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ABSTRACT 
 
 
 

SPRINGBACK ANALYSIS IN BENDING THROUGH FINITE ELEMENT 
METHOD BASED ARTIFICIAL NEURAL NETWORKS 

 
 
 

Şenol, Özgü 
M.Sc., Department of Mechanical Engineering 

 Supervisor: Prof. Dr. Haluk Darendeliler 
  Co-Supervisor: Assist. Prof. Dr. Volkan Esat 

September 2013, 87 pages 
 
 
 
Springback prediction is vital in order to obtain the desired part shape in metal forming 
processes. In most of the applications, springback amount is determined by trial and error 
procedures, and recently by using numerical methods or through handbook tables. Artificial 
Neural Network (ANN) is a helpful tool for the engineers and applied in this study to 
determine the springback amounts in air, V-die and wipe bending processes. For this 
purpose, bending processes are analyzed by commercial finite element (FE) software and 
springback amounts are collected for different parameters such as thickness, die radius, 
bending angle, etc. Then, by developing a feedforward neural network with backpropagation 
learning algorithm, the springback amounts for bending applications are determined. ANN 
results of three bending operations are combined to analyze an industrial workpiece. In 
addition to this, an experimental bending operation is analyzed for air bending process. It is 
shown that ANN can be effectively applied to determine springback amount in air, V-die and 
wipe bending. 
 
Keywords: Finite Element Method (FEM), Neural Network, Air Bending, V-die Bending, 
Wipe Bending 
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ÖZ 
 
 
 

BÜKME İŞLEMLERİNDEKİ GERİ YAYLANMANIN SONLU ELEMANLAR 
YÖNTEMİNE DAYANAN YAPAY SİNİR AĞLARI İLE ANALİZİ 

 
 
 

Şenol, Özgü 
Yüksek Lisans, Makina Mühendisliği Bölümü 

     Tez Yöneticisi: Prof. Dr. Haluk Darendeliler 
   Ortak Tez Yöneticis: Yrd. Doç. Dr. Volkan Esat 

Eylül 2013, 87 sayfa 
 
 
 
Metal şekillendirme işlemlerinde istenilen parça şeklinin elde edilebilmesi için geri 
yaylanmanın belirlenmesi önem taşımaktadır. Geri yaylanma miktarı birçok uygulamada 
deneme yanılma yöntemi, sayısal metotlar ya da kitaplar aracılığı ile saptanmaktadır. Yapay 
sinir ağı algoritması mühendisler için faydalı bir araçtır ve bu çalışmada serbest, V-kalıp ve 
kenar bükmede geri yaylanma miktarının tespitinde kullanılmıştır. Bu amaçla, bükme 
işlemleri sonlu elemanlar yöntemi ile analiz edilmiş ve kalınlık, kalıp kenar yarıçapı, bükme 
açısı gibi değişik parametreler için geri yaylanma miktarları bir araya getirilmiştir. Daha 
sonra, bükme uygulamaları için geri yaylanma miktarları, geri yayılımlı öğrenme 
algoritmasına sahip bir yapay sinir ağı geliştirilerek saptanmıştır. Üç bükme işleminin yapay 
sinir ağı sonuçları endüstriyel bir parçanın analizi için birleştirilmiştir. Buna ek olarak 
serbest bükme işlemi için deneysel bir bükme işlemi analiz edilmiştir. Serbest, V-kalıp ve 
kenar bükme işlemlerindeki geri yaylanma miktarlarının saptanmasında yapay sinir ağının 
etkili bir şekilde kullanılabileceği gösterilmiştir. 
 
Anahtar Kelimeler: Sonlu Elemanlar Yöntemi, Sinir Ağı, Serbest Büküm, V-kalıp Büküm, 
Kenar Büküm 
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CHAPTER 1 
 
 

1 INTRODUCTION 
 
 
 
1.1 Motivation 
Bending is a frequently employed manufacturing process in modern industry. Sheet metal 
bending is one of the widely used bending processes and embodies important manufacturing 
considerations. After bending operation, metals show a tendency to partially return to their 
original shape due to elastic recovery of the material. The reason for elastic recovery, which 
is also called springback, is elastic stresses about the neutral axis. In sheet metal forming, 
springback is an important issue which can lead to crucial problems during component 
assembly, if not considered and compensated for. Large number of studies is being done to 
compensate for springback in bending and sheet metal forming. 
 
 
1.2 Bending 
Bending of sheet metals can be defined as the straining of metal around a straight axis. The 
metal on the inside of the neutral plane is compressed, while the metal on the outside is 
stretched during the bending process as shown in Figure 1.1 [1]. Sheet metal is stressed 
beyond the yield strength after bending, the sheet metal is deformed plastically and has a 
permanent shape.  
 
 
 

 
Figure 1.1 Terminology in bending 

 
 
 
Distance of the neutral axis from the inside of the bend is 0.3t to 0.5t generally, where t is the 
thickness of the sheet as shown in Figure 1.1.There are some crucial parameters which 
influence the bending operations such as bend angle, α, and bend radius, R. When bend 
radius decreases, strain in the bent material increases. Mechanical properties of the material 
and its thickness determine minimum bend radius. For bending operations in which bend 
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angles are over 90°, some problems may arise as the bend angle becomes larger. In this case, 
the value of bend radius becomes more critical and the material hardness plays a more 
important role in the success of the bending process [2]. 
 
 
1.3 Bending Types   
Wipe-bending, air (free) bending, v-die bending, swivel bending, hemming, curling, and 
seaming are frequently used sheet metal forming. In this thesis, air, V-die, and wipe bending 
are investigated. 
 
 
1.3.1 Wipe-bending 
Wipe-bending processes are frequently used in industry especially to produce flanges. Wipe-
bending is also known as flanging. If the bent flange is relatively shorter than the remaining 
part of the sheet, this type of bending may be preferred [2]. Die, punch, blank holder and 
sheet metal are the components in wipe-bending as shown in Figure 1.2 [5]. The sheet is 
clamped between the die and blank holder first, and then the punch moves towards the 
workpiece vertically downwards to bend it. As soon as the workpiece is fully bent, the punch 
moves upwards rapidly.  
 
 
 

 
Figure 1.2 Wipe-bending [5] 

 
 
 
1.3.2 Air (free) bending 
In air bending process, necessary bending angle is obtained with the help of a die and a 
punch with a couple of shoulders (Figure 1.3). The die gap is set according to the process 
requirements, and the sheet metal is supported on the shoulders of the die on both sides. The 
punch at the midpoint of the die is given a displacement, and the die is deep enough to avoid 
the sheet from striking its bottom [6]. Three-point contact of metal occurs in air bending 
through punch tip and die edges. Most bend allowance formulae are based on air bending 
process. To obtain different bending angles in air bending, there is no need to change any 
equipment or dies as the punch stroke determines the bend angles. To obtain the desired 
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bend angle, accurate control of the punch stroke is necessary. In air bending, forming forces 
are relatively small. 
 
 
 

 
Figure 1.3 Air (free) bending [7] 

 
 
 
1.3.3 V-die bending 
In V-die bending process, sheet metal is bent in a single die. Different phases of the V-die 
bending are illustrated in Figure 1.4. The sheet metal is bent between a V-shaped die and 
punch. During V-die bending, the workpiece is bent with the help of the force acting on the 
punch. On the outer and inner surfaces, this plastic deformation starts directly underneath the 
punch. On the outer surface maximum tensile stress is observed whereas on the inner surface 
maximum compressive stress is seen. The initial bending stage of the V-die bending is 
similar to air bending as it starts as soon as the punch contacts the workpiece. Unlike air 
bending, process continues until the workpiece’s legs become tangential to the faces of the 
die [8]. 
 
In V-die bending, just before the fully loaded stage of the process, the two end regions of the 
bent-up workpiece leave the die and rest on the punch. The ends of the sheet are bent 
towards the die again as the punch continuous to move downwards and on both sides 
secondary bent-up regions are generated just above the main bent-up region. The sheet is 
fully supported by the die and the punch at the fully loaded state. The secondary bent-up 
regions cause springback in the opposite direction to the springback resulted by the main 
bent-up region after the sheet is removed from the die and the punch [2]. In V-die bending, 
the clearance between the punch and the die is the thickness of the workpiece. In the V-die 
bending process, the usual thickness of the workpiece is between 0.5 mm and 25 mm. 
Several types of V-die bending process are shown in Figure 1.5.  
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Figure 1.4 Different phases of the V-die bending [8] 

 
 
 

 
Figure 1.5 Several types of V-die bending process [9] 

 
 
 
1.4 Springback  
Upon release of the forming force, metals show a tendency to partially return to their original 
shape due to elastic recovery of the material. The reason for elastic recovery, which is also 
called springback, is elastic stresses about the neutral axis. In sheet metal forming, 
springback is an important issue which can lead to important problems during component 
assembly, if not considered thoroughly. Springback is affected mainly by two factors; 
mechanical properties and geometric properties. Material’s mechanical properties 
influencing springback are mainly modulus of elasticity, yield strength, strain hardening 
characteristics, and Poisson’s ratio. Some of the essential geometric properties affecting 
springback are sheet thickness, tooling geometry, and clearance between punch and die or 
workpiece. 
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To define springback numerically, K, springback factor is used. Related parameters with 
springback are initial radius Ri, final radius Rf, part angle αf, die or bend angle αi, and sheet 
thickness t, which are illustrated in Figure 1.6. 
 
 
 

 
Figure 1.6 Springback parameters [10] 

 
 
 
During the process, it is assumed that the arc length on the neutral axis, W, remains 
unchanged in the bent-up region of the workpiece. The relationship between arc length, W, 
Ri, Rf, αf, αi is [2]: 
 

( ) ( )
2 2f i i f
t tW a R a R= + = +                                                                                            (1.1) 

 

The springback factor, K, is defined as [2]: 
 

/ ( ) / ( )
2 2i f i f
t tK a a R R= = + +                                                                                       (1.2)   

 

In all of the bending processes, it is virtually impossible to have zero springback and 
therefore it must be taken into account in every bending process. Higher bend angle and 
smaller bend radius are used in bending processes to compensate for springback, however 
variations in the process parameters and material properties affect spring-back dramatically. 
This implies that springback is almost inevitable. 
 
 
1.5 Artificial Neural Network 
An artificial neural network (ANN) is a system based on the operation of biological neural 
networks. ANN attempts to imitate the learning activities of the human brain. Artificial 
neural networks are made of interconnecting artificial neurons which may share some 
properties of biological neurons. Neural networks learn by example like people. Neural 
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networks possess the ability to model input-output relationship of data in a nonlinear fashion. 
Neural networks have been used in a broad range of applications including pattern 
classification, pattern recognition, optimization, prediction and automatic control. 
Generally multi-layer neural network is used in the systems. A multi-layer neural network 
consists of an input layer, hidden layers and an output layer. The first layer is the input layer 
and it accepts the input data for training. Input layer consists of a number of neurons usually 
equal to the number of input. Hidden layers are between the input and output layer. Hidden 
layer receives the data from the input layer, then processes the data and finally sends a 
response to the output layer. Hidden layer consists of many computational neurons and 
transfer functions. Output layer consists of a number of computational neurons. Figure 1.7 
shows a general structure of the artificial neural networks. 
 
 
 

 
Figure 1.7 General structure of Artificial Neural Network [5] 

 
 
 
Neural networks can be divided into two main classes in terms of pattern of connections. 
These two main classes are feedforward neural networks and recurrent neural networks. 
There are three types of learning algorithms widely-used in neural networks, which are 
supervised learning (error based), reinforced learning, and unsupervised learning. 
 
