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ABSTRACT 
 

 

 

AERODYNAMIC PARAMETER ESTIMATION OF A MISSILE 

 

 

 

Aksu, Arda 

M.Sc., Department of Aerospace Engineering 

Supervisor Asst. Prof. Dr. Ali Türker Kutay 

 

 

 

September 2013, 63 pages 

 

 

 

Aerodynamic characteristics of missiles depend strongly on wind angles, that is, angle of 

attack and sideslip angle. However it is impractical to measure these angles during missile 

testing. Therefore, without direct information of the wind angles, it becomes a difficult 

problem to be able to accurately estimate the missile aerodynamic parameters from flight 

tests. This thesis addresses this problem and suggests an approach to estimate missile 

aerodynamic parameters successfully without wind angles measurements. Instead of 

reconstructing wind angles with post-process calculations prior to estimation, reconstruction 

process is handled within the estimation. The algorithm developed is tested with simulated 

missile data. Results are compared with true values used in simulation. It is demonstrated 

that suggested approach can provide accurate and reliable estimations without wind angles 

measurements. The approach is also applied to real flight test data of a missile with success. 
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ÖZ 
 

 

 

BİR FÜZENİN AERODİNAMİK PARAMETRE TAHMİNİ 

 

 

 

Aksu, Arda 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ali Türker Kutay 

 

 

 

Eylül 2013, 63 sayfa 

 

 

 

Füzelerin aerodinamik karakteristikleri baskın olarak rüzgar açılarına bağlıdır. Fakat uçuşlu 

testler sırasında bu açıların ölçümü pratik olmamaktadır. Bu yüzden bir füzenin aerodinamik 

parametrelerinin uçuşlu testlerden düzgün bir şekilde tahmin edilebilmesi de zor bir problem 

haline gelmektedir. Bu tez, bu problemi konu alarak bir füzenin aerodinamik 

parametrelerinin rüzgar açıları ölçümü olmadan başarılı bir şekilde tahmin edilebilmesi için 

bir yaklaşım önermektedir. Rüzgar açıları verilerinin tahmin çalışmasında kullanılmak üzere 

yeniden yapılandırılması yerine, bu yapılandırma tahmin sırasında ele alınmaktadır. 

Geliştirilen tahmin algoritması modellenen bir füzenin benzetim sonuçları üzerinde 

denenmiştir. Tahminden elde edilen sonuçlar benzetimde kullanılan gerçek değerler ile 

karşılaştırılarak, önerilen yaklaşımın rüzgar açılarının mevcut olmadığı durumda doğru ve 

güvenilir sonuçlar verebileceği gösterilmiştir. Yaklaşım aynı zamanda gerçek bir atışlı test 

verisine de başarıyla uygulanmıştır. 

 

 

 

Anahtar Kelimeler: Füze, Açık Döngü Benzetim, Parametre Tahmini, Maksimum Olasılık 
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,  ,  p q r  body axis angular rates (roll, pitch, yaw) 

,  ,  x y za a a  body axis translational accelerations 

,  ,  u v w  body axis velocities 

,  ,  x y z  earth axis positions 

,  ,      Euler angles (roll, pitch, yaw) 

,     wind angles (angle of attack, sideslip angle) 

,  ,  e r a    control surface deflections (elevator, rudder, aileron) 

V  total velocity relative to air 

,  ,  X Y ZC C C  body axis non-dimensional aerodynamic force coefficients 

,  ,  l m nC C C  body axis non-dimensional aerodynamic moment coefficients 

,  ,  ,  xx yy zz xzJ J J J  mass moments of inertia 

b  reference span 

l  reference length 

S  reference area 

  air density 

q  dynamic pressure 

sounda  sound speed 

m  mass 

g  gravitational acceleration 
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CHAPTER 1 

CHAPTERS 

 

1. INTRODUCTION 
 

 

 

Flight vehicle systems are designed with initial predictions based on similar systems mostly. 

Throughout the design stage characteristics of the system are needed to be represented with 

higher fidelities as the design evolves. One of the most difficult parts of the modeling 

involves postulating an accurate aerodynamic model for successful evaluation of system 

behavior.  

 

Aerodynamic modeling starts with analytical calculations and continues with wind tunnel 

tests for fine tuning of aerodynamic parameters. In the end, postulated model is verified 

through flight tests. The easiest and most straight forward way of aerodynamic model 

validation is comparing the simulation results with real flight tests carried out for 

performance demonstration. However those tests are usually held with the autopilot in the 

(closed) loop. Match between simulation and flight test results does not necessarily mean 

that postulated model is accurate enough. This brings the necessity of separate flight tests 

specifically designed for aerodynamic model validation. For this reason, estimating 

aerodynamic parameters from flight tests has always been a major interest for flight vehicles. 

 

 

 

1.1. Literature Review 

 

Aerodynamic parameter estimation methods have been extensively applied to flight tests for 

decades. The various parameter estimation methods can be broadly classified into three 

categories: equation error, output error, and filter error methods [4]. 

 

In equation error method, aerodynamic parameters are achieved with a classical regression 

technique such as least square estimation. Synthesis of aerodynamic forces and moments 

through Taylor series expansion leads to a model that is linear in parameters. Aerodynamic 

coefficients are computed from linear and angular accelerations measurements and 

parameters of linearized model are obtained with least square fits to coefficients. Popularity 

of this method comes from its simplicity. For a given model structure, estimations are easily 

obtained with minimal computation in one shot. Due to the presence of measurement errors 

however, estimations might be asymptotically biased, inconsistent, and inefficient. 

 

Output error method, as the name suggests, aims to minimize the error between the model 

outputs and measurements. This method is a nonlinear optimization method that has been 

most widely used for aerodynamic parameter estimation studies ever since its introduction 

around the seventies. Cost function is usually obtained from likelihood function so that the 

method is also referred as maximum likelihood estimation. The main advantage of this 
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method over equation error method is that aerodynamic parameters can be implemented in 

state equations while minimizing the error. This in turn results with more accurate models. 

 

In output error method, process noise in states is neglected and only measurement noise is 

accounted. The filter error method on the other hand accounts for both process and 

measurement noises and is the most general stochastic approach to aerodynamic parameter 

estimation. Process noise is included in state equations so that minor errors in system model 

can be eliminated with a state filter. In the presence of atmospheric turbulence this method is 

known to yield accurate results [10].  

 

In addition to methods above, frequency domain approaches might be preferable over time 

domain approaches for rotorcraft identification [4]. Since no integration is involved in the 

frequency domain, method becomes suitable for unstable systems for which numerical 

integration in time domain can lead to problems. Moreover, without affecting the estimation 

results, the zero frequency can be neglected in evaluation, which can be advantageous in 

eliminating the need to bias parameters. 

 

Other approaches appear in the literature are filtering approach which provides real time 

estimations and neural network based methods for highly nonlinear aerodynamic models. 

 

 

 

1.2. Problem Definition and Contribution of Thesis 

 

It can be seen that most of the studies appeared in the literature involve aircraft systems. The 

advantage of studying such systems is having reliable sensors in addition to Inertial 

Measurement Unit (IMU) such as airflow angle vane, integrating gyro and dynamic pressure 

sensor [12].  

 

This is not the case for missile applications. For practical reasons, most of the time missiles 

have only IMU which measures translational accelerations and angular rates only. The 

required states are obtained by integrating IMU measurements during flight. Bias and scale 

errors in IMU measurements however, cause the integrated data to drift. Launch angles may 

also have uncertainty or IMU may not be able to detect attitude and velocity changes with 

enough accuracy during launch. These errors can be either neglected when their affect is 

minimal [1] or handled with post process data reconstruction techniques [12],[13]. 

Nevertheless, they can cause a poor representation of the true states. 

 

Morelli has recently suggested a more reliable way of estimating aerodynamic parameters 

without wind angles measurements [16]. It was demonstrated that high frequency content of 

both reconstructed wind angles and real measurements are almost same. Making use of this 

information, wind angles were calculated with integrating IMU measurements, passed 

through a high pass filter and then used in frequency domain estimation. 

 

This thesis focuses on an alternative solution in time domain and proposes an approach with 

output error method to estimate aerodynamic parameters of a missile from control surface 

deflections and IMU measurements only. Instead of reconstructing wind angles with post-
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process calculations prior to estimation, reconstruction process is proposed to be handled 

within the estimation. Output error method is utilized for this purpose. Efficiency of the 

algorithm developed is demonstrated with both simulation and real flight test data. 

 

 

 

1.3. Scope 

 

In order to evaluate the parameter estimation algorithm, a missile simulation is developed in 

Chapter 2. Javelin missile system is taken as an example and modeled in MATLAB. 

Aerodynamic model is obtained from Missile Datcom with assumed dimensions from 

Javelin pictures.  

 

Necessary steps of an estimation study taking place prior to the flight test are explained and 

detailed in Chapter 3. These steps are postulating an aerodynamic model, preparation of test 

scenario and input design. 

 

Chapter 4 gives mathematical details about the estimation algorithm to be tested. Practical 

considerations for real life applications are given. Two different system models to be used in 

estimation algorithm are proposed. Implications for advantages and disadvantages of both 

models are also discussed. 

 

In Chapter 5, the algorithm developed is tested with both simulated data and real flight test 

data. Suggestions are also given about practical applications of the algorithm. 

 

Finally, in Chapter 6, all results are discussed with conclusions and possible future works. 

