A GENETIC ALGORITHM BASED TECHNIQUE FOR QOS-AWARE WEB SERVICE
COMPOSITION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET ERDINC YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

A GENETIC ALGORITHM BASED TECHNIQUE FOR QOS-AWARE WEB SERVICE
COMPOSITION

submitted by AHMET ERDINC YILMAZ in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East Techni-
cal University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pinar Karagoz
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ozgiir Ulusoy
Computer Engineering Department, Bilkent Uni.

Assoc. Prof. Dr. Pmar Karag6z
Computer Engineering Department, METU

Prof. Dr. ismail Hakki Toroslu
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oguztiiziin
Computer Engineering Department, METU

Assoc. Prof. Dr. Hakan Ferhatosmanoglu
Computer Engineering Department, Bilkent Uni.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: AHMET ERDINC YILMAZ

Signature

v

ABSTRACT

A GENETIC ALGORITHM BASED TECHNIQUE FOR QOS-AWARE WEB SERVICE
COMPOSITION

Yilmaz, Ahmet Erding
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pinar Karagtz

September 2013, 61 pages

Web Service technology is one of the most rapidly developing technologies. Since Web Ser-
vices are defined by several XML-based standards to overcome platform dependency, they
are very eligible to integrate with each other in order to establish new services. This compo-
sition enables us to reuse existing services, which results in less cost and time consumption.
Currently the main issues with Web Service Composition is to define workflow of the services
and maximizing the overall Quality of Service (QoS) of the composed service. Most common
elements of QoS are execution cost, execution time, availability, successful execution rate,
reliability and throughput. Since the selection of the optimal execution plan that maximizes
the composition’s overall QoS is NP-hard problem, applying optimization techniques is very
popular. In this thesis, we propose an improved Genetic Algorithm to optimize the overall
QoS of the composed service.

Keywords: Web Service, Web Service Quality, Genetic Algorithm

0z

WEB SERVIS BIRLESIMINDE KALITE OPTIMIZASYONU ICIN EVRIMSEL
ALGORITMA TABANLI BiR TEKNIK

Yilmaz, Ahmet Erding
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii

Tez Yoneticisi : Dog. Dr. Pinar Karagoz

Eyliil 2013, 61 sayfa

Giiniimiizde en hizli gelisen teknolojilerden biri de Web Servisi teknolojileridir. Web servis-
ler XML tabanli standartlarla tanimlanmasi sayesinde, platform bagimlilik sorununu ¢ézerek
diger web servisleri kullanarak yeni servisler uyarlamaya uygundur. Bu uyarlama, eski ser-
vislerin tekrar kullanilmasi ile kaynaklarin daha az tiikketilmesini saglamaktadir. Web servis
alanindaki ana unsurlar servislerin nasil baglanacagini belirleyen birlesik servis planin tanim-
lanmasi ve olusturulan birlesik servisin toplam servis kalitesi puanini olabildigince arttirmak-
tir. Servis kalitesini belirleyen bilesenler arasinda servis iicreti, calisma zamani, bulunabilirlik,
bagarili sonu¢ verme, giivenilirlik ve verimlilik en popiiler olanlaridir. Optimal birlesik ser-
vis planin1 bulmak NP-Zor problem olmasi sebebi ile optimizasyon tekniklerinin kullanilmasi
cok popiilerdir. Bu tezde, birlesik web servisi olustururken kalite servis puanini optimize et-
meyi amaglayan yeni bir gelistirilmis genetik algoritma sunulmaktadir.

Anahtar Kelimeler: Web Servis, Web Servis Kalitesi, Genetik Algoritma

vi

To my wife

vii

ACKNOWLEDGMENTS

I would like to thank to Pinar Karag6z for her supervision and support through the develop-
ment of this thesis. I greatly appreciate her contribution to this study and her guidance through

not only development of this thesis but also in my all academic life.

I would like to thank my wife Tiilug for her precious love. She is the sole reason for me to

live and the only light in this life since I have seen her.

viii

TABLE OF CONTENTS

ABSTRACT e v

OZ . . e vi

ACKNOWLEDGMENTS e viii

TABLE OF CONTENTS e e ix

LISTOFTABLES e e Xi

LISTOFFIGURES e Xii

LISTOF ABBREVIATIONS e XV
CHAPTERS

1 INTRODUCTIONo 1

1.1 Motivation 2

1.2 Contributions oL 2

1.3 Thesis Organization 3

2 RELATEDWORK 5

2.1 Genetic Algorithms 6

2.1.1 Single Objective Approach 7

2.1.2 Multi Objective Approach 13

2.2 Harmony Search 15

2.3 Hybrid Algorithms L . 17

X

3 PROPOSED METHODS 23

3.1 Genetic Algorithm with Simulated Annealing 27

3.2 Genetic Algorithm with Harmony Search (with dynamic rates) . . . 29

33 Application Implementation 30

4 CASE STUDIES AND EVALUATION 35

4.1 Experimental Results 35

4.1.1 Average Fitness vs. Generation 36

4.1.2 Execution Time vs. Number of Tasks 37

4.13 Execution Time vs. Generation Count 39

414 Execution Time vs. Number of Concrete Services 41

4.1.5 Best Fitness Value Test 42

4.1.6 Effect of Mutation Ratio 45

5 CONCLUSION . . . e e e e e e 47

REFERENCES e 49
APPENDICES

A CASESTUDIES e 51

B XML BASED SERVICE EXECUTION PLAN & IMPLEMENTATIONS . . 55

LIST OF TABLES

TABLES

Table 4.1 QoS Aggregation Formulas 35
Table 4.2 Genetic Algorithm Parameters 36
Table 4.3 BestFitnessTest. 45
Table 4.4 Pure Genetic Algorithm 46
Table 4.5 Harmony Search Improvement 46
Table A.1 Average Fitness values vs. Generation Number in Serial Workflow Model . 51

Table A.2 Average Fitness values vs. Generation Number in Serial and Parallel Work-

flowModel e 52
Table A.3 Execution Time vs. Task Number in Serial Workflow Model 52
Table A.4 Execution Time vs. Task Number in Serial and Parallel Workflow Model . . 52
Table A.5 Execution Time vs. Generation Count in Serial Workflow Model 53

Table A.6 Execution Time vs. Generation Count in Serial and Parallel Workflow Model 53

Table A.7 Execution Time vs. Concrete Service Number in Serial Workflow Model . . 53

Table A.8 Execution Time vs. Concrete Service Number in Serial and Parallel Work-

flow Model e 53

X1

LIST OF FIGURES

FIGURES

Figure 1.1 Example Service Composition [18] 1
Figure 2.1 Aggregation Formulas For Overall QoS [18] 5
Figure 2.2 Genetic Algorithm Operators [5]. 7
Figure 2.3 Process of Service Composition [23] 8
Figure 2.4 Genetic Algorithm for dynamic service composition [23] 8
Figure 2.5 Tree expression of given work-flow [9] 10
Figure 2.6 Post-order chromosome representation of the tree structure [9] 10
Figure 2.7 Adaptive genetic algorithm[25] 12
Figure 2.8 Penalty based fitness function[15] 13
Figure 2.9 Different SLAS[12] 14
Figure 2.10 Multi-objective genetic algorithm [12] 14
Figure 2.11 Harmony Search Algorithm [20] 15
Figure 2.12 Conceptual Diagram of Suggested Scheme[22] 19
Figure 3.1 Pure Genetic Algorithm 23
Figure 3.2 Example Chromosome Representation 24
Figure 3.3 One Point Crossover 25

Xii

Figure 3.4 Two Point Crossover v v v v ittt 26
Figure 3.5 Mutation 26
Figure 3.6 Genetic Algorithm with Simulated Annealing 27
Figure 3.7 Genetic Algorithm with Harmony Search 29
Figure 3.8 QoSOptimizer Design 31
Figure 3.9 QoSOptimizer Dependency Graph 31
Figure 3.10 QoSOptimizer Main Screen 33
Figure 4.1 Average Fitness vs. Generation Under Serial Workflow Model 36
Figure 4.2 Average Fitness vs. Generation Under Serial and Parallel Workflow Model 37
Figure 4.3 Execution Time vs. Number of Tasks Under Serial Workflow Model 38
Figure 4.4 Execution Time vs. Number of Tasks Under Serial Workflow Model 38
Figure 4.5 Execution Time vs. Task Number Under Serial and Parallel Workflow Model 38
Figure 4.6 Execution Time vs. Task Number Under Serial and Parallel Workflow Model 39
Figure 4.7 Execution Time vs. Generation Count Under Serial Workflow Model . . . 39
Figure 4.8 Execution Time vs. Generation Count Under Serial Workflow Model . . . 40
Figure 4.9 Execution Time vs. Generation Count Under Serial and Parallel Workflow
Model 40
Figure 4.10 Execution Time vs. Generation Count Under Serial and Parallel Workflow
Model e 40
Figure 4.11 Execution Time vs. Number of Concrete Services Under Serial Workflow
Model 41
Figure 4.12 Execution Time vs. Number of Concrete Services Under Serial Workflow
Model e 41

Figure 4.13 Execution Time vs. Number of Concrete Services Under Serial and Parallel

Workflow Model e 42

Figure 4.14 Execution Time vs. Number of Concrete Services Under Serial and Parallel

Workflow Model oo 42
Figure 4.15 Genetic Algorithm Best Fitness, 43
Figure 4.16 HS Improvement Best Fitness 43
Figure 4.17 SA Improvement Best Fitness 44
Figure 4.18 Best Fitness SoFar 44

Figure 4.19 Average Fitness vs Generation Count Under the Change of Mutation Ratio
inPure GA 45

Figure 4.20 Iteration Count Harmony Search 46

X1v

LIST OF ABBREVIATIONS

SOA Service Oriented Architecture

QoS Quality Of Service

GA Genetic Algorithm

SA Simulated Annealing

HS Harmony Search

HMCR Harmony memory consideration rate
PAR Pitch adjustment rate

bw Pitch adjustment bandtwidth

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

ACS Ant Colony System

CBR Case-based Reasoning

BPEL Business Process Execution Language
IP Integer Programming

UDDI Universal Description Discovery and Integration
CBR Case Based Reasoning

CSMS Composite Service Management System
OSGI Open Services Gateway Initiative

XV

Xvi

CHAPTER 1

INTRODUCTION

Service composition is one of the solutions that builds large and complex systems that use the
different services which can be implemented in different frameworks and languages. Recently
Service Oriented Architecture (SOA) and use of components are the trend technologies [18]
since it saves resources by reusing and integrating the services resulting in new services,
which can be used for new compositions. Service composition requires two steps which
are the identification of the workflow of abstract services (execution plan) and selecting the
concrete services for each node in that execution plan.

Figure 1.1: Example Service Composition [18]

In Figure 1.1, an example of service composition is presented. There are six abstract services
that construct the execution plan. Abstract services B and C are connected in serial fashion.
Similarly, abstract services D and C are also in serial pattern. Then they are connected in
parallel. Finally resulting parallel one is connected with the abstract services A and C in
serial connection producing the ultimate execution plan. There are also the concrete services
for each abstract one (two for A, three for B...). However in real world, the execution plan
consists of tens of thousands of concrete services with same functionalities, resulting in a
need for method that can choose the most appropriate one among them [26].

Since there are many of web services that are equal in functionality, searching and selecting
web service for execution plan is not an easy problem. However the functionally equal ser-
vices may differ in a property that is called Quality of Service (QoS). While selecting the web
services, one of the basic concerns is optimizing the overall QoS value of the composition.

Finding the execution plan that optimizes the overall QoS value is a well-known NP-hard
problem [18]. Therefore currently there is no an algorithm that solves the service compo-
sition problem in polynomial-time, making optimization algorithms a good choice for this
problem. Although there are studies that propose various heuristic techniques they still need
to be studied further to provide improvement over these techniques.

In this thesis, we present hybrid algorithms that aim to select concrete web services for a
given execution plan optimizing the overall QoS value of the workflow. The most frequently
used QoS parameters in the literature are “Response Time”, ”Availability” ,’Reliability”,
”Throughput” and “Price” [4, 1, 3, 16, 17], which are to be optimized during the web ser-
vice composition. We assume that these values are available for each concrete service prior to
execution of algorithm since there are studies that aims to calculate these values automatically

[8].

1.1 Motivation

Web services and composing new complex systems using the other services are very popular
in software society. Since there are many web service candidates that are functionally equiv-
alent, selecting the most appropriate ones among them is a problem that attracts attention.
Therefore, the main motivation of this thesis is to contribute to the efforts in this area. Also,
although there are plenty of studies that uses heuristics for this problem, there is almost no pa-
per make use of hybrid algorithms that may solve the current problem more efficiently. Thus,
we propose improved Genetic Algorithms, which perform better than the previous ones in the
literature in several dimensions . Our proposed solution converges earlier while preserving
the diversity of the solutions. In addition, we show that the combination of the heuristics with
adaptive techniques that changes the algorithm parameters dynamically can further improve
the conventional techniques significantly.

