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ABSTRACT

AERODYNAMIC PARAMETER ESTIMATION OF A MISSILE

Aksu, Arda
M.Sc., Department of Aerospace Engineering
Supervisor Asst. Prof . Dr. Ali Tar
September 201%3 pages

Aerodynamic characteristics of missiles depend strongly on wind angles, that is, angle of
attack and sideslip angle. However it is impracticaineasure these angles during missile
testing. Therefore, without direct information of the wind angles, it becomes a difficult
problem to be able to accurately estimate the missile aerodynamic parameters from flight
tests. This thesis addresses this probkemd suggests an approach to estimate missile
aerodynamic parameters successfully without wind angles measurements. Instead of
reconstructing wind angles with pgstocess calculations prior to estimation, reconstruction
process is handled within the esdition. The algorithm developed is tested with simulated
missile data. Results are compared with true values used in simulation. It is demonstrated
that suggested approach can provide accurate and reliable estimations without wind angles
measurements. Th@roach is also applied to real flight test data of a missile with success.

Keywords: Missile, Open Loop Simulation, Parameter Estimation, Maximum Likelihood
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CHAPTER 1

INTRODUCTION

Flight vehicle systems are designed with initial predictions based on similar systems mostly.
Throughout the design stage characteristics of the system are needed to be represented with
higher fidelities as the design evolves. One of the most difficulls pafr the modeling
involves postulating an accurate aerodynamic model for successful evaluation of system
behavior.

Aerodynamic modeling starts with analytical calculations and continues with wind tunnel
tests for fine tuning of aerodynamic parametensthle end, postulated model is verified
through flight tests. The easiest and most straight forward way of aerodynamic model
validation is comparing the simulation results with real flight tests carried out for
performance demonstration. However thosestas¢ usually held with the autopilot in the
(closed) loop. Match between simulation and flight test results does not necessarily mean
that postulated model is accurate enough. This brings the necessity of separate flight tests
specifically designed for asdynamic model validation. For this reason, estimating
aerodynamic parameters from flight tests has always been a major interest for flight vehicles.

1.1.Literature Review

Aerodynamic parameter estimation methods have been extensively applied to dliglidrte
decades. The various parameter estimation methods can be broadly classified into three
categories: equation error, output error, and filter error metddds

In equation error method, aerodynamic parameters are achieved with a classical regression
technique such as least square estimation. Synthesis of aerodynamic forces and moments
through Taylor series expansion leads to a model that is linear in parsrmtrodynamic
coefficients are computed from linear and angular accelerations measurements and
parameters of linearized model are obtained with least square fits to coefficients. Popularity
of this method comes from its simplicity. For a given modeicstire, estimations are easily
obtained with minimal computation in one shot. Due to the presence of measurement errors
however, estimations might be asymptotically biased, inconsistent, and inefficient.

Output error method, as the name suggests, aimsnimize the error between the model
outputs and measurements. This method is a nonlinear optimization method that has been
most widely used for aerodynamic parameter estimation studies ever since its introduction
around the seventies. Cost function isallguobtained from likelihood function so that the
method is also referred as maximum likelihood estimation. The main advantage of this



method over equation error method is that aerodynamic parameters can be implemented in
state equations while minimizirtbe error. This in turn results with more accurate models.

In output error method, process noise in states is neglected and only measurement noise is
accounted. The filter error method on the other hand account®ottr process and
measurement noises aigdthe most general stochastic approach to aerodynamic parameter
estimation Process noise is included in state equations so that minor errors in system model
can be eliminated with a state filter. In the presence of atmospheric turbulence this method is
known to yield accurate resu[ts0].

In addition to methods above, frequency domain approaches might be preferable over time
domain approaches for rotorcraft idigication [4]. Since no integration is involved in the
frequency domain, method becomes suitable for unstable systems for which numerical
integration in time down can lead to problems. Moreover, without affecting the estimation
results, the zero frequency can be neglected in evaluation, which can be advantageous in
eliminating the need to bias parameters.

Other approaches appear in the literature are filtemimgroach which provides real time
estimations and neural network based methods for highly nonlinear aerodynamic models.

1.2. Problem Definition and Contribution of Thesis

It can be seen that most of the studies appeared in the literature involve aircraft systems. The
advantage of studying such systems is having reliable sensors in addition to Inertial
Measurement Unit (IMU) such as airflow angle vane, integrating gyro yamehac pressure
sensof12].

This is not the case for missile applications. For practical reasons, most of the time missiles
have only IMU which measures transtamal accelerations and angular rates only. The
required states are obtained by integrating IMU measurements during flight. Bias and scale
errors in IMU measurements however, cause the integrated data to drift. Launch angles may
also have uncertainty oMU may not be able to detect attitude and velocity changes with
enough accuracy during launch. These errors can be either neglected when their affect is
minimal [1] or handled with post process data reconstruction technifl@g13].
Nevertheless, they can cause a poor representation of the true states.

Morelli has recently suggested a more reliable way of estimating aerodynamic parameters
without wind angles measurentefil6]. It was demonstrated that high frequency content of
both reconstructed wind angles and real measurements are almost same. Making use of this
information, wnd angles were calculated with integrating IMU measurements, passed
through a high pass filter and then used in frequency domain estimation.

This thesis focuses on an alternative solution in time domain and proposes an approach with
output error methodot estimate aerodynamic parameters of a missile from control surface
deflections and IMU measurements only. Instead of reconstructing wind angles with post

2



process calculations prior to estimation, reconstruction process is proposed to be handled
within the estimation. Output error method is utilized for this purpose. Efficiency of the
algorithm developed is demonstrated with both simulation and real flight test data.

1.3.Scope

In order to evaluate the parameter estimation algorithm, a missile simulatievei®ped in
Chapter 2. Javelin missile system is taken as an example and modeled in MATLAB.
Aerodynamic model is obtained from Missile Datcom with assumed dimensions from
Javelin pictures.

Necessary steps of an estimation study taking place prior toghetest are explained and
detailed in Chapter 3. These steps are postulating an aerodynamic model, preparation of test
scenario and input design.

Chapter 4 gives mathematical details about the estimation algorithm to be tested. Practical
consideratias for real life applications are given. Two different system models to be used in
estimation algorithm are proposed. Implications for advantages and disadvantages of both
models are also discussed.

In Chapter 5, the algorithm developed is tested witlh Bghulated data and real flight test
data. Suggestions are also given about practical applications of the algorithm.

Finally, in Chapter 6, all results are discussed with conclusions and possible future works.






CHAPTER 2

MISSILE FLIGHT SIMULATION

2.1.Javelin ATGM

Javelin AntiTank Guded Missile (ATGM) [6],[14] is a marportable, fireandforget
systemdesigned specifically to hit and destroy armored tanks and fighting vehicles. The
project has been managed by Texas Instrument (later changed as Raytheon) and Lockheed
Martin. Production phase has started in 1996 and missile has been used in fieltksince t

Javelin is fired by gunner after a target is locked with infrared (IR) seeker of the missile. The
missile has two separate propulsion units, namely launch motor and flight motor. The launch
motor provides soft launch to eject the missile from launble with approximately 13m/s
velocity. Once the missile clears the tube, 8-budy wings and 4 tail fins flip out. Missile
travels with this velocity to a safe distance of around 5 meters, then flight motor ignites and
provides thrust for propelling thmissile to its maximum velocity. A launch of Javelin
ATGM is shown inFigure2.1.

é % A" AT N -J. -
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SUNN, > — Sl e, 2 ‘
Figure2.1 - Launch picture of Javelin ATGM

After burnout of the flight motor, Javelin missile has approximately 190m/s velocity and
cortinues the flight without thrust. Mass specifications of Javelin ATGM after-butifb]
are given inrable2.1.



Table2.1 - Javelin ATGM Specifications After Buraut

Mass 10.15 kg
Diameter 0.127 m
Length 1.081 m
CG (from nose) 0.446 m
Jux 0.023 kg m/5
Iy s bz 0.914 kg m/$

2.2.Reference Frames and Modeling Assumptions

In order to supply data for the estimation study, response of Javelin ATGM is simulated with
six degrees of freedom{BOF) including inertial positiong,y,zand Euler angles , dTheg

two referene frames used in simulation, namely inertial frame and body frame are defined
in Figure2.2.

[ (body)

Uy

i (body)
u2

— (earth)

d;

|
I
|
i !
(roll axis) _ % oty
3

lj é earth)

(yaw axis)

Figure2.2 - Reference frames

Inertial frame is fixed with respect to earth at launched position of the missilez akis
pointing the same direction as the gravity vectaxis pointing the direction of the missile
andy axis pointing the right side of ¢hinitial orientation of missile. Body frame origin is at
the missile center of gravity (CG), with axis pointing forward through the nose of the
missile,y axis pointing the right side of missile amdxis pointing through the underside.
Rotation of thebody frame from fixed earth frame is determined wit® B Euler sequence
(y , drespectively).

