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NİYAZİ BURAK SEYMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2013





Approval of the thesis:

ROBUST SEQUENTIAL MONTE-CARLO ESTIMATION METHODS
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Electrical and Electronics Engineering Department, METU

Prof. Dr. Mustafa Kuzuoğlu
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ABSTRACT

ROBUST SEQUENTIAL MONTE-CARLO ESTIMATION METHODS

Seymen, Niyazi Burak

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

September 2013, 100 pages

This thesis addresses the robust system modeling, analysis and state estimation problem for
uncertain systems. In the first part of the thesis, polynomial chaos based system representa-
tions and some of their important properties such as stability and controllability are studied.
A novel relation between the the eigenvalues of the affine uncertain system matrix and the
eigenvalues of the polynomial chaos (PC) transformed system is derived. A necessary and
sufficient condition that relates stability of the PC transformed system to the original uncer-
tain system is also obtained as a corollary. A necessary condition for the stability of the more
general PC transformed systems is obtained in terms of the one-norm matrix measure iden-
tity. Furthermore, some necessary conditions for the controllability are obtained. A set-valued
estimation problem and its solution for the state estimation of PC transformed system is pro-
posed. The performances of the proposed estimation technique and a technique proposed in
literature including an ad-hoc measurement model are evaluated by three framework exam-
ples that are used in literature. An observability analysis is also performed for these models.
In the second part of the thesis, an extended and robust particle filtering methods are pro-
posed to the solution of the robust nonlinear estimation problem for uncertain systems with
cumulative relative entropy constraint. Additionally, robust estimation problem for instanta-
neous type relative entropy constraint is studied by referring the recent results in literature.
Some numerical solutions are proposed for the related problems utilizing particle filtering and
unscented Kalman filtering.

Keywords: Polynomial Chaos, Robust Estimation, Robust Stability and Controllability, Rel-
ative Entropy
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ÖZ

DAYANIKLI SIRALI MONTE-CARLO TABANLI KESTİRİM YÖNTEMLERİ

Seymen, Niyazi Burak

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Eylül 2013 , 100 sayfa

Bu tezde dayanıklı sistem modellemesi, analizi ve durum değişkenlerinin kestirim problemi
üzerinde durulmuştur. İlk bölümde, polinomsal kaos tabanlı sistem modellemesi, kararlılık ve
kontrol edilebilme gibi önemli sistem özellikleri çalışılmıştır. Doğrusal belirsiz sistem mat-
risleri ile dönüştürülmüş polinomsal kaos (PC) sisteminin ozdeğerlerini ilişkilendiren yeni
bir bağıntı bulunmuştur. Ek olarak dönüştürülmüş PC sisteminin kararlılığını esas belirsiz
sistemin kararlılı ğına ilişkilendiren yeterli ve gerekli koşul elde edilmiştir. Daha genel doğ-
rusal belirsiz sistemler için elde edilen dönüştürülmüş PC sistemler için bazı gerekli kararlılık
koşulları matrix 1-ölçütü kullanılarak elde edilmiştir. Bazı gerekli kontrol edilebilme koşulla-
rıhem tek değikenli hem de birden çok değişkenli belirsiz sistemler için elde edilmiştir. Küme
değerli kestirim problemi ve çözümü öne sürülmüştür. Öne sürülen yaklaşımın ve literatürde
var olan basit yaklaşımlıölçüm modele sahip yöntemin performansları üç örnek üzerinde de-
ğerlendirilmiştir. Bu modellerin gözlenebilirlik analizi gerçekleştirilmiştir. Tezin İkinci kı-
sımında toplamsal göreceli entropi kısıtına sahip doğrusal olmayan belirsiz sistemlerin da-
yanaklı kestirimi için parçacık filtreleme yöntemi öne sürülmüş ve problem formülasyonu
literatürde varolan sonuçlar kullanılarak elde edilmiştir. Anlık göreceli entropi kısıtına sahip
doğrusal olmayan belirsiz sistemlerin kestirimi içinde parçacık filtreleme ve kokusuz Kalman
filtreleme yöntemleri öne sürülmüştür.

Anahtar Kelimeler: Polinomsal Kaos, Dayanıklı Kestirim, Dayanaklı Stabilite ve Kontrolibi-

lite, Göreceli Entropi
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CHAPTER 1

INTRODUCTION

The invention of the state-space system representations and relevant optimal control tech-
niques was one of the main corner stones in control theory. However, the applicability of
the existing optimal control theoretical techniques to the real engineering applications was
restrictive due to the lack of robustness to the system uncertainties [52]. Since early 70s, the
control community has mainly focused on robust control techniques in order to get satisfac-
tory designs under inevitable system uncertainties

In late 80s and 90s, some probabilistic analysis and synthesis methods were introduced to
overcome the cited drawbacks of the worst-case/deterministic approaches. These techniques,
namely randomized algorithms, are based on Monte-Carlo realizations of uncertainty and
combine the a priori probabilistic information about the uncertainty at the expense of a prob-
abilistic risk [8, 65].

In the last decade, polynomial chaos expansion technique, which has been used for uncertainty
quantification of the physical systems, is utilized to get robust control/estimation designs
([53, 46, 64, 23]). The main idea which was introduced by Wiener is that the second order
stochastic processes can be expressed in terms of infinite dimensional series of polynomials of
the suitable random variables. In this approach, instead of simulating all possible realizations
of the uncertainty, the stochastic bases are used to represent the effect of the uncertainty on the
system state by transforming the stochastic dynamics into a higher dimensional deterministic
ones. In the recent years, the PC theory is utilized in the solutions of the control, estimation
and the parameter identification problems of uncertain systems.

Robust estimation is also widely studied subject since it was noticed that performance of the
celebrated Kalman filter is vulnerable to system uncertainty [51],[44]. Different approaches
have been introduced in parallel to the advancements in robust control. The main purpose
of a robust estimation algorithm is to get a good performance (but not the best) under nom-
inal conditions and an acceptable performance for system models other than the nominal
model [54],[45]. This is achieved by limiting the effect of the model uncertainty. Different
approaches have been proposed in the literature so far to make the estimators more robust
against the modeling errors. The common property of those robust filters is that they yield
a suboptimal solution to nominal system but they will guarantee an upper bound on the esti-
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mation errors in spite of large modeling errors. In other words, robust estimators yield good
performance but not best under nominal conditions and acceptable performance for condi-
tions other than nominal. The common criticism to the classical robust estimation techniques
is the over conservatism that is induced by minimax problem definitions.

In this work, we study two main robust estimation techniques, namely polynomial chaos based
and relative entropy based robust estimation.

In the first part of the thesis, we study the polynomial chaos based uncertainty modeling
and investigated the stability and controllability of the polynomial based uncertain systems.
Further we studied the robust estimation problem for uncertain systems that is modeled by
polynomial chaos expansion. The main motivation behind studying the polynomial chaos
based estimation technique is that the polynomial chaos based approach may overcome the
over conservatism problem of classical robust estimation techniques. This is mainly due to the
fact that it is an stochastic based approach and the polynomial chaos terms conveys the effect
of the uncertainty in time thus some average sense optimizations can be performed rather than
worst case approaches.

In the recent years, sampling based nonlinear estimation techniques are becoming popular for
nonlinear engineering systems due to substantial increase in computational power. Sequential
Monte-Carlo estimation techniques such as particle filters are being used in real engineering
problems. Even though these algorithms use computational power, they are vulnerable to the
system uncertainty since they use nominal system model. The robustness of those methods is
a challenging problem as in the linear estimation techniques. In this regard, in the second part
of the thesis, we study the robust nonlinear estimation problem for uncertain systems where
the uncertainty is modeled by relative entropy constraint.

1.1 Objectives

First part of this thesis addresses the issue of system analysis and robust estimation of uncer-
tain systems where the uncertainty is modeled by the polynomial chaos expansion. Second
part of the the thesis addresses the robust estimation problem for nonlinear uncertain stochas-
tic systems where the uncertainty is modeled by relative entropy constraint.

1.2 Thesis Outline

In Chapter 2, we provide some theoretical preliminary information about orthogonal polyno-
mials and polynomial chaos, that is used in the system analysis of the polynomial chaos based
uncertain system models derived in Chaper 3.

In Chapter 3, polynomial chaos (PC) based uncertainty modeling techniques are presented and
we make a system analysis for the uncertain systems that are modeled by polynomial chaos

2



expansion. First we study the stability of the PC based systems and make some connection
between the original uncertain system and the PC transformed system. We derived a direct
relationship between the eigenvalues of the uncertain system and the PC transformed system
for single uncertainty case. This novel fruitful relationship enabled us to obtain some concrete
results about system properties of the PC transformed systems. We derived a necessary and
sufficient condition for stability of the PC transformed system for single uncertainty in affine
form case. For more general system representations, we have utilized the matrix measure to
derive a necessary condition for the stability of the system by exploiting the banded structure
of the system matrix. In the final section, we have studied the controllability of the PC based
system models. We have provided some necessary conditions for the controllability of the PC
transformed systems. In this regard, we propose a Kalman decomposition procedure in order
to eliminate the uncontrollable modes of the PC transformed systems.

In Chapter 4, we studied robust estimation problem for polynomial chaos based uncertain sys-
tems. Since the polynomial chaos (PC) theory enables the second order stochastic processes
to be expressed in terms of the polynomials of random variables. Thus, PC theory allows
the transformation of stochastic dynamics into the deterministic dynamics with random coef-
ficients but with higher dimension. The main motivation behind studying polynomial chaos
based robust estimation techniques is that in the classical minimax approaches, the decision
maker assumes that the worst-case model will act opposed to him thus it gives too much im-
portance to very unlikely cases. The polynomial chaos based robust estimation techniques
that we have proposed are expected to reduce this conservatism due to averaging over the
uncertainty space rather than seeking the worst-case scenario. The formulation of the corre-
sponding state estimation problem is difficult since it is not in a suitable form that is used in
classical estimation algorithms where the polynomial chaos terms appears in the measurement
model as unknown disturbance signals. We propose a different approach for the robust state
estimation for polynomial chaos based uncertain systems. The state estimation problem is
considered as a set estimation problem where the uncertainty and system disturbances satisfy
quasi-deterministic enegry constraint. We showed that the set of possible states are actually
ellipsoid where the center and shaping matrix of the ellipsoid can be obtained recursively
by augmented Kalman filter equations which is advantageous. We also provide a stochastic
interpretation of the problem formulation as average maximum a posteriori state estimation
problem. In this regard, we propose two other stochastic estimation problems but we can not
provide solutions for them. We provide some necessary conditions for observability of the
two measurement models which give a better understanding for the differences of these two
models. We have evaluated the performance of the considered two approaches by three illus-
trative examples that are used in robust estimation community as framework examples. The
performance of the proposed approaches are compared with the nominal Kalman filter and
classical robust estimation algorithms namely regularized robust Kalman filter and H∞ filter.

In Chapter 5, we study the robust nonlinear estimation problem for uncertain systems where
the uncertainty is modeled by relative entropy constraint. In the first problem, the uncertainty
is defined on the joint probability measure between the nominal and perturbed measures over
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a time horizon where the perturbed measure satisfies the relative entropy constraint with re-
spect to the nominal measure. The problem has also been studied by different researches.
Using the available results in literature, the optimal state estimation problem is defined as a
minimax estimation problem where the nature seeks to select the worst case probability mea-
sure that maximizes the estimation error. On the other hand, the minimizer determines the
best estimator for the worst case scenario. The constrained minimax optimization problem is
converted to the unconstrained optimization by Lagrange multiplier method. The dual opti-
mization problem requires the calculation of the state estimate sequence over a time horizon
that minimizes the exponential of the estimation error as worst case scenario. The problem
can be considered as a determination of an output feedback controller for an optimal risk-
sensitive stochastic control problem. We provide a solution for linear systems. We propose
an approximate solution of the problem by an extended robust estimation algorithm where the
system is linearized around the current estimate. Since the solution of the original problem
has some noted difficulties, a suboptimal problem is also provided. The suboptimal problem
converts the original problem to a sequential optimization problem in terms of an information
state in forward time. In the solutions of the problem, particle filtering is proposed for the cal-
culations of the recursive probability measure relations. A complete recursive solution of the
suboptimal problem cannot be obtained due to the expectation operation over measurements
for a time horizon. We provide an framework example that is used in nonlinear estimation
community in order to verify the proposed results. In the second problem, we study the non-
linear estimation problem for instantaneous type relative entropy constraint. Two different
sub problems are defined for both the time update and measurement update. Then some ap-
proximate solutions are proposed by utilizing the available nonlinear estimation techniques
such as particle filtering and unscented Kalman filtering.

In Chapter 6, we provide summary and conclusions and some future works.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, we have provided some necessary theoretical background for orthogonal poly-
nomials, polynomial chaos and the related sub topics which are the building stones of our
dissertation.

2.1 Orthogonal Polynomials

In this section, we briefly introduce the basic literature related with the orthogonal polynomi-
als [63],[25],[15].

Let µ be a Borel measure defined on an interval X (possibly infinite) in R. Assume that
the all the moments mn =

∫
X xndµ(x) are finite. Let Π be the space of real polynomials

p(x) = knxn + kn−1xn−1 + . . . + k0 and Πn be the space of polynomials of degree less than n.
For any pair p(x) and q(x), let us define the inner product as

⟨p, q⟩ =
∫

X
p(x)q(x)dx (2.1)

If there exists a sequence of polynomials {pn(x)}∞n=0 of pn(x) ∈ Π such that

⟨pm, qn⟩µ =
∫

X
pn(x)pm(x)dµ(x) = δm,n (2.2)

where δm,n being Dirac delta function then {pn(x)} is called the set of orthogonal polynomials
with respect to the measure µ. If the measure µ is absolutely continuous with respect to the
Lebesque measure whereby dµ(x) = w(x)dx then w(x) which is a nonnegative integrable
function on Rd is called the weight function.

The measure µ is called discrete if its support consists of a finite or countably infinite number
of distinct points xk at which the discrete measure will have jumps wk. If the number of
distinct points have finite value of N then the associated inner product will be denoted as
⟨p, q⟩µN

with

⟨p, q⟩µN
=

N∑
n=1

wk p(xk)q(xk). (2.3)
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⟨p, q⟩ is positive definite for p ∈ ΠN−1 but not p ∈ Πn>N−1. There are only N orthogonal
polynomials p0(x), p1(x), . . . , pN−1(x), satisfying the orthogonality relation

N∑
k=1

wk pm(xk)pn(xk) = hnδm,n (2.4)

and they are called discrete orthogonal polynomials.

The orthogonal polynomials {pn(x)}, satisfy the following three-term recurrence relation

xpn(x) = an pn+1(x) + bn pnx + cn pn−1(x) (2.5)

for n = 0, 1, 2 where p−1(x) = 0, p0(x) = 1 with an = kn/kn+1 where kn represents the leading
coefficient of the nth degree polynomial order, bn =

⟨xpn(x),pn(x)⟩
⟨pn(x),pn(x)⟩ , and cn = an−1

⟨pn(x),pn(x)⟩
⟨pn−1(x),pn−1(x)⟩

for n > 1. If the polynomials pn(x) are orthonormal, i.e., hn = 1 polynomials, then cn = an−1

xpn(x) = an pn+1(x) + bn pnx + an−1 pn−1(x) (2.6)

If the recurrence relation is known, then one can introduce the Jacobi matrix as

Jn =



b0 a0 0 · · · 0
c1 b1 a1 · · · 0

0 c2 b2
. . . 0

...
...

. . .
. . . an−2

0 0 0 cn−1 bn−1


(2.7)

which satisfies the matrix form of the recurrence relation xPn(x) = JnPn(x)+an pn(x)en where
Pn(x) = (p0(x), p1(x), . . . , pn−1(x))T and en = (0, . . . , 0)T is the last column of the identity
matrix of order n. Note here that for any λ that p(λ) = 0 as being the zero of the nth order
orthogonal polynomial, (λI − J)Pn(λ) = 0. Thus clearly λ is an eigenvalue of Jn with the
corresponding eigenvector Pn(λ). Thus a similarity matrix T = (Pn(λ0), Pn(λ1), . . . , Pn(λn))
diagonalizes the Jacobi matrix such that Λ = T−JnT . For orthonormal polynomials since the
corresponding Jacobi matrix is symmetric, the similarity transformation matrix becomes an
orthogonal matrix such that T− = T T . Following theorem (Favard) states the inverse of the
three term relation [25].

Theorem 2.1.1 ([25]). If the polynomials pn(x) of degree n (n=0,1,2,. . . ) satisfy xpn(x) =
an pn+1(x) + bn pnx + cn pn−1(x) for (n > 0), with an, bn and cn real constants and ancn+1 > 0
then there exists a (positive) measure µ on R such that the polynomials pn(x) are orthogonal
with respect to µ.

Some important properties of the zeros of the orthogonal polynomials can be listed as [25],
[63],[70];

1. Zeros of the orthogonal polynomials are real, distinct, simple and located in the support
of the measure.
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2. The zeros of nth degree polynomial interlaces with the zeros of the (n-1)st degree or-
thogonal polynomials.

3. Let {pn}∞n=1 be a sequence of orthogonal polynomials on an interval I. Then for any
interval [a, b] ⊂ I, it is possible to find an m ∈ N such that pm has at least one zero in
[a, b]. In other words, the set

∪
n≥1

∪n
k=1

{
λn

k

}
is dense in I.

4. If the orthogonality measure µ is even, i.e. µ(x) = µ(−x) then pn(−x) = (−1)n pn(x),
hence bn = 0, so xpn(x) = an pn(x) + cn pn−1(x).

5. If there is an orthogonality measure µ with bounded support then µ is unique.

6. If µ is unique then Π is dense in L2(µ).

2.1.1 Classical Orthogonal Polynomials

Some systems of orthogonal polynomials namely Hermite, Laguerre and Jacobi are widely
used and they are named as classical orthogonal polynomials [12],[25],[47].

2.1.1.1 Jacobi Orthogonal Polynomials

The Jacobi polynomials, P(α,β)
n are the polynomials that can be defined by the following Ro-

drigues formula

P(α,β)
n = (−2)n(n!)−1(1 − x)−α(1 + x)−β

dn

dxn

[
(1 − x)n+α(1 + x)n+β

]
(2.8)

on the interval [−1, 1] where the parameters α and β are restricted such that α > −1 and
β > −1. For some special values of the parameters, the polynomials are named as

The Legendre polynomials (α = β = 0)

Ln(x) = P(0,0)
n (x) (2.9)

for which the following three-term relation is satisfied.

(n + 1)Ln+1(x) = (2n + 1)xLn+1(x) − nLn−1, L0(x) = 1, L1(x) = x (2.10)

The Tchebichef polynomials of the first kind (α = β = −1/2)

Tn(x) = 22n

 2n
n

−1

P(−1/2,−1/2)
n (x) (2.11)

for which the following three-term relation is satisfied

Tn+1(x) = 2xTn(x) − Tn−1(x) T0(x) = 1, T1(x) = x (2.12)
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The Tchebichef polynomials of the second kind (α = β = 1/2)

Un(x) = 22n

 2n + 1
n + 1

−1

P(1/2,1/2)
n (x) (2.13)

for which the following three-term relation is satisfied

Un+1(x) = 2xUn(x) − Un−1(x) U0(x) = 1, U1(x) = 2x (2.14)

The Gegenbauer polynomials of the second kind (α = β) with α = λ−1/2 , −1/2 are defined
as

Cnλ(x) =

 n + 2α
α

  2n + 1
n + 1

−1

P(α,α)
n (x) (2.15)

for which the following three-term relation is satisfied

Cn+1(x) = 2xCn(x) − Un−1(x) C0(x) = 1, C1(x) = 2λx (2.16)

2.1.1.2 Laguarre Polynomials

The Laguarre polynomial Lαn (x) is defined by a Rodrigues’ type formula as

Lαn (x) = (n!)−1x−αex dn

dxn
[
e−xxn+α] (2.17)

on the interval [0,∞] where it is customary to require that α > −1. The Laguarre polynomials
satsify

(n + 1)Lαn+1(x) = (2n + α + 1 − x)Lαn (x) − (n + α)Lαn−1(x), Lα0 (x) = 1, Lα1 (x) = x (2.18)

2.1.1.3 Hermite Orthogonal Polynomials

Hermite polynomials are defined by

Hn(x) = (−1)nex2 dn

dxn e−x2
(2.19)

on the interval [−∞,∞] for which the following three-term relation is satisfied.

Hn+1(x) = xHn(x) − nHn−1, H0(x) = 1, H1(x) = x (2.20)

2.1.2 Multivariate Orthogonal Polynomials

The basics related with the multivariate orthogonal polynomials are taken from [15]. We
will follow the widely used multi-index notation for expressing the multivariate orthogonal
polynomials. A multi-index is denoted as i = (i1, i2, . . . , id) ∈ Nd

0 where Nd
0 is the set of d di-

mensional vector of nonnegative integers. In this regard, let |i| = i1+ i2+ . . .+ id and define the
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monomials in the variables (x1, x2, . . . , xd) is a product xi = xi1
1 xi2

2 . . . xid
d . In general, a poly-

nomial p(x) in d variables is a linear combinations of monomials p(x) =
∑

i cixi. The space of
polynomials of degree at most n with d variables is denoted as Πd

n =
{
p : p(x) =

∑
|i|≤n cixi

}
.

The space of homogeneous (i.e. all monomials in it have the same order) polynomials of de-
gree n in d variables will be denoted as Pd

n =
{
p : p(x) =

∑
|i|=n cixi

}
. Then every polynomial

in Πd
n can be written as a linear combination of homogenous polynomials.

p(x) =
n∑

k=0

∑
|i|=k

cixi (2.21)

If we denote the number of monomials by rd
n of degree exactly n; it follows that rd

n =
(n+d−1)!
(n)!(d−1)!

and the dimΠd
n =

(n+d)!
n!d! . The ordering of the multi-index i is not unique, but graded lexico-

graphic order is most widely used one as defining a one-to-one mapping between the multi-
index i and a single index i as T (i) = i, T : Nd

0 → N. In the degraded lexicographic order,
i > j if and only if |i| > |j| and the first nonzero entry in the difference i − j is positive. Thus,
the multivariate orthogonal polynomials can also be expressed as pi(x). In this notation, p0(x)
refers to the zeroth order polynomial and p1(x), . . . , pd(x) refers to the first order polynomials
of x. A linear functional L is called square positive if L

(
(p(x))2

)
> 0 for all p(x) ∈ Πd and

p(x) , 0. Specifically, we will consider all-linear functionals expressible as integrals against
a Borel measure with finite moments. That is

L(p(x)) =
∫
Rd

p(x)dµ(x) (2.22)

Thus the square positive linear functional L induces an inner product < ., . >. Two multivariate
polynomials are said to be orthogonal with respect to L if L (p(x)q(x)) = 0. Let n ∈ N0

and x ∈ Rd, denote xn = (xi)|i|=n as a vector of size rd
n , where the monomials are arranged

according to the graded lexicographical order of
{
i ∈ Nd

0 : |i| = n
}
. The application of Gram-

Schmidt orthogonalization process with respect to a linear functional L on the monomials
given by {xn} will yield the sequence of orthogonal polynomials denoted by {φn

k(x)}∞,r
d
n

n=0,k=1
such that n refers that φn

k(x) ∈ Πd
n. In multi-index notation,∫

R
φi(x)φ j(x)dµ(x) = γiδi,j (2.23)

with δi,j =
∏d

k=1 δik jk being a multi-index delta operator. The multivariate orthogonal polyno-
mials can also be generated by the tensor product of univariate orthogonal polynomials. That
is if an ith order univariate orthogonal polynomial is defined as ϕi(x) then the multivariate
orthogonal polynomials can be built as φi(x) =

∏d
k=1 φik (xk) for 0 ≤ ik ≤ |i|. If a column

vector representation of the orthogonal polynomials is introduced as

Pn(x) = (φn
k)|i|=n =

[
φn

1(x), φn
2(x), . . . , φn

k(x)
]

(2.24)

the orthonormality property of the polynomial series
{
φn

k(x)
}

can be expressed as

L(Pn(x)PT
m(x)) =

 Ird
n

if n = m
0n×m if n , m

 (2.25)
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We denote by Vd
n the space of d-variate orthogonal polynomials of degree exactly n; Vd

n ={
p ∈ Πd

n :< p, q >= 0,∀q ∈ Πd
n−1

}
. Thus Πd

n = ⊕n
k=0Vd

k and Πd = ⊕∞k=0Vd
k . For n ≥ 0, there

exists unique matrices An,i : rd
n × rd

n+1, Bn,i : rd
n × rd

n and CT
n,i : rd

n × rd
n−1 such that the following

three term relation is satisfied

xiPn(x) = An,iPn+1(x) + Bn,iPn(x) +CT
n,iPn−1(x) (2.26)

for 1 ≤ i ≤ d where P−1(x) = 0, C−1,i = 0. Here An,iHn+1 = L(xiPn(x)PT
n+1(x)), Bn,iHn =

L(xiPn(x)PT
n (x)) and An,iHn+1 = Hn+1CT

n+1,i with Hn = L(Pn(x)PT
n (x))). For orthonormal

polynomials, Hn = I, so

xiPn(x) = An,iPn+1(x) + Bn,iPn(x) + AT
n−1,iPn−1(x) (2.27)

for 1 ≤ i ≤ d where P−1(x) = 0, A−1,i = 0. Moreover, each Bn,i is symmetric. For the
associated three term recursions with related matrix coefficients, block tri-diagonal matrices
Jn,i ∈ Rr×r where r = dimΠd

n for i = 1, 2, . . . , d can be introduced as

Jn,i =



B0,i A0,i 0 · · · 0
C1,i B1,i A1,i · · · 0

0 C2,i B2,i
. . . 0

...
...

. . .
. . . An−2,i

0 0 0 Cn−1,i Bn−1,i


(2.28)

They are named as block Jacobi matrices. For polynomials in one variable, the nth order
orthonormal polynomial has n distinct zeros and they are the eigenvalues of the truncated
Jacobi matrix Jn. For multivariable polynomials, the set of zeros can be different algebraic
varieties such as a curve, as well as a point [75]. Thus, it is much more convenient to consider
the common zeros of the set of orthogonal polynomials. A common zero of Pn(x) is the
common zero of the each element of the vector. It can be shown that common zeros of
Pn(x) are distinct and simple [75]. Λ = (λ1, λ2, · · · , λd)T ∈ Rd is a joint eigenvalue of
Jn,1, Jn,2, · · · , Jn,d if there is a η , 0, η ∈ Rr such that Jn,iη = λiη for i = 1, .., d then the vector
η is called as a joint eigenvector associated with the joint eigenvalue λi.

