
A PORTABLE STEREO-VIDEO STREAMING SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

EMIN ZERMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013



Approval of the thesis:

A PORTABLE STEREO-VIDEO STREAMING SYSTEM

submitted by EMIN ZERMAN in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Electronics Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Engineering

Examining Committee Members:

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering Department, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering Department, METU

Dr. Cevahir Çığla
Aselsan

Date: September 04, 2013



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results
that are not original to this work.

Name, Last Name: EMIN ZERMAN

Signature :

iv



ABSTRACT

A PORTABLE STEREO-VIDEO STREAMING SYSTEM

Zerman, Emin

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

September 2013, 90 pages

In the last decade, 3D technologies have made a great advancement in reaching the end-
users. Many of the cutting-edge technology had the opportunity to reach the customers.
With the increase in popularity of mobile electronics and the new mobile 3D multimedia
displaying methods, the mobile 3D became a very important multimedia factor in the last
decade. This thesis presents an implementation of real-time stereo-video capture, compres-
sion, and wireless streaming from embedded platforms to mobile devices, as an end-to-end
system. There are different aspects of an end-to-end system. In order to create an efficient
and fast video streaming system, we tested different encoding structures for H.264/AVC
and H.264/MVC with different 3D video formats. Experiments on different video stream-
ing techniques are conducted, and the most effective one is employed. On the final system,
side-by-side Frame Packing Arrangement presentation of stereo-video is used in H.264/AVC
encoding system. The system is realized by using DM3730 SoC ARM device as transmitter
and a mobile device with autostereoscopic display as receiver. Presented architecture makes
3D video communication between the mobile users connected to a wireless network possi-
ble. Performance tests are conducted for the system, and the results are presented in this
study.

Keywords: Mobile 3D video, Real-time 3D video streaming, Embedded systems, Mobile
devices, End-to-end system

v



ÖZ

TAŞINABİLİR BİR STEREO-VİDEO AKTARIM SİSTEMİ

Zerman, Emin

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Eylül 2013 , 90 sayfa

Son on yıl içerisinde 3B teknolojileri son kullanıcıya ulaşma konusunda oldukça ilerlemiştir.
Yeni gezgin 3B gösterim yöntemleri ve de artan toplum beğenisi ile birlikte son on yıl içinde
gezgin 3B çok önemli bir çokluortam öğesi olmuştur. Bu tez bir uçtan uca sistem olarak
gerçek-zamanlı stereo-video yakalama, sıkıştırma ve gömülü platformlardan gezgin aygıt-
lara kablosuz duraksız iletim gerçeklemesini sunmaktadır. Verimli ve hızlı bir video aktarım
sistemi oluşturabilmek için farklı 3B gösterim biçimleri ile H.264/AVC ve H.264/MVC için
farklı kodlama yapıları denenmiştir. Farklı video aktarım yöntemleri üzerinde denemeler ya-
pılmış ve en etkili olanı seçilmiştir. Sistemin son halinde H.264/AVC kodlama sistemi içeri-
sinde yan-yana stereo-video gösterimi kullanılmıştır. Sistem, gönderici olarak DM 3730 SoC
ARM işlemcili bir aygıt ve alıcı olarak da otostereoskopik ekranlı bir gezgin aygıt kullanı-
larak gerçeklenmiştir. Sunulan mimari, kablosuz ağa bağlı olan gezgin kullanıcılar arasında
3B video iletişimini mümkün kılmaktadır. Sistem için başarım testleri gerçekleştirilmiş ve
sonuçlar bu çalışma içerisinde sağlanmaktadır.

Anahtar Kelimeler: Gezgin 3B video, Gerçek-zamanlı 3B duraksız video aktarımı, Gömülü

sistemler, Gezgin cihazlar, Uçtan-uca sistem

vi



To My Family

vii



ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis supervisor Prof. Dr. Gözde Bozdağı Akar for
her patience, wisdom, understanding and guidance. I am grateful for her helps through my
studies and introducing me to the Multimedia and Computer Vision areas. It has always
been a pleasure to work with her.

I would like to state that this thesis is a result of an efficient multitasking. Multimedia
Research Group helped a lot to this multitasking. I would like to thank Prof. Dr. A. Aydın
Alatan for his technical insight, Yağız Aksoy for his companionship and his helps in this
thesis work, Yeti Ziya Gürbüz for his friendship and the frank personality, Emrecan Batı for
his caring character and technical helps, Beril Beşbınar and Ozan Şener for their friendship
and making the laboratory a fun place to be. I am also thankful for the advices and helps of
Döne Buğdaycı. I consider myself lucky for being in the same environment with Ömürcan
Kumtepe, Erhan Gündoğdu, O. Serdar Gedik, Ahmet Saracoğlu, Dr. Engin Tola, and Dr.
Emrah Taşlı. I also acknowledge Ahmet Orkun Tomruk for his helps on the hardware issues.

I would like to thank Türk Telekom Arge for providing the opportunity to work in a state-
of-the-art project. I would also thank The Scientific and Technological Research Council of
Turkey (TÜBİTAK) for their financial support during my M.Sc. studies.

Thanks to my cousins Cem Vedat Işık, Dr. Işıl Işık Gülsaç and Ass. Prof. Dr. Lokman
Onur Uyanık. They have always been helpful through my college life as well as being a role
model for my life and my academic career.

Last but not least, I would like to express my gratitude for my family. They have always been
there for me. I would like to thank my father Hüseyin Zerman for his wisdom and patience,
my mother Necibe Zerman for her love and kindness, my aunt Adviye Zerman for her care
and support, my brother Oğuz Zerman for his existence and ceaseless energy . I also want
to thank Harika Başpınar, who helped and encouraged me through from the beginning, for
her love.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 3D MULTIMEDIA TECHNOLOGIES . . . . . . . . . . . . . . . . . . . . 5

2.1 Human 3D Perception . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Techniques for 3D Display . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Binocular Displays . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Holographic Displays . . . . . . . . . . . . . . . . . . . 10

2.2.3 Volumetric Displays . . . . . . . . . . . . . . . . . . . 10

ix



2.3 3D Image and Video Representation Formats . . . . . . . . . . . . 11

2.3.1 Stereo and Multiview Representation . . . . . . . . . . 11

2.3.2 Frame-compatible 3D Representation . . . . . . . . . . 12

2.3.2.1 Color and Polarization Multiplexing . . . . 13

2.3.3 Enhanced Video Streams . . . . . . . . . . . . . . . . . 13

3 3D VIDEO COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Methods for 3D Video Compression . . . . . . . . . . . . . . . . 15

3.1.1 H.264/AVC Simulcast . . . . . . . . . . . . . . . . . . 15

3.1.2 H.264/AVC Stereo SEI Message . . . . . . . . . . . . . 17

3.1.3 Mixed Resolution Coding . . . . . . . . . . . . . . . . 17

3.1.4 Multiview Video Coding . . . . . . . . . . . . . . . . . 18

3.1.5 Video plus Depth Coding . . . . . . . . . . . . . . . . . 18

3.1.6 Multiview Depth Coding . . . . . . . . . . . . . . . . . 19

3.2 Encoding Structures of H.264/AVC and H.264/MVC . . . . . . . . 19

3.2.1 Encoding Structures on Single Stream (Simulcast) . . . 22

3.2.2 Encoding Structures on Multiview Streams . . . . . . . 23

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Analysis of the Experimental Results . . . . . . . . . . 36

3.5 Experimental Setup on BeagleBoard-xM . . . . . . . . . . . . . . 41

3.5.1 Experimental Results on BeagleBoard-xM . . . . . . . . 41

4 VIDEO STREAMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



4.1 Methods for Video Streaming . . . . . . . . . . . . . . . . . . . . 45

4.2 Methods for Video Streaming over the Internet . . . . . . . . . . . 46

4.2.1 Network Protocols . . . . . . . . . . . . . . . . . . . . 46

4.2.2 User Datagram Protocol (UDP) . . . . . . . . . . . . . 48

4.2.3 Transport Control Protocol (TCP) . . . . . . . . . . . . 48

4.2.4 Real-Time Transport Protocol (RTP) . . . . . . . . . . . 48

4.2.5 Real-Time Streaming Protocol (RTSP) . . . . . . . . . . 49

4.2.6 Hypertext Transfer Protocol (HTTP) . . . . . . . . . . . 49

4.3 Analytical Comparison . . . . . . . . . . . . . . . . . . . . . . . 50

5 REAL TIME STEREO-VIDEO STREAMING . . . . . . . . . . . . . . . 53

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 3DTV and Mobile 3DTV Projects . . . . . . . . . . . . 53

5.1.2 Internet based Real-Time 3D Streaming . . . . . . . . . 54

5.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Transmitter Side . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2 Capture and Processing . . . . . . . . . . . . . . . . . . 55

5.3.3 Compression . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.4 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Receiver Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Rendering and Display . . . . . . . . . . . . . . . . . . 58

5.4.2 Perceived Quality . . . . . . . . . . . . . . . . . . . . . 59

xi



5.5 General Operation of the Proposed System . . . . . . . . . . . . . 60

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 61

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDICES

A JOINT MULTIVIEW VIDEO CODING (JMVC) REFERENCE SOFTWARE 71

B TRANSMITTER PLATFORM: BEAGLEBOARD-XM . . . . . . . . . . . 77

B.1 Software Installation . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 Image Capture Software . . . . . . . . . . . . . . . . . . . . . . . 79

C RECEIVER PLATFORM: HTC EVO 3D . . . . . . . . . . . . . . . . . . 85

D VLC MEDIA PLAYER ON ANDROID . . . . . . . . . . . . . . . . . . . 87

xii



LIST OF TABLES

TABLES

Table 3.1 Encoding times of encoding structures for HeidelbergAlleysR sequence . 38

Table 3.2 Encoding times of encoding structures for KnightQuest sequence . . . . . 38

Table 3.3 Encoding times of encoding structures for RhineValleysMovingR sequence 38

Table 3.4 Encoding times of SbS encoding structures for all sequences. TET indi-
cates "Total Encoding Time", and FpS indicates number of frames encoded per
second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.1 Comparison of Different Packet based Video Streaming Protocols on the
Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table A.1 CVS Client Parameters for Downloading JMVC Software . . . . . . . . . 71

Table B.1 BeagleBoard-xM Hardware Properties [17] . . . . . . . . . . . . . . . . 78

Table C.1 HTC Evo 3D Hardware Properties [32] . . . . . . . . . . . . . . . . . . . 85

xiii



LIST OF FIGURES

FIGURES

Figure 1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1 Factors of 3D Depth Perception in Human Visual System, [63] . . . . . . 6

Figure 2.2 Binocular and Monocular Occulomotor Depth Perception Cues . . . . . 7

Figure 2.3 Effects of Stereo Pixel Disparity on Depth Perception. The effect of stereo
disparity on perceived depth (a) and vergence-accommodation rivalry (b). . . . . 8

Figure 2.4 Two Different Autostereoscopic 3D Display Methods [19] . . . . . . . . 10

Figure 2.5 Stereo and Multiview 3D Image Representations . . . . . . . . . . . . . 12

Figure 2.6 Frame-compatible 3D Image and Video Representations . . . . . . . . . 13

Figure 3.1 Methods for 3D Video Compression - Upper level shows the transmitter
side and the lower level shows the receiver side . . . . . . . . . . . . . . . . . . 16

Figure 3.2 Multiview Video Coding Structure Showing the Inter-View Dependencies 17

Figure 3.3 Multiview Depth Coding Structure . . . . . . . . . . . . . . . . . . . . 18

Figure 3.4 The MPEG Hierarchy Structure of Video Stream . . . . . . . . . . . . . 19

Figure 3.5 Different Frame Coding Types (Work of Petteri Aimonen, Public Domain) 20

Figure 3.6 Different GOP Sizes in Hierarchical Encoding Structure . . . . . . . . . 21

Figure 3.7 Variation in the Image Quality by QP values of (Top-left) 16, (Top-right)
24, (Bottom-left) 36, and (Bottom-right) 48. . . . . . . . . . . . . . . . . . . . 21

Figure 3.8 IPP Encoding Structure with GOP Size of 8 . . . . . . . . . . . . . . . . 22

Figure 3.9 Hierarchical Encoding Structure with GOP Size of 8 . . . . . . . . . . . 22

Figure 3.10 IPP Simplified Encoding Structure with GOP Size of 8 and with Three
Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiv



Figure 3.11 IPP Full Encoding Structure with GOP Size of 8 and with Three Views . 24

Figure 3.12 Hierarchical Encoding Structure with GOP Size of 8 and with Two Views 24

Figure 3.13 A Snapshot from HeidelbergAlleysR Video Sequence . . . . . . . . . . 25

Figure 3.14 A Snapshot from KnightsQuest Video Sequence . . . . . . . . . . . . . 26

Figure 3.15 A Snapshot from RhineValleysMovingR Video Sequence . . . . . . . . 26

Figure 3.16 Y-PSNR vs Bitrate curves of Multiview Video Coding method for Hei-
delbergAlleysR sequence, Overall . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.17 Y-PSNR vs Bitrate curves of Multiview Video Coding method for Hei-
delbergAlleysR sequence, Left view . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.18 Y-PSNR vs Bitrate curves of Multiview Video Coding method for Hei-
delbergAlleysR sequence, Right view . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.19 Y-PSNR vs Bitrate curves of Multiview Video Coding method for Knight-
sQuest sequence, Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.20 Y-PSNR vs Bitrate curves of Multiview Video Coding method for Knight-
sQuest sequence, Left view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.21 Y-PSNR vs Bitrate curves of Multiview Video Coding method for Knight-
sQuest sequence, Right view . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.22 Y-PSNR vs Bitrate curves of Multiview Video Coding method for RhineVal-
leysMovingR sequence, Overall . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.23 Y-PSNR vs Bitrate curves of Multiview Video Coding method for RhineVal-
leysMovingR sequence, Left view . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.24 Y-PSNR vs Bitrate curves of Multiview Video Coding method for RhineVal-
leysMovingR sequence, Right view . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.25 Y-PSNR vs Bitrate curves of H.264/AVC Stereo SEI message with side-
by-side frame-packing method for HeidelbergAlleysR sequence . . . . . . . . . 32

Figure 3.26 Y-PSNR vs Bitrate curves of H.264/AVC Stereo SEI message with side-
by-side frame-packing method for KnightsQuest sequence . . . . . . . . . . . . 33

Figure 3.27 Y-PSNR vs Bitrate curves of H.264/AVC Stereo SEI message with side-
by-side frame-packing method for RhineValleysMovingR sequence . . . . . . . 33

Figure 3.28 V-PSNR vs Bitrate curves of Video plus Depth method for HeidelbergAl-
leysR sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xv



Figure 3.29 V-PSNR vs Bitrate curves of Video plus Depth method for KnightsQuest
sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.30 V-PSNR vs Bitrate curves of Video plus Depth method for RhineVal-
leysMovingR sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.31 V-PSNR vs Bitrate curves of all encoding structures for HeidelbergAl-
leysR sequence, with real data . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.32 V-PSNR vs Bitrate curves of all encoding structures for KnightsQuest
sequence, with real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.33 V-PSNR vs Bitrate curves of all encoding structures for RhineValleysMov-
ingR sequence, with real data . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.34 SSIM vs Bitrate curves of Side-by-Side encoding structure for Heidelber-
gAlleysR sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.35 SSIM vs Bitrate curves of Side-by-Side encoding structure for Knight-
sQuest sequencea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.36 SSIM vs Bitrate curves of Side-by-Side encoding structure for RhineVal-
leysMovingR sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.37 Y-PSNR vs Bitrate curves of Side-by-Side encoding structures for Hei-
delbergAlleysR sequence, with JMVC data for comparison . . . . . . . . . . . 42

Figure 3.38 Y-PSNR vs Bitrate curves of Side-by-Side encoding structures for Kinght-
sQuest sequence, with JMVC data for comparison . . . . . . . . . . . . . . . . 42

Figure 3.39 Y-PSNR vs Bitrate curves of Side-by-Side encoding structures for RhineVal-
leysMovingR sequence, with JMVC data for comparison . . . . . . . . . . . . 43

Figure 4.1 Network Topology and the Data Flow Structure between Two Devices . . 47

Figure 4.2 An Example of Adaptive HTTP Streaming Client Process [8] . . . . . . 50

Figure 5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.2 A Picture of the BeagleBoard-xM from Top . . . . . . . . . . . . . . . . 56

Figure 5.3 Entering the Path to the Transmitted Stream . . . . . . . . . . . . . . . . 60

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivation

Entertainment and art have always been a source of curiosity for humanity. Through cen-
turies, the search for a new form of artistic expression method has never ended. Multimedia
technologies carry this flag in today’s world. The demands of the people increase with the
ease in access to cutting-edge technologies and advancing technology. Multimedia engi-
neers and researchers try to handle the problems in the process of presenting state-of-the-art
technologies to people to use in their daily lives.

The 3D multimedia is not a new concept. The first 3D creation concept is stereo-vision
which is also quite popular today. Stereo-vision is used firstly in 1838 with a mirror-device
by Sir Charles Wheatstone [23]. The first stereoscopic TV was proposed in 1920s. The
first boom of the 3D in movie theatres was in 1950s in the United States of America. The
movie creators and the theatre owners tried to hold the viewers by introducing 3D movies as
a reaction to the television which is getting popular [59, 23, 25, 2]. The second boom of 3D
in movie theatres happened in 2000s. The release of blockbusters in 3D format supported
this trend. In 5 years, from 2006 to 2010, the number of worldwide 3D screens are increased
from 258 to 21,936 [9]. Hence, 3D researches are important for the movie theaters.

After the invention of television, 3D technologies are started to be introduced in television
systems also. Even though there are different works on 3D multimedia delivery on the TV
systems, the television systems generally rely on stereoscopic 3D representation systems to
remain on the safe side with respect to the back-compatibility. The 3D TV researches on the
Europe started with the 3DTV project which is funded by 6th Framework of EU. The general
works done on 3DTV improved the 3D researches on Television Systems. These works are
continued on the Mobile 3DTV project which is also funded by 7th Framework of EU. This
project generated end-user products such as an auto-stereoscopic handset communicating
over DVB-H result of Mobile 3DTV project [29].

Given the state of the 3DTV researches, both researchers and industry tries to reach the
mobile device users because the mobile technologies are getting popular, and more and
more people start to use mobile phones, tablets, and smart devices. The smartphone usage
in the US rose from 36 % to 56 % in the last 2 years [70]. The usage statistics among smart
phone users show that most of the users utilize the Internet for social media and multimedia
purposes [27]. With this increasing profile of smart-phone and internet users, the demand
for mobile 3D multimedia is expected to increase.

1



Capture Binary
Encoding Transmission Decoding &

Correction Display

Figure 1.1: System Overview

There are different works about 3D multimedia delivery to mobile devices. These mainly
use the Digital Video Broadcasting-Handheld (DVB-H) technology [2, 4, 10, 30], which uses
the VHF-III and UHF IV electromagnetic wave band intervals [21]. There are some studies
about streaming 3D multimedia to mobile devices over the Internet; however, these works
are not real-time and most of them requires reconstruction, an additional computational cost
on the receiver side [68, 40].

The mobile systems using DVB-H as their physical medium works in the real-time. Though,
these systems require DVB-H transmitters with large power requirements. The use of the
Internet as the physical medium could solve both the coverage and power problems. In order
to reach mobile customers, wireless internet connections such as 3G or 4G could be used.
With the increasing bandwidth, the 3G and 4G technologies, or namely EDGE, WCDMA,
HSPA, LTE, are more and more favored by the customers [36]. This advancement in mobile
wireless data links permits huge data transfers among the mobile users. This is an advantage
against the DVB-H.

On the real-time aspect, the streaming applications which runs over DVB-H are mostly real-
time. However, there are some studies about the transmission of 3D content to the other side
over the Internet that does not ensure real-time performance [40, 68]. Nonetheless, these
systems lack the support of mobile systems and they require specialized equipment such as
glasses.

In this thesis, the main motivation is to develop a low power system containing end-to-
end chain of devices and software that streams the stereo-video over the Internet for the
portability and accessibility issues.

1.2 Scope of the Thesis

This thesis proposes an end-to-end system that utilizes mobile or embedded platforms on
both end in order to keep the system movable and low power which uses the wireless tech-
nologies as its backbone rather than the other methods such as DVB-H. An embedded plat-
form with ARM architecture have been used in order to keep the proposed system due to the
advantage of ARM as being low power, hence mobile.

The proposed end-to-end system includes all the following components starting from capture
to display as it is shown in Figure 1.1. These parts can be listed as follows:

• Capture or creation of the content

– Stereo capture of real world by utilizing a Linux library for video processing

• Video compression

2



– Experimentation and comparison among various video compression techniques
for a 3D video encoding system

• Streaming

– Analysis and comparison of different video streaming and transmission protocols
without the consideration of a special case for 3D video

• Rendering 3D content and Display

– Creation of a live stereo media player by the modification of a well known open
source software: VLC Media Player for Android

1.3 Outline of the Thesis

In order to explain the proposed system in a better way, firstly some of the concepts related
to 3D multimedia should be explained. In Chapter 2, the human 3D perception is discussed
at first. Then, different techniques for 3D display are revised. For a better coverage of both
the 3D concepts and the 3D image/video representation methods are given.

