

FPGA IMPLEMENTATION OF LICENSE PLATE DETECTION AND RECOGNITION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERAP SARIKAVAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

FPGA IMPLEMENTATION OF LICENSE PLATE DETECTION

AND RECOGNITION

submitted by SERAP SARIKAVAK in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen _________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr.Gönül Turhan Sayan _________
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Mehmet Mete Bulut _________

Supervisor, Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar _________

Co-Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Aydın Alatan _________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Mehmet Mete Bulut _________

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar _________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı _________

Electrical and Electronics Engineering Dept., METU

Hasan Irmak, M.Sc. _________

REHİS, ASELSAN

Date : 05.09.2013

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last name : Serap SARIKAVAK

Signature :

v

ABSTRACT

FPGA IMPLEMENTATION OF LICENSE PLATE DETECTION

AND RECOGNITION

Sarıkavak, Serap

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mehmet Mete Bulut

Co-Supervisor: Prof. Dr. Gözde Bozdağı Akar

September 2013, 143 pages

In this thesis, license plate detection and recognition system based on Gabor approach is

proposed and recognition part of the system is implemented on the FPGA platform. The

purpose of this project is to develop a system that extracts license plate region from image,

taken from proposed distance, and recognizes the characters on this region. For this project,

techniques on the literature are investigated and some of them are implemented.

In the localization of the plate region, color space conversion, image enhancement,

binarization, connected component labeling, Gabor filters and morphological operations

are used. To segment the characters on the plate region, notch detection algorithm which

uses the vertical projection of the plate region and morphological operations are used.

Finally, characters are recognized by the feature-based matching algorithm.

Character segmentation and character recognition parts of the proposed algorithm are

implemented in the Altera Cyclone IV E FPGA which has an embedded soft core

processor. To implement the algorithm, FPGA logic collaborates with the software

application of the processor.

Keywords: License Plate Recognition, Plate Region Detection, Character Segmentation,

Character Recognition, Gabor Filters, FPGA, Embedded Processor

vi

ÖZ

FPGA DONANIMI ÜZERİNDE ARAÇ PLAKASI ALGILAMA

VE TANIMA

Sarıkavak, Serap

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mehmet Mete Bulut

Ortak Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Eylül 2013, 143 sayfa

Bu tezde, Gabor yaklaşımı temelli araç plakası algılama ve tanıma sistemi önerilmiş ve

tanıma algoritması FPGA üzerinde gerçeklenmiştir. Bu çalışmanın amacı belirli bir

mesafeden çekilmiş araç görüntüsünden plaka bölgesini algılayan ve bu bölgedeki

karakterleri tanıyan bir sistem geliştirmektir. Bu çalışmada, literatürde kullanılan metotlar

incelenmiş ve bu metotların bazıları önerilen sistemde kullanılmıştır.

Araç plakasının yerini saptarken, renk uzayı çevrimi, görüntü geliştirme, ikili resim elde

etme, bağıntılı bileşen etiketleme, Gabor filtreleri ve morfolojik işlemler kullanılmıştır.

Plaka bölgesindeki karakterleri ayırmak için, plaka bölgesinin dikey izdüşümünü kullanan

girinti algılama algoritması ve morfolojik işlemler kullanılmıştır. Son olarak, karakterler

özellik tabanlı karşılaştırma algoritması kullanılarak tanınmıştır.

Önerilen algoritmanın karakter ayırma ve karakter tanıma kısımları, içinde sabit olmayan

gömülü işlemci olan Altera Cyclone IV E FPGA’inde gerçeklenmiştir. Algoritmayı

gerçeklemek için FPGA mantık kapıları işlemcinin uygulama yazılımı ile işbirliği

yapmaktadır.

Anahtar Kelimeler: Araç Plakası Tanıma, Plaka Bölgesi Algılama, Karakter Ayrıştırma,

Karakter Tanıma, Gabor Filtreleri, FPGA, Gömülü İşlemci

vii

To My Family…

viii

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my supervisors Assoc. Prof. Dr.

Mehmet Mete Bulut and Prof. Dr. Gözde Bozdağı Akar for their valuable guidance, advice,

encouragements and insight throughout the research.

I would like to thank ASELSAN Inc. for the support given throughout this study.

I would like to thank my sister, Hülya, for her endless support and encouragement which

helped me thinking positively in any circumstances.

I would like to express my special appreciation to my family for their continuous

support and patience over the years. This thesis is dedicated to them.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

CHAPTERS

1. INTRODUCTION ... 1

1.1 GENERAL... 1

1.2 SCOPE OF THE THESIS .. 2

1.3 OUTLINE OF THE THESIS .. 3

2. LITERATURE OF LICENSE PLATE DETECTION AND RECOGNITION 5

2.1 EXTRACTION OF PLATE REGION .. 5

2.2 SEGMENTATION OF CHARACTERS .. 8

2.3 RECOGNITION OF PLATE CHARACTERS ..11

3. PROPOSED SYSTEM .. 15

3.1 PLATE REGION DETECTION ..17

3.1.1 IMAGE ENHANCEMENT .. 17

3.1.1.1 GAUSSIAN FILTER ... 17

3.1.1.2 CONTRAST ENHANCEMENT .. 18

3.1.2 GABOR WAVELET TRANSFORM .. 19

3.1.3 OTSU THRESHOLDING and MORPHOLOGICAL OPERATIONS 22

3.1.4 IDENTIFICATION OF PLATE REGION .. 25

3.1.4.1 FILTERING WITH PLATE LENGTH and WIDTH PARAMETERS .. 26

3.1.4.2 IDENTIFICATION OF EXACT PLATE REGION 31

3.1.5 HORIZONTAL and VERTICAL TRIMMING ... 33

3.2 CHARACTER SEGMENTATION ...36

3.2.1 NOTCH DETECTION and SEGMENTATION OF EACH CHARACTER 36

x

3.2.2 MORPHOLOGICAL OPERATION ... 38

3.3 CHARACTER RECOGNITION ... 38

3.3.1 CODEWORD GENERATION ... 38

3.3.2 CODEWORD MATCHING and RECOGNITION .. 40

3.3.2.1 IDENTIFICATION OF LETTER AND NUMBER 42

3.3.2.2 IDENTIFICATION OF 0, 4 AND 7 ... 42

3.3.2.3 IDENTIFICATION OF U, V AND Y .. 43

3.3.2.4 IDENTIFICATION OF 3, 5 AND 8 ... 44

3.3.2.5 IDENTIFICATION OF 3, 8 AND 9 ... 46

3.3.2.6 IDENTIFICATION OF 6 AND B .. 47

3.3.2.7 IDENTIFICATION OF 2 AND Z .. 48

4. RECOGNITION OF LICENSE PLATE USING FPGA HARDWARE 51

4.1 HARDWARE ARCHITECTURE ... 51

4.1.1 COMPONENTS USED IN THE SYSTEM ... 52

4.1.1.1 CYCLONE IV E FPGA ... 52

4.1.1.2 EPCS16 SERIAL FLASH AS CONFIGURATION DEVICE 53

4.1.1.3 SDRAM .. 53

4.1.1.4 BUTTONS and LEDS ... 53

4.1.1.5 USER I/Os... 53

4.1.2 BLOCK DIAGRAM OF THE HARDWARE ARCHITECTURE 54

4.2 FPGA ARCHITECTURE ... 54

4.2.1 FPGA BLOCKS.. 55

4.2.1.1 PLL ... 56

4.2.1.2 RESET GENERATOR .. 57

4.2.1.3 LED INDICATOR .. 58

4.2.1.4 DEBOUNCE FILTER ... 59

4.2.1.5 QSYS SYSTEM LOGIC ... 60

4.2.1.5.1 CLOCK AND RESET SOURCE .. 62

4.2.1.5.2 NIOS II PROCESSOR .. 63

4.2.1.5.3 INTERVAL TIMER ... 64

4.2.1.5.4 SYSTEM ID ... 64

4.2.1.5.5 PIO ... 64

xi

4.2.1.5.6 EPCS CONTROLLER .. 64

4.2.1.5.7 SDRAM CONTROLLER .. 65

4.2.1.5.8 TIGHTLY COUPLED INSTRUCTION MEMORY 65

4.2.1.5.9 ON-CHIP RAM .. 65

4.2.1.5.10 JTAG UART ... 65

4.2.1.5.11 UART INTERFACE ... 66

4.2.1.5.12 IMAGE MANAGE BLOCK ... 66

4.2.1.5.13 CODEWORD GENERATION BLOCK 73

4.2.2 SOFTWARE APPLICATION FOR EMBEDDED PROCESSOR 78

4.2.2.1 UP and DOWN SIDE TRIMMING .. 82

4.2.2.2 CHARACTER SEGMENTATION .. 84

4.2.2.3 CHARACTER RECOGNITION .. 87

4.2.2.3.1 CODEWORD GENERATION .. 87

4.2.2.3.2 CODEWORD MATCHING AND RECOGNITION...................... 91

4.2.2.3.2.1 IDENTIFICATION ALGORITHMS 93

4.2.2.3.2.1.1 IDENTIFICATION OF LETTER AND NUMBER 93

4.2.2.3.2.1.2 IDENTIFICATION OF 0, 4 AND 7 94

4.2.2.3.2.1.3 IDENTIFICATION OF U, V AND Y 95

4.2.2.3.2.1.4 IDENTIFICATION OF 3, 5 AND 8 95

4.2.2.3.2.1.5 IDENTIFICATION OF 3, 8 AND 9 96

5. EXPERIMENTAL RESULTS .. 97

5.1 TEST RESULTS FOR THE MATLAB IMPLEMENTATION97

5.2 TEST RESULTS FOR THE FPGA IMPLEMENTATION 111

5.3 COMPARISON WITH THE STATE OF THE ART 119

5.4 RESOURCE UTILIZATION .. 121

5.5 EXECUTION TIMES ... 123

6. CONCLUSIONS AND FUTURE WORK .. 125

6.1 CONCLUSIONS ... 125

6.2 FUTURE WORK .. 127

REFERENCES ... 129

APPENDICES

A. NIOS II PROCESSOR ... 133

xii

B. RS232 EXTENDER CIRCUIT ...135

C. GUI INTERFACE OF THE LPDRS ..137

D. DATA TABLES ..139

xiii

LIST OF TABLES

TABLES

Table 3-1 Results for the Identification of Exact Plate Region Step 32

Table 3-2 Decision Table for Identification of ‘0’, ‘4’ and ‘7’ ... 43

Table 3-3 Decision Table for Identification of ‘U’, ‘V’ and ‘Y’ 44

Table 3-4 Decision Table for Identification of ‘3’, ‘5’ and ‘8’ ... 46

Table 3-5 Decision Table for Identification of ‘3’, ‘8’ and ‘9’ ... 47

Table 3-6 Decision Table for Identification of ‘6’ and ‘B’ ... 48

Table 3-7 Decision Table for Identification of ‘2’ and ‘Z’ ... 49

Table 4-1 Register Map for the Image Manage Block.. 70

Table 4-2 Register Map for the Codeword Generation Block... 75

Table 5-1 Test results for the MATLAB Implementation .. 97

Table 5-2 Reasons of the License Plate Extraction Failures ... 105

Table 5-3 Character Recognition Rate for the MATLAB Implementation 108

Table 5-4 Test Results for the FPGA Implementation ... 111

Table 5-5 Character Recognition Rate for the FPGA Implementation 115

Table 5-6 Characters Represented by Same Codeword Pair ... 116

Table 5-7 Performance of License Plate Recognition .. 118

Table 5-8 Performance Comparison of the Results .. 121

Table 5-9 Resource Utilization of the License Plate Recognition System 121

Table 5-10 Execution Times of the LPR System ... 123

Table D-1 Lookup Table for the Characters .. 139

Table D-2 Plate Database .. 142

xiv

LIST OF FIGURES

FIGURES

Figure 3-1 Flow Diagram of the Proposed System .. 16

Figure 3-2 Gaussian Function ... 17

Figure 3-3 Gaussian Kernel .. 18

Figure 3-4 Images Before and After the Contrast Enhancement 19

Figure 3-5 Gabor Wavelet Transform of the Input Image .. 21

Figure 3-6 Most Acceptable Gabor Response of the Input Image 22

Figure 3-7 Binarized Image with Otsu Thresholding After Gabor Wavelet Transform 23

Figure 3-8 Structuring Element Used For Morphological Closing 24

Figure 3-9 Binary Image After Morphological Closing ... 25

Figure 3-10 Flow Diagram of the Identification of Plate Region 26

Figure 3-11 Flow Diagram of the Filtering Algorithm ... 28

Figure 3-12 Extracted Plate Regions ... 31

Figure 3-13 Flow Diagram of the Identification of Exact Plate Region 32

Figure 3-14 Horizontal Profiling Results ... 34

Figure 3-15 Before and After Horizontal Trimming .. 34

Figure 3-16 Vertical Profiling Results ... 35

Figure 3-17 Before and After Trimming Operation ... 35

Figure 3-18 Vertical Projection of the Plate Region without DC value 36

Figure 3-19 Notch Extraction with Vertical Projection .. 37

Figure 3-20 Results for the Segmented Characters .. 38

Figure 3-21 Cross-point and Codeword Calculations .. 40

Figure 3-22 Flow Diagram of the Recognition .. 41

Figure 3-23 Position of row index values for cross-point calculations of “047” 43

Figure 3-24 Position of row index values for cross-point calculations of “UVY” 44

Figure 3-25 Position of row index values for cross-point calculations of “358” 45

Figure 3-26 Position of row index values for cross-point calculations of “389” 46

Figure 3-27 Position of row index value for cross-point calculation of “6B” 48

Figure 3-28 Position of row index value for cross-point calculation of “2Z” 49

Figure 4-1 Top View of the Development Board ... 52

Figure 4-2 Hardware Architecture of the System... 54

Figure 4-3 FPGA Blocks for the Recognition .. 56

Figure 4-4 PLL Interface .. 56

Figure 4-5 Power Distribution of the Development Board ... 57

Figure 4-6 Reset Generator Interface .. 58

Figure 4-7 Block Diagram for the Reset Generator ... 58

Figure 4-8 Led Indicator Interface .. 58

Figure 4-9 Block Diagram of the Led Indicator ... 59

xv

Figure 4-10 Acceptance of Pulse on the User Buttons ... 59

Figure 4-11 Integrated Components of the Qsys System Logic .. 61

Figure 4-12 Qsys System Logic Interface .. 62

Figure 4-13 Nios II Processor Interface ... 63

Figure 4-14 Block Diagram of the UART Core ... 66

Figure 4-15 Avalon MM Interface Connection of the Image Manage Block 67

Figure 4-16 Image Manage Block Interface... 67

Figure 4-17 Read and Write Transfers of the Avalon MM Interface 68

Figure 4-18 Block Diagram of the Image Manage Block ... 69

Figure 4-19 Avalon Process Interface.. 69

Figure 4-20 Avalon Interface State Transitions ... 70

Figure 4-21 FIFO Process Interface .. 71

Figure 4-22 Summation Process Interface ... 72

Figure 4-23 Avalon MM Interface Connection of the Codeword Generation Block 73

Figure 4-24 Avalon MM Interface of the Codeword Generation Block 74

Figure 4-25 Block Diagram of the Codeword Generation Block 75

Figure 4-26 Counter Process Interface .. 77

Figure 4-27 State Machine of the Counter Process .. 77

Figure 4-28 Block Diagram of the Software Application ... 79

Figure 4-29 Flow Diagram of the Up and Down Side Trimming 83

Figure 4-30 Flow Diagram of the Character Segmentation .. 86

Figure 4-31 Flow Diagram of the Codeword Generation ... 90

Figure 4-32 Flow Diagram of the Codeword Matching and Recognition 92

Figure 5-1 Sample plates and their Gabor responses for which the plates cannot be

extracted from the image... 108

Figure A-1 Nios II Processor Core Block Diagram .. 134

Figure C-1 GUI of LPDRS ... 137

1

CHAPTER 1

1. INTRODUCTION

1.1 GENERAL

In recent years, the use of vehicles has been increasing because of population growth and

human needs. Due to growing number of vehicles, traffic problems such as theft, speeding,

red light violation etc. increase and control of vehicles is becoming a big problem. As a

result of traffic control problem, vehicle tracking, recognition and management has become

major topics for the modern traffic control systems. Automatic vehicle identification (AVI)

systems are used to provide effective control. AVI system is the essential step for the

intelligent traffic systems. There are many applications which make use the AVI systems

such as traffic control [21, 27], car park automation [28], highway electronic toll collection,

border and custom checkpoints, red light violation enforcement etc.

Technique of radio frequency identification (RFID) [29], infrared, microwave and image

recognition are the most common methods which are included in the current vehicle

identification systems. RFID, infrared and microwave techniques depend on installation of

transponders on the vehicles. For the system using transponders, the rate of the accurate

detection and recognition is low when the vehicle is in high speed driving.

AVI systems which use laser or radio frequency to identify the vehicle, utilize a small

windshield-mounted tag. A reader is mounted in each lane and identifies the vehicle by

reading the ID-tag while the vehicle approaching the barrier [29].

Vehicle license plate recognition has improved for the vehicle monitoring and management

in recent years. License plate recognition is a form of automatic vehicle identification. The

advantage of the license plate recognition system is that there is no need for the any special

owner or driver compliance such as the use of tag because every vehicle on the traffic

already has a license plate. However, RFID is more advantageous than license plate

recognition in terms of weather conditions. Physical condition of the license plate such as

dirt, damages or changed surface affect the license plate recognition whereas RFID is not

affected from physical disturbances.

License plate detection and recognition system has mainly four stages; the car image

capturing stage, plate region detection stage, the character extraction stage and character

recognition stage. In the system, the image of the incoming car is captured by infrared

sensors, which can easily detect the passing of the car. Then, in plate region detection and

character extraction stages, the locations of a vehicle license plate and the characters are

2

identified using edge detection [30, 31], feature projection [16, 24], neural networks [32,

33], fuzzy logic [34], genetic algorithms [35] or morphology based technologies. After the

characters are extracted, by template matching methods, character recognition stage

matches the features of the extracted character with the template pattern in the database

and the most similar pattern is determined as a recognized character [21].

Recognition rate, reliability and processing speed are the three important parameters for the

AVI systems. In outdoor applications, robustness and real-time operations are the

important issues in which many studies emphasized on. For the reliable license plate

recognition system, efficient algorithms are required to provide robustness and real-time

operations.

1.2 SCOPE OF THE THESIS

In this thesis, license plate detection and recognition for 640x480x24 color images are

examined and recognition of the license plate part is implemented in the FPGA.

First, algorithms for the license plate detection and recognition system have been searched

and analyzed. Then, Gabor based license plate detection is chosen as the main approach to

extract the plate region because of the success of the Gabor filters in many applications,

e.g., face detection and recognition, iris recognition and fingerprint matching etc. After the

localization of the license plate, algorithm developed for the recognition is implemented on

Altera DB_START_4CE10-Cyclone IV E Development Board.

In the developed algorithm, there are three main stages, namely, plate region detection,

character segmentation and character recognition. In the first stage, position of the

candidate plate regions are identified and exact plate region is determined. Extraction of

the plate region is based on Gabor Wavelet Transform and morphological operations. With

Gabor transform, pixel transition regions are found and with morphological operation,

transition regions are merged. By observing the density and the size of the candidate

regions, exact plate region is determined. In the second stage, characters in the plate region

are segmented. In the final stage, combined codeword for each segmented character is

calculated and candidate codeword is compared with the template codewords. If there is a

match, candidate character is recognized as the template character under constraint.

Before the FPGA implementation, algorithm is developed and verified in MATLAB. After

satisfactory performance is achieved, character segmentation and character recognition

parts of the algorithm are implemented in the FPGA. In the FPGA implementation, plate

regions extracted with the MATLAB are utilized to test the license plate recognition

system. To send the image of plate region and size information to the FPGA, Graphical

User Interface (GUI) is designed. The detailed description of the designed GUI is given in

Appendix C.

For the test of the license plate detection and recognition system, photographs obtained

from the car parks of METU and ASELSAN are utilized. Image dataset is same with the

3

some part of the dataset used in [26]. Images are in 640x480x24 color images format. The

distance of the camera to the car is in between 4-7 meters.

1.3 OUTLINE OF THE THESIS

This thesis is composed of six main chapters.

In Chapter 1, the main scope of the thesis is explained and a brief introduction to the

subject is given.

In Chapter 2, literature review for plate region extraction, segmentation of characters and

character recognition is given.

In Chapter 3, the developed algorithm for the license plate detection and recognition is

explained in detail.

In Chapter 4, FPGA implementation of the character segmentation and character

recognition parts of the algorithm is explained from both hardware and software point of

view. Block diagrams for the hardware modules and pseudo codes for the implemented

software are provided.

In Chapter 5, test results for the MATLAB and FPGA implementations are provided.

Proposed system is compared with the previous studies and performance comparison is

given. Moreover, resource usage for the FPGA implementation is provided.

Chapter 6 gives a particular summary of the whole idea presented in the thesis and offers

ideas for the future work.

5

CHAPTER 2

2. LITERATURE OF LICENSE PLATE DETECTION AND

RECOGNITION

License plate detection and recognition systems consist of three main parts. These systems

start with extraction of plate region, then characters in the plate region are segmented

according to some constraints and finally plate characters are recognized by processing the

segmented characters. In the literature, various techniques are proposed for these three

steps. In the following sections, methods used in the previous works are given in each of

the steps.

2.1 EXTRACTION OF PLATE REGION

Babu and Krishnan [12] apply a morphology based method for license plate extraction

from vehicle images. Proposed algorithm is based on combining morphological operation,

sensitive to specific shapes on the edge images of the vehicles. Algorithm gives good

responses for license plate images with complicated background. In the algorithm, Sobel

mask is used to detect vertical edges in the input image because plate region consists of

many vertical edges as a result of borders, letters and numbers. After edges on the image

are found, the resultant image is converted into a binary image and candidate plate region

is extracted by finding number of rows containing highest number of ones. To fill the holes

on the image, morphological dilation is applied horizontally and vertically. After the

dilation operation, morphological erosion is applied to exclude the extra regions which do

not belong to the plate.

Iwanowski [1] also uses mathematical morphology. A set of filters is used which removes

unnecessary image elements but preserves the position of the plate and shape of the

characters. As a first step, top-hat contrast enhancement is applied to improve the contrast

of the image. The formula for the top-hat contrast enhancement is given in (2.1).

 (2.1)

where f is the image, represents the opening operator and represents the closing

operator. After the contrast enhancement, to remove most of the unnecessary areas on the

image, a combination of two top-hats (white and black) by reconstruction is applied by

using the formulas given in (2.6). Formulas for the background cleaning are given in (2.2),

(2.3), (2.4), (2.5), and (2.6).

 (2.2)

6

where WTH stands for white top-hat and BTH for the black top-hat.

The geodesic dilation and erosion of size 1 are defined as given in (2.3), respectively.

 (2.3)

where f represents an input image, g is a mask image, and stands for the minimum and

maximum values among pixels of the same coordinates on both images computed for all

pixels. and represent erosion and dilation, respectively.

The geodesic erosion and dilation of size n are defined as given in (2.4), respectively.

 (2.4)

The reconstruction by dilation and erosion are defined as given in (2.5), respectively.

 (2.5)

where i is defined as the lowest number such that

 and

 for dilation and erosion, respectively.

The filters of opening by reconstruction and closing by reconstruction are defined as given

in (2.6), respectively.

 (2.6)

After background cleaning, in order to detect the proper area, the directional filtering is

applied and then image is binarized. After these processes, the detected area contains all

the characters.

Ozbay and Ercelebi [13] use edge detection and smearing algorithms to extract the plate

region. To find the plate region, firstly, smearing algorithm is applied to the binarized

image. Smearing is a method for the extraction of the areas which contains text area. With

smearing algorithms, image is processed along vertically and horizontally. If the number of

bright pixels is less than a desired threshold or greater than any other desired threshold,

bright pixels are converted to black pixels. To specify the plate position, a morphological

dilation is implemented followed by the smearing algorithm.

Hung and Hsieh [14] utilize the color characteristics of the barking lights in the input

image. Firstly, locations of the barking lights are detected. Then, plate detection region is

found by using the probability distribution of the license plate between the two lights.

Wavelet transform and projection method are used as a proposed technique of the vehicle

license plate detection. To obtain the relationship between the frequency and the location,

multi-resolution of the signal is performed by the wavelet transform. One level discrete

7

wavelet transformation is used to extract the high frequency content from the image. Since

the number of characters is known, the number of vertical boundary points in the

horizontal projection is also known which is twice of the number of characters in the plate

region. Horizontal projection of the frequency band is obtained by adding the energy

values at the same horizontal edge of the frequency band. Horizontal rows with higher

horizontal projection values represent the upper and lower edges of the license plate. After

horizontal projection, vertical projection is used to detect the left and right side edges of

the plate region. If the projection value is smaller than the predefined threshold that column

may not be the part of the license plate and excludes the checking region. By this approach,

right and left boundary of the license plate is obtained.

Duman et al. [15] focuses on feature extraction approaches to extract license plate regions.

Hierarchical edge detection method based on discrete wavelet transform is used to restrict

the feature extraction regions. The aim of the hierarchical edge detection is to eliminate the

regions which cannot be plate region and minimize the number of regions which require

detailed processing. In order to achieve this aim, discrete wavelet transform is used. Since

plate region contains many edges due to boundaries, numbers and letters, high frequency

components of the wavelet transform is detected as candidate plate regions and other

regions are discarded. After the hierarchical edge detection, to differentiate which region is

the exact plate region and which is not, three different feature extraction methods are used.

These methods are observing histogram of the candidate plate region, horizontal profile of

candidate region chosen in the edge map and segmentation of background and foreground

objects.

Commeli et al. [16] extract the location of the plate region by observing the unusual

characteristics presented by the image function. They look for the geometrical

characteristics such that rectangular region which contains black character over white

background. Therefore, the algorithm picks within the image, the area presenting the

maximum local contrast which corresponds the rectangle containing the license plate. A

gradient analysis is applied on the whole image which leads to estimate of a rectangle.

