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ABSTRACT

NETWORK PLANNING OF WALK-IN CLINICS ON ROADSIDES IN AFRICA

Taymaz, Sine

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Cem İyigün

Co-Supervisor : Assoc. Prof. Dr. Zeynep Pelin Bayındır

August 2013, 114 pages

This study discusses the problem of finding the optimal location of “walk-in clinics” spe-

cialized in healthcare along the transportation lines that would enable maximum coverage

along the roads for the mobile populations and their related local communities. As the mobile

populations are flowing on the routes unremittingly, the problem differs from other location

problems. Every member of the mobile population would require a specialized service for

their diseases and needs to access these services in a continuous manner along the roads,

without any disruption. Therefore, the location of clinics should be adapted regarding these

requirements and maximum continuum of care should be ensured for the demand populations.

Additionally, as a results of the uncertain nature of the mobile demand, the risk associated

with the lack of continuum of care provided to the population is an important component in

the problem. While ensuring maximum level of continuum of care, the risk involved in the

transportation lines which appears as a variation in mobile demand should not be overlooked.

Problem has been solved with the idea emerging from flow interception and coverage prob-

lems. Aims of maximizing the intercepted flow and coverage of roads are considered as the

objectives of the model. The problem has been developed as Mixed Integer Program and it is
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shown that model is capable of handling the different requirements resulting from the demand

of mobile and static populations. The mathematical formulation is extended for the stochastic

case, relaxing the assumption that demand is known and certain. Risk-averse measures are

included in the mathematical formulation with the application of Conditional-Value-at-Risk

risk measure. It is observed that with a stochastic model, when uncertainties are present in

the network, with the help of the risk-averse measure, the risk on the network is kept under

control and the amount of demand that is subject to risk is decreased.

Keywords: humanitarian logistics, coverage, facility location, continuum of care, coherent

risk measures, CVaR, mixed integer programming
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ÖZ

AFRİKA’DAKİ ULAŞIM HATLARI ÜZERİNDE KLİNİK AĞI PLANLAMASI

Taymaz, Sine

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Cem İyigün

Ortak Tez Yöneticisi : Doç. Dr. Zeynep Pelin Bayındır

Ağustos 2013 , 114 sayfa

Bu çalışmanın amacı gezici populasyonlar ve onların yakınlarında yer alan sabit populas-

yonlar için maksimum kaplama alanı sağlayacak, yol kenarları üzerine kurulmuş bir klinik

ağı planlamaktır. Gezici populasyonların yollar üzerinde sürekli olarak hareket ediyor olması,

çalışmada incelenen problemi literatüredeki diğer tesis yerleştirme problemlerinden farklı kıl-

maktadır. Gezici populasyondaki her bir birey, taşıdığı hastalıklar için özelleşmiş bir servis

talep etmektedir ve bu servislere üzerinde hareket ettiği yol boyunca kesintisiz bir şekilde ula-

şabilmesi gerekmektedir. Dolayısıyla, kliniklerin yerleştirildiği noktalar bu özelleşmiş servis

ihtiyaçlarını ele alınalarak planlanmalıdır ve hastalara bütüncül bir bakım uygulanmalıdır. Ek

olarak, gezici populasyonların içinde bulunduğu belirsiz ortam, ihtiyaç duyduklarları servisle-

rin tam olarak yerine getirilmesine engel teşkil etmektedir ve bu belirsizlik problem içerisinde

önemli rol oynamaktadır. Servis düzeyini en üst seviyeye hedeflerken, gezici populasyonların

yol üzerlerindeki talep miktarındaki varyasyonlar unutulmamalıdır.

Bu çalışmada ele alınan problem akış kesişimi ve kapsama problemlerinden ortaya çıkan fi-

kirlerle çözülmüştür. Oluşturlan modelin amaç fonksiyonu kesilen akış miktarını ve kapsanan
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insan sayısını enbüyüklemektir. Model Karma Tamsayılı Programlama olarak geliştirilmiştir

ve oluşturulan model gezici ve sabit populasyonların farklı ihtiyaçlarına karşılık verebilmek-

tedir. İkinci aşamada, oluşuturulan matematiksel model, talebin sabit ve kesin olduğu varsayı-

mını esneterek, rassal durum icin adapte edilmiştir. Bu formulasyon için çekinceden kaçınan

yöntemler kullanılmıştır ve bağdaşık çekince ölçülerinden Koşullu Çekince Değeri kavramı

uygulanmıştır. Rassal model sayesinde, planlama ağında belirsizlikler mevcut olsa bile, çe-

kince kontrol altında tutulmuştur ve çekince altında olan talep sayısı azaltılmıştır.

Anahtar Kelimeler: insani lojistik, kapsama, tesis yerlestirme, bağdaşık çekince ölçüsü, ko-

şullu çekince değeri, karma tamsayılı programlama
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CHAPTER 1

INTRODUCTION

Every year, millions of African people are dying as a result of the high burden of disease that

is settled upon the African societies. Even though the diseases are preventable and treatable,

the presence of challenges such as weak health systems, inefficient planning of resources,

limited access to healthcare services, poverty and frequent occurrence of nature and human

made disasters, put strong obstacles for tackling the problem. Existence of such challenges

shows that there are still many fields that require intervention and actions need to be taken in

order to increase the life expectancy and reduce the deaths associated with diseases.

There are many institutions and organizations that are devoted to tackle the problem of health

in Africa. For example World Health Organization, which is the authority for coordinat-

ing health within United Nations, has been working on health related issues in Africa with

the mission of achieving highest level of health for all people. Other branches under United

Nations as United Nations Development Program has also been focusing with the help of Mil-

lennium Development Goals where 3 out of 8 goals are related with child mortality, maternal

health, HIV/AIDS, malaria and other diseases. In addition to institutions like United Nations,

there exist other organizations, whether working together with institutions or not, that are also

committed to the problem.

One part of the health related problems is related with the mobile populations that are situated

in Africa. Mobile populations are groups of people, which are not necessarily located in a

defined place but rather move through transportation lines and change positions. The main

group of people under the mobile population can be given as truck drivers. Africa has many

hubs, harbors and airports making large number of goods to flow over the continent every

day requiring extensive amount of truck drivers who are working in hard conditions, sepa-
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rated from home almost for every day of the month. Another group of people under mobile

population is the sex-workers, who are also transporting occasionally with the truck drivers.

These two groups of people, truck drivers and sex-workers, interact at the “hot-spots” along

the transportation network, where truck drivers spend long waiting hours. With the combi-

nation of being away from home, working under hard conditions and other factors, at the

hot-spots the sex activity peaks. This situation leads to spreading of communicable diseases

especially high impact diseases as HIV/AIDS, malaria, tuberculosis and sexually transmitted

infections. As the population moves along the network, they act as vectors of transmission,

carrying the diseases along with themselves and spreading in other regions of Africa. Further-

more, the local populations along the transportation lines are also affected by this situation,

with the transmission of diseases.

Even though the mobile populations are having higher prevalence rates compared to other

populations in the region and requiring healthcare services extensively, it is not very easy for

them to access the healthcare service they need. The truck drivers work on strict time windows

making it difficult to access the hospitals that are far away from the transportation lines which

increases the travel time and requires them to deviate from their route. Furthermore, the road

conditions to access the hospital are not always suitable for trucks to enter and parking is also

a problem. The concept of Roadside Wellness Centers (RWC), which are small clinics that

are situated along transportation lines and hot-spots, developed by North Star Alliance was an

idea put in practice to deal with the issue of health problems related with mobility. By putting

RWCs along the transportation lines and hot-spots, North Star aims to cover the continent by

offering a continuous service that mobile populations can access.

In this thesis, the idea of the RWC and their operations is taken as a starting point and a

model that would optimally plan the transportation network with the establishment of walk-in

clinics is studied. Planning of the walk-in clinics along the transportation lines, however, is

not a very straightforward task. By establishing the walk-in clinics, the initial aim is to give

benefit to people as maximum as possible. In this context, what is defined as benefit has to be

determined carefully and planning should be based on this definition.

One of the measures for benefitting the people can be given as capturing as many patients

as possible in the walk-in clinics. For this purpose, the hot-spots having high number of

waiting duration and population can be considered as a suitable candidates. Another aim is
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to provide continuous care for the mobile population as they move along the transportation

lines. Certain services for certain diseases are not one time and would require couple of visits

to clinics in given time frames. In order to achieve adherence to protocols and complete

the treatment of the patients, the walk-in clinics should be available when required. Every

service of a disease has different protocols and therefore, the locations of the walk-in clinics

require adjustments given these specifications. Accordingly, while planning the network,

the questions of where to establish the walk-in clinics and which services to offer in these

clinics that would ensure continuous care and capture maximum number of patient visits are

asked. With the developed model, effects of specialized conditions on the planning of walk-in

clinic locations is investigated in order to evaluate whether the model responds to the initial

requirements.

An additional question that is studied in this thesis is how to handle the uncertainties that are

included in the problem itself. Since the model is related with healthcare and human lives, risk

is an important component and the model requires adapting the planning of walk-in clinics

accordingly with the development of an appropriate stochastic model. The effects of risk on

the optimal solution given the conditions of high and low risk along the network are another

part of the study that is included in the thesis. It is also analyzed how the risk factor affects

the performance of the model and benefits the target population.

The thesis starts with a literature review based on two subjects where in Section 2.1, the net-

work location problems and in Section 2.2 stochastic programming about risk are overviewed.

In Chapter 3, the problem definition is made by describing the motivation behind the study,

the environment and the problem that is studied. After explaining the problem, in Chapter 4

problem formulations are described in detail which initially starts with a deterministic model

and followed by a stochastic model in Chapter 5. The results of the both formulations are

analyzed in computational studies given in Chapter 6. The thesis is concluded in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

The literature review is given in two parts. In Section 2.1, literature review about network

location problems is described. This is further divided as the flow interception problems

and the coverage problems in Section 2.1.1 and 2.1.2, respectively. In the second part of

the literature review, the focus is on stochastic programming. In Section 2.2.1 methods to

include risk in the stochastic optimization is explained. A description about coherent risk

measures is given in Section 2.2.2. Finally, out of the coherent risk measures, Value-at-Risk

and Conditional-Value-at-Risk is discussed in Section 2.2.3.

2.1 Network Location Problems

2.1.1 Flow Interception Problems

Network location problems are represented with a set of arcs and nodes and the objective

is to find the optimal location of a facility that is chosen from a discrete or continuous set

of possible locations. The network locations problems can vary with respect to the different

objective functions, different shape of facilities, number of types of facilities and so forth [30].

In these studies, initially it was assumed that the demand was occurring at static points where

the customers would be willing to travel to the facility within certain limits. In 1990s, the

interest has been also put in flows, where the facilities were no longer a static point to attract

demand flows, but rather serve as interception points for the demand occurring on the flows.

These types of problems are referred as flow interception problems which is discussed further

in this section.
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Table 2.1: Notation used for flow interception problem

Sets:
Q Set of all origin and destination pairs, q = {1,2, . . . ,Q}
J Set of all potential facility sites, j = {1,2, . . . ,J}
j ∈ q Set of all nodes on the shortest path between O-D pair

Decision Variables:
xq Equals 1 is flow q is intercepted by a facility, 0 otherwise
y j Equals 1 if a facility is opened at location j, 0 otherwise

Parameters:
fq Volume of flow between origin and destination on flow q
p Upper bound on number of locations to be located

In [34], the basic formulation for the generalized flow-interception location-allocation model

is given. The notation for the problem is summarized in Table 2.1 and the problem formulation

can be given as follows:

Max ∑
q∈Q

fqxq (2.1)

s.t. xq ≤∑
j∈q

y j ∀q ∈ Q, (2.2)

∑
j∈J

y j = p, (2.3)

xq ∈ {0,1} ∀q ∈ Q, (2.4)

y j ∈ {0,1} ∀ j ∈ J. (2.5)

In this optimization problem, with the objective function (2.1), the volume of flow that is

intercepted is maximized. A flow can be categorized as intercepted only if a facility is opened

along the flow, which is ensured by constraint (2.2). The number of facilities that can be

opened on the network is limited by an upper bound, p, as written in (2.3). The last two

constraints, (2.4) and (2.5), are for ensuring the decision variables are binary.

One of the oldest articles for flow interception problems is [7], where an environment for

placing discretionary service facilities (services that are consumed in an optional way, mean-

ing that the customer does not embark a tour only to receive the service) is considered. In this

setting, customers are on their pre-planned trip and if they pass a discretionary service along

the path, they have potential to stop in the service center. Example for such services can be

given as gasoline stations or automatic teller machines. The objective of the problem is to
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maximize the flow of potential customer that is intercepted by the services by deciding on the

location of services. When calculating the customer visits, multiple passing of a customer is

not counted separately; i.e., each customer is captured only once. In the model traffic flows

are assumed to be known.

Initially, the system is defined as a transportation network of arcs and nodes. Before setting up

the mathematical model, it is proved that the optimal set of locations will exist on the nodes

of network as it has the maximum amount of flow that can be intercepted. The problem is

solved by two approaches, which are greedy heuristic and exact branch-and-bound algorithm.

The greedy heuristic provides near optimal solution, which can also be used as initial solution

for the branch-and-bound algorithm.

This initial model has provided a basis for the extensions and with changes in objectives and

constraints, special cases of the flow interception problem have been studied. As an extension

to [7], in [5], location of units on network where multi counting is also considered is discussed

by Berman et al. This asserts that, the consumption of discretionary service by consumers

along the path does not only depend on the existence of facility but also on the number of

facilities located. The consumption by consumers is assumed to be a non-decreasing concave

function.

Two different problem definitions are used in this paper. First one aims to minimize the

number of facilities required to ensure the maximum level of consumption and the other one

is maximizing consumption given a restriction on number of facilities to be opened. For the

first problem, a polynomial algorithm on a tree is formulated. For the latter, it is proven

that the problem is NP-hard even on a tree therefore, a greedy heuristic with its worst-case

performance analysis is presented. In case of restricting the problem to having at most one

facility in the nodes, both problems become NP-hard. Even though the authors did not attempt

to solve them through the computer, they expect that computer code that combines heuristic

and integer programming can be successful for solving the problem.

In [7], the location of discretionary facilities are planned to be on the pre-planned route of

the customers, believing they would not change their route. This assumption of planning the

location exactly on the pre-planned route is relaxed in [6] by considering the fact that the

customer may also deviate from the path for visiting certain facilities.
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Three sub-problems are examined in this study. The first one is a delta coverage problem

where a customer passes through a pre-planned route of the trip and if a service is not en-

countered, the customer can deviate a maximum distance of delta (given that delta is a pre-

defined maximum distance value) from the path, which in the end increases the length of the

tour by two deltas. In case the facility is located more than delta distance away, consumers

do not prefer to visit the facility. The other one is maximizing market size problem where

the customer becomes less inclined to visit a facility if the distance from the pre-planned trip

is increased. Therefore, the probability of visiting a facility is a decreasing convex function

of the distance traveled. For both problems, objective is to locate a given number of centers

to maximize the total number of visiting customers to the service center. The final type of

problem is minimizing inconvenience problem where customers will deviate from the path to

receive the service, making them not discretionary anymore and the objective becomes mini-

mization of the distances traveled by the customers. Delta coverage problem can essentially

be solved by the same algorithm given in [7] and the minimizing inconvenience problem is

m-median problem. For maximizing market share problem, a specific greedy algorithm and a

branch-and-bound based solution is given as an extension to approach [7].

In [12] by Dandan et al., the one type facility interception problem is extended with multiple

types of flows that have mutual positive influence on each other such as consumption of cer-

tain facility increases with the co-location of an other . An example for such multi-type flow

is given as the gasoline stations and the convenience stores. The flow is defined separately

for each type of service, including the combination of multiple services. In the paper, flow

interception problem is solved for multi-type flows that involve multi-purpose customer flows

and their mutual positive influences. Every service is assigned with a certain profit and the

overall objective of the model is to maximize the mutual influence with the placement of loca-

tions. Since the formulation is NP-hard and there is no polynomial time algorithm, heuristic

solutions are made. As greedy algorithm heuristics are known to be effective in these types of

problems, variant of greedy heuristic is implemented and near optimal solution is obtained.

Zeng further investigates the flow interception by introducing the pick-up problem and show

how preferences can have influence on the locations [35]. The model is divided under four

scenarios as “video”, “hamburger”, “coffee” and “pizza” where each of the items needs to

be obtained by the customer at a certain part of the path. Out of these scenarios, “video”

does not require a specific location on the flow and can be obtained at any point situated on

8



the flow. Each of the locations would return the same benefit from acquiring for “video”

scenario. However, for the “coffee” scenario, the situation is different, as travelers would

require having it at the beginning of their trips. Therefore, the “coffee” facilities are associated

with more benefit for those that are located closer to the origin. The objective changes to

maximizing benefit, where benefit of intercepting one unit of flow at a specific node is added

in the objective function calculations.

2.1.2 Coverage Problems

A coverage problem can be described as within a network of facilities as customers, every

customer has a certain radius to travel for the facility. The aim is to maximize the gain from

locating the services with a certain upper bound on the number of facilities or covers the

whole customer demand to optimize a certain performance measure [19].

A recent review of coverage problems literature is given by Farahani et al. [15]. The survey

includes a comprehensive summary of coverage models starting from the year 1993. In the

article, coverage problems are categorized into two parts as Set Covering Problem (SCP)

and the Maximal Covering Location Problem (MCLP) where in the first topic, coverage is

required and in the latter, coverage level is maximized. Even though SCP is also examined,

the rest of the focus of this literature review about coverage problems will be on MCLP as it is

decided to be more relevant to the scope of the problem. This article is used as a guideline for

analyzing the important coverage problems in general. Afterwards, those that are considered

to be important and relevant are further studied.

In the article by Church and ReVelle, a very basic model for coverage problem is developed by

defining a critical distance from the demand locations [10]. This groups the demand locations

as either covered or not by looking at their distance from the facilities and the required cov-

erage radius. The model tries to maximize the number of covered demand given the demand

amount in each demand locations and limit of number of facilities to be opened.
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Table 2.2: Notation used for coverage problem

Sets:
I Set of demand nodes
J Set of facility nodes
Ni Set of facilities that can cover node i

Decision Variables:
x j Equals 1 if a facility is located at site j, 0 otherwise
yi Equals 1 if the demand node i is covered, 0 otherwise

Parameters:
ai Population at node i
p Upper bound on number of facilities to be located

The notation for the problem is given in Table 2.2 and formulation for the model is given as:

Max ∑
i∈I

aiyi, (2.6)

s.t. ∑
j∈Ni

xi ≥ yi ∀i ∈ I, (2.7)

∑
j∈J

x j = p, (2.8)

x j ∈ {0,1} ∀ j ∈ J, (2.9)

yi ∈ {0,1} ∀i ∈ I. (2.10)

In the problem, the objective is to maximize the amount of demand covered with (2.6). A

demand node is considered as covered if a facility is opened out of the set of facilities that can

cover the demand node (2.7). The number of facilities that can be opened is limited (2.8) and

the decision variables belong to set of binary variables as given in (2.9) and (2.10).

The model is extended in various studies by examining further factors such as including cov-

erage levels, partial coverage possibilities and stochasticity. One of the extensions of the

model is written by Current and Schilling in which a tour must be completed which would

visit certain number of facilities on the network [11]. The objective is to minimize the tour

length and maximize the access to tours on the node that are not directly on it. An example to

this type of problems can be given as the mail delivery service. The model works by defining

a covering radius and groups the demand points as either covered or not, similar to the one

developed in [10]. The main differentiation is the inclusion of directed arcs in the network

and this is represented by a binary variable to see if there exists an arc from location i to j.
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Regarding the constraints of the problem, it is made sure that solution contains a single tour

as it was aimed.

Another interesting expansion to the coverage models is implemented by Alexandris and Gi-

annikos by applying the Geographical Information System (GIS) in the partial coverage model

[2]. The main differentiation in this model is, the demand points are not considered as “points”

but rather as “spatial objects”. In the linear model, the set of demand points is changed with

set of demand areas and their coverage by the facilities that are located within a distance

is defined accordingly. Similar to previously discussed models; objective function tries to

maximize the covered demand.

Additional extension to the coverage model comes with the building of hierarchical locations

models, which are based on partial coverage. This is an important approach to the problem

as from this point, demand locations are not divided as either “covered” or “uncovered”. In

these types of models, unlike the previously discussed versions of the problems, if a facility is

located further than the required a threshold distance from the demand, the demand can still

be partially covered. This situation is modeled by a coverage function, which returns the ratio

of coverage of demand location changes with respect to the relation between critical coverage

radius and distance between facility and demand location. The model also aims to maximize

the coverage of all facilities.

The paper by Balcik and Beamon is also helpful for examining the coverage problems for

relief operations [4]. In this paper, facility location and the stock positioning decisions for

responding quick-onset disasters are examined. There are certain complexities associated

with this problem due to unpredictability of demand, in very large amounts, which requires

action in short times, involves high stakes and lacks resources. In the paper, a maximal

covering model is built where different items require different coverage. It also considers

budget and capacity constraints and allows stepwise partial coverage of customers. Also,

inventory decisions are integrated to the facility location decisions.

The relief items are distinguished in accordance with their criticalities and response times.

