
MODEL-DRIVEN VARIABILITY MANAGEMENT IN CHOREOGRAPHY
SPECIFICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELMA SÜLOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

SEPTEMBER 2013

Approval of the thesis:

MODEL-DRIVEN VARIABILITY MANAGEMENT IN CHOREOGRAPHY
SPECIFICATION

submitted by SELMA SÜLOĞLU in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Ali H. Doğru
Supervisor, Computer Engineering Department, METU

Assist. Prof. Dr. Bedir Tekinerdoğan
Co-supervisor, Computer Engineering Dept., Bilkent Uni.

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Prof. Dr. Ali H. Doğru
Computer Engineering Department, METU

Assoc. Prof. Dr. Pınar Karagöz
Computer Engineering Department, METU

Assist. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Assist. Prof. Dr. Aykut Erdem
Computer Engineering Department, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SELMA SÜLOĞLU

Signature :

iv

ABSTRACT

MODEL-DRIVEN VARIABILITY MANAGEMENT IN CHOREOGRAPHY
SPECIFICATION

Süloğlu, Selma

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Ali H. Doğru

Co-Supervisor : Assist. Prof. Dr. Bedir Tekinerdoğan

September 2013, 352 pages

In this thesis, model driven variability management in choreography model is intro-
duced, which brings variability management and choreography specification together
in one single model. Service Oriented Architecture (SOA) is a means of facilitat-
ing inner and inter-organizational computing which reveals a reusable architecture
comprising service consumer, producer and broker. To achieve assembling and com-
position of services, orchestration and choreography concepts are utilized, which are
two interrelated views of the system architecture. In the architectural level, orches-
tration and choreography models are tailored by variability specifications in order to
deal with reuse challenge. Several approaches have been introduced to support vari-
ability in orchestration and choreography languages. Unfortunately, variability spec-
ifications are not explicitly addressed in current choreography languages and are not
integrated with variable orchestration specifications. Specification of consistent vari-
ability binding and configuration of interacting services accordingly have not been
considered in the choreography language level. Moreover, there is a lack of support
to reuse existing choreographies. A metamodel and its realization, XChor language
is presented and validated with regard to service variability needs and service interac-
tions patterns. XChorS Tool is developed to facilitate pre and post analysis of models,
configuration of models regarding variability bindings in a consistent way and trans-
formation of models to existing languages. Verification of XChor models is enabled

v

and implemented by means of transforming to a model checking system, Featured
Transition Systems. Lastly, variability management of assets and artifacts in software
product lines with the help of XChor metamodel and language is explained. Case
studies are provided for demonstration purposes.

Keywords: Service-Oriented Architecture, Choreography Model, Choreography Lan-
guage, Variability Management, Model Driven, Software Product Lines

vi

ÖZ

KOREOGRAFİ TANIMINDA MODEL TABANLI DEĞİŞKENLİK YÖNETİMİ

Süloğlu, Selma

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali H. Doğru

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Bedir Tekinerdoğan

Eylül 2013 , 352 sayfa

Bu tezde, değişkenlik yönetimini ve koreografi belirtimini bir modelde birleştiren, ko-
reografi modelinde model odaklı değişkenlik yönetimi önerilmiştir. Servis Odaklı Mi-
mari (SOM), servis kullanıcılarını, sağlayıcılarını ve arabulucuları içeren ve yeniden
kullanılabilir bir mimari temelinde organizasyonların kendi içinde ve organizasyonlar
arası birliktelikler gerektiren sistemlerin gerçeklenmesine olanak sağlar. Servisleri bi-
raraya getirmek ve onların tümleştirilmesini sağlamak için SOM’da orkestrasyon ve
koreografi kavramları kullanılır. Bu iki kavram birbirleriyle sıkı ilişkiler içerisinde
olan sistem mimarisinin birbirleriyle ilişkili bakış açılarıdır. Mimari seviyede, yeni-
den kullanılabilirliği sağlamada yaşanan zorluklarla baş etmek için orkestrasyon ve
koreografi değişkenlik tanımlamalarına göre uyarlanır. Değişkenliği orkestrasyon ve
koreografi seviyesinde destekleyen birçok yaklaşım bulunmaktadır. Ancak şu anki
koreografi dillerinde değişkenlik tanımlamalarına açık bir şekilde değinilmemiş olup
değişken orkestrastyonlarla bütünleştirilmesi yapılmamaktadır. Birbirleriyle ilişkili
olan servislerin tutarlı bir şekilde değişkenlik ilişkilendirilmesi ve bu ilişkilendirmeye
göre konfigüre edilmesi koreografi dili seviyesinde ele alınmamıştır. Ayrıca, varolan
değişken koreografilerin kullanımı konusunda dil seviyesinde destek verilmemekte-
dir. Bir metamodel ve gerçekleştirimi olan XChor dili anlatılmış olup XChor dili
servis değişkenlik gereksinimlerine ve servis etkileşim örgülerine göre geçerlenmiş-
tir. XChor modellerini ön ve son analizlerini yapmak, değişkenliği tutarlı bir şekilde
ilişikilendirerek modelleri konfigüre etmek ve varolan dillere dönüştürmek için XC-

vii

horS aracı geliştirilmiştir. XChor modellerinin Özellikli Geçiş Sistem modellerine
dönüştürülme kuralları tanımlanarak ve gerçeklenerek XChor modellerinin doğrulan-
ması adım adım anlatılmıştır. Son olarak yazılım üretim bantlarında varlık ve yapı
birimlerinde değişkenlik yönetiminin XChor metamodeli ve dili ile nasıl yapılacağı
gösterilmiştir. Durum senaryoları gösterim amaçlı sunulmuştur.

Anahtar Kelimeler: Servis Odaklı Mimari, Koreografi Modeli, Koreografi Dili, De-
ğişkenlik Yönetemi, Model Tabanlı, Yazılım Üretim Bantları

viii

To my family and the ones who are now reading this page

ix

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Ali H. Doğru and co-supervisor Asso-
ciate Professor Bedir Tekinerdoğan for their constant support, guidance and friend-
ship. It was a great honor to work with them for the last seven years and our coop-
eration influenced my academical and world view highly. I also would like to thank
Associate Professor Halit Oğuztüzün for his support and guidance. He also motivated
and infuenced me highly in scientific context.

And there are a lot of people that were with me in these seven years. They defined
me, they made me who I am, they are true owners of this work. It is not possible to
write down why each of them is important to me and this work, because it will take
more space than the work itself. I am very grateful to all people I know during my
research assistantship in METU-CENG, they changed me deeply; my vision towards
life, happiness and friendship. I am very luck to have them all. So I’ll just give names
of some of them; Hande Çelikkanat, Ömer Nebil Yaveroğlu, Burçin Sapaz, Sinan
Kalkan, Nilgün Dağ, Utku Erdoğdu, Onur Deniz, Özgür Kaya, Gökdeniz Karadağ,
Can Eroğul, Ali Anıl Sınacı, Erdal Sivri, Hilal Kılıç, and Cengiz Toğay. I would also
like to thank you Meltem Turhan Yöndem for always listening and leading me from
the start of my masters. I am greatly indebted for Utku Erdoğdu’s endless time and
effort preparing me last versions of latex. This work is also supported by TÜBITAK-
BIDEB National Graduate Scholarship Programme for PhD (2211).

Lastly, sincerest thanks to each of my family members for supporting and believing
in me all the way through my academic life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xviii

LIST OF FIGURES . xxii

LIST OF ABBREVIATIONS . xxiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Background . 3

1.2 Problem Statement . 5

1.3 Approach . 8

1.4 Contribution . 10

1.5 Outline Of Thesis . 11

2 BACKGROUND . 13

2.1 Chronological History of Web Standards, Organizations and
Paradigms . 13

xi

2.2 Definitions and Main Terminology 18

2.2.1 Service Oriented Architecture (SOA) 18

2.2.2 Composition in SOA 19

2.3 Systematic Literature Review 21

2.3.0.1 Orchestration Languages 23

2.3.0.2 Choreography Languages 28

2.3.1 Variability Management 34

2.3.1.1 Variability in Software Systems 34

2.3.1.2 Variability Notion in SOA 35

2.3.1.3 Variation Support in Existing Approaches 36

2.3.1.4 Existing Variability Models 40

2.4 Comparison Framework . 45

2.4.1 Variability Modeling 48

2.4.2 Composition and Configuration of Models 54

2.4.3 Tool Support . 56

2.4.4 Discussion and Problem Statement 60

3 VARIABILITY IN CHOREOGRAPHY LANGUAGE: XCHOR . . . 63

3.1 Variability Modeling Requirements for Choreography Lan-
guages . 63

3.2 Case Study . 65

3.2.1 Case Study: Travel Itinerary System 65

3.2.2 Case Study: Adaptable Security System 67

xii

3.3 A Metamodel for Variability Management in Choreography . 69

3.3.1 Variability Specification 71

3.3.2 Choreography Specification 72

3.3.3 Choreography to Variability Mapping 72

3.4 XChor Language . 74

3.4.1 XChor Language Constructs 74

3.4.1.1 Variation Specification Constructs . . 74

3.4.1.2 Choreography Specification Constructs. 85

3.4.1.3 Variation and Choreography Mapping
Constructs. 97

3.4.2 XChor Models 105

3.4.2.1 Configuration Interface 105

3.4.2.2 Choreography 111

3.4.2.3 Service and Choreography Interface . 115

3.5 Tool Support for XChor . 116

3.6 Application Development with XChor 127

3.7 XChor Language Evaluation under Comparison Framework . 128

3.8 Validation of XChor . 129

3.8.1 Modeling Service Variability through XChor Lan-
guage . 129

3.8.1.1 Exposed variability 131

3.8.1.2 Composition variability 132

xiii

3.8.1.3 Partner variability 133

3.8.1.4 Partner exposed variability 134

3.8.2 Modeling Choreography through XChor Language 135

3.8.2.1 Single-transmission bilateral interac-
tion patterns 135

3.8.2.2 Single-transmission multilateral inter-
action patterns 143

3.8.2.3 Multi-transmission interaction patterns 155

3.8.2.4 Routing patterns 166

4 VERIFICATION OF XCHOR MODELS 171

4.1 Need to Verify . 171

4.2 Verification Approaches for Variable Systems 172

4.3 Model Checking of Variable XChor Choreographies 173

4.3.1 From Variability Model in XChor to TVL Feature
Model . 174

4.3.2 From XChor Behavior Model to fPromela 175

4.3.3 Model Checking After Transformation 180

4.4 Verification of The Case Study 181

4.4.1 Travel Itinerary - Single Choreography 181

4.4.2 Biometric Security System - Multiple Choreography183

4.5 Discussion . 189

5 TRANSFORMATION OF XCHOR MODELS TO EXISTING LAN-
GUAGES . 193

xiv

5.1 Transformation to BPEL4Chor, VxBPEL and BPEL 194

5.1.1 Differences and Similarities Between Models . . . 194

5.1.1.1 BPEL4Chor and XChor Models . . . 194

5.1.1.2 VxBPEL and XChor Models 195

5.1.1.3 BPEL and XChor Models 196

5.1.2 Assumptions and Requirements for Model Trans-
formation . 196

5.1.2.1 XChor Models to BPEL4Chor Trans-
formation 196

5.1.2.2 BPEL4Chor Models to XChor Trans-
formation 197

5.1.2.3 XChor Model to VxBPEL Transfor-
mation 198

5.2 The Transformation Approach to BPEL4Chor, VxBPEL and
BPEL . 198

5.2.1 Transformation to BPEL4Chor 199

5.2.2 Transformation from BPEL4Chor 199

5.2.3 Transformation to VxBPEL and BPEL 209

6 VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES
WITH XCHOR . 223

6.1 Software Product Lines . 223

6.1.1 Variability Notion in Software Product Lines . . . 227

6.2 Software Product Lines and Variability of SOA 228

6.2.1 Choreography/Orchestration Relation with Asset/Ar-
tifacts . 229

xv

6.2.2 Component and Service Interfaces 231

6.3 Managing Variability with XChor in Software Product Lines 232

6.3.1 Relation of Software Product Line and XChor Con-
cepts . 232

6.3.2 XChor in Software Product Line Framework . . . 234

6.4 Application of our approach to Axiomatic Design for Com-
ponent Orientation . 235

7 CONCLUSION AND FUTURE WORK 237

7.1 Summary . 237

7.2 Contributions . 239

7.3 Evaluation . 241

7.4 Future Work . 242

REFERENCES . 245

APPENDICES

A XCHOR METAMODEL REALIZATION IN XTEXT 259

B TRAVEL ITINERARY SYSTEM IN XCHOR LANGUAGE 283

C ADAPTABLE SECURITY SYSTEM IN XCHOR LANGUAGE . . . 295

D GENERATED FTS FILES FOR VERIFICATION OF CASE STUDIES313

D.1 TVL Feature Model File for Travel Itinerary System 313

D.2 fPromela File for Travel Itinerary System 315

D.3 TVL Feature Model File for Adaptable Security System . . . 324

D.4 fPromela File for Adaptable Security System 325

xvi

E GENERATED BPEL4CHOR, VXBPEL AND BPEL FILES 333

E.1 BPEL4Chor Files - Topology, Grounding and PBDs 333

E.2 VxBPEL and BPEL Files 338

CURRICULUM VITAE . 351

xvii

LIST OF TABLES

TABLES

Table 2.1 Similarities and differences of orchestration and choreography . . . 20

Table 2.2 Publication Sources Searched . 22

Table 2.3 Languages Introduced by Standard Bodies 22

Table 2.4 VxBPEL Language Constructs . 26

Table 2.5 Comparison of variation support in existing approaches 37

Table 2.6 Comparison of variation support in existing approaches 38

Table 2.7 Comparison of variation support in existing approaches - cont’d . . . 39

Table 2.8 Comparison for Variability Modeling Component 49

Table 2.9 Comparison for Variability Modeling Component-cont’d 50

Table 2.10 Comparison for Variability Modeling Component-cont’d 51

Table 2.11 Comparison for Composition and Configuration of Models Compo-
nent . 56

Table 2.12 Comparison of Tool Support Component for Existing Variability
Models . 57

Table 2.13 Comparison of Tool Support Component for Existing Orchestration
and Choreography Languages . 58

Table 3.1 Mapping of Metamodel and XChor Metamodel Concepts 71

Table 3.2 Internal and External Variation Point Syntaxes and Examples 78

Table 3.3 Configuration Variation Point Syntax 80

Table 3.4 Configuration Variation Point Example 81

Table 3.5 Logical Constraint Syntax and Example 83

xviii

Table 3.6 Numerical Constraint Syntax and Example 84

Table 3.7 Send and Receive Atomic Interaction Syntaxes and Examples 90

Table 3.8 Sequence Interaction Syntax and Example 91

Table 3.9 Select Interaction Syntax and Example 92

Table 3.10 Repeat Interaction Syntax and Example 93

Table 3.11 Parallel Interaction Syntax and Example 94

Table 3.12 VMMapping Syntax . 102

Table 3.13 VMMapping Example . 103

Table 3.14 Variability Attachment Syntax . 104

Table 3.15 Variability Attachment Example 104

Table 3.16 Configuration Interface of adaptive security system 107

Table 3.17 Configuration Interface of adaptive security system-contd’ 108

Table 3.18 Configuration Interface of adaptive security system-contd’ 109

Table 3.19 Configuration Interface of comparison orchestration 110

Table 3.20 Adaptable security system choreography 112

Table 3.21 Adaptable security system choreography-cont’d 113

Table 3.22 Adaptable security system choreography-cont’d 114

Table 3.23 Adaptable security system choreography-cont’d 115

Table 3.24 Encryption Service Interface . 116

Table 3.25 Adaptable Security System Choreography Interface 117

Table 3.26 Configured adaptable security system choreography 122

Table 3.27 Configured adaptable security system choreography-cont’d 123

Table 3.28 Algorithmic Complexity of Parsing XChor Models 124

Table 3.29 Algorithmic Complexity of Pre-analysis of XChor Models 125

Table 3.30 Algorithmic Complexity of Configuration of XChor Models 126

Table 3.31 XChor Evaluation under Components of the Comparison Framework 130

xix

Table 3.32 A part of adaptable security system choreography 132

Table 3.33 Newly Specified Variability Binding Effect on Configuration Syntax
and Example . 134

Table 4.1 Variability and Behavior Models in XChor and FTS 174

Table 4.2 Transformation Rules . 177

Table 4.3 Transformation Rules-cont’d . 178

Table 4.4 Transformation Rules-cont’d . 179

Table 4.5 An excerpt of feature list for fPromela specification 180

Table 4.6 An excerpt from constructed feature model in TVL 181

Table 4.7 An excerpt from generated fPromela code for travelitinerary chore-
ography of Travel Itinerary System . 182

Table 4.8 An excerpt from constructed feature model in TVL 183

Table 4.9 An excerpt of feature list for fPromela specification 184

Table 4.10 An excerpt from generated fPromela code for Adaptable Security
System . 184

Table 4.11 An excerpt from generated fPromela code for Adaptable Security
System- cont’d . 185

Table 4.12 Verification Results . 190

Table 5.1 Mapping of Variability Modeling of XChor and VxBPEL 198

Table 5.2 Rules for Transformation to BPEL4Chor 200

Table 5.3 Rules for Transformation to BPEL4Chor-cont’d 201

Table 5.4 Rules for Transformation to BPEL4Chor-cont’d 202

Table 5.5 Rules for Transformation to BPEL4Chor-cont’d 203

Table 5.6 Rules for Transformation to BPEL4Chor-cont’d 204

Table 5.7 Rules for Transformation to BPEL4Chor-cont’d 205

Table 5.8 Rules for Transformation to BPEL4Chor-cont’d 206

Table 5.9 Rules for Transformation from BPEL4Chor 208

xx

Table 5.10 Rules for Transformation from BPEL4Chor- cont’d 210

Table 5.11 Rules for Transformation from BPEL4Chor- cont’d 211

Table 5.12 Rules for Transformation from BPEL4Chor- cont’d 212

Table 5.13 Rules for Transformation from BPEL4Chor- cont. 213

Table 5.14 Rules for Transformation to VxBPEL and BPEL 214

Table 5.15 Rules for Transformation to VxBPEL and BPEL 215

Table 5.16 Rules for Transformation to VxBPEL and BPEL- cont’d 216

Table 5.17 Rules for Transformation to VxBPEL and BPEL- cont’d 217

Table 5.18 Rules for Transformation to VxBPEL and BPEL- cont’d 218

Table 5.19 Rules for Transformation to VxBPEL and BPEL- cont’d 219

Table 5.20 Rules for Transformation to VxBPEL and BPEL- cont’d 220

xxi

LIST OF FIGURES

FIGURES

Figure 1.1 Relations Between SOA, Model Driven and SPL Approaches. . . . 4

Figure 1.2 Relation with SOA Structure, Dynamicty and Effet of Variability. . 6

Figure 1.3 Orchestration and Choreography Relation and Effect of Variability. 6

Figure 1.4 The approach answering why, how and what questions. 8

Figure 1.5 Chapter Content Dependency. 12

Figure 2.1 Chronological History of Web Standards, Organizations and Paradigms. 15

Figure 2.2 Service Oriented Architecture. 19

Figure 3.1 UML Sequence Diagram for Travel Itinerary System. 66

Figure 3.2 UML Sequence Diagram for User Verification in Adaptable Secu-
rity System. 68

Figure 3.3 Overview of the approach based on the Metamodel. 70

Figure 3.4 XChor Metamodel for Variable Choreography Specification. 73

Figure 3.5 Variation Point Specification Constructs of XChor Metamodel. . . . 75

Figure 3.6 Constraint Specification Constructs of XChor Metamodel. 82

Figure 3.7 Choreography Specification Constructs of XChor Metamodel. . . . 87

Figure 3.8 A part of XChor Metamodel for Interface Specification. 96

Figure 3.9 Configuration Model Specification Constructs of XChor Metamodel. 98

Figure 3.10 A part of XChor Metamodel for Variability Attachment Specification.101

Figure 3.11 XChor Tool Execution Flow. 120

Figure 3.12 Send Pattern. 136

xxii

Figure 3.13 Receive Pattern. 139

Figure 3.14 Send/Receive Pattern. 141

Figure 3.15 Racing Incoming Messages Pattern. 144

Figure 3.16 One to Many Send Pattern. 147

Figure 3.17 One to Many Receive Pattern. 150

Figure 3.18 One to Many Send/Receive Pattern. 153

Figure 3.19 Multi Responses Pattern. 157

Figure 3.20 Contingent Request Pattern. 162

Figure 3.21 Atomic Multicast Notification Pattern. 164

Figure 3.22 Request with Referral Pattern. 167

Figure 3.23 Relayed Request Pattern. 169

Figure 6.1 The Roles and Interactions[52]. 226

Figure 6.2 SPL and SOA Concept Relations. 230

Figure 6.3 SPL and SOA Concept Relations. 233

Figure 6.4 Axiomatic Design for Component Orientation (ADCO) Approach
with XChor[123]. 235

xxiii

LIST OF ABBREVIATIONS

ASM Abstract State Machines

BPEL Business Process Execution Language

BPEL4WS Web Service Business Process Execution Language

BPML Business Process Markup Language

BPMN Business Process Markup Notation

CA Constraint Automata

CBFM Cardinality-Based Feature Modeling

CBS Coordination Behavioral Structure

ConIPF Configuration in Industrial Product Families

COVAMOF ConIPF Variability Modelling Framework

CVL Common Variability Language

CVP Configuration Variation Point

ebXML eXtensible Markup Language

ESB Enterprise Service Bus

featureRSEB feature Reuse-Driven Software Engineering Business

FODA Feature-Oriented Domain Analysis

Forfamel Feature Modeling For Software Product Families

FTS Featured Transition System

GML Generalized Markup Language

HTML Hyper Text Markup Language

IETF Internet Engineering Task Force

MDE Model Driven Engineering

OASIS Organization for the Advancement of Structured Information
Standards

OVM Orthagonal Variability Model

OO Object Orientated

OMG Object Management Group(OMG)

RAS Reusable Asset Specification

RequiLine A Requirements Engineering Tool for Software Product Lines

xxiv

SaaS Software as a Service

SGML Standard Generalized Markup Language

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPL Software Product Lines

XML-RPC XML-Remote Procedure Call

TVL Text-based Variability Language

UDDI Universal Description, Descovery and Integration

UML Unified Modeling Language

VP Variation Point

VSL Variation Specification Language

WIDL Web Interface Definition Language

WS Web Service

WSCI Web Service Choreography Interface

WS-CDL Web Services Choreography Description Language

WSCG Web Services Chroegraphy Group

WSDL Web Service Description Language

WSFL Web Services Flow Language

WSMO Web Service Modelig Ontolgy

WWW World Wide Web

xxv

xxvi

CHAPTER 1

INTRODUCTION

Complexity and change are major challenges that software development industry have

been facing. Dealing with change is an inevitable and essential concern, inherent in

software development nature. During software life cycle, software evolves in re-

sponse to change. This evolution which comprises alteration in software structure

and behavior directly reflects to its design and implementation accordingly. Changes

in business needs and user demands cause alteration in problem domain which result

from requirement inconsistency. On the other hand, rapid and unpredictable technol-

ogy evolution, new technologies and new trends, and other external factors require

alteration in the solution domain. These can be overcome with iterative or agile de-

velopment strategies, adaptive design techniques and refactoring. Another significant

consideration is dealing with complexity. Software development industry, while be-

ing the key driver of modern economy has an unacceptably high level of failures,

caused to a large extent by high complexity of software systems. Software devel-

opment industry has significant problems with managing this complexity, with rais-

ing the level of abstractions and narrowing the abstraction gap between problem and

solution domains, keeping track of changes, and reusing knowledge from previous

projects. The main barrier in overcoming these problems is the lack of widely ac-

cepted and easy to apply mechanisms for expressing and reusing coherent solutions

to problems formulated as user requirements. Software reuse is the use of existing

assets and reapplication of various kinds of knowledge in some form within the soft-

ware product development process. The reused knowledge includes such things as

domain knowledge, technology expertise and development experience. More than

just code, assets are products and by-products of the software development life cycle

1

and include software components, test suites, designs and documentation[115, 70].

Several organizations develop, share and reuse business processes by establishing

collaboration with other organizations in order to fulfill different stakeholder needs.

Being agile is an important challenge in business process integration context which re-

quires a dynamic environment. In this respect, Service-Oriented Architecture (SOA)

is a promising approach to realize such environments by designing and developing

distributed systems[60]. SOA aims to facilitate reuse of services and incorporates

service consumers and service providers. A service is self-contained, and can be in-

dependently deployed in a distributed component. Building enterprise solutions to

realize business processes typically requires the composition of multiple existing en-

terprise services. Composite services can be further recursively composed with other

services to derive higher level solutions. Two different types of service compositions

are defined.

Service choreography where the interaction protocol between several partner ser-

vices is defined from a global perspective without a central mechanism.

Service orchestration where the interaction logic is specified from the local point of

view of one single participant, called the orchestrator.

Many approaches have been proposed to tackle with complexity and change via vari-

ability management mechanisms, middleware and reconfiguration solutions, dynamic

adaptations, and rule-based approaches. Within these approaches, using variability

management mechanisms in different granularity levels, namely choreography, or-

chestration and atomic services, enables reuse in services. Assuming that all granu-

larity levels can be treated as services, variability can come from (i) their interfaces

(functions and parameters), (ii) connectors (the way they interact) and (iii) compo-

sition (the way they are gathered in order to achieve a goal). Interface variability

requires a configuration mechanism specifying when and how to change its functions

and parameters. Connector variability needs a relation mechanism to indicate when

and which connector is used between two services. Composition variability necessi-

tates a tailoring mechanism to define in which order and how services are interact-

ing with each other. Services offer different functionalities regarding their variability

2

bindings. Therefore, it is the composition’s responsibility to provide a consistent vari-

ability binding between interacting services. This requires a mechanism to establish

variability associations which determines when and how interacting services bind to

specific variants. In other words, composition is responsible for handling consistent

variability binding of interacting services and providing a configuration infrastruc-

ture to reveal seamless integration of services. To cope with such challenges several

approaches have been introduced. However, explicit introduction of variability in-

tegrated with choreography languages is not addressed. Specification of consistent

variability binding and configuration of interacting services are not considered in the

choreography language level. Moreover, there is a lack of support to reuse existing

choreographies. All in all, reusing existing services and service architectures in an

efficient and systematic way is a difficult task.

1.1 Background

Ad-hoc approaches to reuse in software development lead to the process more ex-

pensive and more time consuming because of building software from scratch. To

realize the benefits of reuse, a mature approach must be adopted called systematic

reuse, increasing the returns on investments in production assets, implementation as-

sets through economies of scale and scope.[69] Three basic strategies are pointed

out for leveraging systematic reuse: working faster via tools to automate the labor-

intensive tasks, working smarter with process improvement, and working less via

reuse of software artifacts. An extensive analysis is made on the question that which

strategy will produce the highest payoff and concluded that “working less” is more

valuable three times than “working smarter” and six times than “working faster”[38].

Therefore, reusability is a key to improving productivity in the software development

area.[116, 38, 89, 31]

Service-Oriented Architecture reuses services, service descriptions and architecture,

as well as providing flexibility and adaptation with dynamic discovery mechanisms

and late binding of services to improve productivity. Services are composed in order

to achieve a common goal as a reusable asset. Orchestration, Choreography, Coordi-

nation and Assembly are four types of composition models followed by SOA. Within

3

these, orchestration and choreography are tightly related concepts, as interrelated

views of architecture. Orchestration, as a central mechanism, provides coordination

between related services; on the other hand choreography is a non-executable specifi-

cation of global view on interacted services without a central mechanism. Tightly re-

lation causes orchestration and choreography view consistency with each other while

constituting service architecture[60, 59, 34]. Several standardizations, approaches,

graphical and development tools defined for orchestration, choreography and coor-

dination languages exist. Examples for orchestration are WS-BPEL-Executable Pro-

cesses (BPEL, BPEL4WS)[102], BPML[58], BPMN[104], for choreography WS-

BPEL-Abstract Processes[102], WSCI[124], WS-CDL[137], and BPMN.

Figure 1.1: Relations Between SOA, Model Driven and SPL Approaches.

As expected, flexibility and reuse are important features of SOA to tackle dynamic

business environments and process flows. Dynamicity and change requires man-

agement of variability, rather in a systematic way. Software Product Lines (SPL)

approach offers variability management environment by sharing a common and man-

aged set of features, reusing a common set of core assets in a prescribed way. Possible

variability types in SOA are variation in service function, in required parameters, pro-

tocols and composition of services. These types of variability can be handled within

specified variability model in architectural levels namely orchestration and choreog-

raphy. Several variability models are defined in SPL comprising specification and

modelling of variation points and types, related variants, constraints on them, rela-

4

tion with other artifacts such as features, realizations. CVL, VSL, ConIPF, CBFM,

COVAMOF, and OVM are some examples of variability models. Not only defini-

tion of variability, but also management and its impact on other artifacts (such as

requirements, features, and code) should be taken into account. In order to provide

variability consistency between orchestration and choreography, Model Driven Engi-

neering (MDE) techniques such as models, meta-modeling and transformation can be

utilized. As models play an important role, they are not the whole solution if vari-

ability in choreography is applied to SPLs. Scaling up to higher levels of productivity

will require the ability to rapidly configure, adapt and assemble independently de-

veloped, self-describing, location independent services to produce families of similar

but distinct systems. Therefore, a Domain Specific Language and related tools are

required.

Relationship between SOA, MDE and SPL approaches in order to improve productiv-

ity while tackling complexity and change is depicted in Figure 1.1. The intersection

of the approaches represents the techniques while these are applied together. SOA

and SPL approaches enable reuse of services, architectures and managing variability

in SOA systems in a systematic way. While using MDE and SPL together, reuse of

models and architectures is achieved and variability in models is managed efficiently.

Service Models are defined and model and meta-model transformation of services can

be applied as model-to-model or model-to-text style while MDE and SOA approaches

are used together. Therefore, the intersection of the three brings more benefits rang-

ing from modeling variability and transforming at the meta-model level to managing

variability in a systematic way.

1.2 Problem Statement

Service Oriented Architecture (SOA) is a means of facilitating inner and inter-organiza

tional computing which is a way of developing distributed and autonomous systems

where the components of the system are services. As in all systems, SOA has a struc-

ture and a dynamic nature. While structure comprises services, their functional and

non-functional properties, interfaces and relation between other services, dynamicity

includes behavior of services while achieving a goal together and rules on these in-

5

teractions. A bidirectional effect between structure and dynamicity represents a tight

relationship. Any effect on one of these reflects to other, as stated in Figure 1.2.

Therefore, when variability is added to the system in order to tackle complexity and

change, it affects system structure and dynamicity and should be managed in both

views.

Figure 1.2: Relation with SOA Structure, Dynamicty and Effet of Variability.

Orchestration and choreography are views for service architecture defining a central

mechanism and a non-central representation respectively. SOA architectures address-

ing variability efficiently and in a systematic way should handle variability manage-

ment in orchestration and choreography in a consistent manner as depicted in Figure

1.3. As each view has different requirements to define and express variability to outer

SOA space, the variability model should fulfill the needs of each and relate variability

of each other.

Figure 1.3: Orchestration and Choreography Relation and Effect of Variability.

6

There are existing approaches proposed to support variability which can be cate-

gorized in different groups: Adaptation managers/modules, Enterprise Service Bus

(ESB) like middleware and reconfiguration of components, rule-based systems and

variable modeling and variability supported languages. In these approaches variabil-

ity is mapped from problem domain artifacts - features, functional and non-functional

requirements, UML diagrams and components- to solution domain artifacts - decision

models, business process templates, orchestration and/or choreography languages,

components, adaptation rules, plans and so on. In the literature, several approaches

and languages are proposed to define and manage variability. However, variability

in choreography models compatible with variability in orchestration models is not

handled. Therefore, specification of variability in choreography consistent with or-

chestration cannot be achieved and a global view of variability cannot be gathered

which provides a coarse grained variability model. Therefore, a variability model is

needed to manage variability in choreography as variability depiction globally and to

map the variability to orchestration and services as variability depiction locally.

From SPL perspective, SPL specifies a reference architecture for possible products

with variabilities, while choreography represents a product configuration in SOA.

