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ABSTRACT

PRE-POSITIONING DISASTER RESPONSE FACILITIES AND RELIEF ITEMS
CONSIDERING PROBABILISTIC CONSTRAINTS: A CASE STUDY ON ISTANBUL

REGION

RENKLİ, ÇİĞDEM

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Serhan Duran

September 2013, 86 pages

Large-scale disasters cause enormous damage to people living at the affected areas. Providing
relief quickly to the affected is a critical issue in recovering the effects of a disaster. Pre-
disaster planning has an important role on reducing the arrival time of relief items to the
affected areas and efficiently allocating the them. In this study, an MIP model is proposed
in order to pre-position warehouses throughout an affected area and determine the amount of
relief items to be held in those warehouses. Time between the strike of a disaster and arrival
of relief items at the affected areas is aimed to be minimized. In addition, using probabilistic
constraints, the model ensures that relief items arrive at affected areas within a certain time
window with a certain reliability. Considering instable fault lines on which Istanbul is located,
the proposed model is applied to Istanbul case for pre-positioning warehouses a priori to the
possible expected large-scale earthquake.

Keywords: Disaster Management, Humanitarian Logistics, Mixed Integer Programming
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ÖZ

ÖN-KONUMLAMA DEPOLARININ VE TEMEL İHTİYAÇ MADDELERİNİN RASSAL
KISITLAR KULLANILARAK YERLEŞTİRİLMESİ: İSTANBUL ÜZERİNE BİR VAKA

ANALİZİ

RENKLİ, ÇİĞDEM

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Serhan Duran

Eylül 2013 , 86 sayfa

Büyük ölçekli felaketler gerçekleştikten sonra, etkilenen insanlara yardım götürmek felaketin
etkisini azaltmak için gereklidir. Felaketler gerçekleşmeden önce plan yapmak ve önlem al-
mak, ihtiyaç maddelerinin etkilenen alanlara ulaşma zamanının azaltılmasında ve kaynakların
verimli kullanılmasında önemli bir rol oynar. Bu tez çalışmasında, ön-konumlama depolarının
yerleştirilmesi ve bu depolarda tutulacak ihtiyaç maddelerinin miktarlarının belirlenmesi için
bir karışık tamsayı matematiksel modeli önerilmektedir. Amaç, felaketin gerçekleşmesi ile et-
kilenen alanlara yardım gönderilmesi arasında geçen zamanı en aza indirmektir. Bu çalışmayı
özgün kılan özellik olarak, matematiksel model rassal kısıtlar kullanarak, ihtiyaç maddeleri-
nin belirlenen zaman içinde, belirli bir olasılıkla etkilenen alanlara ulaştırılmasını sağlamak-
tadır. Önerilen model İstanbul bölgesine uygulanmış ve olası bir depreme karşı yerleştirilmesi
gereken ön-konumlama depolarının yerleri belirlenmiştir.

Anahtar Kelimeler: Afet Yönetimi, İnsani Yardım Lojistiği, Karışık Tamsayı Programlama
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CHAPTER 1

INTRODUCTION

Centre for Research on the Epidemiology of Disasters (CRED) defines a disaster as a ‘situ-
ation or event, which overwhelms local capacity, necessitating a request to national or inter-
national level for external assistance; an unforeseen and often sudden event that causes great
damage, destruction and human suffering’. According to the Office of U.S. Foreign Disas-
ter Assistance OFDA/CRED International Disaster Database, EM-DAT, 336 natural disasters
were reported in 2011; number of deaths due to natural disasters is 31,105 and number of af-
fected people is 209 million worldwide. Also, EM-DAT shows that between 2002 and 2011,
3,963 natural disasters caused 1,145,015 deaths and affected 2,682,800 people [1].

Disasters are stochastic in their nature; exact time, place and magnitude of disasters cannot
be known before they strike. They are unpreventable events that cause many deaths and affect
even more people. People, that are lack of survival needs like immediate medical assistance,
food, water, and need immediate assistance, are defined as affected people. [2] Assisting
affected people by responding quickly and effectively is a crucial but difficult task due to
these uncertainties. For quick and effective response, humanitarian logistics plans should be
prepared. Apte [3] defines humanitarian logistics as ‘that special branch of logistics which
manages response supply chain of critical supplies and services with challenges such as de-
mand surges, uncertain supplies, critical time windows in face of infrastructure vulnerabilities
and vast scope and of the operations’.

Thomas [4] states that ‘humanitarian supply chains are among the most dynamic and complex
supply chains in the world’. Challenges due to unpredictability of disasters must be consid-
ered in humanitarian logistics. Balcik and Beamon [5] describe the challenging characteristics
of humanitarian logistics as

• ‘Unpredictability of demand, in terms of timing, location, type and size,

• Suddenly occurring demand in very large amounts and short lead times for a variety of
supplies,

• High stakes associated with adequate and timely delivery,

• Lack of resources (supply, people, technology, transportation capacity, and money).’
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In addition to these challenging characteristics, survivability of infrastructure of affected ar-
eas is another concern [6]. A large-scale disaster may destroy paths linking locations on the
affected area and block the roads for relief transportation. In these highly unpredictable situa-
tions, an adequate and thorough pre-disaster planning gains importance in reducing response
time after a disaster strikes and sending relief items to the affected people efficiently.

Humanitarian logistics operation can be divided into three stages: preparation, disaster re-
sponse and humanitarian relief [3]. Focus of this study is on the preparation stage. Preparation
stage includes pre-positioning disaster response facilities and relief items a priori to a disaster.
Facilities are pre-positioned in order to reduce the response time. Although the exact time,
magnitude and the place of a disaster cannot be known, the effect can be predictable. This is
why possible disaster scenarios are used in the literature. In the literature, mostly, stochas-
ticity of the situation is employed considering possible scenarios and expected value of an
objective function with respect to the scenarios. For example, when the number of affected
people in a population center is not known due to unpredictable magnitude of the disaster, dif-
ferent scenarios with different disaster magnitude and thus with different number of affected
people can be employed. However, it is not realistic to think that using possible scenarios
prevents the results of the unpredictability of a disaster. Probabilistic elements are present in
disaster scenarios. Survivability of infrastructure is one of the probabilistic elements. A dis-
aster response facility can be pre-positioned and some affected areas can be assigned to that
facility to be served; however, assuming that relief item transportation is not blocked during
the happening time of the disaster is not realistic. This is why, in this thesis, probabilistic
constraints are used to provide a certain reliability of transportation.

Motivation of this thesis is the lack of formulations that give attention to survivability of
infrastructure in the literature. Probabilistic constraints, that are similar to the ones used in
facility location problems in order to provide reliability in serving a demand point, are modi-
fied and adapted to humanitarian logistics area for serving the purpose of providing reliability
for an affected area to get its relief items. The problem of pre-positioning disaster response
facilities and relief items is formulated with the probabilistic constraints, which are also called
as chance constraints. Effect of the chance constraints on the solutions is discussed and the
results of chance-constrained formulation and scenario-based formulation are compared first
using a simple example consisting of four locations. Then, on a simulated data consisting of
16 affected areas and 65 candidate disaster response facility locations, both formulations are
solved and results are discussed. Afterwards, introducing the related data of Istanbul Euro-
pean Side, the formulation is used in a real life problem with some variations.

Shortly, a mixed-integer programming model is proposed in order to pre-position disaster re-
sponse facilities and relief supplies minimizing total response time. This problem is stochas-
tic in its nature and proposed models in the literature mostly handle stochastic nature of the
problem by using possible scenarios. In this study, probabilistic constraints are used for this
purpose. The motivation of the thesis is analysing the usage of the chance constraints in hu-
manitarian logistics area.
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In the remainder of this study, literature on location problems and humanitarian logistics
are reviewed in Chapter 2. In Chapter 3, the proposed model is presented. In addition to the
proposed model, formulations which are the variations of the proposed model and a scenario-
based formulation to be compared with the proposed model are introduced in this chapter. In
Section 4, numerical examples are presented and the formulations introduced in Chapter 3 are
used on these examples. Additionally, a numerical study which consists of a real life problem,
problem of pre-positioning disaster relief facilities and relief items in Istanbul a priori a large-
scale earthquake, is introduced. Data of the Istanbul problem is presented and formulations
are solved. Solutions of different formulations on the numerical example and on the Istanbul
problem are commented in Chapter 4, also. Chapter 5 is the ending chapter of the thesis and
it includes a summary, comments and suggestions of the future studies.
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CHAPTER 2

LITERATURE REVIEW

Humanitarian logistics is ‘the process of planning, implementing, and controlling the effi-
cient, cost-effective flow and storage of goods and materials, as well as related information,
from point of origin to point of consumption for the purpose of meeting end beneficiary’s
requirements’ [7]. Humanitarian logistics is a broad area that includes different stages of
disaster management. Literature on humanitarian logistic can be classified as literature on
preparedness, literature on disaster response and literature on relief operations [3]. Only the
literature on preparedness in humanitarian logistics is addressed here considering the focus of
this thesis. Location problems are often encountered in the literature on humanitarian logis-
tics. Therefore, the literature review section is divided into two parts: literature on location
problems and humanitarian logistics.

2.1 Literature Review on Location Problems

Before continuing with the literature, two measures of location problems should be stated.
One measure is total weighted distance or time and the other is maximal service distance or
time. As stated by ReVelle and Church [8], usage of notions of time and distance are equally
acceptable.

Daskin et al. [9], the single facility location problem which minimizes the total distance
between the single facility and several customers as stated as the beginning of location theory
in 1909. Then, Hakimi [10] studies on finding locations of switching centers in a communi-
cation network and locations of police stations in a highway system. He advances the study
of location problems by locating multiple facilities that minimizes the total distance between
facilities and the customer or minimizes the maximum distance between a customer and its
closest facility. Consequently, the p-center problem, which locates p facilities that cover all
demand nodes minimizing the maximum distance between a demand node and its closest
facility, and the p-median problem, which located p facilities minimizing the total distance
between the facilities and the demand nodes, are introduced by Hakimi [10].

ReVelle and Swain [11] focus on the p-median problem introduced by Hakimi [10] and pro-

5



pose an equivalent linear integer problem. The model finds the location of the facilities and
the decides on the assignments of demand nodes to the nodes on which the facilities are lo-
cated while minimizing the demand weighted distance between the facility nodes and their
assigned demand nodes. Formulation of p-median problem is as follows:

Minimize
n∑

i=1

n∑
j=1

aidi jxi j (2.1)

subject to :
n∑

j=1

xi j = 1 ∀i ∈ I (2.2)

xi j ≤ x j j ∀i ∈ I,∀ j ∈ J, i , j (2.3)

xi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J (2.4)

where

I : set of demand nodes

J : set of candidate facility nodes

ai : demand of node i

di j : shortest distance between nodes i and j

xi j : 1, if i , j and demand node i is assigned to facility at node j; 0, otherwise

x j j : 1, if a facility is located at candidate node j.

Daskin and Dean [12] address three classic facility location models as basic location models.
One of these basic location models is the p-median problem. The others are the location set
covering model and the maximal covering model. These models are discrete facility location
models and they locate facilities on a finite number of candidate locations [12]. Location
set covering problem (LSCP) is structured and solved by Toregas et al. [13] and Toregas
and ReVelle [14]. The problem aims to find minimum number of facilities in order to cover
all demand nodes within a specified maximal service distance. Formulation of LSCP is as
follows:

Minimize
∑
j∈J

x j (2.5)

subject to :
∑
j∈Ni

x j ≥ 1 ∀i ∈ I (2.6)

x j ∈ {0, 1} ∀ j ∈ J (2.7)

6



where

I : set of demand nodes

J : set of candidate facility nodes

Ni : set of candidate facility nodes that can serve to demand point i not exceeding maximal
service distance

x j : 1, if a facility is opened at candidate facility node j; 0, otherwise.

Objective function (2.5) minimizes the total number of facilities to be located. Constraint
set (2.6) ensures that each demand point has at least one facility within the maximal service
distance. Later, considering that covering all demand nodes may not be feasible due to insuf-
ficient resources, ReVelle and Church [8] introduce the maximal covering location problem.
The model locates a fixed number of facilities by maximizing coverage within a given max-
imal service distance. ReVelle and Church [8] propose solution techniques like heuristic ap-
proaches and linear programming solutions. In addition, they propose the maximal covering
location model with mandatory closeness constraints. This formulation is proposed especially
for public location problems. It is a maximal covering location problem (MCLP) and at the
same time it ensures the distance between a facility and a demand point to be not greater
than a desired distance level, which is greater than the specified maximal service distance.
Formulation of MCLP is as follows:

Maximize
∑
i∈J

aiyi (2.8)

subject to :
∑
j∈Ni

x j ≥ yi ∀i ∈ I (2.9)∑
j∈J

x j = P (2.10)

yi ∈ {0, 1} ∀i ∈ I (2.11)

x j ∈ {0, 1} ∀ j ∈ J (2.12)

where

I : set of demand nodes

J : set of candidate facility nodes

Ni : set of candidate facility nodes that can serve to demand point i not exceeding maximal
service distance

x j : 1, if a facility is opened at candidate facility node j; 0, otherwise

7



yi : 1, if demand node i is covered within the maximal service distance; 0, otherwise

ai : population of demand node i

P : number of facilities to be located.

Objective function of MCLP maximizes covered population. By substituting variable y with
ȳ, the problem is converted to a problem which minimizes the population left uncovered:

Minimize
∑
i∈J

aiȳi (2.13)

subject to :
∑
j∈Ni

x j + ȳi ≥ 1 ∀i ∈ I (2.14)∑
j∈J

x j = P (2.15)

ȳi ∈ {0, 1} ∀i ∈ I (2.16)

x j ∈ {0, 1} ∀ j ∈ J (2.17)

where

ȳi : 1, if demand node i is not covered by a facility within the maximal service distance; 0,
otherwise

All other notation is the same and two problems are equivalent. Additionally, Church and
ReVelle [15] study on theoretical links between the p-median problem, the location set cov-
ering problem and the maximal covering location problem. They also present a historical
perspective of development of location models. They stated that it is possible to structure the
maximal covering location problem and the maximal covering location problem with manda-
tory closeness constraints as their equivalent p-median formulations.

The literature discussed up to here consists of deterministic location problems. There are
also probabilistic location problems in the literature introduced to handle uncertainty in loca-
tion of demand points or uncertainty in availability of facilities. First probabilistic location
problem was proposed by Chapman and White [16]. It is a probabilistic version of the lo-
cation set covering problem (PLSCP) and has a constraint which forces a demand area to be
covered by multiple facilities [17]. Formulation of the problem is as follows:

Minimize
∑
j∈J

x j (2.18)

subject to :
∑
j∈Ni

x j ≥ smin(i) ∀i ∈ I (2.19)

x j ∈ {0, 1} ∀ j ∈ J. (2.20)
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All notation is the same as the notation of LSCP. Its difference from LSCP is the right hand
side of Constraint set (2.19). It provides that demand point i is covered with a certain prob-
ability αi. Define probability of being busy of a facility is p, number of vehicles to cover
demand point i is s(i) and let Hi is the event that there is at least one vehicle available for
serving demand node i. Probability that Hi occurs is given by

P(Hi) = 1 − ps(i). (2.21)

It is required that P(Hi) is greater than αi; therefore, it is required that s(i) is greater than or
equal to a specific number, smin(i), given by Equation (2.22):

smin(i) = d
ln(1 − αi)

ln(p)
e. (2.22)

Therefore, using multiple coverage, PLSCP provides that the probability of coverage for a
demand node is greater than a specified value.

Aly and White [18] study on probabilistic formulation of emergency service facility location
problem. In this study, random variables are the locations of incidents and uniform distri-
bution is used for probability distribution of rectilinear travel time between a new facility
location and the random location of the incident. Probabilistic set covering and probabilistic
central facility problems are introduced. Solution procedures for these two problems are de-
scribed. From the results that they obtain from computational experiments, they concluded
that probabilistic formulations require higher number of assigned facilities than the determin-
istic problems and increasing the speed of emergency vehicles decreases the required number
of assigned facilities.

Daskin [19] extends the maximal covering location model to account for the chance that when
a demand arrives at the system it will not be covered since all facilities capable of covering
the demand are engaged serving other demands. The extended model, named as maximum
expected covering location model (MEXCLP), takes the probability that a facility is not work-
ing (p) into consideration while maximizing the expected covered demand. Relating with the
probability a facility is not working, some assumptions are made. One of them is the known
and same busy probabilities among facilities. The other assumption is the independency of
the probabilities that a facility is not working. Therefore, a random variable, Mi,k can be de-
fined as the number of demands at node i covered by a working facility given k facilities are
eligible to cover demand node i. Mi,k equals to demand of node i, di, with probability of 1-pk;
it equals to zero with probability pk. Expected value of Mi,k is given by

E(Mi,k) = di(1 − pk) ∀i, k. (2.23)
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Formulation of MEXCLP is as follows:

Maximize
∑
l∈L

∑
k∈K

(1 − p)pl−1diyil (2.24)

subject to :
∑
l∈L

yil −
∑
j∈J

ai jx j ≤ 0 ∀i ∈ I (2.25)∑
j∈J

x j ≤ G (2.26)

x j = 0, 1, ...,G ∀ j ∈ J (2.27)

yil ∈ {0, 1} ∀i, l (2.28)

where

yil = 1, if demand node i is covered by at least l facilities; 0, otherwise

x j =number of facilities located at candidate facility node j

ai j= 1, if a facility at node j is eligible to cover demand node i; 0, otherwise.