 

 

  



 

4 

 

 

  



 

5 

 

 

CHAPTER 2 
 

 

2. MISSILE FLIGHT SIMULATION 
 

 

 

2.1. Javelin ATGM 

 

Javelin Anti-Tank Guided Missile (ATGM) [6],[14] is a man-portable, fire-and-forget 

system designed specifically to hit and destroy armored tanks and fighting vehicles. The 

project has been managed by Texas Instrument (later changed as Raytheon) and Lockheed 

Martin. Production phase has started in 1996 and missile has been used in field since then. 

 

Javelin is fired by gunner after a target is locked with infrared (IR) seeker of the missile. The 

missile has two separate propulsion units, namely launch motor and flight motor. The launch 

motor provides soft launch to eject the missile from launch tube with approximately 13m/s 

velocity. Once the missile clears the tube, 8 mid-body wings and 4 tail fins flip out. Missile 

travels with this velocity to a safe distance of around 5 meters, then flight motor ignites and 

provides thrust for propelling the missile to its maximum velocity. A launch of Javelin 

ATGM is shown in Figure 2.1. 

 

 
Figure 2.1 - Launch picture of Javelin ATGM 

 

 

After burn-out of the flight motor, Javelin missile has approximately 190m/s velocity and 

continues the flight without thrust. Mass specifications of Javelin ATGM after burn-out [5] 

are given in Table 2.1. 
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Table 2.1 - Javelin ATGM Specifications After Burn-out  

Mass  10.15  kg 

Diameter 0.127  m 

Length 1.081  m 

CG (from nose) 0.446  m 

JXX 0.023  kg m/s
2 

JYY , JZZ 0.914  kg m/s
2
 

 

 

 

2.2. Reference Frames and Modeling Assumptions 

 

In order to supply data for the estimation study, response of Javelin ATGM is simulated with 

six degrees of freedom (6-DOF) including inertial positions x,y,z and Euler angles ϕ,θ,ψ. The 

two reference frames used in simulation, namely inertial frame and body frame are defined 

in Figure 2.2.  

 

 
Figure 2.2 - Reference frames 

 

 

Inertial frame is fixed with respect to earth at launched position of the missile with z axis 

pointing the same direction as the gravity vector, x axis pointing the direction of the missile 

and y axis pointing the right side of the initial orientation of missile. Body frame origin is at 

the missile center of gravity (CG), with x axis pointing forward through the nose of the 

missile, y axis pointing the right side of missile and z axis pointing through the underside. 

Rotation of the body frame from fixed earth frame is determined with 3-2-1 Euler sequence 

(ψ,θ,ϕ respectively). 

 

Simulation is started at burn-out with 190 m/s initial velocity and physical specs are held 

constant during the simulation due to burn-out. Since the main focus in this thesis is 

estimating the aerodynamic parameters of the missile while it is in open loop, simulation of 

the missile before the burn-out and design of a proper controller are not in the scope of this 

study. It is assumed that missile is brought to a desired height and attitude at burn-out after 

launch. After that open loop control surface deflections are applied in order to excite the 

missile. Only the response of the missile to those excitations is simulated. 

( )
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Further discussions of the assumptions made are given in the following sections. 

 

 

 

2.3. Equations of Motion 

 

The collected equations of motion of the missile to be used in the simulation are summarized 

below [12]: 

 

s 0

c s 0

c c 0

u r q u
F

v g r p v
m

w q p w



 

 

        
       

   
       
              

   (2.1) 

 
1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx xx

yy yy

zz zz

p J r q J p

q J M r p J q

r J q p J r


           
          

            
                    

  (2.2) 

 

1 s s / c s c / c

0 c s

0 s / c c / c

p
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   (2.3) 

 

c c s c c s s s s c s c

s c c c s s s c s s s c

s c s c c

x u

y v

z w

           

           

    

       
     

   
     
          

  (2.4) 

 

where   and   are the resultant aerodynamic force and moment vectors acting on the 

missile center of gravity expressed in the body coordinate frame. Note that sine() and 

cosine() functions are denoted with s and c for simplicity. Aerodynamic forces and moments 

are expressed in terms of non-dimensional aerodynamic coefficients as follows: 

 

2

2

X

Y

Z

C
V

F C S

C


 
 


 
  

   (2.5) 
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Gravitational acceleration, g and air density, ρ in the above equations are assumed not to 

vary and used as constant in simulation. Considering the duration of the simulation and total 

change in the altitude, this is a reasonable assumption. 

 

State equations given above are numerically integrated in MATLAB using 2
nd

 order Runge-

Kutta integration with 1ms time step. 

 

States and inputs of the missile model are defined as: 

 

[ ]Tx u v w p q r x y z     (2.7) 

 

[ ]T

e r au       (2.8) 

 

The applied integration formula then can be shown as: 

 

     
   

 
,

1 ,
2

f x k u k dt
x k x k f x k u k dt

       
  

  (2.9) 

 

where f  is represented for the state function and u is represented for average value of the 

current (k) and future (k+1) points. 

 

 

 

2.4. Aerodynamic Model 

 

Non-dimensional aerodynamic force and moment coefficients in equations (2.5) and (2.6) 

are calculated using MISSILE DATCOM [2]. Geometric information of Javelin ATGM 

obtained through a reference picture is given in Figure 2.3. Since the missile is symmetric in 

XZ and XY planes, same coefficients are used for both planes. 

 

As mentioned before, only the perturbed response of the missile in open loop is simulated in 

a relatively small time interval. This is the key point for most of the assumptions made 

especially in the aerodynamic model. Since the missile flies in a close vicinity of the ballistic 

trajectory when small perturbations are given to the control surfaces, a small space around 

reference condition is needed for the aerodynamic database. Vector of input breakpoints used 

to determine the space of aerodynamic database are given in Table 2.2. 
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Figure 2.3 - Dimensions (in mm) of Javelin ATGM  

 

 

Table 2.2 - Input vectors of aerodynamic database 

Parameter Inputs 

Mach [0.3 0.4 0.5 0.6] 

 ,  ,
e ,

r ,
a  [-5 -4 -3 -2 -1 0 1 2 3 4 5] deg 

 

 

Aerodynamic model using the parameters given in Table 2.2 are obtained from MISSILE 

DATCOM in the following form: 

 

( , , , , , )static

X X e r aC C M         (2.10) 

 

( , , ) ( )
2r

static dynamic

Y Y r Y

rl
C C M C M

V
      (2.11) 

 

( , , ) ( )
2q

static dynamic

Z Z e Z

ql
C C M C M

V
      (2.12) 

 

( , , , ) ( )
2p

static dynamic

l l a l

pl
C C M C M

V
       (2.13) 

 

( , , ) ( )
2q

static dynamic

m m e m

ql
C C M C M

V
      (2.14) 

 

( , , ) ( )
2r

static dynamic

n n r n

rl
C C M C M

V
      (2.15) 

 

Using the states and control surface deflection inputs in the simulation, each coefficient is 

calculated with linear interpolation from the aerodynamic database at every time step. Total 

velocity and wind angles are calculated from the states for no-wind condition as follows: 
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2 2 2V u v w      (2.16) 

 

1tan ( / )w u     (2.17) 

 
1tan ( / )v u     (2.18) 

 

Note that the flank angle representation is used for sideslip angle. This is a fair assumption 

due to low attack angles.  

 

One last assumption in the simulation is taking the speed of sound to be constant. Mach 

number is then calculated as follows: 

 

sound

V
M

a
    (2.19) 
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CHAPTER 3 
 

 

3. EXPERIMENT DESIGN 
 

 

 

An aerodynamic parameter estimation study starts before the flight test. First an aerodynamic 

model whose parameters are to be verified is determined. Then an appropriate test scenario is 

prepared in which missile is held as long as possible in the region where the determined 

model remains valid. Finally inputs whether in open loop or in close loop are designed so 

that missile supplies rich content of information in its response. These are all parts of the 

aerodynamic parameter estimation work that take place prior to flight. Before developing an 

estimation algorithm, these steps are explained in detail below. 

 

 

 

3.1. Aerodynamic Model Verification 

 

In this study, identification of the aerodynamic model is restricted to Y and Z axes force and 

moment coefficients. In other words only CZ and Cm coefficients are identified. Note that, 

since missile is modeled as symmetric in pitch and yaw planes, CY and Cn are identical to CZ 

and Cm in absolute values. There is only sign difference due to convention with: 

 
static static

Z YC C    (3.1) 

 

q r

dynamic dynamic

Z YC C     (3.2) 

 
static static

m nC C     (3.3) 

 

q r

dynamic dynamic

m nC C    (3.4) 

 

Aerodynamic model is generally identified through parameters of linear expansion of the 

model at a reference Mach number: 

 

rr
Y Y Y r YC C C C r

 
       (3.5) 

 

qe
Z Z Z e ZC C C C q

 
       (3.6) 

 

qe
m m m e mC C C C q

 
       (3.7) 

 

rr
n n nn rC C C C r
 
      (3.8) 
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Since the aerodynamic models in pitch and yaw planes are same, common aerodynamic 

derivatives are used also in linearized equations: 

 

qe
Y Z Z r ZC C C C r

 
       (3.9) 

 

qe
Z Z Z e ZC C C C q

 
       (3.10) 

 

qe
m m m e mC C C C q

 
       (3.11) 

 

qe
m mn r mC C C C r
 
       (3.12) 

 

The goal of a parameter estimation study is to find the unknown parameters of a known 

mathematical model. Here, the nonlinear aerodynamics of the missile is approximated by a 

linear model and the parameters of this model will be estimated. The purpose of this section 

is to find the linear model that best fits the actual nonlinear database. The linear model fitted 

to the database will be used to evaluate the performance of the estimation methods in the 

following sections. 

