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ABSTRACT 

 

 

HEURISTIC AND EXACT APPROACHES FOR MULTI-OBJECTIVE ROUTING 

 

 

TEZCANER ÖZTÜRK, Diclehan 

 

Ph.D., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan 

 

November 2013, 134 pages 

 

In this thesis, we consider the bi-objective routing problem. This problem is a 

combination of the bi-objective shortest path problem (finding the efficient arcs 

between nodes) and the bi-objective traveling salesperson problem (finding the 

efficient tours composed of efficient arcs). We develop solution procedures to find 

efficient tours. We consider two different terrain structures; discretized terrain and 

continuous terrain. In the discretized terrain, the terrain is approximated with grids and 

we allow the vehicle to move between adjacent grid points. In the continuous terrain, 

we consider a two dimensional plane and there are no restrictions on the movement of 

the vehicle. 

 

To find the most preferred solution, we first develop a general interactive algorithm for 

a decision maker whose preferences are consistent with an underlying quasiconvex 

function to be minimized for any bi-criteria integer program. We then apply our 

algorithm to the bi-objective routing problem. In each iteration of the algorithm, we 

find a number of efficient tours made up of the efficient arcs. For this, we initially find 
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all efficient arcs between all pairs of nodes and introduce these arcs to the interactive 

algorithm. We establish some rules that decrease the number of efficient arcs required 

for finding an efficient tour that satisfies some constraints. We demonstrate the 

approach on the routing problem of unmanned air vehicles (UAVs) which are assumed 

to travel on a discretized terrain. We also study the routing problem in continuous 

terrain, specifically for the UAV routing problem. We develop methods to find the 

approximate efficient frontier of the shortest path problem between each node pair. We 

then find the efficient tours that use a subset of the efficient arcs using a mixed integer 

nonlinear program. We also discuss the implementation of the interactive algorithm for 

the routing problem in the continuous terrain. 

 

Keywords: Bi-objective Routing, Combinatorial, Interactive, Unmanned Air Vehicles 
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ÖZ 

 

 

ÇOK AMAÇLI ROTALAMA İÇİN SEZGİSEL VE KESİN YAKLAŞIMLAR 

 

 

TEZCANER ÖZTÜRK, Diclehan 

 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Kasım 2013, 134 Sayfa 

 

Bu tezde, iki amaçlı rotalama problemini ele alıyoruz. Bu problem iki amaçlı en kısa 

yolu bulma problemi (hedefler arası etkin yolların bulunması) ve iki amaçlı gezgin 

satıcı probleminin (etkin yollardan oluşan etkin turların bulunması) birleşimidir. Etkin 

turların bulunması için çözüm yolları geliştirdik. Rotalama problemini iki farklı hareket 

alanında inceledik; karesel parçalara bölünmüş ayrık hareket alanı ve sürekli hareket 

alanı. Ayrık hareket alanında, hareket bölgesini eş büyüklükteki karelerle tanımladık. 

Aracın komşu noktalar arasında hareketine izin verdik. Sürekli hareket alanı 

durumunda, aracın iki boyutlu uzayda her türlü hareketi yapabileceği kabul edildi. 

 

En çok tercih edilen çözümü bulmak için öncelikle minimize edilecek tercih 

fonksiyonu konveks benzeri olan bir karar verici için iki amaçlı tamsayı 

programlamada kullanılabilecek genel bir interaktif algoritma geliştirdik. Sonrasında 

bu algoritmayı iki amaçlı rotalama probleminde uyguladık. Algoritma her 

iterasyonunda, birkaç  etkin tur bulmaktadır. Bu etkin turları bulmak için, öncelikle  

hedef çiftleri arasındaki tüm etkin yolları bulduk ve bu yolları algoritmaya girdi olarak 
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verdik. Kullanılabilecek etkin yolların sayısını azaltmak için, amaç fonksiyonları 

üzerinde kısıtlar olduğu durumda bazı kurallar geliştirdik. Yaklaşımımızı, ayrık hareket 

alanındaki insansız hava aracı (İHA) rotalama probleminde denedik. Ayrıca, sürekli 

hareket alanında rotalama problemini İHA rotalama problem özelinde inceledik. Her 

hedef çifti arasındaki etkin yolları bulmak için yöntemler geliştirdik. Sonrasında, etkin 

yollardan oluşan etkin turları karışık tamsayılı doğrusal olmayan programlama ile 

bulduk. Buna ek olarak, interaktif algoritmanın sürekli hareket alanındaki rotalama 

problemine nasıl uygulanabileceğini ele aldık.         

 

Anahtar Kelimeler: İki amaçlı rotalama, Kombinatoryal, İnteraktif, İnsansız Hava Aracı 
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CHAPTER 1 
 

 

1 INTRODUCTION 
 

 

 

We study the multi-objective route planning problem in which we search for efficient 

tours that start from an initial point, visit all the nodes and return to the initial point 

again. This problem has two parts: the first part constitutes the efficient arcs between 

node pairs. This is a multi-objective shortest path problem (MOSPP). The second part 

corresponds to the identification of efficient tours that use a subset of the efficient arcs. 

The overall problem can be considered as a multi-objective traveling salesperson 

problem (MOTSP). 

 

We develop solution procedures to find efficient tours made up of the efficient arcs. 

We consider finding efficient solutions both in the original objective space (that is not 

constrained with bounds on objectives) and in reduced objective space (that is 

constrained with bounds on objectives). We analyze two types of the routing problem; 

routing in a discretized terrain and routing in a continuous terrain. In the discretized 

terrain, the terrain is approximated with grids and we allow for movement between 

adjacent grid points. In the continuous terrain, we consider a two dimensional plane 

and the vehicle can make any move on this plane.  

 

To find the most preferred solution, we first develop a general interactive algorithm for 

bi-objective integer programming where the decision maker (DM) has an underlying 

quasiconvex value function to be minimized. In the literature, quasiconvex value 

functions are widely used since they represent a large set of preference functions. We 

apply the interactive algorithm to the bi-objective route planning problem. For the 
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routing problem in discretized terrain, we find all the efficient arcs utilizing Martin’s 

algorithm (see Gandibleux et al., 2006), an algorithm developed for solving MOSPP. 

We introduce these efficient arcs to the MOTSP to find efficient tours. We develop 

rules that combine the solution process for the bi-objective shortest path problem (SPP) 

with that of the bi-objective traveling salesperson problem (TSP). We demonstrate the 

interactive algorithm and our rules on the bi-objective routing problem for unmanned 

air vehicles (UAVs). We first find the efficient arcs between nodes in the two 

dimensional terrain. We then search for the efficient tours composed of a subset of 

efficient arcs. Each time we search for a new tour, we reduce the efficient arcs with the 

rules we develop. 

 

We analyze the routing problem in continuous terrain for the objectives specifically 

developed for the UAV routing problem. In this problem, we find the efficient routes 

for the UAVs in the two dimensional plane under two objectives: minimization of total 

distance traveled and minimization of total radar detection threat. We study the case 

where there is a single radar between node pairs. We develop a movement model for 

the UAV inside the radar region and derive properties for efficient arcs. Using the 

properties of the objectives, we establish both exact and heuristic methods to structure 

the efficient frontiers of the arcs between node pairs. Using the approximated efficient 

arcs, we reach efficient tours using a bi-objective nonlinear programming model. We 

also integrate the continuous terrain routing problem in the interactive algorithm we 

develop. 

 

We review the literature and define the problem in Chapter 2. We explain the 

interactive algorithm in Chapter 3 and the application of the bi-objective routing 

problem in Chapter 4. We present the routing problem in continuous terrain and our 

solution approaches in Chapter 5. We present our conclusions and future work in 

Chapter 6. 
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CHAPTER 2 

 

 

2 LITERATURE SURVEY 

 

 

 

The multi-objective routing problem can be considered as a MOTSP with multiple 

efficient arcs between nodes. There are a number of studies on MOTSP in the 

literature. However, most of these studies assume that the nodes in MOTSP are 

connected with a single efficient arc. This is not a realistic assumption, since there 

would typically be a number of efficient arcs each better than the others in at least one 

objective, under the presence of multiple objectives. For instance, consider a problem 

in which we search for the routes between an initial point and a termination point. We 

travel by railways and we want to minimize the total duration of travel, the total cost of 

travel and total number of train interchanges. One route may have the least duration 

with the least number of interchanges, while having a high cost. The least cost route 

may have a moderate number of train interchanges and the highest duration. Finding a 

single arc between the initial and the termination points that has the best value in all of 

these criteria is not possible for most of the cases. Therefore, we refer to the case where 

each node is connected by a number of efficient arcs as the generalized MOTSP. The 

MOTSP with a single efficient connection between nodes is a special case of the 

generalized MOTSP. In this study, we consider the route planning problems as a 

generalized MOTSP. The generalized MOTSP is also studied in Tezcaner and 

Köksalan (2011).  

 

MOTSP with a single efficient connection between nodes is NP-hard (Ehrgott, 2000). 

Mostly, heuristics have been developed for the solution of this problem. Lust and 

Teghem (2010) classify these solution approaches and develop a new method, two-
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phase pareto local search, for MOTSP. Paquete and Stützle (2009) develop a two-phase 

local search method and Jaszkiewicz and Zielniewicz (2009) consider a Pareto memetic 

algorithm using path relinking and Pareto local search. Jozefowiez et al. (2008), 

Karademir (2008) and Berube et al. (2009) consider a special traveling salesperson 

problem (TSP), TSP with profits.  Jozefowiez et al. construct the efficient frontier by 

an evolutionary algorithm (EA), Karademir proposes a genetic algorithm and Berube 

generates the efficient frontier using the ε-constraint method (see Chankong and 

Haimes, 1983). Hansen (2000) uses a scalarizing function to solve MOTSP. Special, 

polynomially solvable cases of MOTSP are studied in Özpeynirci and Köksalan (2009, 

2010).    

 

We demonstrate our approaches on the routing problem for UAVs. UAVs are unpiloted 

air vehicles. They were first designed for military purposes. Currently they are also 

used for civilian purposes like surveillance against crimes, crop spraying, fire 

prevention etc.  

 

Most of the literature on UAV routing resort to heuristics. Zheng et al. (2003) consider 

the routing problem of a UAV with an initial point and a destination. They develop an 

evolutionary algorithm (EA) for this problem under a single nonlinear objective 

function that is a weighted combination of three objectives (total distance traveled, total 

altitude of the route, closeness to threat sites). Foo et al. (2009) consider the same 

problem with three objectives (arc length, deviation from reconnaissance and violation 

of threat zones) linearly combined. They generate a number of alternative arcs by 

changing the weights assigned to each objective in the weighted composite objective 

function using particle swarm optimization and b-splines. Pohl and Lamont (2008) and 

Zheng et al. (2005) consider routing multiple UAVs. Pohl and Lamont use three EAs in 

which they treat three objectives (total distance traveled, total waiting times of UAVs 

and the number of UAVs used) separately. Zheng et al. solve the problem with an EA 

that considers constraints on turn angle, tour length etc.  
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Gudaitis (1994) and Olsan (1993) consider the routing problem with a single 

destination. They both consider the same two objectives, minimization of distance 

traveled and minimization of radar detection threat. Combining these objectives 

linearly under a single objective, Gudaitis uses the A* algorithm and Olsan (1993) uses 

a genetic algorithm for the solution. Yavuz (2002) considers the problem of routing 

with multiple nodes. He uses the same two objectives and employs Particle Swarm 

Optimization and Ant System for the solution. Jia and Vagners (2004) consider the 

routing problem of a single UAV visiting multiple sites and finally reaching a goal 

position. They run an EA in parallel a number of times to escape local optima.  

 

In this study, we solve the bi-objective routing problem using exact methods. Unlike 

the methods in the literature, we consider the two contained problems, generalized 

MOTSP and MOSPP together. We develop the necessary theory and solution methods 

that address the issues in these interrelated problems. We also establish problem 

specific solution approaches for the terrain types, discretized and continuous.  
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CHAPTER 3 

 

 

3 AN INTERACTIVE ALGORITHM FOR QUASICONVEX 

PREFERENCE FUNCTIONS 

 

 

 

We develop an interactive algorithm that finds the most preferred solution of a decision 

maker (DM) who is assumed to have an underlying quasiconcave (quasiconvex) value 

function to be maximized (minimized). In the literature, quasiconcave utility functions 

(with objectives to be maximized) are widely used since they cover a larger set of 

preference functions including linear preference functions. These functions are 

considered to represent the human behavior well. As one criterion gets better, to further 

improve that criterion, the amount of sacrifice from other criteria decreases. In other 

words, the marginal rate of substitution decreases for these preference functions.  In the 

literature, there are a number of studies on multi-objective interactive algorithms. 

Lokman et al. (2011) develop an interactive algorithm that finds the most preferred 

solution of a DM whose underlying preference function is quasiconcave. This 

algorithm is applicable for multi-objective integer programs. Tezcaner and Köksalan 

(2011) developed an algorithm, BestSol, for bicriteria discrete optimization problems to 

find the most preferred solution of a DM whose preferences are consistent with a linear 

utility function.  The algorithm we develop in this thesis addresses bi-objective integer 

programming problems with general quasiconcave preference functions.   

 

Before we present the problem in detail, we give the necessary definitions.  These 

definitions are directly taken from Tezcaner and Köksalan (2011), and we repeat them 

here for the sake of completeness. 
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Let   denote the decision variable vector,   denote the feasible space,   denote the 

corresponding feasible objective function space, and  ( )  (  ( )   ( )     ( )) 

be the objective function vector. We assume, without loss of generality, that all 

objectives are to be minimized.    

 

Definition 3.1 A solution     is said to be efficient iff there does not exist       

such that   (  )    ( )          and   (  )    ( )  for at least one  . If there 

exists such an    ,    is said to be inefficient. The set of all efficient solutions constitute 

the efficient set. 

 

Definition 3.2 If     is efficient, then   ( )  is said to be nondominated, and if     is 

inefficient,  ( ) is said to be dominated. 

 

Definition 3.3 An efficient solution    is a supported efficient solution iff there exists a 

positive linear combination of objectives that is minimized by   . Otherwise,    is an 

unsupported efficient solution. 

 

Definition 3.4 An extreme efficient solution is a supported efficient solution that has 

the minimum possible value in at least one of the objectives. 

 

Definition 3.5 Two solutions are adjacent efficient solutions iff none of their convex 

combinations are dominated by any convex combinations of other solutions in the 

objective function space. That is,     is adjacent efficient to     iff there does not exist 

         ∑    (  )      (  )  (   ) (  ) where ∑                 and 

     , and  ( ) is the objective function vector. In a bicriteria problem, there are 

at most two distinct adjacent efficient solutions of a solution (Ramesh et al., 1990). 

 

Definition 3.6   is a quasiconvex function if  (∑     )       (  ) 
 
   for ∑     

   

        



  

9 

 

3.1 An Interactive Algorithm 

In multi-objective problems, there are typically many efficient solutions. The DM may 

not be interested in many of those solutions. Converging the preferred solutions quickly 

is important. Interactive approaches aim to do this by progressively obtaining 

preference information from a DM. With our interactive approach, we generate a small 

subset of the efficient frontier. We select and provide the DM a pair of solutions and 

ask for the preferred one. This procedure is repeated and the preferences of the DM 

lead our search to the most preferred solution of the DM. 

 

We assume that the DM’s preferences are consistent with a quasiconvex preference 

function to be minimized. In the literature, quasiconcave utility functions (with 

objectives to be maximized) are widely used. If all objectives are minimization type, 

the same theory directly applies. We use the following lemma (adapted from Lemma 1 

of Korhonen et al., 1984) for the quasiconvex case to reduce the objective space 

eliminating the implied inferior regions based on the expressed preferences of the DM: 

 

Lemma 1. Consider a quasiconvex function   defined in a p-dimensional Euclidean 

space     Consider distinct points      ,           and let  (  )   (  )    . 

If     and     , where            ∑   (
 
            )       it follows 

that   ( )   (  )  

 

Proof. The proof directly follows from Korhonen et al.’s (1984) proof. 

 

We use the following lemma to find the regions in the objective space that do not 

contain any efficient solutions using the information that two solutions are adjacent 

efficient solutions. 

  

Lemma 2. Let    and    be two adjacent efficient solutions,    . Then, there does 

not exist any                such that    dominates some affine combination of    

and      
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Proof. It is given in Definition 3.5 that    is adjacent efficient to    iff there does not 

exist         ∑    (  )      (  )  (   ) (  ) where ∑               

  and        and  ( ) is the objective function vector. 

Similarly,    is adjacent efficient to    iff there does not 

exist         ∑    (  )      (  )  (   ) (  ) where ∑               

  and        

Suppose there exists a solution    dominating some affine combination of    and     

 (  )     (  )     (  ) for some          and            (3.1) 

This reduces to:  (  )   (  )    ( (  )   (  )) for some         (3.2) 

Similarly,  (  )   (  )    ( (  )   (  )) for some          (3.3) 

Rearranging the terms in ∑    (  )      (  )  (   ) (  )  we obtain the 

following inequality: 

∑    (  )     (  )   ( (  )   (  ))            ∑                 

           (3.4) 

Similarly, rearranging the terms in ∑    (  )      (  )  (   ) (  )  we obtain 

the following inequality: 

∑    (  )     (  )   ( (  )   (  ))            ∑                

           (3.5) 

If we set         for      and      for       in (3.4), we obtain the 

following inequality: 

   (  )  (    ) (  )   (  )   ( (  )   (  ))             

 (  )   (  )  
 

  
( (  )   (  ))                    (3.6) 

Similarly, if we set         for      and      for       in (3.5), we obtain 

the following inequality: 

   (  )  (    ) (  )   (  )   ( (  )   (  ))             

 (  )   (  )  
 

  
( (  )   (  ))                    (3.7) 

In (3.6) and (3.7), 
 

  
 can only be positive for          and get any value in   . 

Either    or    should be positive to satisfy         in (3.1). Therefore, if      

in (3.2), we satisfy (3.6) for some                 that contradicts with    
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being adjacent efficient to   . If      in (3.3), we satisfy (3.7) for some        

         that contradicts with    being adjacent efficient to       # 

 

In the following lemma, we find the representation of the reduced objective space when 

we know that a solution is preferred to its two adjacent efficient solutions. 

 

Lemma 3. Let  (  )  (  (  )   (  )) be the objective function vector of solution     

Let    and    be the left and right adjacent efficient solutions of the supported efficient 

solution     Let    be preferred to both    and     Let 

 (     )  (   (  (  )   (  ))     (  (  )   (  )))    The most preferred 

solution of the DM,    should be inside the convex region 

   

        (  )     (  )      ( (     ))                          

        (  )     (  )      ( (     ))                           

 

Proof. If solution    and solutions    and    are adjacent efficient solutions, there 

should not be any solution dominating any affine combinations of the adjacent efficient 

solutions due to Lemma 2. This eliminates the region            (  )  

   (  )                                

        (  )     (  )                                 We eliminate the 

cone dominated regions              (     )       and    

          (     )       since the most preferred solution of the DM cannot 

be in these regions due to Lemma 1.The DM would not prefer any solution in the 

region composed of solutions    that are dominated by    or    or              

  (  ) ,         and      (  )  for at least one   for           This leaves only 

regions   

   

        (  )     (  )      ( (     ))                          

        (  )     (  )      ( (     ))                          for 

the most preferred solution of the DM.      # 
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We demonstrate Lemma 3 in Figure 3.1. We eliminate the regions in which the most 

preferred solution of the DM cannot lie. Given that solution    is preferred to its two 

adjacent efficient solutions,    and     there cannot be any solutions in Region 1 due to 

Lemma 2. The best solution of the DM cannot lie in Regions 2 and 3 due to Lemma 1. 