Theorem 2.1.2 ([75]). Λ = (λ1, λ2, · · · , λd)T ∈ Rd is a common zero of Pn(x) if and only if it
is a joint eigenvalue of Jn,1, Jn,2, · · · , Jn,d; moreover, a joint eigenvector of Λ is
(P1(Λ), · · · , Pn−1(Λ))T .

The polynomials in Pn(x) have at most r = dimΠd
n zeros. If the polynomials in Pn(x)

have r common zeros, then the Jacobi matrices Jn,1, Jn,2, · · · , Jn,d have r distinct eigenval-
ues which implies that the corresponding eigenvectors must be orthogonal. In other words,
Jn,1, Jn,2, · · · , Jn,d can be simultaneously diagonizable, by a non-singular matrix. Since family
of matrices are diagonizable if and only if they mutually commute, the family of the Jacobi
matrices satisfies Jn,iJn, j = Jn, jJn,i for 1 , i, j , d if the polynomials in Pn(x) have r = dimΠd

n

common zeros. The commuting property of the block Jacobi matrices necessitates [15]

AT
n−2,iAn−2, j + BT

n−1,iB
T
n−1, j = An−2, jAn−2,i + BT

n−1, jBn−1,i (2.29)
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Unfortunately, commuting property of the block Jacobi matrices is not satisfied for most of
the generally used multivariate orthogonal polynomials. For instance, block Jacobi matrices
of the multivariable orthogonal polynomials generated by the tensor product of the univari-
ate orthogonal polynomials do not commute. However for discrete orthogonal polynomials
of several variables, the corresponding Jacobi matrices commute [76]. As cited before, all
zeros of the univariate orthogonal polynomials of support [a, b] are located in the interior of
[a, b]. However, this is not true for multivariable orthogonal polynomials. A classical counter
example is the set of orthogonal polynomials in a region D =

{
(x, y)| 1 ≤ x2 + y2 ≤ 2

}
with a

uniform weight. (0, 0) which is not in D, is a common zero of all the orthogonal polynomials
of odd degree. In [43], it is shown that all common zeros are in the closed convex hull of
the support D , i.e., λ ∈ conv(D). If D ∈ Rd is a convex set, then the all common zeros of
orthogonal polynomials of degree n(n ≥ 1) lie on the closure D̄ of the set D [43].

2.2 Polynomial Chaos

There is a close connection between the orthogonal polynomials and the second order stochas-
tic processes. This connection was first established by Wiener as the homogenous chaos in
his seminal paper in 1938 [68]. Wiener used Hermite polynomials in terms of the Gaussian
random variables to represent Gaussian processes. Subsequently, Cameron and Martin used
Hermite polynomials as spectral expansion bases for the square integrable functionals (with
respect to Wiener measure) of the continuous functions on the interval [0,1] vanishing at zero
[9]. Moreover, they showed that the series expansion converges in mean square sense. The
stochastic interpretation of the Cameron-Martin theorem is that every stochastic process with
finite second-order moment can be represented by an (infinite) Hermite-chaos series [73],
[19].

In this regard, let us consider a Gaussian linear space H, which is a linear space of d di-
mensional random variables ξ ∈ Rd, defined on some probability space (Ω, F, µ) such that
each element is a vector of zero mean with independent Gaussian components. It is clear
that H ∈ L2(Ω, F, µ) where L2(Ω, F, µ) is the vector space of random vectors ξ(ω) such that
Eξ

{
|ξ(ω)|2

}
=

⟨
|ξ(ω)|2

⟩
µ
< ∞. Now consider the space Pn(H) of d-variate, nth order poly-

nomials of random variables in H. Since all the mixed moments of the independent Gaussian
random variables are simply the products of the individual moments by using the Holder’s
inequality [34],[19], it can be stated that the polynomial space Pn(H) and its closure P̄n(H)
are subspaces of the L2(Ω, F, µ). P̄n(H) can be orthogonally decomposed as P̄n(H) = ⊗n

k=0Hk

where Hk := P̄k(H)∩ P̄k−1(H)⊥. Hk is will be called as kth order homogenous chaos. The full
space can be decomposed as ⊗∞k=0Hk = ∪∞n=0Pn(H). Thus, the statement of Cameron-Martin
theorem is expressed as ⊗∞k=0Hk = L2(Ω, σ(H), µ) where σ(H) is the smallest sigma-algebra
induced by H. If the multi-index notation is used for the polynomial chaos representation,
then the series expansion of any random variable in x ∈ L2(Ω, F, µ) can be represented as
x(ω) =

∑
i∈Nd

0
αiHi(ξ(ω)) where Hi(ξ(ω)) = Πd

k=1Hik (ξk(ω)) and αi = ⟨x(ω),Hi(ξ(ω))⟩. The
expansion can also be represented in terms of the ordered (graded lexicographic) multi-index
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Table2.1: Wiener-Askey Polynomial Chaos for Random Variables

Random Variables Wiener-Askey Chaos
Gaussian Hermite chaos
Gamma Laguerre-chaos

Beta Jacobi-chaos
Uniform Legendre chaos
Poisson Charlier-Chaos

notation as x(ω) =
∑∞

i=0 α̂iHi(ξ(ω)) where there is a one-to-one correspondence between the
functionals Hi(ξ(ω)) and Hi(ξ(ω)) and also between the coefficients αi and α̂i.

Hermite-Chaos expansion has been quite effective for solving the differential equations with
Gaussian inputs as well as certain types of non-Gaussian inputs such as lognormal distribu-
tions [73]. However, for the general non-Gaussian distributed random inputs, the convergence
rate is not fast. Hermite-Chaos expansion is generalized by utilizing the orthogonal polyno-
mials in Askey-scheme of hyper-geometric orthogonal polynomials, which are orthogonal
with respect to some probability distributions [72, 70]. Then it is named as Wiener-Askey
Chaos or Askey-Chaos. Similar to the Hermite-Chaos case, any square integrable random
variable can be expressed as x(ω) =

∑
i∈Nd

0
αiΦi(ξ(ω)) where Φi(ξ(ω)) denotes the multi-

variate Askey polynomials or with an ordered (graded lexicographic) multi-index notation
x(ω) =

∑∞
i=0 α̂iΦi(ξ(ω)). The Askey polynomials and their corresponding orthogonality prob-

ability distributions are listed in Table 2.1.

Remark 1. The polynomial chaos theory can be applied to the stochastic processes that
are functions of both the spatial (s) and the temporal (t) coordinates. That is x(t, s, ω) =∑∞

i=0 xi(t, s)Φi(ξ(ω)). Those processes have a general name as random fields.

Recently in [19], it is shown that the polynomial chaos expansion can also be generalized to
polynomials of random variables ξm, which have finite moments of all order, i.e.,

⟨
|ξm|k

⟩
≤ ∞

for all k and have continuous probability distribution functions Fξm(x) := µ(ξm ≤ x)

Theorem 2.2.1 ([19]). The sequence of orthogonal polynomials {ξm}, associated with a real
random variable ξ which have finite moments of all order, i.e., < |ξm|k >< ∞ for all k
and having continuous probability distribution functions Fξm(x) := µ(ξm ≤ x) , is dense in
L2(R,B(R), Fξm(dx)) if and only if the distribution function of ξ is uniquely determined by
sequence of its moments.

2.3 Solution of Stochastic Differential Equations

In the previous section, we have presented the spectral representations of square integrable
random variables by orthogonal polynomials in terms of the random basis and with the corre-
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sponding deterministic coefficients. This approach can be extended to the stochastic processes
by performing the spectral expansion for each time value t [66].

In most of the engineering problems, the propagation of the effect of the system uncertainty on
the system outputs is valuable information. In this regard, since the spectral polynomial bases
are fixed, if the deterministic coefficients of the spectral bases are determined at each time
then the complete response can be obtained in terms of the statistics of the solution. There are
two main approaches for determining the time propagation of the spectral bases coefficients
namely intrusive and non-intrusive [17]. In the intrusive approach, the truncated polynomial
expansions of all dependent variables and uncertain parameters are plugged into the differ-
ential equations of the physical system. By taking the projection of the governing equations
onto each orthogonal polynomial basis, namely Galerkin projection, the set of deterministic
differential (or difference) equations that defines the time propagation of the polynomial bases
coefficients is determined. Thus, each element of the governing equation is made orthogonal
to the approximation space. In this regard, the stochastic processes x(t, ω) is defined by the
following stochastic differential equation.

ẋ(t, ω) = f (x(t, ω),∆(ξ(ω)), u(t)) (2.30)

with a known initial value x(0, ω) = x0 ∈ Rn and an unknown system parameter ∆(ξ(ω)) ∈
Rd with a deterministic input u(t). If an approximate solution of the stochastic differential
equation is defined as the truncated PC expansion

x̃(t, ω) =
r∑

j=0

x̃ j(t)Φ j(ξ(ω)) (2.31)

and

∆(ξ(ω)) =
r∑

i=0

∆iΦi(ξ(ω)) (2.32)

then the residue in the governing equation is obtained by plugging the approximate solution
in the state dynamics and the uncertain parameter as

er(ξ(ω), t) = f

 r∑
j=0

x j(t)Φ j(ξ(ω)),
r∑

i=0

∆iΦi(ξ(ω)), u(t)

 − r∑
m=0

ẋm(t)Φm(ξ(ω)) (2.33)

If the projection of the residue er(ξ(ω), t) of the governing equation onto the polynomial bases
is set to zero, then the dynamic equations of time-varying coefficients is obtained as

ẋm(t) =
1

⟨Φm(ξ(ω)),Φm(ξ(ω))⟩

⟨
f

 r∑
j=0

x j(t)Φ j(ξ(ω)),
r∑

i=0

ΘiΦi(ξ(ω)), u(t))

 ,Φm(ξ(ω))
⟩

(2.34)
for m=1,2,. . . ,r.

The intrusive method, which creates a simple formulation, can be very difficult to imple-
ment for complex problems. Thus, in order to reduce the complexity of the approach, some
non-intrusive i.e. sampling based methods can be resorted for more complex problems [17],
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[70],[71]. There are two main types of non-intrusive methods namely regression method,
based on randomly generated points and pseudo-spectral collocation method, based on deter-
ministically chosen points on the grids [17],[35]. In the regression method via least square,
once the uncertainty is randomly sampled from the distribution, the states are propagated in
time according to the governing equation. Then, the coefficients of the spectral bases are de-
termined such that the sum of square error between the propagated state and the PC expansion
is minimized. That is

{x j(t)} � argmin{x̃ j(t)}
1
M

Z∑
z=1

x(t, ξ(ωz)) −
r∑

j=0

x̃ j(t)Φ j(ξ(ωz))


2

(2.35)

resulting in the following normal equation

(AT A)X(t) = AT Y(t) (2.36)

where X(t) = (xT
0 (t), . . . , xT

r (t)) and Y(t) = (x(t, ξ(ω1)), . . . , x(t, ξ(ωr))) with A(i, j) = Φ j(ξ(ωz))
z = 1, 2, ..Z and j = 1, 2, . . . , r. On the other hand, in the pseudo-spectral collocation
approach, the coefficients are evaluated by the numerical integration of the inner product
x j(t) =

⟨
x(t, ω),Φ j(ξ(ω))

⟩
for j=1,2,. . . ,d, where x(t, ω) is collocated on certain quadrature

grids or nodes defined on the support X of the measure µ. That is

x j(t) =
⟨
x(t, ω),Φ j(ξ)

⟩
=

Q∑
q=1

x(t, ξq)Φ j(ξq) (2.37)

where ξq is the set of quadrature nodes in X and wq are the corresponding quadrature weights.
The selection criterion for the quadrature rules is not unique. The most popular one is the
Gaussian quadrature method in which the nodes are distributed according to the probability
weight of the each random input.

2.3.1 The Divergence of Polynomial Chaos Expansion and Time-Dependent Polyno-
mial Chaos

Polynomial chaos theory assures the mean square convergence of the PC approximations.
However, the PC theory does not guarantee the convergence of the higher order moments of
the PC approximation with increased number of PC expansion terms [21]. For long-time inte-
grations, divergence of the truncated PC expansion is highly possible due to the nonlinearities
in the system dynamics and uncertainty sources making the probability distribution of the so-
lution at a time deviate from the initial distribution of the solution. Thus, the set of orthogonal
polynomials that has been chosen initially will not be optimal anymore [27]. More terms are
needed to be used in PC expansion in order to get reasonable approximation of the solution as
time evolves. In order to prevent the possible divergence of the PC expansion for long-time in-
tegrations, a practical method is proposed in [27]. This approach is named as time-dependent
polynomial chaos. In their approach, after a certain time of integration before the significant
divergence did not begin, PC expansion is stopped and new basis function is constructed from
the current solution. The integration is continued with newly defined coordinates [30].
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CHAPTER 3

UNCERTAIN SYSTEM MODELLING AND ANALYSIS BY
POLYNOMIAL CHAOS

3.1 Introduction

In the last decade, polynomial chaos expansion technique, which has been used for uncertainty
quantification of the physical systems, is utilized to get robust control/estimation designs [53,
46, 64, 23]. In this approach, instead of simulating all possible realizations of the uncertainty,
the stochastic bases are used to represent the effect of the uncertainty on the system state by
transforming the stochastic dynamics into the deterministic systems with a higher dimension.
In [46], the uncertainty in the feed-forward controller and system parameters is quantified by
the PC simulations. In [31], the stability and the transient response of a class of controlled
nonlinear systems is analyzed for uncertain controller gain. They also discussed the tradeoff
between the stability and accuracy of the PC expansion. In [23], a Kronecker product form
of the system model is presented for linear uncertain systems modeled by PC expansion.
They also investigated the stochastic stability conditions for the robust LQR problem. In [22],
robust LQR problem is solved by bilinear matrix inequalities (BMI). The proposed method
is applied to an F16 longitudinal channel control problem. In the dissertation [64], robust H2
and related LQG control problem with PC uncertainty modeling is investigated.

Stochastic stability of the uncertain systems is analyzed by the truncated PC transformed
deterministic systems in [22] by utilizing the Lyapunov stability criteria with linear matrix
inequalities (LMI). Due to the truncation, the stability results cannot guarantee the stability
of the original uncertain system. Thus in their work, it is assumed that the polynomial chaos
expansion order is large enough. Since the analysis relies on some numerical methods such as
convex optimization, the interaction between the nominal system matrix and the perturbation
matrix is disguised. In [41], the stability of the infinite dimensional polynomial chaos trans-
formed system is studied and a sufficient condition in terms of original system and perturbed
matrix is derived for the stability of the infinite dimensional system. The results also imply
the moment stability of the original uncertain systems. On the other hand as far as the author’s
knowledge, there is no detailed analysis on the controllability PC transformed systems.

In this chapter, we study polynomial chaos based system representations and some of their
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important properties such as stability and controllability.

First we present available system representations induced by polynomial chaos expansion of
the system state. Mainly we focus on the affine uncertain systems where the system matrix is
an affine function of system uncertainties. In the next section, we studied the stability of the
PC transformed systems and tried to make some connections between the original uncertain
system and PC transformed system. In this regard for single uncertainty case, we derive a
direct relation between the eigenvalues of the uncertain system matrix and the the eigenvalues
of nominal system matrix and perturbation matrix for single uncertainty affine uncertain sys-
tem. We show that this relation can also be extended to the multi-variable uncertainty case for
some special cases. This novel relation let the PC truncated system to be block diagonalized.
This is the main contribution of this chapter that enables us to obtain some concrete results
about the system properties. We derive a necessary and sufficient condition for the PC trans-
formed system. For more general system representations, we utilize the matrix measure to
derive a necessary condition for the stability of the system by exploiting the banded structure
of the system matrix.

In the final section, we study the controllability of the PC based system models. We have
provided some necessary conditions for the controllability of the PC transformed systems. In
this regard, we provide a Kalman decomposition procedure in order to eliminate the uncon-
trollable modes of the PC transformed systems.

All the results derived in this chapter are novel contributions of this study.

3.2 System Modelling

Consider a linear continuous time time-invariant uncertain system

ẋ(ω, t) = A(ξ(ω))x(ω, t) + Bu(t) (3.1)

Here x(ω, t) ∈ Rn is a finite variance stochastic process that represent the system state, u(t) ∈
Rs is the system input signal, A(ξ(ω)) ∈ Rn×n is the uncertain system dynamic matrix, B ∈
Rn×m is the system input matrix and ξ(ω) = (ξ1(ω), . . . , ξd(ω)) is the uncertainty vector. The
state x(t, ω) of the uncertain system is approximated by the truncated PC expansion as

x(ω, t) �
p∑

j=0

x j(t)Φ j(ξ(ω)) (3.2)

where
{
Φ j(ξ(ω))

}
is the set of the orthogonal polynomial bases with the corresponding time-

varying coefficients x j(t). Here the number of PC expansion order p is determined as p + 1 =
(d+L)!)

d!L! where d is the dimension of the uncertainty source vector and the L is the order of the
orthogonal polynomials. Similarly

A(ξ(ω)) =
p∑

i=0

AiΦi(ξ(ω)) (3.3)
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with Ai =
⟨A(ξ(ω)),Φi(ξ(ω))⟩
⟨Φi(ξ(ω)),Φi(ξ(ω))⟩ for i = 0, 1, . . . , p. Substituting the truncated state and system

matrix representation into the system dynamics gives
p∑

k=0

ẋk(t)Φk(ξ(ω)) =
p∑

i=0

p∑
j=0

Aix j(t)Φi(ξ(ω))Φ j(ξ(ω)) + Bu(t) (3.4)

After taking Galerkin projection,

xk(t) =
p∑

i=0

p∑
j=0

Aix j(t)êki j + Bu(t)δk (3.5)

for k = 0, 1, 2, . . . , p where êki j =
⟨
Φk,ΦiΦ j

⟩
the following augmented system dynamics is

obtained
x̄(t) = Āx̄(t) + B̄u(t) (3.6)

with x̄(t) = (xT
0 (t), xT

1 (t), . . . , xT
p (t))T ∈ Rn(p+1) and B̄ ∈ Rn(p+1)×k with B = (BT , 0k×n, . . . , 0k×n)T .

Here Ā ∈ Rn(p+1)×n(p+1) which can be represented by Kronecker (tensor) product as

Ā =
p∑

k=0

Jp,k ⊗ Ak (3.7)

where

Jp,k =


ê0k0 ê0k1 · · · ê0kp

ê1k0 ê1k1 · · · ê1kp
...

...
. . .

...

êpk0 êpk1 · · · êpkp

 (3.8)

with eprs =
⟨Φp,ΦrΦs⟩

(Φp)2 where by definition

X ⊗ Y =


X11Y X12Y · · · X1NY
X21Y X12Y · · · X2NY
...

...
. . .

...

XN1Y XN2Y · · · XNNY

 (3.9)

for X ∈ RN×N .

3.2.1 Multivariable Affine Uncertainty Case

In this section, we consider the case that the system dynamic matrix is an affine function of
the system uncertainty vector ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξd(ω)). Thus

A(ξ(ω)) =
d∑

k=0

AkΦk(ξ(ω)) (3.10)

and the first order orthogonal polynomials are considered as Φk(ξ(ω)) = ξk(ω) for k =
1, 2, . . . , d, so

A(ξ(ω)) = A0 +

d∑
k=1

Akξk(ω) (3.11)
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In general, different types of constraints can be imposed on the elements of the multivariable
uncertainty vector ξ in real engineering problems. The set of possible uncertain parameters
can constitute a ball CB in Rd such that CB = {ξ : ∥ξ(ω)∥2 < 1,∀ω} or they can constitute a
k-dimensional polytope in Rd as CP = {ξ = (θ1ξ1(ω) + θ2ξ2(ω) + . . . + θkξk(ω)) | θi ≥ 0, 0 ≤
i ≤ k,

∑k
i=0 θi = 1,∀ω}. It is possible to construct multivariable orthogonal polynomials with

respect to the measures that are defined on these uncertainty constraint sets [15].

In this section, we assume that the uncertainty variables are mutually independent, thus the
orthogonal polynomials are constructed as the tensor product of the individual orthogonal
polynomials as Φn(ξ) = Πd

s=1φ
s
ns

(ξs) where φs
ns

(ξs) is the jsth order univariate orthogonal
polynomial of ξs. Then the elements ênkm of the matrices Jp,k is computed as

ênkm =

 δnm f or k = 0
⟨Φn,ξkΦm⟩
⟨(Φn)2⟩ f or 1 ≤ k ≤ d

 (3.12)

Note that ξkΦm(ξ) = (ξkφ
k
mk

(ξk))Πd
s=1,ms,mk

φms(ξs). Recall that the three term recurrence re-
lation of the univariate orthogonal polynomials is ξkφ

k
mk

(ξk) = amkφ
k
mk+1(ξk) + bmkφ

k
mk

(ξk) +
cmkφ

k
mk−1(ξk). By appropriate substitutions, the inner product in (3.12) takes the following

form as shown in [41];

⟨Φn, ξkΦm⟩ =


bnk f or n = m

ank−1 f or nk = mk + 1 and ∀s s , k ns = ms

cnk+1 f or nk = mk − 1 and ∀s s , k ns = ms

0 else


(3.13)

If the m values that satisfy the conditions of (3.13) are denoted by mk, m+k and m−k , then the
inner product can be represented in the following compact form [41];

ênkm , ⟨Φn, ξkΦm⟩ = ank−1δn,m+k
+ bnkδn,m + cnk+1δn,m−k

(3.14)

Thus, the truncated PC system matrix is obtained as

Ā = Ip ⊗ A0 +

d∑
k=1

Jp,k ⊗ Ak (3.15)

Jp,k =


ê0k0 ê0k1 · · · ê0kp

ê1k0 ê1k1 · · · ê1kp
...

...
. . .

...

êpk0 êpk1 · · · êpkp

 (3.16)

3.2.2 Single Variable Affine Uncertainty Case

Consider that the system dynamic matrix is an affine function of a single uncertainty A(ξ(ω)) =
A0 + A1ξ then

Ā = JL,0 ⊗ A0 + JL,1 ⊗ A1 (3.17)
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with

JL,k =


ê0k0 ê0k1 · · · ê0kL

ê1k0 ê1k1 · · · ê1kL
...

...
. . .

...

êLk0 êLk1 · · · êLkL

 (3.18)

where

ênkm =

 δn,m f or k = 0
1

⟨(Φn)2⟩ (amδn,m+1 + bmδn,m + cmδn,m−1) f or k = 1

 (3.19)

Thus since JL,0 = IL+1 and

JL,1 =



b0 c0 0 · · · 0
a1 b1 c1 · · · 0

0 a2 b2
. . . 0

...
...

. . .
. . . cL−1

0 0 0 aL bL


(3.20)

then

Ā =



A0 + b0A1 c0A1 0 · · · 0
a1A1 A0 + b1A1 c1A1 · · · 0

0 a2A1 A0 + b2A2
. . . 0

...
...

. . .
. . . cL−1A1

0 0 0 aLA1 A0 + bLA1


(3.21)

Note here that the matrix JL,1 is the transpose of the Jacobi matrix JL+1 that is expressed in
(2.7).

3.3 Stability Analysis

Stability of uncertain systems is one of the main subjects of robust control thus it has been
extensively studied by many researchers. Different stability definitions have been introduced
and sufficient conditions have been proposed [58, 7, 20].

Here we give three stability definitions for the uncertain system (3.1).

Definition 3.3.1. [58] The uncertain system (3.1) is said to be robustly stable if the system is
asymptotically stable for all realizations of ξ(ω).

Definition 3.3.2. [58] The uncertain system (3.1) is said to be quadratically stable if there
exists a single Lyapunov function V(x(t, ω)) = (x(t, ω))T Px(t, ω) for all possible realizations
of ξ(ω). It means there exists a P > 0 such that A(ξ(ω))P + PA(ξ(ω))T < 0 for all ξ(ω).

Note that the quadratic stability implies the robust stability but the reverse is not necessarily
true. This is mainly due to the fact that Lyapunov function is independent of the uncertainty
[58].
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For the uncertainty sources of an unbounded support, the robust stability will not be satisfied
almost always, except for a few special systems. In this case, it is much more convenient to
study the stability in the average sense rather than the stability of the system for all possible
uncertainties. In this regard, definition of the stability in moments is given [41].

Definition 3.3.3. [41] The zero equilibrium point of the system (3.1) is said to be stable in
the pth moment if ∀ϵ > 0,∃δ > 0 such that supt≥0E{|x(t, t0)|p} ≤ ϵ ∀x(t0) : |x(t0)| ≤ δ. The
uncertain system (3.1) is said to be asymptotically stable in pth moment if it is stable in the
pth moment and limt→∞ E{|x(t, t0)|p} = 0

The following theorem is the recent result about the stability relation of the uncertain system
and its infinite order PC transform.

Theorem 3.3.1. [41] The origin of the system (3.1) is asymptotically stable in all moments if
and only if the PC transformed system for infinite truncation order is asymptotically stable.

As shown in [24], if the truncated PC transformed system is asymptotically stable for all
approximation orders of p, then the response of the state xPC

k =
∑p

i=0 xk,iΦi(ξ) is stable in the
mean square sense. As noted in [24], the mean square stability of the PC transformed system
does not imply that the uncertain system is stable for all realizations of uncertainty ξ.

For practical purposes, the truncation order is finite, thus it is important to analyze the trun-
cated system stability with respect to the original uncertain system.

In the remaining part of this section we concentrate on the relationship between the robust
stability and the stability of the truncated PC transformed system and we present our new
results.

3.3.1 Scalar Affine Uncertainty Case

The single uncertainty is simpler to handle and so more concrete results can be obtained for
this case. Consider the single uncertainty, first order truncated PC transformed linear system
is

˙̄x(t) = Āx̄(t) + B̄u(t) (3.22)

where Ā is defined in (3.17) and (3.18). It is obvious to see that the state dynamics matrix
and Jacobi matrix for the related orthogonal polynomials have identically the same form. The
following theorem relates the eigenvalues of the truncated system to the eigenvalues of the
Jacobi matrix.