Wang and Lee [17] use the magnitude of vertical gradients to detect the candidate plate

regions. After that, these regions are evaluated based on three geometrical features: the

ratio of width and height, the size and the orientation. Because the color of characters is not

same with the background of the plate region, the gradients of the original image can be

used to detect the candidate license plate region. The gradients are derived by multiplying

with a mask value for each pixel and its neighboring pixels. Sobel operators use two masks

to find vertical and horizontal gradients [18, 19]. License plate region is hardly separated

by using the horizontal gradients. However, detection of license plate from vertical

gradients is easy because magnitude of the vertical gradients is strong in the characters of

the license plate while weak on vertical lines. To detect the most possible license plate

regions from candidate plate regions, geometrical properties of the license plate such as

area, orientation and density, which is the ratio between the black regions and the area of

the bounding rectangle, are used as a measure of the possibility value.

8

Kahraman et al. [20] utilize Gabor transform for the detection of the plate region. Gabor

filters are the one of the major tools for the texture analysis. In the algorithm, texture over

the image is analyzed in an unlimited number of directions and scales. Gabor feature of the

image is obtained with the formula given in (2.7).

 (2.7)

In the (2.7), input image where is the set of image points, is

convolved with 2D Gabor function to obtain a Gabor feature image

 .

Following family of Gabor functions are used as given in (2.8).

 (2.8)

where and represent standard deviation and the wavelength, respectively. The angle

parameter specifies the orientation of the normal to the parallel and negative lobes of the

Gabor filters. High values in the Gabor response indicate probable plate regions. To

extract the exact region, thresholding algorithm is applied to convert the image to binary

image and morphological dilation operator is utilized to merge the nearby regions. Eight-

connected blob coloring is used to specify the exact plate region.

2.2 SEGMENTATION OF CHARACTERS

Character segmentation is the requisite part of the license plate recognition system because

each character is recognized by using the segmented characters. Unless characters are

segmented successfully, license plate cannot be recognized satisfactorily.

After the plate region is localized accurately, segmentation of characters part is applied.

There are several approaches developed for the character segmentation.

Kahraman et al. [20] apply nonlinear vector quantization to segment the license plate

characters to its exact boundary. In the vector quantization methods, pixel values are

assigned to one of the finite number of vectors and by using binary split tree approach,

these vectors are determined in such a way that the quantization error is minimized.

Quantization error equation is given in (2.9).

 (2.9)

where is the set of quantization vectors and is the set of pixels assigned to the

vector . In the vector quantization approach, initially all pixels are assigned to same

9

class and then, class is divided into two sub classes according to the second order statistics

within the class. Quantization vector is assumed to be equal the class mean.

 (2.10)

Class covariance matrix is given in (2.11)

 (2.11)

Due to the division of the classes into two sub classes, new class vectors, , are

computed by calculating the unit vector which minimizes the expression given in (2.12)

 (2.12)

This represents the largest eigenvalue of . After unit vectors are obtained, the pixel

values are assigned to or classes as given in (2.13) and (2.14).

 (2.13)

 (2.14)

Splitting classes stops either when the maximum vector number is reached or when the

class variance is less than a predefined threshold. After the plate region is quantized,

connected component analysis is implemented to obtain the character segments.

Wu and Chiu [21] propose a thresholding approach, modified adaptive thresholding, MAT,

which combines the BAT, basic adaptive thresholding, and c-means algorithm to segment

the foreground. The proposed system uses only the Y-component in the YUV color space

representation to extract the characters. After thresholding, modified connected component

labeling method is used to explore the region adjacent to each pixel. In the proposed

modified connected component labeling method, attributes are obtained which are the

coordinates, area, the aspect ratio and density of a component. After the attributes of

connected components have been determined, candidates of the character components are

determined by using thresholding operators which examine candidates according to their

width, height and area. Horizontal position and widths of the characters are adjusted and

ratio and densities of the components are modified. Objects with excessively large or small

aspect ratios and densities are eliminated by applying ratio and density thresholding. As a

final step, connected components which are within the positional tolerance and the size

tolerance determined as character components.

In the system proposed by Wang and Lee [17], binarized license plate images which are

binarized with the Otsu method are utilized. The de-noise process is applied to eliminate

small regions and the boundary. For the binarized license plate image, the orientation is

obtained. Then, connected component based method is used to segment the image into

single characters. For the proposed system, the digits on the license plate are fixed on car

10

license plates and the characters lie in horizontal orientation. By using these properties,

characters of the connected component are confirmed. Due to the possible various rotation

angles of the characters in the license plate, the major axis of each single character is

measured and the inverse rotation transformation is implemented to normalize the

character.

Ozbay and Ercelebi [13] use smearing method to segment the characters. In the proposed

system, firstly, image is filtered for enhancing the image and removing the noise and

unwanted pixel values. Then, morphological dilation is applied to separate the characters

from each other if the characters are close to each other. After dilation, horizontal and

vertical smearings are applied to find the character regions. As a final step, plate characters

are cut by finding starting and end points of characters in horizontal direction.

Iwanowski [22] implements binarization and labeling to extract single characters on the

image. In the first step, image is binarized with fixed threshold values as given in (2.15).

 (2.15)

To remove unnecessary noise and other small areas of value ‘1’ on the binarized image,

morphological opening is applied. After that, labeling of binary image is performed by

using the labeling algorithm. Algorithm results in the image with labeled characters, so that

the first character from the left gets label ‘1’, next one label ‘2’ etc. For the extraction of

single characters, (2.16) is used.

 (2.16)

Pseudo code for the labeling algorithm as given:

for i :=0 to x : for j := 0 to y:

if p(i,j)=0 then l(i,j)=0 else l(i,j)=-1

label := 0

for i :=0 to x : for j := 0 to y: if l(i,j)=-1 then:

label := label+1

stack_push([i,j])

while not(stack_empty):

[i,j] := stack_pop

l(i,j) := label

for m:=-1 to 1: for n:=-1 to 1:

if l(i+m,j+n)=-1 then:

stack_push([i+m,j+n])

where p and l represents the binary image of the license plate and the labeled output image,

respectively. l contains the particles of image p labeled beginning from the value 1. The

final value of variable label represents the number of labeled characters.

11

Babu and Krishnan [12] use edge detection and region growing for the segmentation of the

characters. Firstly, plate region is enhanced with the contrast stretching method. The idea

behind the contrast stretching is to increase the dynamic range of the gray levels in the

image. After that, as an edge detection method, Laplacian transformation is used to detect

the edges of the characters. To find the location of the candidate regions of the characters,

region growing is applied followed by the edge detection. The basic approach for region

growing is to start with the seed point and form this region grows by appending to each

seed those neighboring pixels that have properties similar to that seed. Since in the process

of region growing more than one character may be combined together in a region or a

character may be split into some regions, the information about the ratio of the character

width and height is used and accurate positions of character segmentation regions are

obtained. According to these positions, characters from original license plate are extracted

accurately.

2.3 RECOGNITION OF PLATE CHARACTERS

After each character is segmented, recognition procedure starts. For the recognition of the

license plate character, there are many approaches. The most common approaches in the

literature are template based and neural network based algorithms.

Fahmy [23] uses the BAM (bidirectional associative memories) neural network for the

recognition. According to Fahmy, using neural networks in automatic character reading has

the potential of providing higher levels of accuracy than the conventional methods. In the

proposed method, each character included in the plate region is scaled to fit a 16x16 pixel

image prior to introducing it to the input layer of a neural network and then, scaled version

of the characters is used for character recognition. BAM system is trained with actual

character patterns extracted from license plate. These character patterns are stored in

different files, each is used to store one of the letters from A to Z or one of the digits from

0 to 9 with its desired output. The output of the BAM is a 6x6 pixel matrix and each

character is assigned to a unique output pattern in this matrix.

Lee et al. [24] use template matching and post-processing techniques for the character

recognition. To match the characters of the license plate with the template characters, size

of the extracted characters is normalized to 40x40. Then, Jaccard value is used as a

matching measure which is given in (2.17).

 (2.17)

After matching, to confirm the recognition result, post-processing using character

dictionary is applied.

Babu and Krishnan [12] use cross correlation combined with neural network. Cross

correlation is used to calculate the similarities between two images. To examine the

similarity between the image and the template, assumptions are made and constant terms in

12

the cross correlation equation are eliminated. Equation used as a similarity measure is

given in (2.18).

 (2.18)

where and represent the segmented character and the template, respectively.

Each character is presented to a bank of neural network, each looking for a specific

character or digit on which it has been previously trained. The final decision for each

character is chosen by a winner takes all comparison of the network outputs. However, if

the value of the winner’s output is low, this is recognized as a failure and recognition result

is aborted.

Ozbay and Ercelebi [13] use normalized cross-correlation with template matching. In the

proposed system, segmented characters are normalized to 36x18. Method measures the

correlation coefficient between a number of known images with the same sized unknown

images. Highest correlation coefficient between the images produces the best match. The

normalized cross-correlation between the image pair is given in (2.19).

 (2.19)

for m=1,2,..,M and n=1,2,..,N where M and N are odd integers. and for

 and represent two discrete images denoting the image to be searched

and the template, respectively.

Wang and Lee [17] propose a system which extracts the features of the segmented

character and recognizes the character by using discriminant function. To tolerate

variations among samples of the same character and differentiate variations in different

characters, significant features are extracted. To increase robustness of the recognition

method, segmented characters are rotated to a normalized coordinate system. Crossing-

count features and peripheral background are extracted. For the crossing-count calculation,

segmented character is divided into 64 sub-images. Each sub-image of the quarter is then

segmented non-uniformly into 4 strips in both horizontal and vertical directions. To speed

up the extraction, four scan lines are selected to extract features in each strip and crossing

counts are calculated by calculating the number of strokes intersecting each scan line. After

crossing count feature are calculated, peripheral background area feature is extracted.

Peripheral background area feature is the length of line segments which are from the

boundary of the image to the character contour. To extract the feature, extracted character

is segmented into 16 strips in both horizontal and vertical directions. In each strip, two

values of length from both of the image boundary to the character contour divided by the

length of the strip are measured. For the character recognition, discriminant and combined

discriminant functions are used which are given in (2.20) and (2.21), respectively.

 (2.20)

13

 (2.21)

where feature vector x is derived from the segmented character and is the mean vector

of the reference character j. is the standard deviation accompanying each feature of

character j. c is the constant obtained from the training data. and are the coefficients

which are determined according to experimental results. CCFs stands for crossing count

features and PBAFs stands for peripheral background area features. The combined

discriminant function between the segmented character and each reference character is

evaluated and smallest value among them is chosen as the recognized character.

15

CHAPTER 3

3. PROPOSED SYSTEM

Proposed license plate detection and recognition system (LPDRS) consists of three main

subsystems. These are plate region detection, character segmentation and character

recognition. The input image is given to the LPDRS. In the plate region detection step,

exact location of the license plate is found. First, the RGB image is represented in HSV

color space and value component is used to decrease the computational complexity. For the

detection of candidate plate regions, Gabor wavelet transform and morphological closing

are utilized. In order to obtain reasonable results, image filtering and contrast enhancement

are implemented before the Gabor wavelet transform. After candidate plate regions are

obtained, extent of each candidate plate region is analyzed to find the exact plate region. If

the trimming is necessary in the extracted plate region, up-down and right-left hand side

trimmings are achieved to eliminate unwanted pixels. In the character segmentation step,

each character in the plate region is extracted and morphological opening is used to

eliminate unwanted pixels which may be missed while trimming. Finally, in character

recognition step, for each character in the license plate, codeword is generated and license

plate characters are identified by matching algorithms which compare the generated

codeword with codewords in the database. Flow diagram of the proposed system is given

in Figure 3-1. In this chapter, each process in the flow diagram will be explained in detail.

16

NOTCH DETECTION

and

SEGMENTATION OF

EACH CHARACTER

MORPHOLOGICAL

OPERATIONS

C
H

A
R

A
C

T
E

R

R
E

C
O

G
N

IT
IO

N

CODEWORD

GENERATION

RECOGNITION

640x480 INPUT IMAGE

(RGB, BMP FILE)

C
H

A
R

A
C

T
E

R

S
E

G
M

E
N

T
A

T
IO

N

OTSU

THRESHOLDING &

MORPHOLOGICAL

OPERATIONS

P
L

A
T

E
 R

E
G

IO
N

 D
E

T
E

C
T

IO
N

IDENTIFICATION

OF PLATE REGION

HORIZONTAL &

VERTICAL

TRIMMING

IMAGE

ENHANCEMENT

GABOR WAVELET

TRANSFORM

RECOGNITION RESULT

Figure 3-1 Flow Diagram of the Proposed System

17

3.1 PLATE REGION DETECTION

The aim of the plate region detection step is to find positions of candidate plate regions in

the input image with their sizes and coordinates and determine the exact plate region. In

the input image, pixels are divided into two groups whether they belong to plate region or

not. Only pixels of the plate region are transferred to later stages.

3.1.1 IMAGE ENHANCEMENT

For the plate region detection, color information is not a necessity. The only need to detect

the plate region is to know positions of bright and dark pixels. To decrease the

computational complexity and to exclude the color information, RGB representation of the

input image is converted into HSV color space. In HSV representation, value component

represents the quality by which a light color is distinguished from a dark one. Since it is

important to find out light and dark pixels’ transitions in the input image, value component

is used for further processes. Value component of the image is filtered with Gaussian filter

to remove the high frequency components and smoother image is obtained. After filtering,

contrast enhancement is applied with morphological operations.

3.1.1.1 GAUSSIAN FILTER

In order to reduce high frequency components and to remove noise, image is filtered with

Gaussian filter and smoother image is obtained.

An isotropic 2D Gaussian function g(x, y) is given in (3.1) and the plot of the function is

shown in Figure 3-2.

 (3.1)

Figure 3-2 Gaussian Function

18

Gaussian function is used as a 2D distribution as a point spread function. Since the image

is stored as a collection of discrete pixels, discrete approximation of Gaussian function is

required. Figure 3-3 shows a suitable integer-valued convolution kernel that approximates

a Gaussian with a of 0.5.

0 0 0.0002 0 0

0 0.0113 0.0837 0.0113 0

0.0002 0.0837 0.6187 0.0837 0.0002

0 0.0113 0.0837 0.0113 0

0 0 0.0002 0 0

Figure 3-3 Gaussian Kernel

Gaussian filtering blurs the image. The degree of smoothing is determined by the standard

deviation of the Gaussian. The Gaussian outputs a weighted average of each pixel’s

neighborhood, with the average weighted more towards the value of the central pixels.

Because of this, a Gaussian provides gentler smoothing and preserves edges better than

similarly sized mean filter.

3.1.1.2 CONTRAST ENHANCEMENT

Gabor wavelet transform gives maximum response at the black to white pixel transitions.

After image is filtered, to maximize the Gabor response, contrast enhancement over the

image is applied. Contrast enhancement is achieved by morphological operators.

Morphological operators are used not only to remove image objects or noise of certain kind

but also to detect objects of particular characteristics [1]. In order to achieve this, top-hat

operators have been used which are given in (3.2) and (3.3).

 (3.2)

 (3.3)

where f is the image, represents the opening operator, represents the closing operator,

WTH stands for white top-hat and BTH for black top-hat. The descriptions ‘white’ and

‘black’ indicates types of objects that are detected by a particular operator, lighter or darker

than the background.

Top-hat operators can be applied to contrast enhancement. By combining the original

image with images with detected objects, the contrast improves. This combination is

achieved by adding the original image to the result of white top-hat and by subtracting the

result of black top-hat. The equation for contrast enhancement is given in (3.4).

 (3.4)

Image before and after the contrast enhancement can be seen in Figure 3-4.

19

Figure 3-4 Images Before and After the Contrast Enhancement

3.1.2 GABOR WAVELET TRANSFORM

There is a similarity between Gabor filters and the receptive field of simple cells in the

visual cortex [2, 3]. Therefore, the Gabor feature based methods are among the top

performers for feature extraction. 2D Gabor filters proposed by Daugman are local spatial

band pass filters that achieve the theoretical limit for conjoint resolution of information in

the 2D spatial and 2D Fourier domains [4]. An ensemble of simple cells is best modeled as

a family of 2D Gabor wavelets sampling the frequency domain in a log-polar manner. The

composition of image into these states is called the wavelet transform of the image [5].

An input image , where is the image points, is convolved with Gabor-based wavelets

which is a family of kernels . The parameter determines the wavelength and

orientation of the kernel . Convolution of the input image with Gabor–based wavelets is

given in (3.5).

 (3.5)

The kernels in image coordinates take the form of a plane wave restricted by a

Gaussian envelope function:

 (3.6)

Center frequency of the filter characterized by the wave vector:

 (3.7)

where f represents the spacing factor between kernels in the frequency domain. In the

LPDRS, Gabor wavelet kernels are investigated with the values of

 and .

In (3.7), represents scale and represents the orientation.

20

In the Gabor kernels (3.6), the first term in the square brackets determines the oscillatory

part of the kernel. The second term compensates for the DC value of the kernel. DC value

of the kernel avoids unwanted dependence of the filter response on the absolute intensity of

the image. For sufficiently high values of , the effect of the DC term becomes negligible.

The complex valued is a combination of cosine (even part) and sine (odd part) [5].

Response of Gabor wavelets in Fourier space is given in (3.8).

 (3.8)

where F represents the Fourier transform. Gabor filters is mainly a product of an elliptical

Gaussian and a complex plane wave. In the Gabor wavelet transforms, first exponential

provides a band pass filter which is a Gaussian centered at the characteristic frequency .

The second exponential removes the DC component of the . The Gabor wavelets are

defined by wave vector , which controls the width of the Gaussian window and

wavelength and orientation of the oscillatory part. The parameter controls the ratio of

window width to wavelength, i.e., the number of oscillations under the envelope function.

In the LPDRS, for extracting the license plate feature of image, the system uses Gabor

filters. Gabor features extract local pieces of information which are then combined to

detect the region of interest which is a candidate plate region for this case.

Gabor transform gives only a rough estimate of the boundary of the plate region. In the

license plate detection and recognition system, size of the Gabor wavelet kernels is chosen

as 16x16. The size of the kernel has a great importance for the computation time. Since

resolution of the input image is 640x480, larger kernel size increases the computation time

and lower kernel size results from the loss of the plate region features on the image. For the

Gabor kernels standard deviation is chosen as . In the LPDRS, Gabor wavelets are

generated with 3 logarithmically spaced frequency levels and 4 orientations indexed by

 and . Real parts of the Gabor wavelet transforms of the input image

for 3 frequency levels and 4 orientations can be seen in Figure 3-5.

21

SCALE

O
R

IE
N

T
A

T
IO

N

Figure 3-5 Gabor Wavelet Transform of the Input Image

As it can be seen in the Figure 3-5, plate region can be detected mostly for

and

. For other frequency levels or orientations not only plate region is detected

but also other parts of the image can emerge. The most acceptable Gabor response for this

scale and orientation is given in Figure 3-6.

22

Figure 3-6 Most Acceptable Gabor Response of the Input Image

Input images used in the license plate detection and recognition system are taken in front of

the vehicle without giving any orientation to the camera. Therefore, it is meaningful to

obtain most acceptable response for

 . Gabor wavelet filters seek for the black to

white pixel transitions and the most reasonable region is the plate region since it consists of

black characters with white background. High values in the Gabor transform of the image

indicate probable plate regions.

3.1.3 OTSU THRESHOLDING and MORPHOLOGICAL OPERATIONS

In order to detect the plate region, thresholding algorithm is applied and binary image is

obtained from grayscale image. Then, morphological operator is utilized to merge nearby

regions. In the license plate detection and recognition system, Otsu’s method is used as a

thresholding algorithm. Otsu’s method is a histogram shape-based thresholding. In the

algorithm, pixels of the image are separated into two classes by calculating the optimum

threshold, therefore, their within-class variance becomes minimum and between-class

variance becomes maximum [6].

Weighted within-class variance is given in (3.9).

 (3.9)

where the class probabilities are estimated as:

 (3.10)

pixels with levels [1,…, t] belongs the one class and pixels with levels [t+1,…, L] belongs

to other class.

23

Class means are given in (3.11).

 (3.11)

Individual class variances are given in (3.12) and (3.13).

 (3.12)

 (3.13)

With these equations, weighted within-class variance is run through the full range of t

values [1,256] and the threshold value from these values is chosen which minimizes

the
 .

Grayscale image is binarized with Otsu’s method after the Gabor-wavelet transform and it

can be seen in Figure 3-7.

Figure 3-7 Binarized Image with Otsu Thresholding After Gabor Wavelet Transform

24

After probable plate regions are indicated as high values in the binary image,

morphological closing is applied to the binary image to merge nearby regions. Closing

operation enlarges the boundaries of the bright regions in the image and shrinks

background color holes in such regions. It is used to combine the bright strips that belong

to plate region. For closing operation, first binary image is dilated and then the dilated

image eroded with same structuring element. Disk-shaped structuring element with radius

12 is used. Structuring element used in closing operation and the binary image after the

closing operation is shown in Figure 3-8 and Figure 3-9, respectively.

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 1 0

1

1

1

1

1

1

1

1

1

1

1

0 1 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Figure 3-8 Structuring Element Used For Morphological Closing

25

Figure 3-9 Binary Image After Morphological Closing

3.1.4 IDENTIFICATION OF PLATE REGION

After bright pixels are merged with morphological closing operation, candidate plate

regions can be extracted which comply with the predefined plate length and width

constraints. License plates can be single line or double line. In the license plate detection

and recognition system, to extract candidate plate regions, binary image is filtered

according to predefined plate length and width parameters. For this approach, two sets of

threshold values are defined, one set for the single line plate case and the other set for the

double line plate case. First, algorithm searches for the single line plate and if it founds a

candidate region, algorithm for the double line plate case is not processed. If the candidate

plate region is not found for the single line plate case, algorithm for the double line plate

case is processed. The reason to place a priority to process algorithms is to decrease the

computation time and not to process the nearly same algorithms with different thresholds

two times. After the algorithms are processed, connected component labeling is

implemented and image is filtered with more restricted thresholds. By this approach,

additional candidate regions are extracted. For some plates, after the morphological closing,

plate region becomes thinner and it cannot be found by filtering the image with plate width

and length parameters. Therefore, filtering is achieved with more restricted threshold

values. After the candidate plate regions are extracted, exact plate region is detected by

analyzing the density of the bright pixels. Since plate region consists of black characters

with white background, it is expected to have white pixel density larger than 0.5. Flow

diagram of the identification of the plate region step can be seen in Figure 3-10.

26

Figure 3-10 Flow Diagram of the Identification of Plate Region

In the following sections, each substep for the identification of plate region is explained in

detail.

3.1.4.1 FILTERING WITH PLATE LENGTH and WIDTH PARAMETERS

Filtering with plate length and width parameters can be divided into three substeps. Firstly,

image is filtered according to single line plate case. Then, if the candidate plate region is

not found, image is filtered according to double line plate case parameters. Otherwise, this

substep is skipped. Finally, image is filtered with restricted parameters in order to find

thinner plate regions. After candidate plate regions of each step are extracted, they are

merged and the image becomes ready for the connected component analysis.

For the single line plate case, the algorithm seeks a continuous bright region with 10 pixels

width and 140 pixels length. It extracts regions which have at least 10 pixels width and 140

pixels length. After regions are extracted, to analyze the content of each region connected

component labeling with four neighboring is utilized and for each region, region properties

such as region size, extent of the region, which specifies the ratio of pixels in the region to

pixels in the total bounding box, are extracted. In the LPDRS, region whose extent is larger

than 0.9 is taken into account and other regions are removed. Since filtering with

parameters step seeks for at least 10 pixels width and 140 pixels length, extracted region is

not always rectangular. There may be fluctuations at the edges. To eliminate the region

with sharp fluctuations, LPDRS controls the extent of the region. If the extent of the region

is larger than 0.9 which means it consists of 90% bright pixels, this region can be candidate

and it is enlarged 15 pixels from top and bottom to reduce the risk of the cropping license

Binary image after
morphological

closing

Filtering with
Plate Length and
Width Parameters

Identification of
Exact Plate

Region

Extracted Plate
Region

27

plate characters. All possible regions are analyzed and candidate plate regions are extracted

in same manner. If there are candidate plate regions, the algorithm continues with filtering

with restricted parameters step, otherwise it continues with double line plate case.

For the double line plate case, the algorithm seeks a continuous bright region with 20

pixels width and 90 pixels length. It extracts regions which have at least 20 pixels width

and 90 pixels length. Same steps are followed as in the single line plate case. Connected

component labeling with four neighboring is utilized and for found regions, region

properties are specified. Regions whose extents are larger than 0.9, are enlarged by 25

pixels from top and bottom of the region to reduce the risk of cropping license plate

characters. The algorithm investigates all possible regions and candidate plate regions are

identified.

For filtering with restricted parameters case, connected component labeling is utilized and

for regions whose width is in between 10 pixels to 60 pixels and length is in between 120

pixels to 215 pixels are extracted. If there is such a region, it is enlarged 5 pixels from top

and bottom to reduce the risk of cropping license plate characters. Otherwise, the region is

removed. In some plate regions, plate region becomes thinner due to some side effects such

as illumination and plate region cannot be extracted with previous steps. The reason to

process this step is to find region which contains semi thinner parts.

Recognition of the plate region is achieved for single line plate case. If the candidate plate

regions are found for double line case, the LPDRS system stops and cannot recognize the

license plate. If there are candidate plate region, LPDRS continues with identification of

exact plate region step, otherwise LPDRS stops processing.

Flow diagram of the filtering algorithm can be seen in Figure 3-11.

28

Figure 3-11 Flow Diagram of the Filtering Algorithm

29

Figure 3-11 Flow Diagram of the Filtering Algorithm (Continued)

30

Figure 3-11 Flow Diagram of the Filtering Algorithm (Continued)

31

For the image, extracted candidate plate regions can be seen in Figure 3-12.

Figure 3-12 Extracted Plate Regions

3.1.4.2 IDENTIFICATION OF EXACT PLATE REGION

After candidate plate regions are extracted, connected component labeling with four

neighboring is applied to the image and candidate region properties are specified. For each

candidate region, white pixel density is calculated as in (3.14).

