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ABSTRACT

MOVING VEHICLE CLASSIFICATION

Duman, Demet
M.Sc., Department of Electrical and Electronics iBagring
Supervisor: Prof. Dr. G6zde Boziakar

September 2013, 78 pages

In recent years intelligent transportation systdmse been an active research area in
computer vision. The aim of this study is to clfssioving vehicles from highway videos
taken by stationary uncalibrated cameras. Fordtiudy, three types of vehicle classes with
different scales are chosen to classify: car, vad @uck. The proposed algorithm is
composed of foreground/background segmentatiorturieaextraction and classification
steps. In order to classify each vehicle, histog@thoriented gradients (HOG) features
which are shape-based descriptors and blob featied are dimension-based descriptors
are used in the algorithm. The effects of thestufea on the classification performance are
also evaluated and simulation results are givedifferent highway videos.

Keywords: Vehicle classification, foreground/baakgnd segmentation, histogram of
oriented gradients
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HAREKETLI ARAGCLARIN SINIFLANDIRILMASI

Duman, Demet
Yuksek Lisans, Elektrik Elektronik MihendigliBolumu
Tez Yoneticisi: Prof. Dr. Gozde BozgiaAkar

Eylil 2013, 78 sayfa

Son yillarda akilh ulgm sistemleri goriintisieme alaninda aktif bir agarma alani
olmustur. Bu calgmanin amaci, ayarsiz bir video kamera ile alinaoyaidt video
goruntdlerini  kullanarak hareket halindeki araclainiflandirmaktir. Bu c¢aimada,
siniflandirmak tzere farkli dlctlerdeki Ugsitearaba sinifi secilrgiir: araba, orta sinif ara¢
ve buyuk sinif arag. Onerilen algoritma ¢n plandagdan ayirimi, 6zellik ¢ikarimi ve
siniflandirma gamalarindan okmaktadir. Algoritmada her araci siniflandirmak igekle
dayali bir tanimlayici olan gradyan yonelim hisegr Ozellikleri ve boyuta dayali bir
tanimlayici olan imge boélgesi 0Ozellikleri kullanigor. Bu 6zelliklerin  siniflandirma
performansi Uzerine etkileri incelerytii ve farkli otoyol videolarina ait deney sonuclar
verilmistir.

Anahtar Kelimeler: Arac¢ siniflandirma, on plan/arkian c¢ikarimi, gradyan yodnelim
histogrami
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CHAPTER 1

INTRODUCTION

The intelligent transportation systems (ITS) hagerbdeveloped to manage the traffic flow.
These systems use a suite of sensors for obtaimngaffic parameters. The magnetic loop
detectors are mostly used sensors which measurkenigén and the number of axles of
vehicles. They are installed under the road toigeoreal time statistics. Unfortunately, they
have some disadvantages; they are expensive, thpyand damage the traffic during
installation and they are only able to sense tlegrce of a vehicle.

In recent years, video camera starts to be a pnognigaffic sensor and vision-based traffic
monitoring becomes popular in ITS, because momigptine traffic based on video cameras
has some advantages. First, video cameras areteasse and not disruptive to traffic
during installation compared to the magnetic loepedtors. Second, large number of areas
can be covered with a small number of video camdriaisd, they are cheaper compared to
the magnetic loop detectors. Forth, video cameltass aollecting rich information about
the traffic and provide analyses of the traffiorlat the level of the vehicle. By using video
cameras many traffic parameters can be obtained didngestion, vehicle counts, lane
changes, vehicle velocity and vehicle classes.

In ITS, vehicle classification is an important aieaorder to obtain the percentage of the
vehicle classes on the streets and highways. Gbtauehicle classes is important, because
the geometric design of a road, like horizontagraiient and curb heights, depends on the
vehicle types which use it, due to their heavy Wesginferior braking, and large turning
radius. The heavy weight of the vehicles also &ffdbe pavement design. In current
situation human operators manually obtain the Jelitasses on some highways. In order
to classify the vehicles using an automated sy&tased on video cameras will also be cost
effective by eliminating the need for human opesato



1.1 STATE-OF-THE-ART IN VEHICLE CLASSIFICATION

The literature on vehicle classification is maidiyided into 2D approaches, which means
that operation in the camera view and 3D approaeltesh includes 3D modeling. This
section covers the latest studies and the relatekl iv the literature on these approaches.

1.1.12D Approaches

Systems which work in the camera coordinate doraanin the scope of 2D approaches.
2D approaches on vehicle classification vary adogrtb the features used to discriminate
the vehicles and classified vehicle types. Generille based features like length, height
and area are used in 2D approaches.

Lipton et al. [1] use a classification metric disgginess which corresponds to ratio between
perimeter and area of the vehicle blob in ordecl&ssify into three categories: human,

vehicle or background clutter. In this work, cléissition accuracy is reported as around

85%.

Gupte et al. [2], [3], and Zhang et al. [18] uséghe and length to classify vehicles on a
highway, while Avery, Wang and Rutherford [6] usdyolength. Length and height of the
vehicles are obtained by using the 2D projectiofisthe vehicles. This stage uses
information about the camera's location and theecarparameters. In [2], classification is
done into two categories as trucks or other vehialed accuracy is reported as 90%. In [3],
classification is done into two categories as @arsion-cars and accuracy is reported as
70%. In [18] and [6], it is aimed to discriminatetveen long and short vehicles in order to
detect the long vehicles and the detection accurldyng vehicles is reported as 97% and
91%, respectively while there is no direct inforimatabout classification accuracy.

Huang and Liao [7] use area, size and length tssiflavehicles on a highway by using
some rules. Seven vehicle classes which are pidegan, van, van truck, truck, trailer or
bus are classified from side view of a highway sceRerformance of the algorithm is
reported as 91% overall classification rate.

Rad and Jamzad [8] propose a system to classifamdt the vehicles. Also, they find out
the lane-changes through tracking on the highwaihde Veeraraghavan et al. [5] monitor
road intersections. In both work, classificatiomise based on the size of the bounding box
of the blobs and velocity. In [8], vehicles are sslified into three classes,
motorcycle/bicycle, car or bus/minibus; while in [Bassification is done into vehicle or



pedestrian. In [8], bounding boxes which are cfebiare tracked by using a Kalman filter.
The tracking error rate is reported as 5.4%. Howethere is no quantitative information
about the performance of the systems for classifica

Morris and Trivedi [9] and [10] utilize blob feaks like breadth, area, compactness,
perimeter, elongation, roughness, area, lengtlg &md short axis of fitted ellipse, centroid
and 5 image moments. A comparison between imagedifeatures like pixels and image
measurement features like region size is preseiteske feature types are used with Linear
Discriminant Analysis (LDA) and Principal Componehalysis (PCA) as dimensionality
reduction techniques. Image measurement featurés DA which gives the best
performance is selected as the final algorithm.ifTégstem works on the videos captured
from the side view of a highway. In [9], class#ion accuracy is given as 82.9% for
classifying into three classes as sedan, semuuck/UV/van while in [10], classification
combined with tracking is done into seven classessedan, truck, SUV, semi, van,
truck/SUV/van or moving trucks and classificatiataracy is given as 74.4%.

Hsieh et al. [11] use linearity and size featur@sthe classification of the vehicles. The
linearity feature is a measure for the roughnesghefvehicle silhouette. In their work,
classification is done into four classes, car, wa@nj van-truck (including bus) and truck by
assuming that the camera is in axis with the highwa see the lane division lines.
Classification accuracy is given as 88%.

Zhang et al. [12], Arrospide and Salgado [13] am&iCand Zhang [15] use vehicle images
as features to make a classification. [12] and [itBjzes PCA while [15] utilizes ICA to
reduce the dimension of the feature space. In§bd&][15], classification precision is given
as 50% and 75%, respectively for three classesepgsr car, van or pick-up. In [13]
classification is done into vehicle or non-vehiali¢h a classification rate 93.04%.

Gandhi and Trivedi [16] and Arrospide et al. [14]Jize Histogram of Oriented Gradients
(HOG) features for in-vehicle classification systentin [16], a classification into four
classes as car, van, pickup-truck or no vehicleldee; while in [14] classification is
performed as vehicle or non-vehicle. In [16] and][&lassification accuracies are reported
as 64.3 % and 90%, respectively.

Alonso et al. [17] propose an vehicle detectioneysthrough classification as vehicle or
non-vehicle. The bounding boxes of the vehiclescagated based on edges. The bounding
boxes are verified by corner detection and symmaetsjde this region. In this work,
classification rate is given as 90%.



Thi et al. [19] and Robert [20] propose a vehidssification system for night time videos.
Vehicle images are used as the features by applfiGéd to reduce the dimension.
Classification is done as vehicle or non-vehicate[19], classification accuracy is reported
as around 94%. In [20], classification accuracygien as around 95% by combining
tracking with the classification.

