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ABSTRACT 

ANALYSIS OF VARIOUS MICROSTRIP PRINTED GEOMETRIES USING 

CLOSED-FORM GREEN’S FUNCTIONS 

Ülkü, İrem 

M. S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gülbin Dural  

Co-Supervisor: Doç. Dr. Lale Alatan  

 

August 2013, 116 Pages 

 

 

 

In general, current distributions for different microstrip structures such as Single Microstrip 

Line (SML), Coupled Microstrip Line (CML) and Microstrip Patch Antenna (MPA) are 

obtained by using Method of Moments (MoM) in conjuction with closed-form spatial 

domain Green’s functions. Specifically, MPA is designed to obtain a Wideband Microstrip 

Patch Antenna (WMPA). The current distribution is acquired by the same analysis and 

bandwidth is obtained from the return loss graph for this WMPA. Standard MPA and 

WMPA bandwidths are compared.  

First, MoM analysis is used to find the current distribution of SML. Then, current 

distribution on CML is found, in that case by considering the interaction between the lines. 

Afterward, current distribution on MPA is calculated. Finally, WMPA is obtained by 

opening two parallel slots on the metal patch of standard MPA. Current distribution on 

WMPA is found by using matrix deleting method such that there is no need to re-execute 

software program for this new geometry. Thereafter, bandwidth of WMPA is obtained from 

the return loss graph. Bandwidth values for standard MPA and WMPA are compared and the 

increase in bandwidth is observed.  

Keywords: Method of Moments, Green’s functions, coupled microstrip line, microstrip patch 

antenna, wideband microstrip patch antenna. 
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ÖZ 

ÇEŞİTLİ MİKROŞERİT YAPILARIN KAPALI-FORMDA GREEN 

FONKSİYONLARI  KULLANILARAK İNCELENMESİ 

Ülkü, İrem 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülbin Dural  

Ortak Tez Yöneticisi: Doç. Dr. Lale Alatan  

 

Ağustos 2013, 116 Sayfa 

 

 

 

Genel olarak, Mikroşerit Hat (MH), Kuplajlanmış Mikroşerit Hat (KMH) ve Mikroşerit 

Yama Anten (MYA) gibi mikroşerit yapıların akım dağılımları Moment Metodu (MM) ile 

birlikte gerçek uzaydaki kapalı form Green fonksiyonları kullanılarak bulunmuştur. Özel 

olarak ise, Geniş Bant Yama Antenleri (GBYA) MYA kullanılarak tasarlanmış, aynı 

analizler kullanılarak akım dağılımları bulunmuş, geri dönüş kayıbı grafiği çizilmiş ve 

buradan bantgenişliği hesaplanmıştır. Standart MYA bantgenişliği değeri ile GBYA 

bantgenişliği değeri karşılaştırılmıştır. 

İlk önce, MM analizi kullanılarak MH üzerindeki akım dağılımları bulunmuştur. İkinci 

olarak, KMH üzerindeki akım dağılımı bulunmuştur, burada hatlar arasındaki etkileşim de 

göz ününde bulundurulmuştur. Daha sonra, MYA üzerindeki akım dağılımı bulunmuştur. 

Son olarak, standart MYA üzerinde iki paralel yarık açılarak GBYA elde edilmiştir. Matriks 

silme yöntemi kullanılarak GBYA üzerindeki akım dağılımı bulunmuştur bu nedenle 

bilgisayar programını yeni geometri yapısı için yeniden çalıştırmaya gerek kalmamıştır. 

Buradan geri dönüş kaybı grafiği GBYA için çizdirilmiş ve bantgenişliği hesaplanmıştır. 

Standart MYA bantgenişliği değeri ile GBYA bantgenişliği değeri karşılaştırılarak, 

bantgenişliği artışı gözlemlenmiştir.  

Anahtar Kelimeler: Moment Methodu, Green fonksiyonları, Kuplajlanmış Mikroşerit Hatlar, 

Mikroşerit Yama Anten, Geniş Bant Yama Anten. 
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CHAPTER 1 

INTRODUCTION 

In microwave circuits the wavelength is very close to the dimensions of circuit components 

and frequency of application generally exists within 300MHz-300GHz frequency range 

where wavelength is in between 1mm-1m. Circuit components are not very small relative to 

the wavelength as in the case of lumped-circuit model for low frequencies.  

By a printed circuit, it should be understood that circuit patterns are printed or etched on a 

dielectric slab by photolithographic technology or screen printing technology. Microwave 

printed circuits (MPC) are constructed by using technologies that are constructed for low 

frequencies where lumped elements are valid. Here, distributed circuit elements are used 

instead of lumped elements. The difference between printed circuit board (PCB) and MPC is 

the electrical/physical features of the dielectric. Both PCBs and MPCs enable complex 

connections between circuit components. A matter of fact this is the most important 

advantage of microstrip circuits. Multilayer and complex circuits can be constructed easily 

and less costly [1]. 

In monolithic microwave integrated circuits (MMIC), monolithic is defined as placing 

active/passive elements, components and interconnects on a dielectric substrate by using a 

deposition scheme [2]. These deposition schemes can be epitaxy, ion implantation, 

sputtering, evaporation, diffusion and etc. MMICs are generally constructed by using GaAs 

semiconductor substrate [3].  

Coaxial line is modified and flat-strip coaxial line is constructed during World War II and 

some applications are performed. First commercial slotted line application is realized by 

Hewelett-Packard Co as known [1]. Even so, before the year 1949, flat-strip coaxial lines are 

considered to be used only for transmission. Robert M. Barrett realized that in addition to the 

transmission usage, flat-strip coaxial lines can also be used to develop microwave 

components such as filters, directional couplers, etc. [4]. That means printed circuit 

application can also be applied to flat-strip coaxial lines. MPCs are appeared like that. This 

study is carried out in Air Force Cambridge Research Center and it can be considered that 

MPCs are first developed for airborne applications. In year 1954, first MPC symposium is 

realized at Tufts University. In this symposium subjects such as striplines, microstriplines, 

filters, couplers, power dividers and hybrid rings are presented [1]. Afterwards, Transactions 

on Microwave Theory and Techniques constituted a special issue that includes the studies 

presented in the symposium.  

In microstrip structures, fundamental propagation mode is not transverse electromagnetic 

(TEM). Therefore, phase velocity and characteristic impedance change by frequency and it 

creates some problems. However, there is a way to draw propagation mode to TEM. If the 
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cross section relative to wavelength could be reduced, the advantages of microstrip structures 

can be utilized easily [5].  

First known study for microstrip patch antenna is performed by Deschamps, Cutton and 

Baissinot in year 1950 [6]. In year 1974, a study is published that is about conformal 

microstrip antennas and arrays [7]. In this study, it is aimed to use microstrip antennas in 

aircrafts, missiles and rockets. Experimental studies about rectangular and circular patch 

antennas are published as well [1]. In year 1979, a study that is related with cavity model 

appeared. Again in the same year, a workshop is designed for microstrip antennas at New 

Mexico State University. Afterwards, IEEE Transactions on Antenna and Propagation is 

constructed a special issue about microstrip antennas in year 1981 [1].  While microstrip 

circuits are developed throughout the years, a special type of them which is microstrip 

antennas are developed as well. Nowadays, in most microstrip circuits, microstrip antennas 

are used. The advantages, disadvantages and usage areas of microstrip antennas will be 

described in this thesis in detail later. Patch antenna can be fed by microstrip line, coaxial 

line or by slot. Radiation loss, surface wave loss, dielectric loss and metallization loss should 

be taken into account while analyzing microstrip patch antennas. Here, radiation loss is the 

lost energy due to the space wave radiation. Surface wave is the energy that is used in 

surface. In this study, mainly the aim is finding the current distribution on microstrip patch 

antenna. This distribution can be found by using Green’s functions in that media. Then, by 

using the found current distribution, radiation pattern and any other parameter of the antenna 

can be acquired.  

Full-wave analysis methods are defined such as Method of Moments (MoM), Finite Element 

Method (FEM) and Finite-Difference Time-Domain Method (FDTD). Nowadays the 

computers are super fast and solution of full-wave methods get easier. A full-wave MoM is 

employed in the analysis of this thesis study.  In [8] it is demonstrated that MoM is the best 

method that can be used for planar multilayered printed structures, so in this study MoM is 

used for the analysis. In order to construct MoM, first integral equation that defines the real 

problem should be defined. Integral equation is simply the integral representation of field 

quantities that are written in terms of Green’s function and current density. Integral equation 

can be electric field integral equation (EFIE), magnetic field integral equation (MFIE) or 

mixed potential integral equation (MPIE). In EFIE, kernel is the Green’s function of electric 

field and in MFIE kernel is the Green’s function of magnetic field. On the other hand, in 

MPIE, kernel is the Green’s functions of scalar/vector potentials. The most appropriate 

integral equation that is used for MoM should be MPIE, because the Green’s function in its 

kernel is less singular than the Green’s functions in EFIE and MFIE kernels. Clearly, this is a 

significant computational advantage which is the main criteria. The analysis of microstrip 

circuits can be performed very accurately by using EM simulation tools that include 

numerical techniques. Then, overall circuit response can be obtained. A computer simulation 

uses full-wave analysis, so all interconnections and radiations can be taken into account. 

In this thesis study, different microstrip structures are analyzed using MoM which employs 

closed-form Green’s functions, in general. Therefore, these microstrip structures should be 

introduced and described firstly. Microstrip lines and microstrip antennas are explained. The 

advantages, disadvantages and the usage areas of microstrip structures are discussed. 

Afterwards, possible future applications together with analysis methods are presented. In 
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Chapter 1, it is aimed to introduce microstrip structures so that reader can have an idea about 

microstrip structures in different aspects.  

In Chapter 2, it is aimed to introduce MoM so that the reader can understand the general 

application procedure of MoM.  

Closed-form spatial domain Green’s functions are used in MoM application. In Chapter 3, 

spatial domain Green’s functions are discussed. In Chapter 3, it is aimed to discuss the 

procedure for obtaining the closed-forms of spatial domain Green’s functions so that the 

reader can understand why spatial domain Green’s functions are used in MoM application 

rather than spectral domain Green’s functions.  

In Chapter 4, the method applied to find the current distribution on the single microstrip line 

is explained. The formulation is given together with the MoM application procedure. In 

Chapter 4, it is aimed to introduce the procedure of the analysis for single line case so that 

the reader can understand the application of MoM to single line for finding the current 

distribution on the metal line.  

In Chapter 5, the analyses are described in order to find the current distribution on the 

coupled microstrip line. The formulation is given together with the MoM application 

procedure. The interaction between parallel lines should be taken into account for this case. 

In Chapter 5, it is aimed to introduce the procedure of the analysis for coupled line case so 

that the reader can understand the application of MoM to coupled line for finding the current 

distribution on the parallel metal lines.  

In Chapter 6, the procedure of the analysis for microstrip patch antenna is given.  

The main aim of this thesis study is to analyze wideband microstrip patch antenna and to 

compare the bandwidths of standard patch antenna and this wideband patch antenna. In order 

to obtain such an aim, the analyses for various microstrip structures are analyzed up to now. 

In Chapter 7, a wideband patch antenna is designed from the standard patch antenna by 

opening parallel slots at two non-radiating edges. In this chapter, the analyses are described 

in order to find the current distribution on the wideband microstrip patch antenna. The 

formulation is given together with the MoM application procedure. After finding current 

distribution, bandwidth is obtained for wideband patch antenna and this bandwidth is 

compared with standard patch antenna bandwidth. In Chapter 7, it is aimed to introduce the 

procedure of the analysis for wideband microstrip patch antenna case so that the reader can 

understand the calculation of bandwidth for wideband microstrip patch antenna. 

In conclusion, the final results and acquirements are discussed. The comment on the 

comparison of wideband and standard patch antenna bandwidths are provided.  

 

1.1   Advantages and Disadvantages of Microstrip Antennas 

 

Microstrip lines and antennas have many advantages nowadays. Before going into details of 

the history of microstrip structures, these advantages as well as the disadvantages will be 
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discussed. Specifically, microstrip antennas can be considered to gather a general idea about 

microstrip structures. Advantages of microstrip antennas are as follows; they have light 

weight, low cost, ease of fabrication, ease of integration with MMIC (Monolithic Microwave 

Circuits) fabrication technology which leads to low manufacturing cost, conformability on 

curved surfaces and they are suitable for arrays. Although microstrip antennas have many 

advantages that lead them to be popular in wide area of applications, they have some 

disadvantages such as narrow bandwidth, low gain, relatively large size particularly at lower 

frequencies due to the fact that the operation frequencies are related to electrical size of the 

antenna [9]. The recent researches are mainly based to the improvement on these 

disadvantages. In order to improve the bandwidth, first solution would be the increase in 

substrate thickness, but here surface power increases while the radiation power decreases. 

Another method will be the suppression of surface waves by using magneto-dielectric 

substrate. One popular research on the improvement of bandwidth is the usage of EBG 

(electromagnetic bandgap) structures for eliminating the surface waves, therefore the 

bandwith is improved. New geometries and genetic algorithm based optimization methods 

are the other methods for bandwith improvement. The increase in the gain of the microstrip 

antennas can be achieved by again using EBG antennas. Here reducing the surface waves 

will lead to a reduction in side lobe levels which in turn improves the gain of the antenna. 

FSS (Frequency Selective Surface) are also studied for the improvement in gain. Lens 

covering can be another method for gain improvement. The last disadvantage which is 

mentioned earlier is the relatively large size of the microstrip antennas. Inductive/capacitive 

loading and the usage of magneto-dielectric substrates can lead to miniaturization [10]. 

Surface wave propagation is a significant problem that is observed in microstrip antennas. It 

reduces the gain and bandwidth while increasing the end-fire radiation and cross polarization 

which are all unwanted situations in an antenna. Surface waves also reduce the ability of the 

miniaturization of antennas as well as the integration with MMICs [11].  Using the EBG 

structures, bandgap is constructed around the operating frequency which stops the surface 

waves and the energy that is consumed in surface waves can be used in radiation.  

 

1.2   Application Areas of Microstrip Antennas 

 

Due to the advantages of microstrip antennas, they have very wide range of applications for 

many areas. Microstrip antennas can be used in televisions, broadcast radios, mobile 

systems, satellite communications, global positioning systems (GPS), radio-frequency 

identification (RFID), multiple-input multiple-output (MIMO) systems, surveillance 

systems, radar systems, future space communications, high-velocity aircrafts, missiles, 

rockets, remote sensing, WiMAX/WLAN applications, biological imaging and etc. 

Microstrip antennas are compatible with embedded antennas in handle hand wireless devices 

such as cellular phones and pagers. They are also used in aircraft, satellite and missile 

applications.  

Recently, various machining techniques such as MPCB, CMOS, LTCC and MEMS are 

developed. Since, microstrip antennas are highly related with such machining techniques, 
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they are developed as well such as active antennas, reconfigurable antennas, meta-material 

based antennas and THz antennas.  

 

1.3   Analysis Methods 

 

Rectangular microstrip patch antennas can be analyzed by using either analytical methods or 

numerical methods. Most frequently used analytical methods are Transmission Line Model 

and Cavity Model [1]. In transmission line model, patch can be considered and modeled as a 

transmission line which connects two parallel slots. In cavity model, the dielectric substrate 

is considered and modeled as a cavity that has magnetic walls. These analytical models are 

approximate methods, yet they are easy to apply. However, surface waves, coupling effects 

and fringing fields cannot be taken into account in such analytical models. They are not very 

accurate, so they cannot reflect the real behavior of the patch antenna. Numerical methods 

can be defined as Full-wave Analysis, in general. In full-wave analysis methods, the obtained 

equations are solved numerically, so they are more realistic than the approximate analytical 

methods. On the other hand, the application of the numerical methods are not so easy. The 

computational time can be a problem in many cases. Therefore, while using the numerical 

techniques the main aim is to obtain a fast solution. The most frequently used full-wave 

analysis methods are Finite Element Method (FEM), Method of Moments (MoM), Finite 

Difference Time Domain Method (FTDT). In this thesis study, MoM is used which is a full-

wave method. 
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CHAPTER 2 

METHOD OF MOMENTS  

In numerical solutions, first an integral, differential or integro-differential equation that 

defines the physical problem should be constructed. Then, by discritizing the unknown 

function the integral or differential equation is transformed into a matrix equation. This is the 

main idea in Method of Moments (MoM) as well, since MoM is also a numerical solution. 

As indicated earlier, the selected numerical method that will be used in this study is Method 

of Moments. In this chapter, Method of Moments (MoM) will be described. 

 

2.1 The Method of Moments (MoM) 

 

Some studies were known before 1960’s about Method of Moments. However, the 

significant works that are related to Method of Moments were presented at the middle of 

1960’s [12, 13, 14]. These studies helped the construction of Method of Moments. Finally, 

R.F. Harrington introduced Method of Moments by his works at 1967 [15] and 1968 [16]. 