Region 4 is composed of dominated solutions by       or     Therefore, the only 

regions where the best solution of the DM can lie are the triangular regions between the 

current best solution,     and its two adjacent efficient solutions,    and        

 

 

 

 

 

 

 

 

Figure 3.1 Admissable Regions for the Most Preferred Solution 

 

 

 

Before finding the supported efficient solution that is preferred to all its adjacent 

efficient solutions, we do not impose any additional constraints on the objective space. 

We refer to this objective space as the original objective space.  

 

The three additional constraints; an upper bound on the first objective (  ( )     ), 

an upper bound on the second objective (  ( )     ), and a lower bound on the 

weighted combination of the two objectives (   ( )  (   )  ( )    ) define a 

triangle in which the most preferred solution of the DM can lie. The lower bound on 

the weighted combination of the two objectives is a redundant constraint, since there 

are no solutions that do not satisfy this constraint given the upper bounds on the 

objectives. Therefore, we will not consider this lower bound on the weighted 

combination of the two objectives in our study.  

Region 3 

Objective 2 

Objective 1 

Region 2 

Region 4 

xb 

xa 

xc Region 1 
Region 3 
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The upper bounds on the objectives also eliminate the adjacent solutions the DM found 

inferior. In Figure 3.1, the upper bound on the second objective value of the left 

triangle eliminates solution A and the upper bound on the first objective value in the 

right triangle eliminates solution C. Let   ( )  denote the     objective value of 

solution    Then, the bounds on the left triangle are   ( )    ( )  and   ( )  

  ( )     for a small positive constant,    Similarly, the bounds on the right triangle 

are   ( )    ( )    and   ( )    ( )  We refer to this objective space as the 

reduced objective space.  

 

We next summarize the steps of the interactive algorithm to find the most preferred 

solution of a DM with a quasiconvex preference function for a bi-objective integer 

program. In this algorithm, we generalize the concepts used in Tezcaner and Köksalan 

(2011)’s approach for the quasiconvex case. We use the ideas in Lemmas 1, 2 and 3 to 

narrow down the objective space and introduce the bounds explained above for the 

reduced objective space. 

 

3.2 The Steps of the Interactive Algorithm 

Let    be a small positive constant,        , and      .  

Step 1. Find the extreme efficient solutions of the problem by minimizing  ( )  

   ( )  (   )  ( ) equating   to     and    . Let the solutions be     and    , 

respectively. If        , the problem has only one solution in the preferred region. 

          . Go to Step 10. Otherwise, go to Step 2. 

Step 2. Let    
  (   )   (   )

(  (   )   (   )) (  (   )   (   ))
 

Find the solution that minimizes the function,  ( )     ( )  (   )  ( ) formed 

with weight   . Let the solution be   . If        or         set        and 

       and go to Step 3. Otherwise, go to Step 4. 
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Step 3. Ask the DM    versus   .  

 If    is preferred to   , update the bounds on objectives as follows:   ( )  

  (  )    ( )    (  )     Set         Go to Step 8. 

 If    is preferred to   , update the bounds on objectives as follows:   ( )  

  (  )   ,   ( )    (  )  Set        Go to Step 6.  

Step 4. Creating the left triangle Find the left adjacent solution (  ) of   . Ask the DM 

   versus   . 

 If    is preferred to     set the bounds for the left triangle as follows:   ( )  

  (  )       ( )    (  )   If the right triangle is not formed, go to Step 5. 

Otherwise, go to Step 6. 

 Otherwise, set the bounds for the right triangle as follows:   ( )    (  )  

  ( )    (  )     Set        If         go to Step 8. If         go to 

Step 4. 

Step 5. Creating the right triangle Find the right adjacent solution (  ) of   . Ask the 

DM    versus   . 

 If    is preferred to   , set the bounds for the right triangle as   ( )    (  )  

 ,   ( )    (  )  Go to Step 6.  

 Otherwise, set the bounds for the left triangle as follows:   ( )    (  )     

  ( )    (  )  Set         If         go to Step 6. If         go to Step 

5. 

Step 6. Search for the left adjacent solution of    in the left triangle.  

 If no new solution is found and if right triangle is formed, go to Step 8. If no 

new solution is found and if right triangle is not formed, go to Step 10. 

 If a new solution is found, let the solution be     Go to Step 7. 

Step 7. Ask the DM    versus   .  

 If    is preferred to   , update the bound on the second objective of left triangle 

as   ( )    (  )     Go to Step 6. 
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 If    is preferred to     update the bound on the left triangle as   ( )    (  ). 

Update the bounds on the right triangle as   ( )    (  ),   ( )    (  )     

Set      . Go to Step 6. 

Step 8. Search for the right adjacent solution of    in the right triangle. If no new 

solution is found, go to Step 10. Otherwise, let the solution be     Go to Step 9. 

Step 9. Ask the DM    versus   .  

 If    is preferred to   , update the bound on the first objective of right triangle 

as   ( )    (  )     Go to Step 8. 

 If    is preferred to     update the bound on the left triangle as   ( )  

  (  )   ,   ( )    (  ). Update the bound on the second objective of right 

triangle as   ( )    (  )  Set      . Go to Step 6. 

Step 10. The best solution is     

 

Suppose we have a problem with the set of efficient solutions given in Figure 3.2. The 

best solution of the DM that minimizes the underlying preference function shown in 

Figure 3.2 (a) is solution C. In Steps 4 and 5, we reduce the objective space around 

solution C as shown in Figure 3.2 (b). In Step 6, we search in the left triangle where we 

cannot find a new solution. Then we pass to Step 8, where we search the right triangle. 

We find solution D and we ask the DM to compare these two solutions. Since C is 

preferred, we reduce the objective space further as in Figure 3.2 (c). Since we cannot 

find a new solution in these reduced objective spaces, we conclude that C is the best 

solution.  

 

Linear preference functions are quasiconvex functions, too. Therefore, this algorithm 

can also be used for linear preference functions. If we know that the DM has a linear 

preference function, we can terminate the algorithm at the end of Step 5. The solution 

that is preferred to both its left and right adjacent efficient solutions in the original 

objective space would be the most preferred solution. 
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Figure 3.2 Demonstration of the Interactive Algorithm 

 

 

3.3 Finding Adjacent Efficient Solutions 

During the interactive algorithm, we find adjacent efficient solutions both in the 

original objective space (in Steps 4 and 5) and the reduced objective space (in Steps 6 

and 8).  

 

We search for adjacent efficient solutions in the original objective space using the 

method presented in Tezcaner and Köksalan (2011). In this method, firstly, the left 

extreme efficient solution,     is found by minimizing  ( )  (   )  ( )     ( ) 

(a) Efficient frontier  

DM’s underlying 
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(b) Reducing the objective space around solution C 
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(c) Searching within the reduced objective space 
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where   is a small positive constant used to guarantee that the resulting solution is 

efficient. We follow the steps A.1 and A.2., if       Otherwise, there are no left 

adjacent efficient solutions of   in the search region.  

We next present the steps of the algorithm. 

 

Step A.1. Let    
  (  )   ( )

(  (  )   ( )) (  ( )   (  ))
 

Find the solution minimizing   ( )      ( )  (    )  ( ) and denote it as   . If 

      or     , go to Step A.2. Otherwise, let       and go to Step A.1. 

Step A.2. The left adjacent solution of   is   .  

The right adjacent in the original objective space can be found similarly.  

 

The only difference of finding adjacent efficient solutions in the reduced objective 

space is the addition of the constraints   ( )        ( )      in the latter case. 

We develop two methods to find the adjacent efficient solutions in the reduced space.  

 

3.3.1 Procedure 1 – Moving from the Outermost Solution to the Adjacent 

In the first procedure, we also find the adjacent efficient solutions in the reduced 

objective space using the method presented in Tezcaner and Köksalan (2011).  

Suppose we have a reduced objective space in which   is preferred to its current left 

adjacent solution      and suppose we remove     from the search space with the 

constraints   ( )             We first find the left extreme efficient solution 

minimizing  ( )      ( )  (    )  ( ) for         where   is a very small 

positive constant inside the region   ( )             Let the solution be     We 

follow steps A.1 and A.2 given above, if       Otherwise, there are no left adjacent 

efficient solutions of   in the search region.  
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While searching for the left adjacent solution, we first find the leftmost solution in the 

reduced objective space. Each time we enter Step A.1, we update    such that we 

finally obtain the    such that the corresponding  ( )  passes through solution   and 

its left adjacent   . The algorithm is demonstrated on an example problem shown in 

Figure 3.3. Here, we search for the left adjacent efficient solution of   in the reduced 

objective space.   

 

The dashed lines in Figure 3.3(a) show the region where we search for the left adjacent 

of  . We first find the leftmost solution,     in the search region as shown in Figure 3.3 

(b). Then, we minimize the function that passes through    and   as shown in Figure 

3.3(c). Since we do not find a new solution, we conclude that    is the left adjacent of 

 . 

 

The right adjacent can be found similarly.  

 

3.3.2  Procedure 2 – Moving from a Central Solution to the Adjacent 

In the second procedure, we reduce the objective space with some constraints and 

gradually update    to come up with the adjacent solution. The steps to find the left 

adjacent efficient solution of an efficient solution   are given below. 

 

Let   be the solution that is preferred to its left adjacent solution,      Let    

  (   )   ( )

(  (   )   ( )) (  ( )   (   ))
, the weight of the function that passes through   and    . 

Suppose we search its left adjacent in the reduced objective space:   ( )        

     In this method, both   and     are excluded from the search region. 

We next present the steps of the algorithm. 
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Figure 3.3 Finding Adjacent Efficient Solutions – Procedure 1 

 

 

 

Step B.1. Find the solution that minimizes the function   ( )      ( )  (  

  )  ( ) within the search region. If no solution is found, go to Step B.3. If a new 

solution is found, let that solution (  ) be the current left adjacent of    Find the point 

that the function     (  )  (    )  (  )  intersects with   (  )   . Let the 

objective values of that point be   (  ) and   (  ).  

(b) The current left adjacent (a) Searching the outermost solution 
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Step B.2. For    
  (  )   ( )

(  (  )   ( )) (  ( )   (  ))
  add the constraints     ( )  

(    )  ( )      (  )  (    )  (  )  and     ( )  (    )  ( )  

    (  )  (    )  (  ) in addition to the constraints defining the triangle. Let 

   
  (  )   ( )

(  (  )   ( )) (  ( )   (  ))
. Go to Step B.1. 

Step B.3. If     is not updated during the algorithm, the triangle within which we are 

searching is empty; there are no solutions that can be the left adjacent of   . Therefore, 

the search in the left triangle is finished. If    is updated at least once during the 

algorithm,    is the left adjacent of   . 

 

We demonstrate the algorithm on the same problem of Procedure 1 in Figure 3.4. We 

start with minimizing the function passing through   and     (as shown in Figure 

3.4(a)) and find solution    as shown in Figure 3.4(b). We update the bounds on the 

triangle and the    as shown in Figure 3.4(c). The shaded region shows where left 

adjacent of    can be. We again search for the solution minimizing the function with 

  . We find a new solution,    as shown in Figure 3.4(d). After updating the bounds 

on the triangle and    as shown in Figure 3.4(e), we cannot find a new solution. We 

conclude that    is the left adjacent solution of    in the reduced objective space. 

The right adjacent of a solution is found similarly.  

 

We made a number of tests on these procedures and concluded that they reach the 

adjacent efficient solutions by finding almost the same number of efficient solutions. 

The first procedure requires less computation, therefore we select procedure 1 in 

finding adjacent efficient solutions in the reduced objective space.  

  



  

21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Finding Adjacent Efficient Solutions – Procedure 2 
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CHAPTER 4 
 

 

4 APPLICATION OF THE INTERACTIVE ALGORITHM TO 

THE BI-OBJECTIVE ROUTING PROBLEM 
 

 

 

In the routing problem, we find the tour that passes through all nodes and returns to the 

starting point. In the single objective routing problem, we first find the optimal arc 

between each node pair. This problem is the shortest path problem. Then we form the 

optimal tour that uses a subset of the optimal arcs between node pairs. This is a 

traveling salesperson problem. Overall, routing problem is a combination of these two 

combinatorial optimization problems. Under multiple objectives, the problem becomes 

harder. There may be multiple efficient arcs between nodes and different subsets of 

those efficient arcs form the efficient tours. Finding the tours composed of the efficient 

arcs can be considered as the generalized MOTSP.  

 

If the DM has a linear preference function, we know that the most preferred tour is 

composed of the most preferred arcs between node pairs (Tezcaner and Köksalan, 

2011). Therefore, we first find the most preferred arcs between node pairs and reduce 

the problem to a MOTSP where each node pair is connected with a single arc. Then we 

solve the MOTSP and find the most preferred tour. However, we cannot treat the two 

problems separately for the quasiconvex preference function case. The best arcs 

between node pairs with respect to a quasiconvex preference function are not 

necessarily used in the best tour of that quasiconvex function. Therefore, finding the 

best arcs is not sufficient in search for the best tour of the DM. We show this property 

in the following example.  
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Example 4.1 Suppose the DM has the quasiconvex function  ( )    
    

  to be 

minimized while visiting the four nodes: A, B, C and D as shown in Figure 4.1. 

Between all node pairs except (A,C), there are two efficient arcs. The objective 

function values of these arcs, (     ) are written in parentheses next to the arcs.  

 

Between nodes A and B, the arc with objective values (2,8) has a lower quasiconvex 

function value ( ( (   ))    ) when compared to the arc with objective values (5,7) 

( ( (   ))    ). Therefore, arc (2,8) is the most preferred arc between nodes A and B. 

When similar comparisons are made, arc (3,5), arc (5,7), arc (3,5) and arc (7,1) become 

the most preferred arcs between nodes A and D, B and C, B and D, and C and D, 

respectively. The most preferred solution of the tour A-C-B-D-A is composed of the 

arcs with objective values (4,3) for A-C, (5,7) for C-B, (3,5) for B-D and (6,2) for D-A. 

One can see that, the most preferred arc between A and D is not used in the most 

preferred solution of tour A-C-B-D-A. 

 

 

 

Figure 4.1 An Example MOTSP 

 

 

As shown in the example, finding the most preferred arc between each node pair is not 

sufficient in finding the most preferred tour of the DM. Therefore, the problem cannot 

(7,1) 

(3,5) 

(2,7) (2,8) 
(3,9) 

A 

C 

D 

B 

(5,7) (3,5) 
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be decomposed into two subproblems that complement each other as in the linear 

function case.  

 

Next, we give the formulation for the generalized MOTSP. We assume that we have all 

the efficient arcs between node pairs and we input this information into the 

formulation.    

 

Let   denote the node set,   denote the arc set,    
  be the binary decision variable to 

indicate whether the      efficient arc of edge (   )  is used or not. Let     be the 

number of efficient arcs between nodes   and    Assuming that the TSP is symmetric, 

the overall formulation for the problem is as follows: 

 

       ∑   ( )             (4.1) 

       ∑   ( )            (4.2) 

𝐱  X   

where X is made up of the following constraints: 

∑ ∑    
    

                                                  (4.3) 

∑ ∑    
    

                                                  (4.4) 

      ∑ (     )   
    

    ∑ (     )   
    

                              

           (4.5) 

                                   (4.6) 

   
                                                

           (4.7) 

 

We minimize first and second objectives in (4.1) and (4.2), respectively. Equations 

(4.3) and (4.4) ensure departure from and arrival to each node, respectively. There are 

different possible formulations for subtour elimination constraints. Laporte (1992) 

reviews the algorithms developed for TSP. He covers some subtour elimination 
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constraints including the formulation introduced by Miller, Tucker and Zemlin (1960), 

which was strengthened later by Desrochers and Laporte (1991). Constraints (4.5) and 

(4.6) are the strengthened version of Miller et al.’s formulation. This formulation 

requires a smaller number of additional constraints compared to other subtour 

elimination constraints. However it requires including       positive decision 

variables in the formulation.   

 

4.1 Finding Efficient Arcs 

MOSPP is NP-complete and intractable (Ehrgott, 2000). In the literature, many solution 

approaches are developed for MOSPP. Label correcting algorithms (see Skriver and 

Andersen, 2000), label setting algorithms (see Gandibleux et al., 2006), ranking path 

based algorithms (see Raith and Ehrgott, 2009) are examples of methods developed for 

the solution of this problem.  

 

We use a label setting algorithm, Martin’s algorithm to find all efficient arcs between 

node pairs. This algorithm is explained in Appendix A. Briefly, we produce labels for 

each point in the network that contain information about the objective values from the 

starting point to that point. In each iteration a label is set permanent; which shows that 

an efficient arc from the initial point to that point is found. During the algorithm, we 

check for dominance between each newly produced label and the existing ones. If the 

arcs corresponding to the previous labels of a point have smaller objective values than 

the point’s newly created arc, this new arc is dominated. Another possibility is that the 

arc corresponding to a new label dominates arcs of a number of previously created 

labels. If neither of these cases occur, the label is put in the label list of that point. The 

algorithm continues until all labels are set permanent. 

 

In the routing problem, we divide the terrain into equal-sized grids in the two 

dimensional space. The problem becomes computationally harder as the number of 

grids increase. Also, the dominance check and the need to evaluate all labels further 
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complicate the solution process. We include one more step in the dominance check for 

all the arcs generated. As soon as an arc to the destination node is found, we compare 

its objective values with those of all the other arcs to all nodes. If any arc to any node 

has higher objective values than the arc(s) to the destination node, we remove those 

dominated arcs.   

 

4.2 Finding Efficient Solutions in the Original and Reduced Objective Spaces 

We consider finding efficient solutions in the original and reduced objective spaces 

separately. 

 

Finding Efficient Solutions in the Original Objective Space 

We first find all the efficient arcs between all node pairs before running the algorithm 

using Martin’s algorithm. In Steps (1) through (5), we find tours for the combined 

objective  ( )     ( )  (   )  ( )  without any additional constraints in the 

objective space. The only difference of this formulation from the single objective TSP 

is the existence of multiple efficient arcs between node pairs. Since we combine the 

two objectives linearly, we can reduce the efficient arcs between each node pair (   ) to 

one. Let   (     )  denote the     objective value of edge node pair (   )  (   )  

         We assign the combined objective value (   )  of node pair (   )  to the 

minimum combined objective value over its arcs as follows:   

    {
                                                                                 

            
    (     )  (   )  (     )        

 

We then solve the TSP using the following objective function value, where     is a 

binary variable to indicate whether the node pair (   ) is used or not. 

      ∑       (   ) E          (4.8) 
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We solve the resulting TSP using the software Concorde (see 

http://www.math.uwaterloo.ca/tsp/concorde.html), for which we only need to input the 

combined objective value for each node pair (   ). 

 

Finding Efficient Solutions in the Reduced Objective Space 

In Steps (6) – (9) of the interactive algorithm, we have the following two constraints in 

addition to (4.1)-(4.8). The introduction of these constraints destroys the input structure 

required by Concorde, and we cannot use it in this case. 

∑ ∑   (     )   
    

   (   )                      (4.9) 

∑ ∑   (     )   
    

   (   )                                                                                (4.10) 

 

Considering formulation (4.1)-(4.8), (4.9) and (4.10), as the number of efficient arcs 

increase, the problem becomes harder to solve. In the next section we explain how we 

reduce the number of arcs considering constraints (4.9) and (4.10).  

 

4.3 Arc Reduction 

As mentioned above, we find all the efficient arcs between all node pairs before 

applying our interactive algorithm. During the algorithm, we evaluate all these arcs and 

determine which ones to use. However, in Steps (6)-(9), we consider a small region in 

the objective space that is specified with constraints (4.9) and (4.10). Figure 4.2 

illustrates the two constraints on the objective space.  