Therefore in the context of SOA, a reference architecture should include possible

choreographies with variabilities. Besides, the success of a variability supported SOA

is largely dependent on effective variability management throughout the development

life cycle, in our case architecture. Therefore, there should be a variability model

defined for possible choreographies. However, there is no choreography model with

variability support which depicts possible products while consistent with interacted

orchestrations.

Orchestration and choreography concepts in SOA can be related with artifacts and

assets respectively. Seamless collaboration between artifacts to behave according to

required product features should be achieved via a systematic variability management

in choreography and orchestration in a consistent manner.

7

1.3 Approach

The motivation is to response to changing requirements and fulfilling diverse range

of user demands fast and easily in service-oriented environments. One of the main

challenges is to cope with change with little effort in a short time. The main idea is

reusing existing service architectures; choreographies and orchestrations via explicit

variability definition and management. That is, establishing a configurable service

architecture realized through choreography specifications while taking into account

variability needs of services is the ultimate target.

Figure 1.4: The approach answering why, how and what questions.

8

Our main purpose is the reuse of service-oriented architectures, namely the coarse

grained ones which are realized as choreographies. Reuse of choreographies brings

about reuse of choreography behavior which describes the way how services are in-

teracting with each other.

In Figure 1.4 Why part is dedicated to the purpose of our approach. The way how to

reach our goal is by managing commonality and variability of service architectures,

defining variability in services and service interactions depicted in How part. To put

into practice this kind of service systems, a metamodel and its realization XChor

is specified to define variability in service interface (in functions and parameters)

and service composition behavior. Here service concept comprises choreography,

orchestration and atomic services. In our approach service composition is realized by

choreography specifications. The systematic approach enables to integrate variable

services and composite variable service interactions.

In this thesis, firstly SOA ecosystem constituents, service composition, orchestration

and choreography views on composition are investigated. Existing orchestration and

choreography languages are examined and compared according to basic functionali-

ties, composition mechanism, tool support, variability support, and explicit variabil-

ity specification. It is found that variability support of choreography languages and

consistency of variability between choreography and related orchestrations are not

fully covered. For addressing variability issue, SPL approach which defines a way

to effectively manage variability and enable systematic reuse is analyzed and exist-

ing variability models affecting architecture are compared. Variability notion in SPL

is discussed and required variability types are specified in the context of variability

needs of service-oriented systems.

Two example cases describing the necessity of variability in choreography languages

is presented with UML sequence diagrams. Requirements for managing variability in

all levels, respectively choreography, orchestration and atomic services are revealed.

Existing variability models and variability supporting languages are a starting point to

define the way to integrate variability model with choreography constructs. Although

there exist different orchestration and choreography models, a few supports variabil-

ity in metamodel and language level. Therefore, required interface types, variation

9

depiction and the mechanism to configure services and their composition are inves-

tigated. In consideration of required variability mechanism and service composition

needs, a meta-model and its realization XChor is defined which enable to form a vari-

able SOA environment in a prescribed way. The comparison of existing languages

with XChor language is presented and explained. The metamodel and XChor lan-

guage are validated against service variability types and service interaction patterns.

Transformations from XChor language to existing choreography and orchestration

languages are defined with rules. Verification of XChor language is enabled by trans-

forming XChor models to one of the model checking approaches, namely Featured

Transition Systems. XChor is applied to SPL domain to manage asset and artifact

variability. Lastly, the thesis is finished by discussions, short and long term future

works. Xtext specification of XChor Language, case study implementations in XChor

and XChorS tool code reference manual are presented as appendices.

1.4 Contribution

As a result of this thesis study, (1) summary and comparison of existing orchestra-

tion and choreography languages are revealed, (2) a variability metamodel for chore-

ography and its realization XChor language are defined,(3) XChorS tool facilitating

analysis, configuration, verification and transformation to existing languages is imple-

mented, (4) transformation rules are described and metamodel and XChor language

is applied to SPL domain. Moreover, in order to manage variability in choreography

model, following tools are developed:

• An analysis tool to analyse, sketch, define and modify variability specifications.

• A validation tool which analyses specified variabilities and checks consistency.

• A configuration tool to form ultimate service-oriented application according to

user specified bindings.

• A transformation tool to convert XChor models to appropriate existing chore-

ography and orchestration language models.

10

• A verification tool to transform XChor models to Featured Transition System

models.

• A design tool which enables to specify domain choreographies and services

with their variability specifications and to derive application choreographies

and services regarding user selected features.

User requirement dynamicity reflects to architecture, in our case orchestration and

choreography. Realizing reflection from requirements to architecture requires a rela-

tion mechanism between them. Requirements are mapped into services and variabil-

ity points. However, this mapping mechanism is out of scope of this thesis. Main

contribution of this thesis stands for defining, modifying, and managing variability

scattered over orchestration and choreography, which have already mapped to re-

quirements.

1.5 Outline Of Thesis

Chapter 2 represents existing orchestration and choreography languages, analysis of

variability support in SOA domain. Then obstacles are depicted and problems are

stated in detail. In Chapter 3 XChor metamodel and language facilitating variabil-

ity in choreography language is specified and validation of XChor is explained in

detail. Chapter 5 introduces transformation from XChor models to existing chore-

ography and orchestration languages, namely BPEL4Chor and VxBPEL. Chapter 4

explains verification of XChor metamodel via transformation from XChor models to

Feature Transition System models. In Chapter 6, variability management approach

in choreography for SOA domain is applied to SPL domain. Variability management

in software product lines with XChor metamodel and language is depicted in detail.

Thesis concludes with Chapter 7. Dependency among chapters are depicted in Figure

1.5. The arrows represent information dependency where the source chapter needs

specifications done in destination chapter.

11

Figure 1.5: Chapter Content Dependency.

12

CHAPTER 2

BACKGROUND

This chapter elaborates first the history of web standards, organizations and paradigms,

along with a brief introduction of Service Oriented Architecture (SOA) and composi-

tion in SOA. Then, the details of our systematic literature review is given with respect

to variability modeling in orchestration and choreography languages and selected or-

chestration and choreography languages are explained briefly. After analyzing vari-

ability notion in software systems especially in SOA, variation support in existing

approaches are compared and existing variability models addressing architecture and

product derivation are listed. In order to elaborate capabilities of existing orchestra-

tion and choreography languages, a Comparison Framework is introduces with three

components in detail. Selected languages and variability models are compared and

discussed accordingly. Lastly, existing problems are stated according to the results of

comparison framework.

2.1 Chronological History of Web Standards, Organizations and Paradigms

When we look at the development of computer science, we can see that the need to

overcome data integration and representation problem always present. The chrono-

logical history of introduced web standards, concepts, paradigms and organizations

are depicted as a time line in Figure 2.1. The roots of the work stand on the invention

and development of Generalized Markup Language (GML) by IBM in 1969. The

usage of (GML) in text processing was in later 1973. Then, Standard Generalized

Markup Language (SGML) is followed GML, a ISO Standard[2].

13

Linda[67], a model of coordination and communication among parallel processes

operating on an ordered sequence, is implemented as a a coordination language. The

language is developed originally for the SBN network computer in 1982 and was used

in coordination of processes/tasks later.

In 1989/90 World Wide Web (WWW) was founded by Tim Burners-Lee at CERN

integration of PCs, servers, applications over internet[3] In early 90’s Object Oriented

(OO) approach was appeared even if it was invented in 60’s.

In 1991, Object Management Group (OMG) introduced Common Object Request

Broker Architecture[103]. In the same year, Tim Burners-Lee is developed Hyper

Text Markup Language (HTML)[136].

In 1993, freeness of WWW to everyone and formally definition of first draft of

HTML (SGML was used to define) by IEFT (Internet Engineering Task Force) af-

fected graphical and textual browser occurrence, such as Viola, Mozaic.

In 1994, WWW was founded at MIT and supported by DARPA & EU Commission

and W3C organization was founded for standardization.

HTML 2.0 was released by IEFT, HTML Working Group in 1995 and since 1996

the work done for HTML was conducted by W3C[4] with input from other software

vendors.

In 1996 first version of XML, extended from SGML, was developed by W3C[5] and

Microsoft introduced COM/ DCOM[92]. Webmethods was submitted Web Inter-

face Definition Language (WIDL) to W3C in 1997. WIDL was affected by ORB

mechanism resided in CORBA. Simple Object Access Protocol (SOAP)[135] was

first defined in 1998 whose predecessor was XML-RPC (XML-Remote Procedure

Call). XML 1.0 W3C Recommendation was published in the same year.

Electronic Business using eXtensible Markup Language (ebXML)[8] was defined by

Organization for the Advancement of Structured Information Standards (OASIS)[1]

in 1999. In the same year, Microsoft first introduced the concept of Web services[7]

and Indigo project was started[6].

HTML became ISO Standard in 2000, Universal Description, Descovery and Inte-

14

L
in

d
a
 C

o
o
rd

in
a
ti
o
n
 L

a
n
g
u
a
g
e

G
M

L
 -

->
 S

G
M

L

W
W

W
 a

t
C
E
R
N

0
b
je

ct
 O

ri
e
n
ta

ti
o
n
 i
n
 e

a
rl
y
 1

9
9
0
s

H
T
M

L
,
C
O

R
B
A
 b

y
 O

M
G

W
W

W
 F

re
e
,
F
ir
st

 F
o
rm

a
l
D

ra
ft

o
f
H

T
M

L
,

B
ro

w
se

rs

W
W

W
 F

o
u
n
d
e
d
 a

t
M

IT
,
W

3
C
 F

o
u
n
d
a
ti
o
n

H
T
M

L
 2

.0
 b

y
 I

E
T
F

H
T
M

L
 b

y
 W

3
C
,

F
ir
st

 V
e
rs

io
n
 X

M
L
,
C
O

M
/D

C
O

M
 b

y
 M

ic
ro

so
ft

W
ID

L
 S

u
b
m

is
si

o
n
 t

o
 W

3
C

S
O

A
P
 D

e
fi
n
e
d

e
b
X
M

L
 b

y
 O

A
S
IS

,
W

S
 C

o
n
ce

p
t

b
y
 M

ic
ro

so
ft

,

 S
O

 I
n
d
ig

o
 P

ro
je

ct
 b

y
 M

ic
ro

so
ft

H
T
M

L
 a

n
 I

S
O

 S
ta

n
d
a
rd

,
U

D
D

I
b
y
 O

A
S
IS

,
W

S
D

L
,

R
E
S
T
,
.N

e
t

P
la

tf
o
rm

 b
y
 M

ic
ro

so
ft

,
S
e
rv

ic
e
 C

o
m

p
o
si

ti
o
n
 P

a
p
e
rs

,
X
L
A
N

G
 b

y

M
ic

ro
so

ft

W
S
D

L
 W

o
rk

in
g
 D

ra
ft

 i
n
 W

3
C
,

C
h
o
re

o
g
ra

p
h
y
 p

o
in

te
d
 o

u
t

b
y
 W

3
C
,

R
e
o
 C

o
o
rd

in
a
ti
o
n
 L

a
n
g
u
a
g
e

W
S
 C

o
n
ce

p
t

b
y
 W

3
C
,
X
L
A
N

G
&

W
S
F
L
 C

o
n
v
e
rg

e
n
ce

,
W

S
C
I,

 W
S
C
L
,

T
a
sk

 S
y
st

e
m

 M
o
d
e
l

S
O

A
P
re

d
e
fi
n
it
io

n
 b

y
 W

3
C
,

W
S
D

L
 1

.2
,
B
P
E
L
4
W

S
 S

u
b
m

is
si

o
n
 t

o

O
A
S
IS

,
W

S
C
G

W
S
 C

o
n
ce

p
t

E
n
ri
ch

e
d
 b

y
 W

3
C
,
S
O

A
 C

o
n
ce

p
t

D
e
fi
n
it
io

n
 b

y

M
ic

ro
so

ft
,

W
S
B
P
E
L
 2

.0
 b

y
 O

A
S
IS

,
W

S
C
D

L
 W

o
rk

in
g
 D

ra
ft

,
O

rc

C
o
o
rd

in
a
ti
o
n
 L

a
n
g
u
a
g
e
,

W
S
A
T

U
D

D
I

U
sa

g
e
 I

n
cr

e
a
se

d
,
S
O

A
 B

o
o
k
s,

 P
ro

ce
ss

-S
e
rv

ic
e
 R

e
la

ti
o
n
,

W
S
C
D

L
 C

a
n
d
id

a
te

 R
e
co

m
e
n
d
a
ti
o
n
,

W
S
M

O
,

B
P
M

N
,
E
C
F

U
D

D
I

M
a
n
y
 C

lo
se

d
,
Jo

lie
 L

a
n
g
u
a
g
e
,

L
e
t'
s

D
a
n
ce

,
W

S
-

C
o
o
rd

in
a
ti
o
n
 b

y
 O

A
S
IS

W
S
D

L
 2

.0
 b

y
 W

3
C
,

B
P
E
L
4
C
h
o
r

C
B
S
 C

o
o
rd

in
a
ti
o
n
 L

a
n
g
u
a
g
e

V
x
B
P
E
L
,
M

A
P

Jo
rb

a
,

V
a
ly

S
e
c

B
P
M

N
 2

.0
,
B
P
E
L
 g

o
ld

1
9
8
0

1
9
8
2

1
9
8
4

1
9
8
6

1
9
8
8

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

C
h

ro
n

o
lo

g
ic

a
l
H

is
to

ry
 o

f
W

e
b

 S
ta

n
d

a
rd

s,
 O

rg
a

n
iz

a
ti
o

n
s

a
n

d
 P

a
ra

d
ig

m
s

Figure 2.1: Chronological History of Web Standards, Organizations and Paradigms.

15

gration (UDDI)[9] was introduced by OASIS, Web Service Description Language

(WSDL)[10] was specified by IBM, Microsoft and Ariba. Representational State

Transfer (REST) was introduced and published in Fielding’s dissertation[63]. At the

same time Microsoft advertised .NET platform. Papers about service composition

was seen in the literature[46, 45, 91]. For service orchestration, Web Services Flow

Language (WSFL)[11] was defined by IBM, on the other hand XLANG[13] was in-

troduced by Microsoft used in BizTalk. The two specifications are related with each

other.

In 2001, working draft of WSDL at W3C was seen as version 1.1, and W3C pointed

need for choreography[12]. A coordination language, Reo was proposed by Farhad

Arbab at Centrum Wiskunde & Informatica[14].

In 2002, W3C Web Service Architecture Working Group defined Web Service con-

cept as "a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable

format (specifically WSDL)”[18]. XLANG & WSFL specifications were worked for

converge. For choreography consideration, Web Services Choreography Interface

(WSCI) was defined by Sun, SAP, BEA, and Intalio. Concurrently Web Service Con-

versation Language (WSCL)[15] was specified by Hewlett Packard. Task System

Model[88] aiming at process decomposition and process relations is proposed.

In 2003, SOAP was redefined and WSDL version 1.2 was published by W3C. BPEL4

WS was submitted to OASIS. Web Services Choreography Group (WSCG) organiza-

tion founded at W3C.

In 2004, Web Service concept was enriched by W3C. Service Oriented Architecture

(SOA) was first defined by Microsoft, Don Box (one contributors of SOAP specifi-

cation) explaining fundamental tenets of Service Orientation[17]. XLANG & WSFL

specifications were worked for converged to BPEL4WS which was submitted to OA-

SIS, commonly known as BPEL. Web Service Choreography Language (WS-CDL)

was Working Draft at W3C. Orc coordination language is defined[16].

In 2005, the utilization of UDDI was increased because of being open to use and

WS-CDL was Candidate Recommendation of W3C. Published SOA books has been

16

increased and process service relation was started to point out. Web Service Modeling

Ontolgy (WSMO) was proposed [109]. A framework for on-demand choreography

deployment named as Executable Choreography Framework (ECF) is specified and

an XML based language Executable Choreography Language (ECL) is introduced

into which activity diagrams or WS-CDL specifications are translated [53]. Moreover,

Choreography Language (CL) was introduced as a simple choreography language

which provides a formal framework including declarative and conversational parts of

choreography.

In 2006, many UDDIs were closed to use. WS-Coordination[21] was specified by

OASIS in order to coordinate web services by registration and activation services.

Jolie Language and interpretation engine for orchestration of services was proposed

[20]. On the other hand, for choreography Let’s Dance view for assembling services

and the tool were introduced in [141, 140, 55].

WSDL 2.0 was published by W3C in 2007. Extracting three models for a chore-

ography specification from BPEL orchestrations, BPEL4Chor is proposed[56]. In

2008, Coordination Behavioral Structure (CBS) was proposed to represent topology

of interactions in a formal way within coordination approaches [142].

In 2009, Multiagent Protocols (MAP) Web service choreography language [32] is

introduced for choreography modeling, verifying and enacting via simple process

language along with its open-source framework. Supporting variability for Web ser-

vices in BPEL, VxBPEL was proposed in 2009 and an analysis tool, ValySec was

implemented in 2010 [80, 125]. As a domain specific language, Business Choreog-

raphy Language (BCL), was proposed which is heavily influenced by UN/CEFACT

Modeling Methodology (UMM).

Jorba laying over Jolie orchestration language is proposed to enable dynamicty in or-

chestrations [85]. Early 2011, BPMN 2.0[104] by OMG was avaliable and almost

all BPEL engines supported new specification. BPELgold was proposed as an exten-

sion to BPEL language[81]. Another language, eSML was introduced for modeling

e-business collaborations whose formalism is based on Petri-nets. Recently, AB-

WSCL, based on actor system theory, was proposed as a web service composition

language for choreography purposes.

17

2.2 Definitions and Main Terminology

2.2.1 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is a means of facilitating inner and inter-organiza

tional computing which is a way of developing distributed and autonomous systems

where the constituents of the system are services. According to W3C’s Web Service

Glossary[18] in 2004, a service is “an abstract resource that represents a capabil-

ity of performing tasks that form a coherent functionality from the point of view of

providers entities and requesters entities. To be used, a service must be realized by a

concrete provider agent”. In this respect, web services technology is a way to realize

the concept of services, and to model interrelations and interaction constraints among

them. The service forms a contractual agreement between a provider and a consumer

through its interface. The service interface reveals its functionalities to the consumers

with their signature regardless of internal implementation details. Even services be-

come prominent with their functionalities, non-functional properties are as important

as functional ones. The service should also provide required quality of service such

as performance, availability and reliability along with its functionalities. Moreover,

service middleware concept is introduced in order to overcome service integration

problems and quality conflicts. As a middleware, Enterprise Service Bus (ESB) is the

facilitator of enabling implementation, deployment and management of SOA-based

enterprise solutions, which is constructed to be an open standards based message

backbone. The Figure 2.2 depicts service utilization where service provider pub-

lishes implemented service interfaces to service broker, service consumer searches

and finds related web services from service broker, service consumer binds found

services via agreed messaging protocols and the interaction starts.

Service consumers can be end users and other services. In the context of web services

technology; UDDI is the service broker, WSDL is the provided services interface

language and SOAP is the messaging protocol between consumer and provider.

SOA reuses services, service descriptions and relying architecture which represents

static and dynamic behavior of the system through service interaction modeling.

Moreover, it provides flexibility and adaptation with dynamic discovery mechanisms

18

Figure 2.2: Service Oriented Architecture.

by means of published interfaces and enables late binding of services to improve pro-

ductivity. Services can be categorized according to their granularity; atomic service,

orchestration and choreography. An atomic service serves basic functionalities as an

autonomous entity, whereas an orchestration is a service composition providing high

level and complex functionalities. As a coarse-grained structure, a choreography in-

cludes atomic services and orchestrations to model globally defined interactions. As

every system has a different service architecture specified by orchestration and/or

choreography, service composition plays an important role to achieve flexibility to

respond rapid changes. [105, 119, 120]

2.2.2 Composition in SOA

Concept development sequence in service world starts with single services and con-

tinues towards higher level concepts with to composite services, orchestration and

choreography. After the need for choreography was pointed out in 2001, WSCG or-

ganization was founded by W3C in 2003 and launched WS Choreography model and

WS-CDL in 2004. In the meantime, although the idea has origins in 60’s, Open In-

novation concept appeared in 2003. ”Open innovation is a paradigm that assumes

that firms can and should use external ideas and internal ideas, and internal and ex-

ternal paths to market, as the firms look to advance their technology. The boundaries

between a firm and its environment have become more permeable; innovations can

easily transfer inward and outward.”[49] Therefore, by definition, choreography con-

cept can be influenced by open innovation paradigm.

19

In service-orientation orchestration and choreography are two tightly interrelated con-

cepts in service composition and their specifications should be consistent with each

other. Orchestration of web services defines the ordering of service invocations and

conditions. An orchestrator, as a central mechanism, is responsible for coordinating

services which are interacting with each other at the message level. These interac-

tions can be long lived, transactional and multi step. However, service choreography

defines inter and intra collaboration including temporal and logical dependencies for

each service without a central mechanism. Choreography tracks the sequence of mes-

sages between different parties. In Table 2.1, similarities and differences properties

of orchestration and choreography are depicted.

Table 2.1: Similarities and differences of orchestration and choreography

Orchestration Choreography

Content Depicts detailed information
about composition such as
connections and sequences

Depicts a restricted set of in-
terface definitions with rules
and constraints

View Description of interactions as
local view

Description of interactions as
global view

Relation Intra organizational Inter and intra organizational
Depiction a descriptive and formal for-

mat
a descriptive and formal for-
mat

Execution Executable Non-executable
Design Level Low level High level

Serve for Composition Composition

Although the role and importance of the architecture is mentioned in SOA, neither a

defined architecture structure nor a road map to form a service architecture is intro-

duced. In fact, orchestration and choreography constitute the architecture of the sys-

tem. Therefore, choreography can be thought as a view of service architecture defin-

ing (i) components as participants, (ii) their properties as their interface definitions

and (iii) relations between them, constraints on them, and control flow. Choreogra-

phy and orchestration can also be taken as composition viewpoints. Choreography

is seemed as a global view, a behavioral interface as a view of choreography from

one participant, whereas orchestration is handled as an internal view of the partici-

pant. The relations between them are that choreography can be used as generating

20

orchestration skeleton and analyzing contradictions between choreography and or-

chestration, making out behavioral interfaces.[26] There have been several languages

and graphical notations to model service orchestrations and choreographies.

2.3 Systematic Literature Review

To investigate the way how orchestration and choreography languages address vari-

ability, we have conducted an extensive search of papers in the literature. The guide-

lines described by Kitchenham [79] is used to develop the systematic literature re-

view regarding variability modeling in orchestration and choreography languages.

Research questions and the strategy in order to select related studies are given as

follows.

Research Questions are derived an listed based on our research objectives:

RQ1 What are the current languages for modeling orchestration and choreography?

RQ2 What are the main characteristics, common and variant features among differ-

ent orchestration and choreography languages?

RQ3 What are the research challenges and needs in the context of variability model-

ing of services orchestrations and choreography in language level?

RQ4 Which types of variability are supported by current orchestration and choreog-

raphy languages?

Our search scope included the papers that were published over the period between

2000 and 2013, as service composition concept and related studies appeared after

2000. We searched for full papers in selected venues that publish high quality papers.

We used the following search databases: IEEE Xplore, ACM Digital Library, Science

Direct, Springer Link and ISI Web of Knowledge. Table I represents the numbers

of studuies searched for each source. Our targeted search items were journal papers,

conference papers, workshop papers.

To search the selected databases we used both manual and automatic search. Auto-

matic search is realized through entering search strings on the search engines of the

21

electronic data source. Manual search is realized through manually browsing indus-

trial standards introduced by standardization bodies, World Wide Web-W3C, OASIS,

and OMG. The manual searches appeared to be quite useful since such industrial wide

used languages are important for practitioners.

Table 2.2: Publication Sources Searched

Source Number of Included Number of Included
Studies After Applying Studies After

Search Query Exclusion Criterion
IEEE Xplore 132 9
ACM Digital Library 31 3
Springer Link 94 4
Science Direct 142 3
ISI Web of Knowledge 98 0
Total 497 19

A set of key terms are used to reveal related studies which are "orchestration lan-

guage", "choreography language", "variable service composition", "business process

language". These terms are combined with an OR operator with "service behavior

modeling", "variable", and "variability" and with a NOT operator with "analysis",

"verification", "test" and "framework" in order to scope the search relevant.

The adopted search string was as follows: ("orchestration language" OR "choreogra-

phy language" OR "variable service composition" OR "business process language")

AND ("web service" OR "service behavior modeling") NOT ("analysis" AND "veri-

fication" AND "test" AND "framework")

Table 2.3: Languages Introduced by Standard Bodies

Standard Organizations Number of Languages Languages
W3C WS-CDL, WSMO 2
OASIS ebXML, WSCI, 4

BPEL, WS-Coordination
OMG BPMN 1
Total 7

22

The result of the overall search process after applying the search queries and the

manual search is shown in the second column of Table 2.2. As it can be seen from

the table we could identify 493 papers at this stage of the search process.

Selection of relevant studies is determined regarding to the title of the paper, its ab-

stract, its introduction and conclusion sections, and the whole body. Relevant papers

are selected among

• peer-reviewed papers from conferences and journals

• papers written in English, with full text available

• papers that propose new orchestration and/or choreography language rather

than presenting case studies, reviews and the application of existing techniques

Purely theoretical papers or the ones having empirical validation are excluded. Ac-

cording to our best knowledge, there was no secondary study related to variability

modeling in orchestration and choreography languages. After applying the selection

criteria 19 papers of the 497 papers remained. We have finally selected 11 orchestra-

tion languages and 17 choreography languages with the ones which standard organi-

zations are introduced.

2.3.0.1 Orchestration Languages

There have been orchestration languages and notations introduced since service com-

position concept took in place in service-orientation. Although they target the same

goal of gathering interacting services to seamlessly work in an order, they have dif-

ferent characteristics.

BPEL is a de-facto standard which specifies executable language syntax and oper-

ational semantics for implementing business processes through web services.

BPEL comes with a wide range of constructs covering from basic send and

receive actions to structural ones; conditional behaviors, sequences, repetitive

actions, and selective actions. Defining variables, assigning data and specifying

expressions through data handling, and interacting service definitions through

23

partner link definitions are specified. BPEL has two interrelated sides; exe-

cutable and abstract. An executable BPEL process expresses all detailed infor-

mation about business process to be executed directly. On the other hand, an

abstract BPEL process definition indicates observable behavior from the point

of other orchestration and services. SOAP is the underlying technology for

messaging and WSDL is used for service interface specification. BPEL en-

ables to define participants, roles, partner links, variables and flow and ordering

constraints. An orchestration gathers atomic services and other orchestrations

where other orchestrations are exposed as services with their service interfaces.

BPEL focuses specifying processes from a single organization point of view,

that is BPEL processes have a local view, it only knows the interacting services

regardless of system’s global behavior.

BPMN is a set of graphical notations in order to model intra and inter organizational

interactions by defining control flow constructs; sequence and message flows.

Therefore, both orchestration and choreography of services can be expressed.

BPMN 2.0 was released in early 2011 by OMG and almost all modeling tools

supports this notation. Five basic categories of elements are flow objects, data,

connecting objects, swimlanes and artifacts. As flow elements, events, activi-

ties and gateways are graphical elements so as to specify business process be-

havior which are connected by sequence flows, message flows, associations

and data associations. Processed data is represented by data objects, data in-

puts, data outputs and data stored. Grouping these elements can be achievable

by pools and lanes. Artifacts are additional information sources for business

processes. Although BPMN covers composition specifications, it lacks formal

semantics which leaves formal verification of the process undone. In order

to overcome this problem, there are approaches mapping BPMN to other lan-

guages which holds formal semantics such as BPEL, State Machines, and Petri

Nets.

VxBPEL, as an extension to BPEL, provides a variable orchestration specification

based on the COVAMOF model. It enables variability definition in service,

service parameters, and service composition by using specific variation related

constructs. Variation points and related variants are scattered over variable or-

24

chestrations encapsulating related BPEL specifications. Variability model com-

prising a subset of COVAMOF model, includes not only definition of variation

point (VP) and, related variants, but also realization relations and mapping of

variation to service orchestration. Realization relations provide a high level un-

derstanding for configuration purposes while hiding details of how low level

bindings are done. The approach, in order to use existing BPEL engine, adapts

ActiveBPEL and specifies a configuration file in which variation point determi-

nations are specified. VxBPEL Constructs in XML notation in Table 2.4.

Jolie introduced in [20, 94] is an orchestration language providing a C like syntax

having an available interpreter and an execution engine, based on the formal

orchestration process calculus. It more provides an easy to use environment

for programmers through its C/Java like structure instead of XML documents.

For instance, except expression and condition syntaxes are similar to those in

C. The language covers specifying shared memory for a location, an opera-

tion, a variable or a link through identifiers, a predefined program structure by

the Jolie grammar and messaging through socket-based communications. The

model defines two types of operations; input and output. Input operations spec-

ifies the points other orchestrators can access and output operations are used

to depict invoking other orchestration’s input operations. Input operations sup-

port two types of interaction; one-way and request-response. Program control

flow, operation, synchronizing, console input/output statements are introduced

in detail.

Jorba is a rule-based approach for dynamic adaptation, implemented on top of the

Jolie language. Separation between the application and the adaptation specifi-

cation constitutes the core of the approach. Adaptation hooks are defined to in-

dicate information on structure and behavior of application parts. Jorba defines

adaptation interfaces specifying function replacements whenever a change in

service interface and parameter is required. Adapter manager checks environ-

ment condition changes and user needs. Then it apply a set of adaptation rules

if required and reconfigures the application by means of adaptation hooks. The

prototype just considers "on activity enter" as an approach for checking rule

applicability, and sequential order of rules. Different moments are identified

25

Table 2.4: VxBPEL Language Constructs

Definition VxBPEL Specification

Variation Point
<vxbpel:VariationPoint name = "name">

...
</vxbpel:VariationPoint>

Variant List
<vxbpel:Variants>

...a list of variants...
</vxbpel:Variants>

Variant
<vxbpel:Variant name = "name">

...
</vxbpel:Variant>

Inline BPEL
Code

<vxbpel:VPBpelCode>
...BPEL Code...

</vxbpel:VPBpelCode>

Realization
Relation

<ConfigurableVariationPoints>
<ConfigurableVariationPoint>
<Name> </Name>
<Rationale> </Rationale>
<Variants>

<Variant>
<RequiredConfiguration>

<VPChoices>
<VPChoice>
</VPChoice>

</VPChoices>
</RequiredConfiguration>

<Variant>
<Variants>

</ConfigurableVariationPoint>
</ConfigurableVariationPoints>

26

when application rules can be checked. Moreover, rules can be applied in dif-

ferent orders, such as following some priority, can be applied in sequence. The

possibility that an already checked rule may become applicable because of such

a change is not considered.

WSMO provides the conceptual underpinning and a formal language for semanti-

cally describing all relevant aspects of web services. The aim is providing

automation of discovering, combining and invoking services over the network

via four basic elements, namely ontologies, web services, goals and mediators.

Ontologies, central enabling technology for semantic web, enables data mod-

eling which includes resource descriptors and interchanged data. Web services

defines computational entities comprising capabilities, interfaces and internal

working of the service. When capabilities describes functionality, one or more

interfaces are used to define orchestration and choreography. The orchestration

depicts the coordination of web services to achieve its capability. Goals rep-

resenting user desires, model the user view in the web service usage process.

WSMO comprises mediators to resolve incompatibilities on data, protocol and

process level.[62]

BPML, Business Process Modeling Language, provides modeling of business pro-

cesses in which four basic entities are addressed, namely process, activities,

data and control. BPML utilizes XSD to represent data shared among business

infrastructures. Value based, state Based, time based and cycle based control

flows can be specified inside and among business processes. Activities can

be nested as in sequence or in parallel and can be repeated with use of fore-

achs and while structures. Exception handling mechanism, coordinated and

extended transactions are supported by BPML.[130]

PML, is a high level and simple process modeling language which facilitates to ex-

press models at abstract and concrete specification levels. The language follows

simplicity, flexibility, expressiveness and enactability goals. PML facilitates to

model activities as actions, to define pre and post conditions of actions, to spec-

ify control flow with the help of sequence, iteration, selection and branch. For

user-defined specifications, PML employs a language construct "qualifier" to

represent characteristics of a resource.[29]

27

RBXPDL, Role-Based XML Process Description Language, provides a way to model

business processes taking role concept as first class entity. Roles has granular-

ity specifying the responsible participants with their own authority. Roles pro-

cess information, meaning that completing an activity with a state. Modeling a

system starts with goal decomposing by breaking final goal into several units.