In electromagnetic modeling, Method of Moments is the most preferred numerical method 

for radiation and scattering problems. In general, it is aimed to transfer an operator equation 

into a matrix equation and then solve this matrix equation by an appropriate method. Method 

of Moments has high accuracy and it is suitable for complex geometries as well. In 

electromagnetic applications, it is generally used for solving integral equations. It can be 

regarded as the numerical solution of exact integral equation, so it inherently contains 

everything that integral equation has and it is considered as full-wave solution [17]. In 

equation (1) an inhomogeneous equation is presented. Here, L  is a linear operator. It is 

generally an integro-differencial operator. Moreover, )(xg  is the source and this is a known 

function [18]. The aim here is to find out unknown function f . 

)())(( xgxfL        (1) 

Before going into details of Method of Moment’s formulation, inner product vu,  should 

be defined, because it will be used later. The inner product of two functions u  and v  is 

defined in equation (2) and the sign * means complex conjugate [19]. 

 


duvvu *,      (2) 
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In equation (3), the properties of inner product are shown. 

00,

00,

,,,

,,

*

*









fifff

fifff

scalarsareandhvhuhvu

uvvu

      

      

        
  (3) 

The solution of equation (1) depends on the properties of the operator. If the operator L  is 

positive definite, then the relation in equation (4) should be satisfied. 

0))((,)( * xfLxf      (4) 

Method of Moments application can be divided into four basic steps. Now, these steps are 

described. 

Step 1: 

First an equation should be constructed that defines the physical problem. In this study, this 

equation will be MPIE. 

Step 2: 

It is clear that )(xf  function is unknown and the main aim is to find this function. The basic 

logic of Method of Moments is to expand the unknown function in terms of known 

functions. Therefore, )(xf  function is expanded in terms of a known function set 

Nxfxfxf )(,....,)(,)( 21  in L  domain. These known functions are known as basis 

functions. Basis functions are selected to reflect the characteristics of the unknown function. 

They can be either scalar or vector. Furthermore, they can be sub-sectional or entire-domain. 

In equation (5) this expansion is presented. 





N

n

nn xfxf
1

)()(        (5) 

In equation (5), sn '  are unknown coefficients. When these coefficients are obtained, )(xf  

function can be uniquely defined. The summation in equation (5) is a finite solution 

practically. If the summation is infinite, then the solution will be the exact one. As the N 

value is increased, the solution will become closer to the exact solution. Here, the memory 

size of the computer should be taken into account. Since the operator L  is linear, by using 

equation (1) and equation (5) the equation (6) can be constructed.  

)())((
1

xgxfL n

N

n

n 


      (6) 

Step 3: 

Error function which is sometimes called as residual is shown in equation (7).  
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)())(()(
1

xgxfLxR
N

n

nn 







 



     (7) 

In this step, the aim is to minimize this error function )(xR , because this error function 

shows the difference between the result of the approximation that is realized in step 2 and the 

exact known function )(xg . For the minimization, a value that is similar to the average of 

the error function is defined across the domain of the problem and this value is equated to 

zero [20]. Now, it is time to define the weighting functions. Weighting functions 

Nxwxwxw )(,....,)(,)( 21  are defined across the range of operator L . The selection of 

weighting functions will be discussed later in this chapter, but a detailed study can be found 

in the reference [21]. Each weighting function mxw )(  is multiplied with the error function 

)(xR  then the inner product of this multiplication is taken and it is equated to zero [19]. This 

procedure can be redefined as weighting the error function and equating this weighted 

function to zero. Here, this weighted function is similar to the average of the error function 

and it can be the exact average if appropriate weights are used and equation (8) shows the 

final form after this operation is applied. 

NmforxgxwxfLxw mnm

N

n

n ,....,2,1)(,)())((,)(
1




            (8) 

By means of reducing the error function across the domain of the problem, the projection of 

error function across the range space of the operator L  should be zero. This can be realized 

by taking the inner product of error function with each weighting function of the weighting 

function set which is defined across the range space of operator L  and equating this inner 

product to zero [1]. This method is called the weighted residuals. If point matching is used 

which will be described later, then error functions are zero only at N discrete points.  

In equation (8) shows an equation set with N number of equations and the equations in this 

set can be written in matrix form. In equation (9), this matrix form is presented that is 

obtained by rearranging the equations in equation (8) into a matrix form.  

    mnmn gA       (9) 

 mnA  is called Method of Moments matrix and it can be written in detailed which is shown 

in equation (10). 

 

























...

...

...

...))((,)())((,)(

...))((,)())((,)(

2212

2111

xfLxwxfLxw

xfLxwxfLxw

Amn    (10) 

The detailed forms of matrices  n  and  mg  are shown in equation (11).  
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   

















































.

.

.

)(,)(

)(,)(

,

.

.

.

2

1

2

1

xgxw

xgxw

gmn         





     (11) 

If  mnA  matrix is non-singular, then the inverse matrix   1

mnA  can be defined and this 

inverse can be used to find out unknown n ’s. Equation (12) represents the equation that 

will end up with these unknown n ’s. 

     mmnn gA
1

      (12) 

For a detailed representation, the elements in  mnA  matrix can be defined explicitly, and this 

representation is provided in equation (13). 

   dxxfLxwfLxwA n

b

a

mmmn )()(,)(     (13) 

Similar explicit expression can be defined for  mg  matrix as well, which is given in 

equation (14). 

dxxgxwxgxwg

b

a

mmm )()()(,)(      (14) 

Integrals in equations (13) and (14) are generally required to be evaluated by numerical 

methods due to the fact that it is in general hard or not possible to evaluate such integrals 

analytically [22]. It should be noted here that if Galerkin’s Method of Moments is used that 

will be discussed later the resulted  mnA  matrix will be symmetric. 

Step 4: 

In this last step, it is aimed to solve the matrix equation in equation (12).  Gaussian 

elimination, LU decomposition or other similar methods can be used. However, taking 

directly the inverse of matrix  mnA  and multiplying this value with matrix  mg  can be 

another method.  

The choice of basis and testing functions is very important in Method of Moments. In 

general the factors such as accuracy of the solution, the ease in the calculation of matrix 

entries, suitability with problem geometry are taken into account. Furthermore, convergence 

of the resulted matrix should be considered. Basis functions should be linearly independent 

and they must satisfy the physical behaviors of the unknown function mathematically [16]. If 

unknown function becomes zero at the boundaries, then basis functions must be zero 

correspondingly. The ease in the calculation of matrix entries that are given in equations (13) 

and (14) should also be considered. On the other hand, weighting functions should also be 
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linearly independent. By adjusting the weighting functions appropriately, the reduction of 

error function to zero can be achieved, for more detail reference can be investigated [21].  

 

2.1.1 Basis Functions 

 

There are two types of basis functions present in Method of Moments. These are entire-

domain basis functions and sub-domain basis functions. The choice between these two is 

based on the situation of the problem and the unknown function to be represented. Two types 

are both defined in this part. The one that is used in this study will be sub-domain basis 

functions.  

 

a) Sub-domain Basis Functions 

 

First the domain of the problem is divided into an arbitrary number of sub-domains either 

with same or different domain sizes. Afterwards, each sub-domain is matched with a 

function. These functions are called sub-domain functions. Sub-domain functions are defined 

only on the sub-domain that they belong to and they are assigned to zero for the remaining 

sub-domains. Representing the unknown function in this case is very realistic due to the fact 

that even small variations can be taken into account by considering sub-domains. Figure-1 

illustrates the graphical representation of sub-domain basis functions. 

 

 

 

 

Figure- 1 Graphical Representation of Sub-domian Basis Functions 

 

 

The representation in Figure-1 can be explained mathematically. For example, the domain 

 ba,  is divided into N sub-domains and the unknown function can be defined in terms of 

different )(xfn  sub-domain functions and this defined unknown function is shown in 
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equation (15). Here each of these )(xfn  sub-domain functions is defined in different sub-

domains.  
























NNN

n

N

n

n

xxxf

xxxf

xxxf

xfxf

   

    

     

)(

.

.

)(

)(

)()(

222

111

1







     (15) 

Now, the most frequently used sub-domain basis functions are briefly discussed.  

 

Pulse Basis Functions: 

Let the domain range is defined as 10  x  and it is divided into 1N  equally sized 

domain. Equation (16) shows the width and equation (17) shows the center point of one sub-

domain. 

1

1




N
hx       (16) 

,...3,2,1,
1




 m
N

m
xm          (17) 

Pulse functions are defined in equation (18) and they are orthogonal. 












elsewhere

h
xx

h
xfor

xxP
x

m
x

m

m

     

        

0

22
1

)(    (18) 

The graphical representation of the pulse functions are illustrated in Figure-2.  

 

 

 

Figure- 2 Graphical Representation of Pulse Basis Functions for a Particular Case 
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It should be noted here that the choice of basis function have to be compatible with the 

unknown function that will be represented. Indeed, pulse functions can be differentiated only 

once. Therefore, a twice differentiable unknown function cannot be represented by pulse 

functions. 

 

Triangular Basis Functions: 

Triangular basis functions are twice differentiable and they are defined in equation (19). 

























 











elsewhere

xxxfor
xx

xx

xxxfor
xx

xx

xxT mm

mm

m

mm

mm

m

m

                  

        

        

0

)( 1

1

1

1

1

1

   (19) 

Figure-3 shows the graphical representation of triangular basis functions in a particular case 

again such that the amplitudes and sub-domain lengths are equal.  

 

 

 

 

Figure-3 Graphical Representation of Triangular Basis Functions for a Particular Case 
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It is clear from Figure-3 that one triangular function is defined in two adjoining sub-domains, 

because it exists in both of these regions. Therefore, triangular functions are not orthogonal.  

For two dimensional sub-domain basis functions, only roof-top basis functions will be 

analyzed, because roof-top basis functions are chosen to be used in this thesis study.  The 

usage of roof-top basis function is easy and it is appropriate to represent the unknown 

function in the physical problem of this study.  

 

Roof-top Basis Functions: 

They are the most frequently used basis functions. They are piecewise functions in x-

direction that are triangular functions and pulse functions in y-direction. Piecewise linear 

functions that are chosen to represent the unknown function in the x-direction are defined in 

equation (20) and the pulse functions in the y-direction are defined in equation (21). 













 



otherwise

xxxforhxx

xxxforhxx

xf mmxm

mmxm

m
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/)(

/)(

)( 11

11

1    (20) 

Where, mmxmm xxhxx   11  


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



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1

)(2     (21) 

The graphical representation of the roof-top function is illustrated in Figure-4.  
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Figure-4 Graphical Representation of Roof-top Basis Function 

 

 

Roof-top functions are discussed further in this thesis, so the given information is enough for 

this part.  

 

b)  Entire domain Basis Functions 

 

In this case, basis functions are defined across the entire domain of the problem. The 

orthogonal functions such as Bessel functions, Legendre functions, Chebyshev polynomials, 

Power series, sine and cosine functions, Maclourin series and etc. can be used for entire 

domain basis functions. Even less number of basis functions can satisfy the desired accuracy 

in entire domain basis functions when compared to the sub-domain basis functions. If the 

expansion functions are the eigenfunctions of the problem, then an efficient analysis can be 

obtained [23]. Entire domain basis function selection is appropriate when the change of the 

approximated unknown function across the domain is small. Therefore, entire domain basis 

functions cannot be used for the approximation of high and rapidly changing functions. For 

instance, if entire domain is defined as such  bax ,   and all basis functions are defined in 

this range as well, then these basis functions are treated as entire domain basis functions.  
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2.1.2 Weighting Functions 

 

There are varieties of weighting function models that can be used in MoM analysis. In this 

part, these models will be presented. 

 

a) Point Matching Method (Collocation Method) 

 

In this method, Dirac delta functions are chosen as weighting functions. Weighting functions 

are defined in equation (22). If domain is defined as  ba, , then the weighting functions mw  

have to be defined in the range of  ba,  as well.  

 mm xxxw )(  for Nm ,...,2,1     (22) 

As explained earlier, error function is weighted that is similar to taking the average. 

Moreover, the inner product of this average like value is calculated and it is equated to zero. 

In point matching method, instead of the average of the function, the values at discrete points 

are more used. Here, N discrete point values of error function across range  ba, are equated 

to zero. Therefore, it is not possible to control the error function at continuous values 

between a and b. In equation (23), the inner product is shown where the error function is 

equated to zero at selected N points across the interval  ba,  [19]. 

0)()(,   dxxxxRRw

b

a

mm      (23) 

This method may suffer in terms of accuracy and the boundary conditions are matched only 

at the selected points across the domain [18]. The accuracy can be increased by selecting 

more points. On the other hand, it should be indicated that this method is the simplest one 

among the alternatives. It is even not necessary to calculate the integral and this is proved in 

equations (24) and (25). By investigating these equations, it can be observed that the 

integrals are assigned to a value directly and the calculation is unnecessary.  

   
mXXnn

b

a

mmn fLdxxfLxxA


  )()(    (24) 

mXX

b

a

mm xgdxxgxxG   )()()(     (25) 

Although this method provides advantage computationally, the degree of accuracy can be 

low.  In Figure-5, the illustration of point matching method is given.  
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Figure-5 Graphical Representation of Point Matching Method Weighting Functions 

 

 

In this method weighting functions are defined at arbitrary discrete points and error function 

is equated to zero only at these discrete points. In one respect, this application can be 

considered as a simplification. 

 

b) Sub-sectional Collocation Method 

 

This method is the more advance state of the previous method in terms of the accuracy. In 

that case weighting functions are defined as N pulses in a given range. Instead of having N 

discrete points in the point matching method, in sub-sectional collocation method the error 

function is equated to zero at N sub-sections. Again in the continuous values between these 

sub-sections, the error function cannot be controlled. In equation (26) the weighting function 

is defined and it is illustrated that the inner product of the error function is equal to zero 

across the sub-sections.  



 


elsewhere

x
xw

m

m
     

     

0

1
)(   and   





m

NmdxxR ,....,3,2,10)(          (26) 

In Figure-6, the illustration of sub-sectional collocation method is provided.  
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Figure-6 Graphical Representation of Sub-sectional Collocation Method Weighting 

Functions 

 

 

In this method, the integrals cannot be eliminated as in the case of point matching method. 

Even they are one dimensional, it is still required to calculate the integrals.  

 

c) Galerkin’s Method 

 

In Galerkin’s method, weighting functions are chosen as equal to the basis functions. 

Moreover, Galerkin’s method is one of the most frequently used methods for selecting the 

weighting function. Equation (27) shows the weighting functions. Equations (28) and (29) 

define the matrix entries. 

Nmfw mm ,...,2,1              (27) 

 nmmn fLfA ,      (28) 

gfg mm ,       (29) 

This method enables the boundary conditions to be satisfied across the solution domain. 

Instead of controlling the error function only at specified discrete points or sections as used 

in previous methods, here error function can be controlled in the overall range. Furthermore, 

it is not necessary to decide on the selection of weighting functions. However, the most 

important advantage of the Galerkin’s method is obtaining a symmetric matrix at the end of 

the application. Computational time can be improved significantly by this symmetric matrix. 

However, method has a disadvantage in terms of integral values. Here, integrals has complex 

forms and evaluation of them can be very time consuming and sometimes impossible. 

Therefore, this method should be selected by first observing the resulted integrals. The 

reason why this method is selected in this thesis study is explained in another part. Yet, it is 

clearly seen that the most important reason is the coordination of method with the problem 
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that is studied in the thesis. Additionally, the computational time can be reduced by the 

resulted symmetric matrix.  
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CHAPTER 3 

GREEN’S FUNCTIONS IN PLANARLY LAYERED MEDIA 

First, general review of Green’s functions should be provided since they are used in 

analyses. In linear time-invariant systems, if the impulse response of the system is known 

then response of an arbitrary input signal can be found easily. Simply, the convolution 

integral of impulse response and input signal provide the response of this source. In 

electromagnetic problems, it is aimed to find out the field distribution that is created by an 

arbitrary source. Here, Green’s function can be considered as the impulse response of the 

impulse source. However, if the field distribution that is created by an arbitrary source is 

intended to be found, then the linearity of Maxwell’s equations should be proven. The 

nonlinearity of Maxwell’s equations can only be caused by the electrical properties of the 

medium. Therefore, in linear media, Maxwell’s equations are linear. The detailed proof can 

be found in the reference [1].  

A detailed explanation of obtaining dyadic Green’s function of electric field from scalar 

Green’s function of electric field, obtaining dyadic Green’s function of electric field from 

scalar/vector potentials (MPIE) and spectral domain Green’s function in layered media are 

provided in appendix A.1, A.2 and A.3, respectively. Although these calculations are not 

performed in this thesis study, presentation of these calculations in a detailed manner could 

ease the understanding of further concepts. Therefore, they are presented in the appendix 

part.  

Since spatial domain Green’s functions will be used in the MoM analysis of microstrip 

structures, they are necessary for this thesis study. Therefore, before introducing the MoM 

application, spatial domain Green’s functions are presented in this chapter. First a general 

review of Green’s functions will be given in this chapter. Then, spatial domain Green’s 

functions in layered media will be discussed. Sommerfeld integral and Sommerfeld identity 

are introduced. The importance of Sommerfeld identity is explained. At the end of this 

chapter, reader can understand the physical meaning of the spatial domain Green’s function 

formula and the reason why spatial domain Green’s function is used in the MoM application 

instead of spectral domain Green’s function. 