The next theorem shows how we can use the bounds on the objectives for the bi-

objective TSP to find bounds on the objectives for the bi-objective SPP. This will be 

useful to find the efficient arcs that would not be used in any feasible tour.    

 

 

 

http://www.math.uwaterloo.ca/tsp/concorde.html
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Figure 4.2 Bounds on the Objectives in the Reduced Objective Space 

 

 

 

Theorem 1. Let     be an upper bound  on the     objective value  Let each node pair, 

except (   )  be assigned to its smallest     objective value as its arc cost.  

    {
                                                                   (   )  (   ) 

            
{  (     )}                     

   

Let    
 

 be a solution that can be used as a lower bound for the objective value of a tour 

that minimizes the sum of arc costs,      and includes a connection between (   ). Let 

the objective function value corresponding to solution    
 

 be 

    
 ( ∑             

{  (     )}(   ) {   
 

 (   )} ). Then, the efficient arcs connecting 

nodes (   ) having     objective value larger than        
 

 cannot be used in any 

feasible tour and     
         

 
 is an upper bound on the     objective value of 

arc (   )    

 

Proof. The constraint on the upper bound on the     objective value can be written as 

follows: 

∑ ∑   (     )   
    

   (   )    (   )  ∑   (     )   
    

                            (4.11) 

x2 

 

 

 

𝑧  𝑈𝐵  

𝑧  𝑈𝐵  
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Constraints (4.3)-(4.7) ensure that     binary variables are equal to 1 to form a tour and 

there should be an outgoing and an incoming arc to each node. Suppose we introduce 

constraint (4.11).  

 

Let    
 

 be a solution with objective value    
 

 that can be used as a lower bound for the 

objective value of a tour that minimizes the sum of arc costs,       and includes a 

connection between (   )  Since    
 

 is a lower bound for the     objective value of a 

tour containing (   )   ∑ ∑   (     )   
    

   (   )    (   )     
 

. This restricts the     

objective value of the arcs of (   ) as follows: 

 ∑   (     )   
    

            
                           (4.12) 

Let     
         

   The nodes (   ) can only be connected with a single efficient 

arc. Therefore, (4.12) reduces to the following inequality: 

  (     )   
      

 
                

The efficient arcs between (   )  with     objective value higher than     
 

 cannot 

satisfy (4.11).          # 

 

According to this theorem, we can reduce the efficient arcs between node pairs when 

we have the bounds     for         For this, we need to find a lower bound for the 

objective value of the tour that minimizes the sum of arc costs considering     

explained above. The lower bound for the tour can be found by a number of 

approximations. A TSP tour can be formed that minimizes the     objective when each 

arc is assigned the above     values. Cook et al. (1998) describe a number of lower 

bounding methods for the TSP. They explain 1-tree bound as another approximation 

method. 1-tree bound is based on minimum spanning tree (MST). We first construct a 

MST considering all but one of its nodes. We then add the remaining node to the tree 

by the smallest two edges incident to that node. This lower bound depends on the node 

selected to be connected with two edges. 
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In any approximation we use, we need to ensure that the edge (   ) is included in the 

solution. Otherwise, we cannot reduce the arcs that have their     objective value 

higher than     
      

 

We follow the steps outlined below for arc reduction when we have the bounds     

and     on the first and second objectives, respectively. We find the lower bounds by 

forming tours. We initially construct the set   that includes all node pairs. 

We next present the steps of the algorithm. 

 

Step P.1. Set      Select a node pair (   ) from set    Set      (   )   Go to 

Step P.2. 

Step P.2. Set the arc costs,      as follows: 

    {
                                                            (   )  (   ) 

            
{  (     )}                     

   Go to Step P.3. 

Step P.3. Construct a tour that minimizes the sum of arc costs,      using Concorde. Let 

the resulting solution be    
 

 and the objective function of the tour be    
  

∑             
{  (     )}  (   ) {   

 
 (   )}  If (   )     

   set the upper bound on the 

    objective value of arcs of (   ) as     
         

   Go to Step P.4. Otherwise, 

increment     enough to make sure edge (   ) is included in    
 

 as follows: 

    {
                               (   )  (   ) 
                  

 for a large    Go to Step P.3. 

Step P.4. Eliminate the efficient arcs between nodes (   ) with     objective value 

larger than     
   Set        If      go to Step P.2. If     and      

terminate the algorithm. If     and      set     and select a new node pair 

(   ) from    Set      (   )   Go to Step P.2.  
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A similar algorithm would be followed if the 1-tree bound is used as a lower bound. In 

Step P.3., we form a 1-tree. We select either node   or   as the node to be connected 

with two edges. For the remaining nodes, we form a MST by connecting each node to 

the tree with the minimum arc cost. Let the node to be connected with two edges be 

node    Then the MST solution for nodes         be    
   Then,    

 
 should equal 

             
         

{  (     )}  ∑             
{  (     )}(   )    

   Since arc (   ) has zero 

arc cost, we do not include it in the calculations. 

 

During arc reduction, an arc that is used in finding the lower bound for the tour to 

evaluate an arc’s arcs can be eliminated. For instance, suppose     arc of arc (   ) is 

reduced and suppose (   )     
 

 and                  
{  (     )}  If this occurs, 

we need to find a new lower bound,    
 

 for all (   ) and   that satisfies (   )     
 

 

and                  
{  (     )}  This way, we find tighter bounds on the arcs and 

eliminate more of the efficient arcs of (   )   

 

We next explain the additional constraints we impose on the objective space when we 

search for unsupported efficient solutions. We also use these constraints in arc 

reduction.   

 

4.4 Additional Constraints in Search for Unsupported Efficient Solutions  

Tuyttens et al. (2000) study the so called two phase algorithm on the bi-objective 

assignment problem. In this algorithm, the efficient frontier is generated in two phases. 

In the first phase, the supported efficient solutions are generated. This phase is 

computationally relatively easy because each supported solution can be obtained by 

minimizing a suitable linear combination of the two objectives. In the second phase, 

unsupported solutions are found. To find the unsupported solutions, the region between 

each adjacent supported solution pair is searched. The two phases are demonstrated in 

Figure 4.3.  
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(a) Phase 1     (b) Phase 2 

Figure 4.3 The Two Phase Algorithm 

 

 

Tuyttens et al. (2000) propose an additional constraint that can be used to narrow down 

the search space in the second phase. The constraint reduces the dominated part of the 

triangles between supported efficient solutions. This is illustrated in Figure 4.4. 

Suppose two new unsupported efficient solutions,    and      are found between the 

two supported efficient solutions    and   . From the definition of efficiency, we know 

that the shaded region is dominated by either one or both of the unsupported efficient 

solutions. Tuyttens et al. define a line parallel to the line connecting    and    such that 

all the points in the triangle that are dominated are also dominated by the solutions on 

that line. In the example in Figure 4.4, there are three possibilities for this line to pass 

through, the points with the worst objective values of the two consecutive supported 

efficient solution. Przybylski et al. (2008) refer to these points as local nadir points. In 

Figure 4.4 (b), the local nadir points are (  (  )   (  )) (  (  )   (  ))  and 

(  (  )   (  ))  The lines that pass through these local nadir points are shown in 

Figure 4.4 (b).  

 

Among these three possibilities, the line through the second point reduces only 

dominated regions whereas the other two lines eliminate both dominated and 

nondominated regions. Therefore, the combined objective value passing through the 

second local nadir point is set as an upper bound for the combined objective of the 

Obj. 1 

   Obj. 2 

Obj. 1 

   Obj. 2 
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problem (   ( )  (   )  ( )  (   (  )  (   )  (  )     ) as shown in 

Figure 4.4 (c). Przybylski et al. (2008) modify this bound exploiting the fact that all 

variables are integer valued.  

 

 

 

  

 

 

 

 

(a) Dominated regions          (b) Possible additional constraint  

 

 

 

 

 

 

 

 

 

 (c) Additional constraint 

 

Figure 4.4 Additional Constraint for Second Phase 

 

 

The constraint    ( )  (   )  ( )      reduces a part of the dominated set, but 

still an unaccounted dominated region stays in the search region. We improved this 

bound in order to reduce more of the dominated region. We developed the following 

steps to determine a number of upper bounds in the triangles.  

Obj. 1 

   Obj. 2 

x1 

x2 

x3 

x4 

x3 

x4 

Obj. 1 

   Obj. 2 

x1 

x2 

x3 

x4 

Obj. 1 

   Obj. 2 

x1 
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Let the upper bound on the first and second objectives be     and    , respectively. 

We search within the two efficient solutions,    and   , where   (  )    (  ) and 

  (  )    (  ), without loss of generality. Let   
  (  )   (  )

(  (  )   (  )) (  (  )   (  ))
 be 

the weight given to the first objective of the line that passes through    and   . Let   

be the set of all consecutive efficient solutions present in the search space,    

 (       ) (         )   ((       )}  where      stands for the     unsupported 

efficient solution. 

 

We next present the steps of the algorithm. 

Step U.1. Find all     local nadir points and place them in the set   where the objective 

values of the     local nadir point are   (  ) and   (  )   

Step U.2. Find the local nadir point that gives the highest combined objective value  

  
                 (  )  (   )  (  ) . Set      

    

Step U.3. Find the left adjacent solution (   ) of    among the local nadir points, 

treating the problem as a maximization problem. If there are no left adjacent solutions 

in the search space, set      
   and go to Step U.4. Otherwise, include the 

constraint     ( )  (    )  ( )      (  )  (    )  (  ) for    

  (   )   (  )

(  (   )   (  )) (  (  )   (   ))
. If   (   )       set      

  and go to Step U.4. 

Otherwise, set   =    and go to Step U.3.  

Step U.4. Find the right adjacent solution (   ) of    among the local nadir points, 

treating the problem as a maximization problem. If there are no right adjacent solutions 

in the search space, terminate the algorithm. Otherwise, include the constraint 

    ( )  (    )  ( )      (  )  (    )  (  )  for 

   
  (  )   (   )

(  (  )   (   )) (  (   )   (  ))
. If   (   )       terminate the algorithm. 

Otherwise, set   =    and go to Step U.4.  
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In Steps U.3 and U.4, we find left and right adjacent solutions of a solution for a 

maximization problem where all solutions are available. To find the left adjacent of a 

solution     we check the line that passes through    and any solution at the left side of 

    The solution with the highest slope is the left adjacent of      Similarly, the solution 

which has the smallest slope for the line that connects it with    is the right adjacent of  

    

              {
  (  )   (  )

(  (  )   (  )) (  (  )   (  ))
}  where              (  )  

  (  )   

              {
  (  )   (  )

(  (  )   (  )) (  (  )   (  ))
}  where              (  )  

  (  )   

 

At the end of these steps, we would end up with a number of upper bounds in the 

search region, each of which is a linear combination of a different    value. The 

constraints that we put for the example problem in Figure 4.4 can be seen in Figure 4.5. 

These constraints eliminate more of the dominated region than the constraint proposed 

by Tuyttens et al. (2000). We solved several problems and observed that the 

improvement did indeed eliminate additional arcs. 

 

  

 

 

 

 

 

 

 

Figure 4.5 Additional Constraints for the Second Phase 

x3 

x4 
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x2 
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We utilize these constraints in arc reduction. During the evaluation of arcs between 

nodes (   )  for the     constraint   
   ( )  (    

 )  ( )      
, we set the arc 

costs of each node pair as follows: 

   
  

{
                                                                                                        (   )  (   ) 

            
   

   (     )  (    
 )  (     )                        

 

We find a lower bound for the tour minimizing the     weighted objective value using 

   
  and set that lower bound to    

  The efficient arcs between nodes (   ) with larger 

weighted objective values (for     
 )  than     

      
    

 are reduced. 

When a new unsupported efficient solution is found inside the search region, we update 

the local nadir points. Consequently, we also update the upper bounds and eliminate 

more of the search space. Since we continue the search inside the same region, we 

reduce arcs from the reduced efficient arc set.  

 

From the computational aspect, the additional constraints did not provide a 

considerable reduction in the CPU times with the current lower bounding methods in 

our experiments. However, we believe that these methods can be further improved to 

obtain tighter bounds and sizeable reductions can be obtained in the CPU times. 

  

4.5 Improvements in the Interactive Algorithm and the Arc Reduction 

Approach  

In arc reduction, for each arc, we find lower bounds for tours considering the two upper 

bounds on the objectives and a number of upper bounds on the combined objectives. If 

there are   upper bounds on the combined objectives, we need to find (  

 )
( )(   )

 
 lower bounds. Also, if an arc used in finding the lower bound of the tour for 

an arc is reduced in the succeeding steps, new lower bounds that do not include these 
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arcs should be found. In this section, we explain how we decrease the number of arc 

reduction stages and the number of lower bound computations. 

 

Permanent Arc Reduction 

In Steps 5 and 6 of the interactive algorithm, we reduce the search space around the 

most preferred solution (  ) and its left (  ) and right (  ) adjacent solutions, if they 

exist. We are sure that the most preferred solution  (  )’s objective values should 

satisfy the following constraints demonstrated in Figure 4.6. 

  (  )      ( 
 )    (  )     

  (  )      ( 
 )    (  )     

 

Considering the two upper bounds   (  ) and   (  )  we can reduce the arcs that 

would not be present in any of the solutions in the search space. These reduced arcs 

would not be considered again in the search within the left and right triangles and 

therefore can be eliminated permanently from the efficient arc sets.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 The Bounds on Objectives after Steps 5 and 6 
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The lower bounds on the two objectives   (  )  and   (  )  do not lead to any 

additional arc reduction. In the presence of the upper bounds, the lower bounds only 

eliminate the regions that dominate    and     Since     and    are efficient, there 

should not be any solutions in the regions prohibited by the two lower bounds. These 

regions are shaded in Figure 4.6. Therefore, we do not consider the two lower bounds 

in arc reduction. 

 

Arc Reduction when Search Space is Reduced within the Previous Search Space 

For each search space with different bounds on objectives, we eliminate different 

efficient arcs. Therefore, for each search space, we need to start arc reduction 

considering all efficient arcs. We may use the previous bounds (    
 ) and continue 

with the previous efficient arc set only if we reduce the search space within the 

previous search space. An example is shown in Figure 4.7. Suppose the DM prefers     

to    in Figure 4.7 (a). The two bounds on the objectives,          (   (  )) and 

         (   (  )   )  eliminate    from the search region. Considering these 

constraints, we reduce the efficient arcs between node pairs. In the succeeding 

iterations, we search for the left adjacent of    in the reduced objective space. Suppose 

we find    and the DM prefers    to   . We now have the bounds           ( 

  (  )) and           (   (  )   )  on the objectives as shown in Figure 4.7 (b). 

Here, the bound on the first objective has not changed (                    ) and the 

bound on the second objective has decreased (                    )  We can 

continue arc reduction from the reduced arc set of the bounds           and           

by only changing the upper bound on the second objective value,     
 , of each arc 

(   ) as     
 (   )      

                        This way, we avoid 
( )(   )

 
 

lower bound computations for the upper bound of     and reduce new arcs without 

finding new lower bounds  
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      (a) Reduced objective space (x1   x2)       (b)   Reduced objective space (x1  x3) 

 

Figure 4.7 Bounds on the Objectives in the Reduced Objective Space 

 

 

Finding Adjacent Efficient Solutions in the Partly Searched Region 

We always store the efficient solutions we find during the algorithm in set    Whenever 

we need to find a new adjacent efficient solution inside a triangle which is partly 

already searched, we use the previously found solutions in determining the weight,   , 

in Step A.1. If we cannot find a solution in the left region, we set    to     where   is 

a small positive constant. We set    for finding the left adjacent of   inside the region 

defined by bounds     and     as follows: 

      {           {
  (  )   ( )

(  (  )   ( )) (  ( )   (  ))
 }}  

where                   (  )        (  )       and   is a small positive 

constant. 

 

Similarly, we set the weight,   , for finding the right adjacent of   inside the region 

defined by bounds     and     as follows:  

x2 

x1 

Obj. 1 

   Obj. 2 

x2 

x1
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      {         {
  ( )   (  )

(  ( )   (  )) (  (  )   ( ))
}}   

where                   (  )        (  )       and   is a small positive 

constant. 

 

4.6 Alternatives for Solving the Constrained TSP and Finding Lower Bounds in 

Arc Reduction 

In Steps 6 and 8 of the interactive algorithm, we search for solutions in the reduced 

objective space. This turns into solving the single objective constrained TSP for the 

routing problem. We use two methods. Our first approach is a branch and bound 

algorithm that starts with an assignment model and continues with breaking subtours 

until a tour is formed. The general structure of the branch and bound algorithm is given 

below. To differentiate between the nodes in the branch and bound tree and the nodes 

in the TSP, we refer to the nodes in the TSP as targets.  

- Initialization: For a weight    minimize the objective  ( )     ( )  (  

 )  ( ) subject to (4.3), (4.4), (4.7), (4.9) and (4.10). This model may result in a 

number of subtours.  

- Branching: Branch from a node if that solution results in subtours. To break the 

subtours, force a single edge to take the value 0 in each branch. Check all the 

subtours that are formed and break the subtour containing the minimum number of 

targets. This creates the least number of new nodes for the next level in the branch 

and bound tree.  

o Branching from the initial node: The problem is a symmetrical TSP with 

  (     )    (     )  for                             From the initial 

node, create a single branch, breaking only a single edge in the subtour having 

the smallest number of targets. This prevents forming a branch and bound tree 

with all solutions replicated twice.  

o Branching from the remaining nodes: Each node may contain subtours. If the 

node does not contain any subtours, it becomes a candidate for the optimal 
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solution. If there exist subtours, one of the subtours (the subtour containing the 

smallest number of targets) is broken. A new node is created by setting one 

edge to zero each time. 

- Node selection: While progressing in the branch and bound tree, continue with the 

first generated node. 

- Pruning a node: Prune a node if it is infeasible or if it has a worse objective value 

than the upper bound found so far. If the node turns out to be feasible and does not 

contain any subtour, the objective value of this node (  
 ) is compared with the 

current upper bound ( ̅). If   
   ̅, the upper bound is updated as   ̅    

   

 

In the second approach, we solve the TSP directly considering constraints (4.3)-(4.7), 

(4.9) and (4.10). The problems we solve have a small number of nodes and large 

number of efficient arcs between node pairs. For these problems, both the branch and 

bound method and solving the TSP directly are computationally efficient. 

 

During arc elimination, we find lower bounds ( ) for the tours that include an arc 

between a specific node pair (   ). We then find the difference between the upper and 

lower bounds and disregard the arcs between (   ) that have a value exceeding the 

difference. A lower bound with the largest value would be preferred since it would 

provide a tighter upper bound (    ) for the efficient arcs. Since the solution of the 

routing problem is a tour, the best lower bound would again be a tour. For this, we 

follow steps P.1 to P.4. Each time we need to find a tour, we use the software 

Concorde. We also use 1-tree bound as a lower bound. This method finds bounds more 

efficiently than the Concorde solution at the expense of providing less tight bounds.  

 

4.7 Finding Efficient Arcs during the Interactive Algorithm 

In our current approach, we find all the efficient arcs at the beginning of the algorithm. 

Then, we choose which arcs to use in finding the efficient tours and reduce the arcs 



  

43 

 

permanently or temporarily from the efficient arc set. Another approach could be 

finding the efficient arcs during the algorithm. 

