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ABSTRACT

AN INFORMATION THEORETIC REPRESENTATION OF BRAIN CONNECTIVITY
FOR COGNITIVE STATE CLASSIFICATION USING FUNCTIONAL MAGNETIC

RESONANCE IMAGING

Önal, Itır

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

September 2013, 83 pages

In this study, a new method for analyzing and representing the discriminative information,
distributed in functional Magnetic Resonance Imaging (fMRI) data, is proposed. For this pur-
pose, a local mesh with varying size is formed around each voxel, called the seed voxel. The
relationships among each seed voxel and its neighbors are estimated using a linear regression
equation by minimizing the expectation of the squared error. This squared error coming from
linear regression is used to calculate various information theoretic criteria. Then, the optimal
mesh size, which represents the connections among a voxel and its neighbors, is estimated by
minimizing these information theoretic criteria with respect to mesh size. The optimal mesh
size is used to represent the degree of connectivity such that if the optimal mesh size is small,
then the voxel is assumed to be connected with a small number of neighbors. On the other
hand, high optimal mesh size indicates that voxels are massively connected. The proposed
method shows that the local mesh size with the highest discriminative power depends on the
participants, samples in the experiment, and voxels. The results indicate that the local mesh
model with optimal mesh size can successfully represent discriminative information.

Keywords: Local Mesh Model, Information Theoretic Criteria, Model Order Selection, fMRI
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ÖZ

FONKSİYONEL MANYETİK REZONANS GÖRÜNTÜLEME İLE BİLİŞSEL SÜREÇ
SINIFLANDIRMASI İÇİN BEYİNDEKİ BAĞLANIRLIĞIN BİLGİ TEORETİK TEMSİLİ

Önal, Itır

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Eylül 2013 , 83 sayfa

Bu çalışmada, fonksiyonel Manyetik Rezonans Görüntüleme (fMRG) verisinde dağılmış ay-
rımsayıcı bilginin analizi ve ifadesi için yeni bir metot önerilmiştir. Bu amaçla, her vokselin
(tohum vokselin) çevresinde değişken boyutlarda bir yerel örgü oluşturulur. Her tohum vok-
sel ile komşuları arasındaki ilişki, bir doğrusal bağlanım denklemi kullanılarak, hatanın karesi
minimize edilecek şekilde kestirilir. Doğrusal bağlanımdan elde edilen hata karesi çeşitli bilgi
teoretik kriterlerin hesaplanmasında kullanılır. Daha sonra, voksel ve komşuları arasındaki
ilişkileri temsil eden ideal örgü boyutu, bilgi teoretik kriterlerin örgü boutuna göre minimize
edilmesiyle kestirilir. İdeal örgü boyutu, bağlanırlık derecesinin ifade edilmesinde kullanılır,
öyle ki eğer ideal örgü boyutu küçükse vokselin az sayıda komşusuna bağlandığı varsayılır.
Öte yandan, yüksek ideal örgü boyutu voksellerin yoğun olarak bağlantılı olduğunu gösterir.
Önerilen metot en yüksek ayrımsayıcı güce sahip yerel örgü boyutunun katılımcılara, deney-
deki örneklere ve voksellere bağlı olduğunu göstermektedir. Sonuçlar, ideal örgü boyutuna
sahip yerel örgü modelinin, ayrımsayıcı bilgiyi başarıyla temsil ettiğini gösterir.

Anahtar Kelimeler: Yerel Örgü Modeli, Bilgi Teoretik Kriterler, Model Derecesi Seçme,

fMRG
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suggestions. I am especially indebted to my colleagues Dr. Mete Özay, Orhan Fırat, Ömer
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Mankind has always wondered how the human brain functions. In order to answer this un-
acknowledged question, people developed many theories. In 17th Century, Rene Descartes
claimed that the effect of pineal gland on the surrounding ventricles is the main factor of ac-
tivity in the brain. One century later, Emanuel Swedenbord assumed that the cortex itself was
responsible for the cognition and cortex was divided into parts, each responsible for different
cognition like thought, vision etc. Later in 19th century, the idea that different brain regions
represent different aspects of human mind was popular. Moreover, during these days the
amount of brain tissue, responsible for a cognitive function, is believed to determine the influ-
ence on behavior. Since the amount of tissue could not be measured directly, the bumps and
the flattenings in the skull are believed to reflect the volume of different regions. Therefore, a
child devoted to his pet was believed to have bumps on the skull over the area responsible for
representing love. On the other hand, a liar would have flattening in the skull over the area
responsible for honesty.

Later on, scientists gave up the idea of examining bumps in the skulls and started to examine
the changes in brain physiology. However, the experiments were invasive and based on dam-
aging the brain of animals. The measurements obtained from such experiments were useful
to relate brain functions with brain regions. However, many aspects of cognition remained
unacknowledged since such invasive experiments could not be conducted on humans. Years
later, technology evolved so that with the functional Magnetic Resonance Imaging (fMRI),
scientists began taking pictures of activations in the brain. Due to its noninvasive nature, fMRI
is systematically used in the experiments on humans. Now, we live in the decade in which
fMRI is the dominant technique used to understand how human brain functions.

The ultimate goal of all these studies throughout the centuries is to understand how brain
functions, or with a different perspective "mind reading". People have always been curious
about what others are thinking, feeling, dreaming etc. In many science-fiction themes, there
were supernatural characters who has the ability to read other’s mind. A system in the science-
fiction classic Brainstorm, was able to record and play back the experiences of people so that
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people can live the experiences of others. Although the current technology is years away
from such innovations, using fMRI measurements in mind reading is popular and results of
experiments are promising.

1.2 Proposed Cognitive Model

The proposed methods in this thesis aim to contribute to the innovations in mind reading us-
ing fMRI. In mind reading experiments, voxel (smallest unit of fMRI data) intensity values
are recorded during a memory encoding and retrieval process using fMRI. During these ex-
periments, samples presented to the user belongs to different classes. As a first step of mind
reading, the aim is to classify these samples using the recorded activations of brain. There-
fore, as in the classical machine learning techniques, first feature vectors are formed from the
fMRI measurements using a training set and test set. Then, these features are used to train
and test a k-NN classifier.

In this study, a local mesh model is used as a backbone to model the relationships among
voxel intensities. In their study Ozay et. al, [47] showed that relationships among voxels
are more discriminative than the voxel intensity values. Therefore, in this thesis rather than
voxel intensity values, the arc weights of local mesh model, which represent the relationships
among voxels, are used as features. In local mesh model, each voxel is represented as a
linear combination of its nearest neighbors. Therefore, the arc weights of the local mesh are
estimated using a linear regression equation by minimizing the squared error.

In previous studies, the number of neighbors to form a mesh around voxels was not deter-
mined and usually for mesh sizes in an interval, the classification results were listed. Yet,
in this study, the squared error obtained from the linear regression equation is used in the
selection of optimal number of neighbors. The optimal mesh size is estimated by minimizing
the information theoretic criteria, which are Final Prediction Error (FPE), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and Rissanen’s Minimum Description
Length (MDL). Among them, FPE makes a trade-off between the complexity (determined by
the mesh size) and degree of fit (determined by the error term) to estimate the optimal mesh
size. On the other hand, AIC assumes that there is an unknown information distribution in the
brain and estimates the optimal mesh size as the one that best approximates to this unknown
distribution. Unlike these two, BIC uses a Bayesian approach and estimates the optimal mesh
size as the one that leads to true model among other candidates. Finally, MDL considers rep-
resenting the information in a compressed form and with this manner, it estimates the optimal
mesh size as the one that best represents the information.

The major purpose of this study is to estimate an optimal mesh size which may vary depend-
ing on participant, sample or voxel. In this study, it is assumed that while one voxel is densely
connected to others, another one may be connected to a few number of its neighbors. If the
optimal mesh size is small, it is assumed that voxels make few connections with their neigh-
bors. On the other hand a large mesh size implies that voxels are massively interconnected.
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How the optimal mesh size varies based on the participant, class, sample and voxel is analysed
in this study.

In this study, data obtained from a working memory experiment, in which the samples belong
to either one of the item recognition (IR) task or judgment of recency (JOR) task are used.
By forming a local mesh around each voxel and using the arc weights as features, samples
belonging to two different cognitive tasks (IR or JOR) are aimed to be classified. Therefore,
from training and test data, training and test feature vectors are formed respectively using the
arc weights of the local mesh model. Using a k-NN classifier, the 2-class classification task is
performed.

Briefly, a local mesh is formed around a seed voxel and the seed voxel is represented in terms
of its nearest neighbors using a linear regression equation. The error term, obtained from
this regression equation is used to calculate the information theoretic criteria separately for
each participant, class, sample and voxel. Then the mesh size minimizing either one of these
criteria is selected as the optimal mesh size so that corresponding seed voxel is represented as
a linear combination of its nearest neighbors having optimal mesh size. The arc weighs of the
mesh having optimal mesh size are used to form feature vectors. Finally, a classifier is trained
using the feature vector formed using the training data and is tested with the feature vectors
formed using the test data.

1.3 Contributions

• In the literature, information theoretic criteria are mainly used for model order selection
of autoregressive functions. In other words, information criteria are used to answer how
many previous values of a time series should be used to estimate the output itself. In this
study, this information theoretic approach is adopted to a spatial data. Here, information
theoretic criteria are used to estimate the number of spatially nearest neighbors. The
results indicate that, the information theoretic criteria can also be used to estimate the
model order of spatially distributed data.

• In the previous studies of local mesh model, which is the backbone of this study, the
focus was not on the mesh size. In those studies [19, 47], for some mesh size in an
interval, the classification process was performed and classification performances were
listed. Moreover, around each voxel, local mesh of same size was formed and they did
not provide an optimal mesh size. Unlike previous studies, the main focus is on the
selection of optimal mesh size in this thesis and how the optimal mesh size differs for a
participant, class, sample and voxel is analyzed.

• In the literature, generally, a parameter is selected using cross validation on training
data. Here, we propose a method to classify cognitive states in which the parameter
(the mesh size), is estimated independent of the training data.

• The major observation of this study is that, proposed methods give a better performance
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compared to the classical methods reported in the literature. Therefore, proposed meth-
ods in this study are promising to be used in the classification of various cognitive
states.

• Finally, in this thesis a new hypothetical brain connectivity called "local relational con-
nectivity" is defined. Although this thesis does not prove the existence of such con-
nectivity network, the high classification performances achieved using the edges of this
network as features to the classifier give us the intuition of the existence of the suggested
connectivity model.

The work presented in this thesis has appeared in the following publications:

• I. Onal, M. Ozay, O. Firat, I. Oztekin, F. T. Yarman Vural, "An Information Theoretic
Approach to Classify Cognitive States Using fMRI", 13th IEEE International Confer-
ence on BioInformatics and BioEngineering (BIBE), 2013

• I. Onal, M. Ozay, O. Firat, I. Oztekin, F. T. Yarman Vural, "Analyzing the Informa-
tion Distribution in the fMRI measurements by estimating the degree of locality",35th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS), 2013

• I. Onal, M. Ozay, O. Firat, I. Oztekin, F. T. Yarman Vural, "Information Distribution
Analysis in the fMRI measurements with Degree of Locality Estimation",IEEE 21th
Conference on Signal Processing and Communications Applications (SIU), 2013

1.4 Outline of the Thesis

In Chapter 2, a brief literature survey on fMRI and brain connectivity are provided. Moreover,
the popular MVPA methods aiming to classify cognitive states of brain are overviewed. Then,
local mesh model, on which this thesis is built, is introduced and the information theoretic
criteria to select model order are surveyed. Finally, a brief information about how k-NN
classification algorithm works is presented.

Chapter 3 introduces the proposed methods to classify cognitive states. Here, a hypotheti-
cal local relational connectivity network based on the local mesh model is constructed and
the importance of error term, obtained from the linear regression equation in the local mesh
model, is explained. Mainly this chapter focuses on how to select the number of neighbors to
form a mesh by combining the error term and information theoretic criteria. Moreover, how
the feature vectors to be used in the classification are formed using the information theoretic
approach are explained in detail.

Chapter 4 represents the analysis of the proposed methods in Chapter 3. In this chapter, re-
sults of the experiments and performance comparisons of proposed methods and the available
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methods in the literature are provided. Furthermore, how the optimal mesh size varies based
on participant, class, sample and voxel is analyzed.

In the final chapter, Chapter 5, outcomes of overall study are discussed and the possible
directions of this work are pointed out.
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CHAPTER 2

AN OVERVIEW ON BRAIN CONNECTIVITY BASED ON
FMRI DATA

In this chapter, for the purpose of providing background to the reader, one of the current neu-
roimaging technologies, fMRI, and various representations of brain connectivity are surveyed.
For the reader to get an impression on how cognitive states are classified, current multi voxel
pattern analysis methods (MVPA) are presented as related work. Moreover, as the backbone
of this thesis, local mesh model is introduced and how it is used to classify cognitive states
is explained. Finally, various information theoretic criteria, used as model order selection
methods are overviewed.

2.1 Data Acquisition: Functional Magnetic Resonance Imaging (fMRI)

The ability to visualize how the human brain functions is one of the most remarkable de-
velopments in 20th century, because the brain images reflect a subtle information about the
hidden structures in the brain. After the discovery of neuroimaging, functional neuroimaging
methods have been used to detect the active brain regions while the subject performs a cog-
nitive task. Usually, in these methods, a subject is exposed to cognitive task and during the
task, the activated parts of the brain are revealed with the help of neuroimaging technology.
Hence, functional neuroimaging methods serve as a powerful tool to understand the mappings
between the brain regions and cognitive functions.

Functional Magnetic Resonance Imaging (fMRI) is one of the neuroimaging techniques in
which MRI scanners are used to measure changes in brain activations. As its name implies,
MRI scanner has three main items namely "magnetic", "resonance" and "imaging" [30].

• Magnetic: The first item "magnetic" means the static magnetic field created by the
scanner with the aim of aligning nuclei of atoms in the human body. Since the body
contains a lot of water, MRI machines make use of nuclei of hydrogen (1H) atoms,
called protons. As a first step, MRI scanner creates a static magnetic field with a pow-
erful electro-magnet in it. The magnetic field, created inside the MRI scanner is usually
about 3 - 4 teslas(T), which is 50.000 times greater than the field created by Earth and
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this field has the capacity to affect the magnetic nuclei of hydrogen. In the absence
of such significant magnetic field, the protons point randomly in different directions.
However, in the MRI scanner, they are aligned in the direction of this strong magnetic
field and this is called an equilibrium state.

• Resonance: The second term is "resonance". After the alignment of nuclei with the
magnetic field, electromagnetic waves that resonate at a particular frequency are emit-
ted by the radiofrequency coils of MRI scanner to disturb the nuclei of atoms and per-
turb the equilibrium [30]. This process is named "resonance". In this phase, atoms are
excited and absorb the energy emitted by the radiofrequency pulse. Then the radiofre-
quency pulse is turned off so that the hydrogen atoms can return to the equilibrium state
and release the energy. As it can be seen, there is a continuous static magnetic field in
the MRI scanner whereas the radiofrequency fields are created for a short time and then
turned off. The released energy can be detected by the radiofrequency coils and defined
as the MR signals. However, since this MR signal carries no spatial information, it can
not be directly used for imaging.

• Imaging: The third term of MRI, "imaging" represents the phase where MR signals are
turned into brain images. Current MRI scanners adopt the pioneering work of Lauter-
ber et. al. [36], in which three orthogonal gradients are used to generate 2D and 3D
MRI images. During the imaging phase, additional magnetic fields are created by the
gradient coils so that nuclei of atoms at different locations wobble in different speeds.
Using Fourier analysis, the spatial information can be recovered from the signal.

Functional Magnetic Resonance Imaging (fMRI) is an MRI procedure that measures the
changes in brain function over time. Although fMRI scans and MRI scans both use the same
principles of atomic physics, MRI visualizes anatomical structure of the brain (Fig. 2.1) while
fMRI visualizes activity of the brain (Fig. 2.2). Therefore, images of MRI scans represent the
anatomical structure of the brain whereas images of fMRI scans represent the activity within
the anatomic structure of the brain [2]. However, fMRI does not directly image neuronal ac-
tivity instead, it visualizes physiological changes correlated with neuronal activity that occur
in the brain [30].

In 1936, Pauling and Coryell [49] discovered that the magnetic characteristics of hemoglobin
depends on whether it is bound to oxygen or not. Oxygenated hemoglobin (Hb) is diamag-
netic, meaning that it does not have any unpaired electrons, so, its magnetic moment is zero.
On the other hand, deoxygenated hemoglobin (dHb) is paramagnetic, that is, it has unpaired
electrons and dHb has strong magnetic moment. Arterials containing oxygenated blood cause
little or no distortion to the magnetic field in the surrounding tissue, whereas capillaries and
veins containing blood that is partially deoxygenated distort the magnetic field in their neigh-
borhood [4, 43]. By distorting the surrounding magnetic field, dHb cause nuclei there to lose
magnetization faster. Hence, higher level of MR signal intensity is produced where blood is
oxygenated compared to the locations where the blood is deoxgyenated. In 1990, Ogawa et.
al. [42, 44] discovered that by detecting the changes in blood oxygenation, the activated areas

8



Figure 2.1: An MRI image of head [3]. Figure 2.2: An fMRI image showing brain ac-
tivations [1].

in the brain can be acquired using MRI procedure. Moreover, he stated that change in the level
of oxygen in the blood, in other words, the change in the strength of MR signal caused by
the paramagnetic property of deoxygenated hemoglobin, determines the blood-oxygenation-
level-dependent (BOLD) contrast.