 (3.14)

where L and W represent the length and width of the candidate region, respectively. I

represents the image of the candidate plate region, and x and y represent pixel positions in

terms of x and y axes, respectively. In the numerator, summation gives how many bright

pixels exist in the candidate region and denominator gives the total number of pixels.

White pixel density calculation is done for each candidate plate region. Exact plate region

is detected by looking the white pixel density of each plate region. License plates used in

the license plate detection and recognition system consist of black characters with white

background. Therefore for actual license plates, it is expected that white pixel density

should be larger than 0.5. To find actual threshold value for white pixel density, plate

regions are analyzed and it is observed that white pixel density threshold should be at most

0.65.

To extract the plate region, maximum of the white pixel densities which is smaller than

0.65 is found and by this approach exact plate region is extracted. Regions which have

32

greater white pixel density than 0.65 are discarded. Flow diagram of the identification of

exact plate region step is given in Figure 3-13.

Figure 3-13 Flow Diagram of the Identification of Exact Plate Region

Extracted plate region with calculated white pixel densities can be seen in Table 3-1.

Table 3-1 Results for the Identification of Exact Plate Region Step

Region ID Candidate Region White Pixel Density

1

0.5420

(Extracted Region)

2

0.7971

3

0.3830

Candidate Plate Regions

Connected Component
Labeling and Specification of

Region Properties

Calculation of White Pixel
Density for Each Plate

Region

Region Detection with

find[max{0.5 < density <
0.65} within candidate

regions]

Exact Plate Region

33

3.1.5 HORIZONTAL and VERTICAL TRIMMING

After the exact plate region is extracted, vertical and horizontal trimming are performed if

there are black pixels at the edges of the extracted plate region. Trimming is required

because black pixels at the edges can be a misleading factor for the character segmentation

step. As a result of black pixels at the edges, plate region may not be segmented properly in

the character segmentation step.

Horizontal trimming, trimming from top and bottom of the image, is performed by using

horizontal profiling. In horizontal profiling, for each row in the plate region, the number of

bright pixels is found and behavior of this profile is compared with the ideal horizontal

profile which is expected. Result of the comparison determines whether the trimming will

be performed or not and if the trimming will be performed, the decision of which side

should be trimmed is given.

In ideal case, black pixels at the edges are not expected and there should be bright regions

before characters start. Therefore, in ideal horizontal profile, there should be high values at

top and bottom sides, which represent the number of bright pixels. In the middle rows,

horizontal profile values should be less than up and down side edge values and there

should be fluctuations due to black pixels’ of the characters.

In horizontal trimming, for each row, the number of bright pixels for that row is found. 20%

tolerance is given for each row because there may be black pixels right and/or left-hand

sides, which are not trimmed yet. Index values of rows, whose horizontal profile values are

smaller than 20% of the length of the row, are found and horizontal trimming is performed

whether from top or bottom or both. Decision algorithm is applied to determine which side

should be trimmed. If the difference between index values is greater than 10 pixels, it

means both up and down trim should be performed. Otherwise, if the difference between

index values is smaller than 10 pixels and there is an index value, whose value is smaller

than 15 that indicates row at that region, it means up side trimming will be performed. If

the difference between the index values is smaller than 10 pixels, the up side trimming is

not performed and the index value is greater than 25 pixel, it means down side trimming

will be performed. Horizontal profile values and index values for trimming can be seen in

Figure 3-14 and Figure 3-15.

34

Figure 3-14 Horizontal Profiling Results

Before Horizontal Trimming After Horizontal Trimming

Figure 3-15 Before and After Horizontal Trimming

After the horizontal trimming, vertical trimming, trimming from right and left-hand side, is

performed if required. In vertical trimming same approach is used as in the horizontal

profiling. Vertical trimming is made use of the vertical profiling. In vertical profiling, for

each column in the plate region, the number of bright pixels is found and behavior of this

profile is compared with the ideal vertical profile that is expected. Result of the comparison

determines whether the trimming will be performed or not and if the trimming will be

performed, the decision of which side should be trimmed is given.

In ideal case, bright pixel regions are expected at the right and left-hand sides. If there are

black pixels, these pixels are thought as characters and they are also segmented in a wrong

manner. In middle columns, fluctuations occur due to black pixels of characters.

In vertical trimming, for each column, the number of bright pixels for that column is found.

2 pixels tolerance is given for each column because there may be still black pixels after the

horizontal trimming at the top and bottom. The index values of columns, whose vertical

profile values are smaller than 2 pixels, are found and vertical trimming is performed

whether from right or left-hand side or both. Decision algorithm is applied to determine

which side should be trimmed.

35

If the difference between index values is greater than 15 pixels, it means both right and

left-hand side trim should be performed. Otherwise, if the difference between index values

is smaller than 15 pixels and there is an index value, whose value is smaller than 25, which

represents the column number at that region, it means left-hand side trimming will be

performed. If the difference between index values is smaller than 15 pixels, the left-hand

side trimming will not be performed and the index value is greater than the number of

columns minus 25 pixels, it means right-hand side trimming will be performed. Vertical

profile values and index values for trimming can be seen in Figure 3-16 and Figure 3-17,

respectively.

Figure 3-16 Vertical Profiling Results

Before Horizontal

Trimming

After Horizontal

Trimming and Before

Vertical Trimming

After Vertical

Trimming (Plate Used

for Segmentation)

Figure 3-17 Before and After Trimming Operation

After trimming operation is performed, plate region can be used in the character

segmentation step.

36

3.2 CHARACTER SEGMENTATION

In the license plate detection and recognition system, license plate is recognized character

by character. Therefore, segmentation of each character is required. Before the recognition

of each character, character on the plate region is segmented and prepared for the

recognition step. Then, it is recognized by the recognition algorithm. Later, another

character is segmented, prepared and recognized. Segmentation and recognition is applied

character by character.

Character segmentation step consists of two main substeps. In the first step, characters on

the plate region are segmented. In the second step, morphological operations are applied to

the binary image in order to remove unwanted pixels.

3.2.1 NOTCH DETECTION and SEGMENTATION OF EACH CHARACTER

In order to segment the plate region character by character, vertical projection of the plate

region is used. Due to some discontinues at the top and bottom of the image, there may be

still some black pixels. To eliminate the adverse effect of the top and bottom rows which

may have black pixels that may be missed while trimming, middle row is taken as a

reference and the last 90% of the upper row from top to middle and the first 90% of the

lower rows from middle to bottom is used for vertical projection. For the vertical

projection, the number of black pixels is counted for each column. DC value of the vertical

projection is not important. For the notch detection, sharp peaks are taken into account.

Therefore, DC level of the projection can be removed. In order to remove the DC level,

mean of the vertical projection is calculated and then subtracted from itself. Vertical

projection of the plate region without DC level can be seen in Figure 3-18.

Figure 3-18 Vertical Projection of the Plate Region without DC value

37

As it can be seen in the Figure 3-18, silhouettes of each character can be seen in the

vertical projection diagram. These notches are used to segment each character.

For the notch detection, values of the vertical projection which are smaller or equal to the

half of the minimum ripple value are used. Index values which are smaller or equal to the

half of the minimum ripple value are found which can be seen below the red line in Figure

3-19. In Figure 3-19, threshold value represents the half of the minimum ripple value. After

index values are specified, they are analyzed that whether they construct a notch or not. To

determine notches, differences between the successive index values are investigated. If the

difference between the successive indexes equal or greater than 6, it means that there is a

notch, which indicates a character on the plate region. Other notches in the plate region are

found similarly. The reason to examine the difference between the successive indexes is

because; there are always bright pixel regions between characters. These threshold value

specified as 6 indicates width of the minimum required bright pixel area between the

characters.

To specify the location of the notch, two index values are required. One index value

represents the notch start index and one for the notch end index. After notch start and end

index values are specified, these character regions are segmented before the recognition

part.

Vertical projection of plate region without DC value, and notch extractions with start and

end index values can be seen in Figure 3-19.

Figure 3-19 Notch Extraction with Vertical Projection

After the start and end index values of notches are found, these characters represented by

notches can be extracted and the number of characters, which is the half of the number of

notches, in the plate region, is found.

38

3.2.2 MORPHOLOGICAL OPERATION

After the character segmentation, there may be some black pixels missed while trimming at

the edges. Due to effect of these pixels, character may not be recognized or may be

recognized in a wrong manner. Therefore, these pixels should be removed. To eliminate

these pixels, connected component labeling with four neighboring is applied and region

properties are extracted. The region with larger size gives the region which has black pixels

for only character. To obtain smooth contour of the character, morphological opening is

applied. First, binary image of each character is eroded then it is dilated with 2x2

structuring element. Effect of connected component labeling on segmented characters and

results after the morphological opening can be seen in Figure 3-20.

Segmented

Characters

Before

Connected

Component

Labeling

Analysis

Segmented

Characters

After Connected

Component

Labeling

Analysis

Segmented

Characters

After

Morphological

Opening

Figure 3-20 Results for the Segmented Characters

3.3 CHARACTER RECOGNITION

Character recognition steps can be divided into two substeps. First, codeword of each

character is generated to represent the character as a code. Then, generated codeword is

matched with all codewords kept in the database. If there is a match, character is

recognized. If there is more than one match, character is identified with identification

algorithms and if there is no match, character cannot be recognized.

3.3.1 CODEWORD GENERATION

To decrease the complexity of the matching, codewords are used instead of matching the

segmented character images with the ideal expected character images [26]. Each codeword

represents a character. Codewords are not unique. Two different characters may be

39

represented with same codeword; therefore, identification algorithms are required to

identify characters.

To generate a codeword of the character, for x-axis and y-axis, two codewords are

generated and then they are concatenated.

In x-axis codeword generation, for each column in the character image, how many times

black pixels are crossed is counted and this value constructs cross point for single column.

For all columns, cross points are calculated and concatenated. Values in the concatenated

cross-point array are made unique. They are made unique because successive values cannot

be same. The reason to make unique the cross-point array is to eliminate repeated values.

Cross-point values should be repeated at least two times successively, to put this value to

unique array. This unique cross-point array constructs the codeword for x-axis.

In y-axis codeword generation, for each row in the character image, how many times black

pixels are crossed is counted and this value constructs cross point for single row. For all

rows, cross points are calculated and concatenated. Values in the concatenated cross-point

array are made unique as in the same manner with x-axis codeword generation. Obtained

unique cross-point array constructs the codeword for y-axis.

After both x-axis codeword and y-axis codeword are generated, x-axis codeword is

concatenated with y-axis codeword and codeword of the character is constructed.

Cross-point calculations and generated codeword values can be seen in Figure 3-21.

40

Unique codeword for x-axis = 232

Unique codeword for y-axis = 12121

Codeword for character = 12121-232

Figure 3-21 Cross-point and Codeword Calculations

3.3.2 CODEWORD MATCHING and RECOGNITION

Recognition is simply a comparison of features of template and the candidate. The best

matching template gives the recognition result. In this thesis, codeword generated in the

previous step is compared with the ideal codewords kept in the database. Different

characters may be represented with same codeword. Therefore, to distinguish these

characters, identification algorithms are implemented for special cases such as to

distinguish ‘2’ from ‘Z’. If the algorithm is not able to distinguish the character, first

matching character in the database is recognized as a found character. If there is no match,

character cannot be recognized.

Flow diagram of the recognition steps can be seen in Figure 3-22.

41

Codeword of the

Character

Codeword Matching

with Database

Are there

any match?

Are there more

than one match?

Character Identification

By Intelligence

Is character

identified?

First matching character in

the database is

recognized as a found

character

Is recognition

processed for all

characters?

STOP &

FINISH

THE

LPDRS

PROCESS

NO

YES

YES

YES

NO

Process all

characters in the

plate region YES

NO

Character

is found

Character

is not

found

NO

Figure 3-22 Flow Diagram of the Recognition

42

In the recognition step of the LPDRS, if the template is matched with the candidate, ASCII

code of that character which is specified in the database is assigned as the ASCII code of

the candidate. After matching of codewords, identification algorithms are processed by

using the ASCII codes of the recognized character and image of the segmented character.

3.3.2.1 IDENTIFICATION OF LETTER AND NUMBER

In Turkish license plates, first two and last two characters should be numbers. To decrease

the probability of false recognition, algorithm for the discrimination of letter and number is

implemented. ASCII codes of the first two and last two characters should be smaller than

58, because ASCII codes of numbers are represented in between 48 and 57 in decimal. If

ASCII code of these characters is equal or greater than 58, which means the character is

not a number, this ASCII code is eliminated from found recognition result.

Moreover, in Turkish license plates, third character must be a letter. Therefore, ASCII code

of the third character should be equal or greater than 65 which represents ‘A’. The

corresponding ASCII codes of the letters in the Turkish alphabet are greater than 64. For

the third character, if the confusion occurs, character is identified according to whether it’s

ASCII code is greater than 64 or not. In the license plates, fourth and fifth characters may

be number or letter. However, it is also known that if the fifth character is a letter, the

fourth character should also be a letter. In the identification of letter and number algorithm,

if the ASCII code of the fifth character is greater than 64, ASCII code of the fourth

character should be also greater than 64 otherwise this ASCII code is eliminated from

found recognition result.

3.3.2.2 IDENTIFICATION OF 0, 4 AND 7

‘0’, ‘4’ and ‘7’ numbers share the same codeword which is 121-121. These numbers can

also be represented with different codewords found in the database. If the codeword of the

segmented character is found as 121-121, the segmented character can be ‘0’, ‘4’, ‘7’, ‘D’

or ‘P’. If the segmented character is one of the first two or last two characters in the plate

region, possibility of being ‘D’, ’O’ or ‘P’ is eliminated by letter and number identification

algorithm. After possibility of being ‘D’,’O’ or ‘P’ is eliminated, these numbers are

distinguished by “047” identification algorithm. ASCII codes of these numbers are 48, 52

and 55, respectively.

In order to identify these numbers, for each character segment some samples are taken

from previously specified rows and cross-points are calculated for these rows. By

investigating the value of cross-points for specified rows, numbers are distinguished.

To distinguish ‘0’, ‘4’ and ‘7’, first, row index values from which samples are taken are

calculated. Row index values are calculated as in (3.15) and (3.16).

 (3.15)

43

 (3.16)

where and represent row indexes from which samples are taken and

 represents the length of the binary image of the segmented character.

Length of the character is divided by five, because when the ideal ‘0’, ‘4’ and ‘7’ numbers

are analyzed, it is observed that these numbers can be distinguished by investigating the

cross-points for these calculated rows.

For ideal images of ‘0’, ‘4’ and ‘7’ numbers with 23 pixel image length, the position of

row index values for which cross-points are calculated can be seen in Figure 3-23.

Cross-point # 2

for row_index_2

Cross-point # 1

for row_index_1

Figure 3-23 Position of row index values for cross-point calculations of “047”

By analyzing the cross-point values, decision of “047” identification is given according to

Table 3-2.

Table 3-2 Decision Table for Identification of ‘0’, ‘4’ and ‘7’

Cross-point #1 2 1 1 2

Cross-point #2 2 2 1 1

Recognition

Result

Recognized
as ‘0’

Recognized
as ‘4’

Recognized
as ‘7’

Character
cannot be

recognized

3.3.2.3 IDENTIFICATION OF U, V AND Y

‘U’, ‘V’ and ‘Y’ letters share same codewords which are 121-21 and 1-21. ASCII codes of

these letters are 85, 86 and 89, respectively.

In order to identify these letters, for each character segment, samples are taken from

previously specified rows and cross-points are calculated for these rows. By investigating

the value of cross-points for specified rows, letters are distinguished.

To distinguish ‘U’, ‘V’ and ‘Y’, first, row index values from which samples are taken are

calculated. Row index values are calculated as in (3.17) and (3.18).

44

 (3.17)

 (3.18)

where and represent row indexes from which samples are taken and

 represents the length of the binary image of the segmented character.

Divisor of the length of the binary image is found by analyzing the ideal ‘U’, ‘V’ and ‘Y’

letters.

For ideal images of ‘U’, ‘V’ and ‘Y’ numbers with 24 pixel image length, the position of

row index values for which cross-points are calculated can be seen in Figure 3-24.

Figure 3-24 Position of row index values for cross-point calculations of “UVY”

By analyzing the cross-point values, decision of “UVY” letter identification is given

according to Table 3-3.

Table 3-3 Decision Table for Identification of ‘U’, ‘V’ and ‘Y’

Cross-point #1 2 1 1 2

Cross-point #2 2 2 1 1

Recognition

Result

Recognized
as ‘U’

Recognized
as ‘V’

Recognized
as ‘Y’

Character
cannot be

recognized

3.3.2.4 IDENTIFICATION OF 3, 5 AND 8

‘3’, ‘5’ and ‘8’ have the same codeword which is 232-12121. If the codeword of the

segmented character is found as 232-12121, the segmented character can be ‘3’, ‘5’, ‘8’ or

‘S’. If the segmented character is one of the first two or last two characters in the plate

region, possibility of being ‘S’ is eliminated by letter and number identification algorithm.

After letter elimination is applied, these numbers are distinguished by “358” identification

algorithm. ASCII codes of these numbers are 51, 53 and 56, respectively.

45

In order to identify these numbers, for each character segment two samples are taken for

two row index values and cross-points are calculated for these rows. By investigating the

value of cross-points for specified rows, numbers are distinguished.

To distinguish ‘3’, ‘5’ and ‘8’, first, row index values from which samples are taken are

calculated. Row index values are calculated as in (3.19) and (3.20).

 (3.19)

 (3.20)

where and represent row indexes from which samples are taken and

 represents the length of the binary image of the segmented character.

Divisor of the length of the binary image is found by analyzing the ideal ‘3’, ‘5’ and ‘8’

numbers.

By the analysis of the cross-points for these calculated rows, the numbers can be

distinguished.

For ideal images of ‘3’, ‘5’ and ‘8’ numbers with 25 pixel image length, the position of

row index values for which cross-points are calculated can be seen in Figure 3-25.

Figure 3-25 Position of row index values for cross-point calculations of “358”

By analyzing the cross-point values, decision of “358” number identification is given

according to Table 3-4.

46

Table 3-4 Decision Table for Identification of ‘3’, ‘5’ and ‘8’

Cross-point #1 2 1 1 2

Cross-point #2 2 2 1 1

Recognition

Result

Recognized
as ‘8’

Recognized
as ‘3’

Recognized
as ‘5’

Character
cannot be

recognized

3.3.2.5 IDENTIFICATION OF 3, 8 AND 9

‘3’, ‘8’ and ‘9’ numbers have the same codeword which is 231-12121. If the codeword of

the segmented character is found as 231-12121, the segmented character can be ‘3’, ‘8’or

‘9’. ASCII codes of these numbers are 51, 56 and 57, respectively.

In order to identify these numbers, for each character segment samples are taken from

previously specified rows and cross-points are calculated for these rows. By investigating

the value of cross-points for specified rows, numbers are distinguished.

To distinguish ‘3’, ‘8’ and ‘9’, first, row index values from which samples are taken are

calculated. Row index values are calculated as in (3.21) and (3.22).

 (3.21)

 (3.22)

where and represent row indexes from which samples are taken and

 represents the length of the binary image of the segmented character.

Divisor of the length of the binary image is found by analyzing the ideal ‘3’, ‘8’ and ‘9’

letters.

For ideal images of ‘3’, ‘8’ and ‘9’ numbers with 25 pixel image length, the position of

row index values for which cross-points are calculated can be seen in Figure 3-26.

Cross-point # 2

for row_index_2

Cross-point # 1

for row_index_1

Figure 3-26 Position of row index values for cross-point calculations of “389”

47

By analyzing the cross-point values, decision of “389” number identification is given

according to Table 3-5.

Table 3-5 Decision Table for Identification of ‘3’, ‘8’ and ‘9’

Cross-point #1 1 2 1 2

Cross-point #2 1 2 2 1

Recognition

Result

Recognized
as ‘3’

Recognized
as ‘8’

Recognized
as ‘9’

Character
cannot be

recognized

3.3.2.6 IDENTIFICATION OF 6 AND B

‘6’ and ‘B’ characters have the same codeword which is 132-12121. If 132-12121

codeword is obtained in one of the first two, last two characters or in the third character in

the plate region, these characters can be distinguished by letter and number identification

algorithm. Otherwise, “6B” identification algorithm is used to distinguish these characters.

ASCII codes of these characters are 54 and 66, respectively.

In order to identify these characters, for each character segment samples are taken from

previously specified row and cross-point is calculated for that row. By investigating the

value of cross-point for the specified row, characters are distinguished.

To distinguish ‘6’ and ‘B’, first, row index value from which sample is taken is calculated.

Row index value is calculated as in (3.23).

 (3.23)

where represents the row index from which sample is taken and

 represents the length of the binary image of the segmented character.

Divisor of the length of the binary image is found by analyzing the ideal ‘6’ and ‘B’

characters.

For ideal images of ‘6’ and ‘B’ characters with 22 pixel image length, the position of row

index value for which cross-point is calculated can be seen in Figure 3-27.

48

Cross-point # 1

for row_index_1

Figure 3-27 Position of row index value for cross-point calculation of “6B”

By analyzing the cross-point value, decision of “6B” character identification is given

according to Table 3-6.

Table 3-6 Decision Table for Identification of ‘6’ and ‘B’

Cross-point #1 1 2

Recognition Result
Recognized as

‘6’
Recognized as

‘B’

3.3.2.7 IDENTIFICATION OF 2 AND Z

‘2’ and ‘Z’ characters share the same codewords which are 232-121, 232-1 and 32-1. If

these codewords are obtained in one of the first two, last two characters or in the third

character in the plate region, these characters can be distinguished by letter and number

identification algorithm. Otherwise, “2Z” identification algorithm is used to distinguish

these characters. ASCII codes of these characters are 50 and 90, respectively.

In order to identify these characters, for each character segment samples are taken from

previously specified row and cross-point is calculated for that rows. By investigating the

value of cross-point for the specified row, characters are distinguished.

To distinguish ‘2’ and ‘Z’, first, row index value from which sample is taken is calculated.

Row index value is calculated as in (3.24).

 (3.24)

where represents the row index from which sample is taken and

 represents the length of the binary image of the segmented character.

Divisor of the length of the binary image is found by analyzing the ideal ‘2’ and ‘Z’

characters.

49

For ideal images of ‘2’ and ‘Z’ characters with 21 pixel image length, the position of row

index value for which cross-point is calculated can be seen in Figure 3-28.

Cross-point # 1

for row_index_1

Figure 3-28 Position of row index value for cross-point calculation of “2Z”

By analyzing the cross-point value, decision of “2Z” character identification is given

according to Table 3-7.

Table 3-7 Decision Table for Identification of ‘2’ and ‘Z’

Cross-point #1 1 2

Recognition Result
Recognized as

‘Z’
Recognized as

‘2’

51

CHAPTER 4

4. RECOGNITION OF LICENSE PLATE USING FPGA

HARDWARE

License plate detection and recognition algorithm, explained in Chapter 3, is built and

verified in MATLAB. After verification, character segmentation and character recognition

parts of the LPDRS are implemented in Altera DB_START_4CE10-Cyclone IV E

Development Board.

FPGA hardware implementation of the recognition algorithm consists of logical blocks and

soft processor embedded in the FPGA. Logical blocks and soft processor are synthesized

and programming file is generated. FPGA hardware and soft processor application file are

programmed into the serial flash with a small batch file and Quartus Programmer.

For the design and simulation of the system, Altera Quartus II, Modelsim Simulation

Software and Nios II Software Build Tools for Eclipse are used. Altera Signaltap II Logic

Analyzer is used to debug the system in real time.

4.1 HARDWARE ARCHITECTURE

Recognition part of the license plate detection and recognition system is implemented on

the FPGA platform by using the Altera DB_START_4CE10 Cyclone IV E Development

Board. Development board used in this thesis is small sized, low cost and low power board

and it provides easy usage and peripheral adaptation for the user. The main reason to use

this board is to obtain low cost implementation.

The following features are integrated in the development board [7]:

 EP4CE10E22C8N Cyclone IV E FPGA

 EPCS16 serial flash as a configuration device

 16 Mbyte SDRAM

 19 I/O pins

 5x input pins

 6x user LEDs

 2x users buttons

 JTAG interface

 Crystal oscillator

 Embedded USB Blaster for debugging and programming

 EPM240T100C5N Max II CPLD for embedded USB Blaster

52

 Power supply with integrated USB

 Small size, dimension : 70 x 60 mm

Top view of the development board can be seen in Figure 4-1.

Figure 4-1 Top View of the Development Board

4.1.1 COMPONENTS USED IN THE SYSTEM

For the implementation of the character segmentation and character recognition parts of the

LPDRS, FPGA, Serial Flash, SDRAM, Buttons, and User I/Os are used. The functions of

these components are explained in this section.

4.1.1.1 CYCLONE IV E FPGA

In this thesis, Altera Cyclone IV E FPGA, EP4CE10E22C8N, is used. Cyclone IV E

devices operate at maximum 472.5 MHz input clock frequency. Soft processor can be

applied in most of the Altera FPGAs. In this thesis, soft core processor is implemented in

the FPGA and image processing algorithms are processed. The image of the license plate

is received by serial port which is constructed with the user I/Os and image processing

algorithms are implemented to recognize the license plate. Some parts of the image

processing algorithms are processed by FPGA logic blocks and some parts are processed

by the soft core processor.

53

Nios II processor is used as a soft core processor which is the most widely used soft

processor in the FPGA industry. The Nios II processor delivers unprecedented flexibility

for cost-sensitive, real-time, safety-critical, ASIC optimized and application processing

needs. Detailed information about Nios II processor is given in the Appendix A.

4.1.1.2 EPCS16 SERIAL FLASH AS CONFIGURATION DEVICE

FPGA devices in Altera Company have RAM based configuration memories which are

volatile and therefore, when the power goes down, the configuration memory is cleared.

With RAM based devices that support active serial configuration, configuration data must

be reloaded each time the device powers up, the system reconfigures, or when new

configuration data is required. Serial configuration devices are flash memory devices with

a serial interface that can store configuration data for FPGA which support active serial

configuration and reload the data to the device upon power up or reconfiguration.