The model decides on location of the facilities and the least number of facilities that cover a
demand point and objective function maximizes the expected coverage of demand. Daskin
proves the several structural properties of the formulation and presents a heuristic solution
algorithm to solve the problem.

Batta et al. [20] relax some of assumptions made by Daskin [19]. These relaxed assumptions
are the independency of servers (facilities), same busy probabilities (propability that a facil-
ity is not working) for all servers and invariance of busy probabilities with respect to their
locations. They use the hypercube queuing model introduced by Larson [21] in a heuristic
optimization procedure, and they aim to maximize the expected coverage while determin-
ing a set of server locations. In addition, they structure correction factors and add them to
the objective function of MEXCLP to relax the independence assumption and introduced the
adjusted-MEXCLP (AMEXCLP).

ReVelle and Hogan [22] introduce the maximal availability location problem (MALP) which
is the probabilistic version of the maximal covering location problem used in emergency
response systems. Considering the randomness in service availability, the model locates p
servers maximizing coverage of population within a given time standard and a reliability.
They propose two versions of MALP; MALP I and MALP II. MALP I assumes identical
busy fractions for all servers. They use the estimation of Daskin [19] for busy fractions
which is found by dividing daily hours of service needed in the system by daily hours of
service available. A chance constraint on service availability is introduced ensuring that the
probability of one or more vehicles is available within the maximal service distance is greater
than a given reliability is introduced. The chance constraint is linearized and converted into a
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constraint forcing that a demand point is covered at least b times. Let q be the busy fraction
of servers and α is the desired reliability of serving to demand points. Probability that one or
more vehicles are available to serve within maximal service distance should be greater than
α, which can be represented by inequality (2.29):

1 − q
∑

j∈Ni x j ≥ α (2.29)

where

I : set of demand points

J: set of candidate locations

Ni : the set of candidate sites that can serve to demand point i not exceeding maximal service
distance

x j : integer number of servers positioned at site j.

Inequality (2.29) can be equivalently written as:

∑
j∈Ni

x j ≥ b (2.30)

where

b = d
log(1 − α)

log(q)
e. (2.31)

In the objective function of MALP I, total population weighted number of demand points that
are covered at least b times is maximized. Formulation is as follows:

Maximize
∑
i∈I

fiyib (2.32)

subject to :
b∑

k=1

yik ≤
∑
j∈Ni

x j ∀i ∈ I (2.33)

yik ≤ yik−1 ∀i ∈ I, k = 2, ..., b (2.34)∑
j∈J

x j = p (2.35)

yik ∈ {0, 1} ∀i ∈ I, k = 1, ..., b (2.36)

x j ∈ {0, 1} ∀ j ∈ J (2.37)
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where

yik : 1, if demand point i has at least k servers within the maximal service distance

fi: the population at demand point i

p : total number of vehicles to be positioned.

MALP II uses busy fractions that are different in various locations. Those busy fractions are
area-specific not site-specific. However, they present formulation of chance constraints and its
linearization for site-specific busy fractions, also. Define r j as the busy fraction of a vehicle at
site j and all other notation is the same as notation of MALP I. Then, Inequality (2.38) ensures
that the probability of being covered for a demand point j is greater than a specified reliability,
α:

1 −
∏
j∈Ni

rx j
j ≥ α. (2.38)

Taking logarithms of both sides of (2.38), we obtain Inequality (2.39):∑
j∈Ni

(log(r j))x j ≤ log(1 − α) (2.39)

ReVelle and Hogan [22] state that if these chance constraints are used, an efficient zero-one
code capable of solving large problems, which does not exists for general problems, will
be needed to solve the problem. However, they do not conduct any computational study.
In MALP II, area-specific busy fractions are used and chance constraints which force each
demand area has a server available to respond within maximal service time with a certain
reliability. Therefore, for each demand area, a chance constraint is written and linearized as
system-wide chance constraints in MALP I. Linearized chance costraints are given by

∑
j∈Ni

x j ≥ bi ∀i ∈ I, (2.40)

where bi is the smallest integer satisfying Inequalities (2.41):

1 − (
fi
bi

)bi ≥ α ∀i ∈ I. (2.41)

Formulation of MALP II is as follows:

Maximize
∑
i∈I

fiyibi (2.42)
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subject to :
bi∑

k=1

yik ≤
∑
j∈Ni

x j ∀i ∈ I (2.43)

yik ≤ yik−1 ∀i ∈ I, k = 2, ..., b (2.44)∑
j∈J

x j = p (2.45)

yik ∈ {0, 1} ∀i ∈ I, k = 1, ..., b (2.46)

x j ∈ {0, 1} ∀ j ∈ J (2.47)

All notation is the same as that of MALP I. Only difference here is that bi values are used
instead of b. These two models are applied to the data of Baltimore fire system. Both problems
are solved using MPSX and in several instances branch-and-bound applications are used to
resolve fractional solutions.

ReVelle and Hogan [23] propose two problems which are modifications of the probabilis-
tic location set covering problem introduced by Chapman and White [16]. They show that
original probabilistic location set covering model (PLSCP) which uses one estimate of busy
fraction for the system is extremely sensitive to this busy fraction. One of the modified mod-
els is the α-reliable p-center problem that positions p facilities minimizing the maximum time
within which service is available with α-reliability. When α is specified, PLSCP is solved for
successively smaller values of maximal service time. The other modified model is the maxi-
mum reliability location problem locating p facilities which provide service within a specified
maximal service time units maximizing minimum reliability of service. Comparison of sys-
tem estimate of busy fraction and sector specific estimate of busy fraction is presented and
relation of busy fraction and reliability is shown.

A reliability model, called Rel-P, is proposed by Ball and Lin [24]. Unavailability of an emer-
gency service vehicle to respond a demand call in a specific time is defined as system failure.
Reliability is defined for individual demand points, not for the system as a whole. Rel-P de-
cides on the number of vehicles in each station whose location is selected among candidate
sites, minimizing the total cost of number of vehicles located in stations. Number of calls
arose and serviced by site j is defined as a random variable D(j). A probabilistic constraint
forcing the probability of D(j) is greater than the number of vehicles in site j, which covers
that demand point, is less than a certain reliability. The constraint is linearized by taking the
logarithms of both side as proposed in ReVelle and Hogan (1989) as an alternative approach
and a linear IP model is obtained. In the study, distribution of demand calls is assumed to be
Poisson distribution and valid inequalities are constructed as preprocessing technique and the
problem is solved using branch-and-bound algorithm. Computational results and sensitivity
analysis are presented.

Different from emergency service location problems, Synder and Daskin [25] propose a reli-
ability model based on p-median and uncapaciated facility location problems. They consider
the probability that a facility will fail to operate due to poor weather conditions, labor ac-
tions, changes of ownership or other factors. They introduce two models locating facilities
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to minimize cost considering the expected transportation cost after failure of facilities. One
of them is the reliability p-median problem where each facility fails with a given probability
and multiple facilities can fail at the same time. Also, some of the facilities may be fail-proof.
There are two objectives: minimizing p-median cost of serving customers from the primary
facilities and minimizing expected cost of failure. The weighted sum of these two objectives
is minimized. If a customer is assigned to a fail-proof facility, it makes no contribution to
expected failure cost. Otherwise, the customer is served by its closest facility with probability
that its closest facility will not fail and it is served by its second closest facility with prob-
ability that its closest facility will fail and its second closest facility will not fail and so on.
The second problem is reliability fixed-charge location problem which do not have a limit on
the number of facilities. Synder and Daskin [25] present an optimal Lagrangean relaxation
algorithm to solve the reliability problems.

Aim to provide a ‘site selection model for emergency resources’, Hole and Moberg [26] pro-
pose a model that determines number and location of facilities. They describe a secure site
location decision process which can be summarized in four steps. First, emergency resources
to be stored at each secure location are identified. Second, all critical facilities within supply
chain are identified. Third, maximum response time and minimum distance from location of
emergency situations for security are decided. Fourth, the proposed model which decides on
the number and location of service facilities is used. The model minimizes number of service
facilities providing that distance between a location of emergency situation (demand point)
and its closest service facility is not smaller than the minimum distance chosen at the fourth
step for security and not greater than the maximum distance for service quality while covering
all demand points.

2.2 Literature Review on Humanitarian Logistics

So far, literature on location problems are reviewed. Most of the location models proposed
for preparedness stage of humanitarian logistics are based on the location models explained
before. In this section, a review of literature on preparedness stage of humanitarian logistics
is given.

Barbarosoglu and Arda [6] propose a multi-commodity, multi-modal network flow formula-
tion for the transportation of first-aid commodities to affected people after a disaster strikes.
Their model is a two-stage stochastic programming problem which handles the uncertainty
of a disaster using possible scenarios. Those uncertainties are demand for first-aid commodi-
ties, vulnerability of facilities and survivability of the connecting paths in the disaster area.
The aim is to minimize to transportation costs, inventory holding costs and mode shift costs
while transporting the commodities with finite and random capacity and meeting the random
demand. The model is applied to Avcilar district of Istanbul region and different solution
approaches were discussed. Actually, it is not a location problem; the model is introduced for
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the transportation phase of disaster response.

Hongzhong at al. [27] propose a model that optimizes the location of facilities for medical
supplies to address large scale emergencies in the Los Angeles area. In this study, an emer-
gency service location problem is examined considering large-scale emergency situations and
characteristics of a large scale facility location problem are included. Proposed large scale
emergency facility location problem (LEMS) mainly decides on location of the facilities. Un-
certainty of demand is handled by defining a set of possible emergency situations, and using
parameters representing both the ‘likelihood that a certain emergency situation affects a de-
mand point and impact that the emergency situation will have on the population of a demand
point’ [27]. Additional coverage for the demand points is provided by forcing the expected
coverage of a demand point is greater than a required number.

Balcik and Beamon [5] study a variant of maximal covering location problem which deter-
mines number and location of distribution center and amount of relief supplies to be stored
considering quick-onset disasters. The problem includes multiple relief items with differ-
ent coverage requirements, a pre-disaster budget constraint, an expected post-disaster budget
constraint, capacity constraints and stepwise partial coverage. Uncertainty is again handled
by using possible scenarios. The model decides on proportion of a relief item type demand
satisfied by a distribution center in a scenario, inventories to be held in distribution centers
and the location of the distribution centers, maximizing the expected coverage with respect to
scenarios. They conduct a numerical analysis focused on earthquake-caused disasters using
parameters obtained by analyzing historical hazards data from the National Geophysical Data
Center. The model is solved using GAMS/Cplex solver. They present results analyzing the
models sensitivity to parameters and they evaluate the coverage performance on the numerical
problem.

Mete and Zabinsky [28] also propose a two-stage stochastic programming problem that de-
termines locations of the facilities and inventory levels to be held. Their formulation is for
storage and distribution of medical supplies. Using possible disaster scenarios, the model
handles the uncertainty coming with a disaster. They used the model for a case study for
earthquake scenarios in the Seattle area where hospitals use their own warehouses or shared
warehouses to store relief items. In the case study, the authors aim to use pre-positioning
warehouses to store additional items by considering timely delivery. At the first stage of the
model, warehouses are selected and inventory levels are determined minimizing total cost of
operating warehouses and the expected value of second-stage solutions with respect to sce-
narios. At the second stage, response time and the penalty of unmet demand are minimized
determining transportation plans and giving demand satisfaction decisions.

Another two-stage stochastic programming model is proposed by Rawls and Turnquist [29]
to decide the location and amounts of various types of emergency supplies to be positioned
a priori to a disaster. Uncertainties in demand and in transportation network availability are
handled using scenarios. In addition, probability that supplies are damaged is considered
in the model. At the first stage, facility locations, facility capacities and stocking levels for
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various items are determined minimizing the opening cost of facilities and total inventory
holding cost with the expected value of the second stage solutions with respect to scenarios.
At the second stage spoilage, shortage and transportation costs are minimized determining the
distribution plan of available supplies in response to the scenarios. They stated that solving
deterministic equivalent of the two-stage stochastic programming model is problematic with
large data and used L-shaped method to solve it. The model is applied at a case study on
hurricane threats in southeastern USA.

Later, Rawls and Turnquist [30] extend the model proposed by Rawls and Turnquist [29]
by adding reliability and maximal service distance constraints. They define reliable set of
scenarios and allow the model to endogenously select the reliability set of scenarios. Demand
in a reliable set is certainly covered within the maximal service distance. Sum of occurring
probabilities of the reliable scenarios is forced to be greater than a given reliability so that
probability of covering all demand within the maximal service distance is greater than or
equal to that given reliability.

Again, Rawls and Turnquist [31] extend their previous model with reliability constraints pro-
posed in the study of Rawls and Turnquist [30] by adding time periods. Motivation behind
this extension is that there may be policies in disaster planning like that at least one-half of
the supplies will arrive at affected area by 12 hours and the left portion will arrive at by 24
hours. They applied the dynamic allocation model to the case study application of hurricane
events that affect coastal North Carolina.

Duran et al. [32] conduct a study to improve CARE International’s emergency response times.
The model finds optimal number and location of pre-positioning warehouses given that de-
mand for relief supplies can be met from both pre-positioned warehouses and suppliers. They
allow multiple events to occur within a replenishment lead time. Their MIP model mini-
mizes the average response time over all demand instances and gives decisions on location
of warehouses, quantities of supply from warehouses and from suppliers and the quantity of
supply held in a warehouse. Two types of capacity constraints are considered; one of them is
the number of warehouses to open and the other is inventory to keep throughout the prepo-
sitioning network. CPLEX solver is used to solve the model including 22 demand points,
12 candidate warehouse locations, 7 relief items and 240 demand instances. All computa-
tional runs reach optimal solution within 4 hours. Their findings of solving the model and
implementing sensitivity analysis lead CARE’s decisions of opening a warehouse in Dubai.

There are academic dissertations on humanitarian logistic area submitted to Industrial Engi-
neering Department of METU, also. One of them is the study of Bozkurt [33]. In the thesis,
the effects of natural disaster trends on the pre-positioning implementation in humanitarian
logistics networks are examined. Using the data obtained from EM-DAT database and the for-
mulation proposed by Duran et al. [32], it is analysed that whether the disaster trends affect
the location of pre-positioned facilities.

Another academic dissertation of the Industrial Engineering Department of METU is the mas-
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ters thesis of Görmez [34]. In the study, the disaster response and relief facility location prob-
lem for Istanbul is addressed. In terms of purposes, it is very similar to this thesis. However,
the formulations that are proposed are different. The data used in the study is obtained from
the report prepared by JICA & IMM [35]. Facilities are separated into two groups as tempo-
rary and permanent facilities. Permanent facilities are the actual facilities to be opened and
in which the relief items are stocked. Temporary facilities are public buildings which can be
used as distribution centers of relief items after the earthquake. In the study, location of tem-
porary facilities are taken as at the center of the districts and optimal location of permanent
facilities are determined minimizing the average distance by limiting the number of tempo-
rary facilities in the districts. Then, a two-stage approach is proposed in order to determine the
number of temporary facilities in each neighbourhood and the number of affected people in a
neighbourhood that are served by a temporary facility in another one. The proposed models
are single-item models and they are deterministic. Stochastic elements are not included in the
formulations.

In humanitarian logistics literature as explained so far, formulations that capture the stochas-
tic properties of disaster by considering a set of possible scenarios are frequently used. In
this study, a chance constrained formulation is used to handle the uncertainties imposed by a
disaster. Some chance constrained formulations are covered in the literature on location prob-
lems, especially in emergency service facility location problems (ReVelle and Hogan [23] ,
Ball and Lin [24]). Formulation and linearization of the chance constraints used in emergency
facility location problems are adapted to humanitarian logistics case and used in the model
proposed in this study.
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CHAPTER 3

MATHEMATICAL MODELS

Before introducing the mathematical models, it is better to define the problem to be solved.
Mainly, the problem is to find the optimal locations for disaster response facilities and to
determine multiple relief items’ inventories of the facilities which is a problem belonging to
preparedness stage of humanitarian logistics literature. In this chapter, firstly, a determin-
istic location-allocation formulation which simply captures the structures of the problem is
introduced and it is called as uncapacitated location problem (UNLP). UNLP chooses the
optimal locations of disaster response facilities (DRFs) among candidate sites, it assigns the
affected areas to the DRF to be served and it determined the inventories of relief items in the
DRFs minimizing the average distance between the DRFs and their assigned affected areas.
However, it does not capture the stochastic elements of the problem like infrastructure surviv-
ability. This is why we introduce chance constraints that make relief item transportation more
reliable. The formulation in which the chance constraints are included is called the uncapac-
itated location problem with chance constraints (UNLP-C). Afterwards, capacity constraints
are added to UNLP and UNLP-C and they are named as capacitated location problem (CLP)
and capacitated location problem with chance constraints (CLP-C), respectively. In addition,
fixed costs to open a DRF to candidate locations are considered and a prefix ’fix’ is added to
the name of formulations denoting that we use fixed costs and corresponding constraints in
that formulation.