When a neuron becomes active, it needs energy to return to its original state. Since the source
of energy, glucose, is not stored in the brain, it must be supplied with blood flow. Therefore,
blood flows to the active area to transport glucose and oxygen in order for neurons to return
their original state. While oxygen bounds to deoxygenated hemoglobin as a consequence
of a neural activity, dHb is replaced with Hb and the ratio of oxygenated to deoxygenated
blood increases [56]. Due to the decrease in dHB, MR signal increases in the active area. As
a result, by measuring and imaging the oxgyenation level in blood, fMRI based on BOLD
contrast gives information about the neural activity indirectly. The early studies employing
BOLD contrast based fMRI started in 1992 [10, 34, 45] and BOLD contrast fMRI is still used
as a powerful tool to measure brain activity.

The increase in MR signal as a response to the neural activation is called Hemodynamic Re-
sponse (HR) and is parametrized by a Hemodynamic Response Function (HRF) [14] (Fig. 2.4).
As it can be seen from Fig. 2.4, in BOLD HR, there occurs an initial dip for a short time fol-
lowing the onset of a neuronal activity. This dip may result from the initial oxygen extraction
before the later overcompensatory response [30]. The maximum value in BOLD HR signal is
named as peak and it is achieved about 4 to 6s after the stimulus. After neural activity stops,
the BOLD HR signal falls below the original level, called the undershoot. Then, the signal
recovers to the original level in time. In this thesis, only the peak values corresponding to
given stimulus are taken into account.

During each fMRI scan, BOLD signal measurements are recorded to form 2D slices of brain.
Then, all slices across the brain are combined to form 3D brain images. Since brain images
are three dimensional, they are discreticized into voxels, which are volumetrix pixels [14].
Therefore, voxel is the smallest spatial unit of fMRI data which consists of about thousands
of brain cells.
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Figure 2.3: An overview of the physiological changes in the brain that lead to BOLD fMRI
data.

.

2.2 Brain Connectivity

Brain connectivity refers to the patterns of connections between units (individual neurons at
microscale, neuronal populations at mesoscale or brain regions at macroscale) of brain. It can
be classified into three major categories based on the type of connections. If these connections
correspond to anatomical links, the connectivity becomes anatomical connectivity. On the
other hand, if they are patterns of statistical dependencies or causal interactions, then the
connectivities are named as functional connectivity or effective connectivity, respectively [62].

2.2.1 Anatomical Connectivity

The connectivity of brain units (neurons or regions) that are physically or structurally linked to
one another is called anatomical connectivity. Generally, in order to visualize and investigate
the anatomical connectivity of brain in vivo, Diffusion Tensor Imaging (DTI) which is a non-
invasive MRI method is used [35]. The pattern of anatomical connectivity is rather stable for
short time scales like seconds or minutes. However, for longer time scales like hours to days,
some alterations can be detected in the anatomical connectivity.
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Figure 2.4: Hemodynamic Response Function (HRF), from [29].
.

2.2.2 Functional Connectivity

Neurons or in a rough scale, voxels do not function alone. Rather, their interactions with
other such elements enable cognitive tasks to be performed in an orchestrated manner [28].
Recent studies focus on how different parts of the brain connect and coordinate with each
other to perform a particular cognitive function rather than identifying activated brain regions
under a cognitive task [37]. Friston et. al. [21] defines functional connectivity as the temporal
correlations between spatially remote neurophysiological events. Even if there is no statistical
link between two units of brain, the functional connectivity among them may be calculated
[62].

Suppose that a time series of voxel at coordinates s̄ j is represented with ϑ j = {v(ti, s̄ j)}Ni=1.
If the functional connectivity is defined as temporal correlations between voxels, zero-order
correlation coefficient between time series of voxels ϑ j and ϑk is calculated by,

corr jk =
cov jk(ϑ j, ϑk)√

var j(ϑ j)vark(ϑk)
, (2.1)

where corr jk represents the zero-order correlation coefficient between time series of voxels
ϑ j and ϑk, cov jk(ϑ j, ϑk) is the covariance of the signals and var j is the variance of the signal
ϑ j.

Functional connectivity is a statistical concept in which statistical dependence is estimated
with model-based or data-driven methods. Model-based methods can be classified as cross-
correlation analysis [13], coherence analysis [64] and statistical parametric mapping (SPM)
[23], based on the connectivity metric used. On the other hand, data-driven methods are
either decomposition based methods like principle component analysis and singular value
decomposition (PCA/SVD) [21] or independent component analysis (ICA) [31] or clustering
based methods like fuzzy [22] or hierarchical [15] clustering analysis [37].
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2.2.3 Effective Connectivity

Effective connectivity characterizes the influence that a neural system may exert over another
[21]. It measures the directional effect of whether an activation in a region may trigger an
activation in another region. It can be measured by causality metrics like Granger causality
or transfer entropy. Granger causality is a statistical concept which is based on prediction
[58]. According to Granger causality, if a signal S 1 Granger-causes signal S 2, then S 1 values
provide statistically significant information about future values of S 2. Another concept used
to measure effective connectivity between a pair of signals is transfer entropy. It is an in-
formation theoretic measure of time directed information transfer between jointly dependent
processes [11]. When the past values of a process S 1 given past values of another process S 2

is known, transfer entropy from S 1 to S 2 is the amount of uncertainty reduced in future values
of S 2.

Notice that, if a process S 1 Granger-causes S 2, it does not mean that S 2 also Granger-causes
S 1. Similarly, transfer entropy from S 1 to S 2 is not equal to transfer entropy from S 2 to S 1.
Therefore, effective connectivity measures are not symmetric.

Figure 2.5: Anatomical connectivity showing binary structural connections(left), Functional
connectivity representing pairwise correlations among voxels(middle) and Effective connec-
tivity showing pairwise transfer entropy (right) [62].

.

Figure 2.5 represents anatomical, functional and effective connectivity matrices. Supposing
there exist M voxels, the size of each connectivity matrix is MxM. Hence, rows and columns
of each matrix correspond to voxels at coordinates s̄ j. Anatomical connectivity matrix is a
binary matrix in which each row represents whether there exists an anatomical link between
the seed voxel (at row index) and all other voxels. If a link exists between two voxels, the
corresponding cell is colored in black and otherwise, it is colored in white. On the other hand,
functional connectivity matrix is a colored matrix where each row represents the correlations
between the seed voxel (at row index) and all other voxels. In this matrix, red colors represent
positive correlation whereas blue colors represent negative correlation. Moreover, the darker
the color, the more the value of correlation. For example, a dark red cell means that voxels
are highly positively correlated whereas a light red color indicates a low correlation for this
pair of voxels. Notice that, functional connectivity matrix is a full symmetric matrix since
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correlation has a symmetric property. Similar to functional one, effective connectivity matrix
is also colored and each row represents transfer entropy between the seed voxel (at row index)
and all other voxels. Here, red colors represent positive transfer entropy whereas blue colors
represent negative transfer entropy. Moreover, the darker the color, the more the voxel effects
the corresponding voxel. Unlike functional one, effective connectivity matrix is not symmetric
since an activation in a voxel may activate another one but the other way may not be true.

2.3 Multi-voxel Pattern Analysis (MVPA)

The functional magnetic resonance imaging (fMRI) technology has enhanced the ability of
researchers to observe human brain activities in a non-invasive way. Once fMRI is proven to
be a powerful brain imaging tool, at first many studies focused on identifying the activated
brain regions under a cognitive task. [39]. In these studies, participants are exposed to the
stimuli belonging to the same cognitive task. During the experiments, fMRI measurements
are recorded for each trial. Then, the regions of brain that become active when the partici-
pant is exposed to a cognitive task can be identified by averaging the fMRI responses. This
approach is called univariate (voxel-wise) approach, since the focus is on the individual vox-
els. Conventional fMRI methods having univariate approach aim to identify the voxels with
significant response on average to the stimuli of the same cognitive task.

Unlike location-based, univariate approach, recent studies take into account the full spatial
pattern of brain activity and use pattern classification algorithms to decode the subtle infor-
mation represented in that pattern [41]. This approach is called multi-voxel pattern analysis
(MVPA). Rather than focusing on "where" the information is encoded in the brain for the cog-
nitive task, MVPA methods focus on "how" the information is encoded. Therefore, MVPA
methods allow for the detection of non-local relationships between the cognitive task and
brain activity[51]. The basic MVPA methods construct fMRI analysis as a pattern classifica-
tion problem where the patterns are vectors of voxel intensity values.

Four main steps of MVPA methods are [41]:

• Feature selection: In this phase the voxels to be used in the classification are deter-
mined. Voxels with noise may reduce the performance of the classifier. Via feature
selection methods, the voxels having noise are eliminated and the ones carrying infor-
mation are kept.

• Pattern assembly: Data is discretisized into brain patterns and each pattern is associ-
ated with a label based on the experimental condition generated the pattern.

• Classifier training: A subset of samples belonging to different cognitive tasks, called
training set, is used to train a classifier with the brain patterns. With these patterns and
corresponding labels, a classification algorithm learns a function mapping between the
brain pattern and the experimental condition.
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• Generalization: Finally, the model is tested with samples, called test samples, whose
labels are to be predicted via the model [69]. The accuracy of the classifier indicates
the generalization performance of the classifier.

MVPA methods have some advantages over univariate methods. First, voxels having non-
significant response to a cognitive task are discarded in univariate methods. However, these
voxels might carry some information about the presence or absence of the cognitive task
[41]. Therefore, an information loss is inevitable in the univariate approaches. Conversely,
in MVPA methods the weak information in different locations can be collected in an efficient
way. Secondly, most univariate approaches employ spatial smoothing to increase sensitivity.
Hence, this smoothing causes spatial patterns that might carry discriminative information to
be spoiled. Thirdly, although two different brain regions do not carry information about the
cognitive task individually, their combination might be informative about the task. While,
univariate approaches disregard this information, MVPA methods can detect it. Fourth disad-
vantage of univariate approaches is that, they average voxel intensity values over samples to
detect regions taking part in the cognitive task [27]. Hence, sample size should be large for
statistical significance, which may not be the case for fMRI experiments.

Several studies that use MVPA methods to decode cognitive state in different domains have
been conducted in the last decades. Study of Haxby et. al. [25] was the pioneering work
to show how multi-voxel patterns of brain activity in ventral temporal cortex can be used to
discriminate between different cognitive tasks. In their study, subjects viewed objects from
different categories which are faces, cats, non-sense objects and five categories of man-made
objects. This study proved that, representations of objects and faces are overlapping and
distributed in ventral temporal cortex. However, by using MVPA methods they were able to
find a distinct pattern for each of these categories which are not resulting from the distinct
responses in different regions. In addition to decoding object categories, Kamitani et. al. [32]
proved the ability of MVPA to decode which of eight orientations the subject was viewing.
Moreover, in their following study, Haynes et. al. [26] showed that, multi-voxel patterns of
brain activity in visual cortex can be used to discriminate between unconscious representation
of orientations. Davatzikos et. al. [18] used MVPA approach to discriminate patterns of brain
activities measured by fMRI during truth-telling or lying experiment. Mitchell et. al. [40]
proved that MVPA methods can be used to decode whether subject is presented a sentence
or a picture, whether the subject is presented an ambiguous or non-ambiguous sentence and
which of the twelve categories (fruits, tools, etc.) does the presented picture belong. In their
work, Polyn et. al. [50] showed that, MVPA methods can be used in memory retrieval tasks.
Subjects were presented pictures from three different categories namely faces, houses and
objects in the encoding phase. Then, they were expected to recall them in the retrieval phase.
In this work, MVPA is used to detect how similar the patterns of brain activity belonging to a
category are in the encoding and retrieval phases.

In several studies, MVPA methods were used as a powerful diagnosis tool. Craddock et. al.
[17] trained Support Vector Machine (SVM) classifiers with resting state functional connec-
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tivity patterns from healthy participants and patients having major depression. They proved
that, activations of patients and healthy participants can be discriminated using MVPA meth-
ods. Moreover, Shen et. al. [59] proved that, using patterns of resting state functional connec-
tivity in machine learning tools can discriminate schizophrenic patients from healthy partici-
pants. Furthermore, brain activations measured by fMRI of patients having Autism Spectrum
Disorder (ASD) and that of healthy people were discriminated using MVPA methods [16].

In all of the aforementioned studies, brain activation patterns measured by fMRI are used to
decode a cognitive state. Unlike univariate methods, the aim in these studies is not to detect
the brain regions responsible for the cognitive task. Instead, in most of the studies MVPA
methods are used to test hypotheses about whether brain activity patterns of cognitive task A
are discernable from that of cognitive task B.

Human brain consists of massively coupled dynamic interactions at all scales [19]. However,
fMRI has the capability to measure and image the individual voxel intensity values. Remem-
ber that, conventional MVPA methods employ voxel intensity values as features to a classifi-
cation algorithm. Yet, it is not sufficient to fully understand these interactions by employing
only the individual voxel intensity values measured via fMRI. Therefore, unlike in conven-
tional MVPA methods, the relationship among voxels should be modeled as in [19, 20, 46, 47]

2.4 Local Mesh Model for Classifying Cognitive States

Generally, in order to classify a predefined set of cognitive states, the voxel intensity values
measured by fMRI for each sample are concatenated to form a feature vector. Then, a well-
know classifier is trained with feature vectors of all training samples formed that way. Finally,
a feature vector belonging to a test sample is asked to classifier to learn which class the sample
belongs to. In this procedure, each voxel is assumed to be a feature fed to the classifier and
for a good classification accuracy, voxel intensity values are expected to carry a high discrim-
inative power among different classes. In their study Özay et. al. [47] investigated whether
the raw voxel intensity values present discriminative behaviour among different classes. Their
observations indicated that, voxel intensity values are nearly constant for each time instant.
Hence, they do not exhibit a significant change for samples belonging to distinct classes and
can not be used to discriminate the classes. Rather they observed that, there are slight vari-
ations in the voxel intensity values of neighboring voxels for a time instant. Moreover, they
found out that the distribution of voxel intensity values in space show slight variations in
time. Therefore, the relationships between the voxel and its neighbors are modeled in the
study [47] and the discriminative power of such relations are also investigated. The results
indicated that, relationships among voxels carry more discriminative information than raw
voxel intensity values measured by fMRI. The model, that presents the relationships among
voxels is named as "local mesh model".

In local mesh model, voxels v(ti, s̄ j) at time instant ti, where i = 1, 2, ...N and location s̄ j,
where j = 1, 2, ...M are used to model cognitive states. Here, N represents the number of
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samples and M represents the number of voxels. Since each voxel takes places in a three
dimensional space, the voxel location s̄ j is a three dimensional vector, where s̄ j = (x j, y j, z j).
Around each voxel v(ti, s̄ j), called seed voxel, a local mesh is formed with the p-nearest
neighbors {v(ti, s̄k)}pk=1 of seed voxel. In the study of Özay et. al. [47], p-neighborhood is
defined spatially as the set of p number of voxels having smallest Euclidean distance to the
seed voxel. In another approach, Fırat et. al. [19] defined the p-neighborhood functionally, in
which p-nearest neighbors are selected based on the functional connectivity between the seed
voxel and the surrounding voxels. Note that, in this approach p-nearest neighbors {v(ti, s̄k)}pk=1
of seed voxel are selected as the voxels whose zero-order correlations with the seed voxel are
maximum among others.

While voxel intensity values v(ti, s̄ j) represent the vertices in the mesh, the relationship be-
tween these voxels in the local mesh are represented with the arc weights ai, j,k between ver-
tices. (Fig. 2.6). Therefore, a local mesh consists of seed voxel and p-nearest neighbors of
the seed voxel as vertices and arc weights ai, j,k as edges. These arc weights ai, j,k are estimated
using the linear regression equation (Equation 2.2),

v(ti, s̄ j) =
∑
s̄k∈ηp

ai, j,kv(ti, s̄k) + εi, j , (2.2)

where εi, j is the error obtained during the estimation of the arc weights ai, j,k of the local mesh
at time instant ti, where the seed voxel is v(ti, s̄ j) and the p-nearest neighbors are {v(ti, s̄k)}pk=1.
In Equation 2.2, the arc weights are estimated by minimizing the squared error ε2

i, j using
Levinson - Durbin recursion [65]. The arc weights ai, j,k of the local mesh, representing the
relationships among the seed voxel v(ti, s̄ j) and its p-nearest neighbors {v(ti, s̄k)}pk=1 is used to
form a mesh arc vector āi, j = [ai, j,1, ai, j,2, ...ai, j,p] of size 1xp. Note that, each voxel is now
represented as its relationships with its neighbors ai, j,k instead of its own fMRI intensity value
v(ti, s̄ j). Then, this mesh arc vectors are combined for a sample at time ti to form a mesh
arc matrix for a sample Ai = [āi,1, āi,2, ...āi,M] having size 1xp.M. Finally, all the mesh arc
vectors are concatenated to form a feature matrix F = [AT

1 , A
T
2 , ...A

T
M]T of size Nxp.M for a

participant.

2.5 Information Theoretic Approaches for Model Order Selection

In many problems of signal processing, it is possible to model the vector of observations as
a superposition of finite number of signals with an additive noise [67]. Therefore, in such
problems, besides estimating the vector of parameters, it is often necessary to estimate the
dimension of the parameter vector (the number of parameters). Examples in which the esti-
mation of model order is necessary, includes the order of regression equation, the number of
sinusoidal components in a sinusoid in noise signal or the number of source signals impinging
on a sensor array. In all these examples, the number of unknown parameters should also be
estimated. Suppose that:
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Figure 2.6: A local mesh representing the relationships among the seed voxel v(ti, s̄ j) and its
p-nearest neighbors {v(ti, s̄k)}pk=1 with the arc weights ai, j,k

.

