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ABSTRACT 

MOVING VEHICLE CLASSIFICATION 
 
 

Duman, Demet 
M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 
 
 
 

September 2013, 78 pages 
 
 
 

In recent years intelligent transportation systems have been an active research area in 
computer vision. The aim of this study is to classify moving vehicles from highway videos 
taken by stationary uncalibrated cameras. For this study, three types of vehicle classes with 
different scales are chosen to classify: car, van and truck. The proposed algorithm is 
composed of foreground/background segmentation, feature extraction and classification 
steps. In order to classify each vehicle, histogram of oriented gradients (HOG) features 
which are shape-based descriptors and blob features which are dimension-based descriptors 
are used in the algorithm. The effects of these features on the classification performance are 
also evaluated and simulation results are given on different highway videos.  
 
Keywords: Vehicle classification, foreground/background segmentation, histogram of 
oriented gradients 
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ÖZ 

HAREKETLĐ ARAÇLARIN SINIFLANDIRILMASI 
 
 

Duman, Demet 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 
 
 
 

Eylül 2013, 78 sayfa 
 
 
 
Son yıllarda akıllı ulaşım sistemleri görüntü işleme alanında aktif bir araştırma alanı 
olmuştur. Bu çalışmanın amacı, ayarsız bir video kamera ile alınan otoyol video 
görüntülerini kullanarak hareket halindeki araçları sınıflandırmaktır. Bu çalışmada, 
sınıflandırmak üzere farklı ölçülerdeki üç çeşit araba sınıfı seçilmiştir: araba, orta sınıf araç 
ve büyük sınıf araç. Önerilen algoritma ön plan/arka plan ayırımı, özellik çıkarımı ve 
sınıflandırma aşamalarından oluşmaktadır. Algoritmada her aracı sınıflandırmak için, şekle 
dayalı bir tanımlayıcı olan gradyan yönelim histogramı özellikleri ve boyuta dayalı bir 
tanımlayıcı olan imge bölgesi özellikleri kullanılmıştır. Bu özelliklerin sınıflandırma 
performansı üzerine etkileri incelenmiştir ve farklı otoyol videolarına ait deney sonuçları 
verilmiştir. 
 
Anahtar Kelimeler: Araç sınıflandırma, ön plan/arka plan çıkarımı, gradyan yönelim 
histogramı 
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CHAPTER 1  
 
 

 INTRODUCTION 

The intelligent transportation systems (ITS) have been developed to manage the traffic flow. 
These systems use a suite of sensors for obtaining the traffic parameters. The magnetic loop 
detectors are mostly used sensors which measure the length and the number of axles of 
vehicles. They are installed under the road to provide real time statistics. Unfortunately, they 
have some disadvantages; they are expensive, they stop and damage the traffic during 
installation and they are only able to sense the presence of a vehicle.  
 
In recent years, video camera starts to be a promising traffic sensor and vision-based traffic 
monitoring becomes popular in ITS, because monitoring the traffic based on video cameras 
has some advantages. First, video cameras are easy to use and not disruptive to traffic 
during installation compared to the magnetic loop detectors. Second, large number of areas 
can be covered with a small number of video cameras. Third, they are cheaper compared to 
the magnetic loop detectors. Forth, video cameras allow collecting rich information about 
the traffic and provide analyses of the traffic flow at the level of the vehicle. By using video 
cameras many traffic parameters can be obtained like congestion, vehicle counts, lane 
changes, vehicle velocity and vehicle classes. 
 
In ITS, vehicle classification is an important area in order to obtain the percentage of the 
vehicle classes on the streets and highways. Obtaining vehicle classes is important, because 
the geometric design of a road, like horizontal alignment and curb heights, depends on the 
vehicle types which use it, due to their heavy weights, inferior braking, and large turning 
radius. The heavy weight of the vehicles also affects the pavement design. In current 
situation human operators manually obtain the vehicle classes on some highways. In order 
to classify the vehicles using an automated system based on video cameras will also be cost 
effective by eliminating the need for human operators. 
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1.1 STATE-OF-THE-ART IN VEHICLE CLASSIFICATION 

The literature on vehicle classification is mainly divided into 2D approaches, which means 
that operation in the camera view and 3D approaches which includes 3D modeling. This 
section covers the latest studies and the related work in the literature on these approaches. 

1.1.1 2D Approaches 

Systems which work in the camera coordinate domain are in the scope of 2D approaches. 
2D approaches on vehicle classification vary according to the features used to discriminate 
the vehicles and classified vehicle types. Generally size based features like length, height 
and area are used in 2D approaches.  
 
Lipton et al. [1] use a classification metric dispersedness which corresponds to ratio between 
perimeter and area of the vehicle blob in order to classify into three categories: human, 
vehicle or background clutter. In this work, classification accuracy is reported as around 
85%. 
 
Gupte et al. [2], [3], and Zhang et al. [18] use height and length to classify vehicles on a 
highway, while Avery, Wang and Rutherford [6] use only length. Length and height of the 
vehicles are obtained by using the 2D projections of the vehicles. This stage uses 
information about the camera's location and the camera parameters. In [2], classification is 
done into two categories as trucks or other vehicles and accuracy is reported as 90%. In [3], 
classification is done into two categories as cars or non-cars and accuracy is reported as 
70%. In [18] and [6], it is aimed to discriminate between long and short vehicles in order to 
detect the long vehicles and the detection accuracy of long vehicles is reported as 97% and 
91%, respectively while there is no direct information about classification accuracy. 
 
Huang and Liao [7] use area, size and length to classify vehicles on a highway by using 
some rules. Seven vehicle classes which are pickup, sedan, van, van truck, truck, trailer or 
bus are classified from side view of a highway scene. Performance of the algorithm is 
reported as 91% overall classification rate. 
 
Rad and Jamzad [8] propose a system to classify and count the vehicles. Also, they find out 
the lane-changes through tracking on the highways, while Veeraraghavan et al. [5] monitor 
road intersections. In both work, classification is done based on the size of the bounding box 
of the blobs and velocity. In [8], vehicles are classified into three classes, 
motorcycle/bicycle, car or bus/minibus; while in [5] classification is done into vehicle or 
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pedestrian. In [8], bounding boxes which are classified are tracked by using a Kalman filter. 
The tracking error rate is reported as 5.4%. However, there is no quantitative information 
about the performance of the systems for classification. 
 
Morris and Trivedi [9] and [10] utilize blob features like breadth, area, compactness, 
perimeter, elongation, roughness, area, length, long and short axis of fitted ellipse, centroid 
and 5 image moments. A comparison between image based features like pixels and image 
measurement features like region size is presented. These feature types are used with Linear 
Discriminant Analysis (LDA) and Principal Component Analysis (PCA) as dimensionality 
reduction techniques. Image measurement features with LDA which gives the best 
performance is selected as the final algorithm. Their system works on the videos captured 
from the side view of a highway.  In [9], classification accuracy is given as 82.9% for 
classifying into three classes as sedan, semi or truck/SUV/van while in [10], classification 
combined with tracking is done into seven classes as sedan, truck, SUV, semi, van, 
truck/SUV/van or moving trucks and classification accuracy is given as 74.4%. 
 
Hsieh et al. [11] use linearity and size features for the classification of the vehicles. The 
linearity feature is a measure for the roughness of the vehicle silhouette. In their work, 
classification is done into four classes, car, minivan, van-truck (including bus) and truck by 
assuming that the camera is in axis with the highway to see the lane division lines. 
Classification accuracy is given as 88%. 
 
Zhang et al. [12], Arrospide and Salgado [13] and Chen and Zhang [15] use vehicle images 
as features to make a classification. [12] and [13] utilizes PCA while [15] utilizes ICA to 
reduce the dimension of the feature space. In [12] and [15], classification precision is given 
as 50% and 75%, respectively for three classes: passenger car, van or pick-up. In [13] 
classification is done into vehicle or non-vehicle with a classification rate 93.04%.  
 
Gandhi and Trivedi [16] and Arrospide et al. [14] utilize Histogram of Oriented Gradients 
(HOG) features for in-vehicle classification systems. In [16], a classification into four 
classes as car, van, pickup-truck or no vehicle is done; while in [14] classification is 
performed as vehicle or non-vehicle. In [16] and [14] classification accuracies are reported 
as 64.3 % and 90%, respectively.  
 
Alonso et al. [17] propose an vehicle detection system through classification as vehicle or 
non-vehicle. The bounding boxes of the vehicles are created based on edges. The bounding 
boxes are verified by corner detection and symmetry inside this region. In this work, 
classification rate is given as 90%. 
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Thi et al. [19] and Robert [20] propose a vehicle classification system for night time videos. 
Vehicle images are used as the features by applying PCA to reduce the dimension. 
Classification is done as vehicle or non-vehicle. In [19], classification accuracy is reported 
as around 94%. In [20], classification accuracy is given as around 95% by combining 
tracking with the classification. 

1.1.2 3D Approaches 

 
3D approaches are generally based on 3D modeling of the vehicle types which achieve high 
accuracy in the expense of the higher computational complexity and these algorithms need 
camera parameters in order to use in the projection of vehicle parameters on 2D. Sullivan et 
al. [21], Messelodi et al. [22] and Buch et al. [23] perform vehicle detection and 
classification through 3D models of the vehicles.3D models of vehicle types is created and 
according to a match measure, classification is done. In [21], classification is done into two 
classes as car or van and accuracy is given as around 96%. In [22], classification is done 
into bicycle, lorry, motorcycle, van car, extra-urban bus, urban bus or unknown. The 
reported classification rate is 91.5%. In [23], classification performance is given as a recall 
of 90.4% at a precision of 87.9% for four classes: bus/lorry, van, car/taxi and 
motorbike/bicycle. 
 