The basic principles of video compression and different 3D video compression techniques
are explained in detail in Chapter 3. Two different experiments are conducted on both
desktop computer and embedded platform with respectively Joint Multiview Video Cod-
ing (JMVC) Reference Software 8.5 and x264 Encoder for different purposes such as com-
parison among different encoding methods and the comparison of the encoding times with
respect to the encoding structure on transmitter platform. Experimental work and the results
relevant to the 3D image representation methods and 3D video compression is given in this
chapter as well.

In Chapter 4, the video streaming topic is discussed. First, a survey of the existing methods
for video streaming is done. Then, the methods for video streaming over the Internet are
analyzed in detail. In desired end-to-end mobile system, the most important properties in
terms of network are the flexibility of the stream packets to different network structures and
the adaptivity to these different network structures. The analytical comparison related to the
video streaming considering these issues is also presented here.

In Chapter 5, the proposed system is explained. Before starting, the related work is presented
and discussed on the difference among all similar systems. After a brief system overview,
the transmitter side and the receiver side are explained in detail. This chapter covers all the
system parts from one end to the other. Both the integration and other modifications made
are represented in this chapter.

In Chapter 6, the conclusions from the thesis and a brief summary are presented. The future
works and the application areas are indicated in the last chapter.

3



4



CHAPTER 2

3D MULTIMEDIA TECHNOLOGIES

The purpose of research is to find a new way of looking and solutions to existing problems,
to make a discovery or invention that will ease the lives of the mankind. Every research topic
has an ultimate goal. In 3D multimedia technologies, this ultimate goal is to find a way to
represent the view as it is seen in the real world from all points of view, namely free-view
television or display. Even though there are some examples with both hardware [84], and
software (with 3D reconstruction) [64], the Free Viewpoint TVs (FTV) are not widely used
and are not appropriate to advance into the commercial area in both display technologies and
content creation.

3D multimedia technologies are a cornerstone in the way to reach the free-view television.
The developments in the 3D multimedia paves the way in both displaying technologies and
the content creation aspects. Even though 3D TVs are becoming widespread in the last few
years, very large portion of the newly created 3D content originates from 2D content. For
these reasons, 3D multimedia is still a hot topic for research.

In order to understand the 3D multimedia technologies, we should first understand the human
3D perception and different techniques about 3D content formats and compression. The
following sections discuss these issues.

2.1 Human 3D Perception

Human visual system (HVS) consists of eyes and brain. The actions of eyes and brain can
be considered as two separate parts of a system [95, 29]. Eyes are used for reception of the
light or scattered light rays from the outside world, and act as sensors. The brain, on the
other hand, is an organ which understands and recognizes the sensor inputs. Perception is a
whole different concept from seeing the outside world. Perception includes many different
psychological phenomena, and affected by the previous experiments of the viewer and en-
vironmental conditions. Perception may also be affected by the disabilities of the eyes with
different illness conditions; however, this is not in our scope. In order to analyze and choose
an appropriate display for 3D purposes, we must first understand how people perceive 3D
world and depth feeling.

There are different aspects in depth or 3D perception that depend on both the sensory part,
eyes, and the recognition part, brain. The components or the factors of depth perception
cannot be separated as sensory and recognition. There are different studies on 3D percep-

5



3D Depth Perception

Monocular Binocular

Visual Occulomotor Visual Occulomotor

Motion Parallax

Static

Retinal Disparity VergencePupil Size

Accommodation

Figure 2.1: Factors of 3D Depth Perception in Human Visual System, [63]

tion modalities and these works suggest that monocular and binocular depth perception is
independent from each other [28]. As the depth is perceived independently by monocular
and binocular systems, we can analyze first the monocular part and then the binocular part.

The affecting factors of depth perception can be separated as monocular and binocular as
shown in Figure 2.1. The monocular cues are divided into two parts as visual and occu-
lomotor (muscular feedbacks from eyes). Monocular visual depth cues are mostly related
to previous experiences and they can be extracted from 2D images [31, 28, 63, 11]. These
depth cues can be listed as follows:

• Interposition: Position differences and occlusions between different objects in the
scene shows relative depth of the objects.

• Linear Perspective: Explicitly seen edge or any linear perspective source leads to the
perception of depth in terms of the given regular subject sizes or learned perspective
feeling.

• Relative and Known Size: Comparison of known sizes of two objects gives the feel-
ing of 3D depth as their relative sizes differ. Two of the same object with different
sizes implies that the object that appears smaller is farther away.

• Texture Gradient: Texture of same size and shapes shows whether there is any dis-
tortion on that plane as a linear perspective or not.

• Light and Shadow Distribution: Light and shadow distribution in the scene gives
different clues about the depth of the objects. Just lighting and shadow appearance of
an object carries information on its 3D location.

• Aerial Perspective: Different artifacts such as blurriness, dust, humidity or fog can
imply depth information. For example, in natural landscape images, the farther the
scene object gets, the more blurry the image becomes.

Beside the static visual clues, the other most important monocular visual depth cue is the
motion parallax. This is the effect which is created by either the movement of the environ-
ment or the observer’s head. Rate of movement on perpendicular 2D plane gives the depth
information in motion parallax. If the movement of the object is greater for the same motion

6



F F’
αA

αF ′′

αB

(a) Visual Area and Horopter (b) Angular Disparity

A

F”

B

(c) Accommodation

Lens Retina

Far object

Near object

Figure 2.2: Binocular and Monocular Occulomotor Depth Perception Cues

of the observer, the object is close to the observer. If the movement rate is very low or zero,
then the object or plane is far away from the observer.

Apart from the monocular visual depth cues, occulomotor depth cues also have importance
in depth perception. These depth cues are pupil size and accommodation. The pupil size
controls the amount of incoming light. The amount of light rays and the optical properties
of the incoming light rays change the obtained image reflection on the retina. Smaller pupil
size leads to a smaller hole for light and this increase the Depth of Focus, the depth interval
in which all the objects can be seen as single focused or nearly focused rather than crossed
or uncrossed images. Also, the pupil size arranges other effects such as diffraction and
aberration.

Another monocular occulomotor depth cue is the accommodation of the lenses in eyes. The
accommodation is defined as the process of getting a clear focused image by changing the
diameter and thickness of the lens. The feedback sent from the muscles changing lens to
the brain helps humans to find the depth of the object focused. An example to the differ-
ence in lens dimensions within the accommodation process can be seen in Figure 2.2 (c).
Accommodation is a very helpful depth cue for human depth perception system.

As indicated above, HVS can perceive depth with even using only one eye by utilizing the
monocular visual and occulomotor depth cues. However, binocular depth cues are more
precise and help HVS in different situations such as the relative depth estimation, breaking
camouflage, perception of surface material and surface curvature judgement [31].

The binocular depth cues are also divided into two parts as occulomotor and visual. Binocu-
lar occulomotor depth cue is the vergence. The vergence is defined as the movement of two
eyeballs in different directions [11]. The convergence of two eyes on a point on the area of
the intersection of the two eyes as shown in Figure 2.2 (a) is needed to perceive the object in
3D. The point of convergence creates a point cloud in space that all the points are observed
as single with the same convergence and the accommodation of the eyeballs. This area is
called Panum’s fusional area [31] and the center-line of this area is called horopter.

The stereoscopic difference of the depth is created by the angular disparity, the difference
values between the horopter and the point of the object of interest. The angular disparity is
recognized by the brain when a different object is in front or behind of the focused point.
The angular disparity between points B and F”, shown in Figure 2.2 (b), can be calculated
as:

7



d = 0
d = -1
d = -2

(a) Effect of Disparity

Vergence
Distance

Accommodation
Distance

(b) Accommodation and Vergence

d = -3

d = 1

d = 2

Screen

Object

Figure 2.3: Effects of Stereo Pixel Disparity on Depth Perception. The effect of stereo
disparity on perceived depth (a) and vergence-accommodation rivalry (b).

δ = αF ′′−αB (2.1)

According to [31] and [63], minimum noticeable depth distance is between 0.3 and 0.84
mm, found after the trigonometric calculations of the distance between two eyeballs and
the screen counting on the stereo acuity as 10” and 20” (seconds of an arc) respectively.
Their works take the average screen distance as 650-670 mm and an average human eye
separation as 65 mm. According to the calculations the depth perception decrease with the
increasing screen distance [11]. This also shows that the binocular depth cue of vergence
works particularly on closer distances.

Another binocular visual depth cue is the retinal disparity between the stereo images pro-
jected on the retina of two eyeballs. The disparity is calculated after the two eyeballs are
focused on the same location on an object. This retinal disparity phenomena is used in the
stereoscopic display systems also. Sign of disparity show the side as in front or behind of the
screen. The disparity of two retinal images is calculated as it is shown in angular disparity
equation above. A sample image of disparity on the screen between the stereo image pair
and its effect is shown in Figure 2.3 (a).

One of the most effective 3D depth cues is the fusion of the vergence and the accommo-
dation cues. However, with a screen 3D display device, this fusion could not be realized.
Generating the content by utilizing the retinal disparity depth cue is the most common way.
However, the vergence and accommodation does not hold the same place in these display
types and this situation disturbs the observers. The vergence is made on the object placed in
front of the screen. However, the accommodation must be remained on the screen in order
to see the screen in focus. This situation is represented in Figure 2.3 (b) and this issue is an
important topic for research on displays [66, 12].

According to [56, 58], the most important depth cue among all of the ones discussed above
are the binocular stereo image disparity and the motion parallax. Thus, binocular vision is an
important factor in human 3D depth perception. The effects and the importance of binocular

8



vision in 3D display systems are discussed in the following section.

2.2 Techniques for 3D Display

3D display of the generated content in a natural way is the most desired goal of the 3D
display designers. However, the physical limitations do not let that conditions to come true.
Most of the 3D display systems do not supply a natural view condition for 3D content. All
or most of the above depth cues must be satisfied in order to achieve a natural 3D display
system.

There are different 3D display systems. Most of them utilizes the idea of stereoscopy. Stere-
oscopy means solid seeing (στερεoς - solid and σκoπεω - to look) as Fehn stated [23].
In order to see the objects in their solid form, the stereoscopic view is required due to differ-
ent depth cues explained in previous section. In stereoscopy, two different eyeballs acquire
two different images. In order to make this operation possible, different displaying methods
can be used. The main division is done as the displaying methods by the main principle of
creation of 3D depth sense such as binocular, holographic, and volumetric.

2.2.1 Binocular Displays

As the first way of utilizing the stereo view, binocular displays are created since the first
emergence of the 3D technology on great scale. This method lets different images to be
shown to different eyes. In order to send two different images to two different eyes, mankind
used mirrors and glasses as the first tools. The first binocular display was the Wheatstone
mirror stereoscope [13, 23]. This device uses two mirrors for two eyes in 45◦ form. Another
early example of binocular display is the Brewster stereoscope which was a special kind of
glasses that the images are attached in front of the glasses [13].

Most binocular display methods use multiplexing methods for displaying. In these meth-
ods, mostly active or passive glasses are used [63, 59, 31]. In wavelength-division or color
multiplexing method, stereo image pair is combined by overlaying onto each other by using
different/non-overlapping wavelength colors. Examples of these colors are red-cyan, red-
green, red-blue, amber-dark blue. Most of these color multiplexing methods causes to lose
the color component of the 3D content. In polarization-division multiplexing method, two
different polarized images, mostly generated by two projectors, are displayed on the same
surface and the stereoscopic view is provided by polarized filtered glasses. In time-division
multiplexing method, the images are shown with their original state and with doubled frame
rate. The frames are shown in time multiplexed mode as even frames as left frame and odd
frames as right. The active shutter glasses then is synchronized with the display in order to
show the observer the right view to right eye by masking the wrong eye. All these displaying
types are called stereoscopic displays and they require glasses for viewing.

The other type of the binocular displays is autostereoscopic displays which does not require
any glasses to perceive 3D. These displaying systems use space-division multiplexing as
their base displaying method. These systems have a specialized light manipulation layer
between the screen such as parallax barriers and lenticular optics. The behavior of these
systems are similar, and they intend to make sure the pixels of the right view are delivered

9



(a) Parallax Barrier (b) Lenticular Sheet

Figure 2.4: Two Different Autostereoscopic 3D Display Methods [19]

to right eye and pixels of left view are delivered to left eye, as shown in Figure 2.4.

Other than stereoscopic and autostereoscopic display systems, multiview displays and head
mounted displays can also be classified as binocular display. Head mounted displays are
very similar to the stereoscopic displays. Multiview displays are similar to autostereoscopic
displays with more views. In order to increase the viewing angles and in order to make
3D display more realistic by utilizing motion parallax, multiview displays generate more
than one view, up to 16 views [19], by using the video plus depth map representation. That
decreases the discomfort caused by the lack of motion parallax. By multiview displaying
technology, the 3D displays such as televisions become more usable and that may increase
the public acceptance of 3D displays and televisions.

2.2.2 Holographic Displays

Holographic displays are similar to autostereoscopic displays in some aspects. They are gen-
erated by using stereoscopy principles and they are displayed onto a flat screen. However,
holographic displays are using specialized materials in the display screen. These materi-
als helps the light rays which are mostly generated by laser beams to diffract and delivered
to right eye order. The advantages of the 3D holographic displays are being able to sup-
port binocular depth cues, motion parallax, accommodation issues [45]. Hence holographic
displays are the most comfortable 3D displays for human observers.

2.2.3 Volumetric Displays

Volumetric displays are the display methods which uses a rotating mediums covering a cer-
tain volume and a projection method on that medium. Volumetric display of 3D content is
better than any stereoscopic methods due to the natural look generated on the given volume.
Some examples of the volumetric displays are rotating plane with a projector to display
accurate 3D display [22, 79], a full parallax display with rotating mirror and the projec-
tion from the top of the system [37], and a cylindrical display for the delivery of the 3D

10



content [101]. Considered that the images are created on a volume, these systems sim-
ulates the real world and creates a solution for different problems such as motion parallax,
accommodation-vergence rivalry, and full parallax display (by introducing vertical parallax).
The disadvantage of these systems is the difficulty of 3D content generation for all angles.

These systems have different advantages and disadvantages for different areas of usage. The
stereoscopic systems are most commonly used display methods due to easy implementa-
tion and back-compatibility. However, these systems require glasses which is an additional
equipment that may bother some users. Autostereoscopic displays do not require those
glasses; however, both stereoscopic and autostereoscopic displays can not support one of
the most important depth cue; motion parallax. Autostereoscopic displays also suffers from
vergence-accommodation rivalry. Holographic displays and volumetric displays offer real
3D sense. On the other hand, these displays are not suitable for mobile applications because
of the requirements to special hardware that needs huge spaces.

2.3 3D Image and Video Representation Formats

In order to utilize the acquired 3D multimedia, a representation method is needed. There are
different methods to represent 3D images on the given screens. The most basic method is the
stereoscopy, as explained above. To use stereoscopy in 3D image representation, two views
must be present. Different video representation formats require different video compression
methods. Finding the most effective video compression method relies on the type of video
representation format.

The difference in the representation formats can be grouped as the amount and quality of the
sent frame size and any auxiliary data [72, 79, 71]. Most of the research community uses and
tries to promote the stereo and multiview representation. On the other hand, the commercial
community prefer to use the frame-compatible format due to the backward compatibility.

2.3.1 Stereo and Multiview Representation

In stereo and multiview representation, the views are separately captured and separately
stored. The view number can start from 2 and go up to camera arrays of many cameras [93].
The basic idea about minimum two views is to simulate the two eyes of human. The left
view is required for left eye and the right view is required for the right eye. More cameras
than two are required to generate 3D view for different view generation processes. [3, 71]
An example of stereo and multiview 3D representation can be seen in Figure 2.5.

The binocular suppression theory [76] states that the dominant high quality suppresses the
lower perceived quality of the other eye. In the mixed resolution stereo which utilizes this
information to reduce the bandwidth, the left view is left as full resolution and the right view
is sub-sampled at half resolution as can be seen in Figure 2.5 (b) [54, 14].

This video representation presents a better quality and better 3D reconstruction because it
is not subject to the quality degradations due to the downsampling, except mixed resolution
stereo, which we will see in the frame-compatible representations section. Also, this video
representation method, in multiview case, gives much more knowledge compared to the

11



Left
View

Right
View

Leftmost
View

Left
View

Center
View

Right
View

Rigtmost
View

(a)bStereob3DbImagebRepresentation

(c)bMultiviewb3DbImagebRepresentationbwithb5bviews

(b)bMixedbResolutionbStereo

Left
View

Right
View

Figure 2.5: Stereo and Multiview 3D Image Representations

other methods, and that provides a better 3D estimation and reconstruction on the display
side by reducing occlusion handling complexity [71].

2.3.2 Frame-compatible 3D Representation

Another solution to the 3D image and video representation issue is to use a frame-compatible
format. In this format, the frame sent is compatible with the frame size of the display
medium. For that purpose, the frame-packing must be done. In order to fit the stereo content
in a frame, different methods can be used such as spatial or temporal frame packing.

Spatial frame-packing methods include horizontal and vertical subsampling and interlacing.
The stereo video frames can be stitched together after the subsampling or they can be inter-
laced horizontally or vertically. Examples of resulting frames can be seen in Figure 2.6 (a)
and (b), respectively side-by-side and top-bottom. In Figure 2.6 (d) and (e), horizontal and
vertical interlacing samples can be seen. However, these methods decrease the quality of the
content as subsampling procedure introduces losses to the given frame. In order to decrease
the losses on the interlacing process, the checkerboard interlacing can be done which an
example of that method can be seen in Figure 2.6 [80].

Instead of using spatial frame-packing to reduce the errors due to the subsampling process,
one can use temporal frame-packing method [91]. In this method, the left and right frames
are interleaved in temporal dimension. In order to keep the frame size, one frame of left
view and one frame of right view are sent one after another. An example of this method can
be seen in Figure 2.6 (c). The advantage of this method is to keep the frame as original.
However, as it is subsampled through the time, the upsampling process on the decoder side
will be done on the time dimension. Hence, if the frame is dynamic, there will be some
artifacts due to the upsampling process.

The frame-compatible 3D representation methods are preferred mostly by the commercial
community as it is indicated before. The main reason of that is the frame-compatible meth-
ods are back-compatible. People with standard 2D televisions can watch a spatial or tem-
poral frame-packed video by decoding only the left half or taking only left frames on the

12



L
R

L
R

L

R

L R

(a) Side-by-side (b) Top-bottom (c) Temporal packing

(d) Vertical Interlacing (e) Horizontal Interlacing (f) Checkerboard Interlacing

Figure 2.6: Frame-compatible 3D Image and Video Representations

temporal dimension [93].

2.3.2.1 Color and Polarization Multiplexing

The color and polarization multiplexing are easier methods to use for both end-users and
the producers. The color multiplexing (or anaglyph 3D) method is a very basic and easy
way to create a frame-compatible representation. It is very easy for end users to find a color
glasses and consume the generated content. However, the color multiplexing is subject to
some errors such as loss of perception of color components and after effects such as color
bleeding and nausea [38].

The polarization method is both simple and can reflect true colors, as it is discussed in the
previous section. With the spatial or temporal interlacing methods, polarized views can be
presented to the end-user.

2.3.3 Enhanced Video Streams

The other representation systems either require more bandwidth or introduce loss. In order
to decrease the losses and save the bandwidth, enhanced video streams are used. As the
enhancing part of these streams, mostly a depth information is used. Instead of transmitting
stereo views, a video and a depth map can be transmitted and the secondary view can be
rendered at the receiver side. This could save bandwidth and the 3D content would be
transmitted to the recipient.

There are different methods to transmit the 3D content by sending the depth. Depth could be
used for not only saving bandwidth but also improving the present system. These systems

13



utilize depth in different ways. In order to generate a 3D output with many viewing points,
a dense depth map is very important [5].

Video plus Depth representation system, also known as 2D plus Z, uses the depth map to
render the secondary view in order to generate the stereo image pair [89, 3]. The depth
map is used to calculate the disparity magnitude and direction and rendering is completed
by fusing the disparity knowledge with the base view received. However, occluded regions
come into the new frame and holes appear in rendered image. Even though these holes can
be filled by estimating the probabilities of the hole pixels and finding the nearest and most
possible known patch [16, 48], quality of the rendered 3D pair will be affected.

The 2D plus depth with auxiliary views representation, or Layered Depth Video (LDV), for-
mat is used to avoid that problem [61, 71]. However, this representation format is applicable
only to synthetic contents because the system needs the complete background image of the
occluded area as auxiliary view.

The Multiview plus Depth (MVD) representation format is used to combine multiview video
with multiple depth maps. Thus, the reconstruction or rendering of the 3D content on the
receiver side will be easier to handle with both multiview video and multiview depth data
[73, 41].

14



CHAPTER 3

3D VIDEO COMPRESSION

In order to transmit the captured video over the Internet, the video has to be compressed
because of the bandwidth and speed limitations. This compression needs to be both compu-
tationally cheap and efficient. There are different methods for 3D video compression. The
compression type depends on the 3D image or video representation format. This subject has
been studied on different scales in the literature [92, 71, 10, 15]. In this section, these differ-
ent works are discussed and the experimental setup is given by the result of the experiments
conducted.

3.1 Methods for 3D Video Compression

3D compression methods differ by the 3D representation format. In order to compress 3D
content, there are different methods used. Most of them are based on a special 3D image
and video representation format. This section presents an overview to the commonly used
3D video compression methods.