In Altera DB_START_4CE10-Cyclone IV E development board, Altera serial

configuration device, EPCS16, is used as a configuration memory. At power up, the

configuration file is loaded from serial flash to the FPGA and the program starts to run. In

software embedded systems using soft processor, software program is also stored in the

serial flash device and software application is loaded at power up.

EPCS16 is 16 Mbit serial flash memory device which uses the active serial configuration

scheme to configure the FPGA. Since it has four pin interface, it is easy to use.

4.1.1.3 SDRAM

Altera DB_START_4CE10-Cyclone IV E development board has 128Mbit Synchronous

DRAM. The IS42S32400A device is a 4Mx32 bit SDRAM which is used for the

application memory. After the software application is loaded from the flash device to the

SDRAM, application will start to run on the SDRAM.

4.1.1.4 BUTTONS and LEDS

There are two buttons on the development board. One of these buttons is used as the

system reset. This button resets the overall system and the other button is reserved for the

user implementation.

LED interface is used to indicate the reset case at reset time. After the reset, control of the

led interface is given to user.

4.1.1.5 USER I/Os

In the development board, there is a pin header with 32 signals directly connected to the

FPGA. In this thesis, this pin header is used to construct a serial port. Pins used for

communication require transceiver to adjust the voltage levels of the communication line.

At transmitter side, this transceiver converts from the UART’s logic levels to RS-232

54

compatible signal levels, and at receiver side converts RS-232 compatible signals to

UART’s logic levels.

To obtain RS-232 compatible signals, RS-232 extender circuit is designed and connected

to the development board with the user I/Os. Schematic of the RS-232 extender circuit is

given at the Appendix B.

4.1.2 BLOCK DIAGRAM OF THE HARDWARE ARCHITECTURE

Block diagram of the hardware architecture can be seen in Figure 4-2.

FPGA LOGIC

NIOS II SOFT CORE PROCESSOR

QSYS SYSTEM LOGIC

IN
T

E
R

R
U

P
T

S

C
O

N
T

R
O

L

D
A

T
A

FPGA

LOGIC

CONTROL

FPGA

CONTROL

DATA

CONTROL

DATA

ADDRESS

RS232 EXTENDER CIRCUIT

FOR SERIAL PORT

USER I\Os

D
A

T
A

BUTTONS

& LEDs

C
O

N
T

R
O

L

S
D

R
A

M
E

P
C

S
1
6

S
E

R
IA

L
 F

L
A

S
H

Figure 4-2 Hardware Architecture of the System

In EPCS16 non-volatile serial flash device, both programming data for FPGA and software

application for the Nios II processor are stored. At power up, FPGA is configured from

flash. After configuration, software application is read from the serial flash and copied to

the SDRAM. After the copy operation is finished, program counter is set to the starting

address of the SDRAM and application starts to execute.

4.2 FPGA ARCHITECTURE

In this thesis, character segmentation and character recognition parts of the license plate

detection and recognition system are implemented in the FPGA. FPGA design is achieved

55

with the Altera’s System Integration Tool, Qsys, to obtain single, compact system block

which maintains all FPGA logic blocks and Nios II embedded soft core processor on itself.

Combining embedded soft core processor and FPGA logic on a single chip provides a high

performance embedded application and flexibility in both hardware and software design.

Considering drawbacks and benefits of FPGA and embedded processor, work division is

achieved. FPGA designs are generally more time consuming and have limitations in

changing and debugging. However, complex operations can be achieved easily by FPGA

and execution time decreases to a large extent when compared with the processor. On the

other hand, embedded processor based designs are easy to debug and verify. These designs

can be changed easily without limitations. However, as a drawback, complex operations

may take larger execution times.

Each step for the character segmentation and character recognition parts of the LPDRS is

achieved by either FPGA or Nios II embedded processor by considering the benefits and

drawbacks of the FPGA based and processor based designs. In order to use the FPGA

implementation, a GUI is designed in C#. GUI interface is used to load the image and to

show recognition result with execution time of the recognition process. Detailed

description of the designed GUI is given in Appendix C.

FPGA implementation of the license plate recognition can be divided into two parts. First,

FPGA logical blocks are generated by using the Qsys system integration tool and then

image processing algorithms are implemented with software application which uses the

previously generated hardware blocks. Each step is explained in detailed in the following

sections. For the FPGA side blocks, generation of Qsys system block is explained. For the

software application of the embedded processor, the pseudo code of the algorithm is given.

4.2.1 FPGA BLOCKS

For the license plate recognition, blocks used for the recognition are generated in a single

compact form with the Qsys system integration tool. There is also some control blocks

outside the Qsys system block such as reset generator, PLL, debounce filter and led

direction indicator etc. These blocks and their functions are explained in this section.

FPGA blocks of the recognition are given in Figure 4-3.

56

NIOS II CPU

CODEWORD

GENERATION

IMAGE

MANAGE

EPCS

CONTROLLER
SDRAM

CONTROLLER

TIGHTLY COUPLED

INSTRUCTION

MEMORY

JTAG UART

BUTTON_PIO

LED_PIO

INPUT_PIO

SYSTEM

CLOCK

TIMER

HIGH

RESOLUTION

TIMER

SYSTEM ID

ON-CHIP

RAM

UART0

UART1

QSYS SYSTEM LOGIC

RESET

GENERATOR

LED

INDICATOR

PLL

DEBOUNCE

FILTER

CLOCK &

RESET

SOURCE

FPGA

Figure 4-3 FPGA Blocks for the Recognition

4.2.1.1 PLL

Altera DB_START_4CE10 Cyclone IV E development board includes a free running 24

MHz crystal Quartz oscillator with ±50ppm which drives the FPGA directly. This

frequency is not used directly for SDRAM or embedded processor. Therefore, PLL is used

to generate system clock, external clock for the SDRAM and debug clock for real time

debugging.

To generate stable frequencies in the FPGA design, Altera MegaWizard interface is used to

specify PLL circuitry. PLL interface is given in Figure 4-4.

Figure 4-4 PLL Interface

57

Three clocks are generated by PLL. ‘sysclk’ is the general system clock used in the Qsys

and embedded processor which is 75 MHz. ‘sd_clk’, 75 MHz clock, is the external clock

for the SDRAM and ‘clk_150MHz’, 150 MHz clock, is used for the debug which requires

faster clock frequency to sample signals in the FPGA. ‘locked’ output acts as an indicator

when the PLL has reached phase-locked. It stays high as long as the PLL is locked, and

stays low when the PLL is out-of-lock.

4.2.1.2 RESET GENERATOR

Reset generator block generates the reset of the FPGA block by observing the power good

signal of the board, ‘locked’ signal of the PLL and the system reset button.

Main supply voltage of the Altera DB_START_4CE10 Cyclone IV E development board

is 5V, which is supplied with the USB connection to the PC or with the 5V regulated

center positive input power supply. Required powers are generated on the development

board. Power distribution can be seen in Figure 4-5.

Figure 4-5 Power Distribution of the Development Board

1.2V is the core voltage, 2.5V is the analog supply for the FPGA and 3.3V is the I/O

voltage. Power good signal is generated by monitoring the 1.2V and 3.3V and acts as a

power up reset for the reset generator block.

System reset button enables the user; reset the system at any time. ‘locked’ signal indicates

the stability of the system clock. Therefore, it is also related with the reset because system

should stay at reset while the PLL is out-of-lock. Reset generator interface and block

diagram for the reset generator are given in Figure 4-6 and Figure 4-7, respectively.

58

Figure 4-6 Reset Generator Interface

Figure 4-7 Block Diagram for the Reset Generator

Since the input of the reset generator block is asynchronous, metastability may emerge. To

tolerate metastability, two successive synchronizing flip-flops are added to the reset

generator block. Output of the reset generator block is the system reset of the Qsys system

logic.

4.2.1.3 LED INDICATOR

LED indicator controls the LED interface. At reset time, all LEDs are lighted; otherwise it

is controlled by Qsys system block. LED indicator interface and block diagram of the LED

indicator are given Figure 4-8 and Figure 4-9, respectively.

Figure 4-8 Led Indicator Interface

59

Figure 4-9 Block Diagram of the Led Indicator

4.2.1.4 DEBOUNCE FILTER

Contact bounce at the user buttons may cause numerous events. To avoid it, debounce

filter is implemented for the user buttons. New value is only accepted if it is stable for a

predefined period of time. Debounce filter is generated with the HDL code. According to

the code, a pulse with duration less than specified debounce interval is rejected. A pulse

with duration of one or more debounce intervals is accepted and a respective event is

generated. Acceptance of pulse on the user buttons for the HDL code of the debounce filter

block is given in Figure 4-10 .

1

1

0

0
Level change

accepted

Level change

ignored

Debounce Interval

(5.33ms)

Figure 4-10 Acceptance of Pulse on the User Buttons

60

4.2.1.5 QSYS SYSTEM LOGIC

Qsys is a system integration tool which is included as a part of the Quartus II software.

Qsys is used to integrate customized HDL components, IP cores and user defined custom

components. It automatically creates high performance interconnect logic by eliminating

error-prone and time-consuming task of writing HDL to specify the system level

connections.

Qsys provides the following advantages for hardware system design [11]:

 Automates the process of customizing and integrating components

 Supports modular system design

 Supports visualization of large systems

 Supports optimization of interconnect fabric and pipelining within the system

 Fully integrated with the Quartus II software

Qsys supports hierarchical system design. With hierarchical system design, it offers the

following advantages:

 Enables team-based, modular design by dividing large designs into subsystems

 Enables design reuse by allowing any Qsys system as a component

 Enables scalability by allowing instantiations of multiple instances of a Qsys

system.

In this thesis, Qsys is used for integration and modular system design is obtained.

Components, integrated into the Qsys system logic, use Avalon interface which simplifies

system design. Block diagram for the integrated components is given in Figure 4-11. In the

following sections each component is explained in detail.

61

NIOS II CPU

CODEWORD

GENERATION

IMAGE

MANAGE

EPCS

CONTROLLER
SDRAM

CONTROLLER

TIGHTLY COUPLED

INSTRUCTION

MEMORY

JTAG UART

BUTTON_PIO

LED_PIO

INPUT_PIO

SYSTEM

CLOCK

TIMER

HIGH

RESOLUTION

TIMER

SYSTEM ID

ON-CHIP

RAM

UART0

UART1

QSYS SYSTEM LOGIC

CLOCK &

RESET

SOURCE

Figure 4-11 Integrated Components of the Qsys System Logic

Components which have interfaces with the external peripherals are exported as ports in

the Qsys system logic. Port interface can be seen in Figure 4-12.

62

Figure 4-12 Qsys System Logic Interface

4.2.1.5.1 CLOCK AND RESET SOURCE

Clock and reset source component which is a component in the Altera library, sets the

frequency and drives clock and reset signals out of component. All the integrated

components which use system clock and system reset are connected to the output of the

clock and reset source block.

63

4.2.1.5.2 NIOS II PROCESSOR

Nios II processor is a general purpose RISC processor core. Nios II processor system

consists of a Nios II processor core, a set of on-chip peripherals, on-chip memory, and

interfaces to off-chip memory, all implemented on a single Altera device. Nios II processor

system uses a consistent instruction set and programming model. Nios II software is

developed on the Nios II Embedded Design Suite (EDS) which contains all the software

development tools. Detailed information about Nios II processor is given at the Appendix-

A.

In this thesis, standard type Nios II core is used. Interface of the processor is 32 bit. It

provides instruction cache, branch prediction, hardware multiplication and hardware

division. EPCS16 flash device is set as the reset vector memory to load the software

application from flash at power up or at reconfiguration time and SDRAM is set as the

exception vector memory. It has 4 Kbyte instruction cache. Burst transfers are disabled in

the core. It also provides debug level. With JTAG target connection, software download,

use of software breakpoints, four hardware breakpoints, four data triggers, instruction trace,

on-chip trace, data trace and off-chip trace become available. Interface of the Nios II

processor is given in Figure 4-13.

Figure 4-13 Nios II Processor Interface

64

4.2.1.5.3 INTERVAL TIMER

There are two timers in the Qsys system logic, which are system clock timer and high

resolution timer. System clock timer has 1 ms timeout period. If time timeout exceeds IRQ

is generated and sent to the processor. This timer is used by the software application. High

resolution timer has 1 us timeout period. If time timeout exceeds, IRQ is generated. It is

used for algorithms that require sensitivity in time. High resolution timer is used to

measure the execution times of the software application codes. These timers have no

peripheral interface. Therefore, there is no pin exported outside the Qsys system logic

block.

4.2.1.5.4 SYSTEM ID

Nios II processor system use the System ID core to verify that an executable program was

compiled targeting the actual hardware image configured in the FPGA. If the expected ID

in the executable does not match the system ID core in the FPGA, it is possible that the

software will not execute correctly.

4.2.1.5.5 PIO

The parallel input/output (PIO) core with Avalon interface provides a memory-mapped

interface between Avalon memory mapped slave port and general purpose I/O ports. The

I/O ports connect either to on-chip user logic, or to I/O pins that connect to devices

external to the FPGA. Nios II processor controls the PIO ports by reading and writing the

register-mapped Avalon memory mapped interface. Under the control of the processor,

PIO core captures data on its inputs and drives data to its outputs.

There are three different Parallel I/O components in the Qsys system logic. These are

Button PIO, LED PIO and Input PIO.

Button PIO is integrated to observe whether the user buttons are pressed or not. Since there

are two user buttons, the width of the Button PIO is two and it is configured as input. If any

of the buttons is pressed, IRQ is generated to the processor.

LED PIO is integrated to control the LED interface. Since there are six leds on the

development board, the width of the PIO is six and it is configured as output. By accessing

registers of the LED PIO, LEDs are lighted or turned out.

Input PIO is integrated in order to use the general input pins provided in the I/O connector

of the development board. Width of the PIO is three and it is configured as input.

4.2.1.5.6 EPCS CONTROLLER

The EPCS serial flash controller core with Avalon interface allows Nios II system to

access EPCS16 serial configuration device. Altera provides drivers that is integrated into

the Nios II hardware abstraction layer (HAL) system library, allowing read and write

65

access to the EPCS16 device using the HAL application program interface (API) for the

flash devices. Using EPCS serial flash controller core, program code can be stored in the

EPCS device. It provides a boot-loader feature that allows Nios II system to store the main

program code in the EPCS device. Also, non-volatile program data and device

configuration data can be stored in the flash device.

4.2.1.5.7 SDRAM CONTROLLER

SDRAM controller core with the Avalon interface provides and Avalon memory mapped

interface to external SDRAM device. With SDRAM controller, FPGA is connected easily

to the SDRAM chips. The interface of the external SDRAM chip presents the signals

defined by the PC100 standard. These signals are connected externally to the SDRAM chip

through the I/O pins on the FPGA device. The timing and sequencing of signals depends

on the configuration of the core. The core preset is configured as single Micron

MT48LC4M32B2-7 chip because settings of this chip are similar to ISSI-chip used on the

Altera DB_START_4CE10-Cyclone IV E Development Board.

4.2.1.5.8 TIGHTLY COUPLED INSTRUCTION MEMORY

Tightly coupled memory is integrated into the Qsys system logic in order to increase the

system performance if required. System performance is increased by placing some code

into the tightly-coupled memory. Altera FPGAs include on-chip memory blocks that can

be used as RAM or ROM in Qsys. On-chip memory has fast access time, compared to off-

chip memory. Tightly coupled instruction memory is a 16 Kbyte on-chip RAM with 32-bit

data width.

4.2.1.5.9 ON-CHIP RAM

Software developed for the processor may require on-chip RAM to keep arrays or variables

used in the image processing algorithm. Since on-chip memory has fast access time and it

has Avalon interface with the processor, 8 Kbyte RAM with 32-bit data width is integrated

into the Qsys system block. It is used by the image processing algorithms developed for the

Nios II processor.

4.2.1.5.10 JTAG UART

JTAG UART is integrated into the system to easily debug the software without need of the

RS-232 serial connection. JTAG UART core provides an Avalon interface that hides the

complexities of the JTAG interface from embedded software programmers. Nios II

processor communicates with the core by reading and writing control and data registers.

The JTAG UART core uses the JTAG circuitry built into Altera FPGAs, and provides

access via the JTAG pins on the FPGA. The host PC can connect to the FPGA via Altera

JTAG download cable. For the Nios II processor, device drivers are provided in the

hardware abstraction layer (HAL) system library, allowing software to access the core

using the ANSI C Standard Library stdio.h routines.

66

4.2.1.5.11 UART INTERFACE

The UART core is used in order to communicate serial character streams between FPGA

and external device. The core implements the RS-232 protocol timing and provides Avalon

memory mapped slave interface that allows Nios II processor to communicate with the

core simply by reading and writing control and data registers. Block diagram of the UART

core is given in Figure 4-14.

Figure 4-14 Block Diagram of the UART Core

There are two UART cores in the system; one for to receive the license plate image and

one for to send the result of the executed algorithm to the GUI. There is only one RS-232

connector; therefore, receive data of one UART and transmit data of the other UART are

connected to the RS-232 connector. With this approach, there is no intervention while

receiving or sending data. Baudrates of the UART cores are 115200 bps. Communication

is achieved with eight data bits, one stop bit and no parity bit. There is no flow control in

the communication line.

4.2.1.5.12 IMAGE MANAGE BLOCK

Image Manage Block is developed in order to be used in the software application

developed for the Nios II processor. Image Manage Block has Avalon memory mapped

interface (Avalon MM) to provide easy integration into the Qsys system logic. HDL code

of the Avalon interface is developed according to Avalon Interface Specification [8].

Avalon MM is an address based read/write interface which has typical master-slave

connections. Figure 4-15 shows the connection of the Image Manage Block, highlighting

the Avalon MM slave interface connection to the interconnect fabric.

67

Processor

Avalon-MM

Master

Image Manage

Block

Avalon-MM

Slave

UART

Avalon-MM

Slave

SDRAM

Controller

Avalon-MM

Slave

INTERCONNECT

Avalon-MM

Slave

Figure 4-15 Avalon MM Interface Connection of the Image Manage Block

Avalon MM interface of the Image Manage Block can be seen in Figure 4-16.

clk

rst_n

avs_s0_address[2..0]

avs_s0_begintransfer

avs_s0_read

avs_s0_write

avs_s0_writedata[31:0]

avs_s0_readdata[31:0]

avs_s0_readdatavalid

avs_s0_waitrequest

IMAGE MANAGE BLOCK

Figure 4-16 Image Manage Block Interface

Avalon memory mapped interface is used for read and write transfers of processor and

Image Manage Block in the memory-mapped system. It is a synchronous interface.

Detailed explanation of the Avalon MM fundamental signals, shown in Figure 4-16, can be

obtained from Avalon Interface Specification [8]. Typical Avalon MM read and write

transfers are shown in Figure 4-17.

68

Figure 4-17 Read and Write Transfers of the Avalon MM Interface

In the Avalon MM interface, avs_s0_begintransfer signal is asserted for the first cycle of

each transfer which indicates the start of the transfer. Image Manage Block can stall the

interconnect fabric for as many cycles as required by asserting the avs_s0_waitrequest

signal. When the Image Manage Block asserts avs_s0_waitrequest, the transfer is delayed

and the address and control signals are held constant. Transfer is completed on the rising

edge of the first clk after the Image Manage Block deasserts avs_so_waitrequest signal.

Detailed explanations about the Avalon MM read and write transfers can be obtained from

Avalon Interface Specification [8].

The main function of the Image Manage Block is to calculate vertical projection of the

license plate. For each column of the image, all pixel values belong to that column are

summed and put in a register to provide access to processor. In order to calculate vertical

projection, HDL code of the Image Manage Block is developed. HDL code of the Image

Manage Block contains three processes which can be seen in Figure 4-18. Avalon process

is used to provide access to the Avalon registers, FIFO process controls read and write

operations of the show ahead FIFO and summation process achieves the summation. All

processes work with states. State transitions are achieved with enable signals.

Block diagram of the Image Manage Block is given in Figure 4-18.

69

PROCESSOR

Avalon Process

FIFO Process

Summation

Process

Provides register access

to processor

Controls read & write

signals of the FIFO

Calculates vertical

projection

pixel values are read from

the FIFO

pixel values are written to

FIFO
fifo status

result & status

IMAGE MANAGE

DATA & CONTROL

Figure 4-18 Block Diagram of the Image Manage Block

Input signals and states of the Avalon process can be seen in Figure 4-19 and Figure 4-20,

respectively.

Figure 4-19 Avalon Process Interface

70

Figure 4-20 Avalon Interface State Transitions

When there is no read or write transfer, Avalon process waits in the IDLE_AV state. If read

or write transfer is started with the avs_s0_begintransfer signal, it goes to RW_TRANS

state. In the RW_TRANS state, read and write transfers of internal Image Manage Block

register are achieved by observing avs_s0_read, avs_s0_write and avs_s0_address[2..0]

signals. If the processor wants to write data to FIFO, RW_TRANS state goes to

WAIT_WRITE state and avs_s0_waitrequest is asserted to wait the completion of the FIFO

write. avs_s0_waitrequest signal is asserted because Avalon interface is 32-bit while FIFO

interface is 8-bit. To write 32-bit data, Avalon process must wait until the completion of

the write operation. To declare the completion of the write operation, fifo_write_finish

signal is sent from FIFO Process to Avalon process and WAIT_WRITE state goes back to

IDLE_AV state. If the processor wants to read data from FIFO, RW_TRANS state goes to

WAIT_READ state and avs_s0_waitrequest signal is asserted to wait the completion of the

FIFO read. avs_s0_waitrequest signal is asserted because Avalon interface is 32-bit while

FIFO interface is 8-bit. To read 32-bit data, Avalon process must wait for the completion

of the 32-bit data read. To declare the completion of the read operation, fifo_read_finish

signal is sent from FIFO Process to Avalon process and WAIT_READ state goes back to

IDLE_AV state. Register map for the Image Manage Block can be seen in Table 4-1.

Table 4-1 Register Map for the Image Manage Block

BASE = IMAGE_MANAGE_BASE

avs_s0_addres[2..0] Type* Register

0x0 R/W

ADDR_FIFO: Data written to this register is

written to FIFO and data read from this

register is read from the FIFO

0x1 RO
FIFO_STATUS : Register which indicates full,

empty and used status of the FIFO

71

Table 4-1 Register Map for the Image Manage Block (Continued)

BASE = IMAGE_MANAGE_BASE

avs_s0_addres[2..0] Type* Register

0x2 R/W
ROW_SIZE: Register for the row size of the

image

0x3 R/W
COLUMN _SIZE: Register for the column

size of the image

0x4 R/W

START_ADDR: Processor sends 32 bit data to

write the data FIFO. But for some images the

number of rows is not divided by 4; therefore,

some of the bits in the data bus cannot be used

for the sum operation. With start address

register block knows with which pixel sum

operation starts and it gives the accurate result.

0x5 RO
SUM_ADDR :Register gives the result of the

vertical projection for single column

0x6 RO

STATUS_SUM : Register gives the status of

the sum operation whether sum operation is

completed or not. If the sum operation is

completed, SUM_ADDR register can be read

by the processor.

0x7 R/W

ADDR CHECK : Register to check whether

data is able to be written to or read from the

block correctly.

 *R/W : Read and Write operations are achieved.

 *RO : Read only: Only read operation is achieved.

Input signals and states of the FIFO process can be seen in the Figure 4-21.

Figure 4-21 FIFO Process Interface

72

FIFO process is generally used to write the image data to the FIFO. Read operation from

FIFO is not achieved from the processor. Therefore, only write operation is explained. If

there is no write request, FIFO process waits in the IDLE_FIFO state. When the processor

wants to write data to the FIFO, fifo_en_wr signal asserted in the Avalon process and

IDLE_FIFO state goes to FIFO_WRITE state in the FIFO process. Before writing data to

the FIFO, processor sets the ROW_SIZE and START_ADDR registers of the Avalon

process given in Table 4-1. ROW_SIZE register indicates how many pixels exist for single

column. Processor sends 32 bit data to FIFO in each transfer. Each pixel in the image is

represented with 1 byte. If the row size of the image is not divided into 4, some bytes in the

32-bit data bus of the processor should not be included into the vertical projection

calculation. Therefore, to know start address of the valid byte is important and start address

is written to the START_ADDR register of the Avalon process. After the number of data

which equals to ROW_SIZE register is written to FIFO, summation process of the Image

Manage Block is enabled with start_en signal and fifo_write_finish signal is asserted. Then,

FIFO_WRITE state goes back to IDLE_FIFO state. With the assertion of the

fifo_write_finish signal, WAIT_WRITE state of the Avalon process also goes back to

IDLE_AV state.

Input signals and states of the summation process can be seen in Figure 4-22.

Figure 4-22 Summation Process Interface

If summation process is not enabled in the FIFO process, process waits in the IDLE_CAL

state until activation signal, start_en, is asserted by the FIFO process. After start_en is

asserted, IDLE_CAL state goes to GET_DATA state and process reads the pixel values

from FIFO one by one. After each data is read from the FIFO, process goes to

CALCULATE state and sums the read data by going back and forth the GET_DATA and

CALCULATE states. After all data is read from the FIFO and all pixel values are summed,

summation process goes to IDLE_CAL state. Empty signal is asserted by the FIFO when

there is no data in the FIFO. After the summation is completed, STATUS_SUM register of

the Avalon process is updated which indicates the calculation of the vertical projection for

a single column is completed and then the result becomes ready in the SUM_ADDR

register for the processor access. For each column in the images, the processes are

launched by the processor.

73

Image Manage Block functions can be summarized as: Row size of the license plate is

written to the row size register of the block. Row size value indicates how many pixel

values for each column will be summed. Then, pixel values are sent to the block. Image

Manage Block contains 64 byte show ahead FIFO. Pixels values received from the

processor are written to the FIFO. After all pixels of that column are received, a flag

emerges which enables the summation process. With enabling the summation process, all

pixel values are read from the FIFO, the sum of pixel values is calculated and written to the

result register to provide access to processor. After completion of summation, status of the

vertical projection operation is updated in the status register which indicates whether the

sum calculation is completed or not. By observing the status register, processor can obtain

the vertical projection result for each column one by one.