In the literature, most of the works require camera parameters like height of the camera, 
angular direction of the camera and camera calibration or knowledge about the highways 
like the place of the lane division lines and the viewing side of the highway. In this study, it 
is aimed to classify moving vehicles into three classes as car, van or truck without needing 
specifically any camera parameters and the knowledge about the highway. 

1.2 SCOPE OF THE THESIS 

This thesis focuses on classification of the moving vehicles on highways. Our goal is to 
classify vehicles into three classes as car, van or truck with the proposed algorithm. For that 
purpose, initially vehicles are detected. In the detection step, a background subtraction of 
algorithm based on mixture of Gaussians (MoG) is used due to its capability of coping with 
the changes in the scene (i.e., adaptable) in order to isolate moving vehicle blobs. In order to 
move undesired components which are part of foreground, morphological operations are 
utilized. 
 



5 

 

 

 

Next step after detection of the vehicles is the feature extraction. Blob features which are 
dimension-based descriptors and histogram of oriented gradients (HOG) features which are 
shape-based descriptors are extracted to represent the vehicle classes. In the study, effects of 
using HOG and blob features together and separately are examined. 
 
After features of each vehicle blob are extracted and classified with a robust supervised 
classifier support vector machines (SVM) in a hierarchical manner, each vehicle class is 
obtained.  

1.3 OUTLINE OF THE THESIS 

In Chapter 2, basic building blocks of a vehicle classification system is explained in detail.  
 
In Chapter 3, proposed algorithm is presented by explaining each algorithm in the building 
blocks of the system which are detection of vehicles, feature extraction and classification. 
 
After explaining the algorithm, experimental results on different videos are given in Chapter 
4. In addition, a comparison with the literature is included. 
 
The thesis is summarized and concluded in Chapter 5. It presents conclusions and 
observations made throughout the thesis study. In addition, some future works are presented 
in this chapter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

 

 

 

CHAPTER 2  
 
 

BACKGROUND TOPICS 

2.1 BASIC BUILDING BLOCKS OF VEHICLE CLASSIFICATION  

In this section, basic elements required for vehicle classification will be explained. 
Generally, vehicle classification is divided into two stages. First stage is detection stage 
while second stage is classification. Typical vehicle classification system uses foreground 
segmentation in vehicle detection stage and then classification part comes. As it is seen in 
Figure 2.1 , a statistical model estimates foreground pixels and then those foreground pixels 
are grouped so that connected regions are obtained and those regions are propagated through 
the classification stage. A priori information about vehicle classes which is previously 
learned or preprogrammed is used to assign class label in classification stage.  
 
 
 

 

 

Figure 2.1. Block diagram of typical vehicle classification system 
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2.1.1 Foreground Segmentation 

In an automated visual surveillance system, foreground segmentation is the first stage. 
Generally performance of the system is affected by the success in the obtaining the 
foreground regions correctly.  
 
There are two basic different approaches used in vehicle classification systems to estimate 
the foreground (vehicle) regions. First approach is an obtaining background model. 
Providing that the camera is stationary, a comparison is done between this model and 
current frame to find out the differences which refer to the foreground regions. With this 
approach stationary objects are missed out because of the lack of motions. This approach is 
suitable for implementation on the computer; however, in slow moving traffic it has 
problems. Second approach segments foreground regions based on object appearances. This 
approach can be used for both stationary and moving cameras to obtain the vehicle 
(foreground) regions. However, it requires prior information for foreground object 
appearances and it is computationally costly. In the next section, generally used algorithms 
in vehicle classification systems will be introduced. 

2.1.1.1 Frame Differencing 

The easiest and simplest way of foreground segmentation is frame differencing. In this 
method, the model for the background is equal to the previous frame. The difference 
between the previous and current frame and is thresholded and used as foreground mask.  
 
 

 ���, �, �� = 	  1, |
��, �, ��  −  
��, �, � − 1�| > �ℎ���ℎ���  0, |
��, �, ��  −  
��, �, � − 1�| < �ℎ���ℎ���� (2.1) 

 
In the above formula, I (x,y,t) is the intensity value at pixel location (x,y) at time t and I 
(x,y,t-1) is the intensity value at pixel location (x,y) at time t-1. M (x,y,t) is the mask image 
obtained thorough differencing and thresholding.  
 
 The algorithm is very easy and fast to implement. However, in dynamic scene conditions it 
has a low performance. It cannot cope with multi-modal distributions, abrupt illumination 
changes, periodic movements in the backgrounds like trees and noise. Also, its results are 
very sensitive to the threshold value. In the literature, [1], [2] and [6] use frame differencing 
to detect the vehicles. 
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2.1.1.2 Moving Average Filtering 

In this method, by calculating the mean value of the previous N frames a reference 
background frame Iref  is generated and a mask image is obtained as follows: 
 
 

 ���, �, �� = �  1, |
��, �, ��  −  
���| > �ℎ���ℎ���  0, |
��, �, ��  −  
���| < �ℎ���ℎ���� (2.2) 

 
The update equation of the background model is given as below: 
 
 

 
���,� =    
��, �, � − 1� + �1 −  �
���,�"# (2.3) 

 
In (2.3),   is the learning parameter and must be chosen as considering the features (size, 
speed, etc.) of the video and moving objects. Learning parameter   determines how the 
background model adapts to changes in the scene. 
 
This algorithm has little computational cost and superior to the frame differencing method. 
However it is sensitive to the threshold value. If the threshold value is too high, then 
foreground regions can be marked as background; if the threshold value is too low, some 
background regions become foreground. Also, this algorithm produces tails at the back of 
the moving objects because of the contamination of the background by the appearance of the 
moving objects. In addition, it cannot cope with multi-modal distributions. In the literature, 
[3], [7], [12] and [15] use moving average filtering to detect the vehicles. 

2.1.1.3 Single Gaussian 

Single Gaussian model [24] which has a dynamically changing threshold for each pixel 
improves robustness in background modeling. This method tries to fit a Gaussian 
distribution �$, %� to each pixel. By that way, background model is generated for each pixel. 
In this algorithm, if current pixel value �� satisfies (2.4), it is matched with the 
corresponding Gaussian distribution. 
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 |�� − $�|  ≤ 2.5 %� (2.4) 

 
Where $� is the updated mean and %� is the updated variance of the corresponding Gaussian 
distribution. If current pixel value �� is matched with a Gaussian distribution, parameters of 
that distribution are updated as below and this pixel is labeled as background. 
 
 

 $�  = �1 −   �$�"# +   ��   (2.5) 

 

 %�*  = �1 −   � %�"#* +    ��� − $��* (2.6) 

 
Where   is the learning rate. If   is high, recent pixel values have more influence on the 
background model. If   is low, the influence of recent pixel value is not much.  
 
If current pixel is not matched the background model, it is labeled as a foreground pixel. 
Single Gaussian method has better performance than first two methods which is mentioned, 
since it has a dynamic threshold. However, it cannot cope with multi-model distributions 
and abrupt illumination changes since it has a one Gaussian distribution. In the literature, [9] 
and [10] use single Gaussian method for detection of the vehicles. 

2.1.1.4 Mixture of Gaussians 

In mixture of Gaussians (MoG) method [25], recent history of each pixel { ,#, … . , ,�} is 
modeled by a mixture of  / Gaussian distributions. The probability of observing the current 
pixel value in that model is given in (2.7) and a modeling of a pixel by a MoG is given in 
Figure 2.2. 
 
 

 
 0�,�� = 1 23,� 4�,� , $3,� , ∑3,��

6

37#
 (2.7) 



11 

 

 

 

 
In (2.7),  / is the number of distributions, 23,� is an estimate of the weight of ith Gaussian in 
the mixture at time t and shows what portion of the data is accounted for by this Gaussian. $3,� and ∑3,�  are the mean value and covariance matrix of the ith Gaussian in the mixture at 

time t, and 4 is a Gaussian probability density function is given below 
 
 

  4�,� , $, ∑� = 1�28�9:  |∑|;:  �";:�<=> ?=�@ ∑>;�<=> ?=�  (2.8) 

 
 

 

Figure 2.2. Model of a pixel as a mixture of Gaussians 
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Generally, from 3 to 5 number of distributions / is used and this is determined by the 
available memory and computational power. In addition, for computational reasons, 
covariance matrix is assumed to be of the form: 
 
 

  ∑A,� =  %A* 
 (2.9) 

  
This covariance matrix assumes that red, green and blue pixel values are independent ad 
have same variances, although this is not the ideal case. This assumption helps to avoid a 
costly matrix inversion at the expense of some accuracy.  
 