Then roles and role interactions are defined respectively.[86]

EPML, Executable Process Modeling Language, is a graphical flow language pro-

vided along with its enactment engine. It has graphic notation, formal seman-

tics, expressive power and composability characterictics. EPML facilitates to

model flow of executions and interactions among activities through a directed

graph where nodes are activities or processors. Activities are computational

elements whereas processors handles coordination. The language is given with

its operational semantics based on a transition system.[110]

2.3.0.2 Choreography Languages

There have been choreography languages and notations introduced after the need of a

global view for service-oriented systems. Although they aim at gathering interacting

services to seamlessly work in an order, they have different characteristics.

ebXML BPSS was defined by Organization for the Advancement of Structured In-

formation Standards (OASIS)[1] in 1999 to address standardization of exchanged

documents among partners and specify business transactions during collabora-

tion of business-to-business commerce, Electronic Business using eXtensible

Markup Language (ebXML)[8]. Shared business documents, partner descrip-

tions and roles, business transactions and collaborations are specified in eXten-

sible Markup Language (XML). One of the components of ebXML, Business

Process Specification Schema (BPSS) facilitates to define collaboration of one

way or two way business transactions along with handling roles of interacting

partners. The language supports binary collaborations only, that is collabora-

tions between two partners can only be described [?].

BPMN is the graphical modeling notation of developing business processes to real-

28

ize service composition; namely orchestration and choreography. BPMN has

choreography constructs to define a global overview, however the definition

has no enforcement on web services. Choreographies are outside or within the

pools (participants) where sequence of interactions are specified via messages,

involving more than one participant. Message flows connect process elements

of different participants. In order to specify interactions between participants

(i) conditional sequence and default sequence flows, (ii) exclusive, event-based

, inclusive, parallel and complex gateways, and (iii) start, intermediate and end

events can be defined. Due to non-central structure of choreography, a cen-

tral source for interacting data is not maintained. Sub-choreography concept

is introduced for reusability purposes which is a compound activity which is

defined as a flow of other activities.

BPEL expresses choreography as abstract BPEL process definitions which indicates

observable behavior from the point of other orchestration and services. Ab-

stract BPEL processes can be formed by using executable ones and vice versa,

and there exists one abstract process for each of the executable processes. Al-

though choreography specification of each orchestration resides in their inter-

faces, BPEL lacks expressing a global view of participant interaction. Abstract

process specifications can be mapped to UML2.0 sequence diagrams.[139, 35]

BPEL4Chor is an extension to the BPEL language in order to depict choreogra-

phy related constructs which can be mapped to BPEL. BPEL4Chor consists of

three basic components, namely participant behavior descriptions, participant

topology, and groundings. It uses BPEL abstract process definitions so as to

construct participant behavior descriptions. Participant topology is the global

view of interacting services and their message interactions. Groundings as the

technical view of choreography, specifies data and port types for message in-

teractions. BPEL4Chor makes use of participant topology in order to gather

interacting participant behaviors. The language is notable for introducing a

choreography model integrated with BPEL orchestrations.

WS-CDL is a W3C standard aiming to specify web service choreography which rep-

resents a descriptive model including basic concepts and important constructs.

Reuse in WS-CDL can be achieved through hierarchic models; namely abstract,

29

portable and concrete. In order to define interactions, participants, roles and re-

lationships between two participants are specified. For information definition

and declaration, types, variables and tokens are used. Variables contain infor-

mation about objects in the choreography such as the messages exchanged or

the state of the roles involved. Interactions involving exchanges of information

between two roles have two types; one way and request-response interaction.

Activities are the lowest level components of the choreography which do the

actual work. Control structures combine these activities with other control

structures in a nested way to specify the sequence and flow of the exchange of

information within the choreography. However at the highest level, the chore-

ographies consist of work units, which contains a single activity that is per-

formed whenever an optional enabling condition, a guard, is true. The model

separates process view and information view. Choreographies can be defined

locally (within a defined choreography scope) or globally (sub-choreographies

can be included by <perform> tag). Sub-choreographies can be defined and

used by the tag <perform> for reusability.

pi4soa, described in [43], is a way to leverage WS-CDL and Pi Calculus to build

more robust SOA where some of the concepts are not directly related with

WS-CDL. It includes (i) type definitions (participant, role, behavior, relation-

ship,channel, information,tokens and locators), (ii) activities (assign, choice,

conditional, finalize, interaction noaction, paralel, perform, sequence, silent ac-

tion, when, while), (iii) expressions, and (iv) structure (choreography, variables,

exception handling). The choreography structure gathers a set of interactions

which can also be reused by other choreographies. State information and chan-

nel instances are represented by variables. pi4soa supports also an exception

handling mechanism which enables choreography to be terminated in prede-

fined occurrences.

Let’s Dance is a choreography modeling and representation pointing locally enforce-

ability problem. The language aims to be abstract (conceptual), indicating for-

mal and executable semantics, comprehensible for different stakeholders, ex-

pressive and suitable. Without technical specific details the language provides

a conceptual level choreography specification. Coming with a behavioral view

30

of choreography, interactions between more than one service can be expressed

with constraints by means of message exchanges. Precedes, inhibits, and weak

precedes relationships between interactions enable to define different service

behaviors. Not focusing on supporting the implementation phase, Let’s Dance

is not based on imperative programming constructs (variable assignment, if-

then-else and switch statements, sequence, and while loops).

MAP, Multi agent protocols web service choreography language is used for choreog-

raphy modeling, verifying and enacting via a simple process language. MAP is

directly executable at runtime without pre-configuration in design time with

multiparty support. It provides choreography interfaces along with service

WSDL interfaces so as to describe complex collaborations. Having a formal

ground, it provides a transformation to PROMELA verification language in or-

der to check MAP models prior to enactment. Role concept is strongly related

with each peer which decides the parts of flow the peer should follow. Roles fa-

cilitates to realize multi-cast communications via sending messages to all peers

of a specific role.

WSCI, as a descriptive model introduced by OASIS, target the same goal as WS-

CDL, defining choreography. Although WS-CDL and WSCI languages have

different constructs, WSCI has additional features such as eventhandler and

faulthandler. It is an XML-based interface description language indicating the

flow of exchanged messages between web services. The observable behavior

of service is expressed via temporal and logical dependencies among the ex-

changed messages, featuring sequencing rules, correlation, exception handling,

and transactions. For interface specification, WSCI works with WSDL. There

exist some work conducted on mapping petri nets with WSCI specification for

verification purposes.

WSMO, like in WS-BPEL, has a similar approach for choreography specification

with semantic additions, through ontology. WSMO behaves as a choreography

model in a communication perspective; choreography decomposes a capabil-

ity in terms of interaction with the web service. The approach uses abstract

state machines (ASMs) in order to execute state transitions. It provides the

conceptual underpinning and a formal language for semantically describing all

31

relevant aspects of web services.

Coordination Languages; Linda, Reo, Orc and CBS based on their own formal

models offer different solutions to composition which can be applicable to or-

chestration and choreography. Orc can be used for formal orchestration mod-

eling which deals well with asynchronous structures and failures. On the other

hand, Reo is suitable both for orchestration and choreography and mainly syn-

chronous structures. Reo can be used for transaction and compensation han-

dling in service composition. Among these, Reo is of importance expressing

choreography models which use Constraint Automata (CA) for formal founda-

tion. For QoS extension, Stochastic Reo is proposed with verification model

(Vereofy) and CTMC for transformation.

WS-Coordination is introduced by OASIS so as to be an extensible framework for

coordinating activities (in this context web services as computation units) us-

ing a coordinator and a set of coordination protocols. WS-Coordination covers

long running business transactions and atomic transactions. It can be used in

conjunction with other specifications and application specific protocols to ac-

commodate a wide variety of protocols related to the operation of distributed

Web services. The model has three parts: (1) Protocols comprise coordina-

tion type-specific coordination protocols, (2) Activation Service enables cre-

ation of coordination context, and (3) Registration Service enables registration

for coordination protocols. Coordination Service consists of Activation and

Registration Service. Applications may not use the same coordination, instead

can bound to different coordinators. WS-Addressing can be used for endpoint

interpretation. For security issues, WS-Security, WS-Trust, WS-Policy, WS-

SecureConversation specifications can be utilized.

CL, Choreography Language, is introduced as a simple choreography language with

formal semantics. It provides a formal framework including declarative and

conversational parts of choreography. Variables and roles are specified for the

declarative part. A process algebraic approach is followed for specification

of the conversational part which includes role interactions. The interactions

are specified by one-way and request-response basic operations combined with

parallel, choice and sequence operations.[44]

32

ScriptOrc providing a modular specification of choreography with the help of scripts

by abstracting conversations among agents. Orchestrations are integrated with

scripts including roles, data parameters and executable abstractions. Attributes

of scripts are delayed and immediate initiation, delayed and immediate termi-

nation. Syntax and operational semantics of ScriptOrc is given formally. Orc

orchestration language is used for orchestration specification which are inte-

grated thorough ScriptOrc scripts with timeouts.[37]

BCL, Business Choreography Language, is a domain specific language which is

heavily influenced by UN/CEFACT Modeling Methodology (UMM). UMM is

an approach for modeling B2B global choreographies built upon UML as a pro-

file. BCL is a means of defining a reduced set of UMM elements which gathers

business collaborations and business transactions in a single diagram. The lan-

guage also provides a graphical visualization for modeling choreographies.[95]

AB-WSCL, based on actor system theory, is a web service composition language

given with its syntax. The aim lies in capturing the relationship between web

service orchestrations and choreographies. The system is modeled with respect

to actors which comprises a set of states, control thread and a set of local com-

putations as a functional unit. The messaging among actors are asynchronous.

The types of actors are activity actor, web service, web service orchestration

and web service choreography which have different characteristics.[138]

eSML, eSourcing Markup Language, is a choreography language for modeling e-

business collaborations whose formalism is based on Petri-nets. The language

is an adoption of ECML (Electronic Contracting Markup Language) which

deals with three levels of business processes, namely internal, conceptual and

external levels. eSML is provided with its schema, models and examples. SML

model includes who, where and what blocks in which the company data, ex-

changed and resource data, process and its tasks and mapping of collaborating

process’ lifecycles are defined. [101]

33

2.3.1 Variability Management

2.3.1.1 Variability in Software Systems

Complexity and change require dynamicity and adaptation of software systems. One

way to achieve this is to develop systems supporting large amounts of variability

which represents the ability to be extended, changed, configured and adapted for spe-

cific contexts. Variability modeling is often closely associated with product lines.

Software Product Lines (SPL) is famous about utilizing a systematic way for man-

aging variability. Likewise self adaptive systems, open platforms, and Software as a

Service (SaaS) applications are designed to be variable in order to fulfill user needs.

By designing with variability, reusability of artifacts and productivity increase. How-

ever, complexity of variability management, a complicated task, requires more sys-

tematic approaches.[61, 129, 42] Several variability modeling approaches have been

proposed in order to manage variability through all levels of software development;

from requirements to source code. Though introduced modeling approaches have the

same goal, they differ in modeling characteristics such as model choices, abstrac-

tions, modeling of quality models, tooling, guidance, and focusing on development

activities. A classification of variability modeling techniques is given in [117].

Variability can be modeled in all phases of product family development which ad-

dresses traceability and automation issues ranging from requirements to implementa-

tion. Different modeling techniques focus different parts of development processes,

for instance expressing requirement variability in terms of features; feature model-

ing with commonality and variability of product lines/families. Moreover, variabil-

ity modeling supports evolution in which several evolution categories are (i) New

product line, (ii) Introduction of new product, (iii) Adding new feature, (iv) Extend

standards support, (v) New version of infrastructure, (vi) Improvement of quality at-

tribute. [127, 128]

For modeling variability during product line development, variability points can be in-

troduced in various levels of abstraction; namely architecture description, detailed de-

sign documentation, source code, compiled code, linked code, and running code[98].

Each variability point can be in one of the following states at each variability level

34

stated in [72]; implicit, designed and bound. When a variability point is introduced to

a feature model, it is denoted as implicit. When its design is decided in the architec-

tural design phase, it becomes designed. After the variability point is finally bound

to a particular variant, it is bound. Binding, when a variability point is bound to a

variant, can occur at product architecture, derivation time, compilation time, linking

time, start-up time and runtime. A variability point can be either open or closed. If

new variants can be added to a variation point, then the variation point is open. On

the other hand, if there is no way to add new variants, then it is closed.

2.3.1.2 Variability Notion in SOA

In the context of service orientation, variability modeling comprises specification of

variability points, constraints and dependencies between them, related variants, vari-

ant bindings and realizations as in SPL. Variability modeling approaches should be

elaborated and applied to SOA context in that the needs of service variability is dif-

ferent from a general SPL. Types of variability which influences behavioral part of

the architecture, namely orchestration and choreography, described in [133] are listed

as follows:

• variation in the web service function,

• variation in the required parameters,

• variation in the protocols, and

• variability for coordinating web services.

Moreover, different views of variability in service-orientation is addressed by [25,

80, 100]. Variability support in all composition levels, namely choreography and or-

chestration, is needed in order to define variable interactions between services which

forms behavior of possible composite services observed from a global viewpoint. As-

suming that all granularity levels can be treated as services, variability can come from

following structural and behavioral views of the system:

Structural. This view comprises services, service attributes and the way they linked

to each other, connectors.

35

• Service interface including its functions and parameters: Interface vari-

ability requires a configuration mechanism specifying when and how to

change its functions and parameters.

• Service connectors: Connector variability needs a relation mechanism to

indicate when and which connector is used between two services.

Behavioral. This view specifies the way the services are gathered in order to achieve

a goal.

• Service composition: Composition variability necessitates a tailoring mech-

anism to define in which order and how services are interacting with each

other. There is an important consideration on how to achieve interoper-

ability between services provided with different variability. Interacting

services offer different functionalities regarding their variability bindings.

Therefore, service composition is responsible for associating proper bind-

ings of interacting services. In other words, service composition should

specify when and how to bind which variation points of interacting ser-

vices to which variants. By this way, consistent bindings of service vari-

ability can be achieved, meaning that services can provide required func-

tionalities. This requires a mechanism and a configuration infrastructure

to establish variability associations among interacting services.

2.3.1.3 Variation Support in Existing Approaches

Several approaches have been introduced to facilitate development of variable service

architectures in the context of Service Oriented Software Product Lines (SOSPL)[126,

93, 25, 133, 66, 65, 111, 80, 85, 39, 108]. These approaches are evaluated with respect

to the following criterias in Table 2.6 and Table 2.7:

Feature Modeling Support Defines whether the approach has feature modeling sup-

port to model variability. "Yes" indicates that the approach associates a feature

model. "No" means that the approach does not utilize a feature model. "Not

known" means that whether the approach uses a feature model is not known.

36

Ta
bl

e
2.

5:
C

om
pa

ri
so

n
of

va
ri

at
io

n
su

pp
or

ti
n

ex
is

tin
g

ap
pr

oa
ch

es

A
pp

ro
ac

h
[1

26
]

[9
3]

[2
5]

Fe
at

ur
e

M
od

el
in

g
Su

pp
or

t
N

o
Y

es
Y

es

Va
ri

ab
ili

ty
M

ap
pe

d
Fr

om
FR

an
d

N
FR

re
qu

ir
em

en
ts

Fe
at

ur
e

M
od

el
U

M
L

st
er

eo
ty

pe
s

Va
ri

ab
ili

ty
M

ap
pe

d
To

D
ec

is
io

n
m

od
el

B
us

in
es

s
Pr

oc
es

s
Te

m
pl

at
e

Se
rv

ic
es

Va
ri

ab
ili

ty
Sp

ec
ifi

ca
tio

n
in

C
om

po
si

tio
n

N
o

N
o

N
o

Ty
pe

of
Va

ri
ab

ili
ty

Su
pp

or
t

N
on

e
N

on
e

O
pe

ra
tio

ns
an

d
pa

ra
m

et
er

s
va

ri
ab

il-

ity
,

tr
an

sp
or

t
va

ri
ab

ili
ty

,
en

dp
oi

nt

va
ri

ab
ili

ty
,

di
sc

ov
er

ab
ili

ty
an

d

bi
nd

in
g

va
ri

ab
ili

ty
,

er
ro

r-
ha

nd
lin

g

va
ri

ab
ili

ty

To
ol

Su
pp

or
t

N
o

N
o

N
o

A
dd

iti
on

al
U

til
iti

es
D

ec
is

io
n

m
od

el
us

es
gr

ap
h

w
al

ki
ng

al
go

ri
th

m
,

qu
er

y
al

-

go
ri

th
m

,
va

ri
ab

ili
ty

de
pe

n-

de
nc

y
gr

ap
h,

en
tit

y/
se

rv
ic

e

m
ap

pi
ng

s
an

d
co

m
po

si
tio

n

se
ar

ch
sp

ac
e

Fe
at

ur
e

m
od

el
er

,
bu

si
ne

ss

pr
oc

es
s

m
od

el
er

,
fe

at
ur

e

m
ap

pe
r,

an
d

se
rv

ic
e

m
an

ag
er

fo
rs

el
ec

tio
n

an
d

bi
nd

in
g

D
es

ig
n

pa
tte

rn
s

re
co

m
m

en
de

d

37

Table
2.6:C

om
parison

ofvariation
supportin

existing
approaches

A
pproach

[133]
[39]

[108]

Feature
M

odeling
Support

N
o

N
o

N
otknow

n

Variability
M

apped
From

U
M

L
C

lass
diagram

s
R

equirem
ents

O
V

M
M

odel

Variability
M

apped
To

U
M

L
C

lass
diagram

s
w

ith

use
ofpatterns

Process
V

ariants
and

C
ontext

Profiles

U
M

L
D

iagram
s

Variability
Specification

in

C
om

position

N
o

N
o

Y
es

Type
ofVariability

Support
V

ariation
in

the
w

eb
service

function,
in

the
required

pa-

ram
eters,in

the
protocols

and

forcoordinating
w

eb
services

N
one

V
ariation

in
the

w
eb

service
func-

tion,in
the

required
param

eters,in

the
protocols

ToolSupport
N

o
N

o
Y

es

A
dditionalU

tilities
Strategy,D

ecorator,A
dapter,

Iterator
and

C
hain

of
respon-

sibility

V
ariability

m
anagem

ent
in

the
process

level.
Integration

rules

2
level

representation
of

architec-

ture;such
thatthe

m
ain

representa-

tion
excludes

variants,and
the

sec-

ondary
diagram

s
m

odelrealizations

ofvariabilities
separately

38

Ta
bl

e
2.

7:
C

om
pa

ri
so

n
of

va
ri

at
io

n
su

pp
or

ti
n

ex
is

tin
g

ap
pr

oa
ch

es
-c

on
t’d

A
pp

ro
ac

h
[6

6,
65

,1
11

]
[8

0]
[8

5]

Fe
at

ur
e

M
od

el
in

g
Su

pp
or

t
Y

es
Y

es
N

o

Va
ri

ab
ili

ty
M

ap
pe

d
Fr

om
C

om
po

ne
nt

s
C

O
VA

M
O

F
M

od
el

R
eq

ui
re

m
en

ts

Va
ri

ab
ili

ty
M

ap
pe

d
To

Pl
an

O
rc

he
st

ra
tio

n
L

an
gu

ag
e

R
ul

es

Va
ri

ab
ili

ty
Sp

ec
ifi

ca
tio

n
in

C
om

po
si

tio
n

N
o

Y
es

N
o

Ty
pe

of
Va

ri
ab

ili
ty

Su
pp

or
t

N
on

e
V

ar
ia

tio
n

in
th

e
w

eb
se

rv
ic

e

fu
nc

tio
n,

in
th

e
re

qu
ir

ed
pa

-

ra
m

et
er

s
an

d
fo

rc
oo

rd
in

at
in

g

w
eb

se
rv

ic
es

V
ar

ia
tio

n
in

th
e

w
eb

se
rv

ic
e

fu
nc

-

tio
n,

in
th

e
re

qu
ir

ed
pa

ra
m

et
er

s
an

d

fo
rc

oo
rd

in
at

in
g

w
eb

se
rv

ic
es

To
ol

Su
pp

or
t

Y
es

Y
es

Y
es

A
dd

iti
on

al
U

til
iti

es
2

le
ve

lO
W

L
-S

on
to

lo
gy

,u
til

-

ity
fu

nc
tio

n,
pl

an
s

E
xi

st
in

g
B

PE
L

en
gi

ne
A

c-

tiv
eB

PE
L

ad
ap

te
d

an
d

a
co

n-

fig
ur

at
io

n
fil

e
sp

ec
ifi

ed

E
xt

en
si

on
to

Jo
lie

or
ch

es
tr

at
io

n
la

n-

gu
ag

e
w

ith
ru

le
-b

as
ed

ad
ap

ta
tio

n

ru
le

s

39

Variability Mapped From Defines the models where the variability information of

the system comes from.

Variability Mapped To Defines the models to where the variability information of

the system is mapped.

Variability Specification in Composition Defines whether the approach enables to

define variability in service composition. "Yes" indicates that the approach has

models or constructs to specify variation in composition. "No" means that the

approach does not variability in composition.

Type of Variability Support Defines supported variability types by the approach.

"None" indicates that the approach does not support any variability specifica-

tion.

Tool Support Defines availability of tools. ’No’ means not available, ’Yes’ means

available.

Additional Utilities Defines a set of models, implementations, representations, files,

algorithms or patterns utilized to support variability.

2.3.1.4 Existing Variability Models

Several variability models have been proposed over the years to capture, organize

and represent variability which differ in the concepts. In [48], thirty-three approaches

are reviewed, categorized into issue groups and analyzed. Within these, variability

models dealing with architecture and product derivation are taken into account and

explained separately.

xADL proposed in [134] is an architecture description language devised for mod-

eling product line architectures based on XML syntax. The language uses (i)

Structure and Types schema to define modeling architectural constructs for cap-

turing a single architecture which includes components and connectors, (ii)

Options, Variants, and Boolean Guard schemas to model variability in space

through explicit variation points in the architecture, (iii) Boolean Guard schema

to guard optional and variant elements by boolean expressions which decides

40

inclusion or exclusion of optional elements and selection of particular variants,

and (iv) Versions schema to enable evolution of the architecture building on top

of the other schemas.

Koalish proposed in [28] is an architectural description language extending Koala

with variability, intended to model product line architectures. It is a product

configuration based and an architectural centric approach. The language mod-

els and configures components and interfaces to form a logical structure of the

system, which extends Koala with explicit variability constructs and resolves

variability in compile time. Alternative and optional components and con-

straints on how components, their attributes and interfaces can be used are spec-

ified explicitly. The reasoning for configuration of component models comes

from an existing inference tool for Weight Constraint Rule Language (WCRL).

The Koalish configurator facilitates to construct valid products with regard to

bound variables.

Systematic Integration of Variability into Product Line Architecture Design pro

posed in [131], an architecture centric approach, deals with variability in mul-

tiple views. It is an extension to the IEEE P1471 recommended practice for

architectural description which uses variation points to model variability in the

architecture description.

Divide and Conquer Variation Management proposed in [82], is a configuration-

based approach following two dimensional view of variation management which

operates on the file system level and is neutral to architecture, design, and

language. The approach divides variation management into nine issues and

then conquers them by addressing each of these sub-problems. The issues

are categorized under three clusters; (i) Basic Configuration Management (ver-

sion management, branch management, baseline management, branched base-

line management), (ii) Component Composition (composition management,

branched composition management), and (iii) Software Mass Customization

(variation point management, customization management, customization com-

position management). Mass customization suggests a path starting from the

file, then a customized component and finally to a customized product. Vari-

ation points are defined and selection logic is implemented with a set of file

41

variants. Instantiation of a customized component and a product is achieved by

instantiating each variation point in the components of a product.

COVAMOF proposed in [118] is a framework for variability modeling which rep-

resents a variation point as a first class entity in all abstraction layers. The

framework allows hierarchical organization of the variability by specifying re-

alization relations between variation points. It facilitates to represent dependen-

cies among variation points and modeling dependency relations. COVAMOF

Variability view comprises two views over all abstraction layers (feature model,

architecture and component implementation); variation point view and depen-

dency view. In variation point view, variation points, variants, realization rela-

tions and dependencies are specified. In dependency view, dependencies and

dependency interactions are handled in order to provide a strategy to resolve

dependencies.

OVM proposed in [30] stands for Orthogonal Variability Model which intends to

represent variability in architecture through establishing dependency relations

between development artifacts which is used to document variability in design

and realization artifacts. The model captures product line variability by speci-

fying external and internal variation points, variants, constraints between them

and supporting optional, and alternative variation points.

VSL proposed in [36] stands for Variation Specification Language which distin-

guishes variability at the specification and at the realization level. The spec-

ification level comprises user choices under variabilities, on the other hand

the realization level variation points are mapped to assets depicting the places

where the choices are implemented by taken actions. The language supports

two sets of variation point; Dynamic Variation Points (runtime variability) and

Static Variation Points (preruntime variability).

Kumbang proposed in [27] is a domain ontology for representing variability in soft-

ware product families and combining Koalish with concepts from feature mod-

eling. The ontology is developed as a profile extending the UML metamodel.

It incorporates components and features with compositional structure and at-

tributes, the interfaces of components and connections, and constraints.

42

Model-driven approach for SPLs proposed in [97] introduces a single metamodel

comprising whole development process in which relationships and constraints

among all artifacts are specified and decisions on variant features are propa-

gated consistently throughout all artifacts. The variation points are located in

one place which captures relationships and constraints among variation points,

or decisions, without a direct link to a development artifact’s variation point.

Each variation point is related to a decision which constrain other variation

points and that can explicitly be related to a domain concept.

Variability Expression proposed in [112] explains a process, methods and tech-

niques to express the variability and its usage to derive new products, based on

Software Product Line Integration Technology (SPLIT). The approach com-

prises a global framework for software product lines, having variability and

decision modeling support, binding and instantiation of products and facili-

tating asset storage and evaluation within domain and application engineering

activities. It provides a multi-level decision model covering levels for variation

points, assets and to core assets. However, global consistency of the model is

an open issue.

First class feature abstractions for product derivation proposed in [23] introduces

an approach focusing on design and implementation level with formal descrip-

tion of features in the scope of software product families (SPFs). At the design

level, features are formally expressed as a collection of roles which can be real-

ized by different base components. Then these base components become actors

of the system, satisfying a required set of functionality. A specific product

is derived by selecting a number of features which result in a set of derived

components and the mapping from the actors to the derived component imple-

mentations.

FDL proposed in [57] is a feature description language which is used to address

variability management in product line architectures where software products

are constructed from customer-specific feature selections. Specified features

are mapped to software packages whose sources are then merged by the source

tree composition technique to construct software components. The software

packages can realize a feature or implement a functionality shared by other

43

packages.

Staged Configuration Using Feature Models proposed in [84, 83] indicated a car

dinality-based notation for feature modeling in software product lines. Cardina

lity-based feature models are cast to context-free grammars to provide formal-

ism. Staged configuration approach satisfies the need for collaborating different

stakeholders by stepwise specialization of feature models, staged configuration

of platforms, components, and services. At each stage a feature model is taken

and a specialized feature model is yielded.

CVL proposed in [74] stands for Common Variability Language facilitating to ex-

press a generic and standardized variability model which brings together a vari-

ation and a resolution model and transformations to resolved domain models.

Revised version of CVL is submitted to OMG in 2012, on the way to be an

OMG standard. CVL Architecture incorporates variability points, variability

specification, constraints and resolutions. Variability Specification is similar to

features in feature modeling, likewise a tree structure where variation points

can be bound to. Constraints expressed by sub-language of OCL intricate re-

lations between Variation Specifications. Variation Points refer to base objects

and define their modifications precisely.

Variability Model for SOA proposed in [99] introduces a mechanism to modify ser-

vices to suit business process requirements. The model and approach are based

on VOE methodology and VOSD service derivation algorithm, targeting ser-

vice orientation. Variations in service, data graphs of services and variants are

formally modeled. An algorithm is provided to check whether the variant of a

service is a "legal variant". The prototype is built on IBM’s Rational Software

Architect modeling tool.

Modeling Variability in Component and Connector View of Architecture using U

nified Modeling Language (UML) proposed in [108] introduces a modeling

method which extends OVM fulfilling and addressing realization and trace-

ability issues. Variation in components, connectors and interfaces is expressed

using a UML 2.0 profile. A two-level representation of architecture is pro-

posed; (1) A simplified model exhibiting big picture of the system with abstract

44

components, connectors and interfaces regardless of variability and (2) a more

detailed variability model including variability points, variants and realizations.

Managing service variability proposed in [100] introduces exposed, composition,

partner, partner exposed variability types and their relationships in the con-

text of service-orientation. Dynamic and recursive variability communication

among service providers, service composers and service consumers are pin-

pointed. Inherited characteristics from software and service variability man-

agement are discussed; namely types of variation points, constraints, their real-

izations, variability at different levels of abstraction. The variability type needs

and their relationships are explained in detail with a case study.

2.4 Comparison Framework

Architecture modeling is expected to end up with the architectural components, their

connectors and the composition context. Based on this principle, service-oriented

architecture defines services, messaging protocols, connections and service compo-

sitions by capturing interactions between services. Reusing existing service-oriented

artifacts requires a systematic approach one of which is modeling variability in service-

oriented architecture. To this end, existing orchestration and choreography languages

are compared through the comparison framework. The framework is based on three

basic components; Variability modeling, Composition and configuration of models,

and Tool Support. The framework aims at elaborating and revealing capabilities of

existing languages focusing on variability support in particular which requires differ-

ent mechanisms to handle at the language level.

1 Variability modeling Evaluation questions related to modeling variability compo-

nent are explained one by one.

1.1 Types of Variation Point and Variants Which types are supported by the

approach which enables to specify variation point and variant?

1.2 Constraints Which mechanisms is supported for defining constraints be-

tween variations?

45

1.3 External and Internal Representation of Variation Point Does the app

roach have a support to express external and/or internal variation points?

External (Ext.) variation point stands for externalization to outer world

to be configured by others, whereas internal (Int.) variation point means

internalized to be bound by itself. "None" indicates that the model does

not specify variation points as external and internal.

1.4 Realization Which mechanism is supported to define a relation in which (i)

a high level variation point is specified by means of other variation points

as configuration purposes or (ii) a higher level abstraction that enables to

bind low-level variation points? Here, low-level variation point stands for

a variation point directly related with development artifacts.

1.5 Design Artifact Mapping Which mappings can be defined among varia-

tion points and variants to design artifacts such as development artifacts,

assets or products?

2 Composition and Configuration of Models Evaluation questions has two sub-com

ponents; (i) Composition which defines the way to gather service interactions

and (ii) Configuration of Models which defines handling of service oriented

model configurations according to variability bindings if the approach support

variability.

2.1 Composition includes how existing languages capture interactions between

a services and their environment even from a global or local perspective.

2.1.1 Composition Approach Which approach does the language fol-

low, either choreography or orchestration or both?

2.1.2 Modeling Approach Which adopted modeling approach does the

language follow? The language can be either based on interaction

or interconnection or both. Modeling based on interaction represents

definition of one building block (document or specification) for the

whole system, whereas interconnection suggests modeling control

flow logic per participant.

2.2. Configuration of Models comprises the mechanisms to support variabil-

ity in service interfaces (parameters and functions), connectors and/or

46

composition and variability associations among variable services. Vari-

ability association defines the relation of variability bindings between ser-

vices in any level, namely choreography, orchestration or atomic service

levels. Here, service concept consists of choreography, orchestration, and

atomic services.

2.2.1 Variability Support Does the language support variability? ’Yes’

indicates that the language provides explicit language mechanisms

for variability. ’Implicit’ indicates that although the language does

not provide explicit mechanisms, variability is supported implicitly.

’No’ means that there is no variability support.

2.2.2 Variability in Service Interface Does the language has constructs

or a mechanism to express variability in interfaces, namely in param-

eters and functions?

2.2.3 Variability in Connectors Does the language have constructs or a

mechanism to express variability in connectors which services are

connected with?