Simulation is started at buaout with 190 m/s initial velocity and physical specs are held
constant during the simulation due to bout. Since the main fas in this thesis is
estimating the aerodynamic parameters of the missile while it is in open loop, simulation of
the missile before the buout and design of a proper controller are not in the scope of this
study. It is assumed that missile is brough&tdesired height and attitude at bout after
launch. After that open loop control surface deflections are applied in order to excite the
missile. Only the response of the missile to those excitations is simulated.



Further discussions of the assumpsionade are given in the following sections.

2.3. Equations of Motion

The collected equations of motion of the missile to be used in the simulation are summarized
below[12]:

eu raF -8q ®H & g u
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where"Oand 0 are the resultant aerodynamic force and moment vectors acting on the
missile center of gravity expressed in the body coordinate frame. Notesitiedj and
cosine()functions are denoted withandc for simplicity. Aerodynamic forces and moments
are expressed in terms of Adimensional aerodynamic coefficients as follows:

<, 8 (2.5)

M=V & 4] (2.6)



Gravitational acceleratiorg and air density} in the above equations are assumed not to
vary and used as constant in simulation. Considering the duration of the simulation and total
change in the altitude, this is a reasonable assumption.

State equatios given above are numerically integrated in MATLAB usiffjo2der Runge
Kutta integration with 1ms time step.

States and inputs of the missile model are defined as:
x=[u vwpagrf g yxye¥F 2.7
u=[d, ¢ W (2.8)

— e

The applied integration formula then can be shown as:

~

x(k+1) =(K) +§_x(@ fx(.ull) gty gd 29)

where f is represented for the state function amds represented for average value of the
current(k) and futurg(k+1) points.

2.4. Aerodynamic Model

Non-dimensional aerodynamic force and moment coefficients in equg@d)sand (2.6)
are calculated using MISSILE DATCONR]. Geometric information of Javelin ATGM
obtained through a reference picture is giveRigure2.3. Since the missile is symmetric in
XZ and XY planes, same coefficients are used for both planes.

As mentioned before, only the perturbed respongbeomissile in open loop is simulated in

a relatively small time interval. This is the key point for most of the assumptions made
especially in the aerodynamic model. Since the missile flies in a close vicinity of the ballistic
trajectory when small pentliations are given to the control surfaces, a small space around
reference condition is needed for the aerodynamic database. Vector of input breakpoints used
to determine the space of aerodynamic database are giVabla?.2.
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Figure2.3 - Dimensions (in mm) of Javelin ATGM

Table2.2 - Input vectors of aerodynamic database
Parameter Inputs

Mach [0.30.40.50.6]
a,b,d,,d . d, |[5-4-3-2-1012345]deg

Aerodynamic model using the parameters giveable 2.2 are obtained from MISSILE
DATCOM in the following form:

C, =C(M,a, b @ ,.d) (2.10
C, =" (M, b, ) 4CP" (M) (2.11)
C, =C*(M.a, @) C"" |\/|)%I (2.12)
C =G (Ma, b ¥ )L (2.13
Cn=Ci"(M,a, @ ™ M)% (2.14)
C,=C(M, b, @) CI™™ (M)~ (219

Using the states and control surface deflection inputs in the simulation, each coefficient is
calculated with lineamterpolation from the aerodynamic database at every time step. Total
velocity and wind angles are calculated from the states farimd condition as follows:



V=i # W (2.16)

a=tan* @ /u) (2.17)
b=tan* { /u) (2.18

Note that the flank angle peesentation is used for sideslip angle. This is a fair assumption
due to low attack angles.

One last assumption in the simulation is taking the speed of sound to be constant. Mach
number is then calculated as follows:

M = v
asound

(2.19)

10



CHAPTER 3

EXPERIMENT DESIGN

An aerodynamic parameter estimation study starts before the flight test. First an aerodynamic
model whose parameters are to be verified is determined. Then an appropriate test scenario is
prepared in which missile is held as long as possible in the region where the determined
model remains valid. Finally inputs whether in open loop or in close doemesigned so

that missile supplies rich content of information in its response. These are all parts of the
aerodynamic parameter estimation work that take place prior to flight. Before developing an
estimation algorithm, these steps are explainedteildelow.

3.1. Aerodynamic Model Verification

In this study, identification of the aerodynamic model is restrictedandZ axes force and
moment coefficients. In other words orG¢ and C,, coefficients are identified. Note that,
since missile is modedeas symmetric in pitch and yaw plan€s,andC, are identical taC;
andC,, in absolute values. There is only sign difference due to convention with:

Cttic = (e (3.1
Cg:/namic — Cy:jynami( (3.2
Colate = statie (3.3
ngnamic =C n:iynamh (3.4)

Aerodynamic model is generally identified through parameters of linear expansion of the
model at aeference Mach number:

C,=C,b 1C,, @+ C,r (3.5)
C,=C.a "Czé g+ C% q (3.6)
C.=C,a 1, qd+C,q (3.7)
C.=C,b+ C”a g+Gr (3.8)

11



Since the aerodynamic models in pitch and yaw planes are same, common aerodynamic
derivatives are used also in linearized equations:

C,=C,b 1, ¢ €1 (39
C,=C,a +C, q+C,q (310
C,=C,a %, d+C,o (3.11)
C,=-C,b C, * G, (312

The goal of a parameter estimation study is to find the unkrmmavameters of a known
mathematical model. Here, the nonlinear aerodynamics of the missile is approximated by a
linear model and the parameters of this model will be estimated. The purpose of this section
is to find the linear model that best fits the attuonlinear database. The linear model fitted

to the database will be used to evaluate the performance of the estimation methods in the
following sections.

Aerodynamic derivatives in linearized models are first evaluated from nonlinear database
directly as reference values. A reference Mach number is selected with considering the mean
velocity of the missile during the perturbations and nonlinear model is linearized around a
reference point. Most general way of doing this is taking central differencadamaro

points for near ballistic flights. While the linear model obtained from central difference
method can approximate the aerodynamic data well within a small neighborhood around the
reference point, approximation becomes less and less accurateoggrid#on point moves

away from the reference point. To overcome this inaccuracy, linear model can be determined
with a least square fit of database values within a region that will be explored during the
excitations, rather than at a single point at thienence flight condition. Parameters of a
linear model obtained with two approaches for 0.5 Mach number are givieabia3.1. It

can be seen that relative erronetn two approaches are nearly %5 for control derivatives.

Table3.1 - Aerodynamic moment derivatives at 0.4M

Central difference approaq Least square approac
Cza (st abi |-18.489 -19.183
Czd (contr |-2573 -2.666
Cma (st abi |-30.894 -31.781
Cmd (contr |-12.118 -12.557

Note that linear model obtained with central difference approach is exaet fet][degrees
angle of attack and-1,+1] degrees elevator deflection intervals. On the other hand least
square approach fits the nonlinear model with a better coverage. bioelats are plotted

on aerodynamic database value§igure3.1l. It can be seen that linear model obtained with

12



the central difference approach has larger approjomarror at points far away from the
reference point compared to the linear model obtained with the least square approach.
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Figure3.1 - Pitch plane static coefficients

One of the linear models should belected in the estimation studies by considering the
focus of the estimation. In the case of building a database through estimated values instead
of verifying an existing one, central difference approach becomes a better choice over least
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square approachParameters obtained through multiple flight test cases are put all together
and a final curve fit can be used for determination for a database model.

On the other hand, least square approach is better for studies that involve verification of an
existingmodel. Using the control surface deflections and angle of attack obtdinectly

or indirectly- from flight test as regressors, a least square fit is applied to nonlinear model for
determining the reference linear model. So that values obtained friimmatisn can be
compared with this reference model.

Either way, missile response must stay on the linear side of the real aerodynamic model as
much as possible during the perturbations applied for exciting the missile. So that time
invariant aerodynamieodel used in estimation algorithm holds true in practice as well.
That being said, least square approach is preferred in this study for the verification of the
aerodynamic model used in simulation with estimation results.

Note that the static term in @elynamic model created with Missile Datcom is linearized
with respect to wind angles, control surface deflections and Mach number while dynamic
term is linearized with respect to Mach number only.

3.2.Test Scenario

As explained before, estimation is apgli® open loop response of the missile which flies
close to the ballistic trajectory, in other words around zero angle of attack and sideslip angle
after burrout. Initial condition of this phase needs to be carefully determined with focusing

to create annterval with minimum velocity change during the perturbations. This ensures
that aerodynamic model can be estimated with a linearized expansion around a reference
Mach condition.