 

Finding Efficient Arcs in the Original Objective Space 

To find efficient tours in the original objective space, we reduce the problem to a single 

objective problem by combining the two objectives linearly as   ( )     ( )  

(   )  ( )  In our current approach, we select the efficient arc that can be used 

between nodes (   ) as follows: 

    {
                                                                                 

            
    (     )  (   )  (     )        

Instead of selecting the arc to be used, we can find the efficient shortest arc that 

minimizes the composite objective value and assign this value to      

 

Finding Efficient Arcs in the Reduced Objective Space 

In the reduced objective space, to find a tour, we again minimize the composite 

objective  ( )     ( )  (   )  ( )  However, in this part, the constraints on the 

objective values of the tours indicate some constraints on the objective values of the 

efficient arcs. Therefore, for this part we do not need to find all efficient arcs. 

We first reduce the objective space around the triangles between the most preferred 

solution and its adjacent efficient solutions. Using these bounds on objectives, we find 

upper bounds on the objective values of the efficient arcs using some lower bounds for 

the tour approximations.  

 

To calculate these lower bounds for each node pair (   )  we need to give the efficient 

arcs connecting other node pairs as input. For the two upper bounds on the two 

objectives, we first need to find the two efficient arcs between each node pair (   )  one 

with the lowest first objective value (  (   )) and the other with the lowest second 
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objective value (  (   )). Then we find a lower bound for objective   of node pair 

(   ) using the following arc costs between each node pair (   )   

    {
                                        (   )  (   ) 

  (   )                       
   

 

As a result, we have upper bounds (    
 ) on the objectives       for the efficient 

arcs of each node pair (   )  Then we need to find all efficient arcs inside the bounds 

of the first and second objectives to solve the constrained TSP using constraints (4.3)-

(4.7), (4.9) and (4.10). Generation of all efficient arcs inside these bounds can be done 

using the ε-constraint method. In this method, we optimize one objective (  ) and treat 

the remaining objective (  ) as a constraint to satisfy an aspiration level, ε. While 

doing this, we can start with       
   and decrease   until we find a solution with 

  
   objective value higher than     

    We continue the remaining steps with these 

efficient arcs between each node pair.  

 

4.8 Application to the UAV Routing Problem 

We consider the route planning problem of UAVs through a defended area with a 

number of nodes (or targets) to visit. We divide the two dimensional terrain into 

equidistant grids as in Olsan (1993). We represent each grid point by two dimensions 

(   ) that refer to latitude and longitude, respectively. The grid structure is shown in 

Figure 4.8 (Tezcaner and Köksalan, 2011). In the figure, the terrain is divided into 10 

by 10 equidistant grids. We place 5 targets and 3 radar sites in the terrain. For the radar 

sites, we assume that the radar is located at the center of the circular area that is within 

reach of the radar. While going from the center to the circumference, the effectiveness 

of the radar decreases, leading to lower radar detection threat. Beyond the circular area, 

the radar is assumed to be ineffective.  
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Figure 4.8 Terrain Structure for UAV Routing Problem 

 

 

The UAV is assumed to be capable of moving to only its adjacent grids. The adjacent 

grid points of grid point A are shown in Figure 4.9.  

 

 

    

    

    

    

 

Figure 4.9 Movement Representation in two Dimensional Terrain 
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The objectives in this problem are the minimization of the distance traveled and the 

minimization of the radar detection threat. The first objective is also representative of 

the total flight duration if we assume constant speed. It can also approximately 

represent the total fuel consumption.  

 

Let grid point   be represented by its x and y coordinates as (     ) for      the 

distance and the radar detection probability between grid points   and   be     and 

    , respectively. Let the binary decision variable     denote whether the link 

between grid points   and   is used or not. Let the objectives, minimization of distance 

traveled and minimization of radar detection threat similar to the formulation in 

Tezcaner and Köksalan (2011) be as follows: 

       ∑ ∑          g          (4.13) 

       ∑ ∑              g         (4.14) 

 

We sum all the distances between the used grid points to find the total traveled distance 

in (4.13). We use the measure in Gudaitis (1994) to calculate the radar detection 

probability. In (4.14), we multiply the distance traveled with the detection probability 

of the used grid points. Here, we assume that if the vehicle moves at constant speed, the 

distance traveled can represent the duration of the flight. Multiplying the duration with 

the detection probability, we obtain a meaningful measure of how long the vehicle has 

been exposed to a certain radar detection probability. Summing all the radar detection 

probabilities, we approximate the radar detection threat. We calculate the detection 

probability      using signal-to-noise ratios (   )  We first find the   ⁄
  value of 

any grid point   using equation (4.15). Then we take the average of the values   ⁄
  

and   ⁄
  to approximate the     value of the edge (   ). 

  ⁄
         (

    
    

(  )        
   )      (4.15) 

where, 
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  : power transmitted by radar (watts) 

  : power gain of transmitting antenna  

  : Transmitting system loss 

 : wave length of signal frequency (meters) 

  : receive system noise temperature (Kelvin) 

  : noise bandwidth of receiver (Hertz) 

 : Boltzman’s constant (joules/Kelvin) 

 : aircraft radar cross section (RCS) (square meters) 

 : distance from the transmitter to grid point   (meters) 

            

In this formulation all the symbols correspond to constant values, except for    Given 

  ,                 and   are constants, we can combine them under a new constant 

  
    

    

(  )        
   We use the values for the constants as in Tezcaner (2009). We take 

0.5 square meters as the   (Skolnik, 1980, p. 44). We assume   equals           m
4
 

(=     km
4
).  

 

Knowing the approximate   ⁄
   value of the edge (   )  we find its detection 

probability using equation (4.16).      

 

     

{
 
 

 
 

                                                            ⁄
       ⁄

(  ⁄   )     ⁄

    ⁄      ⁄
                                  ⁄    ⁄

       ⁄

                                                            ⁄
       ⁄

    (4.16) 

 

The values     ⁄  and     ⁄  are used as 5 and 15, respectively, in Gudaitis (1994). In 

our study, to obtain a larger number of efficient solutions, we use the values 15 and 30 

for the parameters,     ⁄  and     ⁄ , respectively, as in Tezcaner and Köksalan 

(2011).  
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4.9 An Example 

We solve the UAV routing problem with 5 nodes and 3 radars that was first introduced 

by Tezcaner and Köksalan (2011).  

 

We assume that the DM has an underlying Tchebycheff preference function  ( )  

         (     
 )     (     

 )  to be minimized, which we pretend is unknown to 

us at the beginning of the algorithm. The ideal points   
  and   

  are taken as 0. The 

efficient frontier of the problem can be seen in Figure 4.10 and the corresponding 

efficient solutions are given in Table 4.1. The best solution of the DM is the first 

efficient solution according to the underlying preference function. Before running the 

algorithm, we find all the efficient arcs between the node pairs. These efficient arcs can 

be seen in Table 4.2. In our implementation, we create tours for lower bound 

approximations to reduce the arcs, as discussed previously. To find the unsupported 

efficient solutions, we solve the constrained TSP using the constraints (4.3)-(4.7), (4.9) 

and (4.10) directly.  

 

 

 

Figure 4.10 Efficient Frontier of the UAV Routing Problem 
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In executing the algorithm, we first reduce the search region between the two adjacent 

solutions (29.312, 12.764) and (32.140, 5.305) where the former is preferred according 

to the underlying preference function of the DM. This results in the arc reductions 

given in Table 4.2 where the reduced arcs are indicated with a checkmark. These 

reduced arcs are permanently deleted from the efficient arc sets and we continue the 

algorithm with the remaining arcs.  

 

 

Table 4.1 Efficient solutions 

Efficient 

Solution 

Distance Radar Detection 

Threat 

 Efficient 

Solution 

Distance Radar Detection 

Threat 

1 29.312 12.764  8 31.554 8.491 

2 29.898 11.704  9 31.898 8.344 

3 30.140 11.226  10 32.140 5.305 

4 30.484 11.079  11 32.726 4.851 

5 30.726 10.029  12 33.312 4.757 

6 30.968 9.688  13 39.312 4.744 

7 31.312 8.969     

 

 

During the search inside the right triangle, we find unsupported efficient solutions and 

update the upper bounds on the combined objective values. Considering the upper 

bound on the combined objective, we reduce several arcs. In Table 4.3, we summarize 

a step where we find the three unsupported efficient solutions. We update the bounds 

on the composite objective and accordingly, we reduce several arcs between node pairs.   

 

If P is the number of efficient solutions that constitute the efficient set, we need to find 

P solutions and ask for P-1 pairwise comparisons in the worst case. If P is small, the 

constraints in the objective space may not result in a favorable reduction both in the 

objective space and in the number of comparisons to reach the most preferred solution 

of the DM. For larger P values, the comparisons of the DM lead to larger areas of 

reduction in the objective space and, consequently, decreases the additional number of 

questions required to reach the most preferred solution. For our example problem, we 



  

50 

 

end up generating only 9 of the 13 efficient solutions. To reach the most preferred 

solution of the DM, we ask the DM to compare 4 solution pairs only. We reduce 37 

efficient arcs considering the upper bound on the first objective and 10 efficient arcs 

considering the upper bounds on the combined objective values throughout the 

algorithm.  

 

 

Table 4.2 Arc reduction for z1 ≤ 32.140-ε and z2 ≤ 12.764 

Node 

pair (i,j) 

Distance Radar 

Detection 

Threat 

Reduced  Node 

pair (i,j) 

Distance Radar 

Detection 

Threat 

Reduced 

(1,2) 7.828 1.078   (2,5) 9.070 4.959  

(1,3) 5.242 3.765   9.656 3.847 √ 

 5.828 2.705   10.242 3.275 √ 

 6.414 2.080   10.484 2.976 √ 

 7.000 1.987   10.828 2.821 √ 

 7.828 1.726   11.07 2.252 √ 

 8.414 1.679 √  11.656 2.158 √ 

 9.828 1.294 √  11.898 1.894 √ 

(1,4) 10.484 4.985 √  12.484 1.44 √ 

 11.070 4.106 √  13.070 0.986 √ 

 11.656 3.482 √ (3,4) 5.242 1.401  

 12.242 2.978 √  5.828 1.307 √ 

 12.828 2.524 √  14.656 1.295 √ 

 13.656 2.263 √ (3,5) 5.414 3.574  

 14.828 2.156 √  6.242 2.036  

(1,5) 9.828 1.701   6.828 1.942  

 10.414 1.247   7.070 1.678  

(2,3) 4.828 0.216   7.656 1.224  

(2,4) 6.414 3.438   8.242 0.770 √ 

 7.000 3.352  (4,5) 4.414 0.909  

 7.242 1.900      

 7.828 1.446      

 8.656 1.185      

 9.828 1.078 √     
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Table 4.3 The upper bounds on the combined objective and the reduced arcs 

Unsupported Efficient 

Solution 

Upper bounds on the combined 

objective 

Reduced arcs 

(Node pair – Efficient arc)  

(31.898, 8.344)        ( )         ( )         -  

(31.554, 8.491)        ( )         ( )         (1,3)  (7.828,1.726) 

  (2,5) (9.070, 4.959) 

(30.726, 10.029)        ( )         ( )         (2,4) (8.656, 1.185) 

  (3,5) (7.656, 1.224) 

 

 

We also solve the interactive algorithm for randomly generated six-target problems for 

different efficient arc sizes between targets. We explain the results in Appendix B.  
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CHAPTER 5 

 

 

5 ROUTING IN CONTINUOUS SPACE 
 

 

 

The routing problem can be considered in many domains; routing of air vehicles, trucks 

on highways, trains on railways and vessels on oceans. For some of these domains, the 

possible arcs the vehicle can follow are specified before the routes are determined. For 

example, for the routing on railways, the path should be composed of several 

connections. The terrain of this problem can be considered as a network. For the 

routing problem of air vehicles, we have infinite number of arc alternatives between 

any two points (targets). There can be regions that are forbidden or that cannot be 

passed through (like mountains). Beyond the unreachable areas, the vehicle can move 

to any place in the terrain in practice. Therefore, considering a continuous terrain is a 

more realistic representation, although it brings computational difficulties. 

 

In this part of our study, we consider the bi-objective routing problem of air vehicles. 

For these problems, we may have many objectives; minimization of distance traveled, 

radar detection threat, fuel consumption, flight duration, risks from weather conditions 

etc. In our study, we specifically consider the routing problem of UAVs for the two 

objectives; minimization of distance traveled and minimization of radar detection 

threat. Previously in Chapter 4, we discretized the two dimensional terrain into 

equidistant grid points and allowed for movement only between adjacent grid points, 

for this problem. The routes were defined by a number of grid points that the vehicle 

should pass in succession. The efficient routes may then be restructured letting the 

vehicle make smoother direction changes. With the discretization, we only allow 

certain moves. Since some possible moves are restricted, the obtained moves may not 

be efficient in reality. Routing in continuous space is more realistic as it overcomes this 
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deficiency of the discretized space at the expense of higher computation times and 

complexity of finding the efficient frontier.  

 

There are many studies on routing problems for UAVs in the literature. Olsan (1993), 

Gudaitis (1994) and Yavuz (2002) consider a discetized terrain. They all approximate 

three dimensional terrain with equidistant grid points. Some studies consider the 

routing problem in a continuous terrain. The studies of Pachter and Hebert (2002) and 

Kan et al. (2011) are examples of this field. Pachter and Hebert (2002) develop the path 

trajectory model for UAV in continuous terrain. They find the optimal trajectory that 

minimizes the power reflected from the radar given that the vehicle can move a 

constant distance. Kan et al. (2011) propose a heuristic search algorithm in which the 

DM can provide some preferences over the altitude of the vehicle. They use the same 

objective as Pachter and Hebert (2002).   

 

We first explain how we find the efficient frontier of the bi-objective shortest path 

problem between any two points. Then, we solve the bi-objective traveling salesperson 

problem in conjunction with the bi-objective shortest path problem. 

 

5.1 Terrain Structure and Objectives 

We first explain the bi-objective shortest path problem between two targets. 

 

The continuous space representation of the discretized terrain in Figure 4.8 of 5-target 

UAV routing problem can be seen in Figure 5.1. In the continuous space, we allow 

movement to any point in the terrain. We indicate the placement of each object on the 

terrain by their   and   coordinates. In the figure, the targets are placed at (0,9), (2,0), 

(3,5), (6,1) and (7,7). The radars are located at coordinates (2,7), (3,2), and (7,4). 
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Figure 5.1 UAV Routing Problem in Continuous Terrain 

 

 

 

We consider the case where a UAV is within the range of at most one radar when 

traveling between any two targets. 

 

The total distance ( ) throughout the move of vehicle between the initial target (     ) 

and final target (     ) is found using equation (5.1). 

  ∫   
(     )

(     )
          (5.1) 

Here,    is an infinitesimal part in the movement of the vehicle between the two 

targets.  

 

Similarly, the radar detection threat (   ) of a move is calculated as follows: 

    ∫   (   )  
(     )

(     )
         (5.2) 
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Here,   (   ) is the detection probability of a point (   ) and    is an infinitesimal part 

in the movement of the vehicle inside the radar region. This equation can be used to 

approximate the radar detection threat for any function of detection probability,     As 

the expression for    becomes more complex, so does the solution of this measure. We 

use the following function to approximate the detection probability of any point (   ) 

inside a radar region with center at (   )   

  (   )  {

                                             ⁄
(   )      ⁄

  ⁄ (   )     ⁄

    ⁄      ⁄
                            ⁄    ⁄

(   )      ⁄

      (5.3) 

where   ⁄
(   )         (

 

((   )  (   ) ) 
)  

 

Here, we use 15 and 30 for     ⁄  and     ⁄   respectively, as in Tezcaner and 

Köksalan (2011). We assume   equals      km
4
.  

 

The radii of the radar are determined based on formula (5.3). Beyond points where the 

signal-to-noise ratio of a point is less than     ⁄ , the radar is ineffective. The effective 

region of radar is where the     ratio is larger than     ⁄  i.e. 

       (
    

    

(  )        
   )      ⁄    

 

To make         (
 

  )      ⁄    should be less than or equal to        

(
 

  
(    ⁄    )

)
   

                 km for     ⁄    . The detection probability is 1 

for       (
 

  )      ⁄          (
 

   )
   

        km for     ⁄    . Inside a 

circle with radius        2.9108 kms, the radar is effective with detection probability 

increasing from the circumference to the center between the values 0 and 1. Inside a 

secondary circle with radius        1.2274 km, the detection probability is 1. An 

example radar region and two targets are shown in Figure 5.2. The starting target is 

placed at coordinates (     ) and the final target is placed at coordinates (     )  The 
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radar is located at (   )  In the inner area with radius         the probability of 

detection is 1. In the outer area with radius         the detection probability decreases 

from 1 to 0 (at the circumference). We refer the region where the detection probability 

is 1 as the inner radar region, and where the detection probability ranges between 0 and 

1 as the outer radar region. 

 

 

 

 

 

 

 

 

Figure 5.2 Continuous Terrain Representation 

 

 

 

In the continuous space, the radar detection probability depends on the points that the 

vehicle moves inside the radar region. Let (       )  and (       )  denote the 

coordinates of the entrance and exit points of the vehicle to the radar region, 

respectively. For all the moves that are in the radar’s ineffective region, the detection 

probability is zero. Then, the total radar detection threat measure (   )  can be 

calculated as follows: 

    ∫   (   )  
(       )

(       )
         (5.4) 

 

Let the indicator function,      )( ) =1 if       ) and 0, otherwise. The overall radar 

detection threat can be found as follows: 

    ∫ [(
  ⁄ (   )     ⁄

    ⁄      ⁄
)        ⁄      ⁄ ) (  ⁄ (   ))          ⁄   ) (  ⁄ (   ))]  

(       )

(       )
  

(𝑥𝑠 𝑦𝑠) 
(𝑥𝑓  𝑦𝑓) 

(𝑘 𝑙) 
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5.2 Transforming the Terrain Structure 

The locations of the starting and final targets and the radar in between them can vary a 

lot. These variations result in different formulations for the     measure or the 

movement of the UAV inside the radar region. However, the two objectives   and 

    are calculated based on the relative placements of targets and radars with respect 

to each other. Therefore, we transform the locations of the targets and radars such that 

the radar center is located at the origin (   ). Suppose originally that the radar is 

located at (   )  To transform target   at (     ) accordingly, we set the coordinates as 

(         )  The left and right extreme points of the radar circle become 

(         ) and (        )  respectively. The top and bottom extreme points become 

(        ) and (         )  respectively. We then rotate the locations of the targets 

such that the straight line connecting two targets make an angle   with the x-axis such 

that   [ 
 

 
 
 

 
]  Finally, we also make sure that the straight line passing through the 

two targets go above the radar’s center.  

 

The new coordinates (     ) of a vector (   ) when it is rotated around the origin by   

is found as follows: 

[  
  

]  [
        
         

] [
 
 
]          (5.5) 

 

Here, we make transformations for   
 

 
   

  

 
  With these changes, equation (5.3) 

reduces to equation (5.6). 

  (   )  {

                                             ⁄
(   )      ⁄

  ⁄ (   )     ⁄

    ⁄      ⁄
                            ⁄    ⁄

(   )      ⁄

      (5.6) 

where   ⁄
(   )         (

 

(     ) 
)  
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5.3 Movement between Two Targets 

The two objectives (total distance traveled and total radar detection threat) conflict with 

each other only inside the radar regions. Since the radar is ineffective beyond the radar 

regions, any move at those regions would have zero radar detection probability. 

Therefore, in those regions, we minimize only the total distance traveled. Between any 

two points in the regions where the radar is ineffective, the vehicle should follow the 

straight line that connects the two points. This is the Euclidean distance; which is the 

shortest distance between any two points.  

 

Inside the radar regions, the vehicle moves between an entrance point and an exit point. 

We assume that the vehicle follows a circular path inside those regions. The movement 

can be seen in Figure 5.3. The vehicle starts from (     ) and moves along the straight 

line to reach the entrance point (       ) to the radar region. It follows a circular path 

whose center is at (   ) and radius is    and exits the radar region at (       )  It then 

reaches the final target at (     ) following the straight line that connects these two 

points.   