G = [g(1), ..g(M)] is a vector of time series data having size M (G ∈ RM),
θ is the real valued parameter vector (θ ∈ Rp),
p is the dimension of parameter vector θ.

In the above notation, a method estimating p from the time series data G besides estimating
θ is called a model order selection method [63]. Some information theoretic criteria can be
used to to estimate the optimal order of a regression equation defined as

g(τ) =

p∑
k=1

θkg(τ − k) + ε(τ) , (2.3)

where p is the model order, {θ1, θ2, ...θp} are the parameters of the model, ε(τ) is the error
calculated at time τ. In this model, the output g(τ) depends linearly on its own previous
values {g(τ − 1), g(τ − 2), ...g(τ − p)} and in order to find the optimal value of p, or to find an
answer to the question "How many of the previous values of output should be used to model
the output itself?", some information theoretic criteria may be used. Employing information
theoretic criteria for model order selection is a powerful method, since one does not require
any subjective judgment in the decision process. Instead, from the available data, the optimal
model order is selected as the one that minimizes the criterion.

In the following sections, four well known informaton criteria namely Akaike’s Final Predic-
tion Error (FPE) [5, 6], Akaike Information Criterion (AIC) [7], Bayesian Information Crite-
rion (BIC) [57] and Rissanen’s Minimum Description Length (MDL) [52] will be explained
in detail.
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2.5.1 Final Prediction Error (FPE)

In the classical time series analysis, when an autoregressive model is fitted to the present
series of g(τ) and this model is applied to another independent realization of g(τ), or applied
to another process which is independent of g(τ) but has the same covariance characteristics
as that of g(τ), a prediction error is obtained. In his pioneering work [5], Akaike defined
Final Prediction Error (FPE) as the expected variance of this prediction error. This approach
overcomes the difficulty of determining constants as in the solution of Anderson et. al. [9]
to model order selection. Akaike states FPE as a figure of merit of a predictor, which is
calculated for each model being fitted and the model with the best figure is chosen to be the
predictor. Final prediction error estimated for an autoregressive function is defined as,

FPE(p) = σ̂2
p

(N + p + 1)
(N − p − 1)

, (2.4)

where N is the number of samples, p is the model order of autoregressive function and σ2
p is

the mean squared error and also the maximum likelihood estimate of error variance which is
approximated by,

σ̂2
p �

1
N

N−1∑
τ=p

ε(τ)2 , (2.5)

where ε(τ) is the error at time τ from Equation 2.3).

2.5.2 Akaike Information Criterion (AIC)

Suppose that data is generated by some unknown stochastic process h(τ) and the aim is to
find a model that best fits the data, in other words find a model that best approximates to
the unknown distribution h(τ). Let F (p) = { f (τ|θp) | θp ∈ Θp}, where θp is a p-dimensional
parameter vector, Θp is a class of p-dimensional parameter vectors (θp)’s and f (τ|θp) is the
likelihood function. By maximizing the likelihood f (τ|θp) with respect to θp, the estimated
parameter vector (θ̂p) that best fits the data can be found. Hence f (τ|θ̂p) denotes the corre-
sponding fitted model. However, in the model order selection problems, p is not fixed and the
problem returns to select the model among the set F̂ = { f (τ|θ̂1), f (τ|θ̂2), ... f (τ|θ̂N)}. There-
fore, the model is selected that best approximates the unknown distribution h(τ) from the set
F̂ .

If h(τ) were known, the information loss acquired by representing h(τ) with each member of
F̂ would be measured using the Kullback - Leibler divergence. Furthermore, the model whose
Kullback - Leibler divergence from h(τ) is the smallest would be selected as the best model in
the set and the corresponding p would be selected as the model order. Since h(τ) is unknown,
it is not possible to measure Kullback - Leibler divergence of a model from h(τ). Akaike
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proposed an information criterion Akaike Information Criterion (AIC) [7] to determine the
model order and showed that the information loss caused by selecting a model among F̂ to
approximate h(τ) can be estimated [8].

Akaike Information Criteria (AIC) is defined to select the model order of an autoregressive
function (Equation 2.3) as,

AIC(p) = N ln(σ̂2
p) + 2p, (2.6)

where N is the number of samples, σ̂2
p is the mean squared error defined in Equation 2.5

and p is the order of the autoregressive function [60]. Low AIC indicates that the model is
a better approximate of the unknown process. As the model order increase, the first term
of Equation 2.6, the variance of error (N ln(σ̂2

p)) decreases. Therefore, the selected model
would fit the data better as the model order increases. However, this time the complexity of
the model increases and the second term of the equation (2p) is the penalty term that penalizes
the increase in complexity. Hence, AIC acts as a penalized log-likelihood criterion, trying to
balance between good fit and complexity.

2.5.3 Bayesian Information Criterion (BIC)

In time series analysis, it is discovered that, as sample size increases AIC tends to select more
complex models as the best model. This is mainly caused by the fact that the first term of
Equation 2.6 (N ln(σ̂2

p)) increases linearly with the sample size. However, the second term
responsible for penalizing the complexity (2p), is only proportional to the model order p [55].
Hence, as the sample size increases, AIC tends to over-fit the data. In order to overcome this
over-fitting problem, Schwarz proposed Bayesian Information Criterion (BIC) [57] where
unlike AIC, the penalty term is also proportional to the sample size,

BIC(p) = N ln(σ̂2
p) + p ln(N), (2.7)

where N is the number of samples, σ̂2
p is the he maximum likelihood estimate of error vari-

ance defined in Equation 2.5 and p is the order of the autoregressive function. Although
the equations of AIC and BIC are similar, the idea behind these two information theoretic
approaches are totally different. As it is stated in section 2.5.2, AIC estimates a model that
approximates to the unknown data generating process. Hence, it does not assume the se-
lected model to be the "true" model. On the other hand, BIC aims to find the "true" model
among many alternatives. BIC is a function estimate of the posterior probability of a model
being true under a certain Bayesian setup. It answers how likely the data is generated by the
model by estimating the posterior probability. Therefore, a lower BIC implies that a model is
considered to be more likely to be the true model.

19



2.5.4 Rissanen’s Minimum Description Length (MDL)

Inspired by the idea of AIC, Rissanen developed an information theoretic estimation principle
called Minimum Description Length (MDL) [52, 53]. It aims to find the model that best
represents the information in a compact form. MDL is a formalization of Occam’s razor such
that, it assumes the best model that represents the information as the one that leads to the
best compression of data, yet retains the salient features in the present data. Grünwald [24]
states that the idea behind MDL is learning as data compression. Rissanen defined MDL
representing the information in [52] as,

RIS (p) = − ln(σ̂2
p) +

1
2

p ln(N), (2.8)

where p represents the order of the autoregressive function, N is the number of samples and
σ̂2

p is the he maximum likelihood estimate of error variance defined in Equation 2.5. In
his further study [54], Rissanen showed how to select optimum model for autoregressive
processes by proving it on Gaussian autoregressive moving average (ARMA) processes. He
claimed that in the class of Gaussian ARMA processes, the mean prediction error of any
measurable predictor of the past data is bounded by,

MDLp = σ2
p(1 + (

p + 1
N

) ln(N)). (2.9)

Moreover, in [54] he showed that owing to the similarity of information and prediction
bounds, the model where MDLp is minimum is the optimum model. Note that, unless stated
otherwise, in this thesis MDL represents the Minimum Description Length criterion used to
estimate the optimal model order for autoregressive process. Hence, further derivations in this
thesis will be based on MDLp, not RIS p.

In all of the abovementioned information theoretic criteria, the first term (error term) tends
to decrease as the model order p increases providing a better fit. On the other hand, the
second term is an increasing function of model order p indicating an increase in the complex-
ity. Hence, all of these criteria make a trade-off between the degree of fit and the degree of
complexity.

2.6 k - Nearest Neighbor for Classification

As defined in [38], k-Nearest Neighbor (kNN) algorithm is the most basic instance-based
method. In this algorithm, all instances are assumed to correspond to a point in an m-
dimensional space. The nearest neighbors of an instance is the ones having the smallest
Eucledean distance to it among other instances. Let an arbitrary instance ins be described by
the m − dimensional feature vector:
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< f1(ins), f2(ins), .., fm(ins) > , (2.10)

where fr(ins) correspond to rth attribute of instance ins. The distance between two instances
ins1 and ins2 is defined as:

dist(ins1, ins2) =

√√ m∑
r=1

( fr(ins1) − fr(ins2))2 , (2.11)

In the nearest neighbor algorithm, the target function may be discrete or real-valued. In
discrete case, target function f : Rm → V maps an instance to a class label where V =

{v1, v2, .., vc} and c = 1, 2, ..,C. In the training phase, training examples are added to a list
training examples. When a new instance insq is queried, the classification phase is computed
as in Algorithm 1 and the corresponding class label is obtained.

Algorithm 1 k-Nearest Neighbor (k − NN) algorithm
Require: Given a query instance insq to be classified

Let ins1, ins2, .., insk to be k instances from training examples that are nearest to insq

f̂ (insq))← argmax
v∈V

(
∑k

i=1 δ(v, f (insi)))

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.
Ensure: f̂ (insq))

Many studies [12, 61, 66] used k-NN algorithm to classify cognitive states using fMRI.

2.7 Summary

In this chapter, firstly the history of functional Magnetic Resonance Imaging (fMRI) and how
it measures the activations in the brain are presented. Then, available voxelwise connectivity
metrics of brain namely anatomical, functional and effective connectivity are explained. In
the third subsection, MVPA methods in the literature, which are used in the classification of
various types of cognitive states, are surveyed. After that, local mesh model, which states
relationships among voxels are more discriminative than the voxel intensity values, is intro-
duced. Then, the ideas behind four main information criteria namely Final Prediction Error,
Akaike Information Criterion, Bayesian Information Criterion and Rissanen’s Minimim De-
scription Length are presented. Moreover, how these criteria are used to estimate the optimal
order of linear regression equation is overviewed. Finally, k-Nearest Neighbor algorithm for
the classification is explained.
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CHAPTER 3

AN INFORMATION THEORETIC APPROACH FOR
ESTIMATING BRAIN CONNECTIVITY USING FMRI

MEASUREMENTS

3.1 Local Relational Brain Connectivity

In Section 2.2, the main connectivity metrics namely anatomical, functional and effective
connectivity are introduced. When the units of these connectivities are voxels and the brain
connectivity is established via the interconnections between voxels, anatomical, functional
and effective brain networks can be constructed at voxel level. In all of these networks, the
nodes of network are the voxel intensity values. However, the edges of the networks and their
weights differ based on the connectivity type.

In order to represent connectivity, the number of connections among voxels should be deter-
mined. In other words, considering all the pairwise connections between voxels, it should be
estimated that which pairwise connections are taken into account in the brain connectivity and
which of them should be discarded so that corresponding pair of voxels are counted as dis-
connected. In the anatomical brain networks, the network is constructed using the anatomical
links between voxels. Hence, if two voxels are connected with anatomical links, an edge is
constructed in the anatomical brain network. Yet, for functional and effective connectivity, the
edges among voxels are either statistical dependencies (correlation, coherence etc.) or causal
interactions. Although the pairwise correlations or causal interactions are computed among
all voxels, only the voxels whose correlations or causal interactions are above some threshold
are considered to be connected. Hence, in the network only those corresponding edges are
established. As it can be seen, the number of edges or the number of connections for a voxel
depends on a threshold and may vary with this threshold.

A new type of voxel-wise connectivity, called "local relational connectivity" is proposed in
this study as a hypothesis. Similar to aforementioned connectivity metrics, the nodes of local
relational connectivity are the individual voxels whereas the edges among voxels are the arc
weights of local mesh model proposed by Ozay et. al.[47]. Hence, the voxels are connected to
each other with the coefficients of linear regression model 2.2 in local relational connectivity
model where these coefficients represent the relationships among voxels in a local neighbor-
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hood. Unlike in functional or effective connectivity, pairwise connections to be taken into
account are not determined using a threshold in local relational connectivity. Instead, size of
each local mesh formed around each voxel is estimated using information theoretic criteria as
model order selection methods.

Figure 3.1: A sample local relational network where nodes correspond to voxel intensity
values and edges correspond to arc weights of local mesh model.

Figure 3.1 represents a sample local connectivity network, where nodes of the network cor-
respond to voxel intensity values and edges of the network correspond to arc weights of the
local mesh model. In this connectivity network, the color of node states the intensity of voxel.
In the colormap used, a dark red implies a high intensity value of voxel whereas a light blue
implies that the intensity value of voxel is low. Hence, in this connectivity network, the acti-
vations in the voxels can be observed.

As it can be seen from Figure 3.1, the degree of node, in other words the number of edges
connected to the node varies. The degree of each node is determined using the optimal mesh
size so that some nodes have massive connections among its neighbors while others make
only a few connections. Notice that, the color of edges also vary with the magnitude of arc
weight of local mesh model. In other words, if the magnitude of an arc weight is high, it
is represented with a dark red edge whereas a light blue edge indicates that the magnitude
of the arc weight is small. However, the magnitude of arc weight does not indicate a higher
connectivity or correlation as in the functional connectivity case. Rather, the arc weights are
the coefficients of the linear regression equation.

In this hypothetical connectivity metric, based on the local relationships among voxels, the
optimal mesh size of local mesh model (optimal number of neighbors in the local mesh) is
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assumed to determine the degree of connectivity, where small optimal mesh size indicates
that the voxels are connected to a few number of voxels. On the other hand, a large optimal
mesh size is an indicator of massively interconnected voxels. Therefore, in the proposed local
relational connectivity metric, the optimal mesh size defines the connectivity.

In this study, optimal mesh size defining the local relational connectivity is estimated for:

• Each participant of the underlying experiment

• Each class representing a cognitive state

• Each sample measured during a cognitive state

• Each voxel of the fMRI measurement

The optimal mesh size is estimated by maximizing some information theoretic criteria in Sec-
tion 3.3. By estimating the optimal mesh size for each participant, how local relational con-
nectivity varies for each participant can be analyzed. Moreover, optimal mesh size estimated
for each class reflects whether connectivity changes for different categories of samples or not
even for the same participant. On the other hand, without considering the class it belongs,
optimal mesh size can be estimated for each sample. Notice that, a sample represents the
measurements recorded during a cognitive state from all voxels for a single time instant. Fi-
nally, in a more detailed manner it can be analyzed how the optimal mesh size varies for each
voxel. In other words for each voxel of the sample, different neighborhoods are formed and
each local mesh is formed using variable number of neighbors. This way, the voxels which
tend to connect more to the others and the ones forming less connections can be examined.

3.2 The Role of Error Term

As it can be seen from Section 2.5, in all information theoretic criteria, maximum likelihood
estimate of error variance, in other words, expected value of squared error is used to estimate
the model order. In our method, the aim is to find the optimal mesh size. Therefore, in order
to estimate the number of neighbors in a mesh, the expected value of squared error parameter
in the local mesh model is used (Equation 2.2).

Let ρ represent the participant, ρ = {1, 2, .., P}, where P is the number of participants. Since
further analysis and comparisons based on the results of different participants will be made in
the following sections, besides time instant ti and voxel coordinates s̄ j, the data is represented
in terms of the participant ρ it belongs to, for clarification. Hence, the Equation 2.2 can be
reformulated as,

vρ(ti, s̄ j) =
∑
s̄k∈ηp

ai, j,kvρ(ti, s̄k) + εi, j,ρ , (3.1)
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where vρ(ti, s̄ j) represent the voxel included in the data belonging to participant ρ at time
ti, coordinates s̄ j. Moreover, εi, j,ρ is the error resulting from the linear regression equation,
estimated for the data belonging to participant ρ.

In this study, fMRI data is represented as an NxM matrix, where N represents the number
of samples and M represents the number of voxels. Around each voxel v(ti, s̄ j) in this NxM
matrix, a local mesh is created and the expected value of the error term εi, j,ρ is minimized
with respect to the arc weights ai, j,k. By concatenating the minimum errors εi, j,ρ for all voxel
coordinates, error vector for a time sample at ti, erri,ρ = [εi,1,ρ, εi,2,ρ, .., εi,M,ρ] is obtained.
Finally, all error vectors for all samples are combined to form the error matrix for participant
ρ, Errρ = [errT

1,ρ, errT
2,ρ, ..errT

N,ρ]
T . Notice that, Errρ is an NxM matrix.

Although the error terms εi, j,ρ’s are the same for all types of local relational connectivity
estimations (for each participant, class, sample or voxel), the way to approximate the expected
value of this squared error varies for each type. For all types the squared error can be easily
derived from Equation 3.1 as,

ε2
i, j,ρ = (vρ(ti, s̄ j) −

∑
s̄k∈ηp

ai, j,kvρ(ti, s̄k))2 . (3.2)

In the following subsections, how the expected value of squared error terms are estimated for
each participant, each class, each sample and each voxel will be explained in detail.

3.2.1 Error for Each Participant

In this section a technique to estimate an optimal mesh size for a participant is suggested.
Error matrix for each participant errρ is an NxM matrix, where N represents the number of
samples and M represents the number of voxels (Figure 3.2). Since the purpose of this work
is to estimate the error for each participant, it is assumed that an optimal mesh size exists
for a participant. Therefore, around each voxel in each sample which belongs to the same
participant, a local mesh of same size is formed.