Altitude of the missile from ground level at buoat is taken as 100ib]. Simulation is
started from burout of the missile at that altitude with 190m/s velocity. Initial attitude of
missile -more specifically pitch angles needed to be determined next. Using a negative
pitch angle arouneR0 degrees provides the desiretkimal with minimum velocity change.
Unfortunately that does not appear to be a realistic scenario since the missile might hit the
ground too soon in such a trajectory. Instead, a relatively high pitch angle should be selected
so that missile can climb mmrand longer intervals to be used in estimation might be
obtained. Sample free flight without any control surface deflections are simulated for
different initial pitch angles and results are showrFigure 3.2. It can be seen that the
tradeoff for longer intervals is to apply the estimation in lower velocity regions. Moreover
velocity change increases for longer intervals as well. Therefore a suitable region must be
selected where the time invariant aerodynamic model assumption holds and a reasonable
amount of time exists for system identification excitations.
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Figure3.2 - Velocity plots for free flights with differennitial pitch angles

Although it appears that in lower velocities there are longer intervals which might promise
better estimations naturally, it is critical to verify the aerodynamic model close to the
velocities which missile normally operates asdarpossible. Therefore initial pitch angle is
selected as 30 degrees. Perturbations are applied between seconds 7 and thetia 3ot

in Figure3.2. The differerme between minimum and maximum velocity during the interval is
12.5 m/s which is represented with 0.037 Mach number in simulation. This should be an
acceptable change for the time invariant aerodynamic model assumption and is checked in
the next section.

3.3.Input Design

The objective of the input design is to excite the missile so that measurement data contains
sufficient information for a successful estimation. Since measurements are noisy, higher
excitations yields better signal to noise ratios. Thetal difficulty that must be taken into
consideration while exciting the missile with higher amplitudes is to ensure that states stay in
the region required by the aerodynamic model used in estimation.

Note that dynamic terms in the aerodynamic model @ready linear. Static terms are
linearized to be used in estimation. Those linear models are functions of wind angles and
control surface deflections. These parameters must stay on the linear region of real
aerodynamic model around zero points in orithat linear aerodynamic model retains the
validity in that region and so it can give the same results with measurements. If the
parameters drift away from the linear region, no single linear model can closely approximate
the database anymore. This medmsre exists no parameter set that will cause the model
output to match the real missile behavior closely. In this case the estimation process will
produce inaccurate results or no results at all.
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Local derivatives of pitch plane aerodynamic coefficient®.a7 and 0.42 Mach numbers
(which are the minimum and maximum velocities within the test interval selected for
excitations) are given iRigure 3.3 with respect to agle of attack and elevator deflection. In

Y axis of plots, relative errors with respect to derivatives at zero angle of attack, zero
elevator deflection and mean velocity are also included.
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Figure3.3 - Aerodynamic force and moment derivatives

It can be seen that dominant relative error is in control derivatives due to angle of attack and
elevator deflection. After 4 degrees for both of those parameters, relative errors exceed the
%10 bands, above \idh linearity assumption might fail. Note that 0.04M velocity change
has a negligible effect on relative errors. In fact due to this reason, 12 sec interval discussed
above might be stretched little more with starting excitations eatrlier if it is necdssary
increase observability.

In order to provide high signal to noise ratio at measurements, missile should be excited near
the natural frequency of dominant dynamic mode while keeping the states in linear region at
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the same time. If a parameter estimatsbady is intended to be applied without any prior
information about the aerodynamic model, missile should be excited over a broad frequency
range with nearly constant power for all frequencies. However this study focuses on
verification of an existing maal so that all the information available prior to the estimation
can be used in input design stage.

Natural frequency of dominant dynamic mode must be determined first. The easiest and
practical way of doing this without analytical calculations is to yafglquency sweep input

in simulation and analyzing the frequency response of the missile. The frequency having the
highest amplitude in measurements is the dominant dynamic mode. Exciting the missile in
near frequencies provides better signal to noisesain measurements hence better
observability of aerodynamic parameters. Applying perturbed control surface deflections
with frequency which is same as the dynamic mode frequency and a suitable amplitude
chosen based on the linearity concerns gives a gtanting point. Further fine tunings
should be made for better usage of linear model limits. Both frequency and amplitude of the
control surface deflections can be adjusted appropriately in order to design an optimal test
case. For example the dynamic raaaf the Javelin ATGM at 0.4M is approximately 3.5Hz.
Applying control surface deflections with that frequency and 3 degrees amplitude to missile
causes wind angles to exceed 5 degrees which should not be accepted due to the limits of the
linear region. Bher amplitude of the inputs should be lowered or frequency should be
moved further from dynamic mode to resolve this issue. First choice lowers the signal to
noise ratio obviously if control surface deflection measurements are noisy. Therefore
changing tke input frequency is a better choice.

Designed inputs are shown Figure 3.4. Multi-step inputs in 2-1 pulseq12] are applied

with 0.56 sec period (nearly 2.5Hz) and 2.5rdeg amplitude. The reason of nusitep

input choice over classic doublet inputs is to make the states to be uncorrelated with inputs
[12]. In order to catch thfree response of the system zero input intervals are also included
which also aids to lower correlations. Note that square wave inputs generated in MATLAB
are filtered with 20 Hz low pass filter which is implemented as control actuator dynamics to
be morerealistic.
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Figure3.4 - Control surface deflections in studied test case
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Wind angles responses of the missile to the applied perturbed inputs are drigur&3.5.
It can be seen that wind angles do not exceed 4 degrees region in which aerodynamic model
can be accepted as linear.
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Figure3.5 - Wind angles in studietest case

Parameters of the linear model obtained by applying a least square fit to the region
experienced by missile are given Trable 3.2. Central difference alues of nonlinear

aerodynamic model at mean velocity during the perturbations are also given in the same
table for reference values.

Table3.2 - Parameters of linear model obtained with least square fit

Parameter Value Central difference value
Cza -18.628 -18.421

Czod -2.611 -2.568

Czq -0.048 -0.048

Cma -31.031 -30.774

Cmd -12.246 -12.097

Cmq -0.121 -0.121

Comparisons of nonlinear model with both central difference and least square models are
given in Figure 3.6. It can be seen from error plots that even though errorseofral

difference approach are minimal in free response regions, least square model minimizes the
error in overall response.
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Figure3.6 - Comparison of aerodynamic models

Note that results of the lineanodels are not outputs from simulation. Those results are
obtained by applying the linear models using outputs of the simulation with the nonlinear
aerodynamic model. If somehow, all the states of missile during a flight test are available
without any bases and noises, the optimal linear aerodynamic madekring the real
response in a limited region as best as it possilale easily be obtained with a least square

fit like this. This is the reason why least square fit results rather than centebdifé
values are used for the verification of the aerodynamic model.
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CHAPTER 4

ESTIMATION ALGORITHM

In general mathematical model of a dynamic system whose unknown parameters are to be
estimated is given by:

z=YQq) +/ (4.

wherezis the observation or measuremegt,is the @, x 1) unknown parameter vectgris

the output function of the system model and the measurement noise. Then, based on the
Fisher estimation theorji1], likelihood function of independent randomsebvations can

be defined as:

L(zg)=p(z_¢ :(N) H 71_) 4.2

Above function is probability density of measured data as a function of system parameters,
g . In other words, it is probability of measurements given system parameters. The
likelihood function gets the maximum value for true para@mse Therefore maximum
likelihood estimator for parameter vectgr is equal tog that maximizes the likelihood
function forN measurements. This can be shown as follows:

5 5 N
= mgng o(z |y 43)

€i=1

It is generally preferred to minimize the negative logarithm of likelihood function rather than
to maximize the likelihood functiof8]. So that a suitable optimization technique can be
applied to the negative logarithm of the likelihood function which reptesere cost
function:

= e X g . eN
&= min g O p(z1.9 g mlnga Inp(z1)g (4.4)
e ia u 7 ez

Minimizing the negative logarithm instead of maximizing also comes with great numeric
stability. Since the maximum value of the likelihood function is between zero and one,
multiplying the likelihood functions of different measurements with each otheatezjig

gives eventwually a smal!/ number which can’t
computer. To resolve this, scaling might be applied after each multiplication. However this
complicates the optimization technique to be used and brings compatdiioden as well.

Instead, the logarithm scales the result at each step naturally and increases the precision. Yet
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the logarithm function is monotonic, so maximizing the logarithm functions can also be
achieved with minimizing the negative of it. Sincénimization of a cost function is an
easier procedure than maximizing, negative logarithm of likelihood function is by far
advantageous over likelihood function alone.