The lower and upper limits are set on the response times and coverage benefits are coupled

with these values. For the modeling, sets of scenarios are generated and candidates for dis-

tribution centers are defined. The objective function maximizes the total expected demand

covered by the established distribution centers for the sum of all given scenarios. The model
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is used for solving an example case about the earthquake-caused disasters. Due to having a

small-scaled problem, the problem was solved optimally without using heuristics. However

in future, for larger problems, development of heuristic models might be needed.

Coverage problems are also helpful when having multiple facilities along the path is beneficial

or necessary. In flow interception problems, once a flow passes through a node, it is directly

assumed to be covered. However, it might be necessary to stop at several points in order to

categorize a point as covered and successfully contain the entire path. This is discussed in

the paper [18] by Kuby and Lim for the location of fueling stations on the path. The vehicles

might need more than a single refueling operation and therefore, it is necessary to have mul-

tiple facilities to successfully cover the path. The paper includes the term “vehicle‘s range”

which denotes the distance that can be travelled by the vehicle along the route to denote where

it would require refueling. The combination of facilities that can fulfill the refueling criteria

are determined and incorporated in the flow coverage model. The model forces to have at

least one eligible combination of facilities to be open rather than the single facilities. The

model is solved using the Model modeling language and compared with traditional models.

For flow capturing models, the optimal solutions were proved to be at the nodes of the net-

work, however, with this model considering the total round trip relative to vehicle range and

spacing of nodes, suboptimal solutions might result with the allocation of facilities only at the

nodes and middling locations can be more beneficial.

2.1.3 Further Literature Review

Not directly related to flow interception or coverage problems, there are some other literature

review materials that deserve examination due to the characteristics of the problem. One of

them is the article by Oppong which discusses the rainy seasons’ effect on location-allocation

problems [25]. In this paper, the general location-allocation models are criticized, as they

are not focused on the characteristics of the rural areas that affect the locations. The paper

particularly focuses on the issues of rainy seasons and argues that effects of rainy seasons

are not observed in p-median or coverage models, where the limitation of access to certain

routes can be problematic in real life. The study takes place in Ghana, for the establishment

of primary health care services. For locating the services, the seasonality issue is included in

the model and the effects of extending the model is observed.
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The paper discusses two ways to include the effects of rainy seasons in location-allocation

model. One method is to edit geographic distances in the model relative to difficulty of trav-

eling. Roads can be categorized in classes and each can be assigned with a different weight,

which depends on maximum speed limit, frequency of traffic flow along the road and year

round accessibility. However, according to the authors, as it is difficult to justify different

weights, this approach is not considered as feasible. Another approach suggested is that lo-

cating facilities only on the places linked by year-round drivable roads. The authors divide

the model in three scenarios to evaluate the possible location models. One of them is the dry

season scenario where no rain is expected and all of the roads are accessible. The other one

is an impaired scenario where the facilities not on all-season roads are assigned to the near-

est facility on all-season roads. The final scenario locates facilities only on all-season roads.

As a result it is stated that not considering the accessibility problems for location allocation

models in third world countries would result in “elegant but useless" solutions. This situation

can be improved by consideration of simple modification, making the results of the models

be applicable in real life.

In addition to the article by Oppong, Rahman and Smith also considers the special conditions

of the developing nations for the location-allocation models in health services [26]. The

main motive behind the article asserts that, the conditions in developing nations may not be

very appropriate for the application of sophisticated models. The paper does not focus on

development of a new model, however focuses on the assumptions and lacking points of the

existing models that needs to be further considered especially for health care in developing

nations. One of the issues is the capacity constraint where in most of the cases facilities are

assumed to be incapacitated. Another point they call attention to is the multi criteria nature

of the problems. Referring to Erkut and Neuman, they claim that models can be useful for

suggesting candidate sites [14]. However, final decision should be made with the application

of multi-objective decision-making tools.

Another useful article that would bring a different approach to the problem is by Abdel-Latif

[1]. The paper combines two different research methods in the field of location allocation

planning which are the mathematical programs, similar to the ones discusses previously, and

the GIS Spatial Analysis techniques. The paper focuses on the selection of site for a school

in Egypt where many criteria are involved. As a first step of the application, candidate loca-

tions are determined. The information about different criteria is collected via surveys and the
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information resulting is mapped with ArcGIS Builder to identify candidate sites. After this

step, a mathematical model is built using the p-median problem with network distances. With

Environmental Systems Research Institute models in ArcInfo GIS different algorithms for

optimization model is run and satisfactory results are achieved with the p-median algorithm.

A final study which is important to discuss is the thesis [13]. The problem discussed in

this study is very relevant to the problem examined in this thesis and guided the problem

definition. De Vries describes a model for the problem of investing optimally in the network

of medical centers which are located in the African highways. The model tries to increase

the number of truck drivers who can access the health care services as well as ensuring their

continuum of care. For this purpose two objectives which are maximizing patient visits and

minimizing expected traveling time the to the next medical centers are applied. The model is

extended further which plans the allocation of budget to investment decisions such as opening

or closing new centers and hiring or firing staff members. The model is formulated with a MIP

model and with the computation studies it is seen that with the application of the investment

model and systematic approach, the benefits achieved in the network are increased. The

model developed by De Vries guided the mathematical formulations that are established in

this thesis as they were both focused on the same real-life situation, yet showed changes as

both of the models are approaching the problem from different perspectives and taking into

account different requirements.

2.2 Stochastic Programming

As a second part of the literature review, literature about stochastic programming and risk

related concepts are provided. As briefly introduced in the introduction of the thesis, the

demand that is included in the problem is not known and also shows variation. Therefore, the

randomness in the problem is the demand along the transportation lines. Since the problem

is related with healthcare and demand is an important component, risk is also included in the

problem context. The review about stochastic programming is consequently focused on the

risk-averse measures.
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2.2.1 Risk Aversion in Stochastic Programming

In stochastic programming, the randomness is handled using the expected values in many

cases. For instance, as discussed by Miller and Ruszcynski, in the context of two stage

stochastic programming, assuming the first stage objective function coefficients as determin-

istic and the second stage objective function coefficients as known after the first stage, builds

the model as risk neutral [20]. However, especially in the context of humanitarian logistics

where the life of people is a concern, risk neutral programming may not be the best approach.

Including the risk in the problem formulation can be done in various ways. One of the well

known method is to use the expected utility theory, with the utility function over set of deci-

sions. The risk aversion can be included in the problem such as:

F : Rn×Ω→ R and X ⊂ R is a feasible set,

min
x∈X

E[u(F(x,ω))]

where u is the disutility function and ω is the state of nature which is an element of the set

Ω . However, choice of the utility function to be optimized is not always easily determined

and different utility functions may lead to different interpretations. Therefore, while working

with the expected utility theory, careful determination of utility function is required to achieve

meaningful results.

Another approach is the mean risk model where the objective function is represented as the

summation of expected outcome and the measure of uncertainty multiplied with the price of

uncertainty involved. A generic mean risk model can be expressed as,

min
x∈X

E[Zx]+ cD[Zx]

where E[Zx] is the expected outcome, D[Zx] is the measure the uncertainty of outcome and c

is the price of the risk.

Another important approach is the use of risk measures. In a given probability space, the risk

measure is a function which assigns random variables to a risk value which results as holding

the set of decisions [3]. The objective is to minimize the risk measure associated with the

decision variables. In this approach, the risk measure function should be defined carefully

to achieve significant results in the problem. As a subsection of risk measures, Artzner et
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al. defines the “coherent risk measures" in which the risk measures satisfy certain properties

[3]. In the following paragraphs, the coherent risk measures and its properties are explained

extensively.

Given that Ω is the set of states of the nature and G is the set of all risk, meaning that set of

real valued functions on Ω, a risk measure, ρ , is defined as mapping from G to R:

ρ : G→ R.

A risk measure satisfying the axioms of translational invariance, subadditivity, monotonicity

and positive homogeneity is named to be coherent. In the following paragraph these axioms

are further elaborated as discussed by Artzner et al [3].

• Translational invariance: For all X ∈ G, α ∈ R and r is a strictly positive price, ρ(X +

α · r) = ρ(X)−α

This property asserts that risk of the X +α ·r is less than the risk of X as α behaves like

insurance to the value risked. It can be also further noted that, if α is as much as ρ(X),

then ρ(X +ρ(X) · r) = 0.

• Subadditivity: For all X1 and X2 ∈ G, ρ(X1 +X2)≤ ρ(X1)+ρ(X2)

This property states that the “a merger does not create extra risk” which is a result of

the diversification [3]. If this property was failed to satisfy, for example a firm requiring

extra capital would be willing to separate into two incorporated affiliates.

• Monotonicity: For all X and Y ∈ G with X ≤ Y , ρ(Y )≤ ρ(X)

With this axiom, it is understood that out of two options where one has more future

value, Y , it should always have a lower risk. This means that less has to be added to

option Y compared to option X to make it more acceptable, where the amount added

can be interpreted as risk measure.

• Positive homogeneity: For all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X)

This axiom would in brief imply that if amount invested in portfolio is multiplied by a

certain amount, it also means that an associated risk is also multiplied with that amount.

The position held directly influences the risk.

If a risk measure satisfies the axioms given above, it is said to be a “coherent risk measure”.

The reason that coherency is a desired property in the class of risk measures is that the ad-
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vantages that is provides for the optimization problems. In [28] by Rockafellar, comparison

between coherent and non- coherent approaches are made and the implications over optimiza-

tion problem are explained. In Section 2.2.2, the relation between optimization and coherent

risk measures will be clarified.

2.2.2 Coherent Risk Measures and Optimization

A generic optimization problem, where the parameters are set to be deterministic can be

summarized in the following form,

minimize co(x) over all x ∈ S satisfying ci(x)≤ 0 for i = 1,2, . . .m

where S is the subset of Rn composed of vectors x= x1, . . .xn and each ci is a function from S to

R [28]. With the introduction of uncertainty in the problem, it is not possible to represent the

coefficients solely by x, as the new parameter ω , which belongs to set Ω representing future

states, is included in the problem. The set of Ω can be regarded as mathematical structure of

a probability space with probability measure P, for the comparison of future states of Ω. The

new coefficients take the form ci(x,ω) such that:

ci(x) : ω → ci(x,ω) for i = 1,2 . . .m.

In [28], measure of risk is defined as representing “overall cost” which maps between random

variable to a single value. A risk measure applied to random variable X will always stand

for the cost values, meaning positive outcomes of X(ω) of X are disliked and tried to be

minimized (keeping ≤ 0). The random variable X is a function from Ω to R that are the

part of the linear space L 2 which is introduced relative to probability space P on ω . When

the risk is required to be quantified, each value of X which belong to set L 2 is assigned

to R(X). It is assumed that the value will belong to the set of (−∞,∞]. Regarding these

discussions, the deterministic optimization formulation can be rewritten including risk and

stochastic formulations as,

minimize c0(x) over all x ∈ S satisfying ci(x)≤ 0 f or i = 1,2, . . .m

where ci(x) is replaced by function ci(x) =Ri(ci(x)) and Ri quantifies risk by L 2→ (−∞,∞]

[28].
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The risk measure developed for the problem above is an important aspect of the formulation

and definition of the function should be carefully made. Within this respect, the coherent

risk measures act as strong candidates to be included. Coherent risk measures hold a strong

position in optimization due to several properties resulting from their properties. These are

summarized in the following theorem by Rockafellar.

Theorem 1 (Theorem 1 in [28]) Assuming each ci(x) = Ri(ci(x)) for i = 1,2, . . .m, Ri is a

coherent risk measure,

(a) Convexity is preserved. For the initial deterministic formulation where uncertainty

was not included is convex programming, when uncertainty is added, the convexity

of the problem formulation is maintained and the advantage remains. This is a re-

sult of when ci(x,ω) is convex with respect to x for each ω , accordingly the function

ci(x) = Ri(ci(x)) is convex. This property is a result of the subadditivity and mono-

tonicity properties of the coherent risk measures.

(b) Certainty is preserved. If ci (x) is a constant random variable for each x such that

ci(w,ω) = ci(x) without depending on ω , then ci(x) = ci(x). Accordingly the features

of the problem without uncertainty are not distorted by the composition techniques.

(c) It is insensitive to scaling. Regarding the positive homogeneity property, the risk in-

cluded problem formulation remains the same when the denominated values of ci(x,ω)

are rescaled.

Regarding the above theorem and the advantages offered with the coherent risk measure, for

a development of a risk averse problem, the coherent risk measures can be considered to be a

good alternative for the optimization procedures. It would both allow risk averse settings in

the formulation and at the same time provide optimal solution by preserving the convexity of

the linear programs.

There are several measures of risk that are considered to be coherent by Rockafellar which

are guessing the future, worst case analysis and relying on expectations.

Another important coherent risk measure is the Value-at-Risk (VaR) and Conditional-Value-

at-Risk (CVaR) measures. In the following chapter the two measures are explained in details.
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2.2.3 Value-at-Risk and Conditional Value-at-Risk

For definition purposes, suppose x is the decision vector chosen from the set of Rn, y is

the random vector in Rm and f (x,y) is the loss associated with x and y. The probability

distribution for y is denoted as p(y) assuming it has density. However, this is not a requirement

for the definition as it will be seen in the upcoming steps.

Given a threshold α , the probability for loss function to not exceed the threshold is stated as:

ψ(x,α) =
∫

f (x,y)≤α

p(y)dy.

Regarding this definition, Rockafellar and Uryasev define the β -VaR and β -CVaR values

respectively with any associated probability level β in (0,1) as follows [29]:

αβ (x) = min{α ∈ R : ψ(x,α)≥ β}, (2.11)

φβ (x) = (1−β )−1
∫

f (x,y)≥αβ (x)
f (x,y)p(y)dy. (2.12)

VaR can also be referred as the α- quantile of the loss function. It can be further explained

as the threshold value in which loss associated with the set of decisions variables will ex-

ceed this threshold value with the given probability level. CVaR is defined as the conditional

expectation of the loss in the conditional distribution of its upper α tail.

The relation between VaR and CVaR values and their characterization is defined with a func-

tion Fβ on X×R:

Fβ (x,α) = α +(1−β )−1
∫

y∈Rm
[ f (x,y)−α]+p(y)dy (2.13)

where [t]+ = t when t > 0 and [t]+ = 0 when t ≤ 0. Given the function Fβ , the following

theorem is stated by Rockafellar and Uryasev.

Theorem 2 (Theorem 1 in [29]) As a function of α , Fβ (x,α) is convex and continuously

differentiable. The β -CVaR of the loss can be determined by,

φβ (x) = min
α∈R

Fβ (x)

and β -VaR associated with loss value can be determined by,

αβ (x) = le f t end point o f Aβ (x)
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where Aβ (x) = argminα∈RFβ (x,α), the non-empty, closed, bounded set consisting of values

for α for which the minimum is attained. Consequently, it is always stated as,

αβ (x) ∈ argminα∈RFβ (x,α) and φβ (x) = Fβ (x,αβ (x)).

From the theorem, it can be seen that, without explicit calculation of VaR value, CVaR can be

calculated. This definition of CVaR can further be approximated by sampling the distribution

of y. This corresponds to:

F̃β (x,α) = α +
1

1−β

q

∑
k=1

πk[ f (x,yk)−α]+. (2.14)

Both VaR and CVaR values can be used for optimization where risk is involved. Out of two

concepts, CVaR has been defined to be more preferable. Artzner et al. argue that VaR does not

have the property of sub-additivity and convexity which is not very desirable [3]. VaR is not

a coherent risk measure, unless it is based on the standard deviation of normal distribution.

VaR can also show difficulties in optimization procedures. As explained in Section 2.2.2,

coherent risk measures have properties that are inline with optimization methods and CVaR

as a coherent risk measure, satisfies these properties.

Furthermore, in the article [9], the VaR risk measure (which is referred as α-reliable Minimax

regret), is discussed to be not very powerful as it focuses on the only α-reliable scenario set

and ignores the magnitude of regrets at the tail . This can result in overwhelmingly high

regret values at the tail. It is also noted that computationally, as α-reliable Minimax model

is non-smooth, non-convex and multi extreme function which makes the model difficult to

solve. Consequently, CVaR risk measure (referred as α-reliable Mean-excess regret), is more

advantageous as it makes up the drawbacks of VaR risk measure.

The following theorem by Rockafellar and Uryasev explains how minimization of CVaR val-

ues can be achieved.

Theorem 3 (Theorem 2 in [29]) Minimizing the β -CVaR of the loss associated with x ∈ X, in

is equivalent to minimizing the function Fβ (x,α) over all (x,α) ∈ X×R, in the sense that,

min
x∈X

φβ (x) = min
(x,α)∈X×R

Fβ (x,α) (2.15)

where the pair (x∗,α∗) achieves the second minimum if and only of x∗ achieves the first mini-

mum and α∗ ∈ Aβ (x∗). Therefore, for the circumstances where the interval Aβ (x∗) reduces to
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single point, minimizing F(x,α) over (x,α) ∈ X×R produces a pair (x,α∗), not necessarily

unique, such that x∗ minimizes β -CVaR and α∗ gives the corresponding β -VaR.

This theorem supports the optimization approach associated with the calculation of β -CVaR

values with respect to the function Fβ (x,α). The minimization of the function Fβ is in the

category of stochastic optimization and one way to deal with this formulation can be the

approximation as described in (2.14).

In addition to optimization of β -CVaR values in the objective function, the risk measure can

also be subject to constraints regarding the problem context as it may enforce requirements of

different CVaR levels with different confidence intervals. This condition may yield constraints

in the form of

φβ (x)≤ ω (2.16)

where φβ (x) is the β -CVaR risk measure on the loss function and ω is the upper limit on the

risk.

In the paper [17], the theorem below has been proposed for the use of CVaR as constraint in

the linear programs, which is useful for further calculations.

Theorem 4 (Theorem 4 in [17]) The two problems below,

min
x ∈ X
−R(x), φβ (x)≤ ω, x ∈ X

and

min
(α,x)∈X×R

−R(x), Fβ (x,α)≤ ω, x ∈ X

are equivalent from the aspect that both of the problems’ objective functions achieve the same

minimum.

Referring to the above theorem and (2.14) about the approximation of function F by F̃ , the

constraints can be re-written in the form,

α +(1−β )−1
q

∑
k=1

πkzk ≤ ω, (2.17)

zk ≥
n

∑
l=1

f (x,yk)−α, zk ≥ 0, k = 1, . . . ,q. (2.18)
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The literature review explained in this section is a foundation for the stochastic model that

that will be explained in Chapter 5 of the solution approach. The initial deterministic model

is converted to a stochastic model where the risk is included in the problem context regarding

the definitions and theorems explained in this section.

22



CHAPTER 3

PROBLEM DEFINITION

In this section, the problem studied will be thoroughly explained. The motivation behind the

problem is explained in Section 3.1. The environment of the problem given in motivation

is described in Section 3.2. The definition for the problem is given in Section 3.3. Finally,

problem scope is described in Section 3.4.

3.1 North Star Alliance

The studied problem is emerged from a real life problem which was researched extensively

within a non-governmental organization named North Star Alliance. North Star Alliance,

which will be hereafter referred as North Star, is established as a result of the public-private

partnership between United Nations World Food Program (WFP) and TNT Express. The

primary motive for building partnership was to combat hunger in Africa with the provision of

relief food to the demanded regions. However, during the project, the target of dealing with

hunger problem in Africa made it possible for both parties to realize a further problem. As a

part of distribution of relief food to communities in hunger, the problem of having insufficient

number of truck drivers to deliver the relief food to the communities, revealed the relation

between mobility and health problems.

Even though the initial purpose of the partnership did not include the health and the safety

of the truck drivers, both of the organizations were aware that their operations were based

on transportation and it would be impossible to overlook the problems arising as a result of

the relation between mobility and healthcare. In order to tackle this issue, they have initiated

a separate pilot program by opening a walk-in clinic in Mwanza border crossing in Malawi,
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which provided primary health care that can be accessed by truck drivers along the roadside,

aiming to make health care service accessible for truck drivers. After observing success of the

program, it was understood that having similar clinics located along major transport corridors

across Africa would have significant effect on health, lessening the health problems resulting

from the mobility condition. Consequently, North Star was founded in 2006 with the aim of

establishing similar clinics that cover the continent and make life safer for mobile populations

and their communities [24].

North Star developed the concept of "Roadside Wellness Center" (RWC) to extend the local

health care infrastructure and provide service for the mobile populations. An RWC is a con-

verted container, which can be either mobile or not, that is placed on critical locations along

the roadsides where the mobile population congregate. With this placement, mobile popula-

tions can have easier access and get the primary help for basic health care services. RWCs

also act as a “funnel” which captures the mobile populations, increase the awareness and refer

to other better equipped and larger local healthcare services when required.

RWCs employ at a minimum two persons where one of them is the counselor and the other

is the nurse. Counselors are responsible for conducting behavior change communication ses-

sions with the patients. Groups of people that are involved in trainings are also attracted to

the sessions by the out reach workers that are also a part of the RWC employees who go in

the local region to attract people for the education sessions. Nurses are responsible for health

related operations where they diagnose and treat the patients. They are also required to keep

extensive amount of documentation both for the national health authorities and for North Star

to keep track of the operations and patients.

RWCs are established based on set of standards that conform to WHO requirements. To main-

tain a high quality service, North Star also developed standard operating procedures. Further-

more, North Star signs cooperation agreements with the local and national health authorities

in the operating countries to make sure that RWCs’ activities are in line with the requirements

and strengthen the national health priorities. Currently, North Star has 29 operating RWCs in

Africa, located mainly in the Southern and Eastern regions.