Since the literature mostly consists of the scenario-based formulations, it is reasonable to solve
the problem using a scenario-based formulation and compare the results. For this purpose, a
scenario-based formulation (SBP) is introduced for the problem. Also, the results of the
scenario-based formulation with chance constraints (SBP-C) are examined.

The formulations mentioned so far are to minimize the average distance. This objective is
related to minimizing the response time which is very crucial for reducing human suffering in
the case of a disaster. However, it is also important that the relief items actually arrive at the
affected areas. Because of this, we introduce a different objective function to be minimized
which is the expected unsatisfied percentage of total demand with respect to probabilities of
paths between the DRFs and the affected areas being blocked or destroyed by the disaster.

In the remainder of this chapter, the formulations mentioned above are explained in detail.
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First, UNLP is formulated. The aim is to minimize response time after a disaster strikes by
locating disaster response facilities and positioning relief items in those facilities a priori to a
possible disaster. Mainly, the model chooses the location of disaster response facilities among
candidate sites and determines inventories of multiple relief items to be held. Formulation is
as follows:

Sets
I set of candidate DRF locations
J set of affected areas
K set of relief items
Parameters
di j i ∈ I, j ∈ J shortest distance between DRF i and affected area j

n jk j ∈ J, k ∈ K need (demand) for relief item k in affected area j
mk k ∈ K maximal service distance of relief item k
w number of DRFs to be located
Qk k ∈ K total number of relief item k to be allocated
Variables
yi i ∈ I 1, if a DFR is located on candidate location i; 0, otherwise
ti jk i ∈ I, j ∈ J, k ∈ K 1, if DFR located on candidate location i sends relief item

k to affected area j; 0, otherwise
xi jk i ∈ I, j ∈ J, k ∈ K amount of relief item k sent from DFR located on candidate

location i to affected area j
hik i ∈ I amount of relief item k held at DRF located in candidate

site i

Objective function

Minimize z =

∑
i∈I
∑

j∈J
∑

k∈K di jxi jk∑
j∈J
∑

k∈K n jk
(3.1)

subject to :
∑
i∈I

xi jk ≥ n jk ∀ j ∈ J, k ∈ K (3.2)∑
j∈J

xi jk = hik ∀i ∈ I, k ∈ K (3.3)∑
j∈J

∑
k∈K

ti jk ≤ M1yi ∀i ∈ I (3.4)

xi jk ≤ M2ti jk ∀i ∈ I, j ∈ J, k ∈ K (3.5)

ti jk ≤ xi jk ∀i ∈ I, j ∈ J, k ∈ K (3.6)

di jti jk ≤ mk ∗ yi ∀i ∈ I, j ∈ J, k ∈ K (3.7)∑
i∈I

yi ≤ w (3.8)
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∑
i∈I

hik ≤ Qk ∀k ∈ K (3.9)

xi jk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K (3.10)

h jk ≥ 0 ∀ j ∈ J, k ∈ K (3.11)

ti jk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (3.12)

yi ∈ {0, 1} ∀i ∈ I (3.13)

This problem is a simple location-allocation problem with multiple commodities and it is
called as uncapacitated location problem (UNLP) in the remainder of the thesis. Objective
function (3.1) minimizes total weighted distance between affected areas and their assigned
DRFs. By this way, the model minimizes total response time after a disaster strikes. Weights
are the fractions of total items sent from DRFs to affected areas. If flow between a DRF and
an affected area is relatively more, penalty for distance between them is relatively higher.

Constraint set (3.2) ensures that demand of all affected areas for all types of relief items are
met. Constraint set (3.3) forces that total amount of a relief item type held at a DRF equals
to total amount of this relief item type sent from the DRF to its assigned affected areas.
Constraint set (3.4) guarantees that any relief item cannot be sent to any affected area from a
DRF at location if a DRF is not located there. M1 stands for a big number in this constraint
set. By Constraint set (3.5), a DRF cannot send the type of relief item to an affected area if
that DRF is not assigned to that affected area for sending that type of relief item. M2 stands
for a big number in this constraint set. If any relief item k is not sent from a DRF on candidate
location i to affected area j, then the corresponding binary variable takes the value of zero
due to the Constraint set (3.6) for all DRFs, affected areas and relief item types. With the
Constraint set (3.7), a DRF on candidate location i cannot be assigned to affected area j for
sending relief item k, if the distance between the DFR and the affected area is greater than
maximal service distance of that relief item. Maximal service distance increases as criticality
of relief item decreases. Constraint sets (3.8) and (3.9) are budget-related constraints. Number
of DRFs to be pre-positioned is limited by Constraint set (3.8) and total amount of relief
items to be allocated is limited by Constraint set (3.9). Constraint sets (3.10) and (3.11) are
nonnegativity constraints and Constraint sets (3.12) and (3.13) are integrality constraints.

The model simply finds the optimal locations of the disaster response facilities minimizing
the average distance. Because the DRFs are uncapacitated, number of affected areas that can
be assigned to an open DRF is not limited. Utilizing maximum service distance constraints,
Constraint set (3.7), UNLP distinguishes between the relief items. Maximum service distance
of a more critical item is less than the other items. Other than its objective function which
minimizes the average response time and Constraint set (3.7), UNLP is a classical location-
allocation problem which does not have any humanitarian perspective.

For humanitarian purposes, we introduce the reliability constraints to UNLP. Survivability of
the infrastructure is an important concern in transportation of the relief items and we want to
provide a certain reliability for meeting the demand for the relief items. New parameters must
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be introduced in order to formulate the reliability constraints.

αk k ∈ K minimum service reliability of relief item k
vi j i ∈ I, j ∈ J probability that path linking DRF i and affected area j is blocked

In the first chapter, it is said that probabilistic constraints are used for an emergency vehicle
location problem [23]. First, using the notation introduced here, their probabilistic constraints
are explained and then the constraints used in this thesis are presented. In the emergency
vehicle problem, the aim is to provide a reliability value for that at least one vehicle is available
to serve to demand point, which can be formulated as follows:

1 −
∏
i∈I

vti jk
i j ≥ αk ∀ j ∈ J, k ∈ K (3.14)

They make the formulation of these reliability constraints by taking the logarithms of both
sides of the Inequality (3.14).

∑
i∈I

log(vi j)ti jk ≤ log(1 − αk) ∀ j ∈ J, k ∈ K (3.15)

However, providing that an affected area is served by at least one DRF is not meaningful in
the case of a disaster because amount of relief items sent to the affected area is important for
reducing human suffering. Therefore, the chance constraints are modified accordingly as in
Inequality (3.16).

P(C jk) ≥ αk ∀ j ∈ J, k ∈ K (3.16)

where the event C jk is defined as all of the relief item k sent to affected area j reached to the
affected area j. The mathematical formulation is given in Inequality (3.17).

∏
i∈I

(1 − vi j)ti jk ≥ αk ∀ j ∈ J, k ∈ K (3.17)

Left hand side of Inequality (3.17) is the probability that event C jk occurs while right hand
side is service reliability of item k. Service reliability is different for different relief items and
it increases when criticality of the item increases. However, Constraint set (3.17) is a set of
nonlinear constraints. In order to get rid of nonlinearity, we take the logarithms of both sides;

∑
i∈I

log(1 − vi j)ti jk ≥ log(αk) ∀ j ∈ J, k ∈ K (3.18)
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The formulation consisting of (3.1)-(3.13) and (3.18) is called as the uncapacitated location
problem with chance constraints (UNLP-C), which is the proposed model in this thesis.

Both formulations introduced so far are uncapacitated problems. It is meaningful to study
with uncapacitated facilities considering the humanitarian purposes in pre-positioning the fa-
cilities. However, in real life situations, using capacitated facilities might be required by en-
vironmental factors. For example, facilities located at heavily-populated areas might be able
to stock less inventories than the others. To be able to analyse the results, we need capacitated
formulations. For this purpose a new parameter should be defined.

capi i ∈ I total number of relief items that can be stocked in a DRF located at
candidate location i

Capacity constraints are formulated as in Inequality (3.19).

∑
k∈K

hik ≤ capi ∀i ∈ I (3.19)

The formulation including (3.1)-(3.13) together with (3.19) is called capacitated location
problem (CLP) and the formulation consisting of (3.1)-(3.13) together with (3.18) and (3.19)
is called capacitated location problem with chance constraints (CLP-C).

In addition to the capacity of the disaster response facilities, fixed costs to open them should
be considered in real life problems. Although our objective is a humanitarian one, the budget
for public organizations might be limited. New parameters must be defined for this aim.

fi i ∈ I fixed cost of opening a DRF at candidate location i
B total budget for opening DRFs

Inequality (3.20) is formulated in order to introduce fixed cost concept to the formulations.

∑
i∈I

fi ∗ yi ≤ B ∀i ∈ I (3.20)

Actually, by Constraint set (3.8), we set an upper limit for total number of DRFs to be opened.
If fixed costs of opening is the same for all locations, then we do not need Inequality (3.20).
However, fixed cost of opening a DRF might be more for heavily-populated and highly-
occupied areas than the others. Therefore, when we use Inequality (3.20), we distract In-
equality (3.8) from the formulations and have a prefix ’fix’ for the formulation names like
fix-UNLP and fix-CLP-C.

Objective function (3.1) minimizes the total average distance between the affected areas and
the DRFs, which helps minimizing the total average response time. However, as well as the
arrival time of the relief items, it is important that the relief items actually arrive at the affected
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areas. Therefore, it is important to minimize the expected unsatisfied demand. Let the event
Pi jk to be defined as the event of relief item k sent form DRF i to affected area j does not arrive
at the affected area j due to the blockage of the transportation. It is assumed that the events
Pi jk are independent for different i and j. Expected number of item k that is blocked during
the transportation between DRF i and affected area j is denoted by Ei jk and it is calculated as;

Ei jk = xi jk ∗ vi j + 0 ∗ (1 − vi j) = xi jk ∗ vi j (3.21)

Because the events are assumed to be independent, it is meaningful that we obtained the
results in Inequality (3.21).

E jk =
∑
i∈I

xi jk ∗ vi j ∀ j ∈ J, k ∈ K (3.22)

Therefore, total expected number of unsatisfied relief item k demand denoted by Ek is calcu-
lated as;

Ek =
∑
j∈J

E jk ∀k ∈ K (3.23)

In order to be able to discuss on the results, we use PEk values which are total expected
number of unsatisfied relief item k as a percentage of the total demand of relief item k.

PEk =
Ek ∗ 100∑

j∈J n jk
∀k ∈ K (3.24)

Additionally, total amount of unsatisfied demand as a percentage of the total demand is de-
noted as E and its calculation is as follows:

E =

∑
i∈I j∈Jk∈K vi j ∗ xi jk∑

j∈Jk∈K n jk
(3.25)

E is another humanitarian objective and is a concern of this study.

In order to understand functioning of the proposed model, to compare its results with the
results of scenario-based model and to employ the chance constraints in the scenario-based
model, we should give the formulation of scenario-based model first. The notation introduced
before is used with some additions.
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Additional Set
S set of possible scenarios
Additional Parameters
n jks j ∈ J, k ∈ K, s ∈ S need (demand) for relief item k in af-

fected area j in scenario s
vi js i ∈ I, j ∈ J, s ∈ S probability of path linking DRF i and

affected area j being blocked in sce-
nario s

ps s ∈ S occurrence probability of scenario s
Additional Variables
ti jks i ∈ I, j ∈ J, k ∈ K, s ∈ S 1, if DRF located on candidate location

i sends relief item k to affected area in
scenario s j; 0, otherwise

xi jks i ∈ I, j ∈ J, k ∈ K amount of relief item k sent from DRF
located on candidate location i to af-
fected area j in scenario s

Objective function

Minimize z = ps ∗
∑
s∈S

∑
i∈I
∑

j∈J
∑

k∈K di jxi jks∑
j∈J
∑

k∈K n jks
(3.26)

subject to :
∑
i∈I

xi jks ≥ n jks ∀ j ∈ J, k ∈ K, s ∈ S (3.27)∑
j∈J

xi jks ≤ hik ∀i ∈ I, k ∈ K, s ∈ S (3.28)∑
j∈J

∑
k∈K

ti jks ≤ M1yi ∀i ∈ I, s ∈ S (3.29)

xi jks ≤ M2ti jks ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (3.30)

ti jks ≤ xi jks ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (3.31)

di jti jks ≤ mk ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (3.32)∑
i∈I

yi ≤ w (3.33)∑
i∈I

hik ≤ Qk ∀k ∈ K (3.34)

xi jks ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (3.35)

h jk ≥ 0 ∀ j ∈ J, k ∈ K (3.36)

ti jks ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (3.37)

yi ∈ {0, 1} ∀i ∈ I (3.38)

Functions of the objective function and the constraints sets are the same with UNLP. The
scenario-based formulation is called SBP in the remainder of the thesis. Using SBP, we find
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the optimal locations of DRFs and inventories to be held minimizing the expected average
distance with respect to the scenarios.

Inequality (3.39) is the modified version of the chance constraints to be used in SBP.

∑
i∈I

log(1 − vi j)ti jks ≥ log(αk) ∀ j ∈ J, k ∈ K, s ∈ S (3.39)

We call SBP with the chance constraints as SBP-C in the remainder.

In this chapter of the thesis, the proposed model is explained. In addition, the formulations
that are the variations of the proposed one and the formulations that help understanding the
contributions of the proposed model are explained. From now, the results are presented using
simulated data and the real data of Istanbul case.
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CHAPTER 4

COMPUTATIONAL STUDIES AND RESULTS

In this chapter, the formulations introduced in Chapter 3 are used in numerical examples
created by simulated data and in a numerical study which is a real life problem of Istanbul
city. Two different settings are used as numerical examples; the first, a four-location example
and, the second, an example with 16 affected areas and 65 candidate DRF locations.

In the first example, we use different location patterns and different disaster intensities. Af-
ter we realize that different distance patterns are not very defining, we use only one distance
pattern in the second example with different disaster progression schemes and different inten-
sities.

In the numerical study, first, we introduce the data of the Istanbul problem and then we use
the formulations introduced in Chapter 3 to solve the problem.

Throughout this chapter, the effects of chance constraints on the optimal DRF locations, on
the average distance and on the expected unsatisfied demand percentage are discussed. In
addition, SBP is used and its solutions are compared with the solutions of UNLP-C.

4.1 Numerical Examples

In order to understand the functioning of the formulations mentioned, a small, simple exam-
ple is used. Number of demand locations is limited but the distance relation between them
changes. On this setting, different scenarios are generated using different parameters. Using
the example and scenarios generated, effect of the chance constraints on the results is ex-
amined and the results of the model with chance constraints on the worst case scenario and
results of the scenario-based model are compared in terms of different objectives.

In the small setting, there are four residential locations, namely A, B, C and D, and one DRF
is to be opened at one of these four locations. For the sake of simplicity, one type of relief
item is located at this relief location. Different scenarios include different parameters in terms
of distances between the locations, demands of the locations for the relief items, center and
intensity of the earthquake and vulnerabilities of the paths between the locations.
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Four different distance patterns are created. Figure 4.1 shows the graphical representation of
the distance patterns and the distances between the residential locations.

Figure 4.1: Location patterns and the distances between the residential locations

After the location patterns are determined, representative examples in terms of center and in-
tensity of the earthquake are chosen to be examined. Let EI j to stand for earthquake intensity
of location j for j = A, B, C, D.

It is not unrealistic to assume that affected population of a location and vulnerability of the
paths outgoing from that location are proportional to EI of that location. Therefore, to form
scenarios serving the purpose, actual populations of each location are assumed to be equal.
Different EI levels are utilized in the scenarios. Vulnerability factor (VF) of 0.8 is in the
highest EI case, and by 0.2 decrements in each case, 0.2 is in the lowest case. For example, let
vulnerability factor of the location A to be 0.8 and the population to be 1000 people. Then the
probability of relief item transportation on the ongoing paths from this location being blocked
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is taken as 0.8 and the affected population at location A is considered as 0.8 ∗ 1, 000 = 800
people.

In the first experiment, the relation between EI of the locations is EIA > EIB = EIC = EID.
Let VFA equals to 0.8 and VF of the other locations equal to 0.2. Table 4.1 shows the results
for different location patterns.

Table4.1: Solutions of the first experiment

Results of UNLP-C Results of UNLP Difference

Location
pattern

A.D. E.U. DRF A.D. E.U. DRF A.D. E.U.

1 857.14 17.14% B or C or D 428.57 34.29% A 100% -50%
2 1142.85 17.14% B or C or D 428.57 34.29% A 167% -50%
3 857.14 17.14% B 428.57 34.29% A 100% -50%
4 1428.57 17.14% B or C or D 428.57 34.29% A 67% -50%

* A.D. : average distance

* E.U. : expected unsatisfied demand

Total number of relief items to be allocated equals to the total demand in each location pattern.
The maximum service distance is 2,000 meters and the minimum service reliability is 0.8 in
these examples. If the chance constraints are not used, center of the earthquake, A is the
optimal location to open a disaster response facility (DRF). Optimal objective function value
and expected unsatisfied demand as a percentage of total demand are the same regardless
of which location pattern is used. If a DRF is located on location A, in expectation, 34.29
% of the total population do not get their necessary relief items and the maximum service
reliability is be 0.2. This means that the demands of locations B, C and are met with a
probability of 0.2. If chance constraints are introduced to the model, there are alternative
optimal solutions in patterns 1, 2 and 4; and the DRF is opened in location B in pattern 3.
In this case, percent expected loss drops to its half (it is the minimum feasible value for this
problem). In addition, minimum service reliability becomes 0.8 as chance constraints require.
However, weighted distance increases in each of the patterns. In pattern 2, when the center of
the earthquake is located at the geographical center of the locations, the increase caused by
the chance constraints is larger than that of the other patterns. This is because the center has
the highest vulnerability factor, so it demands the highest amount.