So, the distribution of recently observed values of each pixel is characterized by a mixture 
of Gaussians. Every new pixel value will be represented by one of the major components in 
the model and used to update the mixture model. Each pixel value ,� is checked against / 
Gaussian distributions, until a match is obtained. A match is defined as a pixel value within 
2.5 standard deviations of a distribution. If none of the / distributions match the current 
pixel value, the least probable distribution is replaced with a distribution which has the 
current pixel value as its mean, an initially high variance and low prior weight. Weights of 
K distributions at time t are updates as follows 
 
 

 2A,�  = �1 −   �2A,�"# +    �A,� (2.10) 

 
Where   is the learning rate and �A,� which is called ownership is 1 for the matched models 
and 0 for the remaining models. Also, weights are normalized after this approximation so 
that they add up to 1.  If the current pixel value is matched, the parameters of the 
corresponding Gaussian distribution are updated as in (2.11) and (2.12). The mean $  and 
the variance % parameters for unmatched distributions remain the same. 
 
 

 $�  = �1 −  B�$�"# +  B ,� (2.11) 
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 %�*  = �1 −  B�%�"#* +  B�,� − $��C�,� −  $�� (2.12) 

 
where B =    4�,�|$A, %A�. 
 
As the parameters of the mixture model of each pixel change, it should be determined which 
of the Gaussians in the mixture are most likely to be produced by the background processes. 
In order to obtain the background model, Gaussian distributions of a pixel are ordered by the 

value of  
DE from highest to lowest. This value increases both as distribution gains more 

evidence and as the variance decreases. With this ordering, the most likely background 
distributions remain on top and the less probable transient background distributions 
gravitate towards the bottom and eventually replaced by new distributions. Then, the first B 
distributions satisfying (2.13) are chosen as the background model. 
 
 

  F = G�HIJKL� 1 2A > � �L
A7#  (2.13) 

 
where T is a measure of the minimum portion of the data that should be accounted by the 
background. If T is small, the background model is usually unimodal. If this is the case, 
using only the most probable distribution will save processing. If T is higher, a multi-modal 
distribution caused by a repetitive background motion (e.g. leaves on a tree, a flag in the 
wind etc.) could result in more than one color being included in the background model. This 
results in a transparency effect which allows the background to accept two or more separate 
colors. 
 
This algorithm can deal with repetitive clutter and lighting changes. However, it is 
computationally complex comparing to the other three algorithms mentioned before. In the 
literature, MoG is used in [5], [18] and [23] to detect the vehicles. 
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2.1.1.5 Object-based Segmentation 

Object-based segmentation based on detection of the objects in order to identify the 
foreground. In object-based segmentation, methods are considered which detect objects in a 
holistic way by searching for full objects. Generally, 3D models of objects are used in order 
to identify the objects. Because of using 3D modeling, methods relying on object-based 
segmentation have higher computational complexity. [21] and [22] use object based 
segmentation in order to obtain the vehicle blobs. 
 

2.1.2 Classification 

Classification is the assignment of a new instance to a group of previously known instances 
named as the class. The classifier wants information about a new instance which is called as 
features. After features of classes are extracted from the object, a machine learning 
algorithm is trained by using the instances of known classes to generate discriminative 
information from the features. Then, the classifier uses the learned information in order to 
assign a label to a new instance.   

2.1.2.1 Feature Extraction 

Feature extraction process produces similar values which come together to create a feature 
vector for the instances belonging to the same class and this is an important step for the 
classification part. In order to obtain the feature vectors, key points (features) are detected. 
In computer vision there are lots of key point detectors like Harris [38], Hessian [39], 
Laplacian of Gaussians (LoG) [40], Difference of Gaussians (DoG) [41], Canny [42], Sobel 
[43], Prewitt [44], Shi and Tomasi [45] , Features from Accelerated Segment Test (FAST) 
[46], and Maximally Stable Extremal Regions (MSER) [47] detectors, Haar wavelets [48], 
Hough transform [49]. Once features are detected, a local image patch around the feature 
can be extracted. For that purpose feature descriptors like MPEG-7 [33], Scale Invariant 
Feature Transformation (SIFT) [34], Speeded Up Robust Features (SURF) [36]., Histogram 
of Oriented Gradients (HOG) [31], Oriented FAST (ORB) [50], Gradient Location and 
Orientation Histogram (GLOH) [51] and Gabor filters [52]. In the following section, an 
overview of mostly used feature descriptors in vehicle classification is presented. 
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2.1.2.1.1 Region-based 

Region-based features are generally extracted from the whole image region of an object. 
Image region of an object is generally the foreground area extracted by the foreground 
segmentation algorithm. Image moments, length, height, size and area of the image region, 
SIFT, SURF and HOG features are often used to generate a feature vector. 
 
SIFT is introduced in [34]. The local features generated are invariant to rotation, image 
scaling and translation. Also, they are partially invariant to affine projection changes and 
illumination changes. Generally, a SIFT feature describes the appearance of salient points in 
the image uniquely, which will remain salient even if the image is rotated, resized or the 
illumination is changed. The SIFT features find point to point correspondences in two 
different images of the same object. Modified SIFT descriptors are used in [35] to create a 
rich representation of vehicle images. 
 
The SURF descriptors are introduced in [36]. The descriptor is used for finding 
correspondence between images, like SIFT. However, the design focuses on computational 
speed by allowing loss of performance. The use of box filters instead of Gaussian filters in 
the case of [34] reduces computational complexity. 
 

 

Figure 2.3. SIFT and SURF descriptors for matching in object recognition 

The concept of HOG is introduced in [31]. To calculate the feature vector, the gradient of 
the input image is divided into cells. A histogram of the gradient orientation in pixels is 
calculated for every cell. The vectors of all cells are concatenated in order to create one 
global feature vector for the image. In [31], HOG is utilized for the detection of pedestrians. 
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In this thesis study, HOG concept is used to classify the vehicles. In Chapter 3, HOG will be 
introduced in more detail. 

2.1.2.1.2 Contour-based 

Contour based features only take the edge of a silhouette into account. They rely on the 
contour information of the object instead of the whole set of pixels inside the object region. 
The distance between contour points is used as a similarity measure. Processing is 
performed on closed contours as extracted from the video. These features are generated 
through several edge and corner detection algorithms like Canny, Sobel, Harris and Prewitt 
edge detectors. The contour which includes edges is used in [17] and [37] for vehicle 
classification. 

2.1.2.2 Classifiers 

Classifiers assign an unknown object instance to a known class by using the extracted 
feature vector. This assignment relies on learned information from the training data. 
Machine learning algorithms generate classifiers by using training data. An important 
property of the learning algorithms is the supervision which provides the labels for the 
training data. Ground truth is required for the evaluation of the classifier. The classifier 
output is compared to the manually generated ground truth. In the following section 
classifiers generally used for vehicle classification will be explained. 

2.1.2.2.1 Nearest Neighbour Classifier 

The nearest neighbour classifier is the easiest non parametric classifier for a feature vector. 
The distance between every vector of the training set and a new feature vector is calculated. 
Any distance measure can be chosen. The most common distance measure is Euclidean 
distance given in (2.14) where x and y are points in MN. 
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  ���, �� = O� − ��O� = =  PQ1��3 − �3�*N
37# R  (2.14) 

 

The class label of the closest training vector is assigned to the new vector. K-nearest 
neighbour algorithm which improves robustness is the extension of the nearest neighbour 
algorithm. This algorithm classifies a feature vector by assigning it to the label most 
frequently represented among the k nearest samples. A decision is made by examining the 
labels on the k nearest neighbors and taking a vote as it is seen in Figure 2.4.  
 

 
 

Figure 2.4. The k-nearest-neighbor classification 
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In terms of memory requirements and computational complexity nearest neighbour 
classifiers do not scale very well for large training sets and they need many distance 
calculations. There is no time requirement for training. However, the classification time 
increases with the training size. 

2.1.2.2.2 Support Vector Machines 

Support Vector Machines (SVM) perform classification using linear decision hyperplanes in 
the feature space [26]. SVM constructs a decision hyperplane between samples of two 
classes based on the most informative points of the training set which are called support 
vectors. The aim of SVM is to find the optimal hyperplane between samples of two classes 
with the largest margin (Figure 2.5). As seen in Figure 2.6, support vectors are equally close 
to the hyperplane and nearest patterns, a distance b from the hyperplane. The three support 
vectors are shown in solid square. 
 

 

        (a)        (b) 

Figure 2.5. Decision boundary obtained by (a) an ordinary classifier and (b) SVM 
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Figure 2.6. Finding the optimal hyperplane 

A separating hyperplane which can also be called as Linear Discriminant Function is 
defined as in (2.15) given that a training data set {�#, … , �S} and their corresponding labels {�#, … , �S} taking values +1 and -1. The goal is to obtain  T�UUUUUV  and TW  which are weight 
vectors. 
 
 

  H��V� =  T�UUUUUV�V + TW   (2.15) 

 
It is decided that  
 

  �3 = +1    JX H��V3� ≥ +1         
                       �3 = −1    JX H��V3� ≤ −1       J = 1, … . . , K 

�J�ℎ�� Z�G�� ��ℎ��TJ��          
(2.16) 
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It is known that the distance of point �V3 from the decision boundary as it is seen Figure 2.7 
is given as (2.17)  
 
 

   � =     T�UUUUUV�V3 +  TW OTUUV�O �       J = 1, … . . , K   (2.17) 

 
 

 
 

Figure 2.7. Distance (r) of a point from the decision boundary 

Distance is normalized so that for the nearest point it becomes 
#ODUUV[ �O � as it is seen in Figure 

2.8. x is the nearest point to the boundary plane and called as support vector. Blue line 
shows H��V3� = +1 plane and green line shows H��V3� = −1 plane. 
 