 

Aerodynamic derivatives in linearized models are first evaluated from nonlinear database 

directly as reference values. A reference Mach number is selected with considering the mean 

velocity of the missile during the perturbations and nonlinear model is linearized around a 

reference point. Most general way of doing this is taking central difference around zero 

points for near ballistic flights. While the linear model obtained from central difference 

method can approximate the aerodynamic data well within a small neighborhood around the 

reference point, approximation becomes less and less accurate as the operation point moves 

away from the reference point. To overcome this inaccuracy, linear model can be determined 

with a least square fit of database values within a region that will be explored during the 

excitations, rather than at a single point at the reference flight condition. Parameters of a 

linear model obtained with two approaches for 0.5 Mach number are given in Table 3.1. It 

can be seen that relative error between two approaches are nearly %5 for control derivatives.  

 

Table 3.1 - Aerodynamic moment derivatives at 0.4M 

 Central difference approach Least square approach 

Czα  (stability derivative) -18.489   -19.183 

Czδ  (control derivative) -2.573 -2.666 

Cmα  (stability derivative) -30.894   -31.781 

Cmδ  (control derivative) -12.118 -12.557 

 

 

Note that linear model obtained with central difference approach is exact for [-1,+1] degrees 

angle of attack and [-1,+1] degrees elevator deflection intervals. On the other hand least 

square approach fits the nonlinear model with a better coverage. Linear models are plotted 

on aerodynamic database values in Figure 3.1. It can be seen that linear model obtained with 
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the central difference approach has larger approximation error at points far away from the 

reference point compared to the linear model obtained with the least square approach. 

 

 
Figure 3.1 - Pitch plane static coefficients 

 

 

One of the linear models should be selected in the estimation studies by considering the 

focus of the estimation. In the case of building a database through estimated values instead 
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square approach. Parameters obtained through multiple flight test cases are put all together 

and a final curve fit can be used for determination for a database model. 

 

On the other hand, least square approach is better for studies that involve verification of an 

existing model. Using the control surface deflections and angle of attack obtained -directly 

or indirectly- from flight test as regressors, a least square fit is applied to nonlinear model for 

determining the reference linear model. So that values obtained from estimation can be 

compared with this reference model. 

 

Either way, missile response must stay on the linear side of the real aerodynamic model as 

much as possible during the perturbations applied for exciting the missile. So that time 

invariant aerodynamic model used in estimation algorithm holds true in practice as well. 

That being said, least square approach is preferred in this study for the verification of the 

aerodynamic model used in simulation with estimation results. 

 

Note that the static term in aerodynamic model created with Missile Datcom is linearized 

with respect to wind angles, control surface deflections and Mach number while dynamic 

term is linearized with respect to Mach number only. 

 

 

 

3.2. Test Scenario 

 

As explained before, estimation is applied to open loop response of the missile which flies 

close to the ballistic trajectory, in other words around zero angle of attack and sideslip angle 

after burn-out. Initial condition of this phase needs to be carefully determined with focusing 

to create an interval with minimum velocity change during the perturbations. This ensures 

that aerodynamic model can be estimated with a linearized expansion around a reference 

Mach condition. 

 

Altitude of the missile from ground level at burn-out is taken as 100m [5]. Simulation is 

started from burn-out of the missile at that altitude with 190m/s velocity. Initial attitude of 

missile -more specifically pitch angle- is needed to be determined next. Using a negative 

pitch angle around -20 degrees provides the desired interval with minimum velocity change. 

Unfortunately that does not appear to be a realistic scenario since the missile might hit the 

ground too soon in such a trajectory. Instead, a relatively high pitch angle should be selected 

so that missile can climb more and longer intervals to be used in estimation might be 

obtained. Sample free flight without any control surface deflections are simulated for 

different initial pitch angles and results are shown in Figure 3.2. It can be seen that the 

tradeoff for longer intervals is to apply the estimation in lower velocity regions. Moreover 

velocity change increases for longer intervals as well. Therefore a suitable region must be 

selected where the time invariant aerodynamic model assumption holds and a reasonable 

amount of time exists for system identification excitations. 
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Figure 3.2 - Velocity plots for free flights with different initial pitch angles 

 

 

Although it appears that in lower velocities there are longer intervals which might promise 

better estimations naturally, it is critical to verify the aerodynamic model close to the 

velocities which missile normally operates as far as possible. Therefore initial pitch angle is 

selected as 30 degrees. Perturbations are applied between seconds 7 and 19 in 30
o
 theta plot 

in Figure 3.2. The difference between minimum and maximum velocity during the interval is 

12.5 m/s which is represented with 0.037 Mach number in simulation. This should be an 

acceptable change for the time invariant aerodynamic model assumption and is checked in 

the next section.  

 

 

 

3.3. Input Design 

 

The objective of the input design is to excite the missile so that measurement data contains 

sufficient information for a successful estimation. Since measurements are noisy, higher 

excitations yields better signal to noise ratios. The practical difficulty that must be taken into 

consideration while exciting the missile with higher amplitudes is to ensure that states stay in 

the region required by the aerodynamic model used in estimation.  

 

Note that dynamic terms in the aerodynamic model are already linear. Static terms are 

linearized to be used in estimation. Those linear models are functions of wind angles and 

control surface deflections. These parameters must stay on the linear region of real 

aerodynamic model around zero points in order that linear aerodynamic model retains the 

validity in that region and so it can give the same results with measurements. If the 

parameters drift away from the linear region, no single linear model can closely approximate 

the database anymore. This means there exists no parameter set that will cause the model 

output to match the real missile behavior closely. In this case the estimation process will 

produce inaccurate results or no results at all. 

0 5 10 15 20 25
100

120

140

160

180

200

time of flight [s] (starting from burn-out)

a
b
s
o
lu

te
 v

e
lo

c
it
y
 [

m
/s

]

 

 
0
=0o


0
=10o


0
=20o


0
=30o


0
=40o



 

16 

 

 

 

Local derivatives of pitch plane aerodynamic coefficients at 0.37 and 0.42 Mach numbers 

(which are the minimum and maximum velocities within the test interval selected for 

excitations) are given in Figure 3.3 with respect to angle of attack and elevator deflection. In 

Y axis of plots, relative errors with respect to derivatives at zero angle of attack, zero 

elevator deflection and mean velocity are also included.  

 

 
Figure 3.3 - Aerodynamic force and moment derivatives 

 

 

It can be seen that dominant relative error is in control derivatives due to angle of attack and 

elevator deflection. After 4 degrees for both of those parameters, relative errors exceed the 

%10 bands, above which linearity assumption might fail. Note that 0.04M velocity change 

has a negligible effect on relative errors. In fact due to this reason, 12 sec interval discussed 

above might be stretched little more with starting excitations earlier if it is necessary to 

increase observability. 

 

In order to provide high signal to noise ratio at measurements, missile should be excited near 

the natural frequency of dominant dynamic mode while keeping the states in linear region at 
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the same time. If a parameter estimation study is intended to be applied without any prior 

information about the aerodynamic model, missile should be excited over a broad frequency 

range with nearly constant power for all frequencies. However this study focuses on 

verification of an existing model so that all the information available prior to the estimation 

can be used in input design stage. 

 

Natural frequency of dominant dynamic mode must be determined first. The easiest and 

practical way of doing this without analytical calculations is to apply frequency sweep input 

in simulation and analyzing the frequency response of the missile. The frequency having the 

highest amplitude in measurements is the dominant dynamic mode. Exciting the missile in 

near frequencies provides better signal to noise ratios in measurements hence better 

observability of aerodynamic parameters. Applying perturbed control surface deflections 

with frequency which is same as the dynamic mode frequency and a suitable amplitude 

chosen based on the linearity concerns gives a good starting point. Further fine tunings 

should be made for better usage of linear model limits. Both frequency and amplitude of the 

control surface deflections can be adjusted appropriately in order to design an optimal test 

case. For example the dynamic mode of the Javelin ATGM at 0.4M is approximately 3.5Hz. 

Applying control surface deflections with that frequency and 3 degrees amplitude to missile 

causes wind angles to exceed 5 degrees which should not be accepted due to the limits of the 

linear region. Either amplitude of the inputs should be lowered or frequency should be 

moved further from dynamic mode to resolve this issue. First choice lowers the signal to 

noise ratio obviously if control surface deflection measurements are noisy. Therefore 

changing the input frequency is a better choice. 

 

Designed inputs are shown in Figure 3.4. Multi-step inputs in 2-1-1 pulses [12] are applied 

with 0.56 sec period (nearly 2.5Hz) and 2.5 degrees amplitude. The reason of multi-step 

input choice over classic doublet inputs is to make the states to be uncorrelated with inputs 

[12]. In order to catch the free response of the system zero input intervals are also included 

which also aids to lower correlations. Note that square wave inputs generated in MATLAB 

are filtered with 20 Hz low pass filter which is implemented as control actuator dynamics to 

be more realistic. 

 

 
Figure 3.4 - Control surface deflections in studied test case 
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Wind angles responses of the missile to the applied perturbed inputs are given in Figure 3.5. 