The expected value of squared error (Êρ) is estimated for each participant ρ by taking the
expectation over all time instants ti and all voxels at coordinates s̄ j as:

Êρ = Ei, j(ε2
i, j,ρ) �

1
N

1
M

N∑
i=1

M∑
j=1

ε2
i, j,ρ , (3.3)

where Ei, j(.) is the expectation on all possible time instants ti and all voxels at coordinates
s̄ j, M is the number of voxels, N is the number of samples, ε2

i, j,ρ is the squared error at
time instant ti for voxel coordinates s j and for participant ρ (see Equation 3.2). Moreover,
Êρ represents the resulting expected value of squared error for a participant. Therefore, by
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averaging the error over all time instants and all voxels, the expected value of squared error
can be approximated for participant ρ (Equation 3.3). During the selection of optimal mesh
size for a participant using information theoretic criteria, Êρ will be used in the first terms of
the equations 3.7 3.15 3.23 3.31.

In Figure 3.2, all rows corresponding to all samples are colored in purple. It does not mean
that all samples belong to same class. Indeed, there may be multiple number of classes for
experiments. The reason why all samples are colored in the same color (purple) is that when
expected value of squared error is to be estimated for a participant, the error is averaged over
all the samples without considering their class. Hence, the class label of a sample does not
make any difference during the calculations of the expected error variance for a participant.

Figure 3.2: Organization of error matrix Errρ belonging to participant ρ, for all time instants
ti and all voxel coordinates s̄ j.

3.2.2 Error for Each Class

In this section a technique to estimate an optimal mesh size for each class is suggested. There-
fore, the fMRI data is recorded as a time series, where each time instant ti is associated with
a class label ci where ci = 1, 2, ..C. Assume that, as in the previous section, Section 3.2.1,
error matrix for each participant Errρ is an NxM matrix, where N represents the number of
samples and M represents the number of voxels. However, this time the class of each sample
at ti, (ci) is important. For each class cl, where cl ∈ {1, 2, ..,C} the expected value of squared
error is approximated using only the samples at ti belonging to class cl, ∀ci = cl.
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The expected value of squared error is estimated for each class (Êcl,ρ) by taking the expecta-
tion over all samples belonging the class cl and over all voxels at coordinates s̄ j as:

Êcl,ρ = Ecl
i, j(ε

2
i, j,ρ) �

1
Ncl

1
M

∑
∀ci=cl

M∑
j=1

ε2
i, j,ρ , (3.4)

where Ecl
i, j(.) is the expectation on all time instants belonging to class cl (∀ti , ci = cl) and

over all voxels at coordinates s̄ j, M is the number of voxels, cl represents the class of the
sample, Ncl is the number of samples where ci = cl and ε2

i, j,ρ is the squared error at time
instant ti for voxel coordinates s j and for participant ρ (see Equation 3.2). Furthermore, Êcl,ρ

represents the resulting expected value of squared error for a class, which will be used in
further derivations to select optimal mesh size for a class. Note that, by averaging the error
over all samples belonging to same class and over all voxels, the expected value of squared
error can be approximated for a class. (Equation 3.4).

Figure 3.3: Organization of error matrix Errρ belonging to participant ρ, for all time instants
ti and all voxel coordinates s̄ j and color of each sample represents its class. Samples having
green color belong to one class while samples having purple color belong to another class.

Figure 3.3 represents the errors obtained from fMRI samples belonging to two different
classes. Assume that samples having red color belong to class purple and samples having
green color belong to class green. In order to estimate the expected value of squared error
for class purple, errors coming from voxels of samples coloured in purple are averaged. For
class green, the expected value of squared error is estimated in the same way.
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3.2.3 Error for Each Sample

Remember that, a sample represents the measurements recorded during a cognitive state from
all voxels for a single time instant ti. In previous two subsections, expected value of squared
error is estimated for each participant and for each class. In both cases, since many samples
are included for both a participant and a class, errors are averaged over many samples. In this
section, expected value of squared error is estimated for each sample, where sample represents
the cognitive state of a participant at a time instant. Therefore, this time the expected value of
squared error is dependent on i for the sample at time instant ti. Moreover, it is approximated
by averaging the error over all voxels belonging to the sample.

The expected value of squared error for each sample at time instant ti and for participant ρ
(Êi,ρ) is estimated by taking the expectation over all voxels at coordinates s̄ j at the same time
instant ti as:

Êi,ρ = E j(ε2
i, j,ρ) �

1
M

M∑
j=1

ε2
i, j,ρ , (3.5)

where E j(.) is the expectation over all voxels at coordinates s̄ j, M is the number of voxels and
ε2

i, j,ρ is the squared error at time instant ti for voxel coordinates s j and for participant ρ (see
Equation 3.2). While selecting the optimal mesh size for a sample, Êi,ρ term will be used in
derivations. Notice that, for a sample at time instant ti, the expected value of squared error is
approximated by averaging error term over all voxels belonging to the sample. In Section 3.3,
while selecting the optimal mesh size for each sample, E(ε2

i,ρ) will be used in the information
criteria estimations as the first term of equations 3.11, 3.19, 3.27, 3.35.

From Figure 3.4, it can be observed that, error vector for a sample at time instant ti corre-
sponds to a row in the NxM error matrix for a participant (Figure 3.2 ). While estimating the
expected value of squared error for a sample, the class of the sample is not taken into account.

Figure 3.4: ith row of error matrix Errρ belonging to participant ρ, for a single time instant
ti for all voxel coordinates s̄ j. The class label of the sample is not considered during the
estimation.
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3.2.4 Error for Each Voxel

In this section the expected value of squared error is approximated for each voxel by averaging
the error over all time instants of a single voxel. Note that, when estimated for a voxel, the
expected value of error depends on both j, where s̄ j represents the voxel coordinates, and the
participant ρ.

The expected value of squared error for each voxel at coordinates s̄ j and for participant ρ
(Ê j,ρ) is estimated by averaging the error over all time instants (∀ti) belonging to a single
voxel as:

Ê j,ρ = Ei(ε2
i, j,ρ) �

1
N

N∑
i=1

ε2
i, j,ρ , (3.6)

where Ei(.) is the expectation operator taking the average over all time instants ti for a single
voxel, N is the number of samples and ε2

i, j,ρ is the squared error at time instant ti for voxel
coordinates s j and for participant ρ (see Equation 3.2). When the optimal mesh size is
selected for each voxel using information theoretic criteria, Ê j,ρ will be used as the first term
of the model order selection equations 3.13, 3.21, 3.29, 3.37.

Figure 3.5: jth column of error matrix Errρ for a voxel at coordinates s̄ j, for all time instants
ti. The class belonging to the sample including the voxel is not considered.

Figure 3.5 represents all time instants of a voxel at coordinates s̄ j. Therefore, time series of
a voxel at coordinates s̄ j corresponds to a column in the NxM matrix for a participant (Figure
3.2 ). Although the whole column is colored in red, each time instant of voxel at coordinates
s̄ j is a member of a sample belonging to various classes. However, during the estimation of
the expected value of squared error for a voxel, the class of the sample including the voxel is
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not taken into account and error is averaged over all time instants for a voxel belonging to the
same participant, not over a subset of time instants belonging to same class.

In this section how the expected value of squared error is approximated for a participant, a
class, a sample and a voxel is explained. Although all of them uses the error term in a linear
regression equation used in local mesh model, different averaging over errors will lead to
different expected values of squared error. Later on, these expected values will be used in
various information theoretic criteria in the following sections, in order to select the optimal
mesh size for a participant, a class, a sample and a voxel, respectively.

3.3 An Information Theoretic Approach for Modeling Brain Connectivity

Among many others, information theoretic criteria, which are used to estimate the order of
the linear regression models are introduced in Section 2.5. Recall that, output of the autore-
gressive model depends linearly on its own previous values and information criteria are used
to estimate how many of the previous values of output should be considered to estimate the
output value itself.

In this study, the output is the voxel intensity value v(ti, s̄ j). However, this intensity value
v(ti, s̄ j) does not linearly depend on its own previous values, ({v(ti−1, s̄ j), v(ti−2, s̄ j), ...}), in-
stead, the voxel v(ti, s̄ j) is represented as a linear combination of its nearest neighbors at the
same time instant ti ({v(ti, s̄l), v(ti, s̄o), ...}). Unless stated otherwise, the nearest neighbors of a
voxel v(ti, s̄ j) are the ones having the smallest Euclidean distance to the voxel v(ti, s̄ j) among
others. Here, while estimating the coefficients of linear regression model (local mesh model),
the dimension of coefficients, i.e. the optimal number of neighbors, should also be estimated.
This brings the idea of using information theoretic criteria in a spatial manner to estimate the
model order. Note that, in this model, model order corresponds to the optimal mesh size and
the purpose of using information theoretic criteria is to select the optimal mesh size, in other
words, to select the optimal number of neighboring voxels that best represents the seed voxel
of the mesh.

At this point, we assume that there is a trade-off between the mesh size p, which represents
the model complexity, and expected value of squared error, which represents the degree of
fit among the voxels in a neighborhood. As the mesh size p increases, the expected value of
squared error decreases, implying that model fits better. On the other hand, with an increase
in mesh size p, the complexity of the local mesh model increases, since each voxel is then
represented as a linear combination of more number of its neighbors. Therefore, the degree
of local relational connectivity can be represented by optimizing this trade-off between the
mesh size p and error term. During this optimization, four well-known information theoretic
criteria, namely Final Prediction Error (FPE), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and Rissanen’s Minimum Description Length (MDL) are adopted
in a spatial manner to select the optimal mesh size for each participant, class, sample and
voxel.
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In the following subsections, how these information theoretic criteria are adopted to estimate
the degree of connectivity in human brain by estimating the optimal mesh size will be ex-
plained in detail.

3.3.1 Final Prediction Error (FPE)

In his pioneering work, Akaike proposed an information theoretic criterion called Final Pre-
diction Error (FPE) to select the model order of a linear regression function, in which the
output value of a time series depends on its own previous values. Therefore, by using FPE
not only the coefficients of linear regression equation, but also the number of coefficients can
be estimated. In local mesh model relationships among the voxels are also estimated using a
linear regression function and this time the question is "How many neighbors should be used
to form the mesh around a voxel?". Hence, in our work, model order of linear regression
equation should also be estimated. Note that, the linear regression functions used in Akaike’s
work and local mesh model are rather different. In local mesh model a voxel is represented as
a linear combination of its spatial neighbors, not as a linear combination of its own previous
values. In other words, the linear regression function of local mesh model is not time based as
in its original use, rather it is spatial. As a result in this study FPE is adopted to a regression
model to select the number of neighbors.

In the following subsections, optimal mesh size is estimated for each participant, class, sample
and voxel using FPE.

3.3.1.1 FPE for Each Participant

In order to select the optimal mesh size for a participant, FPE is used (FPEρ(p)) in the fol-
lowing way:

FPEρ(p) = Êρ

(
M + p + 1
M − p − 1

)
. (3.7)

In this equation, Êρ represents the expected value of error derived in Equation 3.3, p is the
mesh size, M is the number of voxels and FPEρ(p) is a function of mesh size p. Note that,
FPEρ(p) has only one minimum with respect to p, since Êρ is a monotonically decreasing

function of p in the ideal case whereas
(

M + p + 1
M − p − 1

)
is a monotonically increasing one. There-

fore, using Equation 3.7, FPE is computed for the mesh sizes p where p ∈ [pmin, pmax]. Then,
the mesh size p minimizing FPE is selected as the optimal mesh size ( p̂MDL

ρ ) for participant ρ
using the equation below:

p̂FPE
ρ = argmin

p
(FPEρ(p), p ∈ [pmin, pmax]) . (3.8)
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The interval [pmin, pmax] is selected large enough such that the mesh size p minimizing
FPEρ(p) lies in this interval. In other words, FPEρ(p) should decrease with an increase
in p up to some value of p and then it should start to increase with p. In order to observe
such behavior, the interval [pmin, pmax] is taken large enough so that optimal mesh size p̂FPE

ρ

lies in this interval. In all of the following sections, the interval [pmin, pmax] is selected with
this manner. Moreover, in all of the experiments based on either participant, class, sample or
voxel using either one of the information criteria, the intervals [pmin, pmax] are the selected as
the same.

3.3.1.2 FPE for Each Class

FPE is used to analyze whether optimal mesh size differs for each class, where samples of a
class are acquired from the same participant, using the following equation:

FPEcl,ρ(p) = Êcl,ρ

(
M + p + 1
M − p − 1

)
, (3.9)

where p is the mesh size, M is the number of voxels and ρ represents the participant. Note
that, the optimal mesh size estimated using FPE for each class ( p̂FPE

cl,ρ ) depends on both the
class cl and the participant ρ. In other words, during the estimation of optimal mesh size for
a class, only the samples belonging to same participant are considered.

FPEcl,ρ(p) is estimated for the integer values of p in the interval [pmin, pmax] and the mesh
size minimizing the FPEcl,ρ(p) is selected as the optimal mesh size (p̂FPE

cl,ρ ) for class cl.

p̂FPE
cl,ρ = argmin

p
(FPEcl,ρ(p), p ∈ [pmin, pmax]) . (3.10)

3.3.1.3 FPE for Each Sample

FPE is also adopted to estimate the optimal mesh size for a sample at time instant ti belonging
to a participant ρ as:

FPEi,ρ(p) = Êi,ρ

(
M + p + 1
M − p − 1

)
, (3.11)

where p is the mesh size, M is the number of voxels and ρ represents the participant and Êi,ρ

is the expected value of squared term for a sample in Equation 3.5. After calculating the
FPEi,ρ(p) for all the mesh sizes in the interval [pmin, pmax], optimal mesh size for the sample
at ti is estimated as the one minimizing FPEi,ρ(p), by using:
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p̂FPE
i,ρ = argmin

p
(FPEi,ρ(p), p ∈ [pmin, pmax]) , (3.12)

where p̂FPE
i,ρ is the optimal mesh size estimated using FPE for sample at ti of participant ρ.

3.3.1.4 FPE for Each Voxel

Expected value of squared error term for each voxel (see Equation 3.6) is used in the adopted
FPE criterion (FPE j,ρ(p)) to select the optimal mesh size for each voxel at coordinates s̄ j

belonging to participant ρ as:

FPE j,ρ(p) = Ê j,ρ

(
N + p + 1
N − p − 1

)
, (3.13)

where N is the number of samples. After FPE j,ρ(p) is estimated for many different mesh sizes
p in the interval [pmin, pmax], the optimal mesh size for voxel at coordinates s̄ j is selected as
the one that minimizes FPE j,ρ(p) by using:

p̂FPE
j,ρ = argmin

p
(FPE j,ρ(p), p ∈ [pmin, pmax]) , (3.14)

where p̂FPE
j,ρ refers to the optimal mesh size for voxel at s̄ j, where the experiment is conducted

on participant ρ.

Variants of FPE for a participant, class, sample and voxel indicate that, FPE is always a
function of mesh size p. In order to select the optimal mesh size for any one of them, FPE
is estimated for various mesh sizes and the p minimizing the FPE is chosen to be the optimal
mesh size. Moreover, the interval [pmin, pmax] should be selected in a way that, the optimal
mesh size minimizing the information criterion equation lies in this interval.

3.3.2 Akaike Information Criterion (AIC)

If the data generating process, in our case the generation of fMRI data during a cognitive
process were known, information loss of the local mesh model of size p would be found using
the Kullback–Leibler (KL) divergence between the model and the information distribution
with certainty. Hence, the optimal mesh size would be selected as the one having the smallest
KL divergence with the underlying cognitive process. However, the information distribution
in the human brain is yet unknown and we approximate this unknown by using AIC for a local
mesh formed around each voxel. Therefore, we assume that the mesh size p which leads to
the minimum AIC is the one that best approximates the unknown information distribution in
the brain and this p is selected as the optimal mesh size.

34



In the following subsections, optimal mesh size is estimated for each participant, class, sample
and voxel using AIC.

3.3.2.1 AIC for Each Participant

AIC criterion is adopted to select the optimal mesh size for each participant (AICρ(p)) using
the expected value of squared error term approximated in Equation 3.3:

AICρ(p) = ln (Êρ) +
2p
M

. (3.15)

where p represents the mesh size, M represents the number of voxels, ρ is the participant,
Êρ is the expected value of squared error approximated for a participant and AICρ(p) is a
function of mesh size p.

For the values of p in the interval [pmin, pmax] , AICρ(p) is estimated for participant ρ and
the one minimizing the AICρ(p) is selected as the optimal mesh size estimated using AIC for
participant ρ as follows:

p̂AIC
ρ = argmin

p
(AICρ(p), p ∈ [pmin, pmax]) . (3.16)

3.3.2.2 AIC for Each Class

In order to select the optimal mesh size for a class, where samples belong to the same partici-
pant, AIC is used (AICcl,ρ(p)) in the following way:

AICcl,ρ(p) = ln (Êcl,ρ) +
2p
M

, (3.17)

where p represents the mesh size, M represents the number of voxels and ρ is the participant.
In this section, the optimal mesh size estimated with AIC (p̂AIC

cl,ρ ) depends on both the class cl
and the participant ρ. Using the mesh sizes p in an interval, AICcl,ρ(p)’s are estimated for a
class and the mesh size minimizing this term is selected as the optimal as in Equation 3.18.

p̂AIC
cl,ρ = argmin

p
(AICcl,ρ(p), p ∈ [pmin, pmax]) . (3.18)

3.3.2.3 AIC for Each Sample

By using the expected value of squared term for a sample in Equation 3.5, AIC is adopted to
estimate the optimal mesh size for a sample at time instant ti belonging to a participant ρ as:
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AICi,ρ(p) = ln (Êi,ρ) +
2p
M

. (3.19)

After calculating the AICi,ρ(p) for many different mesh sizes and selecting the one that mini-
mizes AICi,ρ(p), optimal mesh size for the sample at ti is estimated using:

p̂AIC
i,ρ = argmin

p
(AICi,ρ(p), p ∈ [pmin, pmax]) , (3.20)

where p̂AIC
i,ρ is the optimal mesh size estimated using AIC for sample at ti of participant ρ.