The mission of North Star is to provide mobile workers and the communities near the trans-

portation corridors with sustainable access to high quality health and safety services [22].

North Star has three offices, where the head office is based in Utrecht, the Netherlands, and
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two other offices in South Africa and Kenya employing approximately 115 number of person-

nel. North Star has core partners that support its activities and it also continues its operations

with the donations from private companies who would like to invest in clinics in African

regions.

3.2 The Environment

When operations of North Star are investigated, several factors are identified as playing an

important role. These factors are particularly worth discussing as they provide a foundation

for the problem studied. These factors are explained in the following sections.

3.2.1 Demand Population

Mobile populations have a special position compared to the rest of the population within the

scope of healthcare and well-being. Separation from home and partners, hard working con-

ditions, lack of access to care and treatment services make the mobile populations vulnerable

and increases the risk of exposure to numerous diseases including the high risk diseases as

HIV and tuberculosis. Mobile populations are not only under risk of getting infected, but also

play an important role for the transmission of these diseases making them acting as vectors of

transmission.

This susceptibility of mobile populations is further compounded with their inability to access

high quality healthcare services because of the demand and nature of the work they are subject

to. The services they require are not usually designed in accordance with their needs, making

it nearly impossible to receive the required care.

The main target group for North Star within the mobile population is the truck drivers. Due to

hard working conditions, which generally require days of traveling with strict time pressure

on traveling times, access to even basic health services can be very difficult. These conditions

make truck drivers more vulnerable to many diseases. Other barriers, such as not accessing

health centers due to unavailability of parking conditions for the trucks, lack of security and

opening hours for health care facilities pose obstacles for them to access the services whenever

required.
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Even though North Star’s primary focus is the truck drivers, there are two other target pop-

ulations that require attention in order to tackle with the problem. The second target group

of North Star in addition to truck drivers is the sex-workers that are generally located in the

hot-stops where the truck drivers spend long waiting hours. They can also be mobile with the

truck drivers, traveling within the trucks across borders, making them also a part of the mo-

bile population. Sex-workers are especially vulnerable to infectious diseases, making them

in the need of having access to health services. However, as they are occasionally subject to

extensive abuse and violence, it is hard to receive the healthcare needed with regards to so-

cial stigma. Additionally, the separation of truck drivers from regular partners usually result

in getting engaged in sexual activities in the hot-spot locations with the sex-workers. This

situation makes the sex-workers act as a hidden link in transmission chain of diseases and an

important part of the target population.

The final target group is the local communities that are situated near the roads and hotspots.

Similar to sex-workers, local communities can also act as transmission link for the communi-

cable diseases and they need to be considered as well.

Within the scope of the target patient groups, North Star operations are limited within the

continent Africa currently. The primary reason for focusing on Africa is that, it is one of the

regions that has the highest burden of disease. According to World Health Organization’s

(WHO) Global Burden Disease Report, when the measure DALY (disability-adjusted life

year, representing the loss of the equivalent of one year of full health) values are examined,

Africa has at least twice as much as values compared to any other region. This situation can

also be examined in the Figure 3.1.

From the communicable diseases, Africa is also the most heavily affected by HIV worldwide,

accounting for the 71% of the deaths related with HIV/AIDS all over the world according

the Foundation for AIDS Research [31]. This situation is compounded by exposure to other

communicable diseases, which are mainly malaria, tuberculosis and sexually transmitted in-

fections (STIs). This persistent burden of communicable diseases which puts Africa in a

special position, makes North Star interested in getting in action to tackle the issue within

African region.

Another categorization of demand population for the purpose of inclusion in the problem for-

mulation can be made by broadly categorizing demand population as “Mobile” and “Static”.
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Figure 3.1: The disease burden in Africa

In mobile demand group, the patients which travel throughout the time are considered. The

majority of this group is the truck drivers as they are the ones spending their most of the time

on the roads. Another part of mobile demand is the sex-workers which are not as dominant as

truck drivers in terms of numbers. The amount of mobile demand can be defined as the aver-

age daily number of people on a certain transportation line defined over network to understand

how transportation lines are congested. In the static demand group, local populations are the

major element. They are the communities near the transportation lines and their demand to the

RWCs would depend on the patient visits occurring to the local healthcare facilities nearby.

The amount of local population visiting the RWCs is affected by factors as distance to the

walk-in clinics, availability of local health care infrastructure and number of inhabitants in

the local communities. Sex-workers also belong to the group static demand.

A further remark on demand should be made about its stochastic nature. The value of demand

for each of the target patient group is not estimated straightforwardly. There is a huge amount

of uncertainty involved in the nature of the problem and this should be considered through the

problem formulation. Some of these uncertainties arise as a result of the unstable situation in

Africa, in which field research and data gathering activities are not very effectively handled.

Finding accurate estimates for the traffic flows can be problematic as traffic counts are not

completed properly.
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3.2.2 Health Strategy

North Star’s health strategy is grouped in two categories as key and working principles. With

the three key principles, North Star prioritizes and justifies what they do and with the ten

working principles, they explain and justify how they deliver the services and how to improve

their quality and effectiveness [23].

When the key principles are analyzed further, it is seen that North Star prioritizes the actions

based on the health needs of the society which is determined by looking at the impact of the

diseases on the society. This impact on society can be observed with the concept of “disease

burden” which was discussed in Section 3.2.1. Another idea included in key principles is

that primary focus is given to mobility related diseases. For instance, even though maternal

health is a serious health issue, it is not the main health concern addressed by North Star.

However, such health issues are included in the secondary focus area, which is an adapted

service package depending on the requirements of the region where the RWCs are built. The

final idea behind the key principles is to offer feasible and affordable services. For individual

cases, the evaluation of both whether the health condition can be effectively prevented, diag-

nosed, treated and/or cured and whether an effective contribution can be made is determined.

Accordingly, if a given solution is not feasible, such as requiring complex diagnostic meth-

ods, the patients are referred to other health services, which are capable of carrying necessary

services. In summary, with the key principles, North Star focuses it health care services on

health conditions that:

• Play a high impact on society

• Are related mobility

• Can be prevented/diagnosed/treated in an effective and affordable way

Among the ten working principles, even though each of them is required for operations of

North Star, principle stating “providing continuum of care” is critical for the study. The

continuum of care definition is further divided as “vertical” and “horizontal” continuity.

• Vertical Continuum of Care: In terms of “vertical” continuity, the continuity of care is

ensured by aligning the facilities with local district health systems and by establishing

referral systems to other preferred local health care providers.
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• Horizontal Continuum of Care: The “horizontal” continuity is concerned with the mo-

bility of the truck drivers along the transport corridors. The care is ensured by promot-

ing the follow-up service of activities for drivers along the roads even if the services are

situated in different districts, regions or even countries. This is supported by individual

tracking of the truck drivers with the identification system developed within North Star,

which enables every RWC to access the health related historical data of the patients.

North Star wants to be accessible whenever a truck driver requires health service and

provide them with high quality and effective health services.

Currently North Star implements a standard service package in RWCs where the services

offered for every disease is divided into categories as screening, diagnosis/test, treatment and

care and referral. As the organization grows and acquires more supporting donors, the services

are planned to be expanded and improved.

3.2.3 Diseases and Services

One of the most important parts of the problem is the diseases and services that are served in

the RWCs. Starting with the diseases, diseases can be divided in two as communicable and

non-communicable diseases. Communicable diseases are the ones which can spread from one

person to another, making it play a threatening role in the society. WHO tracks the infectious

diseases, sounds alarm when required and plays a protective role from the consequence of epi-

demics [32]. Important communicable diseases are cholera, malaria, measles, meningitis and

tuberculosis. From the perspective of mobile populations several communicable diseases are

relevant more compared to others which are HIV, malaria, tuberculosis and STIs. Especially

for the case of STIs and HIV, the prevalence rates are found to be more drastic for mobile pop-

ulations compared to other communitites. It was reported that 60% of truck drivers reported

having STIs in previous six months time and in total, truck drivers and sex-workers have a

total of 56% HIV prevalence rate in South African region [27]. It is not only the Southern

African countries, that have high prevalence rates for HIV and STIs but also other regions in

Africa are affected. In a study, out of 331 truck drivers from East and Central Africa, 18% has

been diagnosed HIV positive and around 4% for sexually transmitted diseases. In specific, the

prevalence rate for Central African truck drivers was more with value of 34% [8]. The non-

communicable diseases are named as chronic diseases and they do not spread from person to
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person [33]. They usually evolve slowly and are of long duration. WHO categorizes them

as cardiovascular diseases, cancers, chronic respiratory diseases and diabetes. These are also

diseases that can be encountered in mobile populations, due to hard working conditions for

truck drivers make them more vulnerable to risks imposed by these diseases and also for sex-

workers. The non-communicable diseases are mainly treated to make drivers feel connected

and familiar to the clinics.

In order to achieve the desired effectiveness from walk-in clinics, services to be offered inside

should be determined carefully as well. According to North Star’s health service package,

which is developed together with professional medical institutions, the services offered in the

RWC are listed as:

• Screening: The process in which symptoms from the patients are recorded and medical

history is obtained. The social and economical background of the patient is understood

and for some cases physical examination is conducted.

• Diagnosis and Tests: It involves simple tests as weight and body mass index. Depend-

ing on the disease more advanced tests as rapid HIV test and urine tests can be done.

• Care and Treatment: This involves treatment or symptomatic treatment of the diseases.

Basic care is given including counseling about the disease and adherence to treatment.

Patients are advised periodic follow up (their treatments) for treated cases.

• Referral: Not all diagnosis, tests, treatment possibilities and medications are available

in the RWCs. In case further examination is required for diagnosis, the disease cannot

be controlled and is severe, the patient is advised to refer to the nearest hospital.

Each disease has its own different actions listed for every service category resulting in differ-

ent types of intervention. The progression speed and the requirements change from disease

to disease and therefore separate planning for every disease and service combination is es-

sential. For instance, the treatment follow-ups with HIV and malaria are not the same and a

network specializing on HIV treatment would be different compared to a network specialized

on malaria treatment. This idea should be kept in mind through problem formulation.
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3.2.4 Local Healthcare Infrastructure

One other important point as a part of the problem is the local health care infrastructure. As

described with "Continuum of Care" definition in Section 3.2.2 and Section 3.2.3, referral is a

key point for operation of the walk-in clinics. It is important to examine the local health care

infrastructure and identify the blank spots on the map to include the RWCs. RWCs should not

only be present where local healthcare infrastructure is lacking but also it should designed in

line with them too to work in cooperation. If there is a possibility of referral service nearby

the RWCs when required, the patient can be easily referred to bigger hospitals and it would be

more likely that the patient will not be lost. It is a problem with the network that once a patient

requires further examination in more equipped healthcare providers, they tend to postpone the

time for examination or even completely ignore it if they are not directly referred. In the case

where the referral possibilities are present in close distance, it would be more effective for

achieving the referral aim.

3.2.5 Delays

Through the transportation lines, not everything goes along very smoothly and trucks often

do not reach the final destination in very short time frames. There are certain obstacles that

lengthen the travel time considerably causing undesirable results. These can be named as,

including but not limited to, border crossings, check points and weightbridges. Trucks have

to check through the borders where they wait for long hours or days in the queue and spent a

lot of time with document procedures. There are also other check points, such as the police

checks, which result in delays. Weightbridges are the points where the trucks are weighed and

checked if they comply with the standards. These delay locations at the same time present a

good opportunity for the location of walk-in clinics as truck drivers accumulate at these points

and spend long waiting hours.

There can be other delays resulting from road and weather conditions along the transport

lines. The roads are not fully paved and sometimes poor road conditions lower the speed and

complicates the truck drivers job. Weather condition in combination with the poor road can

also be another obstacle such as muddy or blocked roads resulting from heavy rains.

The delay durations along the transport line show that the travel times should not be only
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considered as the kilometers difference between origin and destination locations but also the

long waiting hours should be integrated and while planning the RWC network, it should not

be disregarded.

3.2.6 Budget and Investments

Intuitively, the very best solution in terms of health service would be opening all of the walk-

in clinics in every possible location, fully equipped to provide all services for all diseases.

Unfortunately, this is constrained by the budget and investment availabilities in the region. In

the case of North Star, the organization opens RWCs with the donations provided from Min-

istries of Health, global health partners and private companies. Additionally, the investment

process for North Star is donor dependent. This means that, usually donors contact North

Star specifying their requirements and donations to a certain extent. For instance, a donor can

approach North Star stating that they would like to invest in a specific country or region and

give funds for a certain number of RWCs. In these situations, North Star and the donor reach

a common understanding and define the set of acceptable conditions and invest in definite

number of RWCs.

The cost of an RWC include the (one off) establishment cost, maintenance cost and the em-

ployee cost over the duration of RWC’s life span. It is also quite difficult to derive a cost table

for the RWC as every country in which the RWC operate has different rules and regulations,

changing the amount invested in RWC and making the cost data complex. Therefore, given an

investment amount for establishing new RWCs, there is an upper limit on number of RWCs

that can be opened regarding the specifications of the region.

3.3 Problem Formulation

The challenges behind North Star’s planning of the RWCs and difficulty of the work can be

understood from the conditions that they work through and the importance of the activities.

The problem studied in the thesis has been greatly inspired from this mission of North Star

and provided a basis for the problem definition.

As explained, the solution North Star provided to the problem of dealing with the issues
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resulting from the detrimental relation between health care and mobility is the concept of

RWCs. These walk-in clinics near the roads and hot-spots are playing a life changing role

for the mobile populations and throughout time, they are becoming an inseparable part of

the job routine for mobile populations. Having such a significant meaning for the mobile

populations, the RWCs need to be planned carefully to meet the expectations and add value

to the transportation network.

The problem studied in this study deals with the issue of planning of the walk-in clinics

along the transportation lines by making them situated as beneficial as possible for the mobile

populations. This planning includes three important decisions:

1 What should be the location of clinics that are decided to be opened?

2 Which diseases should be managed within the opened walk-in clinics?

3 Which services of the managed diseases should be offered within the opened walk-in

clinics?

Therefore, the main objective of this thesis is to propose a model to provide benefit at the

maximum level. Currently, North Star makes these decision by rule of thumb methods, sit-

uational analysis and directions provided by the donors. Nevertheless, it is certain that there

should be an improved methodology and strategy behind this procedure.

It is not only the locations that matter for the problem, but also the diseases and services that

are offered within the clinics. Currently in North Star, there is a standard health care service

package that is offered in every open RWC, but from a general perspective, these services

should be tailor made regarding different requirements of the target groups and areas in which

the walk-in clinic is established. A more specific and detailed planning of the walk-in clinic

network would be a better solution for this purpose.

To answer these questions above, criteria should be determined which would appropriately

define the effectiveness of the walk-in clinics for the target population. However, this defi-

nition may not be straightforward and requires careful analysis of both the target group and

the region. Firstly, as a general motivation of location planning problems, the walk-in clinics

should be placed in a way which would capture as many patients as possible. It is important to

locate the clinics near the hot-spots which have high volume of trucks waiting and at the same
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time near local communities with a significant population. Therefore, one aim would be to

maximize the patient visits that would be occurring at the walk-in clinics. Another important

objective would be to maximize the “continuum of care”, as described under in Section 3.2.2.

The walk-in clinics should offer a continuous care along the roads for the mobile populations

and be aligned in accordance with the local health care infrastructure. The continuum of care

of the mobile population should also be maximized while answering the questions for plan-

ning the walk-in clinics. These two objectives do not have be necessarily conflicting however

it should be also noted that, one solution that is optimal with one objective may not be optimal

with the other. Therefore, through optimization process, this multi criteria objective should

be considered with appropriate adjustments.

The problem of determining the optimal location of the walk-in clinics, resembles the network

location problems in which a network is represented by set of arcs and nodes. In [21], a

network is defined as N = (G , l) where G is the underlying graph with G = (V ,E ), where

the node set V = {v1, . . . ,vM} and edge set E = {e1, . . . ,eN}. Every edge of the network

e ∈ E has an associated positive length through the function l : E → R+.

Within this respect, it would be required to make a network definition for the given problem

definition. The arcs of the networks can be considered as the routes in which mobile popula-

tion transport. These routes can be the major transport corridors in Africa. There are several

major transport corridors in Africa which accommodate significant truck traffic. There are

also other transport routes which are high-density roads within Africa. These roads on which

mobile population travel should be determined with their origin and destination coordinates.

The set of nodes can be determined by the potential locations on which a walk-in clinic can be

built. These nodes can be hot-spots on the lines of transportation where large number of mo-

bile population is accumulated while traveling. Within this respect, there will be high number

of demand in the hot-spot locations and the patient visit objective described in problem defi-

nition can be achieved. In addition to these hot-spots, other available locations which can be

more appropriate for local population can be considered as potential walk-in clinic locations,

and also as nodes of the network.
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3.4 Scope of the Problem

As modeling the optimal locations for the walk-in clinics can be too complex after including

all factors in the environment of North Star explained in Section 3.2, some aspects of the

problem are narrowed or considered as out of scope. In this section, these aspects of the

problem are explained.

Initially, the range of diseases that are handled in the walk-in clinics are large in number.

Since the non-communicable diseases are simpler to handle, more affordable and usually

present in the clinics with the aim of capturing patients, they do not require detailed planning.

However, the focus is on the communicable diseases as it is more relevant with the mobility

issues of the target population. The prevalence, treatment and care of communicable diseases

are related with the mobility and can be used for measuring the continuum of care objective,

consequently in the study, the non-communicable diseases part will not be addressed directly.

In terms of communicable diseases, the four high impact diseases, HIV, tuberculosis, malaria

and STIs, will be in scope for observing the continuum of care.

For the services to be handled, a new categorization is made. Screening is considered out of

scope as it can be included in the walk-in clinics with no or relatively low costs and therefore

does not require to be planned. For the care and treatment services, it would be more appro-

priate to divide in separate headings as each of the services are conducted with differing pro-

tocols. Treatment for malaria and care for malaria are handled under different approaches and

a model for planning walk-in clinics should take it into account. Consequently, the services

that are in scope can be listed in four categories as diagnosis, treatment, care and referral.

Another topic is about the delay that the truck drivers face during their trips. As described

the delays can be caused as a result of formal procedures such as border crossings or regular

checks or other cause of delay can be due to unplanned reasons such as road and weather

conditions. However, predicting the weather conditions and collecting reliable information

about road conditions and the amount of delay associated with it is very difficult. Including

them in the calculations may mislead the model and may not add value. Therefore, the road

and the weather conditions are considered as out of scope for the beginning. In case reliable

information can be obtained, the ways to associate and integrate them to model for further

developing can be considered.
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A final point considered as out of scope is the budget and investment related topics. As

described before in Section 3.2.6, it is not possible to come up with detailed estimates that

can be used for approximating the costs associated with opening and running an walk-in

clinic. If in future, North Star becomes a donor independent organization by raising money

from different operations, which can also include selling of services, North Star would require

different tools and financial analysis to optimize the investments. Nevertheless, at this stage

of operations, investment and budget considerations are irrelevant and will not be included

in the model. Given the requirements from donors, the agreements and field studies, the

limit on opening clinics can be provided as “number of walk-in clinics to be opened” or even

more specifically, “number of walk-in clinics which would offer the given service for a given

disease”.
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CHAPTER 4

MATHEMATICAL FORMULATION - DETERMINISTIC

MODEL

In this section, the mathematical formulation will be explained in detail. Initially in Sec-

tion 4.1, the ideas that are developed for handling the calculation of continuum of care values

will be given. Following these descriptions, in Section 4.2, the deterministic model will be

developed which allows the optimal planning of walk-in clinic based on services and diseases.

4.1 Definition of Continuum of Care

The term “continuum of care" is a critical term for determining to what extent the mobile pop-

ulations are served along the transportation lines. As explained in Section 3.2.2, the definition

has two branches as horizontal and vertical where the horizontal continuum of care reflects

the service given along the roads, both by being accessible whenever needed and following the

patients along the road, and vertical continuum of care reflects the service beyond the roads,

having referral availabilities near the walk-in clinics. In order to plan the walk-in clinics pro-

viding the maximum continuum of care, a mathematical formulation which would reflect the

different service and disease requirements extensively is required. For this purpose, several

approaches are developed. This section explains the continuum of care approaches both in

horizontal and vertical groups.
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4.1.1 Horizontal Continuum of Care

4.1.1.1 Approach 1: Binary Coverage

The first approach for defining the coverage of the mobile populations along the roads refers

to the service and disease combinations having strict critical intervention times. The demand

needs to be satisfied within the critical intervention time, which is defined specifically for

every disease and service combination, and consequently demand can be categorized as met

and otherwise, the demand can considered to be lost, implying it is too late to intervene from

the walk-in clinic. When the mobile population requires service from the walk-in clinic’s fa-

cilities and is away from the walk-in clinic with a distance longer than the critical intervention

time, the mobile population is named as “not covered”. However, if it is possible to reach the

next walk-in clinic within the critical intervention time, it is named as “covered”. This results

in a binary perspective where the categorization differs between two possible results.

The notation given in Table 4.1 is used for determining the coverage values.