 

The locations of the targets and the radar make the entrance and exit points follow the 

condition           

 

5.3.1 Movement Inside the Outer Radar Region  

The vehicle follows a circular path defined as (   )  (   )     inside the 

radar area. It moves along straight lines beyond the radar region. The total distance 

traveled  ( ) is calculated as follows: 
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√(      )
  (      )

          (
√(       )  (       ) 

  
)     √(      )

 
 (      )

 
  

            (5.7) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Movement Inside the Outer Radar Region 

 

 

 

The first and the third terms are the Euclidean distances between (     ) and (       ) 

and (     ) and (       )  respectively. The second term is the distance of the arc of 

(   )  (   )     between points (       )  and (       )  Let   be the 

distance of the arc  (   )  (   )     between points (       ) and (       ) 

and    be the angle between the two radii that connects (   )  to (       )  and 

(       ). We have the following two equations: 

 

 The ratio of    to    equals the ratio of   to the circumference of the circle: 

  

  
 

 

   
   

  

 

𝑟 

(𝑥𝑠 𝑦𝑠) (𝑥𝑓  𝑦𝑓) 
 

(𝑎 𝑏) 

(𝑥𝑒𝑛  𝑦𝑒𝑛) (𝑥𝑒𝑥  𝑦𝑒𝑥) 

(   ) 
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 The sine of   is the ratio of half the Euclidean distance between (       ) and 

(       ) and the radius of the circle: 

   ( )  
√(       )  (       ) 

  
  

From these two equations,   is found as         (
√(       )  (       ) 

  
)     

We find the     using (5.4).  

    ∫ (
  

    ⁄      ⁄
     (

 

(     ) 
)  

    ⁄

    ⁄      ⁄
)    

(       )

(       )
   (5.8) 

From Pythagoras' theorem,                

   

      
   

      

   √  (
  

  
)
 

    

Then, we can write the     in terms of the   coordinate as follows: 

    ∫ (
  

    ⁄      ⁄
     (

 

(     ) 
)  

    ⁄

    ⁄      ⁄
)  √  (

  

  
)
 

   
   

   
  (5.9) 

 

Since we transform the locations of the targets and the radar such that the movement is 

on the upper region of the radar’s center, we consider the movement from the upper 

side of the circle (   )  (   )      Therefore, we write the   coordinate of 

the motion in terms of the   coordinate as   √   (   )     This makes 

  

  
 

 

 √   (   ) 
 (  ) (   )  

   

√   (   ) 
.     reduces to the following equation: 

 

    

∫ (
  

    ⁄      ⁄
     (

 

(   (√   (   )   )
 
)
 )  

    ⁄

    ⁄      ⁄
)  √

  

   (   ) 
   

   

   
 

                          (5.10) 
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5.3.2 Movement that Passes Through the Inner Radar Region  

The vehicle can only be assumed to follow a circular path when the radar detection 

probability takes values between 0 and 1. In the regions where the detection probability 

is 1, it is optimal to minimize distance since each point in that region has the same 

detection probability. Therefore, for the regions where the detection probability is 1, we 

assume that the vehicle moves along a straight line and leaves the region by following 

the shortest trajectory. The move of the vehicle that passes through the inner radar 

region can be seen in Figure 5.4. 

 
 
 

 

 

 

 

 

 

 

 

Figure 5.4 Movement Passing through the inner Radar Region 

 
 
 

For this kind of movement, we define two additional points; the entrance point to the 

inner radar region (         )  and the exit point from the inner radar region 

(         )  Between these two points, the vehicle should spend the shortest possible 

distance since inside the inner region the detection probability is 1. Therefore, the     

inside the inner region is found as ∫ ( ) √  (
  

  
)
 

   
    

    
 If the vehicle follows a 

 

𝑟 

 

(𝑥𝑒𝑛  𝑦𝑒𝑛) (𝑥𝑒𝑥  𝑦𝑒𝑥) 
(𝑘 𝑙) 

(𝑥𝑖𝑒𝑥  𝑦𝑖𝑒𝑥) (𝑥𝑖𝑒𝑛  𝑦𝑖𝑒𝑛) 

(𝑎 𝑏) 

(𝑎 𝑏)
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straight line, i.e.         
  

  
 equals    Therefore, total radar detection threat in the 

inner region (    )  equals (         )√      This also equals the Euclidean 

distance between (         ) and (         )  

 

     √(         )  (         )   

Knowing that (         ) and (         ) satisfy       ,  

     √(         )  (        (       ))
 

 √(         ) (    )  

Similar to the inequality          the entrance and exit points to the inner radar 

region should satisfy the inequality,           Therefore,      (     

    )√(    )  

 

The overall radar detection threat is the sum of radar detection measures in the inner 

(    ) and the outer (    ) radar regions. 

                     (5.11) 

where, 

     ∫ (
  

    ⁄      ⁄
     (

 

(   (√   (   )   )
 
)
 )  

    ⁄

    ⁄      ⁄
)  √

  

   (   ) 
   

    

   
 

∫ (
  

    ⁄      ⁄
     (

 

(   (√   (   )   )
 
)
 )  

    ⁄

    ⁄      ⁄
)  √

  

   (   ) 
   

   

    
  

     √(         )  (         )    

The total distance traveled is the sum of distances between the consecutive points; 

(     ) (       ) (         ) (         ) (       ) and (     )  

  

√(      )
  (      )

          (
√(        )  (        ) 

  
)    
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√(         )  (         )          (
√(        )  (        ) 

  
)    

√(      )
 
 (      )

 
       (5.12)  

 

5.4 Enumeration of Movement between Two Targets 

The objectives (     ) are nonlinear in terms of the decision variables.     cannot 

be simplified and taken out of the integral. We also tried to simplify the     objective 

by expressing the entrance and exit points in polar coordinates. Let the entrance and 

exit points be (                     )  and (                     )  

respectively. We define     that passes through the outer radar region by integrating 

through angle   as follows: 

     ∫ (     (
((        )   (        ) )

(   )

 (   )   
))   

   

   
  

 

This equation cannot be simplified further and taken out of the integral. Consequently, 

we could not find a closed form for efficient solutions. Therefore, we made an 

enumeration to see the structure of the efficient frontier. We first explain how we find 

the extreme efficient solutions. Then we continue with our enumeration method. 

 

5.4.1 Finding Extreme Efficient Solutions 

First Extreme Efficient Solution: Finding the Efficient Arc with the Shortest Distance 

We start finding the efficient arcs with the arc that has the shortest (Euclidean) 

distance. For this solution, the vehicle moves along the line that connects the two 

targets with a straight line. The efficient arc that has the smallest distance is on the line,   

  (
     

     
)  (    )      The total distance of the first extreme solution (   ) is 

found as; 
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     √(     )
 
 (     )

 
       (5.13) 

 

If this efficient arc does not pass through any radar region, it also has the smallest radar 

detection threat value;          Since we cannot find any other solution that is not 

dominated by this extreme efficient solution, we conclude that this is the only efficient 

solution connecting the two targets. To find whether this line passes through a radar 

region, we solve the following two equations simultaneously. If these equations do not 

have a common solution (   )      we conclude that this line does not pass through 

the radar region.  

Equation of the line:   (
     

     
)  (    )        (5.14) 

Equation of the outer radar circle:             
     (5.15) 

 

If, on the other hand, we find common solutions (   )     for equations (5.14) and 

(5.15), it means that this extreme efficient solution passes through the radar region. 

These common solutions are the entrance and exit points to the outer radar 

region,  (         )  and (         )  We next check whether this solution passes 

through the inner radar region as well, by solving the two equations (5.14) and (5.16) 

together. 

Equation of the inner radar circle:             
     (5.16) 

 

If we cannot find a common solution (   )      the vehicle does not pass through the 

inner radar region. The total radar detection threat of this solution is, then, found as 

follows: 

      

∫

(

 
   

    ⁄      ⁄
     

(

 
  

(   ((
     

     
) (    )   )

 

)

 

)

 
 

 
    ⁄

    ⁄      ⁄

)

 
 

√(  (
     

     
)

 

)   
   

   
  

(5.17) 
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The common solutions (   )     for equations (5.14) and (5.16) are the entrance and 

exit points to the inner radar region, (           ) and (           )  The total radar 

detection threat of this solution is found as follows: 

      

∫

(

 
   

    ⁄      ⁄
     

(

 
  

(   ((
     

     
) (    )   )

 

)

 

)

 
 

 
    ⁄

    ⁄      ⁄

)

 
 

√(  (
     

     
)

 

)   
    

   
  

√(         )  (         )   

∫

(

 
   

    ⁄      ⁄
     

(

 
  

(   ((
     

     
) (    )   )

 

)

 

)

 
 

 
    ⁄

    ⁄      ⁄

)

 
 

√(  (
     

     
)

 

)   
   

    
  

          (5.18) 

An example for the first extreme efficient solution that passes through both the inner 

and outer radar regions can be seen in Figure 5.5.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5 First Extreme Efficient Solution 

 

  

(𝑥𝑒𝑛  𝑦𝑒𝑛 ) 

(𝑥𝑒𝑥  𝑦𝑒𝑥 ) (𝑥𝑖𝑒𝑛  𝑦𝑖𝑒𝑛 ) 

(𝑥𝑖𝑒𝑥  𝑦𝑖𝑒𝑥 ) 

(𝑥𝑠 𝑦𝑠) 

(𝑥𝑓  𝑦𝑓) 
(𝑘 𝑙) 
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(𝑥 𝑒𝑛  𝑦 𝑒𝑛 ) (𝑥 𝑒𝑥  𝑦 𝑒𝑥 ) 

(𝑥𝑓  𝑦𝑓) 

(𝑥  𝑒𝑛  𝑦  𝑒𝑛 ) (𝑥  𝑒𝑥  𝑦  𝑒𝑥 ) 

(𝑥𝑠 𝑦𝑠) 

(   ) 

Second Extreme Efficient Solution: Finding the Efficient Arc that has the Smallest 

Radar Detection Threat 

Before explaining the solution, we first state our assumption that both targets are 

located outside the effective radar area. This allows the vehicle to move through points 

outside the effective region of the radar and have efficient arcs with zero radar 

detection threat. If these assumptions are not satisfied, then we need to make slight 

changes in the procedure. 

 

Any move through the regions where the radar is ineffective has zero radar detection 

probability; so there are many solutions with zero detection probability. However, we 

also have to minimize the first objective; total distance traveled. This solution should 

be composed of two tangent lines from the targets to the circle, and an arc on the circle 

connecting the two tangent points. There are 2 tangent lines to a circle from a point. An 

example can be seen in Figure 5.6. The tangent lines from (     ) intersect the circle at 

the points of tangency; (           ) and (             )  Similarly, the tangent lines 

(     )  intersect the circle at (           )  and (             )  We illustrate the 

solution for the connection between (     ) and (       ). The connection between 

(       ) and (     ) is found in a similar way.  

 

 

 

 

 

   

 

 

 

Figure 5.6 The Second Extreme Efficient Solution 
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We first find the slope of the line (which is tangent to the radar area) that passes 

through (     ) and (       )  The slope,  , can be found using the formula that finds 

the shortest distance of a point to a line. Here, we know that the shortest distance from 

the radar center (   )  to the line that passes through (     )  and (       )  equals 

      ; since the tangent line is perpendicular to the line connecting the tangent point 

(       ) and (   ) at the tangent point (       )  The following is the formula that 

finds the shortest distance of a point to a line. 

  (    )      

√    
         

For radar center at (   )  (   )  the equality reduces to 
        

√    
          

 

Here, we find two different values of  , since from a point, we can draw two tangent 

lines to a circle. Solving the following two equations together for both   values, we 

find the point of tangencies (           ) and (             )  

   (    )       

            
    

 

For the example in Figure 5.6, we have two options for the arc with zero radar 

detection threat; we either pass from (           ) and (           ) (alternative 1) or 

(             ) and (             ) (alternative 2). The total distances of alternative 1 

(  ) and alternative 2 (  ) are calculated below: 

   √(       )  (       )                 (
√(         )  (         ) 

        
)  

√(       )
 
 (       )

 
  

   √(        )  (        )                 (
√(           )  (           ) 

        
)  

√(        )
 
 (        )

 
  

 

The solution with the smaller distance would dominate the other. Due to the structure 

of tangent lines, the distances from the starting and final targets to the tangent points 
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are equal; i.e. √(       )  (       )  √(        )  (        )   

Therefore, the alternative with the shortest arc length would have a shorter arc length. 

The total distance of the second extreme solution equals         (     )  

 

Since the straight line connecting (     ) and (     ) goes over the center of the radar, 

the first arc with distance    is shorter than the second arc. Therefore, the distance of 

this extreme solution is          

 

We know for the second extreme solution that           

 

5.4.2 Finding Remaining Efficient Solutions 

In the enumeration, we use the polar coordinates of entrance and exit points. The 

Cartesian coordinates of any point (   ) on the circle (   )  (   )     can 

be written as            and            for   (    )  For the points on 

the radar circle             
 , we have              and              for 

  (    )  Figure 5.7 shows the correspondence of parameters of polar coordinates.  

 

 

 

 

 

 

 

Figure 5.7 Coordinates of a Point on the Radar Circle 

 

 

Enumaration of a subset of possible arcs between(     ) and (     ) can be done 

using the following steps. For this, we use the property that the entrance (       ) and 

(𝑎 𝑏) 

𝜃 𝑟 
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exit (       ) points of the intermediate efficient solutions should satisfy the following 

inequalities:  

               

                

We next present the steps of the algorithm. 

 

Step N.1. Find the first extreme efficient solution that has the least distance. If it does 

not pass through the radar region, there is a single efficient solution. Terminate the 

algorithm. Otherwise, set the first entrance and exit points of this solution to 

(         ) and (         )  respectively and go to Step N.2. 

Step N.2. Find the second extreme efficient solution that has zero radar detection 

threat. Set the first entrance and exit points of this solution to (         )  and 

(         )  respectively. 

Step N.3. For      , find the parametric coordinates       and       of the entrance  

and exit points (           ) and (           )  respectively. Set      

Step N.4.  

For                  by α decrements; 

      for                 by α decrements; 

for              by β increments; 

Set the entrance point to the radar region (   
     

 ) as 

(                         )  the exit point from the radar region (   
     

 ) 

as (                         )   

Find the center of the movement circle (   )   

Find whether the arc enters the inner radar region. If it does, set the entrance 

and exit points to the inner radar region to (    
      

 )  and (    
      

 ) 

respectively. 

Calculate the distance (  ) and radar detection threat (    ) of solution  .  

Set        

 



  

71 

 

In the first three steps, we find the extreme efficient solutions. In the third step, we find 

the parametric coordinates using the formula                            

                                                          In the fourth step, 

we enumerate a number of solutions by varying the entrance, exit points to the radar 

region and the radius of the circle that the vehicle follows inside the radar region. We 

change the entrance and exit angles by decrements of α=0.0034, which corresponds to a 

decrement of 0.01 in Euclidean distances between consecutive entrance/exit points. We 

alter the radius of the movement from       to 100 by β=0.5. The radius,       

refers to almost a straight line rather than a circle. The least radius value is set to        

(that is also the radius of the outer radar region) to make each solution   pass through 

the radar region. Radius values smaller than        would result in infeasible moves. 

We find the center of movement solving the following two equations together: 

(              )  (              )      

(              )  (              )      

 

To find whether the move enters the inner circle, we solve the two equations 

simultaneously: 

            
   

(   )  (   )      

We find the distance and radar detection threat of an arc k as follows: 
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We enumerate the efficient frontier of an example problem using Matlab R2012a. The 

starting and final targets are placed at (      ) and (   )  respectively. The radar is 

at (   )  We find the first extreme efficient solution with entrance and exit points to the 

radar regions as (-2.8678,-0.4985) and (2.8253,0.7001), respectively. The second 

extreme efficient solution enters the radar region at (-1.3636, 2.5716) and exits at 

(0.3056, 2.8947). We find the parameters for parametric representation as       

                                               Varying the entrance and exit 

points, as well as the radius of the movement, we generate close to 26 million solutions. 

Among those solutions, 816 turn out to be efficient. The efficient frontier of the 

efficient arcs between (      ) and (   ) can be seen in Figure 5.8. 

 

We represent each solution ( ) with its objective values as (       )  The right end 

of the efficient frontier corresponds to the second extreme solution (20.2373, 0). The 

arcs of solutions between the second extreme solution and efficient solution (19.559, 

2.976) go through the inner radar region. For solutions with higher distances than 
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19.559, their efficient arcs go only through the outer radar region. We can also 

differentiate the solution that the vehicle starts moving only at the outer region from the 

efficient frontier. The frontier has a curved shape until a point with nearly 19.55 

distance and 3 total radar detection threat. This point is very close to the efficient 

solution (19.559, 2.976). If the detection probability calculations stayed the same 

throughout the radar region, the curved shape would continue until the first extreme 

solution. Since we change both the formula of radar detection measure and the 

movement inside the inner radar region, we obtain lower detection values for the same 

distance value than we would have with the presumed movement and radar detection 

measure.  

 

 

 
 

Figure 5.8 Efficient Frontier of the Example Shortest Path Problem 

 

 

The efficient frontier in Figure 5.8 can be considered as an approximation of its 

original efficient frontier. We might have missed some efficient solutions since we 

enumerate only a subset of the solutions and since we assume a circular motion inside 

the radar region. Despite these, we observe that the middle points of the entrance 

(   
     

 ) and exit (   
     

 ) points of efficient solution   lie almost on a straight line, 

   ̂   ̂  We first find the middle point (  
    

 )  of solution   where   
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  We then perform a regression analysis to estimate the 

relationship of   and  -coordinates of the middle point of solution    The results of the 

regression analysis can be seen in Appendix C. We perform the regression analysis just 

to fit the best line that shows the relationship of   
  and   

  for     Therefore, the 

assumptions on the error terms are not so important. Despite this, we evaluate the 

results in Appendix C. We explain 98.3% of the  -coordinate with the  -coordinate. 

The p-value of ANOVA (p=0.000) indicates that the model explains relation between 

   and    well. Also, p-values for both  ̂ and  ̂ are 0. Considering these results, we 

make a second assumption on the movement inside the radar region. We assume that 

the middle points of the entrance and exit points to the radar region lie on a line.  

 

We consider three possibilities for the estimation of this line: 

a. The line that passes through the center of radar and the middle point of the 

entrance and exit points of the first extreme solution  

           , 

b. The line that passes through the center of radar and the middle point of the 

entrance and exit points of the second extreme solution 

           , 

c. The line that passes through the middle points of the entrance and exit points of 

the first and second extreme solutions 

                  . 

The third option is closer to the regression equation; therefore it can be used as an 

estimate    ̂   ̂  for the line of middle points.  

 

5.5 Generating the Efficient Frontier for the Bi-Objective Shortest Path 

Problem 

The model that we solve to find an efficient solution depends on the position of that 

solution on the efficient frontier. If we search for an efficient solution that passes 
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through only the outer radar region, we only need to find the entrance (       ) and 

exit (       )  points to the radar region and the parameters of the circular motion 

(     ). If the efficient solution also passes through the inner radar region, we need to 

find additionally the entrance (         ) and exit (         ) points to the inner region.  