The general opinion on the 3D video compression is to use the state-of-art compression
technique H.264/AVC, or H.264/MPEG-4 AVC, proposed by ITU-T Video Coding Experts
Group (VCEG) and ISO Moving Picture Experts Group (MPEG) communities jointly [20].
As it is explained thoroughly in the following subsections, majority of the 3D video coding
research is based on H.264 [80].

There is a new video compression format named High Efficiency Video Coding (HEVC
or H.265) proposed by the same team of ITU-T VCEG and ISO MPEG. Even though this
video compression format was announced in April 2013 and published in June 2013, there
is a study of 3D video coding on HEVC [55].

3.1.1 H.264/AVC Simulcast

For stereo multiview 3D image representation, the most basic method is to encode two,
or more, different views as they are separate videos. In other words, the relevance and
similarity between different views are not exploited [43, 50]. This encoding method is called
simulcast because both streams, or views, are generated and transmitted at the same time,
i.e. simultaneously as it is shown in Figure 3.1 (a).

15



Channel

H.264/AVC H.264/AVC

DEMUX

TS

MUX

BS BS

H.264/AVCH.264/AVC

Output Output

Channel

H.264/AVC H.264/AVC

BS/TS

H.264/AVCH.264/AVC

Input Input

BS/TS

Channel

H.264/AVC

H.264/AVC

BS/TS

Field Multiplexing

Channel

TS

MUX

BS BS

H.264/MVC

H.264/MVC

(a) Simulcast (b) Stereo SEI (c) Multiview Video Coding (d) MPEG-C Part 3

Video1 Video2

Input Input
Video1 Video2

Video1 - up field
Video2 - down field

Input Input
Video1 Video2

Input Input
Video Depth

Encoder EncoderEncoderEncoderEncoder Encoder

Decoder Decoder Decoder Decoder Decoder Decoder

Field Demultiplexing
Video1 - up field

Video2 - down field

Video1 Video2

Output Output
Video1 Video2

Output Output
Video1 Video2

Output Output
Video1 Video2

Figure 3.1: Methods for 3D Video Compression - Upper level shows the transmitter side and
the lower level shows the receiver side

16



B

IV0

V1

V2 b

b

b

B B

I

b

b

b

b

b

b

b

b

b

B

B

B

B

B

B ...

...

...

Time Increasing

P P P

P

Figure 3.2: Multiview Video Coding Structure Showing the Inter-View Dependencies

The advantage of this encoding structure is its simpleness. It is easy to encode different
views and transmit them at the same time, and the computational complexity is low on both
transmitter and receiver side [86, 85]. The disadvantage of H.264/AVC Simulcast is the high
bandwidth requirement compared to other methods.

3.1.2 H.264/AVC Stereo SEI Message

In this encoding method, the two views of stereo view representation is packed into a sin-
gle frame by using the frame-compatible representation methods, such as side-by-side, top-
bottom, checkerboard or line-interlaced, and encoding is carried out as a single video se-
quence as it is shown in Figure 3.1 (b). The stereo Supplemental Enhancement Information
(SEI) message is set during the encoding progress according to the interlacing method in
the pre-processing stage. In the initial state of the standard, the only accepted interlacing
method was row interlacing; however, after an amendment published by ITU-T, all the in-
terlaced formats discussed in Section 2.3.2 is accepted [50, 91]. This coding structure also
enables the exploitation of inter-view redundancies [86].

The advantage of this method is the backward compatibility in both frame size and count of
bitstreams acquired. However, there will be a quality reduction due to the spatial or temporal
sub-sampling in the pre-processing stage.

3.1.3 Mixed Resolution Coding

In order to profit from the human 3D perception, the mixed resolution coding can be used. In
mixed resolution representation, or coding, one of the stereo views -generally right view- is
downsampled in order to save the bandwidth. The binocular suppression theory [76] states
that the perceived quality depends on the dominant quality or higher resolution. Hence,
using the mixed resolution representation, one can achieve a lower bitrate. However, the
computational complexity on both transmitter and receiver increases in this coding structure
with the downsampling and upsampling procedures [86, 85, 14, 43].

17



HEVC

Depth Map

Video Coder

V0

V1

V2

MUX
BS

Conforming
Video Coder

Coder

Depth Map
Coder

Depth Map
Coder

for Dependent
Views

Video Coder
for Dependent

Views

Figure 3.3: Multiview Depth Coding Structure

3.1.4 Multiview Video Coding

Multiview video coding is a specialized version of the H.264/AVC with an amendment and
named as H.264/MVC. This encoding structure utilizes the similarities among the multiview,
as well as stereo, videos and uses this knowledge to reduce the payload size of the encoded
bitstream [43, 85, 50, 93]. An example of the MVC encoding structure is given in Figure
3.1 (c) and an example of utilization of redundancies among the views can be seen in Figure
3.2.

In this encoding structure, the views are encoded together and two separate bitstreams are
generated. In MVC, two separate bistreams are generated in the first step of encoding even
the redundancies between views are exploited. Those two bitstreams are multiplexed into
one bitstream. This bitstream is transmitted to the receiver side and the H.264/MVC decoder
is used to decode the acquired bitstream. Reduced payload size is an advantage; however,
the computational complexity increases on the encoder side [54].

3.1.5 Video plus Depth Coding

Video plus depth (V+D) coding is a more efficient way to transmit 3D stereo video than
H.264/AVC Simulcast method. The depth view has a less payload size than a second (or
right) regular view. Also, different point of views can be rendered by using video plus depth
representation. However, the quality of the 3D content reduces due to the artifacts caused by
the rendering process.

Video plus depth coding is similar to the H.264/AVC Simulcast. The video and depth are en-
coded simultaneously and multiplexed into single bitstream. After transmitted, the bitstream
is demultiplexed and the resulting two bitstreams are decoded separately. After decoding, a
view rendering is required. This introduces a computational complexity on the receiver side
[54]. An illustration of this process can be seen in Figure 3.1 (d).

18



Sequence Sequence Sequence Sequence Sequence Sequence...

Seq SC Video Params BS Params QTs. Misc. GOP GOP...

GOP SC Time Code GOP Params Picture ... Picture

PSC Type Buffer Params Slice ... SliceEnc Params

SSC Vert. Pos Qscale Macroblock ... MB

Addr Type Motion Vector b0 ... b5Qscale

MB

CBP

Figure 3.4: The MPEG Hierarchy Structure of Video Stream

3.1.6 Multiview Depth Coding

Multiview depth coding is an encoding structure that uses MVD representation type which
is discussed in Section 2.3.3. This is an encoding method in which HEVC/H.265 video
compression standard is used [42, 51]. This method is constructed as a union of both MVC
and V+D coding methods. First, the views are coded by utilizing the redundancies among
them while simultaneously their corresponding depth views are coded in the same structure.
After the encoding process, these separate bitstreams are multiplexed into a single file and
that file is transferred as shown in Figure 3.3.

3.2 Encoding Structures of H.264/AVC and H.264/MVC

In H.264/MPEG AVC encoding standard, there are different encoding structures. These
encoding structures are important for the compression efficiency. As the main method of
the video encoding is utilizing the redundancies between the blocks of a frame and between
frames, different encoding structures offer better compression techniques by changing the
prediction structure. In order to understand the encoding structures, the frame types in the a
video compression system should be reviewed before.

There are three main different video frame coding types: Intra Coded Frame, Predicted
Frame, and Bidirectionally Predicted Frame. These frames are generally placed in a Group
of Picture (GOP) and these GOPs are placed in the MPEG transmission sequence as it is
shown in Figure 3.4. There are other levels in this structure such as slices and macroblocks.

Macroblock is a 16x16 pixel sized the most small element of the video coding frame.
The motion estimation and compensation tasks are done on the basis of the macroblocks.
H.264/AVC employs different sizes in a 16x16 macroblock such as 8x16, 16x8, 8x8, 8x4,
4x8, and 4x4. Slices are composed of macroblocks and they are used to lessen the effect of
network errors occurred during transmission [87]. Slices can be constructed by a number of
macroblocks, and the number of macroblocks in a slice can differ from very little to whole
frame. Frames, or pictures, are formed by slices, and the GOPs are formed by frames [96].
The differences among these frame types are explained below and a visual comparison can
be seen in Figure 3.5.

19



I-frame P-frame B-frame I-frame

Figure 3.5: Different Frame Coding Types (Work of Petteri Aimonen, Public Domain)

Intra Coded Frame (I-Frame)

Intra Frame Coding is a frame coding type which does not need any external reference frame.
This coding type is used to exploit the spatial in-frame redundancies such as the same color
of background or any repetitive texture within the coded frame. However, in order to control
the complexity, the search of redundancies within the same frame is limited by a parameter
of the search range. Any redundancies are referenced in-frame and by that the total size of
the frame is reduced. Instead of the reduction of the frame size, I-frame is the most larger
sized frame amongst the I, P, and B frames. The first frame of a video sequence is always
coded as an Intra Frame due to the lack of external reference frame.

Predicted Frame (P-Frame)

Predicted Frame Coding is a frame coding type which uses the older frame as external refer-
ence. This method exploits the temporal redundancies between two frames. The assumption
of this idea is that the frames of video does not change very drastically in temporal dimen-
sion. By referencing most of the macroblocks from the older decoded frame, the size of
a predicted frame reduces to a very small rate. The predicted frame can only take I and P
frames as reference. So, the B frames cannot be a source of external reference to the coded
P frame.

Bidirectionally Predicted Frame (B-Frame)

Bidirectionally Predicted Frame is very similar to P frame due to their referencing nature.
B frame can utilize both older and newer (i.e. newer in temporal order of playing) frames
as references. This gives the ability to compress the given video much more. However, the
computational complexity increases with the increased search space. The advantage of the
B frame is being B frame smaller size compared to the P frames in different circumstances
such as moving texture or scene change in the sequence.

Group of Picture (GOP)

Group of Picture is a set of picture that is aimed to be decoded by using only the frames
in the GOP. Hence, the GOP starts with an I frame and consists I, P, and B frames. This
behavior of GOP permits various features such as fast forwarding, rewinding, and changing
the playing location of video. When a playing location is changed, the nearest independent
GOP is found by the media player software and the video is started to be decoded starting
from the I frame of that GOP.

The GOP concept is created first on MPEG-1, and the JMVC reference software allows to
crate GOPs without the I frames, instead GOPs with P frames are created when Intra Period

20



Figure 3.6: Different GOP Sizes in Hierarchical Encoding Structure

is greater than the GOP size. In that context, the GOP is used as a semi self-decodable
unit due to the need to the I frame which is the reference of P frame to be decoded. The
difference between the GOP size and the encoding structure can be seen in Figure 3.6 in
which the GOP size and Intra Period are the same.

Intra Period

Intra Period is the frame period of encoding an I-frame. Intra period is different than the
GOP size in H.264/AVC encoding standard. Intra period defines the refresh rate of an en-
coded video stream. The higher intra period becomes, the higher quality gets. Nonetheless,
the video stream size gets larger in that case. The need for refreshing the stream and the
bandwidth should be considered while setting this parameter. In the following experiments
this parameter is set same as the GOP size.

Figure 3.7: Variation in the Image Quality by QP values of (Top-left) 16, (Top-right) 24,
(Bottom-left) 36, and (Bottom-right) 48.

Quantization Parameter (QP)

Quantization Parameter is the parameter that is used in the quantization of the DCT co-
efficients in the encoding process. QP is not a parameter related to encoding structures.
However, it is needed to be explained here because it is an encoding parameter and it is

21



changed in the experimental setup. The only lossy part of the encoding and decoding chain
of the video aside network or transmission losses is the quantization process. This loss or
degradation in the quality can be controlled by adjusting the QP. A visual example of the
variation in image quality can be seen in Figure 3.7.

3.2.1 Encoding Structures on Single Stream (Simulcast)

The encoding structures in this section can be divided in two parts as the encoding struc-
tures on single stream and on multiview streams. The single stream part is as same as plain
H.264/AVC encoding structures. Encoding and streaming multiple views or streams simul-
taneously is called simulcast. In the stereo case, either side-by-side, or video plus depth, or
streaming two video separately can be considered as simulcast.

IPP

The IPP coding structure is simple and straightforward. The main operation is taking an I-
frame in predefined intervals, and constructing P-frames in-between. The flow of operation
follows a straight linear path, so the complexity of the decoding is not increased much.
In encoding and decoding, encoder/decoder is only interested with the previous, or older,
frame. In order to avoid accumulated errors on the video, I-frames are taken with a period
conventionally as products of eight as shown in Figure 3.8.

Figure 3.8: IPP Encoding Structure with GOP Size of 8

The advantage of the IPP encoding structure is its simpleness and the low complexity during
the encoding. However, IPP encoding structure can propagate errors easily than Hierarchical
encoding structure with large intra frame periods. That property may affect the visual quality
perceived by the end user.

Hierarchical

The Hierarchical encoding structure utilizes B-frame encoding in order to get benefits of
video compression by extending search space with 2 or more distinct frames. As explained
earlier, B-frames can take both previous and next frames as external reference frames. For
this operation, the next frame that the B-frame took as reference must be encoded before.
In order to do that, the decoding order must be different than the playing order. Hence, this
situation introduces a problem of buffering. In order to decode the hierarchical encoded
stream, a buffer has to be kept for each arriving GOP. An example of hierarchical encoding
structure with GOP size of 8 can be seen in Figure 3.9.

Figure 3.9: Hierarchical Encoding Structure with GOP Size of 8

The difference of the temporal frame order of the encoded video consisting of 10 frames and

22



the encoding, or decoding, order of the same video can be given as following:

Temporal Order : 0 1 2 3 4 5 6 7 8 9 10 frame #
I B3 B2 B3 B1 B3 B2 B3 I B1 P frame type

Decoding Order : 0 8 4 2 6 1 3 5 7 10 9 frame #
I I B1 B2 B2 B3 B3 B3 B3 P B1 frame type

The hierarchical encoding structure is much more effective in compressing when compared
to the IPP encoding structure. However, the computational complexity increases due to the
increase in the search space by 2. Also, the buffering need for GOP may constitute a problem
when the GOP size increases.

3.2.2 Encoding Structures on Multiview Streams

In H.264/MVC encoding, multiview streams are used and the inter-view redundancy is ex-
ploited by referencing one of the views to the other. The main concepts of the encoding
structures does not change but there are additions to them.

IPP Simplified

IPP Simplified encoding structure is used to simply utilize the redundancy between left and
right views (in stereo case) by taking left view as a reference to the right view on the anchor
frame, or I-frame, only. By doing so, the large size of the right frame’s I-frame is reduced to
a smaller value of a P-frame. An example of the IPP Simplified encoding structure can be
seen in Figure 3.10

Figure 3.10: IPP Simplified Encoding Structure with GOP Size of 8 and with Three Views

IPP Full

In IPP Full encoding structure, both anchor and non-anchor (non-I-frame) frames are used
to reference the other view. In this encoding structure, the stream size of referencing view
becomes smaller due to the inter-view redundancy increases the search space. An example
of the IPP Full encoding structure can be seen in Figure 3.11.

Hierarchical

The hierarchical encoding structure uses only the inter-view redundancy for only anchor
frames on both views. As a consequence, all frames in the GOP are connected to each other

23



Figure 3.11: IPP Full Encoding Structure with GOP Size of 8 and with Three Views

due to the symmetric characteristics of the hierarchical encoding structure. The non-anchor
frames are also referenced by the non-anchor frames of the other view in an indirect manner.
An example of the hierarchical encoding structure in multiview encoding can be seen in
Figure 3.12.

Figure 3.12: Hierarchical Encoding Structure with GOP Size of 8 and with Two Views

3.3 Experimental Setup

In order to find the most efficient encoding structure, there are two experiments conducted
covering various 3D video compression methods and the performances of different encoding
structures. The first experiment aims to compare three several stereo video encoding meth-
ods in terms of the encoding concepts. The second experiment aims to find an encoding
method by looking the relation between the encoding methods and the encoding times of
different encoding structures.

As it is mentioned, the main goal of the first experiment is to find an encoding method for
the 3D video compression problem. For that purpose, a test set of video sequences has been
chosen among the Mobile 3DTV WP1 outputs. The test set includes three different stereo
video with depth. Properties of these videos are explained below.

For the experimental setup, the following encoding structures are chosen with respect to the
video test set properties:

• H.264/MVC

• H.264/AVC Stereo SEI Message

• Video plus Depth Coding

The experiments are conducted on a desktop PC with Intel R© CoreTM i3-540 CPU (4 MB

24



Cache, 3.07 GHz), 2 GB DDRRAM, 32-bit Windows 7 OS and 180 GB HDD. The encod-
ing and decoding is performed using JMVC 8.5. The configuration files and the necessary
modifications are indicated in Appendix A. In this experiment, YUV color space is used
as it is the most commonly used color space in the video encoding community. For the
color subsampling of the videos, YUV4:2:0 is used, again one of the most common YUV
subsampling methods in video processing [87].

HeidelbergAlleysR
Resolution 432x240
Frame Rate 25 fps
Video Format Raw, YUV4:2:0
3D Format Left, Right
Content Outdoor, city life, scene cuts, moderate object movement,

moderate camera movement, high details, natural lighting,
complex depth structures [74]. A frame is shown in Figure
3.13.

Creator Dongleware. - http://www.dongleware.de/

Figure 3.13: A Snapshot from HeidelbergAlleysR Video Sequence

KnightsQuest
Resolution 432x240
Frame Rate 30 fps
Video Format Raw, YUV4:2:0
3D Format Left, Right
Content Computer animated film trailer, action, adventure, reasonable

plot, multiple scene cuts and blends, various types of object
motion, moderate to strong camera movement [74]. A frame
is shown in Figure 3.14.

Creator Red Star Studios. - http://www.redstarstudio.co.uk/

25



Figure 3.14: A Snapshot from KnightsQuest Video Sequence

RhineValleysMovingR
Resolution 432x240
Frame Rate 25 fps
Video Format Raw, YUV4:2:0
3D Format Left, Right
Content Nature, documentary, transportation, sports, outdoor, mod-

erate and high camera and object movement, multiple scene
cuts, various perspectives inclusive aerial views, high details,
various depth complexities [74]. A frame is shown in Figure
3.15.

Creator Cinovent. - http://www.cinovent.de/

Figure 3.15: A Snapshot from RhineValleysMovingR Video Sequence

3.4 Experimental Results

In this experiment, several 3D video encoding methods have been tested. In every 3D video
compression methods, different encoding structures were tested. Each of these structures
create a different bitstream. The main reason of the differences among these encoding struc-
tures is the different processing technique of each encoding structure.

In order to analyze the experimental results, first, we need to define the terminology used.
A rate distortion (RD) curve is drawn by finding the bitrate and quality, or distortion, terms
of each video stream. Bitrate is defined as the total bits over total seconds as it is shown in
Equation 3.1.

Bitrate =
Total bits of data stream

Total frames
×Frames per second (3.1)

26



The distortion term, on the other hand, is defined as the logarithm of the ratio of peak signal
to noise. The noise term is taken as Mean Squared Error (MSE).

MSE =
1

m ·n
·

m−1

∑
i=0
×

n−1

∑
j=0

[I(i, j)−K(i, j)]2 (3.2)

where the I is the original image, K is the distorted image, m and n are the sizes

PSNR = 10 · log10(
MAX2

I

MSE
) = 20 · log(

MAXI√
MSE

) (3.3)

The experimental results can be analyzed under the following three items:

• Multiview Video Coding

– IPP Simplified

– IPP Full

– Hierarchical with GOP=8

– Hierarchical with GOP=16

• Side-by-Side (SbS)

– IPP

– Hierarchical with GOP=8

– Hierarchical with GOP=16

• Video plus Depth

– IPP

– Hierarchical with GOP=8

– Hierarchical with GOP=16

In order to see the variation among different encoding structures, first, we should compare
the results of all the encoding structures. For simplicity, result of only one channel is shown
in each figure. This channel is mostly Y channel of the YUV color space. However, there
are instances that Y channel does not show the realistic results and is subject to change due
to some errors caused by encoding process or the video content. In those cases, V channel
is shown instead of Y channel.

The figures numbered from 3.16 to 3.24 are the results of Multiview Video Coding (H.264/MVC)
encoding method. In those figures, both left and right view and the overall quality computed
by averaging PSNR values of left and right views are shown. In the figures numbered from
3.25 to 3.27, the results of H.264/AVC Stereo SEI message encoding method with side-by-
side frame-packing type can be seen. Figures numbered from 3.28 to 3.30 are the results for
Video plus Depth coding method.