 
1.6 Scope of the Thesis 
In this study, several bending operations, namely wipe bending, air (free) bending and V-die 
bending are modeled, simulated and analyzed to investigate the effects of springback. An 
artificial neural network structure is then designed for each bending process to employ in 
future analysis of bending operations and springback predictions. 
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To model the bending processes, commercial finite element software MSC. 
MARC/MENTAT and to design ANN structure commercial mathematical modeling 
software MATLAB are used. In the finite element modeling, four different material models 
are used for each bending process and effects of different sheet thicknesses, different punch 
and die radii on springback are investigated. For future springback prediction ANN 
algorithm is designed and used. ANN predictions are compared with FEA results.  
Finite element models and ANN models for wipe, air and V-die bending processes are 
combined to investigate springback in a complicated commercial product and the results are 
discussed.   
 
In experimental analysis several stainless steel (SS304) sheets are used in air bending 
process with two different thickness values. After experimental and finite element analyses 
of the parts, results are compared and the effects of material properties, bending angle and 
geometric properties of the sheets are discussed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

7 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 
 



CHAPTER 2 
 
 

2 LITERATURE SURVEY 
 
 
 

Several researchers have worked on the effects of springback phenomenon in various 
forming operations. Gardiner  [11] studied on springback in pure bending of metals and he 
achieved an analytical solution for this phenomenon with perfect elastoplasticity. Panthi et 
al. [12] modeled sheet metal bending process with a large deformation algorithm based on 
Total – Elastic – Incremental - Plastic Strain. They examined the effect of load on 
springback for different sheet thicknesses and different die radii. Lee and Yang [13] used the 
Taguchi method to evaluate the numerical factors influencing springback. They chose U-
draw bending process as an evaluation problem due to its large springback. Yi et al. [14] 
claimed that FE models are not successful to predict springback and they derived a model to 
predict the springback analytically for six different deformation patterns by using differential 
strains after relief from the maximum bending stress. Pahole et al. [15] researched bending 
of sheet metal for angles greater than 90 degrees with simple forming tools. They claimed 
that for complicated bends, bending method “traktrix” (in two steps) or the method “turning 
of the strip” (in one step) can be used. For bending process they used the principle of 
“traktrix“curve known in field of deep drawing process. They developed “traktrix” curve for 
more complicated bends. Marretta et al. [16] aimed to develop a design tool for stamping 
processes. S-shaped U-channel stamping operation carried out on a lightweight aluminum 
alloy of automotive interest is investigated in their study. They especially focused on the 
control of springback phenomena and the prevention of excessive part thinning. They 
proposed an approach which is multi-objective optimization problem. This approach is a 
combination of Response Surface Methodology (RSM), Monte Carlo Simulation (MCS) 
method and finite element (FEM) numerical simulation. Hsu and Shien [17] used elastic-
plastic finite element approach is based on the flow rule associated with Hill's quadratic yield 
criterion to simulate and analyze axisymmetric sheet metal forming processes  punch 
stretching and deep drawing. They obtained numerical solutions to simulate the springback 
effect in various sheet metal forming operations from a total Lagrangian formulation of a 
finite-strain thin shell theory. They compared the calculated results with experimental data 
and existing numerical solutions. Esat et al. [18] calculated the amount of springback, the 
total equivalent plastic strain and the equivalent Von Mises stress distributions of different 
aluminum materials with different thicknesses in bending operations by commercially 
available finite element analysis (FEA) software. They compared the FEA results with 
empirical data. Meinders et al. [19] provided guidelines regarding the mesh discretization 
and a new through-thickness integration scheme for shell elements to improve the 
springback prediction by FE analysis. An industrial automotive part is used to apply the 
procedure to automatically compensate the tool geometry, including the CAD description. 
 
Various researchers have worked on finite element analysis and simulation of V-die bending. 
They researched the effects of springback phenomenon particularly. Tekiner [9] carried out 
an experimental study on determination of springback of bent products. With different bend 
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angles, the amounts of springback of several sheet metals were achieved on a modular V 
bending die. Springback graph were produced for six different materials in 18 different 
modular dies by using four different bending methods. Huang et al. [20] offered a model 
based on the tensile properties of the material and the geometry of the tools used. Their 
model predicts the correct punch load for bending, and the precise final shape of products 
after unloading. They provided an elasto-plastic incremental finite-element computer code to 
simulate the V-die bending of sheet metal. Tekaslan et al. [21] researched the subject of 
bending dies and springback in bending process. They aimed to find out how much steel 
sheet metal materials can be bent without failure in various angles and to find springback in 
V-die bending. They prepared 15 different dies, they bent more than 150 samples and they 
measured the obtained angles with profile meter. Chan et al. [22] studied a different type of 
V-die bending model within a forming process with one clamped end and one free end. They 
investigated the effects of different punch radii, punch angles and die-lip radii as well as the 
effect of the punch displacement on springback. Thipprakmas [8] investigated the effects of 
punch height on V-die bending process by finite element analysis. He compared the 
experimental results and finite element results to prove his argument.  
 
Researches related to springback phenomenon in wipe bending process are carried out 
recently. Nasrollahi and Arezoo [23] investigated springback results of the perforated 
components in wipe bending. They researched the effects of hole type, number of holes, the 
ratio of hole width to sheet width, die radius and pad force on springback in wipe bending 
process. They used FEM results as the training data for ANN and also they compared FEM 
results with experimental results. Kazan et al. [5] focused on wipe bending process and 
ANN. They used finite element modeling for wipe bending process and compared the FEA 
results with ANN results. They focused on effects of sheet thickness, tooling geometry, 
lubrication conditions, and material properties and processing parameters on springback. 
Song et al. [24] focused on evaluation of the reliability of different ways of springback angle 
prediction on the straight flanging operation. They conducted an experiment of straight 
flanging operation. They discussed prediction approaches such as analytical model, 
numerical simulation using Finite Element Method (FEM) and Meshfree Method. They 
compared finite element results with experiment. Ling et al. [25] conducted a parametric 
study on how the inclusion of a step in the die may reduce springback to reduce time spent 
on manual corrections of the die. They researched the effects of die clearance, die radius, 
step height and step distance on springback. Chanthapak et al. [26] investigated influences of 
bottoming-bead geometry on springback by using finite element method and laboratory 
experiments are done to validate the FEM simulation. They used low-carbon steel, SPCC 
(JIS G 3141) and a commercial code. 
 
Air bending is a similar process to V-die bending however differences in die geometry cause 
varied springback behavior in process. These kinds of differences are researched and 
springback behavior of air bending is investigated by many researchers. Vin et al. [27] 
presented “three section” model for air bending. They assumed plain strain condition exists 
in their study and Bernoulli’s law is valid. They used Swift’s equation to describe material 
behavior, and addressed change of Young’s modulus under deformation. Their model is 
capable of generating information such as required punch displacement and the unfolded 
blank size very accurately. Fu et al. [28] constructed a finite element (FE) model using Hill’s 
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quadratic anisotropic yield function under the conditions of plane stress and plane strain, 
respectively. They embedded the improved Hill’s yield function into ABAQUS to model 
single-step air-bending and semiellipse-shaped workpiece multiple-step air-bending tests for 
WELDOX700, WELDOX900 and OPTIM960 anisotropic sheets. They calculated 
springback in air bending, thickness strain along the transverse direction and parts profiles. 
Wang et al. [7] proposed a bending methodology to achieve more accurate final bend angles 
by controlling punch displacement. They estimated workpiece properties from measured 
loaded and unloaded bend angles and these estimated properties are used to determine the 
final punch position required to obtain the desired bend angle after springback. They made a 
series of experiments and compared the test results with their FE analysis results. Garcia-
Romeu et al. [29] studied on springback determination of air bending process. They obtained 
springback values for different bending angles of aluminum and stainless steel specimens. Fu 
et al. [6] developed a neural network algorithm for prediction of punch radius problem 
involving many parameters of air-bending forming. For minimizing the error between the 
predictive punch radius and the experimental one they used a genetic algorithm (GA) to 
optimize the weights of neural network. They established 2D and 3D FEM with the predicted 
punch radius and other geometrical parameters of a tool. They showed that the punch design 
method is feasible with the prediction model of GA-neural network. 
 
Prediction of springback with the help of artificial neural network (ANN) is a popular and 
controversial matter these days. Many researches and studies were done related to this topic. 
Liu et al. [30] proposed a technique based on artificial neural network and genetic algorithm 
to solve the problem of springback. They used an improved genetic algorithm to optimize the 
weights of neural network. They achieved more accurate prediction of springback with the 
GA-ANN model. Ruffini and Cao [31] combined finite element method and neural network 
model to control the springback including several parameters such as material properties, 
sheet thickness etc. in an aluminum channel forming process. Inamdar et al. [32] studied 
effects of network parameters on the mean square error of prediction in ANN. They used 
experimental data derived from air V-bending process to train the ANN model. They used 
five input parameters in their ANN model based on back propagation algorithm. Pathak et al. 
[33] proposed an artificial neural network model to predict the responses of the sheet metal 
bending process. The proposed neural network model was trained by 44 cases analyzed by 
using finite element method. Inputs are sheet thickness and die radius; outputs are stresses, 
strains, springback, loads, etc for the neural network. They tested trained neural network 
with five new patterns. They concluded that most of neural network results were quite close 
to the simulation results. Forcellese et al. [34] investigated a neural network control system 
for the development of an intelligent air bending process. They especially focused on the 
training set size for predictive performances of the neural networks. They bent aluminum 
sheets which are in form of different thicknesses to obtain the data base for training. They 
used their neural network model to predict other bent specimens and they compared the 
results. Downes et al. [35] developed a technique using an artificial neural network to assist 
in the design of roll-forming tools. They preferred to study on cold roll-forming since it is 
highly efficient and economical method for the production of sheet metal products, 
compared to rival processes but roll-forming has quality problems such as longitudinal 
curvature. Their technique minimizes the errors of tool design method and superior than trial 
and error procedure. Cheng et al. [36] used three supervised neural networks to estimate 
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bending angles formed by a laser. Spot diameter, scan speed, laser power, and workpiece 
geometries including thickness and length of sheet metal workpiece are the inputs to these 
neural networks. Regression models of bending angle are used to comparison. To evaluate 
the performance of these models verification experiments are conducted. It is shown that the 
radial basis function neural network model is superior to other models in predicting bending 
angle. Viswanathan et al. [37] controlled springback of a steel channel forming process using 
an artificial neural network and a stepped binder force trajectory. They used punch 
trajectory, which reflects variations in material proper ties, thickness and friction condition 
as the key control parameter in the neural network. They obtained consistent springback 
angles in experiments using this control scheme. 
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CHAPTER 3 
 
 

3 FINITE ELEMENT MODELING 
 
 
 
3.1  Introduction 
Finite element modeling and commercially available finite element tools have been used by 
engineers to model and solve mechanics problems. Nowadays, very complicated, combined 
and highly nonlinear problems can be modeled with the help of advanced computers. 
Bending operations are also very complicated and highly nonlinear processes, and can be 
modeled by employing finite element analysis technique to simulate the operations. 
 
In this study, MSC.MARC/MENTAT was used to model   finite element analyses of the 
bending operations. The software consists of two main programs; namely, MARC and 
MENTAT. These programs work together to generate geometrical information that defines 
your structure, analyze your structure and graphically depict the results. MENTAT is 
responsible of preprocessing and post-processing, while MARC is responsible for analysis. 
MENTAT prepares and processes data for use with the finite element method. MARC 
performs linear and nonlinear stress analysis in the static and dynamic regimes [38]. 
 
Large deformations occur in bending operations therefore large displacement theory was 
used to simulate the processes. In solid mechanics, two different approaches are used to 
describe the kinematics of deformation as Lagrangian description and Eulerian description. 
All quantities are expressed with respect to the initial configuration in Lagrangian 
description whereas all quantities are expressed in terms of the current configuration in 
Eulerian description. Lagrangian Formulation was applied in this study so that finite element 
mesh was attached to the material and moved through space along with the material. There 
are also two distinct Lagrangian methods used in solid mechanics problems; Total 
Lagrangian formulation and Updated Lagrangian formulation. 
 
