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ABSTRACT

SLIDING MODE GUIDANCE OF AN AIR-TO-AIR MISSILE

Ulu, Muharrem

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. M. Kemal Leblebicioğlu

September 2013, 153 pages

Pursuit of a highly maneuverable aircraft by an air-to-air missile requires a solution to
a challenging guidance and control problem. Precision is the most important need for
these missiles. Appropriate guidance commands that are generated by the guidance
method and an autopilot that can fulfil the agility needs of such a missile are the
keys of minimizing the distance between the missile and the target and a successful
interception. In this thesis, autopilot and guidance method design of an air-to-air
missile (AAM) that has maximum 100 seconds time of flight is studied. As the first
step, nonlinear 6 degrees-of-freedom (6DOF) mathematical model of the missile is
derived by using the equations of motion with aerodynamic coefficients found by Missile
Datcom program. Mathematical model is linearized around chosen flight conditions to
design an autopilot. In this thesis, the guidance problem is handled by using first and
second order sliding mode control and these guidance rules are compared for different
interception scenarios.

Keywords: Mathematical Modelling of Missile, Autopilot, Guidance, Sliding Mode
Control, Super Twisting Algorithm.
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ÖZ

BİR HAVADAN HAVAYA FÜZENİN KAYAN KİPLİ GÜDÜMÜ

Ulu, Muharrem

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. M. Kemal Leblebicioğlu

Eylül 2013 , 153 sayfa

Yüksek manevra kabiliyetli bir hava aracının bir havadan havaya füze tarafından ta-
kibi zorlayıcı bir güdüm ve kontrol problemine çözüm gerektirir. İsabet kabiliyeti bir
hava-hava füzesi için en önemli ihtiyaçtır. Güdüm yöntemi ile uygun güdüm komutla-
rının üretilmesi ve bu tip çevik bir füze için ihtiyacı karşılayacak bir otopilot, füze ile
hedef arasındaki mesafeyi kısaltmanın ve başarılı bir vuruş sağlamanın anahtarıdır. Bu
tezde uçuş süresi azami 100 saniye olan bir havadan havaya füzenin otopilot ve güdüm
yöntemi tasarımı üzerine çalışılmıştır. İlk aşamada füzenin doğrusal olmayan 6 serbest-
lik dereceli matematiksel modeli, hareket denklemlerinde Missile Datcom programı ile
bulunan aerodinamik katsayılar kullanılarak elde edilmiştir. Matematiksel model oto-
pilot tasarımı için seçilen uçuş koşulları etrafında doğrusallaştırılmıştır. Bu tezde gü-
düm problemi, birinci ve ikinci dereceden kayan kipli kontrol yöntemi kullanılarak ele
alınmıştır ve bu güdüm kuralları farklı angajman senaryoları için karşılaştırılmıştır.

Anahtar Kelimeler: Füzenin Matematiksel Modellemesi, Otopilot, Güdüm, Kayan Kipli

Kontrol, Üstün Burulma Algoritması.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

An air-to-air missile (AAM) is a weapon that is fired from an aerial platform to another
aerial platform to destroy or make it ineffective. These aerial platforms may be a fighter
aircraft, a helicopter or a UAV (Unmanned Aerial Vehicle). From the first operational
guided AAM developed in 1946, known as AIM-4 Falcon, tactical AAM guidance
in pursuit of a maneuverable aircraft is possibly the most challenging guidance and
control problem in missile guidance. The problem consists of generation of guidance
commands and construction of an autopilot structure to steer the missile towards target
interception by following the commands generated by a guidance rule. Nonlinear,
multivariable and time varying coupled nature of the AAM make them highly complex
integrated systems. An AAM flies at supersonic speeds for most of the time until
intercept to a target and operates in extremely adverse operational environments and
has to be agile to defeat the target which is mostly a very maneuverable fighter aircraft.
This high speed and agile flight requires fast response to guidance commands and a
precise control to steer the missile to enemy aircraft which has to end up with a
successful interception. AAMs can be categorized with within visual range (WVR) and
beyond visual range (BVR) missiles. WVR missiles are designed to engage opposing
aircraft at ranges of less than 30 km. They can be called ‘dogfight’ missiles because
they emphasize agility rather than range. WVR missile are generally heat-seeking
missiles and the old ones mostly have IR(Infra-Red) seekers such as AIM-9 P/L/M
(USA) and Vympel R-73 (Russia). Relatively new ones have IIR (Imaging Infra-Red)
seekers to see and track the target, such as AIM-9X (USA), IRIS-T (NATO countries)
and Python 5 (Israel). IIR seekers use electro-optical imaging to scan designated
area to find target aircraft’s heat signature. WVR missiles are expected to be highly
maneuverable ( > 35g ) and have high off-boresight capability ( > 90◦ ). This abilities
are generally provided by thrust vector control (TVC).
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Figure 1.1: AIM-9L short range missile

Figure 1.2: AIM-9X short range missile

BVR missiles generally have active radar seekers that contain radar transceiver and
electronics necessary to find and track a target autonomously. There is a datalink
between the launching platform and the missile. With this datalink, shooter aircraft
sends target position updates that comes from its radar to the missile until the missile
‘goes active’, that means the active radar seeker detects and tracks the target by itself.
After the missile goes active, there is no need to aid the missile with target updates
through datalink. This capability is called ‘fire and forget’, because the attacking
aircraft is free to pursue other targets or escape the area after launching the missile.
AIM-120 AMRAAM (USA), Vympel R-77 (Russia), Meteor(Europa) are some of the
examples of BVR AAMs.

Figure 1.3: AIM-120 AMRAAM

Figure 1.4: Meteor missile

In this thesis, a BVR missile that can fly 100 seconds is considered. It is assumed
that it has an active radar seeker and supported by data link so that target position
is known during the flight. Also it is assumed that body acceleration and rate infor-
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mation are provided by an inertial measurement unit (IMU). Maximum speed is taken
as approximately 3.5 Mach and it has thrust throughout the flight. This missile is
controlled by tail fins and it has no TVC ability but its aerodynamic features allow up
to 40 g acceleration capability. Simply a typical missile guidance and control system
can be represented in Figure 1.5.

Figure 1.5: Missile guidance and control scheme

1.2 Literature Survey

Guidance of an AAM is possibly the most challenging guidance problem. Agility and
long range capabilities are the main necessities when the subject comes to that kind
of missiles. A pilot always wants to lock on target aircraft first, because this is the
key for survival against the enemy [1]. Consider a head-on BVR engagement sce-
nario that two fighter aircrafts are flying towards each other. The fighter which has
a longer range missile shoots first and this is a very important chance to damage the
opponent fighter or force it to maneuver back and fly away. Also consider another
scenario that a dogfight between two fighter and each of them tries to lock on each
other with many complex maneuvers one after the other to catch a clear sight and
keep the target in suitable geometry for launch. In this scenario, when today’s highly
maneuverable fighters are considered, if you do not have such a maneuverable fighter,
you have to have a highly maneuverable missile that possibly has a high off-boresight
capability. When BVR AAM’s are considered, long range capability need is ahead of
agility. Also the propellant needs to go further make BVR missiles longer and a little
thicker than WVR missiles and that generally limits the g capability of the missile.
When WVR missiles are considered, their g capabilities may reach 70g’s according
to open sources. Real g capabilities of such missiles are classified information, but
according to the general rule of thumb, the missile is required to have five times the
g capability of the target to accomplish a successful intercept [1]. When the sus-
tained g capabilities of fighters are considered, the enemy fighter is assumed to be able
to pull a sustained 8g maneuver, so a missile that has 40g acceleration capability is
considered in this study and the geometry of the missile is chosen according to this
aerodynamic load factor need. Guidance is the process for guiding the path of an
object towards a given point, which in general may be moving [2]. Many guidance
laws based on Proportional Navigation Guidance (PNG) and its variants with several
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modifications are stated in open literature [3, 4, 5, 6]. The aim of the PNG law is to
zeroize the Line-of-Sight (LOS) rate against the targets and performs reasonably well
in a wide range of engagement geometries. The main disadvantage of these variants
is the requirement of the knowledge of target acceleration. From the implementation
point of view, estimation of target acceleration with suitable analytical methods are
required. A large number of target acceleration estimation methods available in the
literature are generally based on Kalman filter and the extended Kalman filter struc-
tures [7, 8]. With that approaches, some assumptions have to be made about the
target acceleration dynamics. When these assumptions are violated, they may result
in poor estimates of the target acceleration or divergence of the estimation process [12].

Sliding mode control (SMC) is the main mode of operation of Variable Structure Con-
trol (VSC) that is recognized as an efficient tool to design controllers which are robust
with respect to uncertainty such as uncertain plant parameters and perturbations [9].
In SMC method, the purpose is to drive the nonlinear plant’s state trajectory onto
a user-chosen surface in the state space and to maintain the plant’s state trajectory
on this surface for all subsequent time [10]. This surface is called switching surface
or sliding surface. Imagine that the gains in feedback path switch between two values
according to a rule dependent to system state, in this context, the rule is sliding sur-
face and when the plant state trajectory is above the surface one gain is applied to
the system and a different gain if the trajectory is below the surface. This provides to
drive the state trajectory to the surface and keeps it move along surface, that is, slid-
ing mode occurs. SMC methodology is addressed in many papers including guidance
law derivation for guided missiles against maneuvering targets [11, 12, 13]. Most of
them are derived as first order sliding mode guidance laws. In order to attenuate the
chattering affect, higher order, mostly second order, sliding mode control is introduced
[14, 15, 16]. One of the second order sliding mode control methods, called super twist-
ing algorithm, is defined as better than the other second order methods and applied to
many control applications [14, 17, 18, 19]. In spite of the control applications of super
twisting control method, the number of missile guidance applications are very limited
[20, 21].

1.3 Contribution

In this thesis, sliding mode guidance of an AAM is studied. As a first order sliding mode
guidance method, PI surface that is generally used in actuator control applications is
applied to the missile guidance problem. As a second study, super twisting method of
second order sliding mode control, is applied to the guidance problem with a proposed
adaptive rule to determine the parameters of the method. The comparison of these two
methods are incorporated in a paper and has received an acceptance to be presented
at TOK 2013 [24]. The studies on a journal article are in progress.
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1.4 Thesis Organization

This thesis consists of a mathematical modelling of an AAM, autopilot and guidance
design, and also comparison of derived guidance rules with some interception scenarios.
As a summary;

u Chapter 1 states basic definitions about AAMs and well-known examples from
different nations, includes literature survey and scope of this thesis.

u Chapter 2 starts with definition of coordinate systems then, it continues with
aerodynamic model of a generic AAM, 6 DOF nonlinear and linear equations
of motion with kinematical and dynamical parts, control surface deflection def-
initions and control actuation system model. Finally, pitch plane and roll-yaw
plane state space models are obtained.

u Chapter 3 obtains linear quadratic regulator (LQR) theory, linear quadratic
tracker (LQT) and then LQT design of pitch, yaw and roll rate autopilot as
known as stability augmentation loop. As outer of these loops pitch and yaw ac-
celeration autopilots are designed with PI controller structure. Roll autopilot is
designed as the outer loop of the roll rate autopilot. Design requirements stated,
results are obtained and stated with figures.

u Chapter 4 defines the guidance rules which are derived by using sliding mode
control theory. In the beginning, first order sliding mode guidance rule is con-
structed with PI sliding surface. As the second step, second order sliding mode
guidance rule is derived by using super twisting algorithm.

u Chapter 5 includes the simulation studies which the performance comparison of
guidance methods is made with different interception scenarios from easy to hard
difficulty levels.
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CHAPTER 2

MATHEMATICAL MODELLING

2.1 Introduction

Mathematical modelling of the missile incorporates different definitions such as coor-
dinate systems, aerodynamic model, equations of motion, control surface deflection
and control actuation system (CAS). Equations of motion that are required to define
a missile motion contains six kinematical and six dynamical equations. Both of the
kinematical and dynamical equations can be divided into two parts as translational
and rotational equations of motion. Euler angles are used to define the conversion
between coordinate systems and also makes connection between these rotational kine-
matics and rotational dynamics. Dynamical equations are basically defined by using
Newton’s second law of motion that relates the translational accelerations to forces
and the rotational accelerations to moments. In this chapter, coordinate systems are
presented to define the relative motion of the missile. Nonlinear mathematical model
is derived by using equations of motion that includes aerodynamic model that gener-
ates aerodynamic forces and moments. These equations are simplified and linearized
around trim conditions and these steps converge to state space models and transfer
functions that are needed for autopilot design.

2.2 Coordinate Frames

There are five basic coordinate frames to describe the position and motion of an
aerospace vehicle:

1. Inertial frame,
2. Earth centered Earth fixed frame,
3. Navigation(North-East-Down(NED)) frame,
4. Cartesian frame,
5. Body frame.
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2.2.1 Inertial Frame

The inertial frame is fixed with its origin at the center of the earth and has no accel-
eration and rotation relative to stars as seen in Figure 2.1.

Figure 2.1: Inertial reference coordinate system [29]

Xi direction is defined as the vector from the center of the Earth pointed to the Sun
and passes through the intersection of the ecliptic plane and the equator in spring.
Inertial sensors that are used in inertial navigation systems measures acceleration and
rates with respect to inertial coordinate system.

Origin : Center of the Earth,
Xi axis: Direction of vernal equinox,
Yi axis: Orthogonal to the Xi and Zi direction according to the right hand rule,
Zi axis: Directed to the North pole.