1.2 Contributions

The main contributions of this study are:

e Two improved Genetic Algorithms for Web Service Composition under QoS Optimiza-
tion are proposed and described in detail.

e Our proposed algorithms and the previous similar ones in the literature are compared
and the results are discussed. Experimental results indicate improvement for fitness
value, execution time and applicability on parallel workflow models by the proposed
algorithms.

e Proposed algorithms are implemented in fully modularized framework OSGI which
enables that resulting modules can be used in other systems easily.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 includes the related work on QoS Aware Web Service Composition. The studies
and the algorithms used are described.

In Chapter 3, the proposed hybrid genetic algorithms are described in detail. Our algorithm
implementation that is a fully modularized software library and test software are explained.

In Chapter 4, case study and evaluations of the proposed algorithms are given. Our proposed
algorithms are compared with the similar algorithms in the literature.

In Chapter 5, conclusion and future work are discussed.

CHAPTER 2

RELATED WORK

QoS-Aware Web Service Composition is studied by several research groups in the litera-
ture. The aim of composition is selecting the services such that resulting QoS is maximized.
Therefore the problem can be modeled as multi-dimensional, multi-objective, multi-choice
knapsack problem (MMMKP). Since the problem is NP-hard, it takes huge amount of effort
to solve the problem, all studies in the literature assume some simplifications in the prob-
lem such as "local QoS-optimization", "no QoS-Constraints", "single-objective optimization"
and "sub-optimal execution plan". In the literature there are several algorithms that can find

exact solutions such as "Linear Programming", "Integer Programming

non

, "Dynamic Program-
ming" and "Divide-and-Conquer based Selection". Anja Strunk states that heuristics (such as
Genetic Algorithm) is promising method in QoS-aware composition. He also states that the
heuristics other than the Genetic Algorithm should be experienced such as Simulated Anneal-
ing ,Taboo Search and Ant Colony Optimization [18, 19, 11]. Therefore this survey is the
main start point of our study.

QoS property Sequence Concurrency Loop Choice
mn P n
Availability n-‘!(s,) HA(SF) A(_s*)"" HP, * A(s,)
il il il
Reliability]ﬂ[R(S,) ﬁR{S.) R(S)A' ﬁ]% *R(s;)
Time ZT(S,) Max(T(s;)ieyi) k*T(s) pr #T(s,)
i=1 i=l
Price Z P(s,) 21’(5‘r) kx P(s) i;;, * P(s,)
i=1 i=1 iz
Custom Js(F(s.)). Fe(F(s,)), JL(F(s;), Je(F(s: D>
property iefl..m} iell..p} iefl. .k} icfl.n}

Figure 2.1: Aggregation Formulas For Overall QoS [18]

In Figure 2.1, there can be seen the basic control patterns, which are Sequence (Serial), Con-
currency (Parallel), Loop and Choice. Also there are different aggregation rules for each
control pattern to compute the overall QoS value of the execution plan. For example in Se-
quence, the response time for overall composition, we need to sum all of the response time
values in the services that constructs the pattern.

2.1 Genetic Algorithms

Genetic Algorithm (GA) is a variant of stochastic beam search in which successor states are
generated by two parents that mimics the natural evolution in the nature. It is heavily used in
optimization and search problems [5].

Algorithm 1 Genetic Algorithm [5]
function GENETIC-ALGORITHM((population, FITNESS-FN)
new_population = empty set

repeat
for i = 1 — SIZE(population) do
x = RANDOM-SELECTION(population, FITNESS-FN)
y = RANDOM-SELECTION(population, FITNESS-FN)
child = REPRODUCE(x,y)
if small random probability then
child = MUTATE(child)
add child to new_population
end if
population =new_population
end for
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN
end function

function REPRODUCE(x,y)

n = LENGTH(x);

¢ = random number from 1 to n
return APPEND(SUBSTRING(x,1,¢),SUBSTRING(y,c + 1,n))
end function

GAs begin with randomly generated states (population of individuals). Each individual can
be encoded in some format such as strings. Moreover, for specific domains specialized data
structures are helpful. Algorithm runs for fixed number of generations in which new off-
springs are generated by parents that are ranked by the fitness functions. Generally, fitness
function return higher values for better individuals. The parents with higher fitness values,
have higher chance for reproducing new off-springs than the ones with lower fitness values.
New off-springs are generated from these parents’ genomes in the operation called crossover.
This operation enables the new individual has both genes from both parents. Then each gener-
ated individual is subject to a process called mutation with low probability. Mutation changes
their genome in some randomly chosen point. This operator resembles the mutation in nature
that increases the population diversity. This operator is important because, in order to find
fitter individuals, population diversity should be high enough. The schema theorem explains

how GA works. Assume that the individuals genome are represents as numerical strings of
length eight. Then the schema "234#%***" represents all individuals whose genome starts
with sub-string "234". Then the individual having genome "23476585" is an instance of this
schema. It can be shown that if the fitness of the schema "234%#*%*" i5 higher than the mean
of the population then the number instances of this schema tends to increase. This results in
that fitter individuals dominate the population over time [5].

24748552 | 24 31% .| 3274412

32752411 [_23 20% | 24748552 24752411

24415124 | 20 26% | 3275: 377b2124

Sosaa1] o [2aeieas 24415410]
@ (h) (©) (d) (e)

Initial Population Fitness Function Selection Crossover Mutation

Figure 2.2: Genetic Algorithm Operators [5]

In Figure 2.2 the main operators of genetic algorithm are presented. The individuals are rep-
resented with numerical strings of length eight. Initial population consists of four individuals
having fitness values 24,23,20,11, respectively. Moreover these fitness values determine the
probability that individuals will generate the new off-springs in the next generation which can
bee seen in (c) part (selection operator). Then the crossover operator takes place before the
child individuals come up when the mutation operator change the genotypes slightly.

There are several studies that use GA for QoS aware web service composition. These stud-
ies can be grouped by their objective function type, Single Objective Approach and Multi-
Objective Approach. In multi-objective approaches, there are more than one objective func-
tions, possibly having conflicts with each other. In this technique, there are set of solutions
that no other solution has better in all objectives. In single objective however, multiple objec-
tives can be combined with weights in order to reduce to problem to single objective. Unlike
the multi-objective one, we get one solution that is better than the all other individuals.

2.1.1 Single Objective Approach

Fanjiang, Syu and Wu et al. proposed a method that not only composes the service according
to the overall QoS value but also generates the execution plan from user requirements based
on GA and case-based reasoning [23]. Therefore their algorithm consists of two phases,
selecting equivalent service sets with the execution plan construction and then selecting the
services in each equivalent set, which optimizes the overall QoS.

e®
Service repository @ .. (different colors means different
oe functions)

b

Service composition

o e ®
® O

Figure 2.3: Process of Service Composition [23]

In Figure 2.3, there can be seen the first phase of the algorithm which constructs the workflow
in sequential, conditional and parallel patterns. Different colors mean that services differ in
functionality. They also state that if they used exact algorithms such that linear programming,
the problem even would be insoluble because of the nature of the problem (NP-hard) [23].
They use unified specification for user requirements and then try to find a single solution
from the service registry. At first they try to find a single service that meets the requirement,
if they cannot find, their case-based reasoning method runs. However they do not explain this
part of their algorithm in detail. They state that they use GA in finding the first workflow.
After they found one candidate execution plan, the main part of their algorithm runs which

can be seen in Figure 2.4.

The specification Case-base
. = of requirement Reasoning
for workflow

[Existing similar
tases in cases
base]

The specification of
workfow structures

|

Randomiy fill the
workflow structures

ny similar cases]

[Not existla

Randomly produces
the first generation

®

| Composite Services |

with concrele services

The first generation of
genetic algorithm
Senice matchmaking

Chromosomes of Assesses the with user reguirement

"
next generation fitness value of
chromosomes

[Reach the termination
condition]

Creation of next
generation

The chromosomes
of last generation

[Mumber of individual in nex [else]
generation = default population]

Selection mechanism]

[Mutation mechanism H Crossover mechanism]

Figure 2.4: Genetic Algorithm for dynamic service composition [23]

The algorithm in Figure 2.4 tries to find a solution that optimizes the overall QoS value.
Moreover they use WS-BPEL process description language to encode the chromosomes in the
genetic algorithm. In order to avoid the genetic algorithm operators crossover and mutation
work without resulting in invalid execution plans, they translated the WS-BPEL to tree format.
The most interesting part in their view, there can be many invalid individuals in the population
since the execution plans in the population change in time. This paper differs mostly in here
from other studies. They use a penalty mechanism in that case, which decreases the fitness
value of the individual if it has an invalid workflow. Another drawback is that, with mutation
and crossover operators resulting execution plans can be very long, which are effectively
useless.

Yue and Chengwen proposed an improved GA named CoDiGA with enhanced initial popu-
lation, enhanced population evaluation and a different chromosome structure, matrix coding
scheme [24]. They also take the global QoS Constraints into consideration in their study.
They claim that their matrix coding scheme is very suitable for handling constraints. Their
main considerations are slow convergence of existing genetic algorithms and their unstabil-
ity. However their new method can only bring new fitness values in quick convergence when
the execution plan is big. Their relation matrix encoding scheme carries information both
about the relation among tasks and path information which are used in validity check of new
off-springs. One interesting part of their algorithm is that the child chromosomes can have
different execution plans than their parents. This is also the case in the previous study[23].
Since the execution plan can change, in run time a need for validity checking emerges, which
makes the execution takes more time. In addition, all valid workflows cannot be beneficial.

B Fit(g)
=T @2.1)

As another point in their study, they propose new selection mechanism in their genetic al-
gorithm. At the initial step they do not replace the current generation with the next one im-
mediately, the replacement occurs when the next generations evolution extent is higher than
the current one. The evolution extent is population mean fitness value divided by popula-
tion diversity rate plus one, which can be seen in the formula 2.1. Since population with
low diversity is preferred if the mean fitness values are equal, this will lead to chance to run
away from global optima. Although they claim that it is useful for quick convergence, I think
it should be avoided especially in earlier stages of algorithm. In later stages, however, low
diversity should be preferred as we will describe in our proposed algorithms. To improve
convergence rate, they also make sure that all individuals of the initial population have higher
fitness values than the ones that are generated randomly. Although this technique is useful for
quick convergence, it takes the population away from high density, which may result in not
reaching the global optima. Instead, in some proportion, the population can be generated with
high fitness values. Moreover, one different view of their algorithm is that, in every generation
they allow selection between two successor generations resulting in larger search space. Then
they shrink the population to the original size. They do not state explicitly, but I think that

they select the best ones in the final generation. For constraint handling, they use a penalty
mechanism, which is a common usage in literature. As a further research, they suggest the
use of stochastic search techniques such as Simulated Annealing (SA), which is one of our
proposed algorithms with improved usage.

<sequence name ="N17=>
=flow name = “IN2"=>
<invoke name = "R1"/>
<sequence name — "MN3"=>
<invoke name = "R2"/>
<invoke name = "R3"/>
</sequence=
</flow=
<invoke name = “R#7/>
<flow name = “IN4">
<gwitch name = “N5">
<invoke name = "RS" exePro ="0.9"/>
<invoke name = "R6" exePro = "0.1"/>
</switch>
<invoke name = "R7"/>
</flow=>
<switch name = "N6">
<invoke name = "R8" exePro = "0.8"/>
<invoke name = "R9" exePro = "0.2"/>
<fswitch>
</sequence>

Figure 2.5: Tree expression of given work-flow [9]

In another study, Chunming, Meiling and Huowang propose a data structure which can sup-
port composition re-planning at run-time and improves the GA significantly [9]. The idea
behind their study is to make the data structure carry the information not only about the static
workflow information but also about the dynamic information on the QoS values. In Fig-
ure 2.5 you can see the execution plan in XML based file consisting of sequence and switch
control patterns, which is transformed to the tree structure. The main point in here is that,
they also need to tag the nodes in tree structure. This tree is represented in linear form in
the chromosome using post-order traversal which can be seen in the Figure 2.6. In this rep-
resentation each non-leaf node is a valid execution plan tree and carry information about its
children and each leaf node is concrete web service. By this representation they are able to
define crossover and mutation operators not producing invalid process plans.

RI RZ RB N3 NZ R4 Rj Rﬁ NS R? N4 RS R9 Nﬁ Nl

Figure 2.6: Post-order chromosome representation of the tree structure [9]

Moreover, non-leaf nodes also carry information about the calculated fitness value, which
is used again if the sub-tree remains unchanged after the crossover operator. This technique
results in faster running time than the one-dimensional GAs. In addition tree structure enables
them to re-plan the workflow more easily. For global constraints they use a penalty factor in
fitness, which is a common technique in literature.