In the total Lagrangian formulation, all the variables and the equations are expressed with the 
original undeformed state as the reference whereas in the Updated Lagrangian formulation, 
all the variables and the equations are expressed with respect to the current configuration 
acts as the reference state. Updated Lagrangian formulation has been used to simulate 
bending operations in many simulations [39] . The Updated Lagrangian formulation was also 
used in this study. 
 
There mainly exist three types of nonlinearity in the finite element analysis. These 
nonlinearity sources are geometric nonlinearities, material nonlinearities and nonlinear 
boundary conditions. The main reason of the geometric nonlinearities is that nonlinear 
relationship between strains and displacements. As the structure deforms the change in 
geometry is taken into account to form the strain-displacement and hence the equilibrium 
equations. Large displacement problems are one type of the geometrically nonlinear 
problems. 
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The nonlinear relationship between stresses and strains, results in material nonlinearity. 
Material behavior depends on current deformation state and possibly past history of the 
deformation. Nonlinear elastic, plastic, viscoelastic, viscoplastic, creep behaviors are some 
examples for material nonlinearity. 
 
Boundary conditions depend on the deformation of the structure. Impacts, assembly of the 
mechanical components, sliding frictional interfaces contain nonlinear boundary conditions. 
These three types of the nonlinearities were present in all applications in this study. 
 
 
3.2 Finite Element Analysis 
All bending operations are appropriate for plane strain assumption in this study and so all 
case studies were considered as plane strain problems. This assumption simplified the 
models from 3D to 2D. 
 
Four node, isoparametric, arbitrary quadrilateral elements were used in the analyses. When 
required the created mesh was converted to a finer mesh by subdividing into smaller 
elements to overcome the nonlinearities and achieve more accurate results.  
 
In this study, all bending processes were thought as contact problems. In all finite element 
models, the dies were assumed as rigid and bending occurred with the contact of the bodies 
in motion. Displacement boundary conditions were employed in wipe bending analyses. 
Force boundary conditions were not used in this study. 
 
In this study, materials in all case studies were considered as isotropic and elastic-plastic 
materials. Young’s modulus, Poisson’s ratio, and representation of the workhardening curve 
are the input of the program. 
 
In this study, the von Mises yield criterion, also known as maximum distortion energy 
theory, was used in all finite element analyses.  
 
Coulomb Friction Model was preferred in all of the analyses in this study.  
 
The Coulomb Friction Model is: 
 
𝐹𝑓 ≤ −𝜇𝐹𝑁                                                                                                                           (3.1) 

 

where 

Ff   is the friction force exerted by each surface on the other [N] 

FN is the normal reaction force [N] 

µ is the coefficient of friction 
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3.3 The Finite Element Modeling 
Air bending, V-die bending, and wipe bending operations are modeled and analyzed using 
FEM in this study. Input data are the material properties, time vs. velocity tables, boundary 
conditions, and stress vs. plastic strain tables for modeling. Created finite element models of 
air bending, V-die bending and wipe bending are shown in Figures 3.1, 3.2, and 3.3. 
 
 
 

 
Figure 3.1 FEM of air bending 
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Figure 3.2 FEM of V-die bending 

 
 
 

 
Figure 3.3 FEM of wipe bending 
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CHAPTER 4 
 
 

4 THE ARTIFICIAL NEURAL NETWORK DEVELOPMENT 
 
 
 
4.1 Introduction 
An artificial neural network (ANN) is a system inspired in the natural neurons that tries to 
simulate human brain's learning process. Natural neurons receive signals through synapses 
located on the dendrites or membrane of the neuron. The neuron is activated and emits a 
signal through the axon when the signals received are strong enough (reach a certain 
threshold value). This signal might be sent to another synapse, and might activate other 
neurons [41].  
 
When modeling artificial neurons the complexity of real neurons is imitated. Artificial neural 
network is an interconnected group of artificial neurons that uses a mathematical model for 
information processing based on a connectionist approach to computation [42]. Artificial 
neurons consist of inputs (like synapses), which accepts the input data for training and are 
multiplied by weights (strength of the respective signals), and then hidden layer receives the 
data from the input layer and processes the data  by a mathematical function which 
determines the activation of the neuron and finally sends a response to the output layer. In 
output layer, the outputs of the artificial neuron are computed. In brief, artificial neural 
networks combine artificial neurons in order to process information. Figure 4.1 shows a 
neural network model as a simplified model of the human brain. Figure 4.2 also shows the 
general structure of the artificial neural network system. 
 
 
 

 
Figure 4.1 Simplified model of the brain [43] 
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Figure 4.2 The general structure of the artificial neural network system [5] 
 
 
 
4.2  Types of the Neural Network according to connection topologies 
Neural Network systems can be divided into three main classes, which are single layer neural 
network, multilayer neural network and recurrent neural network. 
 
 
4.2.1 Single Layer Neural Network 
Single-layer neural network is the simplest kind of neural network, which consists of a single 
layer of output neurons. The inputs are fed directly to the outputs via a series of weights. In 
each neuron, the sum of the products of the weights and the inputs are calculated, and if the 
value exceeds some threshold value (typically 0) the neuron activates and takes the activated 
value (typically 1); if not it takes the deactivated value (typically -1) [42]. Artificial neurons 
definition comes from these neurons which have this kind of activation function. Figure 4.3 
shows single layer neural network. 
 
 
 

 

Figure 4.3 Single layer neural network [42] 
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4.2.2 Multi-Layer Neural Network 
Multi-layer neural network consists of multiple layers of computational units, usually 
interconnected in a feed-forward way. Each neuron has directed connections to the neurons 
of the subsequent layer in one layer. The architecture of this class of network has one or 
more intermediary layers called hidden layers. Before directing the input to output layer the 
hidden layer does intermediate computation. The input layer neurons are linked to hidden 
layer neurons and hidden layer neurons are linked to output layer neurons. Figure 4.4 
illustrates multi-layer neural network. In this study, multi-layer neural network is preferred.  
 
 

 

Figure 4.4 Multi-layer neural network [44] 
 
 
 
4.2.3 Recurrent Neural Network 
A recurrent neural network has at least one feedback loop. There could be neurons with self-
feedback links that is the output of a neuron is feedback into itself as input [42]. Recurrent 
neural network is illustrated in Figure 4.5. 
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Figure 4.5 Recurrent neural network [42] 
 
 
 
4.3 Types of the Neural Network in Terms of Pattern of Connections  
Neural Network systems can be divided two main classes according to pattern of connections 
between the neurons and the propagation of data. These two main classes are feed-forward 
neural networks and recurrent neural networks. 
 
 
4.3.1 Feed-forward Neural Networks 
The data flow from input to output neurons is strictly transmitted forwards in feed-forward 
neural networks. The data processing can extend over layers of neurons, but no feedback 
connections are present, such that, connections extending from outputs of neurons to inputs 
of neurons are in the same layer or previous layers. Perceptron and Adaline are classical 
examples of feed-forward neural networks. A feed-forward neural network is used in this 
study. Feed-forward neural network is illustrated in Figure 4.4. 
 
 
4.3.2 Recurrent Neural Networks 
Recurrent neural networks have feedback connections. The dynamical properties of the 
network are important contrary to feed-forward networks. The activation values of the 
neurons undergo a relaxation process in some cases such that the system (neural network 
structure) will evolve to a stable state in which these activations do not change anymore. In 
other applications, the change of the activation values of the output neurons is important so 
that the dynamical behavior constitutes the output of the neural network [45]. Examples of 
recurrent networks have been presented by Anderson, Kohonen and Hopfield. Recurrent 
neural network is illustrated in Figure 4.5. 
 
 
4.4 Learning Algorithms of Neural Networks 
Learning (training) means that a neural network accepts the inputs and process them 
according to its own rules and gives outputs. For the next time it is already taught and gives 
results as soon as possible. This learning is done by some algorithms. There are three types 
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of learning algorithms widely-used in neural networks, which are supervised learning (error-
based), unsupervised learning and reinforced learning. This classifying is based on presence 
or absence of a teacher in the system and the information provided for the system to learn.  
 
 
4.4.1 Supervised (Error-Based) Learning 
In this study, supervised learning is chosen, in which the network is trained by providing it 
with input and matching output patterns. These input-output pairs can be provided by the 
system which contains the neural network (self-supervised) [45]. In supervised learning, 
computed output by network and the correct expected output are compared and finally an 
error is generated. The generated error is used to change network parameters that result in 
improved performance. In supervised learning a teacher exits during learning (training) 
process and presents expected output. Figure 4.6 illustrates supervised learning algorithm. 
 
 
 

 

Figure 4.6 Supervised learning algorithm [45] 
 
 
 
Supervised learning can be divided in two subclasses namely stochastic and error correction 
gradient descent. 
 
 
4.4.1.1 Stochastic Learning 
The weights in the system are adjusted in a probabilistic fashion in the stochastic learning. 
Simulated annealing can be given as an example for this type of learning. Simulated 
annealing is employed by Boltzmann and Cauchy machines [42]. 
 
 
4.4.1.2 Error Correction Gradient Descent Learning 
The essential rule of this learning type is minimization of errors defined in terms of weights. 
This learning type is based on minimization of errors and the activation function of the 
network. In this type of learning the activation function must be differentiable because the 
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updates of weight are dependent on the gradient of the error. Back-propagation algorithm 
and Least Mean Square algorithm are the examples of Gradient Descent learning [42].  
 
Back-propagation algorithm is a special type of error algorithm and used in multi-layered 
feed-forward artificial neural networks. In this algorithm, neurons in each layer send their 
signals forward, and gathered errors are propagated backwards. The inputs are received by 
input layers and processed in hidden layers and finally the output of the network is given by 
the neurons on an output layer. Supervised learning is used in the back-propagation 
algorithm which means that inputs and output are provided to the network to compute and 
then difference between actual and expected results (error) is calculated. The main idea 
behind this algorithm is reducing this error until the ANN learns the training data. The 
procedure says that the training starts with random weights and the system adjust them to 
achieve minimal error [41]. 
 
The activation function of this algorithm used in neurons is a weighted sum: 
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and the most common output function used in this algorithm is the sigmoidal function: 
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The detailed explanation of sigmoidal function is given in the transfer function section. The 
error of the network can be calculated as summing of the errors of all the neurons in the 
output layer: 

2( , , ) ( ( , ) )j j
j
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From this formula it can be seen that error depends on the output, inputs, and weights. With 
the help of this formula the weights can be adjusted to minimize the error by the method of 
gradient descendent: 

ji
ji

Ew
w

η ∂
∆ = −

∂
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It is recommended that ANNs implementing the back-propagation algorithm should not have 
too many layers, because the time for training the networks grows exponentially. In this 
thesis, back-propagation algorithm is used. 
where: 
 

ix   : input 

jiw : weight 

jd  : output 

x   : { }1 2, ,..., nx x x  
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w   : { }1 2, ,..., nw w w  

d   : { }1 2, ,..., nd d d  

 
 
4.4.2  Unsupervised Learning 
In unsupervised learning, training is done such that an output unit is learned to respond to 
clusters of pattern within the input. In this type of learning network system is supposed to 
discover statistically salient features of the inputs. Differently from supervised learning, the 
network learns of desired output owned by discovering and adapting to the structural features 
in the input patterns [45]. In unsupervised learning a teacher does not exit during learning 
(training) process and because of that the expected output is not presented to the network. 
Hebbian Learning and Competitive Learning are two main subclasses of unsupervised 
learning. 
 
 
4.4.2.1 Hebbian Learning  
Hebbien Learning based on a rule and this rule bases on correlative weight adjustment. The 
input-output pattern pairs are associated by the weight matrix known as correlation matrix in 
this rule. Kosko, Anderson and Lippman propose many variations of this rule [42]. 
 