 

 
 

Figure 2.8. Distance of nearest point to the boundary plane 
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For a linearly separable problem, optimal hyperplane which separates feature space while 
maximizing the distance from the support vectors can be obtained as a result of an 
optimization process in (2.18). 
 
 

 max  1_T`UUUUV�O �*       �abc�Z� ��  �3 dT`�UUUUUUV�V3 + T`W e ≥ +1    
J = 1, … , K                                                                                  

(2.18) 

 
This problem can be solved by using the Lagrange multipliers in (2.19) where  3 nonzero 
for only support vectors. 
 
 

  IJK DUUV,Df ,E gT`UUUUV�  T`UUUUV − 1  3
S

37# � �3 dT`�UUUUUUV�V3 +  T`W e − 1�}  
 h T`UUUUV =  1  3

S
37# �3�V3 

(2.19) 

  
If the problem is non-separable, equations (2.18) and (2.19) are modified as in (2.20) and 
(2.21) 

  

 min k _T`UUUUV�O �* +  l 1 m33  n     
 m3 ≥ 0  �abc�Z� ��  �3 dT`�UUUUUUV�V3 +  T`W e ≥ 1 − m3    J = 1, … , K  

(2.20) 
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 IJK DUUV,Df ,E  gT`UUUUV�  T`UUUUV +  l 1 m33  − 1  3
S

37# � �3 dT`�UUUUUUV�V3 +  T`W e
− 1 + m3�} (2.21) 

 
where  m3 is used to compensate for misclassified samples and C gives a compromise 
between distance of nearest point and data.  
 
In addition, if the training data is not linearly separable, a kernel function can be used to 
transform the data into a new vector space. The data has to be linearly separable in the new 
space. Mostly used kernel functions are given in (2.22). 
 
 

   o��V3, �Vp� =  
qrs
rt �V3 �Vp                   �JK�G�u�V3 �Vp + 1vw        x���K�IJG�

  �uyVz" yV{v�yVz" yV{�*|:     �G�JG� bG�J�
�   (2.22) 

 
Support vector machines scale well for large training sets. The complexity for training 
increases with the number of training samples; however, the classification is independent of 
it. 
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CHAPTER 3  
 
 

PROPOSED ALGORITHM FOR VEHICLE CLASSIFICATION 

 
This chapter presents the work done to detect and classify vehicles in the highway scenes. A 
system block diagram is shown in Figure 3.1, where each block will be explained 
individually in the next sections. In the system, detection stage generates foreground regions 
which are corresponds to the moving vehicles. After that for every foreground region, 
features which are mentioned later in this section are extracted and given to a supervised 
hierarchical classifier to classify the vehicles as 
 

• Car 
• Van 
• Truck. 

 
With the proposed algorithm, any parameter related to the highway like direction of the 
moving vehicles, lane division lines, viewing side of the highway; any camera parameter 
like height of the camera , angular direction of the camera; and camera calibration are not 
required  to classify vehicles. Algorithm only wants the user to mark a detection region in 
order to see the full view of a vehicle. In this algorithm, following assumptions are made: 
 

• Camera is stationary, 
• Every silhouette contains exactly one vehicle being fully visible. This implies no 

occlusion in the scene and between vehicles, 
• Classification is done in day time. 

 
The rest of the chapter is organized as follows. The detector is introduced in section 3.1. 
Section 3.2 covers the features which are extracted for classification and in section 3.3, 
classifier is given. 
 



24 

 

 

 

 

Figure 3.1. Block diagram of the detection and classification system 

 

3.1 DETECTION OF VEHICLES 

In visual surveillance systems, generally moving object detection, sometimes called motion 
segmentation or foreground extraction is the first step. The following operations, such as 
object tracking and object classification, take the output of moving object detection module 
as its input. Also, in the case of vehicle classification, detection of vehicles is the first step to 
create an input for classification part. Therefore, the performance of detection of vehicles 
affects the overall performance of the entire system. Every block in the detector part of 
Figure 3.1 is described in more detail in this section. 
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3.1.1 Foreground Segmentation 

In Chapter 2, basic foreground segmentation algorithms are introduced. From those 
algorithms MoG is preferred in the proposed algorithm because it can deal with lighting 
changes, repetitive clutter and it is more stable compared to other foreground segmentation 
algorithms. In the proposed algorithm, adaptive MoG which is introduced in [27] was 
implemented. In [25] which MoG is firstly introduced in, number of Gaussian components 
K is fixed and constant over time. However, K fixed and the same for each pixel is not 
optimal in terms of detection and computational time. To solve this problem [27] proposes 
an online algorithm that estimates the parameters of the MoG and simultaneously selects the 
number of Gaussians using Dirichlet prior. The consequence is that K is dynamically 
adapted to the multimodality of each pixel. 
 
Assume that t data samples exist and each of them belongs to one of the components of the 
MoG. Also assume that the number of samples that belong to the m-th component is KN =  ∑ �N3�37#  where �N3 -s are defined in 2.1.1.4.  Multinomial distribution for KN-s gives 
likelihood function in (3.1) and by knowing the fact that the mixing weights are constrained 
to sum up to one, Lagrange multiplier λ is introduced and the Maximum Likelihood (ML) 
estimate follows from (3.2). 
 
 

   ℒ = ~ TNS�
6

N7#
  (3.1) 

  
 

   ��TN � ��Hℒ + � �1 TN
6
N7# − 1� � = 0 (3.2) 

 
After eliminating  λ, (3.3) is obtained from t samples and it can be rewritten in recursive 

form as function of TN(�"#) for t - 1 samples and ownership �N�  of the last sample as in 
(3.4). 
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 TN(�) =  KN� =  1� 1 �N3
�

37#
 (3.3) 

 

   TN(�) =  TN(�"#) +  1�  d �N� − TN(�"#)e (3.4) 

 

If the influence of the new samples is fixed by fixing 
#
� to α =  #C where T is the time period in 

which the training set is updated by adding the new samples and discarding the old ones , 
update equation (2.10) is obtained. Fixed influence of the new samples means that we rely 
on the new samples and contribution from the old samples is downweighted.  
 
Prior knowledge for multinomial distribution can be introduced by using Dirichlet prior � =  ∏ TN��6N7# .  ZN presents the prior evidence in the maximum a posteriori (MAP) sense 
for the class m. In other words, it shows the number of samples that belong to that class a 
priori. Negative prior evidence ZN = −Z is used. By that way, it is accepted that the class m 
exists only if there is enough evidence from the data for the existence of this class. The 
MAP solution that includes the mentioned prior follows from (3.5). 
 
 

   ��TN � ��Hℒ + ��H� + � �1 TN
6
N7# − 1� � = 0 (3.5) 

 
where � =  ∏ TN"�6N7# , then (3.6) is obtained. 
 
 

   TN(�) =  1� �1 �N3
�

37#
− Z� (3.6) 

 
where  � =  ∑ ( ∑ �N��37#6N7# − Z) = � − /Z. By rewriting (3.6) we get, 
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 TN(�) =  �N − Z/�1 − /Z/�  (3.7) 

 

where  �N = #
� ∑ �N��37#  is the ML estimate from (3.3) and the bias from prior is introduced 

through c/t. Bias decreases for larger data sets. If a small bias acceptable it can be kept 
constant by fixing c/t to ZC = Z/� with a large T value. This means that the bias will always 
be the same as if it would have been for a data set with T samples. With fixed bias, the 
recursive version of (3.6) can be obtained as in (3.8). 
 
 

   TN(�) =  TN(�"#) +  1�  � �N�1 − /ZC − TN(�"#)� − 1� � ZC1 − /ZC� (3.8) 

 
Generally, only a few components K exist and ZC is small, so 1 − /ZC  ≈ 1. Since 1/t is set 
to α, final modified adaptive update equation becomes: 
 
 

   TN(�) =  TN(�"#) +   d �N� − TN(�"#)e −  ZC (3.9) 

 
 
(3.9) is used instead of (2.10). After each update TN-s should be normalized so that they 
add up to 1. In the implementation of this MoG, initially it is started with one component 
centered on the first sample and new components are added as mentioned in 2.1.1.4 while 
weight update is done according to (3.9). The Dirichlet prior with negative weights will 
suppress the components that are not supported by the data and the component m is 
discarded when its weight TN becomes negative. For a chosen α = 1/T, it is required that at 
least c=0.01T samples support a component then, ZC becomes 0.01. In our implementation α 
has been chosen experimentally as 0.007 which gives better results in foreground 
segmentation.  
Figure 3.2 shows the output of the foreground segmentation in proposed algorithm on a 
traffic video sequence.  
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(a) 
 

 
 

(b) 
Figure 3.2. Result of foreground segmentation with MoG. (a) Original frame (b) Segmented 

foreground mask 
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3.1.2 Noise Removal 

Foreground segmentation produces silhouettes of vehicles. However, as it is seen in  
Figure 3.2 noises are also the part of the foreground segmentation output. These noises 
affect the performance of the other steps. In other to improve the overall system 
performance, noise removal is a crucial step. In order to remove these undesired noises 
some simple, but effective algorithms have been used in the proposed system. These 
algorithms are: 
 

• Morphological operations: erosion and dilation 
• Connected component labeling and area filtering 

 

3.1.2.1 Morphological Operations 

Morphological operations [29] are used for segmentation of objects, removing noise and 
complete the missing parts of the objects. They are generally applied in binary images by 
using a structuring element. Structuring element is a matrix which contains 0’s and 1’s and 
generally selected in size 3x3. The origin of the structuring element is at the center pixel. It 
is shifted over the image and at each pixel of the image its elements are compared with the 
ones on the image. If the two sets match the condition defined by the set operator (e.g. if 
element by element multiplication of two sets exceeds a certain value), the pixel underneath 
the origin of the structuring element is set to a pre-defined value (0 or 1 for binary images). 
In the proposed algorithm, two fundamental morphological operations erosion and dilation 
are applied to binary image which is obtained by foreground segmentation. 