4.2.1.5.13 CODEWORD GENERATION BLOCK

Codeword Generation Block is used to generate codeword for each character after the

character segmentation part. Generated codeword is used for the recognition part. To

calculate the codeword for each character, HDL code is developed and integrated into the

Qsys system logic. Codeword Generation Block has an Avalon memory mapped slave

interface. Connection of the Codeword Generation Block with the processor can be seen in

Figure 4-23.

Processor

Avalon-MM

Master

Codeword

Generation Block

Avalon-MM

Slave

UART

Avalon-MM

Slave

SDRAM

Controller

Avalon-MM

Slave

INTERCONNECT

Avalon-MM

Slave

Figure 4-23 Avalon MM Interface Connection of the Codeword Generation Block

Avalon MM interface of the Codeword Generation Block can be seen in Figure 4-24.

74

clk

rst_n

avs_s0_address[2..0]

avs_s0_begintransfer

avs_s0_read

avs_s0_write

avs_s0_writedata[31:0]

avs_s0_readdata[31:0]

avs_s0_readdatavalid

avs_s0_waitrequest

CODEWORD GENERATION BLOCK

Figure 4-24 Avalon MM Interface of the Codeword Generation Block

Read and write transfers of the Avalon MM interface is same with the Image Manage

Block as explained in the Section 4.2.1.5.12.

The main function of the Codeword Generation Block is to calculate both x-axis and y-axis

codewords. Column wise or row wise calculation is achieved according to the block

settings and data sent from the processor. For each row (or column), block counts how

many ‘1’ to ‘0’ transition occurs. The value of the counter gives the codeword of that row

(or column). After codeword of each row (or column) is generated, it is made unique by

the processor.

For the generation of codeword, HDL code of the Codeword Generation Block is

developed. HDL code of the Codeword Generation Block consists of three processes which

can be seen in Figure 4-25. Avalon process is used to provide access to the Avalon

registers, FIFO process controls read and write operations of the show ahead FIFO and

counter process counts the ‘1’ to ‘0’ transitions. All processes work with states. State

transitions are achieved with enable signals.

Block diagram of the Codeword Generation Block is given in Figure 4-25.

75

PROCESSOR

Avalon Process

FIFO Process

Counter Process

Provides register access

to processor

Controls read & write

signals of the FIFO

Calculates codeword

value for that pixel

values

pixel values are read from

the FIFO

pixel values are written to

FIFO
fifo status

result & status

CODEWORD GENERATION

DATA & CONTROL

Figure 4-25 Block Diagram of the Codeword Generation Block

Avalon and FIFO processes have the same interface and states with the Image Manage

Block. Operations of the processes are same with the Avalon and FIFO processes of the

Image Manage Block as explained in Section 4.2.1.5.12. However, in Codeword

Generation Block, internal register are different from the registers of the Image Manage

Block. Register map for the Codeword Generation Block is shown in the Table 4-2.

Table 4-2 Register Map for the Codeword Generation Block

BASE = CODEWORD_GENERATION_BLOCK

avs_s0_address[2..0] Type Register

0x0 R/W

ADDR_FIFO : Data written to this register

is written to FIFO and data read from this

register is read from the FIFO

0x1 RO
FIFO_STATUS : Register which indicates

full, empty and used status of the FIFO

0x2 RO

CODEWORD : Register gives generated

codeword for each column or row either

for x-axis or y-axis according to the

configuration

76

Table 4-2 Register Map for the Codeword Generation Block (Continued)

BASE = CODEWORD_GENERATION_BLOCK

avs_s0_address[2..0] Type Register

0x3 RO

CODEWORD_STATUS : Register gives

the status of the codeword generation

operation whether codeword generation is

completed or not. If the codeword

generation is completed, CODEWORD

register can be read by the processor.

0x4 O/Y

START_ADDR : Processor sends 32 bit

data to write the data FIFO. But for some

images the number of rows is not divided

by 4; therefore, some of the bits in the data

bus cannot be used for the codeword

generation. With start address register,

block knows with which pixel codeword

generation starts and it gives the accurate

result.

0x5 O/Y
PIXEL_SIZE : Register for the column or

row size of the single character

0x6 NA RESERVED: Reserved register is not used

0x7 O/Y

ADDR_CHECK : Register to check

whether data is able to be written to or read

from the block correctly.

FIFO process is generally used to write the image data to the FIFO. Read operation from

FIFO is not achieved from the processor. Therefore, only write operation is explained. If

there is no write request, FIFO process waits in the IDLE_FIFO state. When the processor

wants to write data to the FIFO, fifo_en_wr signal asserted in the Avalon process and

IDLE_FIFO state goes to FIFO_WRITE state in the FIFO process. Before writing data to

the FIFO, processor sets the PIXEL_SIZE and START_ADDR registers of the Avalon

process given in Table 4-2. If Codeword Generation Block is used for the x-axis codeword

generation, row size of the segmented character is written to the PIXEL_SIZE register. If

Codeword Generation Block is used for the y-axis codeword generation, column size of the

segmented character is written to the PIXEL_SIZE register. Processor sends the data 32 bit.

Each pixel in the image is represented with 1 byte. If the value written to PIXEL_SIZE

register is not divided into 4, some bytes in the 32-bit data bus of the processor should not

be included into the codeword generation. Therefore, to know start address of the valid

byte is important and start address is written to the START_ADDR register of the Avalon

process. After the number of data which equals to PIXEL_SIZE register is written to FIFO,

counter process of the Codeword Generation Block is enabled with start_en signal, and

77

then fifo_write_finish signal is asserted. With the completion of the FIFO write operation,

FIFO_WRITE state goes back to IDLE_FIFO state. With the assertion of the

fifo_write_finish signal, WAIT_WRITE state of the Avalon process also goes back to

IDLE_AV state.

Counter process of the Codeword Generation block has the same interface with the

summation process of the Image Manage Block but the operation of the counter process is

completely different. Input signals and states of the counter process can be seen in Figure

4-26.

Figure 4-26 Counter Process Interface

State machine for the counter process can be seen in Figure 4-27 .

Figure 4-27 State Machine of the Counter Process

Counter process counts the ‘1’ to ‘0’ transitions and generates codeword for each row or

column. This process is enabled by the FIFO process. After all row (column) data is

written to the FIFO, FIFO process enables the counter process for the generation of the

codeword. FIFO process behaves in the same manner as explained in Section 4.2.1.5.12. If

counter process is not enabled in the FIFO process, process waits in the IDLE_CAL state

until activation signal, start_en, is asserted by the FIFO process. After start_en signal is

asserted, IDLE_CAL state goes to GET_DATA state and process reads the pixel values

from FIFO one by one. After each data is read from the FIFO, process goes to

CALCULATE state and counts the ‘1’ to ‘0’ transitions by comparing the previous data

read from the FIFO with the newly arrived read FIFO data. By going back and forth

between the GET_DATA and CALCULATE states, all pixel values are examined. After all

data is read from the FIFO and all pixel values are examined, counter process goes to

IDLE_CAL state. Empty signal is asserted by the FIFO when the FIFO is empty. After the

78

codeword generation is completed, CODEWORD_STATUS register of the Avalon process

is updated which indicates the codeword generation for a single row or column is

completed and the result becomes ready in the CODEWORD register for the processor

access. For each column and row in the segmented character, these processes are launched

by the processor. Codeword Generation Block does not know whether it generates x-axis

codeword or y-axis codeword. This information is known by the processor.

Operation of the Codeword Generation Block can be summarized as: Row (or column) size

of the license plate is written to the size register of the block. Row (or column) size value

indicates the number of pixels for which ‘1’ to ‘0’ transitions will be counted. Then, pixel

values are sent to the block. Codeword Generation Block contains 64 byte show ahead

FIFO. Pixels values received from the processor are written to FIFO. After all pixels of that

row (or column) are received, a flag emerges which enables the counter process. With

enabling the counter process, pixel values are read from the FIFO one by one and the

number of ‘1’ to ‘0’ transitions for that row (or column) is calculated and written to the

result register to provide access to processor. After all pixel values are counted, status

condition is updated in the status register which indicates whether the codeword generation

is completed or not. By observing the status register, processor can obtain the codeword

value for that row (or column).

4.2.2 SOFTWARE APPLICATION FOR EMBEDDED PROCESSOR

After FPGA blocks are designed, software is developed for the Nios II processor. Software

application implements image processing algorithms by using the FPGA blocks and

controls the flow of the algorithm.

At power up, the board receives a power-on reset signal, which resets the FPGA. After

reset, FPGA is configured successfully from the EPCS16 configuration flash. Then, Nios II

processor and other peripherals receive a hardware reset and enter the component’s reset

state. Next, Nios II processor jumps to its preconfigured reset address which is specified in

the Qsys system logic and processor begins running instructions found at this address. The

reset vector contains a packaged boot loader. The program is stored in flash memory but

runs from SDRAM. Therefore, boot loader copies the application image from flash to

SDRAM for program execution. After the boot loader executes, the processor jumps to the

beginning of the program’s initialization block and program waits the image from the serial

port.

The block diagram for the software application is given in Figure 4-28.

79

Image is loaded by using serial port

UART0

Image is stored in the on-chip RAM

after that this RAM data is used

Image is got from the on-chip RAM

Transpose bits of the image to ease

the calculation

Horizontal projection of the license

plate is calculated for trimming

Trim from top and bottom side if

there exists black pixels which do

not belong to characters

Transpose bits of the image again to

go back the original image

Obtain the vertical projection of the

license plate by using Image

Manage Block and get the sum

value for each column

UP & DOWN SIDE

TRIMMING

CHARACTER

SEGMENTATION

Figure 4-28 Block Diagram of the Software Application

80

Mean of the vertical projection is

calculated and vertical projection

value without DC level is obtained

Threshold value is calculated for

notch detection and index values

are found which are smaller than the

threshold

Notches are found, index values of

each character where it starts and

where it ends are calculated

How many characters exist are

calculated

Character is extracted

Transpose bits of the character

Calculate the horizontal sum to trim

up & down each character if there

exist black pixels at upside and/or

downside

Steps below

this line are

implemented

for each

character

Up & down side trimming

CHARACTER

SEGMENTATION

CHARACTER

RECOGNITION

Figure 4-28 Block Diagram of the Software Application (Continued)

81

Obtain the y-axis codeword by using

Codeword Generation Block

Make the y-axis codeword unique

Transpose bits of the character to

obtain x-axis codeword

Obtain the x-axis codeword by using

Codeword Generation Block

Make the x-axis codeword unique

Codeword matching with Lookup

Table

Identification of recognized

characters if there exist more than

one matching

Print the result from the serial port

UART1

CHARACTER

RECOGNITION

Figure 4-28 Block Diagram of the Software Application (Continued)

All the steps in the algorithm proceed sequentially. The pseudo code of the algorithm

which achieves character segmentation and character recognition parts is given for better

explanation in the following sections.

82

4.2.2.1 UP and DOWN SIDE TRIMMING

In up and down side trimming part, if there are black pixels at the top and bottom of the

license plate which do not belong to character pixels, these pixels are discarded.

After the license plate image data is read from the on-chip RAM, it is kept in the array. To

calculate the horizontal projection, image should be transposed. License plate is kept in the

array such a manner: first index value of the array is the first row and first column of the

image pixels, second index value of the array consists of second row and first column of

the image pixels, etc. However, to calculate the horizontal projection, in the first index of

the array should consist of first row and first column of the image pixels and second index

of the array should consist of first row and second column of the image pixels. Therefore,

by transposing the image, successive pixel values of a single row are kept successive index

values of the array. The pseudo code of the transpose step is given below.

Transpose function:

for x from 1 to row size

for y from 1 to column size

 calculate the index value of the original image array as (x*column size + y)

 calculate the index value of the transposed image array as (y*row size + x)

 set the value of the transposed image for calculated index as the value of the

 original image array for calculated index

After the image is transposed, horizontal projection of each row is calculated.

for x from 1 to row size

 for y from 1 to column size

 calculate the index value of the transposed image for the horizontal summation as

(x*column size + y)

 set the horizontal array for that row index by summing the array value itself

 with the transposed array value for the calculated index

Index values which are smaller than the predefined threshold are found. By observing the

difference between the successive index values, index values for up and down side

trimming are found. After that, trimming is performed. Threshold value to find smaller

index values is fixed and is set as 10 pixels to give tolerance to bright pixels at the top and

bottom side of the image and to avoid trimming the characters from the middle of the plate

region. The pseudo code of the algorithms is given in the following sections.

83

FindSmallerIndex function:

for x from 1 to row size

if horizontal projection array for that row index is smaller than threshold

 assign this value to the index value array

FindNotches function:

for k from 1 to size of the index value array

 if the difference between the successive values of the index value array is greater

and equal than 6 pixels

 assign these values as the notch indexes

Notch index values give the row index values where the license plate should be trimmed.
By using these index values, image data kept in the RAM is trimmed and then transposed

by using the transpose function to convert the image to its original form. Flow diagram of

the up and down side trimming is given in Figure 4-29.

After image is read from RAM,

transpose the image with

Transpose function

Horizontal projection of the license

plate is calculated for trimming

Index values which are smaller than

the predefined threshold is found by

FindSmallerIndex function

Successive index values for which

the difference in between is greater

or equal than 6 pixels are found by

FindNotches function

By using the notch index values,

trimmed license plate is extracted

Transpose function is used to

convert the image to its original form

Figure 4-29 Flow Diagram of the Up and Down Side Trimming

84

4.2.2.2 CHARACTER SEGMENTATION

In the character segmentation part, each character is extracted one by one by observing

notches in the plate region. After index values of each character, which indicate the

position of the character, are found, algorithm proceeds with the character recognition part.

After up and down side trimming part, vertical projection of the license plate region is

obtained by using the Image Manage Block integrated into the Qsys and for each column,

sum value is obtained. Sum value consists of fluctuations. These fluctuations rise when

passing through character pixels and fall when passing through bright regions between

characters. The pseudo code for the vertical projection calculation is given below.

for c from 1 to column size of the plate region

 write the column pixels to the Image Manage Block

 if the status register of the Image Manage Block assigned as calculation is completed

 read the result register of the Image Manage Block

 assign the result value to the vertical sum array variable of the processor

 else

 wait until the calculation is completed, poll the status register continuously

After the vertical projection of the license plate is obtained, mean of the vertical sum is

calculated. The pseudo code of the mean calculation is given below.

mean_array function:

sum the all index values of the vertical sum array

divide the total sum to the size of the vertical sum array

After the mean of the vertical sum array is obtained, vertical projection without DC level is

obtained by subtracting the mean value from the original vertical sum array.

To find the positions of the characters, minimum value of the vertical sum without DC

level array is found. Minimum value is always negative because of the DC level

subtraction. Half of the minimum value gives threshold, which is used to find the index

values of the vertical sum without DC level array smaller than this threshold. The pseudo

code of the function which is used to find the minimum value is given below.

FindMinimum function:

assign the value at the first index of the array as minimum value

for x from 1 to size of the array-1

 get the value of the array at x+1 th index

 if value of array at x+1 th index is smaller than the minimum value

 assign the minimum value as value of array at x+1 th index

85

After the minimum value is calculated, half of the minimum value is obtained and assigned

as threshold. This threshold value is used to find index values which are smaller than the

threshold. After smaller index values are obtained, notches are found by implementing

FindSmallerIndex and FindNotches functions whose pseudo codes are given in Section

4.2.2.1. The pseudo code of the algorithm is given below.

threshold is found by dividing minimum value by 2

call for FindSmallerIndex function: smaller index values are found with FindSmallerIndex

function

call for FindNotches function: notches and size of notches array are found with

FindNotches function

Each character is represented by two index values where character pixels start and end.

Therefore, the number of characters can be found by dividing the size of the notches array

by two. Since notches array keeps positions of characters, characters are extracted one by

one using array values. After character is segmented, it is sent to the character recognition

part. Flow diagram for the character segmentation part is given in Figure 4-30.

86

Obtain the vertical projection of the

license plate by using Image

Manage Block and get the sum

value for each column

Mean of the vertical projection is

calculated by mean_array function

Vertical projection array without DC

level is obtained by substracting the

mean value from the vertical

projection array

Minimum value of the vertical

projection array without DC level is

found by FindMinimum function

Half of the minimum value is

assigned as threshold to find

smaller index values

Index values which are smaller than

the threshold are found by

FindSmallerIndex function

Notches are found by using smaller

index values, for each character

where the character starts and ends

are calculated by FindNotches

function

the number of characters is found

by dividing the size of the notches

array by two

Character is extracted

Steps below

this line are

implemented

for each

character

Figure 4-30 Flow Diagram of the Character Segmentation

87

In MATLAB implementation of the algorithm, after the character is extracted,

morphological opening and connected component labeling with four neighboring are

applied. However, in FPGA implementation, morphological opening and connected

component labeling are not implemented. Connected component labeling takes large

execution time for the processor and without connected component labeling,

morphological opening misleads the character recognition part.

4.2.2.3 CHARACTER RECOGNITION

In character recognition part, codeword generation is achieved for each character and

generated codeword is matched with codewords stored in the lookup table. If there is a

match, character is recognized. If there is more than one match, character is identified with

identification algorithms. If there is no match, character cannot be recognized.

After the character is segmented, it is recognized and it continues with recognition of other

characters. Detailed explanation of the codeword generation and recognition steps of the

algorithm are given in the following sections.

4.2.2.3.1 CODEWORD GENERATION

After the character is segmented, if there are black pixels at the top and bottom side of the

character, up and down side trimming for each character is implemented because

connected component labeling and morphological opening is not implemented for the large

execution time. If the trimming operation doesn’t take place, faulty codewords can be

generated and this may result in recognition errors. After the trimming operation, x-axis

and y-axis codewords of each segmented character are generated as explained in Section

3.3.1. For trimming same algorithm steps are followed as in Section 4.2.2.1. The pseudo

code for the character trimming is given below.

call for Transpose function to ease the trimming

calculation of horizontal projection as in Section 4.2.2.1

call for FindSmallerIndex function to find smaller index values at top and bottom which
consists of all black pixels; threshold value is set as 1

call for FindNotches function to find trim positions

trim the character from up and down with found trim positions by using these values as

index values of the array

After character is trimmed, codewords are generated by using Codeword Generation Block

which is integrated into the Qsys. For each row of the character image, codeword is

generated and then this character string is made unique. Calculation result gives the y-axis

codeword. The pseudo code for the algorithm is given below.

for x from 1 to row size of the character

 write row pixels to the Codeword Generation Block

88

 if the status register of the Codeword Generation Block is assigned as calculation

is completed

 read the result register of the Codeword Generation Block

 assign the result value to the y-axis codeword array variable of the
processor

 else

 wait until the calculation is completed, poll the status register
continuously

After the y-axis codeword is calculated, codeword array is made unique by observing the

successive values in the codeword array. The value is placed in the unique codeword array,

if it exists more than one times successively. For example, if the initial codeword is

“12111”, ‘2’ is discarded and unique codeword becomes “1”. However, if the initial

codeword is “12211”, unique codeword becomes “21”. The pseudo code to make the

codeword unique is given below.

Unique function:

for x from 1 to length of the codeword -3

a window is generated with the codeword values such that:

 value1 is equals to xth index value of the codeword

 value2 is equals to x+1th index value of the codeword

 value3 is equals to x+2th index value of the codeword

 value4 is equals to x+3th index value of the codeword

if x is the 1 which means unique function starts now

 if value1 equals to value2

 assign value1 as the unique code for that row

else

if value1 is not equal both of the value2 and value 3

 if there is no code in the unique array

 assign value3 as the unique code for that row

 else

 if the previous unique code is equal not equal to value2

 if value2 equals to value4

 assign value2 as the unique code

 else

 assign value3 as the unique code

 else if value1 is not equal to value2 but equals to value3

 if there is no code in the unique array

89

 assign value1 as the unique code

 else if value1 equals to both of the value2 and value3

if there is no code in the unique array

 assign value1 as the unique code

 else if value1 is equal to value2 but not equal to value3

if there is no code in the unique array

 assign value2 as the unique code

After the unique codeword for the y-axis is generated, it is converted into character string

to compare the codeword with the values in the lookup table. After y-axis codeword is

generated, bits of the character are transposed with the Transpose function and x-axis

codeword is generated by using same approach. x-axis codeword is generated by using the

column size of the character instead of using row size. The algorithm steps are same as

given above. After unique codeword of the x-axis is generated, two codewords are not

concatenated as in the MATLAB case because these codewords are matched sequentially

in the character matching step of the software algorithm. Therefore, there is no need for

concatenation. Flow diagram of the codeword generation step is given in Figure 4-31.

90

Transpose bits of the character

Calculate the horizontal sum to trim

up & down each character if there

exist black pixels at upside and/or

downside

Index values which are smaller than

the predefined threshold is found by

FindSmallerIndex function

Successive index values for which

the difference in between is greater

or equal than 6 pixels are found by

FindNotches function

By using the notch index values,

trimmed character is obtained

Obtain the y-axis codeword by using

Codeword Generation Block

Make the y-axis codeword unique

with Unique function and convert it

into a character string

Transpose bits of the character to

obtain x-axis codeword

Obtain the x-axis codeword by using

Codeword Generation Block

Make the x-axis codeword unique

with Unique function and convert it

into a character string

Figure 4-31 Flow Diagram of the Codeword Generation

91

4.2.2.3.2 CODEWORD MATCHING AND RECOGNITION

In codeword matching and recognition part, generated codewords are compared with the

values in the lookup table. If there exists an entry which has the same x-axis and y-axis

codewords with generated codewords, this entry is assigned as the recognized character.

Different characters may be represented by the same codewords. For this case, more than

one character is recognized. To distinguish these characters, identification algorithms are

implemented for special cases. If the algorithm is not able to distinguish the character, first

matching character in the database is recognized as a found character. If there is no match,

character cannot be recognized. There are 88 entries in the lookup table. Characters in the

lookup table with corresponding codeword values are given in Appendix-D.

The pseudo code for the matching algorithm is given below.

for x from 1 to size of the lookup table

get the lookup table entry for x

assign y-axis codeword to codeword1 variable

assign x-axis codeword to codeword2 variable

if y-axis codeword of the generated codeword equals to codeword1

 if x-axis codeword of the generated codeword equals to codeword2

 assign this lookup table entry to the recognized characters array

After generated codewords are matched with the entries of the lookup table, recognized

characters are kept in the recognition array. If there is more than one entry in the

recognition array, identification algorithms are implemented. If the identification algorithm

is not able to identify the character, first matching character in the recognition array is

recognized as the found character. After the implementation of the identification algorithm,

result of the recognition process is sent to GUI interface by using serial port. The

explanations and pseudo codes for the identification algorithms are given in the following

sections. The flow diagram of the codeword matching and recognition part is given in

Figure 4-32.

92

Codeword matching with Lookup

Table

Are there any

match?

Are there more

than one match?

Identification algorithms to distiguish

the character

Is character

identified?

Charater is

not found

Character

is found

First matching character

in the recognition array

is recognized as a found

character

Print the result from the serial port

UART1

YES

NO

NO

YES

YES

NO

Figure 4-32 Flow Diagram of the Codeword Matching and Recognition

93

4.2.2.3.2.1 IDENTIFICATION ALGORITHMS

Codewords are not specific to characters. Different characters can be represented with

same codewords. In such cases, to identify the exact character in the plate region,

identification algorithms are implemented. The algorithm determines which identification

algorithm should be implemented by looking at the ASCII values of the recognition array.

The pseudo code of the decision making algorithm is given below.

 implement identification of letter and number algorithm

 if there are three recognized characters in the recognition array

o If ASCII codes of these characters are 51, 53 and 56

 implement identification of 3, 5 and 8 algorithm

o else if ASCII codes of these characters are 51, 56 and 57

 implement identification of 3, 8 and 9 algorithm

o else if ASCII codes of these characters are 85, 86 and 89

 implement identification of U, V and Y algorithm

o else if ASCII codes of these characters are 48, 52 and 55

 implement identification of 0, 4 and 7 algorithm

In the assigned identification algorithms, Recognition_Codeword function is used. This

function calculates the codeword of a single row by using the Codeword Generation Block

of the Qsys. Row index value, for which codeword is calculated, is specified inside the

identification algorithm. The pseudo code of the Recognition_Codeword function is given

below.