1.1.23D Approaches

3D approaches are generally based on 3D modelitiigeofehicle types which achieve high
accuracy in the expense of the higher computaticoadplexity and these algorithms need
camera parameters in order to use in the projecfimehicle parameters on 2D. Sullivan et
al. [21], Messelodi et al. [22] and Buch et al. J[23erform vehicle detection and
classification through 3D models of the vehiclesiBbDdels of vehicle types is created and
according to a match measure, classification iedbn[21], classification is done into two
classes as car or van and accuracy is given ascdu@Po. In [22], classification is done
into bicycle, lorry, motorcycle, van car, extra-arbbus, urban bus or unknown. The
reported classification rate is 91.5%. In [23],sslfication performance is given as a recall
of 90.4% at a precision of 87.9% for four classésis/lorry, van, car/taxi and
motorbike/bicycle.

In the literature, most of the works require camgasameters like height of the camera,
angular direction of the camera and camera caidradr knowledge about the highways
like the place of the lane division lines and tiening side of the highway. In this study, it
is aimed to classify moving vehicles into threessks as car, van or truck without needing
specifically any camera parameters and the knowlathgut the highway.

1.2SCOPE OF THE THESIS

This thesis focuses on classification of the mowegicles on highways. Our goal is to
classify vehicles into three classes as car, varuok with the proposed algorithm. For that
purpose, initially vehicles are detected. In théediéon step, a background subtraction of
algorithm based on mixture of Gaussians (MoG) edwdue to its capability of coping with

the changes in the scene (i.e., adaptable) in ¢odsolate moving vehicle blobs. In order to
move undesired components which are part of foregip morphological operations are
utilized.



Next step after detection of the vehicles is theture extraction. Blob features which are
dimension-based descriptors and histogram of @iktgtadients (HOG) features which are
shape-based descriptors are extracted to reprémenthicle classes. In the study, effects of
using HOG and blob features together and separatelgxamined.

After features of each vehicle blob are extracted elassified with a robust supervised

classifier support vector machines (SVM) in a higlécal manner, each vehicle class is
obtained.

1.30UTLINE OF THE THESIS

In Chapter 2, basic building blocks of a vehiclassification system is explained in detail.

In Chapter 3, proposed algorithm is presented Ipfa@ning each algorithm in the building
blocks of the system which are detection of veBideature extraction and classification.

After explaining the algorithm, experimental resuwh different videos are given in Chapter
4. In addition, a comparison with the literaturénisluded.

The thesis is summarized and concluded in Chaptelt Presents conclusions and
observations made throughout the thesis studydditian, some future works are presented
in this chapter.






CHAPTER 2

BACKGROUND TOPICS

2.1 BASIC BUILDING BLOCKS OF VEHICLE CLASSIFICATION

In this section, basic elements required for vehiclassification will be explained.
Generally, vehicle classification is divided intwat stages. First stage is detection stage
while second stage is classification. Typical vihidassification system uses foreground
segmentation in vehicle detection stage and thassification part comes. As it is seen in
Figure 2.1 , a statistical model estimates foregdopixels and then those foreground pixels
are grouped so that connected regions are obtamthose regions are propagated through
the classification stage. A priori information aborehicle classes which is previously
learned or preprogrammed is used to assign clbskilaclassification stage.

Frame Mask Sithoutte Object
flist flist

Groupin
Foreground ping .
. . e.g. Classifier
Estimation
Con. Comp.

Fixed Rules
Or
Training

Background
Model

Figure 2.1. Block diagram of typical vehicle cldigsition system



2.1.1Foreground Segmentation

In an automated visual surveillance system, fonagidosegmentation is the first stage.
Generally performance of the system is affectedthy success in the obtaining the
foreground regions correctly.

There are two basic different approaches used hiicheclassification systems to estimate
the foreground (vehicle) regions. First approachars obtaining background model.
Providing that the camera is stationary, a comparis done between this model and
current frame to find out the differences whicheretio the foreground regions. With this
approach stationary objects are missed out beadube lack of motions. This approach is
suitable for implementation on the computer; howewe slow moving traffic it has
problems. Second approach segments foregrounchsebesed on object appearances. This
approach can be used for both stationary and moummgeras to obtain the vehicle
(foreground) regions. However, it requires priofoimation for foreground object
appearances and it is computationally costly. enribxt section, generally used algorithms
in vehicle classification systems will be introddce

2.1.1.1Frame Differencing

The easiest and simplest way of foreground segrientés frame differencing. In this
method, the model for the background is equal ® phevious frame. The difference
between the previous and current frame and isiibtéed and used as foreground mask.

1, |I(x,y,t) — I(x,y,t —1)| > Threshold (2.1)

In the above formula, | (x,y,t) is the intensitylua at pixel location (x,y) at time t and |
(x,y,t-1) is the intensity value at pixel locati@ny) at time t-1. M (x,y,t) is the mask image
obtained thorough differencing and thresholding.

The algorithm is very easy and fast to implemeloiwever, in dynamic scene conditions it
has a low performance. It cannot cope with multdalodistributions, abrupt illumination
changes, periodic movements in the backgroundstiées and noise. Also, its results are
very sensitive to the threshold value. In the ditere, [1], [2] and [6] use frame differencing
to detect the vehicles.



2.1.1.2Moving Average Filtering

In this method, by calculating the mean value & fitrevious N frames a reference
background framee} is generated and a mask image is obtained asviallo

y (1, [y t) — Les| > Threshold 2.2)
(xy,6) = 0, [I(x,y,t) — Ler| < Threshold

The update equation of the background model isgagebelow:

[ref,t =« I(x: Y, t— 1) + (1 - a)lref,t—l (2'3)

In (2.3), a is the learning parameter and must be chosenrasdesing the features (size,
speed, etc.) of the video and moving objects. liegrparameterxr determines how the
background model adapts to changes in the scene.

This algorithm has little computational cost angexior to the frame differencing method.
However it is sensitive to the threshold valuethé threshold value is too high, then
foreground regions can be marked as backgrouritigithreshold value is too low, some
background regions become foreground. Also, thisrithm produces tails at the back of
the moving objects because of the contaminatidghebackground by the appearance of the
moving objects. In addition, it cannot cope withltiamnodal distributions. In the literature,
[3], [7], [12] and [15] use moving average filtegito detect the vehicles.

2.1.1.3Single Gaussian

Single Gaussian model [24] which has a dynamicelignging threshold for each pixel
improves robustness in background modeling. Thighate tries to fit a Gaussian
distribution(u, o) to each pixel. By that way, background model isegated for each pixel.
In this algorithm, if current pixel valuer, satisfies (2.4), it is matched with the
corresponding Gaussian distribution.



lxe — pel <250, (24)

Wherey, is the updated mean angdis the updated variance of the corresponding Gauss
distribution. If current pixel valug, is matched with a Gaussian distribution, pararmsedér
that distribution are updated as below and thislps<labeled as background.

te =1 — @pe—1 + ax; (2.5)

02 =(1— a) ok + a(x — p)? (2.6)

Wherea is the learning rate. k& is high, recent pixel values have more influenoettte
background model. I is low, the influence of recent pixel value is naich.

If current pixel is not matched the background nhodes labeled as a foreground pixel.
Single Gaussian method has better performancefitisatwo methods which is mentioned,
since it has a dynamic threshold. However, it camope with multi-model distributions
and abrupt illumination changes since it has a@agssian distribution. In the literature, [9]
and [10] use single Gaussian method for detectidheovehicles.

2.1.1.4Mixture of Gaussians

In mixture of Gaussians (MoG) method [25], receistdry of each pixel X;, ...., X;} is
modeled by a mixture oK Gaussian distributions. The probability of obsegvihe current
pixel value in that model is given in (2.7) and adaling of a pixel by a MoG is given in
Figure 2.2.