Another approach in genetic algorithm is on controlling the diversity factor of the popula-
tion in order to avoid getting stuck in local optima and to accelerate the convergence rate.
Changwen proposes an adaptive crossover rate based genetic algorithm which operates as
in [25]. The main idea is that, when the population diversity falls below some extent, the

10

crossover rate should be increased in order to create new individuals whose genomes are dif-
ferent. When the population diversity climbs above some value, the rate should be decreased
in order to improve the convergence rate. They take into account the mean population fitness.
When the mean population fitness value is high, they reduce the crossover rate in order to
prevent the fit individuals being damaged. Similarly, when the mean population fitness value
is low, they increase the rate in order to advance the search capability of the algorithm and the
convergence speed.

1Y 2
D, = N Y (fo—fm) (2.2)
i=1
Q — Dm/Dmax (2'3)

They define the population variance as in formula 2.2, where f! is the fitness value of the i"”
individual and f,, is the average fitness value of the whole population. Then they calculate the
diversity of the m' generation Q, as the m'" generation fitness variance D,, divided by D,
which is the maximum fitness variance value up to m" generation as given in formula 2.3.
Then they propose the adaptive crossover rate in formula 2.4.

o fi_fMin % 1
fMax - fMin 1+ exP(—ch)

Pc = Pcfold x |1 (24)

In this formula, P._,;; is the old crossover probability, f; is the fitness of the individual of
Xi, fuax and fyi, are the maximum and minimum fitness values in the generation and k. is a
constant. Note that, the greater the P. value the easier to find different individuals which may
have greater fitness value. However if this rate is not controlled and gets very high, it results
in slower convergence rate. Therefore the adaptive nature of this formula tries to control it
optimally. You can see the overall flow of the improved GA in Figure 2.7.

With this dynamic crossover rate they get higher fitness values with less running time than
the traditional genetic algorithm. Their approach for calculating variance in fitness would be
more effective if they computed the variance from genomes instead of fitness values. Because
different genomes may result in the same fitness values. By this design they prevent these
individuals from contributing the population diversity. Moreover, I think adaptive crossover
rate will be more successful if the mutation rate is also dynamically.

Another aspect of QoS optimization algorithms are the constraints. There can be conflicts or
dependencies between concrete services such as if service A is used, service B must also be
used ore if service A is used service B cannot be used [7]. Moreover there can be user limits
on the QoS constraints such that total cost should be less than some value [15]. The common
method in literature is applying penalty mechanism [9, 7, 15]. The main reason applying
penalty mechanism instead of removing the conflicted individual from the population is that

11

| initializing population |

computing fitness values of all
of individuals

selecting individuals based on
fitness values

N2

‘ building new population

calculating diversity value
of populatioin

adaptive crossover
operation

‘ mutation operation ‘

N

e e N
= Terminal? ———

Y

Figure 2.7: Adaptive genetic algorithm[25]

they can have partial genes in their chromosomes which can result in global optima after
several crossover end mutation operations.

Lifeng and Maolin consider the inter dependencies and conflicts problem between the web
services [7]. They define set of dependencies between the services as D:

D = {(ci,j,»¢ij,)| if task i; uses the j’lh service, then task i» must also use the service jtzh}.
Moreover they define a set of conflicts between services as C:

C = {(cij,>cirj,)| if task iy uses the ji" service, then task i must not use the service j4}.

Fuy() =Y <W*Wz> > (W*W) (25)

S\ oo S\ oo

They define the objective function in a conventional way in the literature. In the first part of
the function they try to minimize the negative QoS parameters such as cost, response time
and in the second part of the sum, they try to maximize the positive QoS parameters such as
reputation, reliability and availability in formula 2.5.

0.54+0.5xF,pi(X), if V(X)=0
Fitness(X) = 0% bj(v())() it v) (2.6)
0.5 Fopj(X) — 5=, otherwise

Then they finally define the penalty based fitness function in formula 2.6 where V (X) is the

12

the number of violations of X, and V,,,, is the maximum number of constraint violations.
The clever point of this fitness design is that they guarantee that any infeasible individual has
less fitness value than any individual without any constraints. With these designs Lifeng and
Maolin can find a feasible individual with good QoS value in their all tests.

Mahmood and Hadi, on the other hand, consider the limit constraints on the QoS values
[15]. For this, they define a penalty based fitness function that assigns smaller values for
feasible and desired concrete services with good overall QoS values as given in Figure 2.8. In
this function, Agg, is the aggregated QoS value that is calculated as in conventionally in the
literature. They are also normalized in the interval [0,1]. M is a big number, and for every
web service in the execution plan they decrease the fitness value by the factor |[Agg, — Cony| if
the aggregated QoS value is worse than the given constraint. Then, if it is better, they reward
the fitness value by the same factor.

Function FitnessFunc()
M=Big number;
Fit=0;
For all web services in composition plan do
If Aggq better that Cony
Fit=Fit — | Aggs-Cong|;
Else
Fit=Fit + M * | Aggqs-Cong|;
End
End
Retunr Fit;
End

Figure 2.8: Penalty based fitness function[15]

The main disadvantage of this method is that, they do not include inter service dependencies
in their study, and their fitness function return value interval changes with the number of
services in the execution plan. They should prefer a fitness design which gives values between
the interval [0,1].

2.1.2 Multi Objective Approach

The studies that are mentioned up to here are done in single optimization objective view, by
assigning weights to the QoS parameters. Unlike them, Hiroshi, Paskorn and Junichi used
multi-objective optimization technique which is used for problems with conflicting multiple
objectives to be optimized simultaneously [12]. For example minimizing the cost and maxi-
mizing the throughput are conflicting objectives. Since these objectives can not be met at the
same time, there are multiple solutions that are better than the others called Pareto Optimal
Solutions. In multi-objective algorithms, the result consists of these multiple solutions where
the user can see the trade-offs. Moreover their study is different from the others since they
also consider multiple Service Level Agreement (SLA) namely Platinum, Gold and Silver.

These layers differ in each other with the QoS constraints that are assigned to, as given in

13

Figure 2.9.

Constraints
Service Throughput | Latency Cost Total Cost
Level (Lower Bound) (Upper Bound) (Upper Bound) (Upper Bound)
Platinum 120000 100 -
Gold 6000 130 - 2000
Silver 2000 - 250

Figure 2.9: Different SLAs [12]

Their multi-objective algorithm is mainly dependent on the domination rank and density.
Domination rank is the factor that shows how the individual is better than the others in the
population, and the density is that there are how many individuals that resembles to that indi-
vidual. They define the fitness function Fitness(py) as the domination rank (DRanking(py))
divided by density (Density(py)). With this design, if the individual dominates more individ-

ual then it gets higher fitness value, however, if its density value gets higher, its fitness value
decreases.

g§=0
P’ = Randomly generated p individuals, Q" = @
repeat until g=guu {
repeat until |Q®% = u {
p1 = RWSelection(P®), p» = RWSelection(P%)
q Crossover(p;, p2)
Mutation(g)

q
0% = Q°Uq if q¢Q*
}

P&t = Top u of Sort(PfUQ¥)
g=g+1
}

Crossover(p;, p2)i
for i=1,...n {
center; = (pi[i]+ p2[i]) /2
(Fitness(py)— Fitness(p2))|p1li]l — p2[ill/ 2

F(p1)+F(p2)

qli] = center; +

}

return ¢

}

Figure 2.10: Multi-objective genetic algorithm [12]

You can see the overall algorithm in Figure 2.10, where g4, is number of generations, U is
the population size, p[i] is the i individual. They define the domination as follows:

if o' = (oﬁmx,ojnm) is an individual with the set of objectives o),,. and o, , which are to
be maximized and minimized respectively then the individual i dominates j, if both of the

following conditions are true:

14

o {V <O;nIZX70maX> "’max > Omax} and {V< Omins mm) ’0mm < O{V;;{n}

i,k .k
e {3 <0max,0maX> |Ormax > Omax} or {3(Omin> mm) |Opin < O}

One disadvantage of their approach is they use elite population technique where they always
produce the next generation with the best individuals of the current generation and offspring.
This approach is not good I think since the individuals with good fitness values always remain
in the population, which may result in local optima. They should use elitism in smaller extent.

2.2 Harmony Search

Harmony Search is a relatively new heuristic algorithm that is developed by Geem et al.
[27]. The algorithm mimics the music improvisation process, searching for a perfect state
of harmony. This search in music is analogous to the optimization problems. This resem-
blance make it perfect for use in various optimization problems, particularly in engineering
optimization area [20]

Set parameters: HMCR, HMS, PAR
Initialize HM = {HMQ, HM;, FP HMHMS-I}
i <0
while no stopping criterion is met do
ford=0toD—-1do
if rand() < HMCR then /l memory consideration
trial(d) = HMg(d) where R = IntRand(0, HMS — 1)
if rand() < PAR then /I pitch adjustment
trial(d) = trial(d) £ rand() x bw

end if
else /I random selection
trial(d) = LB(d) + (UB(d) — LB(d)) x rand()
end 1f

end for
if fitness(trial) 1s better than finess(HM,,,,,) then
replace HM,,,,, with trial
end if
i=i+1
end while

Figure 2.11: Harmony Search Algorithm [20]

In Figure 2.11, you can see the original harmony search algorithm. Here HM is the harmony
memory with size HMS. This memory stores the candidate solutions. It is analogous to the

population in GA. This memory is initialized randomly according to the formula 2.7.

15

HM;(d) = LB(d)+ (UB(d) — LB(d)) * rand() 2.7)

for i=0 to HMS—1 and d=0 to D '
Where LB(d) and UB(d) are the limits in search space of decision variable d and rabd() is
a random function returning values between O and 1. There are three parameters controlling
the improvisation process:

e Memory consideration rate HMCR
e Pitch adjustment rate PAR

e Pitch adjustment bandwidth bw

In each turn, if the rand() is smaller than the HMCR, then a candidate is selected randomly
form the memory, otherwise new individual is generated from scratch. Moreover, if rand()
is smaller than PAR then pitch adjustment occurs, adjusting the individual. Finally if the
individual is better than the worst fitness of the memory, it is replaced with it. This algorithm
perfectly mimics the musician improvisation process, since the musician has three choices in
improvisation process [21]:

e play famous music from his memory (harmony memory in HS)
e play a music similar to the existing ones (pitch adjustment)

e compose new one (random creation)

Xin-She Yang stated the similarities between HS and GA also [21]. The pitch adjustment
(also randomization) is similar to the mutation operator in GA since both contribute to the
diversity. Harmony memory is important as the population in GA since both of them make
the fittest individuals survive in the later generations. In addition Yang investigated combining
the HS algorithm with other heuristics such as Particle Swarm Optimization. In our study we
propose a combined algorithm with GA and HS with improved capabilities.

One of the important aspect of the HS is selecting the rates carefully. The HMCR and PAR are
the leading parameters that affects the convergence and optimization result of the algorithm.
If the HMCR rate is too high the algorithm cannot search the space effectively leading to the
local optima. If the HCMR rate is chosen too low then the algorithm spends more effort in
finding new individuals resulting in slower convergence rate. Similarly low PAR results in
slower convergence rate whereas high PAR may cause the search go into local optima [21].
Therefore in the literature there are plenty of studies for HS with dynamic rates one of which
are study of Worasucheep [20]. The need for dynamic rates is also taken into consideration in
our hybrid algorithm, which will be covered in the next section.

16

Although HS is used in various domains, the use of it in QoS aware service composition is
not studied very well. Jafarpour and Khayyambashi investigated the use of HS in service
composition and they compared the results with pure GA [13]. Their algorithm consists of
five steps:

1. Initialize the parameters

2. Initialize the memory

3. Improvise new harmony

4. Update the harmony memory

5. Repeat step 3-4 until some criterion

As seen their algorithm discards the Pitch Adjustment Rate process. They claim that pitch
adjustment with neighbour values cannot generate fitter individual. However we think just
the contrary. Since this process resembles the mutation operator in GA, there is a chance that
we can have fitter harmony. Moreover getting fitter harmony is not a must. Since at the update
state, update can only occur if the resulting harmony is fitter than the worst harmony in the
memory. Although their results are slightly better than the pure GA in both average fitness
and execution time, they have a risk of getting stuck into local optima. Also, they cannot use
the search capability of GA if they only use HS.

2.3 Hybrid Algorithms

Although there are many GA variations in literature investigating different aspects, there are
only few studies that use hybrid approach in overall QoS optimization in service composition.
We come across only two studies that propose combined algorithms. One of them is the study
of Huan Liu and Farong Zhont et al., in which they propose an improved GA based on Ant
Colony Optimization (ACO) [14].