2.2.4 Variability in Composition Does the language have constructs or

a mechanism to express variability in service composition?

2.2.5 Variability Association Specification Does the language have con-

structs or a mechanism to express variability associations?

3 Tool Support Evaluation questions related to aiding tools to specify, analyze, ver-

ify and generate code from related specification.

3.1 Specification Does the approach provide a tool to specify language con-

structs? "Yes" indicates the approach is supported by a tool. "No" means

there is no tool support for specification.

3.2 Analysis Does the approach provide a tool to analyze language models or

specifications? "Yes" indicates the approach is supported by a tool. "No"

means there is no tool support for analysis.

3.3 Verification Does the approach provide a tool to verify language constructs

or specifications? "Yes" indicates the approach is supported by a tool.

"No" means there is no tool support for verification.

47

3.4 Code Generation Does the approach provide a tool to generate code from

language constructs or specifications? "Yes" indicates the approach is sup-

ported by a tool. "No" means there is no tool support for code generation.

3.5 Configuration Does the approach provide a tool to configure language

constructs or specifications? "Yes" indicates the approach is supported

by a tool. "No" means there is no tool support for configuration.

3.6 Tool What is (are) the name (s) of tool that which carries out supported

features? "Not in Use" means the tool is out of use. "None" indicates that

the approach does not have any implemented tool support.

In the following sections selected orchestration and choreography languages are com-

pared according to the comparison framework components one by one.

2.4.1 Variability Modeling

The variability models explained in Section 2.3.1.4 are evaluated with respect to the

variability modeling component in Table 2.8 and Table 2.10 where the abbreviations

"VP", "V", "Ext." and "Int." stand for "Variation Point", "Variant", "External" and

"Internal" respectively.

Variability Approach and Variation Point Specification In xADL, by schema mech-

anisms, the language enables component interface and connector variability.

The language provides variability both in space (binding in design time, in-

vocation time and runtime) and time (versioning). Although variation points

are specified explicitly, the conceptual difference between external and inter-

nal variation points does not exist. The language is generic and dedicated to

Software Product Lines approach.

The Koalish component model targets configuration by means of models, how-

ever variation point and variants are not specified. Configuration component

enables to define possible structural inclusions (the number and type of compo-

nents) with constraints which brings about optional, mandatory, and alternative

components. The component model and Koalish language enable component,

48

Ta
bl

e
2.

8:
C

om
pa

ri
so

n
fo

rV
ar

ia
bi

lit
y

M
od

el
in

g
C

om
po

ne
nt

A
pp

ro
ac

h
Ty

pe
so

f
C

on
st

ra
in

ts
E

xt
.a

nd
In

t.
R

ea
liz

at
io

n
D

es
ig

n
A

rt
ifa

ct

V
P

an
d

V
R

ep
.o

fV
P

M
ap

pi
ng

(T
o)

xA
D

L
O

pt
io

na
l,

M
an

da
-

to
ry

,A
lte

rn
at

iv
e

L
og

ic
al

C
on

-

st
ra

in
ts

by

B
oo

le
an

G
ua

rd

N
on

e
N

on
e

A
rc

hi
te

ct
ur

al

el
em

en
ts

;
co

m
-

po
ne

nt
(i

nt
er

fa
ce

)

an
d

co
nn

ec
to

r

K
oa

lis
h

N
on

e
C

on
st

ra
in

ts
by

W
ei

gh
t

C
on

-

st
ra

in
t

R
ul

e
L

an
-

gu
ag

e
(W

C
R

L
)

N
on

e
N

on
e

C
om

po
ne

nt
s,

th
ei

r
at

tr
ib

ut
es

an
d

in
te

rf
ac

es

[1
31

]
N

ot
kn

ow
n

D
ec

is
io

n
m

od
el

N
on

e
N

on
e

A
rt

ifa
ct

s

[8
2]

O
pt

io
na

l,
M

an
da

-

to
ry

N
ot

cl
ea

r
N

on
e

N
on

e
Fi

le
s

C
O

VA
M

O
F

O
pt

io
na

l,
V

al
ue

,

A
lte

rn
at

iv
e

D
ep

en
de

nc
y

vi
a

V
ar

ia
tio

n

Po
in

t
In

te
ra

ct
io

n

D
ia

gr
am

N
on

e
R

ea
liz

at
io

n
R

e-

la
tio

ns
be

tw
ee

n

V
Ps

Pr
od

uc
t

O
V

M
M

an
da

to
ry

,
O

p-

tio
na

l,
A

lte
rn

a-

tiv
e

(c
ar

di
na

lit
y)

R
eq

ui
re

s,
E

x-

cl
ud

es

E
xt

.a
nd

In
t.

V
P

N
on

e
Fr

om
V

P
an

d
V

to
de

ve
lo

pm
en

t

ar
tif

ac
ts

49

Table
2.9:C

om
parison

forV
ariability

M
odeling

C
om

ponent-cont’d

A
pproach

Typesof
C

onstraints
E

xt.and
Int.

R
ealization

D
esign

A
rtifact

V
P

and
V

R
ep.ofV

P
M

apping
(To)

V
SL

N
otspecified

D
ependency

N
one

R
ealization

R
e-

lation
betw

een

V
ariability

and

V
Ps

V
P

and
V

to
as-

sets

K
um

bang
N

one
C

onstraints
by

K
um

bang
C

on-

straintL
anguage

N
one

N
one

From
feature

m
odel

to
com

-

ponents,
their

attributes
and

interfaces

[97]
O

ptional,M
anda-

tory

C
onstraints

am
ong

V
Ps

in

decision
m

odel

N
one

N
one

A
ll

artifacts
of

each
develop-

m
entphase

[112]
O

ptional,M
anda-

tory,A
lternative

C
onstraints

by

decision
m

odels

N
one

M
ulti-level

deci-

sion
m

odels

A
ll

artifacts
of

each
develop-

m
entphase

C
V

L
O

ptional,M
anda-

tory,A
lternative

C
onstraints

by

sub-language
of

O
C

L

N
one

C
onfigurable

units

U
M

L
m

odels

50

Ta
bl

e
2.

10
:C

om
pa

ri
so

n
fo

rV
ar

ia
bi

lit
y

M
od

el
in

g
C

om
po

ne
nt

-c
on

t’d

A
pp

ro
ac

h
Ty

pe
so

f
C

on
st

ra
in

ts
E

xt
.a

nd
In

t.
R

ea
liz

at
io

n
D

es
ig

n
A

rt
ifa

ct

V
P

an
d

V
R

ep
.o

fV
P

M
ap

pi
ng

(T
o)

[2
3]

N
on

e
N

on
e

N
on

e
N

on
e

To
ac

to
rs

,
fu

nc
-

tio
ns

an
d

ba
se

co
m

po
ne

nt
sl

FD
L

N
on

e
N

on
e

N
on

e
N

on
e

C
om

po
ne

nt
sl

[8
4]

N
on

e
N

on
e

N
on

e
N

on
e

Pl
at

fo
rm

s,
co

m
-

po
ne

nt
s,

an
d

se
r-

vi
ce

s

[9
9]

O
pt

io
na

l,
M

an
da

-

to
ry

N
on

e
N

on
e

N
on

e
Se

rv
ic

es
an

d

bu
si

ne
ss

pr
o-

ce
ss

es

[1
08

]
M

an
da

to
ry

,

O
pt

io
na

l,
A

lte
r-

na
tiv

e

R
eq

ui
re

s,
E

x-

cl
ud

es

E
xt

.a
nd

In
t.

V
P

tw
o

le
ve

l
ar

ch
i-

te
ct

ur
e

re
pr

es
en

-

ta
tio

n

A
rc

hi
te

ct
ur

al

co
m

po
ne

nt
s

[1
00

]
ex

po
se

d,
co

m
po

-

si
tio

n,
pa

rt
ne

r,

pa
rt

ne
r

ex
po

se
d

va
ri

ab
ili

ty

re
qu

ir
e,

ex
cl

ud
e

ex
po

se
d

as
ex

te
r-

na
l

V
P,

co
m

po
si

-

tio
n

an
d

pa
rt

ne
r

as
in

te
rn

al
va

ri
-

ab
ili

ty

N
on

e
A

rc
hi

te
ct

ur
al

co
m

po
ne

nt
s

51

interface and connector variability in space. The language is dedicated to Con-

figurable Software Product Families approach. Bindings denote the flow of

function calls in a network of components connected through bindings between

their interfaces.

In Systematic Integration of Variability in to Product Line Architecture De-

sign (SIVPLAD) approach, the language enables variability in space. How-

ever, variation point concept and dependencies are not first class entities in the

modeling approach. Although product architecture is represented as a decision

model, modeling language is not clearly defined.

In Divide and Conquer Variation Management (DCVM) approach, the language

provides variability both in space (domain space) and time (sequential, paral-

lel). The approach is neutral to architecture, design, and language, instead

file-based.

COVAMOF is a general variability model in space applied for all software ar-

tifacts.

OVM model is dedicated to software product lines which interrelates variation

information to software artifacts.

VSL language is a generic variability model in space, gathering specification

and realization levels together and supporting runtime and preruntime variation.

Kumbang model targets configuration by means of Koalish component model

incorporating with feature model, however variation point and variants are not

specified. Kumbang enables component, interface and connector variability in

space.

Model-driven approach for SPLs (MDAS) approach facilitates to specify and

manage variation point and variants in a single model throughout development

process. The approach enables to define component and interface, code vari-

ability in space.

In Variability Expression (VE) approach, even though the approach does not as-

sume a particular notation, UML is used for demonstration and experimentation

purposes. Therefore, variation points and variants are represented as classes.

First class feature abstractions (FCFA) approach employs a formal feature model

52

for software product families (SPFs) to configure domain components. There-

fore, no variation point and variant specification exists. FDL approach employs

a formal feature description language for software product lines. Therefore, no

variation point and variant specification exists.

Likewise, Staged Configuration Using Feature Models (SCUFM) approach in-

cludes a novel cardinality-based notation for software product lines. Therefore,

no variation point and variant specification exists.

Variability Model for SOA (VMS) approach enables to define service interface

variability and to integrate it with business process variability. However, in-

tegration with business process variability is not pinpointed enough. Besides,

there is no explicit mechanism to specify a variation point and a variant.

In Modeling Variability in Component and Connector View (MVCCV) ap-

proach, types of variation points, variants and their realizations are addressed

with the proposed variability modeling approach. Variability in architectural

constructs, namely components, connectors and interfaces are specified.

Managing service variability (MSV) approach is important for elaborating dif-

ferent characteristics of service variability which covers service, service inter-

face and composition variability concepts. External and internal variation point

concepts are mapped to newly introduced variability types.

In Divide and Conquer Variation Management (DCVM) approach, COVAMOF

model, VSL language, FCFA approach and CVL, although variation points

are specified explicitly, the conceptual difference between external and inter-

nal variation points is missing.

Realization Higher level configurations, variability mappings are not taken into ac-

count in xADL, Koalish, SIVPLAD, DCVM, OVM, Kumbang model, MDAS,

FCFA, FDL, SCUFM, VMS and MSV approaches. On the other hand, in CO-

VAMOF, variations on higher-level abstractions are realized by variation points

in lower-levels of abstraction by realization relation mechanism. In VSL, re-

alization of variabilities in specification layer is achieved by variation points

in the realization level which provides a higher-level configuration. In VE ap-

proach, a multi-level decision model facilitates to configure the product line

from higher level (core asset level) to lower-level (variation point level). In

53

MVCCV approach, two views are provided for abstracting complexity in vari-

able architecture. The first one represents the big picture of the system with

abstract components which includes variation details. The second one includes

system variability details and their realizations.

Variability in composition In xADL, Koalish, Kumbang model, MDAS, VE, FCFA,

CVL and MVCCV approaches, although the infrastructure is convenient to

specify variability in composition, process view of the architecture is not ex-

plicitly mentioned. In SIPLAD, process view of the architecture is not explic-

itly mentioned. In DCVM, it is stated that variability in composition is achieved

by instantiation of variation points, however how it is achieved is not clear.

2.4.2 Composition and Configuration of Models

Obviously for small systems in which variability is limited we could handle configura-

tion of the composition of services and the corresponding orchestration specifications

using traditional approaches such as interaction diagrams. Variable parts and their re-

lations can be modeled and implemented by data and through ‘if’ control structures.

However, for integration of large scale systems soon the traditional approaches are

less expressive and not tractable. Therefore, existing orchestration and choreography

languages explained in Section 2.2.2 are evaluated with respect to composition and

configuration of models component in Table 2.11.

BPML, BPEL, VxBPEL, Jolie, Jorba, PML, RBXPDL and EPML follow intercon-

nection approach providing constructs for service orchestration. The only orchestra-

tion language which supports variability explicitly with a separate variability model

is VxBPEL. As a rule-based approach built on top of Jolie language, Jorba enables

dynamicity in orchestrations with an adaptation mechanism.

BPEL abstract processes, BPEL4Chor, Let’s Dance,WS-CDL, MAP, CL, ScriptOrc,

eSML, BCL and WS-Coordination facilitate to define service choreography specifi-

cations. Among them, BPEL4Chor follows interconnection approach by scattering

service interaction definitions to each of the service. Global message links are gath-

ered in a single Topology model. However, the language does not fulfill interaction

54

approach completely because global control flow logic is missing. MAP provides an

interaction model through separation of choreography definition to service peers.

The languages which targeting both orchestration and choreography are WSMO,

BPMN, Reo and AB-WSCL. WSMO is different than BPMN and Reo in following

solely interconnection model.The other two comprise interaction and interconnection

models. Among them, Reo provides a hyper-graph transformation mechanism in or-

der to support variability.

Although VxBPEL, Jorba and Reo languages have variability support, no one enables

to specify connector variability. Both of them targets service composition variability,

whereas none of them provides a variability association mechanism. The only one

providing interface variability is Jorba by reconfiguration with adaptation interfaces.

The only explicit variability model, COVAMOF, integrated with the orchestration

language is VxBPEL in which BPEL is extended with variability constructs. The

language does not provide a global view of variability when a set of orchestrations are

interacting with each other. Jorba defines adaptation interfaces and manager which

reconfigures the interfaces whenever a change in a function or a parameter is required.

As the variability logic is hidden between rules and implicit, the management of rules

and variability is usually difficult.

Comprising orchestration and choreography models in one place, Reo proposes a

hyper-graph transformation mechanism to reconfigure service interactions. In this

mechanism, services are treated as nodes which are connected via edges. Reconfigu-

ration of edges enables reconfiguration of service interactions meaning composition

variability as an internal part of the system. Therefore, composition variability cannot

be specified as an explicit variability model.

Based on the results of Table 2.11 variability in both orchestration and choreography

is not supported in any of the languages. That is, there is no explicit representa-

tion of variability and variability dependency, and a single variability model incor-

porated with all granularity levels, namely choreographies, orchestrations and atomic

services. Moreover, none of the languages addresses variability associations which

enable proper variation point bindings of interacting services.

55

Table 2.11: Comparison for Composition and Configuration of Models Component

Language Composition Modeling Variability Variability In
Approach Approach Support

BPEL 2.0 Orchestration Interconnection No None
VxBPEL Orchestration Interconnection Yes Composition
Jolie Orchestration Interconnection No None
Jorba Orchestration Interconnection Implicit Interface,

Composition
BPML Orchestration Interconnection No None
PML Orchestration Interconnection No None
RBXPDL Orchestration Interconnection No None
EPML Orchestration Interconnection No None
WSMO Orchestration,

Choreography
Interconnection No None

WS-CDL Choreography Interaction No None
Let’s Dance Choreography Interaction No None
BPEL4Chor Choreography Interconnection No None
WS-Coordination Choreography Interaction No None
WSCI Choreography Interaction No None
CL Choreography Interaction No None
eSML Choreography Interaction No None
ScriptOrc Choreography Interaction No None
BCL Choreography Interaction No None
MAP Choreography Interconnection,

Interaction
No None

AB-WSCL Orchestration,
Choreography

Interconnection,
Interaction

No None

BPMN 2.0 Orchestration,
Choreography

Interconnection,
Interaction

No None

Reo Orchestration,
Choreography

Interconnection,
Interaction

Implicit Composition

2.4.3 Tool Support

Existing variability models, orchestration and choreography languages, explained in

Section 2.3.1.4 and Section 2.2.2 respectively, are evaluated with respect to the tool

support component in Table 2.12 and Table 2.13.

56

Table 2.12: Comparison of Tool Support Component for Existing Variability Models

Approach Spec. Anal. Verif. Code
Gen.

Conf. Tool

xADL Yes Yes No Yes Yes xArch and
Menage

Koalish Yes Yes No No Yes Koalish Tool
[131] Yes Yes No No No None
[82] No No No No No None
COVAMOF Yes Yes No No No COVAMOF-VS

Tool Suite
OVM No No No No No None
VSL No No No No No None
Kumbang Yes Yes No No Yes Kumbang Con-

figurator
[97] No No No No No None
[112] Yes Yes No No Yes UML
CVL Yes Yes No No Yes CVL Tools
[23] Yes Yes No No No Prototypical Tool
FDL Yes Yes No No No autobundle Tool
[84] Yes Yes No No No Prototypical tool
[99] Yes Yes No No Yes Prototype
[108] Yes No No No No UML2.0
[100] Yes No No No No UML2.0

xADL Tools, xArch and Menage, enable to specify, analyze, generate Java classes,

and configure xADL models. Components are specified, analyzed and configured by

the Koalish Tool. SIVPLAD Tool[131] only facilitates to specify and to analyze file

variants. Variation points, variants, variation realizations and constraints are specified

and analyzed by the COVAMOF-VS Tool Suite. Components are specified, analyzed

and configured by Kumbang Configurator with the help of Koalish code. A prototypi-

cal tool for VE [112] facilitates to specify UML diagrams with stereotypes, to analyze

and configure models via decision models. Autobundle tool for FDL, a prototypical

tool for SCUFM [84] and a tool for FCFA [23] enable to specify and analyze feature

diagrams and to configure the product line models. A prototype for VMS [99] has

ability to specify variation, to analyze whether variants are"legal" or not, and to con-

57

figure via service interface customization for business process creation. In MVCCV

[108] and MSV [100] approaches, UML is used for specification via stereotypes.

DCVM [82], OVM, VSL, and MDAS [97] approaches do not provide any tools.

Table 2.13: Comparison of Tool Support Component for Existing Orchestration and
Choreography Languages

Approach Spec. Anal. Verif. Code
Gen.

Conf. Tool

BPML No No No No No None
BPEL 2.0 Yes Yes Yes No No BPEL Tools
VxBPEL Yes Yes No No Yes Adapted Ac-

tiveBPEL engine
prototype and
ValySec

Jolie Yes No No No No Jolie Interpreter
Engine

Jorba Yes No No No Yes Jorba Prototype
PML Yes Yes Yes No No PMLCHECK
Reo Yes Yes Yes Yes No Reo Tools
WSMO Yes Yes Yes No No WSMX
BPMN 2.0 Yes Yes Yes Yes No BPMN Tools
WS-CDL Yes Yes Yes Yes No Not in use
Let’s Dance Yes No No No No None
BPEL4Chor Yes Yes Yes Yes No BPEL4Chor

Tools
MAP Yes Yes Yes Yes No MagentA
WS-Coordination Yes No Yes No No XML Tools
WSCI Yes No No No No XML Tools
CL No No No No No None
ScriptOrc No No No No No None
BCL Yes No No No No Visual Studio

IDE
AB-WSCL No No No No No None
RBXPDL Yes No No No No XML Tools
EPML Yes No No No No EPML engine
eSML Yes No Yes No No eSML Verifica-

tion Tool
pi4soa Yes Yes Yes Yes No pi4SOA Tools

Suite

58

BPML is not supported currently. For BPEL and BPMN language, several tools are

available even for industrial level. Existing approaches introduce different models

for verification of BPEL and BPMN models. For VxBPEL, ValySec analysis tool is

implemented and ActiveBPEL engine is adapted to process variability information.

The tools are not in use; will be open sourced soon. Jolie is currently supported by

an interpreter implemented in the Java language, which can be run in multiple oper-

ating systems including Linux-based operating systems, Apple OS X, and Microsoft

Windows. Jorba tool as a prototype is very limited, and it will need a lot of work to

become fully able to deal with complex adaptation scenarios available for use. PML

comes along with its specification, analysis and verification tool, PMLCHECK which

translates a process model into a graph representation. For the Reo language, BPMN

modeller, BPMN2Reo converter, Reo graphical editor, Reo reconfiguration plug-in,

Reo simulation engine, Reo validation plug-in (to Eclipse) and java code generation

engine are developed. WSMO approach has several tools for modeling and an exe-

cution environment for dynamic matchmaking, selection, mediation and invocation

of semantic web services based on WSMO; WSMX. For WS-CDL, a visualization

tool was implemented in Erlang; however it is currently unavailable [77]. Maestro

tool is implemented for Let’s dance, however, not available and SAP ended its sup-

port in 2006. BPEL4Chor has several tools [73]; Oryx editor for specification, BPEL

to BPEL4Chor and BPEL4Chor to BPEL converter tools which can be run inside

Eclipse. Verification of BPEL4Chor constructs are achieved by BPEL2oWFN [87].

MagentA, an implementation of MAP which provides a concrete, and open-source

framework for the enactment of distributed choreographies. Besides, verification of

MAP is achieved via its model transformation to PROMELA language. CL, Scrip-

tOrc, and AB-WSCL have no tool support. BCL is developed based on Microsoft

Domain-Specific Language Tools (DSL Tools) on top of the Visual Studio IDE. For

EPML, process specifications in XML representation is executed by its enactment en-

gine written in Java. pi4soa tools suite includes tools from Choreography Description

Designer to Choreography Validation Framework which are released (and supported)

through JBoss Tools[43].

59

2.4.4 Discussion and Problem Statement

State of the art variability support in orchestration and choreography languages are

evaluated under the comparison framework. The analysis of the existing languages

shows that variability in both orchestration and choreography is not supported in any

of the languages. Besides, interface and composition variability support is not ex-

plicitly addressed with a single variability model incorporated with choreographies,

orchestrations and atomic services. Only VxBPEL language has an explicit variability

specification based on the COVAMOF model which enables definition of variability

in service composition. However the language can not cover all service variability

needs, namely variability in interface and connector. Variability associations can be

defined by means of CVV dependency view, but it still needs an additional mecha-

nism to specify which interacting services of which orchestration is dependent each

other. Because variability association logic lies in revealing correlations of variation

point bindings of interacting services within an orchestration.

No single orchestration or choreography language addresses all variability needs.

Several variability models are proposed to capture, organize and represent variability

which differ in emphasizing concepts since 2000. A review of variability model cat-

egorizations can be found in [48]. COVAMOF [118], OVM [30]and CVL [74] like

variation models can be used to represent service variability, however still they are

lack of representing all variability needs. Beyond that, there is no specified mecha-

nism to map orchestration and choreography variability consistently.

The analysis of the current orchestration and choreography languages shows that none

of the current languages supports variability both at orchestration and choreography

level. None of them provides interface, connector and composition variability in one

place with variability association mechanism. Moreover, there is no language sup-

porting interface and composition variability in a single model explicitly addressing

at all levels; namely choreography, orchestration and atomic service. The following

problems are identified concretely:

• Lack of explicit expressiveness of variability in choreography specifica-

tions. There is no language that explicitly represents variability in choreog-

60

raphy in order to integrate orchestration specifications. Moreover, variability

modeling in choreography, orchestration and atomic services as a whole is not

explicitly covered in one single model. This impedes the consistent configura-

tion of choreography and orchestration specifications with respect to variability.

The lack of explicit abstractions for variability easily leads to the scattering of

variability concerns over service compositions. Likewise, enabling or disabling

a variability results in reorganization of the composition. This complicates the

understanding of variable parts, relations amongst them and the overall goal for

business process engineers and developers. Tracing these scattered variations

can be achieved to a certain degree, but in large scale systems traceability and

understandability decrease gradually. As a result, this scattering reduces the

maintenance of the system.

• Lack of explicit specification of variability associations among interacting

services. A choreography interrelates a set of orchestrations, atomic services

and establishes connection with other choreographies. Interacting service vari-

ability constraints and shapes possible choreography abilities and composition.

Likewise, variability of choreography dictates proper service variability bind-

ings and specified configurations which bring along service interfaces with dif-

ferent functionality and parameters. In order to reveal these dependencies and

relations between choreography and services, an explicit association of varia-

tion point bindings should be defined. In other words, configuring choreogra-

phy requires configuring other services in order to consistently collaborate with

each other. Therefore, configuration and binding of service variability requires

an integrated model comprising choreography, orchestration specifications, and

atomic services with variability. There is no language supporting such inte-

grated configuration model dealt with variability of all granularity levels.

• Lack of support for reusing existing choreographies. The importance of

reusing existing choreographies is addressed in some approaches, but reusing

as a part of the other choreography is not emphasized sufficiently. There are

ways to handle choreography-to-choreography relationships such as collabo-

rating via exposed choreography interfaces. In case of variability, it is more

difficult to utilize choreography specifications with proper bindings. Therefore,

61

the way to bind to other choreographies should be specified.

In order to fully support variability, needs of each level namely choreography, orches-

tration and atomic service should be addressed. As each view has different needs,

variability specification and management at all views are related but different. The

challenges of variability representation needs within service-oriented context lie in

determination of following items:

• the types of variation points and variants,

• associations between variation points and variants,

• the parts where and how variability associations is stated,

• the effect of variation points to shared elements of choreography,

• the parts where and how choreography variability in composition is stated or

referenced from outside,

• the relationships of service and choreography capabilities with variability and

where they are specified.

The target variability model faces with following obstacles:

• External specification of variability opened to outer world in order to configure

in an intended manner,

• Depiction of composition variability realizing external variability while dealing

with internal variability, and

• Association of external service variability with the composition variability

All in all, all interacting services should define their external variability if exists,

which can be either orchestration and atomic services. While configuring interacting

services, their variability bindings should be consistent with each other, if one of the

service variability binding affects that of the other one’s. Therefore, a comprehensive

variability model from the global point of view is missing to manage variability in

choreography level which can then be mapped to the variability of interacting services

in order to achieve a consistent architecture.

62

CHAPTER 3

VARIABILITY IN CHOREOGRAPHY LANGUAGE: XCHOR

This chapter introduces a new metamodel and its realization XChor language which

addresses variability support at choreography level in order to integrate variable or-

chestrations and atomic services consistently. A variability model integrated with

choreography model is proposed as a single model so as to systematically manage

variability from a global point of view. After variability modeling requirements are

revealed, two real life case study are explained for demonstrating variability in chore-

ography level. Afterwards, the proposed metamodel and XChor language are ex-

plained with language constructs and exemplified via case studies. XChorS Tool is

that supports specification, analysis, and configuration of XChor models is repre-

sented with its capabilities. Then, validation of the XChor language is studied for

modeling service variability and choreography specification.

3.1 Variability Modeling Requirements for Choreography Languages

A choreography comprises a set of orchestrations, atomic services and collaborates

with other choreographies. All interacting services knows only their variability infor-

mation regardless of other ones’. Variability binding of a service can entail a proper

variability binding of another one. Associations can be established one to one, how-

ever, the whole such associations can not be observed at their level, instead it should

be managed in a high level abstraction, namely choreography. By this way, the chore-

ography establishes a mechanism that interacting services can behave as expected by

means of consistent configurations. In fact, the choreography forms a context when

63

and how variability of interacting services bound along with variable service inter-

action specification. Therefore, a variability model addressing all levels should be

elaborated indicating which types of variability is supported and how. To this end, re-

quirements for variability model in choreography language and its relation with other

choreographies, orchestrations and atomic services are listed as follows:

• Variability should be uniform and treated as a first class concept at all abstrac-

tion levels of architecture, namely atomic service, orchestration, and choreog-

raphy. In other words, multi-level variation representation should be specified.

• Variability should be represented in an hierarchical organization explicitly which

reduces complexity of variability points and eases variability management. A

global view on variability points helps product developers to understand ulti-

mate goals of the system.

• Constraints on variability should be specified in all levels of architecture.

• Variability associations defined by means of explicit variability mappings should

be treated as first class entities in order to realize a valid set of products.

• In order to establish variability associations, orchestrations and atomic services

should offer and open their variability explicitly to the choreography in a global

view.

• Variability of a choreography specification should be specified explicitly for

utilization. The choreography can be used by other ones, which requires ex-

plicit variability representation in choreography level.

• Both centralized (choreography) and decentralized (orchestration and atomic

services) variability management should be conducted at the same time for con-

sistency. A centralized view is based on decentralized ones.

• Variability should be correlated with design artifacts, namely service interfaces

and choreography specifications.

• A process for specification and management of variability on architecture should

be defined for developers and a set of tools should be provided to ease variabil-

64

ity management ranging from variability specification, analysis, configuration,

verification to code generation.

3.2 Case Study

In order to demonstrate variability in choreography, two case studies are explained

expressing variable parts with UML Sequence Diagrams. The first one is Travel

Itinerary System where several services are composed under one choreography speci-

fication. The second one is Adaptable Security System which comprises three chore-

ography specifications with interrelated services. These case studies are specified

using the metamodel and the XChor language constructs.

3.2.1 Case Study: Travel Itinerary System

Travel itinerary system is an online booking facility which organizes travelers’ trip

plans even for complex trips with multiple stops and changes. The system can option-

ally provide hotel and flight booking, car rental, booking of activities, and vacation

packages. Vacation packages contain at least hotel and flight bundle and optionally

additional activities. Traveler can choose any booking type (flight and/or hotel), ar-

rival and departure dates of his/her trip, the destination place and other details such

as traveling with pets. Travel agency gathers convenient hotel and flight options from

available hotels and airlines which are presented with detailed information to the trav-

eler with regard to his/her selected booking type. According to traveler’s choice,

additional activities, cruise options and advantageous vacation packages are offered.

Traveler can choose one among them and can book hotel and/or flight. After getting

booking confirmations, travel agency sends the trip plan to the traveler with all re-

quired information. In case of any booking problem, travel agency sends a message

indicating the booking cancellation and directs to him/her rearrange her/his itinerary.

A UML diagram describing how the travel itinerary system works is depicted in Fig-

ure 3.1. Traveler, Travel Agency, Hotel, Airline, Cruise, Car Rental and Activity

Provider are the main actors of the Travel Itinerary System. Hotel and Airline book-

ing are processed with regard to selection of booking type by the Traveler. Therefore,

65

the parts of flow belonging to airline or hotel are covered by if clauses. Likewise,

optional cruise, car rental and/or activities are represented by if clauses in the flow.

Figure 3.1: UML Sequence Diagram for Travel Itinerary System.

The flow of the booking changes with regard to booking type; only flight, only hotel,

66

or flight and hotel. Therefore, booking type causes travel itinerary system behavior

change whose variants are the hotel and the airline. Besides, inclusion of additional

features such as cruise, car rental, and activities alters the way services interact with

each other. These are also variants of the travel itinerary plan.

3.2.2 Case Study: Adaptable Security System

The Adaptable Security System is an authentication system residing between cus-

tomers and third party applications or institutions that support different authentica-

tion types of data, including software and hardware (biometric device) parts. The

system has the ability to be integrated and applied on a military installation or to a

banking system, which requires fulfilling different stakeholder needs. Applicability

to different stakeholder systems requires different functionality support and behavior.

In other words, the adaptable security system has the ability to comprise all structures

and compositions in order to fulfill application needs for different stakeholders.

The system includes two basic functions; user enrollment and verification which can

be offered by offline or online by a third party authority such as web services or

certain devices like: PDA, PC, ATM, or mobile phone. The third party authority

gets different types of data as required user credentials: (1) user name and password,

(2) user name and password with instant mobile text, (3) e-sign, (4) biometric data;

fingerprint, finger vein, and/or iris. According to the verification result, the system

will allow or ban users entering the integrated application.

Device support is important as different devices have different capabilities. ATM,

PDA and mobile phone can be used with (1), (2) and (3). PC supports (1), (2), (3)

and (4). Therefore, the system should change authentication processing functions ac-

cording to used devices. Moreover, users can combine different data types in order to

authenticate; for instance in the PC case user can enter his/her user name, password

and biometric data. Feeding the system with different possibilities of user creden-

tials should be considered, as (i) internal encryption algorithm is affected by changed

parameters and (ii) biometric processing algorithm usage should be configured ac-

cording to the type of biometric data.