It can be seen that wind angles do not exceed 4 degrees region in which aerodynamic model 

can be accepted as linear. 

 

 
Figure 3.5 - Wind angles in studied test case 

 

 

Parameters of the linear model obtained by applying a least square fit to the region 

experienced by missile are given in Table 3.2. Central difference values of nonlinear 

aerodynamic model at mean velocity during the perturbations are also given in the same 

table for reference values. 

 

Table 3.2 - Parameters of linear model obtained with least square fit 

Parameter Value Central difference value 

Czα -18.628 -18.421 

Czδ -2.611 -2.568 

Czq -0.048 -0.048 

Cmα -31.031 -30.774 

Cmδ -12.246 -12.097 

Cmq -0.121 -0.121 

 

 

Comparisons of nonlinear model with both central difference and least square models are 

given in Figure 3.6. It can be seen from error plots that even though errors of central 

difference approach are minimal in free response regions, least square model minimizes the 

error in overall response. 
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Figure 3.6 - Comparison of aerodynamic models 

 

 

Note that results of the linear models are not outputs from simulation. Those results are 

obtained by applying the linear models using outputs of the simulation with the nonlinear 

aerodynamic model. If somehow, all the states of missile during a flight test are available 

without any biases and noises, the optimal linear aerodynamic model -covering the real 

response in a limited region as best as it possible- can easily be obtained with a least square 

fit like this. This is the reason why least square fit results rather than central difference 

values are used for the verification of the aerodynamic model. 
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CHAPTER 4 
 

 

4. ESTIMATION ALGORITHM 
 

 

 

In general mathematical model of a dynamic system whose unknown parameters are to be 

estimated is given by: 

 

( )z y       (4.1) 

 

where z is the observation or measurement,   is the (np x 1) unknown parameter vector, y is 

the output function of the system model and v is the measurement noise. Then, based on the 

Fisher estimation theory [11], likelihood function of independent random observations can 

be defined as: 
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     (4.2) 

 

Above function is probability density of measured data as a function of system parameters, 

 . In other words, it is probability of measurements given system parameters. The 

likelihood function gets the maximum value for true parameters. Therefore maximum 

likelihood estimator for parameter vector   is equal to   that maximizes the likelihood 

function for N measurements. This can be shown as follows: 
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It is generally preferred to minimize the negative logarithm of likelihood function rather than 

to maximize the likelihood function [8]. So that a suitable optimization technique can be 

applied to the negative logarithm of the likelihood function which represents the cost 

function: 
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   (4.4) 

 

Minimizing the negative logarithm instead of maximizing also comes with great numeric 

stability. Since the maximum value of the likelihood function is between zero and one, 

multiplying the likelihood functions of different measurements with each other repeatedly 

gives eventually a small number which can’t be represented with enough precision in a 

computer. To resolve this, scaling might be applied after each multiplication. However this 

complicates the optimization technique to be used and brings computational burden as well. 

Instead, the logarithm scales the result at each step naturally and increases the precision. Yet 
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the logarithm function is monotonic, so maximizing the logarithm functions can also be 

achieved with minimizing the negative of it. Since minimization of a cost function is an 

easier procedure than maximizing, negative logarithm of likelihood function is by far 

advantageous over likelihood function alone. 

 

Maximum likelihood estimation can be applied to any form of probability density function. 

One of the most widely used density distribution for likelihood functions is Gaussian 

distribution: 
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   (4.5) 

 

where m is the expected value (mean) of x and  is the covariance of x. Likelihood function 

defined above was probability density of one observation parameter as a function of 

unknown parameters. In case of observing parameters more than one, likelihood function 

becomes the joint probability distribution of observations. Joint probability density function 

of n Gaussian distributed random variables is given by: 
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  (4.6) 

 

R  given above is the (n x n) covariance matrix of random variable vector. Assuming that 

random variables are uncorrelated with each other, covariance matrix can be stated as 

diagonal. Since mean values of the random variables represent the true outputs, joint 

probability distribution of observations are stated as: 
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where z  and y  is the (n x 1) measurement and output vectors respectively. Note that (n x 

n) covariance matrix is now represented for measurement noise z y . Likelihood function 

of n independent Gaussian distributed random variables as N many observations each is then 

given by: 
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   (4.8) 

 

By taking the negative logarithm of above function, cost function to be minimized for 

estimating unknown parameters is obtained: 
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4.1. Optimization 

 

Minimization of the above function can be satisfied by setting the gradient to zero: 
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Using the first order Taylor series expansion as an approximation, the gradient of the cost 

function is given by:  
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Setting the right hand side of above equation to zero and solving for   gives: 

 

   

00

1
2

T

J J

  

 


  





  
   
   

 

   (4.13) 

 

Above change in parameter vector makes local gradient zero at that point. With an initial 

guess, iterative solution of above equation provides the parameter vector for the minimum 

value of cost function. This approach is commonly known as Newton-Raphson optimization 

in the literature. 

 

The difficulty of applying this technique is that the covariance matrix given in the cost 

function depends also on unknown parameters. This fact complicates the optimization 

algorithm while taking the derivatives of cost. In fact mathematically speaking there is no 

closed form solution of this problem. Instead of applying the minimization for the unknown 

system parameters all at once, relaxation technique can be used. In this technique, covariance 

matrix is assumed not to be affected by change in system parameters. It is used as constant in 

cost function and after each parameter update it is updated independently for the new 

parameters.  

 

The procedure of the relaxation technique can be summarized as follows: 

 

1. Set initial values for parameters. 
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2. Find system outputs for selected parameters and estimate the noise covariance 

matrix from measurement errors. 

3. Apply the optimization to minimize the cost function and update the unknown 

parameter vector. 

4. Iterate step 2 and 3 until convergence. 

 

 

4.1.1. Noise Covariance Matrix 

 

Estimation of the covariance matrix is obtained similarly. The gradient with respect to the 

covariance matrix is set to zero and then solved for the covariance matrix. The first term in 

the cost function has no effect on minimization. Dropping that term and rearranging the cost 

function as follows as a function of covariance matrix makes easier to take the derivative. 
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Then partial derivative with respect to covariance matrix is obtained as: 
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Setting the gradient to zero and solving for R gives the estimate of the noise covariance 

matrix for the current values of parameters at that step: 
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      (4.16) 

 

After each parameter update, covariance matrix is calculated again. Estimated covariance 

matrix is then used as constant while finding the parameter update.  

 

 

4.1.2. Parameter Update 

 

Since covariance matrix in the cost function is fixed at each step during the optimization, 

cost to be minimized reduces to: 
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The gradient of the cost function with respect to the parameter vector  

 



 

25 

 

 

   
   

 
1 1

1

1

2

T

N
Ti i i i

i i i i

i

z y z yJ
R z y z y R



  

 



       
     

      

   (4.18) 

 

Measurement vector is also independent from parameters. Simplifying above equation using 

this gives:  
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The second order gradient of the cost function is given by: 
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   (4.20) 

 

The partial derivative of outputs with respect to the parameter vector is called response 

gradient or output sensitivity. This is an (n x np) matrix with n is the number of output or 

measurement variables and np is the number of unknown parameters or in other words length 

of the parameter vector,  . [i,j] element of the matrix is quantifies the change in i
th
 

observation due to the change in j
th
 parameter.  

 

The first term in the summation above includes the second order gradient of the response. 

This gradient is computationally expensive to obtain and generally suggested to be 

neglected. Yet summation of products of the second order response gradients with residuals 

converges to zero for the true parameters. For that reason neglecting this term is a good 

approximation near the final solution. The algorithm obtained with this simplification is 

known as Gauss-Newton method in the literature. 

 

Combining the cost gradients in parameter change equation gives: 
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    (4.21) 

 

In order the inversion of the second order cost gradient in the parameter change equation to 

be successful, the necessary condition is having a full rank matrix inside. Since R is taken 

diagonal as explained before, response gradients must be linearly independent to satisfy that 

condition. In other words both rows and columns of the response gradients must be linearly 

independent with each other.  

 

This is only possible when system parameters to be estimated must have a unique impact on 

outputs and those outputs are not correlated with each other. Otherwise second order cost 

gradient becomes singular and inversion might simply fail.  
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Numerical errors might also be accounted for a nearly singular matrix. If inversion does not 

fail, parameter change might result in with divergence in cost function. In order to prevent 

this, inversion with singular value decomposition [15] might be a better way instead of direct 

inversion.  

 

Gauss-Newton method explained above is an unconstrained optimization starting from an 

initial point based on a quadratic cost function assumption. In some circumstances such as 

when the cost function is highly nonlinear or initial parameters are far away from the true 

values, the step size of parameter vector might be too large during the iteration. Singular 

value decomposition helps to detect the directions of large parameter changes [12]. Defining 

an upper limit for the change helps the cost function to converge. However one limit might 

not be applicable for all directions due to the difference of parameter scales. Instead, a 

simpler approach based on heuristic considerations is commonly preferred. If the cost 

function diverges at any step during the iteration, parameter update size is reduced by 

halving each time until reduction in cost function is satisfied [8]. This is applied by 

implementing a weight factor in parameter change equation as follows: 
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where k is used as one at each iteration. If the cost increases, k is also increased by one until 

the cost decreases during the iterations. 

 

There are other methods also to prevent divergences such as bounding the parameters [7] and 

switching to simplex method in cost increase [18] but halving approach is found to work fine 

and is preferred in this study for its simplicity. 