 
4.4.2.2 Competitive Learning 
In Competitive Learning, strongly responding neurons to the input actuator have their 
weights updated. All neurons in the layer compete and the winning neuron undergoes 
weights adjustment when an input pattern is presented. This phenomenon is called "winner-
takes-all" [42]. 
 
 
4.4.3 Reinforced Learning 
Reinforced learning can be considered as an intermediate form of the above two types of 
learning. The training mechanism does some action on the system and gets a feedback 
response from the system. A teacher exits but does not present the desired output but only 
grades whether the computed output is correct or incorrect. Generally, parameter adjustment 
is continued until an equilibrium state occurs, following which there will be no more changes 
in its parameters [45].  
 
 
4.5 Transfer (Activation) Functions 
The transfer function may be a linear or a nonlinear. To satisfy some specification of the 
problem that the neuron is attempting to solve a special transfer function is chosen. Most 
commonly used functions are discussed in this section. 
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4.5.1 Hard Limit (Threshold) Transfer Function 
If the function argument is less than 0, hard limit transfer function sets the output of the 
neuron to 0, or 1 if its argument is greater than or equal to 0. Function graph is shown in 
Figure 4.7. 
 
 

 
Figure 4.7 Hard limit transfer function [46] 

 
 
 
where: 
a : neuron output 
n : net input 
Neuron with hard limit transfer function is called McCulloch-Pitts model [46]. 
 
 
4.5.2 Linear Transfer Function 
The output of linear transfer function is equal to its input; a n= . It is illustrated in Figure 
4.8. 
 
 

 
Figure 4.8 Linear transfer function [46] 
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Neurons with linear transfer function are used in the ADALINE (Adaptive Linear Element) 
networks. 
 
 
4.5.3 Log-Sigmoid Transfer Function 
Log-sigmoid transfer function takes the input which may change any value between plus and 
minus infinity and squashes the output into the range 0 to 1, according to the formula [46]: 
 

1
1 na

e−=
+

                                                                                                                          (4.5) 

 
This function is a nonlinear curved S-shape function and the most common type of transfer 
function used in networks. It is commonly used in multilayer networks that are trained using 
the back-propagation algorithm, in part because this function is mathematically well 
behaved, differentiable and strictly increasing function as illustrated in Figure 4.9. In this 
study, the Log-Sigmoid transfer function is used since the network is multilayered and uses 
back-propagation algorithm. 
 
 

 

Figure 4.9 Log-sigmoid transfer function [46] 
 
 
 
4.6 Training Algorithm 
In this study, Levenberg–Marquardt (LM) algorithm is used for training algorithm since the 
Levenberg-Marquardt algorithm is a robust and rapidly converging method for 
approximating a function. LM algorithm is a widely used technique for nonlinear least 
squares problems. LM algorithm is a combination of steepest descent and the Gauss-Newton 
method. The algorithm behaves like a steepest descent method when the current solution is 
far from the correct one: slow, but guaranteed to converge. It becomes a Gauss-Newton 
method when the current solution is close to the correct solution [47]. Levenberg–Marquardt 
(LM) algorithm consists in solving the equation basically: 
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(JTJ + λI) δ = JTE                                                                                                                  (4.6) 

Where J is the Jacobian matrix for the network system, λ is the Levenberg's damping 
factor, I is the identity matrix, δ is the weight update vector that is aimed to be found, 
and E is the error vector which contains the output errors for each input vector used on 
training the network. The δ indicates how much network weights should be changed to 
achieve a (possibly) better solution. The JTJ matrix is the approximated Hessian. The λ is 
adjusted at each iteration, and guides the optimization process. A smaller value can be used, 
bringing the algorithm closer to the Gauss–Newton algorithm if reduction of E is rapid. 
Whereas if an iteration gives insufficient reduction in the residual, λ can be increased, giving 
a step closer to the gradient descent direction. 
 
 
4.7 Performance Function 
The mean square error (MSE) function is derived for regression problems. This function can 
be obtained by the maximum likelihood (ML) principle assuming the independence and 
Gaussianity of the target data. The created neural network system uses Q sets of input and 
output data during training. The network adjusts the weights by an iterative algorithm so that 
the outputs (yk) according to the input patterns will be as close as possible to their respective 
desired output patterns (dk). The mean square error (MSE) function is to be minimized 
considering a neural network with K which is the total number of outputs as [5] 
  

2

1 1

1 [ ( ) ( )]
Q K

k k
q k

MSE d q y q
QK = =

= −∑∑                                                                             (4.7) 

 

To minimize MSE by adjusting the weights of connection links, the back-propagation 
algorithm is most widely used in the network system. The mean square error (MSE) function 
is also used in this study. 
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CHAPTER 5 
 
 

5 CASE STUDIES AND RESULTS 
 
 
 
In this chapter, air bending, V-die bending, and wipe bending operations are modeled and 
analyzed using FEM. With the help of the analyses, springback amounts are found. 
Springback results of the bending operations are used in artificial neural network 
development. FEA results and ANN results are combined to analyze an industrial workpiece 
used in defense industry at the end of chapter. 
 
The bending operations are considered as plane strain. Four-node quadrilateral plane strain 
elements are used in the analyses. Coulomb's friction is used to define friction phenomenon 
between blank holder, sheet, die, and punch. Updated Lagrange procedure is preferred. For 
the finite element analyses, input data are the material properties, time vs. velocity tables, 
boundary conditions, stress vs. plastic strain tables, the load cases and the definition of the 
contact model. In this study, only steel sheets are used. 
 
The developed ANN system is used for springback predictions. Multilayer feedforward 
backpropagation algorithm is used as the ANN system algorithm. Gathered springback 
predictions through ANN are compared with FEA results. Then, all FEA and ANN results 
are combined to investigate the production stages of an industrial workpiece.  
 
 
5.1  Air Bending 
 
 
5.1.1 FEA of Air Bending 
In this case study, three different bend angles, four different sheet thicknesses, four different 
types of steels are modeled with different combinations and analyzed to investigate 
springback amounts and stress distributions. Bending angles are 112°, 116°, and 120°, and 
sheet thicknesses are 1, 1.5, 2, and 2.5 mm. All steel sheets have modulus of elasticity of 200 
GPa and a Poisson’s ratio of 0.3. For elastic – plastic deformation behavior, plastic strain-
true stress relations given in Table 5.1 are used. Three of them are obtained from previous 
research [2, 20]. In these studies, plastic strain-true stress relation for steel 1, steel 2, and 
steel 3 materials is obtained by tension tests. The data for SS304 material is obtained from 
simple tension test. The workpieces have the dimensions of 50×50 mm. The necessary 
dimensions needed to model the processes are illustrated in Figure 5.1. 
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Table 5.1 Strain hardening data 

Steel 1 
 

Steel 2 
Plastic Strain True Stress (MPa) 

 
Plastic Strain True Stress (MPa) 

0 185 
 

0 325 
0.0243 250 

 
0.0306 375 

0.0729 330 
 

0.0732 430 
0.1495 395 

 
0.1224 475 

0.2195 434 
 

0.1849 511 
0.2751 445 

 
0.2533 535 

0.2973 465 
 

0.2740 550 

     Steel 3 
 

Steel 4 (SS304) 
Plastic Strain True Stress (MPa) 

 
Plastic Strain True Stress (MPa) 

0 286 
 

0 340 
0.0283 325 

 
0.0513 410 

0.0690 368 
 

0.0862 445 
0.1123 405 

 
0.1040 467 

0.1754 448 
 

0.1500 510 
0.2278 479 

 
0.2000 550 

0.2743 503 
 

0.2950 591 
0.3016 516 

 
0.3560 610 

 
 
 

 
Figure 5.1 Schematic view of air bending with necessary dimensions 
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As seen from the tables, the yield strength of the steel sheets for steel one, two, three, and 
four are 185, 325, 286 and 340 MPa respectively. Before the ANN analyses, springback 
angles (in degrees), equivalent von Misses stress distributions, and stress distributions in the 
longitudinal direction are presented. Bending and springback angles are illustrated in Figure 
5.2. The analyzed models and achieved springback angles are shown in Table 5.2. 
 
 
 

 
Figure 5.2 Schematic view of air bending angle 

 
 
 

Table 5.2 Air bending models and springback results 

  Material Thickness (mm) Bending angle (°) Springback (°) 
Model 1 Steel 1 1 112 2.37 
Model 2 Steel 1 1.5 112 1.73 
Model 3 Steel 1 2.5 112 1.17 
Model 4 Steel 2 2 116 1.83 
Model 5 Steel 2 2.5 116 1.50 
Model 6 Steel 3 1 112 2.90 
Model 7 Steel 3 1.5 120 2.04 
Model 8 Steel 4 1.5 116 2.35 
Model 9 Steel 4 2 112 1.90 
Model 10 Steel 4 2 116 1.88 
Model 11 Steel 4 2 120 1.80 
Model 12 Steel 4 2.5 120 1.52 
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As can be seen from Table 5.2 different combinations of thickness, bending angle, and 
material are constructed and effects of these parameters on springback are investigated. 
When model 1 and model 2 are compared it is observed that springback amounts decrease as 
thickness increases for the same material and same bending angle which is 112°. In a similar 
manner when model 9 and model 11 are compared it is seen that springback amounts 
decrease as bending angle increases for the same material and same thickness which is 2 
mm. Also when model 1 and model 6 are compared it is found that springback amounts 
increase as yield strength of the material increases for the same thickness and same bending 
angle which are 1 mm and 112°, respectively. This result is in agreement with literature [48]. 
 
To investigate effects of thickness, bending angle, and yield strength on von Mises stress 
Table 5.3 constructed. 
 
 
 

Table 5.3 Maximum von Mises stress results 

 
Thickness 

(mm) 
Bending 
angle (°) 

Yield strength 
(MPa) 

Max. von 
Mises stress 

(fully loaded) 
(MPa) 

Max. von 
Mises 

residual 
stress 

(unloaded) 
(MPa) 

Model 1 1 112 185 352.8 144.3 

Model 2 1.5 112 185 391.3 159.9 

Model 6 1 112 286 422.8 208.4 

Model 9 2 112 340 564.4 372.3 

Model 11 2 120 340 555.5 357.5 

 
 
 
When model 1 and model 6 are compared it is observed that material with higher yield 
strength exhibits much higher maximum von Mises stress values than the material with 
lower yield strength for the same thickness and same bending angle. When model 1 and 
model 2 are compared it is found that maximum von Mises stress increases as thickness of 
the workpiece increases for the same material and same bending angle. When model 9 and 
model 11 are compared it is seen that maximum von Mises stress decreases slightly as 
bending angle increases for the same material and same thickness. Variations of thickness 
and bending angle are effective on maximum von Mises stress distributions but the dominant 
factor is observed to be the yield strength of the materials. Also, there occurs an important 
drop in the value of the maximum von Mises stress values after the backing of the punch for 
all operations. 
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In addition to the aforementioned observations, other types of stress distributions are also 
investigated. In Figures 5.3 and 5.4, von Mises stress distribution in steel 3 for 1-mm-thick 
sheet with 112° bending angle are illustrated. 
 
 
 
 

 
Figure 5.3 Von Mises stress distribution in steel 3 for 1-mm-thick sheet with 112° bending 

angle at fully loaded stage 
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Figure 5.4 Residual von Mises stress distribution in steel 3 for 1-mm-thick sheet with 112° 

bending angle at unloaded stage 
 
 
 

 
Figure 5.5 Normal stress distribution in longitudinal direction in steel 4 for 2-mm-thick 

sheet with 116° bending angle at the fully loaded stage 
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Figure 5.6 Residual normal stress distribution in longitudinal direction in steel 4 for 2-mm-

thick sheet with 116° bending angle at the unloaded stage 
 
 
 
In Figures 5.5 and 5.6, normal stresses in longitudinal direction in steel 4 (SS304) for 2-mm-
thick sheet with 116° bending angle are illustrated. 
 