Maximum likelihood estimation can be applied to any form of probability density fumctio
One of the most widely used density distribution for likelihood functions is Gaussian
distribution:

1 ‘? x- m)°
p(x) = expé e m (45)
sN2p @

wheremis the expected value (mean)xoénd S is the covariance of Likelihood function
defined above was probability density of one observation parameter as a function of
unknown paramets. In case of observing parameters more than one, likelihood function
becomes the joint probability distribution of observations. Joint probability density function
of n Gaussian distributed random variables is given by:

-
N

(x ﬂ‘)T R(x (4.6)

1
p(X) = ————expg

S
=
@D

R given above is then(x n) covariance matrix of random variablector. Assuming that

random variables are uncorrelated with each other, covariance matrix can be stated as
diagonal. Since mean values of the random variables represent the true outputs, joint
probability distribution of observations are stated as:

-%(_z Y R(z Y @)

ho]
—

IN
N—

I

0]

P

i)
(DD~ (D~

where z and y is the(n x 1) measurement and output vectors respectively. Noterthat (
n) covariance matrix is now represented for measurement @isgy . Likelihood function

of nindependent Gaussian distributed random variabl&ésraany observationsach is then
given by:

° No
N a 1 O &N r
L(zg)=O p(z]_9 &L —— Oexpz & lz ¥ Rl.z . (4.8)
O sl ) e foof 3402 o (e

By taking the negative logarithm @bove function, cost function to be minimized for
estimating unknown parameters is obtained:
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J(g)= ngL(z_g (4.9)

J(g)=ann2(2p) +N|n2(|3) %a (z ¥ R'(z (4.10)

4.1.Optimization

Minimization of the above function can be satisfied by setting the gradient to zero:

Wg +0_, (4.1
Mg

Using the first order Taylor series expansion as an approximation, the gradient of the cost
function is given by:

W(g +B_ I ZJ(LL)J; i (412)

g b | ng"

q=_g =g

Setting the right hand side of above equation to zero and solvibgfgives:

& 2 @
Dg = QL(Q) U ﬂ(jﬂ (4.13)
gl , g M.,

Above change in parameter vector makes local gradient zero at that point. With an initial
guess, iterative solution of above equation provides the parameter vector for the minimum
value of cost function. This approach is commonly known as NeRéphson optimization

in the literature.

The difficulty of applying this technique is that the covaca matrix given in the cost
function depends also on unknown parameters. This fact complicates the optimization
algorithm while taking the derivatives of cost. In fact mathematically speaking there is no
closed form solution of this problem. Instead oplgjmng the minimization for the unknown
system parameters all at once, relaxation technique can be used. In this technique, covariance
matrix is assumed not to be affected by change in system parameters. It is used as constant in
cost function and after el parameter update it is updated independently for the new
parameters.

The procedure of the relaxation technique can be summarized as follows:

1. Setinitial values for parameters.
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2. Find system outputs for selected parameters and estimate the noisencevaria
matrix from measurement errors.

3. Apply the optimization to minimize the cost function and update the unknown
parameter vector.

4. lterate step 2 and 3 until convergence.

4.1.1.Noise Covariance Matrix

Estimation of the covariance matrix is obtained similafllge gradient with respect to the
covariance matrix is set to zero and then solved for the covariance matrix. The first term in
the cost function has no effect on minimization. Dropping that term and rearranging the cost
function as follows as a function obvariance matrix makes easier to take the derivative.

Nin(R) 1e_, N T g
J(R=—F7— +4&R* YNz Y ¢ (4.14)
(—) 2 2%— |a:i (—z _y)( _9 t
Thenpartial derivative with respect to covariance matrix is obtained as:
W(R _N_, 1_,N T

Setting the gradient to zero and solving fRrgives the estimate of the noise covariance
matrix for the current values of parameters at that step:

N

;FE:%Q(; Yz ) (4.16

After each parameter update, covariance matrix is calculated again. Estimated covariance
matrix is then used as constant while firgdthe parameter update.
4.1.2.Parameter Update

Since covariance matrix in the cost function is fixed at each step during the optimization,
cost to be minimized reduces to:

pd

J(q)=

Q

1(z ¥) R'(2 (4.17)

1

N =

The gradient of the cost function with respect to the parameter vector
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Measurement vector is also independent from parameters. Simplifying above equation using
this gives:

w(g) N fewy, 5, {
Wig)_LFew o . (4.19
ug g%ée Vi (2 —y)q'

The second order gradient of the cost function is given by:

wi(g) yfewy o, ey o, yul
_ATEMY 2, ) G¥ P Y (420)
Mg & ‘31{@ g (7 -y) & W |

The partial derivative of outputs with respect to the parameter vector is called response
gradent or output sensitivity. This is am & n,) matrix with n is the number of output or
measurement variables angis the number of unknown parameters or in other words length
of the parameter vectorg . [i,j] element of thematrix is quantifies the change iff i

observation due to the change'frparameter.

The first term in the summation above includes the second order gradient of the response.
This gradient is computationally expensive to obtain and generally suggestbd
neglected. Yet summation of products of the second order response gradients with residuals
converges to zero for the true parameters. For that reason neglecting this term is a good
approximation near the final solution. The algorithm obtained wiih shmplification is

known as GausBlewton method in the literature.

Combining the cost gradients in parameter change equation gives:

g
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In order the inversion of the second order cost gradient in the parameter change equation to
be successful, the necessary condition is having a full rank magideirSinceRis taken
diagonal as explained before, response gradients must be linearly independent to satisfy that
condition. In other words both rows and columns of the response gradients must be linearly
independent with eachlar.

This is only possible when system parameters to be estimated must have a unigue impact on
outputs and those outputs are not correlated with each other. Otherwise second order cost

gradient becomes singular and inversion might simply fail.
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Numerica errors might also be accounted for a nearly singular matrix. If inversion does not
fail, parameter change might result in with divergence in cost function. In order to prevent
this, inversion with singular value decompositj@B] might be a better way instead of direct
inversion.

GaussNewton method explained above is an unconstrained optimization starting from an
initial point based on a quadratic cost functassumption. In some circumstances such as
when the cost function is highly nonlinear or initial parameters are far away from the true
values, the step size of parameter vector might be too large during the iteration. Singular
value decomposition helps tetect the directions of large parameter chafiy@s Defining

an upper limit for the change helps the cost function to converge. However one limit might
not be applicable for all directions due to the difference of parameter scales. Instead, a
simpler approach based on heuristic considerations is comnpoefgrred. If the cost
function diverges at any step during the iteration, parameter update size is reduced by
halving each time until reduction in cost function is satisfigl This is applied by
implementing a weight factor in parameter change equation as follows:

—
C\EUQ

* N

s ~

Dg = 2*?

DD D
3

=1

— ——D:
D

L ML uy DM f (4.22)
KTt q? ﬁ‘q_U(} _y) y

- .(D\ - (D

wherek is used as one at each iteration. If the cost increla$es|so increased by one until
the cost decreases during the iterations.

There are other methods also to prevent divergences such as boungiaigatheter§/] and
switching to simplex method in cost incre§$@] but halving approach is found to work fine
and is preferred in this study for its simplicity.

Parameter update process is repeated until a convergence criterion is satisfied. Assessment of
final convergence should be made for both relative changes in codfiofu and in
parameters at the same time. Estimation loop including parameter halving procedure is
presented ifrigure4.l1.
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4.1.3.0utput Sensitivities

Output sensitivities both in first and second order cost gradients can be found analytically by
taking partial derivatives of outputs with respect to unknown parameters. However in the
case of nonlinearity involved in the postulated output model analgtidallations might be

really complicated. Yet derivatives must be found again even if a minor modeling change in
the postulated model occurs. In order to deal with this difficulty, output sensitivities are
approximated with numerical differences.

Using central difference approximation for each paramet®rcglumn of the output
sensitivity matrix can be found as:

W _Yq +dd) X 944
Mg, 2ld ¢

(4.23)

lo} ¢ given below is the perturbation step for tﬁeg’arameter.gj denotes a vector with one

in the [” element and zeroes elsewhere.

Perturbation size is generally chosen relative to the parameter to be perturbed. 0.1% of the
nominal value is found to be a reasonable choice. Also in case of the nominal value is too
small to be perturbed with this relative size, perturbation size mudimited with an
absolute lower bound.

4.2.System Models

As already stated in previous chapters, wind angles are one of the most important inputs for
the estimation process. Aerodynamic response depends strongly on angle of attack and
sideslip angle. Sire these angles are not measured directly, they must be properly
represented in system model. To do so linear body velocities are reconstructed in system
model during the iterations and wind angles are computed from those parameters. The
assumption for thatepresentation to be true is that there is no wind acting on the system.
Therefore flight test must be carried out in steady atmosphere with low level wind condition.

Since the focus is verifying the aerodynamic parameters through IMU measurements only,
outputs of the system model used in estimation must be restricted with translational
accelerations and angular rates.

Two different system models, namely implicit and explicit models are postulated to be used
in optimization of the maximum likelihood futien. System models represented here are
continuous state equations and are numerically integrated to states™Wdifile? Runge

Kutta integration method. Details of the models are given below in this section.
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4.2.1.1mplicit Model

Angle of attack and sidepliangle are determined implicitly in this model. Response of the
system to control surface deflections is obtained using dynamic system equations in pitch
and yaw planes whereas roll plane response is obtained by integrating measurements using
kinematic egations. Initial states are chosen as unknown with prior values and determined
through the optimization routine together with aerodynamic parameters. Bias errors in input
and output variables are also introduced as unknown parameters in the estimation.