K
P(Xy) = 2 wi e N(Xe, Mier Xie) (2.7)
i=1
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In (2.7), K is the number of distributiona); , is an estimate of the weight SfGaussian in
the mixture at time t and shows what portion of diaga is accounted for by this Gaussian.
Ui andy,;, are the mean value and covariance matrix of'tf@aussian in the mixture at

time t, andy is a Gaussian probability density function is givelow

Mo, E) = g e a0 ek (2.8)
(2m)? [3f2

probability

v

pixelvalue

Figure 2.2. Model of a pixel as a mixture of Gaassi
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Generally, from 3 to 5 number of distributiosis used and this is determined by the
available memory and computational power. In addijtifor computational reasons,
covariance matrix is assumed to be of the form:

Ykt = O_I? I (2.9)

This covariance matrix assumes that red, greenbaral pixel values are independent ad
have same variances, although this is not the iciesé. This assumption helps to avoid a
costly matrix inversion at the expense of some raayu

So, the distribution of recently observed valuegath pixel is characterized by a mixture
of Gaussians. Every new pixel value will be repnéseé by one of the major components in
the model and used to update the mixture modeh pael valueX; is checked againt
Gaussian distributions, until a match is obtairednatch is defined as a pixel value within
2.5 standard deviations of a distribution. If nafethe K distributions match the current
pixel value, the least probable distribution islaepd with a distribution which has the
current pixel value as its mean, an initially higgriance and low prior weight. Weights of
K distributions at time t are updates as follows

Wit =1 — Qwgrq + aMy, (2.10)

Wherea is the learning rate ard,, . which is called ownership is 1 for the matched eisd
and 0 for the remaining models. Also, weights aventalized after this approximation so
that they add up to 1. If the current pixel valisematched, the parameters of the
corresponding Gaussian distribution are updateid #3.11) and (2.12). The mean and
the variancer parameters for unmatched distributions remairstimee.

pe =1 — plie—1+ pXe (2.11)

12



O-tz = (1 - ,0)0}2_1 + P(Xt - uut)T(Xt — Mt) (212)

wherep = a n(X¢|uk, 0%)-

As the parameters of the mixture model of eachlmitange, it should be determined which
of the Gaussians in the mixture are most likelpegroduced by the background processes.
In order to obtain the background model, Gaussisiniloutions of a pixel are ordered by the
value of % from highest to lowest. This value increases kaghdistribution gains more

evidence and as the variance decreases. With tHeving, the most likely background
distributions remain on top and the less probalémsient background distributions
gravitate towards the bottom and eventually regldnenew distributions. Then, the first B
distributions satisfying (2.13) are chosen as tinekround model.

b
B = argmin( z wr>T) (2.13)
k=1

where T is a measure of the minimum portion ofda& that should be accounted by the
background. If T is small, the background modeligsially unimodal. If this is the case,
using only the most probable distribution will sgrecessing. If T is higher, a multi-modal
distribution caused by a repetitive background oroffe.g. leaves on a tree, a flag in the
wind etc.) could result in more than one color bdircluded in the background model. This
results in a transparency effect which allows taekiground to accept two or more separate
colors.

This algorithm can deal with repetitive clutter ahdhting changes. However, it is

computationally complex comparing to the other ¢hatégorithms mentioned before. In the
literature, MoG is used in [5], [18] and [23] totelet the vehicles.
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2.1.1.50bject-based Segmentation

Object-based segmentation based on detection ofolijects in order to identify the
foreground. In object-based segmentation, methoels@nsidered which detect objects in a
holistic way by searching for full objects. GenbraBD models of objects are used in order
to identify the objects. Because of using 3D madglimethods relying on object-based
segmentation have higher computational comple®l] and [22] use object based
segmentation in order to obtain the vehicle blobs.

2.1.2Classification

Classification is the assignment of a new instanca group of previously known instances

named as the class. The classifier wants informatimut a new instance which is called as
features. After features of classes are extractedh fthe object, a machine learning

algorithm is trained by using the instances of knoslasses to generate discriminative
information from the features. Then, the classitises the learned information in order to
assign a label to a new instance.

2.1.2.1Feature Extraction

Feature extraction process produces similar valdésh come together to create a feature
vector for the instances belonging to the samescdesl this is an important step for the
classification part. In order to obtain the featueetors, key points (features) are detected.
In computer vision there are lots of key point dades like Harris [38], Hessian [39],
Laplacian of Gaussians (LoG) [40], Difference ofuSsians (DoG) [41], Canny [42], Sobel
[43], Prewitt [44], Shi and Tomasi [45] , Featufemm Accelerated Segment Test (FAST)
[46], and Maximally Stable Extremal Regions (MSHRJ] detectors, Haar wavelets [48],
Hough transform [49]. Once features are detectddca image patch around the feature
can be extracted. For that purpose feature descsifike MPEG-7 [33], Scale Invariant
Feature Transformation (SIFT) [34], Speeded Up Robeatures (SURF) [36]., Histogram
of Oriented Gradients (HOG) [B1Oriented FAST (ORB) [50], Gradient Location and
Orientation Histogram (GLOH) [51] and Gabor filtg&2]. In the following section, an
overview of mostly used feature descriptors in glehtlassification is presented.
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2.1.2.1.1Region-based

Region-based features are generally extracted fhmmwhole image region of an object.
Image region of an object is generally the foregbarea extracted by the foreground
segmentation algorithm. Image moments, length,gegize and area of the image region,
SIFT, SURF and HOG features are often used to gemarfeature vector.

SIFT is introduced in [34]. The local features gated are invariant to rotation, image
scaling and translation. Also, they are partiallyariant to affine projection changes and
illumination changes. Generally, a SIFT featurecdbes the appearance of salient points in
the image uniquely, which will remain salient evéthe image is rotated, resized or the
illumination is changed. The SIFT features find ntoio point correspondences in two
different images of the same object. Modified Sdescriptors are used in [35] to create a
rich representation of vehicle images.

The SURF descriptors are introduced in [36]. Thescdptor is used for finding
correspondence between images, like SIFT. Howekerdesign focuses on computational
speed by allowing loss of performance. The useoaffiiters instead of Gaussian filters in
the case of [34jeduces computational complexity.

Figure 2.3. SIFT and SURF descriptors for matclingpject recognition

The concept of HOG is introduced in [31]. To caftalthe feature vector, the gradient of
the input image is divided into cells. A histograrihnthe gradient orientation in pixels is
calculated for every cell. The vectors of all cell® concatenated in order to create one
global feature vector for the image. In [31], HOAutilized for the detection of pedestrians.

15



In this thesis study, HOG concept is used to dyagise vehicles. In Chapter 3, HOG will be
introduced in more detail.

2.1.2.1.2Contour-based

Contour based features only take the edge of auwslite into account. They rely on the
contour information of the object instead of theolehset of pixels inside the object region.
The distance between contour points is used asm#lasty measure. Processing is
performed on closed contours as extracted fromvitieo. These features are generated
through several edge and corner detection algositike Canny, Sobel, Harris and Prewitt
edge detectorsThe contour which includes edges is usedlirf] and [37] for vehicle
classification.

2.1.2.2Classifiers

Classifiers assign an unknown object instance tm@wn class by using the extracted
feature vector. This assignment relies on learnddrination from the training data.
Machine learning algorithms generate classifiersulsyng training data. An important
property of the learning algorithms is the supéoviswhich provides the labels for the
training data. Ground truth is required for the leaion of the classifier. The classifier
output is compared to the manually generated growath. In the following section

classifiers generally used for vehicle classifimatwill be explained.

2.1.2.2.1Nearest Neighbour Classifier

The nearest neighbour classifier is the easiestpaoametric classifier for a feature vector.
The distance between every vector of the traingtgaed a new feature vector is calculated.
Any distance measure can be chosen. The most condiistance measure is Euclidean
distance given in (2.14) where x and y are pom#™.

16



d(x,y) = lx—yll == (2.14)

The class label of the closest training vector ssigned to the new vector. K-nearest
neighbour algorithm which improves robustness & giktension of the nearest neighbour
algorithm. This algorithm classifies a feature wecby assigning it to the label most
frequently represented among the k nearest sampldscision is made by examining the
labels on the k nearest neighbors and taking aasteis seen in Figure 2.4.

'.‘-'—Xl

Figure 2.4. The k-nearest-neighbor classification
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In terms of memory requirements and computationanplexity nearest neighbour
classifiers do not scale very well for large tramisets and they need many distance
calculations. There is no time requirement fornired. However, the classification time
increases with the training size.

2.1.2.2.2Support Vector Machines

Support Vector Machines (SVM) perform classificatigsing linear decision hyperplanes in

the feature space [26]. SVM constructs a decisigpefplane between samples of two

classes based on the most informative points otriaing set which are called support

vectors. The aim of SVM is to find the optimal hyplane between samples of two classes
with the largest margin (Figure 2.5). As seen iguF¢ 2.6, support vectors are equally close
to the hyperplane and nearest patterns, a distafreen the hyperplane. The three support
vectors are shown in solid square.

(@) (b)

Figure 2.5. Decision boundary obtained by (a) atinary classifier and (b) SVM
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Figure 2.6. Finding the optimal hyperplane

A separating hyperplane which can also be called.iasar Discriminant Function is
defined as in (2.15) given that a training data{set..., x,} and their corresponding labels

{y1, .,V } taking values +1 and -1. The goal is to obtaift andw, which are weight
vectors.

gix) = wiz + Wy (2.15)
It is decided that
Vi = +1 lfg(J_C)L) > +1
yi=—1 ifglxX)<-1 i=1,....n (2.16)

either class otherwise
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It is known that the distance of poitit from the decision boundary as it is seen Figure 2.
is given as (2.17)

wiXi+ wo (2.17)

Figure 2.7. Distance (r) of a point from the desmsboundary

Distance is normalized so that for the nearesttp‘bimecomeﬁ as it is seen in Figure

2.8. x is the nearest point to the boundary plam @alled as support vector. Blue line
showsg (¥;) = +1 plane and green line show§x;) = —1 plane.