 

3.1    Spatial Domain Green’s Functions in Layered Media 

 

The reason why spatial domain values are needed and why MoM should be applied to the 

spatial domain Green’s functions will be clear in the next section. After finding the spectral 

domain dyadic Green’s functions, inverse Fourier transform or inverse Hankel transform 

should be used in order to obtain spatial domain Green’s functions from spectral domain 
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counterparts. Both inverse Fourier transform and inverse Hankel transform are called in 

general as Sommerfeld integrals. First, spectral to spatial domain transformations will be 

investigated. Let’s assume a scalar field component for example as ),()( zff r , where 

yx yx ˆˆ  . Then, transformations are shown in equations (30) and (31). 
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Where, 
22,ˆˆ
yxyx kkkkykxk    

Equation (31) is called the Sommerfeld integral. In order to find the Fourier transform of the 

spherical wave function 
r

e jkr

, Sommerfeld identity in equation (32) will be used [24]. This 

identity eases our analysis significantly and this will be explained later. Sommerfeld identity 

is shown in equation (32). 
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Where, 
222222 , yxz kkkkzyxr         

It can be seen from equation (31) that k  can be used instead of two independent variables x 

and y. If Cartesian coordinates are transformed into Cylindrical coordinates as 

  sin,cos,sin,cos  yxkkkk yx        and jacobian determinant is used as 

 dkdkdkdk yx  , then the expression in equation (31) will become the one in equation 

(33). 
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After further arrangements, the expression in equation (34) can be obtained, without 

explaining the details the final form is shown [24]. 
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In equation (34), 0J  is called zero order Bessel function and it corresponds to cylindrical 

standing wave. By using the expressions in equation (35) and (36), equation (34) can be 

changed to an alternative form which is provided in equation (37). 
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Final form is shown in equation (63). 
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jwte  time dependence is assumed throughout this thesis study. 
)1(

0H  and 
)2(

0H  are zero order 

first kind and second kind Hankel functions and they correspond to inward and outward 

cylindrical travelling waves, respectively. Equations (34) and (37) are in general called as 

Sommerfeld integrals.  

As a matter of fact, MoM can be applied etiher to the spectral domain or to the spatial 

domain. Now, both of these cases will be discussed together with the advantages and 

disadvantages. 

If MoM is applied to a spectral domain Green’s function, an advantage can be utilized. 

Spectral domain Green’s functions can be used in closed forms. In this case, the integrals 

that are belonging to inner products are defined along the infinite domain and only double 

integrals of complex functions remain [8]. Additionally, one integral can be transformed to 

polar coordinates from Cartesian coordinates. However, the time consuming integral part 

cannot be eliminated. Therefore, in spite of all these arrangements, computationally efficient 

analysis in the spectral domain is not possible. 

If MoM is applied to spatial domain Green’s function without any further arrangement, then 

each matrix element is composed of five-dimensional integrals. Two of them come from 

inner product, two of them come from convolution integral and one is the Sommerfeld 

integral and come from the Green’s function directly. By applying some simplifications, this 

five-dimensional integral can be reduced to three-dimensional one. This simplification is 

transforming the convolution integral between Green’s function and basis function to a 

convolution integral between basis and testing function and it will be discussed later. 

Moreover, instead of the required infinite range in spectral domain, in spatial domain 

integrals in MoM matrix elements are defined across finite domains [25]. However, 

Sommerfeld integral that is the time consuming and oscillatory function remains the same, 

so this case is not computationally efficient as well.  

Up to now, it can be seen that there is no much difference between applying MoM to spatial 

domain or spectral domain in terms of computational advantage. However, the studies that 

are published in year 1988 by Fang and his friends [26] and in year 1991 by Chow and his 

friends [27] completely change the situation in this field of study. According to these studies, 
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if the spatial domain Green’s functions could be expressed in closed forms, it would be 

possible to eliminate the time consuming part. If spatial domain Green’s functions are 

written in closed forms, then three-dimensional integral is reduced to two-dimensional 

integral and it is defined across the finite range. Here, it is not necessary to take the integrals 

of Green’s functions which is the only time consuming part in the analysis. Therefore, the 

question is how to express the spatial domain Green’s functions in closed forms? Before 

answering this question, the spatial domain Green’s function will be analyzed by observing 

its singularities. 
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 dkkk qA
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qA )(
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)(
4

1
)( ,)2(

0

,
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Where, 
222

yx kkk  . Here   is a variable in cylindrical coordinates, G  is the spatial 

domain Green’s function and G
~

is the spectral domain Green’s function. Equation (38) 

shows the general representation of spatial domain Green’s function. SIP is called 

Sommerfeld integration path and it is illustrated in Figure-7. 

The integration path needs to be deformed as shown in Figure-7 due to the  branch-point and 

pole singularities of the integrand.  

 The function )()2(

0 kH  has a logarithmic branch-point singularity at point 0k . 

 The value 
22

kkkz   has algebraic branch-point singularity at points 

0kk  . 

Branch-point singularities correspond to the radiating modes in the outermost layer, because 

it requires the layer to be unbounded. Pole singularities correspond to guided modes in the 

dielectric layers [8].  
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Figure-7 Illustration of Sommerfeld Integration Path (SIP) 

 

 

Now, writing spatial domain Green’s functions in closed form can be discussed. After 

finding the closed form spatial domain Green’s functions, these values will be used in the 

solution of MPIE by MoM and computationally efficient solutions can be achieved. It can be 

seen from equation (38) that spatial domain Green’s functions are expressed in terms of 

spectral domain Green’s functions. Closed-form spectral domain Green’s functions are 

known for layered media, so the evaluation of the spatial domain Green’s function requires 

the numerical computation of the Sommerfeld integral. However, this integral is an 

oscillatory integral and the calculation of this integral is computationally very expensive 

[28]. If spectral domain Green’s functions are arranged properly, then it is possible to 

eliminate the Sommerfeld integral completely and get rid of the numerical evaluation of this 

integral. Hence, if spectral domain Green’s functions could be approximated in terms of 

complex exponentials, then integral of this resulted expression which is the summation of 

complex exponentials can be computed analytically. After spectral domain Green’s functions 

are approximated in terms of complex exponentials, the inverse Hankel transform can be 

computed analytically by using the previously mentioned Sommerfeld identity. In order to 

use Sommerfeld identity, integral should contain an exponential expression. Indeed, this is 

the reason why the spectral domain Green’s functions are approximated to exponential 

forms. This idea is first suggested in year 1988 by a published paper [26]. In this paper 

writing spectral domain Green’s functions in terms of the summation of complex 

exponentials by using Prony’s method is explained. Then, by using this approximation, 

Sommerfeld identity is utilized in order to express spatial domain Green’s functions in 

closed forms [26]. Then, this study is improved by Chow et al. [27]. This study is only valid 

for finding vector and scalar potentials of HED (Horizontal Electric Dipole)’s over thick 

substrates, so it has a very limited application area. However, this study is very important in 

terms of the usage of the main idea. Then, this study is improved by a paper that is published 

in year 1992 which is valid for arbitrary thickness where both substrate and super-strate exist 

[29]. In year 1995, a study is published that is aimed to find Green’s functions of vector and 

scalar potentials for HED, HMD (Horizontal Magnetic Dipole), VED (Vertical Electric 
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Dipole) and VMD (Vertical Magnetic Dipole) sources that means all available source types 

in planar layered medium where they located over an arbitrary layer [30]. In other words, in 

this study instead of only HED all source types are considered and there is no restriction on 

layer numbers as well. Furthermore, in early studies [26, 27] original Prony’s method was 

used in order to make an approximation. However, in this method excessive sampling 

numbers are required, so it cannot be responded to fast changes. Consequently, in this study 

an alternative method which is called Generalized Pencil of Functions (GPOF) method is 

offered and more robust method is developed [30]. In year 1996 another paper is published. 

This study is about converting the process of approximating spectral domain Green’s 

functions in terms of complex exponentials to a more efficient and robust process and a two-

level approximation approach is developed. This method is definitely more computationally 

efficient and robust when compared to the old method as proven in the paper [31]. In year 

1997, a study is published which discussed the observed problems during the usage of closed 

form spatial domain Green’s functions for the geometries with vertical metallization  and 

two methods are developed for this situation [32]. The study in year 2003 stated that after 

certain distance the spectral domain approximation could deviate. They made a 

comprehensive investigation about this issue together with the main reasons of this problem 

[33]. In year 2005, a paper is published that is about analyzing the process of obtaining 

closed form Green’s functions in detail [34]. In year 2008, a paper is published which detects 

the fact that far field results are not very accurate due to the lack of proper closed form 

representations of lateral waves [35]. In year 2009, the studies headed towards different 

sides. Because of the requirements of the recent scientific developments, the studies proceed 

to different fields. A study published in this year discussed the applications of closed form 

Green’s functions in planar layered media so far. Alteration of the method that is used for 

this approximation which is called DCIM is investigated and the applicability of this method 

to the artificial materials is analyzed [36]. The continuation of the study in year 2009 was 

published in year 2010 which developed the two-level approximation approach to a three-

level approximation approach (three-level DCIM) [37]. The main aim is to develop a method 

that is valid for all ranges including the far-field and for all material types including LHM 

(Left-handed Material). The assumption in this study is that the combination of spherical 

waves could be used to represent lateral waves appropriately and it is discussed in the 

reference in detailed [37]. 

The method that is used to find out spatial domain Green’s functions in closed forms is 

discussed throughout the historical perspective. Now it is time to explain how the spectral 

domain Green’s functions are approximated in terms of complex exponentials.  

GPOF method is the one that is used to express spectral domain Green’s functions in terms 

of complex exponentials in this thesis study. This method requires uniform sampling like the 

other less computationally efficient methods that are used in early works such as Prony’s 

method and least square Prony’s method. This uniform sampling should be understood as the 

uniform sampling of a complex valued function across a real variable. If this sampling 

process is performed across the variable k , then the resulted complex exponentials are in 

terms of k . However, the complex exponentials that are written in terms of k  cannot be 

useful for our analysis because the aim is to find out the same exponentials used in the 

Sommerfeld identity. The exponentials in the Sommerfeld identity are in terms of zk , so in 
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order to use Sommerfeld identity, the resulted exponentials should be in terms of zk . If this 

approximated complex exponential expression in terms of zk  is inserted instead of the 

spectral Green’s function inside the integral in equation (38), then the required form the 

Sommerfeld identity is achieved. Then, instead of calculating the integral in equation (38), 

by inserting the equivalent value of Sommerfeld identity the integral evaluation is 

completely eliminated.  

As intended, in order to obtain exponentials in terms of zk , a deformed path is constructed 

on k  plane such that the real variable t is used to obtain values on complex zk  plane. In 

equation (39), the mathematical representation of this mapping process is shown. 

0

0

0,1 Tt
T

t
jtkk z 



















                (39) 

Here 0T  is the truncation point. 

This deformed path is obtained by deforming the SIP path. Here a path is constructed that is 

away from surface wave poles (SWP) (for details reference should be examined [38]). Let 

this deformed path is called as apC , and it is illustrated together with SIP in Figure-8. apC  

can be obtained by deforming the SIP, because no singularity is experienced during the 

deformation [27]. Sampling of spectral domain Green’s functions should be performed along 

SIP or a path that is deformed from SIP appropriately [8].  

 

 

 

 

Figure-8 Illustration of apC  Path together with SIP 
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As seen from equation (39), Green’s functions are sampled uniformly as  0,0 Tt . In this 

process, exponentials in terms of t are approximated by taking values along apC  path in the 

k  plane with the fact that   2/12

0max 1 Tkk  . Then, these exponentials can be 

transformed to the case where they are written in terms of zk , again as seen from equation 

(39). This application is called one-level approximation approach [31]. The reason why it is 

called as one-level is because of the fact that complex function is approximated in between 0 

and 0T , and beyond 0T  is not considered. Advanced method is also developed that is more 

efficient than one-level approach. In order to catch even smaller changes in the k , the 

sample size should be very high. Spectral domain Green’s functions can vary fast in small 

distances. Additionally, GPOF method requires uniform sampling, so one-level approach 

requires thousands of samples [8]. Moreover, in order to reflect the asymptotic behavior of 

Green’s functions 0T  should be selected large [39]. Large 0T  already means large samples 

and it increases the computational time. Since Green’s functions have a slowly varying 

behavior, it is not so efficient to take large number of samples. Therefore, two-level 

approach is developed [31]. According to the two-level approach, approximation is 

performed along 1apC  and 2apC  one by one which are shown in Figure-9. First 

approximation is realized along 1apC path and afterwards 2apC  path is used [19]. 

 

 

 

 

Figure-9 Illustration of 1apC  and 2apC  Path together with SIP 

 

 

Parametric equations of 1apC  and 2apC  paths are shown in equations (40) and (41).  

For 1apC    0102 0 TttTjkk izi              (40) 
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For 2apC  02

02

01 Tt
T

t
jtkk izi 
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
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A rapid change is observed up to maxkk  , then the remaining part shows a smoother 

structure [36]. This fact is taking into consideration while developing the new method and 

two separate paths are considered. Region is divided into two parts by taking into account 

this behavior and sampling is performed according to these two paths. 1apC  path is the part 

where quasi-static terms are extracted which means extracting the asymptotic behavior of the 

approximated function [34]. The details will not be discussed in this study, so reader can 

examine the reference for details [32]. Additionally, the detailed description of two-level 

approach that can be transformed into multi-level approximation approach easily can be 

found in the reference [36]. 

After applying the two-level approach, spectral domain Green’s functions are approximated 

in terms of complex exponentials as shown in equation (42) and it should be noted that the 

exponentials are in terms of zk as desired. 
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Here na1  and n1  are the coefficient and exponent that are obtained from the first 

approximation along 1apC , respectively. na2  and n2  are the coefficient and exponent that 

are obtained from the second approximation along 2apC , respectively. These coefficients and 

exponents are complex constants and zik  is the propagation constant in the source layer. 1N  

and 2N  are number of exponentials that are used in the approximation. The aim is to write 

down spatial domain Green’s functions in closed form expressions. For this reason, 

approximated spectral domain Green’s functions in equation (42) are substituted into the 

Sommerfeld identity in equation (38). A small example should be given in order to explain 

the process. For simplicity, one-level approach is used and the resulted spectral domain 

Green’s function is given in equation (43). 
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Furthermore, the Sommerfeld identity is re-written in equation (44). 
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Spatial domain Green’s function expression is given in equation (45). 
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By substituting the spectral domain Green’s function in equation (43) into the expression in 

equation (45), the resulted expression for spatial domain Green’s function is written in 

equation (46). 
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In equation (46), the power of the exponential term zmkb
e


 is multiplied and divided by j and 

the 
)( mz jbjk

e


 term is obtained. Then the transformation that is provided in equation (47) is 

applied to this final expression. 

mjb z         (47) 

Afterwards, the final expression which is obtained after the transformation is given in 

equation (48). Since this expression fits entirely with the Sommerfeld identity that is given in 

equation (44), the integral part is removed and instead of it the expression 
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 is used. 
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Where 
22222 )( mmm bjbr   . Now, the simple example is terminated and the 

final form of the spatial domain Green’s function that is obtained from two-level 

approximation approach is given in equation (49) in a general representation. 
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Where, 
2

1

22

1 nn yxr   and 
2

2

22

2 nn yxr   are the complex distances. ik  is 

the wavenumber that belongs to source layer. The spectral domain approximation expression 

in equation (42) is the expression that is obtained from the direct sampling of spectral 

domain Green’s function.  

In order to find out the complex coefficients ma1 , ma2  and exponents mb1 , mb2  a software 

program which is written in Fortran is used. This program is written for the study in the 

reference [30] and will be used for our study as well. These complex coefficients and 

exponents are used as inputs into the program that is written for this thesis study.  

A couple of numerical examples regarding the use of spatial domain closed-form Green’s 

functions will be presented. In Figure-10, a three-layer microstrip line is illustrated. First 

layer is considered as the ground plane at the bottom which is PEC (Perfect Electric 



31 

 

Conductor), second layer is the dielectric layer with a specific permittivity and the third one 

is the air. For this structure in Figure-10, two-level approximation approach is applied in 

order to find the Green’s functions of vector and scalar potentials 
A

xxG  and qG , respectively. 

From the approximation, the complex coefficients ma  and mb  are obtained then they are 

used to find the Green’s functions. In the approximation the frequency is taken as GHz 1 , 

41 r , 12 r  and cmd 02032.01  . In the approximation, the source is considered as 

HED.  

 

 

 

 

Figure-10 The Illustration of 3-Layer Microstrip Line Structure 

 

 

Magnitudes of vector Green’s function 
A

xxG   and scalar Green’s function qG  can be plotted. 

These Green’s functions will be used in the analysis that will be discussed in the next 

chapter. They will be used as inputs to the software program. For details, next chapter should 

be investigated.  