3.3.2.4 AIC for Each Voxel

Optimal mesh size might differ for each voxel even in the same sample of the same participant.
In order to estimate this optimal mesh size for a voxel at coordinates s̄ j, AIC is adopted as:

AIC j,ρ(p) = ln (Ê j,ρ) +
2p
N

, (3.21)

where N is the number of samples. After calculating the AIC j,ρ(p) for many different mesh
sizes, the optimal mesh size for voxel at coordinates s̄ j is selected as the one that minimizes
AIC j,ρ(p),

p̂AIC
j,ρ = argmin

p
(AIC j,ρ(p), p ∈ [pmin, pmax]) , (3.22)

where p̂AIC
j,ρ refers to the optimal mesh size for voxel at s̄ j.

As it can be seen from the above derivations of AIC for a participant, class, sample and
voxel, AIC is always a function of mesh size p. So as to select the optimal mesh size, AIC is
estimated for various mesh sizes and the p that makes the AIC minimum is chosen to be the
optimal mesh size. Moreover, the interval [pmin, pmax] should be selected in a way that, the
optimal mesh size minimizing the information criterion equation lies in this interval.

3.3.3 Bayesian Information Criterion (BIC)

Bayesian Information Criterion (BIC) attempts to estimate a true model among the candidates.
In our case, BIC is used to find the local mesh model of optimal mesh size among all the
candidate local mesh models of size p. BIC answers to the question "How likely the data
is generated by the local mesh model of size p?" by estimating the posterior probability and
selecting the p which gives the highest posterior probability among all as the optimal mesh
size. Therefore, the BIC values, which will be adopted to select the optimal mesh size for a
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participant, class, sample and a voxel, are proportional to the likelihood of local mesh model
of size p generating the data. Unlike AIC, BIC uses prior probability, hence the prior selection
affects the accuracy. In this study, error terms are assumed to have a normal distribution and
the corresponding BIC model [57] is adopted.

In the following subsections, optimal mesh size is estimated for each participant, class, sample
and voxel using BIC.

3.3.3.1 BIC for Each Participant

BIC is adopted to select the optimal mesh size of the local mesh model for each participant ρ
(BICρ(p)) using the expected value of squared error term approximated in Equation 3.3 as:

BICρ(p) = ln (Êρ) +
p ln(M)

M
, (3.23)

where p is the mesh size, M is the number of voxels, ρ represents the participant, Êρ is the
expected value of squared error approximated for a participant and BICρ(p) is a function of
mesh size p.

BICρ(p)’s are estimated for integer values of mesh size p, where p ∈ [pmin, pmax] and the one
minimizing BICρ(p) is selected as the optimal mesh size by using the following equation:

p̂BIC
ρ = argmin

p
(BICρ(p), p ∈ [pmin, pmax]) , (3.24)

where p̂BIC
ρ represents the optimal mesh size estimated using BIC for participant ρ.

3.3.3.2 BIC for Each Class

BIC is used to analyze whether optimal mesh size differs for each class, where samples of a
class belong to the same participant using the following equation:

BICcl,ρ(p) = ln (Êcl,ρ) +
p ln(M)

M
, (3.25)

where p is the mesh size, M is the number of voxels and ρ represents the participant. Notice
that, the optimal mesh size estimated with BIC for each class (p̂BIC

cl,ρ ) depends on both the
class cl and the participant ρ. In other words, samples having the same class but belonging to
different participants are not mixed to select the optimal mesh size for a class.

For various values of p in the interval [pmin, pmax] , BICcl,ρ(p) is estimated for a class cl and
the mesh size minimizing the BICcl,ρ(p) is selected as the optimal mesh size for class cl.
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p̂BIC
cl,ρ = argmin

p
(BICcl,ρ(p), p ∈ [pmin, pmax]) . (3.26)

3.3.3.3 BIC for Each Sample

BIC is also used to analyze whether optimal mesh size differs for each sample even belonging
to the same participant. This time, the expected value of squared term for a sample in Equation
3.5 is used in BIC to estimate the optimal mesh size for a sample at time instant ti belonging
to a participant ρ:

BICi,ρ(p) = ln (Êi,ρ) +
p ln(M)

M
. (3.27)

BICi,ρ(p) is calculated for a number of mesh sizes where p ∈ [pmin, pmax] and the one that
minimizes BICi,ρ(p) is selected as the optimal mesh size for the sample at ti using:

p̂BIC
i,ρ = argmin

p
(BICi,ρ(p), p ∈ [pmin, pmax]) , (3.28)

where p̂BIC
i,ρ is the optimal mesh size estimated using BIC for sample at ti belonging to partic-

ipant ρ.

3.3.3.4 BIC for Each Voxel

Expected value of squared error term for each voxel (see Equation 3.6) is used in the adopted
BIC (BIC j,ρ(p)) to select the optimal mesh size for each voxel at coordinates s̄ j belonging to
participant ρ as:

BIC j,ρ(p) = ln (Ê j,ρ) +
p ln(N)

N
, (3.29)

where N is the number of samples. After BIC j,ρ(p) is estimated for many different mesh
sizes, the optimal mesh size for voxel at coordinates s̄ j is selected as the one that minimizes
BIC j,ρ(p),

p̂BIC
j,ρ = argmin

p
(BIC j,ρ(p), p ∈ [pmin, pmax]) , (3.30)

where p̂BIC
j,ρ refers to the optimal mesh size for voxel at s̄ j, where the experiment is conducted

on participant ρ.
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This subsection shows that BIC is a function of mesh size p for a participant, class, sample
and voxel. BIC is estimated for various mesh sizes and minimized over the mesh sizes p in
the interval [pmin, pmax]. Since this interval is selected large enough, the optimal mesh size is
guaranteed to lie in this interval.

3.3.4 Rissanen’s Minimum Description Length (MDL)

In this study Minimum Description Length (MDL) criterion is used to find the local mesh
model of size p that best represents the relationship among voxels. It assumes that, the best
model, i.e. the local mesh model having the optimal mesh size, requires smallest descrip-
tion length. A local mesh model of size M (where M is the number of voxels), representing
the relationship between a voxel and all other voxels would include redundant information.
Moreover, it would cause high dimensionality problem since instead of representing a voxel
with its own intensity value, the voxel is now represented in terms of all other voxels. There-
fore, MDL is used to find how the information is represented with the minimum number of
relationships among voxels without a high information loss.

In the following subsections, optimal mesh size is estimated for each participant, class, sample
and voxel using MDL.

3.3.4.1 MDL for Each Participant

MDL is adopted to select the optimal mesh size for each participant ρ (MDLρ(p)) using the
expected value of squared error term approximated for each participant (see Equation 3.3) in
the following way:

MDLρ(p) = Êρ

(
1 +

(
p + 1

M

)
ln (M)

)
, (3.31)

where p represents the mesh size, M represents the number of voxels, ρ is the participant,
Êρ is the expected value of squared error approximated for a participant and MDLρ(p) is a
function of mesh size p.

MDLρ(p) is estimated for participant ρ for various values of p in the interval [pmin, pmax] and
the one minimizing the MDLρ(p) is selected as the optimal mesh size estimated using MDL
for participant ρ.

p̂MDL
ρ = argmin

p
(MDLρ(p), p ∈ [pmin, pmax]) . (3.32)
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3.3.4.2 MDL for Each Class

MDL is adopted to analyze how the optimal mesh size differs for each class, where samples of
a class belong to the same participant. MDLcl,ρ(p) is estimated using the following equation:

MDLcl,ρ(p) = Êcl,ρ

(
1 +

(
p + 1

M

)
ln (M)

)
, (3.33)

where p is the mesh size, M is the number of voxels and ρ represents the participant. Note
that, the optimal mesh size estimated using MDL for each class ( p̂MDL

cl,ρ ) depends on both the
class cl and the participant ρ. Therefore, only the samples of same class belonging to the same
participant are considered during the estimation of optimal mesh size for a class.

For various values of p in the interval [pmin, pmax] , MDLcl,ρ(p) is estimated for a class cl and
the mesh size minimizing the MDLcl,ρ(p) is selected as the optimal mesh size for class cl.

p̂MDL
cl,ρ = argmin

p
(MDLcl,ρ(p), p ∈ [pmin, pmax]) . (3.34)

3.3.4.3 MDL for Each Sample

MDL is also adopted to estimate the optimal mesh size for a sample at time instant ti belonging
to a participant ρ as:

MDLi,ρ(p) = Êi,ρ

(
1 +

(
p + 1

M

)
ln (M)

)
, (3.35)

where p is the mesh size, M is the number of voxels and ρ represents the participant and
Êi,ρ is the expected value of squared term for a sample in Equation 3.5, After calculating the
MDLi,ρ(p) for many different mesh sizes, optimal mesh size for the sample at ti is estimated
as the one minimizing MDLi,ρ(p), using:

p̂MDL
i,ρ = argmin

p
(MDLi,ρ(p), p ∈ [pmin, pmax]) , (3.36)

where p̂MDL
i,ρ is the optimal mesh size estimated using MDL for sample at ti of participant ρ.

3.3.4.4 MDL for Each Voxel

Expected value of squared error for each voxel (see Equation 3.6) is used in the adopted
MDL (MDL j,ρ(p)) to select the optimal mesh size for each voxel at coordinates s̄ j belonging
to participant ρ using the following equation:
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MDL j,ρ(p) = Ê j,ρ

(
1 +

(
p + 1

N

)
ln (N)

)
, (3.37)

where N is the number of samples. After MDL j,ρ(p) is estimated for mesh sizes where p ∈
[pmin, pmax], the optimal mesh size for voxel at coordinates s̄ j is selected as the one that
minimizes MDL j,ρ(p),

p̂MDL
j,ρ = argmin

p
(MDL j,ρ(p), p ∈ [pmin, pmax]) , (3.38)

where p̂MDL
j,ρ refers to the optimal mesh size for voxel at s̄ j, and the data belongs to the partic-

ipant ρ.

As it can be seen from the above derivations of MDL for a participant, class, sample and
voxel, MDL is always a function of mesh size p. In order to select the optimal mesh size,
MDL is estimated for various mesh sizes in the interval [pmin, pmax] and the p minimizing
MDL is chosen to be the optimal mesh size. Moreover, this interval should be selected in a
way that, the optimal mesh size minimizing the information criterion equation lies in it.

Algorithm 2, Algorithm 3 and Algorithm 4 represent, how the optimal mesh sizes are
estimated for a participant, sample and voxel, respectively.

3.4 Classification

Now that after Section 3.3, how to select the optimal mesh size for each participant, class,
sample and voxel is known. Using this information, corresponding hypothetical local re-
lational brain networks are constructed with all meshes formed around all voxels. In this
section, how the connections in these local relational brain networks, i.e. the arc weights of
the local meshes, form a feature vector and how they are used in classification will be ex-
plained in detail. Notice that, optimal mesh size for each class is estimated only to see how
the model order varies from class to class and will not be used in the classification of sam-
ples. Therefore, in the following subsections, classification steps using optimal mesh size for
a participant, sample and voxel will be explained.

3.4.1 Classification using optimal mesh size for a participant

Selecting optimal mesh size for a participant ρ, means that a local mesh of size p̂IC
ρ (where

IC is either FPE, AIC, BIC or MDL ) is formed around all the voxels belonging to all time
samples of participant ρ. Remember that, voxel intensity values v(ti, s̄ j), i = 1, 2, ..N and
j = 1, 2, ..M for a participant is represented as an NxM matrix where N is the number of
samples and M is the number of voxels coordinates. During the construction of feature matrix,
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Algorithm 2 Estimate optimal mesh size for a participant ρ using an information criterion
(IC)
Require: Error matrix for a participant Errρ

Approximate Êρ using Equation 3.3 with all items of Errρ
for all p ∈ [pmin, pmax] do

if IC is FPE then
Compute FPEρ(p)

else if IC is AIC then
Compute AICρ(p)

else if IC is BIC then
Compute BICρ(p)

else if IC is MDL then
Compute MDLρ(p)

end if
end for
if IC is FPE then

Estimate p̂FPE
ρ using Equation 3.8

else if IC is AIC then
Estimate p̂AIC

ρ using Equation 3.16
else if IC is BIC then

Estimate p̂BIC
ρ using Equation 3.24

else if IC is MDL then
Estimate p̂MDL

ρ using Equation 3.32
end if

Ensure: p̂IC
ρ where IC is either FPE, AIC, BIC or MDL
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Algorithm 3 Estimate optimal mesh size for a sample at ti belonging to participant ρ using
an information criterion (IC)
Require: Error matrix for a participant Errρ

Approximate Êi,ρ using Equation 3.5 with ith row of Errρ
for all p ∈ [pmin, pmax] do

if IC is FPE then
Compute FPEi,ρ(p)

else if IC is AIC then
Compute AICi,ρ(p)

else if IC is BIC then
Compute BICi,ρ(p)

else if IC is MDL then
Compute MDLi,ρ(p)

end if
end for
if IC is FPE then

Estimate p̂FPE
i,ρ using Equation 3.12

else if IC is AIC then
Estimate p̂AIC

i,ρ using Equation 3.20
else if IC is BIC then

Estimate p̂BIC
i,ρ using Equation 3.28

else if IC is MDL then
Estimate p̂MDL

i,ρ using Equation 3.36
end if

Ensure: p̂IC
i,ρ where IC is either FPE, AIC, BIC or MDL
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Algorithm 4 Estimate optimal mesh size for a voxel at coordinates s̄ j belonging to participant
ρ using an information criterion (IC)
Require: Error matrix for a participant Errρ

Approximate Ê j,ρ using Equation 3.6 with jth column of Errρ
for all p ∈ [pmin, pmax] do

if IC is FPE then
Compute FPE j,ρ(p)

else if IC is AIC then
Compute AIC j,ρ(p)

else if IC is BIC then
Compute BIC j,ρ(p)

else if IC is MDL then
Compute MDL j,ρ(p)

end if
end for
if IC is FPE then

Estimate p̂FPE
j,ρ using Equation 3.14

else if IC is AIC then
Estimate p̂AIC

j,ρ using Equation 3.22
else if IC is BIC then

Estimate p̂BIC
j,ρ using Equation 3.30

else if IC is MDL then
Estimate p̂MDL

j,ρ using Equation 3.38
end if

Ensure: p̂IC
j,ρ where IC is either FPE, AIC, BIC or MDL
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instead of using voxel intensity values v(ti, s̄ j), the arc weights of the local mesh model ai, j,k

(where k = 1, 2, ..p and p is the mesh size) are used.

If optimal mesh size is estimated for a participant ρ, all the voxels belonging to a partic-
ipant will form a local mesh of same size. Hence, a single voxel v(ti, s̄ j) is now repre-

sented in terms of its relationships with its neighbors {v(ti, s̄k)}
p̂IC
ρ

k=1 using a mesh arc vector
āi, j = [ai, j,1, ai, j,2, ...ai, j, p̂IC

ρ
] of size 1xp̂IC

ρ (where p̂IC
ρ ∈ { p̂

FPE
ρ , p̂AIC

ρ , p̂BIC
ρ , p̂MDL

ρ }). (see Fig-
ure 3.6)

Figure 3.6: Representation of a voxel v(ti, s̄ j) in terms of arc weights ai, j,k.

By concatenating mesh arc vectors for a sample at ti, Ai = [āi,1, āi,2, ...āi,M] having size
1xp̂IC

ρ .M is formed. Finally, all the mesh arc vectors are concatenated to form a feature
matrix F = [AT

1 , A
T
2 , ...A

T
M]T of size Nxp̂IC

ρ .M for a participant (see Figure 3.7)

Figure 3.7: Feature matrix F of a participant.

After the feature matrix F is formed, the data can be separated as training and test data by
selecting Ntr of them for training the system and Nte of them to test the system, (Ntr is
the number of training samples and Nte is the number of test samples). Therefore, k-NN
classifier [38] is trained with training data of size Ntr xp̂IC

ρ .M and tested with test data of size
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Ntexp̂IC
ρ .M. As a result, a vector of class labels (ĉi) belonging to test data at ti is obtained after

this process (Figure 3.8).

Figure 3.8: Overview of classification process where feature vectors are constructed using
the optimal mesh size for each participant. Each mesh arc vector of a test sample at ti
([ai,1,1, .., ai,M, p̂IC

i,ρ
]) is fed to the same classifier. As a result, the class label (ci) of all test

samples are estimated using the same classifier.

The steps to extract local relational features (LRF) of local mesh model are provided in Algo-
rithm 5.

Algorithm 5 Extraction of Local Relational Features (LRF); lr f

Require: Dataset: Dρ = {vρ(ti, s̄ j)}
Order of LRF: p
for i = 1→ N do

for j = 1→ M do
Compute p − neighborhood ηp[vρ(ti, s̄ j)] of vρ(ti, s̄ j)
Compute āi, j optimizing 3.1

end for
Construct Ai using āi, j

end for
Construct F using Ai

Ensure: Feature Matrix F

The steps of classification using the optimal mesh size for each participant are represented in
Algoritm 6

3.4.2 Classification using optimal mesh size for a sample

Selecting optimal mesh size for a sample at ti belonging to participant ρ, means that a local
mesh of size p̂IC

i,ρ (where IC is either FPE, AIC, BIC or MDL ) is formed around all the voxels
belonging to the time sample ti of participant ρ. In that case, p̂IC

i,ρ may differ from sample to
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Algorithm 6 Classification using optimal mesh size for a participant ρ using an information
criterion (IC)

Require: Training Dataset: Dtr, Test Dataset Dte

training class labels: Ctr

Compute optimal mesh size for a participant p̂IC
ρ

Ftr ← lr f (Dtr, p̂IC
ρ )

Fte ← lr f (Dte, p̂IC
ρ )

- Perform classification on Ftr and Fte using k-NN, with the algorithm parameters Ω

Ĉte = {ĉi}
Nte

i=1 ← classi f y(Ftr,Ctr, Fte,Ω)
Ensure: Ĉte = {ĉi}

Nte

i=1

sample even for the same participant ρ. Although a local mesh of same size is formed around
voxels belonging to same sample at ti, voxels belonging to different samples are represented
with a different number of neighbors using arc weights ai, j,k of size 1xp̂IC

i,ρ . Since the size
of each mesh arc vector for a sample is 1xp̂IC

i,ρ .M and p̂IC
i,ρ varies for each sample, it is not

possible to construct a feature matrix F as suggested in Section 3.4.1. Therefore, a different
approach should be followed to classify each sample.