Figure 2.8. Distance of nearest point to the boongdkane
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For a linearly separable problem, optimal hyperplamich separates feature space while
maximizing the distance from the support vectora t& obtained as a result of an
optimization process in (2.18).

ma subject to y; (W’ta'c’i + W’O) > +1

X ——
[wll 2 (2.18)

i=1,..,n

This problem can be solved by using the Lagrangkiphiars in (2.19) wherey; nonzero
for only support vectors.

n
min zw, « {W w’ — Z a; (yi (W’ta_c’i + W’O) -1}
=1 (2.19)

If the problem is non-separable, equations (2.18) @.19) are modified as in (2.20) and
(2.21)

min{ ||W|| 24+ CZ{L-}

& = 0 subject to y; (W’tic’i + W’O) >1-¢ i=1,..,n

(2.20)
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n

P —7 7 1t ’
mlnwlwo,a{w w' + ngi — Za'l-(yi(w X; + WO)
- —~ (2.21)

-1+ &)}

where ¢; is used to compensate for misclassified samples Grgives a compromise
between distance of nearest point and data.

In addition, if the training data is not linearlgpmrable, a kernel function can be used to
transform the data into a new vector space. The laas$ to be linearly separable in the new
space. Mostly used kernel functions are given iB3R

( %% linear
k(Z,%) = J (% %; + 1)d polynomial (2.22)
l (¥i- %)) (Fi= %)
e 20% radial basis

Support vector machines scale well for large trgjnsets. The complexity for training

increases with the number of training samples; eweahe classification is independent of
it.
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CHAPTER 3

PROPOSED ALGORITHM FOR VEHICLE CLASSIFICATION

This chapter presents the work done to detect Esgdify vehicles in the highway scenes. A
system block diagram is shown in Figure 3.1, wheeeh block will be explained
individually in the next sections. In the systemtattion stage generates foreground regions
which are corresponds to the moving vehicles. Afteat for every foreground region,
features which are mentioned later in this sectimn extracted and given to a supervised
hierarchical classifier to classify the vehicles as

e Car
e Van
*  Truck.

With the proposed algorithm, any parameter relatethe highway like direction of the
moving vehicles, lane division lines, viewing sidkthe highway; any camera parameter
like height of the camera , angular direction & ttamera; and camera calibration are not
required to classify vehicles. Algorithm only warnhe user to mark a detection region in
order to see the full view of a vehicle. In thigaithm, following assumptions are made:

e Camera is stationary,

« Every silhouette contains exactly one vehicle bdinty visible. This implies no
occlusion in the scene and between vehicles,

* Classification is done in day time.

The rest of the chapter is organized as follows @htector is introduced in section 3.1.

Section 3.2 covers the features which are extrafiealassification and in section 3.3,
classifier is given.
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Figure 3.1. Block diagram of the detection andgifamtion system

3.1DETECTION OF VEHICLES

In visual surveillance systems, generally movingeobdetection, sometimes called motion
segmentation or foreground extraction is the ftsfp. The following operations, such as
object tracking and object classification, take dlgput of moving object detection module
as its input. Also, in the case of vehicle clasatiion, detection of vehicles is the first step to
create an input for classification part. Therefdhe performance of detection of vehicles
affects the overall performance of the entire systEvery block in the detector part of

Figure 3.1 is described in more detail in this isect
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3.1.1Foreground Segmentation

In Chapter 2, basic foreground segmentation algmst are introduced. From those
algorithms MoG is preferred in the proposed algonitbecause it can deal with lighting
changes, repetitive clutter and it is more stabl@gared to other foreground segmentation
algorithms. In the proposed algorithm, adaptive MafBich is introduced in [27] was
implemented. In [25] which MoG is firstly introdutén, number of Gaussian components
K is fixed and constant over time. However, K fixadd the same for each pixel is not
optimal in terms of detection and computationaletimo solve this problem [27] proposes
an online algorithm that estimates the parametettseoMoG and simultaneously selects the
number of Gaussians using Dirichlet prior. The egugence is that K is dynamically
adapted to the multimodality of each pixel.

Assume that data samples exist and each of them belongs tofoite components of the
MoG. Also assume that the number of samples thiinbeto themth component is
nm = i, ML, whereM!,-s are defined in 2.1.1.4. Multinomial distributitor n,,,-s gives
likelihood function in (3.1) and by knowing the fabat the mixing weights are constrained
to sum up to one, Lagrange multiplies introduced and the Maximum Likelihood (ML)
estimate follows from (3.2).

K
I = 1_[ wim (3.1)

m=1

%( logL + 4 (ZK=1Wm - 1) ) =0 (3.2)

After eliminating A, (3.3) is obtained fromh samples and it can be rewritten in recursive

form as function oﬁ/v,gf_l) for t - 1 samples and ownershit, of the last sample as in
(3.4).
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1 .

1
t t—1 t 4

If the influence of the new samples is fixed byn"g(% toa = %whereT is the time period in

which the training set is updated by adding the seamples and discarding the old ones ,
update equation (2.10) is obtained. Fixed influeoicthe new samples means that we rely
on the new samples and contribution from the old@as is downweighted.

Prior knowledge for multinomial distribution can Ib@roduced by using Dirichlet prior
P = [1K_,w;™. c,, presents the prior evidence in the maximum a piosit¢MAP) sense
for the classn. In other words, it shows the number of samples Ibleddng to that class a
priori. Negative prior evidencg,, = —c is used. By that way, it is accepted that thesalas
exists only if there is enough evidence from th&éadar the existence of this class. The
MAP solution that includes the mentioned priordals from (3.5).

9 K
—(logL+log?+A(2 Wy, — 1)) =0 (3.5)
an m=1

whereP = [[X _, w,,,, then (3.6) is obtained.

t
1 )
o= Sm-) .
i=1

where S = YX _ (X, ML, — ¢) =t — Kc. By rewriting (3.6) we get,
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® _ Wn—c/t (3.7)
m 1—Kc/t

where W, = %Zle Mt, is the ML estimate from (3.3) and the bias fronopis introduced

throughc/t. Bias decreases for larger data sets. If a sniadl &dcceptable it can be kept
constant by fixingc/t to c; = ¢/T with a largeT value. This means that the bias will always
be the same as if it would have been for a datavibtT samples. With fixed bias, the

recursive version of (3.6) can be obtained as .i®)(3

1 M} 1 c
®_ 1 1 m__ (-1 _ 2 T ) (3.8)
W' = Wm = t<1—KcT Wm ) t(l—KcT

Generally, only a few components K exist ands small, sal — Kc; =~ 1. Sincelltis set
to a, final modified adaptive update equation becomes:

W,Sf) = W,(nt_l) + a ( ML, — W,(,f_l)) —acy (3.9)

(3.9) is used instead of (2.10). After each updajes should be normalized so that they
add up to 1. In the implementation of this MoGtially it is started with one component
centered on the first sample and new componentadded as mentioned in 2.1.1.4 while
weight update is done according to (3.9). The Dldt prior with negative weights will
suppress the components that are not supportechéydata and the component m is
discarded when its weight,, becomes negative. For a chosen 1/T, it is required that at
least c=0.01T samples support a component thebecomes 0.01. In our implementation
has been chosen experimentally as 0.007 which gbetter results in foreground
segmentation.

Figure 3.2 shows the output of the foreground sedatien in proposed algorithm on a
traffic video sequence.

27



(b)
Figure 3.2. Result of foreground segmentation M4G. (a) Original frame (b) Segmented
foreground mask
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3.1.2Noise Removal

Foreground segmentation produces silhouettes atleshHowever, as it is seen in
Figure 3.2 noises are also the part of the foregtosegmentation output. These noises
affect the performance of the other steps. In otteerimprove the overall system
performance, noise removal is a crucial step. beoito remove these undesired noises
some simple, but effective algorithms have beerdusethe proposed system. These
algorithms are:

« Morphological operations: erosion and dilation
e Connected component labeling and area filtering

3.1.2.1Morphological Operations

Morphological operations [29] are used for segmgntaof objects, removing noise and

complete the missing parts of the objects. Theygarerally applied in binary images by

using a structuring element. Structuring elemerat matrix which contains 0’s and 1's and

generally selected in size 3x3. The origin of ttracduring element is at the center pixel. It

is shifted over the image and at each pixel ofitlege its elements are compared with the
ones on the image. If the two sets match the conddefined by the set operator (e.g. if

element by element multiplication of two sets extsea certain value), the pixel underneath
the origin of the structuring element is set tae-gefined value (0 or 1 for binary images).