Magnitude of the vector Green’s function 
A

xxG  is plotted in Figure-11. Here the logarithm of 

the magnitude of 
A

xxG  is plotted with respect to the logarithm of 0k . Logarithm is used in 

order to obtain more clear figures with large scales.  
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Figure-11 Magnitude of the Green’s Function of Vector Potential, 
A

xxG  

 

 

Magnitude of the scalar Green’s function qG  is also plotted in Figure-12.  
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Figure-12 Magnitude of the Green’s Function of Scalar Potential, qG  

 

 

The Green’s function plots are compared with the ones in the reference [22] and a good 

agreement is observed. In the reference, the obtained values are already compared with 

published results [30].  
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CHAPTER 4 

ANALYSIS OF A MICROSTRIP LINE ON PLANARLY LAYERED MEDIA 

– SINGLE LINE CASE 

In this chapter field analysis and current distribution of planar layered media will be 

discussed for single line case. First single line microstrip will be discussed. Then, MPIE 

formulation in planar layered media will be explained for single line case. Afterwards 

singularity extraction, parameter calculations for single microstrip line and software 

implementation will be explained as well. 

 

4.1 Brief Explanation of Single Line Case 

 

While making the MoM analysis by using spatial domain closed-form Green’s functions, 

first the MPIEs for layered structures should be obtained. MPIE is written in terms of vector 

and scalar potential Green’s functions. Then, the unknown current density values that are 

included in MPIE are written in terms of known basis functions. Afterwards, boundary 

conditions are used and this process is called testing. Galerkin MoM method will be used. 

The reason why MPIE should be used is explained. Additionally, the process of obtaining 

closed forms of spatial domain Green’s functions is explained as well. After applying MoM, 

the resulted matrix equation is solved in order to find out the current distribution on the 

single line conductor. Indeed, the main aim is finding this current distribution. Once the 

current distribution on the line is obtained, then all the parameters that define the circuit 

uniquely can be found by using this current distribution. In Figure-13, a microstrip line 

which has single conductor is illustrated. 

The microstrip line in Figure-13 can be considered as a 3-layered structure. First layer is the 

ground plane. Ground plane is a perfect electric conductor (PEC) and it is positioned at the 

bottom of the microstrip structure. Second layer is composed of dielectric substrate that is on 

the ground plane. In this 3-layer structure, there is no superstrate, yet this is the simplest one. 

The third layer is the air which is on the dielectric substrate. On the dielectric substrate, a 

single line conductor is located which is composed of metal. This conductor has a width of w 

and this width is small compared to the operating wavelength. The main aim of the study is 

to find out the current distribution on this single line conductor. As seen from Figure-13, the 

current distribution on this metal conductor is approximated as rooftop functions. In this 

study, it is assumed that the behavior of the current distribution can be approximately 

reflected by rooftop functions and the basis functions are chosen in this way. It should be 

noted that this rooftop function approximation is appropriate to reflect the behavior of the 

current density on the conductor. All studies that are related to this study uses rooftop 
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functions and accurate results are obtained. At the right and left terminals, loads are located. 

Load currents are approximated as half rooftop functions. In this study, different load 

terminations will be tested such as open, short and matched then results corresponding to 

these different load combinations will be presented. Load impedances are defined as left load 

impedance and right load impedance LZ  and RZ , respectively. During the analysis, 

additional load equations are obtained to the resulted matrix equation. The reason why these 

load equations should be added will be described together with how they can be calculated. 

Lastly, microstrip line is fed with a coaxial probe at an arbitrary point on the conductor, this 

arbitrary point is generally assumed as 1 cm from the load where the operating frequency is 

1GHz. The function representing the source current is illustrated in Figure-13, and this 

function is chosen in order to model the discontinuity in the source current at the probe 

location. In the analysis, the point where the source is applied will be changed and the 

corresponding results will be presented. 

 

 

 

 

Figure-13 Illustration of Single Conductor Microstrip Line 

 

 

In the software program, the location of the source point with respect to the loads is defined 

as a parameter, so by changing its value the results can be observed easily. In this study it is 

assumed that dielectric layer and ground plane extend to infinity without any border. 

Therefore, there are no boundaries observed in transverse direction. Conductors are assumed 

to be lossless. The thickness of the dielectric substrate can be shown with d. The width of 

single line conductor metal is shown with w and this value is small. Since the width of the 

conductor metal is small compared to the operating wavelength, current distribution is 
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observed only in the x direction and it is assumed that the current distribution in the y 

direction can be neglected [40]. On the other hand, if the width of the conductor is not small 

compared to the wavelength, then the current distribution in the y direction cannot be 

neglected and this situation will be analyzed in this thesis as well. However, in this single 

line conductor case, the current distribution in the y direction will be ignored. Therefore, the 

current distribution in the y direction is assumed to be uniform. It is clear from Figure-13 

that in x direction current distribution is taken as piecewise linear function and in the y 

direction the current distribution is taken as uniform which corresponds to rooftop functions.  

 

4.1.1 MPIE Formulation in Planar Layered Media 

 

Tangential component of electric field on the conductor metal can be expressed in terms of 

scalar and vector potentials and associated Green’s functions. Besides, scalar and vector 

potentials can be expressed in terms of induced surface current densities ( J ) [19]. The 

electric field expression can be written as shown in equation (50). 
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Since the surface current density in y direction is neglected, the assumption in equation (51) 

is valid. 
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Therefore, the x directed electric field expression can be written as shown in equation (52). 

















 xqx

A

xxx J
x

G
xj

JGjE *
1

*


    (52) 

As seen from equation (52), electric field is created only in the x direction in this case. 
A

xxG  

expression represents the x directed vector potential located at r  that is created from x 

directed electric dipole of unit strength (HED) located at r . qG  is the Green’s function for 

scalar potential. xJ  represents x directed surface current density and this is unknown. The 

value that is desired to be found is this current density value xJ . This unknown xJ value can 

be approximated by the linear combination of known basis functions. This approximation is 

provided in equation (53). Here N  represents the number of known basis functions that are 

used in order to approximate the unknown function with linear combination. Therefore, 

unknown function is expanded in terms of chosen and known basis functions, as shown in 

equation (53). 
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Equation (53) can be analyzed in detail. The coefficients of basis functions are defined as nI  

and they are unknowns. After realizing the expansion, then these coefficients are desired to 

be found. This is because of the fact that now xJ  unknown values are written in terms of 

basis functions. Basis functions are defined as ),( yxJ xn and they are chosen from known 

functions. It is expected from these basis functions to reflect the behavior of the unknown 

function. Therefore, the behavior of xJ  which is the surface current density created on the 

conductor metal should be reflected by a properly chosen basis function. In Figure-13, the 

chosen basis functions for this study is already illustrated on the conductor and they will be 

explained in detail. It is time to give some information about the selection of these basis 

functions. Since basis functions are used to approximate unknown current densities, their 

derivatives should approximate charge densities [1]. The selected basis functions should 

satisfy the continuity of current and at the same time they should satisfy the charge 

conservation on the conductor. Rooftop basis functions are defined along rectangular cells. 

No charge loss or gain can be observed in these rectangular cells and it is expected that the 

total charge in the circuit have to be zero. Because of all these reasons, basis functions 

together with source and load basis functions are chosen as illustrated in Figure-13, the 

detailed explanation of this selection of basis functions can be found in the reference [1]. 

Furthermore, the half rooftop functions that are chosen for source and loads are piecewise 

continuous while rooftop functions that are chosen for the remaining parts of the conductor 

are piecewise differentiable and again for the details reference should be examined [41]. The 

basis function for the source is defined as sJ  and this is completely a known function. sJ  

does not have any unknown coefficient. Since the source that is applied by us has to be 

known and this is under our control, there are no unknowns for the source basis function 

[41].  

Galerkin’s MoM is used, so testing functions ),( yxJ xm  are same as chosen basis functions 

),( yxJ xn . After this Galerkin’s MoM, the resulted matrix is a symmetric matrix and this 

symmetry enables computational efficiency. If equation (53) is substituted into equation 

(52), then the expression in equation (54) is acquired. 
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    (54) 

By expanding equation (54), equation (55) will be obtained. 
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Now, the next step in the process will be the testing process. This is the testing of expression 

in equation (55) with ),( yxJ xm  and this testing procedure is given in equation (56). 

0),,( xxm EyxJ      (56) 

In order to construct equation (56), boundary conditions should be taken into account. 

According to the boundary condition, tangential electric field on the conductor of microstrip 

line should be zero, because conductor metal is assumed to be PEC and on the PEC the 

tangential electric field must be zero. Since in this case there is only x directed electric field 

is considered, in the testing procedure only xE  will be used to satisfy boundary condition. 

This testing equation could be considered as the minimization of residual [1]. In equation 

(56), number of the constituted equations is equal to the number of unknowns. Now, if xE  in 

equation (55) is substituted into equation (56), the final form is provided in equation (57). 
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 (57) 

The chosen basis functions are piecewise differentiable. Therefore, the differentiation can be 

transferred onto the testing functions as shown in equations (58) and (59) by using 

integration by parts. 
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If the final simplifications in equations (58) and (59) are substituted into equation (57) and if 

both sides are divided by j , then the final form of equation (57) could be expressed as in 

equation (60). 
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Further simplifications can be possible if the convolution integrals over Green’s function and 

basis function inside the inner product in equation (60) are transformed to the convolution 

integrals over basis and testing functions. By this transformation, the convolution integral 

can be evaluated analytically, because this time Green’s function is not involved in the 

convolution integral. The final simplified form of equation (60) after this convolution 
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integral transformation is shown in equation (61). Calculating the convolution integral 

analytically is only possible by such a convolution integral transformation. After finding the 

results of convolution integrals analytically, then inner products of these results and the 

Green’s functions will be evaluated. All analytic convolution calculations including load 

basis and testing functions for single conductor case are given in a very detailed fashion in 

references, so here the details are not covered once more [20, 23]. 
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In order to give an example, an arbitrary inner product term in equation (61) will be written 

in an explicit form, which is provided in equation (62). 
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In equation (62), the second double integral inside is the convolution integral of basis and 

testing functions which is the result of the convolution integral transformation in equation 

(61) and it is evaluated analytically. The first double integral outside in equation (62) is the 

inner product integral between the analytically obtained convolution result and the Green’s 

function. This integral cannot be evaluated analytically and numerical calculation is 

necessary. This numerical integral is realized by using Gauss Quadrature Method in the 

software program [42]. 

The expression in equation (61) is a matrix equation. After solving this matrix equation, 

unknown coefficients that are defined as nI  are found. Afterwards, these nI  values are 

substituted into equation (53) and unknown surface current densities that are defined as xJ  

are uniquely determined. The resulted matrix equation will be explained in detailed later, 

now the basis functions will be analyzed. 

 Basis Functions: 

As indicated previously, rooftop functions are selected in this study as basis functions. 

Additionally, the reason of this choice was explained. Rooftop functions are triangular 

functions in longitudinal direction and uniform in transverse direction [19]. These rooftop 

basis functions are given in equation (63) in a mathematical form and shown in Figure-14. 
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Basis functions in equation (63) are illustrated in Figure-14. 
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Figure-14 Illustration of Rooftop Basis Functions on the Conductor 

 

 

As seen from Figure-14, the value of xh  is determined by the length of the conductor and the 

chosen number of basis function. Now, the issue of basis function selection can be discussed. 

The selection of basis function directly affects the rate of convergence of the integrals in 

MoM matrix elements [40].  Moreover, some features that are listed below should be 

satisfied by the selected basis and testing functions. 

 Summation of the order of differentiability for basis and testing functions in the 

direction of current polarization should equal to one or greater than one.  

 Any even function that has order of singularity less than one or any piecewise 

continuous function could be used in the direction orthogonal to the current 

polarization. 

In order to add the contributions of source and load to the current density that is desired to be 

found, the corresponding basis functions should be selected appropriately. Then, they should 

be associated with the remaining basis functions. Now, these basis functions for source and 

load contributions will be discussed.  

 Source Basis Functions: 

For the source, sawtooth like function is chosen as basis function. In order to reflect the 

behavior of the source, such basis function is selected. Here, this function shows a 

discontinuity that accounts for the vertical current provided by the probe. The mathematical 

expression of the source basis function is shown in equation (64). 
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In equation (64), the parameter a  represents the excitation point in terms of number of xh . 

By using different values for a , the feed point where the source in applied can be changed 

easily and the results can be observed on the software program. The illustration of the source 

basis function that is defined in equation (64) is provided in Figure-15.  

 

 

 

 

Figure-15 Illustration of Source Basis Function on the Conductor 

 

 

 Load Basis Functions: 

Load basis functions are chosen as half rooftop functions. Half rooftop functions have 

triangular functions in longitudinal direction and uniform functions in transverse direction. 

The mathematical representation which is similar to the one for rooftop functions is provided 

in equations (65) and (66) that are for left load and right load, respectively. 
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N  is the number of basis functions. In single conductor microstrip line case, load basis 

functions that are used in both terminations should be associated with the basis functions of 

the remaining parts of the conductor. Therefore, two additional equations are needed at two 

load terminations for constructing such a relation. In order to write these equations, boundary 

conditions at the terminals of the conductor should be taken into account. When load 

impedance and line current are multiplied, voltage difference between line and ground is 

obtained. Hence, the voltage values found at the load terminations can be expressed in terms 

of load impedances, coefficients of load expansion functions and coefficients of other 

expansion functions [41]. By using an approach that is based on transmission line analysis, 

load impedances can be associated with the surface current densities on the conductor. Finite 

differencing approach will be used as well. Total voltage )(xV  and total current )(xI  on the 

conductor can be related by using first-order differential equations provided in equations 

(67) and (68). 
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Where, 0/ ZjY   and 0ZjZ  , shunt admittance and series impedance per unit length 

of the line, respectively. 

Characteristic impedance 0Z  and propagation constant   of the line can be found by using 

quasi-static analysis and details are not provided here [19]. Derivatives in the equations (67) 

and (68) can be calculated with finite differencing. The resulted equations can be associated 

with each at the load terminations lxx   and rxx  , the final equations are acquired which 

are shown in equations (69) and (70). 
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Where, 

lLZ Load impedance of the left end of the line 

lRZ  Load impedance of the right end of the line 
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cZ Characteristic impedance of the line 

 Propagation constant 

Equations (69) and (70) should be added to the matrix equation and then this final matrix 

equation should be solved for nI  values. In this way, current distribution on the microstrip 

line conductor which is terminated with complex load impedances lLZ  and lRZ  is 

determined uniquely. These complex load impedances will have different values depending 

on the loads that are used in the analysis. In the software program, these impedance values 

can be changed easily and the corresponding results could be observed eventually. The 

illustration of the load basis functions is presented in Figure-16. 

 

 

 

 

Figure-16 Illustration of Load Basis Functions on the Conductor 

 

 

 Derivative of Basis Function: 

Derivatives of basis functions are needed while the electric field due to the scalar potential 

and these derivatives are provided in equation (71). 
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 Derivative of Source Basis Function: 

Derivative of the source basis function is also needed like the derivative of shifted testing 

function. Therefore, the derivative expression of this source basis function is provided in 

equation (72). 
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 Derivative of Load Basis Functions: 

Lastly, derivative of load basis functions are presented in equations (73) and (74). 
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By using these given basis functions and their derivatives, all desired convolution integrals 

could be evaluated analytically [20, 23]. Figure-17 illustrates the derivatives of rooftop and 

half rooftop functions. 
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Figure-17 Illustration of the Derivative of Basis Functions 

 

 

 

4.1.2  Singularity Extraction 

 

The closed-form spatial domain Green’s function expression is shown in equation (75). This 

expression will be used in MoM application and it is the general designation which contains 

both vector and scalar potential Green’s functions. 
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Where, 
22

nn br   . 

The complex coefficients na  and nb  that are acquired during the process of obtaining 

closed-form spatial domain Green’s functions are data sets of complex numbers. These 

complex coefficients are obtained from a software program which is written in FORTRAN, 

such that these coefficients will be the inputs of the MoM application. In these complex data 

sets, the last terms are called as direct terms and for these direct terms always 1na  and 

0nb  have to be satisfied. However, if the Green’s function expression in equation (75) is 

investigated carefully, it is clear that at the direct term the denominator of Green’s function 

should equal to zero ( 0r ). Consequently, always a singularity is observed in the direct 

term. In order to eliminate this singularity, numerical integrals in equation (59) should be 

evaluated by extracting the direct terms. Then, the effects of these direct terms should be 

added analytically to the integral expression. For this reason, first the Taylor series 

expansion of the direct term is written. The Taylor series expansion of the exponential 
jkre

 

at the point 0r  is given in equation (76). 
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If both sides of the expression in equation (76) are divided by r , the final form is shown in 

equation (77). 
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Equation (77) is the series expansion of an arbitrary exponential by using Taylor series 

expansion. Since, the integral will be evaluated numerically without including the direct 

term, the integral of the direct term should be evaluated analytically by using this series 

expansion. Analytical calculation of such integrals is only possible by this series expansion 

approaches and otherwise only numerical calculation could be considered. However, it 

should be noted that this is a series approximation, so the contributions of the third term and 

the following terms are very small to the general expression with respect to the contributions 

of the first two terms when 0r . Hence, the contributions of third term and the following 

terms are ignored. Only first two terms will be used in the analysis. Now, in equation (77) 

instead of the expression in the left side of the equation, the expression in the right side of 

the equation will be used by accounting only the first two terms. The integral of this 

expression in the right side should be calculated with respect to the variable r . As seen from 

equation (77), the second term is a constant that is independent of the variable r , so it can be 

used directly. Thereof, second term can be directly taken out of the integral as a constant. 