Table 4.1: Notation used for Approach 1 of Continuum of Care

Sets:
Q Set of paths, q = {1,2, . . . ,Q}
K Set of locations, k = {1,2, . . . ,K}

Parameters:
tTotalq Total traveling time on path q, starting from origin and going to destination

including the delay durations
tCurq Total traveling time on path q, starting from origin to the current position

including the delay durations
tkq Total traveling time on path q, starting from origin to the location k including

the delay durations
tcsd Critical intervention time for service s and disease d
cq The value of coverage that applied on the mobile population at current posi-

tion of the demand
covqsd The total coverage of the path q for disease d and service s

Regarding the notation given in Table 4.1, the following two variables are used for the calcu-

lation of coverage value along the path q for service s and disease d:
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cq =


1, if there exists an open walk-in clinic within the critical intervention

time at the current position 0≤ tkq− tCurq ≤ tcsd

0, otherwise,

covqsd =
∫ tTotalq

0

cq

tTotalq
d(tCurq). (4.1)

4.1.1.2 Approach 2: Partial Coverage

This approach can be considered as the relaxed version of the first approach defined above.

Here, the mobile population is not categorized as only “covered” and “not covered” but also

a partial value is assigned. This is achieved by using two critical intervention times for every

service and disease combination. When the mobile population requires service from walk-in

clinic and is away from the walk-in clinic with a distance less then the first critical intervention

time, it is considered as fully covered. Alternatively, if the mobile population is away from

the walk-in clinic with a distance between first critical intervention time and second critical

intervention time, a coverage ratio is assigned considering its distance to the walk-in clinic. If

the mobile population is at a distance further than the second critical intervention time from

the walk-in clinic, it is not covered as it is not possible to reach the facility. This condition

applies to service and disease combination which do not have very strict applications but

however, it is important to intervene timely.

The notation for this approach is nearly same as the notation used for Approach 1 given in

Table 4.1. The change in the notation for Approach 2 is the critical intervention times. The

added parameters are summarized in the Table 4.2.

Table 4.2: Added notation for Approach 2 of Continuum of Care

Parameters:
tc1sd First critical intervention time for service s and disease d
tc2sd Second critical intervention time for service s and disease d

Regarding the above definitions, the following two variables are used for the calculation of

coverage value along the path q for service s and disease d:
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cq =



1, if there exists an open walk-in clinic within the

critical intervention time at the current position

0≤ tkq− tCurq ≤ tc1sd

tCurq−(tqk−tc2sd)
tc2sd−tc1sd

, if there exists an open walk-in clinic such that

tc1sd ≤ tCurq ≤ tc2sd

0, otherwise,

covqsd =
∫ tTotalq

0

cq

tTotalq
d(tCurq). (4.2)

4.1.1.3 Approach 3: Expected Traveling Time

For certain disease and service combinations, the coverage approaches which are including

critical intervention times are not very applicable. It does not require an immediate service

from the walk-in clinics, however it is of course favorable to serve as soon as possible. With

this approach, it is aimed to minimize the expected traveling time to a next walk-on clinic

along the road by the mobile populations.

The parameter added to the notation for the Approach 3 is Esd(tCurq), which is the expected

traveling time to the next walk-in clinic at the current position.

Regarding the above definitions, the following two variables are used for the calculation of

coverage value along the path q for service s and disease d:

covqsd =
∫ tTotalq

0

Esd(tCurq)

tTotalq
d(tCurq). (4.3)

4.1.1.4 Matching the Continuum of Care Approaches with Service and Disease Com-

binations

In the previous sections, the definitions that will be used for formulation of continuum of

care approaches are explained. Regarding the information coming from diseases that is dis-

cussed with healthcare professionals, each service and disease combination is assigned with

an approach that is appropriate. Table 4.3 summarizes these assignments.
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Table 4.3: The match between approaches and service-disease definitions

Services

Diagnosis Treatment Care

HIV Approach 3 Approach 3 Approach 3
Malaria Approach 2 Approach 2 Approach 2

STIs Approach 2 Approach 2 Approach 2
Tuberculosis Approach 2 Approach 1 Approach 1

4.1.2 Vertical Continuum of Care

The vertical continuum of care of the mobile population is ensured by having referral avail-

abilities whenever the walk-in clinic is insufficient of delivering a service of a disease. In

order to achieve this, there should be a local healthcare facility located within a given dis-

tance to the walk-in clinic. The referral coverage for a path q is defined by the percentage

of walk-in clinics having referral availabilities on the path. The coverage for referrals can be

expressed mathematically as:

covqsd =
∑walk-in clinics along path q with referral availabilities

∑walk-in clinics along path q
. (4.4)

4.2 Deterministic Model

The problem of planning the walk-in clinics in the first stage is solved with a deterministic

model. With this approach it is aimed to come up with a good representation of the objectives,

such as the aim of achieving maximum benefit from the walk-in clinics. For the problem

formulation, the following assumptions are employed in the model:

Assumption 1 The static patient demand occurring at location k for every disease d are

assumed to be known and not varying.

Assumption 2 The mobile patient demand occurring on path q for every disease d are as-

sumed to be known, not varying and the patient visits are same throughout the whole path

q.
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Table 4.4: Notation for the deterministic model

Sets:
K Set of all locations, including walk-in clinics, origins and destinations, k =

{1, . . . ,K}
orig Set of origin locations, orig = {1, . . . ,O}
dest Set of destination locations, dest = {1, . . . ,D}
Q Set of paths, q = {1, . . . ,Q}
HC Set of healthcare locations, hc = {1, . . . ,HC}
S Set of services that are offered, s = { diagnose (di), treatment (tr), care (cr),

and referral (rl) }
D Set of high impact diseases that are covered within the scope of the walk-in

clinics, d = { HIV (h), tuberculosis (tb), malaria (ml) and sexually transmit-
ted infections (sti) }

Subsets:
kW Set of walk-in clinic locations, kW = {1, . . . ,KW}
kC Set of current walk-in clinic locations, which is a subset of kW
kP Set of potential walk-in clinic locations, which is a subset of kW
kO Set of walk-in clinic locations, located at the origin locations, which is a

subset of kW
kD Set of walk-in clinic locations, located at the destination locations, which is

a subset of kW
KCDSds Set of current walk-in clinic locations in the network where service s for

disease d exists
KPDSds Set of potential walk-in clinic locations in the network where service s for

disease d does not exist
KRqd Set of walk-in clinic locations for which a referral possibilities exist for dis-

ease d on path q
Parameters:
u1 Weight given to mobile demand population
u2 Weight given to static demand population
rd Weight given to disease d
T SMd Total mobile score of the optimized network
T SSd Total static score of the optimized network
dmqd Amount of demand from mobile population on path q for disease d
dskd Amount of demand from static population at location k for disease d
cocqd Value for continuum of care on path q for disease d
cov f easqds Value for feasibility score of coverage on path q for disease d in terms of

service s
covqds Value for coverage on path q for disease d in terms of service s
binkd Auxiliary binary variable used in if-then constraints
M A sufficiently large number used in if-then constraints
UBDSsd Number of centers that can be opened for giving service s for disease d
UB Number of centers that can be opened in total

The notation used for the deterministic model including sets and subsets, which which is

helpful for the formulations, and parameters is summarized in Table 4.4.
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The set kW which is used for defining the walk-in clinic location, including both the set of cur-

rent and set of potential locations. The potential locations are determined from possible delay

locations or other similar locations which is discussed in Section 3.2.5. The sets orig and

dest denote the sum of the origin and destination of the paths that are traveled by the mobile

populations respectively. Regarding the coordinates of these locations, a path, q is determined

from every origin and destination pair. Additionally, walk-in clinic locations which are lying

on the path q are calculated in the model. The set of services, s and set of diseases, d, have

four elements each which is include in the scope of the problem, as described in Section 3.2.3.

The decision variables in the model are listed in three as,

xkd =


1, if a walk-in clinic is open at location k giving any service for disease d

0, otherwise,

ykds =


1, if a walk-in clinic is open at location k giving service s for disease d

0, otherwise,

zk =


1, if a walk-in clinic is open at location k

0, otherwise.
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The model in closed form can be written as,

Max u1 ∑
d∈D

rd ∗T SMd +u2 ∑
d∈D

rd ∗T SSd (4.5)

s.t. T SMd = ∑
q∈Q

dmqd ∗ cocqd , ∀d ∈ D, (4.6)

T SSd = ∑
k∈K

dskd ∗ xk , ∀d ∈ D, (4.7)

cocqd = f ({cov f easqds|s ∈ S}) , ∀q ∈ Q,∀d ∈ D, (4.8)

cov f easqds = gsd(covqds) , ∀q ∈ Q,∀d ∈ D,∀s ∈ S, (4.9)

covqds = hsd({xkd ,yksd |k ∈ Kq}) , ∀q ∈ Q,∀d ∈ D,∀s ∈ S, (4.10)

M ∗binkd− xkd ≥ 0 , ∀k ∈ K,∀d ∈ D, (4.11)

1− (yk{s=di}d + yk{s=tr}d + yk{s=cr}d)≤M ∗ (1−binkd) , (4.12)

∀k ∈ K,∀d ∈ D,

xkd ≥ (1/3)∗ (yk{s=di}d + yk{s=tr}d + yk{s=cr}d) , (4.13)

∀k ∈ K,∀d ∈ D,

zk ≥ (1/4)∗ ∑
d∈D

xkd , ∀k ∈ K, (4.14)

UBDSsd ≥ ∑
k∈KPDSsd

yksd , ∀d ∈ D,∀s ∈ S, (4.15)

UB≥ ∑
k∈KP

zk, (4.16)

ykds = 1 , ∀k ∈ KCDSds, (4.17)

xkd ∈ {0,1} , ∀k ∈ K,∀d ∈ D, (4.18)

ykds ∈ {0,1} , ∀k ∈ K,∀d ∈ D,∀s ∈ S, (4.19)

zk ∈ {0,1} , ∀k ∈ K. (4.20)
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The objective function of the model, (4.5), maximizes the scores achieved from mobile and

static demand in accordance with the user defined weights given to these scores, u1 and u2.

The first part of the score which is for mobile demand is calculated through the continuum of

care offered to mobile populations along the path q and the demand through the path q, (4.6).

The other score is for the static demand, which is calculated from number of static demand

occurring at an open walk-in clinic on the network, (4.7).The continuum of care values are

calculated for every flow and every disease by a function of feasibility scores which is defined

over every path, q, service, s, and disease, d (4.8). The feasibility scores are normalized

coverage values over paths, which are put in a scale between 0 and 1 (4.9). The coverage

values are calculated specifically for every disease d and service s over path q in which the

calculation of coverage value depends on the combination of service and disease, (4.10). The

coverage value depends on the decision variables xkd and ykds which indicate the location and

planning of the walk-in clinics.

With the Equations (4.11), (4.12) and (4.13), the relation between decision variable xkd and

ykds is maintained. It is ensured that, if ykds gets a value of 0, xkd is also forced to zero and

vice versa. With (4.14), a similar relation between xkd and zk is ensured. The two constraints,

(4.15) and (4.16) put an upper bound value on number of services that can be opened on

a given network. The constraint (4.17) assigns value 1 for the locations that are currently

existing on the network. The model is concluded with the sign constraints.

As observed from the model constraints (4.8), (4.9) and (4.10), the variables in the model are

described through some functions which will be discussed in detail in the following sections.

4.3 Calculation of Coverage Values

In Section 4.1, definitions that are suitable for defining coverage of service and disease com-

binations are explained. As can be seen from the descriptions, the coverage values are defined

by integrals, which are not friendly in terms of linear programming. In order to resolve this

issue and apply the coverage approaches, the linearization of the approaches should be for-

mulated. In this section, the methods for linearizing the formulations are explained.
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4.3.1 Neighbourhood Definition

In order to tackle the problem of non-linear equations, an alternative formulation is developed.

With this solution, the model determines whether two locations on path q are neighbours and

calculates the coverage accordingly. For this solution approach, the following assumption is

made.

Assumption 1 The mobile populations are assumed to be making circular trips over the

paths, meaning that once mobile populations start from origin of a path and arrive to desti-

nation, they return back to origin.

Assumption 2 The network on which optimization is applied is assumed to be undirected,

meaning the travel times from origin to destination and from destination to origin are the

same. The travel times in the network are symmetrical.

To formulate neighborhood definition, the notation given in Table 4.4 is extended with the

sets which are given in Table 4.5.

Table 4.5: Additional notation for the deterministic model

Subsets:
Oq Origin of the path q, as a subset of orig
Dq Destination of the path q, as a subset of dest
Kq Set of walk-in clinic locations kW that are located on the path q
KAkq Set of walk-in clinic locations kW that are located after k until the destination

of the path q
KEOq Set of walk-in clinic locations kW that are located on the path q but not on the

origin of the path
KEDq Set of walk-in clinic locations kW that are located on the path q but not on the

destination of the path
KEODq Set of walk-in clinic locations kW that are located on the path q but not on the

origin and destination of the path
KOq Set of walk-in clinics that are located at the origin on path q
KDq Set of walk-in clinics that are located at the destination on path q
Lq Set of all locations on path q including walk-in clinic locations, origin and des-

tination meaning, Oq∪Dq∪Kq

LAkq Set of locations on path q which are located after k until the destination

46



The following decision variable is added in the model to determine the neighbours along the

paths, adapted from [13].

iklqsd =


1, if k and l are neighbouring pairs for service s and disease d

along the path q where {(k, l) ∈ Lq×Lq}

0, otherwise

(4.21)

Two locations can be neighbours if and only if while traveling from the first location, the

ending location is reached without passing by any location in between. This is ensured with

the following set of constraints,

∑
l∈LAkq

iklqsd = yksd ∀q ∈ Q,∀k ∈ Kq,∀s ∈ S and ∀d ∈ D (4.22)

∑
k∈Lq

iklqsd = ylsd ∀q ∈ Q,∀l ∈ Kq,∀s ∈ S and ∀d ∈ D (4.23)

∑
l∈LAkq

iklqsd = 1 ∀q ∈ Q,∀k ∈ Oq,∀s ∈ S and ∀d ∈ D (4.24)

∑
k∈Lq

iklqsd = 1 ∀q ∈ Q,∀l ∈ Dq,∀s ∈ S and ∀d ∈ D (4.25)

iklqsd ∈ {0,1} ∀q ∈ Q,∀k ∈ K,∀l ∈ Kkq,∀s ∈ S and ∀d ∈ D. (4.26)

In these constraints, it is ensured that each location can have only one successor and only

one predecessor. From Constraints (4.22) and (4.23), two walk-in clinics can be service s and

disease d neighbours on path q if and only if there is an open walk-in clinic in neighboring

position. Every origin has exactly one successor (4.24) and every destination has one pre-

decessor (4.25). This notation is applied to approach definitions which are discussed as next

sections.

4.3.2 Linearization for Approach 1

For the linearization, new set of parameters are introduced to the model. These parameters

are summarized in Table 4.6.
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Table 4.6: Additional notation for the deterministic model for linearization

Parameters:
tklq Travel time between locations k and l on path q, including the delay times

in between where both k and l are elements of the set Lq

t̂sd The critical intervention time for service s of disease d
tTotalq Total traveling time on path q, starting from origin and going to destination

including the delay durations
dODq The total delay time occurring at the origin and destination of path q
delk The amount of delay time spent at location k

The coverage value is calculated as,

covqsd =
A+B+C+D

(2∗ tTotalq)+dODq
(4.27)

where

A = 2∗ ∑
k∈Kq

∑
l∈KAkq

iklqsd ∗ crtTimeklqsd

B = ∑
k∈Oq

∑
l∈KEOq

iklqsd ∗ crtTimeOklqsd

C = ∑
k∈KEDq

∑
l∈Dq

iklqsd ∗ crtTimeDklqsd

D = 2∗ ∑
k∈KEODq

∑
Lq

iklqsd ∗delk

+ ∑
k∈Oq

∑
l∈KOq

iklqsd ∗dell

+ ∑
k∈KDq

∑
l∈Dq

iklqsd ∗delk

and

crtTimeklqsd = min{tklq, t̂sd}

crtTimeOklqsd = min{(2∗ tklq +delKOq), t̂sd)

crtTimeDklqsd = min{(2∗ tklq +delKDq), t̂sd).

In (4.27), the total amount of time that is spent along the path q as covered is proportioned to

the total time spent along the road. The total time spent on the path covered is split in 4 parts

as A, B, C and D. Part A refers to the sections covered on the road by the walk-in clinic that are

located along the path. It looks at the neighboring walk-in clinics and calculates the coverages
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accordingly. It is multiplied with the value 2, due to the circular path assumption. Part B and C

refer to origin and destination coverages respectively. These two parts will play role if a walk-

in clinic at an origin or a destination is not located. Due to circular trips, if a walk-in clinic

is not located at origin and/or destination, the travel time between two consecutive walk-in

clinics will be different and has to be reflected in the calculations. The final part D, is for the

coverage of delay duration. As mentioned before, delays at the locations may occur resulting

as an increase in travel times. If a walk-in clinic is located at a location with delay duration,

through the delay time, the mobile population will be covered and it requires to be added in

the covered travel times, Part D consists of three parts to differentiate between delay times

spent at walk-in clinics, origins and destinations respectively. The delay covered at walk-in

clinics is also multiplied with the value of 2 due to circular trips.

To clarify how the formulas work, example cases can be provided over a given path, q. Three

cases will be provided showing the difference between how formulation changes when a walk-

in clinic is located at an origin or a destination.

Case 1: In the first case, the path does not have any walk-in clinics located at the origin

and destination points. Figure 4.1 illustrates the path with a simple diagram. The path is

circular, showing the trip from an origin to a destination with walk-in clinics X , Y and Z

which are opened and from destination to origin with Z′, Y ′ and X ′. The blue shades over

the path indicates the parts of the path that is covered, meaning in critical time intervals. For

simplification, only single disease and service combination is analyzed and s and d indices

are dropped.

Figure 4.1: An example path with no walk-in clinic at origin and destination

To provide example numerically, the following fictional data is used. Travel times between

locations without delays are given in Table 4.7. Furthermore, each of the locations, have a
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Table 4.7: Travel times between location without delay durations

orig X Y Z dest

orig 0 5 12 20 29
X 5 0 7 15 24
Y 12 7 0 8 17
Z 20 15 8 0 9

dest 29 24 17 9 0

Table 4.8: Delay durations

orig X Y Z dest

6 3 4 10 15

delay duration spent over, which is summarized in the Table 4.8.

For the given path, the covqds value can now be calculated. Initially, the tTotalq will be calcu-

lated as (5+7+8+9)+(3+4+10) = 46, which is the sum of the neighboring travel times

and the delay durations of the walk-in clinic locations. The sum of the delay at origin and des-

tination, denoted by dODq will be equal to 6+15 = 21. This would make denominator equal

to value of 46∗2+21 = 113. This value indicates the total time spent along the circular path

that the mobile population is traveling, including the delays along the road which contribute

to total time extensively.

When the numerator is analyzed, it is important to determine the iklqsd values of the given

path. For the given case, iklqsd values will be as (the q, d and s indices are dropped):

iorig,X = 1

iXY = 1

iY Z = 1

iZ,dest = 1

and all the other ikl values will be zero.

The next step would be the calculation of A, B, C and D values in the formulation with the
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help of ikl values. The calculations will be as follows:

A = 2∗ [(iXY ∗ crtTimeXY )+(iXZ ∗ crtTimeXZ)+(iY Z ∗ crtTimeY Z)]

= 2∗ [(1∗ crtTimeXY )+(1∗ crtTimeY Z)]

B = iorig,X ∗ crtTimeOorig,X

C = iZ,dest ∗ crtTimeDZ,dest

D = 2∗ [(iXY ∗delX)+(iY Z ∗delY )+(iZ,dest ∗delZ)]+0+0.

The last two terms in calculation of D are zero, as there is no walk-in clinic located at origin

and destination, the delay duration occurring at the origin and destination are not included.

To finish the calculation of A, B, C and D values, a critical intervention time, t̂sd , is required.

For the current case, the value is assumed as 2. The calculations will be as follows:

A = 2∗ [(1∗min{7,2})+(1∗min{8,2})]

= 2∗ [2+2]

= 8

B = 1∗min{(2∗5+6),2}

= 2

C = 1∗min{(2∗9+15),2}

= 2

D = 2∗ [(1∗3)+(1∗4)+(1∗10)]+0+0.

= 34

Putting together all the values calculated, the coverage values of the path can be finalized as,

cov =
8+2+2+34

113
= 0.319.

Notice that, if the critical intervention time was a value greater than or equal to 33, the cover-

age of the path would have been 1.

Case 2: In the second case, the path has walk-in clinics located at the origin and destination

points. Figure 4.2 illustrates the path with a simple diagram. The path is circular, showing

the trip from origin to destination with walk-in clinics W , X , Y , Z and Q which are opened
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Table 4.9: Travel times between location without delay durations

orig/W X Y Z dest/Q

orig/W 0 5 12 20 29
X 5 0 7 15 24
Y 12 7 0 8 17
Z 20 15 8 0 9

dest/Q 29 24 17 9 0

Table 4.10: Delay durations

orig/W X Y Z dest/Q

6 3 4 10 15

and from destination to origin with Q′, Z′, Y ′, X ′ and W ′. The walk-in clinics that are located

at origin and destination, W and Q, are actually the same points as origin and destination

respectively. For calculation purposes and for illustration, they are considered as being located

at a very small difference to origin and destination. Again, only single disease and service

combination is analyzed and s and d indices are dropped.