2.2.2 Earth Centered Earth Fixed Frame (ECEF)

The origin of the Earth centered Earth fixed frame is attached to the center on the
Earth and its axes are Xe,Ye,Ze as stated in Figure 2.2. The vector starts from the
center of the Earth to the intersection of the prime meridian that traces through the
Royal Observatory at Greenwich with equator represents the direction of Xe. ECEF
coordinate system rotates with ~ω = 7.2921151467x10−5 about Ze axis with respect to
inertial frame.

Origin : Center of the Earth,
Xe axis : Directed to the intersection of Greenwich meridian and the equator,
Ye axis : Orthogonal to the Xi and Zi direction according to the right hand rule,
Ze axis : Directed to the North pole.
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Figure 2.2: Earth Centered Earth Fixed coordinate system [29]

2.2.3 Navigation Frame

This reference frame, is also called North-East-Down (NED) frame , is defined at the
center of the inertial navigation system of missile and translates with missile but not
rotates.

Origin : Center of the inertial navigation system of missile,
Xn : Directed to ellipsoid north,
Yn : Directed to ellipsoid east,
Zn : Directed to ellipsoid down.

Figure 2.3: Inertial, Earth and NED coordinate system representation

2.2.4 Local Cartesian Frame

To represent the relative distances between missile and target and also the trajectory
that missile follows, there is a need to define a coordinate system. In addition, guidance
algorithms also needs the relative Cartesian locations between missile and target. Local
Cartesian coordinate system is defined to supply these needs.

Origin : Projection of where motion of missile starts on zero altitude,

9



Xc : Directed to ellipsoid north,
Yc : Directed to ellipsoid east,
Zc : Directed to ellipsoid down.

Figure 2.4: Local Cartesian coordinate system definition

2.2.5 Body Frame

The origin of the body coordinate system is linked to the missile body and the center
of mass. Its axes are Xb, Yb, Zb. The x-axis, called the roll axis, points towards the
nose of missile; the y-axis, called the pitch axis is directed to right when the missile
viewed from rear and orthogonal to Xb. The z-axis is directed according to the right
hand rule.

Figure 2.5: Body coordinate system at the center of gravity of missile

Origin : Center of gravity of missile,
Xb : Directed from center of the coordinate system the nose of missile,
Yb : When viewed from rear directed to right. Orthogonal to Xb,
Zb : Orthogonal to the Xb and Yb direction according to the right hand rule.

2.2.6 Transformation Matrices

A vector defined in one coordinate system can be redefined in another coordinates
system. This is achieved by axis transformations. Any set of axes definition of a
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vector can be obtained from any other set by a sequence of three rotations. For each
rotation, a transformation matrix is applied to the vectorial quantities. The final
transformation matrix is simply the product of the three matrices, multiplied in the
order of the rotations. Common law of the aeronautics states that firstly rotate the
system by ψ (yaw angle) about Z axis, then by θ (pitch angle) about new Y axis, and
by φ (roll angle) about the latest X axis which are called Euler Angles.

Figure 2.6: Euler angles

The transformation matrices are defined with order of rotation about Z, Y and X axis.

The first rotation about Z axis (ψ angle)

Figure 2.7: Rotation about Z axis

X2

Y2

Z2

 = Cψ

X1

Y1

Z1

 =

 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1


X1

Y1

Z1



the second rotation about Y axis (θ angle)

Figure 2.8: Rotation about Y axis

X2

Y2

Z2

 = Cθ

X1

Y1

Z1

 =

cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)


X1

Y1

Z1



and the third rotation about X axis (φ angle) is stated as follows.
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Figure 2.9: Rotation about X axis

X2

Y2

Z2

 = Cφ

X1

Y1

Z1

 =

1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)


X1

Y1

Z1



This sequential rotations defines a transformation matrix called ‘Direction Cosine Ma-
trix’ (DCM) that will define a transformation of a motion from Earth coordinate
system to body coordinate system as follows.Xb

Yb

Zb

 = CφCθCψ

Xe

Ye

Ze



=

1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)


 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1


Xe

Ye

Ze



=

 cos(θ)cos(ψ) cos(θ)sin(ψ) −sin(θ)

−cos(φ)sin(ψ) + sin(φ)sin(θ)cos(ψ) cos(φ)cos(ψ) + sin(φ)sin(θ)sin(ψ) sin(φ)cos(θ)

sin(φ)sin(ψ) + cos(φ)sin(θ)cos(ψ) −sin(φ)cos(ψ) + cos(φ)sin(θ)sin(ψ) cos(φ)cos(θ)


Xb

Yb

Zb

 = C(b,e)

Xe

Ye

Ze

 (2.1)

This representation stands for the transformation from the Earth axis to the body axis
system.

[
C(b,e)

]−1
=
[
C(b,e)

]T
= C(e,b) ⇒

Xe

Ye

Ze

 = C(e,b)

Xb

Yb

Zb

 (2.2)

represents the transformation from body axis to Earth axis.
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2.3 Aerodynamic Model

2.3.1 Flight Parameters

Before defining aerodynamic forces and moments, it is required to define some flight
parameters and dynamic pressure.

Angle of Attack : The angle between the projection of velocity vector of missile
on Xb − Zb plane and Xb axis of missile in longitudinal plane. It is positive when the
missile velocity component along z-axis is positive. It is shown by α

Figure 2.10: Angle of attack descripton

α = arctan
(w
u

)
(2.3)

Angle of Sideslip : The angle between the projection of velocity vector of missile on
Xb − Yb plane and Xb axis of missile in lateral plane. It is positive when the missile
velocity component along y-axis is positive. It is shown by β.

β = arcsin
( v
V

)
(2.4)

where V is the magnitude of total velocity defined as

V =
√
u2 + v2 + w2 (2.5)

Figure 2.11: Angle of sideslip description
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Mach number : In fluid mechanics, it represents the ratio of speed of an object
moving through a fluid and the local speed of sound. C represents the speed of the
sound, then Mach number can be expressed as

M =
V

C
(2.6)

C can be stated as C = γRT where γ is the specific heat ratio of the air which is taken
to be equal to 1.4, and R is the universal air gas constant which is equal to 287J/kgK.
T is the ambient temperature which changes with altitude, and can be expressed as

T =

{
T0 (1− 0.00002256h) for h ≤ 10000m

0.7744T0 for h > 10000m

}
(2.7)

Dynamic Pressure : It is defined as

Q =
1

2
ρV 2 (2.8)

The term ρ is the air density and calculated as follows

ρ =

{
ρ0 (1− 0.00002256h)4.256 for h ≤ 10000m

0.412e−0.000151(h−10000) for h > 10000m

}
(2.9)

where ρ0 is the air density at sea level 1.223kg/m3 and h is the altitude.

2.3.2 Aerodynamic Data

To construct a mathematical model, there has to be physical meaning of the plant. In
missile case, mathematical model requires aerodynamic data that emphasizes the aero-
dynamic force and moment coefficients stating agility of the missile airframe. Missile
Datcom is a program that provides estimation of aerodynamics of a wide variety of mis-
sile configuration designs quickly. It has predictive accuracy for suitable preliminary
design. To get aerodynamic data, firstly the physical features of the missile are re-
quired. The modelled missile has 140 ′′ length and 7 ′′ diameter. It has non-moving four
wings in the middle that placed with 90◦ angle difference and four movable fins(control
surfaces) at back to give direction to the missile. Approximate geometry is represented
in Figure 2.12.
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Figure 2.12: Baseline geometry

Missile Datcom has some parameters to express the physical features of the missile.
They can be shown in Figure 2.13-2.16.

Figure 2.13: Axisymmetric body geometry variables [30]

Figure 2.14: Wing and fin geometry variables [30]

Figure 2.15: Wing and fin orders [30]

Figure 2.16: Nose geometry and HEX airfoil variables [30]

With the values assigned to these variables, missile geometry is defined for the Missile
Datcom input file. Details about the program and the input file are stated in [30].
The missile is assumed to fly at X configuration, so the aerodynamic data is obtained
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for the wings and fins are located at 45◦, 135◦, 225◦ and 315◦ angles. Flight regime
area is defined to Missile Datcom with the flight parameters as

α = {−20,−18,−16, ..., 16, 18, 20}
β = {−20,−18,−16, ..., 16, 18, 20}
Mach = {0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0}

The obtained aerodynamic data is used for 6DOF simulation model and autopilot
design. When the subject comes to control, a missile that is inherently stable in most
of the flight parameter region is preferred in many cases. For a completely stable
missile, stability, control and dynamic derivatives of aerodynamic coefficients must
have appropriate signs. This is summarized in Table 2.1. If the case is an AAM, agility
is the most critical requirement for effectiveness and the agility requires instability in
some flight region. Some of the aerodynamic coefficients of the missile are plotted to
figures as follows to understand the parallel and contradictive parts to the Table 2.1.

Table2.1: For an inherently stable missile, uncoupled terms of aerodynamic stability,
control and dynamic derivatives

Stability Sign Control Sign Dynamic Sign
CYβ − CYδr − CYr +

CNα + CNδe − CNq +
Clβ + Clδa + Clp −
Cmα − Cmδe + Cmq −
Cnβ − Cnδr + Cnr −
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Figure 2.17: Lift coefficient change with alpha
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Figure 2.18: Drag coefficient change with alpha
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Figure 2.19: Side force coefficient change with beta
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Figure 2.20: Side force control derivative change with beta
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Figure 2.21: Side force dynamic derivative change with alpha
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Figure 2.22: Normal force coefficient change with alpha
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Figure 2.23: Normal force control derivative change with alpha
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Figure 2.24: Normal force dynamic derivative change with alpha
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Figure 2.25: Rolling moment control derivative change with beta
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Figure 2.26: Rolling moment dynamic derivative change with alpha
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Figure 2.27: Rolling stability derivative change with alpha
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Figure 2.28: Pitching moment coefficient change with alpha
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Figure 2.29: Pitching moment control derivative change with alpha
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Figure 2.30: Pitching moment dynamic derivative change with alpha
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Figure 2.31: Yawing moment coefficient change with beta
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Figure 2.32: Yawing moment control derivative change with beta
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Figure 2.33: Yawing moment dynamic derivative change with alpha

2.3.3 Aerodynamic Forces and Moments

Aerodynamic forces and moments can be represented with their coefficients. If refer-
ence area is A, reference length is d, dynamic pressure is Q and CX , CY and CZ are
aerodynamic coefficients for forces respectively, then the aerodynamics forces can be
stated as follows

FaxFay

Faz

 = QA

CXCY
CZ

 (2.10)

For Cl, Cm, and Cn are moment coefficients, aerodynamic moments can be stated as

LM
N

 = QAd

 ClCm
Cn

 (2.11)

where

CX : Axial force coefficient,
CY : Side force coefficient,
CZ : Normal force coefficient,
Cl : Rolling moment coefficient,
Cm : Pitching moment coefficient,
Cn : Yawing moment coefficient.

Aerodynamic coefficients can be stated to be a function of several flight variables as
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Ci = Ci

(
M,α, β, δa, δe, δr, p, q, r, α̇, β̇

)
In real world, these coefficients are functions of much more flight parameters and higher
order terms. Force and moment coefficients can be found from look up tables that are
created from Mach number, angle of attack, angle of sideslip, elevator fin deflection
(δe), aileron fin deflection(δa), and rudder fin deflection (δr). These table variables
can be decreased to simplify the table, but this decreases the level of fidelity. For
6DOF simulations and linear autopilot design, linearized forms of these aerodynamic
coefficients are derived in Section 2.4.2.2.

2.4 Equations of Motion

2.4.1 Nonlinear Equations of Motion

Figure 2.34: Translational and rotational definitions

The parameters related to the missile are defined in Table 2.2 below.

Table2.2: Related parameters of missile

Two assumptions are made before starting the derivation:
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u mass of the missile remains constant,

u missile is a rigid body.

The forces and moments acting on a missile are given as Fx, Fy, Fz and Mx, My, Mz.
Actually, these forces and moments are total of some distinct forces and moments.
Aerodynamic forces, thrust forces and the gravitational effects have to be taken into
consideration while talking about these forces and moments. In fact, these forces and
moments can be written as

FXFY
FZ

 =

Fax +mgx + Tx

Fay +mgy + Ty

Faz +mgz + Tz

 (2.12)

MX

MY

MZ

 =

 L+ LT

M +MT

N +NT

 (2.13)

In the above equations, Fax, Fay, Faz, Fay, L, M and N are the forces and moments
which only occurs due to aerodynamics effects on the missile flight. gx, gy, and gz are
the body frame components of the gravitational acceleration which is assumed to be
oriented directly towards the Earth center. Tx, Ty, Tz, LT , MT , NT , are thrust force
and thrust moment components.

Figure 2.35: components of the gravitational force

According to the Figure 2.35, body coordinate system components of the gravitational
acceleration can be expressed as follows

gxgy
gz

 =

 −g sin(θ)

g sin(φ)cos(θ)

g cos(φ)cos(θ)

 (2.14)
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2.4.1.1 Kinematical Equations of Motion

Translational Kinematics
Velocity expressed in the body coordinate system can be transformed to the Earth
coordinate system by using the transpose of DCM that is calculated before.VXVY

VZ

 = C(e,b)

uv
w

 (2.15)

and if the calculation is extended, the following equations are obtained.

VX = (cos(θ) cos(ψ))u+ (sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ)) v+

(cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))w (2.16)

VY = (cos(θ) sin(ψ))u+ (sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ)) v+

(cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))w (2.17)

VZ = (− sin(θ))u+ (sin(φ) cos(θ)) v + (cos(φ) cos(θ))w (2.18)

where VX ,VY and VZ are the velocity components of the body with respect to the Earth
fixed frame stated in Earth fixed frame and u, v, w are the velocities with respect to
Earth fixed frame stated in body frame.