Integral with respect to variable r  should be evaluated analytically only for the first term 

which is already a function of r . Let, rewrite the first term in equation (78). 

22
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For evaluating the integral of equation (78) analytically, “Method of Kantorovich for 

isolating singularities” will be used, the details are not discussed here and they can be found 

in the reference [22]. Both the source and observation points are located at point 0z . 

After applying “Method of Kantorovich for isolating singularities” to the expression in 

equation (78) when 0r  (  x and y 0 ), the final result is presented in equation (79) 

[22]. 
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Consequently, by adding equation (79) together with the second term in equation (77) to 

each of the numerically evaluated integrals in equation (59), without having any trouble for 

the singularity in the direct term, the contribution of the direct term is added analytically to 
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the general expression. The parts in the integral excluding the direct term are already 

evaluated numerically. Only the contribution of the direct term is added afterwards 

analytically. By this way, the singularity problem is solved. If the contribution of the direct 

term would be evaluated numerically as well, then singularity will arise and the denominator 

will go to infinity.  

 

4.1.3  Software Implementation 

 

When the matrix equation in equation (59) is solved, then the unknown coefficient nI ’s are 

found. Afterwards, by using these coefficients the basis functions can be expressed uniquely, 

so that the current distribution on the line is found. It should be stated that all these 

calculations are written with program in MATLAB
®
 software. First, matrix equation should 

be constructed from the expression in equation (59). The matrix equation which identifies 

the infrastructure of the software program is discussed below as well. The MoM matrix 

equation is given in equation (80). 

bAx         (80)   

Here A  is  N X N matrix. x  and b are N X 1 matrices. The elements of these matrices A , 

x  and b are shown in equations (81), (82) and (83), respectively.  
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nn Ix        (82) 
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Where,  1,...,3,2  Nm ,  1,...,3,2  Nn . N  is the number of basis functions. 

Number of testing functions is equal to number of basis functions. As indicated before, the 

convolution integrals that are inside the matrix elements of A  and b matrices such as 

   yxJyxJ xnxm ,*, ,    yxJ
x

yxJ
x

xnxm
,*,








,    yxJyxJ sxm ,*,  and 

   yxJ
x

yxJ
x

sxm ,*,







 should be evaluated analytically. Then, the double integrals of 

the obtained values from analytical calculations and the Green’s functions 
A

xxG  and qG  are 

evaluated. While evaluating these integrals, the analytical calculation is not possible, so 

numerical calculation has to be used to take these integrals. In the constructed software 

program, numeric integrals are evaluated by using Gauss Quadrature [42]. It should be noted 

that the convolution integrals depends on the distance between the basis and the testing 

functions, not on the absolute locations of them. Therefore, when the convolution integral of 
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the first testing function with each of the basis functions are computed, all other convolution 

integral combinations are known. Therefore, once the first row of the matrix is constructed, 

the remaining part of the matrix can be filled by using the entries of the first row. As 

mentioned previously, unique solution can be obtained if and only if the effects of the loads 

at two terminations of the microstrip line are taken into account. Loads are represented by 

half rooftop basis functions. The coefficients of these half rooftop functions should be 

associated with other basis functions. Consequently, two additional equations that are given 

in equations (68) and (69) should be added to the matrix equation. These equations include 

the coefficients of load basis and testing functions which are 1I  and  2NI .  

 

4.2  Numerical Application 

 

The analysis for a single microstrip line structure is presented. In this part, the results that are 

obtained from the application of this analysis are given and associated comments on these 

results are presented.  A single line microstrip structure that analyses are applied is illustrated 

in Figure-18. 

 

 

 

Figure-18 Single Microstrip Line Structure 

 

 

The parameters that are used in the analysis are given as follows: 
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The magnitudes of closed form spatial domain vector and scalar potentials are illustrated in 

Figure-11 and Figure-12. These values are used as inputs in the analysis. Now, the obtained 

results are presented with graphical representation. 

In Figure-19, the amplitude of the current distribution on the line is illustrated when two 

terminals of the line are match loaded, line is fed at 1cm from the left and 50 basis functions 

are used.  For matched load case, it is expected to obtain current distribution as constant 

throughout the line. This result approximately represents the expected behavior. Only small 

amount of fluctuation occurs and the general structure of the amplitude distribution is almost 

constant. At the feeding point, a source discontinuity is observed. This result is also expected 

in matched load case.  

In Figure-20, the amplitude of the current distribution on the line is illustrated when two 

terminals of the line are match loaded again, line is fed at 6cm from the left and 50 basis 

functions are used. When the location of the feeding point is changed, it is expected to 

observe a shift in source discontinuity. In the figure, this shift can be observed.  

In Figure-21, the amplitude of the current distribution on the line is illustrated when two 

terminals of the line are open circuited, line is fed at 1cm from the left and 50 basis functions 

are used. For open circuit termination case, it is expected to observe current as zero at the 

termination points. Moreover, it is expected to observe maximum. These expected results 

can be acquired from the given figure. Current amplitudes are zero at the terminations and a 

peak current is observed as well. At the source feeding point, discontinuity can be realized.  
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Figure-19 Amplitude of Current Distribution with Match Load Terminations, Excited at 

1cm from Left, 50 Basis Functions 

 

 

In Figure-22, the amplitude of the current distribution on the line is illustrated when two 

terminals of the line are open circuited, line is fed at 6cm from the left and 50 basis functions 

are used. When the feeding point is changed for open circuit termination case, a shift in 

source discontinuity should be observed and this shift can be seen from the given figure. 

Again at the termination points, the current values are zero as expected.  
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Figure-20 Amplitude of Current Distribution with Match Load Terminations, Excited at 

6cm from Left, 50 Basis Functions 

 

 

In Figure-23, the amplitude of the current distribution on the line is illustrated when two 

terminals of the line are short circuited, line is fed at 1cm from the left and 50 basis functions 

are used. For short circuit case, it is expected to observe maximum current values at the 

termination points. Additionally, zero current should be observed. These expected results can 

be acquired from the given figure. cm2 offset can also be observed for the source.  

In Figure-24, the amplitude of the current distribution on the line is illustrated when two 

terminals of the line are short circuited, line is fed at 6cm from the left and 50 basis functions 

are used. When the feeding point is changed, a shift is be observed for the source point. 

Again at the termination points maximum current amplitudes are observed.  
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Figure-21 Amplitude of Current Distribution with Open Circuit Terminations, Excited at 

1cm from Left, 50 Basis Functions 

 

 

In these figures mainly the effect of the location of feed point is observed. Moreover, the 

effect of the termination loadings can be observed. From now on, by using these data the 

resulted parameters can be calculated. The main parameter calculations will be performed for 

patch antenna case. However, for a single line, the main parameter calculation techniques are 

presented.  
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Figure-22 Amplitude of Current Distribution with Open Circuit Terminations, Excited at 

6cm from Left, 50 Basis Functions 
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Figure-23 Amplitude of Current Distribution with Short Circuit Terminations, Excited at 

1cm from Left, 50 Basis Functions 
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Figure-24 Amplitude of Current Distribution with Short Circuit Terminations, Excited at 

6cm from Left, 50 Basis Functions 
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CHAPTER 5 

ANALYSIS OF A MICROSTRIP LINE ON PLANARLY LAYERED MEDIA 

– COUPLED LINE CASE 

In this chapter, the current distribution on parallel coupled lines are calculated by using 

closed form Green’s functions in spatial domain via Galerkin’s MoM. First parallel coupled 

lines are explained. The formulation for this kind of structures will be described and an 

information will be given regarding to the software application. Lastly, the results that are 

obtained from the analysis are presented in terms of graphs. 

 

5.1 Parallel Coupled Line Structures 

 

The general form of a parallel coupled line structure is shown in Figure-25. In the previous 

chapter, analysis of the single line microstrip structure is provided. Now, two lines are 

located as parallel to each other to form a coupled line pair. For such an arrangement, there 

will be an interaction between these two lines and this coupling effect should be taken into 

account while performing the analysis.  

 

 

 

 

Figure-25 Parallel Coupled Line Structure 
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5.2  Formulation 

 

In the coupled line case, total current can be expressed as the summation of the currents on 

each line together with the source current. This total current expression is shown in equation 

(84).  

       yxJyxJIyxJIyxJ sxn

n

n

n

xnnx ,,,, 2211     (84) 

Feeding should be only on one line and there will be no source included on the second line. 

The currents that are created on the line without the source are due to the effect of the 

currents on the line with the source. This effect is called as coupling effect. According to the 

terminology, the line that is excited by a source is called as active line and the other one 

without source is called as passive line. The current on the passive line is created only by the 

currents on the active line that are due to the source excitement.  

Assume that line-1 is the active line which means feeding is on line-1; 

xnJ1  and xnJ2  are basis functions of active and passive lines, respectively. nI1  and nI2  are 

the basis function coefficients of active and passive lines, respectively. It is aimed to find out 

these coefficients at the end of the analysis. Since similar analysis will be performed for this 

case as the analysis of single line case, a detailed explanation of the theory will not be 

provided in this chapter. Detailed presentation can be found in the previous chapter. Recall 

the tangential electric field formula which is given in equation (85). 

















 xqx

A
xxx J

x
G

xj
JGjE *

1
*


    (85) 

Expression of xJ  in equation (84) is substituted in equation (131). Afterwards, xE  

expression should be tested with testing functions xmJ1  and xmJ2  according to the MoM 

analysis. Since there are two testing functions belonging to two lines, testing operation 

should be performed twice. These testing  operations are given in equation (86) and equation 

(87). 

1 , 0xm xJ E        (86) 

2 , 0xm xJ E        (87) 

If equation (84) and equation (85) are substituted into equation (86) and equation (87), then 

two equations are obtained. These two equations are shown in equation (88) and equation 

(89). 
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  (89) 

In equations (88) and (89), convolution integrals should be calculated. As in the case of 

single line in previous chapter, these integrals are calculated analytically. Since the analytical 

calculation technique is given in previous chapter, a detailed analysis will not be given in 

this chapter. Detailed analytical calculation of the convolution integrals for parallel coupled 

line case can be found in the references [20, 23]. 

 

5.3  Software Implementation 

 

Equations (88) and (89) should be solved in order to obtain the unknown basis function 

coefficients nI1  and nI 2 . As performed in previous chapter for single line case, each of these 

equations are first defined in terms of matrix equations and then these matrix equations are 

solved. Software program is constructed such that it can identify active and passive lines 

automatically by using the information that which line is fed. The location of the source on 

an arbitrary part of the line can be assigned easily. Therefore, the effect of the location of the 

source can be observed easily. The distance between two parallel lines can also be assigned 

to the software program easily, so the effect of this distance can be observed easily as well. It 

is expected that by increasing the distance between the lines, the coupling effect between the 

lines should be decreased. On the other hand, if this distance is decreased, then the coupling 

effect between the lines should be strengthened. Software program outputs the current 

distributions on both the active and passive lines as a graphical representation together with 

the required data. The software program is very similar to the program for single line case in 

previous chapter. Calculation of integrals and the general structure of the program are same 

as previous method. Therefore, detailed explanation is not necessary in this chapter.       
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5.4  Numerical Application 

 

In the parallel coupled line analysis, open circuit terminations at both ends are used. 

Therefore, all results are presented for open circuit terminations. The effects will be observed 

by changing the distance between the lines. The effects of other parameters will not be 

observed for this analysis. The parameter values that are used in this parallel coupled line 

analysis are given as follows: 
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Source is located on the beginning of the left termination of line-1 which means that line-1 is 

active. When two terminals are open circuited, 40 basis functions are used, the distance 

between lines s  is 25.7 cm  the amplitudes of the current distributions on line-1 (active 

line) and line-2 (passive line) are shown in Figure-26. Since the distance between the lines is 

huge, the coupling effect is expected to be low and the current on the passive line is expected 

to be very small compared to the current on line-1. 
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Figure-26 Amplitudes of Current Distributions on Active/Passive Lines with Open Circuit 

Terminations, Excited on Line-1 from Left beginning, s = 25.7 cm  

 

 

Source is located on the beginning of the left termination of line-1. When two terminals are 

open circuited, 40 basis functions are used, the distance between lines s  is 475.3 cm  

the amplitudes of the current distributions on line-1 (active line) and line-2 (passive line) are 

shown in Figure-27. While the distance between active line and passive line is decreased, it 

is expected to observe an increase on the passive line current. An increase on the passive line 

current can be observed in Figure-27 when it is compared with Figure-26. 
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Figure-27 Amplitudes of Current Distributions on Active/Passive Lines with Open Circuit 

Terminations, Excited on Line-1 from Left beginning, s = 475.3 cm  

 

 

Source is located on the beginning of the left termination of line-1. When two terminals are 

open circuited, 40 basis functions are used, the distance between lines s  is 

169375.0 cm  the amplitudes of the current distributions on line-1 (active line) and 

line-2 (passive line) are shown in Figure-28. When the currents on the passive line in Figure-

27 and Figure-28 are compared, an increase can be observed on the passive line current. 

Since the distance between the lines is decreased, the coupling effect should be increased 

which causes an increase on the passive line current. These theoretical expectations are 

almost observed in the given figures. 
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Figure-28 Amplitudes of Current Distributions on Active/Passive Lines with Open Circuit 

Terminations, Excited on Line-1 from Left beginning, s = 169375.0 cm  

 

 

Source is located on the beginning of the left termination of line-1. When two terminals are 

open circuited, 40 basis functions are used, the distance between lines s  is 

64234375.0 cm  the amplitudes of the current distributions on line-1 (active line) and 

line-2 (passive line) are shown in Figure-29. In this figure, it is clear to observe that the 

current on passive line is increased compared to the current on passive line for the case of 

2 . In Figure-29, the best results can be realized. The current on the passive line is 

maximum for this case, since the distance is chosen as minimum. 
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Figure-29 Amplitudes of Current Distributions on Active/Passive Lines with Open Circuit 

Terminations, Excited on Line-1 from Left beginning, s = 64234375.0 cm  
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CHAPTER 6 

ANALYSIS OF A PATCH ANTENNA ON PLANARLY LAYERED MEDIA  

In this chapter, the current distribution on the patch antenna surface will be obtained by 

using closed form Green’s functions in spatial domain with the application of Galerkin’s 

MoM. First, patch antenna is defined. Afterwards, the formulation for patch antenna will be 

provided and the information will be given according to the transformation of this 

formulation into the software program. Then, the results will be analyzed.  

 

6.1 Patch Antenna 

 

First the difference between single line case that is described in Chapter 5 and patch antenna 

case should be understood. The main difference between single line case and patch antenna 

case is the direction of current density. In patch antenna case, the metal patch has 

comparable lengths in both x axis and y axis. Therefore, the y directed current density on the 

metal patch cannot be ignored in this case. In patch antenna case, in addition to x directed 

current density, the y directed current density should also be considered in the analysis. On 

the other hand, in Chapter 5, while analyzing the single line case only the x directed current 

density was considered in the analysis, since the length in y axis is relatively small compared 

to the length in x direction. 

The patch antenna that will be analyzed in this section is illustrated in Figure-30. In this 

study a and b values are taken as equal. 
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Figure-30 Illustration of Patch Antenna 

 

 

Surface current density that is defined for patch antenna case is given in equation (90). 

yyxx aJaJJ ˆˆ       (90) 

Source current will be considered later in the analyses. It is not defined here, since the 

expression will become quite complex. The surface current density in equation (90) can be 

expanded by using basis functions xnJ  and ynJ . By this way, unknown functions xJ  and 

yJ  can be expressed in terms of known functions xnJ  and ynJ . In equations (91) and (92), 

xJ  and yJ  functions are expanded in terms of basis functions xnJ  and ynJ , respectively. 

Here, nA  and nB  are the unknown coefficients of basis functions xnJ  and ynJ , 

respectively. 
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Tangential electric fields are defined in both x and y directions for the patch antenna. 

Tangential electric field expressions for x and y directions are given in equation (93) and 

(94), respectively. 
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Tangential electric fields should equal to zero on the PEC. Since there are two tangential 

electric fields one in x and the other in y direction, by using testing functions xmJ  and ymJ  

the testing expressions in equations (95) and (96) can be constructed.  

0),,( xxm EyxJ      (95) 

0),,( yym EyxJ      (96) 

The equations (95) and (96) are constructed by using testing operation. These testing 

equations can be simplified by processing them further. By considering the source current as 

well and by diving both sides to j , the final forms in x and y directions are given in 

equations (97) and (98), respectively.  
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As discussed in previous chapters, the selected basis functions are piecewise differentiable. 