Figures 5.5 and 5.6 show that at the fully loaded stage, the midst of the sheet about the 
neutral axis is in elastic regime, while the outer (inner and outer) fibers are in plastic regime. 
After unloading, residual stresses appear and the distribution of the residual stresses is in 
agreement with theoretical information. Inner fibers of the workpiece are under compression 
while outer fibers of the workpiece are in tension. Figures 5.3 and 5.4 also verify the 
expected von Mises stress distribution, which is localized in the bent-up region in bending 
process. 
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5.1.2 ANN Development of Air Bending 
In order to predict springback amounts without using FEA and investigate the suitability of 
artificial neural networks in bending operations, an artificial neural network structure is 
developed. Table 5.4 illustrates the general structure of the developed ANN system. 
 
 
 

Table 5.4 General structure of the developed ANN system 

Neural Network Structure 
     Network type      Multi-layer 
     Pattern of connections      Feed-forward 
     Learning algorithm      Supervised (backpropagation) 
     Transfer function      Log-Sigmoid function 
     Training function      Levenberg-Marquardt 
     Performance function      Mean squared error 

 
 
 
To see the effects of the different material usage in terms of strain hardening behavior on 
springback in ANN, discrete plastic strain-true stress data are converted to Ludwig-
Hollomon's equation [49] by regression: 
 

n
pKσ ε=                                                                                                                             (5.1) 

 
where 
 
 σ : true stress 
 K : strength coefficient (MPa)  
 pε : plastic true strain 

  n   : strain hardening exponent  
 
Calculated K and n values for steels by regression method is shown in Table 5.5 
 
 
 

Table 5.5 Calculated K and n values 

  K(MPa) n 
Steel 1 635 0.25 
Steel 2 683 0.17 
Steel 3 721 0.33 
Steel 4 754 0.21 
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ANN system basically consists of two main data sets; namely, training data and testing data. 
Firstly, ANN system learns the general structure of the information given to it in training 
part and then within the testing part, validation is carried out. For air bending part, training 
data set, which is collected from FEA, is given in Table 5.6. For training, ten models are 
used. Models 5 and 10 are used for the testing part. Testing data set is given in Table 5.7. 
 
 
 

Table 5.6 Training data set 

  
Thickness 

(mm) 
Bending angle 

(°) K (MPa) n 
Springback 

(°) 

Model 1 1 112 635 0.25 2.37 

Model 2 1.5 112 635 0.25 1.73 

Model 3 2.5 112 635 0.25 1.17 

Model 4 2 116 683 0.17 1.83 

Model 6 1 112 721 0.33 2.90 

Model 7 1.5 120 721 0.33 2.04 

Model 8 1.5 116 754 0.21 2.35 

Model 9 2 112 754 0.21 1.90 

Model 11 2 120 754 0.21 1.80 

Model 12 2.5 120 754 0.21 1.52 
 
 
 

Table 5.7 Testing data set 

  
Thickness 

(mm) 
Bending 
angle (°) K (MPa) n 

Springback 
(°) 

Model 5 2.5 116 683 0.17 1.50 
Model 10 2 116 754 0.21 1.88 

 
 
 
Main aim of the ANN system is to predict necessary design and manufacturing parameters 
for a selected bending operation while minimizing or eliminating the need of possibly time 
consuming, FEA analyses. As the next step, different bending ANN systems, such as for air 
bending, wipe bending, etc., can be combined to calculate springback amount for 
complicated operations and products quickly. In this developed ANN system, springback 
prediction depends on four independent parameters which are thickness, bending angle, 
strength coefficient, and straining hardening exponent. Each parameter affects springback 
independently. ANN system combines these four different aspects and tries to draw a general 
pattern to achieve the final sprinback amount.    
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Training and testing parts are carried out within MATLAB software. ANN system's training 
part is started with 3 hidden layers for air bending as an initial guess. Results are compared 
with testing data and doing so, different number of hidden layers and percentages are tested 
to achieve close results. In this section, eight and ten hidden layer numbers are investigated 
to show the robustness of the ANN algorithm. Finally for eight and ten number of hidden 
layers, close results are achieved and tested. These results are given in Table 5.8. 
 
 
 

Table 5.8 ANN Testing Results 

                                                           8 Hidden Layers  
  Thickness (mm) Bending angle (°) K (Mpa) n Springback (°) 
Model 5 2.5 116 683 0.17 1.48 
Model 10 2 116 754 0.21 1.85 

 
                                                           10 Hidden Layers  
  Thickness (mm) Bending angle (°) K (MPa) n Springback (°) 
Model 5 2.5 116 683 0.17 1.55 
Model 10 2 116 754 0.21 1.90 

 
 
 
After testing results are achieved, they are compared with testing data, which are FEA 
results, and relative errors in percentage are given in Table 5.9. 
 
 
 

Table 5.9 Relative errors in percentage 

  Springback (°)   

  
Thickness 

(mm) 
Bending angle 

(°) 
K 

(MPa) n FEA 
8 Hidden 
Layers Error (%) 

Model 5 2.5 116 683 0.17 1.50 1.48 1.33 
Model 10 2 116 754 0.21 1.88 1.85 1.60 

 
  Springback (°)   

  
Thickness 

(mm) 
Bending angle 

(°) 
K 

(Mpa) n FEA 
10 Hidden 

Layers Error (%) 
Model 5 2.5 116 683 0.17 1.50 1.55 3.33 
Model 10 2 116 754 0.21 1.88 1.90 1.06 

 
 
 
Table 5.9 clearly shows that the constructed ANN systems with the selected parameters are 
highly capable of predicting springback. ANN system with 8 hidden layers gives results with 
relative errors less than 1.60 percent. ANN system with 10 hidden layers is capable of 
achieving results with relative errors less than 3.33 percent. 8 hidden layers seems to more 
appropriate for model 5 while 10 hidden layers seems to more appropriate for model 10. The 
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reason of that is ANN system seeks dual solution for model 5 and model 10 at the same time 
and relative error of one of them decreases while the other one’s increases. This approach is 
the nature of the ANN algorithm. Table 5.9 emphasizes that developed ANN systems are 
feasible and robust.  Both ANN systems give very close results for two different air bending 
models’ springback predictions.  
 
 
5.2 V-die Bending 
 
 
5.2.1 FEA of V-die Bending 
In this case study, two different bending angles, three different sheet thicknesses, four 
different types of steels, and three different punch radii are modeled as different 
combinations and analyzed to investigate springback amounts and stress distributions. 
Bending angles are 85°, and 90°. Sheet thicknesses are 1.5, 2, and 2.5 mm and punch radii 
are 2, 3, and 4 mm. The workpieces have the dimensions of 140×50 mm. The dimensions of 
the punch, die, and sheet are illustrated in Figure 5.7. 

 
 
 

 
Figure 5.7 Schematic view of V-die bending with necessary dimensions 

 
 
 
Bending angle is illustrated in Figure 5.8. The created bending models and achieved 
springback angles are shown in Table 5.10. 
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Figure 5.8 Schematic view of V-die bending angle 
 
 
 

Table 5.10 V-die bending models and springback results 

  Material 
Thickness 

(mm) 
Punch radius 

(mm) 
Bending angle 

(°) 
Springback 

(°) 
Model 1 Steel 1 1.5 2 85 -1.21 
Model 2 Steel 1 1.5 3 90 -1.47 
Model 3 Steel 1 2.5 3 85 -0.70 
Model 4 Steel 2 1.5 4 85 -1.80 
Model 5 Steel 2 2 2 85 -1.87 
Model 6 Steel 2 2 4 90 -1.55 
Model 7 Steel 3 1.5 4 90 -1.72 
Model 8 Steel 3 2 3 85 -1.58 
Model 9 Steel 3 2.5 2 90 -1.36 
Model 10 Steel 4 1.5 4 85 -2.01 
Model 11 Steel 4 2 2 90 -1.91 
Model 12 Steel 4 2.5 3 90 -1.30 

 
 
 
Table 5.10 shows that different combinations of punch radius, thickness, bending angle, and 
material properties.  
 
Secondary bent-up regions cause springback in the opposite direction to the one resulted by 
the main bent-up region (springforward). In Table 5.10, springback angles are negative as 
workpiece’s arms do not collectively move outwards; however on the contrary tend to move 
inwards. This phenomenon shows that springback amounts in secondary bent-up regions are 
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greater than springback amounts in main bent-up region as depicted in Figure 5.9 Primary 
and secondary bent-up regions in V-die bending. 
 
From Table 5.10, it is observed that springback amounts decrease as punch radius increases. 
Also, springback amounts decrease as thickness of workpiece and bending angle increases. It 
is also seen that springback amounts increase as yield strength of the material increases.  
 
 
 
 

 
Figure 5.9 Primary and secondary bent-up regions in V-die bending 

 
 
 
Table 5.11 shows the effects of punch radius, thickness, bending angle, and yield strength on 
von Mises stress. 
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Table 5.11 Maximum von Mises stress results 

  
Thickness 

(mm) 

Punch 
radius 
(mm) 

Bending 
angle (°) 

Yield 
strength 
(MPa) 

Max. von 
Mises stress 

(fully 
loaded) 
(MPa) 

Max. von 
Mises 

residual 
stress 

(unloaded) 
(MPa) 

Model 2 1.5 3 90 185 475.5 257.6 
Model 3 2.5 3 85 185 514.2 438.3 
Model 6 2 4 90 325 540.1 318.4 
Model 11 2 2 90 340 623.5 531.9 
Model 12 2.5 3 90 340 597.4 421.4 
Model 13 2 2 93.5 340 612.2 441.6 

 
 
 
When model 11 and model 13 are compared it is observed that material which is exposed to 
larger bending angle exhibits slightly lower maximum von Mises stress values than the 
material which is exposed to lower bending angle for the same material, same thickness, and 
same punch radius. When model 6 and model 11 are compared it is found that maximum von 
Mises stress decreases as punch radius increases for the same thickness, same bending angle 
and nearly the same yield strength. When model 2 and model 3 are compared it is seen that 
maximum von Mises stress decreases slightly as thickness of the workpiece decreases for the 
same material and same punch radius. In this case bending angle is also effective but it does 
not seem to prevent from the effect of thickness. When model 3 and model 12 are compared 
it is observed that material with higher yield strength exhibits much higher maximum von 
Mises stress values than the material with lower yield strength for the same punch radius and 
same thickness. Also, there is an important drop in the value of the maximum von Mises 
stress values after the backing of the punch for all operations. 
 
In addition to the aforementioned observations, other types of stress distributions are also 
investigated. In Figures 5.10 and 5.11, von Mises stress distributions in steel 4 (SS304) for 
2.5-mm-thick sheet with 90° bending angle and 3 mm punch radius are illustrated. 
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Figure 5.10 Von Mises stress distribution in steel 4 (SS304) for 2.5-mm-thick sheet with 90° 
bending angle and 3 mm punch radius at fully loaded stage 

 
 
 

 

Figure 5.11 Resiual von Mises stress distribution in steel 4 (SS304) for 2.5-mm-thick sheet 
with 90° bending angle and 3 mm punch radius at unloaded stage 
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Figure 5.12 Normal stress distribution in longitudinal direction in steel 3 for 2.5-mm-thick 
sheet with 90° bending angle and 2 mm punch radius at the fully loaded stage 
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Figure 5.13 Residual normal stress distribution in longitudinal direction in steel 3 for 2.5-
mm-thick sheet with 90° bending angle and 2 mm punch radius at unloaded stage 

 
 
 
In Figures 5.12 and 5.13, normal stresses in longitudinal direction in steel 3 for 2.5-mm-thick 
sheet with 90° bending angle and 2 mm punch radius are illustrated. 
 
From Figures 5.12 and 5.13, it is observed that normal stresses along the longitudinal 
direction at the fully loaded stage, and the residual stress distribution in the unloaded stage 
appeared. From Figures 5.10  and 5.11, it is seen that higher stress values shown with lighter 
color are obtained in the bent-up region.  
 