In the proposed algorithm, two fundamental morpgiglal operations erosion and dilation

are applied to binary image which is obtained nedoound segmentation.

3.1.2.1.1Erosion

Erosion operator erodes away the region boundefidse foreground pixels. A structuring
element which has been utilized for this purposghimwn in (3.10). Each foreground pixel
in the input image is aligned with the center @& #tructuring element.

1 1 1
SEerosion = [1 1 1] (3.10)
1 1 1
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If, for each pixel having a value 1 in the strustgrelement, the corresponding pixel in the
image is a foreground pixel, then input pixel ist mhanged. However, if any of the

surrounding pixels (considering 8-connectednessh@fcenter pixel belong to background,
the input pixel is also set to the background vallee effect of this operation is to remove
any foreground pixel that is not completely surmbemh by other white pixels as shown in
Figure 3.3. As a result, small regions which cqyozsl to noises are eliminated, foreground
regions shrink and holes inside a region grow.

(@)
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(b)

Figure 3.3. Effect of erosion operation (a) Outipuaige of the foreground segmentation
part (b) Eroded image

3.1.2.1.2Dilation

Dilation is the dual operation of erosion. The satrecturing element in (3.10) has been
used. In this case, the structuring element workbaxkground pixels instead of foreground
pixels, with the same way defined in erosion. Timse, foreground regions grow, while
holes inside the regions shrink as it is depicteBigure 3.4.

While removing the noise, erosion operation migisconnect the links between loosely
connected regions. When the connectedness of anrégyilost, it is possible that it is not

treated as foreground anymore. In addition, styoroginnected regions are affected by
erosion from their boundaries. Dilation operatienavers that shrinkage caused by erosion.
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(b)
Figure 3.4. Effect of dilation operation (b) Erddenage (a) Dilated image
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3.1.2.2Connected Component Labeling and Area Filter

One of the most common operations in computer wisi® finding the connected
components in an image. Connected components focandidate region, in that way it
represents an object. Connected component labstiggnents objects by using the divisions
between regions and labels them as different abj€tnnected component labeling assigns
a unique label to all points in the same objectgbguping the pixels in an image into
components based on pixel connectivity. The allgorif30] adapted to the proposed system
in this thesis works as described below:

1. Image is raster scanned.
2. If the foreground pixel (having value 1) is cameoas

a. If one of the pixels on the left, on top, on theepleft or on the upper right
(8-connectivity) is labeled, this label is copiesl the label of the current
pixel.

b. If two or more of those neighbors have a label, @inge labels is assigned
to the current pixel and all of the labels are redrlas equal by forming an
equivalence table.

c. If none of the neighbors has a label, current gixelsigned to a new label.

3. On the image all pixels are scanned and assigiedl d&cording to the rule in Step
2.

4. After scan is finished, labels representing the esagnoup of pixels in the
equivalence table are merged and given a singé.lab

5. Image is scanned once more to replace old labétstiaé new ones.

All isolated groups of pixels are given a distitabel at the end of this algorithm. After
connected component labeling algorithm, the aresaoh distinct object region is obtained.
By considering the average area of a vehicle imway scene, a threshold value is
determined experimentally. In our proposed algarijttthis threshold is selected as 20
pixels. Regions having an area below this valuenatedesired as moving vehicles and they
are removed from the change mask. At the end, bdtash correspond to the vehicles are
obtained as it is seen in Figure 3.5.
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Figure 3.5. Connected component labelling and filteéing on the image

3.2FEATURE EXTRACTION

After detection of vehicles and obtaining vehiclebs, next step is the feature extraction
which ideally produces similar values for the instas of a class. Feature extraction process
is important part of the algorithm, since classifion relies on it. In the classification step
for both training of the classifier and classifioat of vehicles on test data, feature
extraction is necessary. Features describe a &mtgef data with sufficient accuracy. In the
proposed algorithm two region based features

* Blob features

» Histogram of oriented gradients (HOG) features
are used.
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3.2.1Blob Features

In the proposed algorithm it is desired to class#icles into car, van and truck. So, it is
needed to select features to discriminate betweesetclasses. One of the discriminative
features between these vehicle classes is theis.dtor that purpose, for every vehicle blob
obtained in connected component labeling partpfathg blob features which are also used
in [9] and [10] are extracted in order to use &sadure vector in classification step:

e Area of the blob

« Ratio between area of the blob and bounding bakeblob(Figure 3.6)

« Major axis length which is a scalar specifying thegth (in pixels) of the major
axis of the ellipse that has the same normalizedrsk central moments as the
blob(Figure 3.7)

« Minor axis length which is a scalar specifying thagth (in pixels) of the minor
axis of the ellipse that has the same normalizetdrsk central moments as the
blob(Figure 3.7)

* Ratio between number of white pixels and black Isixe the bounding box

¢ Width of the bounding box

« Height of the bounding box

Figure 3.6. A vehicle blob and bounding box

é?

Figure 3.7. Major and minor axis
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3.2.2Histogram of Oriented Gradients (HOG) Features

Local object appearance and shape can often baatbared rather well by the distribution
of local intensity gradients or edge directions rewgithout precise knowledge of the
corresponding gradient and edge positions. It ool that shapes and appearances of
vehicle classes (car, van and truck) are discritivedeatures. So, in order to represent
vehicles with their shapes and appearances a ¢exkescriptor, Histogram of Oriented
Gradients (HOG) features [31] are used in the pgeda@lgorithm.

For a vehicle blob which is in grayscale obtainediétection part, grayscale vehicle image
is filtered to obtainx andy derivatives of pixels with kernels in (3.11). Aftealculatingx
andy derivatives I andl,), the magnitude G and orientati@nof the gradient is also
computed as in (3.12).

Dy=[-1 0 1]l andDy=[-1 0 1] 7 (3.11)

I
|G| = /If +1; 0= tan_ll—x (3.12)
y

Image is divided into NxN small sub-images which ealledcells (Figure 3.9). Each pixel

in a cell calculates a weighted vote for an edgentaition histogram channel based on the
orientation of the gradient element centered oraiityl the votes are accumulated into
orientation bins over a cell. The vote is the geatimagnitude at the pixel. In other words,
for each cell, the gradient directions are quadtirerange of -180 to 180 degrees into K
bins, each pixel votes for an orientation accordmthe closest bin in the range and by that
way; histogram weighted by image intensity is aitdi To give less emphasis to gradients
that are far from the center of the cell, a Gaussgiaighting function withs equal to one
half width of the cell is used to assign a weighthite magnitude of each pixel.

Gradient is affected by illumination changes. Thathy, to provide better illumination
invariance (lighting, shadows, etc.) the cells arvermalized across larger regions
incorporating multiple cells which are callbtbcks(Figure 3.9). Normalization within the
blocks ensures that low contrast regions are ieeltdn [31], histogram calculation is done
by using overlapping blocks. In our implementatmnHOG for the sake of simplicity,
nonoverlapping blocks are used. Cells and blocks ma either rectangular (R-HOG) or
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radial (C-HOG) as it seen in Figure 3.8. After afiteg histograms of gradient directions
vector for every cell which has a dimensi€rl, these vectors are concatenated to obtain
one global feature vector for the vehicle imageisTglobal feature vector which has a
dimension(number of cells) x K x describes the shape of the vehicle.

Block

R-HOG
C-HOG

Center bin

Figure 3.8. R-HOG and C-HOG geometry for cells bhlutks

Cell —

Block >

Overlap
of Blocks
Image ——

Figure 3.9. Visualization of HOG

In our proposed algorithm, according to our experital observations which give us
optimal results, HOG is computed by using 2x2 se&k blocks including 8x8 pixel size
cells (N=8) with 9 orientation bins (K=9) for intal [-18C, 18F]. Our implementation
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uses R-HOG geometry. For the normalization of histms within a block, L2-norm
normalization is used as given in (3.13) wheig the normalized feature vector of a cell
while v is initial feature vector of a cel, is feature vector of the all cells in a block anig

a small constant (whose value will not influencled tesults). Figure 3.10 shows example
HOG representation of the vehicles shown by blueves which represent the gradient
orientations.

-7 (3.13)

Figure 3.10. HOG representation of the vehicles

HOG algorithm is relatively invariant to local geetric and photometric transformations.
Because within a cell rotations and translationsdbaffect HOG values and illumination
invariance achieved through normalization. In dddijtthe spatial and orientation sampling
densities can be tuned according to application.
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3.3CLASSIFICATION OF VEHICLES

The last part of the proposed algorithm is thesifasition step which will give the vehicle
class as car, van or truck. In order to be abldisoriminate between car, van and truck
classes by using selected features mentioned toréeaxtraction part, a robust classifier
should be used. For this purpose, a popular ciessifso mentioned in section 2.1.2.2,
Support Vector Machine (SVM) is selected. In ouplementation, we have used one-class
SVM with linear kernel and MATLAB SVM [32] libraris utilized.