67

A UML interaction diagram is used to define the various configurations for verifica-

tion of a user as shown in Figure 3.2. Adaptable Security System, as itself a choreog-

raphy, interacts with credential manager and alert choreographies colored with dark

blue, the others are treated as orchestration or atomic services. Adaptable Security

System choreography realizes two functionalities; verify and enroll. Verification of a

user generally includes four steps: (i) processing of his/her credentials; (ii) encryp-

tion of processed data, (iii) comparison of encrypted processed data and pre-existing

encrypted data, (iv) showing the verification result to the end user. Processing of third

step changes with regard to authentication types; online or offline.

Figure 3.2: UML Sequence Diagram for User Verification in Adaptable Security Sys-

tem.

68

Online verification requires gathering comparison result from a third party appli-

cation, whereas offline verification needs data comparison within the device by es-

tablishing connection to storage. Likewise, fake transaction support of the system

changes the way to respond user, in our case the system prepares a fake interface and

alerts bank or police station. Credential manager choreography gathers user’s bio-

metric data from biometric readers and extracts biometric features, which is reused

by verification and enroll functions of adaptive security system. Alert choreography

can take pictures, record a scene video and send them to bank and/or police station

along with place and date information in case of emergency.

Given different user credential types such as biometric authentication, supported au-

thentication modes (online and/or offline), transaction types (real or fake transaction)

the system’s behaviors need to be configured differently. As such we will need to

compose different choreography and orchestration specifications. The composition

of the services depends on the selected items of the orchestration and choreography

elements. The selected orchestration elements will typically have an impact on the

choreography specification. Likewise it is important that this be done in a consistent

way.

3.3 A Metamodel for Variability Management in Choreography

To enable integration of orchestrations and atomic services in the scope of chore-

ography, we propose a metamodel in which atomic services and orchestrations are

evaluated under the service concept. The main difference between specifications of

orchestration and atomic service comes from revealing external behavior to service

environment. That is, an orchestration can define its external interactions with other

services if required. Moreover, there is no constraint that an atomic service can not

specify its interactions. Therefore, atomic services and orchestrations are treated as

services in our metamodel. The metamodel basically enables to define choreogra-

phies and services, to specify variability of each one and to integrate these variabil-

ities in order to provide a consistent collaboration. Figure 3.3 depicts an overview

of service and choreography relations based on our metamodel so as to support inter-

face and composition variability. Two main blocks are depicted; choreography and

69

service.

Internal, external variations and internal variability bindings for configuration pur-

poses are specified for choreography. On the other hand, only external variations can

be defined for services. Choreography and service interfaces without variation are

identified which fulfill all possible functional requirements and then are configured

by variations. Choreography interface is merely configured with regard to its own

variability specification, whereas service interface is configured by both its own vari-

ability and variability specification of choreography that takes part in. Configuration

of a service is achieved by activating/deactivating functions and setting/unsetting pa-

rameters. With this mechanism, different choreographies utilize different interfaces

of the same service which brings service reusability.

Figure 3.3: Overview of the approach based on the Metamodel.

Choreography variation leads to proper bindings of variations of other choreographies

and services via mapping to provide interacting interface consistency. Choreography

and external behavior specification of services include inline references of their own

variability to point out the changeable parts. By this way, choreographies and services

include a set of possible required behavior in order to fulfill different composition

needs, which enables reuse of choreography and services.

The analogy between metamodel and model instance with metamodel of XChor is

represented in Table 3.1.

70

Table 3.1: Mapping of Metamodel and XChor Metamodel Concepts

Metamodel XChor Metamodel
Model XChor Models: choreography, service/choreography inter-

face, configuration interface model
Model instance choreography specification, service interfaces, choreogra-

phy interfaces, configuration interfaces

XChor metamodel with all construct are depicted in Figure 3.4. The metamodel

is separated logically in three blocks for understandability purposes; Choreography

Specification, Choreography to Variability Mapping and Variability Specification.

3.3.1 Variability Specification

The right most part of the metamodel in Figure 3.4 presents the variability speci-

fication constructs. The variability metamodel has been defined based on variabil-

ity needs of service-orientation and existing variability metamodels in the literature,

which comprises standard entities for modeling variability as described in Chapter 2,

Section 2.3.1.4.

Choreographies and services reveal their hidden variability as internal and expose

them as external variability. Internal variation points are invisible to outer context.

Whereas, external variation points are explicit to users of choreography and services

in order to be referenced, utilized and configured with a set of variants. A special

variation point, configuration variation point (CVP) is responsible for reducing com-

plexity of internal variation bindings. It provides a high level understanding for con-

figuration purposes while hiding details of how the internal bindings are done.

Variants play the role of activating/deactivating functions and/or setting parameters

of a function belonging to a choreography or a service interface for configuration

purposes. For different variation point relationships, constraints provide a mechanism

to establish a convenient binding and selection by defining numerical and logical

constraints.

71

3.3.2 Choreography Specification

The left most part of the metamodel represents the elements to specify a choreography

composition and interfaces of choreography and services. Choreography comprises a

set of interacting services and other choreographies and identifies composability rules

via service interactions. Here service interaction specifies the way how the services

collaborate by means of atomic and composite interactions. Composite Interaction

defines an interaction between services and choreographies with/without a guard. It

can be either a selection of an interaction among others (SelectInt), repetition of a

set of interactions (RepeatInt), parallelization of a set of interactions (ParallelInt) or

flowing down in a sequence (SequenceInt) with a basic fault specification. The build-

ing block of a composite interaction is the atomic interaction which is a specification

of a basic interaction between two services with variability attachment.

As choreography has its own interface, choreography specification comprises a set

of interacting service and choreography interfaces. Choreography and service inter-

faces expose a set of functions without variability specifications. Different from a

service, a choreography interface declares required functions from other services and

choreographies.

3.3.3 Choreography to Variability Mapping

The middle part of the metamodel represents the concepts to define the mapping be-

tween choreography and variability constructs. Mainly these constructs are responsi-

ble for configuration of interfaces, establishment of variability associations and indi-

cating variability references in composition.

Variability Configuration Model of service and choreography includes a set of varia-

tion points, constraints among them and service interactions (for services only). Vari-

ability Association facilitates choreography to identify proper bindings of utilized

service and choreography variability. The need for associations comes from choreog-

raphy variability to support different compositions and provide consistent variability

bindings. For this purpose, firstly variation points are mapped and then each variant

of related choreography variation point is mapped to that of service or that of utilized

72

Figure 3.4: XChor Metamodel for Variable Choreography Specification.

73

choreography variation point.

Methods And Parameter Activation for Configuration provides a configuration mech-

anism to define method activation/deactivation and parameter setting/unsetting of the

referred service interface.

Variability Attachment specifies conditions of variation point and variant selections

used in choreography composition, namely in composite and atomic interactions.

Tagging with variability attachment specifications, the parts of the composition gains

dynamicity that changes the behavior of choreography. When conditions are satis-

fied, the part is added to the final composition. The conditions including variation

point and variants are: (i) one of the variants in a variant set is selected, (ii) all of the

variants in a variant set are selected and (iii) some of the variants in a variant set are

selected.

3.4 XChor Language

The metamodel that we have described in the previous section has been realized as a

new domain specific language that we call XChor. XChor[122] has been implemented

using Xtext[22] in the Eclipse development environment.

3.4.1 XChor Language Constructs

3.4.1.1 Variation Specification Constructs

Explanations of each variation specification construct are given in detail with Xtext

specifications. Variation point specification constructs of XChor metamodel is de-

picted in Figure 3.5.

VarPoint is a representation of a variable property of an item which identifies one or

more locations at which the variation will occur. VarPoint is an abstraction of three

types of variation point: internal, external and configuration variation point.

74

Figure 3.5: Variation Point Specification Constructs of XChor Metamodel.

VarPoint:

ConfigurationVarPoint | InternalVarPoint | ExternalVarPoint

;

InternalVarPoint is hidden from users of choreographies, orchestrations and atomic

services. InternalVarPoint defines a variation point which is invisible to outer context

so as to describe a variability with a VariantSet and specified binding time. Internal

Variation points can be specified inside the configuration interfaces of choreography.

InternalVarPoint:

vt = "internalVP" name=ID ’:’

variants = VariantSet

"bindingTime" btime =BINDING

;

ExternalVarPoint is explicit to users of choreographies, orchestrations and atomic

services in order to reference, utilize and configure with a VariantSet and speci-

fied binding time. External Variation points can reside in configuration interfaces

75

of choreography and services. "externalVP" should be used while defining a varia-

tion point for choreography in a configuration interface and "vp" should be used for

service variation in the configuration interface.

ExternalVarPoint:

(vt = "externalVP" | vt2 = "vp") name=ID ’:’

variants = VariantSet

"bindingTime" btime =BINDING

;

VariantSet is a set of defined set of variants grouped as mandatory, optional and

alternative. Alternative variants are specified with minimum and maximum number

of selections.

VariantSet:

{VariantSet} ("mandatory" (variants += Variant)*)?

("optional " (variants += Variant)*)?

("alternative " (variants += Variant)*

"(min:"INT",max:"INT")")?

;

Variant is a representation of a particular instance of a variable property. Variant is a

variable definition of a variation point which can activate functions of services (Meth-

odsWithoutDefinedServices) or its functions stated in the interface (MethodsWithout-

DefinedServices) and/or can set a parameter (Function) to a function (Function) stated

in service interface if required.

Variant returns Variant :

"variant" name = ID ((":activateMethods(" (

m1 = MethodsWithDefinedServices |

m2 = MethodsWithoutDefinedServices) ")")?

(":setParameter(toFunct:" f = [Function] ",parameter:"

pars = Param (

76

";toFunct:" func += [Function]

",parameter:" fpars += Param)*

")")?

)

;

Tag is an ID assigned to variation points whether they reside in composition or

take part in configuring service interfaces via mapping. It can reside in composi-

tion (@composition) or take part in configuring service interfaces (@vconfservice)

or take part in configuration variation point realization (@vconfrealization)

Tag:

"@" name = ID

;

Binding is a set of specified times indicating when a variation point can be bound to

a set of variant.

BINDING:

devt = "devtime"| derv = "derivation"

| comp = "compilation" | link = "linking"

| strt= "start-up" | runt ="runtime"

;

In configuration interfaces of orchestration and atomic services, vp is used instead of

externalVP. <vpname> indicates a unique name of the variation point, <varname>

is also a unique name representing variant descriptor. <number> is an integer used

to specify the minimum or maximum amounts of the variant to be selected within

alternative variants. <binding> indicates the time when the variation point is bound

to one or more of its variants and can be one among the set; devtime, derivation

compilation, linking, start-up, and runtime.

Examples and syntaxes of internal and external variation points are given in Table

3.2. The example variation points are taken from the configuration interface of the

77

adaptive security system choreography. Developers can choose to internalize or ex-

ternalize selection of authentication type supported by the adaptable security system

choreography. Authentication type (i_auth_type, auth_type) is a variation point which

changes the behavior of the choreography, hence the composition of the system. It has

a mandatory variant which is username and password (line 4). Two optional variants

are one time password (line 6) and e-sign (line 7).

Table 3.2: Internal and External Variation Point Syntaxes and Examples

1 i n t e r n a l V P vpname :
2 mandatory
3 v a r i a n t varname
4 . . .
5 o p t i o n a l
6 v a r i a n t varname
7 . . .
8 a l t e r n a t i v e
9 v a r i a n t varname

10 . . .
11 (min : number , max : number

)
12 b ind ingTime b i n d i n g

XChor Language - Internal Varia-
tion Point Syntax

1 i n t e r n a l V P i _ a u t h t y p e :
2 mandatory
3 v a r i a n t username_passw
4 o p t i o n a l
5 v a r i a n t one t imepassw
6 v a r i a n t e s i g n
7 a l t e r n a t i v e
8 v a r i a n t f i n g e r p r i n t
9 v a r i a n t f i n g e r v e i n

10 v a r i a n t i r i s
11 v a r i a n t f a c e
12 (min : 1 , max : 2)
13 b ind ingTime dev t ime

XChor Language - Internal Varia-
tion Point Example

1 e x t e r n a l V P vpname :
2 mandatory
3 v a r i a n t varname
4 . . .
5 o p t i o n a l
6 v a r i a n t varname
7 . . .
8 a l t e r n a t i v e
9 v a r i a n t varname

10 . . .
11 (min : number , max : number

)
12 b ind ingTime b i n d i n g

XChor Language - External Varia-
tion Point Syntax

1 e x t e r n a l V P a u t h _ t y p e :
2 mandatory
3 v a r i a n t username_passw
4 o p t i o n a l
5 v a r i a n t one t imepassw
6 v a r i a n t e s i g n
7 a l t e r n a t i v e
8 v a r i a n t f i n g e r p r i n t
9 v a r i a n t f i n g e r v e i n

10 v a r i a n t i r i s
11 v a r i a n t f a c e
12 (min : 1 , max : 2)
13 b ind ingTime dev t ime

XChor Language - External Varia-
tion Point Example

78

Alternative variants range from fingerprint (line 9), finger vein (line 10), iris (line 11)

and face (line 12) among which minimum one and maximum two are selected. All

these variants can be bound at development time (line 14).

ConfigurationVarPoint is a higher-level variation point including type and informa-

tion about its variation points which are realized by low level variation points. It maps

its variants to a set of internal variation points with their variant selections. It can be

either internal or external which is specified by the "vartype" keyword. It defines a

set of variants (VariantSet) and their realization (ConfVariantWithChoices), default

variant (Variant) selection and binding time (BINDING).

ConfigurationVarPoint returns ConfigurationVarPoint:

"configuration" (

{InternalVarPoint} name=QualifiedName ’:’

"varType" vt = "internalVP" |

{ExternalVarPoint} name=QualifiedName ’:’

"varType" vt = "externalVP")

(variants = VariantSet)

("realization" rea = STRING)

((confvariants += ConfVariantWithChoices)+)

("defaultVariant" defaultVariant = [Variant])

("type" type= CONFTYPE

"bindingTime" btime = BINDING)

;

ConfVariantWithChoices is a variant of a configuration variation point including a

set of choices for realization.

ConfVariantWithChoices:

"confvariant" name = ID "mapping"

(choices += Choice)+

;

79

Table 3.3: Configuration Variation Point Syntax

1 c o n f i g u r a t i o n <vpname> :
2 varType < e x t e r n a l V P | i n t e r n a l V P >
3 mandatory
4 v a r i a n t <varname>
5 . . .
6 o p t i o n a l
7 v a r i a n t <varname>
8 . . .
9 a l t e r n a t i v e

10 v a r i a n t <varname>
11 . . .
12 (min : <number> , max : <number>)
13 r e a l i z a t i o n < e x p l a n a t i o n >
14 c o n f v a r i a n t <confvarname> mapping
15 VPName < r e f e r e n c e d v p n a m e > s e l e c t e d V a r i a n t s (< r e f v a r n a m e _1> ,

< r e f v a r n a m e _2> , . . .)
16 . . .
17 . . .
18 d e f a u l t V a r i a n t <oneo fcon fva rname>
19 t y p e < t y p e >
20 b ind ingTime < b i n d i n g >

Choice. It is a selection definition of a variation point among defined ones and re-

lated selected variants for the realization of a configuration variation point. Minimum

and/or maximum number of variant selections can optionally be specified.

Choice:

"VPName" vp = [VarPoint] "selectedVariants(

" (vars += [Variant])+ ("; min:" INT)? (", max:" INT)?

")"

;

Syntax of the configuration variation point is given in Table 3.3 where <vpname>

indicates a unique name of the configuration variation point. <confvarname> and

<varname> are also unique names representing variant descriptors. <number> is an

integer used to specify minimum or maximum counts of a variant to be selected within

80

alternative variants. <explanation> is a string clarifying realization of the configura-

tion variation point. <referencedvpname> is a reference of an already defined vari-

ation point. <refvarname_1>,<refvarname_2>,. . . is a set of variants of referenced

variation point. <oneofconfvarname> is one of the variants defined for configuration

variant as default selected variant. <type> depicts the aim of configuration which can

be substitution or parameterization. <binding> indicates the time when the variation

point is bound to one or more of its variants and can be one among the set; devtime,

derivation compilation, linking, start-up, and runtime.

Table 3.4: Configuration Variation Point Example

1 c o n f i g u r a t i o n a u t h e n t i c a t i o n _ t y p e :
2 varType e x t e r n a l V P
3 o p t i o n a l
4 v a r i a n t u s e r i n f o
5 v a r i a n t b i o m e t r i c s
6 r e a l i z a t i o n " i t i s r e a l i z e d by i _ e n c r y p t i o n _ p a r a m e t e r s and

i _ a u t h _ t y p e v a r i a b i l i t y p o i n t s "
7 c o n f v a r i a n t u s e r i n f o mapping
8 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (

d e f a u l t p a r a m s)
9 c o n f v a r i a n t b i o m e t r i c s mapping

10 VPName i _ a u t h _ t y p e s e l e c t e d V a r i a n t s (f i n g e r p r i n t
f i n g e r v e i n i r i s f a c e ; min : 1 , max : 1)

11 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (s e t p a r a m s
)

12 d e f a u l t V a r i a n t u s e r i n f o
13 t y p e p a r a m e t e r i z a t i o n
14 b ind ingTime dev t ime

authentication type configuration variation point is indicated as an external variation

given in Table 3.4. The variation point hides encryption parameter and authentica-

tion type variation point binding logic and presents a high level configuration struc-

ture. It has two optional variants specified as (lines 4-5); “userinfo” and “biomet-

rics”. “userinfo” variant is realized (line 8) by selection of “defaultparams” variant of

“i_encryption_parameters” variation point. For “biometrics”, the realization requires

two selections at the same time: (i) minimum one variant among “fingerprint fin-

81

gervein iris face” set should be selected from “i_auth_type” variation point (line 10)

and “setparams” variant of i_encryption_parameters variation point (line 11). De-

fault variant of the “authentication_type” configuration variation point is “userinfo”

(line 12). Configuration type is parameterization and it is bound at development time

depicted as “devtime” (line 14).

Constraint is a description of a relation among variation points and variants, as an

abstraction of two types of constraints: LogicalConstraint and NumericalConstraint

depicted in Figure 3.6.

Constraint:

LogicalConstraint | NumericalConstraint

;

Figure 3.6: Constraint Specification Constructs of XChor Metamodel.

LogicalConstraint. It is a definition depicting a constraining relationship in which

a variation point and/or related variants decide another variation points and/or its

selected variants status as either excluded, implied, required or negated. Logical

relationships are requires, excludes, negates and implies. Logical relationships are

applied:

82

• Between two variation points.

• Between a variation point and a variant which is not related with the variation

points. In other words, let’s assume a variation point vp1 that has v1 and v2

as variants and vp2 has v3 and v4. A logical relationship can be represented

between vp1 and v3 and/or vp4 as well as vp2 and v1 and/or v2.

• Between two variants.

LogicalConstraint:

(p1 = [VarPoint] (p2 = [Variant])?) c =CONST

p3 = [VarPoint] (

"selectedVariants("(vars += [Variant])+

(", min:" INT)? (", max:" INT)? ")"

)?

;

The syntax and an example of logical constraint are given in Table 3.5.

Table 3.5: Logical Constraint Syntax and Example

1 < v p n a m e 1 > < v a r n a m e 1 > < l o g i c a l c o n s t r a i n t > <vpname_2>
s e l e c t e d V a r i a n t s (<varname_2-1> ,<vpname_2-2> , . . . , min : <number
> , max : <number>)

XChor Language - Logical Constraint Syntax

1 i _ a u t h _ t y p e f a c e r e q u i r e s i _ a u t h _mode s e l e c t e d V a r i a n t s (mode
_ o n l i n e)

XChor Language - Logical Constraint Example

NumericalConstraint is a definition depicting a constraining relationship in which

a variation point and related variant result in an assignment of a value to another

variation point and related variant or to a property with expressions (greater than, less

than, greater than or equal, less than or equal, equal, not equal). The syntax and an

example of logical constraint are given in Table 3.6.

83

NumericalConstraint:

p1 = [VarPoint] p2 = [Variant] nconst = NUMCONST

(p11 = [VarPoint] p3 = [Variant] | p4 =Property)

exp = EXPR (STRING | p5 = Property

| "valueOf{" (vars += [Variant])* "}")

;

Property is a specification of a system property with its name.

Property:

name = ID

;

Table 3.6: Numerical Constraint Syntax and Example

1 <vpname_1> <varname_1> c o n s t (<vpname_2> <varname_2> |
< p r o p e r t y >) <exp r> (< s t r i n g > | < p r o p e r t y >)

XChor Language - Numerical Constraint Syntax

1 i _ a u t h _mode mode_ o n l i n e c o n s t p r o t o c o l = " h t t p s "
2 i _ a u t h _ t y p e e s i g n c o n s t i _ e n c r y p t i o n _ p a r a m e t e r s d e f a u l t p a r a m s

= va lueOf username_passw e s i g n

XChor Language - Numerical Constraint Example

<vpname_1> and <vpname_2> are already defined variation points. <varname_1>

is a variant of <vpname_1>, whereas (<varname_2-1>,<vpname_2-2>,.. are variants

of <varname_2>. <number> is an integer used to specify minimum or maximum

amounts of variant to be selected within alternative variants. <logicalconstraint> is a

constraint which can be one among the set, requires, excludes, implies, and negates.

<property> is a string depicting a system property.

One of the authentication types, face needs authentication mode to be online. In

other words, if authentication of users is done through face recognition, the system

should operate online. This constraint is represented as numerical logical constraint.

84

If the system is operated online, the protocol should be “https” which is depicted as

a numerical constraint in line 1. Username, password and e-sign should be set as

the default parameters of encryption if e-sign is used for user authentication, and is

represented as a numerical constraint in line 2.

3.4.1.2 Choreography Specification Constructs.

Explanations of each choreography specification construct are presented in detail with

Xtext specifications.

Choreography includes its configuration interface (VConfModelImport), imports in-

teracting choreographies (ChorImport) and services (ServiceImport), defines shared

variables (Context Elements), maps choreography and service variability over related

variation point and variant specifications (VMMapping). It also defines the chore-

ography composition with in-line variation point and selected variants as a guard to

execute the piece of choreography (Composition). Choreography specification con-

structs of XChor metamodel is presented in Figure 3.10.

Choreography:

"choreography" name=ID

(vconfmodelimport = VConfModelImport)?

(cimports += ChorImport)*

(simports += ServiceImport)+

("Context Elements" (contexts += ContextElement)*)?

("Choreography Variability Mapping"

(mappings += VMMapping)*)?

("Function" func += [Function] ":" comp += Composition)+

;

VConfModelImport is an import mechanism to include choreography’s configura-

tion Interface. There can be more than one configuration Interface of the same chore-

ography.

VConfModelImport:

85

"import configuration"

importedNamespace = [VarConfigurationModel4Chor]

;

ServiceImport is an import mechanism to include utilized services (ServiceInterface)

in choreography composition with specified service configuration interface (VarCon-

figurationModel4Service) if required. There can be more than one configuration In-

terface for the same service.

ServiceImport:

"import service" s = [ServiceInterface] (

"with configuration"

importedNamespace = [VarConfigurationModel4Service]

)?

;

ChorImport is an import mechanism to include other choreographies (ChorInter-

face) interacting with the current choreography.

ChorImport:

"use choreography" name = [ChorInterface]

;

ContextElement is a shared element definition used in choreography composition.

ContextElement:

name = QualifiedName (defaultvalue = INT | STRING | ID

| BOOLEAN)

;

ChorComputation is an assignment of the return value of a service (Interface) func-

tion (Function) to a ContextElement which is a shared variable of choreography.

86

ChorComputation:

"%comp" name = [ContextElement] "="

s = [Interface] "." f = [Function] "%"

;

Figure 3.7: Choreography Specification Constructs of XChor Metamodel.

Composition is a definition of a set of interactions in order to realize a common goal

via one or more atomic (AtomicInteractions) and/or composite (CompositeInterac-

tion) interactions tangled with each other.

Composition:

(interactions +=

87

(AtomicInteraction | CompositeInteraction)

(WS interactions +=

(AtomicInteraction | CompositeInteraction))*)+

;

Message is a definition of message including set of parameters (Param), semantical

description, referring service (Interface) and its function (Function).

Message:

"message" name = [Function]

("(" (par += [Param] ("," par += [Param])*)? ")")

("refers" (service += [Interface]

"." funct += [Function])*)?

("semantic (" s = STRING ")")?

;

IntCondition is a specification of a condition used to guard a part of an interaction. It

can be either a definition of a condition with expression and numerical/non-numerical

values or a specification of number.

IntCondition:

p1 = GUARDTEXT ((exp = EXPR (STRING | INT | ID

| BOOLEAN)) | "times")?

;

AtomicInteraction is a specification of a basic interaction between two services with-

/without variability attachment (VariabilityAttachment). It is written

• with/without a guard condition (IntCondition),

• with depiction of source and destination services (Interface) with "send" or

"receive" actions,

• with a message (Message),

88

• with/without a computation effect to a ContextElement (ChorComputation) and

• with other additional constructs.

If the action is "receive" from a set of services and one should be selected then "pick-

One" is added. If more than one receive is accomplished from a source to a destina-

tion, then "multiple times" should be added. If the "send" action requires notification

from destination, then "withNotification" is added. If an atomic action is limited with

a duration, then the "wait" keyword with a time specification should be provided.

When an atomic action wants to explicitly depict a fault when a problem occurs, a

"fault" should be defined. If interaction is "send" that is willing to get a request from

one of the available destinations with a limited duration, then "callingSequence" is

defined with a sequence of destinations. If the interaction causes another interaction;

sending the value of the computation to another service/services, then "referedDesti-

nations" is defined. If the AtomicInteraction causes one or more changes in Contex-

tElement’s values, then a set of ChorComputation is defined.

AtomicInteraction:

(va = VariabilityAttachment)?

("guard (" guard = IntCondition")")?

(source = [Interface]

type = "send" "{" (destionation += [Interface])+ "} "

("in-sequence")? ("atomic")? ("viewer")? |

destination = [Interface]

type = "receive"("from{"(rsource += [Interface])*"}")?

("multiple times")? ("pickOne")?)

(message += Message)

("stopmessage from" stopservice = [Interface])?

("wait" (t = Time)? ("until" INT "messagescame")?)?

("inactivity-interval" inact = Time)?

("referedDestinations(" refpart += [Interface]

(("," refpart += [Interface])*)? ")")?

("withNotification"

("(min:" min = INT ",max:" max = INT")")?)?

89

(f += Faults ("toreferrals")?)?

(comp +=ChorComputation)*

;

Syntaxes and examples of send and receive atomic interactions are presented in Table

3.7.

Table 3.7: Send and Receive Atomic Interaction Syntaxes and Examples

1 < s e r v i c e _A> send < s e r v i c e _B> message < f u n c t i o n > (<params>)

XChor Language - Atomic Interaction - Send Syntax

1 t h i r d p a r t y send e n c r y p t i o n message s e t p a r a m s (p a r a m e t e r s)

XChor Language - Atomic Interaction - Send Example

1 < s e r v i c e _A> r e c e i v e from < s e r v i c e _B> message < f u n c t i o n > (
<params>)

XChor Language - Atomic Interaction - Receive Syntax

1 i m a g e r e t r i e v a l r e c e i v e message e x t r a c t f e a t u r e s (
b i o m e t r i c d a t a)

XChor Language - Atomic Interaction - Receive Example

CompositeInteraction is a definition of an interaction between services with/with-

out a guard (IntCondition) including a set of selection of an interaction among others

(SelectInt), repeating a set of interactions (RepeatInt), parallelization of a set of inter-

actions (ParalelInt) and flowing down in a sequence (SequenceInt).

CompositeInteraction:

("guard (" guard = IntCondition ")")?

("precedent")? (

interaction = SelectInt |

interaction = RepeatInt |

interaction = ParalelInt |

90

interaction = SequenceInt)

("timeout" INT)?

;

SequenceInt is a definition of a sequence of a set of interactions between services

which can be atomic (AtomicInteraction) or composite (CompositeInteraction) with-

/without variability attachment (VariabilityAttachment). It is written in such a way

that the block is started with "sequence". Interactions are surrounded with parenthe-

sis. The syntax and an example of sequence interaction is presented in Table 3.8.

SequenceInt:

(va = VariabilityAttachment)?

"sequence ("

(interactions +=

(AtomicInteraction | CompositeInteraction))+

")"

;

Table 3.8: Sequence Interaction Syntax and Example

1 s e q u e n c e (
2 <Composi te o r Atomic I n t e r a c t i o n >
3 <Composi te o r Atomic I n t e r a c t i o n >
4 . . .
5 <Composi te o r Atomic I n t e r a c t i o n >
6)

XChor Language - Composite Interaction - Sequence

1 s e q u e n c e (
2 t h i r d p a r t y r e c e i v e from e n c r y p t i o n message g e t c o n n e c t i o n ()
3 t h i r d p a r t y send e n c r y p t i o n message s e t p a r a m s (p a r a m e t e r s)
4)

XChor Language - Composite Interaction - Sequence Example

SelectInt is a definition of a selection between a set of interactions among services

91

which can be atomic (AtomicInteraction) or composite (CompositeInteraction) with-

/without variability attachment (VariabilityAttachment). It is written in such a way

that the block is started with "select", interactions are surrounded with parenthesis.

The syntax and an example of sequence interaction is presented in Table 3.9.

Table 3.9: Select Interaction Syntax and Example

1 s e l e c t (
2 <Composi te o r Atomic I n t e r a c t i o n >
3 <Composi te o r Atomic I n t e r a c t i o n >
4 . . .
5 <Composi te o r Atomic I n t e r a c t i o n >
6)

XChor Language - Composite Interaction - Select

1 s e l e c t (
2 s e q u e n c e (
3 i t i n e r a r y p l a n n e r r e c e i v e from h o t e l message

r e j e c t b o o k i n g (customeID)
4 i t i n e r a r y p l a n n e r send c u s t o m e r message s h o w r e s u l t (

b o o k i n g r e j e c t e d)
5)
6 s e q u e n c e (
7 i t i n e r a r y p l a n n e r r e c e i v e from h o t e l message

a c c e p t b o o k i n g (cus tomer ID)
8 i t i n e r a r y p l a n n e r send c u s t o m e r message makepayment (

bookingID)
9)

10)

XChor Language - Composite Interaction - Select Example

SelectInt:

(va = VariabilityAttachment)? "select"

(cond = IntCondition)?

"("

interactions +=

(AtomicInteraction | CompositeInteraction)+

")"

92

;

RepeatInt is a definition of a repetition of a set of interactions between services

which can be atomic (AtomicInteraction) or composite (CompositeInteraction) with

an exit condition and with/without variability attachment (VariabilityAttachment). It

is written in such a way that the block is started with "repeat" following a condition

and a set of interactions are surrounded with parenthesis. The syntax and an example

of repeat interaction is presented in Table 3.10.

RepeatInt:

(va = VariabilityAttachment)? "repeat"

cond = IntCondition

"("(interactions +=

(AtomicInteraction | CompositeInteraction))+ ")"

;

Table 3.10: Repeat Interaction Syntax and Example

1 r e p e a t c o n d i t i o n (
2 Composi te o r Atomic I n t e r a c t i o n
3 Composi te o r Atomic I n t e r a c t i o n
4 . . .
5 Composi te o r Atomic I n t e r a c t i o n
6)

XChor Language - Composite Interaction - Repeat

1 r e p e a t n o o f b i o m e t r i c a u t h t y p e t i m e s (
2 i m a g e r e t r i e v a l r e c e i v e message e x t r a c t f e a t u r e s (

b i o m e t r i c d a t a) r e f e r s i m a g e r e t r i e v a l . e x t r a c t f e a t u r e s
3)

XChor Language - Composite Interaction - Repeat Example

ParalelInt is a definition of a paralelization of a set of interactions between services

which can be atomic (AtomicInteraction) or composite (CompositeInteraction) with-

/without variability attachment (VariabilityAttachment). It is written in such a way

93

that the block starts with "paralel", and interactions are surrounded with parenthesis.

The syntax and an example of parallel interaction is presented in Table 3.11.