The only effect of minimum service reliability, α, on the results is related to the feasibility
of chance-constrained formulation. When α is between 0 and 0.2, the chance constraints
are redundant. When it is between 0.2 and 0.8, introducing the chance constraints changes
the results as explained. When it is between 0.8 and 1.0, chance-constrained formulation is
infeasible.
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In the second experiment, the relation is changed and it becomes EIA = EIB = EIC > EID.
Let VFD equals to 0.2 and VF of the other locations equal to 0.8. The results are summarized
in Table 4.2.

Table4.2: Solutions of the second experiment

Results of UNLP-C Results of UNLP Difference (%)

Location
pattern

A.D. E.U. DRF A.D. E.U. DRF A.D. E.U.

1 923.07 18.46 % D 692.30 55.38 % A or B or C 33% -67 %
2 1538.46 18.46 % D 692.30 55.38 % A 122% -67 %
3 1230.76 18.46 % D 692.30 55.38 % A or B 78% -67 %
4 1333.33 16.67 % D 1000.00 40.00 % B or C 33% -58 %

* A.D. : average distance

* E.U. : expected unsatisfied demand

In the first and second experiments we use different disaster centers and different intensities.
Solutions of both experiments show the similar results in terms of effect of chance constraints
on average distance and expected unsatisfied demand. In addition, chance constraints cause
that when location pattern 2 is used, the difference between the average distance values are
the most this is because the high risky location is at the geographical center of four locations.

If the chance-constraints are not redundant, their effects on the results are similar in each
scenario created with different combinations of intensity levels and location patterns. They
increase the weighted distance in each pattern but mostly in pattern 2 and they cause a de-
crease in expected unsatisfied demand. The chance constraints are effective especially when
high risky locations are at geographical centers of the other locations. When this is the case,
the decrease in expected unsatisfied demand is more than that of the case in which high risky
locations are at remote places of the graph.

In order to use SBP, four examples, in which there are four different scenarios, are presented.
Scenarios are identified in terms of the vulnerability vector. Problems are solved both using
UNLP-C on the worst case scenario and using SBP. Table 4.3 shows the vulnerability vectors
used in the scenarios.
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Table4.3: Vulnerability vectors under the scenarios

Vulnerability vectors used in the scenarios

Scenarios A B C D
1 0.8 0.6 0.4 0.2
2 0.8 0.8 0.8 0.4
3 0.6 0.4 0.4 0.4
4 0.4 0.4 0.2 0.2

It can easily be seen that Scenario 2 is the worst case. Therefore, UNLP-C is solved under
Scenario 2 and SBP is solved when the occurrence of the scenarios are equally likely for
different location patterns. Table 4.4 shows the average distance in the worst case scenario,
the expected average distance with respect to all scenarios, the expected unsatisfied demand
under the worst case scenario and the overall expected unsatisfied demand with respect to the
scenarios according to the solutions of UNLP-C and SBP when the location pattern 1 is used.

Table4.4: Results of UNLP-C and SBP when the location pattern 1 is used

UNLP-C SBP Difference(%)
Weighted distance in worst case
scenario

857.14 714.28 16.7

Expected weighted distance wrt
scenarios

117.42 105.27 10.3

Expected unsatisfied demand
under worst case scenario

34.28 % 57.14 % -67

Overall expected unsatisfied de-
mand wrt scenarios

25.16 % 39.71 % -58

Location of DRF D B

SBP does not include the chance constraints. Even though it considers all possible scenarios,
it is lack of reliability concept. This is why it gives better results in the weighted average
of the worst case scenario and in the expected weighted average with respect to the scenar-
ios. Chance-constrained formulation ignores the scenarios other than the worst case scenario;
however, it gives less in total expected loss in the four examples. This is because chance con-
straints require that DRFs are opened in less risky locations so that the relief transportation is
reliable.
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Table 4.5 presents the same results when the location patterns 2,3 and 4 are used.

Table4.5: Results of UNLP-C and SBP when the location pattern 2,3 and 4 are used

Pattern 2 UNLP-C SBP Difference(%)
Weighted distance in worst case
scenario

1428.57 714.28 50

Expected weighted distance wrt
scenarios

1369.84 673.80 51

Expected unsatisfied demand
under worst case scenario

34.28 % 57.14 % -67

Overall expected unsatisfied de-
mand wrt scenarios

25.16 % 43.42 % -73

Location of DRF D A
Pattern 3 UNLP-C SBP Percent difference of the results
Weighted distance in worst case
scenario

1142.85 714.28 38 %

Expected weighted distance wrt
scenarios

1096.42 673.80 39 %

Expected unsatisfied demand
under worst case scenario

34.28 % 57.14 % -67 %

Overall expected unsatisfied de-
mand wrt scenarios

25.16 % 43.42 % -73%

Location of DRF D A
Pattern 4 UNLP-C SBP Percent difference of the results
Weighted distance in worst case
scenario

1142.85 1000.00 30 %

Expected weighted distance wrt
scenarios

1174.61 1052.77 22 %

Expected unsatisfied demand
under worst case scenario

34.28 % 57.14 % -40 %

Overall expected unsatisfied de-
mand wrt scenarios

25.16 % 39.71 % -37%

Location of DRF D B

Differences between the results are higher than the others when the location pattern 2 is used.
This is because the there is an obvious graphical center and its vulnerability is the highest
value in all scenarios. UNLP-C opens the DRF at location D in all location patterns because it
is the least risky location. Even though SBP considers all of the scenarios, it does not capture
the risk that the relief item transportation is harmed by the disaster.

32



In the previous experiment, a simple example with four locations is examined. The results
are analysed under different location patterns. Since the location pattern is not very defining,
we create a bigger experimental setting where candidate DRF locations and demand points
are evenly distributed over a square area. In this experiment, we do not use different location
patterns but use different disaster scenarios in which the center, intensity and dissemination
of the effect of a disaster. There are 16 affected areas and 65 candidate DRF locations in the
example. Figure 4.2 below shows the places of affected areas and the locations of candidate
DRF sites.

Figure 4.2: Locations of affected areas and candidate DRF locations

Centers of the black squares are the affected areas and centers of the blue squares are the can-
didate DRF locations of the simulated example. Every grid is a square which has a perimeter
of 400 meters. We use rectilinear distance between the locations.

We consider four disaster progression schemes which can be seen in the Figure 4.3. In addi-
tion, in each of the disaster progression scheme center of the earthquake can be thought to be
at different points. The colors represent the intensity of the disaster which is also explained in
Figure 4.3.
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Figure 4.3: Scenarios of earthquakes which differs in center, intensity and dissemination

In addition, different vulnerability factors are assigned to the colors in order to create more
scenarios and those are called vulnerability factor levels. Table 4.6 shows the vulnerability
factor of each color in each level.

Table4.6: Vulnerability factor corresponding to intensity of the disaster and the level of the
intensity

Intensity

Levels Very strong Strong Weak Very weak
1 0.8 0.6 0.4 0.2
2 0.6 0.4 0.2 0.2
3 0.8 0.4 0.2 0.2
4 0.8 0.84 0.4 0.2

In this setting, the scenarios are defined in terms of their progression schemes and the intensity
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levels.

Population of each center is taken as the same, 1000 people and it is assumed that number
of affected people is directly proportional to the vulnerability factor of the area in which the
population center is located. For example if a population center is located in an area whose
vulnerability factor is 0.8, the number of affected people there is 800.

Vulnerability factors of the paths are calculated as follows. Let the path between candidate
DRF location i and population center j consists of ten grids, four of which are in strong-
intensity area, four of which are in very-strong intensity area and the remaining two are in the
weak area. Vulnerability factors are 0.8, 0.6 and 0.4 in very strong-intensity, strong-intensity
and weak-intensity areas, respectively. Then the vulnerability factor of the path is;

4 ∗ 0.8 + 4 ∗ 0.6 + 2 ∗ 0.4

10
= 0.64

Shortest distance paths are used between candidate location and population centers. Rectilin-
ear distance is used.

For the sake of simplicity, one type of relief item is used and it is assumed that one affected
person requires one relief item. In addition, maximum service distance is set to 7000 meters
and total number of relief items to be allocated equals to the total demand.

There are four scenarios and four different intensity levels; therefore, total of 16 different
problems are solved both using the chance constraints and without using them. Results are
compared in terms of the average distance and total expected unsatisfied percentage of de-
mand.

Introducing the chance constraint to the formulation causes an increase in the optimal ob-
jective function value which is the average distance in all of the scenarios. This is because
the chance constraints require opening DRFs in safer places even if the weighted distance
increases. In order to illustrate the situation, three scenarios are selected and their solutions
are presented.

Scenario 1 consists of the progression scheme 1 with intensity level 2. When the total number
of DRFs to be opened is four and the minimum service reliability is 0.7, the optimal DRF
locations under Scenario 1 are presented in Figure 4.4.
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Figure 4.4: Optimal DRF locations under Scenario 1

The locations in red show the locations of DRFs in the optimal solutions of both problems.
The average distance of UNLP-C is 1667 meters and it drops to 833 meters when UNLP is
used. However, expected unsatisfied demand percentage increases from 24.5 % of the total
demand to 38.3 %.

Second scenario includes the progression scheme 4 with intensity level 3. Optimal DRF
locations are presented in Figure 4.5 when the total number of DRFs to be opened is three and
the minimum service reliability is 0.5.
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Figure 4.5: Optimal DRF locations under Scenario 2

The average distance is 1420 meters in UNLP-C and it is 620 meters when the chance con-
straints are not used. This time, expected unsatisfied demand percentage increases from 43 %
of the total demand to 66 %.

One more scenario is the Scenario 3 which consists of the progression scheme 2 with intensity
level 4. Figure 4.6 shows the optimal locations of DRFs when the total number of DRFs to be
opened is two and the minimum service reliability is 0.7.
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Figure 4.6: Optimal DRF locations under Scenario 3

The average distance is 1845 meters in chance-constrained formulation and it drops to 1293
meters when UNLP is used. Similar to the previous scenarios, expected unsatisfied demand
percentage is increased, from 23.3 % of the total demand to 51.4 %.

The solutions of the other 13 scenarios are similar to the ones of the three example scenarios.
Actually, we have shown that results in the four-location example, too. Chance constraints
chooses locations that are safer, although they are more distant from the affected areas, than
the chosen locations of UNLP; therefore, average distance is increased whereas expected
unsatisfied demand percentage decreases. Minimizing distance means minimizing the time of
relief arrival and using weighted distance, more importance is given to transportation of more
items. On the other side, the main purpose is sending relief, so expected loss of demand should
be as small as possible. Chance constraints serve this purpose by decreasing the expected
unsatisfied demand percentage and providing a pre-specified service reliability for the affected
areas. Using different minimum service reliability values, tradeoff between the weighted
distance and expected loss may be analysed. As an example, the Tables 4.7 shows the results
of progression scheme 3 with intensity level 2, named as Scenario 4, for different minimum
service reliability values, 0.5 and 0.7, respectively.
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Table4.7: Results obtained under Scenario 4

α = 0.5 Results of UNLP Results of UNLP-C Difference(%)

# of DRFs A.D. E.U.(%) A.D. E.U.(%) A.D. E.U.(%)
1 2500 34.19 1750 54.12 42.86 -36.84
2 1406 37.97 1250 52.63 12.5 -27.85
3 1156 38.37 1000 54.31 15.63 -29.34
4 1000 38.41 750 54 33.33 -28.88
5 875 38.38 688 52.75 27.27 -27.25
6 750 39.25 625 51.5 20 -23.79
7 688 39.44 563 45.19 22.22 -12.72
8 641 39.47 500 47.34 28.13 -16.63
9 609 38.69 500 47.06 21.88 -17.8
10 594 38.19 500 48.5 18.75 -21.26

α = 0.7 Results of UNLP Results of UNLP-C Difference(%)

# of DRFs A.D. E.U.(%) A.D. E.U.(%) A.D. E.U.(%)
1 infeasible infeasible 1750 54.13
2 2250 26.38 1250 52.63 80.00 -49.88
3 2000 26.38 1000 54.31 100.00 -51.44
4 1750 26.38 750 54.00 133.33 -51.16
5 1688 26.57 688 52.75 145.45 -49.64
6 1625 26.75 625 51.50 160.00 -48.06
7 1594 26.75 563 45.18 183.33 -40.80
8 1563 26.75 500 47.34 212.50 -43.50
9 1547 26.84 500 47.06 209.38 -42.96
10 1531 27.00 500 48.50 206.25 -44.33

* A.D. : average distance

* E.U. : expected unsatisfied demand

As it can be seen, if minimum service reliability increases the increase in the weighted dis-
tance and the decrease in the expected unsatisfied demand percentage increases. The result is
the same for the other scenarios for all intensity levels. Therefore, chance constraints might be
used for decreasing expected unsatisfied demand percentage and the tradeoff can be calculated
by manipulating the minimum service reliability.

Without chance constraints, the damage on relief item transportation is not taken into ac-
count. We mention that the literature is mostly lack of the attention on this damage and
scenario-based formulations are frequently takes place. Scenario-based formulations are used
because there exists uncertainty in occurrence of a disaster. Therefore, possible scenarios are
derived and their occurrence probabilities are used to optimize expectation of an objective.
Most of the scenario-based formulations proposed in the literature do not include reliability
constraints. However, uncertainty does not only exist between the occurrences of scenarios,
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it exists in those scenarios, also. Using the chance constraints, reliability is provided against
the uncertainty in the scenarios. Main difference here is the existence of the reliability con-
cept through the chance constraints. In this section, the comparison between scenario-based
models and chance-constrained formulation is made. An example scenario combination is to
be used for this purpose.

Let us assume that the dissemination of the disaster is predicted as in progression scheme
2 introduced before. However, the intensity level of the earthquake is not predicted exactly
and there are four possible scenarios; scenario 5, 6, 7 and 8. The results of the four possible
scenarios can be seen in Table 4.8 when the total number of DRFs goes to five. This number
is selected because the larger numbers gives very similar solutions.

Table4.8: Results under scenarios 5, 6, 7, and 8

Scenario 5 UNLP-C,α = 0.5 UNLP-C,α = 0.7 UNLP
# of DRFs A.D. E.U(%) A.D. E.U(%) A.D. E.U(%)

1 2633 25.9 infeasible infeasible 1800 49
2 1500 34.03 1867 23.17 1267 52.33
3 1333 31.7 1767 23.7 1067 47.97
4 1233 32.43 1767 25.03 867 45.3
5 1167 33 1767 25.03 700 45.4

Scenario 6 UNLP-C,α = 0.5 UNLP-C,α = 0.7 UNLP
# of DRFs A.D. E.U(%) A.D. E.U(%) A.D. E.U(%)

1 1881 24.3 2786 22.67 1881 24.33
2 1357 33.4 1643 20 1357 35.19
3 1071 30.1 1405 20.76 1071 37.14
4 881 30.5 1262 21.14 881 30.81
5 786 33.1 1214 21.52 786 34

Scenario 7 UNLP-C,α = 0.5 UNLP-C,α = 0.7 UNLP
# of DRFs A.D. E.U(%) A.D. E.U(%) A.D. E.U(%)

1 1864 25.27 infeasible infeasible 1864 25.27
2 1318 34.32 1682 21.45 1318 47.45
3 1045 30.95 1455 21.45 1045 43.68
4 864 32.82 1318 21.45 864 34.45
5 773 30.77 1273 21.45 773 34

Scenario 8 UNLP-C,α = 0.5 UNLP-C,α = 0.7 UNLP
# of DRFs A.D. E.U(%) A.D. E.U(%) A.D. E.U(%)

1 2638 25.9 infeasible infeasible 1776 47.93
2 1466 33.93 1845 23.28 1293 51.41
3 1190 36.93 1741 23.83 1052 44.48
4 1086 36.21 1741 24.86 879 45.1
5 1017 36.31 1741 24.86 707 49.66

* A.D. : average distance

* E.U. : expected unsatisfied demand
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We can see that the chance constraints are redundant when the minimum service reliability
is 0.5 for scenarios 6 and 7. Moreover, the expected percentage of unsatisfied demand is
decreased when α increases from 0.5 to 0.7 which is consistent with previously obtained
results.

In order to compare the results, we solve the problem with SBP, SBP-C when α = 0.5 and
SBP-C when α = 0.7 assuming that occurrence probabilities are the same. Table 4.9 presents
the results.