 

Parameter update process is repeated until a convergence criterion is satisfied. Assessment of 

final convergence should be made for both relative changes in cost function and in 

parameters at the same time. Estimation loop including parameter halving procedure is 

presented in Figure 4.1. 
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Figure 4.1 - Maximum Likelihood estimation loop 
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4.1.3. Output Sensitivities 

 

Output sensitivities both in first and second order cost gradients can be found analytically by 

taking partial derivatives of outputs with respect to unknown parameters. However in the 

case of nonlinearity involved in the postulated output model analytical calculations might be 

really complicated. Yet derivatives must be found again even if a minor modeling change in 

the postulated model occurs. In order to deal with this difficulty, output sensitivities are 

approximated with numerical differences.  

 

Using central difference approximation for each parameter, j
th
 column of the output 

sensitivity matrix can be found as: 
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   (4.23) 

 

j  given below is the perturbation step for the j
th
  parameter. 

je  denotes a vector with one 

in the j
th
 element and zeroes elsewhere.  

 

Perturbation size is generally chosen relative to the parameter to be perturbed. 0.1% of the 

nominal value is found to be a reasonable choice. Also in case of the nominal value is too 

small to be perturbed with this relative size, perturbation size must be limited with an 

absolute lower bound.  

 

 

 

4.2. System Models 

 

As already stated in previous chapters, wind angles are one of the most important inputs for 

the estimation process. Aerodynamic response depends strongly on angle of attack and 

sideslip angle. Since these angles are not measured directly, they must be properly 

represented in system model. To do so linear body velocities are reconstructed in system 

model during the iterations and wind angles are computed from those parameters. The 

assumption for that representation to be true is that there is no wind acting on the system. 

Therefore flight test must be carried out in steady atmosphere with low level wind condition. 

 

Since the focus is verifying the aerodynamic parameters through IMU measurements only, 

outputs of the system model used in estimation must be restricted with translational 

accelerations and angular rates. 

 

Two different system models, namely implicit and explicit models are postulated to be used 

in optimization of the maximum likelihood function. System models represented here are 

continuous state equations and are numerically integrated to states with 2
nd

 order Runge-

Kutta integration method. Details of the models are given below in this section. 
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4.2.1. Implicit Model 

 

Angle of attack and sideslip angle are determined implicitly in this model. Response of the 

system to control surface deflections is obtained using dynamic system equations in pitch 

and yaw planes whereas roll plane response is obtained by integrating measurements using 

kinematic equations. Initial states are chosen as unknown with prior values and determined 

through the optimization routine together with aerodynamic parameters. Bias errors in input 

and output variables are also introduced as unknown parameters in the estimation. 

 

For aerodynamic parameter estimation studies in the literature -conducted for aircraft 

mostly- state models used in estimation algorithms are in similar forms [8],[12]. It can be 

seen that almost every model uses the aerodynamic parameters to be estimated in state 

equations. So that output of the estimation model becomes more reliable when matched with 

real measurements. However, that would be a good approach only if there are several 

measurements to verify the outputs with. In the case of limited number of measurements, 

integration of states obtained purely from system model lacks robustness in estimation. Since 

model outputs at any time involve historic data which might have been affected from any 

modeling errors, observability problems may appear while trying to match them with 

measurements. Since wind angles which are one of the most valuable information are 

missing in this study, it is very likely that this model fails. 

 

Input vector is given by: 

 

[ ]T

e r xu p a     (4.24) 

 

States of the model are defined as: 

 

[ ]Tx q r u v w      (4.25) 

 

Model outputs in order to match with measurements are: 

 

[ ]T

y zy a a q r    (4.26) 

 

State equations of the postulated model can be shown as follows: 
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sin xu qw rv g a        (4.29) 
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  (4.31) 

 

tan ( sin cos )p q r         (4.32) 

 

cos sinq r       (4.33) 

 

Note that same aerodynamic derivatives are used for both pitch and yaw planes as explained 

in Section 3.1. Observation equations can be defined using inputs and states at each sample 

point: 

 
2 2 2 1( ) ( tan ( / ) ) / 2 /

qe
Zy Z r Za u v w S C v u C C r m
 

        (4.34) 

 
2 2 2 1( ) ( tan ( / ) ) / 2 /

qe
z Z Z e Za u v w S C w u C C q m

 
       (4.35) 

 

q q    (4.36) 

 

r r    (4.37) 

 

Previously stated disadvantage about error propagation can be clearly seen from equations 

above. In order to represent the angle of attack and sideslip angle, integrated velocities are 

used in observation equations. However neither the air flow angles nor those velocities are 

available independently. This is the difficulty itself of estimating aerodynamic parameters 

without any air flow angle information. The weighted parts of outputs come from the air 

flow angle product term and for this reason air flow angle data must be carefully constructed. 

However this model suffers from sensitivity since the integration in state equations highly 

depends on the aerodynamic characteristics of model. Any modeling errors or relatively high 

disturbances at any time in data might affect the whole optimization process.  

 

Bias errors in measurements mentioned before are not included in both state equations and 

observation equations. Since model is already nonlinear, those errors can be placed as 

unknown parameters in inputs and outputs instead of using directly in equations to preserve 

the simplicity of equations. Then, input and output vectors must be represented in the 

following form: 

 

[ ]
x

T

e r p x au p b a b       (4.38) 

 

[ ]
y z

T

y a z a q ry a b a b q b r b        (4.39) 
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Note that control surface deflection measurements are assumed to be true without any bias 

errors.  

 

Flowchart of this model can be seen in Figure 4.2. 

 

 
Figure 4.2 - Flow chart of implicit system model 

 

 

4.2.2. Explicit Model 

 

In order to deal with the air flow angles reconstruction nicely, an alternative approach in 

model definition is studied. Rather than obtaining the angle of attack and sideslip angle by 

using pure response of parameters to be estimated, response of the system from 

measurements is used. In other words kinematic equations are preferred instead of dynamic 

equations. So that angle of attack and sideslip angle are explicitly evaluated from input data 

and take place in observation equations. Again initial states are also chosen as unknown. 

Input and output biases for this model are more important and have more impact on 

estimation results than before. 

 

Inputs are control surface deflections, translational accelerations and angular rates: 

 

[ ]
x y z

T

e r p q r x a y a z au p b q b r b a b a b a b          (4.40) 

 

IMU measurements used for verifying the model outputs are also used as inputs in this 

model. The reason for this approach is to carry some information with input data and 

decouple the effects of control surface inputs and body motion in outputs.  

 

States of the model are linear body velocities and Euler angles: 
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[ ]Tx u v w      (4.41) 

 

Model outputs are also different from the previous model: 

 

[ ]
y z

T

y a z ay a b a b q r      (4.42) 

 

In order to increase convergence and gain robustness account for estimating moment 

coefficients, it is more appropriate to use angular accelerations, derivatives of angular rates, 

as observation variables. This is evident from the fact that equations of the derivatives 

themselves are directly related with aerodynamic parameters. Using the integrated data to 

match with the measurement, involves propagation of errors from both minor model 

differences and possible flight disturbances. This creates similar problems mentioned for 

implicit model. 

 

Only problem of using angular accelerations as measurements is taking derivative of noisy 

measurements. Since angular accelerations are not directly measured, these variables can 

only be obtained by differentiating gyro measurements. This is generally handled by 

applying a digital filter [8] before differentiation. 

 

Note that bias terms are not included in angular accelerations because they are automatically 

eliminated in derivatives of gyro measurements. 

 

State equations of the model can be defined as: 

 

sin xu qw rv g a        (4.43) 

 

cos sin yv ru pw g a         (4.44) 

 

cos cos zw pv qu g a         (4.45) 

 

tan ( sin cos )p q r         (4.46) 

 

cos sinq r       (4.47) 

 

Same observation equations are used as before: 

 
2 2 2 1( ) ( tan ( / ) ) / 2 /

qe
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        (4.48) 
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  (4.51) 

 

The major difference of this model lies in the way the velocities are handled. Instead of using 

the aerodynamic characteristics of model alone in order to obtain velocities, system response 

is included in the equations. Now even if there is a behavior which is not included in 

aerodynamic models above, that behavior sneaks into velocities through both translational 

accelerations and angular rates measurements. So there wouldn’t be any accumulative 

modeling errors in velocities which are used to represent air flow angles. 

 

The challenge in explicit model comes from a different side unfortunately. Instead of 

accumulative modeling errors, this model suffers from measurement errors since only 

measurements are used in state equations. In practice accelerometer and gyro sensors 

contains bias errors which causes drift in data due to the integration of these measurements. 

Using the measured accelerometer and gyro data without any correction causes improper 

representation of states of the model. In order to prevent this, bias errors are introduced for 

all sensor measurements. So that, with this model not only the aerodynamic parameters are 

estimated but also other variables used in observation equations are intended to be properly 

reconstructed from measured gyro and accelerometer data. Now aerodynamic parameters 

which are the main interest of the estimation process, depend only on observation equations. 

This fact significantly increases the convergence of the optimization routine at the cost of a 

risk to decrease the identifiability of the true model parameters. 