In previous subsection, after the optimal mesh size for a participant is estimated, each sample
was guaranteed to have the same size. Therefore, a subset of samples could be used to train
the classifier and then the classifier could be tested with another subset of samples. However,
these time samples have different sizes so, the classification process cannot be performed
using a single classifier. Instead, various classifiers should be trained for each sample at ti
belonging to test data.

When a test sample comes, first the optimal mesh size p̂IC
i,ρ is estimated for that sample as in

Section 3.3 using either one of the FPE, AIC, BIC or MDL. Then, training data is constructed
so that, each mesh arc vector corresponding to a sample in the training data has size 1xp̂IC

i,ρ .M.
Therefore, a classifier is trained with training samples having size 1xp̂IC

i,ρ . Finally, the class
label(ĉi) of the mesh arc vector belonging to the test sample is estimated using the classifier.
This procedure is performed for each test sample separately, meaning that as long as p̂IC

i,ρ
differs for each test sample, a different classifier is trained for it (see Figure 3.9). All the class
labels ĉi corresponding to mesh arc vectors belonging to ti are combined to form resulting
label vector [ĉ1, ĉ2, .. ˆcNte]T .

The steps of classification using the optimal mesh size for each sample are provided in Algo-
ritm 7

3.4.3 Classification using optimal mesh size for a voxel

Selecting optimal mesh size for a voxel at coordinates s̄ j belonging to participant ρ, means
that a local mesh of size p̂IC

j,ρ (where IC is either FPE, AIC, BIC or MDL ) is formed around
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Figure 3.9: Overview of classification process where feature vectors are constructed us-
ing the optimal mesh size for each sample. Each mesh arc vector of a test sample at ti
([ai,1,1, .., ai,M, p̂IC

i,ρ]) is fed to different classifier (Classi f ieri). As a result, the class label
(ci) of test sample is estimated using each Classi f ieri.

Algorithm 7 Classification using optimal mesh size for a sample using an information crite-
rion (IC)

Require: Training Dataset: Dtr, Test Dataset Dte

training class labels: Ctr

for i = 1→ N do
Compute optimal mesh size for a participant p̂IC

i,ρ
Ftr ← lr f (Dtr, p̂IC

i,ρ)
Fte ← lr f (Ai, p̂IC

i,ρ)
- Perform classification on Ftr and Fte using k-NN, with the algorithm parameters Ω

ĉi ← classi f y(Ftr,Ctr, Fte,Ω)
end for
Combine ĉi of all test samples to form Ĉte = {ĉi}

Nte

i=1
Ensure: Ĉte = {ĉi}

Nte

i=1
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each voxel. Since p̂IC
j,ρ differs for each voxel even belonging to the same sample, around each

voxel a local mesh of different size is formed. Therefore, voxels even belonging to same
sample of the same participant ρ are represented with a different number of neighbors using
arc weights ai, j,k of size 1xp̂IC

j,ρ.

Since the size of each mesh arc vector for a voxel is 1xp̂IC
j,ρ and 1xp̂IC

j,ρ differs for each voxel,
unlike in previous two subsections the size of constructed mesh arc vector for a sample is not
1xp̂IC

j,ρ.M. Rather, each mesh arc vector for a sample has size 1x
∑
∀ j p̂IC

j,ρ. Since each sample
has the same size, they can be combined to form a feature matrix F of size Nx

∑
∀ j p̂IC

j,ρ.

For the classification, Ntr of samples are selected to form training data whereas remaining
Nte of them are used to form test data (Ntr represents the number of training samples and
Nte represents the number of test samples). In this section, a single k-NN classifier is trained
with training data of size Ntr x

∑
∀ j p̂IC

j,ρ and in order to test the classifier, test data of size
Ntex

∑
∀ j p̂IC

j,ρ are used. As a result, a vector of class labels (ĉi) belonging to test data at ti is
obtained after this process.

Figure 3.10: Overview of classification process where feature vectors are constructed us-
ing the optimal mesh size for each voxel. Each mesh arc vector of a test sample at ti
([ai,1,1, .., ai,M, p̂IC

i,ρ]) is fed to the same classifier. As a result, the class label (ĉi) of all test
samples are estimated using the same classifier.

3.5 Calculating Accuracy

In the previous three subsections, a resulting vector of class labels [ĉ1, ĉ2, .. ˆcNte]T of size
Ntex1 is obtained. By comparing this vector with the ground truth vector of class labels
corresponding to the test samples at ti, ([c1, c2, ..cNte]T of size Ntex1), accuracy of the classifier
(or accuracy of the classifiers for classification using optimal mesh size for a sample), acc is
calculated using:

acc =

∑Nte

i=1 δ(ci, ĉi)
Nte , (3.39)
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where ci is the class label of sample at ti, ĉi is the estimated class label of sample at ti and Nte

is the number of test samples and δ(ci, ĉi) = 1 if ci = ĉi and δ(ci, ĉi) = 0 otherwise.

In the experiments, arc weights obtained using optimal mesh size for a participant, sample or
voxel are used for classification. For each of the experiments, the accuracy is calculated using
3.39.

The steps to extract local relational features (LRF) for variable size of local meshes are pro-
vided in Algorithm 8.

Algorithm 8 Extraction of Local Relational Features (LRF) for variable size of local meshes;
lr f .variable

Require: Dataset: Dρ = {vρ(ti, s̄ j)}
for i = 1→ N do

for j = 1→ M do
Compute optimal mesh size for a voxel p̂IC

j,ρ
p← p̂IC

j,ρ
Compute p − neighborhood ηp[vρ(ti, s̄ j)] of vρ(ti, s̄ j)
Compute āi, j optimizing 3.1

end for
Construct Ai using āi, j

end for
Construct F using Ai

Ensure: Feature Matrix F

The steps of classification using the optimal mesh size for each voxel are represented in Al-
goritm 9.

Algorithm 9 Classification using optimal mesh size for a voxel ρ using an information crite-
rion (IC)

Require: Training Dataset: Dtr, Test Dataset Dte

training class labels: Ctr

Ftr ← lr f .variable(Dtr)
Fte ← lr f .variable(Dte)
- Perform classification on Ftr and Fte using k-NN, with the algorithm parameters Ω

Ĉte = {ĉi}
Nte

i=1 ← classi f y(Ftr,Ctr, Fte,Ω)
Ensure: Ĉte = {ĉi}

Nte

i=1

3.6 Chapter Summary

In this chapter, a new type of hypothetical connectivity, called "local relational connectivity"
is proposed and how local relational connectivity network is constructed using an informa-
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tion theoretic approach is explained. In this approach, first the expected value of squared
error term obtained from linear regression equation should be approximated for a participant,
class, sample and voxel. Therefore, Section 3.2 explains how the error term, which will be
used to select optimal mesh size, is approximated for a participant, class, sample and voxel.
Then, estimated error terms are used to obtain four information theoretic criteria namely FPE,
AIC, BIC and MDL for all mesh sizes p in the interval [pmin, pmax]. The mesh sizes p min-
imizing the information theoretic criteria are selected as optimal mesh size estimated using
corresponding criterion. Around each voxel, a local mesh having optimal mesh size is formed.
Then, the optimal mesh size is used to form the feature vectors from training and test samples.
Since optimal mesh size varies for a participant, sample and voxel, the size of feature vectors
may, also vary. For a participant a local mesh having same size is formed around each voxel
for all time instants. Similarly for a sample, a local mesh of same size is formed around all
voxels, but the size of feature vector varies for each sample. On the other hand, if the optimal
mesh size is estimated for a voxel, a local mesh of varying sizes are formed around each voxel
and for all time instants feature vector of same size is formed. Finally, the extracted LRF fea-
tures are used in the classification of cognitive states. Due to the variations in the dimensions
of the resulting feature vector, different approaches are used in classification for participant,
sample and voxel. Yet, all aim to classify the cognitive states.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Experimental Setup to Collect the fMRI Data

In this study, neural activation during two working memory tasks, namely item recognition
(IR) and judgment of recency (JOR) are recorded via fMRI [48]. For both IR and JOR tasks,
each trial began with the presentation of a centered fixation point for 500 ms. Then, a study list
including five consonants were presented one at a time for 500 ms each. After the presentation
of the study list, a task cue was presented to indicate the upcoming memory judgment (IR
or JOR) for 750 ms. Following the presentation of task cues, two probe consonants were
presented for both tasks for 3000 ms. In IR trials, one consonant is from the study list where
the other one was new. Participants were requested to indicate the one belonging to the study
list in this task with a button press. In JOR trials on the other hand, both probes were from the
study list, and participants were asked to select the probe that was more recent in the study
list 4.1.

Preprocessing of neuroimaging data steps included slice acquisition timing across slices,
realignment of images to the first volume for head movement correction, normalization of
anatomical and functional images to a standard template EPI and smoothing of images with a
6-mm full-width half-maximum isotropic Gaussian kernel.

In this study, dataset consists of 320 time instants, (160 of them belongs to IR and 160 of them
belongs to JOR). Among them, 240 samples (120 IR and 120 JOR samples) are used to train
the system whereas 80 of them (40 IR and 40 JOR samples) are used to test the accuracy of the
classifier. Note that, each sample includes measurements from 2030 voxels. Abovementioned
dataset is for a single participant and in this study dataset belonging to 8 participants (aged 18
- 28) are used.

4.2 Optimal mesh size analysis

During the experiments, mesh size p is selected in the interval [2, 100]. In all experiments, as
mesh size increases, the information criteria decreases up to a value in this interval and then
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Figure 4.1: A sample sequence for an item recognition (IR) trial (shown on panel A) and a
judgment of recency (JOR) trial (shown on panel B). After the presentation of fixation point,
a study list consisting of five consonants were presented to the participant. Then, different
visual masks that cued different tasks were presented. Finally, two test probes were shown in
both tasks and either JOR or IR judgment was performed [48].

starts to increase after this value. Hence, the minimum of information theoretic criteria is al-
ways in this interval for this study. Therefore, the interval [2, 100] is large enough so that the
optimal mesh size is guaranteed to lie into this interval. In this thesis, optimal mesh size is es-
timated for each participant, class, sample and voxel using four information theoretic criteria
namely, Final Prediction Error (FPE), Akaike Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC) and Rissanen’s Minimum Description Length (MDL). How optimal
mesh size varies for each method will be presented and discussed in the following subsections.

4.2.1 Optimal mesh size for a participant

For each participant ρ = [1, ..8], FPEρ(p), AICρ(p), BICρ(p) and MDLρ(p) are calculated in
the interval p = [2, 100] and the mesh size minimizing the corresponding criterion is selected
as the optimal mesh size (p̂IC

ρ ) for participant ρ (where IC is either FPE, AIC, BIC or MDL).

Table 4.1 represents estimated optimal mesh sizes for each participant using FPE (p̂FPE
ρ ),

AIC ( p̂AIC
ρ ), BIC ( p̂BIC

ρ ) and MDL ( p̂MDL
ρ ). As it can be seen, for some participants ρ ∈

[1, 5, 7, 8] optimal mesh sizes estimated using four different criteria are the same, whereas
for the remaining participants, estimated optimal mesh sizes differ based on the information
criteria used. Moreover, notice that for all participants p̂FPE

ρ = p̂AIC
ρ . Furthermore, Table 4.1

indicates that, the optimal mesh size greatly varies from participant to participant.
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Table4.1: Optimal mesh size for participants ρ = {1, ..8} estimated using FPE, AIC, BIC and
MDL.

( p̂FPE
ρ ) ( p̂AIC

ρ ) ( p̂BIC
ρ ) ( p̂MDL

ρ )

ρ = 1 17 17 17 17

ρ = 2 34 34 23 23

ρ = 3 39 39 23 29

ρ = 4 70 70 40 42

ρ = 5 23 23 23 23

ρ = 6 16 16 14 16

ρ = 7 25 25 25 25

ρ = 8 17 17 17 17

Suppose that, optimal mesh size estimated for a participant is small. Then, the local relational
connectivity network, created using single sample at time instant ti would be similar to the
one in Figure 4.2 which is drawn using BrainNet Viewer Toolbox [68].

4.2.2 Optimal mesh size for a class

For each class of samples cl, where cl = [IR, JOR], belonging to the participant ρ = {1, ..8},
FPEcl,ρ(p), AICcl,ρ(p), BICcl,ρ(p) and MDLcl,ρ(p) are calculated in the interval p = [2, 100]
and the mesh size minimizing the corresponding criterion is selected as the optimal mesh size
( p̂IC

cl,ρ) for class cl (where IC is either FPE, AIC, BIC or MDL).

Note that, only the samples having class cl are used to estimate the optimal mesh size for each
class belonging to a participant. As a result, for each participant ρ, single optimal mesh size
is obtained for each class cl.

Table4.2: Optimal mesh size for for classes IR and JOR where samples belong to participants
ρ = {1, ..8} estimated using FPE, AIC, BIC and MDL

.

FPE AIC BIC MDL
p̂FPE

IR,ρ p̂FPE
JOR,ρ p̂AIC

IR,ρ p̂AIC
JOR,ρ p̂BIC

IR,ρ p̂BIC
JOR,ρ p̂MDL

IR,ρ p̂MDL
JOR,ρ

ρ = 1 17 17 17 17 17 17 17 17

ρ = 2 34 34 34 34 23 23 23 23

ρ = 3 39 39 39 39 23 23 29 29

ρ = 4 70 70 70 70 40 40 42 42

ρ = 5 23 23 23 23 23 23 23 23

ρ = 6 16 17 16 17 14 16 14 16

ρ = 7 30 25 30 25 25 25 25 25

ρ = 8 17 17 17 17 17 17 17 17
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Figure 4.2: Local relational connectivity network constructed using a small optimal mesh size
for a participant.

Table 4.2 represents estimated optimal mesh sizes for each class cl using FPE (p̂FPE
cl,ρ ), AIC

( p̂AIC
cl,ρ ), BIC (p̂BIC

cl,ρ ) and MDL ( p̂MDL
cl,ρ ), where class is either IR or JOR. The main finding of

this experiment can be detected when Table 4.1 and Table 4.2 are analyzed together. As it
can be seen, if the samples belonging to same class are used to estimate the optimal mesh
size instead of all samples belonging to a participant, the resulting optimal mesh size does not
change for 6 participants. Only in two participants (ρ ∈ {6, 7}), optimal mesh size estimated
for two different classes differ. Therefore, it can be stated that the class of samples does not
play a major role in estimating the optimal mesh size.

Recall that, this experiment is conducted to observe the effect of class on the optimal mesh
size. These findings will not be used for classification of samples as classes of IR or JOR.

4.2.3 Optimal mesh size for a sample

For each sample at ti, where i = {1, ..80} belonging to participant ρ = {1, ..8}, FPEi,ρ(p),
AICi,ρ(p), BICi,ρ(p) and MDLi,ρ(p) are calculated in the interval p = [2, 100] and the mesh
size minimizing the corresponding criterion is selected as the optimal mesh size ( p̂IC

i,ρ) for the
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sample at ti belonging to participant ρ (where IC is either FPE, AIC, BIC or MDL).

Notice that, this time for a participant ρ, various optimal mesh sizes are obtained for different
samples so, this time mean (µIC

ρ ) of optimal mesh sizes for a participant can be estimated as
follows:

µIC
ρ �

1
Nte

Nte∑
i=1

p̂IC
i,ρ , (4.1)

where Nte represents the number of test samples and p̂IC
i,ρ is the optimal mesh size estimated for

sample at ti belonging to participant ρ. Similarly, the standard deviation σIC
ρ can be estimated

using,

σIC
ρ �

√√√
1

Nte

Nte∑
i=1

( p̂IC
i,ρ − µ

IC
ρ )2 . (4.2)

In the dataset, the number of test samples Nte is 80 for each participant. The resulting mean
and standard deviations of optimal mesh sizes estimated using FPE, AIC, BIC and MDL are
shown in Table 4.3. Moreover, this table also presents the intervals, which cover optimal
mesh sizes belonging to all samples for a participant ρ.

The first finding revealed by Table 4.3 is that, optimal mesh size estimation using FPE and
AIC give exactly the same intervals, mean values and standard deviations of optimal mesh
sizes. Since both criteria are proposed by Akaike and AIC is proposed to overcome the incon-
sistency of FPE, one would expect an improvement by using AIC than using FPE. However,
both criteria estimate the same optimal mesh sizes for each sample. Surprisingly, similar re-
sults, in which the same model orders are estimated using FPE and AIC are obtained in the
study [33].

Moreover, Table 4.3 also reveals that for some participants, optimal mesh sizes estimated for
all samples are the same so that corresponding standard deviation is 0. For example, optimal
mesh size estimated for all samples belonging to participant 7 using BIC (ρ = 7) is 25. Notice
that, in such situations optimal mesh size estimated for a participant (see Table 4.1) is the
same as the mean of optimal mesh sizes estimated for each sample belonging to the same
participant. For example, optimal mesh size estimated for participant 7 using BIC also equals
to 25 in Table 4.1.