For aerodynamic parameter estimation studies in the literatoaducted for aircraft
mostly state models used in estimation algorithms are in similar fg8ijd2]. It can be

seen that almost every model uses the aerodynamic parameters to be estimated in state
eguations. So that output of the estimation model becomes elatge when matched with

real measurements. However, that would be a good approach only if there are several
measurements to verify the outputs with. In the case of limited number of measurements,
integration of states obtained purely from system mod&kleobustness in estimation. Since
model outputs at any time involve historic data which might have been affected from any
modeling errors, observability problems may appear while trying to match them with
measurements. Since wind angles which are onth@fmost valuable information are
missing in this study, it is very likely that this model fails.

Input vector is given by:

u=lg. ¢ p &l (4.24)
States of the model are defined as:

Xx=[q ruvwf ¥ (4.25)
Model outputs in order to match with measurements are:

y=la, a q (4.26)
State equations of the postulated model can be shown as follows:

g=@a -3,/3,) pr

+r U w)SKG, tan® (w/up G+ G a2/ (4.2
r=@J,/J, 4)pq
2 1 (4.28)
+r U~ w)SI- G tan V/IW-Gd+ G ni2ly
u= gqw W gsing g (4.29)
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V= U pw @gtosg sinf

+r® & w)S(G tan' (Vi Cd- ¢ D/2/r (4.30)
W= -pv du geosy cosf

+r@® A w)S(G tan'(w/u) @ad+ ¢ /2]t (4.31)
f=p +an qqsin frcos (4.32)
g=qcos - sin @39

Note that same aerodynamic derivatives are used for both pitch and yaw planes as explained
in Section3.1 Observation equations can be defined using inputs atessit each sample
point:

a=r(u + wW)gCtan'(vy ¢a  Cyl2/r (4.34)
a,=r(  W)SGtan'(w )+ Cd+ G W2/ (4.35)
a=q (436
=y (4.37)

Previously stated disadvantage about error propagation can be clearly seen from equations
above. In order to represent the angle of attack and sideslip angle, integrated velocities are
used in observation agtions. However neither the air flow angles nor those velocities are
available independently. This is the difficulty itself of estimating aerodynamic parameters
without any air flow angle information. The weighted parts of outputs come from the air
flow angle product term and for this reason air flow angle data must be carefully constructed.
However this model suffers from sensitivity since the integration in state equations highly
depends on the aerodynamic characteristics of model. Any modeling errelatioely high
disturbances at any time in data might affect the whole optimization process.

Bias errors in measurements mentioned before are not included in both state equations and
observation equations. Since model is already nonlinear, those eamorbe placed as
unknown parameters in inputs and outputs instead of using directly in equations to preserve

the simplicity of equations. Then, input and output vectors must be represented in the
following form:

u=[d, ¢ p-b a BRI (4.39)

y=la, % a B q b r Q% (4.39)
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Note that control surface deflection measurements are assumed to be true without any bias
errors.

Flowchart of this model can be seerFigure4.2.
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Figure4.2 - Flow chart of implicit system model

4.2.2.Explicit Model

In order to deal with the air flow angles reconstruction nicaty alternative approach in
model definition is studied. Rather than obtaining the angle of attack and sideslip angle by
using pure response of parameters to be estimated, response of the system from
measurements is used. In other words kinematic equatrengreferred instead of dynamic
equations. So that angle of attack and sideslip angle are explicitly evaluated from input data
and take place in observation equations. Again initial states are also chosen as unknown.
Input and output biases for this modme more important and have more impact on
estimation results than before.

Inputs are control surface deflections, translational accelerations and angular rates:

u=[d @ p-b ak r a3 Q-3 bh-a O (4.40)

IMU measurements used for verifying the model outputs are also used as inputs in this
model. The reason for this approach is to carry some information with input data and
decouple the effects of control surface inputs and body motion in outputs.

States bthe model are linear body velocities and Euler angles:
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x=[u v wfif ¥ (4.41)

Model outputs are also different from the previous model:

y=la o a B 9T (4.42)

In order to increase convergence and gain robustness account for estimating moment
coefficients, it is more appropriate to use angular accelerations, derivatives of angular rates,
as observation variables. This is evident from the fact that equations of the idesivat
themselves are directly related with aerodynamic parameters. Using the integrated data to
match with the measurement, involves propagation of errors from both minor model
differences and possible flight disturbances. This creates similar problem®madntor

implicit model.

Only problem of using angular accelerations as measurements is taking derivative of noisy
measurements. Since angular accelerations are not directly measured, these variables can
only be obtained by differentiating gyro measuretee This is generally handled by
applying a digital filtef8] before differentiation.

Note that bias terms are not included in angular accelerations becauaestlagitomatically
eliminated in derivatives of gyro measurements.

State equations of the model can be defined as:

u= gqw W gsing g (4.43
V= fu pw geosgsinf g (4.49
W= -pv 6u geosg cos/ a (4.45)
f=p +an qgsin frcos (4.46)
g=qcos f - sin (4.47)

Same observation equations are used as before:

a=r(0 + wW)gCtan'(vy €a  Gyl2lr (4.48)

a=r(u ¥ w)gCtan’(w 0+ Cd.+ G W2l (4.49)
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P A WIS G, tant (v - GLd+ G 0I2/ ) e

The major difference of this model lies in the way the velocities are handled. Instead of using

the aerodynamic characteristidsnaodel alone in order to obtain velocities, system response

is included in the equations. Now even if there is a behavior which is not included in
aerodynamic models above, that behavior sneaks into velocities through both translational
accelerations andangul ar rates measur ement s. So ther
modeling errors in velocities which are used to represent air flow angles.

The challenge in explicit model comes from a different side unfortunately. Instead of
accumulative modeling errgrghis model suffers from measurement errors since only
measurements are used in state equations. In practice accelerometer and gyro sensors
contains bias errors which causes drift in data due to the integration of these measurements.
Using the measured ealerometer and gyro data without any correction causes improper
representation of states of the model. In order to prevent this, bias errors are introduced for
all sensor measurements. So that, with this model not only the aerodynamic parameters are
estimated but also other variables used in observation equations are intended to be properly
reconstructed from measured gyro and accelerometer data. Now aerodynamic parameters
which are the main interest of the estimation process, depend only on observaditonsq

This fact significantly increases the convergence of the optimization routine at the cost of a
risk to decrease the identifiability of the true model parameters.

Flowchart of this model can be seenHigure 4.3. It can be seen that now aerodynamic

parameters are only used in output equations and possible errors in postulated aerodynamic
models are not integrated.
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Figure4.3 - Flowchart of explicit system model
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CHAPTER 5

ESTIMATION RESULTS

5.1.Sample Test Case

Simulated response of Javelin ATGM is used for testing the estimation algorithm with both
implicit and explicit system models. In the estimation algorithm, elevator and rudder
deflections and IMU measurements obtained from simulation are used only. Gointack
deflections are used as true values without including any biases or noises. IMU
measurements are generated within simulation by correlating translational accelerations and
angular rates with biases and zero mean white Gaussian noise sequerstatedAsarlier,

initial values of states are also assumed to be unknown and included in unknown parameter
vector. Aerodynamic parameters, initial states, and bias values are all treated as unknowns
and included in the unknown parameter vector in thenasion algorithm. Initial values of

these parameters are randomly selected with realistic uncertainties. True values together with
selected initial values are given Trable5.1. Same measurements with same initial values

are used to test the implicit and explicit models accordingly.

Table5.1 - True values and initial estimates used in sample test case

Parameters True values Initial value
for estimation

Cza -18.628 -17.952

Czd -2.611 -2.135

Czq -0.048 -0.058

Cma -31.031 -31.317

Cmd -12.246 -9.906

Cmq -0.121 -0.142

o -3.98 d/s -4.25 d/s

lo 0d/s 0.21 d/s

Ug 138.81 m/s 142.88 m/s

Vo 0 m/s 0 m/s

Wo 0.036 m/s 0m/s

do od od

6y 8.67d 6.45d

a bias -0.266 m/$ o m/s

a bias -0.411 m/$ om/s

a, bias -0.131 m/$ 0om/g

p bias -0.096 d/s 0d/s

g bias 0.047 d/s 0d/s

r bias 0.020 d/s 0d/s
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Outputs of implicit and explicit models with defined initial set of unknown parameters are
given inFigure5.1 andFigure5.2 respectively. The difference between the two models can

be clearly seen from the graphs. In implicit model, there are both amplitude and phase
differences between the measurements and model outputs. Typ&cad because states are
integrated using the unknown parameters which have incorrect initial values. In explicit
model there is no phase error on the other hand. Since IMU measurements are integrated,
phases of outputs are matched with measurementuwithny difference. Obviously
amplitude difference still exists due to incorrect usage of aerodynamic parameters. However
this time there are also drift errors in outputs due to IMU biases. All of those errors appeared
in two models are intended to be dhated within the estimation algorithm. Model outputs

with final values obtained from estimation algorithm are showfigare5.3 andFigure5.4.