Rotational Kinematics
The rotational kinematic equations relates the time rate of change of the Euler an-
gles(orientation of missile with respect to the reference coordinate frame) to the angular
rates of missile body. Using the identity feature

[
C(e,b)

]T
C(e,b) = I (2.19)

it is known that derivative of a constant is zero.

d

dx

([
C(e,b)

]T
C(e,b)

)
=

d

dx
(I) (2.20)

[
C(e,b)

]T
Ċ(e,b) =

[
−Ċ(e,b)

]T
C(e,b) (2.21)

[
C(e,b)

]T
Ċ(e,b) = −

([
C(e,b)

]T
Ċ(e,b)

)
(2.22)
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The above equation indicates that
[
C(e,b)

]T
Ċ(e,b) is a skew symmetric matrix and

so there exists a skew symmetric ω̃ generated from a column ~w such that ω̃ =[
C(e,b)

]T
Ċ(e,b) ~wang is composed of the components of the angular velocity of the body

frame with respect to the Earth frame stated in body frame.

More explicitly,

~wang =

pq
r

 (2.23)

thus the corresponding skew symmetric matrix is

ω̃ =

 0 −r q

r 0 −p
−q p 0

 (2.24)

Solving
[
C(e,b)

]T
Ċ(e,b) = ω̃ for the Euler angle rates, the rotational kinematical equa-

tions are found as

φ̇ = p+ (qsin(φ) + rcos(φ)) tan(θ) (2.25)

θ̇ = qcos(φ)− rsin(φ) (2.26)

ψ̇ =
qsin(φ) + rcos(φ)

cos(θ)
(2.27)

2.4.1.2 Dynamical Equations of Motion

Translational Dynamics
For derivation of translational dynamics, force equation of the Newton’s Second Law
is used as follows. If the Earth rotation with respect to the inertial frame is neglected,
the Earth frame can be declared as the inertial frame then equations can be derived
as if translational and angular velocities are defined in the Earth frame.

~F =
d

dt

(
m~V

)
|E = m

d

dt

(
~V
)
|E (2.28)

~F = ~Faero + ~Fthrust + ~Fgravity (2.29)
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where F is the sum of all externally applied forces acting on the missile including
aerodynamic forces, thrust forces and gravity forces, m is the mass of missile, V is
the velocity of center of mass with respect to the Earth frame. |E indicates that the
differentiation of the related terms are done in the Earth frame. In the body frame,
Equation 2.28 can be written as

~F = m{ d
dt
~V |B}+ ~wang × ~V (2.30)

where |B indicates that the differentiation is done in the body frame. ~F vector is
represented as

~F =

FXFY
FZ

 (2.31)

and the linear velocity vector ~V is stated as

~V =

uv
w

 (2.32)

and the angular velocity vector is

~wang =

pq
r

 (2.33)

Then Equation 2.30 is written as

FXFY
FZ

 = m


u̇v̇
ẇ

+

pq
r

×
uv
w


 (2.34)

leave acceleration terms at one side.

u̇v̇
ẇ

 =


FX
m
FY
m
FZ
m

−
pq
r

×
uv
w

 (2.35)
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after calculation of cross product

u̇v̇
ẇ

 =


FX
m
FY
m
FZ
m

−
qw − rvru− pw
pv − qu

 (2.36)

and finally translational equations are derived as

u̇ =
FX
m
− qw + rv (2.37)

v̇ =
FY
m
− ru+ pw (2.38)

ẇ =
FZ
m
− pv + qu (2.39)

Rotational Dynamics
For the derivation of rotational dynamic equations, following equality will be used.

~M =
d

dt

(
~H
)
|E (2.40)

~M represents the sum of all externally applied torques to missile. ~H = Ĵ ~wang is the
angular momentum of the missile, Ĵ is the inertia dyadic. In the body coordinate
system Equation 2.40 can be written as

~M = Ĵ

{
d

dt

(
~H
)
|B
}

+ ~wang × Ĵ ~wang (2.41)

The inertia dyadic can be expressed in the body frame by the following matrix

Ĵ =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (2.42)

The body axis of the missile is taken to be coincident with the principle axis of inertia.
Hence product of cross inertia terms Ixy, Ixz and Iyz vanish. Due to the symmetric
structure of the missile used in this study, Iyy = Izz equality will be used. Thus the
inertia matrix can be simplified for a symmetric missile as

Ĵ =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.43)
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The column vector representation of total moment is

~M =

MX

MY

MZ

 (2.44)

if Equation 2.40 is constructed

MX

MY

MZ

 =

Ixx 0 0

0 Iyy 0

0 0 Izz


ṗq̇
ṙ

+

pq
r

×
Ixx 0 0

0 Iyy 0

0 0 Izz


pq
r

 (2.45)

After dot product calculation

MX

MY

MZ

 =

IxxṗIyy q̇

Izz ṙ

+

pq
r

×
IxxpIyyq

Izzr

 (2.46)

with calculation of cross product

MX

MY

MZ

 =

IxxṗIyy q̇

Izz ṙ

+

 Izzqr − Iyyqr
−Izzpr + Ixxpr

Iyypq − Ixxpq

 (2.47)

and finally rotational dynamic equations are obtained as

ṗ =
MX − qr (Izz − Iyy)

Ixx
(2.48)

q̇ =
MY − rp (Ixx − Izz)

Iyy
(2.49)

ṙ =
MZ + pq (Iyy − Ixx)

Izz
(2.50)

2.4.2 Linear Equations of Motion

2.4.2.1 Linearization of Differential Equations

Linearization refers to finding the linear approximation to a function at a given point.
In dynamical systems, linearization is a method for assessing the local stability of
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an equilibrium point of a system of nonlinear differential equations. Suppose that a
nonlinear system model can be represented as in the following most general notation.

ẋ = f(x, u) where x ∈ <n and u ∈ <m (2.51)

Let ue = [u1e, u2e, ..., ume]
T be a constant input that forces the system above to settle

into a constant equilibrium state xe = [x1e, x2e, ..., xne]
T , that is, ue and xe satisfy

f(xe, ue) = 0 (2.52)

Let us now perturb the equilibrium input vector by allowing

u = ue + ∆u⇒ x = xe + ∆x (2.53)

Taylor’s expansions yields

ẋ = f(xe+∆x, ue+∆u) = f(xe, ue)+
∂f

∂x
(xe, ue)∆x+

∂f

∂u
(xe, ue)∆u+HOT = A∆x+B∆u

(2.54)

In this equation, Jacobian matrices of f with respect to x and u, evaluated at (xe, ue),
called autopilot design conditions in this study, are equal to the following matrices

∂f

∂x
(xe, ue) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn


x=xe,u=ue

(2.55)

∂f

∂u
(xe, ue) =


∂f1
∂u1

· · · ∂f1
∂un

...
. . .

...
∂fn
∂u1

· · · ∂fn
∂un


x=xe,u=ue

(2.56)

Similarly, if the nonlinear system model are of the form y = h(x, u) , its linear form
can be derived as the rules explained above and resultant model is

y = ye + ∆y , ∆y = C∆x+D∆u , C =
∂h

∂x
(xe, ue) , D =

∂h

∂u
(xe, ue) (2.57)
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2.4.2.2 Linearization of Aerodynamic Model

For the missile model to be used in simulations, the aerodynamic coefficients are taken
to be nonlinear functions of flight parameters. However, in order to use in the autopilot
studies, they can be linearized by using the Taylor series expansion around the trim
values of the flight parameters as follows.

Ci = Ci

(
M,α, β, δa, δe, δr, p, q, r, α̇, β̇

)
= Ci0(β,M,α)+Ciα(β,M,α)α+Ciβ(β,M,α)β

+

Ciδa(β,M,α)δa+Ciδe(β,M,α)δe+Ciδr(β,M,α)δr

+

Cip(β,M,α)p
d

2V
+Ciq(β,M,α)q

d

2V
+Cir(β,M,α)r

d

2V
+H.O.T.

i = X,Y, Z, l,m, n (2.58)

In the above equation, H.O.T stands for the higher order terms in the Taylor series

expansion and will be neglected.
d

2V
term is included as a multiplier to the dynamic

aerodynamic derivatives to make the final product dimensionless. Following notation
can be used for aerodynamic derivatives.

Cij =
∂Ci
∂j
|j=j0 j = α, β, δa, δe, δr, p, q, r (2.59)

Aerodynamic derivatives may not only be a function of Mach number but also angle
of attack and sideslip angles can be input parameters to these functions. According
to Missile Datcom program, most of the derivatives are function of Mach number,
angle of attack, angle of sideslip and deflection. They are basically tables that have
dimension of the number of input parameters stated.

The derivation of non-dimensional form of aerodynamic forces and moment coefficients
can be found as follows.

CX = −Ca(β,M,α) (2.60)

CY = CY ββ + CY δaδa + CY δrδr + CY pp
d

2V
+ CY rr

d

2V
(2.61)

CZ = CZαα+ CZδeδe + CZqq
d

2V
(2.62)

Cl = Clββ + Clδaδa + Clδrδr + Clpp
d

2V
+ Clrr

d

2V
(2.63)

Cm = Cmαα+ Cmδeδe + Cmqq
d

2V
(2.64)
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Cn = Cnββ + Cnδaδa + Cnδrδr + Cnpp
d

2V
+ Cnrr

d

2V
(2.65)

2.4.2.3 Linearization of Equations of Motion

For designing a linear controller, one firstly needs a linear system model. Linearization
of the aerodynamic model is performed in previous section. Equation of motion should
also be linearized around equilibrium (trim) flight points. In this study, steady state
flight condition of the missile is taken as the equilibrium point where the linearization
wil be performed. Besides, some logical assumptions should be made in order to
simplify the nonlinear equations during the linearization process by considering the
flight configuration of missile that focused on. The missile considered is a skid-to-turn
missile so no roll action is needed to turn the missile and this gives the chance to
decouple the longitudinal and lateral motion. That means, when longitudinal motion
is considered no roll and yaw angles and angular rates occur. Assumptions can be
summarized as follows:

u Rolling motion is constant and very small (φ ≈ 0◦, p ≈ 0◦/s).

u If q is available, r = 0.

u If r is available, q = 0.

u Taking into account the equations above and remembering V =
√
u2 + v2 + w2,

it can be assumed that total velocity of the missile V is constant and V ≈ u.

By the help of these assumptions, rate equations simplifies to equations below.

For q = 0 Equation 2.48 becomes

ṗ =
MX

Ixx
=

QAd

(
Clββ + Clδaδa + Clδrδr + Clpp

d

2V
+ Clrr

d

2V

)
Ixx

(2.66)

For p = 0 Equation 2.49 becomes

q̇ =
MY

Iyy
=

QAd

(
Cmαα+ Cmδeδe + Cmqq

d

2V

)
Iyy

(2.67)

For q = 0 Equation 2.50 becomes

ṙ =
MZ

Izz
=

QAd

(
Cnββ + Cnδaδa + Cnδrδr + Cnpp

d

2V
+ Cnrr

d

2V

)
Izz

(2.68)
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To simplify the demonstration, equations above can be stated as

ṗ = Lββ + Lδaδa + Lδrδr + Lpp+ Lrr (2.69)

q̇ = Mαα+Mδeδe +Mqq (2.70)

ṙ = Nββ +Nδaδa +Nδrδr +Npp+Nrr (2.71)

where

Lβ =
QAd

Ixx
Clβ Lp =

QAd

Ixx

d

2V
Clp Lr =

QAd

Ixx

d

2V
Clr Lδa =

QAd

Ixx
Clδa (2.72)

Lδr =
QAd

Ixx
Clδr Mα =

QAd

Iyy
Cmα Mq =

QAd

Iyy

d

2V
Cmq Mδe =

QAd

Iyy
Cmδe (2.73)

Nβ =
QAd

Izz
Cnβ Np =

QAd

Izz

d

2V
Cnp Nr =

QAd

Izz

d

2V
Cnr Nδa =

QAd

Izz
Cnδa (2.74)

Nδr =
QAd

Izz
Cnδr (2.75)

By assuming that angle of attack and angle of sideslip are small, small angle approxi-
mation can be applied as follows.

α = arctan
(w
u

)
≈ w

u
(2.76)

β = arcsin
( v
V

)
≈ v

V
(2.77)

In addition to this, axial velocity can be approximately constant at every linearization
point and much more larger than other velocity components.

v, w � u ≈ V (2.78)

By using these approximations, derivative of angle of attack and sideslip angle equa-
tions are simplified as

α̇ ≈ ẇ

V
=

FZ
m − pv + qu

V
(2.79)
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β̇ ≈ v̇

V
=

FY
m − ru+ pw

V
(2.80)

Taking roll rate approximately zero as before and using linearized forms of aerodynamic
coefficients

α̇ =
QA

mV

(
CZαα+ CZδeδe + CZqq

d

2V

)
+ q (2.81)

β̇ =
QA

mV

(
CY ββ + CY δaδa + CY δrδr + CY pp

d

2V
+ CY rr

d

2V

)
− r (2.82)

To simplify the demonstration,

α̇ = Zαα+ (Zq + 1) q + Zδeδe (2.83)

β̇ = Yββ + Ypp+ (Yr − 1) r + Yδaδa + Yδrδr (2.84)

where

Zα =
QA

mV
CZα Zq =

QA

mV

d

2V
CZq Zδe =

QA

mV
CZδe Yβ =

QA

mV
CY β (2.85)

Yp =
QA

mV

d

2V
CY p Yr =

QA

mV

d

2V
CY r Yδr =

QA

mV
CY δr Yδa =

QA

mV
CY δa (2.86)

Translational kinematic equations are only for transforming body axes velocities to the
Earth fixed frame so they are not included in linear state space model and there is no
need to linearize these equations. As the final step, rotational kinematic equations are
simplified by considering steady state and uncoupled flight conditions of missile that
small roll and pitch angles occurrence. For θ ≈ 0, Equation 2.25 becomes

φ̇ = p (2.87)

For θ ≈ 0, Equation 2.26 becomes

θ̇ = q (2.88)

For θ ≈ 0, Equation 2.27 becomes

ψ̇ = r (2.89)
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2.5 Control Surface Deflection Angles

The missile considered in this study is a tail controlled missile and flies in X config-
uration as seen in Figure 2.36. Direction of the arrows show the positive deflection
rotation of fins that gives positive roll angle when looked from rear.