ACO is relatively new approach for optimization problems that takes inspiration from the
social behaviours of some ant species. It was firstly proposed by Marco Dorigo in his doc-
toral thesis in 1992 [10]. The similarity comes from the ants’ behaviour of looking for food.
Ants deposit a substance called pheromone on the way to the food. Other ants are attracted
by these trails which results in finding food resources. Since these pheromone trails evapo-
rate in time, ant colonies tend to find more qualitive food resources which attract more ants.
This phenomenon gives the idea that sharing quality information of the path and giving pos-
itive feedback can lead to finding optimal solution. This technique is widely used in many
problems such as famous traveling salesman problem, NP-Hard problems, applications to

telecommunication networks and to industrial problems [14, 10].

17

Huan Liu and Farong Zhont et al. used ACO in generating fitter individuals in initial popu-
lation of GA since they claim that simple GA will generate many redundant solutions which
result in slow convergence rates. However we think that generating all individuals by ACO
in initial population can lead to similar preliminary solutions. This can result in local optima
since the GA is forced to operate relatively in smaller search space. Alternatively, they can
generate only a small portion of the population by this method. There are many variations of
ACO algorithm. The one that they used in their study is Ant Colony System which is called
ACS [14, 10].

They define the composite service S = S1,53,....,Sv4 where each component S; can be re-
placed with CS;1,CSp,,CS;,. Then they divide all service compositions into NA 4 2 lay-
ers. By their definition the candidate service in layer k — 1 can only be connected to the
services in layer k. The pheromone of the connection of the service a of layer k and service
b of layer k+ 1 is defined as ‘L'th. They use Na as the colony size and A(n,k) as the service
which is selected by ant # at layer k.

Firstly they initialize each of the Té‘b with the small value 70. Actually this is one of the
drawbacks of the ACO algorithm. The initial pheromones cannot be known. They let the all
ants select the service O at the first layer. If the candidate service selected by ant » at the last
layer is A(n,k — 1) = a, they decide the candidate service selected by this ant by the formula
2.8,

A k—1) = (2.8)

argmax(t, 1), if g < Qo
S, otherwise

where ¢ is a random number between [0, 1], Qp is pseudo-random selection rate and S, means
pseudo random selection which is presented in formula 2.9,

k—1
T
b
p— 4 p (2.9)
=0 Tax

P(a,b) =

where m + 1 is the number of candidate service in layer k, P(a,b) is the probability of ant n
selecting candidate service a from layer k — 1 and selecting b in layer k. Moreover in order
to decrease the probability that the ants select the same path in one turn, in ACS a special
process is conducted. It is called local pheromone update which is presented in the formula
2.10,

TA(nh—1) A(nk) < (1=P) X Tami—1) A(np) TP T (2.10)

where p is the decrease rate on the path. This update process enables the algorithm operates
in larger search space. Until now, the ants do not share the quality information of the path
they choose. After each iteration, they calculate the QoS value f(n), the fitness function, and
they execute the global pheromone update which can be seen in formula 2.11,

18

k

1 (1—a) x 7+ & x const (2.11)

i7
where const =0.35,i=A(np),k—1), j=A(np,k) and ny is the ant with the best fitness
value. By this process, ants can share the path quality information and they can use it in the
next iteration.

However there many points that can be criticized in their study:

o their usage of ACO in initial population leads to elite population which can lead to
immature search.

o their fitness function is not normalized therefore in very small changes, it can result in
huge difference.

o they compared the result of their algorithm with plain ACO, they should have with plain
GA. In our experiments we realize that, their approach is not superior to plain GA.

o their approach only applicable to serial aggregation flow, and cannot be used in parallel
control flows which is a very important shortcoming.

In another study [22], Xinfeng Ye and Monla suggests combination of Integer Programming,
case-based Reasoning and genetic algorithm techniques. They used the scheme that is pre-
sented in Figure 2.12.

service providers
CSMS
invokg___,
request a—
—_— I
| . register
* ¥ retrieve \ :
;> retriev‘e\\ -_
user & update
S $
UDDI registry
CBR repository

Figure 2.12: Conceptual Diagram of Suggested Scheme[22]

In the proposed scheme, all services are registered in the UDDI registry and they assume
that all services uses the same ontology. The case-based reasoning (CBR) repository stores

19

each of the concrete execution plan. The Composite Service Management System (CSMS)
generates these execution plans. It uses an IP solver to create new ones or reuse the existing
plans in the CBR repository. Also the newly generated execution plans are stored in the CBR
repository for future use which constructs the Case-based Reasoning part of their study. In
CBR systems, solutions for previous problems are stored and used for new problems which
are similar to older ones [6]. In their study they used the similarity function 2.12,

(digest(plan) = digest(CS)) A (timesim(tpianstes) < Erime)/\ 2.12)
(Weightsim (WSplam WSCS) S 8W€ight>
where CS is composite service, WS,;., and WScg denote the sets of weights assigned to QoS
properties by an existing plan and composite service respectively. digest is a function that is
used for checking the equality of the composite services. It calculates a value describing the
composite service’s following features:

e the set of tasks

e the composition pattern

Therefore after calculating the digest values from the BPEL file describing the CS, they simply
compare these values for equality. They also claim that, the time that the CS is executed
also important for CBR similarity calculation and they used the Formula 2.14. The reason
behind this usage is that, they claim that QoS properties can vary during the day. In the
times,-m(tplan, fcs) » the smaller value means a higher similarity between plan and CS.

0 if tplan = nil
timesim(tplanatcs) = ‘tplan - tcs| if |tplan - tcs’ <12 (2.13)
24mod (|t pran — tes|) otherwise

Finally they introduce weight;,, (WS plans W Scs) which calculates the similarity of the weights
assigned to the QoS values that is given in Formula 2.14,

Weightsim (WSplana WSCS) = diff

T LiePSWews g, (SViFWi)

where (2.14)
dif f = | Licps.wews i (SVi* Wi) — Licps wiewscs (SVix W)

where PS is the QoS properties set, SV; is the scaled QoS value, WS, and WScg are the sets
of weights which are assigned to QoS properties of the plan and composite service.

The authors propose that the users assign ranks to the composite services. For example they
assign higher ranks to the CS which has higher QoS values. Since they automatically execute

20

the resulting service, after CSMS finds relevant solutions for the user request they applied
roulette-wheel selection which can be summarized as follows :

1. R is a random number between (0, 1]

2. {1,...,n} is collection of plans returned from CSMS such that Vi € {1,...,n}V;j €
{1,...,n},(i, j) = (Score; < Score;)

3. Py is the selection probability calculated from the formula 2.15

4. return the plan k € {1,...,n} such that Zf.:]l P<R<Y‘,P

W; x Score;
1 (WjxScore;)

P = (2.15)

where W; is the assigned weight to the plan i, n is the number of plans matched and Score; is
the QoS score of plan i.

Their study is different from the other studies in several aspects, and some points are not
very clear. They do not tell about how the execution plans are generated. All other studies
mentioned up to this study, assume that the execution plan is given prior to the QoS opti-
mization process. Moreover, they state that they use CBR for finding similar solutions for the
current problem, however they do not mention about the CBR repository size. We think that
the repository size must be very large in order to compare. Also scalability is the one of the
main issue. Since the problem nature is NP-hard, the usage of heuristics are very common in
literature. However their study does not consider this fact.

21

22

CHAPTER 3

PROPOSED METHODS

In this chapter, we describe our proposed algorithms that aim to optimize overall QoS value of
the execution plan more effectively than the methods that are described earlier. Our approach
further improves the original algorithm, resulting quick convergence with higher average fit-
ness values. The proposed improved algorithms use the heuristics simulated annealing and
harmony search as smart mutation operator. These heuristics are altered such that, in the
earlier generations, the algorithms aggressively search the solution space, accepting the in-
dividuals with lower fitness values. However, in the later generations the acceptance of the
solutions with lower fitness values decreases. Instead, the existing solutions are further im-
proved with the heuristics. Since we compare our results with the original GA and the ACO
improved GA, these algorithms are also implemented.

Coding
&
population initilization

o e e |
: new population :
| building |
fitness individual | |
calculation selection | |
| crossover I
| |
o SRR .. 1
genetic
mating
mutation
population
replacement
////// N -
P is max number e
— . —
= generaton — YES |
‘\\\. reached e

-
e
J/No/

decode
result

Figure 3.1: Pure Genetic Algorithm

The original genetic algorithm implementation can be seen in Figure 3.1. The algorithm

23

— —

Figure 3.2: Example Chromosome Representation

starts with coding and population initialization phase. In this phase the data structures are
built. An example of execution plan can be seen in Figure 3.2. In this plan, three serial
sub-plans are connected in parallel form. Then this parallel sub-plan is reconnected with two
serial sub-plans in a serial fashion. Since our algorithm gets the execution plan as input, the
initial population is generated randomly according to the execution plan. We do not apply
any heuristic in this phase, since the initial diversity is very important to search the solution
space effectively. Then the main loop of the algorithm starts. We first calculate the fitness
of the each individual of the population with the fitness function, which is presented in for-
mula 3.1. We use normalized and weighted fitness function design. We normalize the QoS
values in [0,1] range. Since our fitness function gives higher values to fitter solutions, we
define normalize. () function to be applied to the QoS parameters that we want to maximize
which is “throughput”, on the other hand we define normalize_() to be applied to the QoS
parameters that we want to minimize which are “cost” and “responseTime”.

Wi s« norm_(cost) + Wa « norm_(responseTime)

_ +Ws reliability + Wy x norm. (throughput) -
t = .
fitness Wi +Wo +Ws + Wy G-

0 if — Gmin) =0
normalize-(q) = { | — A dmin_ otl(lzrvtz/);se o (3:2)
4max—qmin
0 if —Gmin) =0
normalize. (q) = { o Od(:e’;"“:gseq i) (3.3)
Gmax—Yqmin

After fitness calculation process, we apply individual selection process in order to determine
the individuals for genetic mating, which includes new population building and crossover
processes. In the selection phase, we firstly calculate rank values according to Algorithm 2.
Then we apply selection method which can be seen in Algorithm 3 in order to find the parents.

24

Algorithm 2 Fitness Ranking

function FITNESSRANKING(individual_index)
ranking =0
for i = 1 — SIZE(population) do
if fitness(individual_index) > fitness(i) then
ranking = ranking + 1
end if
end for
return ranking
end function

Algorithm 3 Ranking Based Parent Selection

rsc = 20, parentFound = false;
while !parentFound do
index = getRandom(population size);
if index < rsc then
indexParent = index

parent Found = true
else

if fitnessRanking(index)+ 1 > getRandom(populationsize) then
indexParent = index
parent Found = true
end if
end if
end while

return indexParent

Figure 3.3: One Point Crossover

After selecting the parents, crossover operator is applied in order to generate new offsprings.
This operator is implemented in two ways as one point crossover and two point crossover,
which are illustrated in Figures 3.3 and 3.4. In one point crossover, after two parents are
selected a random crossover point is selected. Then two offsprings are created such that their

genes are swapped before this crossover point as seen in Figure 3.3. Similarly, in two point

25

crossover operation, two points are randomly selected and after new offsprings are created
swap operation occurs in each points. These crossover operations are the main part of the
genetic algorithm that enables the inheritance of the gene parts that is responsible for better

¢ =
N
v - — g E
—a =
| H

Figure 3.4: Two Point Crossover

fitness values.

After the genetic mating is finished and new population with the offsprings are created, the
mutation operator is applied to each individual with certain probability. The mutation operator
is responsible for the maintaining the diversity of the population. As seen in Figure 3.5, two
concrete services (colored as blue) are changed as the result of mutation operation.

v v
/\ /\
c2
¥ ¥ _— ¥ N
{ {

Figure 3.5: Mutation

When mutation operator is applied to the some of the individuals, new population is replaced
with the current one. This process is the final operation for creating the new generation. This
generation is expected to have higher average fitness value than the previous one, since ge-
netic mating is applied intensively between the fitter individuals. Moreover, we always apply
elitism while replacing the old generation. We keep the best two solutions of the previous
generation unchanged in the new generation in order not to lose the best solutions. Then we
check whether the max generation count is reached. If it is not reached yet, we simply return
to the fitness calculation and repeat process to here. If we reach the max generation count,
we decode the best result to the human readable form and output it. This phase ends the al-
gorithm. The important part here is the determining the max generation count. Conducting
some experiments, we see that after some generation count, the average fitness value remains

26

unchanged. Therefore further improvement is not necessary.

3.1 Genetic Algorithm with Simulated Annealing

The suggested algorithm presented in this section is the fusion of GA and SA. Simulated
annealing is used here in place of the mutation operator. Mutation process in the original
genetic algorithm operates as fully randomized fashion. The mutation operator does not care
whether the resulting individual after the mutation occurs, has higher fitness value or not.
Simply it changes the genome randomly in order to improve the diversity of the population.
The critical point here is that, always generating fitter individuals in mutation operation will
most likely prevent the core algorithm from producing the best solution. In other words, the
global optima may be reached from the genes of individuals who have lower fitness values.