ParalelInt:

(va = VariabilityAttachment)? "parallel ("

(interactions +=

(AtomicInteraction | CompositeInteraction))+ ")"

;

Faults is a system failure with its name and explanation and sends fault notification

to corresponding senders. Termination condition can be specified if required.

Faults:

"fault(" fname1 = FAULTTYPES ("," fname2 += FAULTTYPES)*

(",terminateIf" number = INT "fails")? ")"

;

Table 3.11: Parallel Interaction Syntax and Example

1 p a r a l l e l (
2 Composi te o r Atomic I n t e r a c t i o n
3 Composi te o r Atomic I n t e r a c t i o n
4 . . .
5 Composi te o r Atomic I n t e r a c t i o n
6)

XChor Language - Composite Interaction - Parallel

1 p a r a l l e l (
2 t h i r d p a r t y r e c e i v e from e n c r y p t i o n message g e t c o n n e c t i o n ()
3 c r e d e n t i a l s r e c e i v e message g e t c r e d e n t i a l s () r e f e r s

c r e d e n t i a l s . g e t c r e d e n t i a l s
4)

XChor Language - Composite Interaction - Parallel Example

Interface is an abstraction of two types of interface: Choreography and Service

94

which depicts provided functionalities to be used by other choreographies and ser-

vices whose constructs are presented in Figure 3.10.

Interface:

ChorInterface | ServiceInterface

;

ChorInterface is a definition of interface for a choreography, the opened face to

other choreographies including invariants (Invariant), externalized functions (Func-

tion), port description (Port) and required interfaces from other choreographies (Re-

quiredInterface).

ChorInterface:

"Choreography interface" name = QualifiedName

"of " chorname = ID

(invariants += Invariant)*

((functions += Function)+)

port += Port

("required interfaces"

(reqints += RequiredInterface)*)?

;

RequiredInterface is a definition of demanded functions from other choreographies

separated by semicolon (;).

RequiredInterface:

"from" name = QualifiedName "function" "{"

(f += [Function]) ("," (f += [Function]))*

"}"

;

ServiceInterface is a definition of a service interface including invariants (Invariant),

functions (Function) and port specification (Port).

95

ServiceInterface:

"Service interface" name = ID

((invariants += Invariant)*)

((functions += Function)+)

port += Port

;

Figure 3.8: A part of XChor Metamodel for Interface Specification.

Function is a definition of a function including its name, pre and post conditions

(ConditionSet), input parameters (Params) and its output (Param).

Function:

"function" name = ID

("precondition" precond += ConditionSet)?

("postcondition" postcond += ConditionSet)?

("input" ipars = Params)?

("output" opar = Param)?

;

ConditionSet is a set of conditions (Condition) composed via "or" and "and" logical

relationships.

96

ConditionSet:

"(" c1 += Condition (("or" | "and") c2 += Condition)* ")"

;

Condition is a definition of a property of an object with a boolean value (true or

false).

Condition:

name = ID ("==" | "!=") BOOLEAN

;

Invariant is a variable definition in choreography/service interface assigned to a

boolean value which is valid throughout the choreography/service composition.

Invariant:

"invariant" name = ID "==" BOOLEAN

;

Port is a binding definition of other services with a defined host to current service/-

choreography.

Port:

"portName" name = ID "binding" host = TEXT

;

Params is a set of parameters separated by comma and surrounded with parenthesis.

Params:

pars = "(" p1 = Param ("," p2 += Param)* ")"

;

3.4.1.3 Variation and Choreography Mapping Constructs.

Explanations of variation and choreography mapping constructs are given in detail

with Xtext specifications and presented in Figure 3.9.

97

VarConfigurationModel is an abstraction of two types of configuration models namely

VarConfigurationModel4Service for services and VarConfigurationModel4Chor for

choreographies.

Figure 3.9: Configuration Model Specification Constructs of XChor Metamodel.

VarConfigurationModel:

VarConfigurationModel4Service | VarConfigurationModel4Chor

98

;

VarConfigurationModel4Service is a definition of a configuration interface for a

service including

1. a set of external variation points (ExternalVarPoint) with a tag (Tag) defining

the role of it if required,

2. constraints (Constraint) among external variation points and

3. its abstract process definition (Composition) which specifies external behavior

of the service with other services.

VarConfigurationModel4Service:

"Configuration interface" name = ID "of service"

servicename = [ServiceInterface]

((tag += Tag)? vars += ExternalVarPoint)*

("Constraints"

(constraints += Constraint)*)?

("abstract process definition"

processdef = Composition

)?

;

VarConfigurationModel4Chor is a definition of a configuration interface for a chore-

ography including

1. a set of internal, external and configuration variation points (VarPoint) with a

tag (Tag) defining the role of them if required,

2. constraints (Constraint) among variation points and

3. parameter settings (ParameterSetting) which includes a set of defined parame-

ters used in choreography.

99

VarConfigurationModel4Chor:

"Configuration interface" name = ID "of choreography"

chorname = QualifiedName

((tag += Tag)? vars += VarPoint)*

("Constraints"

(constraints += Constraint)*)?

("Parameter Settings"

(parametersetting += ParameterSetting)*)?

;

ParameterSetting is an assignment of a value to ContextElements residing in chore-

ography specification.

ParameterSetting:

"parameter" name = [ContextElement] "=" ("

#ofSelectedVariants{"

(vars += [Variant])+

"} Of "

vp = [VarPoint] |

"valueOf("

var += [Variant] ("," vars += [Variant])*

")")

;

VMMapping is an abstraction of two types of variability mapping VMServiceMap-

ping for service and VMChorMapping for choreography. The syntax and an example

of the construct are presented in Table 3.12 and Table 3.13.

VMMapping:

VMServiceMapping | VMChorMapping

;

VMServiceMapping is a structural mapping from choreography variation to service

100

variation. First variation points are mapped and then each variant of related choreog-

raphy variation point is mapped to that of service variation point.

VMServiceMapping:

"VP" vp = [VarPoint] "maps service"

service = [ServiceInterface]

"VP" svp = [VarPoint]

("Variant" vars += [Variant]

"maps Variant"

(mvars += [Variant])+)+

;

Figure 3.10: A part of XChor Metamodel for Variability Attachment Specification.

VMChorMapping is a structural mapping from choreography variation to utilized

choreography variation. First variation points are mapped and then each variant of

101

related choreography variation point is mapped to that of utilized choreography vari-

ation point.

VMChorMapping:

"VP" vp = [VarPoint] "maps choreography"

chor = [Choreography]

"VP" cvp = [VarPoint]

("Variant" vars += [Variant]

"maps Variant"

(mvars += [Variant])+)+

;

Table 3.12: VMMapping Syntax

1 VP <chorvpname> maps s e r v i c e < s e r v i c e n a m e > VP < s e r v i c e v p n a m e >
2 V a r i a n t <chorvarname_1> maps V a r i a n t < s e r v i c e v a r n a m e _1>
3 . . .
4 VP <chorvpname> maps c h o r e o g r a p h y <chorname_1> VP <chorvpname

_1>
5 V a r i a n t <chorvarname_1> maps V a r i a n t <chorname_1 varname_1>
6 . . .

In Table 3.12, <chorvpname>, <chorvpname_1> and <servicevpname> are varia-

tion points of current choreography, other interacting chorography and interacting

service in composition respectively. <servicename> and <chorname> are names of

interacting service and choreography. <chorvarname_1>, <chorname_1varname_1>

and <servicevarname_1> are variants of <chorvpname>, <chorvpname_1> and <ser-

vicevpname> respectively.

In Table 3.13, adaptive security system choreography associates its internal varia-

tion points and related variants to those of utilized services’ in order to configure

service interface variability. The association between lines 1-3 ensures that when

“i_encryption_parameters” variation point is bound to one of its variants, “encryp-

tion_params” variation point of encryption service is bound accordingly to provide a

102

consistent interaction. With this, when defaultparams is selected, encryption service

interface is configured with regard to withdefaultparams variant (line 2).

Table 3.13: VMMapping Example

1 VP i _ e n c r y p t i o n _ p a r a m e t e r s maps s e r v i c e e n c r y p t i o n VP
e n c r y p t i o n _params

2 V a r i a n t d e f a u l t p a r a m s maps V a r i a n t w i t h d e f a u l t p a r a m s
3 V a r i a n t s e t p a r a m s maps V a r i a n t wi thpa rams
4 VP i _ t r a n s a c t i o n _ t y p e maps s e r v i c e compar i son VP a n a l y s i s
5 V a r i a n t f a k e t r a n s a c t i o n maps V a r i a n t f a k e
6 V a r i a n t r e a l t r a n s a c t i o n maps V a r i a n t r e a l
7 VP i _ a u t h _ t y p e maps s e r v i c e t h i r d p a r t y VP u s e r _ d e v i c e
8 V a r i a n t username_passw maps V a r i a n t ATM Mobile PDA PC
9 V a r i a n t one t imepassw maps V a r i a n t ATM Mobile PDA PC

10 V a r i a n t e s i g n maps V a r i a n t ATM Mobile PDA PC
11 V a r i a n t f i n g e r p r i n t maps V a r i a n t PC
12 V a r i a n t f i n g e r v e i n maps V a r i a n t PC
13 V a r i a n t i r i s maps V a r i a n t PC
14 V a r i a n t f a c e maps V a r i a n t PC

VariabilityAttachment is a definition of an attachment to choreography composition

in order to define the conditions of variation point and variant selections. Relation-

ships between variation point and variants used are:

• "ifOneSelected" if one of the variants in a variant set is selected.

• "ifAllSelected" if all of the variants in a variant set is selected.

• "ifSelected" if some of the variants in a variant set is selected.

"excl:"is used when a set of variants needed not to be selected. The composition seg-

ment tagged with VariabilityAttachment is added to the composition if the selections

are realized.

VariabilityAttachment:

"#vp" vp += [VarPoint]

103

("ifOneSelected(" | "ifAllSelected(" | "ifSelected(")

(vs += [Variant])+

(";excl:" (vsexc += [Variant])+)? ")"

(("and" | "or") vp2 += ID

("ifOneSelected(" | "ifAllSelected("| "ifSelected(")

(vs2 += [Variant])+

(";excl:" (vsexc2 += [Variant])+)? ")")*

"#"

;

Table 3.14: Variability Attachment Syntax

1 vp <vpname> < c o n d i t i o n > (<varname_1> <varname_2> . . .
<varname_n>) Composi te o r Atomic I n t e r a c t i o n

The syntax of variability attachment is presented in Table 3.14 where <condition>

can be one of among “ifOneSelected”, “ifAllSelected” and “ifSelected”, designating

the selection condition of variants. <varname_1> <varname_2> ... <varname_n> is a

set of variants of <vpname>.

Table 3.15: Variability Attachment Example

1 vp i _ a u t h _ t y p e i f O n e S e l e c t e d (f i n g e r p r i n t f i n g e r v e i n i r i s)
I n t e r a c t i o n 1

2 vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) I n t e r a c t i o n 2
3 vp i _ a u t h _mode i f A l l S e l e c t e d (mode_ o n l i n e model_ o f f l i n e)

I n t e r a c t i o n 3

In Table 3.15, when at least one of the authentication types; fingerprint, fingervein

and iris is selected, then Interaction1 resides in the composition (line 1). If authen-

tication mode is online, then Interaction2 is taking part in the flow (line 2). Only if

104

online and offline modes are selected at the same time, Interaction3 will be in the

composition (line 3).

MethodsWithDefinedServices is a set of functions (Function) with related services

separated by comma.

MethodsWithDefinedServices:

"service:" s = [ServiceInterface]

",funct:" funct = [Function] ("," functs += [Function])*

("; service:" s2 += [ServiceInterface]

",funct:" funct2 += [Function]

("," functs2 += [Function])*)*

;

MethodsWithoutDefinedServices is a set of functions of its own separated by comma.

MethodsWithoutDefinedServices:

funct = [Function] ("," functs += [Function])*

;

3.4.2 XChor Models

XChor Language facilitates to create three different models which covers different

parts of the metamodel; configuration interface, choreography, service and choreog-

raphy interfaces. The coverage of three model is depicted in Figure 3.4. The basic

elements of XChor under three model to cope with variability in choreography is

shown in the following subsections.

3.4.2.1 Configuration Interface

Configuration interface model covers service and choreography variability specifica-

tions internally and externally to depict possible abilities, to configure others and to be

configured by others. To depict possible abilities, a choreography can specify internal,

105

external and configuration variation points, whereas services can only depict external

variation points. The external ones are used to be configured by choreographies and

services. Capabilities to configure its own interface or other services’ interfaces as ac-

tivating/deactivating and setting/unsetting parameters are also specified in this model.

Numerical or logical constraints among variability specifications are included.

In Table 3.16, Table 3.17, and Table 3.18 different user authentication types such

as biometric authentication, supported authentication modes (online and/or offline),

transaction types (real or fake transaction) are the system’s behaviors that need to

be configured differently. Each is treated as variability in configuration interface of

adaptive security system choreography.

To enable authentication variability, both types of authentication and parameters used

in encryption function are changed with regard to the usage of biometrics or not.

For this purpose, an external configuration variation point named as “authentica-

tion_type” and two internal variation points “i_auth_type” and “i_encryption_parame

ters” are defined. Binding of “authentication_type” configures consistent bindings of

“i_auth_type” and “i_encryption_parameters”.

In Table 3.16, “i_auth_type” is specified with “internalVP” keyword (line 5). “user-

name_passw” is a mandatory variant, whereas “onetimepassw” (line 9) and “esign”

(line 10) are optional. At least one and at most two variants can be selected among

the following alternatives: "fingerprint” (line 12), “fingervein” (line 13), “iris” (line

14), and “face” (line 15). The binding time of this variation point is runtime (line 17).

In Table 3.17, “authentication_type” is specified as external (line 8). The varia-

tion point has two optional variants specified (lines 11-12); “userinfo” and “biomet-

rics”. “userinfo” variant is realized (line 15) by selection of “defaultparams” variant

of “i_encryption_parameters” variation point. For realization of “biometrics” variant

two variation bindings should be done simultaneously. Minimum one variant among

“fingerprint fingervein iris face” set should be selected from “i_auth_type” variation

point (line 17) and “setparams” variant of “i_encryption_parameters” variation point

(line 18) should be bound. Default variant of the “authentication_type” configuration

variation point is “userinfo” (line 8). Configuration type is parametrization and it is

bound at development time represented as “devtime” (line 21).

106

Table 3.16: Configuration Interface of adaptive security system

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ a d a p t a b l e s e c u r i t y s y s t e m of
c h o r e o g r a p h y a d a p t a b l e s e c u r i t y s y s t e m

2

3 / / d e t e r m i n e s number o f d i f f e r e n t b i o m e t r i c a u t h e n t i c a t i o n
t y p e s

4 @composi t ion
5 i n t e r n a l V P i _ a u t h _ t y p e :
6 mandatory
7 v a r i a n t username_passw
8 o p t i o n a l
9 v a r i a n t one t imepassw

10 v a r i a n t e s i g n
11 a l t e r n a t i v e
12 v a r i a n t f i n g e r p r i n t
13 v a r i a n t f i n g e r v e i n
14 v a r i a n t i r i s
15 v a r i a n t f a c e
16 (min : 1 , max : 2)
17 b ind ingTime r u n t i m e
18

19 / / d e t e r m i n e s a u t h e n t i c a t i o n mode
20 @composi t ion
21 i n t e r n a l V P i _ a u t h _mode :
22 a l t e r n a t i v e
23 v a r i a n t mode_ o n l i n e : a c t i v a t e M e t h o d s (s e r v i c e : t h i r d p a r t y ,

f u n c t : g e t c o n n e c t i o n , s a v e h a s h e d d a t a , v e r i f y)
24 v a r i a n t mode_ o f f l i n e : a c t i v a t e M e t h o d s (s e r v i c e : s t o r a g e ,

f u n c t : g e t h a s h e d d a t a)
25 (min : 1 , max : 1)
26 b ind ingTime dev t ime
27

28 / / d e t e r m i n e s t r a n s a c t i o n t y p e
29 @composi t ion
30 i n t e r n a l V P i _ t r a n s a c t i o n _ t y p e :
31 o p t i o n a l
32 v a r i a n t r e a l t r a n s a c t i o n
33 v a r i a n t f a k e t r a n s a c t i o n
34 b ind ingTime dev t ime

107

Table 3.17: Configuration Interface of adaptive security system-contd’

1 i n t e r n a l V P i _ e n c r y p t i o n _ p a r a m e t e r s :
2 a l t e r n a t i v e
3 v a r i a n t d e f a u l t p a r a m s
4 v a r i a n t s e t p a r a m s
5 (min : 1 , max : 1)
6 b ind ingTime r u n t i m e
7

8 c o n f i g u r a t i o n a u t h e n t i c a t i o n _ t y p e :
9 varType e x t e r n a l V P

10 o p t i o n a l
11 v a r i a n t u s e r i n f o
12 v a r i a n t b i o m e t r i c s
13 r e a l i z a t i o n " i t i s r e a l i z e d by i _ e n c r y p t i o n _ p a r a m e t e r s

and i _ a u t h _ t y p e v a r i a b i l i t y p o i n t s "
14 c o n f v a r i a n t u s e r i n f o mapping
15 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (

d e f a u l t p a r a m s)
16 c o n f v a r i a n t b i o m e t r i c s mapping
17 VPName i _ a u t h _ t y p e s e l e c t e d V a r i a n t s (f i n g e r p r i n t

f i n g e r v e i n i r i s f a c e ; min : 1 , max : 1)
18 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (

s e t p a r a m s)
19 d e f a u l t V a r i a n t u s e r i n f o
20 t y p e p a r a m e t e r i z a t i o n
21 b ind ingTime dev t ime
22

23 c o n f i g u r a t i o n a u t h e n t i c a t i o n _mode :
24 varType e x t e r n a l V P
25 a l t e r n a t i v e
26 v a r i a n t o n l i n e
27 v a r i a n t o f f l i n e
28 (min : 1 , max : 1)
29 r e a l i z a t i o n " i t i s r e a l i z e d by i _ a u t h _mode and i

_ e n c r y p t i o n _ p a r a m e t e r s v a r i a b i l i t y p o i n t s , s e t t i n g
params f o r s e s s i o n k e y "

30 c o n f v a r i a n t o n l i n e mapping
31 VPName i _ a u t h _mode s e l e c t e d V a r i a n t s (mode_ o n l i n e)
32 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (

s e t p a r a m s)
33 c o n f v a r i a n t o f f l i n e mapping
34 VPName i _ a u t h _mode s e l e c t e d V a r i a n t s (mode_ o f f l i n e)
35 d e f a u l t V a r i a n t o f f l i n e
36 t y p e p a r a m e t e r i z a t i o n
37 b ind ingTime dev t ime

108

Table 3.18: Configuration Interface of adaptive security system-contd’

1 c o n f i g u r a t i o n f a k e _ t r a n s a c t i o n _ e n a b l i n g :
2 varType e x t e r n a l V P
3 o p t i o n a l
4 v a r i a n t f a k e _ t r a n s
5 v a r i a n t r e a l _ t r a n s
6 r e a l i z a t i o n " i t i s r e a l i z e d by i _ t r a n s a c t i o n _ t y p e

v a r i a b i l i t y p o i n t "
7 c o n f v a r i a n t f a k e _ t r a n s mapping
8 VPName i _ t r a n s a c t i o n _ t y p e s e l e c t e d V a r i a n t s (

f a k e t r a n s a c t i o n)
9 c o n f v a r i a n t r e a l _ t r a n s mapping

10 VPName i _ t r a n s a c t i o n _ t y p e s e l e c t e d V a r i a n t s (
r e a l t r a n s a c t i o n)

11 d e f a u l t V a r i a n t f a k e _ t r a n s
12 t y p e a d d i t i o n
13 b ind ingTime dev t ime
14

15 C o n s t r a i n t s
16 i _ a u t h _ t y p e f a c e r e q u i r e s i _ a u t h _mode s e l e c t e d V a r i a n t s

(mode_ o n l i n e)
17 i _ a u t h _mode mode_ o n l i n e c o n s t p r o t o c o l =" h t t p s "
18 i _ a u t h _ t y p e e s i g n c o n s t i _ e n c r y p t i o n _ p a r a m e t e r s

d e f a u l t p a r a m s = va lueOf{username_passw e s i g n }
19 i _ a u t h _ t y p e e s i g n c o n s t i _ e n c r y p t i o n _ p a r a m e t e r s Mobile

= va lueOf{Mobile PC}
20

21 P a r a m e t e r S e t t i n g s
22 p a r a m e t e r n o o f b i o m e t r i c a u t h t y p e s e l e c t e d =

o f V a r i a n t s S e l e c t e d { f i n g e r p r i n t f i n g e r v e i n i r i s f a c e }
Of i _ a u t h _ t y p e

23 p a r a m e t e r d e f a u l t p a r a m s = v a l u e (username_passw ,
onet imepassw , e s i g n)

24 p a r a m e t e r f a k e i n t e r f a c e e x i s t s w h e n s e l e c t e d { i _ t r a n s a c t i o n
_ t y p e . f a k e t r a n s a c t i o n }

Any variant can activate required functions in service and choreography interfaces.

“i_auth_m ode”, internal variation point (line 21) is responsible for activation of dif-

ferent functions of storage and thirdparty services when its related variants are se-

lected. For instance, “mode_onli ne” variant activates “getconnection, savehashed-

109

data, verify” functions of thirdparty service when selected (line 23).

In Table 3.18 Constraints part includes a logical constraint (line 16), stating that

"face" variant of “i_auth_type” variation point requires “mode_onli ne” variant of

“i_auth_mode” variation point to be selected. In lines 17-18 numerical constraints are

presented in one of which “mode_online” variant of “i_auth_mode” variation point

constraints the “protocol” property to be set to “https”.

Moreover, any variability in choreography configuration interface that affects context

elements in choreography can be defined in Parameter Settings part. Their values are

set when the choreography is configured. For instance, “noofbiometricauthtypese-

lected” in Table 3.18 (line 22) identifies the number of times for extracting features

from biometric data. Its value is assigned when variants of “i_auth_type” are selected.

Table 3.19: Configuration Interface of comparison orchestration

1 C o n f i g u r a t i o n i n t e r f a c e vconf_compar i son o f s e r v i c e
compar i son

2 @ v c o n f s e r v i c e
3 vp a n a l y s i s :
4 o p t i o n a l
5 v a r i a n t f a k e : a c t i v a t e M e t h o d s (f a k e a n a l y s i s , compare)
6 v a r i a n t r e a l : a c t i v a t e M e t h o d s (compare)
7 b ind ingTime dev t ime

An example for configuration interface of comparison orchestration is listed in Table

3.19 where analysis in comparison of the user credentials varies as fake and/or real.

Fake analysis enables system to enact the alarm state whenever a user uses his/her

alarm finger being under threat. Real analysis neglects this type of alarm states; ba-

sically compares coming data with existing user credentials. In order to represent

this kind of variability, a variation point (line 2) is defined with fake (line 5) and real

(line 6) variants. Fake variant activates fakeanalysis and compare methods residing

in comparison service interface and real variant only activates the compare method.

When a method is activated, this method is included in the service interface. In other

words, activation is used for configuring service interfaces, deciding which methods

110

and related parameters should take place.

3.4.2.2 Choreography

Choreography model includes composition constructs with variability attachments,

context elements and variability mappings between interacting services and chore-

ographies. Basic fault handling mechanism is supported by choreography. For this

purpose, different types of faults are specified and generated. Predetermined fault

types are delivery, parameter, notready, waittimeout, insufficientmessage, notavali-

able and termination with condition.

As presented in Table 3.20, Table 3.21, Table 3.22, and Table 3.23 adaptable

security system choreography firstly imports its configuration interface. This is used

to relate its external and internal variability with composition variability and to map

it to utilized service variability. Then interacting choreographies and services are

imported with or without their configuration interfaces. This provides an opportunity

to utilize services with different configuration interfaces, that is with different service

interfaces.

Variables defined within Context Elements take part with their default values in com-

position and are shared within the choreography. For instance, in Table 3.20 “noof-

biometricauthtypeselected” (line 23) is a referred variable, and its value is set in the

configuration interface. “wrongattempts” is newly specified in here to store the num-

ber of wrong attempts to limit verification trials.

Adaptable security system choreography maps its internal variation points and related

variants to those of utilized services’ in order to configure service variability. The

mapping between lines 32-34 ensures that when “i_encryption_parameters” variation

point is bound to one of its variants, “encryption_params” variation point of encryp-

tion service is bound accordingly to provide a consistent interaction.

Adaptable security system choreography carries out “verify” (line 15) in Table 3.21

and "enroll" (line 28) in Table 3.22 functionalities comprising a set of interactions.

Atomic and composite interactions are tagged with variability attachments when vari-

ability in that part of the composition is needed.

111

Table 3.20: Adaptable security system choreography

1 c h o r e o g r a p h y a d a p t a b l e s e c u r i t y s y s t e m
2 i m p o r t c o n f i g u r a t i o n vconf_ a d a p t a b l e s e c u r i t y s y s t e m
3 use c h o r e o g r a p h y cho r_ a l e r t
4 use c h o r e o g r a p h y cho r_ c r e d e n t i a l m n g
5 i m p o r t s e r v i c e c o n n e c t i o n
6 i m p o r t s e r v i c e e n c r y p t i o n wi th c o n f i g u r a t i o n vconf

_ e n c r y p t i o n
7 i m p o r t s e r v i c e c r e d e n t i a l s
8 i m p o r t s e r v i c e a t t e m p t c a l c
9 i m p o r t s e r v i c e compar i son wi th c o n f i g u r a t i o n vconf

_compar i son
10 i m p o r t s e r v i c e responsewindow
11 i m p o r t s e r v i c e i n t e r f a c e p r e p wi th c o n f i g u r a t i o n vm

_ i n t e r f a c e p r e p
12 i m p o r t s e r v i c e t h i r d p a r t y wi th c o n f i g u r a t i o n vm_ t h i r d p a r t y
13 i m p o r t s e r v i c e u s e r
14 i m p o r t s e r v i c e warn ing
15

16 / / Sha red v a r i a b l e s
17 C o n t e x t E lemen t s
18 / / u se r s wrong a t t e m p t s
19 w r o n g a t t e m p t s 0
20 / / f a k e i n t e r f a c e c o n t e n t e n a b l i n g
21 f a k e i n t e r f a c e f a l s e
22 / / b i o m e t r i c s e l e c t e d a u t h e n t i c a t i o n t y p e v a r i a n t s

s p e c i f i e s t h e number
23 n o o f b i o m e t r i c a u t h t y p e s e l e c t e d 0
24 / / d e f u a l t p a r a m e t e r s f o r e n c r y p t i o n
25 d e f a u l t p a r a m s " username_passw "
26 / / u s e r e n t e r e d c r e d e n t i a l d a t a
27 u s e r n a m e p a s s " "
28 / / e x t r a c t e d f e a t u r e s o f u s e r b i o m e t r i c d a t a
29 p r o c e s s e d d a t a " "
30

31 Choreography V a r i a b i l i t y Mapping
32 VP i _ e n c r y p t i o n _ p a r a m e t e r s maps s e r v i c e e n c r y p t i o n VP

e n c r y p t i o n _params
33 V a r i a n t d e f a u l t p a r a m s maps V a r i a n t w i t h d e f a u l t p a r a m s
34 V a r i a n t s e t p a r a m s maps V a r i a n t wi thpa rams
35 VP i _ t r a n s a c t i o n _ t y p e maps s e r v i c e compar i son VP a n a l y s i s
36 V a r i a n t f a k e t r a n s a c t i o n maps V a r i a n t f a k e
37 V a r i a n t r e a l t r a n s a c t i o n maps V a r i a n t r e a l

112

Table 3.21: Adaptable security system choreography-cont’d

1 VP i _ a u t h _ t y p e maps s e r v i c e t h i r d p a r t y VP u s e r _ d e v i c e
2 V a r i a n t username_passw maps V a r i a n t ATM Mobile PDA PC
3 V a r i a n t one t imepassw maps V a r i a n t ATM Mobile PDA PC
4 V a r i a n t e s i g n maps V a r i a n t ATM Mobile PDA PC
5 V a r i a n t f i n g e r p r i n t maps V a r i a n t PC
6 V a r i a n t f i n g e r v e i n maps V a r i a n t PC
7 V a r i a n t i r i s maps V a r i a n t PC
8 V a r i a n t f a c e maps V a r i a n t PC
9 VP i _ a u t h _ t y p e maps c h o r e o g r a p h y c r e d e n t i a l m n g VP

d e v i c e c o n
10 V a r i a n t f i n g e r p r i n t maps V a r i a n t b i o m e t r i c d e v i c e
11 V a r i a n t f i n g e r v e i n maps V a r i a n t b i o m e t r i c d e v i c e
12 V a r i a n t i r i s maps V a r i a n t b i o m e t r i c d e v i c e
13 V a r i a n t f a c e maps V a r i a n t b i o m e t r i c d e v i c e
14

15 F u n c t i o n v e r i f y :
16 s e q u e n c e (
17 #vp i _ a u t h _ t y p e i f O n e S e l e c t e d (f i n g e r p r i n t f i n g e r v e i n

i r i s f a c e) # r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d
t i m e s (

18 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (
d e v i c e p a r a m e t e r)

19 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g .
g e t c r e d e n t i a l s %

20 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (
p a r a m e t e r s)

21)
22

23 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # s e q u e n c e (
24 t h i r d p a r t y r e c e i v e message g e t c o n n e c t i o n ()
25 t h i r d p a r t y send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
26)
27 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)
28 %comp u s e r n a m e p a s s = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %
29 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
30 e n c r y p t i o n r e c e i v e message e n c r y p t (c r e d e n t i a l s)
31

32 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # s e q u e n c e (
33 e n c r y p t i o n send{ t h i r d p a r t y } message v e r i f y (d a t a)
34 #vp i _ t r a n s a c t i o n _ t y p e i f S e l e c t e d (f a k e t r a n s a c t i o n) #

t h i r d p a r t y send{compar i son} message f a k e a n a l y s i s
(c o m p a r i s o n r e s u l t)

113

Table 3.22: Adaptable security system choreography-cont’d

1 %comp f a k e i n t e r f a c e = compar i son . f a k e a n a l y s i s %
2)
3 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o f f l i n e) # s e q u e n c e (
4 e n c r y p t i o n send{ s t o r a g e } message g e t h a s h e d d a t a ()

r e f e r e d D e s t i n a t i o n s (compar i son)
5 #vp i _ t r a n s a c t i o n _ t y p e i f S e l e c t e d (f a k e t r a n s a c t i o n) #

s t o r a g e send{compar i son} message f a k e a n a l y s i s ()
6)
7

8 guard (f a k e i n t e r f a c e == f a l s e) s e q u e n c e (
9 compar i son send{ a t t e m p t c a l c } message c a l c u l a t e _wrong

_ a t t e m p t s (r e s u l t)
10 %comp w r o n g a t t e m p t s = a t t e m p t c a l c . c a l c u l a t e _wrong

_ a t t e m p t s %
11 gua rd (w r o n g a t t e m p t s == 3) p a r a l l e l (
12 compar i son send{responsewindow} message show ()
13 a t t e m p t c a l c send{ c o n n e c t i o n } message c l o s e c o n n e c t i o n

()
14)
15 gua rd (w r o n g a t t e m p t s 3) p a r a l l e l (
16 compar i son send{responsewindow} message show ()
17 a t t e m p t c a l c send{warn ing} message warn (r e s p o n s e

_warn ing)
18)
19)
20 guard (f a k e i n t e r f a c e == t r u e) #vp i _ t r a n s a c t i o n _ t y p e

i f S e l e c t e d (f a k e t r a n s a c t i o n) # p a r a l l e l (
21 s e q u e n c e (
22 compar i son send{ i n t e r f a c e p r e p } message

p r e p a r e i n t e r f a c e ()
23 i n t e r f a c e p r e p send{responsewindow} message show ()
24)
25 compar i son send{cho r_ a l e r t } message a l e r t ()
26)
27)
28 F u n c t i o n e n r o l l :
29 s e q u e n c e (
30 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)
31 %comp u s e r n a m e p a s s = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %

114

Table 3.23: Adaptable security system choreography-cont’d

1 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (
p a r a m e t e r s)

2 #vp i _ a u t h _ t y p e i f O n e S e l e c t e d (f i n g e r p r i n t f i n g e r v e i n
i r i s f a c e) # r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d
t i m e s (

3 u s e r send {cho r_ c r e d e n t i a l m n g } message
g e t c r e d e n t i a l s (d e v i c e p a r a m e t e r)

4 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g .
g e t c r e d e n t i a l s %

5 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message
s e t p a r a m s (p a r a m e t e r s)

6)
7 e n c r y p t i o n r e c e i v e message e n c r y p t (c r e d e n t i a l s)
8 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # e n c r y p t i o n send

{ t h i r d p a r t y } message s a v e h a s h e d d a t a (h a s h e d d a t a)
9 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o f f l i n e) # e n c r y p t i o n

send{ s t o r a g e } message s e t h a s h e d d a t a (h a s h e d d a t a)
10 i n t e r f a c e p r e p send{responsewindow} message show ()
11)

The lines 17-21, 23-26 and 32-34 in Table 3.21, lines 3-6 in Table 3.22 and lines 2-

6,8, 9 in Table 3.23 include attachments referring to specified variation declarations

in the configuration interface of the adaptable security system choreography. For

instance, “# vp i_auth_mode ifSelected(mode_online)” to indicate the point which

composition can change (line 64).