 
5.2.2 ANN Development of V-die Bending 
To predict springback amounts without using FEA for V-die bending operations, the 
developed artificial neural network structure is utilized. Training data set for V-die bending 
ANN system is given in Table 5.12. For training, twelve models are used. For testing part, a 
new model with a new bending angle, which is 93.5°, is constructed and springback result 
from FEA is achieved. This new model is named as Model 13.Testing data is given in Table 
5.13. 
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Table 5.12 Training data set 

 

Thickness 
(mm) 

Punch radius 
(mm) 

Bending 
angle (°) K (MPa) n 

Springback 
(°) 

Model 1 1.5 2 85 635 0.25 -1.21 
Model 2 1.5 3 90 635 0.25 -1.47 
Model 3 2.5 3 85 635 0.25 -0.70 
Model 4 1.5 4 85 683 0.17 -1.80 
Model 5 2 2 85 683 0.17 -1.87 
Model 6 2 4 90 683 0.17 -1.55 
Model 7 1.5 4 90 721 0.33 -1.72 
Model 8 2 3 85 721 0.33 -1.58 
Model 9 2.5 2 90 721 0.33 -1.36 
Model 10 1.5 4 85 754 0.21 -2.01 
Model 11 2 2 90 754 0.21 -1.91 
Model 12 2.5 3 90 754 0.21 -1.30 

 
 
 

Table 5.13 Testing data set 

 

Thickness 
(mm) 

Punch 
radius (mm) 

Bending 
angle (°) K (MPa) n 

Springback 
(°) 

Model 13 2 2 93.5 754 0.21 -1.82 
 
 
 
In the constructed ANN system, springback depends on five independent parameters as 
punch radius, thickness, bending angle, strength coefficient, and straining hardening 
exponent. ANN system combines these five different parameters and attempts to draw a 
general pattern to achieve the final springback amount. To see the effects of the training set 
size on hidden layer number and accuracy of result, twelve input models are used in training 
data sets and only one testing data is used. 
 
Training part is started with two hidden layers. Different hidden layer numbers, different 
training and testing percentages are tried and close results are achieved with only five hidden 
layers. Result is computed as -1.83° as seen in Table 5.14 
 
 
 

Table 5.14 ANN Testing Result 

 
 
 

5 Hidden Layers 

  Thickness (mm) 
Punch radius 

(mm) 
Bending angle 

(°) 
K 

(MPa) n 
Springback 

(°) 
Model 13 2 2 93.5 754 0.21 -1.83 
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Gathered ANN result is compared with the testing data which is FEA result and relative 
percentage error is calculated as given in Table 5.15. 
 
 
 

Table 5.15 Relative error in percentage 

            Springback (°)   

  
Thickness 

(mm) 
Punch 

radius (mm) 
Bending 
angle (°) 

K 
(MPa) n FEA 

5 Hidden 
Layers 

Error 
(%) 

Model 13 2 2 93.5 754 0.21 -1.82 -1.83 0.55 
 
 
 
From Table 5.15, it is seen that ANN system for model 13 with five hidden layers gives 
almost the same result with the FEA result. The percentage error is 0.55. It is observed that if 
number of training input increases, ANN system requires less hidden layers and converges 
immediately. Accuracy of the ANN system’s result increases with increasing training 
input/testing input ratio. Training input/testing input ratio is 12/1 in this system. Table 5.15 
also shows that ANN systems can be used for extrapolation. In the training data set there is 
no input with 93.5° bending angle but ANN system predicted result with 0.55 percentage 
error. This result verifies reliability of the developed ANN system for V-die bending. 
 
 
5.3 Wipe Bending 
 
 
5.3.1 FEA of Wipe Bending 
Three different sheet thicknesses, three different punch radii, and four different types of 
steels are modeled with different combinations and analyzed to investigate springback 
amounts and stress distributions. Bending angle is fixed to 90°. Sheet thicknesses are 1.5, 2, 
and 3 mm and die radii are 2, 4, and 6 mm. All steel sheets are same as in air and V-die 
bending sections and have Poisson’s ratio of 0.3 and elastic modulus of 200 GPa. The 
workpieces have the dimensions of 100 × 50 mm. The necessary dimensions to model the 
processes are illustrated in Figure 5.14. In the models, clearance is taken constant as 0.25 
mm.  
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Figure 5.14 Schematic view of wipe bending with necessary dimensions 

 
 
 
Springback angles (in degrees), and stress distributions are computed via FEA before starting 
the ANN analyses. Representative springback angle is illustrated in Figure 5.15. The created 
bending models and achieved springback angles are shown in Table 5.16. 
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Figure 5.15 Springback angle in wipe bending 

 
 
 

Table 5.16 Wipe bending models and springback results 

  Material Thickness (mm) Die radius (mm) Springback (°) 
Model 1 Steel 1 1.5 2 1.74 
Model 2 Steel 1 1.5 4 2.12 
Model 3 Steel 1 3 6 1.68 
Model 4 Steel 2 1.5 6 3.41 
Model 5 Steel 2 2 4 2.54 
Model 6 Steel 2 3 2 2.00 
Model 7 Steel 3 1.5 4 2.70 
Model 8 Steel 3 2 2 2.29 
Model 9 Steel 3 3 6 2.12 
Model 10 Steel 4 2 2 2.56 
Model 11 Steel 4 2 6 2.91 
Model 12 Steel 4 3 4 2.18 
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Different combinations of die radius, thickness, and material are constructed in Table 5.16 
and effects of these parameters on springback are investigated for wipe bending process.  
 
When model 1 and model 2 are compared it is observed that springback amounts increase as 
the die radius increases for the same material and same thickness. In a similar manner when 
model 3 and model 9 compared it is seen that springback amounts increase as yield strength 
of the material increases for the same thickness and same die radius. When model 6 and 
model 10 are compared springback amounts decrease as thickness increases for nearly the 
same yield strength and same die radius. The dominant parameter for springback 
phenomenon seems to be thickness among these parameters. 
 
To investigate effects of thickness, die radius, and yield strength on von Mises stress Table 
5.17 constructed. 
 
 

Table 5.17 Maximum von Mises stress results 

  
Thickness 

(mm) 
Die radius 

(mm) 
Yield strength 

(MPa) 

Max. von 
Misses stress 
(fully loaded) 

(MPa)  

Max. von 
Misses 

residual 
stress 

(unloaded) 
(MPa)  

Model 1 1.5 2 185 322.8 218.4 

Model 2 1.5 4 185 301.6 192.4 

Model 3 3 6 185 354.4 295.7 

Model 6 3 2 325 701.6 422.2 

Model 9 3 6 286 423.7 266.6 

Model 10 2 2 340 523.5 332.8 
 
 
 
When model 1 and model 2 are compared it is seen that maximum von Mises stress 
decreases a bit as die radius increases for the same material and same thickness. When model 
3 and model 9 are compared it is found that material with higher yield strength exhibits 
much higher maximum von Mises stress values than the material with lower yield strength 
for the same thickness and same die radius. When model 6 and model 10 are compared it is 
observed that maximum von Mises stress increases excessively as thickness increases for the 
same die radius and nearly the same yield strength. Also, there is an important drop in the 
value of the maximum von Mises stress values after the backing of the punch for all 
operations. 
 
In addition to the aforementioned maximum von Mises stress values, other types of stress 
distributions are also investigated. In Figures 5.16 and 5.17 von Mises stress distributions in 
steel 4 for 2-mm-thick sheet with 6 mm die radius is illustrated. 

48 
 



 
Figure 5.16 Von Mises stress distribution in steel 4 for 2-mm-thick sheet with 6 mm die 

radius at fully loaded stage 
 
 
 

 
Figure 5.17 Residual von Mises stress distribution in steel 4 for 2-mm-thick sheet with 6 

mm die radius at unloaded stage 
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In Figures 5.18 and 5.19, normal stresses in longitudinal direction in steel 1 for 1.5-mm-thick 
sheet with 4 mm die radius are illustrated. 
 
 
 

 
Figure 5.18  Normal stress distribution in longitudinal direction in steel 1 for 1.5-mm-thick 

sheet with 4 mm die radius at the fully loaded stage 
 
 
 

 
Figure 5.19  Residual normal stress distribution in longitudinal direction in steel 1 for 1.5-

mm-thick sheet with 4 mm die radius at the unloaded stage 
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Figures 5.18 and 5.19 show that at the fully loaded stage, normal stresses along the 
longitudinal direction and the residual stresses distribution in the unloaded stage appeared. 
Figures 5.16 and 5.17 verify the expected stress distribution as localized in the bent-up 
region in bending process.  
 
 
5.3.2 ANN Development of Wipe Bending 
In this case study, two different training data sets and two different testing data sets for wipe 
bending process are crated. Created training data sets are shown in Table 5.18 and Table 
5.19. In the first training data set, models 1-5, 7-10, and 12 are used. Model 6 and model 11 
are used for testing part. In the second training data set, models 1, 3-7, and 9-12 are used. 
Model 2 and model 8 are used for testing part. Constructed testing data sets are shown in 
Table 5.20 and Table 5.21.  
 
 
 

Table 5.18 First training data set 

  
Thickness 

(mm) 
Die radius 

(mm) K (MPa) n 
Springback 

(°) 
Model 1 1.5 2 635 0.25 1.74 
Model 2 1.5 4 635 0.25 2.12 
Model 3 3 6 635 0.25 1.68 
Model 4 1.5 6 683 0.17 3.41 
Model 5 2 4 683 0.17 2.54 
Model 7 1.5 4 721 0.33 2.70 
Model 8 2 2 721 0.33 2.29 
Model 9 3 6 721 0.33 2.12 
Model 10 2 2 754 0.21 2.56 
Model 12 3 4 754 0.21 2.18 

 
 
 

Table 5.19 Second training data set 

  
Thickness 

(mm) 
Die radius 

(mm) K (MPa) n 
Springback 

(°) 
Model 1 1.5 2 635 0.25 1.74 
Model 3 3 6 635 0.25 1.68 
Model 4 1.5 6 683 0.17 3.41 
Model 5 2 4 683 0.17 2.54 
Model 6 3 2 683 0.17 2.00 
Model 7 1.5 4 721 0.33 2.70 
Model 9 3 6 721 0.33 2.12 
Model 10 2 2 754 0.21 2.56 
Model 11 2 6 754 0.21 2.91 
Model 12 3 4 754 0.21 2.18 

51 
 



Table 5.20 First testing data set 

  
Thickness 

(mm) 
Die radius 

(mm) K (Mpa) n 
Springback 

(°) 
Model 6 3 2 683 0.17 2.00 
Model 11 2 6 754 0.21 2.91 

 
 
 

Table 5.21 Second testing data set 

  
Thickness 

(mm) 
Die radius 

(mm) K (Mpa) n 
Springback 

(°) 
Model 2 1.5 4 635 0.25 2.12 
Model 8 2 2 721 0.33 2.29 

 
 
 
Springback depends on four independent parameters in each ANN system for wipe bending 
process as thickness, die radius, strength coefficient, and straining hardening exponent. 
Constructed ANN systems combine these four different parameters and try to draw a general 
pattern to achieve the final springback amount.  
 
To investigate repeatability and accuracy of different ANN systems for the same database, 
two different data sets and two different testing data sets are created and used in training 
part. Different hidden layer numbers, different training and testing percentages are tried and 
best results are achieved with eight hidden layers and seven hidden layers for the first and 
second training sets respectively. Results are shown in Table 5.22 and Table 5.23. 
 