3.1.2.1.1 Erosion 

Erosion operator erodes away the region boundaries of the foreground pixels. A structuring 
element which has been utilized for this purpose is shown in (3.10). Each foreground pixel 
in the input image is aligned with the center of the structuring element.  
 

 ������3�S = �1 1 11 1 11 1 1�  (3.10) 
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If, for each pixel having a value 1 in the structuring element, the corresponding pixel in the 
image is a foreground pixel, then input pixel is not changed. However, if any of the 
surrounding pixels (considering 8-connectedness) of the center pixel belong to background, 
the input pixel is also set to the background value. The effect of this operation is to remove 
any foreground pixel that is not completely surrounded by other white pixels as shown in 
Figure 3.3. As a result, small regions which correspond to noises are eliminated, foreground 
regions shrink and holes inside a region grow. 

 

 

(a) 
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(b) 

Figure 3.3.  Effect of erosion operation (a) Output image of the foreground segmentation 
part (b) Eroded image  

3.1.2.1.2 Dilation 

Dilation is the dual operation of erosion. The same structuring element in (3.10) has been 
used. In this case, the structuring element works on background pixels instead of foreground 
pixels, with the same way defined in erosion. This time, foreground regions grow, while 
holes inside the regions shrink as it is depicted in Figure 3.4. 
 
While removing the noise, erosion operation might disconnect the links between loosely 
connected regions. When the connectedness of a region is lost, it is possible that it is not 
treated as foreground anymore. In addition, strongly connected regions are affected by 
erosion from their boundaries. Dilation operation recovers that shrinkage caused by erosion. 
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(a) 
 

 
 

(b) 

Figure 3.4.  Effect of dilation operation (b) Eroded image (a) Dilated image 
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3.1.2.2 Connected Component Labeling and Area Filter 

One of the most common operations in computer vision is finding the connected 
components in an image. Connected components form a candidate region, in that way it 
represents an object. Connected component labeling segments objects by using the divisions 
between regions and labels them as different objects. Connected component labeling assigns 
a unique label to all points in the same object by grouping the pixels in an image into 
components based on pixel connectivity. The algorithm [30] adapted to the proposed system 
in this thesis works as described below: 
 

1. Image is raster scanned. 
2. If the foreground pixel (having value 1) is came across 

a. If one of the pixels on the left, on top, on the upper left or on the upper right 
(8-connectivity) is labeled, this label is copied as the label of the current 
pixel. 

b. If two or more of those neighbors have a label, one of the labels is assigned 
to the current pixel and all of the labels are marked as equal by forming an 
equivalence table. 

c. If none of the neighbors has a label, current pixel is assigned to a new label. 
3. On the image all pixels are scanned and assigned label according to the rule in Step 

2. 
4. After scan is finished, labels representing the same group of pixels in the 

equivalence table are merged and given a single label. 
5. Image is scanned once more to replace old labels with the new ones.  

 
All isolated groups of pixels are given a distinct label at the end of this algorithm. After 
connected component labeling algorithm, the area of each distinct object region is obtained. 
By considering the average area of a vehicle in highway scene, a threshold value is 
determined experimentally. In our proposed algorithm, this threshold is selected as 20 
pixels. Regions having an area below this value are not desired as moving vehicles and they 
are removed from the change mask. At the end, blobs which correspond to the vehicles are 
obtained as it is seen in Figure 3.5. 
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Figure 3.5.  Connected component labelling and area filtering on the image 

 

3.2 FEATURE EXTRACTION 

After detection of vehicles and obtaining vehicle blobs, next step is the feature extraction 
which ideally produces similar values for the instances of a class. Feature extraction process 
is important part of the algorithm, since classification relies on it. In the classification step 
for both training of the classifier and classification of vehicles on test data, feature 
extraction is necessary. Features describe a large set of data with sufficient accuracy. In the 
proposed algorithm two region based features  

• Blob features 
• Histogram of oriented gradients (HOG) features 

are used. 
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3.2.1 Blob Features 

In the proposed algorithm it is desired to classify vehicles into car, van and truck. So, it is 
needed to select features to discriminate between these classes. One of the discriminative 
features between these vehicle classes is their sizes. For that purpose, for every vehicle blob 
obtained in connected component labeling part, following blob features which are also used 
in [9] and [10] are extracted in order to use as a feature vector in classification step: 
 

• Area of the blob 
• Ratio between area of the blob and bounding box of the blob(Figure 3.6) 
• Major axis length which is a scalar specifying the length (in pixels) of the major 

axis of the ellipse that has the same normalized second central moments as the 
blob(Figure 3.7) 

• Minor axis length which is a scalar specifying the length (in pixels) of the minor 
axis of the ellipse that has the same normalized second central moments as the 
blob(Figure 3.7) 

• Ratio between number of white pixels and black pixels in the bounding box 
• Width of the bounding box 
• Height of the bounding box 

 
 

 

Figure 3.6.  A vehicle blob and bounding box 

 

 

Figure 3.7.  Major and minor axis 
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3.2.2 Histogram of Oriented Gradients (HOG) Features 

Local object appearance and shape can often be characterized rather well by the distribution 
of local intensity gradients or edge directions even without precise knowledge of the 
corresponding gradient and edge positions. It is obvious that shapes and appearances of 
vehicle classes (car, van and truck) are discriminative features. So, in order to represent 
vehicles with their shapes and appearances a texture descriptor, Histogram of Oriented 
Gradients (HOG) features [31] are used in the proposed algorithm.  
 
For a vehicle blob which is in grayscale obtained in detection part, grayscale vehicle image 
is filtered to obtain x and y derivatives of pixels with kernels in (3.11). After calculating x 
and y derivatives (Ix and Iy), the magnitude G and orientation θ of the gradient is also 
computed as in (3.12). 
 
 

 �y = �−1 0 1�  GK� �� = �−1 0 1�  C  (3.11) 

 

 |�| = �
y* + 
�*          � = tan"# 
y
� (3.12) 

 
Image is divided into NxN small sub-images which are called cells (Figure 3.9). Each pixel 
in a cell calculates a weighted vote for an edge orientation histogram channel based on the 
orientation of the gradient element centered on it, and the votes are accumulated into 
orientation bins over a cell. The vote is the gradient magnitude at the pixel. In other words, 
for each cell, the gradient directions are quantized in range of -180 to 180 degrees into K 
bins, each pixel votes for an orientation according to the closest bin in the range and by that 
way; histogram weighted by image intensity is obtained. To give less emphasis to gradients 
that are far from the center of the cell, a Gaussian weighting function with σ equal to one 
half width of the cell is used to assign a weight to the magnitude of each pixel.  
 
Gradient is affected by illumination changes. That’s why, to provide better illumination 
invariance (lighting, shadows, etc.) the cells are normalized across larger regions 
incorporating multiple cells which are called blocks (Figure 3.9). Normalization within the 
blocks ensures that low contrast regions are stretched. In [31], histogram calculation is done 
by using overlapping blocks. In our implementation of HOG for the sake of simplicity, 
nonoverlapping blocks are used. Cells and blocks can be either rectangular (R-HOG) or 
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radial (C-HOG) as it seen in Figure 3.8. After obtaining histograms of gradient directions 
vector for every cell which has a dimension Kx1, these vectors are concatenated to obtain 
one global feature vector for the vehicle image. This global feature vector which has a 
dimension (number of cells) x K x 1 describes the shape of the vehicle. 
 

 

Figure 3.8.  R-HOG and C-HOG geometry for cells and blocks 

 

 

Figure 3.9.  Visualization of HOG 

 

In our proposed algorithm, according to our experimental observations which give us 
optimal results, HOG is computed by using 2x2 cell size blocks including 8x8 pixel size 
cells (N=8) with 9 orientation bins (K=9) for interval [-180o, 180o]. Our implementation 
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uses R-HOG geometry. For the normalization of histograms within a block, L2-norm 
normalization is used as given in (3.13) where f is the normalized feature vector of a cell 
while v is initial feature vector of a cell, v’ is feature vector of the all cells in a block and � is 
a small constant (whose value will not influenced the results). Figure 3.10 shows example 
HOG representation of the vehicles shown by blue arrows which represent the gradient 
orientations. 
 
 

 X = �
�O�`O** +  � (3.13) 

 
 

 
 

Figure 3.10.  HOG representation of the vehicles 

 
HOG algorithm is relatively invariant to local geometric and photometric transformations. 
Because within a cell rotations and translations do not affect HOG values and illumination 
invariance achieved through normalization. In addition, the spatial and orientation sampling 
densities can be tuned according to application.  
 