Figure 2.36: ‘X’ configuration for the control surfaces

When looking from back, the deflection angles which result in positive roll motion
states the positive deflection angles that are expressed with arrows. To roll the missile
to the right or left, all four control surfaces deflects with the same angle. Pitch is to
make the missile descend or climb. If 1 and 2 have ‘+’, 3 and 4 have ‘-’ deflections
then the missile shows pitch-up maneuver. If the opposite sign deflections occur the
the missile shows pitch-down maneuver. Yaw is the turning of the missile. If 1 and 4
have ‘-’, 2 and 3 have ‘+’ deflections then the missile steers to right when looked from
back. If the opposite sign deflections occur the missile steers to left.

Fin deflections are named according to the fin number stated as δ1,δ2,δ3,δ4. These four
fins cause three rotation motion on each body axis cumulatively called

δa = aileron deflection (cause roll motion)

δe = elevator deflection (cause pitch motion)

δr = rudder deflection (cause yaw motion)

These deflections are calculated from four fin deflections as follows

δa =
δ1 + δ2 + δ3 + δ4

4
(2.90)

δe =
δ1 + δ2 − δ3 − δ4

4
(2.91)

δr =
δ1 − δ2 − δ3 + δ4

4
(2.92)
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2.6 Control Actuation System Model

Control actuation system is basically a motor system that actuates fins. It has its
own closed loop control mechanism which takes autopilot fin commands as input and
reacts on the system with its output according to its command tracking performance.
Its dynamics can be stated as a second order linear system shown below.

δ(s)

δc(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(2.93)

where

ωn = natural frequency (rad/s)

ζ = damping ratio

Practically these systems have a rotation rate limit and also another limit comes from
missile fin deflection angle limit. Where the lifting performance starts to decrease, i.e.,
control effectiveness, determines this deflection limit. As the limit of the deflections
rate ±200◦/s is appropriate. CAS parameters can be selected as

ωn = 75 rad/s

ζ = 0.707

δmax = 20◦

δ̇max = 200◦/s

Figure 2.37: Block diagram of the CAS

Fin motor model or generally called CAS (control actuation system) model is shown
as follows.

d

dt

[
δ(t)

δ̇(t)

]
=

[
0 1

−ω2
n −2ζω2

n

][
δ(t)

δ̇(t)

]
+

[
0

ω2
n

]
δc(t) (2.94)
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2.7 Linear Missile Model

2.7.1 Pitch Plane State Space Model

All pitch plane equations derived in previous sections are used to build the pitch plane
state space model. By using Equation 2.70, 2.83, 2.88 and 2.94, following state space
model is obtained.


α̇

θ̇

q̇

δ̇e

δ̈e

 =


Zα 0 Zq + 1 Zδe 0

0 0 1 0 0

Mα 0 Mq Mδe 0

0 0 0 0 1

0 0 0 −ω2
n −2ζωn




α

θ

q

δe

δ̇e

+


0

0

0

0

ω2
n

 δec (2.95)

2.7.2 Roll-Yaw Plane State Space Model

By using Equation 2.69, 2.71, 2.84, 2.87, 2.89 and 2.94, following state space model is
obtained.



β̇

φ̇

ψ̇

ṗ

ṙ

δ̇a

δ̈a

δ̇r

δ̈r


=



Yβ 0 0 Yp Yr − 1 Yδa 0 Yδr 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

Lβ 0 0 Lp Lr Lδa 0 Lδr 0

Nβ 0 0 Np Nr Nδa 0 Nδr 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 −ω2
n −2ζωn 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 −ω2
n −2ζωn





β

φ

ψ

p

r

δa

δ̇a

δr

δ̇r


+



0 0

0 0

0 0

0 0

0 0

0 0

0 0

ω2
n 0

0 0

0 ω2
n



[
δac

δrc

]

(2.96)

2.8 Conclusion

Basic definitions about missile dynamics are stated and the coordinate frame defini-
tions and transformation matrices are mentioned. With dynamical and kinematical
equations of motion, 6DOF dynamics of a missile is presented.

As a result of linearization process, two state space models are derived to give a
basis for the autopilot design. For state space structure of longitudinal, lateral and
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roll dynamics, LQR controller can be designed. By adding error state for angular rate
loops to state space model, a controller structure that has no steady state error for
rate dynamics can be constructed.

To close the acceleration loops for both longitudinal, lateral motion and roll autopilot
loop, proportional and also proportional-integral called PI autopilot structure can be
constructed as the next step.
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CHAPTER 3

AUTOPILOT DESIGN

3.1 Introduction

Unlike the cruise missiles, AAMs are generally symmetric skid-to-turn missiles and in
this case it is possible to decouple the longitudinal and lateral dynamics by imple-
menting a roll autopilot that keeps roll angle zero. In this study, pitch, yaw and roll
autopilots are designed with uncoupled models and the design process is mentioned
with this order in three headings. Linear state space models that are obtained in
previous chapter are used for design process. Only difference is roll and yaw channels
are decoupled from each other and separated designs are handled. Autopilots are the
controllers that try to follow the guidance commands comes from a guidance rule. If
the controller is fast enough, then the response delays are decreased and this affects
directly the interception success. According to the needs, autopilot structures that fol-
low angles such as angle of attack or pitch angle can be implemented or as other option
acceleration autopilots are designed to follow the acceleration commands directly.

Design specifications of all autopilots are stated as follows.

u Pitch rate autopilot:
gain margin > 10dB,
phase margin > 40◦,
bandwidth of rate loop / natural frequency > 1,
elevator deflection rate < 200◦/s,
settling time (%2) < 2s.

u Pitch acceleration autopilot:
gain margin > 10dB,
phase margin > 40◦,
bandwidth of rate loop / bandwidth of acceleration loop > 1,
settling time (%2) < 2s.
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u Yaw rate autopilot:
gain margin > 10dB,
phase margin > 40◦,
bandwidth of rate loop / natural frequency > 1,
rudder deflection rate < 200◦/s,
settling time (%2) < 2s.

u Yaw acceleration autopilot:
gain margin > 10dB,
phase margin > 40◦,
bandwidth of rate loop / bandwidth acceleration loop > 1,
settling time (%2) < 2s.

u Roll rate autopilot:
gain margin > 10dB,
phase margin > 40◦,
bandwidth of rate loop / bandwidth of pitch rate loop > 1,
aileron deflection rate < 200◦/s,
settling time (%2) < 1s.

u Roll angle autopilot:
gain margin > 10dB,
phase margin > 40◦,
1 < bandwidth of rate loop / bandwidth of phi loop < 8,
bandwidth of phi loop / bandwidth of pitch acceleration loop > 1,
settling time (%2) < 1.5s.

Autopilot design points are
Mach design points = [0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0]
α design points [deg] = [-20, -6, 0, 6, 20]
β design points [deg] = [-20, -6, 0, 6, 20]
Altitude design points [m] = [0, 3000, 6000, 9000, 12000, 15000]

In addition to these needs, there are other requirements about FAS stated in Section 2.6
that must be satisfied. So while designing inner loop autopilots, to be able to consider
the FAS specifications, state space design method called linear quadratic tracker (LQT)
method based on LQR design is considered. By adding the FAS states that are limited
to the state vector as addition to the states that are aimed to control, it is faster to
check the FAS states after each design without doing any other additional work that can
make the design process slower. The stability and robustness features of the LQR such
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that infinite gain margin and phase margin over 60◦ also make this choice beneficial for
the inner rate loops and also simple to apply an automatized design procedure. As the
next step after rate loops design, outer loops are considered as acceleration loops for
longitudinal and lateral channels and a roll autopilot to decouple the these channels
that is for to keep the roll angle zero during the flight. Acceleration commands that
are generated from guidance rule must be followed as close as possible for a successful
intercept. Because of this need, acceleration loops are closed with a PI controller as
a classical control method. For the roll autopilot, and integrator already located in
open loop that is required for roll rate to obtain roll angle. Since this integrator, P
controller design is adequate and is a good choice to get fast results when considered
the total computational costs.

3.2 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is a well-known optimal controller design tech-
nique that provides practical feedback gains to operate a dynamic system at minimum
cost. The ‘L’ part of LQR comes from linear differential equations that defines the
linear dynamics of the system. This can be defined as

ẋ = Ax+Bu (3.1)

where x ∈ Rn is state vector and u ∈ Rm is a control vector. Here, A ∈ Rn×n and
B ∈ Rn×m are constant matrices for a LTI system.

The Q part comes from the quadratic functional that defines the cost function for opti-
mality calculations.Q ∈ Rn×n is a positive semi-definite matrix and called as quadratic
weight, and R ∈ Rm×m is a positive definite matrix in Equation 3.2. Since the in-
tegration interval is infinite, this is called infinite horizon performance index, that is,
the performance objectives are referred to an infinite control interval [0,∞). Since the
control horizon is infinite, Riccati equation may reach a steady state solution [31]

J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt (3.2)

The ‘R’ comes from the aim to find an u(t) for Equation 3.1 that will regulate the
system at ‘0’. Thus, LQR defines an optimal control problem that the state equation
used is linear, the cost function is quadratic and the entire state is measured. For

u = −KLQRx (3.3)
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in Equation 3.1

ẋ = (A−BKLQR)x = Acx (3.4)

In order to guarantee stability of the closed-loop system in Equation 3.4 and a unique
positive-definite limiting solution to Ricatti equation, observability of

(√
Q,A

)
pair

and controllability of (A,B) pair are needed. As long as these requirements are satis-
fied, steady state LQR yields gains that stabilize the system. The performance index
in Equation 3.2 can be considered as energy functional, so making it small keeps the
total energy of the closed loop system small. If J is small, then neither x(t) nor u(t)

can be too large. If J is minimized, it is certainly finite. That means x(t) goes to zero
as t goes the infinity since it is an infinite integral and that guarantees that the closed
loop system stability.

3.3 Linear Quadratic Tracker

3.3.1 Optimal Linear Quadratic Tracker (OLQT)

In this approach, cost function includes tracking error instead of states stated in LQR
since the aim is to keep error small for satisfactory tracking performance. The cost
function that is used for tracking purpose is as follows.

J =
1

2

∫ ∞
0

(
eTQe+ uTRu

)
dt (3.5)

Tracking error and performance output are

e = r − y (3.6)

y = Cx (3.7)

where r refers the the reference signal. In derivation procedure, the reference signal
is assumed constant. OLQT can be derived by using the well-known Hamiltonian
approach. Hamiltonian matrix becomes

H =
1

2

(
eTQe+ uTRu

)
+ pT (Ax+Bu) (3.8)
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and with use of Equation 3.6 and 3.7

H =
1

2

(
rTQr − 2xTCTQr + xTCTQCx+ uTRu

)
+ pT (Ax+Bu) (3.9)

The co-state equation is

ṗ = −∂H
∂x

= CTQr − CTQCx−AT p (3.10)

and the stationary condition is

0 =
∂H

∂u
= Ru+BT p (3.11)

Let us assume here that co-state is dependent on the state vector by the equation

p = Kx− S (3.12)

Then with Equation 3.11 and 3.12, the control input is found as

u = −R−1BTKx+R−1BTS (3.13)

Equation 3.1 and 3.10 becomes

ẋ = Ax−BR−1BTKx+BR−1BTS =
(
A−BR−1BTK

)
x+BR−1BTS (3.14)

ṗ = Kẋ = CTQr − CTQCx−ATKx+ATS (3.15)

By using Equation 3.14 and 3.15

(
KA+ATK −KBR−1BTK + CTQC

)
x =

(
AT −KBR−1BT

)
S + CTQr (3.16)

According to the Equation 3.16, an algorithm can be stated systematically by making
the assumption that left and right hand sides are exactly zero. The steps are stated
as follows:

u Solve the algebraic Riccati equation first and find K.

KA+ATK −KBR−1BTK + CTQC = 0 (3.17)
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u Next, solve for S.

S = −
(
AT −KBR−1BT

)−1
CTQr (3.18)

u Take Equation 3.18 and use it in Equation 3.13.

u = −R−1BTKx−R−1BT
(
AT −KBR−1BT

)−1
CTQr (3.19)

To simplify the cumulative state equation, the following definitions are used.

KT = R−1BTK (3.20)

Gr = R−1BT
(
AT −KBR−1BT

)−1
CTQ (3.21)

GT = BGr (3.22)

Finally, the closed loop state equation can be written as follows.

ẋ = (A−BKT )x+GT r (3.23)

3.3.2 Practical Suboptimal Tracker (PST)

In this section, the pitch, yaw and roll rate autopilot structures are stated. The block
diagram can be seen in Figure 3.1.

Figure 3.1: Block diagram represenatation of PST [32]

In this block diagram state space Equation 3.1 and full state feedback assumptions are
valid.
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Let us take ξ as integral of error and as a state variable. New state space form
can be represented as follows.