 
 

Table 5.22 ANN results for the first system 

8 Hidden Layers 
  Thickness (mm) Die radius (mm) K (MPa) n Springback (°) 
Model 6 3 2 683 0.17 1.98 
Model 11 2 6 754 0.21 2.88 

 
 
 

Table 5.23 ANN results for the second system 

7 Hidden Layers 
  Thickness (mm) Die radius (mm) K (MPa) n Springback (°) 
Model 2 1.5 4 635 0.25 2.13 
Model 8 2 2 721 0.33 2.36 
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Obtained ANN results are compared with the testing data, which are FEA results, and 
relative percent errors are calculated, as given in Table 5.24. 
 
 
 

Table 5.24 Relative errors in percentage 

          Springback (°)   

  
Thickness 

(mm) 
Die radius 

(mm) K (Mpa) n FEA 
8 Hidden 
Layers 

Error 
(%) 

Model 6 3 2 683 0.17 2.00 1.98 1.00 
Model 11 2 6 754 0.21 2.91 2.88 1.03 

 
          Springback (°)   

  
Thickness 

(mm) 
Die radius 

(mm) K (Mpa) n FEA 
7 Hidden 
Layers Error (%) 

Model 2 1.5 4 635 0.25 2.12 2.13 0.47 
Model 8 2 2 721 0.33 2.29 2.36 3.05 

 
 
 
Table 5.24 shows that both ANN systems predict springback effectively. In the first system, 
percentage errors are less than 1.03, it means that ANN system gave nearly same results with 
FEA. In the second system, percentage errors are between 0.47 and 3.05. From Table 5.24, it 
is seen that different training sets can be used for similar testing sets in the same database of 
springback results. These results verify repeatability and accuracy of different ANN systems 
for same database. 
 
 
5.4 Industrial Workpiece 
The developed approach aims to combine FEA/ANN so that bending operations of an 
industrial workpiece can be modeled, composed of air, V-die, and wipe bending processes. 
This industrial workpiece is used in a rotating part of military device.   
 
The workpiece is produced by conventional machining techniques. This study combines 
three bending operations with the help of ANN and shows that this workpiece can be 
produced by bending operations without waste of material and time, resulting in a superior 
part when compared to the machined original. ANN results from other sections in Chapter 5 
are employed for this purpose. These results are combined for the production steps of the 
complex shaped workpiece. The engineering drawings of the workpiece are given in Figures 
5.20 and 5.21. 
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Figure 5.20 Schematic view of undeformed shape 

 
 
 

 
Figure 5.21 Schematic view of deformed shape 

 

54 
 



Material of the workpiece is SS304. Production stages are analyzed in three sections; 
namely, air bending, V-die bending, and wipe bending stages. Bending zones are illustrated 
in Figure 5.22. 
 
 
 

 
Figure 5.22 Localized parts of the operations 

 
 
 
First operation on the workpiece is air bending. For air bending, ANN springback results of 
the section 5.1.2 are used. Two successive air bending operations with 120° are required. For 
this industrial piece ± 0.5° angle springback tolerances are assigned for the part acceptance 
thus acceptable bending angle is between 119.5 - 120.5°. Thickness of the workpiece is 2 
mm. Radius of the bending side is 2 mm and dimensions of the workpiece are 50×50 mm. 
These parameters are appropriate to use section 5.1.2 results. Section 5.1.2 gives springback 
predictions for one side of the operations thus springback predictions are multiplied by 2. 
From Table 5.2 springback results are between 1.5 and 3° approximately. Total springback is 
between 3 and 6 ° approximately. To achieve 120° total angle, 116° bending angle is 
preferred. From Table 5.8 and Table 5.9, it is seen that model 8 is appropriate for springback 
prediction of this operation. Table 5.8 gives 1.90° springback prediction with 10 hidden 
layers and 1.06 percentage error. Total springback angle is 1.90×2=3.80°, thus achieved total 
angle after bending is 116+3.80=119.80° and this result is between required tolerance range 
which is 119.5-120.5°. This result shows once the ANN is developed, springback angle can 
be predicted with the help of ANN without the finite element analysis. 
 
Second operation on the workpiece is V-die bending. For V-die bending side, ANN 
springback results of the section 5.2.2 are used. One V-die bending operation with 90° is 
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required. Again ± 0.5° angle springback tolerances are assumed to be acceptable, and thus 
bending angle must be between 90.5 and 89.5°. Thickness is 2 mm, radius of the bending 
side is 2 mm and dimensions of the workpiece are 140×50 mm. Section 5.2.2 results are 
appropriate for these parameters. Section 5.2.2 gives springback predictions for one side of 
the operations thus springback predictions are multiplied by 2 again. From Table 5.12 
springback results are between -0.70 and -2.01°. To achieve 90° total angle, 93.5° bending 
angle is preferred. From Table 5.14 and Table 5.15, it is seen that model 13 is appropriate for 
springback prediction of this operation. Table 5.15 gives -1.83° springback prediction with 5 
hidden layers and 0.55 percentage error. Total springback angle is -1.83×2=-3.66°, thus 
achieved total angle after bending is 93.5-3.66=89.84° and this result is between required 
tolerance range which is 89.5-90.5°. This result shows that ANN results for extrapolations 
can be used effectively. Again if there is no extra FEA of this type of material and operation, 
springback angle can be predicted with the help of ANN development and this result can be 
used for prediction of springback by design engineers even for different bending angles. 
 
Third and last operation on the workpiece is wipe bending. For wipe bending side, ANN 
springback results of the section 5.3.2 are used. One wipe bending operation with 93.7° part 
angle is required. ± 0.5° angle tolerances are assumed to be acceptable and thus bending 
angle must be between 93.2 and 94.2°. Thickness is 2 mm. Radius of the bending side is 6 
mm and dimensions of the workpiece are 100×50 mm. Section 5.3.2 results are appropriate 
for these parameters. The angle is 93.7°. From Table 5.16 springback results are between 
1.68 and 3.41°. To achieve 93.7° angle, bending of steel 4 with 2 mm preferred. From Table 
5.22 and Table 5.24, it is seen that model 10 is appropriate for springback prediction of this 
operation. Table 5.24 gives 2.88° springback prediction with 8 hidden layers and 1.03 
percent error. Thus the achieved angle after bending is 90+2.88=92.88°. There is also 0.25 
mm clearance which required for wipe bending operation and this clearance causes 0.48° 
angle approximately which is shown in Figure 5.23. Total bending angle is completed with 
92.88+0.48=93.36° and this result is between required tolerance range which is 93.20-
94.20°. This result shows again that if there is no extra FEA of this type of material and 
operation, springback angle can be predicted with the help of ANN development and this 
result can be used for prediction of springback by design engineers without waste of time. 
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Figure 5.23 Angle due to clearance 

 
 
 
There are holes on the wings of the workpiece which are used to fasten the workpiece onto 
the device (Figure 5.22). These holes can be drilled after bending operation, and by doing so, 
effects of drilling on sheet can be prevented. In addition, those holes are sufficiently far away 
from bending zones. 
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CHAPTER 6 
 
 

6 EXPERIMENTS BASED ANN PLATFORM FOR AIR BENDING 
 
 
 
In this chapter, firstly, experiments of the air bending processes are carried out and results of 
the experiments are compared with the results of FEA. Secondly, artificial neural network 
development based on experimental results is conducted. Unlike previous chapter, ANN is 
based on experimental results to show feasibility of ANN with experimentation. 
Experimentation is also used for validation of FEM of the process. 
 
In the simulations, air bending operations are considered as plane strain. Four-node 
quadrilateral plane strain elements are used in FEA. Friction between sheet, punch, and die 
has been utilized by means of Coulomb’s law, where the friction coefficient is taken as 0.05. 
In this study, steel sheets (SS 304) are assumed to be free of residual stresses before loading 
starts. Updated Lagrange procedure is preferred as an analysis option, which is employed in 
large strain and large displacement analyses. Multilayer feedforward backpropagation 
algorithm is used as ANN system algorithm.  
 
 
6.1 FEA and Experimentation of Air Bending  
In this case study, angular bending is modeled and simulated for eight different bending 
angles and two different sheet thicknesses. Sheet thicknesses are 1 and 1.5 mm.  For 1 mm 
sheet thickness, bending angles are 93.6°, 101.4°, 112.3°, and 128.0°. For 1.5 mm sheet 
thickness, bending angles are 92.3°, 118.5°, 121.0°, and 134.0°. The experiments of the 
simulated cases are carried out in the Machine Shop of the office of General Workshops, 
METU, and the FEA results of springback are compared with the experimental springback 
results. The press used in the experiments is shown in Appendix A. 
 
The dimensions of the punch and die used in bending are illustrated in Figure 6.1. The steel 
sheet is placed on the die, and the punch moves vertically downward towards to sheet until 
the desired angle is achieved. Additional figures on bending press machine are supplied in 
Appendix A. 
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Figure 6.1 Schematic view of experimental setup 

 
 
 

Plastic strain-true stress data is achieved by tension test as stated in Chapter 5. The tension 
test was carried out in the Materials Testing Laboratory of the Department of Mechanical 
Engineering, METU. The figures related to the tension tests are provided in Appendix B. 
 
All steel sheets have the modulus of elasticity of 200 GPa and a Poisson’s ratio of 0.3 and 
yield strength of 340 MPa. For elastic – plastic deformation behavior, plastic strain-true 
stress data are given in Table 6.1. The workpieces have the dimensions of 100×100 mm. 
Bending angles of sheets at fully loaded case are calculated with the help of digital angle 
measuring device (Appendix C) which has a sensitivity of 0.1 degree. 
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Table 6.1 Strain hardening data 

Stainless Steel (SS304) 

Plastic Strain(mm/mm) True Stress(MPa) 

0 340 

0.0513 410 

0.0862 445 

0.1040 467 

0.1500 510 

0.2000 550 

0.2950 591 

0.3560 610 
 
 
 
Angles of sheets after bending (part angle) at unloaded case are calculated with the help of 
coordinate measuring machine (CMM) in Aselsan Inc. (Appendix C). 
 
 
 
6.1.1 Air Bending of 1 mm Steel Sheet 
In this case study, the results gathered from the FEA and the experiments are provided in 
Table 6.2. 
 
 
 

Table 6.2 FEA and experiment results for 1 mm steel 

  Part Angle (°) Springback (°) 

Thickness (mm) 
Bending Angle 

(°) FEA Experiment FEA Experiment 
1 93.6 102.4 103.4 4.4 4.9 
1 101.4 108.8 109.8 3.7 4.2 
1 112.3 118.3 119.3 3.0 3.5 
1 128.0 133.0 133.2 2.5 2.6 

 
 
 
From Table 6.2, it is observed that springback amounts decrease as bending angle increases. 
Table 6.2 shows that the results of springback amount for air bending, the FEM results and 
the experimental results are close and in good agreement. This outcome supports the idea 
that FEM can be used to simulate bending operations. 
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In addition to springback results, stress distributions are also investigated. In Figures 6.2 and 
6.3, von Mises stress distributions in 1-mm-thick sheet with 112.3° bending angle are 
illustrated. 
 
 
 
 

 
Figure 6.2 Von Mises stress distribution in 1-mm-thick sheet with 112.3° bending angle at 

fully loaded stage 
 
 

 

62 
 



 
Figure 6.3 Von Mises stress distribution in 1-mm-thick sheet with 112.3° bending angle at 

unloaded stage 
 
 
 

 
Figure 6.4 Normal stress distribution in longitudinal direction in 1-mm-thick sheet with 

128.0° bending angle at the fully loaded stage 
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Figure 6.5 Normal stress distribution in longitudinal direction in 1-mm-thick sheet with 

128.0° bending angle at the unloaded stage 
 
 
 
In Figures 6.4 and 6.5, normal stresses in longitudinal direction in 1-mm-thick sheet with 
128.0° bending angle are illustrated. 
 