Table4.9: Results of scenario based formulations

SBP All scenarios Scenario 5 Scenario 6 Scenario 7 Scenario 8

# of E. O.E.U A.D. E.U. A.D. E.U. A.D. E.U. A.D. E.U.
DRFs (%) (%) (%) (%) (%)
1 1865 28.04 1800 49 1929 30.81 1955 32.36 1776 47.93
2 1309 31.37 1267 54.23 1357 35.19 1318 36.05 1293 53.38
3 1084 33.32 1100 53.7 1071 35.9 1045 43.68 1121 50.28
4 890 29.61 900 51.13 881 32.86 864 34.45 914 49.93
5 741 29.47 700 50.17 786 33.52 773 34.18 707 49.14
SBP-C
(α =

0.5)

All scenarios Scenario 5 Scenario 6 Scenario 7 Scenario 8

# of E. O.E.U A.D. E.U. A.D. E.U. A.D. E.U. A.D. E.U.
DRFs (%) (%) (%) (%) (%)
1 2661 17.38 2633 25.9 2690 21.71 2682 21.91 2638 25.9
2 1573 20.76 1500 33.5 1643 24.1 1682 25.45 1466 33.93
3 1241 20.94 1333 33.6 1214 24.62 1227 25.55 1190 36.93
4 1113 22.21 1333 33.6 976 27.14 955 28.09 1190 36.93
5 986 23.1 1267 34.2 786 28.67 773 29.55 1121 36.72
SBP-C
(α =

0.7)

All scenarios Scenario 5 Scenario 6 Scenario 7 Scenario 8

# of E. O.E.U A.D. E.U. A.D. E.U. A.D. E.U. A.D. E.U.
DRFs (%) (%) (%) (%) (%)
2 1852 15.85 1867 23.17 1833 20 1864 20.23 1845 23.28
3 1643 16.6 1867 23.43 1405 21.52 1455 21.45 1845 23.55
4 1569 16.62 1767 23.5 1357 21.52 1409 21.45 1741 23.62
5 1522 16.62 1767 23.5 1262 21.52 1318 21.45 1741 23.62

* E.A.D. : expected average distance with respect to scenarios

* O.E.U. : overall expected unsatisfied demand with respect to scenarios

* A.D. : average distance

* E.U. : expected unsatisfied demand
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We can say that Scenario 6 is the worst in terms of average distance. Results show that the so-
lutions of UNLP under the Scenario 6 and SBP are the same except the case of only one DRF.
So, using UNLP-C with α = 0.7 increases the average distance and decreases expected un-
satisfied demand percentage for Scenario 6 which is an expected results considering previous
analyses. Actually, this is not only valid for Scenario 6, it is for all scenarios.

When the results of SBP-C with α = 0.5 and SBP-C with α = 0.7 are compared to UNLP-C
with α = 0.5 and UNLP-C with α = 0.7, respectively, it can be seen that scenario-based for-
mulations give the same solutions with the worst case scenario, which is Scenario 5, in terms
of the objective function value. Therefore, in this example, using scenario-based formulations
increases the problem size, only.

Previously, the scenarios differs only in disaster intensity; their progression schemes are the
same. Now, we construct new scenarios which have the same intensity level but different
progression schemes.

Let us assume that the intensity level of the earthquake is predicted as level 4 introduced
before. However, the center of the earthquake is not predicted exactly and there are four
progression schemes; 1, 2, 3 and 4. Therefore, we name the scenarios including intensity
level 4 with progression schemes 1,2,3 and 4 as Scenario 9, Scenario 10, Scenario 11 and
Scenario 12, respectively.

Same problem is solved using four different formulations which are UNLP-C, UNLP, SBP and
SBP-C. The figures below show the optimal locations of DRFs in each scenario according to
the results of different formulations when the total number of DRFs to be opened is four.
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Figure 4.7: Optimal DRF locations when w is four

It can be seen that locations of formulations UNLP and SBP are more centred than the so-
lutions of UNLP-C and SBP-C. Even the locations of SBP-C are more dispersed than the
locations of UNLP-C in each scenario. This is because, the progression schemes are different
and there is no obvious worst case scenario. When SBP-C utilized chance constraints for
all of the scenarios, safer locations are chosen and thus expected unsatisfied percentage of
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demand is decreased.

In short, if chance constraints are not included to scenario-based formulation, although it
considers all possible scenarios, it does not capture the risk of relief transportation blockage.
Chance constraints result in small expected unsatisfied percentage and relatively high average
distance in all formulations. They help observing the tradeoff between the time and reliability
concepts while providing a minimum requirement on the reliability of relief transportation.

4.2 Numerical Study

4.2.1 Data Related to Istanbul Region

Proposed model in the previous section is applied to the European Side of Istanbul. All data
are obtained from The Study on A Disaster Prevention / Mitigation Basic Plan in Istanbul
Including Seismic Microzonation in the Republic of Turkey prepared by Japan International
Cooperation Agency (JICA) and Istanbul Metropolitan Municipality (IMM) [33]. In that
research,four possible earthquake models are proposed namely Model A, Model B, Model C
and Model D. They stated that Model D resembles Model A and Model B resembles Model
C; so, they estimate damages for only two of the models: Model A and Model C. Because
Model C is the worst case, in this thesis estimations for Model C is used.

There are 18 districts of Istanbul at the European Side. Weighted population centers of the
districts are used as demand points (affected areas) in the model. Since two of the districts,
Şişli and Avcılar, are divided into two due to their geographical shapes, there are 20 affected
areas in need of relief items. Table 4.10 shows the districts of the affected areas and Figure
4.8 presents the population center of the districts (affected areas).

Table4.10: Affected areas and their districts

Affected area District Affected area District
1 Şişli 1 11 Zeytinburnu
2 Beşiktaş 12 Bağcılar
3 Şişli 2 13 Güngören
4 Kağıthane 14 Bakırköy
5 Beyoğlu 15 Bahçelievler
6 Eminönü 16 Avcılar 1
7 Gaziosmanpaşa 17 Küçükçekmece
8 Eyüp 18 Avcılar 2
9 Bayrampaşa 19 Büyükçekmece
10 Fatih 20 Sarıyer
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Figure 4.8: Demand Centers of the Affected Areas

Amounts of relief items needed by the affected areas are estimated based on the JICA and
IMM report [35]. Most notable cause of damage is claimed to be building collapse. They
evaluate buildings located at each district in terms of their construction year, floor number
and structure; and they group the buildings into three: heavily damaged buildings, moderately
damaged buildings and partly damaged buildings. Heavily and moderately damaged buildings
are not usable for living until they are repaired or rebuilded. Therefore, people living in
those type of buildings will need certain items like tent, hygiene kits, food and water supply.
Additionally, need for medical equipment kits can be estimated using number of people living
in these type of buildings. The JICA report provides number and percentage of heavily,
moderately and partly damaged buildings in each district together with population data of
them. In this study, need for the five types of relief items are estimated for each district by
multiplying district population with the total percentage of heavily and moderately damaged
buildings in that district. Using CARE International’s specifications, demand for relief items
for all districts are calculated. According to CARE’s specifications, one tent is for 5 people,
one medical equipment kit is for 50 people, one food kit is for 8 people, one hygiene kit is
for 8 people and a person needs 3 liters of waters daily. The estimations can be seen in Table
4.11.
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Table4.11: Need by affected areas for five relief item types

Affected areas Need for relief items % of total
demand

Med.
Eq. kit
(units)

Hygiene
kit
(units)

Food
kit
(units)

Tent
(units)

Water
(liters)

Avcılar 1 777 4,854 4,854 7,766 116,480 3.19
Avcılar 2 777 4,854 4,854 7,766 116,480 3.19
Bahçelievler 3,233 20,204 20,204 32,326 484,881 13.27
Bakırköy 1,685 10,530 10,530 16,848 252,708 6.92
Bağcılar 2,153 13,452 13,452 21,523 322,845 8.84
Beyoğlu 978 6,110 6,110 9,775 146,619 4.01
Beşiktaş 417 2,603 2,603 4,165 62,472 1.71
Büyükçekmece 190 1,186 1,186 1,897 28,452 0.78
Bayrampaşa 1,304 8,148 8,148 13,036 195,534 5.35
Eminönü 317 1,977 1,977 3,163 47,433 1.30
Eyüp 799 4,991 4,991 7,985 119,766 3.28
Fatih 2,712 16,944 16,944 27,111 406,653 11.13
Güngören 1,724 10,774 10,774 17,237 258,555 7.08
Gaziosmanpaşa 1,336 8,348 8,348 13,357 200,343 5.48
Kağıthane 754 4,710 4,710 7,535 113,019 3.09
Küçükçekmece 2,652 16,570 16,570 26,512 397,671 10.88
Sarıyer 175 1,092 1,092 1,747 26,199 0.72
Şişli 1 269 1,677 1,677 2,683 40,245 1.10
Şişli 2 269 1,677 1,677 2,683 40,245 1.10
Zeytinburnu 1,848 11,547 11,547 18,475 277,116 7.58

We assume that the DRFs are not damaged by an earthquake because they can be built as
disaster-resisting buildings. However, they can be isolated due to the fact that the paths linking
them to affected areas can be destroyed. Therefore, candidate DRF locations are chosen
considering isolation risk caused by road blockage after an earthquake. There are 25 candidate
DRF locations and they are presented on a map provided by JICA & IMM [35] showing the
isolation risk of areas in Figure 4.9.
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Figure 4.9: Candidate DRF Locations

In the report of JICA and IMM [35], a proposed emergency road map is presented and that
road map can be seen in Figure 4.10. Roads are evaluated according to route division, con-
nection, factor on traffic characteristics, building collapse risk and crossing large bridges and
viaducts in order to propose most suitable road map to be used in emergency situations. Using
the proposed emergency road map, distances of shortest paths between candidate DRF loca-
tions and affected areas are found and presented in Appendix A. In this thesis, we use shortest
paths and maximum reliable paths. In a real situation, when a path is blocked, an alternative
path is used for relief transportation. However, the solutions are obtained according to short-
est paths or maximum reliable paths in this thesis. As a simplifying assumption, alternative
paths are not considered.
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Figure 4.10: Proposed Emergency Road Network (JICA & IMM, 2002)

In the report of JICA and IMM [35], blockage probabilities of the roads in the proposed road
network are determined considering width of roads and building collapse risk. Roads are
categorized into three groups: wide width roads (16 meters and over), medium width roads
(7 - 15 meters) and narrow width roads (2-6 meters) and for three types of roads, bloackage
probabilities are presented. As an example, a map including medium width roads can be seen
in Figure 4.11. Areas are colored according to building collapse risk; red for 0.5 and over,
orange for the range of 0.3-0.5; yellow for the range of 0.2-0.3; green for the range of 0.1-0.2;
blue for the range of 0.05-0.1;and grey for the range of 0-0.05. Average value of a range is
used as building collapse risk of a road passing through an area. Maps of wide width and
narrow width roads are given in Appendix B.
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Figure 4.11: Building Collapse Risk for Medium Width Roads (JICA & IMM, 2002)

In Figure 4.11, the probability of road blockage due to building collapse is presented for ar-
eas. However, a path between a DRF location and an affected area can pass through the areas
with different blockage probabilities. As explained in Chapter 3 numerical examples part, an
average probability of blockage for the path is calculated. We multiply distance that the path
takes in an area and the blockage probability of that area. After taking the sum of the multi-
plication over all areas that the path goes thorough, the sum is divided by the total distance of
the path giving us the average blockage probability for the path. All probabilities are less than
1 in Istanbul problem, which means there is no path which is definitely blocked. This is why
the explained calculation of blockage probabilities, finding an average probability, is reason-
able. However, it is possible to calculate blockage probabilities of the paths in another way.
Again, we separate the path into the parts passing through the areas with different blockage
probabilities. Then, we multiply the probabilities of the parts not being blocked and extract
the multiplication from 1. By this way, we find the probability that at least one of the parts is
blocked, which is named as overall blockage probability in the thesis. Therefore, two different
calculations are possible for finding blockage probabilities; we can use average probabilities
or overall probabilities. Disadvantage of using average probabilities is that if there are parts
that will definitely be blocked, then the path will definitely be blocked. We ignore this fact
using distance weights and decreasing the blockage probability. Using overall probability
has also a disadvantage because it ignores the distances of the parts. However, finding an
appropriate calculation is not the main concern of this thesis; discussion on the appropriate
calculation is another topic of study. Therefore, because in Istanbul problem, we do not have
any parts that will definitely be blocked, we prefer to use average probabilities. In addition,
we also present solutions when overall probabilities are used. Appendix C shows the average
blockage probabilities of the paths between the locations and Appendix D shows the overall
probabilities.
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4.2.2 Numerical Results

Using data of European Side of Istanbul, problem of finding the locations for pre-positioning
DRFs and relief items a priori to a large-scale earthquake is solved. The formulation without
the chance constraints (UNLP) is used first. Then, chance-constrained formulation (UNLP-
C) is used in order to obtain results with less expected unsatisfied percentage of demand than
those of UNLP. In these formulations, demand of affected areas is satisfied fully; however,
they are modified in order to solve with problem with unsatisfied demand. Even though the
JICA & IMM report [35] does not include any data about capacities of the candidate sites and
costs to open them, using simulated data the problem is also solved with capacitated DRFs
and fixed costs. After obtaining the results with minimizing the total average distance, the
problem is solved minimizing unsatisfied percentage of demand and results are examined.
Shortest paths between the locations are used unless it is stated otherwise. Lastly, maximum
reliable paths are used and the solutions are discussed. Moreover, solutions that are proposed
in the thesis of Gormez [34] mentioned in the Chapter 2 are presented and they are compared
and commented in terms of the risk of infrastructure being destroyed.

At the end of the previous section, it is said that average blockage probabilities are preferred
in this thesis but the solutions obtained using overall probabilities are also presented. Table
4.12 shows the results of UNLP and UNLP-C when overall probabilities are used. Minimum
service reliabilities of relief items are 0.5, 0.5, 0.4, 0.4 and 0.3 for medical equipment, food
supply, water supply, hygiene kits and tents, respectively.

Table4.12: Results of UNLP and UNLP-C when overall probabilities are used

UNLP UNLP-C Difference

# of DRFs A.D. E.U. A.D. E.U A.D. E.U
1 infeasible infeasible 0 0
2 infeasible infeasible 7082 39
3 infeasible infeasible 4909 33
4 8395 20 3985 30 111 -31
5 5586 19 3508 29 59 -35
6 5001 18 3095 24 62 -27
7 4567 18 2719 23 68 -24
8 4174 17 2469 25 69 -30
9 3943 18 2324 25 70 -30

* A.D. : average distance

* E.U. : expected unsatisfied demand

We can say that average distance increases by 70% and expected unsatisfied demand percent-
age decreases by 30%, approximately. This is because when the chance constraints are used
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DRFs are opened at less risky locations even though they are more distant to affected areas.
Figure 4.12 and Figure 4.13 show the optimal DRF locations of the formulations with and
without chance constraints, respectively, when total number of DRFs to be located is five.

Figure 4.12: Optimal DRF locations

Figure 4.13: Optimal DRF locations
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As we can see from the figures, optimal DRF locations are getting out of risky areas when
chance constraints are used. This is why average distance increases and expected unsatisfied
demand decreases. If average blockage probabilities are used in the same setting, chance
constraints are redundant because average probabilities are less than overall probabilities.

After presenting the results when overall blockage probabilities are used, we use average
probabilities in the remainder of the thesis. In addition, we set minimum service reliabilities
of relief items to 0.9, 0.85, 0.85, 0.7 and 0.7 for medical equipment, water, food, hygiene kits
and tents, respectively. Results of UNLP and UNLP-C are presented at Table 4.13.

Table4.13: Results of UNLP and UNLP-C

UNLP UNLP-C Difference

# of DRFs A.D. E.U. A.D. E.U A.D. E.U
1 infeasible infeasible infeasible infeasible - -
2 infeasible infeasible 7082 0.1011 - -
3 infeasible infeasible 4909 0.0925 - -
4 6155 0.0418 3985 0.0932 54% -55%
5 4950 0.0519 3508 0.0925 41% -44%
6 4357 0.0511 3095 0.0812 41% -37%
7 3777 0.0504 2719 0.1408 39% -64%
8 3403 0.0549 2469 0.1879 38% -71%
9 3064 0.052 2324 0.2023 32% -74%

10 2919 0.0587 2227 0.2081 31% -72%
11 2821 0.0491 2144 0.2073 32% -76%
12 2773 0.053 2101 0.2065 32% -74%

* A.D. : average distance

* E.U. : expected unsatisfied demand

These results are expected considering the analysis done on the simulated data. The chance
constraints cause the average distance to increase and the expected loss of demand to decrease.
This is why DRFs are opened at safer but more distant locations from their assigned affected
areas than those of the formulation without the chance constraints. As an illustration, Figure
4.14 and Figure 4.15 below show their optimal locations when the number of total DRFs is
six.
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Figure 4.14: Optimal DRF locations

Figure 4.15: Optimal DRF locations

In addition Table 4.14 shows the expected unsatisfied demand percentage of all relief items
individually when the total no of DRFs to be opened is six.
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Table4.14: Expected unsatisfied demand percentage of all relief items

Relief Items

1 2 3 4 5
UNLP-C 3.2912 4.9338 4.9338 6.9681 6.9681
UNLP 8.119289 8.120332 8.120397 8.120285 8.120397

It can be seen that expected unsatisfied demand percentage of more critical items are in less
amounts than the less critical ones when the chance constraints are used. UNLP treats as if
all items have the same importance.

The results are presented when the total demand is satisfied. However, that might not be
possible due to budget limitations and some portion of the demand might be left to the public
relief agencies to be satisfied. Therefore, we also obtain the solutions when only a portion of
the total demand is satisfied. There are two possibilities; either some portion of the overall
demand is satisfied or some portion of the individual relief items is satisfied. In order to do
this, we made some modifications on UNLP and UNLP-C.