Recognition_Codeword function:

 write all pixels belongs to sampled row to the Codeword Generation Block

 if the status register of the Codeword Generation Block is assigned as calculation is

 completed

read the result register of the Codeword Generation Block

return from the function with result value

else

 wait until the calculation is completed, poll the status register continuously

4.2.2.3.2.1.1 IDENTIFICATION OF LETTER AND NUMBER

In Turkish license plates, first two and last two characters should be numbers and third

character should be a letter. ASCII codes of numbers are represented in between 48 and 57

in decimal and ASCII codes of the letters are equal to or greater than 65. Therefore, for the

recognized first two and last two characters, corresponding ASCII codes should be in

between 48 and 57 and for the third character ASCII code for the recognized character

should be equal to or greater than 65. If the corresponding ASCII codes are different from

94

the defined interval, recognition result is eliminated. The pseudo code of the algorithm is

given below.

 if character is one of the first two or last two characters

 for x from 1 to size of the recognition array for this character

 get the ASCII code at the xth index of the recognition array

 if ASCII code is smaller than 48 or greater than 57

 assign 0 to xth index of the recognition array

else if character is the third character

 for y from 1 to size of the recognition array for this character

 get the ASCII code at the yth index of the recognition array

 if ASCII code is smaller than 65

 assign 0 to yth index of the recognition array

In Turkish license plates, if the fifth character is a letter, fourth character should also be a

letter. The pseudo code of the algorithm is given below.

if ASCII code of the fifth character is equal to or greater than 65

 get the ASCII codes in the 4
th

row of the recognition array

 for x from 1 to size of the recognition array of the 4
th

 row for this character

get the ASCII code at the xth index of the recognition array of the 4
th
 row

if ASCII code is smaller than 65

 assign 0 to xth index of the recognition array of the 4
th
 row

4.2.2.3.2.1.2 IDENTIFICATION OF 0, 4 AND 7

‘0’, ‘4’ and ‘7’ numbers are identified as explained in the Section 3.3.2.2. The pseudo code

of the identification algorithm implemented in the software is given below.

find the row_index1 where the first sample is taken as in Equation (3.15)

find the row_index2 where the second sample is taken as in Equation (3.16)

take the first sample by using row_index1

take the second sample by using row_index2

call for Recognition_Codeword function for the first sample and obtain the codeword1

call for Recognition_Codeword function for the second sample and obtain the codeword2

if codeword1 equals to 2 and codeword2 equals to 2

 recognized character is ‘0’

95

else if codeword1 equals to 1 and codeword2 equals to 2

 recognized character is ‘4’

if codeword1 equals to 1 and codeword2 equals to 1

 recognized character is ‘7’

else

 character cannot be recognized

4.2.2.3.2.1.3 IDENTIFICATION OF U, V AND Y

‘U’, ‘V’ and ‘Y’ letters are identified as explained in the Section 3.3.2.3. The pseudo code

of the identification algorithm implemented in the software is given below.

find the row_index1 where the first sample is taken as in Equation (3.17)

find the row_index2 where the second sample is taken as in Equation (3.18)

take the first sample by using row_index1

take the second sample by using row_index2

call for Recognition_Codeword function for the first sample and obtain the codeword1

call for Recognition_Codeword function for the second sample and obtain the codeword2

if codeword1 equals to 2 and codeword2 equals to 2

 recognized character is ‘U’

else if codeword1 equals to 1 and codeword2 equals to 2

 recognized character is ‘V’

if codeword1 equals to 1 and codeword2 equals to 1

 recognized character is ‘Y’

else

 character cannot be recognized

4.2.2.3.2.1.4 IDENTIFICATION OF 3, 5 AND 8

‘3’, ‘5’ and ‘8’ numbers are identified as explained in the Section 3.3.2.4. The pseudo code

of the identification algorithm implemented in the software is given below.

find the row_index1 where the first sample is taken as in Equation (3.19)

find the row_index2 where the second sample is taken as in Equation (3.20)

take the first sample by using row_index1

take the second sample by using row_index2

call for Recognition_Codeword function for the first sample and obtain the codeword1

call for Recognition_Codeword function for the second sample and obtain the codeword2

if codeword1 equals to 2 and codeword2 equals to 2

 recognized character is ‘8’

96

else if codeword1 equals to 1 and codeword2 equals to 2

 recognized character is ‘3’

if codeword1 equals to 1 and codeword2 equals to 1

 recognized character is ‘5’

else

 character cannot be recognized

4.2.2.3.2.1.5 IDENTIFICATION OF 3, 8 AND 9

‘3’, ‘8’ and ‘9’ numbers are identified as explained in the Section 3.3.2.5. The pseudo code

of the identification algorithm implemented in the software is given below.

find the row_index1 where the first sample is taken as in Equation (3.21)

find the row_index2 where the second sample is taken as in Equation (3.22)

take the first sample by using row_index1

take the second sample by using row_index2

call for Recognition_Codeword function for the first sample and obtain the codeword1

call for Recognition_Codeword function for the second sample and obtain the codeword2

if codeword1 equals to 1 and codeword2 equals to 1

 recognized character is ‘3’

else if codeword1 equals to 1 and codeword2 equals to 2

 recognized character is ‘9’

if codeword1 equals to 2 and codeword2 equals to 2

 recognized character is ‘8’

else

 character cannot be recognized

Algorithms for “Identification of 6 and B” and “Identification of 2 and Z” are not

implemented in the processor side because there are slight differences between these

characters. Without applying morphological operations and connected component labeling,

most likely recognition result will be erroneous.

97

CHAPTER 5

5. EXPERIMENTAL RESULTS

License plate detection and recognition algorithm is first developed and verified in

MATLAB. After the development is finished and the verification is completed, only

recognition part of the algorithm is implemented in the FPGA for single line plate cases.

Some processing steps, such as morphological opening and connected component labeling,

are not implemented in the FPGA because they take more time than expected and

execution time increases. Test results of the MATLAB and FPGA implementations are

explained in this section.

In MATLAB implementation, after detection of the plate position, plate region is stored to

use the image in FPGA. In FPGA tests, these localized plate regions are used for the

implementation of the recognition algorithm. Size of the plate region is not fixed. Size

information is sent from the GUI designed for the system. After the image is sent to the

FPGA, FPGA starts processing and displays the recognition results on the terminal which

is connected to the serial port.

In the tests, 175 different images for different vehicles are worked on. Images are taken

with different light conditions and 4-7 meters away from the vehicle. The plate database is

listed in Table D-2.

5.1 TEST RESULTS FOR THE MATLAB IMPLEMENTATION

While testing the algorithm in MATLAB, first, position of the plate region is detected by

the Gabor transform and morphological closing is applied. Then, each character is

segmented and recognized one by one. Test results for the MATLAB implementations are

given in Table 5-1.

Table 5-1 Test results for the MATLAB Implementation

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

0 38 NE 941 38NE941 1

1 06 ANZ 72
Error in locating the

license plate
0

98

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

2 35 EL 786

License plate

located successfully.

It is a double line
plate, therefore;

recognition

algorithm is not
implemented

1

3 06 LS 717
Error in locating the

license plate
0

4 06 EEA 80 06E-A8- 2 error (E)(0) 1

5 06 AAH 83 06AA-83 1 miss (H) 1

6 06 ZTM 61 06ZIJ61 2 miss (T)(M) 1

7 06 ACF 96
Error in locating the

license plate
0

8 06 NV 015 06NV015 1

9 34 UEN 01
Error in locating the
license plate

0

10 06 AKV 30
Error in locating the

license plate
0

11 06 VCU 16 06VC16 1 miss (U) 1

12 06 FG 382 06FG962 2 error (3-9)(8-6) 1

13 06 V 6304 -6V630- 2 error (0)(4) 1

14 06 GJ 988 06GL868
1 miss (J) + 2 error

(9-8)(8-6)
1

15 06 GD 229 40BG0229
1 extra (4) + 2 error

(6-B)(D-0)
1

16 06 BF 926 06-F926 1 error (B) 1

17 11 AK 680
Error in locating the

license plate
0

18 06 ZVP 28 06ZV728 1 error (P-7) 1

19 41 DA 848
Error in locating the

license plate
0

20 06 VTE 73 06VE79
1 miss(T) + 1 error

(3-9)
1

21 06 AJC 01 02AIC01
1 miss (J) + 1 error

(6-2)
1

22 06 BS 913 06-389 1 miss (1) + 4 error

(B)(S-3)(9-8)(3-9)
1

23 06 E 9787 06E8667
3 error (9-8)(7-6)
(8-6)

1

99

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

24 06 UE 242 06UEZ42 1 error (2-Z) 1

25 45 EE 616

License plate

located successfully.
It is a double line

plate, therefore;

recognition
algorithm is not

implemented

1

26 06YAM 63 ---P-631 1 extra (1) + 5 error

(0)(6)(Y)(A-P)(M)
1

27 06 YUY 61 06YY61 1 miss (U) 1

28 06 GH 039 06G099
1 miss (H) + 1 error
(3-9)

1

29 06 LN 567
Error in locating the

license plate
0

30 06 FFA 51 06FF-5
1 error (A) + 1 miss
(1)

1

31 06 YNP 76
Error in locating the

license plate
0

32 06 RED 88 06RE068 2 error (D-0)(8-6) 1

33 06 Z 6339 -1DBZ6-99

2 extra (-)(1) + 4

error (0-D)

(6-B)(3)(3-9)

1

34 06 MVB27 06MUB27 1 error (V-U) 1

35 06 YDU 85 06Y085
1 miss (U) + 1 error

(D-0)
1

36 35 KFM 75 5-KFM-2
4 error (3-5) (5) (7)

(5-2)
1

37 06 KNT 90 06KIJ9-- 3 miss (N)(T)(0) 1

38 06 RNM90 06RN-90 1 miss (M) 1

39 06 YRU 41 06YRLL41 1 miss (U) 1

40 06 ZFS 48 06ZF308 2 error (S-3)(4-0) 1

41 32 AN 568 2-NZ6-
1 miss (3) + 3 error

(A) (5-Z) (8)
1

42 06 JV 031
Error in locating the
license plate

0

43 06 ZTT 60 06Z60 2 miss (T)(T) 1

44 06 GM 575 06GM5-5 1 error (7) 1

45 06 ZVS 41 06ZV341 1 error (S-3) 1

46 06 LM 649 0--49
3 miss (6) (L)(M) +

1 error (6)
1

100

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

47 06 LMS 97
Error in locating the

license plate
0

48 06 JM 694 6-69
3 miss (0)(J)(4) + 1
error (M)

1

49 06 LPC 54
Error in locating the

license plate
0

50 06 VB 035 06Y60-2
4 error (V-Y)(B-6)
(5-2) (3)

1

51 06 VTK 75 06VK-5
1 miss (T) + 1 error

(7)
1

52 06 ZVJ 64 --ZV-4
2 miss(J)(6) + 2
error (0)(6)

1

53 06 TNA 59 46NA59
1 miss (T) + 1 error

(0-4)
1

54 06 EM 653 06EM653 1

55 06 DJ 294 06UIZ94
3 error (D-U)(J-I)

(2-Z)
1

56 06 FKS 81 06FK381 1 error (S-3) 1

57 06 MLD 18 06ML013 2 error (8-3)(D-0) 1

58 06 KJ 258
Error in locating the

license plate
0

59 06 YZC 78 -BUZC-6 1 miss (0) + 4 error

(6-B)(Y-U)(7)(8-6)
1

60 06 H 0184 06IF-18 3 miss (H)(0)(4) 1

61 06 GC 115
Error in locating the

license plate
0

62 06 HB 496
Error in locating the
license plate

0

63 06 FVY 64 06FUY64 1 error (V-U) 1

64 06 SC 197
Error in locating the
license plate

0

65 06 SM 805 06SH605 2 error (M-H) (8-6) 1

66 06 KTY 39 06KIY39-
1 extra (-) + 1 error
(T-I)

1

67 06 AD 406 06A0406 1 error (D-0) 1

68 06 YUF 55 06YF55 1 miss (U) 1

69 06 YBT 50 06Y650
1 miss (T) + 1 error

(B-6)
1

70 06 YML 50
Error in locating the

license plate
0

71 06 ZSS 91 10BZ5391
1 extra (1) + 3 error

(6-B)(S-5)(S-3)
1

101

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

72 06 TRZ 81
Error in locating the

license plate
0

73 06 VVL 74 06IIV74 2 miss (V)(L) 1

74 06 KJS 97 06KJ597 1 error (S-5) 1

75 06 ZFE 94
Error in locating the

license plate
0

76 06 BM 277 06BMZ77 1 error (2-Z) 1

77 06 GV 261 06GUZ61 2 error (V-U)(2-Z) 1

78 06 ZVR 08 -BZVR08
1 miss (0) + 1 error
(6-B)

1

79 16 NB 505 6-BZ02
1 miss (1) + 3 error

(N) (5-Z)(5-2)
1

80 06 KYY 24 -0BKYYZ4 -
2 extra (-)(-) + 2
error (6-B)(2-Z)

1

81 06 LCE 24 06ICE24 1 miss (L) 1

82 06 TAV 30 06AV30 1 miss(T) 1

83 06 BB 162
Error in locating the

license plate
0

84 06 PB 353
Error in locating the

license plate
0

85 06 VB 035
Error in locating the

license plate
0

86 06 YNZ 47 46YHZ47 2 error (0-4) (N-H) 1

87 06 FM 787 -0BFM787
1 extra (-) + 1 error

(6-B)
1

88 06 UB 952
Error in locating the

license plate
0

89 06 ZBK 09
Error in locating the

license plate
0

90 06 SG 911
Error in locating the

license plate
0

91 06 RNH 19
Error in locating the

license plate
0

92 06 ZMJ 55
Error in locating the

license plate
0

93 06 YML 39 06YML39 1

94 06 EAE 87 46EAE87 1 error (0-4) 1

95 06 EB 195 06-BL95 2 error (E)(1-L) 1

96 06 UB 008
Error in locating the

license plate
0

97 06 HLD 71 06I-L071
1 miss(H) + 1 error
(D-0)

1

102

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

98 06 ZKM 55 06ZKM55 1

99 06 VTF 54 46Y-F56
1 miss (T) + 3 error

(0-4)(V-Y)(4-6)
1

100 06 JH 617
Error in locating the

license plate
0

101 06 KUH 65 06KILL-65 2 miss (U)(H) 1

102 06 NB 150
Error in locating the
license plate

0

103 06 FJ 557 06FIL557 1 miss (J) 1

104 06 YTE 47 06Y--77
1 miss (T) + 2 error
(E)(4-7)

1

105 06 DJ 294 06DIZ94
1 miss (J) + 1 error

(2-Z)
1

106 06 SC 197
Error in locating the
license plate

0

107 06 GV 613
Error in locating the

license plate
0

108 06 VV 941
Error in locating the
license plate

0

109 06 AB 664 -0BA6B64
1 extra (-) + 3 error

(6-B)(B-6)(6-B)
1

110 06 MML 54 06MML54 1

111 06 UM 938
Error in locating the

license plate
0

112 06 GJ 015 06GIL015 1 miss (J) 1

113 06 AB 789 06A6789 1 error (B-6) 1

114 06 EHR 26 -0BEL-R26 1 extra (-) + 1 error

(6-B) + 1 miss (H)
1

115 06 PG 742
Error in locating the

license plate
0

116 06 VPC 41
Error in locating the

license plate
0

117 06 MUZ 64
Error in locating the

license plate
0

118 06 FPL 06 06FDL06 1 error (P-D) 1

119 06 GN 623
Error in locating the

license plate
0

120 06 RVR 44 06RUR44 1 error (V-U) 1

121 06 YMH 60 06YHTT64
1 miss (H) + 2 error

(M-H)(0-4)
1

122 06 TNA 59 06-NA59 1 miss (T) 1

103

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

123 06 MZK 93
Error in locating the

license plate
0

124 06 JB 489
Error in locating the
license plate

0

125 06 LB 509 -0BL6Z49

1 extra (-) + 4 error

(6-B)(B-6)(5-Z)

(0-4)

1

126 06 TKL 06 06IKL06 1 miss (T) 1

127 06 KPM 96
Error in locating the

license plate
0

128 06 YD 468
Error in locating the
license plate

0

129 06 BN 824 -6BH824 2 error (0)(N-H) 1

130 06 KKY 99 06KKY99 1

131 06 JK 870
Error in locating the

license plate
0

132 06 YB 868
Error in locating the
license plate

0

133 06 GA 049 -6-4-2

2 miss (0)(6) + 5

error (G-6)(A)

(0-4)(4)(9-2)

1

134 06 VUF 61
Error in locating the

license plate
0

135 06 GV 354
Error in locating the

license plate
0

136 06 YZC 78 06YZC78 1

137 06 MDB 52 06H065
3 error (M-H)(D-

0)(B-6) + 1 miss (2)
1

138 06 ZHT 89 06ZT-T89 1 miss (H) 1

139 06 BB 162 06BBL62 1 error (1-L) 1

140 06 ZZE 84 06ZZE87 1 error (4-7) 1

141 06 LEE 85 06E-65
1 miss (L) + 2 error

(E)(8-6)
1

142 06 DM 529 06DM529 1

143 06 KHZ 04 06KIZ04 1 miss (H) 1

144 06 GV 492
Error in locating the

license plate
0

145 06 YMH 26 06YMLL26 1 miss (H) 1

146 06 KVF 51
Error in locating the

license plate
0

147 06 VVR 58 -0BUVR58
1 extra (-) + 2 error

(6-B)(V-U)
1

104

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

148 06 KFY 42 06KFY72 1 error (4-7) 1

149 06 GA 965 06GA965

1

150 06 GD 009 06-0-49
4 error (G)(D-0)(0)
(0-4)

1

151 06 GH 264 06GIL264 1 miss (H) 1

152 06 VKC 70 46YKC70 2 error (0-4)(V-Y) 1

153 06 KG 629
Error in locating the

license plate
0

154 06 GR 895 46B-L692
5 error (0-4)(G-B)
(R)(8-6)(5-2) + 1

extra (L)

1

155 06 FM 969 06F-969 1 error (M) 1

156 06 SS 798
Error in locating the
license plate

0

157 06 TKD 26
Error in locating the

license plate
0

158 34 VD 4751 94Y04-1

4 error (3-9)(V-Y)

(D-0)(7) + 1 miss

(5)

1

159 06 RZJ 36 46RZJ36 1 error (0-4) 1

160 06 RHS 42 06RH502 2 error (S-5)(4-0) 1

161 06 BM 277
Error in locating the

license plate
0

162 06 BB 162
Error in locating the

license plate
0

163 06 FU 644 46FU644 1 error (0-4) 1

164 06 BL 040 06-L040 1 error (B) 1

165 06 TSZ 03 06SZ03 1 miss (T) 1

166 06 EM 653
Error in locating the
license plate

0

167 06 EKN 80 06EKN80 1

168 06 MKC 25
Error in locating the
license plate

0

169 06 MHP 10 06M70
2 miss (H)(1) + 1

error (P-7)
1

170 06 MBH 36 -0BM6LL96
1 extra (-) + 3 error
(6-B)(B-6)(3-9) + 1

miss (H)

1

171 06 MZK 93
Error in locating the

license plate
0

172 06 ZFS 22 06ZF322 1 error (S-3) 1

105

Table 5-1 Test results for the MATLAB Implementation (Continued)

Image

Number

Original

License

Plate

Recognized

License

Plate

Explanation

Plate Region

Extraction

Success*

173 06 JB 489
Error in locating the

license plate
0

174 06 ZVJ 64 10BZV64
1 extra (1)+ 1 error
(6-B) + 1 miss (J)

1

Note: error: Error in Character Recognition

 miss: Error in Character Segmentation

 extra: Extra Character is Detected

 * Plate Region Extraction Success 1: Plate region is localized successfully

 0: Error in the localization of the plate region

For 57 images out of 175 test images, plate regions are not extracted successfully. For 25

of them, no candidate plate region is extracted and for 32 of them, plate regions are

localized erroneously. ((175-57)/175) x 100= 67.43% is the plate region extraction ratio of

the whole test image database for the MATLAB implementation. For the extraction of the

plate region, Gabor transform and morphological closing are used. Gabor transform gives

rough estimate about the boundary of the plate region and searches for the black to white

pixel transitions. Transition regions give local pieces of information about the plate

position. Information obtained by the Gabor filter is combined and it constructs the region

of interest. For some plates, plate region is dirty, characters are too small or distances

between the characters are too large. In such cases, Gabor filter gives erroneous estimate

about the plate region. For these reasons, plate region cannot be extracted successfully.

Reasons for the plate extraction failures are given in Table 5-2.

Table 5-2 Reasons of the License Plate Extraction Failures

Image

Number

Original

License

Plate

Explanation Reason for Failure

1 06 ANZ 72

Error in locating

the license plate

Size of the plate region after

Gabor transform is not

applicable for filtering the

image with predefined plate

width and length parameters.

3 06 LS 717

127 06 KPM 96

161 06 BM 277

162 06 BB 162

166 06 EM 653

106

Table 5-2 Reasons of the License Plate Extraction Failures (Continued)

Image

Number

Original

License

Plate

Explanation Reason for Failure

9 34 UEN 01

Error in locating

the license plate

Characters are too small and

dirty. Therefore, Gabor

transform cannot estimate

place position.

10 06 AKV 30

19 41 DA 848

Error in locating

the license plate

Plate region is noisy and it is

trimmed erroneously.

Therefore, whole plate

region cannot be extracted.

29 06 LN 567

91 06 RNH 19

171 06 MZK 93

31 06 YNP 76

Error in locating

the license plate

Characters in the plate

region are separated with

large distances. Therefore,

Gabor transform gives

erroneous estimate and plate

region consists of disjoint

parts

42 06 JV 031

47 06 LMS 97

17 11 AK 680

7 06 ACF 96

58 06 KJ 258

61 06 GC 115

62 06 HB 496

64 06 SC 197

75 06 ZFE 94

84 06 PB 353

85 06 VB 035

88 06 UB 952

90 06 SG 911

96 06 UB 008

100 06 JH 617

102 06 NB 150

106 06 SC 197

107 06 GV 613

111 06 UM 938

115 06 PG 742

116 06 VPC 41

117 06 MUZ 64

119 06 GN 623

123 06 MZK 93

124 06 JB 489

128 06 YD 468

107

Table 5-2 Reasons of the License Plate Extraction Failures (Continued)

Image

Number

Original

License

Plate

Explanation Reason for Failure

131 06 JK 870

Error in locating

the license plate

Characters in the plate

region are separated with

large distances. Therefore,

Gabor transform gives

erroneous estimate and plate

region consists of disjoint

parts

132 06 YB 868

135 06 GV 354

144 06 GV 492

153 06 KG 629

156 06 SS 798

168 06 MKC 25

173 06 JB 489

49 06 LPC 54
Error in locating

the license plate

Due to illumination, plate

region is too small for

filtering the image with

predefined plate width and

length parameters.

70 06 YML 50

Error in locating

the license plate

Length of the some regions

in the plate region is too

small for filtering the image

with predefined plate width

and length parameters.

Therefore, whole plate

region cannot be extracted or

wrong plate region is

extracted.

72 06 TRZ 81

89 06 ZBK 09

108 06 VV 941

134 06 VUF 61

146 06 KVF 51

157 06 TKD 26

83 06 BB 162

Error in locating

the license plate

Wrong candidate plate

region is assigned because

bright pixel density of wrong

region is larger than exact

region.

92 06 ZMJ 55

To detect the position of the plate region in the image, Gabor transform of the image is

binarized with Otsu thresholding and morphological closing is applied to combine the

image regions which are the responses of the Gabor transform. For some plates, Gabor

transform does not give uniform results. Due to large distances between characters (Figure

5-1 (c)), dirty plate regions with small characters (Figure 5-1 (a)) and dark plate regions

(Figure 5-1 (b)), Gabor response is divided into several parts and plate region cannot be

extracted successfully. Gabor responses of several images for which the place of the

license plate cannot be found are shown in Figure 5-1.

108

 Original Image
Gabor Response of the Plate

Region

(a)

(b)

(c)

Figure 5-1 Sample plates and their Gabor responses for which the plates cannot be

extracted from the image

For single line plates which are localized correctly, character segmentation and character

recognition algorithms are implemented. According to Table 5-1, these steps are not

implemented for 59 images ((for 57 images plate region is not localized correctly) + (2

images are the double line plates)). For remaining 175-59 = 116 images, algorithm

continues with the recognition part. Character recognition and segmentation rates for the

116 images whose plate regions are localized correctly are given in Table 5-3.

Table 5-3 Character Recognition Rate for the MATLAB Implementation

Character
Number of

Occurrences

Number of

Extracted

Characters

Number of

Recognized

Characters

Extraction

Rate (%)

Recognition

Rate (%)

0 142 136 117 95.77 86.03

1 22 18 16 81.82 88.89

2 26 25 19 96.15 76.00

3 21 20 10 95.24 50.00

4 37 35 27 94.59 77.14

5 36 35 27 97.22 77.14

6 144 141 123 97.92 87.23

7 23 23 17 100.00 73.91

8 30 30 20 100.00 66.67

109

Table 5-3 Character Recognition Rate for the MATLAB Implementation (Continued)

Character
Number of

Occurrences

Number of

Extracted

Characters

Number of

Recognized

Characters

Extraction

Rate (%)

Recognition

Rate (%)

9 33 33 29 100.00 87.88

A 16 16 12 100.00 75.00

B 17 17 7 100.00 41.18

C 6 6 6 100.00 100.00

D 12 12 2 100.00 16.67

E 18 18 14 100.00 77.78

F 17 17 17 100.00 100.00

G 12 12 9 100.00 75.00

H 14 1 1 7.14 100.00

J 11 3 2 27.27 66.67

K 16 16 16 100.00 100.00

L 12 8 8 66.67 100.00

M 24 21 15 87.50 71.43

N 11 10 7 90.91 70.00

P 3 3 0 100.00 0.00

R 11 11 10 100.00 90.91

S 11 11 2 100.00 18.18

T 16 2 1 12.50 50.00

U 8 2 2 25.00 100.00

V 23 22 13 95.65 59.09

Y 20 20 18 100.00 90.00

Z 21 21 21 100.00 100.00

Total 813 745 588 91.64 78.93

For the MATLAB implementation, it is concluded from Table 5-1 and Table 5-3 that,

(57 plates whose characters are not extracted due to location error x 7 characters / plate) +

(2 plates whose characters are not extracted because they are double line plates x 7

characters / plate) + (68 characters are missed while segmenting characters) + (157

characters are decided wrongly or cannot be decided) = totally 638 characters are not

identified correctly. Characters are missed either position of the character is detected

erroneously and only some part of the character is extracted or position of the character

cannot detected by the notch detection method.

For the recognition, 115 plates x 7 characters / plate + 1 plate x 8 characters / plate = 813

characters are worked with. 68 characters are not segmented accurately. Therefore,

character segmentation percentage becomes ((813-68) / 813) x100 = 91.64%. For the

110

recognition of the segmented characters, 745 characters are used and 588 characters are

identified. 157 characters are identified wrongly or cannot be identified. Therefore,

recognition percentage over the extracted characters becomes (588/745) x 100 = 78.93%.

Recognition rate of the characters over the whole localized plates is ((588 identified

characters / (115 plates x 7 characters / plate + 1 plate x 8 characters / plate = 813

characters)) x 100= 72.32%. For the whole image database (174 images x 7 characters /

plate + 1 plate x 8 characters / plate = 1226 characters), the overall recognition rate

decreases to (588 identified characters / 1226 characters) x 100 = 47.96% because of the

plate region localization errors.

Segmentation rates of the ‘H’ and ‘U’ letters are considerable low as given in Table 5-3.