Theorem 3.3.2. The eigenvalues of the truncated system matrix Ā = IL+1⊗A0+JL,1⊗A1 equal
to the collection of the eigenvalues of the matrices M j = (A0 + λ jA1) for j = 1, 2, . . . , L + 1
where {λ j}L+1

j=1 are the zeros of the (L + 1)st degree orthogonal polynomials that satisfy the
following three-term recurrence relation xpn(x) = an+1 pn+1(x) + bn pn(x) + cn pn−1(x) for
n = 0, 1, 2, 3 . . . where p−1(x) = 0, p0(x) = 1.
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Proof. Let us consider the related truncated matrix JL,1 which is the transpose of the Jacobi
matrix JL+1 for the Lth degree orthogonal polynomials. It is known that the eigenvalues
of the Jacobi matrix are equal to the zeros of the (L + 1)st degree orthogonal polynomial
thus its transpose. So the eigenvalues of JL,1 are real and simple. It can be diagonalized
by a similarity transformation matrix such that ĴL,1 = T−L JL,1TL. Now define an augmented
similarity transformation matrix where T̄ = TL ⊗ In. Note that TL ⊗ In is non-singular since
both TL and In are non-singular. If the similarity transformation for the augmented system is
performed as T̄−(IL+1 ⊗ A0 + JL,1 ⊗ A1)T̄ = (TL ⊗ In)−(IL+1 ⊗ A0)(TL ⊗ In)+ (TL ⊗ In)−(JL,1 ⊗
A1)(TL ⊗ In) Using the identity that (A ⊗ B)(C ⊗ D) = AC ⊗ BD for Kronecker product of
matrices with suitable dimensions, the first term of the right hand side is obtained as (TL ⊗
In)−(IL+1 ⊗ A0)(TL ⊗ In) = (TL ⊗ In)−(TL ⊗ A0) = IL+1 ⊗ A0. On the other hand, the second
term is (TL⊗ In)−(JL,1⊗A1)(TL⊗ In) = (TL⊗ In)−(JL,1⊗A1) = ((TL)−JL,1TL)⊗A1 = ĴL,1⊗A1.
Here ĴL,1 is a diagonal matrix where the diagonal values are the eigenvalues of JL,1 which
are also equal to the zeros {λ j}L+1

j=1 of the (L + 1)th orthogonal polynomial. Thus T̄−ĀT̄ =
diag((A0 + λ0A1), (A0 + λ1A1), . . . , (A0 + λLA1)) where the diagonal values are obviously the
eigenvalues of Ā �

Corollary 3.3.3. The PC transformed system is stable(asymptotically stable) for any trunca-
tion order L if and only if the original uncertain system is stable (asymptotically stable) for
all possible values of the uncertainty ξ(ω).

Proof. The necessity of the stability of the PC truncated system for the stability of the uncer-
tain system is obvious. For the sufficiency, assume that the transformed system is stable for
any order L, then it implies A0 + λ jA1 is stable for all values of {λ j}L+1

j=1 . Since the roots of the
orthogonal polynomials are located in its support and they are dense, the original system is
also stable for any possible value of ξ. �

Note that the above corollary does not say that the truncated system of all orders is unstable
when the original system is unstable for some value of uncertainty. To investigate the stability
relationship between the truncated PC transformed systems of different orders, matrix mea-
sure is utilized. For the sake of completeness we give related information about the matrix
measure.

Definition 3.3.4 ([13]). The matrix measure µ(A) of the matrix A induced by a matrix norm

∥.∥p is defined by µp(A) = limθ→0

(
∥I+θA∥p−1

θ

)
By using the corresponding matrix p-norm definitions, following matrix measures are defined
[13]

• µ1(A) = max j([Re(a j j) +
∑

i=1,i, j |ai j|)

• µ2(A) = maxλi(λi( 1
2 (A + AT )))

• µ∞(A) = maxi([Re(aii) +
∑

j=1,i, j |ai j|)
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The matrix measure provides upper and lower bounds for linear differential equations [13].

Theorem 3.3.4. Let t → A(t) be a piecewise continuous function from R+ to Rn×n, then the
solution of ẋ(t) = A(t)x(t) satisfies the following inequality

|x(t0)|e−
∫ t

t0
µ(−A(τ)dτ) ≤ |x(t)| ≤ |x(t0)|e

∫ t
t0
µ(A(τ)dτ) (3.23)

Lemma 3.3.5. The system defined in Theorem 3.3.4 is asymptotically stable if µ(A(t)) < 0 for
all t.

The matrix measure satisfies the following useful properties [13];

1. µ(cA) = cµ(A) f orall c ≥ 0

2. µ(A + cI) = µ(A) + c f orall c ∈ R

3. µ(A + B) ≤ µ(A) + µ(B)

4. − ∥A∥ ≤ −µ(−A) ≤ Re(λ) ≤ µ(A) ≤ ∥A∥

5. µ(λA + (1 − λ)B) ≤ λµ(A) + (1 − λ)µ(B)

The inequality relation (4) implies that the matrix measure provides a tighter bound for system
stability than the matrix norm.

A sufficient condition for stability of a polytope of matrices is given by [20] in terms of matrix
measure. For truncated PC expansion of order n, it is easy to show that by using the interlacing
property the orthogonal polynomials, the vertices are (A0 + A1λ

n
min) and (A0 + A1λ

n
max) where

λn
min and λn

max are the minimum and maximum root of the nth order polynomial which yields
the following lemma.

Lemma 3.3.6. If there exists a matrix measure µ such that µ(A0 + A1λ
n
max) < 0 and µ(A0 +

A1λ
n
min) < 0 then all the lower dimensional continuous-time PC truncated systems are stable.

The above lemma helps to understand the stability of the truncated system. One special case
is the first order systems. The system representations for this case is xk+1 = (a0+a1ξ)xk+buk.
The PC expansion of order k has eigenvalues λk,i = a0 + a1µk,i for i = 1, 2, . . . , k where µk,i is
the ith root of the (k+1)st degree polynomial. Stability analysis for this case is trivial. Another
special case is higher order systems that satisfy A0A1 = A1A0 with diagonizable A0 and A1.
The commutability reduces the higher order system to a collection of first order systems due
to the fact that the diagonizable commuting matrices are mutually diagonizable. The stability
result for this case is summarized in the following lemma.

Lemma 3.3.7. Suppose that A0A1 = A1A0 where A0 and A1 are diagonizable matrices. The
kth order PC expanded system is stable if and only if all λk,i = λ0,i+diµk,i for i = 1, 2, . . . , k+1
are stable where λ0,i is the ith eigenvalue (the ith diagonal element in the diagonal form of A0

and di is the ith diagonal element in the diagonal form of the matrix A1.
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Proof. Trivial. �

Remark 2. For this special case, it is sufficient to check the stability of the matrices (A0 +

ξminA1) and (A0 + ξmaxA1) for the stability of the uncertain system when the uncertainty has
finite support [ξmin, ξmax]. This is the due the fact that all roots of the orthogonal polynomials
are in the support of the uncertainty and approaching to the boundaries as the order increases.

3.3.2 Multivariate Affine Uncertainty Case

In this section, we study the stability of the multivariate affine uncertain systems. Consider
the affine system matrix (3.10) that is derived in the previous section;

Ā = Ip ⊗ A0 +

d∑
k=1

Jp,k ⊗ Ak (3.24)

For the stability of multivariate truncated PC transformed system, we will provide a sufficient
condition by exploiting the block tri-diagonal structure of the system matrix. In this regard,
we utilized matrix measure concept for the stability analysis. We use the notation S i j to denote
the (i j)th entry of a matrix S.

Theorem 3.3.8. The truncated PC transformed system is stable if µ1(A0) < −∑d
k=1 βk∥Ak∥1

where βk is equal to the maximum column sum of the Jp,k, that is βk = ∥Jp,k∥1

Proof. Let us consider the Kronecker product representation of the system dynamics matrix
Ā = Ip ⊗ A0 +

∑d
k=1 Jp,k ⊗ Ak where Jp,k defined in (3.16). Note here that for a fixed k = k∗,

the elements of the fixed ( j∗)th column of the Jp,k∗ are as follows;

êik∗ j∗ =
⟨
Φi, ξk∗Φ j∗

⟩
=


b j∗k f or i = j∗

a j∗k f or ik = j∗k + 1 and ∀s s , k∗ is = j∗s
c j∗k f or ik = j∗k − 1 and ∀s s , k∗ is = j∗s
0 else


(3.25)

If the indices of i that satisfy the previous conditions are denoted as j∗,+k and j∗,−k , then⟨
Φi, ξk∗Φ j∗

⟩
= a j∗kδi, j∗,+k

+ b j∗kδi, j + c j∗kδi, j∗,−k
(3.26)

Thus, since by definition µ1(Ā) = max j
[
Re(Ā j j) +

∑
i=1,i, j

∣∣∣Āi j
∣∣∣] then

µ1(Ā) < max j

Ā0
j j +

∑
i=1,i, j

∣∣∣∣A0
i j

∣∣∣∣ + d∑
k=1

∑
i

(a jk + b jk + c jk )
∣∣∣∣Ak

i j

∣∣∣∣
 (3.27)

By using the (3.25) and since by definition µ1(A0) = max j
[
A0

j j +
∑

i,i, j

∣∣∣Ai j
∣∣∣] it is easy to see

that

µ1(Ā) ≤ µ1(A0) + max j

d∑
k=1

∑
i

(a jk + b jk + c jk )
∣∣∣∣Ak

i j

∣∣∣∣
≤ µ1(A0) +

d∑
k=1

βkmax j

∑
i

∣∣∣∣Ak
i j

∣∣∣∣
(3.28)
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where βk is the maximum value of the three-term recursion coefficients sum for the univariate
orthogonal polynomial corresponding to the kth uncertainty. From (3.25), it can be inferred
that it is also equivalent to ∥Jp,k∥1 which is the maximum absolute column sum of the matrix
Jp,k. Similarly since ∥Ak∥1 = max j

∑
i

∣∣∣∣Ak
i j

∣∣∣∣ so

µ1(Ā) ≤
µ1(A0) +

d∑
k=1

∥Jp,k∥1∥Ak∥1

 (3.29)

Since the stability of the augmented system necessiates that µ1(Ā) < 0 then
µ1(A0) < −∑d

k=1 βk∥Ak∥1 �

Corollary 3.3.9. For multi-variable uniformly distributed uncertainty case, the truncated PC
transformed system is stable if µ1(A0) < −∑d

k=1 ∥Ak∥1

Proof. For the uniform distribution case,the corresponding orthogonal polynomiala are Leg-
endre polynomials for which a jk =

jk+1
2 jk+1 , c jk =

jk
2 jk+1 and b jk = 0. Thus the summation of

the coefficients on any column of the Jacobi matrix will be equal unity if both j−k ≤ p and
j+k ≤ p. Otherwise, the summation will be less than unity. Thus ∥Jp,k∥ ≤ 1 which completes
the proof. �

Remark 3. In [41], for infinite dimensional multivariate PC truncated system, a sufficient
stability condition is derived as µ2(A0) = maxiλi

(
1
2 (A0 + AT

0 )
)
≤ −∑d

k=1 ∥Ak∥2 by utilizing
the Lyapunov stability for row-finite infinite dimensional systems. Their result is the 2-norm
version of the our result which is obtained for the truncated PC transformed system.

3.4 Controllability Analysis

In this section, we study the controllability of the PC transformed system representation and
relate it to the controllability of the uncertain system. The controllability definition of the
uncertain system is given below [61].

Definition 3.4.1. The uncertain system is said to be robustly controllable if it is controllable
for every realization of ξ(ω).

3.4.1 Scalar Affine Uncertainty Case

Consider the truncated PC transformed linear system (3.22). We have shown in the previous
section that the system dynamics can be block diagonalized by a similarity transformation
matrix T̄ such that Â = T̄−ĀT̄ where T̄ = TL ⊗ In with ĴL,1 = T−L JL,1TL. Note that T̄− =
(TL ⊗ In)− = T−L ⊗ In. Corresponding to the state transformation x̂ = T̄−x the transformed
system takes the following form

˙̂x(t) = Âx̂(t) + B̂u(t) (3.30)
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Here B̂ = T̄−B̄ =
(
T−11BT , T−21BT , . . . ,T−L1BT

)T
and Â = diag((A0+µ0A1), (A0+µ1A1), . . . , (A0+

µLA1)) with T−i j is the (i, j)th element of the matrix T−L .

For controllability, the block diagonal structure of the transformed system necessitates the
diagonal block dynamics {A0 + µiA1} not to have common modes. This is due to the special
structure of the matrix B̂, i.e., blocks of it are same except a scalar multiplication. It is obvious
that the truncated PC transformed system is not controllable if one of the T−i1 values is zero.
The following lemma guarantees that these values are not zero.

Lemma 3.4.1. The first column of the inverse similarity transformation matrix T− that diag-
onalizes the transpose Jacobi matrix JL has no zero terms.

Proof. Consider a non-symmetrical transpose tri-diagonal matrix JL = JT
L+1. It is known that

the symmetric form of a tri-diagonal matrix is obtained by a similarity transformation such
that Js,L = DJLD− where D is a diagonal matrix. On the other hand, there exists an orthogonal
matrix V− = VT that diagonalizes the symmetric Jacobi matrix such that Λ = VT Js,LV with
V = (pL(λ0), pL(λ1), . . . , pL(λL − 1)) where pL(λ) = (p0(λ), p1(λ), . . . , p0(λ))T are composed
of orthogonal polynomials pi(λ) and λi is the ith root of the Lth degree polynomial. By
combining these two transformations it can be obtained that Λ = VT DJLD−V . Then the
similarity transformation T = D−V diagonalizes JL where T− = V−T D. Thus the first column
of T− consists of (d1 p0(λ0), d2 p1(λ0), . . . , dL p0(λ0))T where d1, d2, . . . , dL are the diagonal
values of the matrix D . Since the zeroth order orthogonal polynomials are positive scalars
(generally chosen as one), the first column does not include any zero terms. �

Theorem 3.4.2. The truncated PC transformed system (3.22) and thus (3.30) is controllable
for any expansion order only if (A0, A1) is a controllable pair.

Proof. The similarity transformation T̄ makes the PC transformed system block diagonal
with block diagonal entries (A0 + µiA1) for i = 1, . . . , d with the corresponding input matrix
B̂ = (T−11BT ,T−21BT , . . . , T−L1BT )T where (T−11, . . . , T

−
L1) are nonzero. Assume that (A0, A1)

is not controllable then there exists a similarity transformation matrix Tc decomposing the
(A0, A1) pair as Â0 = T−c A0Tc and Â1 = T−c A1 such that

Â0 =

 Â11
0 Â12

0
0 Â22

0

 Â1 =

 Â11
1
0


If the similarity transformation is performed on each (A0 +µiA1) then T−c (A0 +µiA1)Tc= Â0 +

µiÂ1Tc where Â1Tc =
(
(Â11

1i )T , 0T
)T

for i = 1, 2, . . . , d. Thus, the eigenvalues of Â0 that
corresponds to Â22

0 block is same for each i which implies uncontrollability. �

The elimination of the uncontrollable modes may be useful since it reduces the order of the
PC transformed system. Define Tc = (T1 T2) as the transformation matrix used in the Kalman

decomposition. Define its inverse as T−c = (T̄ T
1 T̄ T

2 )T so T−c A0Tc =

 T̄1A0T1 T̄1A0T2

0 T̄2A0T2

,
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T−c A1 =

 T̄1A1

0

 Define the augmented similarity transformation as T = Ip ⊗ Tc then it

can be shown that after the transformation the PC truncated system can be represented as

Â = JL,0 ⊗ Â0 + JL,1 ⊗ Â1 where Â0 =

 T̄1A0T1 T̄1A0T2

0 T̄2A0T2

 and Â1 =

 T̄1A1T1 T̄1A1T2

0 0


since T̄2A1 = 0 implies that T̄2A1T̄2 = 0 and with the PC transformed input matrix being

B̄ =

 T−c B
0nL×m

. The reduced system model is

Âred =



Â0 + b0Â1 c0Â1 0 0 . . . 0
a1Â1,red Â0 + b1Â1 c1Â1,red 0 . . . 0

0 a2Â1,red Â0,red + b2Â1 c2Â1,red . . . 0

0 0 a3Â1,red Â0,red + b2Â1 . . .
...

...
...

...
...

. . . cL−1Â1,red

0 0 0 . . . aLÂ1,red Â0,red + bLÂ1


with A0,red = T̄1A0T1 and Ā1,red = T̄1A1T1.

Note here that the resulting system is almost block tri-diagonal where the structure of the first
row block is different than the other row blocks. The following lemma is a direct consequence
of the above explanation.

Lemma 3.4.3. Assume that A0 has distinct eigenvalues. If (A0, A1) pair has m ≤ n uncon-
trollable modes then the truncated PC transformed system (1.45) has at least (m − 1) × L
uncontrollable modes.

Proof. The proof is obvious from above explanations. �

Remark 4. The pair (A0, B) is not necessarily controllable for the PC transformed system to
be controllable as shown by the following example.

Example 3.4.1. Given A0 =

 1 1
0 1

 A1 =

 0 0
1 0

 and B =

 1
0

, the pair is (A0, B)

is not controllable but for the second order expansion we have Ā =


1 1 0 0
0 1 1/3 0
0 0 1 1
1 0 0 1

 and

B =


1
0
0
0

 which is controllable.

Lemma 3.4.4. The PC transformed system (3.22) is controllable for any truncation order if
and only if the original uncertain system is robustly controllable.
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Proof. Assume that the original uncertain system is not robustly controllable. This means
that there is a nonzero left eigenvector vT (λ0I − A0 − A1ξ

∗) = 0 and vT B = 0 for some ξ∗ and
λ0. On the other hand the controllability condition of the PC transformed system is that there
does not exist a ν such that νT (diag((λI− (A0+µ1A1)), . . . , (λI− (A0+µLA1))), B̂) = 0 for any
λ where {µi}Li=1 is the set of the zeros of the orthogonal polynomials being in the support of
the measure. Since the roots of the orthogonal polynomials of increasing order is dense in the
support of the orthogonality measure, there will be a polynomial order L∗ such that µL∗ is in
the ϵ neighborhood of ξ∗ for any ϵ for PC truncated system is not controllable. Now consider
that the truncated system is not controllable then vT (λI − (A0 + µL, A1)) = 0 and vT B = 0
for µL = µL∗ . This implies that the uncertain system is not controllable for a realization of
ξ = µL∗ . Thus the proof is complete. �

3.4.2 Multivariate Affine Uncertainty Case

In this section we give a necessary condition for the generalized multivariate orthogonal poly-
nomials. Let us consider the truncated PC transformed linear system

˙̄x(t) = Āx̄(t) + B̄u(t) (3.31)

where Ā = Ip ⊗ A0 +
∑d

i=1 Jp,i ⊗ Ai with

Jp,i =


ê0i0 ê0i1 · · · ê0ip

ê1i0 ê1i1 · · · ê1ip
...

...
. . .

...

êpi0 êpi1 · · · êpip

 B̄ =

 B
0np×m


Theorem 3.4.5. Truncated PC transformed system which is obtained for generalized multi-
variate orthogonal polynomials is controllable only if (A0, (A1, A2, . . . , Ad)) is a controllable
pair.

Proof. Let us consider the system representation (3.31). Let M = (λI − Ā, B̄). M is full row
rank for all eigenvalues of Ā if and only if the (Ā, B̄) pair is controllable. It can be shown
that each row block of Ā contains every Ai for i = 1, 2, . . . , d at most two times solely. By
applying elementary block column operations to the matrix (λI − Ā), it is possible to change
the matrix to a form that contains exactly one Ai i = 1, 2 . . . , d in each row and with diagonal
element (λI − A0 +

∑d
i=1 βiAi) for some βi i = 1, 2, . . . , d. Since all blocks of B̄ except the

first one is zero, the above operations when applied to M generates rows that contain only
(λI − A0 +

∑d
i=1 βiAi), A1, A2, . . . , Ad nonzero terms which gives the proof. �

3.4.3 Controllability and PC Model Order Reduction for Scalar Uncertainty Case

As previously cited, polynomial chaos system representation is only accurate if the expansion
order is high enough. On the other hand, computational complexity increases very rapidly
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as the expansion order grows especially for multivariable orthogonal polynomials. Thus, the
expansion order is an important decision parameter for the PC system representations. In this
regard, eliminating the uncontrollable part (of an order t) in the subsystems causes a decrease
of t× p in the overall order of the PC expanded system when the expansion order is p. For the
following special case, the PC expansion order is one represents uncertain system dynamics,
i.e. higher order expansions do not contribute to the solution.

Fact 1. Assume A2
1 = 0 and A1A0 = A0A1. For this special case PC expansion order 1 gives

the same solution as higher order expansions.

Proof. The solution of the uncertain system is

x(t) = e(A0+A1ξ)t x0 +

∫ t

0
e(A0+A1ξ)(t−τ)Bu(τ)dτ (3.32)

Note that

e(A0+A1ξ)t =

∞∑
i=0

(A0 + A1ξ)i ti

i!
(3.33)

By the commutativity of the A0 and A1 we have (A0 + A1ξ)i =
∑i

l=0

 l
i

 Al
0ξ

i−lAl−i
i . Using

A2
1 = 0 we obtain

(A0 + ξA1)i = Ai
0 + ξAi−1

0 A1 (3.34)

Inserting (3.34) into (3.33) and assuming that A0 is asymptotically stable we write

e(A0+ξA1)t =

∞∑
i=0

(Ai
0 + ξAi−1

0 A1)
ti

i!
(3.35)

thus e(A0+ξA1)t = eA0t + ξA1A−0 eA0t. The last expression contain only ξ0 and ξ1 terms so higher
order terms do not contribute to e(A0+A1t). Similarly the second order term contains only zeroth
and first order terms of ξ. �

3.5 Conclusion

In this chapter, we study polynomial chaos based system representations and some of their
important properties such as stability and controllability.

We studied the stability of the PC transformed systems and tried to make some connections
between the original uncertain system and PC transformed system. In this regard for single
uncertainty case, we derive a direct relation between the eigenvalues of the uncertain system
matrix and the the eigenvalues of nominal system matrix and perturbation matrix for single
uncertainty affine uncertain system. We show that this relation can also be extended to the
multi-variable uncertainty case for some special cases. This novel relation let the PC truncated
system to be block diagonalized. This is the main contribution of this chapter that enables
us to obtain some concrete results about the system properties. We derive a necessary and
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sufficient condition for the PC transformed system. For more general system representations,
we utilize the matrix measure to derive a necessary condition for the stability of the system
by exploiting the banded structure of the system matrix.

In the final section, we studied the controllability of the PC based system models. We have
provided some necessary conditions for the controllability of the PC transformed systems. It
is showed that the controllability of the PC transformed system can be analyzed in terms of
the controllability of the nominal and perturbed system matrices.
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CHAPTER 4

ROBUST STATE ESTIMATION BY POLYNOMIAL CHAOS

4.1 Introduction

Robust estimation is a widely studied subject since it was noticed that performance of the
celebrated Kalman filter is vulnerable to system uncertainty [26, 28]. The main purpose of
a robust estimation algorithm is to get a good performance (but not the best) under nominal
conditions and an acceptable performance for system models other than the nominal model
[36, 6, 37]. This is achieved by limiting the effect of the model uncertainty. Various uncer-
tain system modeling methods are proposed so far. The unknown but bounded deterministic
disturbances are used as system uncertainty for most of the uncertain systems. In the well-
studied estimation approach, the system disturbances are assumed energy bounded and the
optimal estimator minimizes the worst-case energy gain from the exogenous signals to the
estimation error. Norm-bounded uncertainty in system matrices and uncertainty blocks sat-
isfying an integral (sum) quadratic constraint are other types of uncertain system modeling
approaches [37, 45]. State estimation is another branch that the PC theory is applied to. In
[59], an observer is designed to estimate the PC expansion modes of a linear uncertain system.
In the problem formulation, they considered the measurements as the most likely value of the
measured variable. Thus, only the zeroth term of the PC expansion mode is assumed to be
measured. Further, the observability of the augmented system is checked by calculating the
observability matrix. In [40], generalized PC expansion is combined with Ensemble Kalman
filter in order to decrease the sampling error of the Ensemble Kalman filter where samples
are taken randomly. In [16], a nonlinear estimation algorithm is proposed which combines
the generalized PC theory and higher moment updates. Polynomial chaos theory is used to
predict the evolution of uncertainty of the nonlinear random process, and higher order mo-
ment updates are used to estimate the posterior non-Gaussian probability density function of
the random process. The moments are updated using a linear gain. They stated that the pro-
posed estimator outperforms the linear estimator when measurements are not available very
frequently [16]. As given in the literature survey part, the application of the PC theory to the
estimation problems for uncertain systems is mainly focused on the estimation of the uncer-
tain parameter and the system state [5],[49]. In this work, we mainly focused on the robust
estimation problem where the uncertain parameter is not aimed to be estimated but its aver-
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age effect on the estimation performance criteria is minimized. Polynomial chaos expansion
transforms the system uncertainty from system dynamics to system output. The formulation
of the corresponding state estimation problem is difficult since it is not in a suitable form that
is used in classical estimation algorithms where the polynomial chaos terms appears in the
measurement model as unknown disturbance signals. As noted in the previous paragraph, in
[59], the problem is handled by considering the measurement as the most likely value. Thus
they take the average of the uncertainty terms in the measurement model. This is the first
measurement model that we have considered in this chapter. We propose another approach
for the state estimation of the polynomial chaos based uncertain systems by the modifying
the set-valued estimation technique that is first introduced by [3] as a deterministic interpre-
tation of Kalman filter. Further this approach was extended to the state estimation problem
of uncertain systems where the uncertainty is modeled by sum quadratic constraint [51]. In
this regard, we considered the state estimation problem of polynomial chaos based uncertain
system as a set estimation problem where the uncertainty and system disturbances satisfy a
quasi-deterministic energy constraint. We showed that the set of possible states are actually an
ellipsoid where the center and the shaping matrix of the ellipsoid can be obtained recursively
by augmented Kalman filter equations which is advantageous. We also provide a stochastic in-
terpretation of the problem formulation as the average maximum a posteriori state estimation
problem. In this regard, we propose two other stochastic estimation problems. We provide
some necessary conditions for the observability of the two measurement models which give
a better understanding of the differences of these two models. We evaluated the performance
of the considered two approaches by three illustrative examples that are used in robust esti-
mation community as framework examples. The performance of the proposed approaches are
compared with the nominal Kalman filter and classical robust estimation algorithms namely
the regularized robust Kalman filter and the H∞ filter.