27



Figure 3.16: Y-PSNR vs Bitrate curves of Multiview Video Coding method for Heidelber-
gAlleysR sequence, Overall

Figure 3.17: Y-PSNR vs Bitrate curves of Multiview Video Coding method for Heidelber-
gAlleysR sequence, Left view

28



Figure 3.18: Y-PSNR vs Bitrate curves of Multiview Video Coding method for Heidelber-
gAlleysR sequence, Right view

Figure 3.19: Y-PSNR vs Bitrate curves of Multiview Video Coding method for KnightsQuest
sequence, Overall

29



Figure 3.20: Y-PSNR vs Bitrate curves of Multiview Video Coding method for KnightsQuest
sequence, Left view

Figure 3.21: Y-PSNR vs Bitrate curves of Multiview Video Coding method for KnightsQuest
sequence, Right view

30



Figure 3.22: Y-PSNR vs Bitrate curves of Multiview Video Coding method for RhineVal-
leysMovingR sequence, Overall

Figure 3.23: Y-PSNR vs Bitrate curves of Multiview Video Coding method for RhineVal-
leysMovingR sequence, Left view

31



Figure 3.24: Y-PSNR vs Bitrate curves of Multiview Video Coding method for RhineVal-
leysMovingR sequence, Right view

Figure 3.25: Y-PSNR vs Bitrate curves of H.264/AVC Stereo SEI message with side-by-side
frame-packing method for HeidelbergAlleysR sequence

32



Figure 3.26: Y-PSNR vs Bitrate curves of H.264/AVC Stereo SEI message with side-by-side
frame-packing method for KnightsQuest sequence

Figure 3.27: Y-PSNR vs Bitrate curves of H.264/AVC Stereo SEI message with side-by-side
frame-packing method for RhineValleysMovingR sequence

33



Figure 3.28: V-PSNR vs Bitrate curves of Video plus Depth method for HeidelbergAlleysR
sequence

Figure 3.29: V-PSNR vs Bitrate curves of Video plus Depth method for KnightsQuest se-
quence

34



Figure 3.30: V-PSNR vs Bitrate curves of Video plus Depth method for RhineValleysMov-
ingR sequence

35



3.4.1 Analysis of the Experimental Results

The overall RD curves for each video sequence with respect to the encoding structures are
shown below in Figures 3.31 to 3.33. As it can be seen from the figures, video plus depth
coding results have lower PSNR values than the other methods. Both this and being com-
putationally complex on the receiver side, video plus depth coding method is not favorable.
In order to find the most efficient coding method for mobile receivers, we need to consider
also computational complexity. In order to measure that, the encoding times are presented
in Tables 3.1-3.3.

By looking at the encoding times, we can say that the H.264/AVC Stereo SEI message
method with side-by-side frame-packing is the simplest way of encoding. But that statement
is not correct for the hierarchical structures. While side-by-side complexity is nearly equal as
the MVC complexity in Hierarchical 8 GOP mode, the side-by-side method is more complex
in Hierarchical 16 GOP mode than the MVC structure. The encoding complexity of the
video plus depth is between MVC and SbS in every encoding structure. However, there is
also a decoding and rendering complexity for video plus depth and it is not shown in these
tables.

Considering these results, both side-by-side and MVC methods are more suitable for a sys-
tem in which the receiver is mobile. Hence, these two methods were tested on an embedded
transmitter system.

Figure 3.31: V-PSNR vs Bitrate curves of all encoding structures for HeidelbergAlleysR
sequence, with real data

36



Figure 3.32: V-PSNR vs Bitrate curves of all encoding structures for KnightsQuest se-
quence, with real data

Figure 3.33: V-PSNR vs Bitrate curves of all encoding structures for RhineValleysMovingR
sequence, with real data

37



Table 3.1: Encoding times of encoding structures for HeidelbergAlleysR sequence

Encoding times of HiedelbergAlleysR sequence (s)

QP
MVC Side-by-side Video+Depth

IPP Sp IPP Fl Hier8 Hier16 IPP Hier8 Hier16 IPP Hier8 Hier16
26 369.29 584.60 2402.89 2451.70 342.43 2402.54 2873.43 346.53 2222.63 2672.89
27 366.23 576.74 2389.30 2442.01 340.46 2390.09 2856.28 338.02 2203.50 2657.08
28 363.26 572.22 2374.86 2426.99 339.53 2379.12 2837.91 333.34 2185.17 2630.65
29 360.85 566.26 2363.92 2422.85 334.43 2366.48 2837.94 330.85 2172.16 2621.35
30 359.00 560.46 2359.35 2405.78 331.99 2355.96 2812.13 326.59 2164.63 2598.12
31 354.30 553.17 2340.53 2390.66 332.43 2339.07 2793.94 323.36 2149.39 2579.49
32 352.33 548.14 2329.86 2383.25 327.63 2326.80 2782.91 319.41 2138.17 2572.16
33 349.49 541.38 2324.68 2374.30 327.52 2323.77 2775.14 317.28 2131.42 2562.12
34 347.09 535.68 2310.79 2360.78 323.28 2309.84 2759.31 313.94 2120.55 2546.08
35 345.34 528.58 2303.31 2350.54 324.75 2299.61 2743.36 310.40 2112.59 2536.44
36 342.06 524.67 2285.06 2335.28 319.54 2283.86 2734.56 308.77 2099.26 2523.09

Table 3.2: Encoding times of encoding structures for KnightQuest sequence

Encoding times of KnightQuest sequence (s)

QP
MVC Side-by-side Video+Depth

IPP Sp IPP Fl Hier8 Hier16 IPP Hier8 Hier16 IPP Hier8 Hier16
26 408.79 664.99 2636.90 2748.96 390.97 2664.27 3168.85 398.39 2471.22 2978.43
27 405.98 657.56 2625.42 2721.57 385.06 2642.61 3137.78 384.23 2448.95 2946.37
28 403.33 647.64 2599.01 2699.42 381.89 2611.90 3103.02 374.72 2421.68 2914.13
29 400.21 639.07 2573.22 2666.25 379.22 2585.93 3072.86 371.66 2395.69 2881.48
30 396.14 630.24 2551.15 2636.12 376.76 2562.69 3040.71 367.97 2374.23 2851.97
31 394.25 623.15 2522.02 2607.41 371.74 2534.54 3005.13 362.70 2346.11 2818.88
32 390.46 614.59 2501.51 2581.83 369.90 2514.08 2976.42 357.56 2325.16 2792.34
33 386.52 604.53 2475.83 2551.93 364.12 2493.03 2945.09 352.88 2301.73 2765.91
34 383.46 595.24 2451.58 2521.08 361.49 2472.56 2913.71 349.71 2281.36 2736.58
35 380.06 599.48 2427.09 2488.35 359.40 2448.43 2880.43 347.85 2259.29 2709.00
36 377.78 587.17 2397.12 2460.89 354.01 2416.52 2846.51 342.06 2235.46 2683.03

Table 3.3: Encoding times of encoding structures for RhineValleysMovingR sequence

Encoding times of RhineValleysMovingR sequence (s)

QP
MVC Side-by-side Video+Depth

IPP Sp IPP Fl Hier8 Hier16 IPP Hier8 Hier16 IPP Hier8 Hier16
26 421.81 714.98 2806.01 2924.11 393.55 2842.46 3375.58 418.61 2574.77 3084.25
27 418.98 703.63 2771.89 2883.48 390.00 2812.06 3323.08 409.49 2531.95 3033.41
28 412.67 692.84 2731.34 2839.20 387.99 2772.19 3265.93 399.88 2488.87 2983.61
29 408.59 681.36 2691.68 2797.66 381.79 2732.51 3226.03 390.69 2451.79 2941.72
30 403.78 671.79 2654.85 2752.35 378.07 2691.16 3168.81 384.16 2416.09 2895.98
31 401.15 661.69 2610.76 2703.15 375.67 2649.94 3112.89 377.02 2379.69 2850.48
32 396.89 649.03 2571.38 2660.37 369.98 2606.67 3066.12 367.18 2346.25 2817.99
33 392.96 634.86 2533.54 2618.80 369.22 2572.13 3017.20 361.80 2313.10 2778.59
34 389.05 624.70 2497.42 2572.05 362.90 2531.13 2966.43 354.27 2287.58 2741.97
35 385.86 611.17 2458.27 2525.94 359.71 2492.73 2917.32 351.05 2258.00 2706.38
36 382.64 600.33 2424.33 2484.67 357.55 2449.41 2870.24 346.70 2228.78 2670.56

38



Figure 3.34: SSIM vs Bitrate curves of Side-by-Side encoding structure for HeidelbergAl-
leysR sequence

Figure 3.35: SSIM vs Bitrate curves of Side-by-Side encoding structure for KnightsQuest
sequencea

39



Figure 3.36: SSIM vs Bitrate curves of Side-by-Side encoding structure for RhineVal-
leysMovingR sequence

Despite the fact that the measurement of quality is made in terms of PSNR, also different
quality measures can be used to find rate distortion curves. In Figures 3.34-3.36, the SSIM
(Structural Similarity Index) vs Bitrate for only Side-by-Side encoding method is shown in
order for a comparison between the PSNR and SSIM quality measurement metrics. Both the
PSNR and SSIM agree on the results of different encoding methods even though SSIM does
not agree with PSNR in many different occasions.

Considering the figures, some implications about the performances of the encoding methods
can be made. First of all, Video plus Depth encoding method gives the worst PSNR value.
Even though the solid change in the PSNR value is caused by the rendering issues, the
given quality values renders the V+D encoding unsuitable. When compared, the results of
MVC and Side-by-Side/AVC encoding methods are very similar, and they change with the
encoding structure mostly. The encoding times of both MVC and SbS/AVC give very similar
results also. Even though the MVC and SbS/AVC methods give similar results, MVC needs
a special encoder and decoder in order to handle the compression and decompression tasks
whereas the SbS/AVC encoding complies with the previous encoders/decoders and does not
need a specialized software.

By considering both the encoding performance as the rate of compression and the encoding
times, the MVC and SbS/AVC encoding methods give good results. However, regarding the
MVC needs specialized software, Side-by-Side gains an advantage on the applicability to
the systems with plain H.264 decoder.

40



3.5 Experimental Setup on BeagleBoard-xM

This experiment is prepared to analyze the performance of the embedded transmitter system
under different encoding structures. For that, the side-by-side frame-packing representation
method is chosen due to its easiness and popularity among the commercial multimedia de-
vice producers. MVC is not included in this experiment since currently there is not any
MVC encoder/decoders in Linux, which is the operating system of Beagleboard.

In this experiment, BeagleBoard-xM is used as the transmitter embedded program. The
BeagleBoard-xM has an ARM and DSP core DM 3730 System on Chip processor. Full
list of specifications can be found in Appendix B. The proposed system is based on 1-GHz
ARM R© CortexTM-A8 processor and 512 MB DDRRAM. In the experiment, an open source
video encoder based on H.264/AVC encoding, "x264", is used. x264 is created by Videolan
organization and it is integrated within the open source streamer and media player VLC
Media Player, which is also created by Videolan organization. The encoding properties and
variables can be seen in the sample command below.

$ x264 --profile main --keyint 8 --bframes 0 --qp 26 --frame 752 --psnr --me
dia --subme 1 --no-chroma-me --merange 32 --ref 4 --deblock 0:0 --weightp 0
--no-weightb --no-cabac --no-progress --output [outputFile] [inputFile]
[resolution]

3.5.1 Experimental Results on BeagleBoard-xM

The results of the experiment on BeagleBoard-xM is given in Figures 3.37 - 3.39. Timing
results of this experiment is given in Table 3.4. For the case of bitrates, performance of
x264 is lower. However, there is not much difference in the quality side. When the timings
are compared, the Hierarchical with 8 GOP performs nearly as good as IPP. Hence, the
Hierarchical encoding structure could be chosen instead of IPP.

Table 3.4: Encoding times of SbS encoding structures for all sequences. TET indicates
"Total Encoding Time", and FpS indicates number of frames encoded per second

Encoding times for Side-by-side encoding method on x264 on BeagleBoard-xM (s)

QP
HeidelbergAllesyR KnightsQuest RhineValleysR

IPP Hier8 IPP Hier8 IPP Hier8
TET FpS TET FpS TET FpS TET FpS TET FpS TET FpS

26 62.73 12.04 60.02 12.50 70.19 10.75 84.21 8.92 119.11 6.32 117.39 6.41
27 58.30 12.82 58.56 12.82 73.42 10.20 76.41 9.80 121.23 6.21 116.43 6.45
28 56.53 13.33 56.71 13.33 67.29 11.23 85.83 8.77 113.89 6.62 116.78 6.45
29 56.74 13.33 51.62 14.49 70.72 10.63 86.75 8.69 115.06 6.53 116.00 6.49
30 53.63 14.08 59.30 12.65 71.81 10.52 86.80 8.69 115.23 6.53 114.03 6.57
31 51.98 14.49 53.75 14.08 76.18 9.90 87.65 8.54 114.04 6.57 135.05 5.55
32 52.60 14.28 55.15 13.69 69.19 10.86 87.57 8.62 115.37 6.53 131.58 5.71
33 49.99 15.15 51.48 14.70 79.58 9.43 85.45 8.77 109.82 6.84 126.75 5.91
34 51.11 14.70 53.29 14.08 69.22 10.86 88.38 8.47 109.93 6.84 130.71 5.74
35 48.00 15.62 53.00 14.28 79.36 9.43 90.41 8.33 108.65 6.94 118.43 6.36
36 47.33 15.87 52.63 14.28 71.27 10.52 88.45 8.47 97.82 7.69 103.72 7.24

41



Figure 3.37: Y-PSNR vs Bitrate curves of Side-by-Side encoding structures for Heidelber-
gAlleysR sequence, with JMVC data for comparison

Figure 3.38: Y-PSNR vs Bitrate curves of Side-by-Side encoding structures for Kinght-
sQuest sequence, with JMVC data for comparison

42



Figure 3.39: Y-PSNR vs Bitrate curves of Side-by-Side encoding structures for RhineVal-
leysMovingR sequence, with JMVC data for comparison

By looking the experimental results of the BeagleBoard-xM, the hierarchical encoding struc-
ture is chosen as the encoding structure of the H.264/AVC Simulcast with Stereo SEI Mes-
sage with Side-by-Side frame representation due to both the bitrate advantage and the small
encoding time difference compared to the IPP encoding structure.

43



44



CHAPTER 4

VIDEO STREAMING

Video transmission is an important problem in multimedia systems. In an end-to-end system,
the weakest link decides the video quality, and the transmission step is the most vulnerable
step of an end-to-end system due to the losses or physical damages. There are different
video transmission methods used throughout this century. The most basic video transmission
method is transmitting video in solid media such as electromagnetic films and optical devices
such as VCD or DVD. The other basic transmission method is broadcasting the video. In
this method, primarily analog video data is multiplexed onto electromagnetic waves by using
different AM or FM techniques. Digital video broadcasting methods are comparably new,
and they use different digital multiplexing strategies to deliver digital media. Beside these
methods, the internet video streaming systems are used on the packet switched network. All
of these video transmission methods can be separated as streaming, such as broadcasts, and
non-streaming. In this thesis, non-streaming transmission methods are out of scope.

In this chapter, different video streaming methods will be discussed and compared in order
to find a suitable video streaming method for the proposed system. These video streaming
methods include digital television broadcast methods and different video streaming methods
based on different network protocols.

4.1 Methods for Video Streaming

Video streaming can be in different types and on different physical or logical layers. When
it is looked to the video streaming, the most known example, TV, used analog transmission
for decades. The analog transmission is based on signal modulation, and this transmis-
sion uses different landlines and air as its media. Different standards are generated such
as PAL, NTSC, and SECAM throughout the world. AM or FM modulation was used for
TV broadcasting, FM being the most common. After 1990s [88, 18], digital broadcast-
ing techniques began to emerge. The digital broadcasting systems use digital transmission
techniques. The most commonly used technique is the digital electromagnetic wave modu-
lation method which has different modulation types such as Quadrature Phase-Shift Keying
(QPSK), Quadrature Amplitude Modulation (QAM) and Orthogonal Frequency Division
Multiplexing (OFDM).

With the increase in both the digital video creation and the number of digital video trans-
mission methods, the Internet became also a major component in the digital video streaming
topic. The Internet can be accessed by many people using different methods of connections

45



such as dial-up connections, Digital Subscriber Line (DSL) applications, and Cable trans-
mission. The packet-switching structure of the internet enabled a robust video transmission
system. Also, different techniques such as Video on Demand (VoD) applications made it
possible to access videos anytime regardless of broadcast times.

Digital video streaming can be divided into two main topics; the digital broadcast and the
Internet-based streaming methods. The digital broadcast methods were developed by asso-
ciations formed by government-based institutions and private companies at the beginning of
the 1990s in different parts of the world. These methods include Advanced Television Sys-
tems Committee (ATSC) in USA, Digital Video Broadcasting (DVB) in Europe, Integrated
Services Digital Broadcasting (ISDB) in Japan, Digital Terrestrial Multimedia Broadcast
(DTMB) in China and Digital Multimedia Broadcasting (DMB) in South Korea.

Most digital television systems use the same or very near frequency interval; however, they
use different digital signal modulation methods such as OFDM, QAM, and QPSK. There
are Internet Protocol (IP) compliant digital television standards such as DVB-IPTV. These
digital television standards also include mobile transmission standards named as ATSC/M-
H, DVB-H and DMB. These transmission methods are used in several applications, and
these applications are discussed in Chapter 5.

4.2 Methods for Video Streaming over the Internet

Digitally stored video can be transmitted over the Internet in several ways. The compressed
or raw video should be packetized into small network units and these small units must be
reconstructed at the end of the transmission line. In order to reconstruct the packetized
and transmitted video network units, a special software or programming needed. For these
purposes there are different methods. The main difference between these methods is the way
of the client to communicate the server, also known as communication protocol. There are
different network protocols in both the application level and transport level that differs the
video streaming methods over the Internet.

4.2.1 Network Protocols

In order to understand the streaming protocols, one must know the network interface struc-
ture. The network is designed to work in different layers, and this layered structure helps
both applications to work in a network friendly way and different applications to commu-
nicate each other easily. There are different simplifications on the layers of the network.
However, the most accepted one is the TCP/IP Network Model or 5-layer reference model
[83]. This model consists of 5 different network layers, namely application layer, trans-
port layer, internet layer, link layer (or data-link layer) and physical layer. The most known
examples for these layers are Hypertext Transport Protocol (HTTP) for application layer,
Transmission Control Protocol (TCP) for transport layer, Internet Protocol (IP) for internet
layer, Address Resolution Protocol (ARP) for link layer and Ethernet with twisted pair cable
for physical layer.

The transmission of data in layered structure works as following as it is shown in Figure 4.1.
The big data or message of the application is prepared by the application protocol and passed

46



Ethernet Physical Media Ethernet

Application

Transport

Internet

Link

Internet

Link

Internet

Link

Application

Transport

Internet

Link

First PC Second PCRouter 1 Router 2

Figure 4.1: Network Topology and the Data Flow Structure between Two Devices

to the transport protocol. Transport protocol finds the required network devices and handles
the network as adding its header and managing a seamless transport channel between two
devices and passes the packet to the internet layer. Internet layer handles the routing of the
packet and connectivity to other devices such as routers as adding its own header. The link
layer manages packet transmission between devices connected to the same local network
and handles the crosstalk among these devices.

Different network protocols offer different services and there are different video stream-
ing methods. These methods can be counted as UDP, TCP, RTP, RTSP, HTTP and DASH.
All these video streaming methods are based on the Internet Protocol (IP). There are also
different protocols which are used in different systems such as Internet Group Manage-
ment Protocol (IGMP) on the Internet level used for IPTV applications [99], and Scalable
Trasmission Control Protocol (STCP) and Even-to-Sink Reliable Transport (ESRT) used for
wireless sensor networks [52]. However, these systems are not very useful for the mobile
transmission problems.

There are different aspects of video streaming such as the target audience size, the channel
being static or dynamic, video stream being real-time or pre-recorded, and the connection
type being packet-switched or circuit-switched network. The target audience size decides
whether the system is needed to be whether unicast, multicast, or broadcast. Being static
or dynamic channel changes the type of connection from constant bitrate to variable bi-
trate. Real-time of prerecorded video property alters the streaming priorities and changes
the streaming type as well as the connection type. All these aspects add different special
requirements to the video streaming problem. These requirements are discussed in Section
4.3.

47



4.2.2 User Datagram Protocol (UDP)

User Datagram Protocol is a transport layer network protocol. It is stateless, unidirectional
and easy to implement. However, UDP does not guarantee the delivery of the packet to the
receiver side as it is unidirectional. These properties of UDP makes is favorable for simple
network assignments which does not require the exact delivery and also needed to be fast.
These characteristics of the UDP makes it an advantageous broadcast protocol for different
applications and especially real-time multimedia delivery.

The UDP Unicast was the most popular real-time multimedia delivery protocol for a long
time [6, 34]. UDP is even used as transport layer network protocol for different Peer to
Peer (P2P) streaming systems[69]. Also, it created a base for other multimedia streaming
protocols. However, UDP does not have any feedback mechanisms. Hence, advantageous
mechanisms such as flow control and congestion control are not included in UDP streaming.

4.2.3 Transport Control Protocol (TCP)

Transport Control Protocol is also a transport layer network protocol. Different from UDP,
TCP supports several additional utilities which makes TCP a safe protocol; however, vulner-
able to delay due to its unbounded retransmission time. These utilities are:

• Guarantee of the packet delivery

• Flow control and congestion control

• Feedback channel coming from the receiver

Due to the advantages of the TCP against UDP, TCP is used in Video on Demand (VoD) ap-
plications dominantly where the general quality is more important than the real-time trans-
mission.

In early works, TCP was thought not to be the best network protocol to implement in real-
time multimedia delivery problems due to the change in temporal conditions caused by flow
and congestion control and the unbound retransmission time [34, 46, 82]. On the other
hand, Kuschnig et al. stated that "TCP provides satisfactory performance" in 2010. The
developments in the high bandwidth internet connections, introduced delay of TCP has less
importance than the advantages of the TCP [39, 8, 65].