 

We first give the nonlinear model for the solution that moves only in the outer radar 

region. 
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  (       )
 

  
)    

√(      )
 
 (      )

 
        (5.19) 
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          (5.20) 

   
     

        
 
         (5.21) 

   
     

        
 
         (5.22) 

(     )  (     )            (5.23) 

(     )  (     )            (5.24) 

 

We minimize the first and second objectives in (5.19) and (5.20), respectively. The 

entrance and exit points’ coordinates should satisfy the radar circle’s equation ((5.21), 

(5.22)), and the circle that the vehicle moves on ((5.23), (5.24)). The decision variables 

for this problem are             and    

 

For efficient solutions that pass through the inner radar region, we modify the 

objectives by introducing the entrance and exit points to the inner radar region as 

follows: 
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          (5.26) 

 

In addition to constraints (5.20)-(5.23), we add the following four constraints: 

    
      

        
 
         (5.27) 

    
      

        
 
         (5.28) 

(      )  (      )            (5.29) 

(      )  (      )            (5.30) 

 

The entrance and exit points to the inner radar region should satisfy the inner radar 

circle’s equation (5.27, 5.28) and they should be on the circle of movement (5.29, 

5.30). We additionally have the decision variables      and      for this problem. 

 

For the routing problem in the continuous space, we observe that the efficient frontier 

is continuous. Therefore, we can find an efficient solution corresponding to each   

value for            Let      be the distance value of the efficient solution that 

moves tangent to the inner region. To find the     solution with distance value     if  

         we minimize (5.26) subject to constraints (5.21)-(5.24), (5.27)-(5.30) and 

(5.31). 
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          (5.31) 

On the other hand, if           we minimize (5.20) subject to constraints (5.21)-

(5.24) and (5.32). 
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 (      )

 
          (5.32) 

 

We use LINDOGlobal solver in the GAMS Optimization Package. LINDOGlobal finds 

global optimal solutions for nonlinear programs. It supports many nonlinear functions 

including log, arcsin and power. For more details on this solver, please see 

http://www.gams.com/dd/docs/solvers/lindo.pdf.  

 

Integral equations could not be expressed in Gams/LINDOGlobal. Therefore, we 

approximated the integral equation. We optimize the approximated function (that is a 

combination of the nonlinear functions that can be expressed in Gams/LINDOGlobal) 

subject to original constraints. We then find the second objective value by placing the 

optimal decision variable values to either (5.20) or (5.26).  

 

There are a number of methods developed for approximating integral equations. 

Trapezoid Rule, Midpoint Rule and Simpson’s Rule are three approximation methods 

that can be applied to integral equations (Adams, 1999, p.382). We briefly explain 

these methods for the approximation of the integral equation ∫  ( )  
 

 
 in Appendix 

D.  

 

http://www.gams.com/dd/docs/solvers/lindo.pdf
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)  √

  

   (   ) 
  We find 

the structure of the integral equation  ( ) in terms of   for different values of entrance 

and exit points and circular motion’s characteristics (     )  Two of these graphics are 

given in Figure 5.9. For the graph in Figure 5.9(a), the path inside the radar region is 

(        )  (        )           We only check the structure of  ( ) 

within the radar region. The corresponding entrance and exit point’s  -coordinates are 

          and            For the graph in Figure 5.9(b), the path inside the radar 

region is (        )  (         )          with             and 

             

 

 

 

      (a) (     )  (                     )               (b) (     )  (                      ) 

Figure 5.9 Graphs of f(x) versus x for different (a,b,r) values 

 

 

We also approximate five different radar values with different entrance and exit points 

and different parameters for the motion inside the radar region using the three 

approximation methods. The results can be seen in Table 5.1. As the number of 

intervals,    increases, the approximation value gets closer to the original integral value 

∫  ( )  
 

 
. Despite this fact, we formed 2 or 4 intervals to keep the computation times 
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of the nonlinear program reasonable. Therefore, we check how these rules perform 

when we have      and      The approximation method that gives the closest 

value to the original value is bold. Although we will not use the approximate values 

instead of the original integral values, we use the approximation that fits to the original 

integral function more. Simpson’s rule gives the closest values and  ( ) has more or 

less a curved shape. Therefore, we use Simpson’s method for approximation.  

 

 

Table 5.1 Approximation with different methods 

(     ) ∫  ( )  
 

 

 

        

Trapezoidal 

Rule 

Midpoint 

Rule 

Simpson’s 

Rule 

Trapezoidal 

Rule 

Midpoint 

Rule 

Simpson’s 

Rule 

(0.2008,-

1.0471,3.9108) 
0.0418 0.0310 0.0472 0.0414 0.0391 0.0432 0.0418 

(2.9878,-

14.9560,16.511) 
2.9156 2.6367 2.9847 3.5154 2.8107 2.9671 2.8687 

(0.094,-

0.5193,3.4108) 
0.0151 0.0111 0.0170 0.0148 0.014 0.0155 0.0150 

(0.5308,-

2.6289,5.4108) 
0.1417 0.1063 0.1594 0.1418 0.1329 0.1462 0.1417 

(0.6658,-
3.2404,5.9108) 

0.2941 0.2226 0.3308 0.2968 0.2767 0.3038 0.2947 

 

 

We approximate the integral equation with 2 and 4 intervals. The following is the 

approximation of the radar detection threat measure 

    

∫ (
  

    ⁄      ⁄
     (

 

(   (√   (   )   )
 
)
 )  

    ⁄

    ⁄      ⁄
)√

  

   (   ) 
  

   

   
 with 

2 intervals. 

Let   
       

 
           

       

 
          



  

80 

 

    

(
       

 
) [[(

  

    ⁄      ⁄
     (

 

(  
  (√   (    )   )

 
)
 )  

    ⁄

    ⁄      ⁄
)√

  

   (    ) 
]  

 [(
  

    ⁄      ⁄
     (

 

(  
  (√   (    )   )

 
)
 )  

    ⁄

    ⁄      ⁄
)√

  

   (    ) 
]  

[(
  

    ⁄      ⁄
     (

 

(  
  (√   (    )   )

 
)
 )  

    ⁄

    ⁄      ⁄
)√

  

   (    ) 
]]     

          (5.33) 

 

5.6 Finding Dtan 

We solve the inner region problem if we search for an efficient solution with        

and solve the outer region problem if we search for an efficient solution with       . 

To decide which model to solve, we need to know the value of       

 

To approximate the solution that first enters the inner radar region and has total 

distance       we follow a procedure similar to that we use for finding the second 

extreme efficient solution. We first find the upper tangents from the starting and final 

targets to the inner radar circle. We explain the steps for finding the tangent point of the 

starting target to the inner radar circle. We use the equality 
        

√    
        to 

estimate the slope of the tangent line. This equality results in two values for    We take 

the larger   for the tangent line’s slope. We then solve the following two equations 

simultaneously to find the tangent point (               ) to the inner radar circle from 

the starting target. 

   (    )       
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We perform similar steps to find the tangent point (               ) to the inner radar 

circle from the final target. We combine these tangent points with the arc on the inner 

circle. The total distance of this solution is found as follows: 

  

     √(          )
 
 (          )

 

               

(

 
√(               )

 
 (               )

 

        

)

 

 √(          )
 
 (          )

 
 

 

To find the radar detection threat of the solution with         we need the entrance 

and exit points to the radar region. Solving the following two equations, we find the 

entrance point (               )  The exit point (               )  can be found 

similarly. 

  (
          

          

) (    )       

            
    

 

The radar detection threat can be found as follows: 
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For the example problem, the parameters take the following values: 

(               )  (              )   (               )  (             )   

(               )  (              ) and (               )  (              )  The 

distance and radar detection threat values are 19.547 and 3.171, respectively. In the 

enumeration, we lastly have the solution (19.559,2.976) that moves in the outer radar 

region which has objective values close to our approximate solution. 

 

5.7 Implementation 

We write the code to find efficient solutions corresponding to a distance   both for 

       and for        in GAMS/LINDOGlobal. 

 

Finding     for        

We need to determine the lower and upper bounds for the decision variables. The 

minimum x-coordinate of the entrance point is         and the maximum x-coordinate 
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for the exit point is         The entrance point’s x-coordinate can take at most the value 

of second extreme solution’s entrance point’s x-coordinate and the exit point’s x-

coordinate can at least take the value of the second extreme solution’s exit point’s x-

coordinate. Since the movement inside the radar region is at the upper side of the 

movement’s circle, we eliminate constraints (5.23) and (5.24) and write     and     in 

constraints (5.21), (5.22), (5.32), (5.36) as:     √   (     )    and     

√   (     )     We set the lower bound for the radius of motion to       . We 

set its upper bound to 100. Since the move is at the upper side of the circular motion, 

the upper bound for the y-coordinate of the center of circular motion is set to the y-

coordinate of the center of the radar region. We set its lower bound to -100. Similarly, 

we set the lower bound for the x-coordinate of the center of circular motion to the x-

coordinate of the center of the radar region. We set its upper bound to 100.   

Finding     for        

For this case, we have additionally the four variables                      We again 

write      and      as      √   (      )    and      √   (      )  

   The lower and upper bounds on the variable      is set to         and the tangent 

from the final point to the inner circle,          respectively. Similarly,      is set between 

the tangent from the starting point to the inner circle,         and       . 

 

The solution durations are almost 7.5 hours for the routing problem in outer radar 

region in GAMS/LINDOGlobal. The model has difficulty when solving for routes in 

the inner radar region. To reduce the computational times, we make a simplification by 

introducing a property for the arc to be used. We assume that the middle points of the 

entrance and exit points to the outer and inner radar regions lie on a line. We use the 

line that passes through the middle points of the entrance and exit points of the first and 

second extreme solutions to estimate the equation of this line. This line can be seen in 

Figure 5.10. We also add the following constraint to make sure that the middle point of 

the entrance and exit points lie on a line: 
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  ̂ (

       

 
)   ̂        (5.34) 

 

The solution durations decrease to 0.5 hours for routing in the outer radar region, 

however the model still continues to have difficulty for routing in the inner radar 

region. Since we have many efficient solutions, generating the whole efficient frontier 

would be computationally expensive. In the next part, we explain the heuristic we 

develop for finding the efficient solution that corresponds to a distance    

 

 

 

 

 

 

 

 

 

Figure 5.10 Line of Middle Points of Efficient Solutions 

 

 

 

5.8 A Heuristic to Find the Efficient Solution Corresponding to a Distance D 

The exact solution procedure requires a long computation time and it is not 

computationally efficient to generate the whole efficient frontier by solving the 

nonlinear program. Instead, we develop a heuristic that uses the axis of symmetry for 

the entrance and exit points.  

 

If we assume that the middle points of the entrance and exit points to the radar region 

lie on a line         we can express    in terms of     This reduces to finding the 

(𝑘 𝑙) 
 

(𝑥𝑒𝑛  𝑦𝑒𝑛 ) (𝑥𝑒𝑥  𝑦𝑒𝑥 ) 

(𝑥𝑒𝑥  𝑦𝑒𝑥 ) (𝑥𝑒𝑛  𝑦𝑒𝑛 ) 

 

Line of middle points 
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radar detection threat of the solution that corresponds to a distance,    by only knowing 

the variable     We tried to write the radar detection threat in terms of only the 

unknown variable,     however the equation became very complicated as we express 

all variables               in terms of     Therefore, we observe how     behaves 

for different    values when distance   is set to a value on the example problem. The 

variable    takes values in a range that makes the problem feasible for distance    In 

Figure 5.11, we set   to take values between 19.7 and 20.2. The     seems to be a 

convex function in terms of      

 

There are many solution methods to find the solution that minimizes unimodal 

functions. We first define these functions and go over some line search methods. 

 

Definition 5.1. A function   over         is unimodal if it has a unique minimum    

in   if   is nonincreasing on the interval            and nondecreasing on the 

interval            (Bazaraa et al. 2006, p. 156) 

 

For unconstrained optimization, Bazaara et al. (2006) explain a number of methods. 

Line search methods that do not use derivatives include dichotomous search method, 

golden section method and Fibonacci search method. The authors compare these 

methods and conclude that Fibonacci search method is the most efficient algorithm, 

followed by golden section method. We use Fibonacci Search Method in our approach. 

We explain the details of this method in Appendix E.  



  

86 

 

 

Figure 5.11 RDT vs.ym Corresponding to Different D Values 

 

 

We next explain the heuristic we develop for finding the     of the efficient solution 

that has total distance    

 

Step H.1. Find the entrance and exit points of the first and second extreme solutions. 

Set (           ) to     extreme efficient solution’s entrance point and (           ) to 

    extreme efficient solution’s exit point for         

Step H.2. Estimate the equation of the line,        that the middle points lie.  

Step H.3. Set the minimum value (    ) that    can take to the middle point of the 

first extreme solution.      
         

 
.  

Step H.4. Find the maximum value (    ) that    can take for a move with distance 

    

Step H.5. Perform Fibonacci Search to find minimum     varying    between 
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The first 4 steps can be considered as initialization steps for the Fibonacci Search. We 

find the lower and upper bounds that make   feasible. In Step H.1, we search for the 

first and seconds extreme solutions. In Step H.2, we set the slope and intercept estimate 

using the line that passes through the middle points of the two extreme solutions’ 

entrance(           ) and exit points (           )  for      . If the coordinates of     

middle point is   
  

           

 
   

  
           

 
  we set the slope estimate ( ̂)to 

  
    

 

  
    

  

and the intercept estimate ( ̂) to   
    

 (
  

    
 

  
    

 )  

 

For any    the vehicle can enter the radar region at the entrance and exit points of the 

first extreme solution. It can also enter from below this point but this would result in a 

higher radar detection threat. Therefore, we set the minimum middle point to the 

middle point of the first extreme solution’s entrance and exit points. The upper bound 

solution we search in Step H.4 can be seen in Figure 5.12. This arc is composed of 

straight lines with a total distance of    This is the highest point for the middle point of 

entrance and exit points and can be found by solving the following equations together.  
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(   ) 

 

 

 

  

 

 

 

Figure 5.12 Finding ymax in Step 4 

 

 

 

In (5.35) and (5.36), we make sure that the entrance and exit points are on the radar 

circle. We set the middle points’ coordinates in (5.37) and (5.38). We set the total 

distance   to the summation of straight lines connecting consecutive points on the arc 

between (     
) and (     

)  

 

We perform the search for the    value that minimizes     in Step H.5. We follow 

the steps given below for Fibonacci Search for each    value. 

H.5.1. Find    by:  

   
    ̂

 ̂
         (5.41) 

H.5.2. Find the coordinates of the entrance and exit points that correspond to (     ) 

by solving the following four equations together: 

   
     

        
          (5.42) 

   
     

        
          (5.43) 

 
       

 
              (5.44) 

       

 
              (5.45) 

(𝑥𝑒𝑛 𝑚𝑎𝑥  𝑦𝑒𝑛 𝑚𝑎𝑥) 
(𝑥𝑒𝑥 𝑚𝑎𝑥  𝑦𝑒𝑥 𝑚𝑎𝑥) 

(𝑥𝑠 𝑦𝑠) (𝑥𝑓  𝑦𝑓) 

(𝑥𝑚𝑎𝑥  𝑦𝑚𝑎𝑥) 
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H.5.3. Find the distance left for the motion inside the radar region (  ) by  

     (√(      )  ( 
  

  
 
)
 
 √(      )

 
 ( 

 
  

  
)

 

) (5.46) 

H.5.4. Find the radius ( ) of the circle of motion by  

           (
√(       )  (       )

 

  
)        (5.47) 

H.5.5. Find the center (   ) of the circle of motion solving the following equations 

together:  

(     )  (     )            (5.48) 

(     )  (     )            (5.49) 

H.5.6. Find     by  

    ∫ (
  

    ⁄      ⁄
     (

 

(   (√   (   )   )
 
)
 )  

    ⁄

    ⁄      ⁄
)√

  

   (   ) 
  

   

   
 

          (5.50) 

 

Each time we need to find the corresponding     value for a     we use equations 

(5.41)-(5.50). Among those equations, equation (5.47) is not directly solved. However, 

the function  ( ) (given in equation 5.51) is a unimodal function. Therefore, we use 

Fibonacci search to find the solution that minimizes  ( )  An example  ( ) function 

can be seen in Figure 5.13 for the constants                            

                  and            

 

 ( )  |        (
√(       )  (       )

 

  
)    |      (5.51) 
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Figure 5.13 G(r) vs. r 

 

 

 

Corollary 1.   ( )  |        (
√(       )  (       )

 

  
)    |  is a unimodal 

function.  

 

Proof. We may write the numerator √(       )  (       )  as a constant ( ) 

since it does not depend on     ( ) can be written as follows: 

 ( )  {
        (

 

  
)                     (

 

  
)     

           (
 

  
)                 (

 

  
)     

  

We know that  
 

 
    since   is the length of the hypotenuse of a triangle with one 

side’s length 
 

 
  Let   be the angle that corresponds to side 

 

 
 for     

 

 
  

 

In the first region, (        (
 

  
)     )  

  ( )

  
         (

 

  
)  

 

√   
  

 

  This 

reduces to        ( )    is always less than    ( ) for     
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   ( )     . Therefore, the first derivative is negative for     
 

 
. Its second 

derivative is, 
   ( )

    
  

   √(  
  

   
)
 
 which is always positive.  

The second region, (        (
 

  
)     )  has exactly the reverse conditions for the 

first and second derivatives of  ( )   

 

The end points of this function are positive:        ( )       and 

       ( )     √(       )  ( 
  

  
  

)
 

    In the first region, the function 

decreases from    with an increasing slope until it finds the minimum. In the second 

region, it increases from the minimum with a decreasing slope until it reaches    

√(       )  ( 
  

  
  

)
 
  Therefore, the function is unimodal.    # 

 

For the function  ( ), we also perform Fibonacci search to find the   that satisfies the 

equation  (5.47). 

 

In Step H.2, we estimate the slope and intercept of the line for middle points using the 

third option explained in Section 5.3. This may not be the exact equation for the line of 

middle points. Therefore we also search for the best slope of the middle points by 

altering the slope within the current value of the slope estimate. We change the slope 

estimate by small increments and decrements and move in the direction that performs 

better in terms of       This way, we find a local minimum for the overall problem. 

 

Suppose we finish one iteration of the heuristic and we are at the end of Step H.5 with a 

radar detection threat value of     . After that step, we follow the steps outlined 

below to update the slope to the best value. We need to determine a step size (   ) that 

is used to update the slope estimate. Set iteration counter      

We next present the steps of the algorithm. 
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Step I.1.  Set        Increase the slope estimate ( ̂)  by     to find the right 

neighbor of the current slope estimate as  ̂   ̂       Go over the Steps H.4-H.5 of 

the heuristic and find a new       If the entrance and exit points to the radar region are 

not within the first and second extreme solutions, set      a high number. 

Step I.2. If            update  ̂   ̂  and             Go to Step I.1.  

   If           and      go to Step I.3. If           and      the 

local best slope estimate  ̂ is found. Terminate the algorithm. 

Step I.3. Set        Decrease the slope estimate by     to find the left neighbor of 

the current slope estimate as  ̂   ̂       Go over the Steps H.4-H.5 of the heuristic 

and find a new       If the entrance and exit points to the radar region are not within 

the first and second extreme solutions, set      a high number. Go to Step I.4.  

Step I.4. If            update  ̂   ̂  and             Go to Step I.3.  

Else, the local best slope estimate  ̂ is found. Terminate the algorithm. 

 

By increasing (decreasing) the slope, we find the right (left) neighbor of the current 

slope.  We finalize the search when the slope estimate results in the lowest     when 

compared to its two neighbor solutions. If the current slope estimate does not lead to a 

feasible solution; i.e., its entrance and exit points to the radar region are not within the 

extreme efficient solutions’ entrance and exit points to the radar region, we do not 

consider that slope estimate.  