Figure 4.2: An example path with walk-in clinics at origin and destination

To provide example numerically, again fictional data is used. Travel times between locations

without delays are given in Table 4.9. Furthermore, each of the location in addition have a

delay duration spent over, which is summarized in the Table 4.10.

For the given path, the covqds value can now be calculated. Initially, the tTotalq will be same

as the value in Case 1, (5+7+8+9)+(3+4+10) = 46, which is the sum of the neighboring

travel times and the delay durations of the walk-in clinic locations. The sum of the delay at

origin and destination, denoted by dODq will also be the same value as Case 1, 6+15 = 21.
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This would make denominator equal to value of 46∗2+21 = 113.

When the numerator is analyzed, again the ikl values of the given path are determined. For

the given case, ikl values will be as:

iorig,W = 1

iWX = 1

iXY = 1

iY Z = 1

iZQ = 1

iQ,dest = 1

and all the other ikl values will be zero.

The next step would be the calculation of A, B, C and D values in the formulation with the

help of ikl values. The calculations will be as follows:

A = 2∗ [(iWX ∗ crtTimeWX)+(iXY ∗ crtTimeXY )

+(iY Z ∗ crtTimeY Z)+(iZQ ∗ crtTimeZQ)]

= 2∗ [(1∗ crtTimeWX)+(1∗ crtTimeXY )

+(1∗ crtTimeY Z)+(1∗ crtTimeZQ)]

B = 0

C = 0

D = 2∗ [(iXY ∗delX)+(iY Z ∗delY )+(iZ,dest ∗delZ)]

+ iorig,W ∗delW + iQ,dest ∗delQ.

The term B and C are 0 because there is a walk-in clinic located at the origin and destination

location which means origin and destination are not neighbors with walk-in clinics that are

located else than origin and destination. The last two terms in calculation of D are this time

not zero, as there are walk-in clinics located at origin and destination therefore the delay

duration occurring at the origin and destination are included.

To finish the calculation of A, B, C and D values, a critical intervention time, t̂sd , is required.
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For the current case, the value is again assumed as 2. The calculations will be as follows:

A = 2∗ [(1∗min{5,2})+(1∗min{7,2})

+(1∗min{8,2})+(1∗min{9,2}]

= 2∗ [2+2+2+2]

= 16

B = 0

C = 0

D = 2∗ [(1∗3)+(1∗4)+(1∗10)]+6+15

= 55.

Putting together all the values calculated, the coverage values of the path can be finalized as,

cov =
16+0+0+55

113
= 0.628.

Notice that, by opening centers at origin and destination, the coverage value of the path is

increased compared to Case 1. If the critical intervention time was 9 instead of 2, the coverage

would have been equal to 1.

Case 3: In the final case, the path has walk-in clinic located at the destination but not at

the origin point. Figure 4.3 illustrates the path with simple diagram. The path is circular,

showing the trip from origin to destination with walk-in clinics X , Y , Z and Q which are

opened and from destination to origin with Q′, Z′, Y ′ and X ′. The walk-in clinic that is located

at destination, Q, is actually the same point as destination. For calculation purposes and for

illustration, it is considered as being located at a very small difference to destination. Again,

only single disease and service combination is analyzed and s and d indices are dropped.

The fictional travel times between locations without delays are given in Table 4.11. Further-

more, each of the location in addition have a delay duration spent over, which is summarized

in the Table 4.12.
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Figure 4.3: An example path with walk-in clinics at destination

For the given path, the covqds value can now be calculated. The tTotalq will be same as the

value in Case 1 and 2, (5+7+8+9)+(3+4+10) = 46, which is the sum of the neighboring

travel times and the delay durations of the walk-in clinic locations. The sum of the delay at

origin and destination, denoted by dODq will also be the same value as Case 1 and 2 too,

6+15 = 21. This would make denominator equal to value of 46∗2+21 = 113.

When the numerator is analyzed, again the ikl values of the given path are determined. For

the given case, ikl values will be as:

iorig,X = 1

iXY = 1

iY Z = 1

iZQ = 1

iQ,dest = 1

and all the other ikl values will be zero.

Table 4.11: Travel times between location without delay durations

orig X Y Z dest/Q

orig 0 5 12 20 29
X 5 0 7 15 24
Y 12 7 0 8 17
Z 20 15 8 0 9

dest/Q 29 24 17 9 0
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Table 4.12: Delay durations

orig X Y Z dest/Q

6 3 4 10 15

The next step would be the calculation of A, B, C and D values in the formulation with the

help of ikl values. The calculations will be as follows:

A = 2∗ [(iXY ∗ crtTimeXY )+(iY Z ∗ crtTimeY Z)+(iZQ ∗ crtTimeZQ)]

= 2∗ [(1∗ crtTimeXY )+(1∗ crtTimeY Z)+(1∗ crtTimeZQ)]

B = iorig,X ∗ crtTimeOorig,X

C = 0

D = 2∗ [(iXY ∗delX)+(iY Z ∗delY )+(iZ,dest ∗delZ)]+0+ iQ,dest ∗delQ.

The term B is non-zero because there are no walk-in clinics located at origin and it requires

separate handling of the coverage values.The term C is 0 because there is a walk-in clinic lo-

cated at the destination location which means destination is not neighbor with walk-in clinics

that are located else than destination. The “0” terms in calculation of D is for the no walk-in

clinic located at origin which makes the delay duration occurring at the origin not included.

To finish the calculation of A, B, C and D values, a critical intervention time, t̂sd , is required.

For the current case, the value is again assumed as 2. The calculations will be as follows:

A = 2∗ [(1∗min{7,2})+(1∗min{8,2})+(1∗min{9,2})]

= 2∗ [2+2+2]

= 12

B = 1∗min{(2∗5+6),2}

= 2

C = 0

D = 2∗ [(1∗3)+(1∗4)+(1∗10)]+0+15

= 49.

Putting together all the values calculated, the coverage values of the path can be finalized as,

cov =
12+2+0+49

113
= 0.558.
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Notice that, by opening center at destination, the coverage value of the path is increased

compared to Case 1. However, since there is no center at the origin, the coverage is less

compared to Case 2. If the critical intervention time was 16 instead of 2, the coverage would

have been equal to 1.

4.3.3 Linearization for Approach 2

For the linearization, in addition to parameters in previous part, few new parameters are in-

troduced given in Table 4.13.

Table 4.13: Additional notation for the deterministic model for linearization

Parameters:
ˆt1sd The first critical intervention time for service s of disease d
ˆt2sd The second critical intervention time for service s of disease d

The coverage value is calculated as,

covqsd =
A+B+C+D

(2∗ tTotalq)+dODq
(4.28)

where

A = 2∗ ( ∑
k∈Kq

∑
l∈KAkq

iklqsd ∗ crtTimeklqsd)

B = ∑
k∈Oq

∑
l∈KEOq

iklqsd ∗ crtTimeOklqsd

C = ∑
k∈KEDq

∑
l∈Dq

iklqsd ∗ crtTimeDklqsd

D = 2∗ ( ∑
k∈KEODq

∑
Lq

iklqsd ∗delk)

+ ∑
k∈Oq

∑
l∈KOq

iklqsd ∗dell

+ ∑
k∈KDq

∑
l∈Dq

iklqsd ∗delk

and
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crtTimeklqsd =


tklq, if tklq ≤ ˆt1sd

tklq−
(tklq− ˆt1sd)

2

2∗( ˆt2sd− ˆt1sd)
, if ˆt1sd ≤ tklq ≤ ˆt2sd

ˆt1sd +0.5∗ ( ˆt2sd− ˆt1sd), otherwise,

crtTimeOklqsd =


2∗ tklq +delKOq , if 2∗ tklq +delKOq ≤ ˆt1sd

2∗ tklq +delKOq−
(tklq− ˆt1sd)

2

2∗( ˆt2sd− ˆt1sd)
, if ˆt1sd ≤ 2∗ tklq +delKOq ≤ ˆt2sd

ˆt1sd +0.5∗ ( ˆt2sd− ˆt1sd), otherwise,

crtTimeDklqsd =


2∗ tklq +delKDq , if 2∗ tklq +delKDq ≤ ˆt1sd

2∗ tklq +delKDq−
(tklq− ˆt1sd)

2

2∗( ˆt2sd− ˆt1sd)
, if ˆt1sd ≤ 2∗ tklq +delKDq ≤ ˆt2sd

ˆt1sd +0.5∗ ( ˆt2sd− ˆt1sd), otherwise.

The application of the formulation is same as Approach 1, which was demonstrated through

the Cases. With this approach, only the critical time calculations will be different, matching

with the requirements of the approach.

4.3.4 Linearization of Approach 3

In this approach, the function that needs to be linearized includes the term “expected traveling

time” which needs to be further elaborated. The expected traveling time can be explained as

at a random point chosen in time, the expected time that the demand will be met by visiting

a walk-in clinic. This question has been analyzed in [13] and the following formulation is

proved to be applicable:

Theorem 5 (Theorem 5.3 in [13]) The expected traveling time for truck drivers traveling in

the segment between k and l is equal to 1
2 t2

kl . By conditioning this value on the total number

of segments along path q, the expected traveling time along path q, (ERq), is defined as:

ERq =
1

2∗ tTotalq
∑

k∈Kq

∑
l∈KAkq

iklqt2
kl (4.29)

where iklq denotes that location k and l are neighbours, meaning they are travelled consecu-

tively, along path q.
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This expected traveling time in segment (k, l), which is 1
2 tkl2, is used in the critical time

calculations for the third coverage approach. The details of the formulation can be found

below.

covqsd =
A+B+C

2∗ ((2∗ tTotalq)+dODq)
(4.30)

where

A = 2∗ ( ∑
k∈Kq

∑
l∈KAkq

iklqsd ∗ crtTimeklqsd)

B = ∑
k∈Oq

∑
l∈KEOq

iklqsd ∗ crtTimeOklqsd

C = ∑
k∈KEDq

∑
l∈Dq

iklqsd ∗ crtTimeDklqsd

and

crtTimeklqsd = t2
klq

crtTimeOklqsd = (2∗ tklq +delKOq)
2

crtTimeDklqsd = (2∗ tklq +delKDq)
2

In this coverage formulation, the application is again similar to Approach 1 and 2. The critical

time definitions are changed with regards to the requirement of the Approach that is defined

in Theorem 5. The delay terms that were included in the Approach 1 and 2 are not relevant

with this definition anymore, as the delays are incorporated in critical time definitions.

4.3.5 Linearization of referrals

The referral coverage in Section 4.1.2 was defined as the percentage of walk-in clinics over

path q having referral availabilities for disease d with 4.4. This can be formulated as,

covqsd =
∑k∈KRqd yk{s=rl}d

∑k∈Kq yksd
, ∀q ∈ Q and d ∈ D. (4.31)

As also seen from (4.31), the division of two decision variables implies non-linearity in the

model and requires to be adjusted. The notation given in Table 4.14 is added to the model to

assist the linearization of the calculation.
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Table 4.14: Additional notation for the deterministic model for linearization

Sets
I Set of all possible number of walk in clinics that can be established

over the paths, {0, . . . ,maxq |Kq|}
Iq Subset of I, all possible number of walk-in clinics that can be estab-

lished on path q, {0,1, . . . , |Kq|}

Parameters
θid A variable which is equal to the number of walk-in clinics on path q

which j corresponds to
tUBqd Upper bound on number of walk-in clinics on path q for disease d

Decision Variables
tRe fqd Sum of the number of the established walk-in clinics on path q having

referral availabilities for disease d
nBiniqd Equals 1 if number of established centers on the path q for disease d

is equal to θid and 0 otherwise
wLiniqd Equals to the number of the established walk-in clinics on path q

having referral availabilities for disease d whenever nBiniqd is equal
to 1 and 0 otherwise

yBiniqd Equals 1 if number of established centers on the path q for disease d
is equal to θid and 0 otherwise

zBinkd Auxiliary variable for the if-then constraints.

(4.31) is re-written as the following making the numerator a decision variable and denomina-

tor a parameter to avoid non-linearity by division of two decision variables.

covqsd = ∑
i

tRe fqd ∗nBiniqd

θid
, ∀i ∈ Iq and ∀d ∈ D (4.32)

The coverage definition given in (4.32) is reformulated as below and the constraints for defi-

nition are added.

covqsd = ∑
i

wLiniqd

θid
, ∀i ∈ Iq and ∀d ∈ D (4.33)
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such that:

tRe fqd = ∑
k∈KRqd

yk{s=rl}d , ∀q ∈ Q and ∀d ∈ D,

wLiniqd ≤ tUBqd ∗nBiniqd , ∀i ∈ Iq,∀q ∈ Q and ∀d ∈ D,

wLiniqd ≤ tRe fqd , ∀i ∈ Iq,∀q ∈ Q and ∀d ∈ D,

wLiniqd ≥ tRe fqd− tUBqd ∗ (1−nBiniqd) , ∀i ∈ Iq,∀q ∈ Q,∀d ∈ D,

∑
k∈KRqd

xkd−θid ≤M ∗ (1− yBiniqd) , ∀i ∈ I,∀q ∈ Q and ∀d ∈ D,

θid− ∑
k∈KRqd

xkd ≤M ∗ (1− yBiniqd) , ∀i ∈ I,∀q ∈ Q and ∀d ∈ D,

M ∗ yBiniqd−nBiniqd ≥ 0 , ∀i ∈ I,∀q ∈ Q and ∀d ∈ D,

tRe fqd ≥ 0 , ∀q ∈ Q and ∀d ∈ D,

wLiniqd ≥ 0 , ∀i ∈ I,∀q ∈ Q and ∀d ∈ D,

nBiniqd = {0,1}, yBiniqd = {0,1} , ∀i ∈ I,∀q ∈ Q and ∀d ∈ D.

In addition to calculation of referral percentages, some additional constraints should be added

as well.

M ∗ zBinkd− yk{s=rl}d ≥ 0 ,∀k ∈ K and ∀d ∈ D

M ∗ (1− zBinkd)≥−xkd ,∀k ∈ K and ∀d ∈ D

zBinkd = {0,1} ,∀k ∈ K and ∀d ∈ D

4.4 Calculation of Coverage Feasibility Score Values

As seen in the deterministic model given in Section 4.2, the coverage values calculated from

the approaches are converted to feasibility score values. The aim with the feasibility score
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Figure 4.4: Relation between threshold time and feasibility score values

values is to put the coverage values in a scale between 0 and 1. For approaches 1 and 2, the

coverage values are already calculated in a range (0,1), therefore it is not necessarily needed

to convert them in this scale. The following equation can be applicable for all diseases except

HIV (as HIV belongs to Approach 3),

cov f easqds = covqds , ∀q ∈ Q and ∀s ∈ S.

This mapping between feasibility score value and coverage values for service disease com-

binations belonging to Approach 1 and 2, could have been made differently, regarding an

additional function for the mapping. However, in this model, the function is assumed to be

linear and equal.

For the third approach however, the coverage values are not in a scale between 0 and 1 which

requires an additional mapping function. For this purpose, piece-wise linear functions are

used to help this conversion process. Since in Approach 3, HIV diagnosis, treatment and care

are handled, each of these combinations are matched with separate piece-wise linear func-

tions having different parameters regarding the characteristics of the diseases and required

services. In order to incorporate the piece-wise linear functions in the linear program, the

lambda method is used [16].

In order to explain how Lamda Method is applied, the sample figure which is given in Fig-

ure 4.4 will be used as reference. The shape of the graph is the same as the piece-wise linear
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function that are used in the model as it resembles the characteristics of the service and dis-

eases belonging this approach properly. The threshold time values are represented with th1,

th2, th3 and th4 to denote the critical time values in the approach symbolically. In the figure,

it is seen that the piece-wise linear function is composed of three pieces. The first piece is

between th1 and th2 where the coverage feasibility score is equal to 1. This means that, if the

expected traveling time on a path is belonging to this piece of the function, a feasibility score

value of 1 will be assigned. The second piece is between critical times th2 and th3. If the

expected traveling time has a value which falls between this range, it is assigned with a value

between 0 and 1, regarding the slope of the piece. Finally, the third piece which is indicated

with value beyond th3 denotes the expected time which indicated no coverage feasibility on

the path, due to very high values.

The following constraints are used for calculation of feasibility score values derived from

piece-wise linear functions,

covqds = ∑
4
n=1 λnqsd ∗ thnds− (1−∑k∈Oq ∑l∈Kq

iklqsd)∗ th3ds , (4.34)

∀q ∈ Q,∀s ∈ S and ∀d ∈ D,

cov f easqds = 1∗λ1qds +1∗λ2qds +0∗λ3qds +0∗λ4qds , (4.35)

∀q ∈ Q,∀s ∈ S and ∀d ∈ D,

∑
4
n=1 λnqds = 1 , ∀q ∈ Q,∀s ∈ S and ∀d ∈ D, (4.36)

λnqds ≥ 0 , ∀q ∈ Q,∀s ∈ S,∀d ∈ D and ∀n ∈ N. (4.37)

where

λnqds Non negative weight for path q, service s of disease d

thnds Threshold time value for service s of disease d.

With this formulation, lambda values are calculated with respect to the coverage values that

are initially calculated. In (4.34), if no walk-in clinic is located along the path q, the threshold

value of the path is increased by th3ds, making the expected traveling time large and feasibility

score 0. In addition to these constraints, λnqds is also subject to restrictions from to Special

Order Set, type 2 (SOS2). This means that out of the set of non-negative variable λnqds, at most

to variables can be non-zero. Moreover, the two variable must be adjacent to each other in a

given fixed order list. This special situation for the variable λnqds is taken into consideration

in the coding phase.
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4.5 Calculation of Continuum of Care Values

The final step for calculation continuum of care values is the conversion of coverage feasibility

scores to continuum of care. As explained in the deterministic model, continuum of care

values are calculated over two indices which are path, q, and disease, d. Therefore, through

this conversion, the service index, s should be handled. This is completed with the support of

two weights which are:

w1d Weight given to disease d

w2ds Weight given to service s of disease d.

Out of these two parameters, w1d is the weight given to disease d on a scale from 1 to 10.

Each disease is assigned with weights indicating their importance for the network on which

walk-in clinics will be built. This allows flexilibilty to plan disease specifically, such as only

malaria focused network can be established if desired. The second parameter w2sd is the

weight given to the service s of a disease d on a scale from 1 to 10. The interpretation of this

value is same as the w1d parameter.

To use these weights in the model, the values are normalized in the following form,

rd =
w1d

∑d w1d
(4.38)

r2ds =
w2ds

∑s w2ds
. (4.39)

From (4.38), the calculated rd value is the same value given in objective function, (4.5). The

continuum of care score is calculated with the assistance of r2ds values as,

cocqd = ∑
s

cov f easqds ∗ r2ds , ∀q ∈ Q and ∀d ∈ D.

64



CHAPTER 5

EXTENDING MATHEMATICAL FORMULATION -

STOCHASTIC MODEL

In Chapter 4, the details of the deterministic model were explained. In the deterministic

model, it was assumed that both mobile and static demand were known and occurring without

variation. However, this is not a realistic assumption and should be relaxed within the model.

Regarding these features of the demand, in this section adaptations to the deterministic model

will be made to convert it into a stochastic model.

One of the problems with the demand is that demand values are not accurately known or es-

timated with high validity. For some cases, it is not possible to reach any estimates about the

demand on certain transportation lines. Another factor is, the estimated demand values can

show variation throughout the time. The demand for a given path can result below or above

the mean estimated demand. Since the problem is related with healthcare and human lives,

especially for the case where the demand results as an increased value over mean value, not

meeting the demand would lead undesirable issues indicating loss of lives or causing damage.

Therefore, the unknown demand values and variation in the demand should be appropriately

integrated in the model to avoid such circumstances. Regarding these comments, the deter-

ministic model is changed into a stochastic model by including the demand with a distribution

that would reflect the variation and meet the deficit of inaccurate demand values.

A further change that has been applied to the model was to remove the static demand from

the formulations. In the stochastic model, the model will focus on only the mobile demand

that is occurring along the transportation lines and the stochasticity of the mobile demand will

considered. Since the static demand is removed, the maximization of the healthcare service

provided will be measured from the continuum of care definitions.
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In Section 2.2, detailed information about stochastic programming has been explained and

different applications has been described. As described in the literature review, stochastic

programming can be formulated with various approaches. Looking at the problem content

and focus area, a risk averse approach is decided to be applied. From the risk averse measures,

referring to Section 2.2.2, a coherent risk measure is determined to be suitable, especially by

convexity features and their compatibility with linear optimization. From the set of coher-

ent risk measures, the focus is made on Conditional-Value-at-Risk (CVaR) risk measure and

problem is reformulated accordingly.

As explained in Section 2.2.1, a risk measure maps the set of all risks to a real valued function.

In Section 2.2.3, Value-at-Risk (VaR) and CVaR are defined with the help of a function f (x,y)

which indicates the loss associated with x and y where x is the set of decision vectors and y is

the set of random vectors. Therefore, to use the functions VaR and CVaR, a loss function has

to be determined.