SVM is a supervised classifier so there should Heaiming phase in order to obtain a
classifier. For that purpose, for each of the vehatasses, car, van and truck, manually
labelled training set is created. The details alb@iing sets are given in Chapter 4. In the
proposed algorithm, a hierarchical classificatienperformed as seen in Figure 3.11.
Classifier-1 is trained with the set of feature teeg belonging to car class and other class
which includes the feature vectors of van and trelelsses. Classifier-2 is trained with the
set of feature vectors belonging to van class amktclass. After the training phase, two
classifiers are obtained where Classifier-1 disitréttes between car and other (van+truck)
classes, Classifier-2 discriminates between van @uadk classes. In the hierarchical
classification phase, by using these classifiens\a feature vector coming from a test data
is firstly classified with Classifier-1 and laballes car or other. If it is labelled as other,
then the feature vector is classified again withsSifier-2 and it is decided that it is van or
truck. In the proposed algorithm it is preferreduse a hierarchical classification with two
classifiers, because one-class SVM is computatpséinpler than multi-class SVM. In
addition, cross validation is performed by splitihe training set into partitions, training on
one and testing on another in order to optimizecthssification accuracy. This procedure is
repeated several times in order to find the optimelue of the parameter C. In our
algorithm C is chosen 0.01.
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HOG & blob
features

Figure 3.11. Proposed hierarchical classification

In our algorithm, it is proposed to use blob andGifeatures for the classification (Figure
3.11). So, these features for the vehicle imagegaoh training set are obtained and
concatenated in order to create a global featuotowdor every labelled vehicle image.
Every feature vector has 7 blob features which raemtioned earlier. However, while
obtaining HOG features, there exists a dimensiablpm in HOG feature vectors for each
vehicle image, since their sizes are not samerderao get rid of this problem, maximum
sized vehicle image in the total training set (@ar+truck training sets) is obtained and
before HOG features are extracted, every vehictgans scaled to that maximum size with
linear interpolation. By that way equal sized featuectors are obtained for the classifiers.
In Figure 3.14 and Figure 3.15, sample output efgloposed algorithm on two different
test videos can be observed. Detailed informationthese test videos are presented in
Chapter 4.

In this study, in order to see the effectivenesthefproposed classification two experiments
are conducted besides the experiments of propdgedtam. One of them is classification
into car, van and truck classes directly by usingdtirclass linear SVM trained with HOG
and blob features together as it is seen in Figut2. The other experiment is making a
hierarchical classification by using blob feature<lassifier-1 and using HOG features in
Classifier-2 as it is seen in Figure 3.13. All esipents are presented in Chapter 4.
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Figure 3.12. Classification with multi-class SVM
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Figure 3.13. Hierarchical classification firstlging blob features then using HOG features
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Figure 3.14. Sample output of the proposed algoribn test video-1
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Figure 3.15. Sample output of the proposed algaribn test video-2
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CHAPTER 4

EXPERIMENTAL RESULTS

This chapter gives the evaluation of the proposdgarithm. Firstly, definition of metrics in
order to evaluate the performance of the algorithrgiven. Secondly, the results of the
algorithm on different videos will be introduceddaexplained.

4.1 DEFINITION OF METRICS

The metrics used to evaluate the performance isatbhs follows:

e True Positive (TP):is the test result that detects the condition wthercondition is
present.

* False Positive (FP)is the test result that detects the condition wifencondition
Is absent.

e True Negative (TN): is the test result that does not detect the cimmdihen the
condition is absent.

* False Negative (FN):is the test result that does not detect the ciomdiwhen the
condition is present.

Table 4.1. lllustration of terminology for evaluati metrics

Condition

Present Absent

Positive | True Positive| False Positivie
Test

Negative | False Negative True Negative
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4.1.1Recall

One of the evaluation metrics for a classifier parfance igecall. Recall of a class is the
percentage of labelled instances of that classatteapredicted as this class.

TP
=" (4.2)
Recall (TP £ FN)

4.1.2Precision

Precisionof a class is a measure of the accuracy proviggithis class is predicted.

TP
Precision = m (4.2)

4.1.3Accuracy

Accuracyis the overall correctness of the classifier andalculated as the sum of correct
classifications divided by the total number of slfisations.

TP + TN (4.3)

A =
CCUTASY = TP + FP + TN + FN)

4.1.4Confusion Matrix

A confusion matrixs a specific table that allows visualization betperformance of an
algorithm. Each column of the matrix represents thenber of instances in a predicted
class, while each row represents the number admesss in an actual class.
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4.2 EXPERIMENTAL RESULTS

The main difficulty in traffic analysis system isat there is no commonly used public data
set. In this thesis study, we have conducted operxents on the videos that have been
captured on some highways in Ankara dachir. Experiments are conducted on four
different highway videos as seen in Figure 4.1ufegt.2, Figure 4.3 and Figure 4.4.

Figure 4.3. Video-3 Figure 4.4. Video-4

Video-1 and Video-2 are recorded on a bridge lopkihthe same highway. However, they
are not captured from exactly the same angulactifire In addition, they are recorded at
different times of the day. Video-1 is capturedtire morning time while Video-2 is
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captured at late-afternoon, so the lighting anddetwa are different. The resolution of
Video-1 and Video-2 is 320 x 240 pixels and theyeha frame rate of 25 fps.

Video-3 and Video-4 are recorded on a bridge fraffier@nt highways. As in the previous
videos they are captured as their views of thedlehiare nearly same, but not exactly the
same angular direction. They are also recordedffeteht times of the day as in Video-1
and Video-2 so that the lighting and shadows afferdint. Video-3 is captured in the
morning time while Video-4 is captured in the afi@on time. Video-3 has a frame rate of
25 fps and has a resolution of 384 x 288 pixelgedi4 has a frame rate of 30 fps and has a
resolution of 1280 x 720 pixels. Their resoluti@ne also different.

It is an important point that there is no informatiabout the highways and the cameras that
capture these videos. We do not have any cameeampéers like height of the camera,
angular direction of the camera; and cameras dreatibrated.

Speed of the algorithm which runs on Core 2 DudGBi2 PC and on MATLAB is
calculated as around 3fps for a 320 x 240 pixetslution video. Three experiments are
conducted on the videos. In the first experimerdriter to see the difference between using
HOG and blob features together and alone, threestgp classification are conducted on the
videos by using:

* HOG and blob features together,
* Only HOG features,
* Only blob features.

In the second experiment proposed hierarchicalsifieation versus multi-class SVM
performance is observed. Finally, in the third ekpent, proposed hierarchical
classification versus a hierarchical classificatidrich uses blob features in Classifier-1 and
uses HOG features in Classifier-2 performance senked.
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4.2.1Experiment-1

In the first experiment, effectiveness of the selddeatures is observed. For that purpose
three classifications are done by using HOG ant bdatures together, using only HOG
features and using only blob features in Classifiand Classifier-2.

4.2.1.1Results of Video-1 and Video-2

In this experiment, a training set including caanwand truck images is created by using a
video which has exactly same characteristics a®d/d In the training set each of the
vehicle classes has 750 samples. As it is alsoiomatt in Section 3.3, in order to eliminate
the dimension problem in HOG feature vectors eaehicle image is scaled to the
maximum sized image in the training set. In thégning set maximum image size is 170 x
227 pixels.

By using this training set, proposed algorithmeistéd on Video-1 and Video-2 which have
nearly same view of the highway, but not the samgukar direction and are captured at
different times of the day. Total length of thessttvideos on which the experiments are
conducted is 15 minutes and there are 525 vehidhésh include 416 cars, 57 vans and 52
trucks. Table 4.2 and Table 4.3 show the classifinaesults when HOG and blob features
are used together as proposed in our algorithmleTdbd and Table 4.5 show the

classification results when only HOG features aeduwhile Table 4.6 and Table 4.7 show
the classification results when only blob featuaesused.