New Parameter
m unsatisfied portion of the demand

New Variable
o jk i ∈ I positive variable that denotes the unsatisfied amount of de-

mand of affected area j for relief item k; 0, otherwise

Additionally, Constraint set (3.2) is modified;

∑
i∈I

xi jk ≥ n jk − o jk (4.1)

If some portion of the overall demand is not satisfied then the constraint below is added to the
model.

∑
j∈J

∑
k∈K

o jk ≤ m ∗
∑
j∈J

∑
k∈K

n jk ∀ j ∈ J, k ∈ K (4.2)

The formulations involving UNLP and UNLP-C together with the Constraint Sets (4.1) and
(4.2) are called uncapacitated location problem with unsatisfied total demand UNLPU and
uncapacitated location problem with unsatisfied demand and chance constraints (UNLPU-C),
respectively.
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If portions of the individual demand of relief items are not satisfied then the constraint below
is added to the model.

∑
k∈K

o jk ≤ m ∗
∑
k∈K

n jk ∀k ∈ K (4.3)

The formulations involving UNLP and UNLP-C together with the Constraint Sets (4.2) and
(4.3) are called uncapacitated location problem with unsatisfied demand of individual items
(UNLPI) and uncapacitated location problem with unsatisfied demand of individual items and
chance constraints (UNLPI-C), respectively.

Table 4.15 shows the solutions when the total number of DRFs is six and the chance con-
straints are not used. It shows the average distance, overall unsatisfied demand percentage
and unsatisfied demand percentages of the relief items separately.

Table4.15: Results obtained when chance constraints are not involved

Unsatisfied demand percentage of relief items

A.D. E.U. 1 2 3 4 5
UNLP 3095 0.0812 8.1193 8.1203 8.1204 8.1203 8.1204

UNLPI, o = 0.75 1451 0.1792 17.9182 17.9219 17.9216 17.9217 17.9216
UNLPI, o = 0.5 572 0.1762 17.6132 17.6159 17.6157 17.6158 17.6157

UNLPU, o = 0.75 1451 0.1792 18.0369 17.9228 17.9101 17.9102 17.9101
UNLPU, o = 0.5 572 0.1762 18.0000 17.6520 17.3578 17.3579 17.3578

When the chance constraints are not used, unsatisfied demand percentage of all the relief
items are either equal or very close to each other.
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Table 4.16 shows the solutions when the total number of DRFs is six also and the chance
constraints are involved. It shows the average distance, overall unsatisfied demand percentage
and unsatisfied demand percentages of the relief items separately.

Table4.16: Results obtained when chance constraints are involved

Unsatisfied demand percentage of relief items

A.D. E.U. 1 2 3 4 5
UNLP-C 6155 0.04178 3.83712 4.14012 4.14012 4.56574 4.56575
UNLPI-C,
o = 0.75

1972 0.04065 1.77576 3.95950 3.95945 5.21541 5.21537

UNLPI-C,
o = 0.5

853 0.04183 2.24341 4.06061 4.06075 5.47612 5.47614

UNLPU-C,
o = 0.75

1968 0.03684 2.02946 3.37626 3.35380 6.75372 6.75373

UNLPU-C,
o = 0.5

843 0.04147 2.38012 3.98951 3.54687 5.94475 5.94477

The chance constraints provide that unsatisfied demand percentage of more critical items is
less than the others. In addition, when the overall demand is limited, more importance is given
to the critical items due to the chance constraints.

When the DRFs are capacitated, the problem is solved again. Because real data about the
capacities are not reached, they are generated. Total demand is divided among the candidate
DRFs according to the blockage probabilities of their outgoing paths. The risky sites have
less capacity than the other sites. The results are presented in Table 4.17.

Table4.17: Results of CLP and CLP-C

CLP CLP-C Difference

# of DRFs A.D. E.U. A.D. E.U A.D. E.U
6 5188 0.0521 4383 0.0837 18% -38%
7 4204 0.0491 3361 0.154 25% -68%
8 3644 0.0508 2855 0.1557 28% -67%
9 3305 0.0479 2500 0.1833 32% -74%
10 2997 0.0419 2352 0.2007 27% -79%
11 2851 0.0491 2213 0.2073 29% -76%
12 2803 0.053 2130 0.2065 32% -74%

* A.D. : average distance

* E.U. : expected unsatisfied demand
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When the total number of DRFs to be positioned is seven, Table 4.18 shows the expected
percentage of unsatisfied demand of all relief items individually.

Table4.18: Expected percentage of unsatisfied demand of relief items of capacitated formula-
tions

Relief Items

1 2 3 4 5
CLP-C 3.4008 4.5598 4.4385 8.4053 8.4095

CLP 16.0694 15.3279 15.6324 16.1898 15.6324

The result is similar. The chance constraints both provide that the losses are decreased and
the items are lost according to their criticality.

After the capacitated problem is solved, fixed costs are generated in order to see the function-
ing of the proposed model. Fixed costs of risky places are higher than the others. Total budget
is taken as 20%, 25%, 30%, and 35% of the total opening costs and the results with different
budgets are presented in Table 4.19.

Table4.19: Results of fix-CLP and fix-CLP-C

fix-CLP-C fix-CLP

# of DRFs A.D. E.U. A.D. E.U A.D. E.U
Budget # of DRFs A.D. E.U. # of DRFs A.D. E.U.

20% of total 6 5187.939 0.052005 6 4647.417 0.074959
25% of total 7 4396.946 0.051726 7 3684.367 0.069728
30% of total 9 3790.717 0.048245 8 2952.526 0.1593
35% of total 9 3305.902 0.053693 9 2717.717 0.147087

* A.D. : average distance

* E.U. : expected unsatisfied demand

When the chance constraints are involved, more DRFs could be opened with the same budget
because opening DRFs to the risky places are more costly. When the minimum reliability is
not required to be served, risky, costly but more centered locations can be selected in order to
minimize total weighted distance.
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So far, minimizing the total average distance is used as the objective of the problem. However,
minimizing the expected unsatisfied percentage of demand is another important objective.
Results of UNLP-C using both of the objectives are presented in Table 4.20.

Table4.20: Results of UNLP-C with two different objectives

Min. A.D Min E.U. Difference

# of DRFs A.D E.U. A.D E.U. A.D E.U.
4 6155 0.0418 18581.15 0.040335 202% -4%
5 4950 0.0519 18588.51 0.040451 276% -22%
6 4357 0.0511 18019.63 0.039187 314% -23%
7 3777 0.0504 18015.77 0.039185 377% -22%
8 3403 0.0549 18016.55 0.039183 429% -29%

* A.D. : average distance

* E.U. : expected unsatisfied demand

Percent increase in the average distance is much higher than the percent decrease in the ex-
pected unsatisfied percentage of demand when the objective is minimizing the expected loss.
However, in this case, total demand is 4,551,415 items and, for example, 20% of the total
demand is 910,283 items. Expected losses of all items are calculated individually and they
can be seen in Table 4.21 when the number of DRFs is five.

Table4.21: Expected unsatisfied demand of relief items

Relief Items

1 2 3 4 5
Minimizing the weighted
distance

4.140229 5.173651 5.173651 5.380448 5.380488

Minimizing expected un-
satisfied demand

2.2289 3.9279 3.9279 5.2833 5.2834

Total demand 26,244 3,934,907 163,964 262,336 163,964
Expected number of items
that are gained when the
expected unsatistied de-
mand is minimized

502 49019 2043 255 159

Although the chance constraints decrease the expected unsatisfied demand minimizing the
average distance, it does not drop to its minimum value. There is a tradeoff between the
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average distance and the expected loss which means there is a tradeoff between the risk and
time. Therefore, the gain on the critical items might be considered in making the decisions.
If the capacities are involved in the formulations results are as follows:

Table4.22: Results of CLP-C using two different objectives

Min A.D. Min E.U.

# of DRFs A.D E.U. A.D E.U.
6 5188 0.0521 14765.37 0.053697
7 4204 0.0491 10687.16 0.011681
8 3644 0.0508 11467.8 0.013488
9 3305 0.0479 11579.25 0.058053
10 2997 0.0419 12874.85 0.077649

* A.D. : average distance

* E.U. : expected unsatisfied demand

The results are similar to the uncapacitated case.

So far, we use the shortest paths between the candidate locations and the affected areas. Now,
we use the maximum reliable paths between the locations and present the results. Maximum
reliable paths are found using linear programming and its formulation can be found in Ap-
pendix E and the distances and blockage probabilities of maximum reliable paths can be found
in Appendix F and Appendix G. Table 4.23 shows the solutions of the formulation without
the chance constraints.
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Table4.23: Results of UNLP using both shortest paths and maximum reliable paths

Shortest paths Max. reliable paths Difference

# of DRFs A.D. E.U. A.D. E.U. A.D. E.U.
1 infeasible infeasible infeasible infeasible - -
2 7082 0.1011 infeasible infeasible - -
3 4909 0.0925 8489 0.000287 73% -99.69%
4 3985 0.0932 5929 0.00017 49% -99.82%
5 3508 0.0925 4939 0.00024 41% -99.74%
6 3095 0.0812 4355 0.000157 41% -99.81%
7 2719 0.1408 3855 0.000145 42% -99.90%
8 2469 0.1879 3565 0.000115 44% -99.94%
9 2324 0.2023 3345 0.000115 44% -99.94%
10 2227 0.2081 3146 0.000115 41% -99.94%
11 2144 0.2073 3019 0.000115 41% -99.94%
12 2101 0.2065 2951 0.000115 40% -99.94%

* A.D. : average distance

* E.U. : expected unsatisfied demand

Table 4.24 shows the results of the chance-constrained formulation.

Table4.24: Results of UNLP-C using both shortest paths and maximum reliable paths

Shortest paths Max. reliable paths Difference

# of DRFs A.D. E.U. A.D. E.U. A.D. E.U.
1 infeasible infeasible infeasible infeasible - -
2 infeasible infeasible infeasible infeasible - -
3 infeasible infeasible 8489 0.000287 - -
4 6155 0.0418 5929 0.00017 -3.67% -99.59%
5 4950 0.0519 4939 0.00024 -0.22% -99.54%
6 4357 0.0511 4355 0.000157 -0.05% -99.69%
7 3777 0.0504 3855 0.000145 2.07% -99.71%
8 3403 0.0549 3565 0.000115 4.76% -99.79%
9 3064 0.052 3345 0.000115 9.17% -99.78%

10 2919 0.0587 3146 0.000115 7.78% -99.80%
11 2821 0.0491 3019 0.000115 7.02% -99.77%
12 2773 0.053 2951 0.000115 6.42% -99.78%

* A.D. : average distance

* E.U. : expected unsatisfied demand
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Chance constraints are redundant when the maximum reliable paths are used because the
vulnerabilities of the paths are very small in the Istanbul problem. Comparing to the results
of UNLP, using maximum reliable paths increases the weighted distance approximately by 46
% whereas it decreases the expected loss of demand to its half. However, comparing to the
results of UNLP-C, differences between the weighted distances are very small and again, the
expected unsatisfied demand of demand drops to its half approximately.

Let us analyze the expected unsatisfied demand of relief items individually when the total
number of DRFs is five.

Table4.25: Expected unsatisfied demand of relief items using UNLP-C

Relief Items

1 2 3 4 5
Using the shortest paths
(%)

4.140229 5.173651 5.173651 5.380448 5.380488

Using the shortest paths
(units)

1087 203578 8483 14115 8822

Using the maximum reli-
able paths (%)

0.023955 0.023958 0.023958 0.023958 0.023958

Using the maximum reli-
able paths (units)

6 943 39 63 39

Total demand 26,244 3,934,907 163,964 262,336 163,964
Expected number of items
that are gained when the
expected loss is mini-
mized

1081 202635 8444 14052 8783

UNLP-C ignores the criticality of relief items due to the redundancy of chance constraints.
Despite this fact, using maximum reliable paths decreases the unsatisfied percentage in sig-
nificant amount in the Istanbul problem.

In the thesis of Gormez [34], the euclidean distances between the locations are used and us-
age of the real paths is given as a future study. Additionally, the data obtained from the report
of JICA & IMM [35] is utilized differently. Therefore, in order to compare, the four opti-
mal locations proposed in that thesis are taken and average distance and expected unsatisfied
demand percentage are calculated. Figure 4.16 shows the optimal locations proposed in the
study of Gormez and in this thesis when the total number of DRFs is four.
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Figure 4.16: Optimal DRF locations of both formulations

Due to the lack of reliability constraints, optimal locations found by the proposed formulation
in the study of Gormez [34] are more centred that the ones found bu UNLP-C. Table 4.26
shows the average distance, expected unsatisfied demand percentage in total and in individual
relief item demands according to the solutions of both formulations.

Table4.26: Results of both formulations

E. U. Relief Items (%)

A.D. E.U. 1 2 3 4 5
UNLP-C 6155 0.042 3.837 4.14 4.14 4.566 4.566
Formulation proposed by
Gormez [34]

4702 0.151 15.056 15.059 15.058 15.059 15.058

Average distance of the formulation proposed by Gormez [34] is 76% of the one found by
UNLP-C. However, when UNLP-C is used expected percentage of the total demand drops
from 15.1% to 4.2%. In addition, the criticality of different relief items is not captured in
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that formulation whereas UNLP-C provides that unsatisfied percentage of demand of critical
items is less than the others.
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CHAPTER 5

CONCLUSION

Preparation stage of humanitarian logistics is a critical stage for reducing human suffering
and minimizing damage caused by disasters. In this thesis, literature on location problems and
preparation stage of humanitarian logistics are reviewed. So far, in the literature, mathematical
models proposed handle the stochastic features of disasters by using expected values with
respect to possible disaster scenarios. In the proposed model, stochasticity is included to the
model using probabilistic constraints.

First, the a mixed-integer mathematical model is introduced without chance constraints. Then,
the reasoning of chance constraints are explained and they are formulated. Additionally, the
formulations including capacitated disaster response facilities and opening costs of facilities
are introduced. Moreover, a scenario-based formulation is presented to make a comparison.

The main objective function used in this thesis is minimizing the average distance between
the locations. However, considering humanitarian purposes, a different objective function,
minimizing expected percentage of unsatisfied demand, is also used.

Formulations are used to solve numerical examples. Two different settings are presented as
numerical examples and the solutions of the formulations are commented. In addition to
numerical examples, a numerical study is conducted on a real life problem of Istanbul city.
Data obtained from the report of JICA & IMM [35] are utilized and the problem is solved
using different formulations.

In all experiments, the results are similar. The main effect of chance constraints on the results
is that optimal disaster response facility locations are getting out of risky areas; thus, chance
constraints, reliability constraints, provide a minimum reliability for relief item transportation
and gives better results in terms of expected unsatisfied demand than the formulations without
chance constraints. However, they increase average distance. Therefore, there is a tradeoff

between minimizing average distance and minimizing expected unsatisfied demand which
can be interpreted as the tradeoff between the response time and the risk.

As a future study, a risk averse objective function, which is suitable for humanitarian pur-
posed, can be formulated and used. In addition, for the cases in which it is impossible to
satisfy all demand, a variation of maximal coverage problem together with the probabilistic
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constraints can be developed.

66



REFERENCES

[1] Centre for Research on the Epidemiology of Disasters. (2009). EM-DAT the interna-
tional disaster database. Accessed February 16, 2013, http://www.emdat.be.

[2] International Federation of Red Cross and Red Crescent Societies. (2012) World Disas-
ter Report 2012. Accessed February 16, 2013, http://www.ifrc.org/PageFiles/
99703/1216800-WDR%202012-EN-LR.pdf.

[3] Apte, A. (2010). Humanitarian logistics: A new field of research and action. Foundations
and Trend R© in Tech. Info. and Op. Management, 3 (1), 1-100.

[4] Thomas, A. (2005). Humanitarian logistics: matching recognition with respon-
sibility. Accessed February 21, 2013. http://www.fritzinstitute.org/PDFs/
InTheNews/2005/ADR_0605.pdf.

[5] Balcik, B., & Beamon, M. (2008). Facility location in humanitarian relief. Internat. J.
Logist. Res. Appl, 11(2),101-121.

[6] Barbarosoglu, G., & Arda, Y. (2004). A two-stage stochastic programming framework
for transportation planning in disaster response. J. Oper. Res. Soc,55(1),43-53.

[7] Thomas, A., & Mizushima, M. (2005).Logistic training: necessity or luxury. Accessed
February 21, 2013. http://www.fritzinstitute.org/PDFs/FMR18/FMR22full.
pdf.

[8] ReVelle, C.S., & Church R. (1974). The maximal covering location problem.Papers in
Regional Science, 32(1), 101-118.

[9] Daskin, M.S., & Owen S.H. (1964). Strategic facility location: a review.European Jour-
nal of Operational Research, 111(1998), 423-447.

[10] Hakimi, S.L. (1964). Optimum locations of switching centers and the absolute centers
and medians of a graph.Operations Research, 12(3), 450-459.

[11] ReVelle, C.S.,& Swain R.W. (1970). Central facilities location.Geographical Analysis,
2(1), 30-42.

[12] Daskin M.S., Dean L.K. (2005). Location of health care facilities.Operational Research
and Health Care, 70, 43-76.