4.2.4 Real-Time Transport Protocol (RTP)

Real-Time Transport Protocol is an application layer network protocol which is created for
the transmission of especially audio and video files. RTP is created by Audio Video Trans-
port Working Group of Internet Engineering Task Force (IETF). The specifications of the
protocol is given in several Request for Comments (RFC) [67, 26]. RTP is designed as a
protocol to cover the multimedia transmission process in an end-to-end manner.

RTP is a commonly used streaming protocol. Mostly, UDP is utilized under RTP [1, 44,
98]. RTP/UDP/IP, or RTP/UDP, system is able to create a multicast streaming due to the

48



unidirectional structure of the UDP [47]. In this configuration, the advantages of TCP such
as flow control, congestion control and feedback channel cannot be used. In order to decrease
this shortcoming, there are some implementations of TCP-friendly UDP methods [1]. TCP
can also be used under RTP; however, that is not a commonly applied method.

RTP Control Protocol (RTCP) is used to control the status of the transmisson and carry
feedback information in order to find the Quality of Service (QoS) parameters and synchro-
nization of the multiple streams. Mostly RTCP and RTP are used together in order to control
the streaming process [1, 6, 90].

4.2.5 Real-Time Streaming Protocol (RTSP)

Real-Time Streaming Protocol is an application layer network protocol which is created
for real-time multimedia streaming and session handling between transmitter and receiver.
RTSP is a protocol for managing and controlling the streaming process. RTSP does not
involve in transmission itself. Most of the RTSP implementations utilize RTP and RTCP for
streaming purposes. RTSP starts a session with the client and maintains this session, or state,
to the end of the streaming process. Besides, RTSP also offers different functions such as
PLAY, PAUSE, SEEK, and RECORD [6]. RTSP is used in different systems such as IPTV
applications and real-time video transmission for remote controlling of a wheeled system
[34, 44, 77].

4.2.6 Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol is an application layer network protocol that is used to transmit
different kinds of information. HTTP is a commonly used network protocol and it is created
by IETF [24]. HTTP is mostly used in request-response management for different applica-
tions such as browsing the web and connecting the servers to request to download the web
pages. Even though UDP can also be used, HTTP often uses TCP transport protocol.

In previous studies, HTTP is not mentioned even in a detailed comparisons among the video
streaming methods [6]. In the beginning, HTTP was used for progressive download of the
videos stored on the web. These videos can be decoded and watched while downloading the
rest of the content. However, HTTP was not capable of live video streaming [34]. Today,
HTTP is the current trend in most of the streaming, especially web streaming, applications
[8].

The video streaming on HTTP is similar to the structure of RTSP. HTTP only handles the
request and response messages and the transmission is carried out by TCP. The main differ-
ence between HTTP and RTSP is that server keeps state information of the client in RTSP
whereas server does not keep states in HTTP, instead, the client keeps its own state [78].

For the development of the Adaptive HTTP Streaming, different companies came out with
their standards. The most important and known adaptive HTTP streaming protocols are Ap-
ple’s HTTP Live Streaming (HLS), Microsoft’s Live Smooth Streaming (LSS), and Adobe’s
HTTP Dynamic Streaming (HDS) [8, 65]. These protocols work in a similar way. Each
of them stores encoded videos in their own formats and most importantly in different frag-
ments. These fragments are requested in parallel to the client’s computations in order to

49



...

Movie 1 - 200 Kbps

Movie 1 - 400 Kbps

Movie 1 - 1 Mbps

Movie 1 - 1.4 Mbps

...

...

Movie 2

...

...

Movie 1

Movie N

Multimedia Structure in Server

Fragments

Server Client

Request for Manifest

Manifest

Increasing
Bandwidth

Loss

Regain Bandwidth

Req for 200 kbps

400 kbps

800 kbps

400 kbps

800 kbps

Figure 4.2: An Example of Adaptive HTTP Streaming Client Process [8]

supply best view to the user. If there is a network congestion and not all of the packets are
arriving to the decoder buffer, the client’s adaptive HTTP streaming protocol requests for a
low bitrate fragment as it is shown in Figure 4.2.

MPEG community released a new HTTP adaptive streaming standard in April 2012 named
as MPEG Dynamic Adaptive Streaming over HTTP (DASH). The aim of development of
DASH is to create an international standard by using the acquired know-how of the adaptive
HTTP streaming [78]. Similar to HLS, the change in fragments or media segments are done
by the MPEG DASH client and the video bitrate changes seamlessly due to the structure of
the representations.

4.3 Analytical Comparison

Video streaming topic has different requirements for each different video streaming appli-
cation. In order to compare streaming protocols, these requirements have to be considered.
These factors can be described as follows:

• Audience size: Related to stream type, unicast, multicast, or broadcast

• Channel properties: Static bitrate channels can be handled by constant bitrate solu-
tion; while a dynamic bitrate channel needs adaptive bitrate

• Stream type: Real-time videos need to be transmitted by a network protocol different
than the pre-recorded videos

50



Table 4.1: Comparison of Different Packet based Video Streaming Protocols on the Internet

Multicast QoS support Adaptivity Real-Time VoD Descriptions for suitability
UDP X - - X - Doesn’t have a feedback channel
TCP - - - X X Works with RT videos with small delay
RTP X X - X -
RTSP X X X X -
HTTP - X X X X Works with RT videos with small delay, can

traverse firewalls

• QoS support: Whether the streaming protocol provides QoS support by sending pa-
rameters related to network and the receiver or not

Apart from these factors, a network protocol should be compared within the environmental
condition such as the bandwidth requirements or suitability to the targeted application.

Considering these factors, a comparison should be made between the Internet-based stream-
ing methods. All applications can work on real-time with a note that TCP and HTTP works
with more delay than the UDP/RTP counterparts, this is important. TCP and HTTP can not
multicast; however, this is not a big flaw in our desired system. UDP and TCP do not have
QoS support and do not have adaptivity possibilities like RTP. Only TCP and HTTP are
reliable when it comes to VoD support. However, this is not important in our desired system.

In proposed system, with respect to network behavior the most important aspects are the
trans-layer adaption abilities of stream packets in the network structure and the adaptivity
to the network congestion. Both of these factors are related to the mobility of the devices.
Receiver mobile device can connect to a high security connection while changing location.
In that case, the stream should not be interrupted. Hence, the system requires more flexible
stream packets. Similar to that, the receiver may suffer from mobile Internet connection cov-
erage issues or the connection of the mobile device can be highly congested for an interval
of time. In order to maintain the user satisfaction, the stream should continue.

Regarding these aspects, HTTP streaming can be a good candidate for the desired end-to-
end system. However, the delays introduced by TCP can be thought-provoking. According
to recent works, the TCP delays do not introduce a worthwhile load to the system thanks to
the increased bandwidth and advanced network structures [39, 8].

Because the system does not utilize any 3D or stereo based approach in the transmission step,
the required network structure is as the same as other networking structures for ordinary data.
The importance of the network structure in a full-chain mobile streaming system lies on the
adaptivity and the flexibility as mentioned above.

By looking at the given information, HTTP based video streaming looks much more suitable
for the desired end-to-end real time mobile system due to its flexibility in different firewall
and NAT structures and adaptivity against changing bandwidth conditions.

51



52



CHAPTER 5

REAL TIME STEREO-VIDEO STREAMING

Real Time Live Stereo-Video Streaming is an active research area. Both stereo video stream-
ing and real time video streaming are not new technologies. Nevertheless, development
of displaying technologies and increasing bandwidth of the Internet connection with the
recent improvements on network physical layers such as fiber-optics and wireless technolo-
gies change the course of 3D transmission and displaying technologies. In this chapter, the
proposed real time stereo-video streaming system is explained.

5.1 Related Work

There are different works on real time video streaming and live video streaming in the lit-
erature. These works mostly use encoding systems based on the state-of-the-art encod-
ing standard H.264/AVC. As transmission protocol for these video streaming systems, RT-
P/RTCP/UDP/IP, DVB-H, UDP Unicast, and HTTP protocols are used. As displaying
method, autostereoscopic 3D displays are the mostly used displays. In addition to that,
3D displays with glasses and projection based displays are also used.

5.1.1 3DTV and Mobile 3DTV Projects

3DTV and Mobile 3DTV projects were supported by European Union Framework Pro-
grammes for Research and Technological Development. 3DTV is a project which aims
to coordinate and integrate the 3D research among the researchers in Europe [59]. It is a
6th Framework (FP6) project and a new conference named 3DTV-Con is started by the par-
ticipants of this project. Most of the researches done on 3DTV project created a basis for
studies on 3D technologies and various new projects such as Mobile 3DTV project.

Mobile 3DTV was a project about the end-to-end whole system chain from creation of 3D
content to the delivery to mobile devices and is an EU 7th Framework project. A new mobile
autostereoscopic 3D display and the whole end-to-end streaming chain has been designed
and produced as the outcome of this project. Mobile 3DTV project consists of different
work areas such as stereo video content creation and coding, error resilient transmission, vi-
sual quality optimization, portable terminal device development, and execution of subjective
quality tests [53].

There are two works which can be counted as end-to-end systems in these projects. Gotchev

53



et al. presented an end-to-end-system which utilizes H.264 simulcast encoding side-by-side
image representation, RTP based transmission on DVB-H standard and autostereoscopic 3D
display with OMAP 3430 based displaying system [30]. Bici et al. proposed an encoding
and transmission system based on H.264/AVC simulcast and MVC encoding with both same
bitrate and same quality, and RT based transmission on DVB-H [10]. This work does not
propose any displaying system, nonetheless, appropriate 3D displaying systems can be used
to complete the full chain.

Both of these projects were focused on the broadcast of the 3D content instead of unicast or
multicast of the created streams. Encoding methods employed in both projects are mainly
based on H.264/AVC and H.264/MVC. Streaming is based on RTP/RTCP and as the physical
layer DVB-H is used. As displaying systems, different 3D displaying systems are used
such as polarized projectors, autostereoscopic, volumetric and holographic displays. With
these contributions, these projects cover some of the motivational reasons as mobile system.
However, they are using a digital frequency modulation based broadcast method which can
be disadvantageous for long distances and not very easy to implement on the transmitter side
as they need special equipments for streaming.

5.1.2 Internet based Real-Time 3D Streaming

Other than broadcast based 3DTV studies, there are different works based on streaming over
the Internet. These works differ in many ways. The acquisition is generally made by either
stereo cameras or camera arrays [68, 49]. Aksay et al. and Willner et al. use H.264/AVC
and H.264/MVC based encoding algorithms [4, 97], whereas others use different custom
encoding methods [68, 100]. For the transmission part, different methods are used such as
RTP/UDP/IP, HTTP, and UDP unicast [68, 40, 4, 100].

As end-to-end systems, two systems step forward. Aksay et al. has proposed an end-to-end
3D video straming system which uses stereo modified H.264/AVC method for encoding, RT-
P/UDP/IP structure for streaming and different 3D display systems such as autostereoscopic
3D, polarized projection and monocular displaying methods [4, 60]. As another study of an
end-to-end system, Lamboray et al. created a system with point based image representa-
tions of the acquired image and a different method of encoding of point cloud data structure
based on an MPEG frame structure. The streaming of the encoded point cloud bitstreams are
carried out by a custom communication framework based on RTP/RTCP streaming method,
and decoded points clouds are stored as JPEG images [40]. These systems offers solutions
to some of motivational reasons as internet based streamer. Nevertheless, implementation of
these systems are not carried out on the mobile systems, and the communication protocols
they use may require a specialized network structure with some permissions. Hence, the
implementation of these systems on portable platforms may be troublesome.

5.2 System Overview

The proposed system includes different components such as capture of 3D stereo video,
processing, compression, transmission, streaming and display parts as it is shown in Figure
5.1. This end-to-end system consists of many parts and they have to be analyzed in different
sections. The following section analyze each part of this end-to-end system and gives the

54



Capture Binary
Encoding Transmission Decoding &

Correction Display

Figure 5.1: System Overview

analysis of experimental results or comparison if there is any. Most of these parts are located
in the transmitter part whereas some of them are on the receiver side. Quality perception
issues at the user-end are also discussed in this chapter.

5.3 Transmitter Side

In most of the video transmission systems, the main workload is on the transmitter/server
side. The capture of stereo video, processing, compression, transmission and streaming
stages of this end-to-end system are completed in the transmitter side. There are different
software packages for this transmitter side in which all the aspects are included. In this
thesis, all of these aspects are analyzed part by part and are realized by using different open-
source based codes.

5.3.1 Hardware

In the transmitter stage, a low power mobile device is used. In order to utilize an embedded
device, several embedded devices are researched. Different embedded platforms are appro-
priate for embedded multimedia streaming such as BeagleBoard, BeagleBoard-xM, Panda
Board, Rapsberry Pi. The transmitter is chosen as a BeagleBoard-xM which has a 1-GHz
ARM R© CortexTM-A8 processor and a 800 MHz C64x DSP core. In this system, only ARM
core of the card is utilized in order to show the ability to be implemented on other embedded
devices without hardware codecs. BeagleBoard-xM has 512 MB DDRRAM and Ubuntu
12.04 LTS for ARM is installed on the device as operating system. A snapshot of the board
can be seen in Figure 5.2. A detailed explanation of the trasmitter platform is given in
Appendix B.

This embedded platform has different auxiliary units in order to help the whole process.
These units have different purposes. For input and output devices, a mouse, keyboard and
an LCD screen is used. For capturing images, two USB web-cameras are used, and the
placement of these cameras is arranged as in the stereo pair formation which simulates the
horizontal separation between human eyes. Also, both cameras are arranged to simulate the
human eyes.

5.3.2 Capture and Processing

Capturing of the images is conducted by utilizing two USB web-cameras. By connecting
the USB cameras to the BeagleBoard-xM via the USB ports, cameras can be used for image
capture process. In order to capture images, a C++ code is written based on Video for Linux
(v4l) library of the Linux operating system. This program drives both cameras and takes

55



Figure 5.2: A Picture of the BeagleBoard-xM from Top

the images in YUV4:2:0 sampling structure. In order to use this program, the following
command should be entered to the console.

$ ./luv -s 2 -c 100000

After the acquisition of the frames, both frames are stitched together in side-by-side forma-
tion. The code snippet which is used for both capturing and processing the obtained frames
is given in Appendix B.

5.3.3 Compression

In order to lower the bitrate and send more information over the Internet, the acquired video
frames must be compressed. After the stitching, the frames are merged into one frame and
the resulting frame is compressed by using the H.264/AVC Stereo SEI Message encoding
method. This method is chosen for the delivery, because there are not any open-source
multiview MVC encoding and decoding software on the receiver side device which uses
Android OS.

The main purpose is to use an efficient and back-compatible compression standard. The
H.264/AVC is a commonly used video compression standard. For H.264/AVC there are
many open-source encoders and decoders on both transmitter and receiver platforms. The
compression is done using the x264 module of the VLC Media Player. The parameters used
in encoding is taken from the experimental results as they are discussed in the Section 3.5.
These parameters are given in the x264 CLI command which is provided in the same section
and repeated here for reader’s convenience:

$ x264 --profile main --keyint 8 --bframes 0 --qp 26 --frame 752 --psnr --me

56



dia --subme 1 --no-chroma-me --merange 32 --ref 4 --deblock 0:0 --weightp 0
--no-weightb --no-cabac --no-progress --output [outputFile] [inputFile]
[resolution]

In order to set the compression options following parameters are used:

• Profile: Profile gives the information to the encoder about the tool-chain and the
parameter range to be used in the encoding process. The main profile has been chosen
in the compression part due to its utilization of B-frames (Bi-predictive pictures).

• Keyint: Keyint parameter sets the maximum number of frames before an Instanta-
neous Decoder Refresh (IDR) frame (or I-frame). IDR frames restart the referencing
structure of the encoder by resetting the buffer used for referencing.

• Bframes: Bframes parameter gives the maximum number of B-frame occurrences.
This number is chosen equal to keyint for a full hierarchical encoding structure and is
chosen zero for an IPP encoding structure.

• Quantization Parameter: Quantization parameter sets the frequency, and also im-
plicitly the levels of quantization, of the quantization of the resulting DCT coefficients.
The higher this parameter becomes, the higher the resulting frame bitrate decreases.

• Me, Merange and Subme: These three parameters are for choosing the motion esti-
mation method, range and the subpixel estimation complexity. In order to increase the
bitrate, these values are optimized and set for the most time-efficient values.

In the transmitter side, the cvlc is used for encoding which uses an x264 encoder plug-in.
The input is acquired by piping the previous step’s output as in YUV 4:2:0 format. The
encoding parameters are entered as they are given in x264. Resulting command for the
console is given:

$ ./luv -s 2 -c 100000 | cvlc - -vvv --demux rawvideo --rawvid fps 10
--rawvid-width 320 --rawvid-height 120 --rawvid-chroma i420 --sout
’#transcode{vcodec=h264,acodec=none,vb=300,venc=x264{profile=main,
keyint=8, bframes=8, qp=26, b-adapt=0, bpyramid, no-cabac,no-weightb,
ref=3} ,width=320, height=120, fps=10, ab=5, deinterlace}’

5.3.4 Streaming

As discussed in Chapter 4, there are different video streaming methods in the literature.
However, the most effective one is to use packet-switched Internet streaming in a wireless
channel medium for a mobile transmitter platform. HTTP video streaming on the TCP
transport channel is utilized in the video streaming part due to different advantages such as
the active communication channel for feedback and the adaptive transmission characteristics.

In order to stream the compressed video, VLC Media Player, an open-source software dis-
tributed by Videolan community [94], is used as streaming server. The parameters of the
streaming are as follows:

57



" ... :http{mux=ffmpeg{mux=flv},dst=:8080/} "

After that addition to the cvlc command, the final form of the required command which will
be entered to the console becomes as follows:

$ ./luv -s 2 -c 100000 | cvlc - -vvv --demux rawvideo --rawvid fps 10
--rawvid-width 320 --rawvid-height 120 --rawvid-chroma i420 --sout
’#transcode{vcodec=h264,acodec=none,vb=300,venc=x264{profile=main,
keyint=8, bframes=8, qp=26, b-adapt=0, bpyramid, no-cabac,no-weightb,
ref=3} ,width=320, height=120, fps=10, ab=5, deinterlace}:http{mux=
ffmpeg{mux=flv},dst=:8080/}’

For that, the RTSP, RTP and HTTP video streaming protocols are compared in a full chain
test. The most convenient video streaming protocol is determined as HTTP. There are dif-
ferent reasons for that such as keeping an active TCP connection between the devices in
order to understand the transmission network characteristics. These characteristics are very
important for analyzing the channel behavior and the perceived video quality level can be es-
timated by using the network characteristics. By reaching the network parameters, the video
streaming can become an adaptive process and the whole system obtains more efficient state.

5.4 Receiver Side

In a mobile real-time stereo video streaming system, the receiver needs to be an efficient,
powerful and mobile device. A device running Android OS with high processing capabili-
ties is used on the receiver side. HTC Evo 3D smart-phone, the mobile receiver platform,
has different processing capabilities such as the 1.2 GHz Snapdragon S3 Dual Core, 1 GB
RAM, 4 GB eMMC storage, Qualcomm Adreno 220 GPU and switchable autostereoscopic
display utilizing parallax barrier. Different sensors such as accelerometer, gyroscope, dig-
ital compass, proximity sensor, and ambient light detector that can aid the user experience
and media delivery methods also exist on the receiver platform. More detailed explanations
are given in Appendix C. The autostereoscopic screen of HTC Evo 3D allows 3D content
delivery from a light, mobile and powerful device to the end-users with high quality.

5.4.1 Rendering and Display

In order to deliver the 3D content to the user, some rendering of the acquired special video
stream has to be conducted. HTC Evo 3D is able to render stored compatible video files with
the frame-packing information on metadata SEI is set as one of the side-by-side, top-bottom,
or interlaced. However, those videos must be stored either on the SD card of the smart-phone
or on the temporary memory in a progressive download from a distant stored location. There
is not any stereo media player capable of 3D rendering for live streaming videos. In order to
complete the system chain, the rendering of the acquired stream must be done. For that, an
open-source media player, VLC Media Player for Android, has been modified and installed
on the receiver platform.

58



For the rendering part, HTC Open Sense SDK has been utilized for its Stereoscopic 3D API
[33]. In order to utilize the rendering by using the Stereoscopic API, the following steps
must be done on the given order:

• A new project should be started or imported on any Android development environment

• The JAR library of the HTC Open Sense SDK must be imported into the Android
project

• A code snippet with enableS3D(true, holder.getSurface()) should be added in the
source code (see Appendix D for detailed explanations)

• The project should be compiled and installed on the device

After the modification on the VLC Media Player for Android, the player works for only
given (i.e. Side-by-Side) picture format and converts any frame into 3D assuming its frame-
packing format is side-by-side. Hence, receiver device HTC Evo 3D starts rendering upon
start and the parallax barrier between the LCD and the observer is activated.

5.4.2 Perceived Quality

For any video transmission and video streaming application, the perceived video quality is an
important factor. However, there is not any way for any computer to calculate the perceived
quality by a human observer. The quality perception is a very subjective issue and it depends
on the content, the artifacts of the stream, visual quantitative parameters, different attributes
of the observer such as the age, gender, socio-economical differences, previous experiences
and even mood.