Coding
&
population initilization

new population
building

|

|

fitness individual |
calculation selection |
|

|

Crossover

genetic
mating

simulated
annealing
improved .. \L

mutation

population
replacement

_—

——

— is max number S
generation)—\ﬂ:ﬁ—
reached —

NO

decode
result

Figure 3.6: Genetic Algorithm with Simulated Annealing

However we see that mutation operator, especially if used in high probability, may decrease
the the average fitness values. In order to prevent this, we aim to control the mutation operator
such that, in earlier generations it changes the population randomly without considering the
overall fitness value of the population. In contrast, in later generations we require the mutation

27

operator to function such that it lets the mutations only improve the individual since we are
close to end of algorithm. We observe that, the closer to the end of algorithm the lower
average fitness value we get if let the mutation operator decrease the individuals fitness.

In order to control the mutation operation, we replace it with Algorithm 4 which is applied

right after the genetic mating process. The resulting algorithm can be seen in Figure 3.6.

Algorithm 4 Simulated Annealing Core
1: saPercantage

2: iterationCount
3: initialPopulation
4: P = getlmprovementPopulation(saPercantage,initialPopulation)
5: for i = 0 — iterationCount do
6: for all individual p in P do
7: my, = mutate(p)
8: if fitness(m,) > fitness(p) then
9: accept m,,
10: else
fitness(mp)— fitness(p)
11: worseningProb = e Cx(maGen/curreniGen)
12: if getRandom() > worseningProb then
13: accept m,,
14: else
15: accept p
16: end if
17: end if
18: end for
19: end for
20:

In simulated annealing improvement part, we do not apply the process to the whole popula-
tion, instead we deal with the some part of the population. The reason behind this is that,
in original mutation, change is applied to the individual under certain probability. Therefore
we keep the same logic here. We firstly, randomly determine the population part that will
be improved by the SA (the getImprovement Population method in Algorithm 4). Then, to
all individuals in the selected portion of the population, we apply mutation which is repeated
iterationCount times. If the fitness gain is positive, we immediately accept the mutated indi-
vidual. Otherwise we accept the mutated individual with the worseningProb. worseningProb
gets higher while the generationCount gets close to the maximum generation count. The
C « (currentGen/maxGen) on line 11 is the temperature function, which controls the proba-
bility of the acceptence rate of mutated solutions with low fitness. By this way, the acceptance
rate of the mutated individuals with low fitness value gets decreased towards the end of algo-

rithm, which fulfills our main goal.

28

3.2 Genetic Algorithm with Harmony Search (with dynamic rates)

Coding
&
population initilization

l new population :
| building |
fitness individual I |
calculation selection I |
| crossover l
| |
L. TR——— 1
genetic
mating
harmony
search
improved -
mutation L
population

replacement

is max number
generation
reached

decode
result

Figure 3.7: Genetic Algorithm with Harmony Search

Similar to the SA improvement, harmony search is replaced with the mutation operator in
original genetic algorithm as seen in Figure 3.7. Harmony search, in the earlier phases of the
algorithm lets the mutated individuals to be accepted even if they have lower fitness values.
On the other hand, in the later phases, it operates in order to improve the current solutions.
This results in improved convergency rate compared to pure GA implementation which is our

main concern.

In HS improvement phase, which can be seen in Algorithm 5, we firstly compute the harmony
memory consideration rate (HMCR). The important point in here is that, we change the
HMCR dynamically. This dynamic rate results in aggressive search in the earlier phases and
improvement in the later phases. With the probability HMCR, we explore the population
instead of generating new solution. This part is memory consideration part of the algorithm.
In the memory consideration part we randomly select a solution and with the PAR probability
we apply pitchAdjustment. This process simply is the mutation process in the original GA.
With (1 — HMCR) probability we introduce new candidate solution. This phase is the random

29

creation part of the original HS algorithm. Then, in contrast to original HS, we introduce
controlled acceptence mechanism. In original HS, only the individuals with higher fitness
values are accepted. However, since we need to accept the individuals with lower fitness
values, we inject the same control here. With the probability rate seen in Formula 3.4, we
include the bad solutions. Since this rate reaches to higher values towards the end of the
algorithm, the acceptence rate of bad solutions will decrease.

fitness(mp)— fitness(p)
¢ CxlmaxCen/currentGen) 3.4

Algorithm 5 Harmony Search Core
HMCR < (currentGeneration/maxGeneration)

iterationCount
P < initial Population
for i = 0 — iterationCount do
if getRandom() < HMCR then
p < getRandomlIndividual (P)
if getRandom() < PAR then
Pm < pitchAd justment (p)
end if
else
Pm < generateNewSolution()
end if _ _
Fitness(mp) fitness{p)
worseningProb = e Cx(maxGen/curreniGen)
if fitness(m,) > fitness(p) then
accept m,,
else
if getRandom() > worseningProb then
accept m,
end if
end if
end for

3.3 Application Implementation

The improved algorithms mentioned in Section 3.1 and Section 3.2 are implemented in Java
programming language. Since our implementations are compared with pure genetic algorithm
and with hybrid approach that uses ACO and GA in the literature, we also implemented these
algorithms.

OSGI framework provides the developers with dynamic component system for JAVA pro-

30

~ qgosopt.xml.serviceGen |

aosOptimizer — oot I
undles

T

[qosopt.api

—
O

JAVA

Figure 3.8: QoSOptimizer Design

~ qosopt.xml.serviceGen - gosopt.sa " qgosopt.hs
‘\\ I II
”l ——————
Vi gqosopt.core
,I l’l’

i
]
)

]