In the problem context, since the model is focused on planning of the walk-in clinics along

the transportation lines, the aim is providing as maximum health care as possible to reach the

mobile populations and their local communities in great extend. Every blank point on the

map, every location on which a walk-in clinic is not built or every walk-in clinic that is not

giving certain services will result in lessening of the healthcare provided and the aim will be

hindered. However, if every possible location was built on the map, such lacks of healthcare

service would not occur. Therefore the loss function can be defined verbally as the lack of

continuum of care provided from the maximum possible value and formulations can be made

accordingly. Since the model is working on four high impact diseases, optimal solution for

one disease may result in sacrificing of an other disease. Therefore, the loss function should

be applicable for every disease on the network. Accordingly, the loss function can be written

as,

ld(yksd ,dmqd) = ∑
q

dmqd (cocmaxqd− cocqd) , ∀d ∈ D. (5.1)

In equation (5.1), the loss function is defined as the sum of deviations of continuum care of the

optimized network from the maximum continuum of care values, multiplied with the mobile

demand values at the path q. The maximum continuum of care values are pre-determined

values, which results as opening every possible walk-in clinic on the network and serving as

maximum given the possibilities. The yksd values are the decision variables, which lead to the
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calculation of continuum of care values, cocqd . The uncertainty in the equation results from

the demand values, dmqd , which is changing according to a distribution.

Since there are four diseases in the problem and each of them requires to be handled separately

to avoid risk, it is decided to include them as “constraints” in the model with different CVaR

levels, rather than putting it in the objective function. In literature review, calculation of

VaR and CVaR values with their approximations was described extensively. Additionally,

including CVaR in model as constraints rather than objective function was discussed too in

(2.16).This constraint can be re-written as the following form to adapt the model parameters,

φβd (yksd)≤ ωd ∑
q
(cocmaxqd ∗E[dmqd ]) , ∀d ∈ D

where the risk function φβd is defined as the β -CVaR risk measure for disease d for the loss

function given in (5.1) and ωd is the percentage of maximum number of people that can be

covered on the network, ∑q(cocmaxqd ∗E[dmqd ]), that is allowed for exposure to the risk

for disease d. Consequently, looking at the above formulations and approximations methods

described by (2.17) and (2.18), the additional notation for the stochastic model is given in

Table 5.1.

Table 5.1: Additional notation for the stochastic model

Sets:
I Set of scenarios defined for the demand distribution of dmqd , i =

1,2, . . . , I

Decision Variables:
ldi The value of loss for disease d in scenario i
udi The positive difference between loss function value ldi and αd
αd The β -VaR value given the confidence level βd

Parameters:
dm2qdi The mobile demand for disease d on path q in scenario i
n Upper bound on number of scenarios
πdi Probability of scenario i
βd Confidence level for disease d
ωd Risk tolerance level for disease d
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Following set of constraints are included in the model for a risk averse formulation:

ldi(yksd ,dmqd) = ∑
q

dm2qdi (cocmaxqd− cocqd) ,∀d ∈ D and ∀i ∈ I, (5.2)

udi− ldi +αd ≥ 0 ,∀d ∈ D and ∀i ∈ I, (5.3)

αd +
1

1−βd

n

∑
i=1

(udi ∗πi)≤ ωd ∑
q
(cocmaxqd ∗E[dmqd ]) ,∀d ∈ D, (5.4)

udi ≥ 0 ,∀d ∈ D and ∀i ∈ I, (5.5)

αd ≥ 0 ,∀d ∈ D. (5.6)

With constraint (5.2), the loss function is defined as deviation from the maximum value of

mobile demand that can be covered. This value is calculated over every disease for all possible

scenarios given a distribution. In constraint (5.3), the udi is defined as the positive difference

between ldi and αd which is used for simplification in constraint (5.4). The left hand side

of constraint (5.4) is the approximation for the CVaR value, as described in literature review.

Given the risk tolerance level for disease d, ωd , the CVaR is bounded by the amount of demand

that is allowed for risk exposure. The last constraints (5.5) and (5.6), are the sign constraints.

The objective function has also been modified as,

Max ∑
d∈D

rd ∗T SMd (5.7)

where

T SMd = ∑
q∈Q

cocqd ∗E[dmqd ] ∀d ∈ D. (5.8)

The objective function value is now only composed of the score achieved from the coverage

of the mobile demand. Since the mobile demand is assumed to be following a distribution for

the stochastic model, the score of the mobile demand is calculated from the expected value

of the mobile demand distribution. This formulation would aim to maximize the expected

value of demand covered, keeping the risk associated on the network for every disease under

control.

Putting together all the modifications and extensions, the new stochastic model will be as

follows:
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Max ∑
d∈D

rd ∗T SMd (5.9)

s.t. T SMd = ∑
q∈Q

cocqd ∗E[dmqd ] , ∀d ∈ D, (5.10)

cocqd = f ({cov f easqds|s ∈ S}) , ∀q ∈ Q,∀d ∈ D, (5.11)

cov f easqds = gsd(covqds) , ∀q ∈ Q,∀d ∈ D,∀s ∈ S, (5.12)

covqds = hsd({xkd ,yksd |k ∈ Kq}) , ∀q ∈ Q,∀d ∈ D,∀s ∈ S, (5.13)

ldi(yksd ,dmqd) = ∑q(cocmaxqd− cocqd)∗dm2qdi , (5.14)

∀d ∈ D and ∀i ∈ I,

udi− ldi +αd ≥ 0 , ∀d ∈ D and ∀i ∈ I, (5.15)

αd +(1−βd)
−1

∑
n
i=1(udi ∗πi)≤ ωd ∗ expMaxd , ∀d ∈ D, (5.16)

expMaxd = ∑q(cocmaxqd ∗E[dmqd ]) , ∀d ∈ D, (5.17)

M×binkd− xkd ≥ 0 , ∀k ∈ K,∀d ∈ D, (5.18)

1− (yk{s=di}d + yk{s=tr}d + yk{s=cr}d)≤M× (1−binkd) , (5.19)

∀k ∈ K,∀d ∈ D,

xkd ≥ (1/3)∗ (yk{s=di}d + yk{s=tr}d + yk{s=cr}d) , (5.20)

∀k ∈ K,∀d ∈ D,

zk ≥ (1/4)∗ ∑
d∈D

xkd , ∀k ∈ K, (5.21)

UBDSsd ≥ ∑
k∈KPDSsd

yksd , ∀d ∈ D,∀s ∈ S, (5.22)

UB≥ ∑
k∈KP

zk, (5.23)
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udi ≥ 0 , ∀d ∈ D and ∀i ∈ I, (5.24)

αd ≥ 0 , ∀d ∈ D, (5.25)

ykds = 1 , ∀k ∈ KCDSds, (5.26)

xkd ∈ {0,1} , ∀k ∈ K,∀d ∈ D, (5.27)

ykds ∈ {0,1} , ∀k ∈ K,∀d ∈ D,∀s ∈ S, (5.28)

zk ∈ {0,1} , ∀k ∈ K. (5.29)
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CHAPTER 6

COMPUTATIONAL STUDY

This section is mainly composed of two parts. In the first section, computational results of the

deterministic model will be given. The objective of the deterministic model is to establish a

formulation that is capable of planning walk-in clinics with regards to the characteristics of the

mobile populations defined by the approaches. Another objective is to integrate the concept

of disease and services in the model to the planning procedure. With the computational study

for the deterministic model given in Section 6.1, it is aimed to show how the model behaves,

reacts to model parameters and give insight about the model.

In the second part, the stochastic model results will be explained. The objective of the stochas-

tic model is to include risk in the model in addition to the deterministic formulation. With

the computational study given in Section 6.2, how the solutions have differed compared to a

deterministic model and if the desired consequences are achieved or not are analyzed.

The mathematical formulation is coded in GAMS and optimization is done using CPLEX

solver using a PC with 4GB RAM, 256GB SSD Disk running Windows 8.

6.1 Computational Study for Deterministic Model

In the deterministic model, the aim was to build a model which would enable to design a walk-

in clinic network that would benefit the mobile and static populations on the network. Since

the mobile populations require specific handling of their requirements for different diseases

and services, certain approaches were developed. In this section, it will be analyzed whether

the model is able to capture the specific requirements correctly and behaves as initially aimed.

This will be done through the testing of various parameters in the models.
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6.1.1 Computational Setting

The data that has been used for the analysis was a modified set used in [13]. Since the initial

phase of the study was done in cooperation with North Star, the data gathered by North Star

and their specifications were included in the data set as well. The set has been adapted with the

removal of some paths, which are determined to be not effective and modification to walk-in

clinic locations that are used as candidates in the model are made. Each of the walk-in clinic

received a parameter of being established or not, depending on the current network of North

Star. Also, the services that are provided in walk-in clinics are entered in data set regarding

the current situation in network. This, in the end, lead to a data set which has 50 walk-in clinic

locations and 23 origin and destination location pairs with their coordinates for calculation of

the paths. Furthermore, the demand associated with the locations and paths are included in the

model. Finally, the given services for diseases in the existing centers are included regarding

the health service packages of North Star. In addition to walk-in clinic location and path

data, the local healthcare services with their coordinates and services available are included

to enable the calculation of referral services.

There are certain parameters which are determined outside the model in order to ensure the

flexibility of the model to different disease and service combinations as well as static and

mobile demand importance. For the testing of the model, these parameters are changed in

order to observe the changes in the optimal solution and their contributions. Therefore, the

effects of the following set of of parameters are analyzed:

• u1 and u2, which are the relative importance given to mobile and static demand respec-

tively,

• rd , which is the relative importance of disease d in the optimization of the network,

• r2ds, which is the relative importance for service s for disease d in the optimization of

the network.

These parameters are adjusted by the user to enable walk-in clinic networks that are spe-

cialized in accordance with the user preferences. In the following sections, each of these

parameters will be tested to observe how the model reacts to changes in these parameters.
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6.1.2 Sensitivity Analysis for u1 and u2

As a first part of the study, the changes in the model by the putting different focus on mobile

and static demand is analyzed. The study has been applied to a network which has 15 existing

walk-in clinic locations with certain services and 35 candidate locations which are not opened.

Observation 1 Increasing the number of walk-in clinics opened on the network increases

the total score of the network whereas decreases the added value of each additional walk-in

clinic.

Initially, the importance given to both of the demand types is equalized by u1 = 0.5 and

u2 = 0.5 and 35 centers are opened in the network gradually by increasing the upper bound

on number of walk-in clinics that is allowed to be opened from 1 to 35 in each iteration.

Figure 6.1 summarizes the results of the study. As seen from the results, by opening more

centers on the network, the objective function value increases which is a result of the both

static and mobile demand captured. However, it can also be seen that, marginal benefit of each

center, after approximately opening 17 walk-in clinics, is not varying. This can be interpreted

as after opening certain number of walk-in clinics on the network, opening further locations

may not be as beneficial as planned as the network might be already saturated. Especially for

the investment decision, this can be an important criterion to consider.
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Figure 6.1: Equal importance for mobile and static demand

As a next step the focus is for mobile and static demand is changed and three cases are

examined simultaneously which are:

• Case 1: Focus is on mobile demand with u1 = 0.9 and u2 = 0.1,
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• Case 2: Focus is on static demand with u1 = 0.1 and u2 = 0.9,

• Case 3: Focus is indifferent u1 = 0.5 and u2 = 0.5.

In each of the cases the summation of Total Score Mobile (TSM) which is calculated through

Equation (4.6), for every disease is analyzed. The scores are summarized in Figure 6.2.
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Figure 6.2: Mobile scores of the network for all cases

Observation 2 When weight for a given population group is increased, the score of the net-

work for the given population group is increased.

Observation 3 The maximum values of scores that can be attained on the network after open-

ing certain number of walk-in clinics is different for every disease given the characteristics of

the disease and the demand values.
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As seen in Figure 6.2, when more focus is put toward the mobile demand, as given in Case

1, the mobile scores of the model is higher compared to Case 2 and 3. For Case 3, which has

the lowest focus on mobile demand out of all cases, the mobile score of the network is lowest.

Furthermore, when every disease is compared with each other, the maximum value of score

that can be obtained after opening 35 walk-in clinics is different in each disease. For instance,

when the maximum value that can be attained by malaria and tuberculosis are compared,

tuberculosis has a lower value which is a consequence of strict critical intervention times

for tuberculosis which makes it hard to achieve high values of continuum of care. Another

observation is that, the TSM values become flat after opening certain number of walk-in

clinics. This shows that the continuum of care value are reaching their maximum values,

either by covering all of the path or by not having walk-in clinic locations as candidate which

has potential to increase the continuum of care values.

A similar study has ben made with focus on two diseases, malaria and STI for Cases 1 and

2. For each of the cases, the TSM and Total Score Static (TSS) is analyzed for two diseases

which is given in Figure 6.3.
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Figure 6.3: Mobile and static scores of the network for case 1 and 2

As can be seen, when the static demand is more important in the problem, as given in Case

2, the TSS score has a greater increase compared to Case 1. This situation is valid for both

malaria and STI, expect the difference on values taken. For the TSM, the same observation
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Table 6.1: TSM and TSS values with tuberculosis focus

TSM TSS

HIV 671.920 1225.000
Malaria 647.330 2401.000

STI 627.788 1883.000
Tuberculosis 509.251 2722.000

can be made. Another point that can be understood is, TSS increases as a smooth function

and shows steady increase. This is a result of summation of every static demand at the points

on which the walk-in clinics are built. However TSM is calculated through the continuum of

care functions, which results in non-smooth curves.

6.1.3 Sensitivity Analysis for rd

One of the ideas that was initially aimed was to have a model that would be able to plan

disease specifically taking the disease related parameters into consideration. With such an

application, the model would be able to optimize specialized network, that can benefit soci-

ety with regards to their requirements. The parameter rd was a figure that would give this

opportunity, indicating the relative importance of diseases.

Observation 4 When weight given to a certain disease is increased, the score of the disease

on the network is increased.

In order to test the effectiveness of the rd values, an initial simple test is carried in two differ-

ent problems where in the first case tuberculosis is given higher importance, keeping the other

weight of diseases equal to each other and in the second case STI is given higher importance.

3 walk-in clinics are added to the network and results are analyzed. For the case where tuber-

culosis is given higher importance, the TSM and TSS scores observed are given in Table 6.1.

It can be seen that TSS score is the highest among the diseases showing the walk-in clinics

are opened that the places with highest static demand for tuberculosis.

A similar observation is made for the case with STI is given the highest importance. The

results of the TSM and TSS values are given in Table 6.2. As seen in the Table, the TSS value

for STI is not the highest compared to the tuberculosis case. However, it is seen that the TSM
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Table 6.2: TSM and TSS values with STI focus

TSM TSS

HIV 687.730 1225.000
Malaria 653.942 2401.000

STI 633.027 1883.000
Tuberculosis 495.195 2722.000

for the STI case is having a higher value. This is a result of the coverage approaches that

each disease belongs to. Tuberculosis has strict intervention times and the continuum of care

value for tuberculosis is not very easily increased. Therefore a shift towards increasing the

TSS is a reasonable behaviour. STI on the other hand, does not have definitions as strict as

tuberculosis and increase in TSM can also be achieved to contribute the objective function.

Since every disease is multiplied with the rd coefficient in the objective function, the contri-

butions of each of the diseases to the objective function is also compared with each other. The

results are given in Figure 6.4. It is seen that when a disease is focused in the optimization of

the problem, the disease has the highest contribution to the objective function value.
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Figure 6.4: Comparison of different disease focus

As a final step of the analysis, the reasons behind these changes in optimized network’s values

are examined. Since the test is made by opening 3 walk-in clinics, the locations of the added

clinics are examined. In both of the studies, the two of the opened centers are at Ngwenya and

Ladybrand whereas the third center is different. For the case with tuberculosis focus, the third

walk-in clinic is opened at Tunduma 2 with every service included for tuberculosis. Tunduma

2 is a walk-in clinic location which has access to tuberculosis referral services in the network,

contributing to the continuum of care values on the network. For the case with STI focus,
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Table 6.3: TSM and TSS values with focus on mobile demand and malaria

Beitbridge Chirundu North Tunduma 2 Dar es Salaam

TSM 894.110 904.261 910.247 918.978
TSS 1340.000 1540.000 1770.000 1863.000

the third walk-in clinic is opened at Mbeya with every service for STI included. Mbeya is a

critical location which is located on 7 paths. As explained previously, STI does not have very

strict intervention times so that opening a walk-in clinic at Mbeya for STI can contribute to

the continuum of care values of the 7 paths on which it is located and benefit the total network

at once.

Another interesting study for the disease focus is made on malaria in order to observe the

effects of changing of importance given to static and mobile demand at the same time. For this

case, the data set has been modified to create an artificial malaria intense path and locations.

The malaria intense path is determined to be path from Chirundu South to Dar es Salaam,

which in between passes through locations, Chirundu North, Nakonde, Tunduma 2, Tunduma

1, Izumbwe - Mphoi and Mbeya. In addition to the path, 2 walk-in clinic locations that are

outside the path, are assigned with high malaria demand which are Ngwenya and Ladybrand.

The test is made for the case of opening 4 new walk-in clinics on the network and focus has

been put on malaria by assigning highest weight.

Observation 5 Giving different weights for mobile and static populations adapts the plan-

ning of the walk-in clinics such that the added value of every additional walk-in clinic on the

network is maximized.

In the first part of the study, the focus on mobile demand is increased with the help of u1

and 4 centers are added to the network. As a results, walk-in clinics at locations Beitbridge,

Chirundu North, Tunduma 2 and Dar es Salaam are opened respectively. For the addition of

each location, the TSM and TSS scores are summarized in Table 6.3. As can be observed

from the table, the walk-in clinics that are opened else than Beitbridge, are the locations that

are located on the malaria intense path. Additionally, it is important to observe that the 3

walk-in clinics that are opened along the path are located at the beginning, middle and end of

the path which gives the highest contribution to the continuum of care value for the path.
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Table 6.4: TSM and TSS values with focus on static demand and malaria

Tunduma 2 Chirundu North Nakonde Ladybrand

TSM 837.335 840.963 841.980 841.980
TSS 1459.000 1659.000 1839.000 2006.000

When the same analysis is made for the case where the focus is put on static demand, the

optimal choice of walk-in clinic locations differ. The new set of decision are given as Tun-

duma 2, Chirundu North, Nakonde and Ladybrand. For the addition of each location, the

TSM and TSS scores are summarized in Table 6.4. The optimal choices which are Tunduma

2, Chirundu North and Nakonde are located on the same path, where Chirundu North and

Nakonde are located close to each other. This shows opening two centers at such close dis-

tance would not add value to TSM significantly, which can be seen in the Table 6.4 as well.

When a walk-in clinic at Nakonde was opened, the TSM value increased from 840.963 to

841.980. However, the TSS score rises very rapidly, which justifies the choice of opening

in Nakonde. In addition to Nakonde, the fourth center is opened at Ladybrand, which was a

place located outside the path but having high value of demand for malaria. Moreover, when

Table 6.3 and 6.4 are compared, in Table 6.3, the TSM scores are changing in greater values

compared to Table 6.4 and TSS values in Table 6.3 are not increasing greatly as seen in Ta-

ble 6.4. These results together prove the model is logical and show that the model both reacts

to the focus on malaria and static demand by adapting solutions accordingly.

6.1.4 Sensitivity Analysis for r2ds

The final part of the analysis involves testing of the parameter r2ds, which is the focus on

service of a given disease. Since continuum of care values are weighted values of coverage

for every service of a disease along the path given the r2ds, when a certain service of disease is

assigned with more weight, it would effect the continuum of care values and accordingly, the

objective function. Therefore, different focuses on service should lead to different networks

which would enable user to plan also service specifically in addition to diseases.

Observation 6 When the weight given to a certain service of a certain disease is increased,

the solution for planning to the walk-in clinic locations is adapted.
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To test the parameters, the disease is chosen as HIV and the services “treatment” and “care”

are considered. The model optimized the addition of 3 walk-in clinic to the existing network

and in each case focus is put for HIV treatment and HIV care respectively. As a result of

the optimization, the optimal location of the walk-in clinics were found out to be different.

When the HIV treatment received a higher importance, the optical location were determined

as Beitbridge, Beira and Namanga. For the case with HIV care, the optimal location were

found as Walvis Bay, Mchinji and Mbeya, showing the set of optimal solutions are completely

different. Since the change of the parameter r2ds is related with continuum of care values, the

TSM scores and value added for both cases are given in Table 6.5 and 6.6.

Table 6.5: Focus of HIV treatment

Beitbridge Beira Namange

TSM 323.038 386.562 442.897
Value Added 1 1.197 1.371

Table 6.6: Focus on HIV care

Walvis Bay Mchinji Mbeya

TSM 545.601 561.6011 567.967
Value Added 1 1.029 1.041

Since the calculation of coverage values for these two cases is more complex, coming from

expected traveling time approach, it is not very easy to justify the optimal location choices

for the given solutions. The only thing that could be mentioned is that model is sensitive

to the parameter and has the ability to adapt solution which would maximize the objective

function given the requirement. One other observation is that, the coverage definition for

HIV care is more relaxed, having higher threshold values, compared to HIV treatment. It is

easier to achieve higher values of TSM for the case of HIV care, as can be seen in Table 6.6.

Since higher values are attained easily and the network is covered with less number of walk-in

clinics compared to HIV treatment, the marginal benefits obtained from opening additional

walk-in clinics on the network is not very large. This is also seen in Tables 6.5 and 6.6 where

HIV treatments have higher amounts for value added.
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6.2 Computational Study for Stochastic Model

In the stochastic model, the aim in a nutshell was to convert the model into a form such that

uncertain and variable demand values could be handled in the model which would minimize

the effects of any undesirable results related to loss of human lives. In this Section of the

thesis, it is tested whether the risk-averse approach included in the model has been proved to

be effective or not.