3.4.2.3 Service and Choreography Interface

Service and choreography interface model comprises only interface specifications

without variability. Each choreography and service has its own interface including all

possible functionalities to be configured by configuration interfaces. In Table 3.24,

encryption service interface is shown with its exposed functionality as “encrypt” (line

3), and “setparams” (line 9) with pre-post conditions, input and outputs. Other ser-

vices and choreographies can collaborate with it using “encryption” port (line 14).

115

Table 3.24: Encryption Service Interface

1 S e r v i c e i n t e r f a c e e n c r y p t i o n
2

3 f u n c t i o n e n c r y p t
4 p r e c o n d i t i o n (s e s s i o n c r e a t e d == t r u e)
5 p o s t c o n d i t i o n (d a t a _ e n c r y p t e d == t r u e)
6 i n p u t (c r e d e n t i a l s)
7 o u t p u t h a s h e d d a t a
8

9 f u n c t i o n s e t p a r a m s
10 p r e c o n d i t i o n (params_ r e q u i r e d == t r u e)
11 p o s t c o n d i t i o n (s e t _params == t r u e)
12 i n p u t (p a r a m e t e r s)
13

14 portName e n c r y p t i o n b i n d i n g hostname :8082

In Table 3.25, adaptable security system choreography interface named as “chor_adap

tablesecuritysystem” declares its functionalities “verify” and "enroll" with pre-post

conditions, and input and output parameters. Different from service interfaces, it

explicitly states required choreographies with a list of functions.

3.5 Tool Support for XChor

Xtext is used to implement XChor Language which provides a development envi-

ronment for domain specific languages to developers with Eclipse IDE integration.

XChor files created from three models are: (i) choreography interface, (ii) service in-

terface, (iii) configuration interface for choreography, (iv) configuration interface for

service, and (v) choreography specification. These files are categorized under con-

figuration, services, and choreographies packages respectively in order to increase

understandability.

Choreography, orchestration and atomic services are specified with variability speci-

fications in Xtext. Binding variability and revealing a consistent collaboration require

analysis of variability specifications. This analysis requires considering constraints,

116

choreography and service configurations with regard to variation selections. For this

purpose, XChorS tool is developed

• to analyze variability relations which reveal configuration effects on orchestra-

tion and service interfaces,

• to configure choreographies, services regarding variant selections, and

• to output configured XChor files in a specified destination folder.

Table 3.25: Adaptable Security System Choreography Interface

1 Choreography i n t e r f a c e cho r_ a d a p t a b l e s e c u r i t y s y s t e m of
a d a p t a b l e s e c u r i t y s y s t e m

2

3 f u n c t i o n v e r i f y
4 p r e c o n d i t i o n (a u t h e n t i c a t i o n _mode_ s e l e c t e d == t r u e)
5 p o s t c o n d i t i o n (v e r i f i c a t i o n _ r e s u l t _ s e t == t r u e)
6 i n p u t (u s e r _ i n f o)
7 o u t p u t r e s p o n s e
8

9 f u n c t i o n e n r o l l
10 o u t p u t e n r o l l m e n t n o t i f i c a t i o n
11

12 portName v e r i f y u s e r b i n d i n g hostname :8082
13

14 r e q u i r e d i n t e r f a c e s
15 from chor_ c r e d e n t i a l m n g f u n c t i o n { g e t c r e d e n t i a l s }
16 from chor_ a l e r t f u n c t i o n { a l e r t }

Consequently, service architecture can be reused in constituting related orchestra-

tions and services, such a reuse may be beneficial for different stakeholders, needs,

and choreographies. XChorS tool employs parsing, dependency analysis, and config-

uration phases.

Parsing Phase In this phase all XChor files are parsed in order to be analyzed and

configured afterwards. Parsed files are configuration interfaces of service and

117

choreographies, service interfaces, choreography interfaces and choreography

specifications.

Analysis Phase This phase starts after variation bindings specified by tool users.

Some analysis is done before configuration of files with regard to variation

bindings. All selected variation points are stored in a list.

• Missing Variation Point Bindings: All development time variability of

services are bound according to direct user selections or variability bind-

ings coming from choreography variability mappings. Therefore, whether

all required variation bindings are specified by tool users or not is ana-

lyzed with regard to variability of services and variability mappings de-

fined in the choreography specification. The tool first tries to find proper

variants, such as selection of variants among alternative ones. However,

if the tool can not find a proper binding, it warns and asks for missing

bindings.

• Additional Variation Point Bindings: Configuration Variation Points

(CVP) facilitate a high level understanding for configuration purposes

while hiding details of how low level bindings are done. In other words,

realization of each CVP is described by a set of variation points and vari-

ant selections. For this reason, after all CVP’s and their realization in-

formation are picked, required variation bindings realizing the selected

variant for each CVP are added to the proper variation binding list. If

variant selection of a CVP is not bound, then default variant is assumed to

be selected and related required variation point bindings are done. How-

ever, if there are additional variation point bindings which should be done

by tool users, then tool asks for these selections.

• Constraints: All constraints VP to VP or VP to V defined within chore-

ographies are analyzed and checked whether these are satisfied by the

bound variation. If they are not satisfied, the tool warns the user.

• Binding Time Consistency: All selected variation point binding times

are gathered and checked whether the variation points can be bound in

development/design time. If they are not bound in design time, the tool

warns user about the inconsistency of binding times. Moreover, in CVP

118

binding case, realization of a CVP needs other VP bindings. Therefore,

binding times of additional variation points which realize the selected

variant of CVP should be analyzed and checked also.

• Existence of Redundant Variation Points: The variation point specifi-

cations which do not take part in realization of a CVP or does not reside

in composition variation are analyzed, revealed and then shown to tool

users.

Configuration Phase This phase is applied after analysis, after being sure all re-

quired VPs and variants are selected. All choreography, orchestration and

atomic services are configured with regard to user variation point selections.

• Proper VP Bindings: Bindings of VPs to its variants are revealed.

• Parameter Settings: Existence or values of parameters, which are uti-

lized within choreography, depend on selected VP bindings. The decision

whether the parameter takes part in the composition is made with regard to

VP bindings or the value of each is assigned after analyzing the binding.

• Configuration of Service and Choreography Interfaces: Interfaces of

service and choreography can be tailored by configuration interfaces. Func-

tions and related parameters are added or removed from interfaces accord-

ing to VP bindings. For this reason, the configurations resulted from VP

bindings are revealed and the changes are applied to interfaces. Then a set

of configured interfaces are the outputs.

• Composition Variation Bindings: Choreography composition is formed

according to VP bindings, the parts which are guarded by VPs are added

if the variants are selected. All resolved VP information is removed from

composition.

The analysis phase shows which variation points are related with which services and

service functions. It helps in the configuration phase to determine which services

interact with each other and which functions reside in their interfaces.

119

Figure 3.11: XChor Tool Execution Flow.

According to variation selections, the tool (i) configures interfaces by enabling and

120

disabling its functions and parameters, (ii) prepares choreography compositions and

abstract process definitions of orchestration by examining whether the parts with vari-

ation attachments are included. Finally, the tool outputs configured choreography and

related services and configuration interfaces if there are variation points that will be

bound at runtime.

The flow diagram for representing execution of XChor Tool is presented in Figure

3.11. After parsing XChor models, warnings can be generated if there are binding in-

consistencies between related variation points. These inconsistencies can arise from

variation associations or variability mappings specified in choreography. Moreover,

if any redundant variation point specified in configuration interfaces which does not

take part in configuration variation point or is not referenced inside composition , a

warning is shown to user including variation point information. After checking con-

straints and analyzing required variation point bindings, the tool can generate errors

indicating additional variation point bindings or problems with minimum/maximum

variant selections.

Adaptable security system choreography has been depicted in Table 3.20 before vari-

ation binding. Table 3.26 and Table 3.27 shows configured choreography after selec-

tion of (i) "onetimepassw","fin gervein" and "face" variants of "i_auth_type" variation

point and (ii) "biometrics" variant of "authentication_type" variation point.

The tool includes three main blocks of functionality: Parse, Pre-analysis and Con-

figuration. Algorithmic Complexities of Parse, Pre-analysis and Configuration are

presented in Table 3.28, in Table 3.29 and in Table 3.30 respectively where "No of"

stands for "Number of", "Fs" is "Files", "VP" represents "Variation Points", "VA" in-

dicates "Variation Associations", "Consts" is "Constraints", "PS" stands for "Parame-

ter Settings", "Ints" is "Interactions", "Invs" indicates "Invariants", "Funcs" represents

"Functions", "UC" is "Used Choreographies", "CE" stands for "Context Elements",

"VM" represents "Variation Mappings", "CI" is "Configuration Interfaces", "Servs"

stands for "Services", "Chor" represents "Choreography", "Chors" indicates "Chore-

ographies", and "CS" is "Choreography Specification".

121

Table 3.26: Configured adaptable security system choreography

1 c h o r e o g r a p h y a d a p t a b l e s e c u r i t y s y s t e m
2 use c h o r e o g r a p h y cho r_ a l e r t
3 use c h o r e o g r a p h y cho r_ c r e d e n t i a l m n g
4

5 i m p o r t s e r v i c e c o n n e c t i o n
6 i m p o r t s e r v i c e e n c r y p t i o n
7 i m p o r t s e r v i c e c r e d e n t i a l s
8 i m p o r t s e r v i c e a t t e m p t c a l c
9 i m p o r t s e r v i c e compar i son

10 i m p o r t s e r v i c e responsewindow
11 i m p o r t s e r v i c e i n t e r f a c e p r e p
12 i m p o r t s e r v i c e t h i r d p a r t y
13 i m p o r t s e r v i c e u s e r
14 i m p o r t s e r v i c e warn ing
15

16 C o n t e x t E lemen t s
17 w r o n g a t t e m p t s 0
18 n o o f b i o m e t r i c a u t h t y p e s e l e c t e d 2
19 u s e r n a m e p a s s " "
20 p r o c e s s e d d a t a " "
21

22 F u n c t i o n v e r i f y :
23 s e q u e n c e (
24 r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d t i m e s (
25 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)
26 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g .

g e t c r e d e n t i a l s %
27 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
28)
29

30 s e q u e n c e (
31 t h i r d p a r t y r e c e i v e message g e t c o n n e c t i o n ()
32 t h i r d p a r t y send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
33)
34

35 u s e r send{cho r_ c r e d e n t i a l m n g } message
g e t c r e d e n t i a l s (d e v i c e p a r a m e t e r)

36 %comp u s e r n a m e p a s s = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %
37 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
38 e n c r y p t i o n r e c e i v e message e n c r y p t (c r e d e n t i a l s)

122

Table 3.27: Configured adaptable security system choreography-cont’d

1 e n c r y p t i o n send{ t h i r d p a r t y } message v e r i f y (d a t a)
2

3 s e q u e n c e (
4 compar i son send{ a t t e m p t c a l c } message c a l c u l a t e _wrong

_ a t t e m p t s (r e s u l t)
5 %comp w r o n g a t t e m p t s = a t t e m p t c a l c . c a l c u l a t e _wrong

_ a t t e m p t s %
6 guard (w r o n g a t t e m p t s == 3) p a r a l l e l (
7 compar i son send{responsewindow} message show ()
8 a t t e m p t c a l c send{ c o n n e c t i o n } message c l o s e c o n n e c t i o n

()
9)

10 guard (w r o n g a t t e m p t s 3) p a r a l l e l (
11 compar i son send{responsewindow} message show ()
12 a t t e m p t c a l c send{warn ing} message warn (r e s p o n s e

_warn ing)
13)
14)
15)
16

17 F u n c t i o n e n r o l l :
18 s e q u e n c e (
19 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)
20 %comp u s e r n a m e p a s s = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %
21 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
22 r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d t i m e s (
23 u s e r send {cho r_ c r e d e n t i a l m n g } message

g e t c r e d e n t i a l s (d e v i c e p a r a m e t e r)
24 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g .

g e t c r e d e n t i a l s %
25 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message

s e t p a r a m s (p a r a m e t e r s)
26)
27 e n c r y p t i o n r e c e i v e message e n c r y p t (c r e d e n t i a l s)
28 e n c r y p t i o n send{ t h i r d p a r t y } message s a v e h a s h e d d a t a (

h a s h e d d a t a)
29 i n t e r f a c e p r e p send{responsewindow} message show ()
30)

123

Table 3.28: Algorithmic Complexity of Parsing XChor Models

Pseudo-code Complexity

FOR file IN XChor_file_directory: 1
read_file_content () n (No of Fs)

IF file is configuration_interface: 1
FOR variation_point IN variation_point_list: m (No of VP

parse_variation_point() 1
IF variation_association in variation_point: k (No of VA)

parse_variation_association() 1
FOR constraint IN constraints: l (No of Consts)

parse_constraint() 1
FOR parameter_setting IN parameter_settings: p (No of PS)

parse_parameter_setting() 1
IF abstract_process_definition EXISTS: 1

parse_abstract_process_definition() r (No of Ints)
IF file IS service_interface OR choreography_interface: 1

FOR invariant IN invariants: s (No of Invs)
parse_invariant() 1

FOR function IN functions: t (No of Funcs)
parse_precondition() 1
parse_postcondition() 1
parse_input() 1
parse_output() 1

FOR port IN ports: u (No of ports)
parse_port() 1

IF file IS choreography_specification: 1
FOR choreography IN used_choreographies: v (No of UC)

parse_choreography() 1
FOR service IN imported_services: y (No of IS)

parse_service() 1
FOR context_element IN context_elements: z (No of CE)

parse_context_element() 1
FOR variability_mapping IN variability_mappings: a (No of VM)

parse_variability_mapping() 1
FOR function IN functions: b (No of Funcs)

FOR interaction IN function: c (No of Ints)
parse_interaction() 1
FOR variability_attachment IN function: d (No of VA)

parse_variability_attachment() 1

124

Table 3.29: Algorithmic Complexity of Pre-analysis of XChor Models

Pseudo-code Complexity

FOR file IN parsed_files: n (No of Fs)
IF file IS choreography: 1

Variability_mappings = get_variability_mappings () 1
FOR variability_mapping IN variability_mappings: a (No of VM)

analyze_binding_time_consistency() 1
get_configuration_interface_of_choreography() 1
FOR variation_point in variation_points: m (No of VP)

is_taking_participation_in_composition() 1
is_taking_participation_in_configuration() 1

The complexity of pre-analysis functionality is calculated as follows:

O(PreAn) = n(1+1+a+1+2m)

= O(nm + na)

Pre-analysis complexity directly relates with the product of number of XChor models,

variation points and their associations and increases expeditiously.

The complexity of parse functionality is calculated as follows:

O(Parse)= (n+1)+(1+m(k+2)+l+p+r)+(1+s+4t+u)

+(1+v+y+z+b(c(d+1)))

= O(n+mk+p+r+s+t+u+v+y+z+bcd)

= O(n + mk + bc)

Parsing complexity increases with number of XChor models (n), the number of vari-

ation points (m) along with their associations (v), number of choreography functions

and interactions within functions.

The complexity of configuration functionality is calculated as follows:

O(Conf) = e(m+3+a+3+l+3+f+a+g+h+i)

= O(e(m+a+l+f+a+g+h+i))

= O(e(m+f+g+i))

125

Table
3.30:A

lgorithm
ic

C
om

plexity
ofC

onfiguration
ofX

C
horM

odels

Pseudo-code
C

om
plexity

FO
R

choreography
IN

files:
e

(N
o

ofC
hors)

error=
gather_all_required_vp_bindings()

m
(N

o
ofV

P)

IF
errorE

X
IST

S:
1

show
_error()

1

stop_configuration()
1

error=
binding_tim

e_analysis
(user_variation_selections)

a
(N

o
ofV

M
)

IF
errorE

X
IST

S:
1

show
_error()

1

stop_configuration()
1

error=
check_constraints((user_variation_selections))

l(N
o

ofC
onsts)

IF
errorE

X
IST

S:
1

show
_error()

1

stop_configuration()
1

configure_choreography_configuration_interface(user_variation_selections)
f(N

o
ofV

P
in

C
I)

variability_m
appings

=
get_variability_m

apping()
a

(N
o

ofV
M

)

prepare_service_interfaces(variability_m
appings)

g
(N

o
ofServs

in
C

hor)

prepare_service_interfaces(variability_m
appings)

h
(N

o
ofC

IofServs)

prepare_choreography_com
position(user_variation_selections)

i(N
o

ofInts
in

C
S)

126

Configuration complexity is dependent on the product of number of choreographies

and the sum of variation points, interacting services and interactions within choreog-

raphy specification and increases mercurially.

3.6 Application Development with XChor

To develop such variable service compositions by means of one or more choreogra-

phies and interacting services, top-down, bottom-up or both of these strategies can be

applied.

Top-down development First choreography capabilities as choreography interface

and its variability are determined in its configuration interface. Then, during

choreography specification collaborating services and their functionality and

possible service variability are specified. With these decisions, the service inter-

face with its possible functionalities without variability is created. If a service

provides variability, then its configuration interface is prepared. Afterwards,

the newly created service is included by means of importing its interface with

or without its configuration interface. If choreography variability bindings af-

fect newly created service variability bindings, a variability mapping is added

into the choreography specification. Required context variables are identified

which are used for changing parts of choreography composition. The addition

and change in choreography specification and services are done until reaching

intended service-oriented application. Then the system is ready to be analyzed

and configured by the user via XChorS tool.

Bottom-up development Contrary to top-down development, first possible service

interfaces are created with their functionality. If required, their variations are

specified in their own configuration interfaces. One or more choreography in-

terfaces with possible functionalities are created. Then, with the help of defined

services, choreography specifications are filled with service interactions along

with required variability mappings. Shared information stored in context vari-

ables is defined for serving service interaction flow. Choreography functionali-

ties that can be altered as service interactions are defined. By this way, as new

127

choreographies are defined, they are ready to be used by other choreographies

specified beforehand. This addition and alteration process continues until the

intended functionalities of choreography specification are achieved. Then, the

system is ready to be analyzed and configured by user via the XChorS tool.

The two approaches can be used simultaneously as a hybrid approach. With regard

to variability association specification, each service and choreography can change its

interface with specified variants with the constructs activatemethods and setParame-

ters defined in their configuration interfaces. Only variants can alter interface func-

tions and parameters. However, only a choreography can change a service’s interface

which interacts with other services in the context of this choreography. Services are

not allowed to change other service’s interfaces.

In service and choreography interfaces, pre and post conditions can be defined but not

analyzed by XChorS at this moment. In fact, the metamodel forms a structure which

you can extend to be analyzed for these type of semantic information.

3.7 XChor Language Evaluation under Comparison Framework

XChor Language is evaluated according to the components of comparison framework

explained in Chapter 2, Section 2.4. The metamodel of XChor comprises variabil-

ity modeling, choreography modeling for service composition and mapping between

these models. Some properties of the XChor language are evaluated in Table 3.31.

Variability modeling part of XChor is evaluated with regard to the Variability Mod-

eling Component. Variability model of XChor enables to specify external and

internal variation points with mandatory, optional and alternative variants. Con-

figuration Variation Points are the structures where high level variation points

can be mapped to low level variation points. Configuration variation points

are not mapped to choreography composition, they are only used for abstract-

ing details of variation point bindings in order to increase understandability

and decrease complexity. Logical and numerical constraints are defined among

variation points and variants.

128

Choreography modeling part of XChor is evaluated with regard to Composition

and Configuration of Models Component. Choreography model of XChor fa-

cilitates the definition of service compositions as choreography specifications

with variability support in a composition. With use of XChor variability model,

choreography, orchestration and atomic services can define their own interface

variability in their configuration interfaces where existing function and related

parameters can be altered. By this way, choreography can associate its own

variability bindings to that of interacting service’s either specifying a one-to-

one mapping or altering service interface functions or parameters by enabling

and disabling.

XChorS Tool is evaluated with regard to Tool Support Component. An eclipse plu-

gin Xtext enables to define XChor models depending on the XChor metamodel.

Pre-analysis, parsing and configuration of these models with regard to user

variability selections are supported by the XChorS Tool. After variability bind-

ings, BPEL4Chor and VxBPEL specifications can be generated from the XChor

models. Moreover, verification of variable XChor models is achieved by trans-

formation to fPromela language.

3.8 Validation of XChor

The metamodel of XChor brings together two parts: variability management and

choreography as service composition, each of which should be validated separately.

The capability of XChor to cover variability is validated and examined with character-

istics, types and needs of variability in service-oriented applications. The capability

of XChor to realize recurring service interactions are validated with patterns defined

in the context of service-orientation.

3.8.1 Modeling Service Variability through XChor Language

There have been approaches for modelling and managing variability within service-

oriented [133, 80, 100, 106] and service-oriented software product line[25, 47, 78,

129

Table
3.31:X

C
horE

valuation
underC

om
ponents

ofthe
C

om
parison

Fram
ew

ork

A
pproach

Typesof
C

onstraints
E

xt.and
Int.

R
ealization

D
esign

A
rtifact

V
P

and
V

R
ep.ofV

P
R

elation

X
C

hor
O

ptional,

M
andatory,

A
lternative

L
ogicaland

N
um

erical

C
onstraints

E
xt.

and
Int.

V
P

C
onf.V

P
M

apping
to

C
horeography,

A
tom

ic
Services

O
rchestration

and

L
anguage

C
om

position
M

odeling
Variability

Variability
In

Variability

A
pproach

A
pproach

Support
Interface

C
onnector

C
om

position
A

ssociation

X
C

hor
C

horeography
Interaction

Y
es

Y
es

N
one

Y
es

Y
es

A
pproach

Specification
A

nalysis
Verification

C
ode

C
onfiguration

Tool

G
eneration

X
C

hor
Y

es
Y

es
Y

es
Y

es
Y

es
X

C
horS

and
X

text

130

114] contexts. Among them, [100] is a comprehensive study covering types, char-

acteristics and needs of service variability in detail and presenting a review of works

and challenges in variability management in service-oriented systems.

The study categorizes services into two groups; atomic and composite services. Our

notion of service also covers atomic services and composite services realized as or-

chestration and choreography. According to the study, there are four kinds of vari-

ability that should be addressed to model variability completely: exposed variability,

composition variability, partner variability and partner exposed variability.

XChor metamodel facilitates definition, organization, relation and binding of variabil-

ity in service interfaces and compositions in choreography level. In our context, ser-

vice covers choreography, orchestration and atomic service concepts. The realization

of each type in XChor language is explained in detail in the following subsections.

3.8.1.1 Exposed variability

The variability revealed in a composite service’s interface is the exposed variability.

In our context, services have two types of interfaces: (1) Service interface without

variability which includes all possible functionalities and (2) configuration interfaces

of the service which covers variability aspects. Therefore, exposed variability of com-

posite services (orchestration and choreography) is included in their configuration

interfaces in XChor language.

To represent variability explicitly in configuration interfaces in XChor, internal, exter-

nal, configuration variation points and constraints among them are specified. Internal

variation point is invisible to outer context, namely service users so as to describe

variability with a set of variants and specified binding time. External variation point

is explicit to users of the service in order to be referenced, utilized and configured

with a set of variants and specified binding time. Internal and external variation point

syntax is the same except their type indication, that is either internal or external. The

syntax and examples for variation point specifications are given in Table 3.2. Logical

or numerical constraints among variation points can be represented in configuration

interfaces whose syntaxes and examples are given in Table 3.5 and Table 3.6.

131

Configuration interface as a whole facilitates the representation of exposed variability

for choreography, orchestration and atomic services, whose examples are given in

Table 3.19 and Table 3.16.

3.8.1.2 Composition variability

Composition variability refers to variability specified in behavior, the way services

are interacted with each other. In XChor scope, variability in composition is specified

in choreography specification where a set of choreography functionality is defined.

Variable parts of composition are tagged with variability attachment which enacts

the parts surrounded with it when referred variants of a variation point are selected.

In other words, the parts of composition can participate in the composition when

specified conditions are met in variability attachments, otherwise the parts cannot

Table 3.32: A part of adaptable security system choreography

1 c h o r e o g r a p h y a d a p t a b l e s e c u r i t y s y s t e m
2 . . .
3

4 F u n c t i o n v e r i f y :
5 s e q u e n c e (
6 #vp i _ a u t h _ t y p e i f O n e S e l e c t e d (f i n g e r p r i n t f i n g e r v e i n

i r i s f a c e) # r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d
t i m e s (

7 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (
d e v i c e p a r a m e t e r)

8 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g .
g e t c r e d e n t i a l s %

9 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (
p a r a m e t e r s)

10)
11

12 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # s e q u e n c e (
13 t h i r d p a r t y r e c e i v e message g e t c o n n e c t i o n ()
14 t h i r d p a r t y send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)
15)
16 . . .

132

participate. Variability attachment syntax and an example are given in Table 3.14 and

Table 3.15.

A part of adaptable security system choreography including two composition vari-

abilities in line 6-10 and line 12-15 are shown in Table 3.32. In the first variability,

whenever one of the variants among fingerprint, fingervein, iris or face is selected,

the "repeat" composite interaction is included in verify functions (line 6). As such,

if online authentication is selected, then the "sequence" composite interaction should

reside in the composition (line 12).

3.8.1.3 Partner variability

Partner variability includes its bound variability of the service within a composition

context. In the XChor scope, interacting services take part in composition with their

configuration interfaces. Therefore, services can join interactions with different con-

figuration interfaces, meaning with different variability. Variability of interacting ser-

vices playing role in a composition can be achieved in two ways:

1. Establishing association between choreography variability and interacting ser-

vice variability. This enables to describe which variation points and related

variants of choreography are related with those of the interacting service. It

facilitates the establishment of a direct association between the variant of the

variation point when selected, and the variant of the determined variation point.

In this way, the service can be configured with regard to choreography variation

binding. The way how to establish variability association is presented with its

syntax in Table 3.12 and Table 3.13.

2. Establishing variability binding effect on a service interface while introducing

a new variant within a configuration interface. In configuration interfaces, a

variant can enable or disable functions of a service interface and can change

the parameters of functions accordingly. By this way, variants can configure

service interfaces with required consistency. This configuration occurs in a

choreography configuration interface to configure interacting service interfaces.

133

Table 3.33: Newly Specified Variability Binding Effect on Configuration Syntax and
Example

1 v a r i a n t <varname> : a c t i v a t e M e t h o d s (s e r v i c e : < s e r v i c e n a m e > , f u n c t
: < f u n c t i o n _1> ,< f u n c t i o n _2> , . . .)

2 : s e t P a r a m e t e r (t o F u n c t :
< f u n c t i o n > , p a r a m e t e r :
<params>)

XChor Language - Newly Specified Variability Binding Effect on Configura-
tion Syntax

1 i n t e r n a l V P i a u t h m o d e :
2 o p t i o n a l
3 v a r i a n t mode_ o n l i n e : a c t i v a t e M e t h o d s (s e r v i c e : t h i r d p a r t y ,

f u n c t : g e t c o n n e c t i o n , s a v e h a s h e d d a t a , v e r i f y)
4 v a r i a n t mode_ o f f l i n e : a c t i v a t e M e t h o d s (s e r v i c e : s t o r a g e ,

f u n c t : g e t h a s h e d d a t a)
5 b ind ingTime dev t ime

XChor Language - Newly Specified Variability Binding Effect on Configura-
tion Example

In Table 3.33, authentication mode internal variation point is defined within the

configuration interface of an adaptable security system choreography. When

authentication is done online, the "thirdparty" service needs to support getcon-

nection, savehasheddata and verify functions (line 3). If user is authenticated

offline, storage service should have the function gethasheddata in its interface

(line 4). With regard to authentication mode bindings "thirdparty" and "stor-

age" service interfaces are configured to provide consistency.

3.8.1.4 Partner exposed variability

Partner exposed variability defines the offered variability of a service to other services

which is strongly related with partner variability. In our context, all configuration in-

terfaces of a service interface provides all possible functional variations of the service.

134

3.8.2 Modeling Choreography through XChor Language

There have been categorizations with regard to interactions between services [33, 24,

96, 68]. Among them, although informally described, Service Interaction Patterns[33]

facilitates the assessment of choreography languages as a benchmark. The patterns

represent a collection of patterns describing bilateral, multilateral, competing, atomic

and causally related interactions. The patterns, revealing service functionality and

behavior, are pertaining to service composition, namely orchestration and choreog-

raphy. Service interactions define the collaboration among a number of interacting

services with regard to predefined rules. Interaction patterns are categorized under

four groups: Single-transmission bilateral, Single-transmission multilateral, multi-

transmission and routing. Each group comprises a set of patterns. These recurring

patterns are used to represent the fulfillment of XChor language constructs for service

interactions. Atomic and composite interactions of XChor are utilized for depicting

realization of the patterns described.

Realization of service interaction patterns are explained in detail as in the same way

in [33]. The subtitles for each pattern (Pattern name, description, example, issues/de-

sign choices) are used as is. Solution subtitle is replaced by realization in XChor

language which describes the use of XChor to realize the corresponding pattern. Two

new subtitles: "graphical representation" and "explanation" are added. Graphical rep-

resentation is to depict the pattern with box and line drawing without addressing all

pattern details. Explanation is to describe the graphical representation.

3.8.2.1 Single-transmission bilateral interaction patterns

The first categorization is the single-transmission bilateral interaction patterns com-

prising send, receive, and send/receive which correspond to elementary interactions.

Detailed explanations of each are given with graphical representations.

Pattern 1: Send

Description A service sends a message to another service.

135

Example

A user credentials gathering service sends user credentials as parameters

to be encrypted to an encryption service.

Issues/design choices The send interaction pattern can be blocking or non-

blocking and can result in faults.

• In blocking send pattern, the source service waits for acknowledg-

ment from destination service and choreography does not progress

until the acknowledgment is received. In the non-blocking send pat-

tern, the source is only responsible for preparing and sending the mes-

sage. The distinction between blocking and non-blocking interaction

mode is determined at the level of the executable choreography lan-

guage.

• Faults can be originated from delivery problems or from destina-

tion side. Delivery fault occurs when the message is not delivered

to the destination service. Faults from the destination side are oc-

curred when an error arises in destination and should be directed to

the source service. For example, a purchase order sent to a supplier

may result in a fault message from the supplier because the customer

ID does not match the customer name.

Graphical Representation

Figure 3.12: Send Pattern.

Explanation

In Figure 3.8.2.1, service_A sends a message comprising the function

with parameters to Service_B. Acknowledgement is sent to Service_A

only in the blocking case. Faults can be resulted from delivery problems

or from destination side; however they are not depicted in this graphical

representation.

136

Realization in XChor Language

1. Basic send

<service_A> send{<service_B>}

message <function>(<params>)

where

<service_A>: message sending service, source service

<service_B>: message receiving service, destination service

<function>: the name of function residing in service_B interface

<params>: a list of parameters separated by comma

Example

1 c r e d e n t i a l s send e n c r y p t i o n message e n c r y p t (

c r e d e n t i a l D a t a)

2. Non-blocking send Same as basic send.

3. Blocking send

<service_A> send{<service_B>}

message <function>(<params>)

withNotification

where

withNotification keyword enables service_A to waits the acknowl-

edgement as notification.