4.2 Problem Definition

Let us consider a discrete-time linear uncertain system

xk+1 = A(∆(ξ))xk + Bwk+1 (4.1a)

yk = Hk xk + vk (4.1b)

with an unknown initial value x0 ∈ Rn and an unknown system parameter ∆(ξ(ω)) ∈ Rd

and a disturbance input vector wk. Here yk ∈ Rs is the system output, A(∆(ξ)) ∈ Rn×n is
the uncertain system matrix and B ∈ Rn×m is the input matrix and Hk ∈ Rs×n is the output
matrix, and vk is the measurement disturbance. Consider that the uncertain system that is
approximated by the truncated PC transformed system as

x̄k+1 = Āx̄k + B̄wk+1 (4.2a)

yk =

p∑
i=0

Hk xi,kΦi(ξ(ω)) + vk (4.2b)
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where Ā ∈ Rnp×np is the augmented PC transformed system matrix and B̄ =

 B
0np×m

. Note

here that if the random part in the measurement model due to the PC higher order terms is
considered as the state dependent measurement disturbances, the measurement model can be
expressed as

yk = H̄0,k x̄k + vk + ṽk(ξ) (4.3)

where H̄0,k can be considered as the nominal measurement matrix for the augmented system

H̄0,k = (Hk, 0s×n, . . . , 0s×n) (4.4)

and ṽk(ξ) is the state and the polynomial chaos dependent measurement disturbance

ṽk(ξ) =
p∑

i=1

Hk xi,kΦi(ξ(ω)) (4.5)

Since the measurement model includes the random bases in terms of the polynomials of uncer-
tain parameters, the truncated PC transformed system is not in a standard form for the applica-
tion of the classical state estimation algorithms. We will consider two types of measurement
modeling techniques for the state estimation problem of the truncated PC transformed system
in the sequel.

Measurement Model I
One possible way of handling the dependence of the measurement disturbance on polynomial
chaos is assuming that the sampled measurement is the average (with respect to PC chaos)
value [59]. In this regard, the measurement model becomes

yk = H̄0,k x̄k + vk (4.6)

Measurement Model II
In this technique, we define a quasi-deterministic set-valued state estimation problem and
obtain the measurement model as a result of this formulation. Furthermore a stochastic in-
terpretation of the set-valued state estimation problem is done. The two approaches that are
explained in the next section give the same measurement equation. Both of these formulation
are novel parts of this thesis. The common result of the two approaches induces the following
measurement model:

ȳk = H̄k x̄k + v̄k (4.7)

where H̄k ∈ R(p+1)s×(p+1)n with H̄k = Ip+1 ⊗ Hk and v̄k ∈ R(p+1)s with E{(v̄kv̄T
k )} = Ip+1 ⊗ Rk

4.2.1 Set-Valued Robust State Estimation Problem

Consider the truncated PC transformed system in (4.1) with the modified measurement model
(4.2). Let Qk, Rk be the given positive definite covariance matrices of the process and mea-
surement noises. Assume that the mean and the covariance matrix of the initial state are ˜̄x0
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and Σ0 symmetric matrix. For a given fixed measurement sequence ys
0:N , assume that the sys-

tem disturbance sequences wk,vk,ṽk(ξ) and the initial condition of the system x̄0 satisfy the
following sum quadratic constraint (energy constraint)

∥∥∥x̄0 − ˜̄x0
∥∥∥2
Σ−0
+

N−1∑
k=0

(
∥wk∥2Q−k +

∥∥∥ys
k+1 − H̄0,k+1 x̄k+1

∥∥∥2
R−k+1

)
≤ d − Eξ

N−1∑
k=0

∥ṽk+1(ξ)∥2R−k+1

 (4.8)

over a finite horizon [0,N] for a given scalar d being sufficiently large that

d > Eξ
[∑N−1

k=0 ∥ṽk+1(ξ)∥2R−k+1

]
. Here Eξ[.] denotes the expectation with respect to the probability

measure induced by the random variable ξ. The left part of the inequality can be considered
as the energy of the process disturbance and the measurement disturbance sequences of the
the nominal model (nominal model is the model when the uncertainty does not exist). The
right hand side of the inequality consists of the energy level d and the possible average energy
loss due to the uncertainty in the measurement model. The set of all possible states at time N
will be constructed by checking whether a candidate state can be reached by some uncertainty
input that satisfies the constraints.

Definition 4.2.1. Let XN(x̄0, ys
0:N , d) denote the set of possible states x̄N at time N for the

system (4.1) and the measurement model (4.2) with uncertain inputs wk,vk, ṽk(ξ) satisfying
the constraint (4.8) for a given fixed measurement sequence y∗0:N .Then the state estimation
problem is defined as finding the set XN(x̄0, ys

0:N , d) of all possible states at time N.

Proposition 4.2.1. The set of possible states for a fixed measurement sequence y∗0:N is an
ellipsoid

XN(x̄0, ys
0:N , d) = { ςN ∈ Rn :

∥∥∥ςN − ˆ̄xN
∥∥∥2
Σ−N |N
≤ ρ(ȳs

1:N) + d} (4.9)

where ρ(ȳs
1:N) =

∑N
k=1

∥∥∥ȳs
k − H̄kĀ ˆ̄xk−1

∥∥∥2
(H̄kΣk|k−1H̄T

k +R̄k)− and ΣN , ˆ̄xN can be computed recursively
as

Σk+1|k+1 =
(
Σ−k+1|k+1 + H̄T

k+1R̄−k+1H̄k+1
)−

(4.10a)

Σk+1|k = ĀΣk|kĀT + B̄Qk+1B̄T ,Σ0|0 = Σ0 (4.10b)

ˆ̄xk+1 = Ā ˆ̄xk + Σk+1|k+1HT
k R̄−k (ȳs

k − H̄T
k+1Ā ˆ̄xk) for given ˆ̄x0 (4.10c)

R̄k+1 = diag

 1⟨
(Φ0(ξ))2⟩ , . . . , 1⟨(

Φp(ξ)
)2

⟩
 (4.10d)

ȳs
k :=

(
(ys

k)T , 0ps
)T

(4.10e)

H̄k+1 = Ip+1 ⊗ Hk+1 (4.10f)

Proof. Assume that the measurement sequence y0:N = ys
0:N is given. ςN is an element of

XN(x̄0, ys
0:N , d) if and only if there exists sequences x̄k,wk, vk, ṽk(ξ) such that x̄N = ςN . Since

Eξ
[
∥ṽk+1(ξ)∥2R−k+1

]
=

∑p
i=1

∥∥∥Hk+1xi,k+1)
∥∥∥2

R−k+1

⟨
Φ(ξ)2

⟩
then by defining

ȳs
k+1 ,

(
(ys

k+1)T , 0ps
)T

(4.11)
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and
H̄k+1 = Ip+1 ⊗ Hk+1 (4.12)

it can be stated that ςN ∈ XN
(
x̄0, ys

0:N , d
)

if and only if there exists a vector x̄0, disturbance
sequences w0:N such that

J(x̄0,w0:N , ςN) =
∥∥∥(x̄0 − ˆ̄x0)

∥∥∥2
Σ−0
+

N−1∑
k=0

(
∥wk∥2Q−k +

∥∥∥ȳs
k+1 − H̄0,k+1 x̄k+1

∥∥∥2
R−k+1

)
< d (4.13)

subject to the system equation (4.2) and the terminal constraint xN = ςN . It is obvious that
there exist sequences x̄0 and w0:N satisfying the terminal constraint and (4.13) if and only if

J∗(ςN) = min
w0:N

J(x̄0,w0:N , ςN) < d (4.14)

Note here that the initial condition x̄0 is dropped from the argument of the functional
J(x̄0,w0:N , ςN) since it can be determined by using the system equation and the terminal con-
straint once the optimal w0:N is determined [3]. The state estimation problem is reduced to
the following optimization problem

J∗(ςN) , min
w0:N

J(x̄0,w0:N , ςN)

s.t. x̄k+1 = Āx̄k + B̄wk+1, x̄N = ςN

(4.15)

The optimization problem (4.15) is very similar to the standard linear optimal tracking control
problem. There is only one difference. The cost is imposed on the initial state of the system
whereas in standard tracking problem the cost is defined on the final state of the problem.
This difference can be handled by reversing the time index. The solution of the problem is
well known [39], [3]. The optimal cost is obtained as in [3];

J∗(ςN) =
∥∥∥ςN − ˆ̄xN

∥∥∥2
Σ−N |N
+

N∑
k=1

∥∥∥ȳs
k − H̄kĀ ˆ̄xk−1

∥∥∥2
(H̄kΣk|k−1H̄T

k +R̄k)− (4.16)

where Σk|k and ˆ̄xN satisfy the recursions in (4.17). Thus the proof is complete. �

Remark 5. The optimal state estimation recursions are exactly the same as the Kalman filter
recursions for the augmented measurement vector ȳs

k with the corresponding measurement
model ȳs

k = H̄k x̄k + v̄k where H̄k+1 = Ip+1 ⊗ Hk+1. This resemblance can be explained by
deterministic least square interpretation of the Kalman filter.

4.2.2 Stochastic Polynomial Chaos Based Estimation

In the previous section, the measurement and process disturbance sequences are assumed to
be unknown but deterministic sequences satisfying a semi-deterministic energy constraint.
In this section the disturbances are modeled as the stochastic processes. In this regard, we
consider the following quite general discrete-time stochastic linear uncertain system defined
on a probability space (Ω,F, µ):

xk+1 = A(∆(ξ))xk + Bwk+1 (4.17a)
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yk = Hk xk + vk (4.17b)

Here yk ∈ Rm is the system output, A(∆(ξ)) Rn×n is the uncertain system matrix, Bn×m is
the input matrix and Hk ∈ Rs×n is the output matrix. The uncertainty vector ∆(ξ) is defined
on a probability space (Ωξ,Fξ, µξ) that is called the uncertainty space. The process noise
wk ∈ R, and measurement noise wk ∈ Rm and the initial state x0 ∈ Rn are random variables
defined on a different probability space denoted by (Ωη,Fη, µη). This space is called the
noise space. It is assumed that the random variables wk, vk, x0 are independent zero mean
Gaussian distributed random variables with the corresponding covariance matrices Qk,Rk,Σ0.
The whole probability space (Ω,F, µ) can be considered as the Cartesian product space of
the uncertainty and noise spaces (Ωξ × Ωη,Fξ × Fη, µξ × µη). Then {ω = (ωξ, ωη) : (ωξ ∈
Ωξ, ωη ∈ Ωη} and F = Fξ × Fη is the σ-algebra generated by the collection of all measurable
rectangles Bξ ∈ Fξ and Bη ∈ Fη i.e, Fξ×Fη = σ{Bξ×Bη}. Additionally, the random variables
Θ(ξ),wk, vk, x0 are assumed to be in L2(Ω,F, µ), which is a vector space of the random vectors
x(ω) such that Eµ{xT (ω)x(ω)} < ∞ After applying the Galerkin projection, stochastic version
of the truncated PC transformed system model is obtained

x̄k+1 = Āxk + B̄wk+1 (4.18a)

yk =

p∑
i=0

Hk xk,iΦi(ξ(ω)) + vk+1 (4.18b)

As mentioned in the previous section, the linear uncertain system model (4.18) is not in the
form of classical state estimation problems. Since the measurement model includes the un-
certainty parameters, which is the main role of the polynomial chaos expansion system as
transferring the internal system uncertainties to the system output. In order to handle this
problem, we have proposed the optimization of cost functions for the state estimation prob-
lem. In the problem formulations, the uncertainty vector is assumed to be independent from
the given measurements even though the observed measurement gives information about the
uncertainty space. In other words, the estimation of the uncertain parameter is not considered
but its effect on the estimation error is considered. In this regard, we will define three possible
formulations for the state estimation problem. Each of the formulations corresponds to a min-
imization problem with a different objective function that should be minimized. In the first
formulation we assume a linear Gaussian uncertain system structure, and convert the problem
to the one that can be solved by Kalman filtering. The other two formulations are given for
the general case with no proposed solution.

4.2.3 Expected Maximum a Posteriori Probability Estimation for Linear Gaussian Sys-
tems

In this problem, the expected value of the logarithm of the conditional probability density
function is minimized. That is

J( ˆ̄x0:k) = max
x̄0:k

Eµξ [log(p(x̄0:k|y0:k, ξ))] (4.19)
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Due to the Bayesian rule

p(x̄0:k|y0:k, ξ) =
p(y0:k|x̄0:k, ξ)p(x̄0:k|ξ)

p(y0:k|ξ)
(4.20)

Since the system’s time propagation is independent of the uncertain parameter and the process
and the measurement noises are independent we can write

p(x̄0:k|ξ) = p(x̄0:k) =
k∏

m=1

p(x̄m|x̄m−1)p(x̄0) (4.21)

and

p(y0:k|x̄0:k, ξ)
k∏

m=1

p(ym|x̄m, ξ) (4.22)

Thus, the optimal state estimation problem (4.19) takes the following form

J( ˆ̄x0:k) = max
x̄0:k

Eµξ

log

 k∏
m=1

p(x̄m|x̄m−1)p(x̄0)
k∏

m=1

p(ym|x̄m, ξ)


 − log(p(y0:k|ξ)) (4.23)

Since the term log(p(y0:k|ξ)) does not include the decision variable, it can be eliminated from
the optimization problem. Then the optimal state estimation problem is reduced to the follow-
ing quadratic optimization problem by assuming that the noise sequences are jointly Gaussian
distributed

J( ˆ̄x0:k) = min
x̄0:k

Eµξ

1
2

∥∥∥x̄0 − ˆ̄x0
∥∥∥2
Σ−0
+

1
2

k∑
m=1

∥∥∥x̄m − Ām x̄m−1
∥∥∥2

Q̄−m
+ ∥ym − Hm(ξ)∥2R−m

 (4.24)

where Hk(ξ) = (HkΦ0(ξ(ω)),HkΦ1(ξ(ω)), . . . ,HkΦp(ξ(ω))). Note here that due to zero rows
of the input matrix B in system model, the covariance of the input noise Bwk+1 is singular.
Thus the inverse of Q̄m does not exist. However due to the PC truncation this model does not
actually represent the true system model. Thus we tacitly assume that that input matrix is non
singular by assuming that very small fictitious noise as input to the system. By taking the ex-
pectation and by using the orthogonality of the polynomial bases the optimal state estimation
problem can be written as:

J( ˆ̄x0:k) = min
x̄0:k∈Rn

Eµξ

1
2

∥∥∥x̄0 − ˆ̄x0
∥∥∥2
Σ−0
+

1
2

k∑
m=1

∥∥∥x̄m − Ām x̄m−1
∥∥∥2

Q̄−m
+

∥∥∥ym − H̄m(ξ)
∥∥∥2

R̄−m

 (4.25)

where

H̄m , Ip+1 ⊗ Hm (4.26)

and

R̄k+1 = diag1/ ⟨Φ0(ξ)⟩ , . . . , 1/
⟨
Φp(ξ)

⟩
⊗ Rk+1 (4.27)

Note that the obtained problem is the augmented version of the deterministic formulation of
the celebrated Kalman filter . Thus, the following augmented Kalman filter equations can be
used for the solution of the problem.
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Table4.1: Kalman Filter Recursive Equations

Time Update

x̄k|k−1 = Āk|k−1 x̄k−1|k−1
Σk|k−1 = Āk|k−1Σk−1|k−1ĀT

k|k−1 + Q̄k

Measurement Update

Kk = Σk|k−1H̄T
k (H̄Σk|k−1H̄T + R̄k)−

x̄k|k = x̄k|k−1 + Kk(ȳk − H̄k x̄k|k−1)
Σk|k = (I − Kk ∗ H̄k)Σk|k−1

4.2.4 Other Possible Probabilistic Estimation Problems for PC Based Uncertain Sys-
tems

4.2.4.1 Average Mean Square Estimation (MSE)

In this formulation, the expectation of the conditional mean square estimation error with re-
spect to the uncertainty random variable becomes the objective function that must be mini-
mized. That is

ˆ̄xk = argmin
u∈Rn

Eµξ

[
Eµη

[
1
2

∥∥∥ ˆ̄xk − u
∥∥∥2

∣∣∣∣∣∣y0:k, ξ

]]
(4.28)

4.2.4.2 Average Risk-Sensitive Estimation

In this problem, the expectation of the exponential function of the cumulative mean square
error with respect to the uncertainty random variable is minimized under the condition that
the a priori estimates are available. That is

ˆ̄xk = argmin
u∈Rn

Eµξ

Eµη

exp

 θ2
k−1∑
m=1

∥∥∥ ˆ̄xk − x̄m
∥∥∥2
+

∥∥∥ ˆ̄xk − u
∥∥∥2

 |y0:k, ξ


 (4.29)

where ˆ̄x0:k−1 is the set of the previous state estimates. If the outer expectation is disregarded,
the problem is a classical risk-sensitive estimation where all the moments of the estimation
error is minimized where the θ parameter weights the moments of the error.

The proposed problems are difficult to solve since the cost function and thus the solution
include integral expressions that are not analytically tractable in most cases.
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4.2.5 Observability of the Equivalent Measurement Models

In the state estimation problem observability plays an important role. The unobservable part
of the state is estimated by means of the system dynamics only and the measurements have
no role in its estimation.The observability of the truncated PC expanded system is worth
to study due to this fact. In this section, we have analyzed the observability of both the
classical measurement model (Model I) yk = H̄0,k x̄k + vk where the sampled measurement
is considered as the average of the realizations of all possible uncertainty vector ξ and the
proposed estimation model (Model II) ȳk = H̄k x̄k+ v̄k that is induced by the solution of the our
novel set-valued state estimation problem (or the equivalent expected maximum a posteriori
probability estimation problem).

From now on we assume the uncertain system matrix is an affine function of the system
uncertainty vector ξ. Thus the system model is as defined in (4.2) where the system matrix

is Ā = Ip+1 ⊗ A0 +
d∑

i=1
Jp,i ⊗ Ai. The common system model (4.30a) and the considered two

measurement models (4.30b),(4.30c) are presented as

x̄k+1 = Āxk + B̄wk+1 (4.30a)

Model I : yk = H̄0,k x̄k + vk (4.30b)

Model II : ȳk = H̄k x̄k + v̄k (4.30c)

4.2.5.1 Observability of Model I

We give a necessary condition for the observability of the system model (4.2) with the mea-
surement model I by the following lemma

Lemma 4.2.2. Consider the PC transformed system (4.2) for single uncertainty case where
the measurement matrix is constant Hk = H. Then the equivalent system (4.30a) with the
measurement model (4.30b) is not observable if (A1, A0) pair is not observable.

Proof. According to PBH eigenvector test, if (A1, A0) pair is not observable, then there exists
a right eigenvector ν0 such that (λ0I − A0)ν0 = 0, and A1ν0 = 0. Consider now the PC
transformed system which is in the following block tri-diagonal form, then

λI − Ā =



λI − A0 − b0A1 c0A1 0 . . . 0
a1A1 λI − A0 − b1A1 c1A1 . . . 0

0 a2A1 λI − A0 − b2A1
...

...
...

...
. . .

. . . cp−1A1

0 0 . . . apA1 λI − A0 − bpA1


(4.31)

with the corresponding measurement matrix H̄0 = [H, 0, . . . , 0]. It is clear that (λ0I − Ā)ν̄ = 0
and H̄0ν̄ = 0 for a nonzero vector ν̄ =

(
0T , νT

0 , . . . , ν
T
0

)
showing that the the pair

(
H̄0, Ā

)
is not

observable. �
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4.2.5.2 Observability of Model II

Following lemma provides a necessary condition for the observability of the system model
(4.2) with the measurement model II.

Lemma 4.2.3. Consider the PC transformed system (4.2) for single uncertainty case where
the measurement matrix is constant Hk = H. Then the equivalent system (4.30a) with the

measurement model (4.30c) is not observable if

 H
A1

 , A0

 pair is not observable.

Proof. According to PBH eigenvector test, if

 H
A1

 , A0

 pair is not observable, then there

exists a right eigenvector ν0 such that (λ0I − A0)ν0 = 0,Hν0 = 0 and A1ν0 = 0. Consider now
the PC transformed system which is in the following block tri-diagonal form. By exploiting
the special structure of the PC transformed system matrix (4.31) it is clear that (λ0I − Ā)ν̄ = 0
and H̄ν̄ = 0 for ν̄ =

(
νT

0 , ν
T
0 , . . . , ν

T
0

)
showing that the the pair

(
H̄, Ā

)
is not observable. �

4.2.6 The Effect of Polynomial Truncation Order for the Polynomial Chaos Based Es-
timation

In this section, we will study the effect of the polynomial truncation order on the proposed
polynomial chaos based estimation method. The effect of the proposed estimation algorithm
will be studied in two parts as the time update and the measurement update. First we consider
the case that there is no measurement available in the time interval of interest. For this case
consider the time update of the PC transformed system covariance matrix (or equivalently
weight matrix that defines the ellipsoid in the set-valued estimation)

Σk|k−1 = ĀΣk|k−1ĀT + Q̄k (4.32)

The covariance matrix of the augmented state vector can be related to the initial covariance
matrix as

Σk|k−1 = ĀkΣ0|0(Āk)T +

k∑
i=1

Āk−iQ̄i(Āk−i)T (4.33)

where Q̄k =

 Qk 0
0 0

. It is suitable for the initial covariance matrix to be set as Σ̄0|0 = Σ0|0 0
0 0

 since the initial value of the higher order PC coefficients are exactly zero. Let us

partition the state transition matrix

Āp
k
=



[
(Āp)k

]
0,0

[
(Āp)k

]
0,1

. . .
[
(Āp)k

]
0,p[

(Āp)k
]
1,0

[
(Āp)k

]
1,1

. . .
[
(Āp)k

]
1,p

...
...

. . .
...[

(Āp)k
]

p,0

[
(Āp)k

]
p,1

. . .
[
(Āp)k

]
p,p


(4.34)
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Then the covariance matrix of the zeroth order coefficient vector x0,k at time k can be deter-
mined as

Σ
(0,0)
k|k−1 =

[
(Āp)k

]
(0,0)
Σ

(0,0)
0|−1

([
(Āp)k

]
(0,0)

)T
+

k∑
i=1

[
(Āp)k−i

]
(0,0)

Qi

([
(Āp)k−i

]
(0,0)

)T
(4.35)

Lemma 4.2.4. For a fixed value of k, the sub-matrices
[
(Ān)k

]
are same for any PC truncation

order n>1.

Proof. Since the state transition matrix of truncated PC transformed system at order n is

Ān =



A0 c0A1 0 . . . 0
a1A1 A0 c1A1 . . . 0

0 a2A1 A0
. . . 0

...
...

. . .
. . .

...

0 0 . . . anA1 A0


(4.36)

then Ā1 =

 A0 c0A1

a1A1 A0

 where

(Ā1)2 =

 A2
0 + a1c0A2

1 c0(A1A0 + A0A1)
a1(A1A0 + A0A1) A2

0 + a1c0A2
1


On the other hand Ā2 =


A0 c0A1 0

a1A1 A0 c1A1

0 a2A1 A0

 where

Ā2
2 =


A2

0 + a1c0A2
1 c0(A1A0 + A0A1) c0c1A2

1
a1(A1A0 + A0A1) A2

0 + (a1c0 + a2c1)A2
1 c1(A1A0 + A0A1)

a1a2A2
1 a2(A1A0 + A0A1) [(Ā2)2](2,2)


Note here that (1,1),(1,2) and (2,1) blocks of the matrices (Ā1)2 and (Ā2)2 are same. Due to
the tridiagonal structure of the Ān for any order n, this fact yields that these three elements
will remain same for each power k. Thus

[
(Ān)k

]
(0,0)
=

[
(Ām)k

]
(0,0)

for any n,m>1. �

Theorem 4.2.5. The time propagated covariance Σ(0,0)
k|k−1 of the sub set of the state vector of

PC transformed system corresponding to the zeroth order coefficients of the PC expansion
will not change by increasing the PC expansion order n for n>1.

Proof. By using the relation (4.35) and the lemma 4.2.4, it is obvious that the covariance
matrix will not change by increasing the PC order. �

Now let us consider the measurement update part. Measurement update is done by using the
following equations of Kalman filtering.

Kk = Σk|k−1H̄T
k

(
H̄kΣk|k−1H̄T

k + R̄k
)−
Σk|k =

(
I − KkH̄k

)
Σk|k−1
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Table4.2: Legendre Polynomials

Polynomial Order Legendre Polynomial
1 Φ0(ξ) = 1
2 Φ1(ξ) = ξ
3 Φ2(ξ) = 1

2 (3ξ2 − 1)
4 Φ3(ξ) = 1

2 (5ξ3 − 3ξ)
5 Φ4(ξ) = 1

8 (35ξ4 − 30ξ + 3)
6 Φ5(ξ) = 1

8 (63ξ4 − 70ξ3 + 15ξ)

In the above equations the matrices Σk|k−1H̄T
k and

(
H̄kΣk|k−1H̄T

k + RT
k

)
contain sub-matrices

that are independent of the expansion order. However due to the inverse operator, expansion
order effects the Kalman gain so the posterior covariance of the state estimate. However, the
process noise covariance matrix of the truncated PC expansion has zero blocks in the B matrix
that reduces the values of the blocks of Σk|k other than the first few as time increases. This
conclusion is certainly true when we consider the steady state value of the state covariance
matrix when process noise is zero.

4.3 Illustrative Examples

In this section, we evaluate the performance of the proposed PC based robust filter by some
illustrative examples. Since in classical robust estimation applications, the uncertainties are
considered as unknown but bounded quantities, the uncertainty in this performance analysis
is modeled as a uniformly distributed random variable. Thus Legendre polynomials are used
for the polynomial chaos expansion. Legendre polynomials satisfy the following three-term
recurrence relation

xpn(x) =
n + 1

2n + 1
pn+1x +

n
2n + 1

pn−1(x) n = 0, 1, 2 . . . (4.37)

Thus the first few orthogonal Legendre polynomials are listed as in Table 4.2

4.3.1 System Dynamics

For single uncertainty case, if the state is approximated as
k∏

m=1
xi,kΦi(ξ) then the following 3th

order truncated PC transformed system can be obtained

x̄k+1 =


A0

1
3 A1 0 0

A1 A0
2
5 A1 0

0 2
3 A1 A0

3
7 A1

0 0 3
5 A1 A0

 x̄k +


B
0
0
0

 wk+1 (4.38)
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4.3.2 Measurement Models

In the analysis we have evaluated two types of PC based measurement models. In the first
one the classical measurement model in which the sampled measurement is considered as the
average measurement.

yk+1 = [H 0 0 0]


x0,k+1

x1,k+1

x2,k+1

x3,k+1

 + vk+1 (4.39)

In the second measurement model, we have considered the proposed average maximum a
priori estimation problem or equivalently the proposed set-valued estimation problem. In this
regard, the measurement model takes the following form;

yk+1 =


H 0 0 0
0 H 0 0
0 0 H 0
0 0 0 H




x0,k+1

x1,k+1

x2,k+1

x3,k+1

 + v̄k+1 (4.40)

where E{v2
n,k} =

1
2n+1

4.3.3 The Filter Performance and Sensitivity

We have studied three framework example that is widely used in robust community [54],[74].
In order to evaluate the performance, the empirical average error variance is used [74]. For this
purpose, 500 Monte Carlo simulations are performed each with a time span of N samples. The
uncertainty ξ is re-generated and is fixed for each run. For the jth trajectory, the observation
series y j

i is then filtered by five different algorithms; Kalman filter (Kal) which has the nominal
model, the proposed robust filter (Pct1, Pct2, Pct3) and the optimal Kalman filter (KalTrue)
which has the true system parameter for each run, regularized robust Kalman filter (Reg) [54]
and H-infinity filter [56] which is one of the traditional robust estimation algorithms. The
mean square error for each sample run is calculated as follows

E{∥xk − x̂k∥2} =
1
M

M∑
j=1

∥∥∥∥x̄( j)
k − ˆ̄x( j)

k

∥∥∥∥2
(4.41)

for k = 1, 2, . . . ,N where N is the time horizon and where x̂( j)
k is the kth value of the estimated

j-th state trajectory and x̄( j)
k is the ith value of the true jth state trajectory. We have also analyzed

the sensitivity of the filter to the system uncertainty. By sensitivity we mean the change in
the performance as the uncertain system deviates from the nominal one. The analysis on
sensitivity is done for measurement type I.
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4.3.4 Example I

Consider a time-invariant discrete-time uncertain system

xk+1 = (A0 + A1ξ)xk + wk+1 (4.42a)

yk = Hk xk + vk (4.42b)

where A0 =

 0.9802 0.0196
0 0.9802

, A1 =

 0 0.0099
0 0

, Hk =
[

1 −1
]
, Qk = E{wk+1wT

k+1} = 1.9608 0.0195
0.0195 1.9608

 and Rk = 1. Here the uncertain parameter ξ is uniformly distributed in

the range [-1, 1].