6.2.1 Computational Setting

The input data that has been presented in Section 6.1 was composed of two parts as the static

and mobile demand. In this section, the static demand is ignored and only the mobile demand

is considered. The mobile demand data is also changed slightly, by removing 5 paths from

the set as they were not benefiting the results for the study of stochastic problem.

The demand values in the previous data set were represented as “daily average” values which

were deterministic and was not varying. However, in this section the demand values are re-

quired to be adapted to fit into a distribution. To represent the data as stochastic, mobile

demand for every disease d, on every path q, is represented with a uniform distribution. The

average value for daily demand random variable is set to the “daily average” values described

in deterministic model. In addition to the mean values as a parameter of the uniform distri-

bution, upper and lower limits of the distribution are the other two parameters that need to be

determined for calculations.

In order to define an upper and lower limits for the mobile demand values which would help

mapping of the traffic flow along the path, “coefficient of variation” (Cv) measure is used. The

Cv of a distribution is calculated from,

Cv =
σ

E(X)
. (6.1)

The Cv of a distribution can be interpreted as the dispersion of the variable around the mean

value, independent of the variable’s measurement unit. In simpler terms, Cv can also be ex-

plained as the volatility of the demand in comparison to the amount of demand that is expected

to occur along the paths. For the problem context studies, the Cv value represents the “risk”

associated with the mobile demand. If a path is having a high Cv ratio, the path can be told be
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not very predictable and deviations from the mean value is expectable. On the contrary, a path

with rather a lower value of Cv is having a more steady traffic counts and not many surprises

are expected with the demand.

Table 6.7: The summary for input path data

Daily Mean Mobile Demand

Origin Destination Group HIV STI Malaria TB Cv

1 Beitbridge Lusaka B 60 18 38 1 Low
2 Mpika Beitbridge B 80 24 50 1 High
3 Walvis Bay Eldoret C 80 24 50 1 Low
4 Mulawayo Kapiri Mposhi B 100 30 63 1 High
5 Chirundu Dar es Salam A 120 36 75 2 Low
6 Kapiri Mposhi Johannesburg B 120 36 75 2 Low
7 Morogoro Livingstone A 120 36 75 2 High
8 Beira Kisangani C 140 42 88 2 Low
9 Lusaka Durban B 180 54 113 2 High
10 Durban Chipata Border B 200 60 125 2 High
11 Johannesburg Mbeya B 240 72 150 3 Low
12 Dar es Salam Eldoret A 260 78 163 3 High
13 Beira Eldoret A 340 102 213 4 Low
14 Walvis Bay Johannesburg C 300 90 188 3 High
15 Durban Dar es Salam B 400 120 250 4 Low
16 Dar es Salam Lubumbashi A 480 144 300 5 High
17 Durban Lubumbashi B 600 180 375 6 High
18 Beira Dar es Salam B 720 216 450 8 Low

The input path data, which is described previously has been categorized into three groups

regarding the regions of the paths and walk-in clinics that are situated on them. Each of the

path is assigned with a category, which is summarized in Table 6.7 with the labels A, B and C.

For every category, high and low demand paths are determined. After determining these paths,

every high and low demand paths are assigned with high and low Cv values. Therefore, in the

end the set of data is converted into a homogeneous form in which every high-low demand

values in every category is assigned with both high and low Cv values. By assigning a Cv

value to each path, the upper and lower bounds of their demand distributions are calculated

with the help of the above definitions for uniform distribution. Therefore, the mobile demand

for every disease on every path is given a range on which the demand could vary, which is as

expected greater for high Cv valued paths and small for low Cv valued paths.

After determining the paths and their ranges for demand values, the scenarios are generated
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with the random sampling method. For each demand for disease d along path q, 100 random

instances are chosen for their given ranges and the demand data is created in matrices of sizes

18 to 100 for every four disease.

In order to observe how the risk-averse model behaves, the study conducted has been branched

in three directions on which a different disease is focused. In every section, a different disease

is selected on which the CVaR constraint is added. These diseases are selected as HIV, tuber-

culosis and malaria and their results are examined separately in the following sections. Each

of these diseases belong to a different coverage approach and therefore, different coverage

descriptions effects would not be disregarded.

6.2.2 CVaR Constraint on HIV

Before going further into the analysis of the result, it is important to briefly go over the terms

and concepts related with the study. To gain more understanding of the stochastic model

and interpretation of constants, the risk constraints in the stochastic model can be explained,

numbered as (5.14), (5.15) and (5.16). It can be observed that there are two parameters

determined by the user which are the βd and ωd values. The βd value is the confidence level

of the problem and the ωd value is the risk tolerance varying from 0 to 1. The ωd is the risk

tolerance level, such as the percentage of the maximum number of people that can be covered

in the network for disease d, that is allowed for risk exposure. For instance, a model having

ωHIV = 0.10 and βHIV = 0.95 tells that, average loss in 5% of the worst cases must not exceed

the 10% of the maximum number of people with HIV that can be covered. Therefore, a ωHIV

equaling 1 would imply, all of the population is allowed for risk and the addition of the risk

constraints to the model would not make a difference. On the contrary, a value of 0 for ωHIV

would mean no risk at all is allowed in the problem. As the risk tolerance level is increases

from 0 to 1, increases in the objective function are expected as the constraints become more

relaxed and less binding.

In this section, the effects of putting CVaR constraint for the continuum of care of the HIV

value over the network is examined. For observing the relation between ωd value and ob-

jective function value, the model is run with different parameters by changing the βd and ωd

values gradually. Furthermore, the results are analyzed for the cases of opening 4, 5 and 6

centers to the network. The reason that these values are chosen is, values below 4 for opening
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centers results in very low continuum of care values, on which putting a constraint on risk is

not effective. For the value above 6 for opening centers, the continuum of care values reaches

very high values and the model is already having very low values of risk. Therefore, the

study is focused on opening only 4, 5 and 6 centers. In Tables 6.8, 6.9 and 6.10, the objective

function values for different parameters can be observed.

Observation 7 Decreasing the risk tolerance level for a given disease results as a decrease

in the objective function values.

Looking at Tables 6.8, 6.9 and 6.10, it can be observed that having higher risk tolerance levels

for ωhiv results as an increase in the objective function values. This is an expected result as

putting more strict constraints in the model lowers the objective function to meet the given

criteria. From Table 6.8, it is seen that for every confidence level, after certain values of the

ωhiv, the constraint becomes non-binding and the objective function achieves the same value

as the model with no risk constraints. Furthermore, for lower ωhiv values, the problem be-

comes infeasible and returns no solution. This means that non of the possible location for

walk-in clinics allows to tolerate the given risk level. For the Tables 6.9 and 6.10, it is seen

that either the constraints are non-binding in the model or the model is infeasible. This can

be explained as, by opening of 5 and 6 centers, high continuum of care values are obtained.

Therefore, the given locations already satisfy the risk tolerances in most of the cases, however,

after lowering the ωhiv to a certain value, the model becomes infeasible as there is no set of

solutions to choose from is available.

Table 6.8: The objective function values for opening 4 centers with CVaR measure on HIV

ωHIV βHIV

0.95 0.90 0.80

1.00 1685.321 1685.321 1685.321
0.50 1685.321 1685.321 1685.321
0.40 1685.321 1685.321 1685.321
0.30 1685.321 1685.321 1685.321
0.25 1679.718 1685.321 1685.321
0.24 No solution 1679.718 1685.321
0.23 1669.376 1679.718
0.22 No solution 1679.718
0.21 No solution
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Table 6.9: The objective function values for opening 5 centers with CVaR measure on HIV

ωHIV βHIV

0.95 0.90 0.80

1.00 1848.420 1848.420 1848.420
0.50 1848.420 1848.420 1848.420
0.40 1848.420 1848.420 1848.420
0.30 1848.420 1848.420 1848.420
0.20 1848.420 1848.420 1848.420
0.15 1848.420 1848.420 1848.420
0.14 No solution 1848.420 1848.420
0.13 No solution No solution

Table 6.10: The objective function values for opening 6 centers with CVaR measure on HIV

ωHIV βHIV

0.95 0.90 0.80

1.00 1992.566 1992.566 1992.566
0.5 1992.566 1992.566 1992.566
0.4 1992.566 1992.566 1992.566
0.3 1992.566 1992.566 1992.566
0.2 1992.566 1992.566 1992.566
0.10 1992.566 1992.566 1992.566
0.09 1992.566 1992.566 1992.566
0.08 1992.566 1992.566 1992.566
0.07 1992.566 1992.566 1992.566
0.06 1992.566 1992.566 1992.566
0.05 No solution No solution No solution

Observation 8 Increasing the number of walk-in clinics on the network decreases the risk

tolerance level which becomes binding in the model.

One other observation that can be made from these runs is that, for the case of opening 4

centers, as the confidence level is gradually lowered from 0.95 to 0.8, the changes in the ob-

jective function values are behaving differently. For instance, with a confidence level of 0.95,

0.25 risk tolerance changes the objective function value from 1685.321 to 1679.718 whereas

for confidence level of 0.9 and 0.8, this risk level is not binding at the same risk tolerance

of 0.25. Same observation can be made for the values of ωhiv which return “No Solution".

The tolerance level which makes the model infeasible decreases with lower confidence levels.

The changes in the objective function values for different risk tolerance levels is mapped in

Figure 6.5. Since this a discrete optimization and walk-in clinic locations are added to solu-
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Figure 6.5: Objective function of the model with CVaR measure on HIV (4 centers)

tion set gradually, it is not possible to achieve a continuos efficient frontier for the objective

function value for different risk tolerance levels. It is seen that, there is not a continuous curve

but rather discrete set of points.

Observation 9 Decreasing the risk tolerance level given for a certain disease shifts the walk-

in clinic towards the paths having high value of coefficient of variation and high mobile

demand.

A further analysis is applied for the continuum of care values on each flow to see how it has

changed. The analysis has been focused on the 4 center case, with the confidence level of

0.90. The continuum of care values for the ωhiv values of 0.25, 0.24 and 0.23 are examined

in which all of them have different objective functions and different solution set for optimal

location of walk-in clinics. In Table 6.11, the results of the continuum of care values are

summarized.

The results for continuum of care values for HIV over all the paths is displayed in the bar chart

given in Figure 6.6. When the figure is observed, it is seen that with the inclusion of the lower

risk tolerances in the model, the continuum of care along the paths have changed. When the

risk is lowered from 0.25 to 0.24, one of the very significant changes is observed over path 14.
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For the case with 0.25 risk tolerance, the continuum of care along the path has a value of 0.

However, when CVaR constraint becomes binding in the model, path 14 is also covered and

value of 0.989 is achieved. When path 14 is further analyzed from Table 6.7, it is seen that

it is one of the paths with highest demand (after 15, 16, 17 and 18 which are already having

continuum of care values to a high extent) and also high risk. The model prefers to locate on

the paths with high demand in order to maximize the objective function and high risk to keep

the risk in given bounds. Opening walk-in clinics over path 14 also affected the continuum of

care value on path 3, as they share same walk-in clinic locations over their paths.

When the risk tolerance level is even lowered further to value 0.23, the continuum of care

values showed other changes. One of the main changes that take attention at the first sight

is the continuum of care value for path 13, which was 0.811 for the risk tolerance levels

0.25 and 0.24 is decreased to zero, meaning all the walk-in clinics located along path 13 is

removed from the optimal solution. This situation enabled the model to cover certain other

paths as 3, 7, 8, 10 and 14. Looking at Table 6.7, it is seen that path 13 has a low value of

risk whereas paths 7, 10 and 14 have high risk with relatively high demand values. Especially

for path 10, it is a path with one of the highest demand and highest risk, which is not covered

in other two cases with a higher risk tolerance. Therefore, to meet the risk tolerance level of

0.23, the model sacrifices from the paths with high demand and low risk to shift the walk-in

clinics to high-risk paths. This was a desired outcome from the model, as in the end the aim

was to incorporate the risk factor in the problem and force the model to work accordingly.

Furthermore, it can also be seen that with the risk level of 0.23, the number of paths covered

is increased, showing the model is able to reach more parts of the network.

Another analysis that is done is about the expected demand that is covered in the different

runs. When the same cases that are described above is analyzed again, the covered demand in

the network for all diseases is summarized in Table 6.12.

Table 6.12: The expected value of demand covered with CVaR measure on HIV (4 centers)

HIV Malaria STI Tuberculosis

ωhiv = 0.25 3717.692 1967.280 1022.410 33.901
ωhiv = 0.24 3730.024 1938.197 1020.029 30.623
ωhiv = 0.23 3685.791 1946.087 1016.631 31.276
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Figure 6.6: The continuum of care values for HIV for all paths with CVaR measure on HIV

(4 centers)

Observation 10 Decreasing the risk tolerance level for a certain disease may result both as

an increase or a decrease in the expected number of mobile demand covered for that disease.

In the Table 6.12, when the expected demand covered for HIV is examined, decrease of risk

tolerance from 0.25 to 0.24 led to an increase in the number of expected people covered with

HIV. While the coverage of HIV is increased, the other diseases showed a decrease and which

in the end led to a decrease in the objective function value. This shows that, addition of a

risk constraint for HIV in the model gave priority for the optimization of HIV in the network

and increased the expected number of people covered with HIV, while sacrificing from other

diseases. When the tolerance level is further decreased to value of 0.23, the expected number

of people covered with HIV is also decreased. As the model is not working with more strict

risk constraints, the model is focused on the flows with high risk more compared to the prob-

lem with risk tolerance values above 0.23. This may lead to opening walk-in clinics on paths

having low expected demand values however high risk values. For all the other diseases, it

is also seen that compared to case where the risk constraints are not binding, the expected

coverage of people is lowered.

Observation 11 Decreasing the risk tolerance level for a certain disease may result as a
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decrease in the αd values of the given disease compared to the case in which CVaR constraint

is not binding.

It is important to bear in mind that, decrease in number of expected people covered in the

problem with the addition of risk constraints in the model should not be interpreted as a bad

sign in the problem context. Even though the number of people covered in the network is

decreased, the model has new objectives as well, which requires to satisfying certain levels

of risk in the network. Therefore, it would also be good to analyze the number of people at

risk in the model. In Table 6.13, the αd values which are calculated in the model through the

different cases are summarized. The model, as mentioned before, was run with a confidence

level of 0.90 and the only risk constraint was imposed on HIV, with ωhiv values displayed

in the Table. αd value is the threshold which shows, with confidence level of 0.90, the loss

function will not exceed this value. It is seen that, for overall results, the αd for HIV has

decreased compared to the case where ωhiv is 0.25, in which risk constraint is not binding.

Malaria and tuberculosis showed and increase in the αd values, as they are not a priority

of the model. For STI, αd is also decreased along HIV. This can be interpreted as walk-

in clinics chosen for optimal allocation of decreasing HIV risk also benefited the coverage

values associated with STI. This is a logical result as both HIV and STI have rather more

relaxed critical intervention times compared to malaria and tuberculosis which requires more

strict handling. Since their approaches are similar to each other, STI also has decreased αd

values.

Observation 12 Since the loss function defined in the formulation is not continuous, the

model does not have unique αd values.

A worth-noting observation about the αd values is that, these values are not unique in the

optimization of the problem. Since the problem is a discrete optimization on which the de-

cision variables are binary variables, the loss function that is defined in the problem is not

a continuos curve. It has some “flat spots” and αd which is defined over this discrete loss

function may fall on these flat spots. This would make the αd values vary in small ranges,

making the problem not having unique VaR values. Therefore in different iterations for the

same problem with same parameters, the αd values may show changes in small amounts as

well as udi values described in (5.15). This also discussed in [17] for the case where CVaR is
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Table 6.13: αd values for all diseases with CVaR measure on HIV (4 centers)

HIV Malaria STI Tuberculosis

ωhiv = 0.25 1046.882 916.078 475.526 21.452
ωhiv = 0.24 912.014 914.848 460.002 24.52
ωhiv = 0.23 945.716 917.536 444.007 23.44

Table 6.14: CVaR values for all diseases with CVaR measure on HIV (4 centers)

HIV Malaria STI Tuberculosis

ωhiv = 0.25 1135.000 2817.373 1358.765 50.191
ωhiv = 0.24 1089.600 2817.373 1358.765 50.191
ωhiv = 0.23 1044.200 2817.373 1358.765 50.191

minimized in the objective function and optimized VaR pairs are not necessarily unique. In

the case where the range of αd is reduced to a single points, the optimal and unique αd value

would give the β -VaR.

Observation 13 Decreasing the risk tolerance level for a given disease results as a decrease

in the CVaR for that given disease.

Another figure to analyze is the CVaR for every disease in the model, calculated for the same

cases. The CVaR values are calculated from the model with the following equation,

αd +(1−βd)
−1

∑
n
i=1(udi ∗πi)

where udi and αd values are optimized in the problem. In Table 6.14, the results of the

calculations are summarized. These CVaR values tell that, average loss in 10% of the worst

cases should not exceed the values indicated in the Table 6.14. While αd values control the

percentile of risk, the CVaR aims to control the worst case among these controlled percentile

of the risk. For HIV, the CVaR value is decreased as the ωhiv is decreased from 0.25 to 0.23.

This is a desired outcome of the model as CVaR value is maintained to be controlled and

lowered gradually in iterations and there should not be an increase in these values. For the

other diseases, it is seen that the values do not show any changes. This is because they are not

subject to binding CVaR constraints and their values are not controlled in the model.

When the results for adding CVaR constraint for HIV is examined, it can be said that model

integrates the risk factor in the problem context and modifies the solutions accordingly. This
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was a desired outcome from the model and it is proven to be working successfully as aimed.

One important point about the study which focuses on HIV is that, HIV coverage is handled

with the expected traveling time approach. This means that there are no critical intervention

times but rather greater thresholds are involved for calculation of coverage. Therefore, it is

easier to cover a given path since putting few numbers of walk-in clinics along the path is

enough. Since the paths achieve high continuum of care values quickly, it is seen that CVaR

constraint becomes effective for low values of risk tolerance.

Furthermore, the data set that is used for modeling is not a very a large one and there is a

limited set of walk-in clinics for optimization. When these two factors are combined, it is

seen that addition of CVaR constraints in the model does not provide solution for a large

number of risk tolerance changes. After lowering the risk tolerance below certain values, it

returns no solution and becomes infeasible. If there was a greater set of candidate locations,

this problem is expected to be avoided.

6.2.3 CVaR Constraints of Tuberculosis and Malaria

After the analysis of CVaR constraints with HIV focus in the problem, CVaR constraints with

tuberculosis and malaria focus is also studied respectively. The same analyses that were given

for HIV is also conducted for the two diseases as well. In this section, the results will be

briefly presented and differences among each other will be investigated.

Observation 14 The risk tolerance level which becomes binding in the model shows varia-

tion in accordance with the coverage approach of the disease on which the risk tolerance is

applied.

The study is again made for the cases of opening 4, 5 and 6 walk-in clinics in the network

with confidence levels of 0.85, 0.90 and 0.95. When different risk tolerance levels are tested

for the CVaR constraint on tuberculosis, the results for the objective function given in Fig-

ure 6.7 is observed. The objective function values of different runs can be further analyzed in

Appendix A.1. When the 5 and 6 centers cases are examined, it is seen that as the confidence

level is lowered, the CVaR constraints become non-binding for lower values of risk tolerance.

This shows that, with lower levels on confidence, even low risk tolerances can be handled

without taking extra measurements in the planning of the network. However, if higher levels
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Figure 6.7: Objective function of the model with CVaR measure on Tuberculosis

of confidence is required, the risk tolerance level which changes the constraint from binding

case to non binding is increased. Also, looking at the figure for 5 and 6 center cases, every

confidence level has a similar shape which is changing in the same objective function intervals

but having a gap between each other showing the differences in points where risk tolerance

is effecting. For the 4 center case, with confidence levels of 0.95, CVaR constraint becomes

binding when the risk tolerance is 0.41. For lower confidence of 0.90 and 0.80, the constraint

never becomes binding and with lower risk tolerance, the problem becomes infeasible.

Tuberculosis is a disease which is mostly belonging to binary coverage approach having strict

intervention requirements. It is relatively more difficult to obtain high value of continuum

of care with same number of walk-in clinics compared to the HIV case. Therefore, the case

of opening 5 and 6 centers shows more flexibility to the changes in risk requirements as the

number of available locations is increased. However 4 center case is not as risk tolerable as 5

and 6 centers cases due to low continuum of care values.

The same study is repeated for malaria as well with the parameters given for tuberculosis.

Malaria has coverage definitions belonging to partial coverage approach. The critical inter-

vention times are not as strict as tuberculosis but stricter compared to HIV. The details of the

objective function values can be seen in Appendix A.2. For the cases of opening 4 and 5

centers, the graphs in Figure 6.8 resemble the tuberculosis graphs for 5 and 6 center cases. It

is seen that objective function rises with an increase in risk tolerance level. This increase is

faster with lower confidence levels, as low risk tolerances can act as non-binding constraints

in the problem. Comparing the 5 centers case of malaria and tuberculosis, the risk tolerance

level which made the CVaR constraints in the model binding were the 0.36, 0.35 and 0.33
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Figure 6.8: Objective function of the model with CVaR measure on Malaria

for confidence levels 0.95, 0.90 and 0.80 respectively. For malaria, these values are changed

to 0.29, 0.28 and 0.27 showing a decrease. This can be explained by the flexibility of the

coverage definition and intervention time for malaria, making continuum of care values are

higher for malaria case. Thus, it requires less risk tolerance to become binding in the model.