Results with both implicit and explicit system models are presentédble 5.2. Relative

errors from reference aerodynamic parameters are also included here. It is observed from the
results that estimated values are more accurate for explicit model.

Table5.2 - Estimated values with implicit and exgitimodels

Parameters| True values | Final estimates with Final estimates with explicit
implicit model model

Cza -18.628 -19.541 (%4.9) -18.806 (%1.0)

Czd -2.611 -2.986 (%14.4) -2.647 (%1.4)

Czq -0.048 -0.060 (%25.0) -0.049 (%2.1)

Cma -31.031 -32.473 (%4.6) -31.304 (%0.9)

Cmd -12.246 -12.850 (%4.9) -12.344 (%0.9)

Cmq -0.121 -0.126 (%4.1) -0.122 (%0.8)

o -3.98 d/s -4.00 d/s NA?

o 0d/s 0.31d/s NA

Ug 138.81 m/s | 136.21 m/s 138.425 m/s

Vo 0m/s 0.00 m/s -0.004 m/s

Wo 0.036 m/s 0.03m/s 0.028 m/s

do od 3.90d 0.169d

6o 8.67d 9.83d 8.743 d

a bias -0.266 m/§ | -0.344 m/$ -0.240 m/§

a, bias -0.411 m/§ | -0.408 m/$ -0.411 m/§

a bias -0.131 m/§ | -0.136 m/$ -0.132 m/$

p bias -0.096 d/s -0.290 d/s -0.133 d/s

g bias 0.047 d/s 0.129 d/s 0.064 d/s

r bias 0.020 d/s -0.342 d/s 0.007 d/s

#These parameters are not included in unknown parameter vector of this model
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Figureb.2 - Explicit model response with initial unknowns
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It can be seen from final estimation graphs that outputs of both models are successfully
matched with measurements without any visible error. Residual plots of translational
accelerations given ifigure 5.5 prove that as well. Errors in both models are in similar
noise levels without any deterministic behavior.
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Figureb.5 - Translational acceleration errors of implicit and explicit models

Correlation coefficients higher than 0.9 in implicit model results are givehabie 5.3.
Aerodynamic parameter estimates obtained with implicit model appear to be highly
correlated with each other. This fact reduces the reliability of implicit model significantly.
Note that correlation coefficients for explicit model are all below 0.9 and henagiven

here. This indicates that parameters are not significantly correlated with each other.

Tableb.3 - Correlations higher than 0.9 in implicit model results
Uo ‘o Cz Cm | Cm
u |1 0,908 0,967 | 0,999| 0,992
‘o 10,908|1 0,865 0,893 0,885
Cz |0,967|0,865| 1 0,968 0,956
Cm | 0,999 0,893| 0,968 1 0,993
Cm | 0,992| 0,885| 0,956| 0,993 1

This problem can also be verified from the residual plots givéfigare5.6. Errors of wind
angles reconstructed within the estimation process from real simulation data are presented
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here. Even though errors are relatively small, explicit model appears to matclitzetesl

data. Yet the essential difference is how the errors appear for each model. Residuals are in
random noise level for explicit model. In implicit model however, there is a deterministic

behavior that coul dn’ t

bable for eeliaglérésults. n
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Figure5.6 - Wind angle errors of implicit and explicit models

Convergence plots of aerodynamic parameters are also givdtigume 5.7. Updates

al

dat a.

indicated by cross markers are given with one sigma error bands obtained from Dispersion

matrix. Estimation algorithm is converged within 4 iterations only with explicit model for
this sample test case. However it takes additional 6 steps to converge with implicit model.

40

Th



CZa CZGI
-15 -2
-201‘_ X L = % -9 P T x X . - | y .
L -3 r
25 % X
4 k
X
-30 *
% -5 i-
-35 1
20 “« implicit model | ] ]
2 4 6 8 1 x  explicit model | 4 6 8 10 12
initial value
*  true value
CZq Cmal
0.1 -20
-30 _
005 “ L A 8 }_ ®
, -40 I
-50
¥ %
-0.05 ¥ x.
EE -60
3 X
Z& &
-0.1— - : : -70 — - :
2 4 6 8 10 12 2 4 6 8 10 12
Cmd Cmq
-10 -0.1
®
LT oxox o x Tow x T e T = *
& -0.15 *
-15 %
T f 02+ ok
X
-20
-0.25
25— - : : -0.3— - - :
2 4 6 8 10 12 2 4 6 8 10 12
iteration iteration

Figure5.7 - Update of aerodynamic parameters in sample case

41



To sum up, implicit model within maximum likeliho@s$timation gives biased results due to
the correlations of unknown parameters. Explicit system model on the other hand, seems to
provide accurate and reliable results for the sample test case.

However, an important fact was also realized during theystadrder for explicit model to

be successful, it is really important not to restrict aerodynamic parameter estimation in one
plane of the system studied on. In other words it would be much better that estimation
algorithm uses aerodynamic models of beitch and yaw planes so that wind angles
reconstruction becomes more reliable. This can be demonstrated with same test case
analyzed above. This time however, estimation algorithm with explicit model is applied to
pitch plane response alone. State equoatiin explicit system model remain same.
Translational acceleration at Z axis and angular acceleration at Y axis are used as model
outputs only to match with measurements, so that output vector given in Eqi4edin
becomes:

y=[a 4, 4’ (5.0)

Unlike before, local divergences occur during the optimization. These divergences are
handled by halving the parameter changes as explained in the previous chapter. In addition,
it takes 10 steps to converge while it takes only 4 steps in estimatiohoth pitch and yaw
planes. The results are given Table 5.4. Even though aerodynamic parameters are still
good enough, other parameters contains high errors.

Table5.4 - Estimated values with explicit model

Parameters| True values | Both pitch and yaw | Pitch plane response
plane responses only

Cza -18.628 -18.806 (%1.0) -18.382 (%1.3)

Czd -2.611 -2.647 (%1.4) -2.589 (%0.8)

Czq -0.048 -0.049 (%2.1) -0.049 (%2.1)

Cma -31.031 -31.304 (%0.9) -30.609 (%1.4)

Cmd -12.246 -12.344 (%0.9) -12.072 (%1.4)

Cmq -0.121 -0.122 (%0.8) -0.121 (%0.0)

Ug 138.81 m/s | 138.425 m/s 140.48 m/s

Vo 0 m/s -0.004 m/s 6.033m/s

Wo 0.036 m/s 0.028 m/s 0.037 m/s

do od 0.169d -21.405d

6o 8.67d 8.743d 7.265d

a bias -0.266 m/§ | -0.240 m/$ 0.080 m/$

a bias -0.411 m/§ | -0.411 m/§ 3.402 m/§

a, bias -0.131 m/§ | -0.132 m/§ -0.133 m/§

p bias -0.096 d/s -0.133 d/s -0.697 d/s

g bias 0.047 d/s 0.064 d/s -0.277 d/s

r bias 0.020 d/s 0.007 d/s 3.100 d/s
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Once again, the real focus here is to estimate aerodynamic parameters and others are
irrelevant for this study. That means accuracies of other parameters are otaimprhe

real problem is on the other hand, correlations of aerodynamic parameter estimations.
Aerodynamic parameters are now highly correlafeable 5.5). This reluces the reliability

of estimations even if the estimated values seem to be true. In the presence of more
disturbances and modeling errors, these correlations might cause biased estimations or even
total failure in convergence.

Table5.5 - Correlations higher than 0.9 in pitch plane explicit model results

Uo a, bias | Cz Cz Cm Cm
Uo 1| 0,967 0989| 0,938 0,984| 0,955
a,bias | 0,967 1| 0,958 0,911 0,953| 0,926
Cz 0,989| 0,958 1| 0,953| 0,993| 0,963
Cz 0,938/ 0,911| 0,953 1| 0,942 0,915
Cm 0,984 0,953| 0,993| 0,942 1| 0971
Cm 0,955| 0,926| 0,963| 0,915| 0,971 1

5.2.Monte-Carlo Analysis

Although it appears that explicit system model promises accurate and reliable results, it is
important also to show that this is still true when bias values change or estimation is started
from different initial values. These parameters are randomly cbaageording to the

criteria given inTable5.6 and estimation is repeated every time.

Note that since the system is excited in open loop, response of the systdependent of

IMU bias values and therefore same simulation outputs are used by changing measurement
errors only in each run. Bias values presentedTable 5.6 are tpical errors for a
commercial IMU. Initial estimates of these bias values are taken to be zero at each run.
Initial values of statea andd are assumed to be obtained by integrating IMU measurements
from launch of the missile up to the excitations. Beeaof the accumulated errors in
integrated states, initial values of these states are selected with an error from true value with

i nterval s

of

+10m/ s

and

+5d.