4.3.4.1 The System Properties

The eigenvalues of the truncated PC transformed systems can be determined using the rela-
tionship between the nominal matrix A0, and the perturbation matrix A1 and the roots of the
Legendre polynomials as stated in Theorem 3.1. That is eig

(
Ā
)
=

n
∪

i=1
eig (A0 + µiA1) where

{µi} are the roots of the nth order Legendre polynomials. Since none of the modes of A0 are
controllable, the eigenvalues of the augmented PC transformed system at any order is equal
to the single eigenvalue of the nominal system matrix A0 which is 0.9802. Other system
properties are summarized in Table 4.3. As seen in the table the truncated PC transformed
system is not fully controllable. This will yield the higher order modes to be ineffective in the
filter performances since these modes will not be excited by the process noise and the initial
condition which is zero for them.

Table4.3: The System Properties (Example 1)

System Order Obs. States Obs. States Contr. States Stability
Model I Model II

First Order 4 4 4 3 Stable
Second Order 6 6 6 3 Stable
Third Order 8 8 8 3 Stable

4.3.4.2 The Filter Performance

The results for the Model I and Model II are presented in Figure 4.1 and Figure 4.2 respec-
tively. For this system, A0 and A1 commute, furthermore A2

1 = 0. This indicates that it
is useless to increase the expansion order to a value greater than 1 for type I measurement
model since additional modes are unobservable. This result is observed in the figures. The
interesting result is that increasing the expansion order does increase the performance of the
estimation also for type II measurements (see Figure 4.2). As expected the nominal Kalman
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Figure 4.1: Polynomial Chaos filter performance Comparison for Example 1 (Model I). Kal:
Kalman filter for the nominal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion
order 1, 2, 3; KalTrue: optimal Kalman filter which uses the true system parameter for each
run; Reg: regularized robust Kalman filter; Hinf: H-infinity filter

filter which is optimal for the nominal system model is most sensitive to the system uncer-
tainty (see Figure 4.3). The proposed filter sensitivity performance is comparable with the
regularized robust filter and much better compared to nominal one. Again as seen in the
performance figures, the PC order is almost non-effective.

4.3.5 Example 2

Consider a time-invariant discrete-time uncertain system

xk+1 = (A0 + A1ξ)xk + Bwk+1 (4.43a)

yk = Hk xk + vk (4.43b)

where A0 =

 0 −0.5
1 1

, A1 =

 0 0
0 0.3

, Hk =
[
−100 10

]
, B =

 −6
1

 Qk =

E{wk+1wT
k+1} = 1 and Rk = 1. Here the uncertain parameter ξ is uniformly distributed in

the range [−1, 1].

4.3.5.1 The System Properties

The eigenvalues of the PC transformed system are plotted in Figure 4.4 for different expansion
orders. Note that since the poles of different expansion orders are obtained as the union of
the eigenvalues of the matrices (A0 + A1µi) for i = 1, 2, . . . , M where M is the expansion
order and µi is the ith root of the Legendre polynomial of order M, we can find the places
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Figure 4.2: Polynomial Chaos filter performance Comparison for Example 1 (Model II). Kal:
Kalman filter for the nominal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion
order 1, 2, 3; KalTrue: optimal Kalman filter which uses the true system parameter for each
run; Reg: regularized robust Kalman filter; Hinf: H-infinity filter
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Figure 4.3: Sensitivity Results for the Proposed PC Robust Filter: Kal: Kalman filter for
the nominal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion order 1, 2, 3;
KalTrue: optimal Kalman filter which uses the true system parameter for each run; Reg:
regularized robust Kalman filter; Hinf: H-infinity filter
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Figure 4.4: Locus of the eigenvalues of the truncated PC expansion of any order and for all
possible values of −∞ < ξ < ∞ of Example 2

of all possible eigenvalues of any order by equating |λI − A0 − A1ξ| = 0. For this example
|λI − A0 − A1ξ| = λ2 − λ + 0.5 − λξ = 0. Root locus is helpful at this step to observe the
location of the roots with respect to the changes in the uncertainty parameter ξ. Figure 4.4
shows the root locus for all possible ξ values and the actual roots of different orders. The
other system properties are summarized in Table 4.4.

Table4.4: The System Properties (Example 2)

System Order Obs. States Obs. States Contr. States Stability
Model I Model II

First Order 4 4 4 4 Stable
Second Order 6 6 6 6 Stable
Third Order 8 8 8 8 Stable

4.3.5.2 The Filter Performance

The performances for Model I and Model II are presented in Figure 4.5 and Figure 4.6. One
observation is that, the performances of both of the proposed filters are better than the other
robust estimation methods. This can be seen from the sensitivity graphs as well. (see Figure
4.7) Increase in the expansion order cannot increase the performance of the filter for the
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Figure 4.5: Polynomial Chaos filter performance Comparison for Example 2 (Model I). Kal:
Kalman filter for the nominal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion
order 1, 2, 3; KalTrue: optimal Kalman filter which uses the true system parameter for each
run; Reg: regularized robust Kalman filter; Hinf: H-infinity filter

observation model II.

4.3.6 Example 3

In this example, state estimation of the following uncertain oscillator system is studied.

ẋ(t) =

 0 1
−2 + 0.1ξ 0

 x(t) + w(t) (4.44a)

y(t) = Hx(t) + v(t) (4.44b)

The corresponding 50 Hz sampled discrete-time equivalent system model found by a first-
order hold method takes the following form

xk+1 = (A0 + A1ξ)xk + wk+1 (4.45a)

yk = Hk xk + vk (4.45b)

where A0 =

 0.9996 0.02
−0.04 0.9996

, A1 =

 0 0
0.002 0

, Hk =
[

1 −1
]
, Qk = E{wk+1wT

k+1} =

10−6I2 and Rk = 10−2. Here the uncertain parameter ξ is uniformly distributed in the range
[-1, 1].
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Figure 4.6: PC filter performances for Example 2 (Model I). Kal: Kalman filter for the nom-
inal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion order 1, 2, 3; KalTrue:
optimal Kalman filter which uses the true system parameter for each run; Reg: regularized
robust Kalman filter; Hinf: H-infinity filter
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Figure 4.7: Sensitivity Results for the Proposed PC Robust Filter for Example 2 (Model II):
Kal: Kalman filter for the nominal model; Pct1, Pct2, Pct3: the proposed robust filter of
expansion order 1, 2, 3; KalTrue: optimal Kalman filter which uses the true system parameter
for each run; Reg: regularized robust Kalman filter
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Figure 4.8: Locus of the eigenvalues of the truncated PC expansion of the first three order

4.3.6.1 System Properties

The eigenvalues of the PC transformed system is on the unit circle for all orders with the
corresponding eigenvalues(see Figure 4.8). The summary of the system properties is given
in Table 4.5.

Table4.5: The System Properties (Example 3)

System Order Obs. States Obs. States Contr. States Stability
Model I Model II

First Order 4 4 4 4 Stable
Second Order 6 6 6 6 Stable
Third Order 8 8 6 7 Stable

4.3.6.2 The Filter Performance

The performances for Model I and Model II are presented in Figure 4.9 and Figure 4.10. It is
seen that the both models perform poorly for this case. It is interesting to see that the Model
I diverges with time for all orders but the PC order increase prevents the divergence to some
extent. This observation is well known for the truncated PC model approximations of differ-
ential equations One of the Our explanation for the poor performance under oscillatory case
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Figure 4.9: PC filter performances for Example 3 (Model I). Kal: Kalman filter for the nom-
inal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion order 1, 2, 3; KalTrue:
optimal Kalman filter which uses the true system parameter for each run; Reg: regularized
robust Kalman filter

is as follows. Actually, PC based system approximates the system state as a weighted some
of the modes of the PC transformed system which are pure sinusoids in oscillatory case since
the all the eigenvalues are on unit circle. It is known that the summation of the two sinusoids
with very close frequencies yields a beating phenomenon which is perceived as a periodic
variations in amplitude whose frequency is the difference between the two frequencies. Thus
in actual system realization system output is a pure sinusoid however PC transformed system
yields an amplitude varying output.

4.4 Conclusion

In this section, we study robust estimation problem of uncertain systems that are modeled by
polynomial chaos. We propose a set-valued estimation approach for which the disturbance
signals satisfy average energy constraint. We also provide the stochastic interpretation of
the proposed estimation technique as average maximum likelihood estimation problem. The
solution actually the augmented version of the Kalman filter. This is quite advantageous since
Kalman filter is a well-known algorithm and it has been implemented in various systems over
the world. We also compare the proposed measurement model with the existing empirical
model in literature. In this regard, we provide some necessary conditions for the observability
of the two measurement models which give a better understanding of the differences of these
two models. We have evaluated the performance of the considered two approaches by three
illustrative examples that are used in robust estimation community as framework examples.
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Figure 4.10: PC filter performances for Example 3 (Model II). Kal: Kalman filter for the nom-
inal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion order 1, 2, 3; KalTrue:
optimal Kalman filter which uses the true system parameter for each run; Reg: regularized
robust Kalman filter
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Figure 4.11: PC filter performances for Example 3 (Model II). Kal: Kalman filter for the nom-
inal model; Pct1, Pct2, Pct3: the proposed robust filter of expansion order 1, 2, 3; KalTrue:
optimal Kalman filter which uses the true system parameter for each run; Reg: regularized
robust Kalman filter
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The performance of the proposed approaches were compared with the nominal Kalman filter
and classical robust estimation algorithms namely the regularized robust Kalman filter and
the H∞ filter. It can be concluded that the proposed approach performs as classical robust es-
timation algorithm in that it is less sensitive to the model uncertainty. It has been observed by
the examples that for moderately damped systems, it performs better than the other classical
robust estimation techniques such as H∞ and regularized robust Kalman filters. However, the
proposed approach does not perform as good as the other techniques for oscillatory systems.
We give some explanations to this lack of performance for oscillatory systems. But further
study is necessary in order to get some concrete results. Furthermore it is observed that the
performance of the proposed approach is not sensitive to the polynomial chaos order. We
provide some reasoning to this characteristics.
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CHAPTER 5

NONLINEAR ROBUST ESTIMATION WITH RELATIVE
ENTROPY CONSTRAINT

5.1 Introduction

In the previous chapters, we formulate the robust estimation problem and give a solution that
is based on the polynomial chaos expansion and analyze the proposed solution from different
points of view. The systems handled are linear except for a special class of nonlinearity. In
this chapter, we study the robust estimation problem for uncertain nonlinear systems where
the uncertainty is modeled by the relative entropy constraint.

Initially, robust estimation techniques were based on worst-case considerations of the distur-
bances in parallel to the robust control theory where the disturbance signals are modeled as
deterministic signals. The risk-sensitive approach in which the average exponential of the
square of the estimation error is imposed as error criteria [44] is a stochastic interpretation
of the deterministic worst case approach (minimax games). Due to the exponential in the
cost function, the error criterion includes all the higher order moments of the estimation error
which yields a robust approach for unmodeled plant dynamics [1].

The risk-sensitive criterion for optimal control problems was first introduced by Jacobson in
[32] and for linear systems a solution was provided for fully observed case. In the following
years, Whittle in [67], provided the the solution of the partially observed risk-sensitive con-
trol problem for discrete-time systems and the continuous-time version of the solution was
presented in [2].

In parallel to advances in risk-sensitive control techniques, optimal stochastic estimation prob-
lem with exponential cost criteria is solved in [62]. The optimal estimator is linear in structure
but is not the conditional mean. In [14], the risk sensitive estimation problem is expressed in
terms of an information state, which is a combination of the system state and the risk-sensitive
cost function to be minimized. A recursive calculation of the information state is obtained by
a measure change process where the measurement sequence becomes an independent identi-
cally distributed sequence and independent from the state process. The same recursions are
obtained in [4], without utilizing the measure change process. The risk-sensitive estimation
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problem for nonlinear systems does not yield a finite-dimensional solution except for few
specific cases.

Relative entropy (a.k.a. Kullback–Leibler divergence) which quantifies the difference be-
tween two probability measures is a widely studied measure especially in information theory.
The researchers used relative entropy as a measure for defining the uncertainty on system
models. Since it is a convex function, it is advantageous in the related optimal control prob-
lems. In [50], a stochastic uncertain system modeling is proposed, where the uncertain system
is modeled by a relative entropy constraint on the driving stochastic disturbance signals (pro-
cess and measurement noise sequences and initial condition uncertainty). This generalized
stochastic uncertainty modeling allows the stochastic version of the sum quadratic constraint
uncertain system modeling under Gaussian distributed noise case. The state estimation prob-
lem is considered as a minimax estimation problem where the designer seeks an optimal es-
timator that minimizes the worst case functional for the admissible sets of uncertain systems
satisfying the relative entropy constraint. This unconstrained minimax problem is converted
to a parameterized risk-sensitive problem by utilizing the duality between the free energy and
the relative entropy [50]. In [77], the solution of the robust estimation is provided for linear
uncertain systems. The optimal state estimation problem is solved by dynamic programming
method once the problem is converted to parameterized risk-sensitive estimation. In [69],
conditional relative entropy constrained is considered for the uncertainty modeling. This
approach is applied to the finite horizon robust estimation for uncertain Finite-Alphabet Hid-
den Markov models. Relative entropy constrained stochastic uncertain systems and related
minimax control and estimation problems are also studied in [10]. In [11], robust nonlinear
estimation problem is studied in Banach space for uncertain signal models which are de-
scribed by relative entropy constraint. The problems are defined for class of uncertain models
where the uncertainty is on the joint probability measure and conditional probability measure.
Recently, the instead of cumulative relative entropy constrained, an instantaneous relative en-
tropy constrained is proposed in order to prevent the over conservatism of robust estimators
[?].

Sequential Monte-Carlo estimation methods (particle filters) are becoming a popular and a
practical estimation method for nonlinear non Gaussian estimation problems with the help of
the increasing computing power. This solution technique is also applied to risk sensitive esti-
mation of non-linear systems [48]. In [48], infinite-dimensional information state recursions
are obtained for the proposed general risk functions that are in the product form. Then the
information state recursions are handled by particles in a standard particle filtering algorithm.
In their work, risk-sensitive particle filters are proposed as an alternative solution to sample
impoverishment problem and robustness is not an explicit aim.

In this chapter, we study the robust nonlinear estimation problem for uncertain systems where
the uncertainty is modeled by relative entropy constraint.

In the first problem, the uncertainty is defined on the joint probability measure between the
nominal and perturbed measures over a time horizon where the perturbed measure satisfies
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the relative entropy constraint with respect to the nominal measure. Using the available re-
sults in literature, the optimal state estimation problem is defined as a minimax estimation
problem. The constrained minimax optimization problem is converted to the unconstrained
optimization by Lagrange multiplier method. The dual optimization problem requires the cal-
culation of the state estimate sequence over a time horizon that minimizes the exponential of
the estimation error as worst case scenario. The problem can be considered as a determination
of an output feedback controller for an optimal risk-sensitive stochastic control problem. The
solution of this problem can be obtained via information state dynamic programming where
the output feedback problem is converted to information state feedback problem. We provide
the solution of the problem for linear systems. We utilize this solution in order to solve the
robust estimation problems nonlinear systems by extended approach where the system is lin-
earized around the current estimate. In addition to extended approach, we define a suboptimal
problem. The suboptimal problem converts to the original problem to a sequential optimiza-
tion problem in terms of an information state in forward time. In the solutions of the problem,
particle filtering is proposed for the calculations of the recursive probability measure rela-
tions. But a complete recursive solution of the suboptimal problem cannot be obtained due to
expectation operation over measurements over a time horizon. But the optimal solution can
be obtained by Monte-Carlo simulations. In the final part of the subsection a non-analytical
method which determines the optimal Lagrange multiplier by trial and error is applied to a
framework example.

In the second problem, we study the nonlinear estimation problem for instantaneous type
relative entropy constraint. Two different sub problems are defined for both the time update
and measurement update. Then some numerical solutions are proposed for the problems. First
proposed approach is particle filtering method. An approximate but less complex solution
method is proposed for the problems by utilizing the unscented transformation technique.

5.2 Robust Nonlinear Estimation with a Cumulative Relative Entropy Con-
straint

In this section, robust nonlinear estimation methods for uncertain systems where the uncer-
tainty is defined by the cumulative relative entropy constrained are studied. Approximate
solution methods are provided.

5.2.1 Uncertain Model

Let (Ω,F, P) be a probability space on which the unobserved (system state) process {xk} and
observed process {yk} are defined. Assume that these processes satisfy the following recur-
sions

xk+1 = fk(xk) + Bk+1wk+1, x0 ∈ Rn (5.1a)

yk = hk(xk) + Dkvk (5.1b)
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for 0 < k < N. Here x0 : Ω → Rn is the initial state and wk : Ω → Rn, vk : Ω → Rm are the
random vectors that define stochastic noise inputs. We further assume that the noise sequences
(x0,wk, vk) are independent. The functions fk : Ω → Rn and hk : Ω → Rn are measurable
nonlinear functions of the system state xk. Let Xk be a complete filtration, i.e., the σ field that
is generated by the state sequence x0:k = {x0, . . . , xk} and Yk be a complete filtration generated
by the measurement sequence y0:k = {y0, . . . , yk} for 0 ≤ k ≤ N. In this probability space,
EP denotes the expectation operator with respect to the probability measure P. The nominal
joint probability measure of the state and the measurement sequences over a time horizon
[0,N] is denoted as Px0:N ,y0:N . However, the actual joint probability measure is Qx0:N ,y0:N and
it is unknown. The unknown measure is constrained to be in a class of admissible measures
C

(
Px0:N ,y0:N

)
. The set C

(
Px0:N ,y0:N

)
is defined by the following relative entropy constraint

C
(
Px0:N ,y0:N

)
=

{
Qx0:N ,y0:N : R

(
Qx0:N ,y0:N ∥Px0:N ,y0:N

)
≤ d

}
(5.2)

where

R
(
Qx0:N ,y0:N ∥Px0:N ,y0:N

)
= EQx0:N ,y0:N

(
log

(
dQx0:N ,y0:N

dPx0:N ,y0:N

))
=

∫
log

(
dQx0:N ,y0:N

dPx0:N ,y0:N

)
dPx0:N ,y0:N (5.3)

provided that Qx0:N ,y0:N is absolutely continuous with respect to Px0:N ,y0:N and∫
log

(
dQx0:N ,y0:N

dPx0:N ,y0:N

)
dPx0:N ,y0:N < ∞ (5.4)

Here d > 0 is a scalar that determines the size of the constraint set. Using the additive noise
assumption and independence property of the noise sequences, the nominal joint probability
measure can be decomposed as

Px0:N ,y0:N =

N∏
k=1

Pxk |xk−1

N∏
k=1

Pyk |xk Px0 (5.5)

where Pxk |xk−1 is the (regular) conditional probability measure of the state xk given the previous
state xk−1 and Pyk |xk is the (regular) conditional probability measure of the measurement yk

given the state xk. On the other hand, if the unknown joint probability measure is assumed to
satisfy

Qx0:N ,y0:N =

N∏
k=1

Qxk |xk−1

N∏
k=1

Qyk |xk Qx0 (5.6)

then the relative entropy between the two measures becomes

R
(
Qx0:N ,y0:N ∥Px0:N ,y0:N

)
= EQx0:N ,y0:N

R (
Qx0∥Px0

)
+

N∑
k=1

(
R

(
Qxk |xk−1∥Pxk |xk−1

)
+ R

(
Qyk |xk∥Pyk |xk

))
(5.7)

The relative entropy constraint allows the perturbations in the mean of the nominal measure
[50]. The perturbations in the mean can be generated by the additive uncertain system dy-
namics ∆(xk). Note that the relative entropy between the two Gaussian measures (P and Q)
with same covariance Σ but different means (mP and mQ) is 1

2∥mp − mQ∥2Σ− . Thus, the rela-
tive entropy constraint allows the following stochastic energy constraint over the time horizon
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[0,N] for a Gaussian nominal measure and additive uncertain system dynamics

EQ
[
(x0 − x̃0)T Σ−0 (x0 − x̃0)

]
+ EQ

 N∑
k=1

∥∆T (xk)Q−k∆(xk)∥2
 < d (5.8)

where x̃0 x0 are the initial perturbed and nominal measures’ means.

5.2.2 The Optimal State Estimation Problem

The pay-off function for the state estimation problem is defined as the expected value of the
cumulative error function over a time horizon [0,N],

Ψ0:N(x̂0:N) =
N∑

k=0

ℓ(xk, x̂k) (5.9)

where x̂0:N is the sequence of estimated states which belongs to the set of possible state
estimate sequences ℵ0:N . Here

ℵ0:N ,
{
x̂0:N

∣∣∣∣∣ x̂k = Ω→ Rn f or 0 ≤ k ≤ N; x̂k is adapted to Yk

}
(5.10)

Thus the state estimate at time k (x̂k) is a causal function of the data set {y0:k}. Here ℓ(xk, x̂k)
is the instantaneous error that is continuous both in xk and x̂k and it is bounded from below.
Obviously one possible selection of the incremental cost is the widely used square of the norm
of the estimation error ℓ(xk, x̂k) = ∥xk − x̂k∥2. Then the state estimation problem is defined as

J(x̂∗0:N ,Q
∗
x0:N ,y0:N

) = inf
x̂0:N∈ℵ0:N

sup
Qx0:N ,y0:N ∈C

(
Qx0:N ,y0:N

) EQ [Ψ0:N(x̂0:N)] (5.11)

5.2.2.1 Existence of the Solution

The existence of the solution of the minimax problems with relative entropy constraint is
investigated in the literature [50] and [10]. Thus in this section, we provide the main facts
that has been presented before. The existence of the maximizing measure is proven by the
Wierstrass theorem.

Theorem 5.2.1 (Wierstrass Theorem). An upper semi-continuous functional on a compact
subset K of a normed linear space S, achieves a maximum on K.

For the state estimation problem (5.11), as shown in [10], the relative entropy constraint set
C(P) is compact and the functional EQx0:N ,y0:N

[
Ψc

0:N(x̂0:N
]

is upper semi-continuous function
provided the cost function Ψc

0:N(x̂0:N) is a continuous function of x0:N , which is satisfied by
definition. The existence of saddle point solution of the minimax problem is shown by the
generalization of the Von-Neumann’s minimax theorem to infinite dimensional case [10].
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Theorem 5.2.2 ([57]). Let M and N be convex sets one of which is compact. Let f (m, n)
be a functional defined on M × N, quasi convex/concave and upper semi-continuous/lower
semi-continuous. Then f has a saddle point, that is sup

m∈M
in f
n∈N

f (m, n) = in f
n∈N

sup
m∈M

f (m, n)

The saddle point property implies that

J(x̂∗0:N ,Q
∗
x0:N ,y0:N

) = inf
x̂0:N∈ℵ0:N

sup
Qx0:N ,y0:N ∈C

(
Qx0:N ,y0:N

) EQ [Ψ0:N(x̂0:N)]

= sup
Qx0:N ,y0:N ∈C

(
Qx0:N ,y0:N

) inf
x̂0:N∈ℵ0:N

EQ [Ψ0:N(x̂0:N)]
(5.12)

We know that the set of admissible measures C is a convex set due to the convexity prop-
erty of the relative entropy constraint; it is compact as stated previously. On the other hand,
by definition, the set of admissible estimators is convex. The functional J(x̂0:N ,Qx0:N ,y0:N )
is a convex function of any admissible estimate sequence and it is continuous thus a lower
semi-continuous function for each admissible measure. Additionally, the functional is a con-
cave function of any admissible measure due to linearity and it is an upper semi-continuous
function of the admissible measure for any estimator. Thus, the above theorem proves the
existence of the saddle point solution.

5.2.2.2 The Maximizing Measure

The maximization part of the minimax problem is solved by Lagrange multiplier method [50].
Let us first define the maximization problem as

J(x̂0:N ,Q∗x0:N ,y0:N
) = sup

Qx0:N ,y0:N ∈C
(
Qx0:N ,y0:N

)EQx0:N ,y0:N
[Ψ0:N(x̂0:N)] (5.13)

Then the Lagrangian is defined as

L
(
x̂0:N ,Qx0:N ,y0:N , s, λ

)
,

∫
Ψ0:k (x̂0:N) dQx0:N ,y0:N − λ

(
R

(
Qx0:N ,y0:N

∥∥∥ Px0:N ,y0:N

)
− d

)
− s

(∫
dQx0:N ,y0:N − 1

) (5.14)

where s ≥ 0 and λ ≥ 0 are the Lagrange multipliers of the corresponding constraints. Then
the Lagrange dual function is defined as

L
(
x̂0:N ,Q∗x0:N ,y0:N

, s, λ
)
= sup

Qx0:N ,y0:N ∈Γ

(
L
(
x̂0:N ,Qx0:N ,y0:N , s, λ

))
(5.15)

where Γ represents the set of all possible probability measures. Then the dual problem be-
comes

L
(
x̂0:N ,Q∗x0:N ,y0:N

, s∗, λ∗
)
= inf

s≥0
inf
λ≥0

sup
Qx0:N ,y0:N ∈Γ

(
L
(
x̂0:N ,Qx0:N ,y0:N , s, λ

))
(5.16)

The Equivalence between the Primal and the Dual Problems
The equivalence between the primal and the dual optimization problems is established by the
Lagrange-Duality theorem [10],[50], which is named as the Strong Duality Theorem in the
optimization literature.
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Theorem 5.2.3 (Lagrange Duality). Let f be a real-valued convex functional defined on a
convex subset Ω of a vector space S , and let G be a convex mapping of S into a normed space
Z. Suppose there exists an s1 such that G (s1) < 0 and that µ0 = inf { f (s) : G (s) ≤ 0, s ∈ Ω}
is finite. Then

inf
G(s)≤0,s∈Ω

f (s) = max
λ∗≥0

inf
s∈Ω

(
f (s) +

⟨
G (s) , λ∗

⟩)
(5.17)

and the maximum on the right is achieved by some λ∗ ≥ 0. If the infinimum is achieved by
some s0 ∈ Ω, then

⟨
G (s0) , λ∗0

⟩
= 0 and s0 minimizes f (s) +

⟨
G (s) , λ∗0

⟩
, s ∈ Ω.