1

i

1

I

i

{

- . s
qosopt.gui . / ; /
-
““““ S H P4 Py
~~~~ P ¥ &

[ gosopt.api

Figure 3.9: QoSOptimizer Dependency Graph

gramming language. It enables the development models where applications are dynamically
composed of many reusable components [2]. In addition, the framework enables the mod-
ules to communicate with other services which enables loose coupling. We have developed
seven modules that lay on top of the OSGI framework. These bundles all together forms our

application qosOptimizer which can be seen in Figure 3.8.

All modules have their own responsibilities, hiding their internal details from each other. They
provide services that can be used by other modules. The “gosopt.api” module is the applica-
tion programming interface bundle. All service and data definitions that the implementation
modules need reside here. The other modules depends only to this module, which enable us
changing the implementation details without changing the code in the dependee modules.

The “qosopt.xml.serviceGen” module is responsible for providing the data that the algorithm
runs with. It converts the XML based service execution plan and XML based concrete services
to the internal data structures. Since this module also implement the services responsible for
data supply, it is very easy to write and integrate some other data supply module.

The “gosopt.core” module is the main module that implements our proposed modified genetic
algorithm. This bundle can be configured at run time, in order to enable the improvements
such as ACO, SA and HS. It provides “IQoSOptimizer” service for execution of algorithms

31



with provided parameters.

The “gosopt.hs” module includes the harmony search implementation. It provides “IHar-
monySearchlmprovement” service, which is called from “gosopt.core” module if HS improve-
ment is enabled.

The “gosopt.sa” module includes the simulated annealing implementation. It provides “ISim-
ulatedAnnealingImprovement” service which is used from “gosopt.core” module if SA im-
provement is enabled.

The “gosopt.aco” module implements the ACO enabled GA approach which is explained in
detail in the review literature section. By this implementation, we compared our algorithms
with the only hybrid GA approach that we found. This module also fully isolates its imple-
mentation behind its service “IAntColoniOptimization”.

The “gosopt.gui” module is our test bundle. It uses “IQoSOptimizer” service in order to
execute the implemented algorithms. It consists of user interfaces in order to get input from
the user. Since the only point that connects this client with the core is only service definition,
it is very easy to use our implementation components in some other client applications.

In Figure 3.10 main screen of our application is presented. This is the user interface of the
“gosopt.gui” module. The interface consists of other panels which is used for setting imple-
mented algorithm parameters and charts that visualize the result of the algorithm.

At the top most of the main screen GA parameter panel resides. The controls are used for
setting the parameters that genetic algorithm needs. In the example, 400 is selected for popu-
lation size, 100 is chosen for maximum generation count, 90% is chosen for crossover prob-
ability, 30% for mutation probability and one point crossover type. Then SA improvement
panel comes. Since the improvement checkbox is not selected, the parameter input controls
are disabled. As shown in the screen, 30% is chosen for SA percentage. SA improvement
is applied to that portion of the population. Moreover 400 is selected for the iteration count.
The remaining two parameter panels are HS and ACO improvement panels. Similarly, they
are also disabled since the related combo-boxes are unchecked.

At the center of the main screen, there exists three charts that visualize the fitness values of
the population. The first chart shows the average fitness value of the population. The second
chart illustrates the best fitness value that is found in each generation. At the final chart, we
show the best fitness value that is found up to that generation. The results in this example
screens belong to the pure GA implementation since no improvement is selected.

32



File

Population Size 0400 Crossover Prob. (%) 90,0 Mutation Prob. (%) 30,0
Generation Count 0100 Crossover Type | One Point | ¥

SA Percentage. (%)

S
30,0

SA Iteration Count 04

[] simulated Annealing Enabled

MaX_BEST = 0,485890
MIM_BEST = 0.320926

Loop Count [_] Hs Enabled Loop Count 0070 [] Aco Enabled
Average Best
0.350 P —— 0.475 | =
et - 0450 s iz
w 0.325 /..// w 0.425 “__.4__
£ 0.300 - £ 0.400 .
[(Tpi Wi o ogarsd|
0.275 4| / 0.350 {|"
0 1o 20 30 40 50 &0 7O B0 90 100 0 1o 20 30 40 50 &0 YO 80 S0 100
Generation Generation
— Awvarage — Best
Best So Far
0.475 ]
0.450 T
@ >
@ 0.425 B ST
£ 0400 o~
& oosTsq
0,350 1|/
0 1o 20 30 40 50 60 FO 8O 90 100
Generation
— Best So Far
MIN_AVARAGE = 0.259466
MAX_AVARAGE = 0,354211
RUN

Figure 3.10: QoSOptimizer Main Screen

33




34



CHAPTER 4

CASE STUDIES AND EVALUATION

In this chapter, the experimental results of the proposed algorithms are presented. We also
compared the results with the methods in the literature. The QoS aggregation rules that are
implemented are presented in Table 4.1. We have only implemented serial and parallel aggre-
gations since more complex aggregations can be defined in terms of them. The QoS values
that are used in our study are the most used ones in the literature. In this table, the formulas
for each of the QoS attributes are used to compute the overall QoS value of the composite
service from its constituent services.

Table 4.1: QoS Aggregation Formulas

QoS Attribute Serial Parallel

Cost (C) Y C(si) Y, C(si)
Response Time (RT) " RT(s;) Max{RT (si)ic{1..n} }
Reliability (R) " R(si) [T R(si)
Throughput (T) Min{T (si)icq1..ny} | Min{T (si)ic{1..n} }

In the experiments, as the data sets, we use the XML based service execution plans and ran-
domly generated QoS values. A sample execution plan and related service implementation
XML is given in Appendix B. The execution plan in listing B.1 shows a composite plan
including both serial and composition pattern, using 16 abstract services. The service imple-
mentations with the QoS values are in the listing B.2. Here “c” stands for Cost, “r” stands for
Reliability, “t” stands for throughput and “rt” stands for responseTime. The abstract services
and the concrete ones are matched with id attribute. For example, the abstractService with
id = 3" has 60 concrete services defined.

4.1 Experimental Results

In this section, we have compared our algorithms GA_HS (HS improved GA) and HA_SA
(SA improved GA) against GA (pure genetic algorithm) and GA_ACO (ACO enabled genetic
algorithm). Since we also implemented the ACO enabled and pure GA, we used the same data
sets in all algorithms.

35



Table 4.2: Genetic Algorithm Parameters

GA Parameter Name Value
Population Count 200
Crossover Probability 90%
Mutation Probability 30%
Maximum Generation Count 100
Crossover Type One Point
SA Application 30%
SA Iteration Count 400
HS Iteration Count 70
ACO Iteration Count 70

Since GA_ACO proposed in the literature is only applicable in serial execution plan, we
conducted our experiments on both serial pattern and composed patterns. In all experiments
we used the same algorithm parameters. These GA parameters are given in Table 4.2.

4.1.1 Average Fitness vs. Generation

In this experiment we analyze the change of average fitness value as the generation count
increases. The result of this experiment shows the main improvement of this thesis.

0.45
0.4
0.35
g 03 —=— GA
E 0.25 —+— GA _HS
o 02 GA ACO
;g‘f 0.15 —i— GA_SA

0.1
0.05

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Generation (X 10)

Figure 4.1: Average Fitness vs. Generation Under Serial Workflow Model

36



0.4
0.35
0.3
0.25
0.2
0.15

—4— GA_HS
GA SA

Avarage Fitness

0.1

0.05

0 ki
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Generation (X 10)

Figure 4.2: Average Fitness vs. Generation Under Serial and Parallel Workflow Model

As seen in Figure 4.1 and Figure 4.2 both of our algorithms are superior to the pure GA and
ACO enabled GA algorithm. SA and HS improvements enable the population to reach the
average fitness values around to 0.4, while the other ones are around to 0.3. Moreover, our
proposed algorithms reach the convergence point earlier than the other algorithms. The results
of HS improvement and SA improvement are almost the same except that SA improvement
convergence rate is better than the HS improvement. Since the ACO implementation in the
literature cannot be applied to workflow that both includes serial and parallel patterns, we
have conducted two experiments in this test. In one of them we use the workflow that only
includes serial pattern, in one of them we used the workflow that includes both serial and
parallel patterns.

In addition, with the execution plan that consists of serial and parallel paterns, HS and SA
improvements also get higher average fitness values as generation count increases.

4.1.2 Execution Time vs. Number of Tasks

In this experiment, we evaluate the change in the execution time of the algorithms as the
number of tasks increases. We perform the evaluation under 10, 20, 30 and 40 number of
tasks. In each experiment, the execution plans have the same structure. As the only difference,
we increased the number of abstract services in each serial node. Moreover we define 10
concrete services for each abstract service in order to test only the effect of abstract service
count on execution time. As seen in Figure 4.3 and in Figure 4.4 HS improvement’s execution
time is very close to pure genetic algorithm implementation which makes it elegant choice

over pure genetic algorithm.

37



Execution Time (ms)

Execution Time (ms)

Execufion Time (ms)

—— GA
—4— GA_ACO
GA_HS

0 10 20 30 40
Task Mumber

Figure 4.3: Execution Time vs. Number of Tasks Under Serial Workflow Model

25000
20000

15000
== GA

—e— GA_SA
10000

5000

0 O = — —u
0 10 20 30 40
Task Number
Figure 4.4: Execution Time vs. Number of Tasks Under Serial Workflow Model

45000
40000
35000
30000
25000 == GA_SA
20000 ——GA
15000
10000
5000

0 a g - .

0 10 20 30 40

L 2

Task Number

Figure 4.5: Execution Time vs. Task Number Under Serial and Parallel Workflow Model

38



2000
1800
1600
1400
1200
1000
800
600
400
200

—m— GA_HS
—4— GA

Execution Time (ms)

0 10 20 30 40
Task Number
Figure 4.6: Execution Time vs. Task Number Under Serial and Parallel Workflow Model

However, simulated annealing improvement takes much longer time than that of other algo-
rithms. This large gap between execution times make HS superior to SA improvement since
HS and SA improvements provide almost the same results on the other test cases.

Similarly, in the serial and parallel execution time analysis, HS results are very close to pure
GA implementation and SA improvement takes the highest execution time as seen in Fig-
ure 4.5 and Figure 4.6.

4.1.3 Execution Time vs. Generation Count

We also analyze the change of execution time as the generation count increases. In this test,
we use the same execution plan and the same concrete service list for each test case. We used
15 abstract services and 10 concrete services for each task.

900

800

700

600

500 == GA

400 == GA_ACO
300 GA_HS

200
100
Ok

Execution Time (ms)

Generation Count

Figure 4.7: Execution Time vs. Generation Count Under Serial Workflow Model



14000

12000
= 10000
E —a—GA
g 8000 —— GA_ACO
=
6000 GA_HS
i) == GA_SA
@ 4000
oo
w
2000
0 &2 )
0 10 20 30 40 50 60 70 80 90 100
Generation Count
Figure 4.8: Execution Time vs. Generation Count Under Serial Workflow Model
1200
1000
£ 800
E 600 A
" GA_HS
=
S 400
2
“ 200
Ok

0 10 20 30 40 50 60 70 80 90 100
Generation Count

Figure 4.9: Execution Time vs. Generation Count Under Serial and Parallel Workflow Model

25000

20000
)
£
s 15000 —— GA
E GA_HS
5 10000 = GA_SA
3
4
d 5000

0

0 10 20 30 40 50 60 70 80 90 100
Generation Count

Figure 4.10: Execution Time vs. Generation Count Under Serial and Parallel Workflow Model

As seen in Figure 4.7, Figure 4.8 ,Figure 4.9 and Figure 4.10 the execution time and generation

count are linearly dependent, as the generation number increases the execution times increase

40



linearly. Note that HS improvement execution time is very close to pure GA whereas SA
improvement’s time is significantly higher than the other algorithms. The possible causes of
fluctuation in the charts are garbage collection process in JAVA and the non-real time test
environment.

4.1.4 Execution Time vs. Number of Concrete Services

In this experiment, we measure the execution time change while the concrete service number
changes. We measured the execution time for 10, 20, 30 and 40 concrete services for each
abstract service. Since we want to see only the service implementation number effect, we use
the same execution plan in each of four cases.

700
600 # —— * L

3

o —-—GA

£ —e— GA_ACO

5 GA_HS

=

@

&

0 10 20 30 40

Number of Concrete Service

Figure 4.11: Execution Time vs. Number of Concrete Services Under Serial Workflow Model

9000
8000
7000
6000
5000
4000
3000
2000
1000

—=—GA

—— GA_ACO
GA_HS

—i— GA_SA

Execution Time (ms)

v s ad
20 30 40

Number of Concrete Service

Figure 4.12: Execution Time vs. Number of Concrete Services Under Serial Workflow Model

41



900

800

700

600 e —— |

500 = GA
400 GA_HS
300

200

100

0 ki
0 10 20 30 40

Execution Time (ms)

Mumber of Concrete Service

Figure 4.13: Execution Time vs. Number of Concrete Services Under Serial and Parallel
Workflow Model

18000

16000

14000

12000

10000 —— A
8000 GA_SA
6000
4000

—

0 10 20 30 40

Execution Time (ms)

Number of Concrete Service
Figure 4.14: Execution Time vs. Number of Concrete Services Under Serial and Parallel
Workflow Model

As seen Figures 4.11, 4.12, 4.13 and 4.14 the number of concrete services for each abstract

service has no clear effect on the execution time.

Similar to the previous cases, SA improvement has higher execution time than the other algo-
rithms, although this value is constant while the number of concrete services changes.

4.1.5 Best Fitness Value Test

In genetic algorithm, similar to the real evolution in the nature, the fitness of the whole popu-
lation is more important than the fitness of single individual. In nature, this is the survival key
of the species. Therefore, in GA implementations the success is measured from the average
fitness values. On the other hand in our domain, overall QoS optimization of web service
composition, giving the best result is more important from the last user point of view. How-