Figures 6.4 and 6.5 show that at the fully loaded stage, the middle regions of the sheet about 
the neutral axis are in elastic regime, while the inner and outer fibers are in the plastic 
regime. After unloading residual stresses appear and the distribution of the residual stresses 
are in agreement with theoretical information. Inside of the workpiece is under compression 
(inner fibers) while outside of the workpiece is in tension (outer fibers). Figures 6.2 and 6.3 
show the von Mises stress distribution, which is localized in the bent-up region in bending 
process. Combination of these four stresses is highest at outer (inner and outer) fibers at the 
fully loaded stage and highest at the midst of the sheet at unloaded stage. 
 
 
6.1.2 Air Bending of 2 mm Steel Sheet 
In this case study, the results gathered from the FEA and the experiments are provided in 
Table 6.3. 
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Table 6.3 FEA and experiment results for 1.5 mm steel 

  Part Angle (°) Springback (°) 

Thickness (mm) 
Bending Angle 

(°) FEA Experiment FEA Experiment 
1.5 92.3 98.1 98.6 2.9 3.2 
1.5 118.5 122.5 123.1 2.0 2.3 
1.5 121.0 124.8 125.4 1.9 2.2 

1.5 134.0 137.4 137.8 1.7 1.9 
 
 
 
From Table 6.3, it is observed that springback amounts decrease as bending angle increases 
as expected. Table 6.3 shows that the results of springback amount for air bending, the 
FEM results and the experimental results are close and in good agreement. This outcome 
also supports the idea that bending operations can be simulated by FEM effectively. 
 
In addition to springback results, stress distributions are investigated. Von Mises stress 
distributions in 1.5-mm-thick sheet with 134.0° bending angle are illustrated in Figures 6.6 
and 6.7.  
 
 
 

 
Figure 6.6 Von Mises stress distribution in 1.5-mm-thick sheet with 134.0° bending angle at 

fully loaded stage 
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Figure 6.7 Von Mises stress distribution in 1.5-mm-thick sheet with 134.0° bending angle at 

fully loaded stage 
 
 
 

 
Figure 6.8 Normal stress distribution in longitudinal direction in 1.5-mm-thick sheet with 

118.5° bending angle at the fully loaded stage 
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Figure 6.9 Normal stress distribution in longitudinal direction in 1.5-mm-thick sheet with 

118.5° bending angle at the unloaded stage 
 
 
 
Normal stresses in longitudinal direction in 1.5-mm-thick sheet with 118.5° bending angle 
are illustrated in Figures 6.8 and 6.9. 
 
From Figures 6.8 and 6.9, it is observed that normal stresses along the longitudinal direction 
at the fully loaded stage, and the residual stresses distribution in the unloaded stage appear as 
expected. From Figures 6.6 and 6.7, it is seen that in the bent-up region shown with lighter 
color higher stress values are obtained as expected.  
 
When Table 6.2 and Table 6.3 results are compared, it is seen that thickness of the workpiece 
has considerable affects on the springback results. Springback amounts decrease as thickness 
of the workpiece increases. 
 
 
6.2 ANN Development of Experimental Air Bending Results 
To predict springback amounts with ANN for air bending operations, an artificial neural 
network structure is developed which is based on experimental results. Three different 
training data sets and three different testing data sets for air bending process are created. 
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Training data sets are shown in Table 6.4, Table 6.5, and Table 6.6. Constructed testing data 
sets are shown in Table 6.7, Table 6.8, and Table 6.9. 
 
 

Table 6.4 First training data set 

Thickness (mm) Bending Angle (°) Springback (°) 

1 93.6 4.9 

1 112.3 3.5 

1 128.0 2.6 

1.5 92.3 3.2 

1.5 121.0 2.2 

1.5 134.0 1.9 
 
 
 

Table 6.5 Second training data set 

Thickness (mm) Bending Angle (°) Springback (°) 

1 93.6 4.9 

1 101.4 4.2 

1 128.0 2.6 

1.5 92.3 3.2 

1.5 118.5 2.3 

1.5 134.0 1.9 
 
 
 

Table 6.6 Third training data set 

Thickness (mm) Bending Angle (°) Springback (°) 
1 93.6 4.9 
1 112.3 3.5 
1 128.0 2.6 

1.5 92.3 3.2 
1.5 118.5 2.3 
1.5 121.0 2.2 
1.5 134.0 1.9 

 
 
 
Springback depends on two independent parameters in each ANN system for air bending 
process and these parameters are thickness and bending angle. Constructed ANN systems 
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combine these two different parameters and try to draw a general pattern to achieve the final 
springback amount.  
 
 
 

Table 6.7 First testing data set 

Thickness (mm) Bending Angle (°) Springback (°) 

1 101.4 4.2 

1.5 118.5 2.3 
 
 
 

Table 6.8 Second testing data set 

Thickness (mm) Bending Angle (°) Springback (°) 

1 112.3 3.5 

1.5 121.0 2.2 
 
 
 

Table 6.9 Third testing data set 

Thickness (mm) Bending Angle (°) Springback (°) 

1 101.4 4.2 
 
 
 
To investigate repeatability, accuracy and robustness of different ANN systems for the same 
database, three different training data sets and three different testing data sets are created and 
used in training part. Different hidden layer numbers, different training and testing 
percentages are tried and results are achieved. Results are shown in Table 6.10, Table 6.11, 
and Table 6.12. 
 
 
 

Table 6.10 ANN results for the first system 

4 Hidden Layers 
Thickness (mm) Bending Angle (°) Springback (°) 

1 101.4 4.10 
1.5 118.5 2.34 
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Table 6.11 ANN results for the second system 

4 Hidden Layers 
Thickness (mm) Bending Angle (°) Springback (°) 

1 112.3 3.33 
1.5 121.0 2.25 

 
 
 

Table 6.12 ANN results for the third system 

3 Hidden Layers 

Thickness (mm) Bending Angle (°) Springback (°) 

1 101.4 4.18 
 
 
 
Obtained ANN results are compared with experimental results, and relative percent errors 
are calculated, as given in Table 6.13. 
 
 
 

Table 6.13 Relative errors in percentage 

First System 
    Springback (°)   

Thickness (mm) Bending Angle (°) Experiment NN (4 Hidden Layers) Error (%) 
1 101.4 4.20 4.10 2.38 

1.5 118.5 2.30 2.34 1.74 

     
     Second System 
    Springback (°)   

Thickness (mm) Bending Angle (°) Experiment NN (4 Hidden Layers) Error (%) 
1 112.3 3.50 3.33 4.86 

1.5 121.0 2.20 2.25 2.27 

     
     Third System 
    Springback (°)   

Thickness (mm) Bending Angle (°) Experiment NN (3 Hidden Layers) Error (%) 
1 101.4 4.20 4.18 0.48 
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Table 6.13 clearly shows that the constructed ANN systems with the selected parameters are 
highly capable of predicting the springback amounts for the air bending process. The 
percentage error is between 0.48 and 4.86. It is observed that if the number of training input 
increases (Table 6.9), ANN system requires less hidden layers and converges quickly. 
Accuracy of the ANN system’s result increases with increasing training input/testing input 
ratio as in third system in Table 6.13. Error of third system is less than errors of both first 
and second systems. 
 
From Table 6.13, it is seen that different training sets with the same size (first and second 
systems) can be used for similar testing sets in the same database of springback results. 
Percentage errors of these two systems are close to each other. These results verify 
repeatability and accuracy of different ANN systems for the same database. 
 
Table 6.13 emphasizes that developed ANN systems are feasible and robust.  All three ANN 
systems give very close results for springback predictions of air bending models. Table 6.13 
also shows that if the number of independent parameters in the system decreases, system 
converges to desired outputs more quickly. 
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CHAPTER 7 
 
 

7 CONCLUSION 
 
 
 
7.1 Conclusions 
In this study, the main aim is to determine the springback and to predict the final part shape 
in sheet metal forming operations by the use of ANN algorithms with FEA and experiments. 
Springback determination of air, V-die, and wipe bending operations are accomplished by 
the developed computational platforms. Several bending operations are analyzed and the 
amounts of springback are determined in order to overcome possible manufacturing 
problems. Also, steel sheets with two different thicknesses; 1, and 1.5 mm are used in the 
finite element simulations and artificial neural network system based on experimental data 
for air bendingprocess. The following conclusions can be drawn from the study: 
 

• Constructed ANN systems with the selected parameters are highly capable of 
predicting the final part shapes for air, V-die, and wipe bending processes after 
springback. Constructed ANN systems predict springback amounts accurately. 

 
• Accuracy of the ANN system result increases with increasing training input/testing 

input ratio as observed from the case study of V-die bending and experiments of air 
bending.  

 
• The system should also not be over trained. This can be decided during the ANN 

development process by trial-and-error sensitivity perturbation procedures. 
 

• If the number of independent parameters in the system decreases, system converges 
to desired outputs rapidly. Hence, if the number of independent parameters in a 
system is high, an adequate number of FEA simulations or experiments should be 
carried out to get accurate results. 

 
• Developed ANN results of V-die bending sections shows that ANN systems can be 

used for extrapolations to predict springback. For accurate extrapolations, training 
inputs for the ANN system should be robust in itself and training set size should be 
large enough. 

 
• As observed from the case study of wipe bending, different training sets can be used 

for similar testing sets in the same database of springback results. These results 
verify the repeatability and accuracy of different ANN systems for the same 
database. 

 
• Die radius and punch radius variations in air bending do not significantly affect 

springback amount. Since sheet touches the die and punch through a line thus 
bending not affected from die radius changes considerably.  
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• It is seen that from all of the case studies, the material with higher yield strength 
exhibits much higher von Mises stress values than the material with lower yield 
strength. Also, a significant drop occurs in the value of the maximum von Mises 
stress values after the backing of the punch for all applications as observed from 
residual stress distributions.  

 
• Two different bent-up regions exist in V-die bending process; namely, primary and 

secondary. These regions cause springback in opposite directions. Negative 
springback results (springforward) are obtained in this study due to the dominant 
elastic recovery of the secondary bent-up regions.  

 
• It is observed that from all of the case studies, at the fully loaded stage, the core of 

the sheet is in elastic regime, while the outer fibers are in the plastic regime. After 
unloading residual stresses appear and the distribution of the residual stresses are in 
agreement with theoretical information. The expected stress distribution is localized 
in the bent-up region in bending processes.  
 
 

7.2 Future Recommendations 
For future work, the followings could be considered: 
 

• Different bending operations such as angular bending, hemming, U-bending may be 
analyzed in FEA and ANN aspects. 

 
• Effects of the different parameters such as different materials, and bend angles on 

springback amount in different bending operations may be investigated. 
 

• FEA with ANN system may be used in conjunction with optimization. Automated 
analyses results may be achieved for a wide range of specific operations. 
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A. APPENDIX A 
 
 

ADDITIONAL FIGURES ON AIR BENDING WITH A PRESS BENDING 
MACHINE 

 
 
 

 
Figure A.1 Baykal bending press machine 

 
 
 

 
Figure A.2 Baykal bending press machine 
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Figure A.3 Operational views of air bending 

 
 
 
 
 
 

 

Figure A.4 1-mm-thick steel just before operation 
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Figure A.5 Calibration of bending press machine 
 
 
 
 

 
Figure A.6 1.5-mm-thick steel fully loaded stage 
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Figure A.7 Experimental sheets 
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B. APPENDIX B 
 
 

FIGURES ON TENSION TESTS OF STEEL SHEETS 
 
 
 

 

Figure B.1 1-mm-thick steels with angles of 0°, 45° and 90° with respect to the rolling 
direction before tension test 

 
 
 

 

Figure B.2 1-mm-thick steels after tension test 
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C. APPENDIX C 
 
 

FIGURES OF DIGITAL ANGLE MEASURING DEVICE AND CMM 
 
 
 

 
Figure C.1 Digital angle measuring device 

 
 
 

 
Figure C.2 CMM 
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Figure C.3 Preparation of the measuring 
 
 
 

 

Figure C.4 While part angle measuring 
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Figure C.5 Monitoring results of part angle while measuring 
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