For most of the participants, optimal mesh sizes estimated for each sample belonging to a par-
ticipant are not the same. How it varies can be understood from the corresponding mean and
standard deviation values of 4.3. Notice that, these findings reveal that, unlike the situation
for a class, optimal mesh size varies for each sample. Therefore, it can be concluded that the
sample plays an important role in estimating the optimal mesh size.
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(a) FPE (b) AIC

(c) BIC (d) MDL

Figure 4.3: A Sample of FPEρ(p), AICρ(p), BICρ(p) and MDLρ(p) distributions for a par-
ticipant ρ.
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Table4.3: Interval, mean and standard deviations of optimal mesh sizes over all samples for
participants ρ = [1, ..8] estimated using FPE (top left), AIC (top right), BIC (bottom left) and
MDL (bottom right)

.
FPE

Interval µFPE
ρ σFPE

ρ

ρ = 1 17 - 39 18.59 3.66

ρ = 2 23 - 35 33.41 1.53

ρ = 3 39 - 47 40.11 2.35

ρ = 4 69 - 70 69.88 0.31

ρ = 5 23 - 29 26.03 2.99

ρ = 6 16 - 17 16.43 0.49

ρ = 7 25 - 37 27.42 3.20

ρ = 8 16 - 30 20.05 5.33

AIC

Interval µAIC
ρ σAIC

ρ

ρ = 1 17 - 39 18.59 3.66

ρ = 2 23 - 35 33.41 1.53

ρ = 3 39 - 47 40.11 2.35

ρ = 4 69 - 70 69.88 0.31

ρ = 5 23 - 29 26.03 2.99

ρ = 6 16 - 17 16.43 0.49

ρ = 7 25 - 37 27.42 3.20

ρ = 8 16 - 30 20.05 5.33

BIC

Interval µBIC
ρ σBIC

ρ

ρ = 1 17 - 17 17 0

ρ = 2 16 - 23 22.76 1.00

ρ = 3 23 - 30 24.64 2.54

ρ = 4 40 - 42 40.83 0.98

ρ = 5 20 - 23 22.96 0.33

ρ = 6 12 - 17 14.69 1.37

ρ = 7 25 - 25 25 0

ρ = 8 12 - 17 16.93 0.55

MDL

Interval µMDL
ρ σMDL

ρ

ρ = 1 17 - 17 17 0

ρ = 2 16 - 23 22.80 0.95

ρ = 3 23 - 30 28.44 2.09

ρ = 4 40 - 42 41.49 0.86

ρ = 5 23 - 23 23 0

ρ = 6 12 - 17 15.16 1.24

ρ = 7 25 - 25 25 0

ρ = 8 12 - 17 16.93 0.55

The FPEρ(p), AICρ(p), BICρ(p) and MDLρ(p) distributions over all mesh sizes p vary based
on the information theoretic criterion used. As a result, for the same participant, the mini-
mum of these distributions are different so that the optimal mesh sizes estimated for the same
participant using four criteria become different.

Figure 4.3 reveals how these distributions and their minima differ based on the information
theoretic criteria. Notice that, since FPE and AIC estimates the same optimal sizes for a
sample, their distributions are similar and their optimal mesh sizes are equal (p̂FPE

ρ = p̂AIC
ρ =

39). On the other hand, the optimal mesh size estimated for the same sample using BIC equals
to 23 (p̂BIC

ρ = 23) and using MDL equals to 29 ( p̂MDL
ρ = 29). Notice that, all the distributions

are similar, in other words the information criteria decreases up to a minimum and then starts
to increase. Yet, the minima vary based on the information theoretic criteria.

Suppose that, an example optimal mesh size estimated for a sample is small and for another
sample it is large. Then, the local relational connectivity network, created using single sample
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(a) Small optimal mesh size

(b) Large optimal mesh size

Figure 4.4: Local Relational Connectivity Network constructed using small and large optimal
mesh sizes for 2 different samples
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at 2 different time instants would be similar to the one in Figure 4.2 Notice that, around every
voxel a local mesh of small size or large size is constructed for 2 different samples. As it
can be seen, the upper local relational connectivity network in 4.4 is rather sparse, whereas
local relational connectivity network on the bottom is dense. The figure 4.4 is drawn using
BrainNet Viewer Toolbox [68].

Moreover, the FPEi,ρ(p), AICi,ρ(p), BICi,ρ(p) and MDLi,ρ(p) distributions over all mesh sizes
p vary based on the information theoretic criterion used. As a result, for the same sample, the
minimum of these distributions are different so that the optimal mesh sizes estimated for the
same sample using four criteria become different.

Figure 4.5 reveals how these distributions and their minima differ based on the information
theoretic criteria. Notice that, since FPE and AIC estimates the same optimal sizes for a
sample, their distributions and optimal mesh sizes are equal ( p̂FPE

i,ρ = p̂AIC
i,ρ = 47). On the

other hand, the optimal mesh size estimated for the same sample using BIC equals to 23
( p̂BIC

i,ρ = 23) and using MDL equals to 29 (p̂MDL
i,ρ = 29). Notice that, all the distributions are

similar, in other words the information criteria decreases up to a minimum and then starts to
increase. Yet, the minima vary based on the information theoretic criteria.

4.2.4 Optimal mesh size for a voxel

For each voxel at coordinates s̄ j, where j = 1, ..2030 belonging to participant ρ = {1, ..8},
FPE j,ρ(p), AIC j,ρ(p), BIC j,ρ(p) and MDL j,ρ(p) are calculated in the interval p = [2, 100]
and the mesh size minimizing the corresponding criterion is selected as the optimal mesh size
( p̂IC

j,ρ) for the voxel at coordinates s̄ j belonging to participant ρ (where IC is either FPE, AIC,
BIC or MDL).

Notice that, in this case around each voxel in a sample, various sizes of meshes are created.
Therefore, the mean (µvox

IC
ρ ) of optimal mesh sizes for a participant ρ can be estimated as

follows:

µvox
IC
ρ �

1
M

M∑
j=1

p̂IC
j,ρ , (4.3)

where M represents the number of voxels and p̂IC
j,ρ is the optimal mesh size estimated for a

voxel at coordinates s̄ j belonging to participant ρ. After the mean value of optimal mesh sizes
(µvox

IC
ρ ) is calculated, their standard deviation can be estimated using,

σvox
IC
ρ �

√√√
1
M

M∑
j=1

( p̂IC
j,ρ − µvox

IC
ρ )2 . (4.4)

Note that, µvox
IC
ρ and σvox

IC
ρ represent the mean and standard deviation obtained over all op-
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(a) FPE (b) AIC

(c) BIC (d) MDL

Figure 4.5: A Sample of FPEi,ρ(p), AICi,ρ(p), BICi,ρ(p) and MDLi,ρ(p) distributions at ti
belonging to participant ρ.
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timal mesh sizes for voxels, whereas µIC
ρ and σIC

ρ in Section 4.2.3 are the mean and standard
deviation estimated over all optimal mesh sizes for samples.

Table4.4: Interval, mean and standard deviations of optimal mesh sizes over all voxels for
participants ρ = [1, ..8] estimated using FPE (top left), AIC (top right), BIC (bottom left) and
MDL (bottom right)

.
FPE

Interval µvox
FPE
ρ σvox

FPE
ρ

ρ = 1 2 - 88 11.43 12.58

ρ = 2 2 - 86 11.75 12.33

ρ = 3 2 - 90 12.85 12.81

ρ = 4 2 - 86 17.05 14.47

ρ = 5 2 - 85 11.72 12.70

ρ = 6 2 - 78 11.01 11.20

ρ = 7 2 - 84 13.58 13.11

ρ = 8 2 - 84 11.85 11.82

AIC

Interval µvox
AIC
ρ σvox

AIC
ρ

ρ = 1 2 - 91 11.58 13.03

ρ = 2 2 - 86 11.89 12.70

ρ = 3 2 - 90 12.98 13.10

ρ = 4 2 - 86 17.35 14.99

ρ = 5 2 - 90 11.80 12.98

ρ = 6 2 - 83 11.15 11.68

ρ = 7 2 - 84 13.70 13.36

ρ = 8 2 - 85 11.92 12.06

BIC

Interval µvox
BIC
ρ σvox

BIC
ρ

ρ = 1 2 - 37 7.30 5.68

ρ = 2 2 - 38 7.66 5.95

ρ = 3 2 - 37 8.26 6.50

ρ = 4 2 - 39 10.66 7.44

ρ = 5 2 - 40 7.61 6.11

ρ = 6 2 - 42 7.43 5.86

ρ = 7 2 - 45 8.62 6.62

ρ = 8 2 - 41 7.92 6.40

MDL

Interval µvox
MDL
ρ σvox

MDL
ρ

ρ = 1 2 - 88 8.76 9.34

ρ = 2 2 - 86 9.47 9.85

ρ = 3 2 - 90 10.14 9.97

ρ = 4 2 - 86 13.21 11.16

ρ = 5 2 - 83 9.27 9.97

ρ = 6 2 - 71 8.71 8.59

ρ = 7 2 - 84 10.55 10.03

ρ = 8 2 - 58 9.26 8.84

Table 4.4 shows that, for each participant, distribution of optimal mesh size for a voxel
estimated using FPE, AIC, BIC and MDL varies. While the interval is rather large for FPE,
AIC and MDL, optimal mesh sizes estimated for a voxel lie in rather smaller interval. Notice
that, each mean value is small compared to the ones in Table 4.3 indicating that around
majority of the voxels a local mesh of small size is formed. In order to understand how the
optimal mesh sizes for all voxels are distributed, and how they differ based on the information
criterion, histograms of optimal mesh sizes estimated for each voxel belonging to participant
ρ can be observed as in Figure 4.6.

The FPE j,ρ(p), AIC j,ρ(p), BIC j,ρ(p) and MDL j,ρ(p) distributions over all mesh sizes p vary
based on the information theoretic criterion used. As a result, for the same voxel, the mini-
mum of these distributions are different so that the optimal mesh sizes estimated for the same
voxel using four criteria become different.
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(a) FPE (b) AIC

(c) BIC (d) MDL

Figure 4.6: Histograms of optimal mesh sizes computed for each voxel of participant 8, using
FPE, AIC, BIC and MDL

Figure 4.6 represents histograms of optimal mesh sizes computed for all voxels belonging
to participant 8 using four different information theoretic criteria namely, FPE (top left), AIC
(top right), BIC (bottom left) and MDL (bottom right). It can be seen that, for all cases,
majority of the voxels form a local mesh with small number of its neighbors. On the other
hand, the maximum number of optimal mesh size estimated using BIC is lower compared
to other three criteria. Hence, if BIC is used, voxels tend to connect to small number of its
neighbours whereas if any of other three criteria is used, voxels tend to connect to a large
number of its neighbors.

Figure 4.7 reveals how these distributions and their minima differ based on the information
theoretic criteria. Notice that, since FPE and AIC estimates the same optimal sizes for a
sample, their optimal mesh sizes are equal (p̂FPE

j,ρ = p̂AIC
j,ρ = 36). However, there are slight

changes between their distributions On the other hand, the optimal mesh size estimated for the
same sample using BIC equals to 20 (p̂BIC

j,ρ = 20) and using MDL equals to 28 ( p̂MDL
j,ρ = 28).
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(a) FPE (b) AIC

(c) BIC (d) MDL

Figure 4.7: A Sample of FPE j,ρ(p), AIC j,ρ(p), BIC j,ρ(p) and MDL j,ρ(p) distributions for
voxel at coordinates at s̄ j belonging to participant ρ.
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Notice that, in all of the distributions, the information criteria decreases up to a minimum and
then starts to increase. Yet, the minima vary based on the information theoretic criteria.

Figure 4.8: Local relational connectivity network constructed using two different optimal
mesh sizes (one of them is small and the other one is large) for two example subsets of voxels.

Suppose that, in the same time instant ti, two different optimal mesh sizes (one of them is
small, the other one is large) are estimated for two different subsets of voxels. Then, the
local relational connectivity network, created using single sample for a time instant would be
similar to the one in Figure 4.8 which is drawn using BrainNet Viewer Toolbox [68].

Notice that, for a subset of voxels, optimal mesh size is small and for another subset, optimal
mesh size is large. As it can be seen, for the same time instant, optimal mesh size of different
sizes can be constructed when te optimal mesh size for each voxel is variable.

4.3 Classification Performances

Classification is computed in three ways, using optimal mesh size for a participant, sample and
voxel. In all three methods k-Nearest Neighbour (k-NN) classifiers are trained with training
data and the k parameter of k-NN classifiers is determined using cross-validation. After the
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training phase, model is tested using test data and corresponding accuracies are calculated
using Equation 3.39.

4.3.1 Classification Performances using optimal mesh size for a participant

After optimal mesh size for each participant is estimated using four information criteria, FPE
( p̂FPE

ρ ), AIC (p̂AIC
ρ ), BIC (p̂BIC

ρ ) and MDL (p̂MDL
ρ ), feature matrix of size 240xp̂IC

ρ .2030 is
constructed as training data and feature matrix of size 80xp̂IC

ρ .2030 is constructed as test data
(where IC is either FPE, AIC, BIC or MDL). Therefore, single k-NN classifier is trained with
training data for a participant ρ. Then, the classifier is tested with test data of size 80xp̂IC

ρ .2030
so that the corresponding accuracy is calculated using Equation 3.39.

Table 4.5 represents mesh sizes p, where p ∈ [2 − 100], corresponding MDL values for the
second participant (MDL2(p)) and the corresponding classification accuracies. As it can be
seen from the table, first, MDL2(p) decreases with the increase in p and then at some point
it starts to increase. Notice that, MDL2(p) has its minimum value (6267) among all other
values when p = 34. Hence, the proposed method estimates the optimal mesh size as 34
for that participant (ρ = 2). The third column of Table 4.5 presents classification accuracies
when MDL is used. The accuracy corresponding to p = 23 is 67.50%, which is the highest
performance among all performances calculated for p ∈ [2 − 100]. Therefore, the proposed
approach selects the mesh size leading to the best accuracy as optimal for this participant.

However, the situation is not the same for all participants. In other words, the proposed
method does not always estimate the optimal mesh size which leads to the best classification
performance. Although this study does not claim to select the optimal mesh size giving best
accuracy for each participant, it claims that using the proposed method performs better than
classical MVPA methods on the average. More detailed results can be found in Table 4.6.

Table 4.6 represents classification performances where feature matrix is constructed by se-
lecting optimal mesh size for each participant using FPE, AIC, BIC and MDL. Moreover, in
the last column, performances of classical MVPA method, in which voxel intensity values are
directly fed to the classifier, are presented.

As it can be seen from Table 4.6, on the average, selecting optimal mesh size for a participant
using either one of the information theoretic criteria performs (3% - 4%) better than the classi-
cal MVPA method. Among them, the average performance of using BIC (60.47%) is supeior
to that of other three criteria. If the results for each participant is analyzed one by one, all of
these criteria perform better than classical MVPA method on 5 participants (ρ ∈ {1, 2, 4, 5, 6})
and has equal performance with MVPA for 1 participant (ρ = 8). Therefore, the results indi-
cate that estimating optimal mesh size for a participant to form the feature matrix using either
FPE, AIC, BIC or MDL is a promising method to classify cognitive states since it performs
better than the classical MVPA method.

Notice that, performances of using FPE and AIC are totally equal, resulting from the fact that
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Table4.5: Mesh sizes p in the interval [2−100], corresponding MDL for participant 2 (ρ = 2),
and corresponding accuracies (accMDL)

p MDL2(p) accFPE

2 9185 63.75
3 8524 63.75
4 7595 63.75
5 7519 62.50
6 7410 57.50
7 6979 65.00
8 6809 65.00
9 6608 65.00
10 6530 61.25
11 6524 62.50
12 6436 58.75
13 6390 62.50
14 6365 63.75
15 6384 61.25
16 6324 58.75
17 6365 58.75
18 6332 60.00
19 6327 57.50
20 6293 60.00
21 6311 57.50
22 6306 57.50
23 6267 67.50
24 6296 61.25
25 6315 57.50
26 6314 57.50
27 6340 57.50
28 6345 57.50
29 6350 63.75
30 6363 60.00
31 6371 58.75
32 6378 61.25
33 6398 66.25
34 6403 63.75

p MDL2(p) accMDL

35 6427 61.25
36 6461 58.75
37 6482 66.25
38 6502 58.75
39 6520 63.75
40 6531 61.25
41 6567 63.75
42 6591 60.00
43 6610 61.25
44 6630 63.75
45 6648 63.75
46 6660 56.25
47 6664 60.00
48 6707 61.25
49 6706 61.25
50 6721 62.50
51 6764 62.50
52 6768 62.50
53 6797 67.50
54 6841 62.50
55 6872 60.00
56 6894 62.50
57 6926 58.75
58 6954 62.50
59 6989 60.00
60 7018 60.00
61 7044 61.25
62 7068 60.00
63 7084 58.75
64 7123 63.75
65 7150 62.50
66 7162 60.00
67 7194 61.25

p MDL2(p) accMDL

68 7212 60.00
69 7238 63.75
70 7255 62.50
71 7270 62.50
72 7291 65.00
73 7321 62.50
74 7343 57.50
75 7367 62.50
76 7390 63.75
77 7413 58.75
78 7440 58.75
79 7456 58.75
80 7483 61.25
81 7516 62.50
82 7547 60.00
83 7566 60.00
84 7575 60.00
85 7595 61.25
86 7629 58.75
87 7639 61.25
88 7662 58.75
89 7691 61.25
90 7722 58.75
91 7750 63.75
92 7772 60.00
93 7794 63.75
94 7827 61.25
95 7868 60.00
96 7904 61.25
97 7932 65.00
98 7954 60.00
99 7968 62.50

100 7997 61.25
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Table4.6: Classification performances among 8 participants where optimal mesh size is esti-
mated for each participant

accFPE accAIC accBIC accMDL MVPA

ρ = 1 65.82 65.82 65.82 65.82 58.23

ρ = 2 63.75 63.75 67.50 67.50 58.23

ρ = 3 58.23 58.23 58.23 59.49 62.03

ρ = 4 54.43 54.43 56.96 54.43 53.16

ρ = 5 59.49 59.49 59.49 59.49 54.43

ρ = 6 59.49 59.49 63.29 59.49 53.16

ρ = 7 55.00 55.00 55.00 55.00 57.50

ρ = 8 57.50 57.50 57.50 57.50 57.50

avg 59.21 59.21 60.47 59.84 56.78

optimal mesh sizes estimated using these two criteria are equal.