 

Flowchart of this model can be seen in Figure 4.3. It can be seen that now aerodynamic 

parameters are only used in output equations and possible errors in postulated aerodynamic 

models are not integrated.  
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Figure 4.3 - Flowchart of explicit system model 
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CHAPTER 5 
 

 

5. ESTIMATION RESULTS 
 

 

 

5.1. Sample Test Case 

 

Simulated response of Javelin ATGM is used for testing the estimation algorithm with both 

implicit and explicit system models. In the estimation algorithm, elevator and rudder 

deflections and IMU measurements obtained from simulation are used only. Control surface 

deflections are used as true values without including any biases or noises. IMU 

measurements are generated within simulation by correlating translational accelerations and 

angular rates with biases and zero mean white Gaussian noise sequences. As stated earlier, 

initial values of states are also assumed to be unknown and included in unknown parameter 

vector. Aerodynamic parameters, initial states, and bias values are all treated as unknowns 

and included in the unknown parameter vector in the estimation algorithm. Initial values of 

these parameters are randomly selected with realistic uncertainties. True values together with 

selected initial values are given in Table 5.1. Same measurements with same initial values 

are used to test the implicit and explicit models accordingly. 

 

Table 5.1 - True values and initial estimates used in sample test case 

Parameters True values Initial value 

for estimation 

Cza -18.628 -17.952 

Czd -2.611 -2.135 

Czq -0.048 -0.058 

Cma -31.031 -31.317 

Cmd -12.246 -9.906 

Cmq -0.121 -0.142 

q0 -3.98 d/s -4.25 d/s 

r0 0 d/s 0.21 d/s 

u0 138.81 m/s 142.88 m/s 

v0 0 m/s 0 m/s 

w0 0.036 m/s 0 m/s 

ϕ0 0 d 0 d 

θ0 8.67 d 6.45 d 

ax bias -0.266 m/s
2
 0 m/s

2
 

ay bias -0.411 m/s
2
 0 m/s

2
 

az bias -0.131 m/s
2
 0 m/s

2
 

p bias -0.096 d/s 0 d/s 

q bias 0.047 d/s 0 d/s 

r bias 0.020 d/s 0 d/s 
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Outputs of implicit and explicit models with defined initial set of unknown parameters are 

given in Figure 5.1 and Figure 5.2 respectively. The difference between the two models can 

be clearly seen from the graphs. In implicit model, there are both amplitude and phase 

differences between the measurements and model outputs. This is typical because states are 

integrated using the unknown parameters which have incorrect initial values. In explicit 

model there is no phase error on the other hand. Since IMU measurements are integrated, 

phases of outputs are matched with measurements without any difference. Obviously 

amplitude difference still exists due to incorrect usage of aerodynamic parameters. However 

this time there are also drift errors in outputs due to IMU biases. All of those errors appeared 

in two models are intended to be eliminated within the estimation algorithm. Model outputs 

with final values obtained from estimation algorithm are shown in Figure 5.3 and Figure 5.4. 

Results with both implicit and explicit system models are presented in Table 5.2. Relative 

errors from reference aerodynamic parameters are also included here. It is observed from the 

results that estimated values are more accurate for explicit model. 

 

Table 5.2 - Estimated values with implicit and explicit models 

Parameters True values Final estimates with 

implicit model 

Final estimates with explicit 

model 

Cza -18.628 -19.541  (%4.9) -18.806  (%1.0) 

Czd -2.611 -2.986  (%14.4) -2.647  (%1.4) 

Czq -0.048 -0.060  (%25.0) -0.049  (%2.1) 

Cma -31.031 -32.473  (%4.6) -31.304  (%0.9) 

Cmd -12.246 -12.850  (%4.9) -12.344  (%0.9) 

Cmq -0.121 -0.126  (%4.1) -0.122  (%0.8) 

q0 -3.98 d/s -4.00 d/s NA
a
 

r0 0 d/s 0.31 d/s NA 

u0 138.81 m/s 136.21 m/s 138.425 m/s 

v0 0 m/s 0.00 m/s -0.004 m/s 

w0 0.036 m/s 0.03 m/s 0.028 m/s 

ϕ0 0 d 3.90 d 0.169 d 

θ0 8.67 d 9.83 d 8.743 d 

ax bias -0.266 m/s
2
 -0.344 m/s

2
 -0.240 m/s

2
 

ay bias -0.411 m/s
2
 -0.408 m/s

2
 -0.411 m/s

2
 

az bias -0.131 m/s
2
 -0.136 m/s

2
 -0.132 m/s

2
 

p bias -0.096 d/s -0.290 d/s -0.133 d/s 

q bias 0.047 d/s 0.129 d/s 0.064 d/s 

r bias 0.020 d/s -0.342 d/s 0.007 d/s 

                                                      
a
 These parameters are not included in unknown parameter vector of this model 
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Figure 5.1 - Implicit model response with initial unknowns 

 

 
Figure 5.2 - Explicit model response with initial unknowns 
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Figure 5.3 - Implicit model response with final estimates 

 

 
Figure 5.4 - Explicit model response with final estimates 
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It can be seen from final estimation graphs that outputs of both models are successfully 

matched with measurements without any visible error. Residual plots of translational 

accelerations given in Figure 5.5 prove that as well. Errors in both models are in similar 

noise levels without any deterministic behavior. 

 

 
Figure 5.5 - Translational acceleration errors of implicit and explicit models 

 

 

Correlation coefficients higher than 0.9 in implicit model results are given in Table 5.3. 

Aerodynamic parameter estimates obtained with implicit model appear to be highly 

correlated with each other. This fact reduces the reliability of implicit model significantly. 

Note that correlation coefficients for explicit model are all below 0.9 and hence not given 

here. This indicates that parameters are not significantly correlated with each other. 

 

Table 5.3 - Correlations higher than 0.9 in implicit model results 

 u0 θ0 Czα Cmα Cmδ 

u0 1 0,908 0,967 0,999 0,992 

θ0 0,908 1 0,865 0,893 0,885 

Czα 0,967 0,865 1 0,968 0,956 

Cmα 0,999 0,893 0,968 1 0,993 

Cmδ 0,992 0,885 0,956 0,993 1 

 

 

This problem can also be verified from the residual plots given in Figure 5.6. Errors of wind 

angles reconstructed within the estimation process from real simulation data are presented 
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here. Even though errors are relatively small, explicit model appears to match better the real 

data. Yet the essential difference is how the errors appear for each model. Residuals are in 

random noise level for explicit model. In implicit model however, there is a deterministic 

behavior that couldn’t be caught in all data. This is undesirable for reliable results. 

 

 
Figure 5.6 - Wind angle errors of implicit and explicit models 

 

 

Convergence plots of aerodynamic parameters are also given in Figure 5.7. Updates 
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this sample test case. However it takes additional 6 steps to converge with implicit model.  
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Figure 5.7 - Update of aerodynamic parameters in sample case 
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To sum up, implicit model within maximum likelihood estimation gives biased results due to 

the correlations of unknown parameters. Explicit system model on the other hand, seems to 

provide accurate and reliable results for the sample test case.  

 

However, an important fact was also realized during the study. In order for explicit model to 

be successful, it is really important not to restrict aerodynamic parameter estimation in one 

plane of the system studied on. In other words it would be much better that estimation 

algorithm uses aerodynamic models of both pitch and yaw planes so that wind angles 

reconstruction becomes more reliable. This can be demonstrated with same test case 

analyzed above. This time however, estimation algorithm with explicit model is applied to 

pitch plane response alone. State equations in explicit system model remain same. 

Translational acceleration at Z axis and angular acceleration at Y axis are used as model 

outputs only to match with measurements, so that output vector given in Equation (4.42) 

becomes: 

 

[ ]
z

T

z ay a b q     (5.1) 

 

Unlike before, local divergences occur during the optimization. These divergences are 

handled by halving the parameter changes as explained in the previous chapter. In addition, 

it takes 10 steps to converge while it takes only 4 steps in estimation with both pitch and yaw 

planes. The results are given in Table 5.4. Even though aerodynamic parameters are still 

good enough, other parameters contains high errors.  

 

Table 5.4 - Estimated values with explicit model 

Parameters True values Both pitch and yaw 

plane responses 

Pitch plane response 

only 

Cza -18.628 -18.806  (%1.0) -18.382  (%1.3) 

Czd -2.611 -2.647  (%1.4) -2.589  (%0.8) 

Czq -0.048 -0.049  (%2.1) -0.049  (%2.1) 

Cma -31.031 -31.304  (%0.9) -30.609  (%1.4) 

Cmd -12.246 -12.344  (%0.9) -12.072  (%1.4) 

Cmq -0.121 -0.122  (%0.8) -0.121  (%0.0) 

u0 138.81 m/s 138.425 m/s 140.48 m/s 

v0 0 m/s -0.004 m/s 6.033 m/s 

w0 0.036 m/s 0.028 m/s 0.037 m/s 

ϕ0 0 d 0.169 d -21.405 d 

θ0 8.67 d 8.743 d 7.265 d 

ax bias -0.266 m/s
2
 -0.240 m/s

2
 0.080 m/s

2
 

ay bias -0.411 m/s
2
 -0.411 m/s

2
 3.402 m/s

2
 

az bias -0.131 m/s
2
 -0.132 m/s

2
 -0.133 m/s

2
 

p bias -0.096 d/s -0.133 d/s -0.697 d/s 

q bias 0.047 d/s 0.064 d/s -0.277 d/s 

r bias 0.020 d/s 0.007 d/s 3.100 d/s 
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Once again, the real focus here is to estimate aerodynamic parameters and others are 

irrelevant for this study. That means accuracies of other parameters are not important. The 

real problem is on the other hand, correlations of aerodynamic parameter estimations. 