[
ẋ

ξ̇

]
=

[
A 0

−C 0

][
x

ξ

]
+

[
B

0

]
u+

[
0

I

]
r

y = Cx (3.24)

u = −Kx+ kIξ, KT =
[
K = kI

]
With this new form, new state vector is

x̂ =
[
x ξ

]T
(3.25)

and the stata space model defined below can be represented as

d

dt
= Āx̂+ B̄u+ Ḡr (3.26)

u = −KT x̂ (3.27)

KT can be found with classical LQR design and as explained in Section 3.2, LQR
design make the states converge to zero and this method makes the integral of error
zero, that is, tracking error converges to zero. Then the closed loop system is

d

dt
=
(
Ā− B̄KT

)
x̂+ Ḡr (3.28)

To design controllers with satisfactory tracking capabilities and robustness, this method
is used to design all rate loops.

3.4 Quadratic Weight Selection

Determination of weighting matrices Q and R is up to the controller design require-
ments since how these parameters are selected, closed loop system shows different
responses. If Q is largely selected, that means the designer wants to keep the x(t) is
small to minimize J and this results in being further left of closed loop poles in s-plane,
so the states decay faster to zero. If R is largely selected, the aim is to keep u(t) small
to minimize J and that means less control effort is used. That results in moving the
closed loop poles to right that slow the system response and also larger values of the
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state vector x(t).

In general, selection of Q and R matrices is an iterative procedure. Basically, while
defining Q matrix, the states in state vector x(t) are considered to determine which
diagonal component of Q must be weighted much to keep the referring state small.
In this application, there are many design points that must satisfy the selected design
requirements. So an automatic design procedure is considered to handle a Q matrix
search. R matrix is selected as unity matrix. For the sake of simplicity, diagonal
component of Q which refers to the integral of error, which is stated in Section 3.3, is
weighted only and one appropriate parameter is searched. The logic of the procedure
is basically to search a parameter q roughly that makes the system stable and then a
fine search to find a solution that satisfies the design requirements and choosing one
design parameter q that gives the fastest response. A simple flowchart of the procedure
is shown in Figure 3.2.

Figure 3.2: Flowchart of the q search algorithm
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3.5 Linear Quadratic Autopilot Design

3.5.1 Pitch Plane Autopilot Design

Pitch autopilot design process is handled in two steps:

u inner pitch rate loop autopilot,

u outer acceleration loop autopilot.

For the rate loop autopilot, suboptimal tracker solution with LQR design is considered
and state space model is constructed as follows.


α̇

q̇

δ̇e

δ̈e

eq

 =


Zα Zq + 1 Zδe 0 0

Mα Mq Mδe 0 0

0 0 0 1 0

0 0 −ω2
n −2ζωn 0

0 −1 0 0 0




α

q

δe

δ̇e∫
eq

+


0

0

0

ω2
n

0

 δec +


0

0

0

0

1

 qc (3.29)

y =
[
0 1 0 0 0

]

α

q

δe

δ̇e∫
eq

 (3.30)

eq = qc − q (3.31)

Deflection states are included in order to keep deflection rates under control and con-
sider fin actuation system (FAS) limitations while designing. FAS parameters are given
in Section 2.6 LQR design ensures an asymptotically stable closed loop system with
guaranteed levels of stability robustness. The controller obtained as the result is a
linear, unique, optimal and a full state feedback controller. LQR is a regulator so its
aim is to regulate the state vector x(t) of an initially deviated system to its equilibrium
position as quickly as possible. The restrictive part of LQR design is that it requires
measurement about all states and in this design process it is assumed that all states
are known.
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Q, weight matrix of states and R, weight matrix of input are selected as

Q =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 q

 (3.32)

and

R = 1 (3.33)

Where q is the weight coefficient of integral of the pitch rate error and this coefficient
determines characteristics of the pitch rate tracking such as settling time, overshoot,
rise time and also the deflection rate response of the system. Determination of q
value is handled by a search process with sequential iterations stated in Section 3.4.
After the suitable q values that provides design requirements are collected, the one
that gives the fastest response is selected as the q value of that design point. For the
acceleration loop, PI controller is designed to have zero steady state error and fast
transient response. Pitch autopilot structure is shown in Figure 3.3.

Figure 3.3: Pitch autopilot structure

The transfer function between longitudinal acceleration and pitch angular rate is stated
as

az(s)

q(s)
= V

(
Zδes

2 + (ZqMδe −MqZδe) s+ ZαMδe −MαZδe
Mδes+MαZδe − ZαMδe

)
(3.34)

The terms in Equation 3.34 are stated in Section 2.4.2.3. By using Equation 3.34
and closed loop transfer function of pitch rate loop, a new open loop system is ob-
tained to design PI controllers for acceleration loop for all design points to close the
loop. In Figure 3.4 - 3.21, design results of pitch rate and acceleration autopilots are
represented.
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Figure 3.4: Penalty term for design points

Figure 3.5: Kα gain for design points

Figure 3.6: Kq gain for design points
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Figure 3.7: Kδe gain for design points

Figure 3.8: Kδ̇e
gain for design points

Figure 3.9: Ke gain for design points
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Figure 3.10: Gain margin for design points

Figure 3.11: Phase margin for design points

Figure 3.12: Settling time for design points
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Figure 3.13: Deflection rate for design points

Figure 3.14: Rate loop bandwidth over natural frequency of system for design points

Figure 3.15: Acceleration loop gain margin for design points
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Figure 3.16: Acceleration phase margin for design points

Figure 3.17: Acceleration loop settling time for design points

Figure 3.18: Acceleration loop settling value for design points
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Figure 3.19: Acceleration loop rise time for design points

Figure 3.20: Acceleration loop integral gain for design points

Figure 3.21: Acceleration loop proportional gain for design points
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For the rate and acceleration loops, gain margin is greater than 10 dB, phase margin
is greater than 60 degrees and settling time of step responses are lower than 2 seconds
for most of the design points. Existence of integrator for both inner and outer loops
results in negligible steady state errors.

3.5.2 Yaw Plane Autopilot Design

Yaw autopilot design process is handled in two steps:

u inner yaw rate loop autopilot,

u outer acceleration loop autopilot.

For the rate loop autopilot, suboptimal tracker solution with LQR design is considered
and state space model is constructed as follows.


β̇

ṙ

δ̇r

δ̈r

er

 =


Yβ Yr − 1 Yδr 0 0

Nβ Nr Nδr 0 0

0 0 0 1 0

0 0 −ω2
n −2ζωn 0

0 −1 0 0 0




β

r

δr

δ̇r∫
er

+


0

0

0

ω2
n

0

 δrc +


0

0

0

0

1

 rc (3.35)

y =
[
0 1 0 0 0

]

β

r

δr

δ̇r∫
er

 (3.36)

er = rc − r (3.37)

Q, weight matrix of states and R, weight matrix of inputs are selected as in pitch rate
autopilot design.

For the acceleration loop, PI controller is designed as in pitch rate design. Yaw au-
topilot structure is shown in Figure 3.22.
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Figure 3.22: Yaw autopilot structure

The transfer function between longitudinal acceleration and yaw angular rate is stated
as

ay(s)

r(s)
= V

(
Yδrs

2 + (YrNδr −NrYδr) s+ YβNδr −NβYδr
Nδrs+NβYδr − YαNδr

)
(3.38)

The terms in Equation 3.38 are stated in Section 2.4.2.3.
By using Equation 3.38 and closed loop transfer function of yaw rate loop, a new open
loop system is obtained to design PI controllers for acceleration loop for all design
points. In Figure 3.23 - 3.40, design results of yaw rate and acceleration autopilots are
represented.

Figure 3.23: Penalty term for design points
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Figure 3.24: Kβ gain for design points

Figure 3.25: Kr gain for design points

Figure 3.26: Kδr gain for design points
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Figure 3.27: Kδ̇r
gain for design points

Figure 3.28: Ke gain for design points

Figure 3.29: Gain margin for design points

58



Figure 3.30: Phase margin for design points

Figure 3.31: Settling time for design points

Figure 3.32: Deflection rate for design points
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Figure 3.33: Rate loop bandwidth over natural frequency of system for design points

Figure 3.34: Acceleration loop gain margin for design points

Figure 3.35: Acceleration phase margin for design points
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Figure 3.36: Acceleration loop settling time for design points

Figure 3.37: Acceleration loop settling value for design points

Figure 3.38: Acceleration loop rise time for design points
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Figure 3.39: Acceleration loop integral gain for design points

Figure 3.40: Acceleration loop proportional gain for design points

For the rate loop, gain margin is greater than 10 dB, phase margin is greater than
60 degrees and settling time of step responses are lower than 2 seconds for all design
points. For the acceleration loop, gain margin is generally between 5 dB and 10 dB,
phase margin is greater than 60 degrees and settling time is lower than 2 seconds for
most of the cases. Existence of integrator for both inner and outer loops results in
negligible steady state errors.

3.5.3 Roll Autopilot Design

Roll autopilot design process is handled in two steps:

u inner roll rate loop autopilot,

u outer phi loop autopilot.
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For the rate loop autopilot, suboptimal tracker solution with LQR design is considered
and state space model is constructed as follows.


ṗ

δ̇a

δ̈a

ep

 =


Lp Lδa 0 0

0 0 1 0

0 −ω2
n −2ζωn 0

−1 0 0 0



p

δa

δ̇p∫
ep

+


0

0

ω2
n

0

 δac +


0

0

0

1

 pc (3.39)

y =
[
0 1 0 0 0

]
p

δp

δ̇p∫
ep

 (3.40)

ep = pc − p (3.41)

Q, weight matrix of states and R, weight matrix of inputs are selected as

Q =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 q

 (3.42)

and
R = 1 (3.43)

For the phi loop, P controller is designed since there is an integrator in the loop already.
Roll autopilot structure is shown in Figure 3.41.

Figure 3.41: Roll autopilot structure

The terms in Equation 3.39 are stated in Section 2.4.2.3. By using the integrator in
open loop and closed loop transfer function of roll rate loop, a new open loop system
is obtained to design P controllers for roll angle loop for all design points. In Figure
3.42 - 3.56, design results of roll rate and roll angle autopilots are represented.
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Figure 3.42: Penalty term for design points

Figure 3.43: Kp gain for design points

Figure 3.44: Kδa gain for design points
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Figure 3.45: Kδ̇a
gain for design points

Figure 3.46: Ke gain for design points

Figure 3.47: Gain margin for design points
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Figure 3.48: Phase margin for design points

Figure 3.49: Settling time for design points

Figure 3.50: Deflection rate for design points
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Figure 3.51: Roll rate loop bandwidth over pitch rate bandwidth for design points

Figure 3.52: Phi loop gain margin for design points

Figure 3.53: Phi loop phase margin for design points
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Figure 3.54: Phi loop proportional gain for design points

Figure 3.55: Phi loop settling time for design points

Figure 3.56: Phi loop settling value for design points
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For the rate loop, gain margin is greater than 7 dB, phase margin is greater than
60 degrees and settling time of step responses are lower than 1 second for all design
points. For the roll angle loop, gain margin is greater than 10 dB, phase margin is
greater than 50 degrees and settling time is lower than 1 second for most of the cases.
Existence of integrator for both inner and outer loops results in negligible steady state
errors.

Step responses of outer loop LTI systems are represented as follows. Some of the
responses are plotted to prevent figure complexity.

Figure 3.57: Pitch acceleration loop step responses

Figure 3.58: Yaw acceleration loop step responses
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Figure 3.59: Phi loop step responses

3.6 Nonlinear Simulation Results

For an example scenario seen in Figure 3.60, nonlinear 6DOF simulation results of
rate, acceleration and roll autopilots are given as follows.

Table3.1: Initial conditions of Scenario – 1

Scenario(t0) Missile Target
X[km] 0 5
Y [km] 0 0

Altitude[km] 6 5
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 90
Target Maneuver 10 g longitudinal

Figure 3.60: Body pitch rate autopilot response
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Figure 3.61: Body pitch rate autopilot response

Figure 3.62: Body yaw rate autopilot response

Figure 3.63: Body roll rate autopilot response
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Figure 3.64: Longitudinal acceleration autopilot response

Figure 3.65: Lateral acceleration autopilot response

Figure 3.66: Roll autopilot response
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3.7 Conclusion

In this chapter, autopilot design logic, procedure and results are stated. Aerodynamic
characteristic of the missile become unstable as the agility increases and as a result,
necessity of controller design for many design points for cumulative flight region is
considered and handled with PST, PI and P controller designs and satisfactory results
are obtained for all longitudinal and lateral autopilots. Firstly pitch, yaw and roll rate
autopilots are designed with PST method and acceleration loops are closed with PI
controllers for pitch and yaw channels. Then, to decouple the pitch and yaw channels
roll autopilot is designed with P controllers. Gain margin, phase margin and settling
time specifications are generally met. As seen from the step responses of LTI models
in Figure 3.57, 3.58 and 3.59, no steady state error and fine settling characteristics are
obtained with PI and P designs. In addition to this, nonlinear simulation results show
that satisfactory command tracking performance is obtained until interception.
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CHAPTER 4

GUIDANCE DESIGN

4.1 Introduction

Most of the SMC applications for missile guidance are first order sliding mode applica-
tions. rth order sliding mode means up to (r− 1)th order derivative of sliding variable
is equal to zero. That is,

s = ṡ = s̈ = ... = sr−1 = 0 (4.1)

As seen from Equation 4.1, order of sliding mode also represents the smoothness of
state trajectory on sliding surface and the higher order means smoother sliding on
surface. As stated above, being state trajectory below and above of the surface results
in a high frequency control signal changes. This action during the sliding mode is
called chattering and this effect causes undesirable results such as triggering high
frequency modes of the plant and instability, also may harm actuators that control the
plant [14]. To decrease chattering, higher order sliding mode control is proposed and
mostly the second order methods are commonly applied in literature and one of these
methods is super twisting algorithm [16]. This method has applied to many areas such
that diesel engine control [17], vehicle path following [18], pneumatic artificial muscle
control [19] and aircraft pitch control [14]. According to the proposed guidance laws
that are stated in the following sections, there is no need for the target acceleration to
be known accurately.