Si

nce

excitati

ballistic trajectory, initial valas oft, v andw are selected as zero with zero wind angles
approximation. Lastly, initial values of angular rateandr are selected by including an
error interval to true values in bias error amplitudes.
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Table5.6 - True values and initial errors of unknown parameters

Parameters True values Initial errors
for estimation

Cza -18.628 %20°"

Czd -2.611 %20

Czq -0.048 %20

Cma -31.031 %20

Cmd -12.246 %20

Cmq -0.121 %20

Qo -3.98 d/s +0. 5 d/

ro 0d/s +0.5 d/

Uo 138.81 m/s +10 m/ s

Vo 0m/s =0¢

Wo 0.036 m/s =0

do od =0

By 8.67d +5 d

a bias +0.5 m/s |=

a, bias +0.5 m/s |=0

a bias +0.5 m/s |=0

p bias +0.5 d/ s |=0

g bias +0.5 d/ s |=0

r bias +0.5 d/ s |=0

Histogram plots of 200 Mont€arlo runs are presented kigure5.8. Using explicit model

in estimation algorithm provides accurate and reliable results within lass%38 error
bands. However estimation algorithm fails to converge in nearly %25 of total runs with
implicit model and does not give any results at all. In addition, the results are biased when
the algorithm converges. Unfortunately the estimations areyalwarrelated as detailed
above which simply means that implicit model is not reliable.

b Relative error band
¢ Absolute error band
4 Exactvalue
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5.3.Real Flight Test
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Suggested approach with explisgstem model is also tested on real flight test data of a
surface to surface missile that is researched and developed in Roketsan Missiles Industries.
Flight test was designed specifically for aerodynamic parameter estimation. Square wave
inputs with modafrequency which was determined prior to test relying on the wind tunnel
tests were applied to control surfaces to excite missile in pitch and yaw planes while the
control system was in open loop. Inputs were chosen to provide enough signal to noise ratio
and also to keep missile close to reference flight condition in order to ensure that system
stays in the linear region of the aerodynamic model.

The convergence plots of the estimation procedure are giveigumne 5.9. Plots are scaled
independently according to the final estimated values so that final values of results appear as
one and other values present the relative errors. Initial values which are indicated by
points in plots are selected from wind tunnel database. Updates indicated by blue points are
given with one sigma error bands. As in the simulation results, estimated values goes in the
destination without shifting much and converges to the globahmim of the cost function.
Correlation coefficients are also checked and it is seen that all values are below 0.9 which
indicates that there is not a serious correlation issue.

Match between model outputs and measurements can be sedfigtwab.10 with a scaled

view. Note that angular accelerations given as measurements are locally smoothed
derivatives of IMU angular rate outputs. It is observed that navigatiorsemre successfully
corrected during the estimation without any other information except IMU measurements.
Errors of model outputs from measurements are also plotteéidume5.11. These errors are
typical due to flight disturbances and minor model differences in pitch and yaw planes.

As studied in simulation, same aerodynamic derivatives in pitch and yaw planes are used in
estimation model. Even though the missiksted here is symmetric in those planes,
independent aerodynamic parameters may also be included in estimation model. Since there
are slight offset errors due to the production in both control surfaces arobdydwvings,

using different aerodynamic parat®es in pitch and yaw planes might result better matches

of model outputs with measurements. Similarly constant terms may also be included in the
aerodynamic model to correct the bias errors between measurements and model outputs. This
error can be seendm yaw angular acceleration plot of estimated model in Figure 4.15.
Postulated model doesn't involve any constant aerodynamic terms as it should be however it
can be clearly seen that there is constant moment acting on the system in yaw plane
originated fom the offset errors just mentioned.

Since the main focus of the estimation is verifying the aerodynamic model used in
simulations, it is more appropriate to use the model as it is and searching for the best values
of its parameters. Therefore minor mbdg errors such as the ones mentioned above are
neglected in this study since they don't risk the convergence of unknown parameters.
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It was also observed that estimation algorithrmgighe implicit model fails to converge and
doesn't match the measurements as it should. This is obviously because of the modeling
errors involved in the estimation model. Considering that implicit model fails to give
accurate and reliable results evesimulations, this failure is not a surprise.
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CHAPTER 6

CONCLUSIONS

Estimating aerodynamic parameters of flight vehicles from real tests has always been a great
interest. There are numerous studies that focuses on this subject in the literature. However
only a limited numberof references exist for missiles compared to aircraft. The natural
problem that arises while estimating aerodynamic parameters of missiles is lack of wind
angles measurements. This problem is usually handled by calculating wind angles from
flight test meaurements during post processing prior to the estimation study. When only
IMU measurements are available for the response of the system, post processed data is
subjected to drift errors because of biased measurements. This brings a need of alternative
appioach for estimating aerodynamic parameters when wind angles measurements are not
available.

In this thesis aerodynamic parameter estimation of a missile in the absence of wind angles
measurements is studied in detail. Output error method is utilizechéoegtimation of
aerodynamic parameters. Two different system models are proposed to be used in this
method. Without using any post process calculations, wind angles are determined within the
estimation. As for the measurements; translational acceleratdogslar rates and control
surface deflections are used.

First model which is nhamed implicit model uses the equations of motion of the system as
state equations. In other words unknown aerodynamic parameters are used in state equations.
Outputs of the mdel are selected as translational accelerations and angular rates. Using this
model in outpuerror method is like simulating the response of the system with current
values of unknown parameters during the iterations. In fact eatput method is genefsl
preferred to be able to use the aerodynamic parameters in state equations for more reliable
results[4]. Therefore implicit system model is the very first applotnat naturally comes to

mind.

Unfortunately, it is demonstrated with simulated data that aerodynamic parameters are
simply not observable with this approach. Estimation results appehen algorithm

converges to be biased and highly correlated with each other. This is a typicaleprobl

when the model structure includes either too many terms or too few terms relative to the
information content in the dafa7]. In this case there are too manykuoowns with limited

information about response. This approach is also tested with data of a real flight test which

is designed specifically for estimation. As a proof of simulation study, estimation algorithm
doesn’t converge t o teatnlywind aled rmeasuréments rwera | fl
available, this might have not happer{@@] or alternatively the problem could be easily
eliminated by using those measusts as inputs in state equati¢dls
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In the second system model which is named explicit model, state equations are made free of
unknown system characteristidganslational accelerations and angular accelerations, which
are obtained from locally smoothed derivatives of angular rates, are used as inputs and state
equations are built from kinematic equations. Bias values of measurements are used as
unknowns in st@ equations in order to be able to eliminate drift errors. Aerodynamic
parameters are now included in output equations only. Thus this approach can be thought as
a nonlinear equatiearror method instead. If translational accelerations and angular rates
measurements were somehow bias free, the easiest way of estimating aerodynamic
parameters would be integrating those measurements to obtain all the states (with no wind
assumption) and then applying a least square fit which is known as eegratiomethod
However measurement bias cause accumulated errors when integrated, which cannot be
corrected easily when the exact bias value is not known. Using proposed explicit system
model with outpuerror method provides a way of correcting those errors iterativéis is

online reconstruction of states during the estimation. Then in the last step, method gives the
maximum likelihood estimates using reconstructed states, which are essentially the same as
least square estimatgy.

Trials with simulation data show that second approach, estimation with explicit system
model, provides reliable and accurate results. In addition, algorithm is applied to real flight
test datawith success. The results of this study demonstrate that with this suggested
approach aerodynamic parameter estimation can be accurately done without measurements
of wind angles. However an important fact must be emphasized here again. This approach is
meant to work only when the system is excited in both pitch and yaw planes. Otherwise
online reconstruction mentioned above fails to give accurate results. This is demonstrated
with simulated data by applying the estimation in pitch plane only.

Studied mis#e in this thesis is symmetric in pitch and yaw planes therefore it has the same
aerodynamic model in both planes. This is clearly a benefit for estimation with limited
measurements. Yet there is opportunity to apply the suggested approach to asymmetric
systems. In Appendid, suggested approach is tested with real flight data of a research
aircraft without going too much detail. It is apparent from the resultstthight be possible

to accurately estimate aerodynamic parameters of aircraft with this approach suggested here,
as well.