Aerodynamic parameters are now highly correlated (Table 5.5). This reduces the reliability 

of estimations even if the estimated values seem to be true. In the presence of more 

disturbances and modeling errors, these correlations might cause biased estimations or even 

total failure in convergence. 

 

Table 5.5 - Correlations higher than 0.9 in pitch plane explicit model results 

 u0 ay bias Czα Czδ Cmα Cmδ 

u0 1 0,967 0,989 0,938 0,984 0,955 

ay bias 0,967 1 0,958 0,911 0,953 0,926 

Czα 0,989 0,958 1 0,953 0,993 0,963 

Czδ 0,938 0,911 0,953 1 0,942 0,915 

Cmα 0,984 0,953 0,993 0,942 1 0,971 

Cmδ 0,955 0,926 0,963 0,915 0,971 1 

 

 

 

5.2. Monte-Carlo Analysis 

 

Although it appears that explicit system model promises accurate and reliable results, it is 

important also to show that this is still true when bias values change or estimation is started 

from different initial values. These parameters are randomly changed according to the 

criteria given in Table 5.6 and estimation is repeated every time. 

 

Note that since the system is excited in open loop, response of the system is independent of 

IMU bias values and therefore same simulation outputs are used by changing measurement 

errors only in each run. Bias values presented in Table 5.6 are typical errors for a 

commercial IMU. Initial estimates of these bias values are taken to be zero at each run. 

Initial values of states u and θ are assumed to be obtained by integrating IMU measurements 

from launch of the missile up to the excitations. Because of the accumulated errors in 

integrated states, initial values of these states are selected with an error from true value with 

intervals of ±10m/s and ±5d. Since excitations are started to be applied when missile is in 

ballistic trajectory, initial values of ϕ, v and w are selected as zero with zero wind angles 

approximation. Lastly, initial values of angular rates q and r are selected by including an 

error interval to true values in bias error amplitudes. 
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Table 5.6 - True values and initial errors of unknown parameters 

Parameters True values Initial errors 

for estimation 

Cza -18.628 %20 
b
 

Czd -2.611 %20 

Czq -0.048 %20 

Cma -31.031 %20 

Cmd -12.246 %20 

Cmq -0.121 %20 

q0 -3.98 d/s ±0.5 d/s 
c
 

r0 0 d/s ±0.5 d/s 

u0 138.81 m/s ±10 m/s 

v0 0 m/s =0 
d
 

w0 0.036 m/s =0 

ϕ0 0 d =0 

θ0 8.67 d ±5 d 

ax bias ±0.5 m/s
2
 =0 

ay bias ±0.5 m/s
2
 =0 

az bias ±0.5 m/s
2
 =0 

p bias ±0.5 d/s =0 

q bias ±0.5 d/s =0 

r bias ±0.5 d/s =0 

 

Histogram plots of 200 Monte-Carlo runs are presented in Figure 5.8. Using explicit model 

in estimation algorithm provides accurate and reliable results within less than %3 error 

bands. However estimation algorithm fails to converge in nearly %25 of total runs with 

implicit model and does not give any results at all. In addition, the results are biased when 

the algorithm converges. Unfortunately the estimations are always correlated as detailed 

above which simply means that implicit model is not reliable. 

 

                                                      
b
 Relative error band 

c
 Absolute error band 

d
 Exact value 



 

45 

 

 

 
Figure 5.8 - Monte-Carlo results of implicit and explicit models 
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Suggested approach with explicit system model is also tested on real flight test data of a 

surface to surface missile that is researched and developed in Roketsan Missiles Industries. 

Flight test was designed specifically for aerodynamic parameter estimation. Square wave 

inputs with modal frequency which was determined prior to test relying on the wind tunnel 

tests were applied to control surfaces to excite missile in pitch and yaw planes while the 

control system was in open loop. Inputs were chosen to provide enough signal to noise ratio 

and also to keep missile close to reference flight condition in order to ensure that system 

stays in the linear region of the aerodynamic model.  

 

The convergence plots of the estimation procedure are given in Figure 5.9. Plots are scaled 

independently according to the final estimated values so that final values of results appear as 

one and other values present the relative errors. Initial values which are indicated by red 

points in plots are selected from wind tunnel database. Updates indicated by blue points are 

given with one sigma error bands. As in the simulation results, estimated values goes in the 

destination without shifting much and converges to the global minimum of the cost function. 

Correlation coefficients are also checked and it is seen that all values are below 0.9 which 

indicates that there is not a serious correlation issue. 

 

Match between model outputs and measurements can be seen from Figure 5.10 with a scaled 

view. Note that angular accelerations given as measurements are locally smoothed 

derivatives of IMU angular rate outputs. It is observed that navigation errors are successfully 

corrected during the estimation without any other information except IMU measurements. 

Errors of model outputs from measurements are also plotted in Figure 5.11. These errors are 

typical due to flight disturbances and minor model differences in pitch and yaw planes. 

 

As studied in simulation, same aerodynamic derivatives in pitch and yaw planes are used in 

estimation model. Even though the missile tested here is symmetric in those planes, 

independent aerodynamic parameters may also be included in estimation model. Since there 

are slight offset errors due to the production in both control surfaces and mid-body wings, 

using different aerodynamic parameters in pitch and yaw planes might result better matches 

of model outputs with measurements. Similarly constant terms may also be included in the 

aerodynamic model to correct the bias errors between measurements and model outputs. This 

error can be seen from yaw angular acceleration plot of estimated model in Figure 4.15. 

Postulated model doesn't involve any constant aerodynamic terms as it should be however it 

can be clearly seen that there is constant moment acting on the system in yaw plane 

originated from the offset errors just mentioned.  

 

Since the main focus of the estimation is verifying the aerodynamic model used in 

simulations, it is more appropriate to use the model as it is and searching for the best values 

of its parameters. Therefore minor modeling errors such as the ones mentioned above are 

neglected in this study since they don't risk the convergence of unknown parameters. 
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Figure 5.9 - Convergence plots of flight test estimation 
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Figure 5.10 - Comparisons of flight test measurements and model outputs 
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Figure 5.11 - Errors from measurements 

 

 

It was also observed that estimation algorithm using the implicit model fails to converge and 
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CHAPTER 6 
 

 

6. CONCLUSIONS 
 

 

 

Estimating aerodynamic parameters of flight vehicles from real tests has always been a great 

interest. There are numerous studies that focuses on this subject in the literature. However 

only a limited number of references exist for missiles compared to aircraft. The natural 

problem that arises while estimating aerodynamic parameters of missiles is lack of wind 

angles measurements. This problem is usually handled by calculating wind angles from 

flight test measurements during post processing prior to the estimation study. When only 

IMU measurements are available for the response of the system, post processed data is 

subjected to drift errors because of biased measurements. This brings a need of alternative 

approach for estimating aerodynamic parameters when wind angles measurements are not 

available. 

 

In this thesis aerodynamic parameter estimation of a missile in the absence of wind angles 

measurements is studied in detail. Output error method is utilized for the estimation of 

aerodynamic parameters. Two different system models are proposed to be used in this 

method. Without using any post process calculations, wind angles are determined within the 

estimation. As for the measurements; translational accelerations, angular rates and control 

surface deflections are used. 

 

First model which is named implicit model uses the equations of motion of the system as 

state equations. In other words unknown aerodynamic parameters are used in state equations. 

Outputs of the model are selected as translational accelerations and angular rates. Using this 

model in output-error method is like simulating the response of the system with current 

values of unknown parameters during the iterations. In fact output-error method is generally 

preferred to be able to use the aerodynamic parameters in state equations for more reliable 

results [4]. Therefore implicit system model is the very first approach that naturally comes to 

mind. 

 

Unfortunately, it is demonstrated with simulated data that aerodynamic parameters are 

simply not observable with this approach. Estimation results appear –when algorithm 

converges– to be biased and highly correlated with each other. This is a typical problem 

when the model structure includes either too many terms or too few terms relative to the 

information content in the data [17]. In this case there are too many unknowns with limited 

information about response. This approach is also tested with data of a real flight test which 

is designed specifically for estimation. As a proof of simulation study, estimation algorithm 

doesn’t converge to any results in real flight test. If wind angles measurements were 

available, this might have not happened [12] or alternatively the problem could be easily 

eliminated by using those measurements as inputs in state equations [8]. 
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In the second system model which is named explicit model, state equations are made free of 

unknown system characteristics. Translational accelerations and angular accelerations, which 

are obtained from locally smoothed derivatives of angular rates, are used as inputs and state 

equations are built from kinematic equations. Bias values of measurements are used as 

unknowns in state equations in order to be able to eliminate drift errors. Aerodynamic 

parameters are now included in output equations only. Thus this approach can be thought as 

a nonlinear equation-error method instead. If translational accelerations and angular rates 

measurements were somehow bias free, the easiest way of estimating aerodynamic 

parameters would be integrating those measurements to obtain all the states (with no wind 

assumption) and then applying a least square fit which is known as equation-error method. 

However measurement bias cause accumulated errors when integrated, which cannot be 

corrected easily when the exact bias value is not known. Using proposed explicit system 

model with output-error method provides a way of correcting those errors iteratively. This is 

online reconstruction of states during the estimation. Then in the last step, method gives the 

maximum likelihood estimates using reconstructed states, which are essentially the same as 

least square estimates [8].  