4.2 First Order Sliding Mode Guidance

In this heading, two different first order sliding mode guidance rules are derived. At
first, Line-of-Sight (LOS) rate is considered as a sliding surface. This surface choice
comes from the idea of zero LOS rate finals with interception in most cases, and this
is the general choice of sliding surface in sliding mode guidance design applications
[11, 12, 13]. This guidance rule is derived for comparison with the second order sliding
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mode guidance rule which is derived in Section 4.3 that uses same surface. Secondly, a
proportional-integral (PI) sliding surface is proposed to provide a better interception
performance than the guidance law that uses LOS rate sliding surface. Since making
LOS rate equal to zero in engagement not always means interception and oppositely
may mean flying away from the target in some cases, additional term of LOS angle is
added to LOS rate with a gain.

4.2.1 LOS Rate Surface

For missile guidance technics, aim is generally not to let LOS angular rate increase and
make as close as to zero to hold the target in field of view (FOV) and result with an
interception in most cases. As stated in [3] and [37], aim of the proportional navigation
guidance (PNG) which is the most widely used guidance law in practice, is to nullify
the LOS rate between target and interceptor. According to the parallel guidance in
Figure 4.1 which is the idea of PNG, LOS rate must be equal to zero. In reality, it
differs from zero, so that guidance command which is proportional to the rate of the
LOS change may decrease the absolute value of the LOS rate and it will tend to closer
to zero.

Figure 4.1: Geometry of planar engagement of parallel guidance [37]

This idea of nullification of LOS rate gives the inspiration to a solution to the guid-
ance problem that uses sliding mode control method and leads to the general choice
of sliding surface definition as LOS rate [11, 12, 13]. Then, as a sliding surface s = λ̇

is applied for the first guidance rule derivation.

Firstly, basic engagement definitions of LOS angle and sigma angle are stated be-
low with Figure 4.2 and the equations. These equations are used in the following
guidance law derivations.
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Figure 4.2: Missile-target engagement geometry

λ(t) = arctan

(
YT − YM
XT −XM

)
(4.2)

λ̇(t) =
∆VY ∆X −∆VX∆Y

R2(t)
(4.3)

λ̈(t) =
aT (t) cos(σT )− aM (t) cos(σM )− 2Ṙ(t)λ̇(t)

R(t)
(4.4)

where

∆X = XT −XM (4.5)

∆Y = YT − YM (4.6)

∆VY = VYT − VYM (4.7)

∆VX = VXT − VXM (4.8)

σM (t) = γM − λ(t) (4.9)

σT (t) = γT − λ(t) (4.10)

Sliding mode guidance rule is constructed by calculating equivalent control and switch-
ing control rules. Sum of the equivalent control and switching control defines the con-
trol law that is applied to missile. The aim of sliding control is to drive the nonlinear
plant states to a predefined surface, which is called sliding surface that determines the
behaviour of the states, with switching control law, and after reaching to the surface,
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keep the states on the surface. The term ‘switching’ comes from the change of the
control signal when the states are above or below the surface. That means when the
plant state trajectory is above the surface, one feedback gain and a different gain if
the trajectory drops below the surface.

4.2.1.1 Equivalent Control

Whenever the initial state is on the surface, the control law that keeps the states on
the surface when exciting the system is called equivalent control. So the equivalent
control component of the control law is obtained by equating the derivative of the
sliding variable to zero [10]. While calculating equivalent control, target acceleration
term is considered as uncertainty and ignored.

s = λ̇(t) (4.11)

ṡ = λ̈(t) =
aT (t) cos(σT )− aM (t) cos(σM )− 2Ṙ(t)λ̇(t)

R(t)
(4.12)

If Equation 4.12 is equated to zero, then equivalent control component of the guidance
law can be found as

aMeq =
−2Ṙ(t)λ̇(t)

cos(σM (t))
(4.13)

4.2.1.2 Switching Control

Switching control law, also defined as reaching law, is the component that provides
the convergence of the state that is chosen as surface to zero. To guarantee the
convergence, it is required to obtain an appropriate switching control. This component
has a switching term(generally a signum function) as function of surface, it changes
its value according to the state values is below or above of the surface. The switching
control component is proposed as

aMsw =
kswsgn(s)

cos(σM (t))
(4.14)

To check whether this rule provides convergence, firstly a Lyapunov function is deter-
mined as in [11, 12, 13].

V =
1

2
s2 (4.15)
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This equation is a positive definite function for s 6= 0, so it is suitable to choose as a
Lyapunov function. To check whether the reaching law is suitable, Lyapunov stability
criteria is applied and according to this rule, derivative of the Lyapunov function must
be a negative term [10].

V̇ = s(t)ṡ(t) < 0

= s(t)

(
aT (t) cos(σT (t))−

(
aMeq(t) + aMsw(t)

)
cos(σM (t))− 2Ṙ(t)λ̇(t)

R(t)

)
≤ s(t)

R
(aTmax − kswsgn(s)) < 0 (4.16)

if s < 0⇒ (aTmax + kswsgn(s)) > 0

if s > 0⇒ (aTmax − kswsgn(s)) < 0

That means, according to the Lyapunov stability criteria ksw > aTmax is required.
aTmax is the maximum acceleration capability of the target and taken as 10g(≈ 98.1m/s2)

and ksw term is taken as 100m/s2. That is where the necessity of the knowledge of
target acceleration during flight vanishes. Here, sliding mode control provides to derive
a guidance rule with only assigning a maximum value of target acceleration to cope
with this uncertainty. As a result, a guidance law in Equation 4.17 that is robust up
to 10g target acceleration is obtained.

aM =
−2Ṙ(t)λ̇(t) + kswsgn(s)

cos(σM (t))
(4.17)

4.2.2 Proportinal-Integral (PI) Surface

To hold LOS rate zero with PNG guidance may not mean intercept in some scenarios,
there can be such scenarios that missile gets away from the target while LOS rate is
zero, especially for high off-boresight shoots. In such situations, steering to the target
immediately and keep it in field of view of the seeker become important. With an
additional LOS angle term to LOS rate, a new sliding surface can be obtained. Many
of PI and PID surface applications are stated in literature and some of them use these
methods in controlling DC motor [25] and robotic manipulators [27, 28], and also for
a torpedo control [26]. This logic is applied to the missile guidance problem.

s(t) = kP e(t) + kI

∫ t

0
e(τ)dτ (4.18)

To apply this PI rule to the missile guidance problem, analogically LOS rate is applied
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to the error term in Equation 4.18.

s(t) = kP λ̇(t) + kIλ(t) (4.19)

ṡ(t) = kP λ̈(t) + kI λ̇(t) (4.20)

4.2.2.1 Equivalent Control

As stated in Section 4.2.1.1, if the definitions in Equation 4.3 and 4.4 are used and
the derivative of the sliding variable 4.20 is equated to zero, the equivalent control
component is obtained as

aMeq =

(
kI λ̇(t)− kP

2Ṙ(t)λ̇(t)

R(t)

)
R

kP cos(σM (t))
(4.21)

4.2.2.2 Switching Control

By using the same switching control component in Equation 4.14

V̇ = s(t)ṡ(t) < 0

= s(t)
(
kP λ̈(t) + kI λ̇(t)

)
= s(t)

(
kI λ̇(t) + kP

(
aT (t) cos(σT (t))−

(
aMeq(t) + aMsw(t)

)
cos(σM (t))− 2Ṙ(t)λ̇(t)

R(t)

))
≤ s(t)kP

R
(aTmax − kswsgn(s)) < 0 (4.22)

if s < 0⇒ (aTmax + kswsgn(s)) > 0

if s > 0⇒ (aTmax − kswsgn(s)) < 0

According to the Lyapunov stability criteria ksw > aTmax is required.

Finally, with summation of Equation 4.21 and the switching control component, total
acceleration command is obtained as

aM =

(
kI λ̇(t)R(t)

kP
− 2Ṙ(t)λ̇(t) + kswsgn(s)

)
1

cos(σM (t))
(4.23)
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4.2.2.3 Optimization with Genetic Algorithm

Genetic algorithm (GA) is an optimization method that imitates genetic science with
its features that provides variation such as natural selection, crossover and mutation
to find an optimal solution by creating optimal solution candidates in each generation.
In this method, possible solution candidates are selected and used to create the next
generation with crossover and mutation to obtain new members and populations.

To determined the kP and kI parameters, genetic algorithm is applied. Firstly, two
scenarios are constructed which the first one has a non-maneuvering and the second
one has a maneuvering target. Then, for these scenarios, optimization procedures are
started and a gain set is obtained. Defined reference scenarios are as follows.

Table4.1: Initial conditions of refecence scenario – 1

Scenario(t0) Missile Target
X[km] 0 20
Y [km] 0 -10

Altitude[km] 6 6
V elocity[Mach] 0.85 1.2

Heading Angle[deg] 0 225
Target Maneuver 0 g

Figure 4.3: Missile and target trajectories
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Table4.2: Initial conditions of refecence scenario – 2

Scenario(t0) Missile Target
X[km] 0 20
Y [km] 0 0

Altitude[km] 6 6
V elocity[Mach] 0.85 1.4

Heading Angle[deg] 0 225
Target Maneuver 10 g lateral

Figure 4.4: Missile and target trajectories

The cost function is selected as

J(x, t) = w1k1J1(x, t) + w2k2J2(x, t) + w3k3J3(x, t) + w4k4J4(x, t) +B.F. (4.24)

where

J1(x, t) : time integral of sliding surface,
J2(x, t) : time integral of derivative of sliding variable,
J3(x, t) : time integral of missile acceleration,
J4(x, t) : missile-target interception time,
w1, w2, w3, w4 : cost weighting coefficients,
k1, k2, k3, k4 : cost scaling coefficients,
B.F. : barrier function.

Cost weighting coefficients are in the order of cost function pieces definition from larger
to smaller. That is, time integral of sliding surface is weighted more than other cost
pieces. As a result of optimization, following gains are obtained.

kP = 13.2 (4.25)
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kI = 0.1 (4.26)

4.3 Second Order Sliding Mode Guidance

As stated earlier, the sliding order determines the smoothness degree related to the
motion constraint on the sliding surface s = 0. In other words, it is the degree of
keeping the system on the sliding manifold. rth order sliding mode means (r − 1)th

and its previous derivatives of the sliding manifold is equal to zero when sliding mode
occurs as represented in Equation 4.1.

Generally the sliding mode order implies the total number of time derivatives of the
sliding variable that the control appears explicitly, that is, for second order sliding
mode, u, control input appears in the second time derivative of the sliding variable.
However, second order sliding mode control can be used also for the cases that control
input appears in the first time derivative of the sliding variable for chattering attenu-
ation.

In this study, one of the second order sliding mode methods, called super twisting
method is applied to the missile guidance problem. This method is used for the cases
that control input appears in the first time derivative of the sliding variable to atten-
uate chattering and obtained much smoother control signals when compared to first
order sliding mode control.

Consider a system which the relative degree is 1, that is

∂σ̇

∂u
6= 0 (4.27)

The aim is to stabilize the following system.

y1 = σ(t, x) (4.28)

ẏ1 = y2 (4.29)

ẏ2 = φ(.) + γ(t, x)u̇(t) (4.30)

where y1 represent the actual sliding variable and its derivative y2 is not available for
measurement, and uncertain terms φ(.) and γ(t, x) are bounded such that

|φ(.)| ≤ Φ (4.31)
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0 < G1 < γ(t, x) < G2 (4.32)

Control algorithm for the system above is defined as

u(t) = −K|y1|ρsgn(y1) + u1 (4.33)

u̇1 = −a.sgn(y1) (4.34)

where

a >
Φ

G1
(4.35)

K2 >
4ΦG2 (a+ Φ)

G3
1 (a− Φ)

(4.36)

0 < ρ < 0.5 (4.37)

in [16, 17, 18].

In our guidance problem, the system to stabilize is determined as

y1 = σ(t, x) = λ̇(t) (4.38)

ẏ1 = y2 = λ̈(t) (4.39)

ẏ2 =
...
λ (t) = φ(.) + γ(t, x)u̇(t) (4.40)

LOS rate is stated with Equation 4.4, and its first time derivative is stated as

...
λ (t) =

−2R̈λ̇

R
+

6Ṙ2λ̇

R2
+

3Ṙ (aM cos(σM )− aT cos(σT ))

R2
+
aM sin(σM )σ̇M

R
−

aT sin(σT )σ̇T
R

+
ȧT cos(σT )

R
+

(
− cos(σM )

R

)
︸ ︷︷ ︸

γ(t,x)

ȧM (4.41)

Uncertain terms φ(.) and γ(t, x) are dependent on the missile-target interception sce-
narios. For some different scenarios, these values are noted and the controller gains
are calculated and applied. However, the results show that this logic is not applicable
to missile guidance application. In [14], it is stated that the most appropriate way to
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find the suitable parameter values is to adjust them during simulation to get rid of the
large values obtained with rough evaluation technique. This method is also applied
but causes very large missile acceleration commands and saturates the commands dur-
ing simulation and no satisfactory results are obtained. Finally, it is considered to
obtain these K, a, and ρ parameters by optimization and GA is used to find them as
applied for PI surface. The same scenarios in Section 4.2.2.3 are used. As a result, the
following gains are found.