Table 4.2. Results of Video-1 and Video-2 by usit®G and blob features together

Vehicle Class Precision Recall A;:?thcy
car %98.7 %94.2
van %71.4 %78.9 %91.6
truck %67.6 %84.6
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Table 4.3. Confusion matrix of Video-1 and Videby2using HOG and blob features

together
Prediction
car van truck
car 392 10 14
Real
van 5 45 7
truck 0 8 44

Table 4.4. Results of Video-1 and Video-2 by usinty HOG features

Vehicle Class | Precision Recall Acchl)Jtrilcy
car %98.1 %89.1
van %46.5 %71.9 %84.9
truck %57.6 %65.3

Table 4.5. Confusion matrix of Video-1 and Videby2using only HOG features

Prediction
car van truck
car 371 31 14
Real
van 5 41 11
truck 2 16 34
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Table 4.6. Results of Video-1 and Video-2 by usinty blob features

Vehicle Class Precision Recall AcTc?thcy
car %90.1 %90.1
van %46.0 %26.3 %78.0
truck %60.6 %38.4

Table 4.7. Confusion matrix of Video-1 and Videty2using only blob features

Prediction
car van truck
car 375 35 6
Real
van 35 15 7
truck 6 26 20

As it is observed from above tables, using HOG hloth features together gives the best
accuracy comparing to the others. Figure 4.5 agdr€ 4.6 show the examples of correct
classification of the vehicles with the proposedodathm on Video-1 and Video-2,

respectively.
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Figure 4.5. Examples of correct classificationtaf vehicles on Video-1
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Figure 4.6. Examples of correct classificationtwf vehicles on Video-2

On Video-1 and Video-2 most of the misclassificasi@re due to the perspective occlusion
and shadow. Due to the perspective of these videwsyehicle occludes the other vehicle.
This occlusion causes merging of the vehicle blabseen in Figure 4.7. These merged
blobs are interpreted as one vehicle by the algoritThat's why, misclassification occurs

53



as in Figure 4.8. In the same way, shadow causegimgeof the vehicle blobs as seen in
Figure 4.9 and causes misclassification as seéigire 4.10. In these videos, %97 of the
misclassifications is due to the shadow and petsgeacclusion. The perspective occlusion
and shadow problems especially affect van and tcladses because of their large sizes. So,
classification performance decreases in van arak trlasses compared to car class as it is
seen in Table 4.2 and Table 4.3.

Figure 4.7. Merged blobs due to the perspectivéusimm

Figure 4.8. Misclassification due to the perspe&cteclusion
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Figure 4.9. Merged blobs due to the shadow

Figure 4.10. Misclassification due to the shadow

Using HOG and blob features together has slightlyelo performance than using only HOG
features; because some vehicles are similar instefrshape and appearance, although they
are in different classes. Using only HOG featurasses these vehicles with similar shape to
be labelled incorrectly. By including blob featurtss the HOG features, these similar
vehicles in terms of shape become distinguishapl¢hbir sizes. In addition, using only
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blob features gives the worse performance compaaribe others; because some vehicles
have similar sizes although they are in differdasses. Using only blob features causes
such vehicles to be labelled incorrectly. In thiperiment especially van and truck classes
are confused with each other, since mostly thegssare very close to each other. In Figure
4.11 height, width and extent from the blob feaduaee plotted together, while in Figure
4.12 major axis length, minor axis length and rafithe white pixels to the black pixels in
the bounding box of the vehicle blob are plottegetber. As it is seen, in the training set,
blob features of all classes coincide, especiadlg and truck classes. This coincidence
causes incorrect classification when only blobuezg are used. Figure 4.13 and Figure 4.14
show examples of incorrect classification when oblgb features are used. Although
vehicle is truck it is labelled as van in Figur&44and although vehicle is van it is labelled
as car in Figure 4.13.
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Figure 4.11. Coincidence of blob features visuéiliral
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Figure 4.12. Coincidence of blob features visuéilira2

Figure 4.13. An example of incorrect classificatwimen only blob feature used
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Figure 4.14. An example of incorrect classificatiagmen only blob feature used

4.2.1.2Results of Video-3 and Video-4

In this experiment, a training set including caanvand truck images is created by using a
video which has exactly same characteristics agd/&l In the training set there are 450

samples for car, 130 samples for van and 322 sanfipldruck. It is intended to have same

number of samples for each class in order to ptetren bias between them, but in the

training video van and truck vehicles are rarelgebed. In the training set the maximum

image size which is needed for scaling of detectehicle images before HOG feature

extraction is 202 x 169 pixels.

By using this training set, proposed algorithmastéd on Video-3 and Video-4. These
videos are captured from different highways atedéht times of the day. Their resolution is
different. They do not have the same angular doeciTotal length of these test videos on
which the experiments are conducted is 15 minutdslzere are 109 vehicles which include
65 cars, 16 vans and 28 trucks. Table 4.8 and #aBlshow the classification results when
HOG and blob features are used together as propgasedr algorithm. Table 4.10 and
Table 4.11 show the classification results whery ¢tDG features are used while Table
4.12 and Table 4.13 show the classification resuftsn only blob features are used.
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Table 4.8. Results of Video-3 and Video-4 by uditt@G and blob features together

Vehicle Class Precision Recall AcTc?Jt;:cy
car %100 %98.5
van %88.8 %100 %98.1
truck %100 %93.1

Table 4.9. Confusion matrix of Video-3 and Videbdydusing HOG and blob features

together
Prediction
car van truck
car 64 1 0
Real
van 0 16 0
truck 0 1 27

Table 4.10. Results of Video-3 and Video-4 by usinty HOG features

Vehicle Class Precision Recall A;:?thcy
car %98.5 %98.5
van %82.3 %87.5 %95.4
truck %96.2 %92.8
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Table 4.11. Confusion matrix of Video-3 and Videbydusing only HOG features

Prediction
car van truck
car 64 1 0
Real
van 1 14 1
truck 0 2 26

Table 4.12. Results of Video-3 and Video-4 by uginty blob features

Vehicle Class | Precision Recall Acchl)Jtillcy
car %76.9 %76.9
van %15.3 %12.5 %66.0
truck %62.5 %71.4

Table 4.13. Confusion matrix of Video-3 and Videby4using only blob features

Prediction
car van truck
car 50 4 11
Real
van 13 2 1
truck 1 7 20
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As it is observed from above tables, using HOG hloth features together gives the best
accuracy comparing to the others as in the cadédsfo-1 and Video-2. Figure 4.15 and
Figure 4.16 show the examples of correct classifinaof the vehicles with the proposed
algorithm on Video-3 and Video-4, respectively.

Figure 4.15. Examples of correct classificatiothaf vehicles on Video-3
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Figure 4.16. Examples of correct classificatiothef vehicles on Video-4
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The results of Video-3 and Video-4 are much bdttan Video-1 and Video-2. The reason
is that misclassifications due to perspective agolu do not exist. %95 of the
misclassifications is due to the shadow. Shadovblpro especially affect van and truck
classes because of their large sizes. So, cladsiinc performance decreases in van and
truck classes compared to car class as it is se€alle 4.8 Table 4.2and Table 4.9. Figure
4.17 and Figure 4.18 show an example misclassiicatue to the shadow.

Figure 4.17. Merged blobs due to the shadow

Figure 4.18. Misclassification due to the shadow
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In this experiment, similar to previous experimeiitis seen that using HOG and blob
features together has slightly better performahem tusing only HOG features and using
only blob features gives the worse performance ewing to the others because of the
reasons mentioned in the first experiment. In FBgud9 height, width and extent from the
blob features are plotted together, while in Figlw20 major axis length, minor axis length
and ratio of the white pixels to the black pixeisihe bounding box of the vehicle blob are
plotted together. In this training set, it is agaimserved that blob features of all classes
coincide. This coincidence causes incorrect cliasgibn when only blob features are used.
Figure 4.21 and Figure 4.22 show examples of ieabrclassification when only blob
features are used. Although vehicle is truck lakelled as van in Figure 4.21 and although
vehicle is van it is labelled as car in Figure 4.22
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Figure 4.19. Coincidence of blob features visudliral
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Figure 4.20. Coincidence of blob features visuéilira2

Figure 4.21. An example of incorrect classificatwimen only blob feature used
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Figure 4.22. An example of incorrect classificatwmen only blob feature used

4.2.2Experiment-2

In the second experiment, proposed hierarchicadsiflaation versus multi-class SVM
performance is observed. Combination of the HOG lalot features which give the best
accuracy result in the previous experiment is umedtraining the classifiers. Liblinear
library [55] is used for multi-class SVM with san@ parameter (0.01) used in the first
experiment.

4.2.2.1Results of Video-1 and Video-2

In this experiment, same training sets in ordetras the multi-class SVM and same test
videos are used as in the first experiment for ¥idleand Video-2. Table 4.14 shows the
classification results of multi-class SVM.
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Table 4.14. Confusion matrix of Video-1 and Videt? multi-class SVM

Prediction
car van truck
car 393 8 15
Real
van 7 43 7
truck 0 10 42

When we look at the results of hierarchical clasaffon which is given in Table 4.3 and
results of multi-class SVM, it is observed thatytheave almost same classification
performance. Most of the misclassifications for tirelass SVM are due to the perspective
occlusion and shadow as in the first experiment.

4.2.2.2Results of Video-3 and Video-4

In this experiment, same training sets in ordetramn the multi-class SVM and same test
videos are used as in the first experiment for ¥i8eand Video-4. Table 4.15 shows the
classification results of multi-class SVM.