Therefore, by using integration by parts, the order of integrals can be changed [19]. After 

applying this process to the equations (97) and (98), the equations in (99) and (100) are 

obtained, respectively.  
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Now it is possible that the expressions in equations (99) and (100) can be expressed in 

matrix form. In equation (101), the matrix representation of equations (99) and (100) is 

provided. 
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The element values of the matrices in equation (101) are given in explicit form in equations 

(102), (103), (104), (105), (106) and (107). 
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6.2  Results 

 

The analysis described up to now are applied to an example patch antenna and results are 

obtained. These results are presented here. First let examine this example patch antenna 

geometry. In Figure-31, the example patch antenna geometry is shown together with 

divisions and source.  
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Figure-31 Example Patch Antenna Geometry 

 

 

The parameter values that are used in the analysis are given below: 
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As the source model, probe is used in this analysis. However, for a realistic source model a 

microstrip line should be used. Microstrip line feeding will be used in the wideband patch 

antenna analysis in the next chapter when antenna parameters are required to be calculated. 

The main aim of this chapter is to obtain the general behavior of a patch antenna, so the 

simplest source model is used. More realistic feeding models will be used in the next chapter 

when antenna parameter analyses are required. In Figure-31, source location is shown 

arbitrarily. While analyzing the results, the location of the source is changed and the effect of 

the source location is observed.  
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In Figure-32, 2D representation of the amplitude of current distribution on the metal patch 

for x axis when 10 x  cm and 10 y  cm is shown. It is expected to obtain sinusoidal 

current on the edge throughout the current flowing direction. In this case, current flowing 

direction is through x axis. From Figure-32, currents on the edges through the current 

flowing direction show sinusoidal behavior as expected. Moreover, it is expected to obtain 

maximum current amplitudes on the edges through the direction that is perpendicular to the 

current flowing direction. Again, from figure it is clear that on the edges the current 

amplitudes are increased through the direction perpendicular to the current flowing direction. 

Therefore, results are roughly agreed with the expected ones.   

 

 

 

 

Figure-32 2D Representation of the amplitude of current distribution on the metal patch for 

x axis when 10 x  cm and 10 y  cm 

 

 

In Figure-33, 2D representation of the amplitude of current distribution on the metal patch 

for y axis when 10 x  cm and 10 y  cm is shown. In this case, current flowing direction is 

through y axis. Therefore, currents on the edges through y direction are sinusoidal and 

maximum through z direction, as expected. 
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Figure-33 2D Representation of the amplitude of current distribution on the metal patch for 

y axis when 10 x  cm and 10 y  cm 

 

 

In Figure-34, 2D representation of the amplitude of current distribution on the metal patch 

for x axis when 10 x  cm and 40 y  cm is shown. Again the behavior is compatible with 

the expected figure.  
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Figure-34 2D Representation of the amplitude of current distribution on the metal patch for 

x axis when 10 x  cm and 40 y  cm 

 

 

In Figure-35, 2D representation of the amplitude of current distribution on the metal patch 

for y axis when 10 x  cm and 40 y  cm is shown. Here the feeding location is changed, 

so current distributions for x and y directions should be different. It is expected to obtain 

very low current levels through the y direction. Even though in Figure-35, the current 

amplitude levels are not small compared to the levels observed in the x direction especially 

in the edges, this result is due to the edge discontinuities. In the middle parts of the patch, the 

current levels are quite low as expected. 
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Figure-35 2D Representation of the amplitude of current distribution on the metal patch for 

y axis when 10 x  cm and 40 y  cm 

 

 

In Figure-36, 2D representation of the amplitude of current distribution on the metal patch 

for x axis when 10 x  cm and 70 y  cm is shown. The current behavior is approximately 

appropriate. However, discontinuities may increase the current levels a little.  

In Figure-37, 2D representation of the amplitude of current distribution on the metal patch 

for y axis when 10 x  cm and 70 y  cm is shown. 
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Figure-36 2D Representation of the amplitude of current distribution on the metal patch for 

x axis when 10 x  cm and 70 y  cm 
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Figure-37 2D Representation of the amplitude of current distribution on the metal patch for 

y axis when 10 x  cm and 70 y  cm 

 

 

6.3  Computationally Efficient Technique Used for More General Geometries 

 

The solution procedure for a standard patch antenna was described in previous sections. 

However, for considering more realistic patch antenna geometry, the existing standard one 

should be modified. Some parts of the patch can be removed or the feeding can be more 

realistic such as microstrip line. Indeed, such applications are very important for this thesis 

study. The aim of the study is to construct a wideband patch antenna by removing slots 

inside a standard patch metal. As an example, by opening slots at two sides of the metal 

patch it is expected to obtain expansion in the impedance bandwidth. This study will be 

explained in the next chapter. Moreover, in order to obtain a realistic feeding, the patch 

antenna source will be a microstrip line in the study. All such applications require a 

modification on the standard patch antenna.  

It is very time consuming to solve the software program for each time when a modification 

on the geometry is occurred. Therefore, it is not computationally efficient. The matrix entries 

should be redesigned for all new geometries. This means that convolution integrals should be 

resolved analytically that is a very exhaustive procedure. In this thesis study, a new method 

is used for such geometry modifications. It is computationally efficient in general. According 
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to this method, standard patch antenna is solved only once and then appropriate matrix row 

and column entries will be deleted for the related geometry modifications. By this way, the 

required matrix for all geometries can be obtained [39]. If a specific part is removed from the 

patch antenna geometry, then the matrix entries with suitable basis functions and all their 

relations to other basis functions are deleted from the matrix completely.    

This method can be visualized with a numerical example. Let assume, the second basis 

function in x axis and the third basis function in y axis should be removed from the matrix 

according the particular geometry modification. Therefore, all interactions that include these 

basis functions should be deleted from the matrix. In Figure-38, this matrix row/column 

deleting process is illustrated. 

 

 

 

 

Figure-38 Example of Matrix Row/Column Deleting Process 

 

 

As shown in Figure-38, all the interactions which include second basis function in x axis and 

third basis function in y axis are deleted.  

Each geometry modification requires different entry deleting. After new geometry is 

obtained, the corresponding basis functions in x and y directions should be determined 

according to the cropped parts of patch metal. Then, deleting is performed accordingly. If 

this deleting procedure is not implemented, then the software code should be reconstructed 

for all geometries. Especially, if many geometry modifications are necessary, this method 

will be very useful. The benefit of this method will be understood better while analyzing the 

wideband patch antennas.  
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CHAPTER 7 

FIELD ANALYSIS AND CURRENT DISTRIBUTION FOR PLANAR 

LAYERED MEDIA – WIDEBAND PATCH ANTENNA ANALYSIS 

Patch antennas are compatible with microwave integrated circuits (MICs). This makes patch 

antennas very important because integrated systems can satisfy the recent technology needs 

with their specific features such as small size and low cost production. However, narrow 

impedance bandwidth is the main problem of patch antennas, especially in wireless 

communication applications which need wide bandwidth. The geometry and substrate 

parameters (relative permittivity and thickness) of the patch antenna are two factors affecting 

the resonance frequency and impedance bandwidth directly. Since our aim in this study is to 

increase the impedance bandwidth, there are two options. Either the geometry of the 

conventional patch antenna should be modified or relative permittivity/thickness should be 

changed. If the second choice is applied, for example thickness is increased and relative 

permittivity is decreased, the impedance bandwidth could be increased but some problems 

will arise. These problems can be considered as the creation of surface waves and spurious 

radiation, so such a design cannot be efficient. Therefore, first choice which is the 

modification of the existing geometry should be applied in order to increase the impedance 

bandwidth.  

For different patch antenna geometries, different results will be obtained. For example, C-

shaped patch antenna, U-slotted patch antenna, D-shaped patch antenna, L-shaped patch 

antenna and E-shaped patch antenna will give different results. In these different patch 

geometries, slots are different on the metal patch. In C-shaped patch antenna the size of the 

antenna can be decreased on the other hand bandwidth cannot be increased. In E-shaped 

patch antenna impedance bandwidth can be increased yet the size of the antenna cannot be 

decreased [43].  

Reason behind the increase in impedance bandwidth by opening slots on the patch can be 

understood if the currents on the metal patch surface are analyzed. In this thesis study, patch 

geometry which is similar to E-shaped patch antenna is used. For such a structure, bandwidth 

is increased due to the creation of dual resonance. Slots are opened as being parallel to non-

radiating edges. Therefore, the currents on the patch can flow throughout two different paths 

which create two different resonance frequencies [43]. Impedance bandwidth is generally 

analyzed by observing the return loss ( 11S  parameter). 

In previous chapter, the current distribution on the patch antenna is obtained by using closed 

form Green’s function in spatial domain with the application of Galerkin’s MoM. Here, 

current distribution on the patch is obtained in the same manner. Then matrix element 

deleting technique will be used which is described in the previous chapter. By this way, the 

corresponding results could be obtained when slots are opened on the metal patch.  
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First patch antenna with a microstrip transmission line is explained. Then, opening slots on 

the patch is described. Afterwards an example patch antenna structure is presented and slots 

are opened on this patch antenna. The solution procedure is explained in detail here. First 

surface current density will be obtained for the standard patch antenna. This solution is used 

to obtain the currents in the case of microstrip transmission line feeding. By using this 

solution, current distribution for the case of parallel slots are acquired. After obtaining 

current distributions for microstrip fed patch antenna with and without slots, 11S  parameter 

values are calculated by using resulted current distributions at different frequencies. Then, 

the return loss graphs are plotted separately. Obtained return loss graphs are compared with 

the ones that are obtained from MoM based EM simulation software IE3D by Zealand. From 

these graphs, the impedance bandwidths of the antennas are calculated and then they are 

compared. At the end of this chapter, it is expected to observe an increase in the bandwidth 

after modifying the patch geometry. The main aim of this chapter is to observe this 

bandwidth increase by opening slots on the patch. 

 

7.1 Microstrip Transmission Line Feeding for Patch Antenna 

 

In previous chapter, patch antenna is fed by a dipole source directly. In this chapter, 

microstrip line feeding as a source model is used. First, let examine Figure-39 which shows 

patch antenna fed by a microstrip transmission line.  

 

 

 

 

Figure-39 Patch Antenna Fed by a Microstrip Transmission Line 

 

 

In order to obtain such an antenna design, the standard patch antenna geometry that is 

analyzed in previous should be modified. An efficient matrix deleting method that is used for 
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irregular and modified patch antenna geometries is defined in previous chapter. This method 

will be used in this chapter. Besides, the resulted matrices after solving standard patch 

antenna geometry in previous chapter are saved in MATLAB
®
. It is not necessary to solve 

the modified patch antenna that is shown in Figure-39. Simply the corresponding row and 

column entries in the existing matrices will be deleted.  

First basis functions that correspond to the subtracted parts of the antenna are identified. 

Convolution integral relations between these basis functions and other basis functions are 

determined. Then, rows/columns which contain these basis functions are completely deleted 

from matrices. The resulted matrices have to be exactly the same as the ones that would be 

obtained by solving the software for the new geometry. In order to ensure this method, it is 

tested for coupled line geometry. First patch antenna is solved and matrices are saved. Then, 

geometry is modified to obtain a coupled line and corresponding rows and columns are 

deleted. It is observed that the resulted matrices are exactly same as the matrices for coupled 

line case. Therefore, this method is proven to give the exact results if the procedure would be 

applied correctly.  

 

7.2  Example Wideband Patch Antenna Structure 

 

In Figure-40, standard patch antenna geometry is illustrated with dimensions. Since matrix 

deleting procedure is used, first standard patch antenna should be solved and the results 

should be saved. Then, for each geometry modification, these matrices could be used.  
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Figure-40 Standard Patch Antenna Geometry 

 

In this patch design, the length in x direction is mm22  and the length in y direction is 

mm20 . Patch is divided into 11 pieces in x direction and 20 pieces in y direction. Therefore, 

11xm  and 20yn . In x direction, the length of the patch is mm22  and in x direction 

patch is divided into 11 parts, so 
11

22mmWx  . In y direction, the length of the patch is 

mm20  and in y direction patch is divided into 20 parts, so 
20

20mmWy  . The input 

parameters that are defined for this patch antenna are presented below: 

Direction)y in  Divisions of(Number  20

Direction)in x  Divisions of(Number  11

Direction)y in Patch  of(Length   20

Direction)in x Patch  of(Length   22
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This standard patch antenna geometry is solved by these given input parameters and given 

dimensions for finding the current distribution on the patch. The resulted matrices are saved 

to MATLAB
®
. Therefore, for any modification on this standard patch geometry, these 

matrices can be used. As an example, some of these current distribution results are presented 

here. 

In Figure-41, 2D current amplitude representation on the metal patch for x axis is presented. 

Here, feeding point is at 10 x  and 10 y . The current distribution behavior is as expected. 

Because of the discontinuity, large current levels are observed at the termination points 

through the direction perpendicular to the current flowing direction. Current distribution 

behavior through the current flowing direction is sinusoidal.  

 

 

 

 

Figure- 41 2D Representation of the amplitude of the current distribution on the metal patch 

for x axis when 10 x  and 10 y  

 

 

In Figure-42, 2D current amplitude representation on the metal patch for y axis is presented. 

Here, feeding point is at 10 x  and 10 y . It is expected to obtain same current behavior in 

y axis as well when such a feeding location is used. It can be observed that similar behaviors 

are obtained in x and y axes.  
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Figure- 42 2D Representation of the amplitude of the current distribution on the metal patch 

for y axis when 10 x  and 10 y  

 

 

In Figure-43, 2D current amplitude representation on the metal patch for x axis is presented. 

Here, feeding point is at 10 x  and 100 y . In x direction, the behavior of the current 

amplitude is compatible with desired behavior.  
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Figure- 43 2D Representation of the amplitude of the current distribution on the metal patch 

for x axis when 10 x  and 100 y  

 

 

In Figure-44, 2D current amplitude representation on the metal patch for y axis is presented. 

Here, feeding point is at 10 x  and 100 y . It is expected to acquire very low current 

amplitude values in the y direction when such a feeding location is used. As expected, the 

current distribution in Figure-44 has very low current levels when compared to the one given 

in Figure-43. 
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Figure- 44 2D Representation of the amplitude of the current distribution on the metal patch 

for y axis when 10 x  and 100 y  

 

 

Now the patch antenna in Figure-40 is modified such that it is fed by a microstrip 

transmission line. Figure-45 shows the patch antenna which is fed by microstrip transmission 

line. This antenna is the modified version of the antenna in Figure-40. In Figure-45, the 

symmetric gaps are shown on the patch. The reason why small gaps are opened near the 

microstrip feeding is to obtain more realistic results. This antenna design is found by trying 

the best configuration that ensures the bandwidth increase. The design is conducted in a 

MoM based EM simulation software IE3D by Zealand.  

 

 



85 

 

 

 

Figure-45 Patch Antenna Geometry with Microstrip Transmission Line Feeding and Two 

Small Gaps 

 

 

In order to find the current distribution on the patch in Figure-45, the matrices that are found 

for the patch antenna in Figure-40 are used. The basis functions that are corresponding to the 

subtracted parts of the patch are determined. The rows and columns which include these 

basis functions are deleted completely. After this deleting procedure, the final matrices are 

solved as a matrix equation. Result is the current density on the patch antenna in Figure-45. 

 Calculations for Obtaining Impedance Bandwidth: 

First, MATLAB
®
 program is solved for GHz1.9  frequency value. The parameter 

calculations that are described in this part are defined for this frequency value. However, 

same calculations should be performed to all frequencies which are in the determined 

frequency band. This frequency band is determined according to the MoM based EM 

simulation software IE3D by Zealand results and it is GHzGHz 6.99.8  . The designed 

patch antenna geometry is first solved in a MoM based EM simulation software IE3D by 

Zealand, then resonance frequency is determined. By considering this resonance frequency 

as a center frequency, a frequency band is chosen. It is important to note that MATLAB
®
 

program should be solved for each frequency in this frequency band, separately.  
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The current distribution on the patch for the antenna that is shown in Figure-45 is obtained 

for  GHz1.9 . Now, only the current on the microstrip transmission line part is used as an 

input to the Prony’s method. The current distribution on the microstrip transmission line can 

be considered as a summation of currents for forward and backward propagating waves. This 

summation is shown in equation (107). 

xx
ececxIxIxI 21

21)()()(


 
    (107) 

1c  is the incident wave coefficient and 2c  is the reflected wave coefficient. After applying 

Prony’s method, two outputs are obtained as 1c  and 2c . In this thesis study, the values in 

equations (108) and (109) are obtained as output values for the frequency value of GHz1.9 . 

ic 0018.00016.01      (108) 

ic 0004.00011.02       (109) 

Reflection coefficient   is defined as shown in equation (110). 
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c
       (110) 

Therefore, reflection coefficient value for GHz1.9  can be calculated by using the formula in 

equation (110) and the values in equations (108) and (109). Input reflection coefficient ( 11S  

parameter) value is shown in equation (111) for this thesis study at GHz1.9 . 
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Now, return loss value for GHz1.9  should be calculated. Return loss is a logarithmic ratio 

and the unit is dB. The formula for return loss is given in equation (112). 

 1020log)( LossReturn dB     (112) 

By using the formula in equation (112) and the reflection coefficient value in equation (111), 

return loss is calculated as shown in equation (113). 