K = 292.66 (4.42)

a = 30.5 (4.43)

ρ = 0.146 (4.44)

These gains are applied to many scenarios and satisfactory results are obtained. How-
ever, these scenarios have shown that the parameters that are found by GA can be
determined according to a rule related to the sliding surface adaptively. As a result,
an adaptive rule stated below is proposed to find these gains.

a = 300λ̇(t) + 20 (4.45)

K = 10a (4.46)

ρ = 0.2 (4.47)

This rule is generated by making connection between LOS rate and the parameter
a. As a result of observation and analysis of many optimization results of scenarios,
parameter a is required to stay between approximately 20 and 50. So, a linear relation
is defined between LOS rate and a that is stated in Equation 4.45. Besides, in many
cases, GA process is resulted with K parameter which is approximately ten times of
parameter a. As stated in Equation 4.42 and 4.3. The parameter ρ is selected with
a tuning around the static gain that GA gives. A comparison of static and adaptive
gain ST method is examined in Section 5.3.

All methods derived with first and second order sliding modes are compared with
different scenarios in the next chapter.
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4.4 Conclusion

In this chapter, first order and second order sliding mode guidance rules are derived.
First order guidance derivation results in two different rules that choose LOS rate
as a surface and PI surface that get LOS rate and LOS angle as parameters. The
need of first order rule that uses LOS rate surface is for a logical comparison with
the second order guidance rule that uses the same surface, to see the improvement
about chattering attenuation which is realized by first order time derivative of the
sliding variable. Next, PI surface is proposed as a first order sliding mode guidance
rule to eliminate the possible interception scenarios that result in failure with first
order guidance law that uses LOS rate surface. The resulting guidance law is also used
for performance comparison with the super twisting guidance rule. Finally, second
order sliding mode guidance rule is constructed by using super twisting method. This
method relies on the idea of getting the derivative of system input as the input that
signum function, that cause chattering and discontinuity, appears. So, this indirect
discontinuity affect helps to attenuate the chattering effect.
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CHAPTER 5

SIMULATION STUDIES

5.1 Introduction

6DOF simulation model is constructed in MATLAB/Simulink. Model blocks and
signal flow of the model is shown in Figure 5.1.

Figure 5.1: 6DOF model blocks and signal flow

In ‘Real World’ block, aerodynamic force and moments coefficients are stated with
interpolation tables. According to the flight parameters that are angle of attack, angle
of sideslip, Mach number, fin deflection angles and body angular velocities, aerody-
namic force and moments are calculated. After adding thrust force and gravitational
force components, total force and moments on missile body are handled to calculate
body translational and angular velocities, translational acceleration and Euler angles
according to the nonlinear equations of motion.
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In ‘Guidance’ block, guidance rules that are stated in Chapter 4 and PNG law are
constructed for comparison. All intercept geometry variables are calculated in this
block to generate the appropriate guidance signals to feed the autopilot.

In ‘Autopilot’ block, rate, acceleration and roll autopilot structures are constructed.
Rate, acceleration and roll angle feedbacks are fed from ‘Real World’ block and longi-
tudinal and lateral acceleration commands are fed from ‘Guidance’ block.

5.2 First Order versus Second Order Sliding Mode Guidance

5.2.1 Scenario - 1

In this long range scenario, shooter and target are flying at opposite directions at
approximately 20000ft. The shooter flies with heading to north and releases the missile
at 0.85 Mach when the target flies with heading to south at 0.85 Mach. At the time of
shoot, there is approximately 100 km distance between the shooter and target. In this
scenario it is assumed that the target makes no evasion maneuver. Initial conditions
are stated in Table 2 and the results are stated with figures as follows.

Table5.1: Initial conditions of Scenario – 1

Scenario(t0) Missile Target
X[km] 0 70
Y [km] 0 70

Altitude[km] 6 6
V elocity[Mach] 0.85 0.85

Heading Angle[deg] 0 180
Target Maneuver 0

Figure 5.2: Missile and target trajectories
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Figure 5.3: Longitudinal acceleration command

Figure 5.4: Longitudinal sliding surface

Figure 5.5: Longitudinal sliding surface (zoomed)
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Figure 5.6: Longitudinal sliding surface (zoomed)

Figure 5.7: Derivative of longitudinal sliding variable

Figure 5.8: Derivative of longitudinal sliding variable (zoomed)
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Figure 5.9: Derivative of longitudinal sliding variable (zoomed)

Figure 5.10: Lateral acceleration command

Figure 5.11: Lateral sliding surface
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Figure 5.12: Lateral sliding surface (zoomed)

Figure 5.13: Lateral sliding surface (zoomed)

Figure 5.14: Derivative of lateral sliding variable
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Figure 5.15: Derivative of lateral sliding variable (zoomed)

Figure 5.16: Derivative of lateral sliding variable (zoomed)

Guidance commands grow close to the intercept caused by LOS rate increase during
the approach. This is a general result that can be seen in most of the guidance laws
that use LOS rate. In Figure 5.8,5.9, 5.15 and 5.16, chattering attenuation can be seen
clearly with derivative of sliding variable in both longitudinal and lateral channels.
Also the magnitude of acceleration commands after sliding mode occurs is smaller
than the first order method.

5.2.2 Scenario - 2

In this long range scenario, the shooter flies with heading to north and releases the
missile at 0.85 Mach when the target flies with heading to south at 0.85 Mach. At the
time of shoot, there is approximately 100 km distance between the shooter and target
as before. In this scenario, the target starts an evasion maneuver when the distance to
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missile is 10 km. Initial conditions are stated in Table 5.2 and the results are stated
with figures as follows.

Table5.2: Initial conditions of Scenario – 2

Scenario(t0) Missile Target
X[km] 0 70
Y [km] 0 70

Altitude[km] 6 6
V elocity[Mach] 0.85 0.85

Heading Angle[deg] 0 135
Target Maneuver 0 until 10km left between missile and

target then 7 g lateral
-2 g longitudinal

Figure 5.17: Missile and target trajectories

Figure 5.18: Longitudinal acceleration command
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Figure 5.19: Longitudinal sliding surface

Figure 5.20: Longitudinal sliding surface (zoomed)

Figure 5.21: Longitudinal sliding surface (zoomed)
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Figure 5.22: Derivative of longitudinal sliding variable

Figure 5.23: Derivative of longitudinal sliding variable (zoomed)

Figure 5.24: Derivative of longitudinal sliding variable (zoomed)
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Figure 5.25: Lateral acceleration command

Figure 5.26: Lateral sliding surface

Figure 5.27: Lateral sliding surface (zoomed)
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Figure 5.28: Lateral sliding surface (zoomed)

Figure 5.29: Derivative of lateral sliding variable

Figure 5.30: Derivative of lateral sliding variable (zoomed)
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Figure 5.31: Derivative of lateral sliding variable (zoomed)

5.3 Static versus Adaptive Gain Super Twisting Guidance

5.3.1 Scenario - 1

This is the same scenario with Section 5.2.1.

Figure 5.32: Missile and target trajectories
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Figure 5.33: Longitudinal acceleration command

Figure 5.34: Longitudinal sliding surface

Figure 5.35: Longitudinal sliding surface (zoomed)
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Figure 5.36: Derivative of longitudinal sliding variable

Figure 5.37: Derivative of longitudinal sliding variable (zoomed)

Figure 5.38: Derivative of longitudinal sliding variable (zoomed)
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Figure 5.39: Lateral acceleration command

Figure 5.40: Lateral sliding surface

Figure 5.41: Lateral sliding surface (zoomed)
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Figure 5.42: Derivative of lateral sliding variable

Figure 5.43: Derivative of lateral sliding variable (zoomed)

Figure 5.44: Derivative of lateral sliding variable (zoomed)
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5.3.2 Scenario - 2

In this high off-boresight scenario, the shooter flies with −45◦ heading and releases
the missile at 0.85 Mach when the target flies with 135◦ heading at 0.85 Mach. At
the time of shoot, there is approximately 11.2 km distance between the shooter and
target. In this scenario it is assumed that the target makes no evasion maneuver.
Initial conditions are stated in Table 5.3 and the results are stated with figures as
follows.

Table5.3: Initial conditions of Scenario – 2

Scenario(t0) Missile Target
X[km] 0 10
Y [km] 0 5

Altitude[km] 6 6
V elocity[Mach] 0.85 0.85

Heading Angle[deg] -45 135
Target Maneuver 0

Figure 5.45: Missile and target trajectories
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Figure 5.46: Longitudinal acceleration command

Figure 5.47: Longitudinal sliding surface

Figure 5.48: Derivative of longitudinal sliding variable
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Figure 5.49: Derivative of longitudinal sliding variable (zoomed)

Figure 5.50: Lateral acceleration command

Figure 5.51: Lateral sliding surface
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Figure 5.52: Derivative of lateral sliding variable

Figure 5.53: Derivative of lateral sliding variable (zoomed)

5.4 Engagement Scenarios of PI, ST and PNG Methods Comparison

5.4.1 Scenario - 1

In this scenario, the shooter flies with heading to north and releases the missile at
0.85 Mach when the target flies with heading to south at 0.85 Mach. At the time of
shoot, there is approximately 100 km distance between the shooter and target. In this
scenario it is assumed that the target makes no evasion maneuver. Initial conditions
are stated in Table 5.4 and the results are stated with figures as follows.
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Table5.4: Initial conditions of Scenario – 1

Scenario(t0) Missile Target
X[km] 0 70
Y [km] 0 70

Altitude[km] 6 6
V elocity[Mach] 0.85 0.85

Heading Angle[deg] 0 180
Target Maneuver 0

Figure 5.54: Missile and target trajectories

Figure 5.55: Longitudinal acceleration command
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Figure 5.56: Longitudinal sliding surface

Figure 5.57: Longitudinal sliding surface (zoomed)

Figure 5.58: Derivative of longitudinal sliding variable
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Figure 5.59: Derivative of longitudinal sliding variable (zoomed)

Figure 5.60: Derivative of longitudinal sliding variable (zoomed)

Figure 5.61: Lateral acceleration command
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Figure 5.62: Lateral sliding surface

Figure 5.63: Lateral sliding surface (zoomed)

Figure 5.64: Derivative of lateral sliding variable
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Figure 5.65: Derivative of lateral sliding variable (zoomed)

Figure 5.66: Derivative of lateral sliding variable (zoomed)

5.4.2 Scenario - 2

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 135◦ heading at 0.85 Mach. At the time of shoot, there
is approximately 22.3 km distance between the shooter and target. In this scenario it
is assumed that the target makes no evasion maneuver. Initial conditions are stated
in Table 5.5 and the results are stated with figures as follows.
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Table5.5: Initial conditions of Scenario – 2

Scenario(t0) Missile Target
X[km] 0 20
Y [km] 0 10

Altitude[km] 6 6
V elocity[Mach] 0.85 0.85

Heading Angle[deg] 0 135
Target Maneuver 0

Figure 5.67: Missile and target trajectories

Figure 5.68: Longitudinal acceleration command
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Figure 5.69: Longitudinal sliding surface

Figure 5.70: Longitudinal sliding surface (zoomed)

Figure 5.71: Derivative of longitudinal sliding variable
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Figure 5.72: Derivative of longitudinal sliding variable (zoomed)

Figure 5.73: Derivative of longitudinal sliding variable (zoomed)

Figure 5.74: Lateral acceleration command
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Figure 5.75: Lateral sliding surface

Figure 5.76: Lateral sliding surface (zoomed)

Figure 5.77: Derivative of lateral sliding variable
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Figure 5.78: Derivative of lateral sliding variable (zoomed)

Figure 5.79: Derivative of lateral sliding variable (zoomed)

5.4.3 Scenario - 3

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 135◦ heading at 0.85 Mach. At the time of shoot, there
is approximately 11.2 km distance between the shooter and target. In this scenario it
is assumed that the target makes no evasion maneuver. Initial conditions are stated
in Table 5.6 and the results are stated with figures as follows.
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Table5.6: Initial conditions of Scenario – 3

Scenario(t0) Missile Target
X[km] 0 10
Y [km] 0 5

Altitude[km] 6 6
V elocity[Mach] 0.85 0.85

Heading Angle[deg] 0 135
Target Maneuver 0

Figure 5.80: Missile and target trajectories

Figure 5.81: Longitudinal acceleration command
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Figure 5.82: Longitudinal sliding surface

Figure 5.83: Derivative of longitudinal sliding variable

Figure 5.84: Derivative of longitudinal sliding variable (zoomed)
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Figure 5.85: Derivative of longitudinal sliding variable (zoomed)

Figure 5.86: Lateral acceleration command

Figure 5.87: Lateral sliding surface
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Figure 5.88: Derivative of lateral sliding variable

Figure 5.89: Derivative of lateral sliding variable (zoomed)

5.4.4 Scenario - 4

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 135◦ heading at 1 Mach. At the time of shoot, there
is approximately 4.2 km distance between the shooter and target. In this scenario,
the target makes an evasion maneuver with 10g in lateral plane. Initial conditions are
stated in Table 5.7 and the results are stated with figures as follows.
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Table5.7: Initial conditions of Scenario – 4

Scenario(t0) Missile Target
X[km] 0 3
Y [km] 0 3

Altitude[km] 6 6
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 135
Target Maneuver 10 g lateral

Figure 5.90: Missile and target trajectories

Figure 5.91: Longitudinal acceleration command
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Figure 5.92: Longitudinal sliding surface

Figure 5.93: Derivative of longitudinal sliding variable

Figure 5.94: Lateral acceleration command
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Figure 5.95: Lateral sliding surface

Figure 5.96: Derivative of lateral sliding variable

5.4.5 Scenario - 5

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 90◦ heading at 1 Mach. At the time of shoot, there is
3 km distance between the shooter and target. In this scenario, the target makes no
evasion maneuver. Initial conditions are stated in Table 5.8 and the results are stated
with figures as follows.
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Table5.8: Initial conditions of Scenario – 5

Scenario(t0) Missile Target
X[km] 0 3
Y [km] 0 0

Altitude[km] 6 6
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 90
Target Maneuver 0

Figure 5.97: Missile and target trajectories

Figure 5.98: Longitudinal acceleration command

125



Figure 5.99: Longitudinal sliding surface

Figure 5.100: Derivative of longitudinal sliding variable

Figure 5.101: Lateral acceleration command
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Figure 5.102: Lateral sliding surface

Figure 5.103: Derivative of lateral sliding variable

5.4.6 Scenario - 6

In this scenario, the shooter flies with heading to north and releases the missile at
0.85 Mach when the target flies with 250◦ heading at 1 Mach. At the time of shoot,
there is approximately 7 km distance between the shooter and target. In this scenario,
the target makes an evasion maneuver with 8g in lateral plane and 3g in longitudinal
plane. Initial conditions are stated in Table 5.9 and the results are stated with figures
as follows.
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Table5.9: Initial conditions of Scenario – 6

Scenario(t0) Missile Target
X[km] 0 5
Y [km] 0 -5

Altitude[km] 6 6
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 250
Target Maneuver 8 g lateral

3 g longitudinal

Figure 5.104: Missile and target trajectories

Figure 5.105: Longitudinal acceleration command
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Figure 5.106: Longitudinal sliding surface

Figure 5.107: Derivative of longitudinal sliding variable

Figure 5.108: Derivative of longitudinal sliding variable (zoomed)
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Figure 5.109: Lateral acceleration command

Figure 5.110: Lateral sliding surface

Figure 5.111: Derivative of lateral sliding variable
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Figure 5.112: Derivative of lateral sliding variable (zoomed)

5.4.7 Scenario - 7

In this scenario, the shooter and target flies with heading to north and at 0.85 Mach
and 1.2 Mach, respectively. At the time of shoot, there is approximately 11 km distance
between the shooter and target. In this scenario, the target makes an evasion maneuver
with 8g in lateral plane and 3g in longitudinal plane. Initial conditions are stated in
Table 5.10 and the results are stated with figures as follows.