The Lagrange-Duality theorem can be applied to robust state estimation problem after some
modifications [10]. Note that the constraint qualification condition (existence of a strictly
feasible point for the inequality constraint) for the strong duality is satisfied for Qx0:N ,y0:N =

Px0:N ,y0:N ∈ Γ then R
(
Qx0:N ,y0:N

∥∥∥ Px0:N ,y0:N

)
= 0 thus, −d < 0. Further, the theorem implies that

λ∗
(
R

(
Qx0:N ,y0:N

∥∥∥ Px0:N ,y0:N

)
− d

)
= 0 (5.18)

This means that for nonzero values of λ∗>0, the solution is at the boundary. Once the equiv-
alence of the primal and dual problems is shown, the maximizing measure is found by the
solution of the dual problem.

A necessary condition for L
(
x̂0:N ,Qx0:N ,y0:N , s, λ

)
to have an extremum at Q∗x0:N ,y0:N

is that the

Gateaux derivative of L
(
x̂0:N ,Qx0:N ,y0:N , s, λ

)
is zero at Q∗x0:N ,y0:N

in any direction ∆Qx0:N ,y0:N =

Qx0:N ,y0:N − Q∗x0:N ,y0:N
where Gateaux derivative is defined as [42],

δL
(
Q∗x0:N ,y0:N

; Qx0:N ,y0:N − Q∗x0:N ,y0:N

)
=

d
dh

L
(
x̂0:N ,Qx0:N ,y0:N + h

(
Qx0:N ,y0:N − Q∗x0:N ,y0:N

)
, s, λ

) ∣∣∣∣∣
h=0

(5.19)
Then

δL
(
Q∗x0:N ,y0:N

; Qx0:N ,y0:N − Q∗x0:N ,y0:N

)
=

∫ (
Ψ0:N (x̂0:N) − λ log

(
dQx0:N ,y0:N
dPx0:N ,y0:N

)
− (λ + s)

) (
dQx0:N ,y0:N − dQ∗x0:N ,y0:N

)
=

∫
log

(
exp (Ψ0:N (x̂0:N) − (λ + s)) +

(
dQx0:N ,y0:N
dPx0:N ,y0:N

)−λ) (
dQx0:N ,y0:N − dQ∗x0:N ,y0:N

)
Then for any direction of

(
dQx0:N ,y0:N − dQ∗x0:N ,y0:N

)
dQ∗x0:N ,y0:N

dPx0:N ,y0:N

= exp
(
Ψ0:N (x̂0:N) − (λ + s)

λ

)
(5.20)

Since Q∗x0:N ,y0:N
is required to be a probability measure∫

dQ∗x0:N ,y0:N
=

∫
exp

(
Ψ0:N (x̂0:N) − (λ + s)

λ

)
dPx0:N ,y0:N = 1 (5.21)

Then

exp
(
−λ + s

λ

)
=

(∫
exp

(
λ−1Ψ0:N (x̂0:N)

)
dPx0:N ,y0:N

)−1

(5.22)
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Thus the optimal (worst-case) measure satisfy the following relation [11],

dQ∗x0:N ,y0:N
=

exp
(
λ−1Ψ0:N (x̂0:N)

)∫
exp

(
λ−1Ψ0:N (x̂0:N)

)
dPx0:N ,y0:N

dPx0:N ,y0:N (5.23)

The relation implies that the worst-case measure is the exponentially tilted version of the nom-
inal measure. This is a classical result existing in Large Deviations theory []. The following
duality relation between the free energy and relative entropy establishes it.

log
∫

exp (ψ) dP = sup
Q

{ ∫
ψdQ − R ( Q∥ P) ; Q ≤ P, ψ ∈ L1 (Q)

}
(5.24)

Further, it can be easily shown that the worst-case measure satisfies the boundary condition
by substituting it into the relative entropy constraint [10],

R
(
Q∗x0:N ,y0:N

∥∥∥ Px0:N ,y0:N

)
= d (5.25)

This implies that the Lagrange multiplier λ is greater than zero by the complementary slack-
ness condition.

5.2.3 The Unconstrained Optimization Problem

By substituting the worst-case measure on the cost function, the Lagrangian becomes

L
(
x̂0:N ,Q∗x0:N ,y0:N

, λ
)
= λ log EP

[
exp

(
λ−1Ψ0:N (x̂0:N)

)]
+ λd (5.26)

Note here that the expectation is defined in terms of the nominal joint probability measure
Px0:N ,y0:N . Thus, the state estimation problem is converted to following form [50], [77],

J
(
x̂∗0:N , λ

∗) = inf
λ>0

inf
x̂0:N∈ℵ0:N

λ log
(
EP

[
exp

(
λ−1Ψ0:N (x̂0:N)

)] )
+ λd (5.27)

The inner minimization problem

J
(
x̂∗0:N , λ

)
= inf

x̂0:N∈ℵ0:N
EP

exp

λ−1
N∑

k=0

ℓ (xk, x̂k)


 (5.28)

can be considered as a finite-horizon risk-sensitive estimation problem that considers λ > 0
as a fixed parameter under the nominal system dynamics. The inner minimization can be
achieved by interpreting the state estimate sequence as an output feedback controller for an
optimal risk-sensitive stochastic control problem [6]. The solution of this problem can be
obtained via information state dynamic programming where the output feedback problem is
converted to an information state feedback problem [33]. There are two main difficulties of
this approach as stated in [6]. The solution is dependent on the finite-time interval. Thus,
a recursive solution cannot be obtained by incrementing the finite time interval. That is, the
problem is needed to be solved from the beginning for the new time interval. Secondly, the
solution method results in an infinite-dimensional nonlinear dynamic programming equation
whose solution is not analytically possible in most cases. In [60], the inner minimization
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problem is considered as a batch optimization problem rather than sequential minimization
problem like dynamic programming for constant dynamics systems.

In the following section, we will provide the partially observed risk-sensitive nonlinear control
approach for the solution of robust state estimation problem. The problem formulation is
referenced by [33].

5.2.4 Partially Observed Risk-sensitive Control Problem Approach

The inner minimization part of the unconstrained optimization problem in (5.28) is actually
risk-sensitive estimation problem for the nominal nonlinear system model which can be for-
mulized as the partially observed risk-sensitive control problem. In this regard, recall the
system model

xk+1 = fk(xk) + Bk+1wk+1, x0 ∈ Rn (5.29a)

yk = hk(xk) + Dkvk (5.29b)

such that the optimal state sequence is defined as

J̄
(
x̂∗0:N , λ

)
= inf

x̂0:N∈ℵ0:N
EP

[
exp

(
λ−1 (Ψ0:N + ΨN+1(xN+1))

)]
(5.30)

where Ψ0:N =
∑N

k=0 ℓ (xk, x̂k)

Remark 6. Note here that a fictitious terminal state cost ΨN+1 is imposed to (5.30) in or-
der to interpret the optimal state estimation problem as optimal control problem. Actually
ΨN+1(xN+1) = 0.

5.2.4.1 Measure Change

In the solution of the equivalent optimal control problem, the measure change technique will
be utilized [18]. The measure change technique, which is known as reference probability
method, is a widely used technique in risk-sensitive type optimization problems where an
ideal reference probability measure is used to formulize the problem in order to ease the
solution of the problem [18]. In this regard, we work under a new probability measure
P̄x0:N ,y0:N where the state and measurement sequences are independent and identically dis-
tributed (i.i.d.). For this ideal probability measure, the distribution of the state is xk ∼ pwk (.)
and the distribution of the measurement is yk ∼ pvk (.).

Let us define the following Radon-Nikodym derivative under the complete sigma-field ZN+1 =

σ (x0:N+1, y0:N+1) generated by the random variables {x0, x1, ..., xN+1, y0, y1, ..., yN+1}

Γ̄0:N+1 , dP
dP̄

∣∣∣∣∣∣
ZN+1

=

N∏
k=0

γ̄k (5.31)
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where

γ̄k =


pvk (D−1

k (yk−hk(xk)))
pvk (yk)

pwk (B−1
k (xk−x̄0))

pwk (xk) f or k = 0
pvk (D−1

k (yk−hk(xk)))
|Dk |pvk (yk)

pwk (B−1
k (xk− fk(xk−1)))
|Bk |pwk (xk) f or k > 0

 (5.32)

Using Bayes theorem, the optimization problem can be redefined under the new probability
measure as follows;

J̄N(x∗0:N , λ) = inf
x̂0:N∈ℵ0:N

EP
[
exp(λ−1 (Ψ0:N + ΨN+1 (xN+1)))]

= inf
x̂0:N∈ℵ0:N

EP̄

[
Γ̄0:N+1 exp

(
λ−1 (Ψ0:N + ΨN+1 (xN+1))

)] (5.33)

since EP̄

[
Γ̄0:N+1

]
= 1. Using the smoothing property of the conditional expectation

EP̄

[
Γ̄0:N+1 exp

(
λ−1 (Ψ0:N + ΨN+1 (xN+1))

)]
= EP̄

[
EP̄

[
Γ̄0:N+1 exp

(
λ−1 (Ψ0:N + ΨN+1 (xN+1))

) ∣∣∣YN+1
]]

=

∫
EP̄

[
Γ̄0:N+1 exp

(
λ−1 (Ψ0:N + ΨN+1 (xN+1))

) ∣∣∣YN+1
]

dP̄YN+1

(5.34)

Thus

J̄N
(
x∗0:N , λ

)
= inf

x̂0:N∈ℵ0:N

∫
EP̄

[
Γ̄0:N+1 exp

(
λ−1 (Ψ0:N + ΨN+1 (xN+1))

) ∣∣∣YN+1
]

dP̄YN+1 (5.35)

5.2.4.2 The Information State

For a given estimated state sequence x̂0:N , we will define the following measure-valued pro-
cess

σλk (B) ,
∫
Rn

IB(x)dσλk (x) = EP̄

[
IB(x)Γ̄k exp

(
λ−1Ψ0,k−1

)
|Yk

]
(5.36)

where IB(.) is the indicator function of the Borel set B. Furthermore let αλk be the density of
the measure-valued process such that

σλk (B) =
∫

B
αλk (x)dx (5.37)

Then following inner product can be defined

⟨αλk , g⟩ =
∫

αk(x)g(x)dx = EP̄

[
g(xk)Γ̄0:k exp

(
λ−1Ψ0,k−1

)
|Yk

]
(5.38)

αλk (x) can be considered as an information state for the optimal control problem in order to
convert the partially observed risk-sensitive control problem to information state observed
control problem [33].

Lemma 5.2.4. The information state density α(x) satisfies the following recursion

αλk (xk) = Ξλk (x̂k−1, yk)αλk (xk−1) (5.39a)

64



Ξλk (u, y)αλk (z) =
pvk

(
D−1

k (y − hk (z))
)

|Bk| |Dk| pvk (y)∫
exp

(
λ−1ℓ (ξ, u)

)
pwk

(
B−1

k (z − fk (ξ))
)
αλk−1 (ξ) dξ

(5.39b)

αλ0 (x0) =
pv0

(
D−1

0 (y0 − h0 (x0))
)

|D0|
∣∣∣√Σ0

∣∣∣ pv0 (y0)
pw0

( √
Σ0
−1 (x0 − x̄0)

)
(5.39c)

where Ξλk (u, y) is considered as a linear transformation (infinite dimensional) that propogates
the information state.

Proof. The problem formulation is very similar to risk-sensitive estimation problem solution
by reference probability method. The proof of the theorem is available in [48, 18]. For the
sake of completeness, we provide the derivation in the sequel.

Let g : Rn → R be any test function. Then∫
g(x)dαλk (x) = EP̄

[
Γ̄0:k exp(λ−1Ψ0:k−1) f (xk)|Yk

]
= EP̄

[
Γ̄0:k−1 exp

(
λ−1ℓ(xk−1, x̂k−1)

)
exp(λΨ0:k−2)g(xk)

×
pvk

(
D−1

k (yk − hk (xk))
)

|Dk|pvk (yk)

pwk

(
B−1

k (xk − fk (xk−1))
)

|Bk| pwk (xk)

∣∣∣∣∣∣ Yk

]
= EP̄

[
Γ̄0:k−1 exp

(
λ−1ℓ(xk−1, x̂k−1)

)
exp(λΨ0:k−2)g(xk)

× EP̄

[ pvk

(
D−1

k (yk − hk (xk))
)

|Dk|pvk (yk)

pwk

(
B−1

k (xk − fk (xk−1))
)

|Bk| pwk (xk)

∣∣∣∣∣∣ xk−1, Yk

] ∣∣∣∣∣∣Yk

]
Since under P̄, state and measurement sequences are independent

EP̄

[ pvk

(
D−1

k (yk − hk (xk))
)

|Dk| pvk (yk)

pwk

(
B−1

k (xk − fk (xk−1))
)

|Bk| pwk (xk)
g(xk)

∣∣∣∣∣∣ xk−1, Yk

]

=

∫ pvk

(
D−1

k (yk − hk (x))
)

|Dk| pvk (yk)

pwk

(
B−1

k (x − fk (xk−1))
)

|Bk| pwk (x)
g(x)pwk (x)dx

Then ∫
g(x)α̂λk (x)dx =

∫
g(x)

[ pvk

(
D−1

k (yk − hk (x))
)

|Bk||Dk|pvk (yk)

×
∫

exp
(
λ−1ℓ(z, x̂k−1)

)
pwk

(
B−1

k (x − fk (z))
)
αλk (z)dz

]
dx

On the other hand, the initial density can be evaluated as follows

EP̄

[
Γ̄0 exp

(
λ−1Ψ0,−1

)
g(x0)|Y0

]
= EP̄

[
Γ̄0g(x0)|Y0

]
= EP̄

[
γ̄0g(x0)|Y0

]
= EP̄

 pv0

(
D−1

0 (y0 − h0 (x0))
)

pv0 (y0) |D0|
pw0

(
Σ−1

0 (x0 − x̄0)
)

pw0 (x0) |Σ0|
g(x0)

∣∣∣∣∣∣Y0


=

∫ pv0

(
D−1

0 (y0 − h0 (x))
)

pv0 (y0) |D0|
pw0

(
Σ−1

0 (x − x̄0)
)

pw0 (x) |Σ0|
g(x)pw0(x)dx
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Thus

αλ0(x) =
pv0

(
D−1

0 (y0 − h0 (x))
)

pv0 (y0) |D0|
∣∣∣√Σ0

∣∣∣ pw0

( √
Σ0
−1

(x − x̄0)
)

Thus the proof is complete. �

5.2.4.3 Dynamic Programming

In this section, the cost function will be represented in terms of the information state thus the
partially observed control problem is converted to information-state observable optimization
problem. In this regard, the optimization problem is defined as

J̄N
(
x∗0:N , λ

)
= inf

x̂0:N∈ℵ0:N

∫ ∫
exp

(
λ−1ΨN+1

)
αλN+1dxN+1dP̄YN+1 (5.40)

Let us define
βN+1 = exp(λ−1ΨN+1) (5.41)

Then the cost function can be represented in terms of the information state as

J̄N (x̂0:N , λ) = EP̄

[
⟨αλN+1, βN+1⟩

]
(5.42)

where by definition ⟨q, η⟩ =
∫
η(x)q(x)dx for any integrable function q(x) and any bounded

function η. Since

J̄N (x0:N , λ) = EP̄ [Γ0:kΓk+1:N+1Ψ0:k−1Ψk:NΨN+1]

= EP̄

[
Γ0:kΨ0:k−1EP̄

[
Γk+1:N+1Ψk:NΨN+1

∣∣∣x0:k,YN+1
]] (5.43)

then define the adjoint process as

βλk (x) , EP̄

[
Γk:N+1Ψk:NΨN+1

∣∣∣x0:k,YN+1
]
= EP̄

[
Γk:N+1Ψk:NΨN+1

∣∣∣xk, YN+1
]

(5.44)

Thus the cost function is expressed as

J̄N (x0:N , λ) = EP̄

[
⟨αλk , β

λ
k⟩

∣∣∣Y0:N+1
]

(5.45)

The value function (cost-to-go) of this optimization problem can be defined as

Vk(α) = inf
xk:N∈ℵk:N

EP̄

[
⟨αλk , β

λ
k⟩

∣∣∣∣∣αλk = α] (5.46)

It is possible to show that the following backward dynamic programming recursion is satisfied
[18].

Vk(α) = inf
x̂k∈ℵk

EP̄

[
Vk+1

(
Ξλk (yk+1, x̂k)αk

) ∣∣∣αλk = α]
VN+1(α) = ⟨α, βN+1)⟩ = 1

(5.47)

As previously noted, the solution method resulted in an infinite-dimensional nonlinear dy-
namic programming equation whose solution is not analytically possible in most cases. In
the next section, we will provide solution of the optimization problem for linear Gaussian
systems with quadratic cost function for which a finite-dimensional solution can be obtained.

66



5.2.4.4 Linear Gaussian Case

Consider linear version of the system model (5.3)

xk+1 = Akxk + wk (5.48a)

yk = Hk xk + vk (5.48b)

where wk and vk are zero mean Gaussian distributed process and measurement noises with
corresponding covariances matrices Qk and Rk. Consider the unconstrained optimization
problem for the relative entropy constrained robust estimation problem

J
(
x̂∗0:N , λ

∗) = inf
λ>0

inf
x̂0:N∈ℵ0:N

λ log
(
EP

[
exp

(
λ−1Ψ0:N (x̂0:N)

)] )
+ λd (5.49)

where inner minimization problem is modified to utilize the optimal control techniques by
introducing fictitious terminal state cost

J
(
x̂∗0:N , λ

)
= inf

x̂0:N∈ℵ
EP

exp

λ−1
N∑

k=0

ℓ (xk, x̂k) + ΨN+1(xN+1)


 (5.50)

Here
ℓ (xk, x̂k) =

1
2
∥xk − x̂k∥2 =

1
2

(
xT

k xk − 2xT
k x̂k + x̂T

k x̂k
)

(5.51)

and ΨN+1(xN+1) = 0. Using the linearity of the system dynamics, it can be concluded that the
information state density is an unnormalized Gaussian density

αk(x) = Zk exp
(
1
2

(x − µk)TΣ−1
k (x − µk)

)
, Zk = (2π)−n/2|Σk|−1/2 (5.52)

Lemma 5.2.5. The finite parameters (Υk , (Zk, µk,Σk)) of the information state αk(x) satisfy
the following recursions

µ̃k = µk + Σk (Σk − λI)−1 (x̂k − µk) (5.53a)

S k+1 = Ak
(
Σ−1

k − (λ−1I)
)−1

AT
k + Qk+1 (5.53b)

Σ−1
k+1 = S −1

k+1 + HT
k+1R−1

k+1Hk+1 (5.53c)

µk+1 = Akµ̃k + S k+1HT
k+1

(
Hk+1S k+1HT

k+1 + Rk+1
)−1

(yk+1 − Hk+1Ak+1µ̃k) (5.53d)

Zk+1 = Zk |Qk+1|−1/2|Nk+1|−1/2 exp
(
1
2
∥yk+1∥2R−1

k+1

)
exp

(
−1

2
∥x̂k − µk∥2(Σk−(λ−1I))−1

)
× exp

(
−1

2
∥yk+1 − Hk+1Akµ̃k∥2(Hk+1S k+1HT

k+1+Rk+1)−1

) (5.53e)

Nk+1 =
(
Σ−1

k − λ−1I + AT
k Q−1

k+1Ak
)

(5.53f)

Proof. The recursions can be obtained as a special case (estimation problem) of the discrete-
time linear exponential quadratic Gaussian control(LEQG) problem [55]. �
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The Optimal Estimator :
Since the system dynamics is linear and the information state is unnormalized Gaussian, the
value function can be assumed to be in the following generalized exponential form;

Vk+1 (Υk+1) , Zk+1 exp
(
λ−1

2

(
µT

k+1Mk+1µk+1 + mk+1
))

(5.54)

For this optimal state estimation problem, another possibility for the objective function is the
following simpler form;

Vk+1 (Υk+1) , Zk+1 exp
(
λ−1

2
mk+1

)
(5.55)

then the dynamic programming recursion takes the following form;

Vk(Υk) = inf
x̂k

EP̄

[
Zk+1 exp

(
λ−1

2
mk+1

) ∣∣∣∣∣Υk = Υ

]
(5.56)

By substituting the Zk+1 expression into (5.53e) into (5.56) yields

Vk(Υk) = inf
x̂k

∫
Rm

Zk |Qk+1|−1/2|Nk+1|−1/2(2π)−m/2|Rk+1|−1/2 exp
(
−1

2
∥x̂k − µk∥2(Σk−(λ−1I))−1

)
× exp

(
λ−1

2
mk+1

)
exp

(
−1

2
∥yk+1 − Hk+1Akµ̃k∥2(Hk+1S k+1HT

k+1+Rk+1)−1

)
dyk+1

(5.57)

Since ∫
Rm

exp
(
−1

2
∥yk+1 − Hk+1Akµ̃k∥2(Hk+1S k+1HT

k+1+Rk+1)−1

)
dyk+1

= (2π)m/2
∣∣∣ (Hk+1S k+1HT

k+1 + Rk+1
) ∣∣∣1/2 (5.58)

by noting that the optimal state estimate is equal to the information state mean x̂k = µk, it is
easy to see that

Vk(Υk) = Zk
∣∣∣ (Hk+1S k+1HT

k+1 + Rk+1
) ∣∣∣1/2 |Qk+1|−1/2|Rk+1|−1/2|Nk+1|−1/2 exp

(
λ−1

2
mk+1

)
(5.59)

then since by definition Vk (Υk) , Zk exp
(
λ−1

2 mk
)

then

exp
(
λ−1

2
mk

)
=

∣∣∣ (Hk+1S k+1HT
k+1 + Rk+1

) ∣∣∣1/2 |Qk+1|−1/2|Rk+1|−1/2|Nk+1|−1/2 exp
(
λ−1

2
mk+1

)
(5.60)

Since VN+1(ΥN+1) = ⟨αN+1, βN+1)⟩ = 1 with exp
(
λ−1

2 mN+1
)
= |ΣN+1|1/2(2π)n/2, then the

optimal cost takes the following form;

V0(Υ0) = |Σ0|−1/2(2π)−n/2 exp
(
λ−1m0

)
= |Σ0|−1/2|ΣN+1|1/2

N∏
k=0

∣∣∣ (Hk+1S k+1HT
k+1 + Rk+1

) ∣∣∣1/2 |Qk+1|−1/2|Rk+1|−1/2|Nk+1|−1/2

(5.61)

where Nk+1 =
(
Σ−1

k − λ−1I + AT
k Q−1

k+1Ak
)
.
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Lemma 5.2.6. Consider a nonsingular matrix A in partitioned form as A =

 A11 A12

A21 A22

.
Then consider the Schur complement of invertible square matrix A11 in A as Ac

11 = A22 −
A21A−11A12 and similarly the Schur complement of invertible square matrix A22 in A as Ac

22 =

A11 − A12A−22A21. Then

det |A| = det |A11| |Ac
11| = det |A22| det |Ac

22| (5.62)

By using the lemma 5.2.6,

|Qk+1
∣∣∣∣∣∣ (Σ−k − λ−I + AT

k Q−k+1Ak
) ∣∣∣ = ∣∣∣Σ−k − λ−I

∣∣∣ ∣∣∣Ak
(
Σ−k − λ−I

)−
AT

k + Qk+1
∣∣∣ (5.63)

and ∣∣∣Hk+1S k+1HT
k+1 + Rk+1

∣∣∣∣∣∣S −k+1

∣∣∣ = ∣∣∣Hk+1R−k+1HT
k+1 + S −k+1

∣∣∣∣∣∣Rk+1
∣∣∣ (5.64)

Thus

exp
(
λ−

2
sc

k

)
=

∣∣∣Σ−k − λ−I
∣∣∣−1/2∣∣∣Σk+1

∣∣∣−1/2 exp
(
λ−

2
sc

k+1

)
(5.65)

By noting that exp
(
λ−

2 sc
N+1

)
= (2π)n/2

∣∣∣PN+1
∣∣∣1/2,

V0 = Z0 exp
(
λ−

2
sc

0

)
=

∣∣∣Σ0
∣∣∣−1/2

N∏
k=1

∣∣∣Σ−k−1 − λ−I
∣∣∣−1/2∣∣∣Σk

∣∣∣−1/2 (5.66)

Thus the optimal value of the Lagrange multiplier is determined by the following scalar opti-
mization problem

J
(
x̂∗0:N , λ

∗) = inf
λ>0
λ
(
log(V0) + d

)
(5.67)

where

log(V0) = −1
2

log
∣∣∣Σ0

∣∣∣ − 1
2

N∑
k=1

(
log

∣∣∣Σ−k−1 − λ−I
∣∣∣ + log

∣∣∣Σk
∣∣∣) (5.68)

Example 5.2.1. Let us consider the following time-invariant linear system

xk+1 = Axk + wk+1yk = Hxk + vk

where A =

 0.6 0
0 −0.6

 and H =
[

1 1
]

with Qk = E[wkwT
k ] = I2×2 and Rk = E

[
vkvT

k

]
=

1.0 and the initial covariance matrix of the state vector E[x0xT
0 ] = I2×2. Consider the robust

state estimation problem over a finite horizon [0, 100] where the relative entropy between the
nominal and perturbed joint probability measures is less than d = 0.1. The cost function as a
function of the Lagrange multiplier can be obtained as in Figure 5.1. Thus the optimal value
of the Lagrange multiplier is 4.85.