9788.11)2518.0(20log

2310.04276.020log)( LossReturn 

10

10



 idB
  (113) 

Same calculations should be performed for each frequency value in the defined frequency 

band. All return loss values corresponding to these frequencies should be calculated. After 

these calculations, return loss graph can be plotted for the antenna in Figure-45. In Figure-

46, return loss graph for the antenna in Figure-45 is shown. 
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Figure-46 Return Loss Graph for Microstrip Patch Antenna that is Obtained from the 

MATLAB
®
 Program 

  

 

This graph is obtained by calculating return loss values for all frequencies in a defined 

frequency range. Return loss values corresponding to the frequencies in the defined 

frequency range are marked as black circles in Figure-46. In this graph, the resonance 

frequency can be determined approximately as GHz1.9 . The determined frequency band is 

from GHz9.8  to GHz5.9 . The frequencies in this range for which the return loss values are 

calculated can be shown from black circle markers. The analysis in this thesis study should 

be compared by the obtained results of MoM based EM simulation software IE3D by 

Zealand. Therefore, the return loss graph in Figure-46 is compared with the return loss graph 

that is obtained from MoM based EM simulation software IE3D by Zealand and this 

comparison is shown in Figure-47. 
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Figure-47 Comparison of Return Loss Graphs for Microstrip Patch Antenna that are 

Obtained from the MATLAB
®
 Program and the MoM based EM simulation software IE3D 

by Zealand  

 

 

By investigating the comparison in Figure-47, it can be concluded that the results are 

compatible with each other.  

Now, by using the return loss graph in Figure-46, impedance bandwidth should be 

calculated. Impedance bandwidth shows a frequency range in which the antenna can work 

properly. This frequency range can be considered as the range of frequency which have a 

smaller losses than a specified loss value. The formula for impedance bandwidth is given in 

equation (114). Here, Hf  is the highest frequency, Lf  is the lowest frequency and Cf  is the 

center frequency which corresponds to resonance frequency.  

C

LH

f

ff
BW


Bandwidth Impedance    (114) 

In this thesis analysis, dB10  loss is chosen as a threshold loss value. The frequencies that 

have smaller loss values than dB10  loss are specified. The range of these frequencies 

should be specified from the lowest Lf  to the highest Hf . In Figure-48, Lf , Cf  and Hf  

values are shown for dB10  bandwidth. 
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Figure-48 Return Loss Graph for Microstrip Patch Antenna that is Obtained from the 

MATLAB
®
 Program with dB10  Bandwidth Values 

 

 

By using the Formula in equation (114), dB10  bandwidth can be calculated as shown in 

equation (115). 

79.0%100*0079.0

0079.0
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  (115) 

Up to now, the analysis for the microstrip fed patch antenna in Figure-45 is performed and 

the corresponding impedance bandwidth is calculated. Now, the geometry of this antenna is 

modified by opening parallel slots at non-radiating edges. It is aimed to design a wideband 

antenna by changing the geometry of the antenna in this way. This new path antenna 

geometry is shown in Figure-49. 
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Figure-49 Wideband Patch Antenna Geometry 

 

 

Since the wideband antenna geometry in Figure-49 is obtained by modifying the antenna in 

Figure-45, the existing matrices can be used as well. Here, slots have mm2  length in x 

direction and mm8  in y direction. The basis functions that correspond to the opened slots 

are determined. Rows and columns which include these basis functions are deleted. Then, 

the remaining matrices are solved. At the end, current distribution on the patch antenna in 

Figure-49 is found. 

Again the calculations are given for GHz1.9  frequency level. However, same calculations 

should be performed for all frequencies in a specified frequency range. Afterwards, return 

loss values can be plotted against frequency. Calculations are similar to the ones that are 

defined for the antenna in Figure-45. The current distribution on the microstrip transmission 

line are loaded as input to the Prony’s method. The outputs of the Prony’s method are 

divided each other in order to obtain the reflection coefficient ( 11S  parameter). By using this 

11s  parameter, corresponding return loss value for GHz1.9  can be found and this return loss 

calculation is shown in equation (116). 

0332.2)7913.0(log20log20LossReturn 1010    (116)     
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If all corresponding return loss values are calculated for the determined frequency band, 

return loss graph can be plotted for the wideband antenna in Figure-49. In Figure-50, return 

loss graph for the wideband antenna in Figure-49 is plotted.  

 

 

 

 

Figure-50 Return Loss Graph for Wideband Patch Antenna that is Obtained from the 

MATLAB
®
 Program 

 

 

Again the found return loss graph should be compared with the return loss graph that is 

obtained from MoM based EM simulation software IE3D by Zealand. The return loss graph 

in Figure-50 is compared with the return loss graph that is obtained from MoM based EM 

simulation software IE3D by Zealand and this comparison is shown in Figure-51. It can be 

said that the results are compatible with each other. 
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Figure-51 Comparison of Return Loss Graphs for Wideband Patch Antenna that are 

Obtained from the MATLAB
®
 Program and the MoM based EM simulation software IE3D 

by Zealand 

 

Now, impedance bandwidth is calculated for wideband path antenna by considering the 

return loss graph in Figure-50. Therefore, this graph is presented again in Figure-52 together 

with the corresponding frequencies of dB10  bandwidth.  

 

 

 

 

Figure-52 Return Loss Graph for Wideband Patch Antenna that is Obtained from the 

MATLAB
®
 Program with dB10  Bandwidth Values 
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For determining the lowest, highest and the center frequencies, approximate values are 

considered, since only few number of frequencies are used to find return losses. dB10  

bandwidth can be calculated as shown in equation (117) for wideband patch antenna by 

using the values in Figure-52. 

87.1%100*0187.0

0187.0
478.9

394.9572.9
bandwidth 10






 dB
  (117) 

Up to now, the analysis are carried out and bandwidth values for patch antennas with and 

without slots are calculated. The calculation steps are presented. It is now aimed to compare 

the bandwidth values for these two antennas in order to determine whether there is an 

increase in bandwidth or not. First, return loss graphs for these antennas are plotted together 

in Figure-53, so the bandwidth widths can be compared visually.   

 

 

 

 

Figure-53 Return Loss graphs for Patch Antennas with/without Slots Together 

 

 

As shown in Figure-53, if a horizontal line is drawn from dB10  loss, the patch antenna 

with slots has a wider bandwidth than the patch antenna without slots as expected.  

Now the calculated impedance bandwidth values can be compared. It is expected to obtain a 

bandwidth increase in the wideband antenna (with slots) in Figure-49 when compared to the 

microstrip fed antenna (without slots) in Figure-45. The antenna with slots in Figure-49 has a 
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bandwidth of %1.87 on the other hand the antenna without slots in Figure-45 has a 

bandwidth of %0.79. 

These analysis are shown that if two parallel slots are opened on the patch antenna in Figure-

45, an increase in dB10  bandwidth value is observed. This bandwidth increase for the 

antenna in Figure-49 is approximately 2.3671 times greater than the bandwidth for the 

antenna in Figure-45. This bandwidth increase is expected, since the antenna in Figure-49 is 

designed to ensure a bandwidth increase. Therefore, the design is proven to increase the 

dB10  bandwidth.  
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CHAPTER 8 

CONCLUSION 

The aim of this thesis study is analyzing various microstrip structures and finding the current 

distribution on these structures by using MoM in conjunction with closed-form spatial 

domain Green’s functions. Moreover, it is aimed to design and analyze a wideband patch 

antenna by opening slots on a standard microstrip patch antenna. Finding the current 

distribution on this wideband patch antenna by using matrix deleting technique from 

available matrices is considered to be more efficient than re-executing the program. By using 

the obtained current distribution, return loss graph can be plotted and from this graph 

bandwidth of the wideband patch antenna can be found. Afterwards, the bandwidth values of 

standard and wideband patch antennas are compared in order to observe the increase in the 

bandwidth. The aims of this thesis study are explained. Now, the studies throughout this 

thesis will be summarized and the outcomes will be compared with the aims at the end of 

this chapter.  

First microstrip structures are introduced. In general, the application areas, advantages and 

disadvantages of these structures are discussed. Information is given according to the 

development of these structures throughout the history, how and why they are used and the 

possible future applications. The analysis methods of microstrip structures are defined. This 

information about microstrip structures is given in order to recognize the structures that are 

studied in the thesis and investigate their historical development process. The possible 

subjects that could be analyzed in near future related to the microstrip structures are 

explained. In which areas and how they are used, in which areas they cannot be used, which 

features are more powerful and beneficial and which features of them should be improved 

are explained. By discussing such things, the aim of this thesis study could be understood 

better. For instance, one of the aims in this study is to increase the bandwidth of microstrip 

patch antenna since the bandwidth of the standard microstrip patch antenna is stated to be 

narrow and inadequate. Lots of studies are performed related to increase the bandwidth of 

patch antennas. There are many methods that could be applied; yet changing the geometry by 

opening slots on the metal patch seems the best one to increase the bandwidth. All these 

possible methods are discussed in the thesis and their related benefits are explained. In this 

study, wideband patch antenna is designed by opening parallel slots. Therefore, one of the 

disadvantages of microstrip patch antenna is chosen in this study, and it is aimed to improve 

this feature by designing and analyzing a wideband patch antenna. This is why introducing 

microstrip structures together with their features are necessary before analyses.  

Full-wave analysis method is used in this thesis and MoM technique is used. Therefore, 

MoM technique is described in general. Firstly, the specific application of MoM technique to 

the problem in this thesis study is not mentioned, only the general application procedure of 

the MoM analysis is provided in detail.  
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Both spatial domain Green’s functions and spectral domain Green’s functions could be used 

in the MoM analysis. Which domain will provide more efficient analysis in MoM should be 

determined. Therefore, spatial domain Green’s functions are explained in one chapter and 

spectral domain Green’s functions are explained in Appendix part. The Green’s functions in 

both domains are examined separately and the one that is more appropriate by using in 

conjunction with MoM is determined. If spatial domain Green’s functions could be used in 

closed-forms, then using them in MoM analysis is computationally efficient because time 

consuming integral part is removed. Spatial domain Green’s functions can be expressed in 

terms of spectral domain Green’s functions and this expression is called as Sommerfeld 

integral, in general. If the spectral domain Green’s functions in this integral could be 

approximated in terms of exponentials, then an identity called Sommerfeld identity can be 

used instead of the integral. Sommerfeld integral is very time consuming. It is aimed to 

eliminate this time consuming part by using Sommerfeld identity. Therefore, spatial domain 

Green’s functions are analyzed, the procedure of how they can be expressed in terms of 

closed-forms is examined and how an efficient computation can be achieved by their usage 

in MoM analysis is demonstrated. On the other hand, spectral domain Green’s functions are 

also discussed and it is stated that their usage in MoM analysis cannot be computationally 

efficient as the usage of spatial domain Green’s functions. After these explanations, closed-

form spatial domain Green’s functions are chosen to be used in MoM analysis. 

MoM analysis in conjunction with closed-form spatial domain Green’s functions is used 

firstly for single microstrip line and the corresponding current distribution on the metal line 

is obtained. Single microstrip line structure is illustrated and basis functions that are used in 

the MoM analysis are defined. Galerkin’s method is used and it is stated that this method 

provide symmetric matrices. The electric field expression on the metal line is given and 

testing procedure is applied by ensuring that tangential electric field should be zero on the 

metal line. Best selection of basis function that fits the behavior of current distribution on the 

line is rooftop function. The unknown current distributions in the electric field expression are 

approximated in terms of rooftop functions and it is aimed to find the coefficients of these 

functions. After analyses that are explained in detailed, matrix equations are obtained and 

transferred to a MATLAB® program. Convolution integrals are calculated analytically and 

the remaining integrals are calculated numerically. After the solution, current distribution on 

the metal line is obtained and illustrated for different cases. For instance, the location of the 

source on the metal line is changed in order to observe the effect on the current distribution. 

Furthermore, the loads at the both ends of metal line are changed such as open, short and 

matched then the corresponding effects are investigated. 

A similar analysis is applied to the coupled microstrip line structure as well. Coupled 

microstrip line is illustrated and chosen basis functions are described. Galerin’s MoM is used 

again. Loads at the ends are taken as open. There is an electromagnetic interaction between 

two parallel metal lines and this interaction should be taken into account in the analysis of 

coupled microstrip line. Active line will have an effect on the passive line and then similarly 

passive line will have an impact on active line. By considering this coupling effect between 

the lines, current distribution on these active and passive lines are found and plotted. The 

distance between two parallel lines is changed according to the wavelength and its effect on 

the current distributions is investigated. It is expected to obtain a decrease in the coupling 

effect when distance is decreased and an increase in the coupling effect when distance is 
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increased. These expectations are captured with the findings. The analysis of coupled 

microstrip line is very important for this thesis study, because of the coupling effect. This 

coupling effect should also be used in the analysis of microstrip patch antenna. 

The main microstrip structure that is desired to be analyzed in this thesis study is microstrip 

patch antennas. First, microstrip patch antennas are analyzed, then their geometry is changed 

in order to increase the bandwidth. Analysis is same as the ones used in single line and 

coupled line cases. The important point that should be taken into account in the analysis is 

the current in y direction. Since the width in y direction is comparable with the wavelength 

as well as the width in x direction, the current distribution across the y direction should also 

be considered in the analysis. In the analysis, metal patch can be considered as a structure 

that is composed of many coupled lines. Therefore, all the coupling effects between these 

coupled lines should be taken into account. The distance between these coupled lines are 

regarded as zero. Each line has an effect on all remaining lines and this effect should be 

taken into account in the analysis. Basis functions are fitted on each line. The most important 

point is to construct the software program in MATLAB® for this case. When basic inputs 

are given to the program, it should consider all possible coupling effects and it should 

determine beginning and ending coordinates of  basis functions. For instance, if the divisions 

in x and y directions are given as inputs to the program, then all basis function coordinates 

should be calculated automatically and the coupling effects should be calculated accordingly. 

In the analysis any number of divisions in both directions could be chosen, so these are 

parameters. In the first analysis, the feeding model is simply coaxial probe. Afterwards, 

feeding model is chosen as microstrip feeding. The location of the feeding point is changed 

on the metal patch and the corresponding results are observed. Since current distributions 

exist in both directions, results are plotted in two dimensional graphs. The current 

distributions on the metal patch are observed for different source locations and the effect of 

the location is similar to the expected results. Moreover, the software program can give fast 

and accurate results for any number of divisions. This program is also solved by reducing it 

to a coupled line case and the results are same as the ones that are obtained from coupled line 

analysis.    

Standard microstrip patch antenna can be solved easily. However, it is not efficient to re-

executing the software program for each different geometry configuration. For instance, it is 

time consuming to re-executing program for the case of microstrip line feeding model 

geometry. Instead of re-execution, the matrices that are obtained from the solution of 

standard patch antenna can be used in matrix deleting procedure. By this way, available 

matrices are used in order to find the current distribution for new geometries. This matrix 

deleting method is useful especially for analyzing different patch geometries where it is 

required to re-execute the program for many different patch configurations. The procedure of 

matrix deleting technique is explained and for all sorts of geometry modifications this 

technique is used in this thesis study. 

Microstrip transmission line is used to feed the microstrip patch antenna and current 

distribution on the metal patch is obtained by matrix deleting technique from the results of 

standard patch antenna solution. Therefore, it is not necessary to re-execute the program for 

this new configuration with microstrip feeding. Afterwards, current distribution is used to 

acquire reflection coefficients for different frequencies. Subsequently, return loss graph is 

plotted and from this graph the bandwidth value is calculated. Next, the final patch antenna 
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geometry is modified. Two parallel slots are opened on the non-radiating edges of the metal 

patch. It is expected to an increase in the bandwidth after this geometry modification. In 

other words, a wideband patch antenna is designed. At the same time, this wideband patch 

antenna configuration is designed in a MoM based EM simulation software IE3D by Zealand 

and results are saved. Again matrix deleting technique is used for this new configuration. For 

this wideband microstrip patch antenna the corresponding current distribution is found. 

Then, throughout a frequency band, corresponding reflection coefficients are calculated, 

return loss graph is plotted and bandwidth value is calculated. Lastly, the bandwidth values 

of two antennas are compared and an increase in the bandwidth is observed as expected. The 

observed results are also very similar to the ones that are obtained and saved from a 

microwave simulation program. Therefore, the method I,s demonstrated to be accurate. 

The explained studies up to now show that the desired aims are realized. Basically, current 

distributions for various microstrip structures are obtained numerically by using MoM 

analysis in conjunction with closed-form spatial domain Green’s functions and results are 

plotted. Subsequently, wideband antenna is designed and current distribution is obtained in 

the same manner. From the results of this wideband antenna, a desired bandwidth increase is 

observed. By using the constructed MATLAB® program and matrix deleting technique, all 

sorts of different geometries can be analyzed and the corresponding parameters can be 

obtained. 
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APPENDIX A 

DETAILED GREEN’S FUNCTION ANALYSIS 

A.1 Obtaining Dyadic Green’s Function of Electric Field from Scalar Green’s Function 

of Electric Field 

 

In general, if it is aimed to find out electric field that is created by an arbitrary electric 

current source in homogeneous and isotropic medium, then the linear vector wave equation 

should be written first. This equation is obtained from Maxwell’s equations and it is shown 

in equation (1). 