ever, in order to get the best result in genetic algorithm, the population must have many fit

42



individuals because best individual can only be generated from other fit individuals.

In this experiment, we measured the best fitness values produced by the algorithms. For this
evaluation, we present the chart result of our test program, qosOptimizer, in order to visualize
the results. We used 10 abstract services in execution plan, and 40 concrete services for each

abstract service. We use the same test input for all algorithms.

Average Best
07| M,J"NJ'\,'-"w-..r'!\‘"‘f”'»*-.mm_wmw,ﬁ'.,-,_r«,wﬂﬂ oaso ||
w gasoll n 0.425 ll’
w - I w
£ 0325 I(' Rl
T 0300 i 0375
0.275 0.350
] 250 500 750 1,000 ] 250 500 750 1,000
Generation Generation
— Avarage —Best
Best So Far
04504 S
i
o 0.425
o
g 0.400
T o375
0.350
0 250 500 750 1,000
Generation
— Best So Far

Figure 4.15: Genetic Algorithm Best Fitness

Average Best
| 050
P | — 2 0.45
g 0.40 E i | S —
T o3| _ £ nao
0.20 || 0as |
0 10 20 30 a0 50 &0 0 =) 90 100 [u] 1o 20 320 40 50 &0 0 80 90 100
Generation Generation
— Avarage — Best
Best So Far
ol
«
R | —
5]
= 040
03s ||/

] 10 20 30 40 50 &0 0 80 90 100

Generation

— Best So Far

Figure 4.16: HS Improvement Best Fitness

In Figures 4.15, 4.16 and 4.17 there are three charts on the average fitness, best fitness and
best fitness so far. In average fitness charts, we show the average fitness values per generation.
In best fitness, we visualize the fitness value of the fittest individual per generation. In the best
so far chart, we show the fitness value of the fittest individual up to that generation. Actually,

the final value of the this chart is the result that we search for.

43



In Figure 4.15 it is seen that, the average fitness value is reached to 0.375 and the best fitness

value is 0.450 when the pure GA is executed.

Average Best
0.50 e 0.50 e
o« 045 ~ - —~
5 0.40 - g 0454
S pas = |
fire / T o040
0.30|/
0.25 L 0.35
0 10 20 30 40 50 60 7O B0 S0 100 o 10 20 30 40 50 60 7O BO S0 100
Generation Generation
— Avarage — Best

Best So Far

0.50

o454

Fitness

0.40

0.35

20 320 40 50 &D

Generation

— Best So Far

70 80 90 100

Figure 4.17: SA Improvement Best Fitness

On the other hand in Figures 4.16 and 4.17 it is shown that, the average fitness value is reached
to 0.50 and the best fitness value is 0.50.

Besr Fitness So Far

0.6
0.5

0.4
—— GA

—— GA_HS
—i—GA_SA

0.3
0.2
0.1

0

0 &5 10 15 20 25 30 35 40 45 50 55 60 65 70O 75 80 85 90 95
Generation

Figure 4.18: Best Fitness So Far

You can see the best fitness values for the first 100 generation in Figure 4.18. As seen HS

improvement and SA improvement reach higher values than that of pure GA.

44



Table 4.3: Best Fitness Test

GA GA_HS | GA_SA
Maximum Average Fitness 0.39387 | 0.53419 | 0.51962

Maximum Best Fitness 0.46419 | 0.53419 | 0.52283
Maximum Best Fitness So Far | 0.46419 | 0.53419 | 0.52283
Execution Time 5270 3333 38665

In this experiment, we increase the maximum generation number in pure GA, which deter-
mines the end of algorithm, in order to provide that genetic algorithm runs longer than the
HS improvement. Although it runs 2 seconds more than HS improvement the result is far
behind the HS improvement, which is given in Table 4.3. While the best fitness value of HS
improvement is 0.53419, best fitness value of pure GA 0.39387. In this test, however, we
increase the loop count of HS improvement to 2000 which makes the result more distinguish-
able. Although the best fitness value of SA improvement is also good, the run time is 38665
ms which is 8 times longer than that of the HS improvement.

4.1.6 Effect of Mutation Ratio

Since mutation operator is replaced with our smart mutation operators, we also measured
the effect of change in mutation ratio on the average fitness value in pure GA. As seen in
Figure 4.19, initially, as the mutation ratio increases, the average fitness increases. However,
after we increase mutation ratio to 20%, the average fitness tends to decrease. This behavior
can be interpreted as the hard to predict and destructive nature of mutation operator.

0.5
0.45
0.4
o 035 - 0%
2 03 —— 10%
C 025 20%
% 0.2 e 30%
;:‘3 0.15 e 40%

0.1
0.05
0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Generation

Figure 4.19: Average Fitness vs Generation Count Under the Change of Mutation Ratio in
Pure GA

45



On the other hand, HS improvement is not destructive. As seen in Figure 4.20, HS improve-
ment’s effect gets higher as the iteration count increases. At higher generation counts, the
net effect of iteration count becomes clear. In HS algorithm, at higher iterations more pitch
adjustment (the mutation operator in HS domain) is applied. Since we control the effect of
mutation on the population dynamically, it supports the population to higher fitness values
especially in later generations which is described in detail in Proposed Methods section.

0.6

0.5
@ 0.4 = 250
Z o3 —e— 500
r 750
[1n]
£ 02 —ie— 1000
<1

0.1

0 5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Generation

Figure 4.20: Iteration Count Harmony Search

Although average fitness of pure GA changes as the mutation ratio increases, HS improvement
gets higher results than those of pure GA in all tested mutation ratios. You can see that, in
Tables 4.4 and 4.5, HS improvement results in higher maximum average fitness values than
those of pure GA. This final test shows that HS improvement is superior to the pure GA with
various mutation ratios.

Table 4.4: P ic Algorith
able ure Genetic Algorithm Table 4.5: Harmony Search Improvement

46

Mutation Ratio | Max. Average Fitness . -
& Iteration Count | Max. Average Fitness

%0 0.414448

250 0.464190
%10 0.433151

500 0.485764
%20 0.429535

750 0.516976
%30 0.394951 1000 0.534086
%40 0.352531




CHAPTER 5

CONCLUSION

Using existing web services in order to compose new web services is very popular. With the
increasing web technologies and demand on the services, many services become available.
Among these services, many of them can be used interchangeably enabling them to be defined
as abstract services regarding the input, output and the execution logic of them. Moreover,
there can be a lot of concrete services for each these abstract services carrying out the same
job. Although these services can be defined as equivalent in the sense of the job they realize,
they may have different quality of service values that affect overall quality of the composed

service.

There are two main issues in this orchestration process of the web services. The first one is
the determining the execution plan which consists of the aggregation structure of the services
in the composition. In this execution plan, aggregation is done with the abstract services since
there can be many candidate services for each node in the composition. The second one is
that, selecting concrete services for the each abstract service in the execution plan such that
overall QoS of the composed service is maximized. In this thesis we try to propose solutions
for this second problem.

In this thesis, there are two improved genetic algorithm proposed in order to optimize the
overall QoS value of the given execution plan. Since the problem is NP-hard, we see that
optimization techniques are very common in the literature, which is one of the reasons that we
choose also using genetic algorithm. However, the methods in the literature use pure genetic
algorithm with pure mutation operator. Instead of pure mutation operator, we propose other
heuristics with modifications as smart mutation operator. Original mutation operator does not
care the mutated individual has higher fitness or not. Moreover, mutation tends to generate
individuals with lower fitness values, which makes the population has lower average fitness
values if it is applied aggressively. However, if mutation operates such that it produces always
better individuals then there appears the risk of getting stuck in the local optima. Therefore,
we propose smart mutation operators such that, in the earlier generations it does not care the
mutated individuals fitness value. In later generations, however, it only accepts the mutations
only if they have higher fitness values.

The first proposed algorithm is simulated annealing improved genetic algorithm which uses

47



SA as mutation operator. As seen in Chapter 4, this algorithm makes the population to have
higher fitness values than the original GA and ACO improved GA which is the only hybrid
genetic algorithm for this problem in the literature domain. Although SA improvement’s
execution time is longer than the pure GA, pure GA cannot reach the average fitness value
that the SA improvement reaches.

The second proposed algorithm is harmony search improved genetic algorithm which uses
HS as smart mutation operator. Similar to SA enabled GA, this algorithm is also superior
to pure GA and ACO enabled GA. Moreover, HS improvement execution time overhead is
nearly 100 ms in our most compelling tests. Also, the convergence rate of HS improvement
is much better than the pure GA. It reaches to the stable fitness value in earlier generations.

Another advantage of SA and HS improvement over pure GA is that, the fittest individual of
our proposed algorithms are much better than the best of pure GA. Moreover, ACO enabled
GA, the only hybrid GA in our literature search, can only operate on only serial execution
plans. On the other hand, SA and HS improvement are applicable in all aggregations.

In order to test the algorithm implementations and compare them with each other, along with
our algorithms, pure GA and ACO enabled one are also implemented. Moreover, we develop
a test application ,QoSOptimizer, which is used in all test cases. Since we develop the al-
gorithms in OSGI framework, they are bundled as independent libraries which can be easily
used in other client applications. This modular design helped us to implement and test the
implementations easily, since it separates all implementations form each other and enables
them to be used without other implementations.

We use weighted fitness function design which makes the core algorithm single objective
optimization. As a future work, multiple objective optimization can be realized within our
proposed algorithms. Also, parallel computing techniques can be used in order to run multiple
sessions in order to increase the chance to reach global optima which can be defined also as a
web service.

48



REFERENCES

[1] ibm.com, "Understanding WSDL in a UDDI registry". Retrieved at April 2, 2011, from
http://www.ibm.com/developerworks/webservices/library/ws-wsdl/.

[2] Osgi alliance, "The OSGI Architecture". Retrieved at May 12, 2012, from http://
www.osgi.org/Technology/WhatIs0SGi.

[3] tutorialspoint.com, "UDDI Data Model". Retrieved at April 2, 2011, from http://
www.tutorialspoint.com/uddi/uddi_data_model.htm.

[4] uddi.org, "Introduction to UDDI:Important Features and Functional Concepts". Re-
trieved at April 2, 2011, from http://uddi.org/pubs/uddi-tech-wp.pdf.

[5] Artificial Intelligence A Modern Approach. Prentice Hall, Pearson Education Inc., 2003.

[6] E. P. A. Aamodt. Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. In CAICom - Artificial Intelligence Communications,
1OS Press, pages 39-59, 1994.

[7] L. Ai and M. Tang. A penalty-based genetic algorithm for qos-aware web service com-
position with inter-service dependencies and conflicts. CIMCA,IAWTIC,ISE, pages 738—
743, 2008.

[8] E. Askaroglu. Aotomatic quality of service (qos) evaluation for domain specific web
service discovery framework. METU Thesis Journal, pages 1-51, 2012.

[9] H. C. Chunming Gao, Meiling Cai. Qos-aware service composition based on tree-coded
genetic algorithm. 31st Annual International Computer Software and Applications Con-
ference, 2007.

[10] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. Computational Intel-
ligence Magazine, IEEE, 1(4):28-39, 2006.

[11] E. Glover. Tabu search fundamentals and uses. Retrieved at Octo-
ber 8, 2012, from http://leeds-faculty.colorado.edu/glover/TS%20-%
20Fundamentals&Uses.pdf.

[12] J. S. K. O. Hiroshi Wada, Paskorn Champrasert. Multiobjective optimization of sla-
aware service composition. IEEE Ongress on Services, pages 368-375, 2008.

[13] N. Jafarpour and M. Khayyambashi. A new approach for qos-aware web service com-
position based on harmony search algorithm. In Web Systems Evolution (WSE), 2009
11th IEEE International Symposium on, pages 7578, 2009.

[14] H. Liu, F. Zhong, B. Ouyang, and J. Wu. An approach for qos-aware web service
composition based on improved genetic algorithm. In Web Information Systems and
Mining (WISM), 2010 International Conference on, volume 1, pages 123-128, 2010.

49


http://www.ibm.com/developerworks/webservices/library/ws-wsdl/
http://www.osgi.org/Technology/WhatIsOSGi
http://www.osgi.org/Technology/WhatIsOSGi
http://www.tutorialspoint.com/uddi/uddi_data_model.htm
http://www.tutorialspoint.com/uddi/uddi_data_model.htm
http://uddi.org/pubs/uddi-tech-wp.pdf
http://leeds-faculty.colorado.edu/glover/TS%20-%20Fundamentals&Uses.pdf
http://leeds-faculty.colorado.edu/glover/TS%20-%20Fundamentals&Uses.pdf

[15] H. S. Mahmood Allameh Amiri. Qos aware web service composition based on genetic
algorithm. International Symposium on Telecommunications, pages 502-507, 2010.

[16] E. Maximilien and M. Singh. A framework and ontology for dynamic web services
selection. Internet Computing, IEEE, 8(5):84-93, 2004.

[17] T. Rajendran and P. Balasubramanie. An optimal agent-based architecture for dynamic
web service discovery with qos. In Computing Communication and Networking Tech-
nologies (ICCCNT), 2010 International Conference on, pages 1-7, 2010.

[18] A. Strunk. "QoS-Aware Service Composition:A Survey". Eight IEEE European Con-
ference on Web Services, pages 67-73, 2010.

[19] S. K. C. D. G. M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671 —680, 1983.

[20] C. Worasucheep. A harmony search with adaptive pitch adjustment for continuous op-
timization. International Journal of Hybrid Information Technology, 4:13 =20, 2011.

[21] X. S. Yang. Harmony search as a metaheuristic algorithm. Studies in Computational
Intelligence, 181:1 —14, 2009.

[22] X. Ye and R. Mounla. A hybrid approach to qos-aware service composition. In Web
Services, 2008. ICWS "08. IEEE International Conference on, pages 62—-69, 2008.

[23] Y. S. C. H. W. J. Y. K. S. P. M. Yong Yi, Fanjiang. Genetic algorithm for qos-aware
dynamic web service composition. Proceedings of the Ninth International Conference
on Machine Learning and Cybernetics,Qingdao, pages 1-2, 2010.

[24] C. Z. Yue Ma. Quick convergence of genetic algorithm for qos-driver web service se-
lection. Computer Networks, 2:1093—-1104, 2008.

[25] C. Zhang. Adaptive genetic algorithm for qos-aware service selection. Workshops of