For the case of opening 6 centers, the CVaR constraints in the model are either not binding

or making the model infeasible. This shows that risk involved in the model is relatively low

and decreasing further is not possible due to limited set of candidate walk-in clinic locations,

except confidence level 0.80. Compared with tuberculosis, the 6 centers case is different, as

for tuberculosis changing risk tolerance allowed objective function to vary within a range.

Also compared with HIV, the behavior is similar. This difference can be explained again by

the coverage approaches of the different diseases.

Observation 15 The changes in the optimal planning of the walk-in clinic locations when

the risk tolerance level becomes binding shows variation in accordance with the coverage

approach of the disease on which the risk tolerance is applied.

As a next step for the analysis, the continuum of care values at every path on the network is

examined. For tuberculosis, 5 center case with confidence level 0.95 and risk tolerance 0.37

and 0.36 is chosen as with a tolerance level of 0.36, the CVaR constraint becomes binding.

For malaria, 5 center case with confidence level 0.95 and risk tolerance 0.3 and 0.29 is chosen

due to same reasons. The summary of continuum of care values for every disease on every

path with different parameters can be found in Appendix B.1 and B.2 for tuberculosis and

malaria respectively.
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When the continuum of care values are mapped on the bar chart for tuberculosis is examined

in Figure 6.9, as the risk constraint becomes binding, shifting in continuum of care values is

observed. One of the main changes that can be observed on path 17, is the continuum of care

value is increased significantly. In Table 6.7, path 17 is seen to be the path having the greatest

demand among high risk paths. Therefore, it is important to focus on the continuum of care

value of path 17 which is increased from value of 0.635 to 0.812. Other increases in path 9

and 10 are also observed, which are also having high risk and relatively high demand values as

they are sharing same walk-in clinic locations over their path with 17. While opening walk-in

clinics, the paths 2 and 11 are sacrificed where 2 has a low demand rate with high risk and 11

has relatively high demand and low risk. Unlike the CVaR constraint with HIV, the path 14

is not focused and the continuum of care vale is not increased further. This can be explained

by, path 17 in the problem was already having high values of continuum of care and further

increase was not benefiting significantly. For tuberculosis case however, there is still room for

improvement and it is more valuable compared to an increase in the continuum of care value

of path 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

1.2

Paths

C
o
n
ti
n
u
u
m

 o
f 
C

a
re

 V
a
lu

e
s

 

 

Risk = 0.37

Risk = 0.36

Figure 6.9: The continuum of care values for Tuberculosis for all paths with CVaR measure

on Tuberculosis (5 centers)

When the same results for malaria is examined, similar changes are observed as the optimal

locations of walk-in clinics are the same for two problems. The difference is that overall

continuum of care values are different as they are calculated from two different approaches.

It is again seen that out of the paths with high demand and high risk such as 12, 14, 16 and

17, continuum of care value for path 17 is increased significantly as it has the highest demand

value. Along with path 17, 9 and 10 is also increased. It can also be seen that overall values

for continuum of care for the case of malaria is higher compared to tuberculosis, as it has less
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Figure 6.10: The continuum of care values for Malaria for all paths with CVaR measure on

Malaria (5 centers)

strict intervention time requirements.

Similar to HIV analysis, the expected covered demand for tuberculosis and malaria is exam-

ined. Since the optimal choice of walk-in clinic locations for the risk tolerance values that

are making the CVaR constraints binding and non-binding is the same for both, the expected

number of covered demand is the same for both cases. Looking at the results in Table 6.15,

decrease in number of HIV and STI can be observed in order to meet the given risk tolerances.

For malaria, there is an increase in number of people covered, which is a favorable outcome

from the model. It is not possible to observe significant changes for tuberculosis, which is

also a consequence of low number of tuberculosis demand in the network.

As a final step of the analysis, the CVaR values, which can be found In Tables 6.16 and 6.17

are compared. For tuberculosis case, when the ωtb is lowered, the number of demand loss in

the 5% of the worst cases has decreased with a small fraction, whereas it remained constant

for other diseases. This small difference can again be explained by the relatively lower value

for the tuberculosis demand. The same observation is made for the malaria, and decrease is

again seen as expected.

Table 6.15: The expected value of demand covered with CVaR measure (5 centers)

HIV Malaria STI Tuberculosis

ωtb = 0.37 / ωml = 0.30 4075.864 2158.58 1123.684 35.553
ωtb = 0.36 / ωml = 0.29 4017.258 2193.709 1129.596 35.228
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Table 6.16: CVaR values for all diseases with CVaR measure on Tuberculosis (5 centers)

HIV Malaria STI Tuberculosis

ωtb = 0.37 4540.000 2817.373 1358.765 18.571
ωtb = 0.36 4540.000 2817.373 1358.765 18.069

Table 6.17: CVaR values for all diseases with CVaR measure on Malaria (5 centers)

HIV Malaria STI Tuberculosis

ωml = 0.30 4540.000 845.212 1358.765 50.191
ωml = 0.29 4540.000 817.0383 1358.765 50.191

To conclude the computational study, it can be said that each of the cases with focus on

different disease’s risk on the network adapted the solution to satisfy the requirement. These

adaptations resulted as focus towards the paths with high-risk values, which in the end led

to decreases in expected number of people covered in the model. It is also observed that

deterministic model was missing the paths with high-risk values and resulting in higher loss

of coverage, which is avoided with the stochastic model.

Furthermore, the stochastic model results also showed differences when the disease that CVaR

constraint applied is changed. Since the diseases are handled with different coverage ap-

proaches, the continuum of care values of the network behaved differently. When high con-

tinuum of care values are obtained in the model without the inclusion of the risk constraints

(such as the cases of HIV where coverage can be attained easier compared to other diseases),

risk constraints were not very effective in the problem. Decreasing the risk tolerance for such

cases led to infeasibility, which can be explained by the limited range of candidate locations

as well. However for other diseases where continuum of care along transportation lines is not

easily covered, inclusion of risk constraints affected the problem solution to a higher extent.

Another parameter that is changed was the number of walk-in clinics that was allowed to be

opened on the network. When the diseases have stricter approaches, increasing the number

of walk-in clinics on the networks allowed stochastic model to plan more effectively as it

gave flexibility by increasing the continuum of care values. It is also seen that the tolerance

levels that are affecting the optimal network of deterministic model showed changes when the

number of centers on the network is increased.
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Finally, with the interpretation of αd , VaR and CVaR values, benefits achieved with the ad-

dition of constraints is discussed thoroughly. It is seen that the even though the αd values

are not lowered for every case, the CVaR values are dropped which was expected. It is also

seen that αd and VaR values do not have to be the same value when the loss function is not

continuous and flat points exist.
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CHAPTER 7

CONCLUSION

Mobile populations are an important subject area of healthcare problems and planning. As

discussed in the thesis, it is proven that there is a strong connection between health problems

and mobility. Due to special condition of the mobile populations, the conventional approaches

that are adapted for healthcare and location planning in literature are however not very suitable

when mobile populations are in focus. This requires careful analysis of their environment,

their requirements and the factors that would make an impact.

In Section 3, definition of the problem is given very extensively. This was an important

step for the initiation of the thesis as the problem has its unique requirements that need to

be integrated to the solution. Therefore, by starting with the motivation, which has emerged

from a real-life problem, problem environment is analyzed as its components play a significant

role for the development of a solution approach. Consequently, the problem that is studied

throughout the thesis is defined.

When the question studied and the environment are determined, it is understood that the

problem falls into a different category compared to traditional location problems in the sense

that mobile populations need to be served in a continuous manner. With the definition of

“continuum of care”, it is asserted that single visits to walk-in clinics are not sufficient for

a health network but being accessible whenever needed is the goal. Since the definition of

every service for disease is various, the model that is proposed to solve the problem should be

capable of processing these differences. For this purpose, as first step of the solution process,

the continuum of care approaches are developed specialized for every service and disease

combination as described in Section 4.1. Following these approaches, the linearization of

the approaches are completed together with the other parts of the model. Consequently, the
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deterministic model given in Section 4.2 is established.

Application of these approaches together with the other constraints resembles combination of

both the flow-interception and the coverage problems. The model tries to capture as many

patients as possible considering the demand values and delay durations, which is also an

objective in the flow-interception problems. At the same time, the coverage of the patients

along the roads is maintained with the foundation of walk-in clinics. However, the coverage

of a walk-in clinic is situated towards the transportation lines rather than using a pre-define

coverage radius. Furthermore, coverage along the transportation lines with the building of

walk-in clinics is not achieved in a lump but rather with strategic positioning of several walk-

in clinics.

Introduction of different approaches for the modeling phase was an important part of the for-

mulation as the disease and service specific planning of the networks was relying on these

approaches. In order to see the effectiveness of the model and evaluate whether it responded

to the initial requirements, computational study is conducted as given in Section 6.1. Looking

at the results, it is seen that the model is capable of handling different disease and service re-

quirements by adapting the optimal solutions. This enables planning of specialized networks,

which can be crucial for certain situations such as the cases of epidemic strikes. Furthermore,

the developed solution approaches can be adapted further for other diseases and services with

regards to the characteristic of the problem so that the blank points on the map in terms of

healthcare can be identified and further planning in the region can take place. Therefore, it

can be said that model is flexible as it allows the adaptation of parameters. Further disease

and service combinations can be added in the model as well as modeling of the other prob-

lems. The deterministic model provided contribution to the literature as the coverage along

the transportation lines for mobile populations given their different and specialized service

requirements has not been discussed extensively before.

While developing the deterministic model, it was considered that uncertainties and unrelia-

bility played an important role in the problem context. Since every thing cannot be predicted

beforehand and even though good predictions are made, sudden events are likely to occur

and the deterministic model requires to be flexible enough to allow changes regarding these

uncertainties. This condition directed the study towards a stochastic model with a risk-averse

behavior in which the demand is modeled as an uncertain factor. The field of stochastic
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programming is very large and different formulations are available. Especially when humani-

tarian logistics is a focus area, risk measures that are applied requires to be planned carefully.

Out of the risk measures, the Conditional-Value-at-Risk (CVaR) measure is decided to be

adapted for the problem and required modifications are made in the deterministic model.

CVaR is a risk measure that is generally applied in the field of financial planning, especially

for the portfolio optimization. An appealing motive behind this risk measure is that, it does not

only focus on the percentage of losses associated with the optimal planning but also considers

the magnitude of the losses. This allows distinction between the cases of very high and low

losses such that the great amount of losses can be avoided. This characteristic of CVaR is

decided to be a good fit for the problem at hand as loss in the network should be avoided

strongly. Furthermore, adapting the CVaR in the constraints rather than the objective function

by implying bounds for every loss of every disease while maximizing the expected number

of patients captured is believed to make the model competent and safe. As a result, the

deterministic model is adapted and the stochastic model is built as explained in Chapter 5.

The results of the stochastic model given in Section 6.2 showed that the aim was achieved

with a risk-averse formulation. When certain transportation lines are defined to be more risky

compared to others in terms of higher variation in demand, the model is concentrating on these

lines in order to keep the risk level lower than the given bounds. In this way, the number of

people that are at risk for the given disease is lowered compared to the no-risk measure model

at the expense of sacrificing from the coverage of other diseases. In the overall model, the

total expected number of people covered is decreased however, the people at risk is kept under

control. When the upper bound on risk tolerance is not very low, it is seen that the model is

inclined to open clinics on transportation lines with high value of demand with high risk due to

the objective function. When the upper bound is lowered further, the model shift the walk-in

clinics that are opened on transportation lines with high demand and low risk values to other

transportation lines with low demand and high risk values to satisfy the constraints associated

with the risk. At certain cases, the impact of the CVaR constraints in the objective function

may not cause very drastic numerical changes, however the resulting walk-in clinic location

play an important role in terms of accounting the risk and benefiting to society. Looking at

the performance of the stochastic model, it can be said that the model reacted to the risk along

the transportation lines as aimed. When uncertainties are present in the network, with the help

of this model the risk on the network can be kept under control. Additionally, the CVaR risk
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measure is generally applied in the financial field and this study was the first to include in the

area of humanitarian logistics. The results proved that CVaR is a good risk measure that can

be applied and desired results can be achieved. It can be further tried as performance measure

for other models related with humanitarian logistics as well.

A weak point of the model is that problem size is big and computational time that is required to

solve the model optimally can be very long for some models. Since there are many constraints

and variables involved in the model, optimal solutions may not be attained at reasonable time

windows and solution with optimality gaps is observed. In case the data set is greater or more

scenarios are involved, the model may require further extensions as Branch and Cut, Benders’

Decomposition or L-Shaped method to deal with the complexity of the model. Another idea

can be developing a heuristic which may as well include simplifications and reduce the com-

putational time of the model. A heuristic that would allow solutions with low optimality gap

and low computational time would be an attractive extension for the problem.

Another weak point is that there are many parameters in the model such as weights given

to static and mobile demand populations, diseases and services. The interpretation of these

parameters should be carefully made before optimization and their impact on optimal solution

should be evaluated with regards to them. These weights provide benefit when a specific

network will be planned as they allow playing around with the network. In other cases, the

relative importance of especially diseases and services may be required to be based on more

scientific grounds for a neutral planning.

Final weak point of the thesis is the data set that has been used for the computational study.

The list of candidate locations and paths was limited which resulted in low number of loca-

tions falling on the paths and limiting the study. There were infeasibility for the stochastic

model when the constraints were tightened due to lack of location availabilities. As a future

study, one focus can be towards changing the data set used for testing the problem formula-

tion. A data set having more appropriate paths which have larger number of candidate walk-in

clinic locations over the paths is believed to be performing better. The intersection among the

paths can also be lowered making a homogeneous distribution of paths in the region.

An additional research can be made for putting an upper bound on the number of services

provided in the network. Currently in the thesis, even though there is a constraint in the

model for limiting the number of services that can be given in the walk-in clinics, this is not
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used in the stochastic model as the main focus was to observe whether the CVaR constraints

were effective. A further study can be made by putting bounds on the services and observing

whether these bounds effects the walk-in clinic location and create any specialized walk-in

clinics on the network.

A final future direction of the study can be made on the adaptation of the loss function defined

for the stochastic model. Currently in this study, the loss function is defined over diseases as

the main aim was to focus towards the loss associated with diseases. Another risk measures

can be developed for the “services of diseases” in addition to diseases as well. With this

modification, delivery of services can also be controlled. This would require adaptations

in the formulation of the loss functions for the risk definition and increase the number of

variables and constraints in the model. This can be an interesting extension to the problem at

hand.
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APPENDIX A

OBJECTIVE FUNCTION VALUES WITH CVAR

CONSTRAINTS

A.1 Tuberculosis

Table A.1: The objective function values for opening 4 centers with CVaR measure on Tuber-
culosis

ωHIV βHIV

0.95 0.90 0.80

1.00 1685.321 1685.321 1685.321
0.50 1685.321 1685.321 1685.321
0.45 1685.321 1685.321 1685.321
0.44 1685.321 1685.321 1685.321
0.43 1685.321 1685.321 1685.321
0.42 1685.321 1685.321 1685.321
0.41 1680.848 1685.321 1685.321
0.40 No solution 1685.321 1685.321
0.39 1685.321 1685.321
0.38 No solution 1685.321
0.37 No solution
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Table A.2: The objective function values for opening 5 centers with CVaR measure on Tuber-
culosis

ωHIV βHIV

0.95 0.90 0.80

0.4 1848.420 1848.420 1848.420
0.39 1848.420 1848.420 1848.420
0.38 1848.420 1848.420 1848.420
0.37 1848.420 1848.420 1848.420
0.36 1843.948 1848.420 1848.420
0.35 1843.948 1843.948 1848.420
0.34 1843.948 1843.948 1848.420
0.33 1843.948 1843.948 1843.948
0.32 No solution 1843.948 1843.948
0.31 No solution 1843.948
0.3 1843.948
0.29 No solution

Table A.3: The objective function values for opening 6 centers with CVaR measure on Tuber-
culosis

ωHIV βHIV

0.95 0.90 0.80

1.00 1992.566 1992.566 1992.566
0.40 1992.566 1992.566 1992.566
0.30 1992.566 1992.566 1992.566
0.29 1992.566 1992.566 1992.566
0.28 1992.566 1992.566 1992.566
0.27 1970.983 1992.566 1992.566
0.26 1970.983 1970.983 1992.566
0.25 1970.983 1970.983 1970.983
0.24 No solution No solution 1970.983
0.23 No solution
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A.2 Malaria

Table A.4: The objective function values for opening 4 centers with CVaR measure on Malaria

ωHIV βHIV

0.95 0.90 0.80

1.00 1685.321 1685.321 1685.321
0.50 1685.321 1685.321 1685.321
0.40 1685.321 1685.321 1685.321
0.39 1685.321 1685.321 1685.321
0.38 1680.848 1685.321 1685.321
0.37 1680.848 1680.848 1685.321
0.36 1680.848 1680.848 1680.848
0.35 No solution 1680.848 1680.848
0.34 No solution 1680.848
0.33 No solution

Table A.5: The objective function values for opening 5 centers with CVaR measure on Malaria

ωHIV βHIV

0.95 0.90 0.80

1.00 1848.420 1848.420 1848.420
0.50 1848.420 1848.420 1848.420
0.40 1848.420 1848.420 1848.420
0.30 1848.420 1848.420 1848.420
0.29 1843.948 1848.420 1848.420
0.28 1843.948 1843.948 1848.420
0.27 1843.948 1843.948 1843.948
0.26 No solution 1843.948 1843.948
0.25 No solution 1843.948
0.24 No solution
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Table A.6: The objective function values for opening 6 centers with CVaR measure on Malaria

ωHIV βHIV

0.95 0.90 0.80

1.00 1992.566 1992.566 1992.566
0.50 1992.566 1992.566 1992.566
0.40 1992.566 1992.566 1992.566
0.30 1992.566 1992.566 1992.566
0.20 1992.566 1992.566 1992.566
0.19 1992.566 1992.566 1992.566
0.18 1992.566 1992.566 1992.566
0.17 No solution No solution 1992.566
0.16 No solution
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APPENDIX B

CONTINUUM OF CARE VALUES WITH CVAR

CONSTRAINTS

B.1 Tuberculosis

Table B.1: The continuum of care values for all paths with CVaR measure on Tuberculosis (5
centers)

ωHIV=0.37 ωHIV=0.36

HIV Malaria STI TB HIV Malaria STI TB

1 1 0.999 0.999 0.999 0.999 0.97 0.993 0.865
2 1 0.967 0.992 0.857 0 0 0 0
3 0.768 0.564 0.652 0.259 0.768 0.564 0.652 0.259
4 1 0.999 1 1 1 0.999 1 1
5 1 0.958 0.987 0.847 1 0.958 0.987 0.847
6 1 0.972 0.994 0.874 1 0.972 0.994 0.874
7 1 0.922 0.975 0.754 1 0.922 0.975 0.754
8 0.953 0.747 0.886 0.615 0.953 0.747 0.886 0.615
9 0.907 0.676 0.76 0.616 0.996 0.885 0.952 0.798

10 0 0 0 0 0.922 0.719 0.792 0.651
11 0.965 0.786 0.898 0.687 0 0 0 0
12 0.815 0.605 0.683 0.557 0.815 0.605 0.683 0.557
13 0.811 0.58 0.681 0.511 0.811 0.58 0.681 0.511
14 0.989 0.867 0.951 0.464 0.989 0.867 0.951 0.464
15 0.978 0.832 0.914 0.763 0.978 0.832 0.914 0.763
16 0.921 0.691 0.791 0.618 0.921 0.691 0.791 0.618
17 0.912 0.692 0.772 0.635 1 0.929 0.976 0.812
18 1 0.991 0.997 0.985 1 0.991 0.997 0.985
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B.2 Malaria

Table B.2: The continuum of care values for all paths with CVaR measure on Malaria (5
centers)

ωHIV=0.30 ωHIV=0.29

HIV Malaria STI TB HIV Malaria STI TB

1 1 0.999 0.999 0.999 0.999 0.97 0.993 0.865
2 1 0.967 0.992 0.857 0 0 0 0
3 0.768 0.564 0.652 0.259 0.768 0.564 0.652 0.259
4 1 0.999 1 1 1 0.999 1 1
5 1 0.958 0.987 0.847 1 0.958 0.987 0.847
6 1 0.972 0.994 0.874 1 0.972 0.994 0.874
7 1 0.922 0.975 0.754 1 0.922 0.975 0.754
8 0.953 0.747 0.886 0.615 0.953 0.747 0.886 0.615
9 0.907 0.676 0.76 0.616 0.996 0.885 0.952 0.798

10 0 0 0 0 0.922 0.719 0.792 0.651
11 0.965 0.786 0.898 0.687 0 0 0 0
12 0.815 0.605 0.683 0.557 0.815 0.605 0.683 0.557
13 0.811 0.58 0.681 0.511 0.811 0.58 0.681 0.511
14 0.989 0.867 0.951 0.464 0.989 0.867 0.951 0.464
15 0.978 0.832 0.914 0.763 0.978 0.832 0.914 0.763
16 0.921 0.691 0.791 0.618 0.921 0.691 0.791 0.618
17 0.912 0.692 0.772 0.635 1 0.929 0.976 0.812
18 1 0.991 0.997 0.985 1 0.991 0.997 0.985
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