The quantitative parameters can be experimented and an estimation can be made depending
on these numerical values. There are different methods to estimate the quality depending on
the measurable parameters of the video stream chain, also called Quality of Service (QoS)
[62]. However, other parameters introduce a great amount of uncertainty on the quality due
to its natural structure of user-centric experience. This different quality estimation works
are called as Quality of Experience (QoE) as the main goal of these studies to find a relation
between the quality score and the human experience. There are different studies on QoS -
QoE mapping [35, 57, 81, 75]; however, this area is still open to the research.

In addition to the end-to-end real time video streaming chain design, the quality perception
issues are another focus of research beside this thesis work. Within the Multimedia Research
Group of Middle East Technical University, there is a study on perceived quality which
exploits different quantitative parameters in order to estimate the QoE carried out [102].
This study utilizes the HVS response to the moving frames and the network losses by taking
the zero-motion vector ratio to bitrate and maps the obtained scores to a function according to
the network losses by considering the training results. This work can estimate the perceived
quality similar to the human observers’ perception, and can be implemented on this end-to-
end system after the addition of the depth perception criteria as a future work.

59



Figure 5.3: Entering the Path to the Transmitted Stream

5.5 General Operation of the Proposed System

The proposed end-to-end system consists of different parts such as the capture, processing,
compression, transmission, and display. Being mobile on both transmitter and receiver sides,
the system has a great advantage in portable applications. System requires a power source
with 5V and 750 mA and an additional power need for input/output equipments, mainly
for display. Both transmitter and receiver needs internet connection from a wireless access
point.

The general operation of this system is as follows. The image acquisition and transmitting
starts with the following command after the BeagleBoard-xM has plugged and the operating
system has been started:

$ ifconfig # This is required to find out the IP address
$ ./luv -s 2 -c 100000 | cvlc - -vvv --demux rawvideo --rawvid fps 10
--rawvid-width 320 --rawvid-height 120 --rawvid-chroma i420 --sout
’#transcode{vcodec=h264,acodec=none,vb=300,venc=x264{profile=main,
keyint=8, bframes=8, qp=26, b-adapt=0, bpyramid, no-cabac,no-weightb,
ref=3} ,width=320, height=120, fps=10, ab=5, deinterlace}:http{mux=
ffmpeg{mux=flv},dst=:8080/}’

After finding the IP address and starting the streaming, the stream can be accessed by fol-
lowing the connection of http://<IPaddressFound>:8080/. The path of connection should
be entered into the receiver device media player as it is shown in Figure 5.3. After entering
path to the receiver media player, the stream starts to play after a brief time of establishing
connection and buffering. The tests showed that the connection continues to stream and play
more than 15 minutes in the trial conducted in the Multimedia Research Group Laboratory
in Middle East Technical University on wireless internet connection (IEEE 108.11b/g/n) on
both devices.

60



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

Throughout this thesis, various parts of an end-to-end multimedia streaming system has
been analyzed and discussed. These parts can be named as capture, encoding, transmis-
sion, display, and user satisfaction. Each different aspect of the system requires distinctive
knowledge of computer engineering and signal processing topics.

In 3D multimedia systems, capturing the scene and representing the rendered image is a del-
icate issue. For the minimal disturbance to the human eyes, the human 3D depth perception
is discussed and the differences between several 3D image representation techniques and
displaying methods have been visited.

There are different 3D encoding methods proposed in the literature. Multimedia encoding
by using an embedded low power device can be problematic due to the inferior computing
power of embedded platform. In order to find the most efficient encoding method, experi-
ments are conducted on both a desktop computer and a mobile platform.

Transmission of the encoded bitstream is the most vulnerable part of an end-to-end video
streaming system. In order to make this step credible, several transmission methods are
analyzed and compared in terms of the ability to multicast, stream real time video, adapt to
network conditions, and supply QoS parameters.

On the displaying part, an open-source Android software on the receiver platform is modified
for the autostereoscopic display of the 3D content to the human observer. In this part, quality
perception is an important concept for the 3D perception. Even though the quality estimation
is not implemented in this work, a study towards a 3D video quality estimation algorithm
has began.

6.2 Conclusions and Future Works

In this thesis, a real time stereo-video streaming system from embedded platforms to mobile
devices has been proposed. After analyzing various sides of an end-to-end video stream-
ing system, the results showed that each side has different needs for different conditions.
When utilizing an embedded and portable system as transmitter, the need for an efficient
and low cost encoding algorithm becomes a very important issue. The experimental results

61



showed that the hierarchical encoding structure of H.264/MVC and hierarchical encoding
structure of H.264/AVC Simulcast with side-by-side image representation methods have the
best quality for the minimum bitrate. The encoding process becomes the weakest link when
it is looked at the efficiency and complexity trade-off. In order to find the optimum point of
this trade-off, sub-optimal solutions are used for efficiency.

After comparing several streaming protocols, the RTSP and HTTP proved to be the two
commonly used adaptive streaming protocols. RTSP is developed solely for multimedia
streaming purposes. On the other hand, HTTP streaming can traverse through the whole ex-
isting nodes of the Internet, can by-pass NAT and firewalls. In addition to these advantages,
adaptive HTTP streaming is commonly used by many others as a result of decreasing the
importance of TCP delays and increasing applicability of the TCP back-channel structure.

Compared to other related systems, the proposed system has three advantages: easy imple-
mentation, large coverage area by the utilization of the Internet, and portability. The system
can be implemented easily by acquiring a cheap hardware and installation. The wireless in-
ternet usage provides both portability and large coverage area compared to digital frequency
modulation based DVB-H systems.

There are some points that can be improved in the proposed system. Currently, the DSP core
of the BeagleBoard-xM is not utilized due to the the conceptual compliance of the system
with non-DSP embedded systems. In order to increase the performance of this system, the
hardware encoder can be utilized in the DSP core of the DM 3730 System on Chip on the
BeagleBoard-xM.

As indicated before, the perceived video quality by the end user is an important factor in all
multimedia streaming systems. Development of a fully functional 3D video quality estima-
tion metric can be a good direction for the future research.

62



REFERENCES

[1] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi. Adaptive packet video streaming
over IP networks: a cross-layer approach. Selected Areas in Communications, IEEE
Journal on, 23(2):385–401, 2005.

[2] G. Akar, A. Tekalp, C. Fehn, and M. Civanlar. Transport methods in 3DTV - a
survey. IEEE Transactions on Circuits and Systems for Video Technology (CSVT),
17(11):1622–1630, 2007.

[3] G. B. Akar, M. O. Bici, A. Aksay, A. Tikanmäki, and A. Gotchev. Mobile stereo
video broadcast. Mobile3DTV Project report, available online, 2008.

[4] A. Aksay, S. Pehlivan, E. Kurutepe, C. Bilen, T. Ozcelebi, G. B. Akar, M. R. Civanlar,
and A. M. Tekalp. End-to-end stereoscopic video streaming with content-adaptive
rate and format control. Signal Processing: Image Communication, 22(2):157–168,
2007.

[5] A. A. Alatan, Y. Yemez, U. Gudukbay, X. Zabulis, K. Muller, Ç. E. Erdem, C. Weigel,
and A. Smolic. Scene representation technologies for 3DTV—a survey. Circuits and
Systems for Video Technology, IEEE Transactions on, 17(11):1587–1605, 2007.

[6] J. G. Apostolopoulos, W.-t. Tan, and S. J. Wee. Video streaming: Concepts, algo-
rithms, and systems. HP Laboratories, report HPL-2002-260, 2002.

[7] t. BeagleBoard Community. BeagleBoard-xM. in beagleboard.org, http://
beagleboard.org/Products/BeagleBoard-xM, 2013. [Online; accessed 16-
August-2013].

[8] A. Begen, T. Akgul, and M. Baugher. Watching video over the web: Part 1: Streaming
protocols. Internet Computing, IEEE, 15(2):54–63, 2011.

[9] J. Belton. Digital 3D cinema: Digital cinema’s missing novelty phase. Film History:
An International Journal, 24(2):187–195, 2012.

[10] M. Bici, D. Bugdayci, G. Akar, and A. Gotchev. Mobile 3D video broadcast. In IEEE
International Conference on Image Processing (ICIP), pages 2397–2400, 2010.

[11] A. Boev, M. Poikela, A. Gotchev, and A. Aksay. Modelling of the stereoscopic HVS.
Technical report, Mobile3DTV Project, 2009.

[12] M. F. Bradshaw and B. J. Rogers. The interaction of binocular disparity and motion
parallax in the computation of depth. Vision Research, 36(21):3457–3468, 1996.

63

http://beagleboard.org/Products/BeagleBoard-xM
http://beagleboard.org/Products/BeagleBoard-xM


[13] D. Brewster. The stereoscope: Its history, theory and construction. 1856.

[14] H. Brust, A. Smolic, K. Mueller, G. Tech, and T. Wiegand. Mixed resolution coding
of stereoscopic video for mobile devices. In 3DTV Conference: The True Vision-
Capture, Transmission and Display of 3D Video, 2009, pages 1–4. IEEE, 2009.

[15] D. Bugdayci. Stereo video broadcasting over DVB-H. Master’s thesis, Middle East
Technical University, 2012.

[16] C. Cigla and A. Alatan. An efficient hole filling for depth image based rendering.
In Multimedia and Expo Workshops (ICMEW), IEEE International Conference on,
2013.

[17] G. Coley. BeagleBoard-xM Rev C2 system reference manual. in circiutco
and github, https://github.com/CircuitCo/BeagleBoard-xM-RevC2/blob/
master/Beagle_SRM_XM_C2_0_0.pdf?raw=true, October 2012. [Online; ac-
cessed 16-August-2013].

[18] D. Digital Video Broadcasting Project. About DVB.

[19] N. A. Dodgson. Autostereoscopic 3D displays. Computer, 38(8):31–36, 2005.

[20] I. Draft. Recommendation and final draft international standard of joint video speci-
fication (itu-t rec. h. 264| iso/iec 14496-10 avc). Joint Video Team (JVT) of ISO/IEC
MPEG and ITU-T VCEG, JVTG050, 2003.

[21] T. ETSI. TR 102 377 v1. 4.1 “implementation guidelines for DVB handheld ser-
vices”. MOBILE3DTV Project.

[22] G. E. Favalora. Volumetric 3D displays and application infrastructure. Computer,
38(8):37–44, 2005.

[23] C. Fehn. 3D TV Broadcasting, pages 23–38. John Wiley & Sons, Ltd, 2006.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol–HTTP/1.1. in IETF, http://tools.ietf.org/
html/rfc2616, 1999. [Online; accessed 14-August-2013].

[25] K. Fliegel. Advances in 3D imaging systems: Are you ready to buy a new 3D TV set?
In International Conference on Radioelektronika (RADIOELEKTRONIKA), pages 1–
6, 2010.

[26] R. Frederick and V. Jacobson. RFC 3550 - RTP: A transport protocol for real-time
applications, 2003.

[27] Google. The mobile movement: Understanding smartphone users. in Think Insights,
http://www.google.com/think/research-studies/the-mobile-movement.
html, April 2011. [Online; accessed 12-August-2013].

64

https://github.com/CircuitCo/BeagleBoard-xM-RevC2/blob/master/Beagle_SRM_XM_C2_0_0.pdf?raw=true
https://github.com/CircuitCo/BeagleBoard-xM-RevC2/blob/master/Beagle_SRM_XM_C2_0_0.pdf?raw=true
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.google.com/think/research-studies/the-mobile-movement.html
http://www.google.com/think/research-studies/the-mobile-movement.html


[28] A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev. Three-dimensional media
for mobile devices. Proceedings of the IEEE, 99(4):708–741, 2011.

[29] A. Gotchev, S. Stankovic, D. Strohmeier, D. Bugdayci, G. Bozdagi, H. Akar, and
N. Vladimirov. Complete end-to-end 3DTV system over DVB-H. MOBILE3DTV
Project.

[30] A. Gotchev, A. Tikanmaki, A. Boev, K. Egiazarian, I. Pushkarov, and N. Daskalov.
Mobile 3DTV technology demonstrator based on OMAP 3430. In International Con-
ference on Digital Signal Processing (DSP), pages 1–6, 2009.

[31] N. S. Holliman. 3d display systems. In J. P. Dakin and R. G. W. Brown, editors,
Handbook of Optoelectronics. IOP Press, 2006.

[32] I. HTC. HTC EVO 3D’niz, kullanım kılavuzu. in htc.com, http://dl4.htc.com/
web_materials/Manual/HTC_EVO3D/HTC_EVO_3D_ICS_User_Guide_TRK.pdf.
[Online; accessed 20-August-2013].

[33] C. HTC Developers. OpenSense SDK. in htcdev, https://www.htcdev.com/
devcenter/opensense-sdk, 2013. [Online; accessed 20-August-2013].

[34] J. Hunter, V. Witana, and M. Antoniades. A review of video streaming over the
internet. White paper http: // www. dstc. edu. au/ RDU/ staff/ jane-hunter/
video-streaming. html , 1997.

[35] K. Iwata, Y. Ishibashi, N. Fukushima, and S. Sugawara. QoE assessment in haptic
media, sound, and video transmission: Effect of playout buffering control. Computers
in Entertainment (CIE), 8(2):12, 2010.

[36] K. Johansson, J. Bergman, D. Gerstenberger, M. Blomgren, and A. Wallen. Multi-
carrier HSPA evolution. In IEEE Vehicular Technology Conference, pages 1–5, 2009.

[37] A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec. Rendering for an inter-
active 360 light field display. In ACM Transactions on Graphics (TOG), volume 26,
page 40. ACM, 2007.

[38] T. Kawai. 3D displays and applications. Displays, 23(1–2):49 – 56, 2002.

[39] R. Kuschnig, I. Kofler, and H. Hellwagner. An evaluation of TCP-based rate-control
algorithms for adaptive internet streaming of H. 264/SVC. In Proceedings of the
first annual ACM SIGMM conference on Multimedia systems, pages 157–168. ACM,
2010.

[40] E. Lamboray, S. Wurmlin, and M. Gross. Real-time streaming of point-based 3D
video. In Virtual Reality, 2004. Proceedings. IEEE, pages 91–281. IEEE, 2004.

[41] J. Y. Lee, H.-C. Wey, and D.-S. Park. A fast and efficient multi-view depth image
coding method based on temporal and inter-view correlations of texture images. Cir-
cuits and Systems for Video Technology, IEEE Transactions on, 21(12):1859–1868,
2011.

65

http://dl4.htc.com/web_materials/Manual/HTC_EVO3D/HTC_EVO_3D_ICS_User_Guide_TRK.pdf
http://dl4.htc.com/web_materials/Manual/HTC_EVO3D/HTC_EVO_3D_ICS_User_Guide_TRK.pdf
https://www.htcdev.com/devcenter/opensense-sdk
https://www.htcdev.com/devcenter/opensense-sdk
http://www. dstc. edu. au/RDU/staff/jane-hunter/video-streaming. html
http://www. dstc. edu. au/RDU/staff/jane-hunter/video-streaming. html


[42] S. Lee, S. Lee, B. Oh, K.-J. Oh, I. Lim, J. Y. Lee, and C. Kim. 3d video format
and compression methods for efficient multiview video transfer. In Consumer Com-
munications and Networking Conference (CCNC), 2012 IEEE, pages 10–14. IEEE,
2012.

[43] Y. Liu, S. Ci, H. Tang, and Y. Ye. Application-adapted mobile 3D video coding and
streaming—a survey. 3D Research, 3(1):1–6, 2012.

[44] M. Luby, T. Stockhammer, and M. Watson. IPTV systems, standards and architec-
tures: Part ii-application layer FEC in IPTV services. Communications Magazine,
IEEE, 46(5):94–101, 2008.

[45] K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda. Electro-holographic
display using 15mega pixels LCD, 1996.

[46] A. Majumda, D. G. Sachs, I. V. Kozintsev, K. Ramchandran, and M. M. Yeung. Multi-
cast and unicast real-time video streaming over wireless LANs. Circuits and Systems
for Video Technology, IEEE Transactions on, 12(6):524–534, 2002.

[47] S. Mao, S. Lin, Y. Wang, S. S. Panwar, and Y. Li. Multipath video transport over ad
hoc networks. Wireless Communications, IEEE, 12(4):42–49, 2005.

[48] Y. Mao, G. Cheung, A. Ortega, and Y. Ji. Expansion hole filling in depth-image-
based rendering using graph-based interpolation. In Acoustics, Speech and Signal
Processing, IEEE International Conference on, Vancouver, Canada.

[49] W. Matusik and H. Pfister. 3D TV: a scalable system for real-time acquisition, trans-
mission, and autostereoscopic display of dynamic scenes. ACM Transactions on
Graphics (TOG), 23(3):814–824, 2004.

[50] P. Merkle, H. Brust, K. Dix, K. Muller, and T. Wiegand. Stereo video compression
for mobile 3D services. In 3DTV Conference: The True Vision-Capture, Transmission
and Display of 3D Video, 2009, pages 1–4. IEEE, 2009.

[51] P. Merkle, A. Smolic, K. Muller, and T. Wiegand. Multi-view video plus depth rep-
resentation and coding. In Image Processing, 2007. ICIP 2007. IEEE International
Conference on, volume 1, pages I–201. IEEE, 2007.

[52] S. Misra, M. Reisslein, and G. Xue. A survey of multimedia streaming in wireless
sensor networks. Communications Surveys & Tutorials, IEEE, 10(4):18–39, 2008.

[53] Mobile3DTV. Mobile 3DTV content delivery optimization over DVB-H system, first
public summary. Mobile3DTV Project summary, available online, April 2009.

[54] Mobile3DTV. Mobile 3DTV content delivery optimization over DVB-H system, final
public summary. Mobile3DTV Project summary, available online, March 2011.

66



[55] K. Müller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Laksh-
man, P. Merkle, H. Rhee, et al. 3D high efficiency video coding for multi-view video
and depth data. 2013.

[56] M. Nawrot. Depth from motion parallax scales with eye movement gain. Journal of
Vision, 3(11), 2003.

[57] T. Nunome and S. Tasaka. QoE enhancement of audio-video IP transmission in cross-
layer designed ad hoc networks.

[58] S. Ohtsuka and S. Saida. Depth perception from motion parallax in the peripheral
vision. In Robot and Human Communication, 1994. RO-MAN’94 Nagoya, Proceed-
ings., 3rd IEEE International Workshop on, pages 72–77. IEEE, 1994.

[59] L. Onural, T. Sikora, J. Ostermann, A. Smolic, M. R. Civanlar, and J. Watson. An
assessment of 3DTV technologies. In NAB Broadcast Engineering Conference, pages
456–467, 2006.

[60] S. Pehlivan, A. Aksay, C. Bilen, G. B. Akar, and M. R. Civanlar. End-to-end stereo-
scopic video streaming system. In Multimedia and Expo, 2006 IEEE International
Conference on, pages 2169–2172. IEEE, 2006.

[61] Philips. 3D interface specifications. in Philips.com, http://www.
business-sites.philips.com/shared/assets/global/Downloadablefile/
Philips-3D-Interface-White-Paper-13725.pdf, February 2008. [Online;
accessed 20-August-2013].

[62] I. Rec. G. 805,". Generic functional architecture of transport networks, 2000.

[63] S. Reichelt, R. Häussler, G. Fütterer, and N. Leister. Depth cues in human visual per-
ception and their realization in 3d displays. In SPIE Defense, Security, and Sensing,
pages 76900B–76900B. International Society for Optics and Photonics, 2010.

[64] T. Replay. freed free dimensional video.

[65] L. Rubio Romero. A dynamic adaptive HTTP streaming video service for google
android. Master’s thesis, KTH, 2011.

[66] O. Schreer, P. Kauff, and T. Sikora. 3D videocommunication. Wiley Online Library,
2005.

[67] H. Schulzrinne. RFC 1889 - RTP: A transport protocol for real-time applications,
1996.

[68] S. Shi, W. J. Jeon, K. Nahrstedt, and R. H. Campbell. Real-time remote rendering of
3D video for mobile devices. In Proceedings of the 17th ACM international confer-
ence on Multimedia, pages 391–400. ACM, 2009.

67

http://www.business-sites.philips.com/shared/assets/global/Downloadablefile/Philips-3D-Interface-White-Paper-13725.pdf
http://www.business-sites.philips.com/shared/assets/global/Downloadablefile/Philips-3D-Interface-White-Paper-13725.pdf
http://www.business-sites.philips.com/shared/assets/global/Downloadablefile/Philips-3D-Interface-White-Paper-13725.pdf


[69] T. Silverston and O. Fourmaux. P2P IPTV measurement: a comparison study. arXiv
preprint cs/0610133, 2006.

[70] A. Smith. Smartphone ownership – 2013 update. in PewResearchCen-
ter, http://www.pewinternet.org/~/media/Files/Reports/2013/PIP_
Smartphone_adoption_2013.pdf, June 2013. [Online; accessed 15-August-
2013].

[71] A. Smolic, K. Mueller, P. Merkle, P. Kauff, and T. Wiegand. An overview of avail-
able and emerging 3D video formats and depth enhanced stereo as efficient generic
solution. In Picture Coding Symposium, 2009. PCS 2009, pages 1–4. IEEE, 2009.