[13] Toregas C., ReVelle, C.S., Swain, R., &Bergman, L. (1971). The location of emergency
service facilities.Operations Research, 19(6), 1363-1373.

[14] Toregas C., ReVelle, C.S.,& Falkson, L. (1976). Applications of the location set-
covering problem.Geographical Analysis, 8(1), 65-76.

67

http://www.emdat.be
http://www.ifrc.org/PageFiles/99703/1216800-WDR%202012-EN-LR.pdf
http://www.ifrc.org/PageFiles/99703/1216800-WDR%202012-EN-LR.pdf
http://www.fritzinstitute.org/PDFs/InTheNews/2005/ADR_0605.pdf
http://www.fritzinstitute.org/PDFs/InTheNews/2005/ADR_0605.pdf
http://www.fritzinstitute.org/PDFs/FMR18/FMR22full.pdf
http://www.fritzinstitute.org/PDFs/FMR18/FMR22full.pdf


[15] Church, R.L., & ReVelle, C.S. (1976). Theoretical and computational links be-
tween the pmedian, location set-covering, and the maximal covering location prob-
lem.Geographical Analysis, 8(4),406-415.

[16] Chapman, S.C.,& White, J.A. (1974). Probabilistic formulations of emergency service
facilities location problems. ORSA/TIMS Conference. San Juan, Puerto Rico.

[17] Daskin, M.S., Hogan, K. ,& ReVelle, C.S. (1988). Integration of multiple, excess,
backup, and expected covering models. Environment and Planning B:Planning and
Design,23(3),192-200.

[18] Aly, A.A.,& White, J.A. (1978). Probabilistic formulation of the emergency service lo-
cation problem. The Journal of the Operational Research Society,29(12),1167-1179.

[19] Daskin, M.S. (1983). A maximum expected covering location model: formulation, prop-
erties and heuristic solution. Transportation Science,17(1),48-69.

[20] Batta, R.,Dolan, M.D., & Krishnamurthy, N.N. (1989). The maximal expected covering
location problem: revisited. Transportation Science,23(4), 277-287.

[21] Larson, C. (1974). A hypercube queuing model for facility location and redistricting in
urban emergency services. Computers & Operations Research,1(1), 67-95.

[22] ReVelle, C.S.,& Hogan, K. (1989). The maximum availability location problem. Trans-
portation Science,23(3),192-200.

[23] ReVelle, C.S.,& Hogan, K. (1989). The maximum reliability location problem and α-
reliable p-center problem: derivatives of the probabilistic location set covering problem.
Annals of Operations Research,18(1989),155-174.

[24] Ball, M.O.,& Lin, F.L. (1993). A reliability model applied to emergency service vehicle
location. Operations Research,41(1),18-36.

[25] Synder, V.L.,& Daskin, M.S. (2005). Reliability models for facility location: the ex-
pected failure cost case. Transportation Science,39(3),400-416.

[26] Hale, T.,& Moberg, C.R. (2005). Improving supply chain disaster preparedness a deci-
sion process for secure site location. International Journal of Physical Distribution &

Logistics Management,35(3),195-207.

[27] Hongzhong, J., Ordonez, F., & Dessouky, M. (2005). A modeling framework for facility
location of medical services for large-scale emergencies. IIE Transactions,39(2007),41-
53.

[28] Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical sup-
ply location and distribution in disaster management. Int. J. Production Economics,
126(2010),76-84.

[29] Rawls, C. G., & Turnquist,M. A. (2010). Pre-positioning of emergency supplies for
disaster response. Transportation Research Part B,44(2010),521-534.

[30] Rawls, C. G., & Turnquist,M. A. (2011). Pre-positioning for emergency response with
service quality constraints. OR Spectrum,33(2011),481-498.

68



[31] Rawls, C. G., & Turnquist,M. A. (2012). Pre-positioning and dynamic delivery plan-
ning for short term response following a natural disaster. Socio-Economic Planning
Science,46(2012),46-54.

[32] Duran, S., Gutierrez, M. A., & Keskinocak, P. (2011). Pre-positioning of emergency
items for CARE International. Interfaces,41(3),223-237.

[33] Bozkurt M. (2011).The effects of natural disaster trends on the pre-positioning imple-
mentation in humanitarian logistics networks. Unpublished master’s thesis for master’s
degree, Middle East Technical University, Ankara, Turkey.

[34] Gormez N. (2008).Disaster response and relief facility location for Istanbul. Unpub-
lished master’s thesis for master’s degree, Middle East Technical University, Ankara,
Turkey.

[35] Japan International Cooperation Agency, & Istanbul Metropolitan Municipality .
(2002).The study on a disaster prevention / mitigation basic plan in Istanbul including
seismic microzonation in the Republic of Turkey.

69



70



APPENDIX A

DISTANCES (IN METERS) OF SHORTEST PATHS BETWEEN
CANDIDATE DRF LOCATIONS AND AFFECTED AREAS

TableA.1: Distances (in meters) of Shortest Paths between Candidate DRF Locations and
Affected Areas (1-10)

Affected Areas (1-10)
DRF # 1 2 3 4 5 6 7 8 9 10

1 1534 5125 7911 8080 9656 9110 10858 10391 5245 9811
2 4346 2764 5550 7254 7816 8284 12223 12570 8057 10587
3 8364 5118 523 5600 2584 4275 10182 10916 9614 6880
4 4805 10115 9363 4263 9296 5293 6967 4052 6868 7596
5 9060 5876 4592 4723 2959 5753 9910 6291 10135 8056
6 9017 14327 14531 10427 12953 11457 3826 4551 7992 11582
7 9330 12405 11121 7627 9723 8657 4092 473 8258 10248
8 4521 9831 11140 9419 9562 10078 4245 7864 3625 8191
9 8815 7137 5892 10969 5825 1822 8427 10446 5379 2037
10 8372 12453 9986 12167 8675 5916 9102 12358 4936 2583
11 6616 11926 12286 11514 10975 8216 10377 13825 6211 4883
12 2058 7368 10154 6956 10700 7986 5819 9267 1653 6219
13 8978 14288 16757 11657 16690 12687 15207 13968 11041 11845
14 7473 12783 14837 12045 14579 10767 11234 14356 7068 7434
15 4714 10024 12290 7190 12223 8220 10943 9501 6777 8392
16 4928 10238 12504 7404 12437 8434 11157 9715 6991 8912
17 13322 18632 19501 17796 18190 15431 17083 20107 12917 12098
18 9866 15176 17442 12342 17375 13372 16095 14653 11929 12291
19 15606 20916 23182 18082 23115 19112 21835 20393 17669 18031
20 16836 22146 24615 19515 24548 20545 23065 21826 18899 19438
21 19389 24699 27168 22068 27101 23098 25618 24379 21452 21991
22 26277 31587 33853 28753 33786 29783 32506 31064 28340 28702
23 3090 8400 10666 5566 10599 6596 9319 7877 5153 7145
24 7033 9892 8647 11870 8389 4577 7763 11019 3597 1244
25 10465 7419 6174 11251 6107 4418 11019 13038 10451 7717
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TableA.2: Distances of Shortest Paths between Candidate DRF Locations and Affected Areas
(11-20)

Affected Areas (11-20)
DRF # 11 12 13 14 15 16 17 18 19 20

1 8909 10774 7890 7153 6499 17908 18478 18950 30456 6626
2 11721 13586 10702 9965 9311 20720 21290 21762 33268 6515
3 11975 17519 14432 13695 13041 24450 25020 25492 36998 10236
4 8110 10178 7091 6354 5700 17109 17679 18151 29657 8528
5 12946 15014 11927 11190 10536 21945 22515 22987 34493 12429
6 13989 16342 13255 12518 11864 23273 23843 24315 35821 12740
7 12635 14703 11616 10879 10225 21634 22204 22676 34182 13053
8 9493 12113 9229 8492 7838 19247 19817 20289 31795 8244
9 7132 14142 10519 9782 11460 21857 22427 22899 34405 12255
10 2512 11272 7649 6873 7535 21348 19685 18603 32019 13065
11 1377 8890 5267 3191 4133 17946 17303 16221 28617 11309
12 6338 9650 6465 6029 5375 16784 17354 17826 29332 5781
13 10005 1068 5461 10209 6455 18844 11369 13364 31392 12701
14 5594 4673 1050 6676 5359 17920 13086 14144 30468 11196
15 5532 8136 4513 3762 3499 13025 13595 14067 25573 8437
16 6123 6151 2528 4367 877 15122 14564 15622 27670 8651
17 9238 7207 4799 7848 3728 13956 11495 10413 24627 18015
18 9431 12035 8412 7644 8651 9085 14110 14582 21633 13589
19 15171 17775 14152 13384 14391 0 19084 16832 13327 19329
20 17598 11486 13054 16924 13170 14692 4545 2140 20778 20559
21 20151 14039 15607 19477 15723 17245 7098 4693 23331 23112
22 25842 28446 24823 24055 25062 11450 23446 16761 1877 30000
23 4285 6889 3266 2529 1875 13284 13854 14326 25832 6813
24 3851 10861 7238 6501 8179 18576 19146 19618 31124 10756
25 12812 19822 16199 15462 17140 27537 28107 28579 40085 12537
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APPENDIX B

BUILDING COLLAPSE RISK OF THE PATHS

Figure B.1: Building Collapse Risk for Narrow Width Roads (JICA & IMM, 2002)

Figure B.2: Building Collapse Risk for Wide Width Roads (JICA & IMM, 2002)
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TableB.1: Building Collapse Risks corresponding the Colors in Figure B.1 and Figure B.2

Color Corresponding building Corresponding building
collapse risk in Figure B.1 collapse risk in Figure B.2

Red 0.5 and over 0.01 and over
Orange 0.3 - 0.5 0.004 - 0.01
Yellow 0.2 - 0.3 0.003 - 0.004
Green 0.1 - 0.2 0.002 - 0.003
Blue 0.05 - 0.1 0.001 - 0.002
Grey 0 - 0.05 0 - 0.001
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APPENDIX C

AVERAGE BLOCKAGE PROBABILITIES OF THE
SHORTEST PATHS

TableC.1: Probability that the Shortest Path Between a Candidate DRF Location and an Af-
fected Area (1-10) is Blocked

Affected Areas (1-10)
DRF # 1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.01 0.02 0.04 0.02 0.14 0.01 0.22 0.22
2 0.01 0.01 0.01 0.00 0.03 0.00 0.13 0.12 0.14 0.00
3 0.01 0.02 0.08 0.02 0.09 0.06 0.18 0.15 0.28 0.04
4 0.00 0.00 0.04 0.05 0.04 0.04 0.00 0.01 0.17 0.03
5 0.01 0.01 0.03 0.01 0.00 0.01 0.15 0.24 0.23 0.01
6 0.01 0.01 0.13 0.02 0.15 0.02 0.01 0.01 0.06 0.08
7 0.01 0.12 0.14 0.09 0.16 0.08 0.00 0.00 0.05 0.16
8 0.02 0.01 0.31 0.03 0.37 0.32 0.45 0.24 0.27 0.30
9 0.30 0.00 0.03 0.02 0.04 0.00 0.13 0.18 0.32 0.06

10 0.32 0.06 0.08 0.09 0.07 0.09 0.24 0.18 0.36 0.21
11 0.08 0.05 0.04 0.07 0.02 0.03 0.18 0.04 0.24 0.04
12 0.05 0.02 0.02 0.04 0.34 0.04 0.25 0.02 0.62 0.33
13 0.03 0.02 0.03 0.03 0.03 0.03 0.12 0.02 0.12 0.16
14 0.11 0.07 0.11 0.14 0.23 0.14 0.20 0.11 0.25 0.19
15 0.01 0.00 0.03 0.03 0.04 0.03 0.15 0.01 0.17 0.01
16 0.01 0.00 0.03 0.03 0.03 0.03 0.14 0.01 0.17 0.16
17 0.14 0.10 0.08 0.06 0.07 0.09 0.19 0.04 0.21 0.11
18 0.07 0.05 0.06 0.07 0.07 0.07 0.14 0.05 0.16 0.06
19 0.02 0.02 0.03 0.03 0.03 0.03 0.09 0.02 0.08 0.02
20 0.02 0.02 0.03 0.03 0.03 0.02 0.08 0.02 0.08 0.11
21 0.02 0.02 0.03 0.03 0.03 0.02 0.08 0.02 0.07 0.10
22 0.07 0.06 0.07 0.07 0.07 0.07 0.11 0.06 0.11 0.07
23 0.01 0.00 0.04 0.04 0.04 0.03 0.17 0.01 0.23 0.00
24 0.31 0.00 0.02 0.02 0.22 0.00 0.21 0.15 0.34 0.00
25 0.00 0.00 0.03 0.02 0.03 0.46 0.15 0.19 0.24 0.00

75



TableC.2: Probability that the Shortest Path Between a Candidate DRF Location and an Af-
fected Area (11-20) is Blocked

Affected Areas (11-20)
DRF # 11 12 13 14 15 16 17 18 19 20

1 0.16 0.03 0.02 0.04 0.07 0.02 0.04 0.03 0.06 0.01
2 0.13 0.02 0.02 0.03 0.05 0.02 0.04 0.03 0.06 0.02
3 0.07 0.03 0.03 0.04 0.06 0.03 0.04 0.04 0.06 0.04
4 0.18 0.02 0.03 0.04 0.08 0.02 0.04 0.04 0.06 0.01
5 0.11 0.01 0.02 0.03 0.04 0.02 0.04 0.03 0.06 0.02
6 0.11 0.01 0.01 0.02 0.04 0.01 0.03 0.03 0.05 0.01
7 0.12 0.02 0.02 0.03 0.05 0.02 0.04 0.03 0.06 0.01
8 0.16 0.03 0.03 0.05 0.07 0.02 0.04 0.04 0.06 0.02
9 0.10 0.04 0.03 0.04 0.05 0.02 0.04 0.04 0.06 0.02
10 0.00 0.17 0.21 0.00 0.06 0.02 0.11 0.11 0.06 0.21
11 0.75 0.24 0.34 0.13 0.20 0.04 0.14 0.14 0.08 0.06
12 0.23 0.04 0.14 0.07 0.10 0.03 0.05 0.04 0.07 0.03
13 0.31 0.06 0.10 0.17 0.16 0.12 0.03 0.02 0.12 0.02
14 0.48 0.10 0.15 0.25 0.25 0.13 0.05 0.05 0.13 0.08
15 0.27 0.06 0.05 0.26 0.12 0.02 0.06 0.04 0.07 0.01
16 0.23 0.07 0.06 0.06 0.75 0.02 0.05 0.04 0.07 0.01
17 0.30 0.10 0.17 0.17 0.25 0.03 0.03 0.02 0.08 0.11
18 0.23 0.10 0.10 0.15 0.13 0.10 0.07 0.06 0.12 0.06
19 0.12 0.04 0.03 0.06 0.05 0.03 0.11 0.11 0.11 0.02
20 0.19 0.02 0.06 0.11 0.08 0.13 0.01 0.00 0.00 0.02
21 0.17 0.02 0.06 0.10 0.08 0.11 0.02 0.01 0.00 0.02
22 0.13 0.08 0.08 0.10 0.09 0.12 0.00 0.00 0.00 0.07
23 0.33 0.07 0.05 0.10 0.22 0.02 0.05 0.04 0.07 0.02
24 0.14 0.04 0.02 0.04 0.05 0.02 0.04 0.04 0.06 0.21
25 0.04 0.02 0.01 0.02 0.03 0.02 0.03 0.03 0.05 0.02
23 0.75 0.15 0.15 0.40 0.15 0.15 0.25 0.25 0.75 0.03
24 0.40 0.15 0.15 0.40 0.03 0.25 0.25 0.25 0.75 0.75
25 0.40 0.15 0.15 0.40 0.75 0.25 0.25 0.25 0.75 0.15
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APPENDIX D

OVERALL BLOCKAGE PROBABILITIES OF THE
SHORTEST PATHS

TableD.1: Probability that the Shortest Path Between a Candidate DRF Location and an Af-
fected Area (1-10) is Blocked

Affected Areas (1-10)
DRF # 1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.03 0.10 0.43 0.10 0.91 0.03 0.87 0.87
2 0.03 0.03 0.05 0.03 0.33 0.03 0.91 0.82 0.88 0.03
3 0.10 0.08 0.08 0.10 0.31 0.31 0.67 0.84 0.90 0.32
4 0.00 0.00 0.17 0.10 0.38 0.10 0.00 0.03 0.87 0.10
5 0.03 0.03 0.03 0.03 0.01 0.03 0.82 0.82 0.94 0.03
6 0.15 0.15 0.57 0.10 0.54 0.10 0.03 0.03 0.32 0.58
7 0.03 0.82 0.82 0.32 0.82 0.32 0.00 0.00 0.31 0.59
8 0.15 0.15 0.88 0.23 0.87 0.87 0.77 0.77 0.40 0.88
9 0.97 0.01 0.09 0.11 0.32 0.01 0.82 0.83 0.94 0.26