For the character segmentation, notch detection method is used. Due to black pixels at the

two edges of the ‘H’ and ‘U’ letters, two peaks are constructed and there is a minimum

value in between in the vertical projection. Therefore, ‘H’ and ‘U’ characters are divided

into two and cannot be extracted correctly. If these characters are extracted correctly, they

can be recognized accurately.

Segmentation and recognition rates for the ‘J’ and ‘T’ characters are also low because tail

of the ‘J’ character and horizontal black pixels at the top of the ‘T’ character are usually

trimmed when segmenting the character due to low vertical projection values at the edges

of the character image. As a result of the trimming, these characters either are not

segmented successfully or if segmented, they are confused with ‘I’ or ‘L’ characters and

cannot be identified correctly.

Although ‘S’ character is extracted successfully, recognition rate is low. Since ‘S’ has the

same ideal codeword pair, “12121-232”, with ‘3’, ‘5’ and ‘8’ numbers, confliction occurs.

Therefore, it is usually confused with one of these numbers. If the ‘S’ character is the third

character in the license plate or if it is in between the two identified letters in the plate

region, character is recognized successfully with the identification of letter and number

algorithm.

 (1, I, L, T), (2-Z), (0,4, 7, D, O, P), (0, D), (6,8), (B,8), (B-6), (3-8-9), (3,5,8,S), (U,V,Y)

are the most confused pairs for the identification step. Each set of characters has the same

codeword pair and they are usually identified incorrectly if identification algorithms are

not implemented.

In Table 5-1, there are unexpected confused pairs. These pairs are (A,P), (5,2), (5,Z), (6,8),

(M,H), (7,6), (U,D), (J,T) and (N,T). Codeword pairs for these characters are generated

erroneously due to noise in the pixels of the character and generated codeword corresponds

to another character in the lookup table.

111

5.2 TEST RESULTS FOR THE FPGA IMPLEMENTATION

In FPGA implementation, only character segmentation and character recognition parts are

implemented. Plate regions obtained by the MATLAB implementation is used for testing.

In MATLAB implementation, after the characters are segmented, connected component

labeling and morphological opening are implemented to eliminate the adverse effect of

black pixels which do not belong to the characters. However, since these steps increase the

execution time, connected component labeling and morphological opening are not

implemented in the FPGA.

In MATLAB implementation, for 116 images, character segmentation and character

recognition algorithms are tested. In FPGA, 107 images out of these 116 images are used

to test the FPGA implementation of the algorithm. 9 images cannot be used because sizes

of the plate regions are larger than 8 Kbyte and these plate regions cannot be stored in the

on-chip RAM. Test results for the FPGA implementations are given in Table 5-4.

Table 5-4 Test Results for the FPGA Implementation

Image

Number

Original

License Plate

FPGA

Recognition
Explanation

0 38 NE 941 38NE941

4 06 EEA 80 06EEA8- 1 error (0)

5 06 AAH 83 06AA1133 1 miss(H) + 1 error (8-3)

6 06 ZTM 61 06Z1--6 2 miss (M)(1) +1 error (T-1)

8 06 NV 015 06NV015

11 06 VCU 16 -6VC116 1 miss(U) + 1 error (0)

12 06 FG 382 06FG382

13 06 V 6304 06V630- 1 error (4)

14 06 GJ 988 06G1863 4 error (J-1)(9-8)(8-6)(8-3)

15 06 GD 229 06B0229 2 error (G-B)(D-0)

16 06 BF 926 06-F92- 2 error (B)(6)

18 06 ZVP 28 06ZV028 1 error (P-0)

20 06 VTE 73 06VLE73 1 error (T-L)

21 06 AJC 01 0-ALC-1 3 error (6)(J-L)(0)

22 06 BS 913 06--819 4 error (B)(S)(9-8)(3-9)

23 06 E 9787 06E9667 2 error (7-6)(8-6)

24 06 UE 242 06UE242

26 06 YAM 63 -----38-
7 error (0)(6)(Y)(A)(M)(6-

3)(3-8) + 1 extra(-)

27 06 YUY 61 06YLY81 1 miss (U) + 1 error (6-8)

28 06 GH 039 06G1099 1 miss (H) + 1 error (3-9)

112

Table 5-4 Test Results for the FPGA Implementation (Continued)

Image

Number

Original

License Plate

FPGA

Recognition
Explanation

30 06 FFA 51 06FFA51

32 06 RED 88 06RE08- 2 error (D-0)(8)

33 06 Z 6339 --D-26-99
2 extra(-)(-) + 5 error (0-D)

(6)(Z-2)(3) (3-9)

34 06 MVB 27 06MV827 1 error (B-8)

35 06 YDU 85 06Y4185 1 miss(U) + 1 error(D-4)

36 35 KFM 75 9---M-2 6 error (3-9)(5)(K)(F)(7)(5-2)

37 06 KNT 90 06-N190 2 error (K)(T-1)

38 06 RNM 90 06R--90 2 error (N)(M)

39 06 YRU 41

Image size is larger than 8

Kbyte. Therefore, it is not

tested.

40 06 ZFS 48 06ZF308 2 error (S-3)(4-0)

41 32 AN 568 52AN268 2 error (3-5)(5-2)

43 06 ZTT 60 06Z1160 2 error (T-1)(T-1)

44 06 GM 575 06GM3-5 2 error (5-3)(7)

45 06 ZVS 41 06ZV341 1 error (S-3)

46 06 LM 649 ---649 1 miss (L)+3 error (0)(6)(M)

48 06 JM 694 06JM694

50 06 VB 035 06Y6092 4 error (V-Y)(B-6)(3-9)(5-2)

51 06 VTK 75 06VLK75 1 error (T-L)

52 06 ZVJ 64 --ZV-4 1 miss (J) + 3 error (0)(6)(6)

53 06 TNA 59 26NA-9 1 miss (T) + 2 error (2-0)(5)

54 06 EM 653 06EM65- 1 error (3)

55 06 DJ 294 06UJ294 1 error (D-U)

56 06 FKS 81 06FK384 2 error (S-3)(1-4)

57 06 MLD 18 06M1018 2 error (L-1)(D-0)

59 06 YZC 78 06YZC78

60 06 H 0184 06D1-4 1 miss (H) + 2 error (D-0)(8)

63 06 FVY 64 06FVY60 1 error (4-0)

65 06 SM 805 06SM605 1 error (8-6)

66 06 KTY 39 06KLY393 1 error (T-1) + 1 extra(3)

67 06 AD 406 06AU006 2 error (D-U)(4-0)

68 06 YUF 55 06YUF55

69 06 YBT 50 06Y6150 2 error (B-6)(T-1)

71 06 ZSS 91 10B23391
1 extra(1)+4 error (6-B)(Z-2)
(S-3)(S-3)

113

Table 5-4 Test Results for the FPGA Implementation (Continued)

Image

Number

Original

License Plate

FPGA

Recognition
Explanation

73 06 VVL 74 06A0-J74
1 miss (V) + 2 error (V-

A)(L-J)

74 06 KJS 97 06KJ397 1 error (S-3)

76 06 BM 277 06BM277

77 06 GV 261 06GY261 1 error (V-Y)

78 06 ZVR 08 06ZVR08

79 16 NB 505 -6N6202 4 error (1)(B-6)(5-2)(5-2)

80 06 KYY 24 -0BKYY24- 1 error (6-B) + 2 extra(-)(-)

81 06 LCE 24

Image size is larger than 8

Kbyte. Therefore, it is not

tested

82 06 TAV 30 06IAV30 1 error (T-I)

86 06 YNZ 47 46YN247 2 error (0-4)(Z-2)

87 06 FM 787
Image size is larger than 8
Kbyte. Therefore, it is not

tested

93 06 YML 39 06YM139 1 error (L-1)

94 06 EAE 87 46EAE87 1 error (0-4)

95 06 EB 195 06E8193 2 error (B-8)(5-3)

97 06 HLD 71 06I11071
1 miss (H) + 2 error (L-1)
(D-0)

98 06 ZKM 55

Image size is larger than 8

Kbyte. Therefore, it is not

tested

99 06 VTF 54 06VLF54 1 error (T-L)

101 06 KUH 65 06K111165 2 miss (U)(H)

103 06 FJ 557 06F11357 1 miss (J) + 1 error (5-3)

104 06 YTE 47 -0BY1E07
1 extra (-) + 3 error (6-B)

(T-1)(4-0)

105 06 DJ 294 06DJ294

109 06 AB 664

Image size is larger than 8

Kbyte. Therefore, it is not

tested

110 06 MML 54 06MM154 1 error (L-1)

112 06 GJ 015 06G11015 1 miss (J)

113 06 AB 789 06A8068 4 error (B-8)(7-0)(8-6)(9-8)

114 06 EHR 26

Image size is larger than 8

Kbyte. Therefore, it is not

tested

118 06 FPL 06 06F0106 2 error (P-0)(L-1)

114

Table 5-4 Test Results for the FPGA Implementation (Continued)

Image

Number

Original

License Plate

FPGA

Recognition
Explanation

120 06 RVR 44 46RVR44 1 error (0-4)

121 06 YMH 60 06 YM1160 1 miss (H)

122 06 TNA 59 10BLNA59
1 extra (1) + 2 error (6-B)

(T-L)

125 06 LB 509 06I6249 4 error (L-I)(B-6)(5-2)(0-4)

126 06 TKL 06 06IK106 2 error (T-I)(L-1)

129 06 BN 824 -6BN824 1 error (0)

130 06 KKY 99 06KKY99

133 06 GA 049 ------
1 extra (-) + 2 miss (0)(6)+ 5

error (G)(A)(0)(4)(9)

136 06 YZC 78 06YZC78

137 06 MDB 52 06M065
2 error (D-0)(B-6) + 1 miss

(2)

138 06 ZHT 89 06Z11189 1 miss (H) + 1 error (T-1)

139 06 BB 162

Image size is larger than 8

Kbyte. Therefore, it is not
tested

140 06 ZZE 84 06Z2--
2 miss (8)(4) + 2 error (Z-2)

(E)

141 06 LEE 85 06EE65 1 miss (L) + 1 error (8-6)

142 06 DM 529 06DM32- 2 error (5-3)(9)

143 06 KHZ 04

Image size is larger than 8

Kbyte. Therefore, it is not
tested

145 06 YMH 26 06YM112 2 miss (H)(6)

147 06 VVR 58 -0BVVR58 1 extra (-) + 1 error (6-B)

148 06 KFY 42 06KFY72 1 error (4-7)

149 06 GA 965 06GA965

150 06 GD 009 06B004- 4 error (G-B)(D-0)(0-4)(9)

151 06 GH 264 06B11264 1 error (G-B) + 1 miss (H)

152 06 VKC 70 06VKC70

154 06 GR 895 06B-F895
2 error (G-B)(R) + 1 extra
(F)

155 06 FM 969 06FM969

158 34 VD 4751 94Y00-51
5 error (3-9)(V-Y)(D-0)(4-0)

(7)

159 06 RZJ 36 46RZJ96 2 error (0-4)(3-9)

160 06 RHS 42 06RH342 1 error (S-3)

163 06 FU 644 06FU644

115

Table 5-4 Test Results for the FPGA Implementation (Continued)

Image

Number

Original

License Plate

FPGA

Recognition
Explanation

164 06 BL 040 06-1-040 1 error (B) + 1 miss (L)

165 06 TSZ 03 06I3203 3 error (T-I)(S-3)(Z-2)

167 06 EKN 80 06EKN80

169 06 MHP 10 06M1101- 1 miss (H) + 2 error (P-0)(0)

170 06 MBH 36

Image size is larger than 8

Kbyte. Therefore, it is not

tested

172 06 ZFS 22 06ZF322 1 error (S-3)

174 06 ZVJ 64 -0BZVJ64 1 extra (-) + 1 error (6-B)

Character recognition and segmentation rates for the 107 images which are tested in FPGA

are given in Table 5-5.

Table 5-5 Character Recognition Rate for the FPGA Implementation

Character
Number of

Occurrences

Number of

Extracted

Characters

Number of

Recognized

Characters

Extraction

Rate (%)

Recognition

Rate (%)

0 132 131 113 99.24 86.26

1 20 19 17 95.00 89.47

2 23 22 22 95.65 100.00

3 20 20 8 100.00 40.00

4 33 32 24 96.97 75.00

5 34 34 22 100.00 64.71

6 130 128 113 98.46 88.28

7 21 21 16 100.00 76.19

8 29 28 20 96.55 71.43

9 33 33 27 100.00 81.82

A 15 15 13 100.00 86.67

B 13 13 2 100.00 15.38

C 5 5 5 100.00 100.00

D 12 12 2 100.00 16.67

E 16 16 15 100.00 93.75

F 16 16 15 100.00 93.75

G 12 12 7 100.00 58.33

H 11 1 1 9.09 100.00

J 11 8 6 72.73 75.00

116

Table 5-5 Character Recognition Rate for the FPGA Implementation (Continued)

Character
Number of

Occurrences

Number of

Extracted

Characters

Number of

Recognized

Characters

Extraction

Rate (%)

Recognition

Rate (%)

K 14 14 12 100.00 85.71

L 11 8 0 72.73 0.00

M 21 20 17 95.24 85.00

N 11 11 10 100.00 90.91

P 3 3 0 100.00 0.00

R 9 9 8 100.00 88.89

S 11 11 1 100.00 9.09

T 16 15 0 93.75 0.00

U 7 3 3 42.86 100.00

V 23 22 18 95.65 81.82

Y 19 19 18 100.00 94.74

Z 19 19 14 100.00 73.68

Total 750 720 549 96.00 76.25

For the FPGA implementation, it is concluded from Table 5-4 and Table 5-5 that,

(30 characters are missed during character segmentation) + (171 characters are decided

wrongly or cannot be decided) = totally 201 characters are not identified correctly. For the

recognition, 116 plates are worked with. 9 plates cannot be used because of being larger

than 8 Kbyte in size. Therefore, for the FPGA tests, (115 - 9) plates x 7 characters / plate +

1 plate x 8 characters / plate = 750 characters are used. For the recognition of the

segmented characters, 720 characters are used and 549 characters are recognized. 171

characters are identified wrongly or cannot be identified. Therefore, recognition percentage

over the extracted characters becomes (549/720) x 100 = 76.25%. Recognition rate of the

whole images used for the FPGA implementation is ((549 identified characters) / (106

plates x 7 characters / plate + 1 plate x 8 characters / plate = 750 characters) x 100 = 73.2%.

Since codewords are not unique and one codeword can represent more than one character,

characters may not be recognized accurately and recognition rate decreases. Expected

confused characters which have the same codeword pairs are given in Table 5-6.

Table 5-6 Characters Represented by Same Codeword Pair

y-axis codeword x-axis codeword
Confused

Characters

10000 10000 1, I, L, T

10000 23200 2, Z

117

Table 5-6 Characters Represented by Same Codeword Pair (Continued)

y-axis codeword x-axis codeword
Confused

Characters

10000 32000
2, Z

12100 23200

12100 12100 0, 4, 7, D, O, P

12100 12310

0, D
12100 12320

12100 21000

12120 12300

12121 13100 6, 8

12121 13120 8, B

12121 13200 6, B

12121 23100 3,8,9

12121 23200 3, 5, 8,S

21000 10000
U, V, Y

21000 12100

 ‘0’, ‘4’, ‘7’, ‘D’, ‘O’ and ‘P’ characters share the same codeword which is “121000-

121000”. Therefore, these characters may conflict. As given in Table 5-5, recognition rate

of ‘D’ and ‘P’ is low, as a result of the confliction.

Segmentation of ‘H’ and ‘U’ letters are also considerably low in FPGA implementation

due to the notch detection method as explained in Section 5.1.

‘B’ letter is confused with ‘6’ and ‘8’and this confusion makes the recognition rate of ‘B’

low. To distinguish ‘B’ from ‘6’ and ‘B’ from ‘8’, letter and number identification

algorithm is applied over the whole plate characters. Identification of ‘6’ and ‘B’

algorithm can be applied as a future work. In Turkish type license plates, first two and last

two characters must be numbers and third character must be a letter. Therefore, letter and

number identification algorithm is implemented for these characters. However, if there is

an extra character at the beginning, the restriction of being a letter in the third character

may result in error. Fourth and fifth characters may be a number or a letter. If the fifth

character is a letter, fourth character should also be a letter. Therefore, if there is an ‘8’ and

‘B’ or ‘6’ and ‘B’ confliction at third character, it can be identified. If these characters are

in the place of fourth character and if the fifth character is a letter, they can be identified

otherwise, it is hard to distinguish.

‘2’ and ‘Z’ characters are confused. However, this confusion is more likely to be solved

because one of the characters is a letter while the other one is a number. By applying

identification of letter and number algorithm they can be distinguished for the first two, last

118

two and for the third character in the license plate. If the fifth character is a letter,

confliction is resolved for the fourth character. Moreover, identification of ‘2’ and ‘Z’

algorithm may be implemented in the FPGA as a future work.

 ‘3’, ‘5’, ‘8’ and ‘S’ characters are confused. If the character whose recognition is in

progress is identified as a number with the identification of letter and number algorithm,

identification of ‘3’,’5’, and ‘8’ algorithm is implemented. If ‘S’ character is the third

character or if it is the fourth character when the fifth character is a letter, it can be

distinguished from ‘3’, ‘5’ and ‘8’. Otherwise, ‘S’ character is always recognized as one of

the ‘3’, ‘5’ and ‘8’ characters.

‘1’, ‘I’, ‘L’ and ‘T’ characters have the same codeword pair which is “10000-10000”.

Since they share the same codeword pair and codeword pairs are prone to errors,

recognition rates for these characters are low.

Recognition rate for the ‘J’ characters is not very high because tail of the ‘J’ character is

trimmed when segmenting the character. As a result of the trimming, codeword pair for the

‘J’ is generated erroneously which is different than the value given in the lookup table. Due

to errors in the codeword pair, recognition rate of the ‘J’ letter is not very high.

According to Table 5-4, there are unexpected confused pairs. These pairs are (G,6), (8,6),

(7,6), (5,2), (2,0), (D,U), (1,4), (V,A) and (V,0). Codeword pairs for these characters are

generated erroneously due to noise in the pixels of the character and generated codeword

corresponds to another character in the lookup table. Unexpected confused pairs are also

results from the lack of connected component labeling and morphological opening steps

which are implemented in MATLAB but not implemented in the FPGA.

Performance of the FPGA implementation for 107 test images is given in Table 5-7.

Table 5-7 Performance of License Plate Recognition

Recognition Result
Number of

Plates

Performance

Rate (%)

All Characters Recognized Accurately 18 16.82

Recognized with only 1 character error 27 25.23

Recognized with only 1 missed

character
2 1.87

Recognized with only 2 character error 22 20.56

Recognized with only 2 missed

character
2 1.87

Recognized with 1 missed character and

1 character error
10 9.35

Recognized with 2 missed character and

1 character error
1 0.93

119

Table 5-7 Performance of License Plate Recognition (Continued)

Recognition Result
Number of

Plates

Performance

Rate (%)

Recognized with 1 missed character and

2 character error
6 5.61

Recognized with 2 missed character and

2 character error
1 0.93

Recognized with 3 character error 3 2.80

Recognized with 3 character error and 1

missed character
2 1.87

Recognized with more than 3 character

error
13 12.15

Total number of Plates 107 100

As it can be seen from the Table 5-4 and Table 5-7, for only 16.82 % of the test images, all

characters are recognized correctly. This low ratio results from the character segmentation

and character recognition errors. In order to segment the character, mean value of the plate

region is calculated and notch detection algorithm is implemented by using the mean value.

For some plates, there are unwanted pixels over the image which affects the mean value

adversely. Due to mean value variations, characters are segmented erroneously which

reduces the performance of the system. Moreover, due to unwanted pixels which do not

belong to characters, codeword of the characters are generated erroneously and erroneous

codewords also reduce recognition performance.

In order to compare the test results of the MATLAB and FPGA implementations,

connected component labeling and morphological opening steps of the character

segmentation part are removed and algorithm used in the MATLAB is made same with the

FPGA algorithm. Revised MATLAB algorithm is tested with 107 images used in the

FPGA tests. According to the test, exactly same results are obtained for all images.

5.3 COMPARISON WITH THE STATE OF THE ART

The result of the proposed system is compared with the previous studies. For the detection

of the plate region, Üçüncü [26] implements edge detection operators, morphological

operations and run-length smoothing algorithm. For the same image dataset, better plate

region localization results are obtained by the Üçüncü. For the 99 % of the images, license

plate is located correctly whereas plate region detection rate for the proposed algorithm is

67.43%. The reason for obtaining lower result is that Gabor response of the image suffers

from the large distances between the letter-to-number and number-to-letter which yields

disconnected parts for the plate region. Moreover, morphology implemented Gabor

response can make connections with the outer pixels which do not belong the plate region.

To extract the candidate region, Gabor response is filtered with predefined plate length and

120

width parameters. Since, there may be connections with outer pixels, plate region cannot

be extracted successfully.

In the Üçüncü’s method, for the character segmentation X-Y-tree decomposition algorithm

is used. After the characters are segmented, feature-based character recognition algorithm

is implemented for the recognition. In the Üçüncü’s method with the same database,

character segmentation and character recognition rates are 97.49% and 95.5%, respectively.

With the X-Y-tree decomposition algorithm, better results are obtained than the proposed

method because it is an iterative approach with analyses both horizontal and vertical

projection and uses the adaptive thresholding. In the proposed method, notch detection

algorithms which make use of the only vertical projection by considering the FPGA

implementation. Implementation of iterative algorithms increases the execution time and

reduces the performance of the system.

In the proposed system, FPGA implementation of the character recognition gives 73.2%

success rate. This result is lower than the result obtained by the Üçüncü. For the character

recognition, nearly same feature-based character recognition algorithm is implemented.

However, in Üçüncü’s method, some preprocessing techniques are used to obtain better

results such as adaptive thresholding, histogram equalization, finding the upper and lower

limits of the character which are not implemented in the FPGA. Therefore, better success

rate is obtained for the Üçüncü’s method.

In the method proposed by the Hung and Hsieh [14], license plate detection region is set

using the probability distribution of the license plate between the two barking lights in the

captured image. This method eliminates environmental interference during the license plate

detection and improves the rate of accuracy of the license plate detection and recognition.

For the test of the Hungh and Hsieh’s method, 257 vehicle images are used. Images are

taken by the video camera installed under the windshield of the vehicle. Images are

captured in various environmental conditions such as clear day, rainy day, daytime and

evening. The size of the captured images is 320x240x24-bit color picture. For the license

plate localization and character recognition better results are obtained by the Hungh and

Hsieh’s method but character segmentation method proposed in this thesis has nearly same

success rate.

Kahraman et al. [20] also uses Gabor approach for the license plate detection. In the system,

nonlinear vector quantization is used to eliminate false alarms and segment the license

plate characters to its exact boundary. In the system, 12 Gabor filters with three scales and

four directions are used whereas a single Gabor filter is used in the proposed system.

Moreover, in Kahraman’s method eight-connected blob coloring is used whereas in the

proposed algorithm, connected component labeling with four neighboring is used. Since

twelve Gabor filters in the Kahraman’s method give better response, better success rate is

obtained for the license plate detection. For the character segmentation, since vector

quantization method minimizes the quantization error, better segmentation rate is obtained.

For the test of the system, 300 images were used. 167 images were taken day and the

121

remaining were taken night conditions with various sizes, styles and forms of the license

plate. The resolution of the images ranged from 512x384 to 768x576 [20].

 Performance comparison of the previous studies with the proposed system is given in

Table 5-8.

Table 5-8 Performance Comparison of the Results

Steps

Recognition Rate

(for the Hungh

and Hsieh’s

method)

Recognition Rate

(for the

Kahraman et

al.’s method)

Recognition Rate

(for the proposed

method’s MATLAB

implementation)

License Plate
Localization

95.33% 98% 67.43%

Character

Segmentation
91.05% 94.2% 91.64%

Character
Recognition

88.71% NA 78.93%

5.4 RESOURCE UTILIZATION

In FPGA designs, logic and memory utilizations are the important parameters about which

the designer should be careful. A major consideration when programming FPGA is the

amount of the circuitry code used on the chip. It is sometimes useful to know how much

space a specific function will use when translated to look up tables and flip flops.

In Table 5-9, resource utilization of the License Plate Recognition System is given. In the

system implemented in the FPGA only 68% of the total logic elements and 60% of the

FPGA memory bits are used.

Table 5-9 Resource Utilization of the License Plate Recognition System

RESOURCE USAGE

Total logic elements 7,036 / 10,320 (68 %)

Combinational with no register 2851

Register only 947

Combinational with a register 3238

Logic element usage by number of LUT inputs

4 input functions 3424

3 input functions 1749

<=2 input functions 916

Register only 947

122

Table 5-9 Resource Utilization of the License Plate Recognition System (Continued)

RESOURCE USAGE

Logic elements by mode

normal mode 5526

arithmetic mode 563

Total registers* 4303/10732(40%)

Dedicated logic registers 4185/10320(41%)

I/O registers 118/412(29%)

Total LABs: partially or completely used 529/645 (82%)

User inserted logic elements 0

Virtual pins 0

I/O pins 75/92 (82%)

 Clock pins 4/3 (133%)

 Dedicated Input Pins 3/9(33%)

Global signals 10

M9Ks 40/46 (87%)

Total memory bits 256,384 / 423,936 (60 %)

Total block memory implementation bits 368,640 / 423,936 (87 %)

Embedded Multiplier 9-bit elements 4 / 46 (9 %)

PLLs 1 / 2 (50 %)

Global clocks 10 / 10 (100 %)

JTAGs 1 / 1 (100 %)

CRC blocks 0 / 1 (0 %)

ASMI blocks 0 / 1 (0 %)

Impedance control blocks 0 / 4 (0 %)

Average interconnect usage (total/H/V) 33% / 33% / 33%

Peak interconnect usage (total/H/V) 46% / 45% / 49%

 Maximum fan-out node pll1:inst|altpll:altpll_compo

nent|pll1_altpll:auto_genera

ted|wire_pll1_clk[0]~clkctrl

 Maximum fan-out 4039

Highest non-global fan-out signal niosII:inst6|niosII_nios_cpu

:nios_cpu|W_stall~1

Highest non-global fan-out 606

Total fan-out 39727

 Average fan-out 3.48

 * Register count does not include registers inside RAM blocks or DSP blocks.