[72] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G. Akar, G. Tri-
antafyllidis, and A. Koz. Coding algorithms for 3DTV: A survey. Circuits and Sys-
tems for Video Technology, IEEE Transactions on, 17(11):1606–1621, 2007.

[73] A. Smolic, K. Muller, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. Intermediate view
interpolation based on multiview video plus depth for advanced 3D video systems. In
Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pages
2448–2451. IEEE, 2008.

[74] A. Smolic, G. Tech, and H. Brust. Report on generation of stereo video data base.
Technical report, Mobile3DTV technical report, 2010.

[75] D. Soldani. Bridging QoE and QoS for mobile broadband networks. In ETSI work-
shop on QoS, QoE and User Experience focusing on speech, multimedia conference
tools, 2010.

[76] L. Stelmach, W. J. Tam, D. Meegan, and A. Vincent. Stereo image quality: effects of
mixed spatio-temporal resolution. Circuits and Systems for Video Technology, IEEE
Transactions on, 10(2):188–193, 2000.

[77] A. J. Stienstra. Technologies for DVB services on the internet. Proceedings of the
IEEE, 94(1):228–236, 2006.

[78] T. Stockhammer. Dynamic adaptive streaming over HTTP–: standards and design
principles. In Proceedings of the second annual ACM conference on Multimedia
systems, pages 133–144. ACM, 2011.

[79] A. Sullivan. Depthcube solid-state 3D volumetric display. In Electronic Imaging
2004, pages 279–284. International Society for Optics and Photonics, 2004.

[80] G. J. Sullivan. Standards-based approaches to 3D and multiview video coding. In
SPIE Optical Engineering+ Applications, pages 74430Q–74430Q. International So-
ciety for Optics and Photonics, 2009.

[81] T. Suzuki, T. Kutsuna, and S. Tasaka. QoE estimation from MAC-level QoS in audio-
video transmission with IEEE 802.11 e EDCA. In Personal, Indoor and Mobile Radio

68

http://www.pewinternet.org/~/media/Files/Reports/2013/PIP_Smartphone_adoption_2013.pdf
http://www.pewinternet.org/~/media/Files/Reports/2013/PIP_Smartphone_adoption_2013.pdf


Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, pages
1–6. IEEE, 2008.

[82] W.-T. Tan and A. Zakhor. Real-time internet video using error resilient scalable com-
pression and TCP-friendly transport protocol. Multimedia, IEEE Transactions on,
1(2):172–186, 1999.

[83] A. S. Tanenbaum and D. J. Wetherall. Computer networks. Pearson Higher Ed, 2012.

[84] M. Tanimoto, M. Tehrani, T. Fujii, and T. Yendo. Free-viewpoint TV. IEEE Signal
Processing Magazine, 28(1):67–76, 2011.

[85] G. Tech, H. Brust, K. Müller, A. Aksay, and D. Bugdayci. Development and opti-
mization of coding algorithms for mobile 3DTV. Technical report, Tech. Rep, 2009.

[86] G. Tech, A. Smolic, H. Brust, P. Merkle, K. Dix, Y. Wang, K. Muller, and T. Wie-
gand. Optimization and comparision of coding algorithms for mobile 3DTV. In
3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video,
2009, pages 1–4. IEEE, 2009.

[87] A. M. Tekalp and A. M. Tekalp. Digital video processing, volume 1. Prentice Hall
PTR Upper Saddle river, NJ, 1995.

[88] I. The Advanced Television Systems Committee. About ATSC. in atsc.org, http://
www.atsc.org/cms/index.php/component/content/article/195, May 2012.
[Online; accessed 10-August-2013].

[89] A. Tikanmaki, A. Gotchev, A. Smolic, and K. Miller. Quality assessment of 3D video
in rate allocation experiments. In Consumer Electronics, ISCE. IEEE International
Symposium on, 2008.

[90] B. Vandalore, W.-c. Feng, R. Jain, and S. Fahmy. A survey of application layer
techniques for adaptive streaming of multimedia. Real-Time Imaging, 7(3):221–235,
2001.

[91] A. Vetro. Frame compatible formats for 3D video distribution. In Image Processing
(ICIP), 2010 17th IEEE International Conference on, pages 2405–2408. IEEE, 2010.

[92] A. Vetro. Representation and coding formats for stereo and multiview video. In
Intelligent Multimedia Communication: Techniques and Applications, pages 51–73.
Springer, 2010.

[93] A. Vetro, A. M. Tourapis, K. Muller, and T. Chen. 3D-TV content storage and trans-
mission. Broadcasting, IEEE Transactions on, 57(2):384–394, 2011.

[94] Videolan. VLC media player. in Videolan, http://www.videolan.org/vlc/
index.html, 2013. [Online; accessed 16-August-2013].

[95] B. A. Wandell. Foundations of vision. 1995.

69

http://www.atsc.org/cms/index.php/component/content/article/195
http://www.atsc.org/cms/index.php/component/content/article/195
http://www.videolan.org/vlc/index.html
http://www.videolan.org/vlc/index.html


[96] Y. Wang, J. Ostermann, and Y.-Q. Zhang. Video processing and communications,
volume 5. Prentice Hall Upper Saddle River, 2002.

[97] K. Willner, K. Ugur, M. Salmimaa, A. Hallapuro, and J. Lainema. Mobile 3D video
using MVC and N800 internet tablet. In 3DTV Conference: The True Vision-Capture,
Transmission and Display of 3D Video, 2008, pages 69–72. IEEE, 2008.

[98] D. Wu, Y. T. Hou, W. Zhu, H.-J. Lee, T. Chiang, and Y.-Q. Zhang. On end-to-end
transport architecture for MPEG-4 video streaming over the internet. IEEE Trans on
Circuits and Systems for Video Technology, 10(6):923–941, 2000.

[99] Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani. Internet protocol television (IPTV):
the killer application for the next-generation internet. Communications Magazine,
IEEE, 45(11):126–134, 2007.

[100] B. Xin, R. Wang, Z. Wang, W. Wang, C. Gu, Q. Zheng, and W. Gao. AVS 3D video
streaming system over internet. In Signal Processing, Communication and Comput-
ing (ICSPCC), 2012 IEEE International Conference on, pages 286–289. IEEE, 2012.

[101] T. Yendo, T. Fujii, M. Tanimoto, and M. Panahpour Tehrani. The seelinder: Cylin-
drical 3D display viewable from 360 degrees. Journal of visual communication and
image representation, 21(5):586–594, 2010.

[102] E. Zerman, G. Akar, B. Konuk, and G. Nur. Spatiotemporal no-reference video qual-
ity assessment model on distortions based on encoding. In Signal Processing and
Communications Applications Conference (SIU), 2013 21st, pages 1–4, 2013.

70



APPENDIX A

JOINT MULTIVIEW VIDEO CODING (JMVC) REFERENCE
SOFTWARE

Joint Multiview Video Coding (JMVC) reference software is a primary multiview video
encoder developed by the Fraunhofer Heinrich Hertz Institute HHI in Berlin, and is a com-
monly used H.264/MVC reference software in 3D Multimedia researches. The most basic
difference of the H.264/MVC from the H.264/AVC is the utilization of inter-view redundan-
cies. This software is an implementation of the most capable H.264/MVC encoder developed
for testing purposes of the video encoding standard H.264/MPEG-4 AVC version 11. Hence,
there are several different preferences which result in the encoding structure change.

In order to download this software, a CVS client, such as WinCVS in Windows OS, should
be installed. Then, the CVS access parameters shown in table A.1 should be entered. This
operation could be completed also by entering the following commands to the command
line.

> cvs –d :pserver:jvtuser:jvt.Amd.2@garcon.ient.rwth-aachen.de:/cvs/jvt login
> cvs –d :pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt checkout jmvc

Downloaded software is needed to be built first. For that purpose, Microsoft Visual Studio
project files are present in the main folder. Opening the project file and choosing "Build All"
will create executable files in <jmvc-folder>\bin folder. These files include the encoder, de-
coder and bitstream assembler respectively:
H264AVCEncoderLibTestStatic, H264AVCDecoderLibTestStatic, and MVCBitStreamAssem-
blerStatic.

The JMVC software can be built on the Linux platforms as well. In order to build the

Table A.1: CVS Client Parameters for Downloading JMVC Software

authentication: pserver
host address: garcon.ient.rwth-aachen.de
path: /cvs/jvt
user name: jvtuser
password: jvt.Amd.2
module name: jmvc

71



reference software on Linux platforms, the following commands can be called:

$ cd JMVC/H264AVCExtension/build/linux
$ make

In order to use the encoder, config files are needed which includes the encoding parameters
and/or options. An example of the usage of both encoder and decoder can be shown as
following:

> H264AVCEncoderLibTestStatic.exe –vf <cfgFile> <view_id>
> H264AVCDecoderLibTestStatic <encodedBitStream> <outVid> <numOfViews>

The raw data obtained from the capture device (i.e. stereo or multiview camera) can be en-
coded as different video sequences. However, these videos should be encoded in an order
from left to right depending on the referencing order. This order is necessary to maintain in
order to exploit the inter-view redundancies. After the encoding MVCBitStreamAssembler-
Static executable have to be called in order to form the bitstream as time-multiplexed frame
structure (i.e. V1F1-V2F1-V3F1-V1F2-...). An example of the encoding and decoding pro-
cedure of the video sequence with 3 videos (left, center, right) can be shown as following:

> H264AVCEncoderLibTestStatic.exe –vf encode.cfg 0
> H264AVCEncoderLibTestStatic.exe –vf encode.cfg 1
> H264AVCEncoderLibTestStatic.exe –vf encode.cfg 2
> MVCBitStreamAssemblerStatic –vf assembler.cfg

... Transmission ...

> H264AVCDecoderLibTestStatic out.264 out.yuv 3

There are different parameters present in the config files. These parameters change the
main encoding variables such as input and output file names, the resolution of the raw data,
number of frames to be encoded; and coding related parameters such as quantization param-
eter, GOP size etc. The full explanations of all parameters are given on the Software Man-
ual of JMVC 8.3 which can be accessed from http://www.eee.metu.edu.tr/~zerman/
files/jmvcSoftwareManual.doc. Sample config files for encoding and assambling are
given below:

Config file for encoder:

# JMVC Configuration File in MVC mode

#====================== GENERAL ================================================
InputFile input # input file
OutputFile stream # bitstream file
ReconFile rec # reconstructed file
MotionFile motion # motion information file
SourceWidth 640 # input frame width
SourceHeight 480 # input frame height
FrameRate 25.0 # frame rate [Hz]

72

http://www.eee.metu.edu.tr/~zerman/files/jmvcSoftwareManual.doc
http://www.eee.metu.edu.tr/~zerman/files/jmvcSoftwareManual.doc


FramesToBeEncoded 250 # number of frames

#====================== CODING =================================================
SymbolMode 1 # 0=CAVLC, 1=CABAC
FRExt 1 # 8x8 transform (0:off, 1:on)
BasisQP 31 # Quantization parameters

#====================== INTERLACED ======================================
MbAff 0 # 0=frameMb, 1=MbAff
PAff 0 # 0=frame, 1=field, 2=frame/field

#====================== STRUCTURE ==============================================
GOPSize 12 # GOP Size (at maximum frame rate)
IntraPeriod 12 # Anchor Period
NumberReferenceFrames 2 # Number of reference pictures
InterPredPicsFirst 1 # 1 Inter Pics; 0 Inter-view Pics
DeltaLayer0Quant 0 # differential QP for layer 0
DeltaLayer1Quant 3 # differential QP for layer 1
DeltaLayer2Quant 4 # differential QP for layer 2
DeltaLayer3Quant 5 # differential QP for layer 3
DeltaLayer4Quant 6 # differential QP for layer 4
DeltaLayer5Quant 7 # differential QP for layer 5
PicOrderCntType 0 # Picture order count type (0 or 2)

#============================== MOTION SEARCH ==================================
SearchMode 4 # Search mode (0:BlockSearch, 4:FastSearch)
SearchFuncFullPel 3 # Search function full pel

# (0:SAD, 1:SSE, 2:HADAMARD, 3:SAD-YUV)
SearchFuncSubPel 2 # Search function sub pel

# (0:SAD, 1:SSE, 2:HADAMARD)
SearchRange 32 # Search range (Full Pel)
BiPredIter 4 # Max iterations for bi-pred search
IterSearchRange 8 # Search range for iterations (0: normal)

#============================== LOOP FILTER ====================================
LoopFilterDisable 0 # Loop filter idc (0: on, 1: off, 2:

# on except for slice boundaries)
LoopFilterAlphaC0Offset 0 # AlphaOffset(-6..+6): valid range
LoopFilterBetaOffset 0 # BetaOffset (-6..+6): valid range

#============================== WEIGHTED PREDICTION ============================
WeightedPrediction 0 # Weighting IP Slice (0:disable, 1:enable)
WeightedBiprediction 0 # Weighting B Slice (0:disable, 1:explicit,

2:implicit)

#============================== NESTING SEI MESSAGE =============================
NestingSEI 0 #(0: NestingSEI off, 1: NestingSEI on)
SnapShot 0 #(0: SnapShot off, 1: SnapShot on)
#========================== ACTIVE VIEW INFO SEI MESSAGE ========================
ActiveViewSEI 0 #(0: ActiveViewSEI off, 1: ActiveViewSEI on)
#===================== VIEW SCALABILITY INFOMATION SEI MESSAGE ==================
ViewScalInfoSEI 0 #(0: ViewScalSEI off, 1: ViewScalSEI on)

#===================== MULTIVIEW SCENE INFORMATION SEI MESSAGE ==================
MultiviewSceneInfoSEI 1 #(0: off, 1: on)
MaxDisparity 12
#==================MULTIVIEW ACQUISITION INFOMATION SEI MESSAGE ================
MultiviewAcquisitionInfoSEI 1 #(0: off, 1: on)
AcquisitionInfoFile Camera_ballroom.cfg

73



#=================== PARALLEL DECODING INFORMATION SEI Message ==================
PDISEIMessage 0 # PDI SEI message enable (0: disable, 1:enable)
PDIInitialDelayAnc 2 # PDI initial delay for anchor pictures
PDIInitialDelayNonAnc 2 # PDI initial delay for non-anchor pictures

#============== Level conformance checking of the DPB size ==============
DPBConformanceCheck 1 # (0: disable, 1: enable, 1:default)

NumViewsMinusOne 2 # (Number of view to be coded minus 1)
ViewOrder 0-2-1 # (Order in which view_ids are coded)

View_ID 0 # (view_id of a view 0 - 1024)
Fwd_NumAnchorRefs 0 # (number of list_0 references for anchor)
Bwd_NumAnchorRefs 0 # (number of list 1 references for anchor)
Fwd_NumNonAnchorRefs 0 # (number of list 1 references for non-anchor)
Bwd_NumNonAnchorRefs 0 # (number of list 1 references for non-anchor)

View_ID 1
Fwd_NumAnchorRefs 1
Bwd_NumAnchorRefs 1
Fwd_NumNonAnchorRefs 1
Bwd_NumNonAnchorRefs 1
Fwd_AnchorRefs 0 0
Bwd_AnchorRefs 0 2
Fwd_NonAnchorRefs 0 0
Bwd_NonAnchorRefs 0 2

View_ID 2
Fwd_NumAnchorRefs 1
Bwd_NumAnchorRefs 0
Fwd_NumNonAnchorRefs 0
Bwd_NumNonAnchorRefs 0
Fwd_AnchorRefs 0 0

NumLevelValuesSignalledMinus1 0

Level_IDC 1
NumApplicableOpsMinus1 0
ApplicableOpTemporalId 0 0
ApplicableOpNumTargetViewsMinus1 0 2
ApplicableOpNumViewsMinus1 0 2
ApplicableOpTargetViewId 0 0 0
ApplicableOpTargetViewId 0 1 2
ApplicableOpTargetViewId 0 2 1

Config file for assembler:

#====================== Assembler: View Encode order ==========================
OutputFile ballroom.264
NumberOfViews 8
InputFile0 stream_0.264
InputFile1 stream_2.264
InputFile2 stream_1.264
InputFile3 stream_4.264
InputFile4 stream_3.264
InputFile5 stream_6.264
InputFile6 stream_5.264

74



InputFile7 stream_7.264

75



76



APPENDIX B

TRANSMITTER PLATFORM: BEAGLEBOARD-XM

Transmitter platform in the proposed system is an open-source hardware which is promoted
by Texas Instruments (TI), DigiKey and Newark element14, named as BeagleBoard-xM [7].
BeagleBoard-xM is a low power embbedded device which has 1-GHz ARM R© CortexTM-A8
processor and 512 MB DDRRAM. DM 3730 System on Chip (SoC) Integrated Circuit (IC)
package also have a DSP core with C64x series of TI. These properties makes BeagleBoard-
xM a low-power computer. All of the hardware properties of BeagleBoard-xM is given on
table B.1

BeagleBoard-xM has the ability to run well known operating systems such as Linux and An-
droid which is built for ARM core. The operating systems that can be used in BeagleBoard-
xM are mainly based on Linux, FreeBSD, OpenBSD, RISC OS, Symbian and Android. In
the proposed system, the BeagleBoard-xM runs an Ubuntu 12.04 LTS distribution Linux op-
erating system. The system has 3.2.0-23-omap #36 Linux kernel and many of programs are
able to run via different package sources which compile the sources for ARM architecture.

The dimensions of BeagleBoard-xM are 82.55 by 82.55 mm. There are four USB ports,
an Ethernet jack, S-Video input, DVI-D output with HDMI socket for space limitations and
two jacks for audio-in and out on the board as input/output ports. The power consumption
of the BeagleBoard-xM is estimated by the maximum voltage of 5 V and maximum current
of 750 mA as 3.75 Watts. This low power consumption enables BeagleBoad-xM to be
used in various mobile applications and platforms which can supply very low power. Used
BeagleBoard-xM revision is B.

There are different hardware parts used in the proposed system which uses BeagleBoard-xM
as the core part of the transmitter part. On the board, the capturing of the video, process-
ing, and streaming parts are dealt with. In order to both operate the board and handle the
necessary tasks, there are different input ad output devices needed such as keyboard, mouse
and display. So, a mouse and a keyboard are connected to the device by USB and display
device is connected to BeagleBoard-xM by a HDMI-to-DVI-D cable. The HDMI part is
used only as because the socket size of HDMI is smaller than the socket size of the DVI-D.
In addition to that, two webcams of A4Tech PK-636K (PK-636G can also be used) are used
for image acquisition. These cameras are connected to the board by USB. The connection
to the world wide web is supplied by a USB Wi-Fi dongle. The Wi-Fi dongle used in this
particular system is BELKIN N150 Micro Wireless USB adapter with a very small size and
with part number # F7D1102. In order to handle the number of USB connections, a USB
hub is used, and aside from the Wi-Fi adapter other USB devices are connected to it.

Due to both low power consumption and high operational abilities, BeagleBoard-xM is used

77



Table B.1: BeagleBoard-xM Hardware Properties [17]

Specifications
SoC Model TI DM3730 Digital Media Procesor (Compatible with OMAPTM 3 architecture)
CPU 1-GHz ARM R© CortexTM-A8
GPU Imagination Technologies PowerVR SGXTM series Graphics Accelerator
DSP TMS320C64x+TM DSP core
Memory 512 MB DDR2 RAM
Debug Support 14-pin JTAG, UART, GPIO pins, 3 LEDs
Input/Output Ports Ethernet, 4 USB, audio stereo-in and out, S-Video input, DVI-D output with

HDMI socket, and SD/MMC connection
SD/MMC Connection MicroSD card reader/writer as stored memory
Power connection USB and DC power
Power consumption 3̃.75 Watts

as a portable and very-low-power computer by utilizing the Ubuntu 12.04 LTS for ARM
OS. Ubuntu OS for ARM is a Linux distribution which is compiled for ARM architecture.
Hence, many of the generic software applications can be run on BeagleBoard-xM. In order to
manage the image capture part, a custom software is used which is based on Video for Linux
(v4l) library. The main part of this software is given at the end of this appendix chapter.

B.1 Software Installation

In order to install Ubuntu 12.04 LTS on BeagleBoard-xM the following steps are completed
in given order:

• Download the preinstalled Ubuntu 12.04 LTS compiled for OMAP 3x Series architec-
ture from http://cdimage.ubuntu.com/releases/12.04.2/release/ubuntu-12.04-preinstalled-desktop-armhf+
omap.img.gz

• In order to clone the downloaded disk image to SD Card, dd command of Unix is
utilized.

• Enter the following command to command line in order to clone the downloaded disk
image into the bootable SD Card form:

$ tar -xaf ubuntu-12.04-preinstalled.img.gz | dd of=/media/SDcard

• Plug SD Card into SD/MMC Card reader port of BeagleBoad-xM and complete the
installation by following the instructions on the screen

• In order to make system more efficient and smooth, download a different Desktop
Manager by:

– Start the terminal and run the command given below to install the Xfce a light-
weight desktop manager instead of pre-installed Gnome

78

http://cdimage.ubuntu.com/releases/12.04.2/release/ubuntu-12.04-preinstalled-desktop-armhf+omap.img.gz
http://cdimage.ubuntu.com/releases/12.04.2/release/ubuntu-12.04-preinstalled-desktop-armhf+omap.img.gz


– Log off the user and choose the desktop manager from the login screen before
entering username and password

$ sudo apt-get install xfce4

After these operations, the BeagleBoard-xM can be opened by using the Ubuntu 12.04 LTS
OS and Xfce4 Desktop manager. However, there are different packages needed to be in-
stalled in order to aid the capturing, processing and transmission. These operations need
different tools and programs installed.