39 

 

 

 

3.3 CLASSIFICATION OF VEHICLES 

The last part of the proposed algorithm is the classification step which will give the vehicle 
class as car, van or truck. In order to be able to discriminate between car, van and truck 
classes by using selected features mentioned in feature extraction part, a robust classifier 
should be used. For this purpose, a popular classifier also mentioned in section 2.1.2.2, 
Support Vector Machine (SVM) is selected. In our implementation, we have used one-class 
SVM with linear kernel and MATLAB SVM [32] library is utilized. 
 
SVM is a supervised classifier so there should be a training phase in order to obtain a 
classifier. For that purpose, for each of the vehicle classes, car, van and truck, manually 
labelled training set is created. The details about training sets are given in Chapter 4. In the 
proposed algorithm, a hierarchical classification is performed as seen in Figure 3.11. 
Classifier-1 is trained with the set of feature vectors belonging to car class and other class 
which includes the feature vectors of van and truck classes. Classifier-2 is trained with the 
set of feature vectors belonging to van class and truck class. After the training phase, two 
classifiers are obtained where Classifier-1 discriminates between car and other (van+truck) 
classes, Classifier-2 discriminates between van and truck classes. In the hierarchical 
classification phase, by using these classifiers a new feature vector coming from a test data 
is firstly classified with Classifier-1 and labelled as car or other. If it is labelled as other, 
then the feature vector is classified again with Classifier-2 and it is decided that it is van or 
truck. In the proposed algorithm it is preferred to use a hierarchical classification with two 
classifiers, because one-class SVM is computationally simpler than multi-class SVM. In 
addition, cross validation is performed by splitting the training set into partitions, training on 
one and testing on another in order to optimize the classification accuracy. This procedure is 
repeated several times in order to find the optimal value of the parameter C. In our 
algorithm C is chosen 0.01. 
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Figure 3.11.  Proposed hierarchical classification 

 

In our algorithm, it is proposed to use blob and HOG features for the classification (Figure 
3.11). So, these features for the vehicle images in each training set are obtained and 
concatenated in order to create a global feature vector for every labelled vehicle image. 
Every feature vector has 7 blob features which are mentioned earlier. However, while 
obtaining HOG features, there exists a dimension problem in HOG feature vectors for each 
vehicle image, since their sizes are not same. In order to get rid of this problem, maximum 
sized vehicle image in the total training set (car+van+truck training sets) is obtained and 
before HOG features are extracted, every vehicle image is scaled to that maximum size with 
linear interpolation. By that way equal sized feature vectors are obtained for the classifiers. 
In Figure 3.14 and Figure 3.15, sample output of the proposed algorithm on two different 
test videos can be observed. Detailed information on these test videos are presented in 
Chapter 4.  
 
In this study, in order to see the effectiveness of the proposed classification two experiments 
are conducted besides the experiments of proposed algorithm. One of them is classification 
into car, van and truck classes directly by using multi-class linear SVM trained with HOG 
and blob features together as it is seen in Figure 3.12. The other experiment is making a 
hierarchical classification by using blob features in Classifier-1 and using HOG features in 
Classifier-2 as it is seen in Figure 3.13. All experiments are presented in Chapter 4. 
 
 



41 

 

 

 

 
 

Figure 3.12.  Classification with multi-class SVM 

 
 
 
 

 
 

Figure 3.13.  Hierarchical classification firstly using blob features then using HOG features 
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Figure 3.14.  Sample output of the proposed algorithm on test video-1  

 

 

 

 

 

 

 



43 

 

 

 

 
 

 

 

  

 

 

Figure 3.15.  Sample output of the proposed algorithm on test video-2  
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CHAPTER 4  
 
 

EXPERIMENTAL RESULTS 

This chapter gives the evaluation of the proposed algorithm. Firstly, definition of metrics in 
order to evaluate the performance of the algorithm is given. Secondly, the results of the 
algorithm on different videos will be introduced and explained. 

4.1 DEFINITION OF METRICS 

The metrics used to evaluate the performance is defined as follows:  

• True Positive (TP): is the test result that detects the condition when the condition is 
present. 

• False Positive (FP): is the test result that detects the condition when the condition 
is absent. 

• True Negative (TN): is the test result that does not detect the condition when the 
condition is absent. 

• False Negative (FN): is the test result that does not detect the condition when the 
condition is present. 

 

Table 4.1. Illustration of terminology for evaluation metrics 

Condition 

 Present Absent 

Test 
Positive True Positive False Positive 

Negative False Negative True Negative 
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4.1.1 Recall 

One of the evaluation metrics for a classifier performance is recall. Recall of a class is the 
percentage of labelled instances of that class that are predicted as this class.  
 
 

 M�ZG�� = �0(�0 + � ) (4.1) 

4.1.2 Precision 

Precision of a class is a measure of the accuracy provided that this class is predicted.  
 
 

 0��ZJ�J�K = �0(�0 + �0) (4.2) 

4.1.3 Accuracy 

Accuracy is the overall correctness of the classifier and is calculated as the sum of correct 
classifications divided by the total number of classifications.  
 
 

 ¡ZZa�GZ� = �0 + � (�0 + �0 + �  + � ) (4.3) 

4.1.4 Confusion Matrix 

A confusion matrix is a specific table that allows visualization of the performance of an 
algorithm. Each column of the matrix represents the number of instances in a predicted 
class, while each row represents the number of instances in an actual class. 
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4.2 EXPERIMENTAL RESULTS 

The main difficulty in traffic analysis system is that there is no commonly used public data 
set. In this thesis study, we have conducted our experiments on the videos that have been 
captured on some highways in Ankara and Đzmir. Experiments are conducted on four 
different highway videos as seen in Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4. 
 
 

   

            Figure 4.1.  Video-1                                   Figure 4.2.  Video-2 

   

            Figure 4.3.  Video-3                                  Figure 4.4.  Video-4 

 

Video-1 and Video-2 are recorded on a bridge looking at the same highway. However, they 
are not captured from exactly the same angular direction. In addition, they are recorded at 
different times of the day. Video-1 is captured in the morning time while Video-2 is 
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captured at late-afternoon, so the lighting and shadows are different. The resolution of 
Video-1 and Video-2 is 320 x 240 pixels and they have a frame rate of 25 fps.  
 
Video-3 and Video-4 are recorded on a bridge from different highways. As in the previous 
videos they are captured as their views of the vehicles are nearly same, but not exactly the 
same angular direction. They are also recorded at different times of the day as in Video-1 
and Video-2 so that the lighting and shadows are different. Video-3 is captured in the 
morning time while Video-4 is captured in the afternoon time. Video-3 has a frame rate of 
25 fps and has a resolution of 384 x 288 pixels. Video-4 has a frame rate of 30 fps and has a 
resolution of 1280 x 720 pixels. Their resolutions are also different. 
 
It is an important point that there is no information about the highways and the cameras that 
capture these videos. We do not have any camera parameters like height of the camera, 
angular direction of the camera; and cameras are not calibrated. 
 

Speed of the algorithm which runs on Core 2 Duo 2.2GHz PC and on MATLAB is 
calculated as around 3fps for a 320 x 240 pixels resolution video. Three experiments are 
conducted on the videos. In the first experiment in order to see the difference between using 
HOG and blob features together and alone, three types of classification are conducted on the 
videos by using: 

• HOG and blob features together, 
• Only HOG features, 
• Only blob features. 

 
In the second experiment proposed hierarchical classification versus multi-class SVM 
performance is observed. Finally, in the third experiment, proposed hierarchical 
classification versus a hierarchical classification which uses blob features in Classifier-1 and 
uses HOG features in Classifier-2 performance is observed.  
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4.2.1 Experiment-1 

In the first experiment, effectiveness of the selected features is observed. For that purpose 
three classifications are done by using HOG and blob features together, using only HOG 
features and using only blob features in Classifier-1 and Classifier-2. 

4.2.1.1 Results of Video-1 and Video-2 

In this experiment, a training set including car, van and truck images is created by using a 
video which has exactly same characteristics as Video-1. In the training set each of the 
vehicle classes has 750 samples. As it is also mentioned in Section 3.3, in order to eliminate 
the dimension problem in HOG feature vectors each vehicle image is scaled to the 
maximum sized image in the training set. In this training set maximum image size is 170 x 
227 pixels.  
 
By using this training set, proposed algorithm is tested on Video-1 and Video-2 which have 
nearly same view of the highway, but not the same angular direction and are captured at 
different times of the day. Total length of these test videos on which the experiments are 
conducted is 15 minutes and there are 525 vehicles which include 416 cars, 57 vans and 52 
trucks. Table 4.2 and Table 4.3 show the classification results when HOG and blob features 
are used together as proposed in our algorithm. Table 4.4 and Table 4.5 show the 
classification results when only HOG features are used while Table 4.6 and Table 4.7 show 
the classification results when only blob features are used.  