Table 4.15. Confusion matrix of Video-3 and Vide&#4 multi-class SVM

Prediction
car van truck
car 64 1 0
Real
van 0 16 0
truck 0 3 25

When we look at the results of hierarchical clasaifon which is given in Table 4.9 and
results of multi-class SVM, it is observed thatytheave almost same classification
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performance. Most of the misclassifications for tiaclass SVM are due to the shadow as in
the first experiment.

4.2.3Experiment-3

In the third experiment, performance of the propos$éerarchical classification versus
performance of a hierarchical classification whiges only blob features in Classifier-1 and
uses only HOG features in Classifier-2 is observisl.in the proposed classification,
Classifier-1 and Classifier-2 are one class lirf@@M with C equal to 0.01.

4.2.3.1Results of Video-1 and Video-2

In this experiment, in order to train Classifieatid Classifier-2 same training sets are used
as in the first experiment. Tests are done on #mestest videos. Table 4.16 shows the
classification results of the hierarchical classifion by using only blob features in
Classifier-1 and using only HOG features in Classi2.

Table 4.16. Confusion matrix of Video-1 and Videby2using only blob features in
Classifier-1 and using only HOG features in Classi?

Prediction
car van truck
car 375 35 6
Real
van 37 13 7
truck 0 27 25

When we look at the results of proposed hierarthilgssification which is given in Table
4.3 and the above results, it is observed thathtbrmrchical classification by using only
blob features in Classifier-1 and using only HOGtfees in Classifier-2 has worse
performance than the proposed classification whises HOG and blob features in
Classifer-1 and Classifier-2. Using only blob featiin Classifier-1 causes the vehicles
which have same size, but are in different classdse labeled incorrectly. In addition,
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using only HOG features in Classifier-2 causeswvtlaicles which have similar shape, but
are in different classes to be labeled incorrecBn, performance of this type of
classification degrades.

4.2 .3.2Results of Video-3 and Video-4

In this experiment, in order to train Classifieatid Classifier-2 same training sets are used
as in the first experiment. Tests are done on #mestest videos. Table 4.17 shows the
classification results of the hierarchical classifion by using only blob features in
Classifier-1 and using only HOG features in Classi2.

Table 4.17. Confusion matrix of Video-3 and Videbydusing only blob features in
Classifier-1 and using only HOG features in Classi

Prediction
car van truck
car 51 11 3
Real
van 11 2 3
truck 0 9 18

When we look at the results of proposed hierarthilgssification which is given in Table
4.9 and the above results, as in the previous awrpat it is observed that the hierarchical
classification by using only blob features in Ciassl and using only HOG features in
Classifier-2 has worse performance than the prapesssification which uses HOG and
blob features in Classifer-1 and Classifier-2. &ariance of this type of classification
degrades due to the same reasons as in the prexipesment.
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4.2.4Comparison with the State of the Art Literature

Direct comparison of quantitative results with therature is difficult due to the lack of a
common data set for vehicle classification. In ®ectl.1 detailed information about the
state of the art in vehicle classification has bearen. [21], [22] and [23] have high
accuracy results about 90%. However, these algosittely on 3D modeling of the vehicles
which is computationally costly and needs camerarpaters like height of the camera and
the angular direction of the camera. Our approackhé vehicle classification is in 2D
approaches, that is, it works in the camera coatdiomain. 2D approach algorithms
mostly want camera parameters (height, angle abnjiscalibration, etc.) and parameters
about the highways (direction of the vehicles, elatthe lane division lines, viewing side
of the highway etc.). From those algorithms onesclwthave classification performance
nearly close to our approach are like that: [18§ h recall 65% and a precision 75% for
classifying into 3 classes. However, in this altjon there exists a normalization step of
vehicle blobs where camera parameters are nee8ledasg a classification accuracy 70%.
However, classification is done only as car and-camnand uses vehicle parameters such as
length and height which are recovered from the 2@)egptions of the vehicles; so, camera
parameters are needed.. [9],[10] and [7] have ifileation accuracies 82,9% classifying
into 3 classes,74,4% classifying into 7 classes] 84% classifying into 7 classes,
respectively. However, these works use only blatuiees which are not reliable as seen in
our experiments and their algorithms work only ba videos which are taken from side
view of the highway. [11] gives a classificatiorcaacy 88% for 4 classes, but it requires
that the camera is in axis with the highway to geelane division lines. [16] uses HOG
features to classify vehicles in 3 classes. Howavés only proposed for in vehicle usage
and also has a low classification accuracy as 64,3%

The proposed algorithm in this thesis study is cayhputationally costly as in the case of
3D approaches. It does not need camera calibratidrspecifically any precise knowledge
of camera parameters like height of the cameraylangirection of the camera. In addition,
it does not depend on the parameters of the highvileg the knowledge about the place of
the lane division lines, viewing side of the higlywahis approach only needs a detection
region given by the user in which the camera vaé & vehicle in full view and a training
set created from the nearly same view of the highea which classification will be
performed, but it is not needed to be exactly ia #ame height and the same angular
direction.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Summary and Conclusions

In this study, a new algorithm to classify movirghicles in highways has been presented.
The aim is to provide an automated system thaisifles the vehicles and by this way
provide more information to traffic system manag#@rsorder to improve the travel
experience.

In the algorithm moving vehicle detection is penfied by using an adaptive mixture of
Gaussians that selects number of Gaussian comoadaptively on run-time. Mixture of
Gaussians is selected because it can cope withlegitigs in outdoor environments like
lighting changes and repetitive clutters. Duringrastion of the foreground regions, some
noises are also detected as foreground. In ordeririomize the effects of these unwanted
components, morphological operations are perforaretiby that way system performance
is improved.

After detecting the vehicles, feature extracti@pstomes. In the algorithm two features are
selected in order to make discrimination betweareldicle classes which are car, van and
truck. The main difference between these vehighegyis their sizes, so 7 blob features of
each vehicle blob is obtained. Another discrimvetfieature of these vehicle types is their
shapes and appearances, so HOG features are edtasch shape descriptor. By using these
two features a global feature vector is createdefach vehicle blob in order to use in
classification step.

In the classification step, a robust classifier SidMthosen in order to label the vehicles as
car, van or truck. Each feature vector coming feach vehicle blob which includes HOG
and blob features is classified as car, van orktinca hierarchical manner. Firstly, the
feature vector coming from a test data is clags$ifie car or other (van + truck) with the
Classifier-1 which is trained with a training se¢ated before. Then, if the feature vector is
labeled as car, classification step ends. Othepifishe feature vector is labeled as other,
this feature vector is again classified with thagsifier-2 which is trained with a training set
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created before and discriminates between van amd.tAt the end, the feature vector is
labeled as van or truck.

Proposed algorithm is tested on 4 different vid&ast two sets of videos are recorded from
the same highway at different times of the dayhesrtviews of the vehicles are nearly
same, but not exactly the same angular directiah thair resolutions are same. With a
training set created as the view of the vehiclearlpesame as these two videos, the
algorithm gives a satisfying result. Second twae sétvideos are recorded from the different
highways at different times of the day as theimgeof the vehicles are nearly same, but
again not exactly the same angular direction aed tesolutions are also different. With a
training set created as the view of the vehiclearlpesame as these two videos, the
algorithm gives a satisfying result on these vid¢os.

By looking at the results of experiments HOG anobbleatures together with the SVM
classifier give a successful performance to clgssshicles into car, van or truck. It can be
concluded that local object appearance and shagénven image can be described by the
distributions of intensity gradients and edge diogs, which refers to HOG features. HOG
features are robust feature set which is invarteniocal geometric and photometric
transformations. Within cell rotations and translas do not affect the HOG values and
illumination invariance achieved through normalizat Also, selection of SVM as a
classifier provides robust classification. SVMasd overfitting and robust to noise.

As a conclusion, the algorithm classifies the viglsiénto three main classes as car, van or
truck by providing independence of knowing speaeific the camera parameters like height
of the camera, angular direction of the camera,ecarnalibration etc. and any information
about the highway like the place of the lane dorisiines. Algorithm assumes a stationary
camera and only needs a user defined classificeggion in order to see the vehicles as full
view and trained classifiers with a training setated with the vehicle images nearly the
same view of the highway on which the classifiaatwill be performed, but it is not
necessary to be exactly the same view (same carpamge height of the camera, same
angular direction of the camera).
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5.2 Future Works

In this thesis, moving vehicle classification intioree classes as car, van or truck is
performed. One of the improvements which can b@esigd is to combine tracking with
the classification. Tracking can help to improve tesults by eliminating the occlusion
problem. Another improvement can be working on shadow elimination. In addition,
algorithm can be extended to the moving camerasdxyrporating a different algorithm in
the detection stage of the vehicles and vehiclegyan be increased.
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