10 0.92 0.59 0.59 0.70 0.41 0.40 0.90 0.75 0.85 0.40
11 0.46 0.46 0.49 0.51 0.27 0.26 0.93 0.47 0.90 0.25
12 0.15 0.15 0.17 0.23 0.92 0.23 0.90 0.17 0.85 0.85
13 0.12 0.12 0.21 0.14 0.41 0.14 0.92 0.07 0.89 0.81
14 0.89 0.89 0.77 0.78 0.92 0.75 0.99 0.76 0.98 0.75
15 0.03 0.03 0.19 0.12 0.40 0.12 0.91 0.05 0.88 0.25
16 0.03 0.03 0.19 0.12 0.40 0.12 0.91 0.05 0.88 0.75
17 0.96 0.96 0.92 0.51 0.88 0.88 0.99 0.47 0.99 0.88
18 0.17 0.17 0.32 0.26 0.49 0.26 0.93 0.19 0.89 0.15
19 0.24 0.24 0.37 0.32 0.53 0.32 0.93 0.26 0.90 0.22
20 0.21 0.21 0.29 0.23 0.47 0.23 0.93 0.16 0.90 0.81
21 0.23 0.23 0.31 0.25 0.48 0.25 0.93 0.18 0.90 0.81
22 0.89 0.89 0.91 0.90 0.93 0.90 0.99 0.89 0.99 0.89
23 0.03 0.03 0.19 0.12 0.40 0.12 0.91 0.05 0.88 0.00
24 0.87 0.01 0.09 0.12 0.67 0.01 0.83 0.59 0.75 0.00
25 0.00 0.00 0.08 0.10 0.31 0.75 0.53 0.55 0.86 0.01
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TableD.2: Probability that the Shortest Path Between a Candidate DRF Location and an Af-
fected Area (11-20) is Blocked

Affected Areas (11-20)
DRF # 11 12 13 14 15 16 17 18 19 20

1 0.82 0.19 0.17 0.46 0.76 0.24 0.37 0.29 0.89 0.03
2 0.82 0.21 0.19 0.47 0.76 0.26 0.39 0.30 0.89 0.05
3 0.59 0.28 0.33 0.56 0.80 0.38 0.49 0.42 0.91 0.23
4 0.82 0.12 0.17 0.46 0.76 0.24 0.37 0.29 0.89 0.03
5 0.82 0.14 0.19 0.47 0.76 0.26 0.39 0.31 0.89 0.18
6 0.84 0.12 0.17 0.46 0.76 0.24 0.37 0.29 0.89 0.17
7 0.82 0.14 0.19 0.47 0.76 0.26 0.39 0.30 0.89 0.05
8 0.84 0.31 0.30 0.54 0.79 0.35 0.47 0.39 0.91 0.17
9 0.56 0.42 0.37 0.59 0.81 0.57 0.64 0.59 0.94 0.18
10 0.01 0.80 0.79 0.00 0.75 0.22 0.85 0.81 0.89 0.93
11 0.75 0.85 0.84 0.25 0.81 0.42 0.89 0.86 0.91 0.47
12 0.84 0.31 0.89 0.54 0.79 0.35 0.47 0.39 0.91 0.17
13 0.96 0.10 0.23 0.94 0.57 0.53 0.16 0.14 0.93 0.14
14 0.95 0.21 0.15 0.86 0.69 0.59 0.41 0.23 0.94 0.89
15 0.86 0.41 0.36 0.55 0.75 0.22 0.36 0.27 0.89 0.05
16 0.81 0.21 0.15 0.45 0.75 0.22 0.41 0.23 0.89 0.05
17 0.98 0.43 0.53 0.88 0.53 0.28 0.31 0.10 0.89 0.96
18 0.84 0.33 0.28 0.49 0.79 0.37 0.41 0.32 0.91 0.19
19 0.85 0.39 0.34 0.53 0.81 0.00 0.54 0.42 0.85 0.26
20 0.96 0.21 0.23 0.92 0.46 0.42 0.03 0.00 0.00 0.23
21 0.96 0.23 0.23 0.92 0.46 0.42 0.05 0.03 0.03 0.25
22 0.98 0.91 0.90 0.93 0.97 0.85 0.03 0.00 0.00 0.89
23 0.81 0.21 0.15 0.45 0.75 0.22 0.36 0.27 0.89 0.05
24 0.41 0.22 0.15 0.45 0.75 0.42 0.52 0.45 0.91 0.88
25 0.41 0.23 0.16 0.45 0.75 0.42 0.53 0.46 0.92 0.17
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APPENDIX E

FORMULATION USED FOR FINDING MAXIMUM
RELIABLE PATHS

Sets
I, J nodes
Parameters
di j i ∈ I, j ∈ J distance between the nodes

pi j j ∈ J, k ∈ K blockage probabilities of the paths between the nodes
initial initial node
destination destination node
Variables
yi j i ∈ I 1, if the path between node i and j is used; 0, otherwise

Objective function

Minimize z =

∑
i∈I
∑

j∈J di j pi jyi j∑
i∈I
∑

j∈J di j
(E.1)

(E.2)

subject to :
∑
j∈J

yinitial, j −
∑
j∈J

y j,initial = 1 (E.3)∑
j∈J

ydestination, j −
∑
j∈J

y j,destination = −1 (E.4)∑
j∈J

∑
k∈K

ti jk ≤ M1yi ∀i ∈ I (E.5)∑
j∈J

yi, j −
∑
j∈J

y j,i = 0∀ j ∈ J , destination,∀i ∈ I , initial (E.6)

(E.7)∑
j∈J

yi j ≤ 1∀ j ∈ J (E.8)

79



80



APPENDIX F

DISTANCES (IN METERS) OF MAXIMUM RELIABLE PATHS
BETWEEN CANDIDATE DRF LOCATIONS AND AFFECTED

AREAS

TableF.1: Distances (in meters) of Maximum Reliable Paths between Candidate DRF Loca-
tions and Affected Areas (1-10)

Affected Areas (1-10)
DRF # 1 2 3 4 5 6 7 8 9 10

1 1534 5125 15086 9615 13381 13910 14655 15380 16812 21599
2 4346 2764 12725 7254 11020 11549 16807 16183 20973 19238
3 15794 12610 523 11112 3980 21395 28255 27631 32421 18146
4 4805 10115 20076 14605 18371 18900 6307 7032 10473 27938
5 10607 7423 4664 5925 2959 16208 23068 23793 27234 12959
6 10969 16279 26240 20769 24535 25064 4059 4784 8225 34102
7 12310 18969 28930 23459 25876 26405 4092 473 8258 35443
8 15465 20775 30736 25265 29031 29560 8555 9280 12721 38598
9 15431 11703 22208 16737 4581 1822 26543 27268 32058 6950
10 26561 23377 22400 21879 16308 13549 37673 38398 43188 7265
11 24179 20995 20018 19497 13926 11167 35291 36016 40806 4883
12 18620 23930 33891 28420 32186 32715 11710 12435 15876 41753
13 40946 37762 36785 36264 30693 27934 52058 52783 56224 21650
14 37929 34745 33768 33247 27676 24917 49041 49766 54556 18633
15 29128 25944 24967 24446 18875 16116 40240 40965 44406 9832
16 28279 25095 24118 23597 18026 15267 39391 40116 43557 8983
17 32338 29154 28177 27656 22085 15431 43450 44175 48965 13042
18 36281 33097 32120 31599 26028 23269 47393 48118 52908 16985
19 41479 38295 37318 36797 31226 28467 53940 54665 58106 22183
20 42712 39528 38551 38030 32459 29700 53824 54549 59339 23416
21 45265 42081 41104 40583 35012 32253 56377 57102 61892 25969
22 61613 58429 57452 56931 51360 48601 74074 73450 76891 42317
23 3090 8400 18361 12890 16656 17185 10132 10857 14298 24874
24 20540 17356 16379 15858 10287 7528 31652 32377 37167 1244
25 13449 8683 20226 14755 3143 3694 24561 25286 29271 11436
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TableF.2: Distances of Maximum Reliable Paths between Candidate DRF Locations and Af-
fected Areas (11-20)

Affected Areas (11-20)
DRF # 11 12 13 14 15 16 17 18 19 20

1 26000 41023 38794 26819 27481 41294 42672 42527 61907 5656
2 23639 38662 36433 24458 25120 38933 40311 40166 59546 9817
3 22547 37570 35341 23366 24028 37841 39219 39074 58454 21265
4 30990 46013 43784 31809 32471 46284 47662 47517 66897 11995
5 17360 32383 30154 18179 18841 32654 34032 33887 53267 16078
6 37154 52177 49948 37973 38635 52448 53826 53681 73061 18159
7 39844 54867 52638 40663 39976 55138 56516 55022 75751 19500
8 41650 56673 54444 42469 43131 56944 58322 58177 77557 22655
9 11351 26374 24145 12170 12832 26645 28023 27878 47258 20358
10 2512 21077 18848 6873 7535 21348 22726 22581 41961 32032
11 3672 18695 16466 4491 5153 18966 20344 20199 39579 29650
12 44805 59828 57599 45624 46286 60099 61477 61332 80712 25810
13 20439 1068 5461 17400 14378 22609 16234 16089 35469 46417
14 17422 4673 1050 14383 11361 19592 19839 19694 39074 43400
15 8621 17454 15225 5582 3912 17725 19103 18958 38338 34599
16 7772 16605 14376 4733 3063 16876 18254 18109 37489 33750
17 11831 9846 7617 8792 5770 14001 11495 11350 30730 37809
18 15774 17673 15444 12735 9713 10484 19322 19177 38557 41752
19 20972 22871 20642 17933 14911 0 24520 24375 43755 46950
20 22205 16351 20744 19166 16144 24375 4545 2140 19380 48183
21 24758 18904 23297 21719 18697 26928 7098 2553 21933 50736
22 41106 35252 39645 38067 35045 43276 23446 18901 1877 67084
23 29275 44298 42069 30094 30756 44569 45947 45802 65182 10280
24 5645 20668 18439 6464 7126 20939 22317 22172 41552 26011
25 15837 30860 28631 16656 17318 31131 32509 32364 51744 20639
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APPENDIX G

AVERAGE BLOCKAGE PROBABILITIES OF THE
MAXIMUM RELIABLE PATHS

TableG.1: Probability that the Maximum Reliable Paths Between a Candidate DRF Location
and an Affected Area (1-5) is Blocked

Affected Areas (1-5)
DRF # 1 2 3 4 5

1 0.000000 0.000000 0.000000 0.000000 0.000007
2 0.000025 0.000025 0.000025 0.000025 0.000032
3 0.000044 0.000044 0.000044 0.000044 0.000050
4 0.000000 0.000000 0.000000 0.000000 0.000007
5 0.000000 0.000000 0.000000 0.000000 0.000007
6 0.000000 0.000000 0.000000 0.000000 0.000007
7 0.000000 0.000000 0.000000 0.000000 0.000007
8 0.000000 0.000000 0.000000 0.000000 0.000007
9 0.000017 0.000017 0.000017 0.000017 0.000017

10 0.000043 0.000043 0.000043 0.000043 0.000048
11 0.000262 0.000262 0.000262 0.000262 0.000266
12 0.000000 0.000000 0.000000 0.000000 0.000007
13 0.000158 0.000158 0.000158 0.000158 0.000162
14 0.000534 0.000534 0.000534 0.000534 0.000539
15 0.000031 0.000031 0.000031 0.000031 0.000035
16 0.000082 0.000082 0.000082 0.000082 0.000086
17 0.000071 0.000071 0.000071 0.000071 0.000076
18 0.000294 0.000294 0.000294 0.000294 0.000298
19 0.000391 0.000391 0.000391 0.000391 0.000395
20 0.000244 0.000244 0.000244 0.000244 0.000249
21 0.000315 0.000315 0.000315 0.000315 0.000320
22 0.000244 0.000244 0.000244 0.000244 0.000249
23 0.000029 0.000029 0.000029 0.000029 0.000036
24 0.000029 0.000029 0.000029 0.000029 0.000033
25 0.000006 0.000006 0.000006 0.000006 0.000007
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TableG.2: Probability that the Maximum Reliable Paths Between a Candidate DRF Location
and an Affected Area (6-10) is Blocked

Affected Areas (6-10)
DRF # 6 7 8 9 10

1 0.000015 0.000000 0.000000 0.000477 0.000029
2 0.000040 0.000025 0.000025 0.000502 0.000054
3 0.000058 0.000044 0.000044 0.000520 0.000072
4 0.000015 0.000000 0.000000 0.000477 0.000029
5 0.000015 0.000000 0.000000 0.000477 0.000029
6 0.000015 0.000000 0.000000 0.000477 0.000029
7 0.000015 0.000000 0.000000 0.000477 0.000029
8 0.000015 0.000000 0.000000 0.000477 0.000029
9 0.000002 0.000017 0.000017 0.000494 0.000016
10 0.000032 0.000043 0.000043 0.000520 0.000014
11 0.000251 0.000262 0.000262 0.000739 0.000233
12 0.000015 0.000000 0.000000 0.000477 0.000029
13 0.000147 0.000158 0.000158 0.000635 0.000129
14 0.000524 0.000534 0.000534 0.001011 0.000506
15 0.000020 0.000031 0.000031 0.000507 0.000002
16 0.000071 0.000082 0.000082 0.000558 0.000053
17 0.000060 0.000071 0.000071 0.000548 0.000043
18 0.000283 0.000294 0.000294 0.000771 0.000265
19 0.000380 0.000391 0.000391 0.000868 0.000362
20 0.000234 0.000244 0.000244 0.000721 0.000216
21 0.000304 0.000315 0.000315 0.000792 0.000287
22 0.000234 0.000244 0.000244 0.000721 0.000216
23 0.000044 0.000029 0.000029 0.000506 0.000058
24 0.000018 0.000029 0.000029 0.000505 0.000000
25 0.000008 0.000006 0.000006 0.000483 0.000026
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TableG.3: Probability that the Maximum Reliable Paths Between a Candidate DRF Location
and an Affected Area (11-15) is Blocked

Affected Areas (11-15)
DRF # 11 12 13 14 15

1 0.000046 0.000202 0.000709 0.000031 0.000488
2 0.000071 0.000227 0.000734 0.000056 0.000513
3 0.000089 0.000246 0.000753 0.000074 0.000531
4 0.000046 0.000202 0.000709 0.000031 0.000488
5 0.000046 0.000202 0.000709 0.000031 0.000488
6 0.000046 0.000202 0.000709 0.000031 0.000488
7 0.000046 0.000202 0.000709 0.000031 0.000488
8 0.000046 0.000202 0.000709 0.000031 0.000488
9 0.000033 0.000189 0.000696 0.000018 0.000475

10 0.000014 0.000184 0.000691 0.000012 0.000470
11 0.000246 0.000403 0.000910 0.000231 0.000689
12 0.000046 0.000202 0.000709 0.000031 0.000488
13 0.000143 0.000067 0.000629 0.000127 0.000585
14 0.000519 0.000499 0.000175 0.000504 0.000961
15 0.000015 0.000172 0.000679 0.000000 0.000457
16 0.000066 0.000223 0.000730 0.000051 0.000508
17 0.000056 0.000212 0.000719 0.000041 0.000498
18 0.000278 0.000435 0.000942 0.000263 0.000720
19 0.000376 0.000532 0.001039 0.000360 0.000818
20 0.000229 0.000226 0.000788 0.000214 0.000671
21 0.000300 0.000296 0.000859 0.000285 0.000742
22 0.000229 0.000226 0.000788 0.000214 0.000671
23 0.000075 0.000231 0.000739 0.000060 0.000517
24 0.000017 0.000174 0.000681 0.000002 0.000459
25 0.000043 0.000200 0.000707 0.000028 0.000485
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TableG.4: Probability that the Maximum Reliable Paths Between a Candidate DRF Location
and an Affected Area (16-20) is Blocked

Affected Areas (16-20)
DRF # 16 17 18 19 20

1 0.000391 0.000309 0.000244 0.000244 0.000080
2 0.000416 0.000334 0.000269 0.000269 0.000105
3 0.000434 0.000353 0.000288 0.000288 0.000123
4 0.000391 0.000309 0.000244 0.000244 0.000080
5 0.000391 0.000309 0.000244 0.000244 0.000080
6 0.000391 0.000309 0.000244 0.000244 0.000080
7 0.000391 0.000309 0.000244 0.000244 0.000080
8 0.000391 0.000309 0.000244 0.000244 0.000080
9 0.000378 0.000297 0.000231 0.000231 0.000097
10 0.000373 0.000291 0.000226 0.000226 0.000123
11 0.000592 0.000510 0.000445 0.000445 0.000342
12 0.000391 0.000309 0.000244 0.000244 0.000080
13 0.000488 0.000246 0.000181 0.000181 0.000238
14 0.000864 0.000679 0.000613 0.000613 0.000614
15 0.000360 0.000279 0.000214 0.000214 0.000110
16 0.000411 0.000330 0.000265 0.000265 0.000161
17 0.000401 0.000320 0.000254 0.000254 0.000151
18 0.000537 0.000542 0.000477 0.000477 0.000373
19 0.000000 0.000639 0.000574 0.000574 0.000471
20 0.000574 0.000065 0.000000 0.000000 0.000324
21 0.000645 0.000136 0.000071 0.000071 0.000395
22 0.000574 0.000065 0.000000 0.000000 0.000324
23 0.000420 0.000339 0.000274 0.000274 0.000109
24 0.000362 0.000281 0.000216 0.000216 0.000108
25 0.000388 0.000307 0.000242 0.000242 0.000086
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