5.2.4.5 Extended Relative Entropy Constrained Robust Estimation

In the previous section, we have provided the solution of the robust state estimation problem
for the linear Gaussian systems with quadratic cost function. This solution approach can be
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Figure 5.1: The Cost Function for the Example 5.2.1

applied to linearized models of the nonlinear systems as an approximate method. The solution
approach quite similar to the extended Kalman filter. In this regard, let us consider the first
order Taylor series approximation of the nonlinear system expressed in (5.2.1) around the
mean (µk) of the information state density (un-normalized Gaussian) that is introduced in the
previous section

xk+1 ≈ Ak(µk)xk + ( f (µk) − Ak(µk)µk) + wk+1 (5.69a)

yk ≈ Hk(µk)xk + (hk(µk) − Hk(µk)µk) + vk (5.69b)

where f (xk) ≈ f (µk)+Ak(µk)(xk−µk) with Ak , ∂ f (xk)
∂xk

∣∣∣
xk=µk

and h(xk) ≈ h(µk)+Hk(µk)(xk−µk)

with Hk , ∂H(xk)
∂xk

∣∣∣
xk=µk

. Thus we have an approximate linear system for which the robust
optimal state estimation problem solution that has been obtained in the previous section can
be applied.

Lemma 5.2.7. The information state αk(x) parameters Υk , (Zk, µk,Σk) satisfy the following
recursions

µ̃k = µk + Σ
µ
k

(
Σ
µ
k − λI

)−
(x̂k − µk) (5.70a)

S k+1 = Ak(µk)
(
Σ
µ,−
k − (λ−I)

)−
Ak(µk)T + Qk+1 (5.70b)

Σ−k+1 = S −k+1 + HT
k+1(µk)R−k+1Hk+1(µk) (5.70c)

µk+1 = fk(µ̃k) + S k+1HT
k+1(µk)

(
Hk+1(µk)S k+1HT

k+1(µk) + Rk+1
)−

(yk+1 − hk+1(µ̃k)) (5.70d)

Zk+1 = Zk |Qk+1|−1/2|Nk+1|−1/2 exp
(
1
2
∥yk+1∥2R−k+1

)
exp

(
−1

2
∥x̂k − µk∥2(Σµk−(λ−I))−

)
× exp

(
−1

2
∥yk+1 − hk+1( fk(µ̃k))∥2(Hk+1(µk)S k+1HT

k+1(µk)+Rk+1)−
) (5.70e)

Nk+1(µk) =
(
Σ
µ,−
k − λ−I + AT

k (µk)Q−k+1Ak(µk)
)

(5.70f)
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Proof. By referring the classical extended Kalman filter derivation in [18] it is straight for-
ward to achieve the result. �

Now consider the dynamic programming recursion relation that is provided in the previous
section.

Vk(Υk) = inf
x̂k

∫
Rm

Zk|Qk+1|−1/2|Nk+1(µk)|−1/2|Rk+1|−1/2 exp
(
−1

2
∥x̂k − µk∥2(Σµk−(λ−1I))−1

)
× exp

(
λ−1

2
mk+1

)
exp

(
−1

2
∥yk+1 − hk( fk(µk))∥2

(Hk+1(µk)S k+1HT
k+1(µk)+Rk+1)−1

)
dyk+1

(5.71)

as in the linear Gaussian case,

log(Vµ
0 ) = −1

2
log

∣∣∣Σµ0 ∣∣∣ − 1
2

N∑
k=1

(
log

∣∣∣Σµ,−k−1 − λ
−I

∣∣∣ + log
∣∣∣Σµk ∣∣∣) (5.72)

Note here that the covariance matrix Σµk is information state dependent thus it is dependent
on the measurement sequence realization. For online batch processing applications, the opti-
mal value of the Lagrange multiplier can be determined by the following scalar optimization
problem for a single realization of measurement sequence.

J
(
x̂∗0:N , λ

∗) = inf
λ>0
λ
(
log(Vµ

0 ) + d
)

(5.73)

For offline design cases, the optimal Lagrange multiplier can be determined by the solution
of 5.73 for different realizations of the measurement sequence. Ensemble mean can be used
for determination of the optimal Lagrange multiplier.

Example 5.2.2. Let us consider the following FM demodulation problem that is represented
by the following continous-time nonlinear system

ẋ(t) = Ax(t) + Bw(t)

y(t) = h(x(t)) + v(t)

where x(t) =

 x1(t)
x2(t)

, A =

 0 1
0 −β

, B =

 0√
(2σ2β)

 and h(x(t)) =
√

2 sin(t + x2(t)).

The discrete-time version of the system 5.2.2 can be obtained for a sampling rate dt = 0.05,
β = 1 and σ = 0.1 as

xk+1 = Ak xk + wk+1

yk = hk(xk) + vk

where Ak =

 1.0 0.0488
0 0.9512

, Qk = E[wkwT
k ] =

 8 × 10−7 2.38 × 10−5

2.38 × 10−5 0.95 × 10−5

, Rk = E
[
vkvT

k

]
=

0.01 and the initial covariance matrix of the state vector E[x0xT
0 ] = 0.01 × I2×2.

Consider the robust state estimation problem over a finite horizon [0, 10] where the relative
entropy between the nominal and perturbed joint probability measures is less than d = 1. The
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Figure 5.2: The Cost Function for the Example 5.2.2 for Different Realizations of the Mea-
surement Sequence

dual function as a function of the Lagrange multiplier for different realizations is provided in
Figure 5.2. The optimal value for the Lagrange multiplier can be obtained by determining the
ensemble mean of the optimal Lagrange multipliers for each sequence. It is found that the
optimal value is 4.76.

5.2.5 A Suboptimal Nonlinear Estimation Solution

In this section, due to the cited difficulties of the optimal robust state estimation problems
given in the previous section, a suboptimal version of the solution of problem (5.28) is pro-
posed in order to get a more tractable solutions. In this approach, in the minimax context, the
maximizer is allowed to select the worst case measure over the entire finite time interval [0,
N]. However, the minimizer is restricted to make a decision at each k and it is assumed the
decision has been made for all times [0, k-1]. This is a common problem definition in classical
risk-sensitive estimation [14],[6],[1] where the λ is considered as a design parameter. In this
regard, the modified state estimation problem for a fixed Lagrange multiplier can be defined
as sequential minimization problems in forward time as follows.

V s
k

(
x∗k, λ

)
= inf

x̂k∈ℵk
EP

(
exp

(
λ−1Ψ̃0:k (x̂k)

) )
(5.74)

for k=1,. . . ,N where

Ψ̃0:k (x̂k) = Ψ̃∗0:k−1 + ℓ (xk, x̂k) (5.75)

with Ψ̃∗0:k−1 =
∑k−1

i=0 ℓ
(
xi, x̂∗i

)
and x̂∗i is the suboptimal state estimate at time i. Here x̂k is the

state estimate at time k, which belongs to following set of possible state estimates

ℵk , { x̂k : Ω→ Rn for 0 ≤ k ≤ N ; x̂k is adapted to Yk} (5.76)
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The inner minimization problem is expressed as the final step of the sequential state estimation
problem

Js
(
x̂∗0:N , λ

)
= inf

x̂N ∈ℵN
V s

N

(
x∗N , λ

)
(5.77)

Then the optimal Lagrange multiplier is determined at the final stage of the finite time interval
as

Js
(
x̂∗0:N , λ

∗) = inf
λ>0

(
λ log V s

N

(
x∗N , λ

)
+ λd

)
(5.78)

The Information State and Measure Change :
In the solution of the suboptimal state estimation problem, we utilize the measure change tech-
nique which is also applied in the previous section. In this regard, we work under a new prob-
ability measure P̄ where the state and measurement sequences are independent and identically
distributed (i.i.d.). Let us define the following Radon-Nikodym derivative under the complete
sigma-field Zk = σ (x0:k, y0:k) generated by the random variables {x0, x1, ..., xk, y0, y1, . . . , yk}

Γ̄0:k ,
dP
dP̄

∣∣∣∣∣
Zk

=

k∏
i=0

γ̄i (5.79)

where

γ̄i =


pvi(D−1

k (yi−hi(xi)))
pvi (yi)

pwi(B−1
i (xi−x̄0))

pwi (xi)
for i = 0

pvi(D−1
i (yi−hi(xi)))
|Di |pvi (yi)

pwi(B−1
i (xi− fi(xi−1)))
|Bi |pwi (xi)

for i > 0

 (5.80)

Using Bayes theorem, the recursive optimization problem can be redefined under the new
probability measure as follows;

Vk
(
x∗k, λ

)
= inf x̂k∈ℵk EP

(
exp

(
λ−1Ψ̃c

0:k (x̂k)
) )

= inf
x̂k∈ℵk

EP̄

[
Γ̄k exp

(
λ−1

k Ψ̃0:k (x̂k)
)] (5.81)

since EP̄

[
Λ̄0:k

]
= 1. Using the smoothing property of the conditional expectation

EP̄

[
Γ̄0:k exp

(
λ−1

k Ψ̃0:k (x̂k)
)]
= EP̄

[
EP̄

[
Γ̄0:k exp

(
λ−1

k Ψ̃0:k (x̂k)
)∣∣∣∣ Yk

]]
=

∫
EP̄

[
Γ̄0:k exp

(
λ−1

k Ψ̃0:k (x̂k)
) ∣∣∣∣ Yk

]
dP̄Yk

(5.82)

Thus
V s

k

(
x∗k, λ

)
= inf

x̂k∈ℵk

∫
EP̄

[
Γ̄0:k exp

(
λ−1Ψ̃0:k (x̂k)

)∣∣∣∣ Yk

]
dP̄Yk (5.83)

In order get a recursive solution for the inner conditional expectation term, the following
Lagrange multiplier dependent information state can be introduced

σλk (B) ,
∫
Rn

IB(x)dσλk (x) = EP̄

[
IB(x)Γ̄0:k exp

(
λ−1Ψ̃∗0,k−1

) ∣∣∣∣ Yk

]
(5.84)

where IB is the indicator function of the Borel set B. Furthermore let αλk be the density of the
measure-valued process such that

σλk (B) =
∫

B
αλk (x)dx (5.85)
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Thus, the recursive optimization problem is defined as

V s
k

(
x∗k, λ

)
= inf

x̂k∈ℵk

∫ ∫
exp

(
λ−1ℓ

(
x′k, x̂k

))
αλk

(
x′k

)
dx′kdP̄Yk (5.86)

Theorem 5.2.8. The information state αλk satisfies the following recursion

αλk (x) =
1

|Bk| |Dk|
pvk

(
D−1

k

(
yk − hk

(
x′k

)))
pvk (yk)∫

exp
(
λ−1ℓ

(
x′k−1, x̂k−1

))
pwk

(
B−1

k

(
x′k − fk

(
x′k−1

)))
αλk−1

(
x′k−1

)
dx′k−1

(5.87)

with an initial condition

αλ0 (x0) =
pv0

(
D−1

0 (y0 − h0 (x0))
)

|D0|
∣∣∣√Σ0

∣∣∣ pv0 (y0)
pw0

( √
Σ0
−1 (x0 − x̄0)

)
(5.88)

Proof. The lemma is almost the same as in 5.2.4 whose derivation is provided previously. �

5.2.5.1 Determination of the Suboptimal State Estimate: Particle Filter Approach

Let us reconsider the suboptimal state estimation problem

V s
k

(
x∗k, λ

)
= inf

x̂k∈ℵk

∫ ∫
exp

(
λ−1ℓ

(
x′k, x̂k

))
αλk

(
x′k

)
dx′k dP̄Yk (5.89)

Using the fact that the outer integral is a positive weighted integral of the inner integral, the
optimal state estimate for a given λ value and for any given measurement sequence {y0:k}

x̂∗k = arg inf
x̂k∈ℵk

∫
exp

(
λ−1ℓ

(
x′k, x̂k

))
αλk

(
x′k

)
dx′k (5.90)

Thus, it is possible to determine the suboptimal state estimate sequence in forward recursion
by solving the previous equation at each time k for a fixed value of λ and for a given mea-
surement sequence. We propose an approximate solution for nonlinear systems by particle
filtering. In this regard, if the information state is approximated by M samples

αλk−1 (xk−1) ≈
M∑
j=1

π
λ,( j)
k−1 δ

(
xk−1 − xλ,( j)

k−1

)
(5.91)

where πλ,( j)
k−1 is the normalized weight of the jth particle. By substituting this relation into

(5.90), the optimal state estimate can be found as

x̂∗k = arg min
x̂k

 M∑
j=1

π
λ,( j)
k exp

(
λ−1ℓ

(
xλ,( j)

k , x̂k
)) (5.92)

Note that for a quadratic cost function ℓ
(
xλ,( j)

k , x̂
)
=

∥∥∥∥x̂ − xλ,( j)
k

∥∥∥∥2
, the optimal state estimate

satisfies the following fixed-point relation;

x̂∗k =
1

M∑
j=1
π
λ,( j)
k exp

(
λ−1

∥∥∥∥x̂∗k − xλ,( j)
k

∥∥∥∥2) M∑
j=1

π
λ,( j)
k xλ,( j)

k exp
(
λ−1

∥∥∥∥x̂∗k − xλ,( j)
k

∥∥∥∥2)
(5.93)
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On the other hand, substituting the approximation (5.91) into the information state recursion
relation yields

αλk (xk) ∝ p (yk| xk)
M∑
j=1

π
λ,( j)
k−1 p

(
xk| xλ,( j)

k−1

)
exp

(
λ−1ℓ

(
xλ,( j)

k−1 , x̂ k−1|k−1
))

(5.94)

if the updated information state is approximated by sampled xk values from a priori density{
x( j)

k

}
∼ p

(
xk

∣∣∣x( j)
k−1

)
;

αλk (xk) ∝
M∑
j=1

π
λ,( j)
k δ

(
xk − xλ,( j)

k

)
(5.95)

where
π
λ,( j)
k = p

(
yk

∣∣∣xλ,( j)
k

)
π

( j)
k−1 exp

(
λ−1ℓ

(
xλ,( j)

k−1 , x̂k−1|k−1
))

(5.96)

Determination of the Lagrange Multiplier :
Now reconsider final stage optimization problem

Js
(
x̂∗0:N , λ

∗) = inf
λ>0

(
λ log V s

N

(
x∗N , λ

)
+ λd

)
(5.97)

with
V s

N

(
x∗N , λ

)
= inf

x̂N∈ℵN

∫ ∫
exp

(
λ−1ℓ

(
x′N , x̂N

))
αλk

(
x′N

)
dx′N dP̄YN (5.98)

The determination of the suboptimal Lagrange multiplier is not a tractable problem since the
optimization with respect to the Lagrange multiplier is dependent on the expectation operation
over the measurement space on the time horizon [0, N]. Unfortunately, this fact impedes us
to get a complete recursive solution. At this stage several approximations of the objective
function is possible to obtain a recursive solution.

One possible way for evaluating the expectation for the measurement sequence over the time
horizon [0,N] is off-line Monte-Carlo simulations. In this regard, for each possible measure-
ment sequence that is consistent with nominal system dynamics, the expectation is performed
for possible values of Lagrange multipliers.

Another possible way to handle the computational complexity is to change the original opti-
mal estimation problem such that the optimal state estimation cost are conditional to the given
measurement sequence. This is possible if the relative entropy constraint is defined on nomi-
nal and perturbed conditional probability measures. In this regard, we propose the following
function as the cost function of the optimal state estimation problem

J
(
x̂∗0:N ,Q

∗
x0:N |y0:N

)
= inf

x̂0:N∈ℵ0:N
sup

Q x0:N |y0:N
∈C̄

(
P x0:N |y0:N

) EQ x0:N |y0:N

[
Ψ0:N (x̂0:N)| y0:N

]
(5.99)

Although this approach seems to be promising, we left the remaining analysis as a future
work.

We conclude this section by an application of the method that we have proposed to an ex-
ample. The example is widely used in the nonlinear estimation literature and is reported as
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the one that the exponentials risk function that we have used performs worse than the other
proposed functions [48]. So our expectation is not to have a good robust estimation result but
the proof of the concept of what we have proposed.

Example 5.2.3. As a case study, we have selected a first order nonlinear system that has been
widely used in related literature [48]. The uncertain system is represented by the following
equations.

xk+1 =
1
2

xk + (µ̄k + ∆k)
xk

1 + x2
k

+ 8 cos(1.2k) + wk+1 (5.100a)

yk =
1

20
x2

k + vk (5.100b)

where xk is the state and yk is measurement with µ̄ = 25 and δk is the unknown but bounded
parameter satisfying |δk| ≤ 25. Here wk and vk are the process and the measurement noises
that are assumed to be white Gaussian with variance 10.0 and 1.0 respectively. The block
diagram of the system is given in Figure 5.3

Figure 5.3: The Uncertain Nonlinear System

200 Monte-Carlo runs are performed in order to evaluate the performance of the robust par-
ticle filter algorithm. Performance comparison of the proposed approach is done with the
classical particle filter. 100 particles are generated for each algorithm. The uncertain param-
eter which has a nominal value of µ 25 is varied from 0 to 80. The value of is chosen as 65.8
after few trials without applying an explicit optimization procedure. The results are summa-
rized in Figure 5.4. From the figure, it can be concluded that the proposed robust particle
filter behaves similar to a classical robust filtering method although it is not very effective.
The classical particle filter algorithm performs better than the robust algorithm for uncertain
parameter values that are near the nominal value; however the performance of the robust al-
gorithm is acceptable. On the other hand, for the other parameter values, the robust algorithm
performance is slightly better than the classical one. The same example is studied in [48] for
different risk functions (polynomials and exponentials) in product form. They have concluded
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Figure 5.4: Nonlinear Example Performance Results

that the exponential risk function performs worse than the other proposed functions. However,
it will be cumbersome to determine the best suitable risk function for different applications.

5.3 Robust Nonlinear Estimation with an Instantaneous Relative Entropy Con-
straint

In the previous section, the system uncertainty is assumed to satisfy the relative entropy con-
straint over a finite horizon.

In [38], instead of a single relative entropy constraint defined on a finite time interval, con-
ditional instantaneous relative entropy constraint is proposed. They derived a robust filter for
linear Gaussian state space systems as a solution of the minimax estimation problem. The
form of the filter is actually risk-sensitive filter with a time-varying risk sensitivity parameter
depending on the tolerance bound. They state that single relative entropy constraint yields
conservative results since it allows the maximizer to identify the moment when the system
most susceptible to distortions”.

In this section, we applied the results of the recent paper to the nonlinear systems by utilizing
existing nonlinear estimation methods such as particle filter and unscented Kalman filter.

Note here that these two stochastic uncertainty models actually correspond to the determin-
istic energy constraint and norm bounded uncertainty cases. In the deterministic energy con-
strained case, the system uncertainty satisfies integral quadratic constraint (or in discrete-time
case sum quadratic constraint) and in the norm bounded system uncertainty case, the uncer-
tainty is modeled as unknown but norm-bounded system dynamics.
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Let us consider a nonlinear uncertain model

xk+1 = f (xk) + wk+1 (5.101a)

yk = h (xk) + vk (5.101b)

zs
k = bs (xk) (5.101c)

zm
k = bm (xk) (5.101d)

where xk ∈ Rn is the system state, yk ∈ Rm is the system measurement and zs
k and zm

k are the
system uncertainty outputs that will be used in the sequel to define the uncertainty sets.

Here wk+1 and vk are Gaussian distributed white noise sequences with appropriate dimensions.
The true system is assumed to be in a set of admissible systems. It is assumed that the set
of admissible uncertain systems are defined in terms of the perturbations or distortions on the
system transition and observation densities. Relative entropy constraint is used to evaluate
the discrepancy between the nominal densities and the perturbed ones. Then the robust state
estimation is defined as the minimization of the worst case estimation error.

Different from the recent results of [38], in this work, two independent distortion sets, (Θs
k,Θm

k ),
for system transition and observation densities are defined as follows.

Θs
k =

{
ρ̄ (yk| xk) : EP̄

[
R ( ρ̄ ( xk| xk−1) ∥ ρ (xk|xk−1)) | y0:k−1

] ≤ d1 +
1
2

EP̄

[
∥zs

k−1∥
2
∣∣∣y0:k−1

]}
(5.102a)

Θm
k =

{
ρ̄ (yk| xk) : EP̄

[
R ( ρ̄ (yk| xk) ∥ ρ (yk| xk)) | y0:k−1

] ≤ d2 +
1
2

EP̄

[ ∥∥∥zm
k

∥∥∥2
∣∣∣∣ y0:k−1

]
(5.102b)

where ρ̄ ( xk| xk−1) and ρ̄ (yk| xk) are the perturbed probability density functions and ρ ( xk| xk−1)
and ρ (yk| xk) are the nominal probability density functions. In a more explicit form,

EP̄

[
R (ρ̄(xk|xk−1)∥ρ(xk|xk−1))

∣∣∣y0:k−1
]

=

∞∫
−∞

∞∫
−∞

log
(
ρ̄ (xk|xk−1)
ρ(xk|xk−1)

)
ρ̄ (xk|xk−1) p (xk−1|y0:k−1) dxkdxk−1

< d1 +

∞∫
−∞

∥∥∥zs
k−1∥

2 p (xk−1|y0:k−1) dxk−1

(5.103)

and

EP̄
[

R ( ρ̄ (yk| xk) ∥ ρ (yk| xk)) | y0:k−1
]

=

∞∫
−∞

∞∫
−∞

log
(
ρ̄ (yk| xk)
ρ (yk| xk)

)
ρ̄ (yk| xk) p ( xk| y0:k−1) dykdxk < d2 +

∞∫
−∞

∥∥∥zm
k

∥∥∥2
p ( xk| y0:k−1)dxk

(5.104)

Here p (xk|y0:k−1) and p (xk−1|y0:k−1) are prior conditional probability density functions. Note
that, we made the size of the relative entropy constraint to be state dependent that is defined
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by the uncertainty output signals (zs
k, z

m
k ). This allows the relative entropy constrained for-

mulation to be generalized the norm bounded uncertainty description. Under the Gaussian
assumption on the system noise sequence and additive uncertainty term ∆ f (xk−1), the relative
entropy constraint reduces to the following conditional instantaneous energy constraint.

ρ̄ (xk|xk−1) ∝ exp
(
−1

2
∥xk − f (xk−1) ∥2Q−1

k

)
(5.105)

ρ̄ (xk|xk−1) ∝ exp
(
−1

2
∥xk − f (xk−1) − ∆ f (xk−1) ∥2Q−1

k

)
(5.106)

Then the relative entropy constraint results in

EP̄

[
1
2
∥∆ f (xk−1)∥2Q−1

k

∣∣∣∣∣ y0:k−1

]
≤ EP̄

[∥∥∥zm
k

∥∥∥2 ∣∣∣y0:k−1

]
(5.107)

where ∆ f (xk−1) is the additive system uncertainty term. For the uncertain system model with
zs

k−1 = bs (xk−1), if the uncertainty signal is defined as ∆ f (xk−1) = ∆k−1bs (xk−1) then the
relative entropy constraint implies:

1
2

∞∫
−∞

(∥∥∥∆k−1bs (xk−1)
∥∥∥2

Q−1
k
−

∥∥∥bs (xk−1)
∥∥∥2

)
p ( xk−1| y0:k−1) dxk−1 ≤ 0 (5.108)

or ∥∆kbs (xk−1)∥2
Q−1

k
− ∥bs (xk−1)∥2 ≤ 0 for all possible values of xk−1. Thus ∥∆k−1∥ ≤ 1.

Following two sequential optimization problems are defined for the robust time and measure-
ment update of the state estimation problems.

PROBLEM I (Time Update):

x̂k|k−1 = arg min
ξ∈ℑ

max
ρ̄(xk |xk−1)∈Φs

Jk (ξ, ρ̄ ( xk| xk−1)) =
1
2

EP̄

[
∥xk − ξ∥2

∣∣∣ y0:k−1
]

(5.109a)

s.t. EP̄
[

R ( ρ̄ ( xk| xk−1) ∥ ρ ( xk| xk−1)) | y0:k−1
] ≤ d +

1
2

Ē
[ ∥∥∥zs

k−1

∥∥∥2
∣∣∣∣ y0:k−1

]
(5.109b)

and

∞∫
−∞

ρ̄ ( xk| xk−1) dxk = 1 (5.109c)

where ξ ∈ ℑ is the state estimate and ℑ is the class of state estimators that have finite energy
under all distorted probability density functions ρ̄ ( xk| xk−1) ∈ Φs.

PROBLEM II (Measurement Update):

x̂ k|k = arg min
ξ(yk)∈ℑ

max
ρ̄(yk |xk)∈Φm

Jk (ξ (yk) , ρ̄k) =
1
2

EP̄

[
∥xk − ξ (yk)∥2

∣∣∣ y0:k
]

(5.110a)

s.t. EP̄
[

R ( ρ̄ (yk| xk) ∥ ρ̄ (yk| xk)) | y0:k−1
] ≤ d +

1
2

EP̄

[ ∥∥∥zm
k

∥∥∥2
∣∣∣∣ y0:k

]
(5.110b)

and

∞∫
−∞

ρ̄ (yk| xk) dyk = 1 (5.110c)

79



5.3.1 Unconstrained Optimization Problems

The constrained optimization problems defined in the previous section will be converted to
unconstrained one by utilizing the Lagrange multipliers theorem.

5.3.1.1 Time Update

In a more detailed form, the optimization problem can be stated as

x̂ k|k−1 = arg min
ξ∈ℑ

max
ρ̄( xk |xk−1) ∈Φs

Jk (ξ, ρ̄k) =
1
2

∞∫
−∞

∞∫
−∞

∥xk − ξ∥2ρ̄ ( xk| xk−1) p ( xk−1| y0:k−1) dxkdxk−1

(5.111a)

s.t.
∫ ∞

−∞

∞∫
−∞

log
(
ρ̄ ( xk| xk−1)
ρ ( xk| xk−1)

)
ρ̄ ( xk| xk−1) p ( xk−1| y0:k−1) dxkdxk−1

< d +

∞∫
−∞

∥∥∥zs
k−1

∥∥∥2
p ( xk−1| y0:k−1)dxk−1

(5.111b)

and

∞∫
−∞

∞∫
−∞

ρ̄ ( xk| xk−1) p ( xk−1| y0:k−1) dxkdxk−1 = 1 (5.111c)

The existence of the minimax problem is shown in [38] for a very similar problem. The cost
function is quadratic thus convex function of ξ ∈ ℑ and it is linear, thus concave, function of
ρ̄ ( xk| xk−1) and the setΦ is a convex set of the probability density functions ρ̄ ( xk| xk−1) further
it is compact since relative entropy constrained is weakly sequentially compact [10]. The set
of estimators is ℑ and is convex. It is also compact if the second moment of the estimators
have large but fixed upper bound. Thus according to minimax theorem [10] the saddle point
exists. Using the Lagrange multiplier method, the constrained optimization problem can be
converted to the following unconstrained optimization one.

x̂ k|k−1 = arg min
ξ∈ℑ

min
λs

k≥0
max

ρ̄( xk |xk−1) ∈Φs
Lk

(
ξ, ρ̄ ( xk| xk−1) , λs

k, µ
s
k

)
(5.112)

where

Lk (ξ, ρ̄ (xk|xk−1) , λs
k, µ

s
k =

1
2

∫ ∞

−∞

∫ ∞

−∞
∥xk − ξ∥2ρ̄ ( xk| xk−1) p ( xk−1| y0:k−1) dxkdxk−1

+ λs
k


∞∫
−∞

∞∫
−∞

log
(
ρ̄ ( xk| xk−1)
ρ ( xk| xk−1)

)
ρ̄ ( xk| xk−1) p ( xk−1| y0:k−1) dxkdxk−1 − ds

k


+ µs

k


∞∫
−∞

ρ̄ ( xk| xk−1) dxk − 1


(5.113)

with ds
k = d +

∫ ∞
−∞

∥∥∥zs
k−1

∥∥∥2
p ( xk−1| y0:k−1) dxk−1 and λs

k and µs
k are the Lagrange multipliers.
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The maximization part can be handled by equating the Gateaux derivative of the objective
function to zero, thus it can be obtained that the least favorable density satisfies the following
relation.