International Conference on Advanced Information Networking and Applications, pages

273-278, 2011.

[26] C. Zhang. Adaptive genetic algorithm for qos-aware service selection. Workshops of
International Conference on Advanced Information Networking and Applications, pages
273-278, 2011.

[27] G.L.Z.W. Geem, J.H. Kim. A new heuristic optimization algorithm: Harmony search.
Simulations, 76:60 —68, 2001.

50



APPENDIX A

CASE STUDIES

In this section, average fitness values vs. generation number, execution time vs. task number,
execution time vs. generation count and execution time vs. concrete service number tables
are given. These tables are results of case studies which are given in Chapter 4.

Table A.1: Average Fitness values vs. Generation Number in Serial Workflow Model

Generation Number GA GA_ACO | GA_HS | GA_SA
5 0.23734 | 0.26399 | 0.27859 | 0.30613
10 0.33604 | 0.28001 | 0.30741 | 0.33604
15 0.35810 | 0.28494 | 0.32976 | 0.35810
20 0.37268 | 0.29303 | 0.34605 | 0.37268
25 0.29952 | 0.29368 | 0.35751 | 0.38207
30 0.30973 | 0.30608 | 0.37174 | 0.38415
35 0.30930 | 0.31167 | 0.37970 | 0.38539
40 0.31863 | 0.31304 | 0.38060 | 0.38581
45 0.31890 | 0.31220 | 0.38318 | 0.38557
50 0.31920 | 0.32058 | 0.38429 | 0.38550
55 0.31658 | 0.31973 | 0.38572 | 0.38563
60 0.31878 | 0.32324 | 0.38575 | 0.38569
65 0.32113 | 0.32415 | 0.38572 | 0.38581
70 0.31808 | 0.32554 | 0.38564 | 0.38577
75 0.31679 | 0.32449 | 0.38570 | 0.38580
80 0.31274 | 0.32157 | 0.38571 | 0.38563
85 0.31774 | 0.32458 | 0.38577 | 0.38575
90 0.32327 | 0.32398 | 0.38579 | 0.38574
95 0.32128 | 0.32000 | 0.38581 | 0.38564

51



Table A.2: Average Fitness values vs. Generation Number in Serial and Parallel Workflow
Model

Generation Number GA GA_HS | GA_SA
5 0.25301 | 0.27237 | 0.30727
10 0.27028 | 0.29989 | 0.33361
15 0.28337 | 0.32218 | 0.35154
20 0.29684 | 0.33840 | 0.36415
25 0.30347 | 0.35260 | 0.37447
30 0.30518 | 0.36248 | 0.37938
35 0.30978 | 0.36953 | 0.38085
40 0.31022 | 0.37558 | 0.38090
45 0.31463 | 0.37957 | 0.38074
50 0.31464 | 0.37948 | 0.38084
55 0.31923 | 0.37968 | 0.38087
60 0.32200 | 0.38037 | 0.38082
65 0.3212 | 0.38054 | 0.38084
70 0.31673 | 0.38066 | 0.38079
75 0.31296 | 0.38054 | 0.38080
80 0.31279 | 0.38046 | 0.38078
85 0.31227 | 0.38048 | 0.38074
90 0.31029 | 0.38055 | 0.38072
95 0.31387 | 0.38065 | 0.38080

Table A.3: Execution Time vs. Task Number in Serial Workflow Model

Task Number | GA | GA_ACO | GA_HS | GA_SA
10 465 509 477 7751

20 602 775 844 12128
30 832 1043 1120 17319
40 1031 1588 1327 23321

Table A.4: Execution Time vs. Task Number in Serial and Parallel Workflow Model

Task Number | GA | GA_HS | GA_SA
10 630 830 15634
20 833 1197 26928
30 1129 1531 31572
40 1337 1725 41714

52



Table A.5: Execution Time vs. Generation Count in Serial Workflow Model

Task Number | GA | GA_ACO | GA_HS | GA_SA
10 85 206 111 1443
20 135 253 201 2743
30 186 299 357 4092
40 236 343 446 5370
50 306 390 513 6635
60 368 435 578 7867
70 482 564 641 9102
80 529 624 702 10325
90 580 671 766 11553
100 628 723 824 12658

Table A.6: Execution Time vs. Generation Count in Serial and Parallel Workflow Model

Task Number | GA | GA_HS | GA_SA
10 98 130 2259
20 164 230 4257
30 233 343 6272
40 297 490 8267
50 379 599 10263
60 524 685 12269
70 586 782 14274
80 675 866 16270
90 735 959 18266
100 814 1032 20069

Table A.7: Execution Time vs. Concrete Service Number in Serial Workflow Model

Task Number | GA | GA_ACO | GA_HS | GA_SA
10 419 614 583 7779
20 401 620 587 7942
30 441 616 535 7906
40 423 615 545 7993

Table A.8: Execution Time vs. Concrete Service Number in Serial and Parallel Workflow
Model

Task Number | GA | GA_HS | GA_SA
10 609 789 16329
20 621 719 16604
30 607 790 15958
40 619 748 16054

53



54



20
21
22
23
24
25
26
27
28
29
30
31

32

APPENDIX B

XML BASED SERVICE EXECUTION PLAN &
IMPLEMENTATIONS

In this section the XML based service execution plan and corresponding XML based concrete
service list are given as an example. These are the ones that are used in the case studies

section, the average fitness per generation test.

Listing B.1: Simple Executuion Plan

<?xml version="1.0" encoding="UTF 8" 7>
<executionPlan>
<serial>
<serial>
<abstractService id="0" />
<abstractService id="1" />
<abstractService id="2" />
</serial>
<parallel>
<serial>
<abstractService id="3" />
<abstractService id="4" />
<abstractService id="5" />
<abstractService id="6" />
<abstractService id="7" />
</serial>
<serial>
<abstractService id="8" />
<parallel>
<serial>
<abstractService id="9" />
<abstractService id="10" />
</serial>
<serial>
<abstractService id="11" />
<abstractService id="12" />
</serial>
</parallel>
<abstractService id="13" />
</serial>
</parallel>
<serial>

55



33 <abstractService id="14" />
34 <abstractService id="15" />
35 </serial>

36 </serial>
371</executionPlan>

56



Listing B.2: Service Implementation

20

21

22

23

24

25

26

27

28

29

30

<?xml version="1.0" encoding="UTF 8"?>

<services id="" >
<serviceSet id="0">
<services id="0" cost="1" reliability ="0.1" throughput="1"
responseTime="1"/>
<services id="1" cost="12" reliability ="0.2" throughput="2"
responseTime="2"/>
<services id="2" cost="13" reliability ="0.3" throughput="3"
responseTime="3"/>
<services id="3" cost="12" reliability ="0.2" throughput="2"
responseTime="2"/>
<services id="4" cost="4" reliability ="0.9" throughput="9"
responseTime="9"/>
</serviceSet>
<serviceSet id="1">
<services id="0" cost="8" reliability ="0.3" throughput="3"
responseTime="3"/>
<services id="1" cost="11" reliability="0.1" throughput="1"
responseTime="1"/>
<services id="2" cost="1" reliability ="0.6" throughput="6"
responseTime="6"/>
<services id="3" cost="12" reliability ="0.2" throughput="2"
responseTime="2"/>
<services id="4" cost="3" reliability ="0.8" throughput="8"
responseTime="8"/>
<services id="5" cost="10" reliability ="0.5" throughput="5"
responseTime="5"/>
</serviceSet>
<serviceSet id="2">
<services id="0" cost="7" reliability ="0.7" throughput="7"
responseTime="7"/>
<services id="1" cost="9" reliability ="0.4" throughput="4"
responseTime="4"/>
<services id="2" cost="11" reliability="0.1" throughput="1"
responseTime="1"/>
<services id="3" cost="11" reliability="0.1" throughput="1"
responseTime="1"/>
<services id="4" cost="3" reliability ="0.3" throughput="3"
responseTime="3"/>
<services id="5"  cost="1" reliability="0.1" throughput="1"
responseTime="1"/>
<services id="6" cost="7" reliability ="0.7" throughput="7"
responseTime="7"/>
</serviceSet>
<serviceSet id="3">
<services id="0" cost="6" reliability ="0.6" throughput="6"
responseTime="6"/>
<services id="1" cost="6" reliability="0.1" throughput="1"
responseTime="1"/>
<services id="2" cost="12" reliability="0.7" throughput="7"

responseTime="7"/>

57



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

id="3"
responseTime="3"/>

<services cost="8"

<services id="4" cost="12"
responseTime="7"/>
<services id="5" cost="6"

responseTime="1"/>
</serviceSet>

<serviceSet i1d="4">

<services id="0" cost="14"
responseTime="9"/>
<services id="1" cost="9"
responseTime="4"/>
<services id="2" cost="15"
responseTime="10"/>
<services id="3" cost="10"
responseTime="10"/>
<services id="4" cost="11"
responseTime="6"/>
<services id="5" cost="2"
responseTime="2"/>
<services id="6" cost="7"
responseTime="7"/>
<services id="7" cost="11"

responseTime="6"/>
</serviceSet>

<serviceSet id="5">
<services id="0" cost="3"
responseTime="8"/>
<services id="1" cost="14"
responseTime="9"/>
<services id="2" cost="5"
responseTime="5"/>
<services id="3" cost="15"
responseTime="5"/>
<services id="4" cost="12"
responseTime="7"/>
<services id="5" cost="6"
responseTime="1"/>
<services id="6" cost="13"

responseTime="8"/>
</serviceSet>

<serviceSet id="6">
<services id="0" cost="4"
responseTime="4"/>
<services id="1" cost="1"
responseTime="1"/>
<services id="2" cost="8"
responseTime="8"/>
<services id="3" cost="13"
responseTime="3"/>
<services id="4" cost="14"

responseTime="9"/>
</serviceSet>

reliability ="0.3"

reliability ="0.7"

reliability ="0.1"

reliability ="0.9"

reliability ="0.4"

reliability="1"

reliability="1"

reliability ="0.6"

reliability ="0.2"

reliability ="0.7"

reliability ="0.6"

reliability ="0.8"

reliability ="0.9"

reliability ="0.5"

reliability ="0.5"

reliability ="0.7"

reliability="0.1"

reliability ="0.8"

reliability ="0.4"

reliability ="0.1"

reliability ="0.8"

reliability ="0.3"

reliability ="0.9"

58

throughput="3"
throughput="7"
throughput="1"

throughput="9

throughput="4"

throughput="10"

throughput="10"

throughput="6
throughput="2"
throughput="7"

throughput="6

throughput="8"
throughput="9"
throughput="5"

throughput="5
throughput="7"
throughput="1"

throughput="8

throughput="4"

throughput="1"

throughput="8"

throughput="3"

throughput="9"



61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

<serviceSet 1d="7">

<services id="0" cost="8"
responseTime="8"/>
<services id="1" cost="14"
responseTime="9"/>
<services 1d="2" cost="5"
responseTime="10"/>
<services id="3" cost="1"
responseTime="6"/>
<services id="4" cost="13"

responseTime="3"/>
</serviceSet>

<serviceSet 1d="8">

<services 1id="0" ~cost="12"
responseTime="2"/>

<services 1id="1" cost="12"
responseTime="7"/>

<services 1d="2" cost="12"
responseTime="2"/>

<services id="3" cost="8"
responseTime="8"/>

<services id="4" cost="2"
responseTime="7"/>

<services id="5" cost="15"

responseTime="10"/>
</serviceSet>

<serviceSet 1d="9">

<services id="0" cost="4"
responseTime="4"/>
<services id="1" cost="13"
responseTime="8"/>
<services id="2" cost="11"
responseTime="1"/>
<services id="3" cost="14"
responseTime="4"/>
<services id="4" cost="1"
responseTime="6"/>
<services id="5" cost="3"
responseTime="3"/>
<services id="6" cost="1"

responseTime="1"/>
</serviceSet>

<serviceSet 1id="10">

<services 1d="0" cost="7"
responseTime="7"/>
<services id="1" cost="7"
responseTime="2"/>
<services 1d="2" cost="3"
responseTime="3"/>
<services id="3" cost="14"
responseTime="4"/>
<services id="4" cost="8"

responseTime="8"/>

reliability ="0.8"
reliability ="0.9"

reliability ="0.1"

reliability ="0.6"

reliability ="0.3"

reliability ="0.2"

reliability ="0.7"

reliability ="0.2"
reliability ="0.8"
reliability ="0.7"

reliability ="0.1"

reliability ="0.4"
reliability ="0.8"
reliability ="0.1"
reliability ="0.4"

reliability ="0.6"

reliability ="0.3"

reliability ="0.1"

reliability ="0.7"

reliability ="0.2"

reliability ="0.3"
reliability ="0.4"

reliability ="0.8"

59

throughput="8"

throughput="9

throughput="10

throughput="6"

throughput="3

throughput="2

throughput="7

throughput="2

throughput="8"

throughput="7"

throughput="10"

throughput="4"

throughput="8

throughput="1

throughput="4

throughput="6"

throughput="3"

throughput="1"

throughput="7"

throughput="2"

throughput="3"

throughput="4

throughput="8"

"

n

"

"

n

n



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

id="5"  cost="13"
responseTime="3"/>

<services

<services id="6" cost="4"
responseTime="4"/>

<services id="7" cost="3"
responseTime="8"/>

<services id="8" cost="12"

responseTime="7"/>
</serviceSet>

<serviceSet i1id="11">

<services id="0" cost="1"
responseTime="6"/>
<services id="1" cost="2"
responseTime="7"/>
<services id="2" cost="11"
responseTime="6"/>
<services id="3" cost="1"
responseTime="1"/>
<services id="4" cost="12"
responseTime="2"/>
<services id="5" cost="9"

responseTime="9"/>
</serviceSet>

<serviceSet 1d="12">

<services id="0" cost="12"
responseTime="2"/>
<services id="1" cost="10"
responseTime="5"/>
<services id="2" cost="15"
responseTime="5"/>
<services id="3" cost="11"
responseTime="1"/>
<services id="4" cost="5"
responseTime="5"/>
<services id="5" cost="12"
responseTime="7"/>
<services id="6" cost="5"
responseTime="10"/>
<services id="7" cost="5"

responseTime="10"/>
</serviceSet>

<serviceSet id="13">

<services id="0" cost="13"
responseTime="8"/>

<services id="1" cost="6"
responseTime="6"/>

<services id="2" cost="15"
responseTime="5"/>

<services id="3" cost="6"
responseTime="6"/>

<services id="4" cost="3"

responseTime="8"/>
</serviceSet>

reliability ="0.3"

reliability ="0.4"

reliability ="0.8"

reliability ="0.7"

reliability ="0.6"

reliability ="0.7"

reliability ="0.6"

reliability ="0.1"

reliability ="0.2"

reliability ="0.9"

reliability ="0.2"

reliability ="0.5"

reliability ="0.5"

reliability ="0.1"

reliability ="0.5"

reliability ="0.7"

reliability="1"

reliability="1"

reliability ="0.8"

reliability ="0.6"

reliability ="0.5"

reliability ="0.6"

reliability ="0.8"

60

throughput="3"
throughput="4"
throughput="8"

throughput="7

throughput="6"

throughput="7"
throughput="6"

throughput="1"

throughput="2

throughput="9"

throughput="2

throughput="5

throughput="5
throughput="1"
throughput="5"

throughput="7"

throughput="10"

throughput="10"

throughput="8"

throughput="6"

throughput="5"

throughput="6"

throughput="8"



121
122

123

124

125

126

127

128

129

130

131

132

133

134

135

136
137

<serviceSet id="14">
<services id="0" <cost="2" reliability="0.2" throughput="2"
responseTime="2"/>
<services id="1" cost="11" reliability ="0.1" throughput="1
responseTime="1"/>
<services id="2" cost="8" reliability="0.3" throughput="3"
responseTime="3"/>
<services id="3" cost="11" reliability="0.6" throughput="6
responseTime="6"/>
<services id="4" cost="3" reliability="0.3" throughput="3"
responseTime="3"/>
</serviceSet>
<serviceSet id="15">
<services 1d="0" cost="4" reliability="0.9" throughput="9"
responseTime="9"/>
<services id="1" cost="14" reliability ="0.4" throughput="4
responseTime="4"/>
<services 1d="2" cost="14" reliability ="0.9" throughput="9
responseTime="9"/>
<services 1d="3" cost="7" reliability="0.7" throughput="7"
responseTime="7"/>
<services id="4" cost="15" reliability="1" throughput="10"
responseTime="10"/>
<services id="5" cost="11" reliability ="0.6" throughput="6
responseTime="6"/>
<services id="6" cost="5" reliability="0.5" throughput="5"
responseTime="5"/>
</serviceSet>

</services>

61

"

n

n

n

"




	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Thesis Organization

	RELATED WORK
	Genetic Algorithms
	Single Objective Approach
	Multi Objective Approach

	Harmony Search
	Hybrid Algorithms

	PROPOSED METHODS
	Genetic Algorithm with Simulated Annealing
	Genetic Algorithm with Harmony Search (with dynamic rates)
	Application Implementation

	CASE STUDIES AND EVALUATION
	Experimental Results
	Average Fitness vs. Generation
	Execution Time vs. Number of Tasks
	Execution Time vs. Generation Count
	Execution Time vs. Number of Concrete Services
	Best Fitness Value Test
	Effect of Mutation Ratio


	CONCLUSION
	REFERENCES
	APPENDICES
	Case Studies
	XML Based Service Execution Plan & Implementations