The first assumption made in this study is no wind condition. Even though wind is excluded
in this study, suggested approach woslidl work in the case of a steady wind. Including
additional constant terms in aerodynamic model might help algorithm to model the effect of
wind in these terms. Nevertheless, this should be tested in detail as a future work. In
addition, an effort shodlbe directed to apply this approach with a state filter to eliminate
flight disturbances. This would be necessary to obtain more accurate estimations in the case
of turbulent atmosphere.
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APPENDIX A

AIRCRAFT APPLICATION

In this thesis, estimation of a symmetric missile is studied in detail and suggested approach is
verified with real flight test data of another missile which is also symmetric in pitch and yaw
planes. Having the same aerodynamic model in pitch and yawspisutlearly a benefit for

estimation with limited measurements. It is observed that wind angles can be easily
reconstructed from IMU measurements when wind is excluded. However, method is not
tested yet for systems having different models in pitch amd iere, without putting too

much detail, suggested approach is tested with real flight data of a research aircraft, ATTAS

[9]. Test data is obtained from suppodamer i al s of “Flight Vehicle
Ti me Domain [ethodol ogy”

Figure Al - ATTAS Research Aircraft3]

On the aircraft, there were additional sensors that were readily available to measure wind
angles, true airspeed and Euler angles. These measurementsidnestuteefind a reference

set for unknown parameters. Aerodynamic coefficients are calculated from measurements
and least square fits are applied directly to those coefficients in order to find constant terms
and derivatives as a reference set. Thenhawit using attack and sideslip angles
measurements, aerodynamic parameters are estimated again and compared with the reference
values.

As demonstrated before, suggested approach works properly if estimation is applied to both
pitch and yaw planes. Thereéoavailable flight test data of three different maneuvers with
elevator, aileron and rudder inputs from same flight are merged into one. Merged data is
presented irFigure A2. Since intervals between the maneuvers are absent, initial states of
all three maneuvers are included in the unknown parameter vector. Of course, it would be
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much better if test data had no gaps between the maneuvers so that only the tesiat sta
the beginning would be included in unknowns and wind angle reconstruction would be more
reliable.
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Figure A2 - Merged maneuvers

Before testing the estimation algorithm, reconstruction from IMU is tested in estimation
algorithm with other measurements. Explicit system model is modified so that outputs are
composed of wind angles, Euler angles and altitude above ground. Initial states together with
IMU bias values are used as unknown parameters to be estimated iteratbiey the same
estimation algorithm described in Chap#r it is checked that reconstruction can be
successful when properly applied. Note that, this is ngthirt a preliminary check to see
whether or not IMU is capable of reconstructing wind angles within the sampling frequency
(25 Hz) of available test data.

The results of reconstruction process are plotteBigure A 3. Minor errors appeared in
reconstructed data seems acceptable. Possible reasons for these errors are neglected scale
factor errors in IMU, disturbances occurred during flight and numerical errors/éd/dah
postprocess calculations. Yet, overall fit of reconstructed data to measurements are
successful.
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Aerodynamic models of the aircraft at the center of gravity are postulated in the following
form [8]:

C=C, € a (A1)
C,=C, €C,b (A.2)

C,=C, «,a (A.3)

G=G, Gb € ¢+Gp € (A4)
C,=C, ,a €, d+C.q (A5)
C.=C, G, b & g+ C%p* €, r (A.6)

where normalized angular rates are given by:
p = pb/V g =qc/V T FoN (A7)

Aerodynamic force and moment coefficients given above are calculated using IMU and
thrust measurements:

gd éa g Fg, gz
é uee é_. u g u A.
< adhed v € gy -
€C, HZ ga, ge @ Uy
¢C g beO 078s p e0greq p o & o
u-il He . £.Uuqée u A
Lo tgs 06! O 4 M08 PI A oy *9
€C. # Ogo b &+ @aqupr&O r g & @
where inertia matrix is defined as:
éJXX O JXZ
_e
J=z0 J, O (A.10)
é‘JXZ O JZZ

Note that these coefficients are obtained at CG of the aircraft. Therefore translational
accelerations are first transformed to CG from sensor position and then usedvén abo
equations. In addition angular acceleration measurement was not available; therefore angular
rates are smoothed and numerically differentiated to obtain angular accelerations.
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Using least square estimation, aerodynamic parameters in postulated linear models are
achieved. Then translational accelerations and angular accelerations are evaluated from
estimation results by going backwards in Equati@n8) and (A.9). Comparison of actual
measurements and model fits are giveRigure A4.

Aerodynamic parameters are also estimated without wind angles measurements. Maximum
likelihood estimation is applied with explicit system model. However output iegsaif the
system model are now modified as:

é,ax QrVZS@CXO-FCXaa 91 Ftré;hst

é. U > .

& 1 m ¢Cu G (11
& H gC, +C,a p & ©

%]
U 1 q€ > U S
e‘_‘ i ) Oél Og l:JC,% €,a Crd.+C,d/V t:Z_
gr Og0 b gCH+C b 4G, a +(G p+ G b/ V' | (A.12)

nbb
e 0 o G- ag &
.1e u 1 e
-J ézencg Frus D_LJ ré 0 Fgg g
Oy e

s

g 0 ¢ e p

[cdaF e

where total velocity, angle of attack and sideslip parametppeared in above output
equations are evaluated from states:

V=i + w a tan' (/u) b ta 0 (A.13)

This change is necessary due to the difference between Javelin and ATTAS aerodynamic
models and inertia matrices. Note that translational acceleration and angular acceleration at
X axis are also included to output vector. Since state equations ofiexpdidel do not
involve any aerodynamic parameters, those are remained same.

Comparison of explicit model outputs with final estimates and real measurements are given
in Figure A5. Correlation coefficients are also checked and it is observed that aerodynamic
parameters are not correlated with any other parameter. Unfortunately estimations of initial
conditions appear as highly correlated which might affect the &stimresults. This is most

likely because three different maneuver sets are used as one and two additional initial
condition sets are included to unknown parameters.

59



a_[m/s?]

measurements
least square models

errors

SRR 1| o B N Y L (" ey v T .
0 50 100 100
1 Y|
v
SRR | LA | LA Yy oy W LTV T
o -1
0 50 100 100
0.5F |
&
K
T | i Y WO 0TI Lo il
N
©
-0.5 : L
100 0 50 100
100 - ’
d
g I I
3 0 v L 0 :Pwah rrrrrrrrrrrrrr i
= [' :
a -5
-100 | 1 ,
0 50 100 0 50 100
— 10
o
DOy e i
S
= -10
° 20
0 50 100 0 50 100
| b
10 5 |
NU)
S, 0 petfidaedlUian-lliifnan, O”VP—#[MMI‘W rrrrrrrrrrrrrr
e D 5 i
-10 = i ! L
0 50 100 50 100
time [s] time [s]

Figure A4 - Least square estimation results
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Figure A5 - Maximum likelihood estimation results
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Results of least square estimation and maximum likelihood estimation are compBabtein

A 1. It can be seen that aerodynamic parameters obtained with two different estimations are
close to each other. Note that, as mentioned before, this test data is not perfect due to the
obligation of additional two initial condition sets. Therefore results lshexen be better for

a more appropriate flight test containing sufficient excitations in all planes without gaps
between them.

Table Al - Estimation results

Maximum Least Maximum | Measurement
Likelihood Square Likelihood
Cx0 -0,048 -0,047 ul 127,177 129,350
Cxa 0,401 0,389 vl 0,324 -0,919
Cy0 0,003 -0,005 wil 4,897 5,104
Cyb -1,015 -1,005 phil -0,028 0,016
Cz0 -0,231 -0,230 thel 0,042 0,029
Cza -5,458 -5,252 u2 130,088 129,406
Clo 0,002 0,001 v2 0,478 -0,840
Clb -0,100 -0,100 w2 5,189 5,195
Cid -0,194 -0,194 phi2 -0,074 -0,022
Cir 0,256 0,246 the2 0,075 0,041
Clp -0,765 -0,766 u3 126,824 128,658
CmO 0,088 0,081 v3 0,154 -0,910
Cma -0,991 -0,920 w3 4,805 4,627
Cmd -1,142 -0,993 phi3 -0,021 0,021
Cmq -7,870 -5,989 the3 0,050 0,021
CnoO 0,001 0,003 bax -0,201 NA
Cnb 0,235 0,229 bay 0,632 NA
Cnd -0,150 -0,140 baz 0,048 NA
Cnr -0,125 -0,108 bp 0,001 NA
Cnp -0,040 -0,041 bq 0,004 NA
br 0,009 NA

Errors are also compared figure A 6. There are deterministic errors suggesting the
aerodynamic model inaccuracies. Yet these errors appear almost same for both estimations.
Other than that, aximum likelihood estimation seems to provide slightly better fits.
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Figure A6 - Error comparison of estimations

To sum up, maximum likelihood estimation without wind angle measurements can also be
applied to aircrafts undemppropriate circumstances. Limitations given for a symmetric
missile still holds here. Test data to be used in estimation must contain sufficient information
for all planes so that wind angles reconstruction can be done without any correlations.
Moreover wind must not be existed during the excitations of system. Otherwise
reconstructed wind angles will not be exact and resulting parameter estimates will be biased.

Even if above conditions cannot be met exactly, maximum likelihood estimation with
explicit system model suggested in this thesis may be used to obtain rough models for

aircrafts.
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