         |         |  |
| Dispersion |         |         |         |         |  |
| 0          | 1.0429  |         |         |         |  |
| 1          | -1.0429 |         |         |         |  |

## E.5 Results of Weighted Probability Scoring Scheme Method for Duplicator Example

| Table E.14. Proportions of observation $p_{ij}$ for each category <i>i</i> and set <i>j</i> of parameter |
|----------------------------------------------------------------------------------------------------------|
| settings for Duplicator Example                                                                          |

| Evn No  | CATEGORIES |        |        |        |  |  |  |  |  |
|---------|------------|--------|--------|--------|--|--|--|--|--|
| Exp. NO | Ι          | II     | III    | IV     |  |  |  |  |  |
| 1       | 0.2500     | 0.7500 | 0.0000 | 0.0000 |  |  |  |  |  |
| 2       | 0.2500     | 0.7500 | 0.0000 | 0.0000 |  |  |  |  |  |
| 3       | 0.2500     | 0.7500 | 0.0000 | 0.0000 |  |  |  |  |  |

| 4  | 0.2500 | 0.7500 | 0.0000 | 0.0000 |
|----|--------|--------|--------|--------|
| 5  | 0.0000 | 0.7500 | 0.0000 | 0.2500 |
| 6  | 0.2500 | 0.0000 | 0.0000 | 0.7500 |
| 7  | 0.2500 | 0.2500 | 0.2500 | 0.2500 |
| 8  | 0.0000 | 0.5000 | 0.2500 | 0.2500 |
| 9  | 0.2500 | 0.7500 | 0.0000 | 0.0000 |
| 10 | 0.5000 | 0.5000 | 0.0000 | 0.0000 |
| 11 | 0.2500 | 0.7500 | 0.0000 | 0.0000 |
| 12 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
| 13 | 0.0000 | 0.2500 | 0.2500 | 0.5000 |
| 14 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
| 15 | 0.0000 | 0.5000 | 0.0000 | 0.5000 |
| 16 | 0.2500 | 0.5000 | 0.2500 | 0.0000 |

**Table E.14. (cont'd)** Proportions of observation  $p_{ij}$  for each category i and set j ofparameter settings for Duplicator Example

**Table E.15.** Location, Dispersion and Mean Squared Deviation Scores for each set of parameter settings for Duplicator Example

| Exp.<br>No | A | B | C | D | E | F | G | Н | Ι | J | K | L | L <sub>i</sub> | $d_i^2$ | MSD     |
|------------|---|---|---|---|---|---|---|---|---|---|---|---|----------------|---------|---------|
| 1          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.7500         | 18.3125 | 6.1841  |
| 2          | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1.7500         | 18.3125 | 6.1841  |
| 3          | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1.7500         | 18.3125 | 6.1841  |
| 4          | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1.7500         | 18.3125 | 6.1841  |
| 5          | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 2.5000         | 11.2500 | 1.0240  |
| 6          | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 3.2500         | 1.0625  | 0.1232  |
| 7          | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2.5000         | 9.8750  | 0.9184  |
| 8          | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2.7500         | 10.5625 | 0.6863  |
| 9          | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1.7500         | 18.3125 | 6.1841  |
| 10         | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1.5000         | 17.2500 | 10.6667 |

| 11 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1.7500 | 18.3125 | 6.1841 |
|----|---|---|---|---|---|---|---|---|---|---|---|---|--------|---------|--------|
| 12 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2.0000 | 20.0000 | 4.0000 |
| 13 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 3.2500 | 4.8125  | 0.2241 |
| 14 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 4.0000 | 0.0000  | 0.0625 |
| 15 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 3.0000 | 5.0000  | 0.2963 |
| 16 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 2.0000 | 17.6250 | 3.5547 |

 Table E.15. (cont'd) Location, Dispersion and Mean Squared Deviation Scores for each

 set of parameter settings for Duplicator Example

Table E.16. Averages of Mean Square Deviation for each Factor for Duplicator Example

| Lovols | Factors |        |        |        |  |  |  |  |  |  |  |
|--------|---------|--------|--------|--------|--|--|--|--|--|--|--|
| Levels | В       | F      | K      | L      |  |  |  |  |  |  |  |
| 0      | 6.4714  | 4.3343 | 2.9941 | 4.2549 |  |  |  |  |  |  |  |
| 1      | 0.8612  | 2.9983 | 4.3385 | 3.0777 |  |  |  |  |  |  |  |