ρ̄∗ ( xk| xk−1) =
exp

(
1

2λs
k
∥xk − ξ∥2

)
∞∫
−∞

exp
(

1
2λs

k
∥xk − ξ∥2

)
ρ ( xk| xk−1) dxk

ρ ( xk| xk−1) (5.114)

By substituting the least favorable density into the Lagrangian yields

x̂ k|k−1 = arg min
ξk∈ℑ

min
λs

k>0
λs

k

(
V s

(
λs

k, ξk
)
+ ds

k

)
(5.115)

where

V s
(
λs

k, ξk
)
, log

∫ ∞

−∞

∫ ∞

−∞
exp

(
1

2λs
k
∥xk − ξk∥2

)
ρk (xk|xk−1) p (xk|y0:k−1) dxkdxk−1 (5.116)

5.3.1.2 Measurement Update

Since

Jk (ξ (yk) , ρ̄k) =
1
2

Ē
[
∥xk − ξ (yk)∥2

∣∣∣ y0:k−1
]

=

∞∫
−∞

∞∫
−∞

∥xk − ξ (yk)∥2 ρk ( xk, yk| y0.k−1) dxkdyk

=

∞∫
−∞

∞∫
−∞

∥xk − ξ (yk)∥2 ρk (yk| xk) pk ( xk| y0.k−1) dxkdyk

(5.117)

The constrained optimization problem can be converted to the following unconstrained opti-
mization problem using the similar arguments presented for time update part;

x̂ k|k = arg min
ξk∈ℑ

min
λm

k >0
λm

k

(
V

(
λm

k , ξ(yk)
)
+ ds

k

)
(5.118)

where

Vm
(
λm

k , ξ(yk)
)
, log

∞∫
−∞

∞∫
−∞

exp
(

1
2λm

k
∥xk − ξk∥2

)
ρk (yk| xk) p ( xk| y0:k−1) dxkdyk (5.119)

and λm
k is the Lagrange multiplier of the measurement update part.

In the following sections, we will utilize the some approximate nonlinear estimation tech-
niques in order to solve the optimal estimation problems.

5.3.2 The Unscented Approach

Let us approximate the following integral

p ( xk| y0:k−1) =
∫

ρk ( xk| xk−1) p ( xk−1| y0:k−1) dxk−1 (5.120)
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with a Gaussian density by unscented transformation of the nonlinear nominal system model
f (xk). By assuming that the posterior density p ( xk−1| y0:k−1) is Gaussian

p ( xk−1| y0:k−1) = N
(
xk−1; x k−1|k−1, P k−1|k−1

)
(5.121)

we construct the sigma points

ℵ(i)
k−1|k−1 =


xk−1|k−1 f or i = 0

x k−1|k−1 +
( √

(n + λ) P k−1|k−1
)
i

f or 1 ≤ i ≤ n

x k−1|k−1 −
( √

(n + λ) P k−1|k−1
)
i

f or n < i ≤ 2n


Here

(√
A
)
i

denotes the ith column of the matrix square root of A. Then by propagating the
sigma points through the nominal nonlinear system model

ℵ(i)
k|k−1 = fk

(
ℵ(i)

k|k−1

)
(5.122)

x k|k−1 =

2N∑
i=0

W(m)
i ℵ k|k−1 (i) (5.123)

P k|k−1 =

2N∑
i=0

W(c)
i

(ℵ k|k−1 (i) − x k|k−1
) (ℵ k|k−1 (i) − x k|k−1

)T
+ Qk (5.124)

with W(m)
i and W(c)

i are the weights of the sigma points. Then the optimization problem

x̂ k|k−1 = arg min
ξ∈ℑ

min
λs

k>0
λs

k

log

∞∫
−∞

exp
(
∥xk − ξ∥2

2λs
k

)
N

(
xk; x k|k−1, P k|k−1

)
dxk + ds

k

 (5.125)

can be converted to the following form

x̂ k|k−1 = arg min
ξ∈ℑ

min
λs

k≥0
λs

k

log

√
det M1

k

(
λs

k

)
√

det P k|k−1
+

(
1
2

(
ξ − x k|k−1

)T S 1
k

(
λs

k

) (
ξ − x k|k−1

))
+ λs

kds
k

(5.126)

where S 1
k

(
λs

k

)
=

(
λs

kInxn − P k|k−1
)−1

> 0 and M1
k

(
λs

k

)
=

(
P−1

k|k−1 −
(
λs

k

)−1
Inxn

)−1
> 0.

Thus it can be easily seen that the optimal state estimate is the mean of the nominal prediction
density p (xk|y0:k−1) = N

(
xk; xk|k−1, Pk|k−1

)
. Thus x̂ k|k−1 = x k|k−1. This is an important fact that

has been noted in [29],[38] which is derived for the linear system. Least-squares estimator
is robust with respect to the relative entropy constraint. Thus, any non-causal estimators
(Kalman or Wiener smoothers) over a finite horizon are robust.

The worst case covariance becomes

P∗k|k−1 =

(
P−1

k|k−1 −
(
λs

k

)−1
Inxn

)−1
(5.127)
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Using the fact that the worst-case probability density is on the boundary of the relative entropy
constraint [38], we can say that the Lagrange multiplier λs

k satisfies the following relation

λs,∗
k = arg min

λs
k

λs
k log

√
det M1

k

(
λs

k

)
√

det P k|k−1
+ λs

kds
k . (5.128)

Then it can be obtained that

c
(
λs

k

)
, R

(
ρ̄∗ ( xk| xk−1)

∥∥∥ ρ ( xk| xk−1)
)

=
1
2

log det
(
In×n −

(
λs

k

)−1
P k|k−1

)
+

1
2

trace
((

P−1
k|k−1 −

(
λs

k

)−1
In×n

)−1
)
= ds

k

(5.129)

It is shown in [38] that the function c (λk) is a monotone decreasing function. As λk goes to
the infinity then c

(
λs

k

)
becomes zero. Thus, a simple numerical root finding algorithm such

as bisection algorithm can be utilized to calculate the optimal λk value.

Similarly the measurement update part can be solved using the predicted a priori worst case
(least favorable) Gaussian density p ( xk| y0:k−1) as follows;

x̂ k|k = arg min
ξ∈ℑ

min
λm

k ≥0
λm

k

(
E

[
exp

(
1

2λm
k
∥xk − ξ (yk)∥2

) ∣∣∣∣∣∣ y0:k−1

]
+ dm

k

)
(5.130)

Using the law of iterated expectations

E
[
exp

(
1

2λm
k
∥xk − ξ (yk)∥2

)∣∣∣∣∣∣ y0:k−1

]
= E

[
E

[
1

2λm
k
∥xk − ξ (yk)∥2

∣∣∣∣∣∣ y0:k

]∣∣∣∣∣∣ y0:k−1

]
(5.131)

where

E
[

1
2λm

k
∥xk − ξ (yk)∥2

∣∣∣∣∣∣ y0:k

]
=

∞∫
−∞

exp
(
∥xk − ξ (yk)∥2

2λm
k

)
p (xk|y0:k)dxk (5.132)

The conditional density function p (xk|y0:k) can be approximated by an unscented transforma-
tion of the nominal nonlinear measurement model as

p (xk|y0:k) = N
(
xk; x k|k, P k|k

)
=

1

(2π)n/2
∣∣∣P k|k

∣∣∣1/2 exp
(
−1
2

∥∥∥xk − x k|k
∥∥∥2

P−1
k|k

)
(5.133)

where
xk = xk + Kk

(
zk − z k|k−1

)
P k|k = P k|k−1 − KkPzz,kKT

k (5.134)

with

ℵ(i)
k−1|k−1 =


x k−1|k−1 f or i = 0

x k−1|k−1 +
( √

(n + λ) P k−1|k−1
)
i

f or 1 ≤ i ≤ n

x k−1|k−1 −
( √

(n + λ) P k−1|k−1
)
i

f or n < i ≤ 2n


Z k|k−1 = hk

(ℵ k|k−1
)
, z k|k−1 =

2N∑
i=0

W (m)
i Z(i)

k|k−1 (5.135)
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Pzz,k =

2N∑
i=0

W(c)
i

(
Z(i)

k|k−1 − z k|k−1
) (

Z(i)
k|k−1 − z k|k−1

)T
+ Rk (5.136)

Pxz,k =

2N∑
i=0

W (c)
i

(
X(i)

k|k−1 − x k|k−1
) (

Z(i)
k|k−1 − z k|k−1

)T
(5.137)

Kk = Pxz,k ·
(
Pzz,k

)−1 (5.138)

then
∞∫
−∞

exp
(
∥xk − ξ (yk)∥2

2λs
k

)
N

(
xk; x k|k, P k|k

)
dxk =

√∣∣∣M2
k (λk)

∣∣∣√∣∣∣P k|k
∣∣∣ exp

(
1
2

∥∥∥ξ (yk) − x k|k (yk)
∥∥∥2

S s
k(λs

k)

)
(5.139)

where S m
k

(
λm

k

)
=

(
λm

k I − P k|k
)−1

> 0 and Mm
k

(
λm

k

)
=

(
P−1

k|k −
(
λm

k

)−1
Inxn

)−1
> 0 . then the

optimization problem reduces to

x̂ k|k = arg min
ξ∈ℑ

min
λm

k ≥0
λm

k

log

∞∫
−∞

√∣∣∣∣M2
k

(
λm

k

)∣∣∣∣√∣∣∣P k|k
∣∣∣ exp

(
1
2

∥∥∥ξ (yk) − x k|k (yk)
∥∥∥2

S m
k (λm

k )

)
dyk + dm

k


.

(5.140)
Thus it can be seen easily that the mean of the robust estimator is the same as the nominal
one. That is x̂ k|k = x k|k (yk) and then

λm,∗
k = arg min

λm
k

λm
k log

√
det Mk

(
λm

k

)
√

det P k|k−1
+ λm

k dm
k (5.141)

It can be obtained that

c
(
λm

k

)
=

1
2

log det
(
Inxn −

(
λm

k

)−1
P k|k

)
+

1
2

trace
((

P−1
k|k −

(
λm

k

)−1
Inxn

)−1
)
= dm

k (5.142)

Note here that the left side of the equation is actually the relative entropy between the worst
case measure and the nominal measure. This shows that the worst-case measure is at the
boundary. Using this relation optimal Lagrange multiplier can be found by a simple bisection
algorithm.

5.3.3 Particle Filter Approach

In this section, particle filtering approach is utilized for the robust nonlinear estimation prob-
lem.

5.3.3.1 Time Update

For the time update part, the optimization problem can be handled by approximating the
posterior conditional density in terms of particles as

p ( xk−1| y0:k−1) =
M∑

i=1

W(i)
k−1|k−1δ

(
xk−1 − x(i)

k−1|k−1

)
(5.143)
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Table5.1: Relative Entropy Unscented Kalman Filter

Time Update
Calculate Sigma Points
ℵ k−1|k−1 =

[
x k−1|k−1 x k−1|k−1 +

√
(n + λ) P k−1|k−1 x̂ k−1|k−1 −

√
(n + λ) P k−1|k−1

]
ℵ k|k−1 = fk

(ℵ k−1|k−1
)

x k|k−1 =
2N∑
i=0

W (m)
i ℵ k|k−1 (i)

P k|k−1 =
2N∑
i=0

W (c)
i

(ℵ k|k−1 (i) − x k|k−1
) (ℵ k|k−1 (i) − x k|k−1

)T
+ Qk

Find λs
k such that c

(
λs

k

)
= ds

k

Ps
k|k−1 =

((
P k|k−1

)−1 −
(
λs

k

)−1
Inxn

)−1

Measurement U pdate
Recalculate Sigma Points

ℵ k−1|k−1 =

[
x k|k−1 x k|k−1 +

√
(n + λ) Ps

k|k−1 x̂ k−1|k−1 −
√

(n + λ) Ps
k|k−1

]
z k|k−1 =

2N∑
i=0

W(m)
i Z k|k−1(i)

Z k|k−1 = hk
(
x k|k−1

)
Pzz,k =

2N∑
i=0

W(c)
i

(
Z k|k−1 − z k|k−1

) (
Z k|k−1 − z k|k−1

)T
+ Rk

Pxz,k =
2N∑
i=0

W(c)
i

(
X k|k−1 − x k|k−1

) (
Z k|k−1 − z k|k−1

)T

Kk = Pxz,k ·
(
Pzz,k

)−1

xk = xk + Kk
(
zk − z k|k−1

)
P k|k = P k|k−1 − KkPzz,kKT

k
c
(
λm

k

)
= dk

Find λm
k such that c

(
λm

k

)
= dk
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then since

p ( xk| y0:k−1) =

∞∫
−∞

ρk ( xk| xk−1) p ( xk−1| y0:k−1) dxk−1

=

∞∫
−∞

ρk ( xk| xk−1)
M∑

i=1

W(i)
k−1|k−1δ

(
xk−1 − x(i)

k−1|k−1

)
dxk−1

=

M∑
i=1

W (i)
k−1|k−1ρk

(
xk| x(i)

k−1|k−1

)
(5.144)

the predicted conditional density can be approximated as

pk ( xk| y0:k−1) ≈
N∑

k=1

W(i)
k−1|k−1δ

(
xk − x(i)

k|k−1

)
(5.145)

where x(i)
k|k−1 are sampled from ρk

(
xk| x(i)

k−1|k−1

)
as x(i)

k|k−1 = f
(
x(i)

k|k−1

)
+ w(i)

k+1. Thus, the time
update part of the problem can be approximated as

x̂ k|k−1 = arg min
ξk∈ℑ

min
λs

k>0
F

(
λs

k, ξk
)

(5.146)

where

F
(
λs

k, ξk
)
= λs

k

log
M∑

i=1

W (i)
k−1 exp

(
1

2λs
k

∥∥∥∥x(i)
k|k−1 − ξk

∥∥∥∥2
)
+ ds

k


.

(5.147)

This problem can be solved by an alternating minimization algorithm as shown in Table 5.2

Table5.2: Alternating Minimization Algorithm for Robust Particle Filter (Time Update)

ξk,(0) ← x̂ k−1|k−1

while
∥∥∥ξk,( j) − ξk,( j−1)

∥∥∥ > ε
λs

k,( j+1) ← arg minλs
k

F
(
λs

k, ξk,( j)
)

ξk,( j+1) ← arg minξ F
(
λs

k,( j+1), ξk
)

j← j + 1
end

The algorithm consists of two sub optimization problems. The solution of the problems will
be cited in the following sections.

Minimization with Respect to the Lagrange Multipliers:
The minimization with respect to the Lagrange multiplier λs

k is an alternating minimization
problem will be accomplished by a fixed point algorithm by taking the derivative of objective
function with respect to λs

k and equating it to zero. We assume that fixed point can be applied
to the minimization problem.

∇ξk F
(
λs

k, ξk
)
= logΣ1

(
λs

k

)
+ dk −

(
λs

k

)−1 Σ2
(
λs

k

)
Σ1

(
λs

k

) = 0 (5.148)
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where

Σ1
(
λs

k

)
=

∑
i

W(i)
k−1 exp


∥∥∥∥x(i)

k|k−1 − ξk

∥∥∥∥2

2λs
k

 (5.149)

and

Σ2
(
λs

k

)
=

∑
i

W(i)
k−1

∥∥∥∥x(i)
k|k−1 − ξk

∥∥∥∥2
exp


∥∥∥∥x(i)

k|k−1 − ξk

∥∥∥∥2

2λs
k

 (5.150)

Thus a fixed point algorithm can be devised for

λs
k =
Σ1 (λk) log

(
Σ1

(
λs

k

))
+ ds

kΣ1
(
λs

k

)
Σ2

(
λs

k

) (5.151)

The algorithm is summarized in Table 5.3

Table5.3: Fixed Point Algorithm for Lagrange Multiplier Optimization (Time Update)

λs
k,( j) ← 10n f or n > 3

while
∥∥∥λk,( j) − λk,( j−1)

∥∥∥ > ε
λs

k,( j+1) ←
Σ1(λk,( j)) log

(
Σ1

(
λs

k,( j)

))
+ds

kΣ1
(
λs

k,( j)

)
Σ2

(
λs

k,( j)

)
j← j + 1
end

Since the gradient of the objective function with respect to state estimate is

∇ξk F
(
λs

k, ξk
)
=

(
M∑

i=1
W k|k−1 exp

(
1

2(λs
k)

∥∥∥∥x(i)
k|k−1 − ξk

∥∥∥∥2 ))−1

×
M∑

i=1

1
λs

k
W k|k−1

(
x(i)

k|k−1 − ξk
)

exp
(

1
2(λs

k)

∥∥∥∥x(i)
k|k−1 − ξk

∥∥∥∥2 ) (5.152)

a gradient descent algorithm can be constructed as presented in the following table.

Table5.4: Gradient Descent Algorithm for the Optimal State Determination

ξk,(0) ← x̂ k−1|k−1

while
∥∥∥ξk,( j) − ξk,( j−1)

∥∥∥ > ε
j← j + 1

i f j < MaxN or |Grad| > MinGrad
Grad( j) ← Equation, (5.152)
ξk,( j) ← ξk,( j) − µGrad( j)

end
end
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Here MaxN is the maximum allowed iteration number and µ is the Gradient step size, which
can be optimized by any line search algorithm and MinGrad is the stopping criteria for the
minimum gradient value of the objective function.

5.3.3.2 Measurement Update

Let us consider the measurement update part of the robust state estimation. That is

x̂ k|k = arg min
ξ(.)∈ℑ

min
λm

k >0
λm

k

(
log Vm(λm

k , ξ(yk)) + dk
)

(5.153)

where

Vm(λk, ξ(.)) ,
∞∫
−∞

∞∫
−∞

exp
(

1
2λm

k
∥xk − ξ (yk)∥2

)
ρk (yk| xk) p ( xk| y0:k−1) dxkdyk (5.154)

If the predicted probability density is approximated as

p ( xk| y0:k−1) ≈
M∑

i=1

W(i)
k|k−1δ

(
xk − x(i)

k|k−1

)
(5.155)

then

Vm(λk, ξ(.)) ,=
∞∫
−∞

M∑
i=1

(
W i

k|k−1 exp
(

1
2λm

k

∥∥∥∥x(i)
k − ξ (yk)

∥∥∥∥2
)
ρk

(
yk| x(i)

k

))
p (yk) dyk (5.156)

Note that since the integrand is positive, for a fixed λm
k , the minimization with respect to state

estimate is equal to the

x̂ k|k = arg min
ξ(.)∈ℑ

M∑
i=1

W i
k|k exp

(
1

2λm
k

∥∥∥∥x(i)
k − ξk

∥∥∥∥2
)

(5.157)

where W i
k|k = W i

k|k−1ρk
(
yk| x(i)

k

)
for a given yk value. On the other hand, the optimization with

respect to λm
k necessitates a functional form of the ξ (yk) due integral operation with respect to

yk. Thus it is not possible to solve the problem without defining a structure for the estimator
of the state. For instance, a linear structure can be imposed to the problem. Thus, the best
linear estimator can be sought. In this regard, let us define

ξ (yk) = x̄ k|k−1 + Kk
(
yk − h̄k

)
(5.158)

where x̄ k|k−1 =
M∑

i=1
W (i)

k|k−1x(i)
k|k−1 and h̄k =

∑
W (i)

k|k−1h
(
x(i)

k|k−1

)
. Then if previous quantities are

plugged into the optimization problem,

x̂ k|k = arg min
Kk∈ℑ

min
λm

k >0
λm

k

(
log Vm(λm

k ,Kk) + dk
)

(5.159)

where

Vm(λm
k ,Kk) ,

M∑
i=1

∞∫
−∞

exp


∥∥∥∥x(i)

k|k−1 − x̄ k|k−1 + Kk
(
yk − h̄k

)∥∥∥∥2

2λm
k

 ρk
(
yk| x(i)

k|k−1

)
dyk (5.160)
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Since ρk
(
yk| x(i)

k|k−1

)
= N

(
yk; x(i)

k|k−1,Rk
)

then

Vm(λm
k ,Kk) =

M∑
i=1

W(i)
k|k−1

∞∫
−∞

exp


∥∥∥∥x(i)

k|k−1 − x̄ k|k−1 − Kk
(
yk − h̄k

)∥∥∥∥2

2λm
k

 N
(
yk; x(i)

k|k−1,Rk
)

dyk

(5.161)

It can be obtained that

x̂ k|k = arg min
Kk∈ℑ

min
λm

k >0

λm
k log

M∑
i=1

W(i)
k|k−1


(2π)−m/2 |Mk|−1/2

exp
(

1
2

∥∥∥∥x(i)
k|k−1 − x̄ k|k−1 + Kkh̄k − Kkh

(
x(i)

k|k−1

)∥∥∥∥2

S −1
k (λm

k )

) 
+ λm

k dk)

(5.162)

where S (i)
k =

[
λk − KkR−1

k (Kk)T
]−1

and M(i)
k =

[
R−1

k − (Kk)T
(
λs

k

)−1
(Kk)

]−1
. A numerical

algorithm that has been proposed for the time update part can be utilized for this part also.
Details of the numerical algorithm is considered as a future work.

5.4 Conclusion

In this chapter, we study nonlinear robust estimation problems for uncertain systems where the
uncertainty is defined as relative entropy constraint. Two different relative entropy constrained
uncertain systems are studied namely relative entropy constrained over a time horizon and
instantaneous relative entropy constrained.

For the former case, we provide the problem formulation using the available results in litera-
ture. Then by using the available results for linear systems, we propose the extended relative
entropy estimation technique by linearizing the nonlinear system around the information state
mean. A particle filter solution is also proposed which necessitates Monte-Carlo simulations
in order to evaluate the optimal Lagrange multiplier. As a future work, conditional relative
entropy constrained problem is worth to study in order to eliminate the expectations operation
over measurement sequence. Thus, a more tractable solution can be obtained.

The second problem that we study is the instantaneous relative entropy constrained robust
nonlinear estimation problem. We propose two solution methods for this problem. The first
is unscented approach where sigma-points are utilized to approximate the information state
density. We gave an algorithm for the solution of the problem. The second solution method
that we propose is the particle filtering approach. Some numerical algorithms are proposed
the time update part of the state estimation problem. For the measurement update part, we
propose to give a linear structure to the estimator in order to get finite-dimensional solution.
But the details of the algorithm is considered as a future work.
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CHAPTER 6

MAIN CONTRIBUTIONS AND CONCLUSIONS

The main contributions that have provided in this thesis are summarized as follows;

In Chapter 3

1) We derived a novel relation between the the eigenvalues of the uncertain system matrix that
is in an affine function of the system uncertainty and the eigenvalues of the polynomial chaos
(PC) transformed system in terms of the nominal system matrix, perturbation matrix and the
roots of the polynomials that corresponds to the polynomial chaos expansion. By using this
novel relationship, we showed that the PC transformed system is block diagonalized by a
similarity transformation which is used in the stability and controllability analysis.

2) By using the our derived direct relation, we obtain a necessary and sufficient stability
condition that relates the stability of the PC transformed system to the original uncertain
system as a corollary.

3) We obtain a necessary condition for more general truncated PC transformed systems in
terms of the one-norm matrix measure identity by exploiting the its banded structure. It
is interesting that our derived result is the one-norm version of the recently obtained result
(which is derived in terms of two-norm) in the literature that is derived for infinite-dimensional
PC transformed systems by utilizing the infinite dimensional Lyapunov stability.

4) We provide some necessary conditions for the controllability of the PC transformed systems
both for single uncertainty and multivariable uncertainty case. As far as our knowledge, the
obtained results are new and quite informative.

5) We provide a Kalman decomposition procedure to eliminate the uncontrollable modes of
the PC transformed systems.

In Chapter 4

1) We propose a set-valued estimation problem (by modifying the existing results in literature)
and its solution for the robust state estimation of uncertain system that is modeled by polyno-
mial chaos expansion. We also showed the probabilistic analogue of the quasi-deterministic
approach by a slight modification to the model. We showed that the solution is appeared as
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an augmented Kalman filter equations which is advantageous since there are well grown lit-
erature for Kalman filter and its solutions techniques. The performances of the our proposed
estimation technique and a technique proposed in literature including an ad-hoc measurement
model are evaluated by three framework examples that are used in literature. We showed that
for stable uncertain systems the proposed technique better than the regularized Kalman filter.
For marginally stable system (where eigenvalues are on the unit circle), the filter performed is
not satisfactorily. Since PC filter gives a combination of the oscillatory responses due to aug-
mented structure of the system matrix, a beating phenomenon occurs on the state estimation
which degrades the performance.

2) An observability analysis is performed both for the proposed estimation technique and
the available ad-hoc measurement model. Different necessary conditions are derived for two
estimation approaches.

In Chapter 5

1) We propose extended robust filter and a particle filtering method for the solution of the
robust nonlinear estimation of uncertain systems with cumulative relative entropy constraint.
By particle filtering method, a complete recursive solution could not be obtained for the cumu-
lative relative entropy constraint problem since the determination of the Lagrange multiplier
necessitates an averaging process over measurement. Monte-Carlo simulations are proposed
for determination of the Lagrange multiplier.

2) Nonlinear estimation problem for instantaneous type relative entropy constraint is studied
referring the recent results in the literature. Different form the available results, we define two
sub problems both for the time update and the measurement update. Then numerical solutions
are proposed for the problems utilizing particle filtering and unscented Kalman filtering.
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