123

5.5 EXECUTION TIMES

FPGA implementation of the License Plate Recognition System operates at 75 MHz clock

frequency. FPGA logic blocks are embedded with the Altera system integration tool and

processor controls the operations of the hardware. It is expected that execution time of the

hardware side is always same. However, since processor controls the logic blocks, duration

of the operations cannot be same. Execution times for processor side depend on the size

and content of the input image. Number of pixels used for the character segmentation and

character recognition affects the computation time. Increasing the size of the input image

increases the execution times. Moreover, black pixels at the top and bottom of the plate

region require trimming. Trimming operation over the all plate region increases the

computation time. For some confused characters, identification algorithms are

implemented which also increase the duration of the operation. Execution times are

measured in worst case where trimming take place and the size of the plate region is large.

Measured and calculated execution times of the system for a single plate are presented in

Table 5-10.

Table 5-10 Execution Times of the LPR System

Operation Execution Time

Reading from and Writing to RAM 56.476 ms

Up and Down Side Trimming 103.170 ms

Vertical Projection without DC value 12.030 ms

Notch detection 1.133 ms

Character Segmentation 10.260 ms

Up and Down Side Trimming for the Character 37.013 ms

Codeword Generation 29.362 ms

Codeword Matching 10.217 ms

Identification of Character 11.396 ms

Total Execution Time 271.239

From the Table 5-10, it is seen that “Up and Down Side Trimming” part has the longest

execution time. In this part, black pixels which do not belong to characters are trimmed

over the all plate region. When the number of pixels in the plate region is large, since all

pixels values are used for trimming, computation time increases. Moreover, if there are no

confused characters in the plate region, identification of characters part is not processed

and it decreases the time of the computation. In the Table 5-10, worst case scenario is

given over the used dataset. Maximum latency of the system becomes almost 272 ms. In

272 ms, a car can go 5.3 m with average 70 km/h speed. This distance is highly convenient

for the implementation of the license plate recognition system because images used in the

dataset are taken from 4-7 meters away from the vehicle.

125

CHAPTER 6

6. CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this thesis, license plate detection and recognition is studied and verified in MATLAB

and then, recognition part is implemented in the FPGA. Implemented algorithm is tested

with 175 images which are taken with different lighting conditions. The algorithm

developed for the FPGA is a combination of previously proposed algorithms. In order test

the FPGA implementation, 116 plate regions are used which are obtained from the

MATLAB implementation.

In the first step of the proposed algorithm, location of the plate region in the input image is

found by utilizing Gabor transform and morphological operations. For the detection of the

plate region, image is converted into HSV color representation and value component of the

image is used to decrease the complexity and to increase the performance by eliminating

illumination effects over the image. Contrast enhancement is applied to obtain better

results from Gabor transform. Gabor response of the image gives the black-to-white pixel

transition which exist considerably in plate region. Gabor response of the images is merged

by using morphological operation and uniform candidate plate regions are extracted. By

observing the density and the size of the candidate region, exact plate region is determined.

In the character segmentation step of the proposed algorithm, vertical projection of the

extracted plate region is calculated. Each character in the plate region represents a notch in

the vertical projection. By using the distances between notches, characters are separated.

As a final step, each segmented character is recognized by using template matching. For

each character, codeword is calculated which represents the character with a sign. By

comparing calculated codeword with the template codeword stored in the database,

character is recognized.

For same cases, more than one character is recognized for the candidate character and this

situation results in confusion. To solve this problem, identification algorithms are

implemented for the confused characters.

The algorithm of the character segmentation and character recognition parts are

implemented on Altera Cyclone IV E FPGA. For the implementation of the algorithm,

network-on-chip structure is constructed with the Altera system integration tool, Qsys, and

compact system block is obtained. In the Qsys system, Nios II soft processor which is

embedded into the FPGA is utilized. The workload of the algorithms is divided between

126

FPGA logic and processor according to the complexity of the algorithm. FPGA and Nios II

soft processor is running with 75 MHz clock. Operating clock frequency can be increased

but it doesn’t affect the execution times. The main item which determines the execution

time performance is the read and write cycles of the external memory. Since, used

SDRAM has its own clock for it’s transmission bus; increase in the operating FPGA

frequency will not affect the performance of the implemented algorithm.

License plate detection rate is 67.43% for the MATLAB implementation of the image

database. Wrong detections occur if the plate region is dirty or there is a screw on the

region. If characters are too small or separated in large distances or if the characters make

connection with the upper or lower side of the plate holder, it is not possible to locate the

license plate with this algorithm. If the separation between the number-to-letter and letter-

to-number is high, morphology implemented Gabor response consists of disconnected parts

and these parts are not considered as a plate region. These reasons result in low extraction

ratio.

Character segmentation rate is higher than 90% for the image dataset. Noise over the image,

false pixel values between characters and characters whose vertical projection consist of

low values such as L, T etc. decrease the segmentation rate. Since these reasons affect the

vertical projection and character segmentation is achieved according to the vertical

projection value of the plate region, wrong segmentations may occur.

Character recognition rate is around 76%. Recognition ratio is low because the character

size is so small that the noise factors become effective on the recognition step. If there is an

error due to noise or false pixel values, codewords which represent characters are

generated erroneously and this affects the matching result. Also, identification algorithms

for confused characters do not cover the all confused characters and wrong recognition

may occur. Usage of the different fonts with different sizes, thickness in the plate region,

small picture stickers exist on the plate, plates that are not holded straight and shadow on

the plate region are the other factors reducing the recognition ratio. Moreover, in template

matching stage, codeword of the candidate character is compared with the templates one

by one and if the total index values are same; this template is considered as a recognized

character. This situation also decreases the recognition rate. If the template matching of

the character is accepted with some similarity measure, recognition rate of the candidate

character increases.

For the FPGA implementation, only 68% of the FPGA logic resources are used. Since the

development board used for the FPGA implementation is a low cost and low power board,

it decreases the cost of the system.

127

6.2 FUTURE WORK

Some extra processes can be applied as a future work to improve the recognition and

extraction ratio. One of the major problem of the plate region detection is the disconnected

parts of the morphology implemented Gabor response due to large distances between

number-to-letter and letter-to number. As a future work, after finding the Gabor response,

these connected regions can be analyzed whether they contains characters or not. If there is

a character on the region, enlargement of the disconnected parts can be applied. If the

disconnected parts are separated in the range of predefined distance, these disconnected

parts can be merged.

Plate regions used in this thesis is parallel to the ground and Gabor filters used in the

proposed algorithm is orientation dependent. To provide orientation invariant license plate

detection and recognition system, skew correction algorithm may be applied which is not

the subject of this thesis.

For the character segmentation step, if not all of the characters are segmented successfully,

the place of the missed characters can be guessed and characters in this region are tried to

be found for the recognition step as a future work.

For the confused characters, the number of identification algorithms can be increased.

In order the implement the plate region detection step in the FPGA, larger FPGA can be

used as a future work. Since Gabor filtering is achieved over the 640x480 resolution

images, it requires larger FPGA. Moreover, if the used development board contains

peripherals such as seven segment display or LCD display, the proposed system becomes

standalone system which shows the results on the screen. With standalone system, license

plate detection and recognition system can be used independently to improve the traffic

control, park automatic and law enforcements etc.

129

REFERENCES

1. Iwanowski, Marcin. "Automatic car number plate detection using morphological image

processing." Przeglad Elektrotechniczny 81 (2005): 58-61.

2. Daugman, John G. "Two-dimensional spectral analysis of cortical receptive field

profiles." Vision research 20, no. 10 (1980): 847-856.

3. Daugman, John G. "Uncertainty relation for resolution in space, spatial frequency, and

orientation optimized by two-dimensional visual cortical filters."Optical Society of

America, Journal, A: Optics and Image Science 2, no. 7 (1985): 1160-1169.

4. Lee, Tai Sing. "Image representation using 2D Gabor wavelets." Pattern Analysis and

Machine Intelligence, IEEE Transactions on 18, no. 10 (1996): 959-971.

5. Lades, Martin, Jan C. Vorbruggen, Joachim Buhmann, Jörg Lange, Christoph von der

Malsburg, Rolf P. Wurtz, and Wolfgang Konen. "Distortion invariant object recognition in

the dynamic link architecture." Computers, IEEE Transactions on 42, no. 3 (1993): 300-

311.

6. Otsu, Nobuyuki. "A threshold selection method from gray-level histograms."

Automatica 11, no. 285-296 (1975): 23-27.

7. Datasheet of Altera DB_START_4CE10-Cyclone IV E Development Board

http://www.ebv.com/download/?file=fileadmin/HOME/1_Products/EBV/DB_Start_4CE10

_Dev.Board/DB_START_4CE10_v1-0.pdf&no_cache=1 last accessed date: April 23,

2013

8. Avalon Interface Specification.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf last accessed date: July 13,

2013

9. Nios II Processor Reference Handbook

www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf last accessed date: May 14, 2013.

10. Datasheet of LTC2801IDE http://cds.linear.com/docs/en/datasheet/2801234fe.pdf last

accessed data : June 13,2013

11.Creating a System with Qsys http://www.altera.com/literature/hb/qts/qsys_intro.pdf

last accessed date : June 14, 2013.

12. Babu, C. Nelson Kennedy, and Krishnan Nallaperumal. "A license plate localization

using morphology and recognition." In India Conference, 2008. INDICON 2008. Annual

IEEE, vol. 1, pp. 34-39. IEEE, 2008.

130

13. Ozbay, Serkan, and Ergun Ercelebi. "Automatic vehicle identification by plate

recognition." World Academy of Science, Engineering and Technology 9, no. 41 (2005):

222-225.

14. Hung, Kuo-Ming, and Ching-Tang Hsieh. "A Real-Time Mobile Vehicle License Plate

Detection and Recognition." Tamkang Journal of Science and Engineering 13, no. 4 (2010):

433-442.

15. Duman, S., R. Oktem, and A. Enis Cetin. "Alternative feature extraction approaches for

car plate recognition." In Signal Processing and Communications Applications Conference,

2005. Proceedings of the IEEE 13th, pp. 324-327. IEEE, 2005.

16. Comelli, Paolo, Paolo Ferragina, Mario Notturno Granieri, and Flavio Stabile. "Optical

recognition of motor vehicle license plates." Vehicular Technology, IEEE Transactions

on 44, no. 4 (1995): 790-799.

17. Wang, Shen-Zheng, and Hsi-Jian Lee. "Detection and recognition of license plate

characters with different appearances." In Intelligent Transportation Systems, 2003.

Proceedings. 2003 IEEE, vol. 2, pp. 979-984. IEEE, 2003.

18. Kim, K. M., B. J. Lee, K. Lyou, and G. T. Park. "The automatic recognition of the plate

of vehicle using the correlation coefficient and Hough transform."Journal of Control,

Automation and System Engineering 3, no. 5 (1997): 511-519.

19. Gonzalez, R., and R. Woods. "Digital Image Processing 2nd Edition Prentice

Hall." Upper Saddle River, NJ (2002).

20. Kahraman, Fatih, Binnur Kurt, and Muhittin Gökmen. "License plate character

segmentation based on the gabor transform and vector quantization." In Computer and

Information Sciences-ISCIS 2003, pp. 381-388. Springer Berlin Heidelberg, 2003.

21. Wu, B-F., S-P. Lin, and C-C. Chiu. "Extracting characters from real vehicle licence

plates out-of-doors." IET Computer Vision 1, no. 1 (2007): 2-10.

22. Iwanowski, Marcin. "An application of mathematical morphology to filtering and

feature extraction for pattern recognition." Przegl d Elektrotechniczny 80, no. 4 (2004).

23. Fahmy, Maged MM. "Automatic number-plate recognition: neural network approach."

In Vehicle Navigation and Information Systems Conference, 1994. Proceedings., 1994, pp.

99-101. IEEE, 1994.

24. Lee, Eun Ryung, Pyeoung Kee Kim, and Hang Joon Kim. "Automatic recognition of a

car license plate using color image processing." In Image Processing, 1994. Proceedings.

ICIP-94., IEEE International Conference, vol. 2, pp. 301-305. IEEE, 1994.

131

25. Kahraman, Fatih, B. Evrim Demiröz, Binnur Kurt, and Muhittin Gökmen. "Bakış

Açısından Bağımsız Gürbüz Plaka Tanıma Sistemi." Endüstri ve Otomasyon, sayı 106,

sayfa 28‐32, Ocak 2006.

26. Üçüncü, Barış. “Computer Based Identification of Car License Plate”, Msc

Thesis, METU, (2000).

27. Castello, Paolo, Christopher Coelho, Enrico Del Ninno, Ennio Ottaviani, and Michele

Zanini. "Traffic monitoring in motorways by real-time number plate recognition." In Image

Analysis and Processing, 1999. Proceedings. International Conference on, pp. 1128-1131.

IEEE, 1999.

28. Sirithinaphong, Thanongsak, and Kosin Chamnongthai. "The recognition of car license

plate for automatic parking system." In Signal Processing and Its Applications, 1999.

ISSPA'99. Proceedings of the Fifth International Symposium on, vol. 1, pp. 455-457. IEEE,

1999.

29. Automatic Vehicle Identification

http://www.federalapd.com/AutomaticVehicleIdentification_7053.aspx last accessed date :

August 2, 2013.

30. Barroso, J., E. L. Dagless, A. Rafael, and J. Bulas-Cruz. "Number plate reading using

computer vision." In Industrial Electronics, 1997. ISIE'97., Proceedings of the IEEE

International Symposium on, pp. 761-766. IEEE, 1997.

31. He, Ming G., Alan L. Harvey, and Paul Danelutti. "Car number plate detection with

edge image improvement." In Signal Processing and Its Applications, 1996. ISSPA 96.,

Fourth International Symposium on, vol. 2, pp. 597-600. IEEE, 1996.

32. Kim, Kl Kim, K. I. Kim, J. B. Kim, and H. J. Kim. "Learning-based approach for

license plate recognition." In Neural Networks for Signal Processing X, 2000. Proceedings

of the 2000 IEEE Signal Processing Society Workshop, vol. 2, pp. 614-623. IEEE, 2000.

33. Wei, Wu, Yuzhi Li, Mingjun Wang, and Zhongxiang Huang. "Research on number-

plate recognition based on neural networks." In Neural Networks for Signal Processing XI,

2001. Proceedings of the 2001 IEEE Signal Processing Society Workshop, pp. 529-538.

IEEE, 2001.

34. Zimic, Nikolaj, Jelena Ficzko, Miha Mraz, and Jernej Virant. "The fuzzy logic

approach to the car number plate locating problem." In Intelligent Information Systems,

1997. IIS'97. Proceedings, pp. 227-230. IEEE, 1997.

35. Kim, Sang Kyoon, Dae Wook Kim, and Hang Joon Kim. "A recognition of vehicle

license plate using a genetic algorithm based segmentation." In Image Processing, 1996.

Proceedings., International Conference on, vol. 1, pp. 661-664. IEEE, 1996.

133

APPENDIX A

7. NIOS II PROCESSOR

The Nios II processor is a general-purpose RISC processor core with the following features

[9]:

 Full 32-bit instruction set, data path, and address space

 32 general-purpose registers

 Optional shadow register sets

 32 interrupt sources

 External interrupt controller interface for more interrupt sources

 Single-instruction 32 × 32 multiply and divide producing a 32-bit result

 Dedicated instructions for computing 64-bit and 128-bit products of multiplication

 Floating-point instructions for single-precision floating-point operations

 Single-instruction barrel shifter

 Access to a variety of on-chip peripherals, and interfaces to off-chip memories and

peripherals

 Hardware-assisted debug module enabling processor start, stop, step, and trace

under control of the Nios II software development tools

 Optional memory management unit (MMU) to support operating systems that

require MMUs

 Optional memory protection unit (MPU)

 Software development environment based on the GNU C/C++ tool chain and the

Nios II Software Build Tools (SBT) for Eclipse

 Integration with Altera's SignalTap® II Embedded Logic Analyzer, enabling real-

time analysis of instructions and data along with other signals in the FPGA design

 Instruction set architecture (ISA) compatible across all Nios II processor systems

 Performance up to 250 DMIPS

The Nios II architecture defines the following functional units:

 Register file

 Arithmetic logic unit (ALU)

 Interface to custom instruction logic

 Exception controller

 Internal or external interrupt controller

 Instruction bus

134

 Data bus

 Memory management unit (MMU)

 Memory protection unit (MPU)

 Instruction and data cache memories

 Tightly-coupled memory interfaces for instructions and data

 JTAG debug module

Block diagram of the Bios core is given in Figure A-1.

Figure A-1 Nios II Processor Core Block Diagram

135

APPENDIX B

8. RS232 EXTENDER CIRCUIT

* Detailed information about LTC2801IDE device can be found in [10].

137

APPENDIX C

9. GUI INTERFACE OF THE LPDRS

GUI interface is developed to send the image via serial port. Interface is developed on

Microsoft Visual C# 2010 Express. Recognition result of the LPDRS is displayed on the

GUI, after the recognition process is completed.

Figure C-1 GUI of LPDRS

139

 APPENDIX D

10. DATA TABLES

This appendix contains data tables for the proposed license plate recognition algorithm.

Table D-1 shows the codewords and ASCII codes that are used for the character

recognition process.

Table D-2 shows the plates that are used as test images.

Table D-1 Lookup Table for the Characters

Character y-axis codeword x-axis codeword
ASCII code

 in decimal

'0' 12100 12100 48

'0' 12100 21000 48

'0' 12100 12320 48

'0' 12120 12300 48

'0' 12100 12310 48

'1' 10000 10000 49

'2' 12100 23200 50

'2' 10000 23200 50

'2' 10000 32000 50

'2' 12100 20000 50

'2' 12121 23210 50

'2' 21210 21000 50

'3' 12121 23120 51

'3' 12100 23000 51

'3' 12121 23420 51

'3' 12121 23100 51

'3' 12121 23200 51

'4' 12100 12000 52

'4' 12100 12100 52

'4' 12321 12100 52

140

Table D-1 Lookup Table for the Characters (Continued)

Character y-axis codeword x-axis codeword
ASCII code

 in decimal

'5' 10000 12321 53

'5' 12121 23200 53

'6' 12121 13200 54

'6' 12100 13100 54

'6' 12121 13100 54

'6' 12100 13000 54

'6' 12121 24300 54

'6' 12100 13210 54

'6' 12121 13210 54

'6' 12100 13200 54

'7' 12100 12100 55

'8' 12100 13120 56

'8' 12121 21312 56

'8' 12121 21320 56

'8' 12121 21310 56

'8' 12121 13000 56

'8' 12121 24200 56

'8' 12121 13100 56

'8' 12121 23200 56

'8' 12121 13120 56

'8' 12121 23100 56

'9' 12121 23100 57

'9' 12100 23100 57

'A' 12120 12100 65

'A' 21212 12121 65

'B' 12121 13120 66

'B' 12121 13200 66

'C' 12121 12000 67

'C' 12121 20000 67

'D' 12100 12100 68

'D' 12100 21000 68

'D' 12100 12320 68

'D' 12120 12300 68

'D' 12100 12310 68

'E' 10000 13200 69

141

Table D-1 Lookup Table for the Characters (Continued)

Character y-axis codeword x-axis codeword

ASCII

code

 in decimal

'E' 10000 13000 69

'E' 12000 13212 69

'F' 10000 12100 70

'F' 10000 12000 70

'G' 12121 12320 71

'H' 21200 10000 72

'I' 10000 10000 73

'J' 12100 10000 74

'K' 21200 12000 75

'L' 10000 10000 76

'M' 23400 10000 77

'M' 21320 10000 77

'N' 23200 10000 78

'N' 20000 10000 78

'O' 12100 12100 79

'P' 12121 12100 80

'P' 12100 12100 80

'R' 12120 12321 82

'R' 12120 12000 82

'S' 12121 23200 83

'S' 12121 23000 83

'S' 12121 30000 83

'T' 10000 10000 84

'U' 21000 10000 85

'U' 21000 12100 85

'V' 21000 10000 86

'V' 21000 12100 86

'Y' 21000 10000 89

'Y' 21000 12100 89

'Z' 12100 23200 90

'Z' 10000 23200 90

'Z' 10000 32000 90

'Z' 10000 20000 90

142

Table D-2 Plate Database

Image

Number

License

Plate

Image

Number

License

Plate

Image

Number

License

Plate

Image_000 38 NE 941 Image_036 35 KFM 75 Image_072 06 TRZ 81

Image_001 06 ANZ 72 Image_037 06 KNT 90 Image_073 06 VVL 74

Image_002 35 EL 786 Image_038 06 RNM 90 Image_074 06 KJS 97

Image_003 06 LS 717 Image_039 06 YRU 41 Image_075 06 ZFE 94

Image_004 06 EEA 80 Image_040 06 ZFS 48 Image_076 06 BM 277

Image_005 06 AAH 83 Image_041 32 AN 568 Image_077 06 GV 261

Image_006 06 ZTM 61 Image_042 06 JV 031 Image_078 06 ZVR 08

Image_007 06 ACF 96 Image_043 06 ZTT 60 Image_079 16 NB 505

Image_008 06 NV 015 Image_044 06 GM 575 Image_080 06 KYY 24

Image_009 34 UEN 01 Image_045 06 ZVS 41 Image_081 06 LCE 24

Image_010 06 AKV 30 Image_046 06 LM 649 Image_082 06 TAV 30

Image_011 06 VCU 16 Image_047 06 LMS 97 Image_083 06 BB 162

Image_012 06 FG 382 Image_048 06 JM 694 Image_084 06 PB 353

Image_013 06 V 6304 Image_049 06 LPC 54 Image_085 06 VB 035

Image_014 06 GJ 988 Image_050 06 VB 035 Image_086 06 YNZ 47

Image_015 06 GD 229 Image_051 06 VTK 75 Image_087 06 FM 787

Image_016 06 BF 926 Image_052 06 ZVJ 64 Image_088 06 UB 952

Image_017 11 AK 680 Image_053 06 TNA 59 Image_089 06 ZBK 09

Image_018 06 ZVP 28 Image_054 06 EM 653 Image_090 06 SG 911

Image_019 41 DA 848 Image_055 06 DJ 294 Image_091 06 RNH 19

Image_020 06 VTE 73 Image_056 06 FKS 81 Image_092 06 ZMJ 55

Image_021 06 AJC 01 Image_057 06 MLD 18 Image_093 06 YML 39

Image_022 06 BS 913 Image_058 06 KJ 258 Image_094 06 EAE 87

Image_023 06 E 9787 Image_059 06 YZC 78 Image_095 06 EB 195

Image_024 06 UE 242 Image_060 06 H 0184 Image_096 06 UB 008

Image_025 45 EE 616 Image_061 06 GC 115 Image_097 06 HLD 71

Image_026 06 YAM 63 Image_062 06 HB 496 Image_098 06 ZKM 55

Image_027 06 YUY 61 Image_063 06 FVY 64 Image_099 06 VTF 54

Image_028 06 GH 039 Image_064 06 SC 197 Image_100 06 JH 617

Image_029 06 LN 567 Image_065 06 SM 805 Image_101 06 KUH 65

Image_030 06 FFA 51 Image_066 06 KTY 39 Image_102 06 NB 150

Image_031 06 YNP 76 Image_067 06 AD 406 Image_103 06 FJ 557

Image_032 06 RED 88 Image_068 06 YUF 55 Image_104 06 YTE 47

Image_033 06 Z 6339 Image_069 06 YBT 50 Image_105 06 DJ 294

Image_034 06 MVB 27 Image_070 06 YML 50 Image_106 06 SC 197

Image_035 06 YDU 85 Image_071 06 ZSS 91 Image_107 06 GV 613

143

Table D-2 Plate Database (Continued)

Image

Number

License

Plate

Image

Number

License

Plate

Image

Number

License

Plate

Image_108 06 VV 941 Image_131 06 JK 870 Image_154 06 GR 895

Image_109 06 AB 664 Image_132 06 YB 868 Image_155 06 FM 969

Image_110 06 MML 54 Image_133 06 GA 049 Image_156 06 SS 798

Image_111 06 UM 938 Image_134 06 VUF 61 Image_157 06 TKD 26

Image_112 06 GJ 015 Image_135 06 GV 354 Image_158 34 VD 4751

Image_113 06 AB 789 Image_136 06 YZC 78 Image_159 06 RZJ 36

Image_114 06 EHR 26 Image_137 06 MDB 52 Image_160 06 RHS 42

Image_115 06 PG 742 Image_138 06 ZHT 89 Image_161 06 BM 277

Image_116 06 VPC 41 Image_139 06 BB 162 Image_162 06 BB 162

Image_117 06 MUZ 64 Image_140 06 ZZE 84 Image_163 06 FU 644

Image_118 06 FPL 06 Image_141 06 LEE 85 Image_164 06 BL 040

Image_119 06 GN 623 Image_142 06 DM 529 Image_165 06 TSZ 03

Image_120 06 RVR 44 Image_143 06 KHZ 04 Image_166 06 EM 653

Image_121 06 YMH 60 Image_144 06 GV 492 Image_167 06 EKN 80

Image_122 06 TNA 59 Image_145 06 YMH 26 Image_168 06 MKC 25

Image_123 06 MZK 93 Image_146 06 KVF 51 Image_169 06 MHP 10

Image_124 06 JB 489 Image_147 06 VVR 58 Image_170 06 MBH 36

Image_125 06 LB 509 Image_148 06 KFY 42 Image_171 06 MZK 93

Image_126 06 TKL 06 Image_149 06 GA 965 Image_172 06 ZFS 22

Image_127 06 KPM 96 Image_150 06 GD 009 Image_173 06 JB 489

Image_128 06 YD 468 Image_151 06 GH 264 Image_174 06 ZVJ 64

Image_129 06 BN 824 Image_152 06 VKC 70

Image_130 06 KKY 99 Image_153 06 KG 629