 

Trials with simulation data show that second approach, estimation with explicit system 

model, provides reliable and accurate results. In addition, algorithm is applied to real flight 

test data with success. The results of this study demonstrate that with this suggested 

approach aerodynamic parameter estimation can be accurately done without measurements 

of wind angles. However an important fact must be emphasized here again. This approach is 

meant to work only when the system is excited in both pitch and yaw planes. Otherwise 

online reconstruction mentioned above fails to give accurate results. This is demonstrated 

with simulated data by applying the estimation in pitch plane only. 

 

Studied missile in this thesis is symmetric in pitch and yaw planes therefore it has the same 

aerodynamic model in both planes. This is clearly a benefit for estimation with limited 

measurements. Yet there is opportunity to apply the suggested approach to asymmetric 

systems. In Appendix A, suggested approach is tested with real flight data of a research 

aircraft without going too much detail. It is apparent from the results that it might be possible 

to accurately estimate aerodynamic parameters of aircraft with this approach suggested here, 

as well. 

 

The first assumption made in this study is no wind condition. Even though wind is excluded 

in this study, suggested approach would still work in the case of a steady wind. Including 

additional constant terms in aerodynamic model might help algorithm to model the effect of 

wind in these terms. Nevertheless, this should be tested in detail as a future work. In 

addition, an effort should be directed to apply this approach with a state filter to eliminate 

flight disturbances. This would be necessary to obtain more accurate estimations in the case 

of turbulent atmosphere. 
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APPENDIX A 

APPENDICES 

 

A.AIRCRAFT APPLICATION 
 

 

 

In this thesis, estimation of a symmetric missile is studied in detail and suggested approach is 

verified with real flight test data of another missile which is also symmetric in pitch and yaw 

planes. Having the same aerodynamic model in pitch and yaw planes is clearly a benefit for 

estimation with limited measurements. It is observed that wind angles can be easily 

reconstructed from IMU measurements when wind is excluded. However, method is not 

tested yet for systems having different models in pitch and yaw. Here, without putting too 

much detail, suggested approach is tested with real flight data of a research aircraft, ATTAS 

[9]. Test data is obtained from support materials of “Flight Vehicle System Identification: A 

Time Domain Methodology” [8]. 

 

 
Figure A 1 - ATTAS Research Aircraft [3] 

 

 

On the aircraft, there were additional sensors that were readily available to measure wind 

angles, true airspeed and Euler angles. These measurements are used first to find a reference 

set for unknown parameters. Aerodynamic coefficients are calculated from measurements 

and least square fits are applied directly to those coefficients in order to find constant terms 

and derivatives as a reference set. Then, without using attack and sideslip angles 

measurements, aerodynamic parameters are estimated again and compared with the reference 

values. 

 

As demonstrated before, suggested approach works properly if estimation is applied to both 

pitch and yaw planes. Therefore available flight test data of three different maneuvers with 

elevator, aileron and rudder inputs from same flight are merged into one. Merged data is 

presented in Figure A 2. Since intervals between the maneuvers are absent, initial states of 

all three maneuvers are included in the unknown parameter vector. Of course, it would be 
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much better if test data had no gaps between the maneuvers so that only the initial states at 

the beginning would be included in unknowns and wind angle reconstruction would be more 

reliable. 

 

 
Figure A 2 - Merged maneuvers 

 

 

Before testing the estimation algorithm, reconstruction from IMU is tested in estimation 

algorithm with other measurements. Explicit system model is modified so that outputs are 

composed of wind angles, Euler angles and altitude above ground. Initial states together with 

IMU bias values are used as unknown parameters to be estimated iteratively. Using the same 

estimation algorithm described in Chapter 4, it is checked that reconstruction can be 

successful when properly applied. Note that, this is nothing but a preliminary check to see 

whether or not IMU is capable of reconstructing wind angles within the sampling frequency 

(25 Hz) of available test data.  

 

The results of reconstruction process are plotted in Figure A 3. Minor errors appeared in 

reconstructed data seems acceptable. Possible reasons for these errors are neglected scale 

factor errors in IMU, disturbances occurred during flight and numerical errors involved in 

post-process calculations. Yet, overall fit of reconstructed data to measurements are 

successful. 
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Figure A 3 - Flight path reconstruction from IMU measurements 
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Aerodynamic models of the aircraft at the center of gravity are postulated in the following 

form [8]: 

 

0X X XC C C

     (A.1) 

 

0Y Y YC C C

     (A.2) 

 

0Z Z ZC C C

     (A.3) 

 

0

* *

p ra
l l l l ll aC C C C C p rC

 
         (A.4) 

 

0

*

qe
m m m m e mC C C C C q

 
        (A.5) 

 

0

* *

p rr
n n n n nn rC C C C C p rC

 
         (A.6) 

 

where normalized angular rates are given by: 

 
* * */             /             /p pb V q qc V r rb V     (A.7) 

 

Aerodynamic force and moment coefficients given above are calculated using IMU and 

thrust measurements: 
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where inertia matrix is defined as: 
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   (A.10) 

 

Note that these coefficients are obtained at CG of the aircraft. Therefore translational 

accelerations are first transformed to CG from sensor position and then used in above 

equations. In addition angular acceleration measurement was not available; therefore angular 

rates are smoothed and numerically differentiated to obtain angular accelerations. 
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Using least square estimation, aerodynamic parameters in postulated linear models are 

achieved. Then translational accelerations and angular accelerations are evaluated from 

estimation results by going backwards in Equations (A.8) and (A.9). Comparison of actual 

measurements and model fits are given in Figure A 4. 

 

Aerodynamic parameters are also estimated without wind angles measurements. Maximum 

likelihood estimation is applied with explicit system model. However output equations of the 

system model are now modified as: 
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where total velocity, angle of attack and sideslip parameters appeared in above output 

equations are evaluated from states: 

 

2 2 2 1 1         tan ( / )         tan ( / )V u v w w u v u         (A.13) 

 

This change is necessary due to the difference between Javelin and ATTAS aerodynamic 

models and inertia matrices. Note that translational acceleration and angular acceleration at 

X axis are also included to output vector. Since state equations of explicit model do not 

involve any aerodynamic parameters, those are remained same. 

 

Comparison of explicit model outputs with final estimates and real measurements are given 

in Figure A 5. Correlation coefficients are also checked and it is observed that aerodynamic 

parameters are not correlated with any other parameter. Unfortunately estimations of initial 

conditions appear as highly correlated which might affect the estimation results. This is most 

likely because three different maneuver sets are used as one and two additional initial 

condition sets are included to unknown parameters. 
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Figure A 4 - Least square estimation results 
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Figure A 5 - Maximum likelihood estimation results 
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Results of least square estimation and maximum likelihood estimation are compared in Table 

A 1. It can be seen that aerodynamic parameters obtained with two different estimations are 

close to each other. Note that, as mentioned before, this test data is not perfect due to the 

obligation of additional two initial condition sets. Therefore results should even be better for 

a more appropriate flight test containing sufficient excitations in all planes without gaps 

between them. 

 

Table A 1 - Estimation results 

 Maximum 

Likelihood 

Least 

Square 

  Maximum 

Likelihood 

Measurement 

Cx0 -0,048 -0,047  u1 127,177 129,350 

Cxa 0,401 0,389  v1 0,324 -0,919 

Cy0 0,003 -0,005  w1 4,897 5,104 

Cyb -1,015 -1,005  phi1 -0,028 0,016 

Cz0 -0,231 -0,230  the1 0,042 0,029 

Cza -5,458 -5,252  u2 130,088 129,406 

Cl0 0,002 0,001  v2 0,478 -0,840 

Clb -0,100 -0,100  w2 5,189 5,195 

Cld -0,194 -0,194  phi2 -0,074 -0,022 

Clr 0,256 0,246  the2 0,075 0,041 

Clp -0,765 -0,766  u3 126,824 128,658 

Cm0 0,088 0,081  v3 0,154 -0,910 

Cma -0,991 -0,920  w3 4,805 4,627 

Cmd -1,142 -0,993  phi3 -0,021 0,021 

Cmq -7,870 -5,989  the3 0,050 0,021 

Cn0 0,001 0,003  bax -0,201 NA 

Cnb 0,235 0,229  bay 0,632 NA 

Cnd -0,150 -0,140  baz 0,048 NA 

Cnr -0,125 -0,108  bp 0,001 NA 

Cnp -0,040 -0,041  bq 0,004 NA 

    br 0,009 NA 

 

 

Errors are also compared in Figure A 6. There are deterministic errors suggesting the 

aerodynamic model inaccuracies. Yet these errors appear almost same for both estimations. 

Other than that, maximum likelihood estimation seems to provide slightly better fits. 



 

63 

 

 

 
Figure A 6 - Error comparison of estimations 

 

 

To sum up, maximum likelihood estimation without wind angle measurements can also be 

applied to aircrafts under appropriate circumstances. Limitations given for a symmetric 

missile still holds here. Test data to be used in estimation must contain sufficient information 

for all planes so that wind angles reconstruction can be done without any correlations. 

Moreover wind must not be existed during the excitations of system. Otherwise 

reconstructed wind angles will not be exact and resulting parameter estimates will be biased. 

 

Even if above conditions cannot be met exactly, maximum likelihood estimation with 

explicit system model suggested in this thesis may be used to obtain rough models for 

aircrafts. 
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