Firstly, v4l packages must be installed in order to use the v4l library functions in the captur-
ing operation. In order to install v4l library tools, the following line of command is needed
to be entered. After installing the v4l library tools, a link is needed to be created in order for
the image acquisition program to work. The needed ln command is given below:

$ sudo apt-get install v4l2loopback-dkms v4l2loopback-source v4l2ucp v4l-conf
v4l-utils libv4l-dev

$ ln -s /usr/include/libv4l-videodev.h /usr/include/linux/videodev.h

For the streaming part, VLC Media Player created by Videolan Organization [94] is needed
as a streamer. In order to install VLC Media Player, the following command should be called
in command line:

$ sudo apt-get install vlc

B.2 Image Capture Software

In order to acquire images from the webcams, the a custom written C program is used. This
C program utilizes the Video for Linux (V4L) library in order to get images by using the
Linux framework. The written program then is compiled by GCC GNU C Compiler and
the created binary file is used for the image acquisition. The code part of the main file of
the program is given at the end of this appendix chapter. The other necessary documents
such as different C files and the whole structure of this program can be reached by following
http://www.eee.metu.edu.tr/~zerman/files/luvBeagle.zip

Image Acquisition Program Source Code: luvcview.c

/*******************************************************************************
# uvcview: Sdl video Usb Video Class grabber . #
#This package work with the Logitech UVC based webcams with the mjpeg feature. #
#All the decoding is in user space with the embedded jpeg decoder #
#. #
# Copyright (C) 2005 2006 Laurent Pinchart && Michel Xhaard #
# #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation; either version 2 of the License, or #

79

http://www.eee.metu.edu.tr/~zerman/files/luvBeagle.zip


# (at your option) any later version. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with this program; if not, write to the Free Software #
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #
# #
*******************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <string.h>
#include <pthread.h>
#include <linux/videodev.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <errno.h>
#include <fcntl.h>
#include <time.h>
#include <sys/time.h>
#include <signal.h>
#include <getopt.h>
#include "v4l2uvc.h"

/* Fixed point arithmetic */
#define FIXED Sint32
#define FIXED_BITS 16
#define TO_FIXED(X) (((Sint32)(X))<<(FIXED_BITS))
#define FROM_FIXED(X) (((Sint32)(X))>>(FIXED_BITS))

#define INCPANTILT 64 // 1

int width = 160;
int height = 120;

struct vdIn *videoIn;
struct vdIn *videoIn2;

const char *videodevice = "/dev/video0";
const char *videodevice2 = "/dev/video1";

static void process_image (const void * p,FILE* fp)
{
static unsigned char* packed_value=NULL;
static unsigned char* packed_value2=NULL;
int i=0,j=0;

while(i < (width * height))
{
packed_value = ((unsigned char*)p+i*2);
fprintf(fp,"%c",*packed_value);
i++;

}

80



for(j=0;j<height;j=j+2)
{
packed_value2 = (unsigned char*)p + width*2*j;
for(i=0;i<width/2;i++)
{
packed_value = packed_value2 + i*4+1;
fprintf(fp,"%c",*packed_value);
}

}

for(j=0;j<height;j=j+2)
{

packed_value2 = (unsigned char*)p + width*2*j;
for(i=0;i<width/2;i++)

{
packed_value = packed_value2 + i*4+3;
fprintf(fp,"%c",*packed_value);
}

}
}

static void process_twoimage (const void * p,const void * pp,FILE* fp)
{
static unsigned char* packed_value=NULL;
static unsigned char* packed_value2=NULL;
int i=0,j=0;
for(j=0;j<height;j++)
{
packed_value2=((unsigned char*)p+j*2*width);
for(i=0;i<width;i++)
{
packed_value = packed_value2 + i*2;
//fprintf(fp,"%c",*packed_value);
printf("%c",*packed_value);
}
packed_value2=((unsigned char*)pp+j*2*width);
for(i=0;i<width;i++)
{
packed_value = packed_value2 + i*2;
//fprintf(fp,"%c",*packed_value);
printf("%c",*packed_value);
}
}

for(j=0;j<height;j=j+2)
{
packed_value2 = (unsigned char*)p + width*2*j;
for(i=0;i<width/2;i++)
{
packed_value = packed_value2 + i*4+1;
//fprintf(fp,"%c",*packed_value);
printf("%c",*packed_value);
}
packed_value2 = (unsigned char*)pp + width*2*j;
for(i=0;i<width/2;i++)
{
packed_value = packed_value2 + i*4+1;
//fprintf(fp,"%c",*packed_value);
printf("%c",*packed_value);

81



}
}

for(j=0;j<height;j=j+2)
{

packed_value2 = (unsigned char*)p + width*2*j;
for(i=0;i<width/2;i++)

{
packed_value = packed_value2 + i*4+3;
//fprintf(fp,"%c",*packed_value);
printf("%c",*packed_value);
}

packed_value2 = (unsigned char*)pp + width*2*j;
for(i=0;i<width/2;i++)
{
packed_value = packed_value2 + i*4+3;
//fprintf(fp,"%c",*packed_value);
printf("%c",*packed_value);
}

}
}

static void usage (FILE * fp, int argc, char ** argv)
{

fprintf (fp,
"Usage: %s [options]\n\n"
"Options:\n"
"-d | --first device name Video device name [/dev/video]\n"
"-y | --help Print this message\n"
"-m | --second device name Second video device name\n"

"-s | --state General option\n"
" | 0: one camera capture and saved[default]\n"

" | 1: two camera capture and saved in different file\n"
" | 2: two camera capture and saved side by side\n"
"-w | --width Capture width pixel number[default=320]\n"
"-h | --height Capture height pixel number[default=240]\n"
"-c | --count Capture frame count[default=100]\n",

argv[0]);
}

static const char short_options [] = "d:m:w:h:s:c:y";

static const struct option long_options [] = {
{ "device", required_argument, NULL, ’d’ },
{ "help", no_argument, NULL, ’h’ },
{ "mmap", no_argument, NULL, ’m’ },
{ 0, 0, 0, 0 }

};

int main (int argc, char ** argv)
{

int format = 0;
int grabmethod = 1;
int state=0;
int count=100;
int i=0;
for (;;) {

int index;
int c;

82



c = getopt_long (argc, argv,short_options, long_options, &index);
if (-1 == c)

break;
switch (c) {

case 0: /* getopt_long() flag */
break;
case ’d’:
videodevice = optarg;
break;
case ’y’:
usage (stdout, argc, argv);
exit (EXIT_SUCCESS);
case ’m’:
videodevice2 = optarg;
break;

case ’w’:
width = atoi(optarg);
break;

case ’h’:
height = atoi(optarg);
break;

case ’s’:
state = atoi(optarg);
break;

case ’c’:
count = atoi(optarg);
break;

default:
usage (stderr, argc, argv);
exit (EXIT_FAILURE);

}
}
FILE *file;
file = fopen("/home/emin/video1.yuv", "wb");
FILE *file2;
file2 = fopen("/home/emin/video2.yuv", "wb");
FILE *file3;
file3 = fopen("/home/emin/video12.yuv", "wb");

format = V4L2_PIX_FMT_YUYV;

//printf("Size width: %d height: %d \n", width, height);
videoIn = (struct vdIn *) calloc(1, sizeof(struct vdIn));

if (init_videoIn(videoIn, (char *) videodevice, width, height,
format,grabmethod) < 0)

exit(1);
if (state==1 || state==2)
{
videoIn2 = (struct vdIn *) calloc(1, sizeof(struct vdIn));
if (init_videoIn(videoIn2, (char *) videodevice2, width, height,

format,grabmethod) < 0)
exit(1);
}

83



if(state==0)
{
for(i=0;i<count;i++)
{
uvcGrab(videoIn);
process_image(videoIn->framebuffer,file);
}
}
if(state==1)
{
for(i=0;i<count;i++)
{
uvcGrab(videoIn);
uvcGrab(videoIn2);
process_image(videoIn->framebuffer,file);
process_image(videoIn2->framebuffer,file2);
}
}
if(state==2)
{
for(i=0;i<count;i++)
{
uvcGrab(videoIn);
uvcGrab(videoIn2);
process_twoimage(videoIn->framebuffer,videoIn2->framebuffer,

file3);
}
}

close_v4l2(videoIn);
free(videoIn);
if(state==1 || state==2)
{
close_v4l2(videoIn2);
free(videoIn2);
}

//printf("Clean Up done Quit \n");
return 0;

}

84



APPENDIX C

RECEIVER PLATFORM: HTC EVO 3D

Receiver platform used in the proposed system is a mobile device with switchable au-
tostereoscopic display. The used platform is one of the commercial autostereoscopic smart
phones: HTC Evo 3D. This smart phone uses Android version 4.0.3 as its operating system.

The most important aspect of this device for choosing it as the receiver platform is its switch-
able autostereoscopic display. The autostereoscopic display is a 3D display type which does
not require user to wear glasses as it is mentioned in Chapter 2. The advantage of autostereo-
scopic displays, being not required to wear glasses, gives much more freedom for the user.
Also, this smart phone has different features such as the accelerometer, gyroscope, ambient
light sensor and different properties that can be used in both delivering quality content and
estimating the quality of the audiovisual content delivered. The whole list of the properties
an be seen at Table C.1.

Table C.1: HTC Evo 3D Hardware Properties [32]

Specifications
CPU Snapdragon S3 Dual Core 1.2 GHz
GPU Qualcomm Adreno 220
Memory 1 GB RAM
Storage 4 GB eMMC
Reusable Storage 8 GB micro SDHC
Screen Switchable 2D/Autostereoscopic 3D screen with 960x540 px 4.3 inc. TFT
Cameras 5M MP LED Flash rear camera, 1.3 MP front camera
Sensors Touch screen, Accelerometer, Gyroscope, Digital Compass, Proximity Sensor,

Ambient Light Detector
Dimensions and Weight 127x67x12 mms, 170 g
Operating System Android 4.0.3
Connectivity Triband CDMA, 802.16e WiMAX, 802.11/b/g/n WiFi, Bluetooth v3.0, HDMI

Being Android a Linux based operating system and an open source project, the application
development is very easy for any developers on the world. That creates a perfect environment
for academic researches on the mobile devices with different connectivity options. The
ability to add, delete or edit any options on the phone gives a great flexibility.

Besides being advantageous of HTC Evo 3D on having an autostereoscopic screen, HTC also
provides an Application Programming Interface (API) in order to include the 3D abilities of
the phone in custom written Android programs. In order to use the API, the following lines

85



should be included in the code:

DisplaySetting.setStereoscopic3DFormat(Surface surface, int format);

// OR in a more generic way

enableS3D(boolean enable, Surface surface)

...

private void enableS3D(boolean enable, Surface surface) {
text.setVisibility(View.INVISIBLE);
int mode = DisplaySetting.STEREOSCOPIC_3D_FORMAT_SIDE_BY_SIDE;
if(!enable) {
mode = DisplaySetting.STEREOSCOPIC_3D_FORMAT_OFF;

}
boolean formatResult = true;
try {
formatResult = DisplaySetting.setStereoscopic3DFormat(surface, mode);

} catch (NoClassDefFoundError e) {
text.setVisibility(View.VISIBLE);
android.util.Log.i(TAG, "class not found - S3D display not available");

}
if (!formatResult) {
android.util.Log.i(TAG, "S3D format not supported");

}
}

In order to use the HTC’s Stereoscopic 3D API which is in OpenSense SDK, the OpenSense
SDK must be downloaded by using the Android SDK. In order to install the development
environment, the following steps must be followed:

• Download and install the Dava Development Kit (JDK) for Java SE 6 from http:
//oracle.com/technetwork/java/javase/downloads

• You may proceed by following either step:

– Download and install the SDK and ADT Bundle for Android development in
Windows by the url: http://developer.android.com/sdk/index.html

– Download and install Android SDK by following the url: http://developer.
android.com/sdk/index.html and use any other Integrated Development Envi-
ronment (IDE)

• Open and select platforms 15 and 16, and click download button

86

http://oracle.com/technetwork/java/javase/downloads
http://oracle.com/technetwork/java/javase/downloads
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html


APPENDIX D

VLC MEDIA PLAYER ON ANDROID

For displaying the acquired 3D video content, there is a need for 3D live video decoder.
However, in the Android OS, there are not such applications which are able to receive the
real-time stereo video stream and decode it. In order to fix that situation, a modified software
is used for receiving the encoded streams on the receiver platform of HTC Evo 3D.

In order for one to manage the creation of a stereo-video media player, there are different
possibilities to experienced. The built-in media player and as well as other media players
do not support the live stereo-video stream reception and decoding, even there are different
media players that can decode 3D content which is stored on a drive mounted on the system,
i.e. Hard Drive. Hence, an open-source media player is aimed to be modified for 3D stream
reception purposes.

For that purpose, VLC Media Player created by Videolan Organization [94] is used to create
a new stereo-video streaming Android application. To realize this system, the VLC media
player is copied, or cloned, from the original source and compiled on the host(developer)
computer by using the following command:

$ git clone git://git.videolan.org/vlc/vlc-android.git

In order to compile the system for the VLC Media Player for Android, the Native Devel-
opment Kit (NDK) is needed. For that, the download of the NDK system by following
the link http://developer.android.com/tools/sdk/ndk/index.html and the com-
mands needed for the compilation of VLC Media Player is given below as follows:

$ cd <cloneDirectory>
$ export JAVA_JDK=/usr/lib/jvm/java-6-sun
$ export PATH=${JAVA_JDK}/jre/bin:${PATH}
$ export ANDROID_SDK=<android_SDK_folder>

(i.e. /home/emin/android_vlc/android-sdk-linux)
$ export ANDROID_NDK=<android_NDK_folder>

(i.e. /home/emin/android_vlc/android-ndk-r8b)
$ export PATH=${ANDROID_SDK}/platform-tools:${ANDROID_SDK}/tools:

${ANDROID_NDK}:${PATH}
$ export ANDROID_ABI=armeabi-v7a
$ sh compile.sh release

After compiling the NDK part of the VLC Media Player, the software becomes able to be
compiled on the Eclipse or any similar IDE. By following the File -> Import -> General

87

http://developer.android.com/tools/sdk/ndk/index.html


-> Existing Projects options and choosing the project path, the existing VLC MP project
becomes able to be edited. After opening the IDE, the necessary modifications habe been
done as following:

//-----line 84
import android.widget.Spinner;
import android.widget.TextView;

import com.htc.view.DisplaySetting; //ADDED

public class VideoPlayerActivity extends Activity {

public final static String TAG = "VLC/VideoPlayerActivity";
...
...
//-----line 98
private static final int SURFACE_BEST_FIT = 0;

private static final int SURFACE_FIT_HORIZONTAL = 1;
private static final int SURFACE_FIT_VERTICAL = 2;
private static final int SURFACE_FILL = 3;
private static final int SURFACE_16_9 = 4;
private static final int SURFACE_4_3 = 5;
private static final int SURFACE_ORIGINAL = 6;
private int mCurrentSize = SURFACE_FILL; //CHANGED:SURFACE_BEST_FIT

...

...
//-----line 151

private String[] mSubtitleTracks;

//3D Debugging
private boolean s3d_enable_ez; //ADDED
private int s3d_type_ez; //ADDED

@Override
@TargetApi(11)
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.player);

s3d_enable_ez = true; //INITIALIZED - s3d_enable
s3d_type_ez = 1; // INITIALIZED - 1 sbs - 2 tb - 3 interleaved

SharedPreferences pref = PreferenceManager.getDefaultSharedPreferences(this);
...
...
//-----line 295
@Override

protected void onPause() {
if(mSwitchingView) {

super.onPause();
return;

}

long time = mLibVLC.getTime();
long length = mLibVLC.getLength();
//remove saved position if in the last 5 seconds
if (length - time < 5000)

time = 0;
else

time -= 5000; // go back 5 seconds, to compensate loading time

88



if (mLibVLC.isPlaying()) {
mLibVLC.pause();

}
mSurface.setKeepScreenOn(false);

// Save position
if (time >= 0) {

SharedPreferences preferences =
getSharedPreferences(PreferencesActivity.NAME, MODE_PRIVATE);

SharedPreferences.Editor editor = preferences.edit();
editor.putString(PreferencesActivity.LAST_MEDIA, mLocation);
editor.putLong(PreferencesActivity.LAST_TIME, time);
editor.commit();

}
super.onPause();
enableS3D(false, mSurfaceHolder.getSurface()); //ADDED

}

@Override
protected void onDestroy() {

unregisterReceiver(mBatteryReceiver);
if (mLibVLC != null && !mSwitchingView) {

mLibVLC.stop();
}

EventManager em = EventManager.getIntance();
em.removeHandler(eventHandler);

mAudioManager = null;

if(mSwitchingView) {
Log.d(TAG, "mLocation = \"" + mLocation + "\"");
AudioServiceController.getInstance().showWithoutParse(mLocation);
Intent i = new Intent(this, AudioPlayerActivity.class);
i.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_MULTIPLE_TASK);
startActivity(i);

}
//AudioServiceController.getInstance().unbindAudioService(this);
super.onDestroy();
enableS3D(false, mSurfaceHolder.getSurface()); //ADDED

}

...

...
//-----line 849

/**
* attach and disattach surface to the lib
*/

private final SurfaceHolder.Callback mSurfaceCallback = new Callback() {
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int width,

int height) {

enableS3D(s3d_enable_ez, holder.getSurface()); //ADDED
mLibVLC.attachSurface(holder.getSurface(), VideoPlayerActivity.this,

width, height);
}

@Override

89



public void surfaceCreated(SurfaceHolder holder) {
}

@Override
public void surfaceDestroyed(SurfaceHolder holder) {

mLibVLC.detachSurface();
enableS3D(false, holder.getSurface()); //ADDED

}
};

...

...
//-----line 1054

mTitle.setText(title);
}

}

//PART ADDED
private void enableS3D(boolean enable, Surface surface) {

Log.i(TAG, "enableS3D(" + enable + ")");
int mode = 0;
switch (s3d_type_ez) {
case 1:

mode = DisplaySetting.STEREOSCOPIC_3D_FORMAT_SIDE_BY_SIDE;
break;

case 2:
mode = DisplaySetting.STEREOSCOPIC_3D_FORMAT_TOP_BOTTOM;

break;
case 3:
mode = DisplaySetting.STEREOSCOPIC_3D_FORMAT_INTERLEAVED;

break;
}

if (!enable) {
mode = DisplaySetting.STEREOSCOPIC_3D_FORMAT_OFF;

}
boolean formatResult = true;
try {

formatResult = DisplaySetting.setStereoscopic3DFormat(surface, mode);
} catch (NoClassDefFoundError e) {

android.util.Log.i(TAG,
"class not found - S3D display not available");

}
Log.i(TAG, "return value:" + formatResult);
if (!formatResult) {

android.util.Log.i(TAG, "S3D format not supported");
}

}
//PART ADDED ---ends

}
//-----line 1093 ----end_of_the_code

90


	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Scope of the Thesis
	Outline of the Thesis

	3D Multimedia Technologies
	Human 3D Perception
	Techniques for 3D Display
	Binocular Displays
	Holographic Displays
	Volumetric Displays

	3D Image and Video Representation Formats
	Stereo and Multiview Representation
	Frame-compatible 3D Representation
	Color and Polarization Multiplexing

	Enhanced Video Streams


	3D Video Compression
	Methods for 3D Video Compression
	H.264/AVC Simulcast
	H.264/AVC Stereo SEI Message
	Mixed Resolution Coding
	Multiview Video Coding
	Video plus Depth Coding
	Multiview Depth Coding

	Encoding Structures of H.264/AVC and H.264/MVC
	Encoding Structures on Single Stream (Simulcast)
	Encoding Structures on Multiview Streams

	Experimental Setup
	Experimental Results
	Analysis of the Experimental Results

	Experimental Setup on BeagleBoard-xM
	Experimental Results on BeagleBoard-xM


	Video Streaming
	Methods for Video Streaming
	Methods for Video Streaming over the Internet
	Network Protocols
	User Datagram Protocol (UDP)
	Transport Control Protocol (TCP)
	Real-Time Transport Protocol (RTP)
	Real-Time Streaming Protocol (RTSP)
	Hypertext Transfer Protocol (HTTP)

	Analytical Comparison

	Real Time Stereo-Video Streaming
	Related Work
	3DTV and Mobile 3DTV Projects
	Internet based Real-Time 3D Streaming

	System Overview
	Transmitter Side
	Hardware
	Capture and Processing
	Compression
	Streaming

	Receiver Side
	Rendering and Display
	Perceived Quality

	General Operation of the Proposed System

	Conclusions and Future Work
	Summary
	Conclusions and Future Works

	REFERENCES
	APPENDICES
	Joint Multiview Video Coding (JMVC) Reference Software
	Transmitter Platform: BeagleBoard-xM
	Software Installation
	Image Capture Software

	Receiver Platform: HTC Evo 3D
	VLC Media Player on Android