 

5.8.1 An Example  

We solve the problem we introduce in Section 5.3 for     . We set the step 

size  (   )  to 0.01. For the Fibonacci search, we set the parameters as     

           

 

We report the iteration number, and the corresponding 

 ̂    (       ) (       ) (   )       in columns 2-7, respectively. We reach the 



  

93 

 

best solution at iteration 9 with slope estimate -5.104 with total radar detection threat as 

0.5420321. 

 

 

Table 5.2 The Results of the Heuristic Iteratively for D=20 

Iteration  ̂    (       ) (       ) (   )       

1 -5.184 2.117 (-2.330,1.745) (1.510,2.489) (0.943,-4.866) 7.376 0.5420715 

2 -5.174 2.117 (-2.330,1.744) (1.509,2.489) (0.944,-4.863) 7.374 0.5420621 

3 -5.164 2.116 (-2.331,1.743) (1.508,2.490) (0.945,-4.861) 7.372 0.5420539 

4 -5.154 2.116 (-2.332,1.742) (1.507,2.490) (0.947,-4.862) 7.373 0.5420471 

5 -5.144 2.116 (-2.332,1.741) (1.506,2.491) (0.949,-4.863) 7.375 0.5420414 

6 -5.134 2.116 (-2.333,1.742) (1.505,2.491) (0.951,-4.861) 7.374 0.5420371 

7 -5.124 2.116 (-2.334,1.740) (1.504,2.492) (0.953,-4.861) 7.374 0.5420341 

8 -5.114 2.116 (-2.334,1.739) (1.503,2.492) (0.955,-4.860) 7.373 0.5420324 

9 -5.104 2.116 (-2.335,1.738) (1.502,2.493) (0.957,-4.863) 7.376 0.5420321 

10 -5.094 2.115 (-2.336,1.737) (1.501,2.494) (0.958,-4.861) 7.374 0.5420331 

 

 

5.8.2 Finding RDT for D ≤ Dtan 

Searching for the     value of an efficient solution with        is not 

straightforward, since the UAV passes from both inner and outer radar regions. In Step 

5.3, we find the distance left (  ) for the movement in the radar region. In Step 5.4, we 

relate this    with the movement’s radius,    When the vehicle passes both from the 

inner and outer radar regions, the    is composed of three parts as follows: 

           (
√(        )  (        )

 

  
)  √(         )  ( 

   
  

   
)
 
 

        (
√(        )  (        )

 

  
)        
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In this equation, we have five unknowns:                        We also know the 

relationship between the variables           and           by equations (5.27) and 

(5.28), respectively. Finding these unknowns from the three equations is not possible. 

Therefore, we use the following steps instead of Steps H.5.4-H.5.6. We search for the   

with a trial and error method.  

 

H.5.4’. Find the radius ( ) of the circle of motion. 

H.5.5’. Find the center (   ) of the circle of motion.  

H.5.6’. Find the entrance and exit points of the movement in the inner radar region, if 

they exist.  

If                     cannot be found, go to Step H.5.6 in the heuristic for         

Otherwise, go to Step H.5.7’.  

H.5.7’. Find the actual distance traveled in the radar region using the following 

formula: 

                (
√(        )  (        ) 

  
)   √(         )  (         )  

        (
√(        )  (        ) 

  
)           (5.52)   

H.5.8’. Find difference (    )  between the actual distance traveled (       )  and 

            (√(      )
  (      )

  √(      )
 
 (      )

 
) as follows: 

                              (5.53)  

If         increment    by      as            and go to Step H.5.4’.Otherwise, 

go to Step H.5.9’.   

H.5.9’. Find      

 

In Step H.5.4’, we find   as if the UAV does not pass from the inner radar region with 

the equation. 

           (
√(       )  (       )

 

  
)        (5.54) 

In Step H.5.5’, we find the center of movement (   ) using   by solving the following 

equations together:  



  

95 

 

(     )  (     )            (5.55) 

(     )  (     )            (5.56) 

We find the entrance and exit points of the movement to the inner radar region using 

H.5.6’. We solve the following equations together: 

(      )  (      )            (5.57) 

    
      

        
          (5.58) 

(      )  (      )            (5.59) 

    
      

        
          (5.60) 

 

If the movement does not pass through the inner region, we go to Step H.5.6 in the 

original heuristic. Otherwise, we go to Step H.5.7’ to find the actual distance traveled 

with the variables                        The difference with the actual and proposed 

distance is the additional distance that we can move additionally inside the radar 

region. Therefore, we increment the distance in the radar region    by the difference 

amount and go to Step H.5.4’ again. We perform the search until the difference 

between the actual and proposed distances is zero. In the final step, we find the radar 

detection threat as follows: 

    ∫

(

 
  

    ⁄      ⁄
     

(

 
 

(   (√   (   )   )
 

)
 

)

 

    

   

 
    ⁄

    ⁄      ⁄

)

 √
  

   (   ) 
     

√(         )  (         )   

∫ (
  

    ⁄      ⁄
     (

 

(   (√   (   )   )
 
)
 )  

    ⁄

    ⁄      ⁄
)√

  

   (   ) 
   

   

    
  (5.61) 
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5.9 Approximating the Efficient Frontier 

The efficient solutions of any node pair (   ) can be one of the three types. 

 A single efficient solution that does not pass through the radar region 

 A number of efficient solutions that only pass from the outer radar region 

 A number of efficient solutions that pass from both the inner and outer radar 

regions 

 

The first type of efficient solution corresponds to a problem where the shortest 

connection between nodes (   ) does not pass through any radar region. We refer this 

set of nodes as      . We refer any efficient arc between node pair (   ) with their 

corresponding objective values. For (   )         we denote the single efficient 

solution as (   (   )      (   )) for      (   )      

 

The second type of efficient solutions constitutes a curve shaped efficient frontier. We 

refer this set of nodes as         There is a continuous efficient frontier for this 

problem. Constructing the whole efficient frontier by finding discrete solutions is not 

possible. Therefore, we approximated the efficient frontier using a number of efficient 

solutions.  

 

For the efficient arcs between node pair (   )          we denote the end points of the 

curve with the efficient arcs they correspond to. The rightmost efficient solution is the 

second extreme efficient solution (   (   )      (   ))  for      (   )    and the 

leftmost efficient solution is the first extreme efficient solution (   (   )      (   ))  

To approximate the efficient frontier of nodes (   )          we fit a line using an    

function that was developed by Köksalan (1999) and generalized by Köksalan and 

Lokman (2009). The function was utilized within an EA context in a bicriteria hub 

location problem by Köksalan and Soylu, (2010) and in a bicriteria routing problem by 

Tezcaner (2009). To fit this function, we need to know 3 points on the line; the end 

points of the curve and a central solution. Let the     objective value of solution   be 



  

97 

 

denoted as   ( )  Let     denote the left end solution of the curve (the first extreme 

solution),     denote the right end solution of the curve (the second extreme efficient 

solution) and     denote a central solution on the curve. The    function is as 

follows: 

(     
 )  (     

 )          (5.62) 

where; 

    (   
     

 )  (
  ( )   ( )

  ( )   ( )
 
  ( )   ( )

  ( )   ( )
)  are the normalized objective function 

values for the central solution.  

 

Firstly, the objective function values of the central solution are normalized using the 

two extreme efficient solutions. Using these normalized objective values, we fit an    

function using (5.62). For the computation of  , we solve a nonlinear program 

GAMS/LINDOGlobal with a single constraint (5.62) and a pseudo objective function. 

 

For the efficient arcs between node pair (   )          the    function is as follows: 

(  
       (   )

   (   )    (   )
)
   

 (  
         (   )

     (   )      (   )
)
   

      (5.63) 

Using (5.63), we find the radar detection threat value (   ) of any solution between 

nodes (   )         given its distance value (   )  using the following formula: 

         (   )       (   ) (  (  
       (   )

   (   )    (   )
)
 (   )

)

   (   )

   (5.64) 

 

The third type of efficient solutions passes from both the inner and outer radar regions. 

We denote this set of nodes with      . The efficient frontier of this problem is 

composed of two parts: the almost linear part that represents the movement in the inner 

radar region and the curved part that represents the movement in the outer radar region. 

To approximate the motion in the linear part, it is sufficient to know two points on that 

line. The first point would be the extreme efficient solution that has the lowest distance 

and highest radar detection threat. We choose the second point to be the last point on 
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the line that has distance       The equation of the line that relates the two objectives 

for the movement in the inner radar region is                 The curved part that 

represents the motion inside the outer radar region has the following formula:  

(  
        (   )

   (   )     (   )
)
   

 (  
         (   )

      (   )      (   )
)

   

      (5.65) 

 

An example efficient frontier of a node pair  (   )        can be seen in Figure 5.14. 

For this example, the first extreme solution corresponds to (   (   )      (   ))  

(    )  and the second extreme solution corresponds to (   (   )      (   ))  

(    )  The solution that corresponds to     (   ) is (    (   )       (   ))  (    )  

The equation for the efficient solutions that move in the inner radar region and outer 

region are             and (  
    

  
)
     

 (  
   

 
)
     

    respectively. 

  

5.10 Generating the Efficient Frontier for the Bi-Objective Routing Problem 

The bi-objective routing problem is a bi-objective TSP with multiple efficient arcs 

between nodes. The aim for this problem is to find tours that are composed of a subset 

of efficient arcs. For each pair of nodes, we firstly construct their efficient frontier 

knowing a number of efficient arcs.  

 

Recall that       is the set of node pairs (   )     whose efficient frontiers are 

composed of two regions,        is the set of node pairs (   )     whose efficient 

frontiers are composed of one region and       is the set of node pairs (   )     that 

have one efficient solution. The set of all node pairs constitute the set         

              Let the variables     and     for (   )        denote the distance and 

radar detection threat values chosen between nodes   and     
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Figure 5.14 An Example Efficient Frontier Approximated for Nodes (a,b) in Eboth 

 

 

 

The formulation for the bi-objective TSP with node pairs connected with infinitely 

many efficient solutions is given below: 

      ∑    (   )            (5.66) 

        ∑    (   )           (5.67) 

        (   )(    (   ))     (   )         (5.68) 

          (   )(    (   ))      (   )         (5.69) 

       (   )(    (   ))        (   )          (5.70) 

       (   )(    (   ))        (   )          (5.71) 

          (   )(    (   ))        (   )          (5.72) 

         (   )       (   ) (  (  
       (   )

   (   )    (   )
)
 (   )

)

   (   )

    (   )    

        (   )          (5.73) 

        (   )     (   )    (   )      (   )    (   )     (   )    (   )  

                     (   )         (5.74)  
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  (   )    (   )    (   )    (   )        (   )          (5.75) 

  (   )    (   )         (   )         (5.76) 

  (   )    (   )         (   )          (5.77) 

  (   )    (   )    (   )      (   )          (5.78) 

  (   )    (   )         (   )          (5.79) 

  (   )    (   )    (   )         (   )          (5.80) 

         (   )(    (   ))        (   )         (5.81) 

                (    (   ))       (   )         (5.82) 

          (   )        (   ) (  (  
        (   )

   (   )     (   )
)
 (   )

)

   (   )

  (    (   ))   

        (   )         (5.83) 

∑   (   )        ∑   (   )                               (5.84) 

∑ ∑   (   )                                  ⌊   ⌋      (5.85) 

    (   )          (   )                    (5.86) 

              (   )       (5.87)  

  (   )            (   )                (5.88)  

  (   )            (   )                (5.89)  

 

We minimize total distance traveled and total radar detection threat measure in (5.66) 

and (5.67), respectively. The variables   (   ) determine whether we use any connection 

between nodes (   )    or not. If   (   ) gets the value 1, we do not use any connection 

between nodes (   ); if   (   )  gets the value 0, we use a connection between nodes 

(   )  

 

For the node pairs that are connected with a single efficient arc ((   )       )  we 

either use the efficient arc between them (if   (   )   ) or set that arc’s objective 
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values to 0 (if   (   )   ). The     for (   )        will always be zero, however we 

wrote (5.69) for the sake of completeness. If   (   )     the     and      get the value 0. 

If   (   )     the     and      get the values    (   )  and      (   )  with (5.68) and 

(5.69), respectively. 

 

For the node pairs whose efficient arcs only move in the outer radar region, we have 

two parts in their efficient frontier: either none of its connections are used (  (   )   ) 

or a connection between (   )         is used (  (   )   )  If an arc is used, its 

distance value should be between [   (   )    (   )] and its radar detection threat value 

should be less than      (   )  We assure these by constraints (5.70), (5.71) and (5.72). 

The arc used should satisfy the    function for (   )  This relationship between     and 

    is given in (5.73). 

 

For the node pairs whose efficient arcs can move in the inner and outer radar regions, 

their efficient frontiers are composed of three parts: either no arc is used (  (   )   )  

an arc moving in the inner radar region is used (  (   )   ) or an arc moving in the 

outer radar region is used (  (   )   )  With (5.74) and (5.75), we use the variables 

  (   )  to write the     value as a convex combination of the points 

(   (   )     (   )    (   )). If no connection between nodes (   ) is used (  (   )   )  

the     takes the value 0 by (5.81). The variable   (   )  equals 1 and all other   (   ) 

        equal 0 with equations (5.75) and (5.76). This makes     be 0 by (5.74). If an 

arc that moves in the inner radar region is used (  (   )   )      is bounded by 

     (   ) in (5.81). The variables   (   ) and   (   ) equal 0 and   (   )   (   )    with 

equations (5.75) and (5.76). Therefore, we write     as a convex combination of    (   ) 

and     (   )  The corresponding     is found by (5.82). If an arc that moves in the outer 

radar region is used (  (   )   )  the variables   (   )  and   (   )  equal 0 and 

  (   )   (   )    with equations (5.75) and (5.76). Therefore, we write     as a convex 
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combination of     (   )  and    (   )  The corresponding     that satisfies the    

function is found by (5.83).  

 

With (5.84), we ensure that there is exactly one incoming arc and one outgoing arc to 

each node. The left hand side of that equation is the total number of unconnected nodes 

from node    There should be exactly two nodes that are connected to each node. 

Therefore, the total number of unconnected nodes from any node   should equal the 

total number of nodes that node   can be connected minus 2 (the node number that each 

node should be connected to). With (5.85), we eliminate subtours. The left hand side of 

the constraint calculates the number of unused node connections from a subset    The 

total number of unused node connections from a subset   is           The two 

subsets   and     should be connected by at least two connections. Therefore, the 

unused node connections between subsets   and     should be at most          

   

 

Similar to finding an efficient solution for the bi-objective shortest path problem with a 

continuous frontier, we consider the first objective as a constraint and minimize the 

second objective. We set an upper bound on the distance value as follows: 

∑    (   )               (5.90) 

 

We also increment the second objective by multiplying the total distance with a very 

small positive constant ( ) to avoid weakly efficient but inefficient solutions. 

        ∑    (   )    ∑    (   )         (5.91) 

 

We use the BARON solver in the GAMS Optimization Package. It is developed to 

solve nonlinear and mixed-integer nonlinear programs. For more details on this solver, 

please see http://www.gams.com/dd/docs/solvers/baron.pdf. 

 

The efficient frontier of the bi-objective routing problem is made up of infinitely many 

efficient solutions. To find an approximate representation of the efficient frontier, we 

http://www.gams.com/dd/docs/solvers/baron.pdf
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may discretize it and find a representative set of efficient solutions. However, these 

representative efficient tours are approximate since they are formed from approximated 

efficient frontiers of arcs, and there may not exist true arcs with exactly the assumed 

objective values. For each consecutive target on an efficient tour, we use an arc with 

objective values that satisfy the equation approximating that target pair’s efficient 

frontier. To find a set of real objective values for each consecutive target pair’s arc that 

are close to the assumed objective values, we use the heuristic we develop for finding 

the minimum RDT value corresponding to a D. This way, we generate a new set of true 

objective values where each representative approximate efficient tour is replaced with a 

real tour.  

 

5.11 Comparison of Solutions for Discretized and Continuous Terrain 

We generate a UAV routing problem with five targets and four radars on a 400 km
2
 

terrain. The placement of the targets and radars can be seen in Figure 5.15. The targets 

are located at (3, 17), (6,1), (10, 5), (15, 3) and (16, 14). The radars are located at (5, 

12), (9, 5), (12, 16) and (16, 8).  Our developments for the continuous terrain are based 

on nonoverlapping radar regions and a single radar region affecting each target pair.  

Therefore, we created a problem situation that conforms with these assumptions. 

 

We solve the routing problem for both discretized and continuous terrain 

representations. We divide the terrain into 20 by 20 kms for the discretized 

representation.  As the UAV has more flexibility of movement in the continuous terrain 

case, we expect to obtain better results in both objectives. 

 

The efficient set of the arcs between target pairs in the discretized terrain are generally 

dominated by those in the continuous terrain, as expected. An example efficient frontier 

can be seen for the arcs between targets 4 and 5 in Figure 5.16.  
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Figure 5.15 An Example UAV Routing Problem 

 

 

 

 

 

Figure 5.16 Efficient Frontier for the Arcs Between Targets 4 and 5 

 

 
  

We also generate the efficient frontier of the bi-objective TSP for the two terrain types. 

For the continuous terrain, we approximate the frontier with 10 representative efficient 
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points. Then we find the real tours corresponding to the representative tours.  They can 

be seen in Figure 5.17. The efficient frontier of the continuous terrain representation 

dominates the efficient set of discretized terrain representation. The order of visit to the 

targets of the efficient tours turned out to be the same for both terrains.  

 

 

 

 

Figure 5.17 Efficient Frontier for the Tours  

 
 

5.12 Integrating the Bi-Objective Routing Problem in Continuous Terrain to the 

Interactive Algorithm 

The bi-objective routing problem in the continuous terrain can be solved with the 

interactive algorithm we develop in Chapter 3. However, there would be infinitely 

many efficient solutions and we may need to find a large number of them to arrive at 

the best solution of the DM. A computationally efficient method would be to discretize 

the efficient frontier and find a representative set of efficient solutions to be presented 

to the DM. For this, the efficient frontier can be divided into k intervals between two 

extreme efficient solutions. Let the left extreme solution of the MOTSP have distance 
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and radar values     and        respectively. Similarly, let the right extreme solution 

be (         )  The interval           can be divided into k intervals, each having 

length,   
       

 
  In total, we would have k+1 efficient solutions that represent the 

efficient frontier. The first representative solution has distance      the second 

representative solution would have distance      , and in general terms, the 

    representative solution would have distance     (   ) . 

Suppose we have the efficient frontier shown in Figure 5.15. Initially, we need to find 

the extreme efficient solutions. To find the left extreme solution (smallest distance and 

largest    ), we solve the single objective TSP using the Concorde package. We 

prepare the edge costs (   ) as input to Concorde by setting the efficient solution with 

the smallest distance as their edge costs as: 

    {
(   )   (   )  (     )     (   )           (   )       

(   )   (   )  (     )     (   )      (   )  (            )
  

We then minimize the sum of arc costs using Concorde. 

 

 Similarly, to find the right extreme solution, we prepare the edge costs as follows: 

    {
(   )   (   )  (     )     (   )           (   )       

(   )   (   )  (     )     (   )      (   )  (            )
  

 

Then, we decide on the interval length,    This length could be kept large initially and 

decreased when more precision is required. In the example in Figure 5.18 we divide the 

frontier into 10 equally spaced intervals. Here, the objective values of each 

representative solution should be found. Since the distance value of the 

    representative solution is approximately     (   ) , the radar detection threat 

value of this solution can be found by minimizing (5.91) subject to constraints (5.68)-

(5.90). When we solve this model, we may come up with a solution that has a distance 

value less than     (   )  if the efficient frontier is not continuous at some points. 