)()()( 2
rJ rErE jk      (1) 

If the electric field distribution that is created by the impulse source is intended to be found, 

then equation (1) should be modified and electric field distribution becomes the Green’s 

function in that case. Equation (2) shows this modified vector wave equation. Here, ̂  

represents an arbitrary direction of the impulse source. 
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Dyadic Green’s function for electric field in more general form can be written in equation 

(3). This is a very general representation which includes all possible fields that are created by 

an arbitrary oriented source. It can be modified and reach a specific form for each specific 

case.  
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First step is to find the Green’s function by solving the equation (2). This Green’s function is 

the electric field response that is caused from the impulse source. Afterwards, electric field 

that is created by an arbitrary source can be found by using convolution integral and equation 

(4) shows this convolution integral. Integral should be taken across source domain.  
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Vector wave equation that is shown in equation (1) can be simplified. Equation (5) shows the 

simplified version of this equation, for the derivation reader can read the reference [1]. 
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Equation (5) is called Helmholtz equation and indeed it is composed of scalar wave 

equations. Three scalar wave equations that constitute equation (5) are shown in equation 

(6). 

  0)(22  r k  Where  zyx EEE ,,    (6) 

Writing the scalar wave equation separately for each direction is possible only for cartesian 

coordinates [1]. Then, combining electric field components that are obtained from separate 

scalar wave equations will result the desired electric field. By considering equation (6), 

scalar wave equation can be written for Green’s function which is shown in equation (7). 

  )(),(22
rrrr  gk      (7) 

The scalar Green’s function that is found from equation (7) can be used to find the scalar 

function that is created from an arbitrary source. In order to obtain the scalar function that is 

given in equation (6), the superposition integral in equation (8) should be used.  
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First, equation (7) should be solved for Green’s function, and then this can be used in 

equation (8). Equation (7) should be solved for unbounded and homogeneous medium first. 

As seen, this equation is a differential equation and the general solution to this differential 

equation can be represented as the one in equation (9). 
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Now, the boundary conditions should be examined in order to find out the special solution. 

The source at the infinity cannot be valid physically, so in this case only outgoing waves 

should be present. Therefore, the coefficient D  should equal to zero and the final form of 

the solution is shown in equation (10). 
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If the boundary condition at the source point is considered, the coefficient C  can be found 

as well. Without going into the details, the scalar Green’s function that is created from an 

arbitrary point source can be written as the one that is shown in equation (11). 
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These scalar Green’s functions are indeed the components of vectoral Green’s function in an 

unbounded medium. By using equation (4), convolution integral can be constructed for 

finding electric field and it is denoted in equation (12). 
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There is a relation between scalar Green’s function and vectoral Green’s function and this 

relation is shown in equation (13). For the derivation, reader can examine the reference [1]. 
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A.2  Obtaining Dyadic Green’s Function of Electric Field from Scalar/Vectoral 

Potentials (MPIE) 

 

Although the Green’s function of electric field is derived from scalar Green’s function of 

electric field in the previous section, it is also possible to derive the dyadic Green’s function 

of electric field from scalar and vectoral potentials. It is known that electric field can be 

expressed in terms of scalar and vectoral potentials and the resulted integral equation is 

called MPIE. Electric field in terms of scalar and vectoral potentials is represented in 

equation (14). 

)()()( rrArE   j      (14) 

Moreover, equation (15) is used to find vectoral potential while equation (16) is used for 

scalar potential. 
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Since both equations (15) and (16) are expressed as wave equation, the resulted Green’s 

functions can be used in convolution integrals in order to find out scalar and vectoral 

potentials. Equations (17) and (18) represent these convolution integrals. 
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Now, if equation (14) is rewritten by considering equations (17) and (18) together with some 

simplifications and continuity equation, the final form of the electric field can be expressed 

as the one that is shown in equation (19). 
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Then, from equation (19), the same dyadic Green’s function can be found in terms of scalar 

Green’s function and it is shown in equation (20). 
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A.3  Spectral Domain Green’s Function in Layered Media 

 

In planarly layered media, the electrical properties that are permittivity and permeability 

change only in z-direction. Therefore, in the source free case, vector wave equations can be 

reduced to two scalar wave equations. These equations represent decoupled TE to z and TM 

to z waves [44]. As an example, the vector wave equations in equation (21) and equation 

(22) can be reduced to two independent scalar equations which are given in equation (23) 

and equation (24), respectively. Here, all equations are considered for source free case.  
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These two scalar wave equations should be solved for each layer separately. Then, the 

boundary condition relations between layers are taken into account. By using boundary 

conditions, these separate equations for each layer can be combined to represent the overall 

geometry. One-dimensional equations that are given in equations (25) and (26) should be 

solved for each layer separately, and here subscript “i” represents the layer number.  
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If transverse direction is unbounded in layered structures and the electrical properties change 

only in z direction, then transverse fields in each layer can be found by considering each 

layer as a separate transmission line [1].  

In a layered media, Green’s functions can be represented in closed forms only in spectral 

domain. Now, a layered structure is studied in which the source is in the origin and 

observation point is arbitrary. Figure-54 illustrates this example layered structure.  

  

 

 

 

Figure-54 Example Illustration of a Layered Structure with Source in Layer-i 

 

 

In order to find out the Green’s functions for potentials in layered media, first of all these 

Green’s functions should be found in unbounded media. Then, by considering the reflections 

and transmissions in layer interfaces, the Green’s functions in layered media can be found. 

However, in planar interfaces reflection and transmission coefficients are only defined for 

plane waves [38]. Vector potential Green’s functions for unbounded media can be written as 

the spatial derivatives of spherical waves and electric field Green’s functions for unbounded 

media can be written in terms of spherical waves. Therefore, a process is required in order to 

find out reflection and transmission coefficients of spherical waves in planar dielectric 

interfaces. Hence, Wely identity is used to expand spherical wave representations in terms of 

plane waves. Equation (27) defines this Wely identity.  
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2222

zyx kkkk   

and  
222 zyxr       (27) 

Hereby, for the summation of spherical waves in terms of plane waves, the reflection and 

transmission coefficients can be written.  Equation (27) is the two dimensional inverse 

transform of spectral domain Green’s function for unbounded media. Wely identity can be 

considered as the plane wave expansion of spherical waves. It includes both evanescent 

waves with 
222

yx kkk   and propagating waves with 
222

yx kkk  . Here, by considering 

phase matching condition, xk  and yk  in transverse directions should equal across layers.  

In layered media, non-uniqueness of potentials should be taken into account [30]. As seen in 

Figure-54, at least two components of vector potential are needed for an x-directed HED. 

This is due to the fact that the magnetic field that is created by x-directed HED has two 

components, one is z-directed and the other is y-directed. It is clear that the z-component is 

not continuous across two layers. This fact demonstrates that in contrast to the situation in 

unbounded media, in layered media only one component of vector potential is not enough for 

the solution [45, 46, 47]. Previously, the general expression for dyadic Green’s function for 

electric field was given in equation (3). Now, dyadic Green’s function for vector potential is 

considered. By taking into account the boundary conditions, a specific expression can be 

found for layered structures. It is now clear that for horizontal electric dipole, two 

components of vector potential should be defined. This is because the boundary conditions 

for electric and magnetic fields that should be satisfied across the interface cannot be 

satisfied with a single vector potential. As Sommerfeld indicates, vector potential for 

horizontal electric dipole should be considered with two vector components in layered media 

[1]. For vertical dipole, only one vector potential component is enough for satisfying overall 

boundary conditions. Therefore, it should be assumed that horizontal dipole creates two 

components of vector potential and vertical dipole creates only one component of vector 

potential. Furthermore, scalar potentials that are created by horizontal and vertical dipoles 

are different. In order to define all field components uniquely, 5 potential functions are 

necessary. The traditional form of dyadic Green’s function for vector potential according to 

the mentioned considerations is provided in equation (28).  
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xx

A GzzGyzGxzGyyxx ˆˆˆˆˆˆ)ˆˆˆˆ( G     (28) 

Spectral domain Green’s functions are first found in source layer. Here, direct waves and 

reflected waves from the boundaries are present. Then, field in an arbitrary layer can be 

obtained from the field in the source layer.  
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A.3.1 Spectral Domain Green’s Function for HED and HMD 

 

Before the formulation, it should be remarked that because of the phase matching condition 

the transverse components xk  and yk  are equal in all layers. According to the previous 

inferences, fields can be found in the source layer first. Source region can be regarded as an 

unbounded medium and longitudinal components can be written for this layer. These 

components are indeed TM to z and TE to z components for source layer. By using equation 

(29) in which ̂  represents an arbitrary direction, these longitudinal components of fields 

can be defined which are shown in equations (30) and (32). Equation (29) is obtained by 

expressing electric field in terms of potentials [1]. 
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In order to satisfy the constraint conditions in layered structures, reflection and transmission 

coefficients are necessary [44]. These coefficients are observed in planar interfaces as 

indicated previously and spherical waves in hand should be expanded in terms of plane 

waves. It is explained previously in this thesis that this expansion is realized by using Wely 

identity. The longitudinal field components obtained after the plane wave expansion are 

provided in equations (32) and (33). 
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 sign is originated from the derivative of 
zjkzie


 with respect to z. If 0z  it will be 

positive, else it will be negative.  

Kernels of two dimensional Fourier transforms in equations (32) and (33) should be 

considered as 
)( ykxkj yxe


. Therefore, in the integrands of these equations, the remaining 

parts should be considered as Fourier transforms of longitudinal fields that are created by 

HED in an unbounded media. Hence, spectral domain representation of fields can be 

regarded as plane waves propagating in z direction [38]. Expressions in equation (32) and 

(33) are valid in homogeneous media. Since layered media is present in our case, these 

equations should be modified by considering reflection and transmission coefficients of the 

source layer. Here, only z propagating waves are treated, so only the field changes in the z 
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direction should be taken into account. By applying the modifications in layered structures, 

the resulted field expression is represented in equations (34) and (35). Equations (36) and 

(37) represent the parts in the integrands rather than the kernels. 
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Where, 
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As seen from equation (36) and (37), the field expressions in source layer can be written as 

the summation of incident and reflected waves. Incident and reflected waves are written by 

considering upper and lower boundaries and the changes are only in the z direction.  

For HMD, field expressions are written by using the ones for HED and the duality principles 

[38]. The coefficients    
e

h

e

h

e

h CBA ,, and 
e

hD  are the coefficients of down going and up going 

waves in 
thi  layer. Subscripts h  and e  represent that the source is in horizontal direction 

and source type is electrical, respectively. In equations (36) and (37), it is clear that the 

unknown coefficients should be found. These coefficients can be found by using constraint 

conditions and the details for finding these coefficients can be found in the reference [44].  

By using the field expressions in equations (34) and (35) and the found values of the 

unknown coefficients, Green’s functions can be found for the z components of electric and 

magnetic fields. It should be stated that these expressions can be found only by using the 

values of the source layer. The z component expressions of   spectral domain Green’s 

functions for fields are presented in equations (38) and (39), and these are the final form of 

the expressions. The Green’s function expressions in equations (38) and (39) are written 

when the source and observation points are in the same layer. Here, G
~

 represents spectral 

domain Green’s function. Additionally, in the subscript zx  first index z  shows the field 

direction and second index x  shows the source direction.  
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Where, propagation constant of layer i  in longitudinal direction is shown in equation (40).  
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The structure is layered, so after finding the longitudinal component, these components can 

be used to find transverse field components. Equations (41) and (42) represent the relation 

between longitudinal and transverse field components.  
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By using the relations in equations (41) and (42) as well as the longitudinal component 

expressions, the transverse field components are obtained. These transverse component 

expressions are provided in equations (43), (44), (45) and (46) [38]. 
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These found expressions are all in spectral domain. As seen from these expressions that 

spectral domain Green’s functions are expressed in closed-forms. In order to obtain the 

spatial domain expressions equations (34) and (35) should be solved. Indeed, they are the 

inverse Hankel transforms. However, it is clear that the equations in (34) and (35) include 

computationally expensive and oscillatory kernels and they converge slowly.  

As mentioned earlier, vector and scalar potential Green’s functions have higher order 

singularities than the electric and magnetic Green’s functions. Therefore, MPIE formulation 

is more appropriate to the application of MoM in terms of computational efficiency. In order 

to find out scalar and vector potential Green’s functions in spectral domain, the relations that 

are given in equation (47) can be used for the x-directed HED.  

 AH   and zx AzAx ˆˆ A     (47) 

Then, the components of vector potential in x and z directions are found as shown in 

equations (48) and (49). 
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By using the expressions in equations (48) and (49), vector potential Green’s functions in 

spectral domain are written as provided in equations (50) and (51). 
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Afterwards, by using the Lorenz gauge )()(. rj r A , scalar potential Green’s 

function in spectral domain is given in equation (52). 
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For VED and VMD sources, same logic can be applied in order to find out spectral domain 

Green’s functions when source and observation points are in the same layer. Since the 

application is similar and it is out of the content of this thesis work, the overall application is 

not given. The details can be found in the references [30, 38]. 

Up to now, the analyses are performed with the assumption that source point and observation 

point are in the same layer. If the source point and the observation point are in different 

layers, then iterative equations should be written. First, spectral domain field expressions are 

written for an arbitrary layer which is in most cases the source layer. Then, spectral domain 

Green’s functions in observation layer are found for each TE-z and TM-z component by 

using the Green’s functions in source layer [30, 44]. As an example, for an arbitrary region j 

TE-z field distribution can be written as shown in equation (53). 
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Where mij   

Here 


jA  is the amplitude of down-going wave in layer j. Similarly, equation (53) can be 

constructed for region j+1 and this is provided in equation (54). 
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There is a relation between region j and region j+1. The field in region j is composed of the 

summation of direct term, up-going waves and down-going waves. The down-going waves 
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in region j are the summation of transmitted part of down-going waves in region j+1 and 

reflected part of up-going waves in region j. By using these relations the required equations 

can be constructed for finding the coefficients of up and down-going waves and they are 

shown in equations (55) and (56). These analyses should be applied to TE-z and TM-z 

modes separately. Additionally, these analyses can be performed to HMD, VED and VMD 

sources as well as the HED source. However, the details are not given in this thesis the 

reference can be investigated [30]. 
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Since the up and down-going wave coefficients 


iA  and 


iA  are known, the relations in 

equations (55) and (56) can be used to find the coefficients in other layers iteratively. By this 

way, the coefficients in the observation layer can be found and then the full expressions of 

the fields in the observation layer can be constructed.  
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APPENDIX B 

PRONY’S METHOD 

Prony’s method is similar to the Fourier transform such that it gathers lots of information 

from uniformly sampled data. In this method sampled data can be expressed in terms of 

exponentials. In this thesis study, the obtained current distribution values can be considered 

as sampled data, so current distribution can be approximated in terms of exponentials. By 

this way, information such as reflected and incident wave coefficients can be acquired from 

the current distribution [19]. As similar to the Fourier transform technique, by using this 

method valuable information can be acquired from the sampled data. The current distribution 

on metal can be expressed in terms of the summation of reflected and incident waves, as 

shown in equation (1). 

xx
ececxI 21

21)(


       (1) 

In order to obtain the current distribution values as uniformly sampled data, current 

distribution values should be obtained as x equally spaced points on the metal line and this 

uniform sampling of current distribution is provided in equation (2). 
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where )(10 functionsbasisofNumberNNn           

If the specific expression in equation (1) is expressed as a general form, it should be denoted 

as the one given in equation (3). 
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Where, kc  and k  are the unknown parameters that should be found. If an exponential part 

in equation (3) is defined as a general variable kz , then this variable can be expressed as the 

one that is shown in equation (4). 
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Equation (3) is redefined in equation (5) by substituting equation (2) and equation (4) into 

equation (3). 
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As seen from equation (5), the expression is in the form such that it can be expressed as a 

matrix equation. Therefore, the matrix equation form of the expression in equation (5) is 

shown in equation (6). 
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Indeed, equation (5) can be considered as in the form of the solution of a homogeneous 

linear constant-coefficient difference equation. The general form of this difference equation 

is given in equation (7), where  ma  values are the unknown complex coefficients and 

  10 a , the details can be found in the reference [19].  
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From equation (7), )2( pN   linear equations are acquired and these equations can be 

expressed in a matrix form which is shown in equation (8). 
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If pN 2  is assumed, method of least squares can be applied in order to find out unknown 

 ma  coefficients [19]. Afterwards,  ma  coefficients are substituted into equation (7) and 

equation (7) can be solved accordingly. Therefore, kz  values which are the roots of the 

difference equation in equation (7) can be found. Since kz variable values are expressed in 

terms of k  values in equation (4), this relation can be used to acquire the corresponding 

values of k . After this analysis, reflected and incident wave coefficient values can be 

obtained. Subsequently, the ratio of these coefficients will result the reflection coefficient at 

a given frequency. This explained Prony’s method is transformed into MATLAB
® 

program. 

The inputs of this software program are current distribution values and the corresponding 

outputs of the program are incident and reflection coefficients. Afterwards, reflection 

coefficient can also be found accordingly. 
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