 

Table 4.2. Results of Video-1 and Video-2 by using HOG and blob features together 

Vehicle Class Precision Recall 
Total 

Accuracy 

car %98.7 %94.2 

%91.6 van %71.4 %78.9 

truck %67.6 %84.6 
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Table 4.3. Confusion matrix of Video-1 and Video-2 by using HOG and blob features 
together 

 Prediction 

Real 

 car van truck 

car 392 10 14 

van 5 45 7 

truck 0 8 44 

 

Table 4.4. Results of Video-1 and Video-2 by using only HOG features 

Vehicle Class Precision Recall 
Total 

Accuracy 

car %98.1 %89.1 

%84.9 van %46.5 %71.9 

truck %57.6 %65.3 

 
 

Table 4.5. Confusion matrix of Video-1 and Video-2 by using only HOG features 

 Prediction 

Real 

 car van truck 

car 371 31 14 

van 5 41 11 

truck 2 16 34 
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Table 4.6. Results of Video-1 and Video-2 by using only blob features 

Vehicle Class Precision Recall 
Total 

Accuracy 

car %90.1 %90.1 

%78.0 van %46.0 %26.3 

truck %60.6 %38.4 

 
 

Table 4.7. Confusion matrix of Video-1 and Video-2 by using only blob features 

 Prediction 

Real 

 car van truck 

car 375 35 6 

van 35 15 7 

truck 6 26 20 

 
 
 
As it is observed from above tables, using HOG and blob features together gives the best 
accuracy comparing to the others. Figure 4.5  and Figure 4.6 show the examples of correct 
classification of the vehicles with the proposed algorithm on Video-1 and Video-2, 
respectively.  
 
 



52 

 

 

 

  
 

 
 

 
 

Figure 4.5. Examples of correct classification of the vehicles on Video-1    
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Figure 4.6. Examples of correct classification of the vehicles on Video-2                                    
 
On Video-1 and Video-2 most of the misclassifications are due to the perspective occlusion 
and shadow. Due to the perspective of these videos, one vehicle occludes the other vehicle. 
This occlusion causes merging of the vehicle blobs as seen in Figure 4.7. These merged 
blobs are interpreted as one vehicle by the algorithm. That’s why, misclassification occurs 
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as in Figure 4.8. In the same way, shadow causes merging of the vehicle blobs as seen in 
Figure 4.9 and causes misclassification as seen in Figure 4.10. In these videos, %97 of the 
misclassifications is due to the shadow and perspective occlusion. The perspective occlusion 
and shadow problems especially affect van and truck classes because of their large sizes. So, 
classification performance decreases in van and truck classes compared to car class as it is 
seen in Table 4.2 and Table 4.3.  
 

 
 

Figure 4.7. Merged blobs due to the perspective occlusion 
 
 

 
 

Figure 4.8. Misclassification due to the perspective occlusion                                  
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Figure 4.9. Merged blobs due to the shadow 
 
 

 
 

Figure 4.10. Misclassification due to the shadow 
 

Using HOG and blob features together has slightly better performance than using only HOG 
features; because some vehicles are similar in terms of shape and appearance, although they 
are in different classes. Using only HOG features causes these vehicles with similar shape to 
be labelled incorrectly. By including blob features to the HOG features, these similar 
vehicles in terms of shape become distinguishable by their sizes. In addition, using only 
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blob features gives the worse performance comparing to the others; because some vehicles 
have similar sizes although they are in different classes. Using only blob features causes 
such vehicles to be labelled incorrectly. In this experiment especially van and truck classes 
are confused with each other, since mostly their sizes are very close to each other. In Figure 
4.11 height, width and extent from the blob features are plotted together, while in Figure 
4.12 major axis length, minor axis length and ratio of the white pixels to the black pixels in 
the bounding box of the vehicle blob are plotted together. As it is seen, in the training set, 
blob features of all classes coincide, especially van and truck classes. This coincidence 
causes incorrect classification when only blob features are used. Figure 4.13 and Figure 4.14 
show examples of incorrect classification when only blob features are used. Although 
vehicle is truck it is labelled as van in Figure 4.14 and although vehicle is van it is labelled 
as car in Figure 4.13. 

 
Figure 4.11. Coincidence of blob features visualization-1 
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Figure 4.12. Coincidence of blob features visualization-2 

 
 

 
 

Figure 4.13. An example of incorrect classification when only blob feature used 
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Figure 4.14. An example of incorrect classification when only blob feature used 
 

4.2.1.2 Results of Video-3 and Video-4 

In this experiment, a training set including car, van and truck images is created by using a 
video which has exactly same characteristics as Video-3. In the training set there are 450 
samples for car, 130 samples for van and 322 samples for truck. It is intended to have same 
number of samples for each class in order to prevent the bias between them, but in the 
training video van and truck vehicles are rarely observed.  In the training set the maximum 
image size which is needed for scaling of detected vehicle images before HOG feature 
extraction is 202 x 169 pixels. 
 
By using this training set, proposed algorithm is tested on Video-3 and Video-4. These 
videos are captured from different highways at different times of the day. Their resolution is 
different. They do not have the same angular direction. Total length of these test videos on 
which the experiments are conducted is 15 minutes and there are 109 vehicles which include 
65 cars, 16 vans and 28 trucks. Table 4.8 and Table 4.9 show the classification results when 
HOG and blob features are used together as proposed in our algorithm. Table 4.10 and 
Table 4.11 show the classification results when only HOG features are used while Table 
4.12 and Table 4.13 show the classification results when only blob features are used. 
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Table 4.8. Results of Video-3 and Video-4 by using HOG and blob features together 

Vehicle Class Precision Recall 
Total 

Accuracy 

car %100 %98.5 

%98.1 van %88.8 %100 

truck %100 %93.1 

 
 

Table 4.9. Confusion matrix of Video-3 and Video-4 by using HOG and blob features 
together 

 Prediction 

Real 

 car van truck 

car 64 1 0 

van 0 16 0 

truck 0 1 27 

 
 

Table 4.10. Results of Video-3 and Video-4 by using only HOG features 

Vehicle Class Precision Recall 
Total 

Accuracy 

car %98.5 %98.5 

%95.4 van %82.3 %87.5 

truck %96.2 %92.8 
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Table 4.11. Confusion matrix of Video-3 and Video-4 by using only HOG features 

 Prediction 

Real 

 car van truck 

car 64 1 0 

van 1 14 1 

truck 0 2 26 

 
 

Table 4.12. Results of Video-3 and Video-4 by using only blob features 

Vehicle Class Precision Recall 
Total 

Accuracy 

car %76.9 %76.9 

%66.0 van %15.3 %12.5 

truck %62.5 %71.4 

 

Table 4.13. Confusion matrix of Video-3 and Video-4 by using only blob features 

 Prediction 

Real 

 car van truck 

car 50 4 11 

van 13 2 1 

truck 1 7 20 
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As it is observed from above tables, using HOG and blob features together gives the best 
accuracy comparing to the others as in the case of Video-1 and Video-2. Figure 4.15 and 
Figure 4.16 show the examples of correct classification of the vehicles with the proposed 
algorithm on Video-3 and Video-4, respectively.  
 

 
 

 
 

 
 

Figure 4.15. Examples of correct classification of the vehicles on Video-3                                    
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Figure 4.16. Examples of correct classification of the vehicles on Video-4                               
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The results of Video-3 and Video-4 are much better than Video-1 and Video-2. The reason 
is that misclassifications due to perspective occlusion do not exist. %95 of the 
misclassifications is due to the shadow. Shadow problem especially affect van and truck 
classes because of their large sizes. So, classification performance decreases in van and 
truck classes compared to car class as it is seen in Table 4.8 Table 4.2and Table 4.9. Figure 
4.17 and Figure 4.18 show an example misclassification due to the shadow. 
 
 

 
 

Figure 4.17. Merged blobs due to the shadow 
 
 

 
 

Figure 4.18. Misclassification due to the shadow 
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In this experiment, similar to previous experiment  it is seen that using HOG and blob 
features together has slightly better performance than using only HOG features and using 
only blob features gives the worse performance comparing to the others because of the 
reasons mentioned in the first experiment. In Figure 4.19 height, width and extent from the 
blob features are plotted together, while in Figure 4.20 major axis length, minor axis length 
and ratio of the white pixels to the black pixels in the bounding box of the vehicle blob are 
plotted together. In this training set, it is again observed that blob features of all classes 
coincide. This coincidence causes incorrect classification when only blob features are used. 
Figure 4.21 and Figure 4.22 show examples of incorrect classification when only blob 
features are used. Although vehicle is truck it is labelled as van in Figure 4.21 and although 
vehicle is van it is labelled as car in Figure 4.22. 

 
Figure 4.19. Coincidence of blob features visualization-1 
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Figure 4.20. Coincidence of blob features visualization-2 

 

 
 

Figure 4.21. An example of incorrect classification when only blob feature used 
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Figure 4.22. An example of incorrect classification when only blob feature used 

4.2.2 Experiment-2 

In the second experiment, proposed hierarchical classification versus multi-class SVM 
performance is observed. Combination of the HOG and blob features which give the best 
accuracy result in the previous experiment is used for training the classifiers. Liblinear 
library [55] is used for multi-class SVM with same C parameter (0.01) used in the first 
experiment. 

4.2.2.1 Results of Video-1 and Video-2 

In this experiment, same training sets in order to train the multi-class SVM and same test 
videos are used as in the first experiment for Video-1 and Video-2. Table 4.14 shows the 
classification results of multi-class SVM. 
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Table 4.14. Confusion matrix of Video-1 and Video-2 for multi-class SVM 

 Prediction 

Real 

 car van truck 

car 393  8 15 

van 7 43 7 

truck 0 10 42 

 

When we look at the results of hierarchical classification which is given in Table 4.3 and 
results of multi-class SVM, it is observed that they have almost same classification 
performance. Most of the misclassifications for multi-class SVM are due to the perspective 
occlusion and shadow as in the first experiment. 