A thorough analysis reveals that, for the participants, whose estimated optimal mesh size per-
forms worse than or equal to classical MVPA method in the classification (ρ ∈ {3, 7, 8}), using
arc weights of local mesh model as features perform better than individual voxel intensities
for some mesh size. However, information theoretic criteria was not successful to select the
mesh size, which provides higher accuracy than MVPA, as optimal. As it can be seen from
Table 4.7, for some mesh size pbet, the accuracy of using optimal mesh size for a participant
accbet, performs better than MVPA. Yet, information theoretic approach does not estimate
optimal mesh size as pbet so, the resulting accuracy becomes lower than MVPA.

Table4.7: Classification performances using mesh sizes providing better accuracies than
MVPA and performances (with corresponding mesh sizes) using information theoretic ap-
proaches and classical MVPA method

p̂FPE
ρ ,

p̂AIC
ρ

accFPE ,
accAIC p̂BIC

ρ accBIC p̂MDL
ρ accMDL pbet accbet MVPA

ρ = 3 39 58.23 39 58.23 23 58.23 29 59.49 62.03

ρ = 7 25 55.00 25 55.00 25 55.00 29 61.25 57.50

ρ = 8 17 57.50 17 57.50 17 57.50 20 60.00 57.50

4.3.2 Classification Performances using optimal mesh size for a sample

After optimal mesh size for each sample is estimated using four information criteria, FPE
( p̂FPE

i,ρ ), AIC (p̂AIC
i,ρ ), BIC (p̂BIC

i,ρ ) and MDL (p̂MDL
i,ρ ), feature matrix of size 240xp̂IC

i,ρ .2030 is
constructed as training data for the classification of each sample. This time for each sam-
ple, different k-NN classifier is trained and only the feature vector belonging to test sample
is classified using the trained classifier. Therefore, feature vector of size 1xp̂IC

i,ρ .2030 is con-
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structed as test data (where IC is either FPE, AIC, BIC or MDL). As a result of each step, the
estimated class label of test sample is obtained and all of the estimated class labels, resulting
from different classifiers, are concatenated. Finally, accuracies of using FPE, AIC, BIC and
MDL in the estimation of optimal mesh size for a sample are separately are calculated using
Equation 3.39.

Table4.8: Classification performances among 8 participants where optimal mesh size is esti-
mated for each sample

accFPE accAIC accBIC accMDL MVPA

ρ = 1 65.82 65.82 65.82 65.82 58.23

ρ = 2 62.50 62.50 62.50 66.25 58.23

ρ = 3 67.09 67.09 55.69 60.75 62.03

ρ = 4 55.69 55.69 56.96 55.69 53.16

ρ = 5 55.69 55.69 59.49 59.49 54.43

ρ = 6 62.02 62.02 63.29 62.02 53.16

ρ = 7 50.00 50.00 55.00 55.00 57.50

ρ = 8 62.50 62.50 57.50 57.50 57.50

avg 60.16 60.16 60.16 60.32 56.78

Table 4.8 represents classification performances where feature matrix is constructed by se-
lecting optimal mesh size for each sample using FPE, AIC, BIC and MDL. Moreover, in the
last column, performances of classical MVPA method, in which voxel intensity values are
directly fed to the classifier, are presented.

As it can be seen from Table 4.8, on average, selecting optimal mesh size for each sample
using either one of the information theoretic criteria performs (3% - 4%) better than the clas-
sical MVPA method. On average, performances of using FPE, AIC and BIC (60.16%) are
equal. On the other hand, there is a slight increase in the performance on average if MDL is
used (60.32%). If the results for each participant is analyzed one by one, FPE and AIC per-
form better than classical MVPA method on 7 participants (except for ρ = 7). Furthermore,
using BIC or MDL gives better accuracies than classical MVPA method for 5 participants
(ρ ∈ {1, 2, 4, 5, 6}) and has equal performance with MVPA for 1 participant (ρ = 8). There-
fore, the results indicate that estimating optimal mesh size for a sample using either FPE, AIC,
BIC or MDL and combining the results coming from separate classifiers for each sample is a
promising method to classify cognitive states since it performs better than the classical MVPA
method.

Notice that, performances of using FPE and AIC are also the same, resulting from the fact that
even for each sample, optimal mesh sizes estimated using these two criteria are equal. The
equality of intervals, mean and standard deviations of using both methods can be confirmed
from Table 4.3.
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4.3.3 Classification Performances using optimal mesh size for a voxel

After optimal mesh size for each voxel is estimated using four information criteria, FPE
( p̂FPE

j,ρ ), AIC (p̂AIC
j,ρ ), BIC (p̂BIC

j,ρ ) and MDL (p̂MDL
j,ρ ), feature matrix of size 240x

∑
∀ j p̂IC

j,ρ is
constructed as training data for the classification of each sample. Moreover, using test sam-
ples, feature matrix of size 80x

∑
∀ j p̂IC

j,ρ (where IC is either FPE, AIC, BIC or MDL) is formed
so that this matrix is used to test the classifier. This procedure results in a label vector, which
is used to calculate the accuracy as in Equation 3.39.

Table4.9: Classification performances among 8 participants where optimal mesh size is esti-
mated for each voxel

accFPE accAIC accBIC accMDL MVPA

ρ = 1 59.49 59.49 55.69 56.96 58.23

ρ = 2 58.75 57.50 62.50 63.75 58.23

ρ = 3 63.29 62.03 63.29 64.55 62.03

ρ = 4 56.96 56.96 56.96 55.69 53.16

ρ = 5 60.75 62.03 56.96 56.96 54.43

ρ = 6 60.75 62.03 51.89 53.16 53.16

ρ = 7 52.50 52.50 55.00 55.00 57.50

ρ = 8 53.75 55.00 53.75 55.00 57.50

avg 58.28 58.44 56.38 57.32 56.78

Table 4.9 represents classification performances where feature matrix is constructed by se-
lecting optimal mesh size for each voxel using FPE, AIC, BIC and MDL. Moreover, in the
last column, performances of classical MVPA method, in which voxel intensity values are
directly fed to the classifier, are presented.

As it can be seen from Table 4.9, on average, selecting optimal mesh size for each sample
using FPE, AIC or MDL performs (1% - 2%) better than the classical MVPA method whereas
the average performance of using BIC is slightly worse than classical MVPA. Among these
criteria, using AIC performs better than others (58.44%).

When the results for each participant is analyzed one by one, FPE perform better than clas-
sical MVPA method on 6 participants (ρ = {1, 2, 3, 4, 5, 6}) and has worse performance than
MVPA for 2 participant (ρ ∈ {7, 8}). Furthermore, using AIC or MDL gives better accura-
cies than classical MVPA method for 4 participants and have equal performance with MVPA
for 1 participant. Finally, using BIC performs better than MVPA on 4 participants, whereas
performs worse than MVPA also on 4 participants. Therefore, the results indicate that esti-
mating optimal mesh size for a voxel using either FPE, AIC or MDL is a promising method
to classify cognitive states since it performs better than the classical MVPA method. How-
ever, classification using optimal mesh size for each voxel performs slightly worse than using
optimal mesh size for each participant or sample.
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Note that, in this case, performances of using FPE and AIC are not the same, optimal mesh
sizes estimated for each sample using these two criteria are equal for all voxel. The change in
intervals, mean and standard deviations of using both methods can be seen in Table 4.4.

4.4 Discussion

This chapter covers the results of various experiments performed on the proposed model.
First type of experiments are participant based, in which optimal mesh size is estimated for
each participant using four information theoretic criteria namely, FPE, AIC, BIC and MDL.
The results indicate that, optimal mesh size differs even for the same participant based on
the information criterion used. Consequently, information criterion affects the classification
performance since feature matrix is constructed by employing the optimal mesh size for each
participant estimated using different criteria. Estimating optimal mesh size for a participant
using either one of FPE, AIC, BIC and MDL and employing it in classification performs better
than the classical MVPA method. Moreover, FPE and AIC share exactly the same optimal
mesh sizes and consequently give the same classification performances.

Second type of experiments are sample based, in which optimal mesh size is estimated for
each sample belonging to a participant. Optimal mesh size is estimated using either one
of the FPE, AIC, BIC and MDL for each sample and it is observd that, optimal mesh size
differs for each sample belonging to the same participant. In other words, the sample plays
an important role in the optimal mesh size and classification performance. Since the optimal
mesh size differs for each sample, the size of feature vector corresponding to each sample
differs. Hence, a feature matrix cannot be formed. In these experiments, different classifiers
are trained (with training feature matrix of different sizes) for each sample and the optimal
mesh size estimated for the sample determines the size of feature vector (and the training
feature matrix). Results indicate that, using either one of the information theoretic criteria
performs better than the classical MVPA method and can be successfully used to classify
cognitive states. As in the participant case, optimal mesh sizes estimated for each sample are
exactly the same when FPE or AIC are used.

Third type of experiments are voxel based, in which optimal mesh size is estimated for each
voxel belonging to a participant. Using FPE, AIC, BIC or MDL, optimal mesh size is es-
timated for each voxel in a sample. Results indicate that, the optimal mesh size differs for
each voxel. In other words, the local mesh formed around each voxel is different. After the
training data is used to estimate optimal mesh size for each voxel, a training feature matrix is
formed to train the classifier. Since each feature vector corresponding to a test sample has the
same size, a test feature matrix is formed in order to test the accuracy of the classifier. Classi-
fication performances indicate that, using BIC performs worse than classical MVPA method
whereas other information criteria outperform MVPA method. Furthermore, this time opti-
mal mesh sizes estimated for each voxel are not equal for FPE and AIC. Hence, classification
performances of FPE and AIC, using the optimal mesh size for each voxel, differ for each
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participant.

Recall that, optimal mesh size is also estimated for each class using FPE, AIC, BIC or MDL.
However, optimal mesh sizes for each class are estimated only to see the effect of class on the
optimal mesh size and are not used for classification purposes. It is observed that, class of a
sample does not play an important role on estimating the optimal mesh size.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter provides a discussion on the outcomes of proposed methods to classify cognitive
states. Moreover, possible steps to be followed in the future work to reach the ultimate goal,
"mind reading" are also presented.

5.1 Conclusion

In this work, an information theoretic approach to classify cognitive states, which is measured
by fMRI, is presented. The proposed method employs the error term obtained from the linear
regression equation in the local mesh model to select the optimal mesh size. The optimal
mesh size represents the number of neighbors to which a voxel is connected. In other words
estimating the optimal mesh sizes around all voxels may lead to a connectivity network in
the brain. In this study, this connectivity called local relational connectivity is introduced and
how it varies based on the participant, class, sample and voxel is analyzed.

This study assumes a local relational connectivity among the active voxels. In other words,
whether a voxel is anatomically connected to its neighbors, where the number of neighbors
equal to the optimal mesh size, is not known. Moreover, this thesis does not provide ex-
perimental evidence about the existence of this hypothetical connectivity proposed in this
study. Rather the purpose of this thesis is to classify different cognitive states, specifically
Item Recognition (IR) and Judgment of Recency (JOR) tasks and proposed method to clas-
sify cognitive states requires the estimation of optimal mesh size around each voxel so that
the arc weights of the local mesh model are selected as features to be used for classification.
The classification performances indicate that resulting features represent cognitive state better
than the raw data itself.

In the proposed method, expected value of squared error term is approximated in different
ways for each participant, class, sample and voxel. Then, using the error term in four infor-
mation theoretic criteria namely Final Prediction Error (FPE), Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) and Rissanen’s Minimum Description Length
(MDL), the optimal mesh sizes are selected. Consequently, estimation of optimal mesh size
also differs for participant, class, sample and voxel. If the optimal mesh size is estimated for a

75



participant, the number of neighbors forming a mesh are equal for all voxels in the all samples
belonging to the participant. The estimation of optimal mesh size for a class is similar to that
of a participant but this time the class of each sample is important. Furthermore, if optimal
mesh size is estimated for a sample, again all voxels in a time instant form a local mesh of
same size yet in for different samples, this size varies. Finally, estimation of optimal mesh
size for a voxel leads to a connectivity, in which around each voxel, a local mesh of different
sizes are formed.

The results indicate that, distributions of optimal mesh sizes for each voxel varies based on
the information criteria. However, most of the time two criteria proposed by Akaike, FPE and
AIC, estimate the same optimal mesh size.

Resulting from the differences in optimal mesh sizes, the sizes of feature vectors correspond-
ing to each sample also differs for participant, sample and voxel. Remember that, optimal
mesh size estimated for a class is only used to analyze whether it varies based on the class
and is not used in classification. When optimal mesh size is estimated for a participant or a
voxel, feature vectors formed using the arc weights corresponding to each sample have the
same size for each time instant. Therefore, single classifier is trained and tested with feature
matrices corresponding to training and test datasets. On the other hand, when optimal mesh
size is estimated for each sample, the size of feature vector varies for all time instants. Hence,
each sample is tested with a different classifier.

The classification performances indicate that the proposed method is comparable and even
superior to classical MVPA methods most of the time. By classical MVPA methods it is
meant that voxel intensity values are directly fed to the classifier. Since the experiments are
conducted on 8 participants, the results are guaranteed not te be random. When feature vectors
are formed based on the optimal mesh size for each participant, using all information criteria
performs (3%−4%) better than the classical MVPA method on average and among them BIC
performs the best (60.47% on average). If optimal mesh size is estimated for each sample,
all criteria perform nearly the same and (4%) better than the MVPA methods. Finally, when
the optimal mesh size is estimated for each voxel and the corresponding feature vectors are
employed in the classification, only using BIC performs (0.5%) worse than the MVPA method
whereas other three criteria perform (1% − 2%) better than the classical MVPA method. This
time using AIC is the best among all information theoretic criteria.

Notice also that, for different participants, different type of feature vector construction perform
better than MVPA. For example for participant 3 (ρ = 3), when optimal mesh size is estimated
for a voxel or for a sample, the performance is better than the MVPA and worse if optimal
mesh size is estimated for a participant. On the other hand, a better performance than MVPA
is obtained for participant 8 (ρ = 8) when optimal mesh size is estimated for each sample
whereas if the optimal mesh size is estimated for a voxel, the performance is worse than the
MVPA.

Based upon the observations mentioned above, it can be concluded that none of the infor-
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mation criteria is superior to the others and none of them provides the best accuracy all the
time. Moreover, it cannot be concluded that estimating optimal mesh size for either one of
the participant, sample or voxel performs always better than the other two. Therefore, this
thesis indicates that there is no such best criteria, or best way to estimate optimal mesh size
in the classification of cognitive states. However, all the experiments reflect that using the
information theoretic approach to classify cognitive states proposed in this study is always
superior to classical MVPA methods.

Another finding of this study is that, the dataset is composed of samples belonging to two
different categories (IR and JOR). However, although better than the performance of classical
MVPA, all the performances obtained using the proposed approach in this thesis are rather
low for a 2-class classification task. The main reason why the performances are low lies in
the nature of experiments. In both IR and JOR tasks, the participants are shown five letters in
the encoding phase and they are only cued about the task by different masks. Furthermore, in
the retrieval phase in both classes two letters are presented to the participant. Therefore, the
nature of the experiment is not designed for a classification task rather to understand whether
specific parts of the brain are responsible for IR and JOR tasks. Hence, fMRI measurements
belonging to both classes carry similar behavior, which is the main reason why all classifica-
tion performances are low.

5.2 Future Work

In this thesis, a local mesh is formed around each voxel, called seed voxel, and the nearest
neighbors of that voxel are selected as the ones having the smallest Euclidean distance to
the seed voxel. Therefore, in the linear regression equation of local mesh model, the spa-
tially nearest neighbors are used. Firat et. al. [19] proved that selecting functionally nearest
neighbors to form a mesh and using the corresponding arc weights to classify cognitive states
performs better than using local mesh model where neighbors are selected spatially. In [19],
nearest neighbors of a seed voxel are selected as the ones whose correlations are higher with
the seed voxel among others. Hence, the first step to follow is to use this information the-
oretic approach to select optimal mesh size, where functional neighborhood is defined and
local mesh is formed functionally.

Moreover, in this work, the information theoretic approach is used to classify two different
cognitive tasks namely item recognition (IR) and judgment of recency (JOR). In the future,
the same approach may be applied to other types of experiments, which still intend to classify
cognitive states, so that the proposed method would be more generalized to perform better
than classical MVPA methods during the classification of all tasks.

In general use, information theoretic criteria are used to estimate the output value of a sig-
nal from its previous values. However, this approach is modified with a spatial manner to
select the number of spatially nearest neighbors instead of selecting number of time points.
The results indicate that the proposed approach works well on modeling the relationships
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among voxels and classifying cognitive states. In other areas (for example in bioinformatics),
where the relationships among units (for example relationships among genes) are important
and believed to carry discriminative information, the proposed method may be used for clas-
sification.
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