However, the resulting solution could still be used as a representative solution since it 

is also an efficient solution for the MOTSP.  
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Figure 5.18 An Example Efficient Frontier for the MOTSP 

 

 

 

Knowing the objective function values of a number of solutions, we can reduce the 

most preferred region around the representative solution that is preferred to all its 

adjacent efficient solutions. Here, actually we are not sure whether the two adjacent 

representative solutions are also adjacent efficient solutions. Therefore, we reduce the 

most preferred areas to rectangles (not triangles) between the most preferred 

representative point and its adjacent representative points. This part is shown in Figure 

5.19.  

 

We may want to reduce the most preferred region of the DM further. This time, the 

most preferred region can be divided into smaller intervals and representative points 

inside that region can be found. Using the new representative points, a new region 

around the most preferred representative and its adjacent representative points can be 

defined. This process can continue until a desired precision on the most preferred 

region is obtained.  

 

 

To
ta

l R
ad

ar
 D

e
te

ct
io

n
 T

h
re

at
 

M
e

as
u

re
 

Total Distance 

Efficient Frontier Representative Eff. Solns.



  

108 

 

 

Figure 5.19 Most preferred region of the DM 
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CHAPTER 6 

 

 

6 CONCLUSIONS 
 

 

 

In this thesis, we study the bi-objective routing problem. We consider this problem as a 

MOTSP with multiple efficient arcs between nodes. We develop solution procedures to 

generate efficient solutions. We define rules that connect the two combinatorial 

problems that constitute the bi-objective routing problem: MOTSP and MOSPP. We 

consider the routing problem on two terrain structures: discretized terrain and 

continuous terrain.  

 

We first develop a general interactive algorithm that finds the most preferred solution 

of a DM whose preferences are consistent with a quasiconvex preference function. This 

algorithm is applicable for any bi-objective integer program. We apply the algorithm to 

the bi-objective routing problem. To find supported efficient tours, we use the 

Concorde software. To find unsupported efficient tours inside a region defined by 

constraints, we need to provide all efficient arcs as input. Using the constraints on the 

objective space, we develop rules that connect the two subproblems TSP and SPP. 

These rules helped reduce the required number of efficient arcs to be used in the 

efficient tours. Using the efficient tours found so far in a region, we improved the upper 

bound on the combined objectives defining that region which was initially suggested by 

Tuyttens et al. (2000). We demonstrate our solution approach on the bi-objective 

routing problem for UAVs. In this problem, we consider a two dimensional terrain that 

is discretized with equidistant grid points. We also solved randomly generated 

instances with varying number of efficient arcs.  
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To the best of our knowledge, this is the first study that solves the bi-objective TSP 

considering all multiple efficient arcs between node pairs and selecting the ones that 

suit the DM’s best tour. We use the constraints in the objective space of the bi-

objective TSP to reduce the efficient arcs between node pairs. We develop properties to 

improve the efficiency of the algorithm. We find a number of lower bound 

approximations to reduce the arcs of each node pair, which becomes computationally 

hard as the number of nodes and the number of constraints increase. We develop some 

rules to decrease the required lower bound approximations. Also, we avoid searching a 

solution that has already been found by keeping track of all efficient solutions and 

modifying the procedure that finds adjacent efficient solutions.     

 

We also study the routing problem in continuous terrain for the UAV routing problem. 

The objectives of this problem; minimization of distance traveled and minimization of 

radar detection threat; are nonlinear in terms of the decision variables. This nonlinearity 

makes the solution process computationally harder. We develop some properties for the 

efficient arcs between target pairs when there exists a single radar between them. We 

use these properties in the heuristic and exact approaches we develop to find efficient 

arcs. Knowing a number of efficient arcs, we generate the efficient frontier of the bi-

objective SPP. We then solve the bi-objective TSP using a mixed integer nonlinear 

program. We also discuss the implementation of the interactive algorithm to the bi-

objective routing problem in continuous terrain. To the best of our knowledge, this is 

the first study that considers the measure of radar detection threat developed by 

Gudaitis (1994) in continuous terrain.   

 

In this thesis, we considered a static setting for the routing problem. However, some of 

the environmental parameters may be uncertain. For example, the weather conditions 

and hence the parameter values of different arcs may change during the flights of air 

vehicles, the travel times may vary due to traffic congestions for land transport, some 

parts of a tour may get blocked and unconnected in road networks, etc. One way to deal 

with uncertainties is to implement solutions that are less sensitive to changes in the 

environment. These solutions can be considered as robust solutions. Although these 
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solutions may not be “best” for the problem where the environment is known with 

certainty, they may be preferable because they are robust to changes in the 

environment. For example, a dynamic structure could be implemented in the routing 

problem where the positions of the nodes could vary dynamically, without certainty. 

Another example could be given for the UAV routing problem where the radar 

sites/targets change their locations. For this case, it would be useful to develop 

approaches that account for this dynamic nature.  

 

Our approaches can also be adapted for different situations. For example, the routing 

problem can be generalized to multiple vehicles, each vehicle visiting a subset of 

nodes. For the UAV routing problem, in continuous terrain case, we currently assume 

that at most a single radar is located between two targets. If there are more radars, the 

problem becomes harder with more decision variables. Additionally we need to find the 

entrance and exit points to all radar regions and the movement characteristics inside 

those regions. Another issue would be considering regions where the radar sites 

overlap. For those regions, the detection probability should be larger than the 

summation of all the detection probabilities from each radar region. We can use a 

different formulation to amplify the cumulative effect of the radars. This problem 

would be more realistic though, and therefore is meaningful as a future study. Also, 

different real life properties can be incorporated into the UAV routing problem. The 

terrain can be generalized to three dimensions and obstacles on the terrain can be 

incorporated into the model. For the discretized terrain, incorporating the obstacles 

would be easier than it would be for the continuous terrain. For the discretized terrain, 

we may simply forbid movement to the grid points at which the obstacle is located. 

Although this might lead to missing some moves that are feasible, approximate 

efficient arcs could be found. For the continuous terrain, the obstacles may disrupt the 

movement model inside the radar regions. The radar regions may become nonconvex. 

Therefore, we may not use the property that the middle points lie on a line and 

consequently we may not be able to use the heuristic we develop. A new approach that 

covers nonconvex radar regions would be needed. In our approach, we assume that all 

targets have the same priority. A different variation of this problem could be to allow 
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assigning priorities to targets for the order of visit or to introduce time windows for 

visiting each target.  

 

In this study, we develop an interactive algorithm for bi-objective integer programs. In 

the presence of two objectives, we put constraints on the objective space to eliminate 

the regions where the DM’s most preferred solution cannot lie. If we consider more 

objectives, the constraints we put in the objective space would be different. We may 

need additional binary variables for the solution. These would result in problems that 

are computationally harder to solve. As a future work, the interactive algorithm can be 

generalized for more than two objectives. 
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APPENDIX A 

 

 

A.  MARTINS ALGORITHM 

 

 

 

Martin’s algorithm is an extension of Dijkstra’s algorithm (Cook et al., 1998 p. 31) to 

the multi-objective case. Dijkstra’s algorithm is an exact algorithm that is developed 

for the single objective SPP. In this algorithm, all the nodes have either permanent or 

temporary labels. If a node’s label is set as permanent, it means that the shortest path 

from the initial node to that node is found. In each iteration, the label with the 

minimum value is set as permanent. The labels of all successors of that node are 

recalculated. The algorithm terminates when all the node labels are set as permanent. In 

Martin’s algorithm, there may be multiple labels to the nodes, since there may be many 

efficient arcs from the initial node to any intermediate node. In each iteration, one label 

(the label that has the smallest value in the first objective) is set as permanent. From 

this node, all its successors’ labels are recalculated. There is a dominance check for 

each newly created arc to a node: if the arcs corresponding to the previous labels are 

better than the newly created arc, in terms of all objectives, this new arc is dominated. 

Another possibility is that the arc corresponding to a new label dominates arcs of a 

number of previously created labels. If neither of these cases occur, the label is put in 

the label list of that node. The algorithm terminates when all of the labels are set as 

permanent. This algorithm is developed for the sum-type objectives (where the 

objective value is the sum of the values of the components that are in the solution). 

Gandibleux et al. (2006) extend Martin’s algorithm to include one max-min function 

(where the corresponding objective’s is equal to the value of the minimum of its 

components), additionally.  
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APPENDIX B 

 

 

B.  COMPUTATIONAL RESULTS FOR THE INTERACTIVE 

ALGORITHM ON BI-OBJECTIVE ROUTING PROBLEM 
 

 

 

We consider UAV routing problem with five and six targets. For the five target 

problem, we solve the routing problem in the terrain of Figure 4.8. For the six target 

problem, we randomly generate the two objective function values (total distance and 

total radar detection threat) for the efficient arcs between target pairs. We consider 

three types of problems: 

 6-target MOTSP with 3 efficient arcs between target pairs 

 6-target MOTSP with at most 10 efficient arcs between target pairs 

 6-target MOTSP with 15 efficient arcs between target pairs 

 

We solve all the problems assuming that the DM has an underlying Tchebycheff 

preference function  ( )         (     
 ) (    )(     

 )  to be minimized, 

which we pretend is unknown to us at the beginning of the algorithm. The ideal points 

  
  and   

  are taken as 0. We solve the constrained TSP directly and use tours for lower 

bounds. 

 

The efficient frontier of the first problem (5-target MOTSP) is given in Figure 4.10. 

The results of the algorithm for three different λ1 values are summarized in Table B.1. 

For the first problem with six targets (6-target MOTSP with 3 efficient arcs between 

target pairs), we generate 3 efficient arcs between all node pairs. We generate the 
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efficient frontier of this problem by enumeration. It is composed of 60 efficient 

solutions and 13 efficient tours. The results of the algorithm for three different λ1 

values are summarized in Table B.2. For the second problem with six targets (6-target 

MOTSP with at most 10 efficient arcs between target pairs), we generate 10 efficient 

arcs between three node pairs, 5 efficient arcs between three target pairs, one efficient 

arc between two target pairs and 3 efficient arcs between the remaining target pairs. Its 

efficient frontier is composed of 75 efficient solutions and 11 efficient tours. The 

results of the algorithm for three different λ1 values are summarized in Table B.3. The 

results of the last problem (6-target MOTSP with 15 efficient arcs between target pairs) 

for three different  λ1 values are summarized in Table B.4. We could not generate the 

efficient frontier of this problem due to its size.  

  

 Table B.1 Results of the algorithm for 5-target MOTSP 

Weight of first 

objective (λ1) 

Number of 

efficient tours 

found 

Number of 

comparisons 

Number of arcs reduced by bounds on 1
st
 

obj. / 2
nd

 obj. / UB on combined obj. 

0.15 13 9 39 / 8 / 2 

0.25 13 9 37 / 1 / 3 

0.45 9 4 37 / 0 / 10 

 

 

  Table B.2 Results of the algorithm for 6-target MOTSP with 3 efficient arcs 

Weight of first 

objective (λ1) 

Number of 

efficient tours 

found 

Number of 

comparisons 

Number of arcs reduced by bounds on 1
st
 

obj. / 2
nd

 obj. / UB on combined obj. 

0.25 23 13 0 / 17 / 38 

0.50 23 15 0 / 0 / 43 

0.80 10 9 39 / 0 / 15 
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  Table B.3 Results of the algorithm for 6-target MOTSP with at most 10 efficient arcs 

Weight of first 

objective (λ1) 

Number of 

efficient tours 

found 

Number of 

comparisons 

Number of arcs reduced by bounds on 1
st
 

obj. / 2
nd

 obj. / UB on combined obj. 

0.25 18 14 0 / 14 / 66 

0.45 17 11 0 / 0 / 51 

0.75 12 8 16 / 0 / 43 

 

 

  Table B.4 Results of the algorithm for 6-target MOTSP with 15 efficient arcs 

Weight of first 

objective (λ1) 

Number of 

efficient tours 

found 

Number of 

comparisons 

Number of arcs reduced by bounds on 1
st
 

obj. / 2
nd

 obj. / UB on combined obj. 

0.25 29 15 0 / 0 / 80 

0.45 45 31 0 / 0 / 262 

0.75 26 19 0 / 0 / 98 

 

 

In each problem instance, for some λ1 values, some bounds became redundant and did 

not result in arc reductions. However, the arc reductions are generally effective. The 

bounds, except for the upper bounds on the combined objective, became ineffective in 

the largest problem instance (Table B.4). Although we could not generate the whole 

efficient set for this problem, we believe that this is due to the efficient set approaching 

a continuous frontier. 
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APPENDIX C 

 

 

C.  REGRESSION ANALYSIS FOR xm vs. ym 
 

 

 
We evaluate the regression analysis results for    versus   . The normal probability 

plot and histogram in Figure C.1, show that the error terms are normally distributed. 

We test homoscedasticity with “Versus Fits” graph. The variance of the residuals 

seems to increase with increasing fitted values. We can say that the constant variance 

assumption may be violated for the residuals. The error terms do not follow a pattern in 

the “Versus Order” graph. They are almost randomly distributed around 0. We can 

conclude that the error terms are independent.  
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Figure C.1 Residual Plots for ym 
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The results of the regression can be seen in Figure C.2. 

The regression equation is 

ym = - 0.0490 - 5.19 xm 

 

Predictor       Coef   SE Coef        T      P 

Constant   -0.048980  0.008399    -5.83  0.000 

xm          -5.19320   0.02389  -217.41  0.000 

 

S = 0.0807021   R-Sq = 98.3%   R-Sq(adj) = 98.3% 

 

Analysis of Variance 

Source           DF      SS      MS         F      P 

Regression        1  307.83  307.83  47265.45  0.000 

Residual Error  814    5.30    0.01 

Total           815  313.13 

 

Unusual Observations 

Obs      xm       ym      Fit   SE Fit  Residual  St Resid 

  1  -0.036  0.16907  0.13849  0.00759   0.03058      0.38 X 

  2  -0.041  0.20500  0.16446  0.00748   0.04054      0.50 X 

  3  -0.051  0.23953  0.21639  0.00726   0.02314      0.29 X 

  4  -0.056  0.25569  0.24236  0.00715   0.01333      0.17 X 

  5  -0.056  0.25569  0.24236  0.00715   0.01333      0.17 X 

  6  -0.056  0.28473  0.24236  0.00715   0.04237      0.53 X 

  7  -0.066  0.31642  0.29429  0.00693   0.02213      0.28 X 

  8  -0.066  0.31642  0.29429  0.00693   0.02213      0.28 X 

557  -0.442  2.05560  2.24745  0.00388  -0.19185     -2.38R 

619  -0.402  2.20420  2.03972  0.00330   0.16448      2.04R 

622  -0.402  2.21295  2.03972  0.00330   0.17323      2.15R 

628  -0.402  2.23015  2.03972  0.00330   0.19043      2.36R 

689  -0.497  2.35410  2.53308  0.00487  -0.17898     -2.22R 

714  -0.442  2.42175  2.24745  0.00388   0.17430      2.16R 

716  -0.442  2.42835  2.24745  0.00388   0.18090      2.24R 

747  -0.527  2.49515  2.68880  0.00547  -0.19365     -2.41R 

753  -0.462  2.53170  2.35124  0.00422   0.18046      2.24R 

755  -0.467  2.53875  2.37720  0.00431   0.16155      2.00R 

766  -0.467  2.54950  2.37720  0.00431   0.17230      2.14R 

771  -0.472  2.57180  2.40317  0.00440   0.16863      2.09R 

793  -0.482  2.64040  2.45510  0.00458   0.18530      2.30R 

794  -0.487  2.64585  2.48107  0.00468   0.16478      2.05R 

803  -0.492  2.70225  2.50703  0.00477   0.19522      2.42R 

806  -0.557  2.65080  2.84459  0.00609  -0.19379     -2.41R 

808  -0.487  2.68645  2.48107  0.00468   0.20538      2.55R 

810  -0.497  2.70665  2.53300  0.00487   0.17365      2.16R 

812  -0.502  2.72795  2.55897  0.00497   0.16898      2.10R 

814  -0.662  2.64920  3.38988  0.00840  -0.74068     -9.23RX 

815  -0.352  2.69315  1.77999  0.00287   0.91316     11.32R 

816  -0.382  2.63775  1.93578  0.00308   0.70197      8.70R 

R denotes an observation with a large standardized residual. 

X denotes an observation whose X value gives it large leverage. 

 

Figure C.2 Results of Regression Analysis for Middle Points of Entrance and Exit Points 
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We have 30 unusual observations among 816 data points which is almost 3.68%. 22 

observations have a large standardized residual value which makes 2.70% of the data. 

Normally, we expect at most 4.55% of the data to have standardized values less than -2 

or greater than 2. Our data satisfies this condition. 

 

We also check how total distance traveled ( ) changes with respect to other variables 

(            )  The scatter plots can be seen in Figure C.3. As the entrance and exit 

points increase (leading to increase in their middle points), the distance of the arc 

increases. This is due to the fact that the arc of the second extreme solution has higher 

entrance and exit points to the radar region compared to the first extreme solution. The 

increase in the entrance and exit points makes the solutions move closer to the second 

extreme solution; for which the distance of the arcs increase and their radar detection 

threats decrease. As we move to the second extreme solution from the first extreme 

solution, the curvature of the arc inside the radar region increases. The first extreme 

solution is straight, while the second extreme solution has the highest curvature with 

          The first extreme solution’s arc can also be considered as a part of a circle 

that has       
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Figure C.3 Scatter Plot of (D) vs. (yen,yex,r,ym) 
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APPENDIX D 

 

 

D.  METHODS TO APPROXIMATE INTEGRALS 

 

 

 

For all methods, the range       is divided into   equal length intervals for the length  

  
   

 
  and we assume that  ( )  is continuous on       and the interval       is 

finite. 

 

Trapezoid Rule 

For   equal length intervals, we have     points in the range        Let         

  
   

 
         

   

 
        and     (  )  we have the following 

approximation. 

∫  ( )  
 

 
 

 

 
(    ∑   

   
      )      (D.1) 

This rule combines the consecutive points            with straight lines and makes 

  trapezoids. It then calculates the sum of the areas of these trapezoids. 

Midpoint Rule 

Let      (
 

 
)

   

 
      (

 

 
)

   

 
       (  

 

 
)

   

 
        

(  
 

 
)

   

 
 and     (  )  we have the following approximation. 

∫  ( )  
 

 
  ∑  (  )

 
           (D.2) 
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This rule again combines the consecutive points            with straight lines and 

makes   trapezoids. The sides of the trapezoids are drawn from the middle points    

of the consecutive points     The integral is approximated as the sum of these trapezoid 

areas.  

 

Simpson’s Rule 

For this rule, we should have an even number of subintervals,    Let           

   

 
         

   

 
        and     (  )  we have the following 

approximation. 

∫  ( )  
 

 
 

 

 
(                        )     (D.3) 

This rule combines the consecutive points            with parabolas. The integral 

is approximated as the sum of these parabolic regions’ areas.  
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APPENDIX E 

 

 

E.  FIBONACCI SEARCH METHOD 

 

 

 

Finobacci Search Method is used for finding the global minimum (  ) of a strictly 

quasiconvex function   over            We summarize the steps of this method 

(Bazaraa et al., 2006). For this method,         and              for       

Let   be the length of uncertainty and   be the distinguishability constant. Number of 

observations is set to the minimum   such that    
   

 
  Also, let       

(
    

  
) (     ) and       (

    

  
) (     )  Start the iteration counter      

Step F.1 If  (  )   (  )  go to Step F.2. Otherwise, go to Step F.3. 

Step F.2 Set                                     (
      

    
) (     

    )  Increment        If        go to Step F.4. Otherwise, go to Step F.1. 

Step F.3 Set                            (
      

    
) (         )      

     Increment        If        go to Step F.4. Otherwise, go to Step F.1. 

Step F.4 Set                    If  (  )   (  )  set                  

Otherwise, set                  Set    
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