Table5.10: Initial conditions of Scenario – 7

Scenario(t0) Missile Target
X[km] 0 4
Y [km] 0 -10

Altitude[km] 6 6
V elocity[Mach] 0.85 1.2

Heading Angle[deg] 0 0
Target Maneuver 8 g lateral

3 g longitudinal
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Figure 5.113: Missile and target trajectories

Figure 5.114: Longitudinal acceleration command

Figure 5.115: Longitudinal sliding surface

132



Figure 5.116: Derivative of longitudinal sliding variable

Figure 5.117: Lateral acceleration command

Figure 5.118: Lateral sliding surface
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Figure 5.119: Derivative of lateral sliding variable

5.4.8 Scenario - 8

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 160◦ heading at 1 Mach. At the time of shoot, there
is approximately 18 km distance between the shooter and target. In this scenario,
the target makes an evasion maneuver with 6g in lateral plane and 2g in longitudinal
plane. Initial conditions are stated in Table 5.11 and the results are stated with figures
as follows.

Table5.11: Initial conditions of Scenario – 8

Scenario(t0) Missile Target
X[km] 0 15
Y [km] 0 -10

Altitude[km] 6 6
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 160
Target Maneuver 6 g lateral

2 g longitudinal
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Figure 5.120: Missile and target trajectories

Figure 5.121: Longitudinal acceleration command

Figure 5.122: Longitudinal sliding surface
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Figure 5.123: Derivative of longitudinal sliding variable

Figure 5.124: Derivative of longitudinal sliding variable (zoomed)

Figure 5.125: Lateral acceleration command
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Figure 5.126: Lateral sliding surface

Figure 5.127: Derivative of lateral sliding variable

Figure 5.128: Derivative of lateral sliding variable (zoomed)
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5.4.9 Scenario - 9

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 90◦ heading at 1 Mach. At the time of shoot, there
is 3 km distance between the shooter and target. In this scenario, the target makes
no evasion maneuver. Initial conditions are stated in Table 5.12 and the results are
stated with figures as follows.

Table5.12: Initial conditions of Scenario – 9

Scenario(t0) Missile Target
X[km] 0 3
Y [km] 0 0

Altitude[km] 6 6
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 90
Target Maneuver 0

Figure 5.129: Missile and target trajectories

138



Figure 5.130: Longitudinal acceleration command

Figure 5.131: Longitudinal sliding surface

Figure 5.132: Derivative of longitudinal sliding variable

139



Figure 5.133: Lateral acceleration command

Figure 5.134: Lateral sliding surface

Figure 5.135: Derivative of lateral sliding variable
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5.4.10 Scenario - 10

In this scenario, the shooter flies with heading to north and releases the missile at 0.85
Mach when the target flies with 45◦ heading at 1 Mach. At the time of shoot, there
is 15 km distance between the shooter and target. In this scenario, the target makes
an evasion maneuver with 3.5g in longitudinal plane. Initial conditions are stated in
Table 5.13 and the results are stated with figures as follows.

Table5.13: Initial conditions of Scenario – 10

Scenario(t0) Missile Target
X[km] 0 -15
Y [km] 0 0

Altitude[km] 6 10
V elocity[Mach] 0.85 1

Heading Angle[deg] 0 45
Target Maneuver 3.5 g longitudinal

Figure 5.136: Missile and target trajectories
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Figure 5.137: Longitudinal acceleration command

Figure 5.138: Longitudinal sliding surface

Figure 5.139: Derivative of longitudinal sliding variable
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Figure 5.140: Derivative of longitudinal sliding variable (zoomed)

Figure 5.141: Lateral acceleration command

Figure 5.142: Lateral sliding surface
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Figure 5.143: Derivative of lateral sliding variable

Figure 5.144: Derivative of lateral sliding variable (zoomed)

5.5 Conclusion

In this chapter, firstly, to understand the chattering attenuation of the super twisting
guidance law over first order sliding mode guidance method, a first order guidance
method that uses LOS rate as a sliding surface is derived. Then with two long range
interception scenarios, these two methods that use LOS rate surface are compared. As
the result, satisfactory results are obtained with super twisting guidance rule when the
derivative of the sliding variable variables are compared for the scenarios.
Then, the proposed PI surface and super twisting guidance rules are compared with
10 different, from long range to short range and also including high off-boresight en-
gagement scenarios to see the chattering attenuation of second order super twisting
method over first order PI surface method. Besides, these two methods are compared
with PNG law for the same scenarios to understand the interception performance. In
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all scenarios, it can be clearly seen from the derivative of sliding variable and also guid-
ance command figures. that super twisting method is better than PI surface method
when Super twisting method results in lower chattering magnitudes and related to
this, lower guidance command magnitudes during sliding mode occurs.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

In this study, firstly, an agile missile model is obtained with appropriate inputs to
Missile Datcom program. Aerodynamic coefficients are tabled for the inputs of angle
of attack, angle of sideslip and Mach number. After construction of aerodynamic force
and moments, other equations of motion are modelled and nonlinear 6DOF model of
the missile is prepared for the simulation.

Aerodynamic model and equations of motion are linearized around uncoupled flight
conditions and state space models of longitudinal and lateral planes are obtained to
be able to use in autopilot design.

Autopilot design points are determined by examining the aerodynamic data and LQT
design is considered for rate loops with an automatic design program to cope with
1350 design points. This process which is basically a quadratic weight search, ends
up with a no steady state error controller gains that are scheduled with respect to
AOA, AOS, Mach number and altitude. Pitch and yaw rate loops are closed with
acceleration autopilots that track the guidance commands generated by the guidance
method. Acceleration autopilots are designed as PI controllers by using classical root
locus design logic. Similarly, roll angle autopilot is designed with P controllers since
there is an integrator in open loop already. Designed autopilots are implemented to
the simulation environment and tracking performance is verified with many different
interception simulations.

The missile flies in ’X’ configuration and vertical and horizontal planes are decoupled
with the roll autopilot that keeps the roll angle zero during flight. Guidance commands
are applied to body longitudinal and lateral axis as a result of this decoupling action.
Totally 3 sliding mode guidance laws are stated in this study. Firstly, sliding surface
is chosen as LOS rate and a first order guidance law is derived primarily to compare
with the super twisting method. Secondly, PI surface is proposed to overcome the
interception failures caused by the methods that consist of LOS rate surface. PI gains
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are found with GA optimization procedure by considering two reference scenarios. The
gains are applied to many other scenarios and satisfactory results are obtained.

As a second order sliding control method, super twisting method is applied to missile
guidance problem as the third guidance method. It is observed that the rules to choose
parameters of this method defined for control applications in literature is not reason-
able for guidance problem. As a result, firstly, it is preferred to choose these parameters
with GA. According to the same reference scenarios used in PI gain selection proce-
dure, parameters are determined and these static gains are applied to many different
scenarios. Although, static gains are applied, these gains has given satisfactory re-
sults in many interception cases. Then, an adaptive gain rule is proposed to maneuver
proportional to requirements of engagement geometry and avoid using excessive energy.

After PI surface and super twisting guidance rules are derived, by adding PNG law to
comparison procedure to understand the performance of sliding mode guidance rules,
methods are compared with 10 different interception cases.

6.2 Results and Future Work

For this study, a BVR missile that can fly up to 100 seconds and has maneuverability
up to 40g with only aerodynamic capabilities is considered. Conceptually, it is assumed
that the missile has a data link capability that receives target data from the aircraft
and an active radar seeker. Besides, the target data is assumed to be known perfectly
and obtained from the shooter aircraft through data link until the missile goes active.
To make the study more realistic, uncertainties can be added to data measured from
the target and true measurements can be estimated by applying different filtering tech-
niques. In real world applications, this estimation has a crucial importance since it
affects directly the interception success.

Maneuverability capability of the model can be increased with more agile missile geom-
etry definition and also full spherical engagement area capabilities can be increased by
adding TVC to the model for the next AAM missile guidance and control applications.

For missile body rate autopilots, LQT method is preferred to consider CAS limita-
tions by adding CAS states to the state space models. In addition to this, LQT
method lets to design stable and robust suboptimal autopilots quickly and gives the
opportunity to prepare automatic design procedures to handle many conditions. For
all design points, the weighting parameter of the quadratic weight matrix Q that co-
incides with tracking error is searched through an algorithm. This algorithm finds the
controller gains that satisfies the design requirements and chose the one that gives the
fastest response. As a result of rate autopilot design procedure, satisfactory autopilot
responses are obtained and all gains are tabled to use the in outer loop design pro-
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cedure. Acceleration autopilots are designed for longitudinal and lateral channels as
the outer loop of pitch and yaw rate autopilots with PI controllers. Phi autopilot is
designed as the outer loop of roll rate autopilot with P controllers. As in inner loop
design, a gain search algorithm that finds the root locus gains that satisfy the design
requirements of outer loops. Autopilot design procedure ends up with controllers that
have fast transient responses and stability margins. Many autopilot design conditions
are considered and 1350 design points are handled. The reason for choosing such a
large design space is the variations of aerodynamic parameters though different AOA,
AOS and Mach numbers. Increasing AOA and AOS brings agility up to stall angles
and this agility shows itself with changes in sign of aerodynamic stability derivatives.
Since agility requires large flight parameter space in general, this brings large autopi-
lot design space. Nevertheless, it is all up to aerodynamic coefficients and to design
engineer. If the computational complexity and time for the autopilot design process
is not a problem, elimination of design conditions may not be necessary if the aim is
to use a gain scheduled autopilot. In this study, ±20◦ AOA and AOS are taken as
maximal values. However agile missiles may encounter up to 60◦ with TVC and that
may result in a much more larger design space and increasing design conditions can
bring the necessity of adaptive autopilot design methods.

It is shown that sliding mode guidance is a preferable choice for the robustness to
target acceleration uncertainty and steering the missile to target quickly. As an option
of first order sliding mode guidance law, a method that uses PI surface is derived.
Proportional and integral gains are obtained with a GA optimization process that use
two scenarios to calculate an optimal solution. In this study, the static gains that
GA has given are used. These gains are simulated for many different scenarios and
satisfactory results are obtained about interception time, keeping target in FOV with
an immediate turn.

To attenuate chattering, as a second order sliding mode control method super twist-
ing method is chosen to apply to the guidance problem. It is observed that common
parameter selection rules which are stated in literature are not applicable to the guid-
ance problem. As applied for PI surface method, GA and the same two scenarios are
used to determine these parameters. Static gains are applied to many scenarios and
satisfactory result are obtained. With continuing studies, it is seen that this param-
eters can be determined according to a rule related to the sliding surface adaptively.
The logic behind the adaptive method, how much the LOS rate, then increase the
parameters according to a function of the sliding surface and increase the accelera-
tion command. As a result of simulations that compare static gains with adaptive
rule, same engagement performance is obtained with smaller magnitude of accelera-
tion commands. Super twisting method is an efficient way to attenuate chattering and
different rules to find the parameters of this and PI surface method can be derived or
any other optimization methods can be tried for better guidance and chattering at-
tenuation. An adaptive rule may be derived that considers off-boresight angle, range
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to the target or LOS rate to determine these parameters. As another option, with the
optimization processes for different scenarios for different ranges, off-boresight angles
and LOS rates, these parameters can be stored and tabled. Then, appropriate gains
can be chosen during flight with gain scheduling. However, this option may require
more computational effort and time.

This study has the aim of showing the effectiveness of second order method over
first order sliding mode guidance methods and for that aim, super twisting method is
chosen, applied and an adaptive rule is developed for guidance problem. Any other
second order methods can be applied and better guidance methods can be derived.
However, it should be always considered that different first order guidance methods
that may help to decrease chattering and also have a better interception capabilities
can be derived, too. The key is to chose an appropriate sliding surface and propose a
logical reaching law.
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