4.2.2.2 Results of Video-3 and Video-4 

In this experiment, same training sets in order to train the multi-class SVM and same test 
videos are used as in the first experiment for Video-3 and Video-4. Table 4.15 shows the 
classification results of multi-class SVM. 
 

Table 4.15. Confusion matrix of Video-3 and Video-4 for multi-class SVM 

 Prediction 

Real 

 car van truck 

car 64 1 0 

van 0 16 0 

truck 0 3 25 

 

When we look at the results of hierarchical classification which is given in Table 4.9 and 
results of multi-class SVM, it is observed that they have almost same classification 
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performance. Most of the misclassifications for multi-class SVM are due to the shadow as in 
the first experiment. 

4.2.3 Experiment-3 

In the third experiment, performance of the proposed hierarchical classification versus 
performance of a hierarchical classification which uses only blob features in Classifier-1 and 
uses only HOG features in Classifier-2 is observed. As in the proposed classification, 
Classifier-1 and Classifier-2 are one class linear SVM with C equal to 0.01. 

4.2.3.1 Results of Video-1 and Video-2 

In this experiment, in order to train Classifier-1 and Classifier-2 same training sets are used 
as in the first experiment. Tests are done on the same test videos. Table 4.16 shows the 
classification results of the hierarchical classification by using only blob features in 
Classifier-1 and using only HOG features in Classifier-2. 
 

Table 4.16. Confusion matrix of Video-1 and Video-2 by using only blob features in 
Classifier-1 and using only HOG features in Classifier-2 

 Prediction 

Real 

 car van truck 

car 375 35 6 

van 37 13 7 

truck 0 27 25 

 
 
When we look at the results of proposed hierarchical classification which is given in Table 
4.3 and the above results, it is observed that the hierarchical classification by using only 
blob features in Classifier-1 and using only HOG features in Classifier-2 has worse 
performance than the proposed classification which uses HOG and blob features in 
Classifer-1 and Classifier-2. Using only blob features in Classifier-1 causes the vehicles 
which have same size, but are in different classes to be labeled incorrectly. In addition, 



69 

 

 

 

using only HOG features in Classifier-2 causes the vehicles which have similar shape, but 
are in different classes to be labeled incorrectly. So, performance of this type of 
classification degrades. 

4.2.3.2 Results of Video-3 and Video-4 

In this experiment, in order to train Classifier-1 and Classifier-2 same training sets are used 
as in the first experiment. Tests are done on the same test videos. Table 4.17 shows the 
classification results of the hierarchical classification by using only blob features in 
Classifier-1 and using only HOG features in Classifier-2. 
 

Table 4.17. Confusion matrix of Video-3 and Video-4 by using only blob features in 
Classifier-1 and using only HOG features in Classifier-2 

 Prediction 

Real 

 car van truck 

car 51 11 3 

van 11 2 3 

truck 0 9 18 

 
 
When we look at the results of proposed hierarchical classification which is given in Table 
4.9 and the above results, as in the previous experiment it is observed that the hierarchical 
classification by using only blob features in Classifier-1 and using only HOG features in 
Classifier-2 has worse performance than the proposed classification which uses HOG and 
blob features in Classifer-1 and Classifier-2. Performance of this type of classification 
degrades due to the same reasons as in the previous experiment. 
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4.2.4 Comparison with the State of the Art Literature 

Direct comparison of quantitative results with the literature is difficult due to the lack of a 
common data set for vehicle classification. In Section 1.1 detailed information about the 
state of the art in vehicle classification has been given. [21], [22] and [23] have high 
accuracy results about 90%. However, these algorithms rely on 3D modeling of the vehicles 
which is computationally costly and needs camera parameters like height of the camera and 
the angular direction of the camera. Our approach to the vehicle classification is in 2D 
approaches, that is, it works in the camera coordinate domain. 2D approach algorithms 
mostly want camera parameters (height, angle of vision, calibration, etc.) and parameters 
about the highways (direction of the vehicles, place of the lane division lines, viewing side 
of the highway etc.). From those algorithms ones which have classification performance 
nearly close to our approach are like that:  [15] has a recall 65% and a precision 75% for 
classifying into 3 classes. However, in this algorithm there exists a normalization step of 
vehicle blobs where camera parameters are needed. [3] has a classification accuracy 70%. 
However, classification is done only as car and non-car and uses vehicle parameters such as 
length and height which are recovered from the 2D projections of the vehicles; so, camera 
parameters are needed.. [9],[10] and [7] have classification accuracies 82,9% classifying 
into 3 classes,74,4% classifying into 7 classes, and 91% classifying into 7 classes, 
respectively. However, these works use only blob features which are not reliable as seen in 
our experiments and their algorithms work only on the videos which are taken from side 
view of the highway. [11] gives a classification accuracy 88% for 4 classes, but it requires 
that the camera is in axis with the highway to see the lane division lines. [16] uses HOG 
features to classify vehicles in 3 classes. However, it is only proposed for in vehicle usage 
and also has a low classification accuracy as 64,3%. 
 
The proposed algorithm in this thesis study is not computationally costly as in the case of 
3D approaches. It does not need camera calibration and specifically any precise knowledge 
of camera parameters like height of the camera, angular direction of the camera. In addition, 
it does not depend on the parameters of the highways like the knowledge about the place of 
the lane division lines, viewing side of the highway. This approach only needs a detection 
region given by the user in which the camera will see a vehicle in full view and a training 
set created from the nearly same view of the highway on which classification will be 
performed, but it is not needed to be exactly in the same height and the same angular 
direction.  
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CHAPTER 5  
 
 

CONCLUSIONS AND FUTURE WORKS 

5.1 Summary and Conclusions 

In this study, a new algorithm to classify moving vehicles in highways has been presented. 
The aim is to provide an automated system that classifies the vehicles and by this way 
provide more information to traffic system managers in order to improve the travel 
experience.  
 
In the algorithm moving vehicle detection is performed by using an adaptive mixture of 
Gaussians that selects number of Gaussian components adaptively on run-time. Mixture of 
Gaussians is selected because it can cope with complexities in outdoor environments like 
lighting changes and repetitive clutters. During extraction of the foreground regions, some 
noises are also detected as foreground. In order to minimize the effects of these unwanted 
components, morphological operations are performed and by that way system performance 
is improved. 
 
After detecting the vehicles, feature extraction step comes. In the algorithm two features are 
selected in order to make discrimination between 3 vehicle classes which are car, van and 
truck. The main difference between these vehicle types is their sizes, so 7 blob features of 
each vehicle blob is obtained. Another discriminative feature of these vehicle types is their 
shapes and appearances, so HOG features are extracted as a shape descriptor. By using these 
two features a global feature vector is created for each vehicle blob in order to use in 
classification step. 
 
In the classification step, a robust classifier SVM is chosen in order to label the vehicles as 
car, van or truck. Each feature vector coming from each vehicle blob which includes HOG 
and blob features is classified as car, van or truck in a hierarchical manner. Firstly, the 
feature vector coming from a test data is classified as car or other (van + truck) with the 
Classifier-1 which is trained with a training set created before. Then, if the feature vector is 
labeled as car, classification step ends. Otherwise, if the feature vector is labeled as other, 
this feature vector is again classified with the Classifier-2 which is trained with a training set 
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created before and discriminates between van and truck. At the end, the feature vector is 
labeled as van or truck.  
 
Proposed algorithm is tested on 4 different videos. First two sets of videos are recorded from 
the same highway at different times of the day as their views of the vehicles are nearly 
same, but not exactly the same angular direction and their resolutions are same. With a 
training set created as the view of the vehicles nearly same as these two videos, the 
algorithm gives a satisfying result. Second two sets of videos are recorded from the different 
highways at different times of the day as their views of the vehicles are nearly same, but 
again not exactly the same angular direction and their resolutions are also different. With a 
training set created as the view of the vehicles nearly same as these two videos, the 
algorithm gives a satisfying result on these videos, too.  
 
By looking at the results of experiments HOG and blob features together with the SVM 
classifier give a successful performance to classify vehicles into car, van or truck. It can be 
concluded that local object appearance and shape within an image can be described by the 
distributions of intensity gradients and edge directions, which refers to HOG features. HOG 
features are robust feature set which is invariant to local geometric and photometric 
transformations. Within cell rotations and translations do not affect the HOG values and 
illumination invariance achieved through normalization. Also, selection of SVM as a 
classifier provides robust classification. SVM is less overfitting and robust to noise. 
 
As a conclusion, the algorithm classifies the vehicles into three main classes as car, van or 
truck by providing independence of knowing specifically the camera parameters like height 
of the camera, angular direction of the camera, camera calibration etc. and any information 
about the highway like the place of the lane division lines. Algorithm assumes a stationary 
camera and only needs a user defined classification region in order to see the vehicles as full 
view and trained classifiers with a training set created with the vehicle images nearly the 
same view of the highway on which the classification will be performed, but it is not 
necessary to be exactly the same view (same camera, same height of the camera, same 
angular direction of the camera). 
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5.2 Future Works 

In this thesis, moving vehicle classification into three classes as car, van or truck is 
performed. One of the improvements which can be suggested is to combine tracking with 
the classification. Tracking can help to improve the results by eliminating the occlusion 
problem. Another improvement can be working on the shadow elimination. In addition, 
algorithm can be extended to the moving cameras by incorporating a different algorithm in 
the detection stage of the vehicles and vehicle types can be increased.  
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