Example

1 c r e d e n t i a l s send e n c r y p t i o n message e n c r y p t (

c r e d e n t i a l D a t a) w i t h N o t i f i c a t i o n

4. Non-blocking send with fault

<service_A> send{<service_B>}

message <function>(<params>)

fault (<names>)

137

where

fault keyword enables to define a fault. <names> is a list of fault

names.

Example

1 c r e d e n t i a l s send e n c r y p t i o n message e n c r y p t (

c r e d e n t i a l D a t a) f a u l t (d e l i v e r y)

5. Blocking send with fault

<service_A> send{<service_B>}

message <function>(<params>)

withNotification

fault (<names>)

where

fault keyword enables to define a fault. <names> is a list of fault

names.

Example

1 c r e d e n t i a l s send e n c r y p t i o n message e n c r y p t (

c r e d e n t i a l D a t a) w i t h N o t i f i c a t i o n f a u l t (d e l i v e r y)

Pattern 2: Receive

Description A service receives a message from another service.

Example

An image retrieval service receives a message indicating that features of

biometric data are extracted.

Issues/design choices The send interaction pattern can be blocking or non-

blocking and can result in faults.

• The destination service may wait for an acknowledgment from a called

service.

• The destination service can be ready/not ready to consume the mes-

sage. A fault is generated if the destination service is not ready to

138

process the message and no queuing system is applied. Otherwise,

the message is appended to queue waiting to be processed after a

predefined time.

Graphical Representation

Figure 3.13: Receive Pattern.

Explanation

In Figure 3.8.2.1, Service_A receives a message comprising the function

with parameters. A fault can result from delivery problems or readiness

of the processing. Indication of the source service, Service_B is optional

for realizing blocking patterns.

Realization in XChor Language

1. Basic receive

<service_A> receive from {<service_B>}

message <function>(<params>)

where

<service_A>: message receiving service, destination service

<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface

<params>: a list of parameters separated by comma

Example

1 i m a g e r e t r i e v a l r e c e i v e message e x t r a c t f e a t u r e s (

b i o m e t r i c d a t a)

2 compar i son r e c e i v e from s t o r a g e message compare (d a t a

)

139

2. Receive with fault

<service_A> receive

message <function>(<params>)

fault (<names>)

where

fault keyword enables to define a fault. <names> is a list of fault

names.

Example

1 i m a g e r e t r i e v a l r e c e i v e message e x t r a c t f e a t u r e s (

b i o m e t r i c d a t a) f a u l t (n o t r e a d y)

Pattern 3: Send/Receive

Description A service can send a message to another service then receives the

response message or receives a message from another service and sends a

response message.

Example

A storage service sends credentials to be encrypted to the encryption ser-

vice and then receives encrypted data from it.

Issues/design choices The send interaction pattern can be blocking or non-

blocking and can result in faults.

• Source service can wait for a response or for a fault indicator to en-

able blocking send pattern.

• Outgoing and incoming messages are correlated in order to provide

consistency in data.

• Send, receive or both interactions can result in fault messages.

Graphical Representation

140

Figure 3.14: Send/Receive Pattern.

Explanation

In Figure 3.8.2.1, two cases are covered:

Send First Service_A sends a message comprising the function with pa-

rameters to Service_B. A fault, acknowledgement message or re-

sponse can be generated by Service_B and received by Service_A.

Receive First Service_A receives a message comprising the function with

parameters from Service_B. A fault, acknowledgement message or

response can be generated by Service_A and received by Service_B.

Realization in XChor Language

Fault specification, blocking and non-blocking realization are the same in

send and receive patterns. In this case, after fault is generated the sending

and receiving services (Service_A and Service_B) are aborted.

1. Basic Send First

sequence (

<service_A> send{<service_B>} message

<function_B>(<params_B>)

<service_A> receive from {<service_B>} message

<function_A>(<params_A>)

141

)

where

<service_A>: message sending and receiving service

<service_B>: message sending and receiving service

<function_A>: the name of function residing in service_A interface

<function_B>: the name of function residing in service_B interface

<params_A>: a list of parameters pertaining to function_A separated

by comma <params_B>: a list of parameters pertaining to func-

tion_B separated by comma

Example

1 s e q u e n c e (

2 s t o r a g e send e n c r y p t i o n message e n c r y p t (d a t a)

3 s t o r a g e r e c e i v e from e n c r y p t i o n message

s a v e e n c r y p t e d d a t a (e n c r y p t e d d a t a)

4)

2. Basic Receive First

sequence (

<service_A> receive from {<service_B>} message

<function_A>(<params_A>)

<service_A> send{<service_B>} message

<function_B>(<params_B>)

)

where

<service_A>: message sending and receiving service

<service_B>: message sending and receiving service

<function_A>: the name of function residing in service_A interface

<function_B>: the name of function residing in service_B interface

<params_A>: a list of parameters pertaining to function_A seper-

ated by comma <params_B>: a list of parameters pertaining to func-

tion_B seperated by comma

Example

142

1 s e q u e n c e (

2 t h i r d p a r t y r e c e i v e from e n c r y p t i o n message

g e t c o n n e c t i o n ()

3 t h i r d p a r t y send e n c r y p t i o n message s e t p a r a m s (

p a r a m e t e r s)

4)

3.8.2.2 Single-transmission multilateral interaction patterns

The second categorization is the single-transmission multi-lateral interaction patterns

comprising racing incoming messages, one-to-many send, one-from-many receive,

one-to-many send/receive where multiple services come into play. Detailed explana-

tions of each are given with graphical representations.

Pattern 4: Racing incoming messages

Description A service expects to receive one among a set of messages. These

messages may be structurally different, coming from different source ser-

vices. The processing of messages is changed with regard to the source

service.

Example

• Multiple messages in the same structure: A customer waits for a con-

nection to receive a movie among a set of service providers. If one

connection is established, the others are ignored.

• Multiple messages in different structures, exclusive: Hotel booking

request is processed with regard to coming message indicating that it

rejects the booking or accepts the booking. If one of the messages is

received, the other one is neglected. One excludes the other.

• Multiple messages in different structures, not-exclusive: User au-

thentication data is processed with respect to the device they use ei-

ther be a keyboard, a fingerprint device or finger-vein device.

143

Issues/design choices

• Incoming messages are of same or different types.

• The processing that follows the message consumption may be differ-

ent depending on the consumed message.

• When one of the expected messages is received, the corresponding

continuation is triggered. The remaining messages may or may not

need to be discarded.

• Depending on the underlying communication infrastructure, several

of the expected messages may be simultaneously available for con-

sumption. In this case, two approaches may be adopted: (i) let the

system make a non-deterministic choice, or (ii) provide a "ranking"

among the competing messages. In any case, only one message is

chosen for consumption.

Graphical Representation

Figure 3.15: Racing Incoming Messages Pattern.

Explanation

In Figure 3.8.2.2, Service_A receives a set of messages from Service_B,

144

Service_C.., Service_X and selects one of them to continue to process.

Realization in XChor Language

1. Multiple messages in same structure

<service_A> receive from

{<service_B> <service_C> ... <service_X>}

pickOne message <function>(<params>)

where

<service_A>: message receiving service, destination service

<service_B> <service_C> ... <service_X>: a set of message send-

ing services, source services

<function>: the name of function residing in service_A interface

<params>: a list of parameters separated by comma

Example

1 c u s t o m e r r e c e i v e from p r o v i d e r 1 p r o v i d e r 2 p r o v i d e r 3

pickOne message e s t a b l i s h c o n n e c t i o n (c u s t o m e r

I P)

2. Multiple messages in different structure

select (

<Proccesing_wrt_B>

<Proccesing_wrt_C>

...

<Proccesing_wrt_X>

)

where

<Proccesing_wrt_B>: Start with a receive interaction which refers to

single transmission bilateral receive pattern. Then followed by a set

of interactions including all types of patterns surrounded with possi-

ble sequence, parallel, repeat or select structures.

The select keyword chooses non-deterministically one of the branches

145

with regard to coming message which can be either from service_B,

service_C ... or service_X.

Example

1 s e l e c t (

2 s e q u e n c e (

3 i t i n e r a r y p l a n n e r r e c e i v e from h o t e l message

r e j e c t b o o k i n g (c u s t o m e r I D)

4 i t i n e r a r y p l a n n e r send c u s t o m e r message

s h o w r e s u l t (b o o k i n g r e j e c t e d)

5)

6 s e q u e n c e (

7 i t i n e r a r y p l a n n e r r e c e i v e from h o t e l message

a c c e p t b o o k i n g (c u s t o m e r I D)

8 i t i n e r a r y p l a n n e r send c u s t o m e r message

make paymen t (b o o k i n g I D)

9 . . .

10)

11)

Pattern 5: One-to-many send

Description A service sends messages to a set of services having the same

type of message.

Example

A travel itinerary sends a price quote to all available hotels to gather dif-

ferent offers. A travel itinerary sends price quote notification indicating

that one of them is selected for reservation after traveler chooses one of

them. The message content of the selected one is different than others.

Issues/design choices

• The number of destination services is known at design time. All

instances of the same service get the message even if the function

names on the service interfaces are different.

146

• For reliable delivery concern, each destination service can generate

and send fault notification to source service. Fault handling mecha-

nism depends on selection of the way how the application responds

to one or more faults. The application can terminate even if one fault

occurs or can tolerate all faults, and uses logging.

Graphical Representation

Figure 3.16: One to Many Send Pattern.

Explanation

In Figure 3.8.2.2, Service_A sends messages to Service_B, Service_C..,

Service_X.

Realization in XChor Language

1. Send without fault

<service_A> send

{<service_B> <service_C> ... <service_X>}

message <function>(<params>) refers

<service_B>.<function_B>

<service_C>.<function_C>

147

...

<service_X>.<function_X>

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message re-

ceiving services, destination services

<function>: the name of function residing in service_B, service_C,...

service_X interface

<params>: a list of parameters separated by comma

refers keyword can be optionally used if the <function> names are

not same as service_B, service_C and service_X interface. Most

common function name is written in place of <function>, for each

different function names following piece of code is added:

<service_B>.<function_B> is an example of the reference to <func-

tion_B> in <service_B> interface.

Example

1 t r a v e l i t i n e r a r y send s h e r t o n r i x o s

j w m a r r i o t f o u r s e a s o n s message

p r i c e q u o t e (s t a r t D a t e , endDate ,

a d d i t i o n a l R e q u e s t s)

2 t r a v e l i t i n e r a r y send s h e r t o n r i x o s

j w m a r r i o t f o u r s e a s o n s message

p r i c e q u o t e (s t a r t D a t e , endDate ,

a d d i t i o n a l R e q u e s t s) r e f e r s s h e r t o n .

g e t p r i c e r i x o s . g e t q u o t e

2. Send with fault

<service_A> send

{<service_B> <service_C> ... <service_X>}

message <function>(<params>)

refers

<service_B>.<function_B>

<service_C>.<function_C>

148

...

<service_X>.<function_X>

fault (<names>, terminateIf <number> fails)

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message re-

ceiving services, destination services

<function>: the name of function resided in service_B, service_C,...

service_X interface

<params>: a list of parameters separated by comma

refers keyword can be optionally used if the <function> names are

not same as service_B, service_C and service_X interface. Most

common function name is written in place of <function>, for each

different function names following piece of code is added:

<service_B>.<function_B> is an example of the reference to <func-

tion_B> in <service_B> interface. fault keyword enables to define

fault. <name> is a list of fault names. terminateIf <number> fails

represents termination condition where <number> is the amount of

faults generated.

Example

1 t r a v e l i t i n e r a r y send s h e r t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (s t a r t D a t e , endDate

, a d d i t i o n a l R e q u e s t s) f a u l t (d e l i v e r y , t e r m i n a t e I f

1 f a i l s)

Pattern 6: One-to-many receive

Description A service receives a number of logically related messages from a

set of services which then are gathered as a single message. Because of

this, each message should arrive in time. The success of the interaction

depends on gathered messages and time constraint if exists.

Example

149

A travel itinerary receives a set of prices which belongs to previously

requested price offers for fulfilling a customer request. Travel itinerary

collects all received messages to present all available hotel prices to the

customer. It can wait for a specified time frame for messages to arrive. It

can wait only for a specified number of price offers to come, for instance

if three price offers are enough out of five.

Issues/design choices

• A mechanism is required for correlating messages coming from dif-

ferent sources via the message content or not.

• Message correlation should be constrained with a specified time not

to let destination service wait forever.

• A number of messages can be sufficient to proceed without waiting

for other messages to come.

• A timeout can occur with insufficient number of messages. In this

case, a fault can be generated by the destination service indicating

that receive interaction ended unsuccessfully.

Graphical Representation

Figure 3.17: One to Many Receive Pattern.

150

Explanation

In Figure 3.8.2.2, Service_A receives messages from Service_B, Ser-

vice_C,..., Service_X with a time and success condition.

Realization in XChor Language

<service_A> receive from

{<service_B> <service_C> ... <service_X>}

message

<function>(<params>)

wait <duration> <time>

until <number>

messagescame fault (<names>)

where

<service_A>: message receiving service, destination service

<service_B> <service_C> ... <service_X>: >: a set of message sending

services, source services

<function>: the name of function residing in service_A, service_C,... ser-

vice_X interface

<params>: a list of parameters separated by comma

wait keyword enables to define time and success condition specification.

<duration> is an integer to indicate the waiting period. <time> is a string

indicating the type of duration as second, minute, hour, day and month.

until keyword enables to define the success condition. <number> is an in-

teger with which messagescame keyword indicates the condition the des-

tination service completes the receiving interaction.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 t r a v e l i t i n e r a r y r e c e i v e from s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (c u s t o m e r i d) w a i t

10 s e c o n d s

2 t r a v e l i t i n e r a r y r e c e i v e from s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (c u s t o m e r i d) w a i t

151

u n t i l 2 messagescame

3 t r a v e l i t i n e r a r y r e c e i v e from s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (c u s t o m e r i d)

w a i t 10 s e c o n d s u n t i l 2 messagescame

4 t r a v e l i t i n e r a r y r e c e i v e from s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (c u s t o m e r i d) w a i t

10 s e c o n d s f a u l t (w a i t t i m e o u t)

5 t r a v e l i t i n e r a r y r e c e i v e from s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (c u s t o m e r i d) w a i t

10 s e c o n d s u n t i l 2 messagescame f a u l t (w a i t t i m e o u t)

Pattern 7: One-to-many send/ receive

Description A service sends messages to a set of services having the same type

of message and may be related. Then the service receives a number of

logically related messages from a set of services which then are gathered

as a single message. Because of this, each message should arrive in time.

The success of the interaction depends on gathered messages and time

constraint if exists.

Example

A travel itinerary sends a price quote to all available hotels to gather dif-

ferent offers. The travel itinerary sends price quote notification indicating

that one of them is selected for reservation after traveler chooses one of

them. The message content of the selected one is different from others.

Then the travel itinerary receives a set of price offers for fulfilling the

customer request. The travel itinerary collects all received messages to

present all available hotel prices to the customer. It can wait for a speci-

fied time frame for messages to come. It can wait only a specified number

of price offers to come, for instance if three price offers are enough out of

five.

Issues/design choices

• The number of destination services is known at design time. All

152

instances of the same service get the message even if the function

names on the service interfaces are different.

• For reliable delivery concern, each destination service can generate

and send fault indications to the source service. Fault handling mech-

anism depends on the selection of the way how the application re-

sponds to one or more faults. The application can terminate even if

one fault has occurred or can tolerate all faults, and only use logging.

• A mechanism is required for correlating messages coming from dif-

ferent sources via the message content.

• Message correlation should be constrained with a specified time not

to let destination service wait forever.

• A number of messages can be sufficient to proceed without waiting

for other messages to come.

• A timeout can occur with in sufficient number of messages. In this

case, a fault can be generated by the destination service indicating

that receive interaction has ended unsuccessfully.

Graphical Representation

Figure 3.18: One to Many Send/Receive Pattern.

153

Explanation

In Figure 3.8.2.2, Service_A sends messages to and receives from Ser-

vice_B, Service_C.., Service_X with a time and success condition.

Realization in XChor Language

sequence (

<service_A> send

{<service_B> <service_C> ... <service_X>}

message <function>(<params>) refers

<service_B>.<function_B>

<service_C>.<function_C>

...

<service_X>.<function_X>

fault (<names>)

<service_A> receive from

{<service_B> <service_C> ... <service_X>}

message <function_A>(<params_A>)

wait <duration> <time>

until <number>

messagescame fault (<names>)

)

where

<service_A>: message sending and receiving service

<service_B> <service_C> ... <service_X>: >: a set of message receiv-

ing and sending services

<function>: the name of function residing in service_B, service_C,...service_X

interface

<function_A>: the name of function residing in service_A interface

<params>: a list of parameters of <function>, separated by comma

<params_A>: a list of parameters of <function_A>, separated by comma

154

wait keyword enables to define time and success condition specification.

<duration> is an integer to depict waiting period. <time> is a string de-

picting the type of duration as second, minute, hour, day and month. until

keyword enables to define success condition. <number> is an integer

with which messagescame keyword depicts the condition the destination

service completes the receiving interaction.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 s e q u e n c e (

2 t r a v e l i t i n e r a r y send s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (s t a r t D a t e , endDate

, a d d i t i o n a l R e q u e s t s) f a u l t (d e l i v e r y)

3 t r a v e l i t i n e r a r y r e c e i v e from s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s message p r i c e q u o t e (c u s t o m e r i d) w a i t

10 s e c o n d s u n t i l 2 messagescame f a u l t (w a i t t i m e o u t)

4)

3.8.2.3 Multi-transmission interaction patterns

The third categorization is the multi-transmission interaction patterns comprising

multi-responses, contingent requests and atomic multicast notification where mul-

tiple services come into play. Detailed explanations of each are given with graphical

representations.

Pattern 8 : Multi-responses

Description A service sends a request to another service, then a set of re-

sponses are received from the service until no further response is required.

The completion or the sign of no further response can come from the re-

questor service or the responder service, or specified by a duration or in a

message content.

155

Example

A customer of Hurriyet online news service subscribed for latest news

about the protests in Taksim, Istanbul. Hurriyet provides last-minute events

when available. Customer can think received news are enough and decide

to stop getting latest news or Hurriyet can stop posting more news updates

after sending detailed events.

Issues/design choices

• The sign of no further messages can be in four cases:

1. the requestor service sends a notification to stop,

2. a relative or absolute deadline specified by the requestor service,

3. an interval of inactivity during which the requestor service does

not receive any response from the responder service,

4. a message from the responder service indicating no messages are

sent anymore.

• After observing the sign of no further messages, the requestor service

does not accept any messages from the responder service.

• Requester service accepts multiple messages from the responder ser-

vice whose number is determined in runtime

• Each received message is treated individually, that is the fault resulted

from one received message does not affect the others.

• In the case of the requester service sending a notification, a mecha-

nism should inform responder service about rejected messages sent

between the time the requester sends notification and the time respon-

der service receives it.

Graphical Representation

156

Figure 3.19: Multi Responses Pattern.

Explanation

Four cases are presented in Figure 3.8.2.3: Case 1: Service_A receives

multiple messages from service_B during a specified time. Service_A

specifies a deadline to stop reeving messages from Service_B.

Case 2: Service_A receives multiple messages from Service_B until Ser-

vice_A sends a notification to stop.

Case 3: Service_A receives multiple messages from Service_B until Ser-

157

vice_B sends a notification indicating that it stops sending further mes-

sages.

Case 4: Service_A receives multiple messages from Service_B until a

specified interval of inactivity occurs.

Realization in XChor Language

1. Case 1 – A relative or absolute deadline set by Service_A

<service_A> receive from {<service_B>}

multiple times

message <function>(<params>)

wait <duration> <time>

fault (<names>)

where

<service_A>: message receiving service, destination service

<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface

<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives

more than one message from service_B.

wait keyword enables to define time and success condition specifica-

tion. <duration> is an integer to depict waiting period. <time> is

a string describing the type of duration as second, minute, hour, day

and month.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 c u s t o m e r r e c e i v e from h u r r i y e t m u l t i p l e t i m e s

message l a t e s t n e w s () w a i t 60 s e c o n d s

2. Case 2 – Stop notification sent by Service_A

<service_A> receive from {<service_B>}

multiple times message

158

<function>(<params>)

stopmessage from <service_A>

fault (<names>)

where

<service_A>: message receiving service, destination service

<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface

<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives

more than one message from service_B.

stopmessage from keyword enables to specify the service which sends

the notification to stop the receive interaction. In this case service_A

is the sender.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 c u s t o m e r r e c e i v e from h u r r i y e t m u l t i p l e t i m e s

message l a t e s t n e w s () s t o p m e s s a g e from c u s t o m e r

3. Case 3 – Stop notification sent by Service_B

<service_A> receive from {<service_B>}

multiple times

message <function>(<params>)

stopmessage from <service_B>

fault (<names>)

where

<service_A>: message receiving service, destination service

<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface

<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives

159

more than one message from service_B.

stopmessage from keyword enables to specify the service which sends

the notification to stop the receive interaction. In this case service_A

is the sender.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 c u s t o m e r r e c e i v e from h u r r i y e t m u l t i p l e t i m e s

message l a t e s t n e w s () s t o p m e s s a g e from h u r r i y e t

4. Case 4 – An interval of inactivity to stop

<service_A> receive from {<service_B>}

multiple times

message <function>(<params>)

inactivity-interval <duration> <time>

fault (<names>)

where

<service_A>: message receiving service, destination service

<service_B>: message sending service, source service

<function>: the name of function residing in service_A interface

<params>: a list of parameters separated by comma

multiple times keyword enables to specify that service_A receives

more than one message from service_B.

inactivity-interval keyword enables to define time interval that the re-

ceive activity stops if the specified duration is exceeded. <duration>

is an integer to indicate the waiting period. <time> is a string depict-

ing the type of duration as second, minute, hour, day and month.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 c u s t o m e r r e c e i v e from h u r r i y e t m u l t i p l e t i m e s

message l a t e s t n e w s () i n a c t i v i t y i n t e r v a l 10

s e c o n d s

160

Pattern 9 : Contingent request

Description A service, service_A sends a request to another service, service_B.

If service_A can not get any response from service_B within a specified

time frame, then service_A sends a request to service_C and waits for the

response as it did in the service_B case. Service_A continues to sending

requests to a number of services until getting a response from the current

called service.

Example

A user of emergency service requests for ambulance due to a car crush.

The the emergency service sends ambulance request from the nearest hos-

pital. If the nearest one does not provide any response within a specified

time, let’s say 5 seconds, then the request is sent to the second nearest

hospital. Request is sent until a response comes from within the set of

hospitals.

Issues/design choices

• There can be issues such as response can come from previous request

after the specified time frame; that is response comes late. In this

situation, only the response coming from the current called service

can be accepted and the other ones are discarded.

Graphical Representation

161

Figure 3.20: Contingent Request Pattern.

Explanation

In Figure 3.8.2.3, Service_A sends messages to Service_B, Service_C..,

Service_X sequentially if Service_A cannot get any response from the

current called service during a time frame.

Realization in XChor Language

<service_A> send

{<service_B> <service_C> ... <service_X>}

in-sequence

message <function>(<params>)

wait <duration> <time>

fault (<names>)

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message receiv-

ing services, destination services

<function>: the name of the function residing in service_B, service_C,...service_X

162

interface

<params>: a list of parameters of <function>, separated by comma

in-sequence keyword enables to specify that the list of services are called

in sequence.

wait keyword enables to define time and success condition specification.

<duration> is an integer to depict waiting period. <time> is a string indi-

cating the type of duration as second, minute, hour, day and month. until

keyword enables to define success condition. <number> is an integer

used with messagescame keyword. The messagescame keyword defines

the condition the destination service completes the receiving interaction.

fault keyword enables to define fault. <name> is a list of fault names.

Example

1 e m e r g e n c y s e r v i c e send a t a t u r k h o s p i t a l medicana

h o s p i t a l b a y i n d i r h o s p i t a l 1 0 0 . y i l h o s p i t a l in

s e q u e n c e message g e t a m b u l a n c e (c o o r d i n a t e s , he lpmessage)

w a i t 5 s e c o n d s

Pattern 10 : Atomic multicast notification

Description A service, service_A sends notifications to a set of services which

are expected to accept the notification within a specified time frame. The

number of notification acceptances can have a minimum and maximum.

Example

A travel agent allows the booking of both flight and hotel travel require-

ments as part of a comprehensive travel packaging. Customers nominate

their preferred flight carriers and hotel accommodation. Hotel and related

flight details can be seen as an atomic group. Within this group, the flight

carrier, and the booking agencies for hotels, identify the services con-

tacted. All such atomic groups need to succeed in order for the interaction

to succeed as a whole.

Issues/design choices

163

• The number of notified services can be known at design time or at

run-time.

• The required minimum and maximum number of acceptance should

be specified.

• The need for transactional support which enables notifying all related

services as a group, selected or not. Identification of the group to be

based on message content, such as customer id, request id or group

id.

• The minimum number of services to accept the notification can range

from one to the total number of services targeted, while the maximum

number can range from the minimum number specified to the total

number of services targeted.

Graphical Representation

Figure 3.21: Atomic Multicast Notification Pattern.

Explanation

In Figure 3.8.2.3, Service_A sends a notification message to Service_B,

Service_C.., Service_X and waits for acceptance of this notification within

a time frame.

164

Realization in XChor Language

<service_A> send

{<service_B> <service_C> ... <service_X>}

atomic

message <function>(<params>)

wait <duration> <time>

withNotification(min:<number> ,max:<number>)

fault (<names>)

where

<service_A>: message sending service, source service

<service_B> <service_C> ... <service_X>: >: a set of message receiv-

ing services, destination services

<function>: the name of function residing in service_B, service_C,... ser-

vice_X interface

<params>: a list of parameters of <function>, separated by comma

atomic keyword enables to specify transactional behavior.

wait keyword enables to define time and success condition specification.

<duration> is an integer to define waiting period. <time> is a string

depicting the type of duration as second, minute, hour, day and month.

withNotification keyword enables service_A to wait the acceptance of no-

tification sent by service_A. min and max keywords enable to define the

least and the most amounts of acceptance notification from the destination

services.<number> is an integer to indicate the minimum and maximum

amounts. fault keyword enables to define fault. <name> is a list of fault

names.

Example

1 t r a v e l i t i n e r a r y send s h e r a t o n r i x o s j w m a r r i o t

f o u r s e a s o n s p e g a s u s a n a d o l u j e t t h y a tom ic message book

(s t a r t D a t e , endDate , a d d i t i o n a l R e q u e s t s , c u s t o m e r i d)

w a i t 60 s e c o n d s w i t h N o t i f i c a t i o n (min : 2 , max : 7)

165

3.8.2.4 Routing patterns

The fourth categorization is the routing patterns comprising request with referral, re-

layed request and dynamic routing where multiple referred destination services come

into play. Detailed explanations of each are given with graphical representations.

Pattern 11 : Request with referral

Description A service, service_A sends a message to another service, ser-

vice_B which then sends the response to a set of services (service_1,

service_2. . . , service_n). Faults can be sent to service_A or the set of

services by service_B.

Example

A customer requests to make a reservation with the hotel between speci-

fied dates and with some conditions. Travel itinerary can send reservation

request to the hotel and make the hotel respond to the customer directly.

In other words, travel itinerary fades from the scene.

Issues/design choices

• The faults are sent to the source service, service_A by default if not

specified otherwise.

• service_B may or may not have prior knowledge of the identity of the

other services which are transferred by service_A.

Graphical Representation

166

Figure 3.22: Request with Referral Pattern.

Explanation

In Figure 3.8.2.4, Service_A sends a message to Service_B which then

sends related response to referred destination services(Service_1, Ser-

vice_2.., Service_N). Faults can be sent to Service_B by destination ser-

vices or to Service_A by Service_B.

Realization in XChor Language

<service_A> send {<service_B>}

message <function>(<params>)

referredDestinations(

<service_1>,

<service_2>,

...

<service_N>

)

fault (<names>)

toreferrals

where

<service_A>: message sending service, source service

<service_B>: message receiving service, destination service

<function>: the name of function residing in service_B interface

167

<params>: a list of parameters of <function>, separated by comma

referredDestinations keyword enables to specify a set of services that

the response from service_B is sent. <service_1>,<service_2>,... <ser-

vice_N> is a set of referred services.

fault keyword enables to define fault. <name> is a list of fault names.torefer

rals keyword depicts that the fault is sent to referred services, service_1,

service_2.... This keyword is optional used to change destination of fault.

Example

1 c u s t o m e r send t r a v e l i t i n e r a r y message r e s e r v e (

s t a r t D a t e , endDate , a d d i t i o n a l R e q u e s t s)

2 t r a v e l i t i n e r a r y send s h e r a t o n message r e s e r v e (

s t a r t D a t e , endDate , a d d i t i o n a l R e q u e s t s)

r e f e r r e d D e s t i n a t i o n s (c u s t o m e r) f a u l t (n o t r e a d y)

t o r e f e r r a l s

1 c u s t o m e r send t r a v e l i t i n e r a r y message r e s e r v e (

s t a r t D a t e , endDate , a d d i t i o n a l R e q u e s t s)

2 t r a v e l i t i n e r a r y send s h e r a t o n message r e s e r v e (

s t a r t D a t e , endDate , a d d i t i o n a l R e q u e s t s)

r e f e r r e d D e s t i n a t i o n s (c u s t o m e r) f a u l t (n o t a v a l i a b l e)

Pattern 12 : Relayed request

Description A service, service_A sends a message to another service, ser-

vice_B which then sends this request message to a set of services (ser-

vice_1, service_2,. . . , service_n). After that, the set of service interact

with service_A and service_B stays as a viewer of interactions and faults.

Example

A client seeking his/her debt status which can be queried from e-government

services. Social Security Institution (SGK), tax department and credit dor-

mitories institution are outsourced service providers of e-government ser-

vices. The government authority stipulates that interactions between the

client and debt status service providers be sent to it.

168

Issues/design choices

• The referred services may or may not have prior knowledge of ser-

vice_A. It is the service_B’s duty to inform about the source service,

service_A.

• service_B can receive interested messages from referred destination

services while playing viewer role.

Graphical Representation

Figure 3.23: Relayed Request Pattern.

Explanation

. In Figure 3.8.2.4, Service_A sends a message to service_B which then

sends the request to referred destination services(service_1, service_2..,

service_N). After that, all responses or faults are directed to service_A.

Realization in XChor Language

<service_A> send {<service_B>}

viewer

message <function>(<params>)

referredDestinations(

<service_1>,

169

<service_2>,

...

<service_N>

)

fault (<names>)

where

<service_A>: message sending service, source service

<service_B>: message receiving service, destination service

<function>: the name of function residing in service_B interface

<params>: a list of parameters of <function>, separated by comma

viewer keyword enables service_B play the viewer role and responses are

directed to service_A instead of service_B.

referredDestinations keyword enables to specify a set of services that

the response from service_B is sent. <service_1>,<service_2>,... <ser-

vice_N> is a set of referred services.

fault keyword enables to define fault. <name> is a list of fault names.torefer

rals keyword depicts that the fault is sent to referred services, service_1,

service_2.... This keyword is optionally used to change the destination of

fault.

Example

1 c u s t o m e r send e government v i e we r message d e p t s t a t u s (

c u s t o m e r i d) r e f e r r e d D e s t i n a t i o n s (sgk , t a x d e p a r t m e n t ,

c r e d i t d o r m i t o r i e s i n s t i t u t i o n) f a u l t (n o t a v a l i a b l e)

1 p a r a l l e l (

2 c u s t o m e r send e government v i e we r message

d e p t s t a t u s (c u s t o m e r i d) r e f e r r e d D e s t i n a t i o n s (sgk ,

t a x d e p a r t m e n t , c r e d i t d o r m i t o r i e s i n s t i t u t i o n)

3 e government r e c e i v e from sgk , t a x d e p a r t m e n t ,

c r e d i t d o r m i t o r i e s i n s t i t u t i o n message r e p o r t (

c u s t o m e r i d)

4)

170

CHAPTER 4

VERIFICATION OF XCHOR MODELS

This chapter is dedicated to representing a step by step approach in order to formally

verify variable XChor models through model checking using Feature Transition Sys-

tems (FTS). Transformations from XChor to FTS model are introduced and required

feature model of the variable choreography(ies) and related fPromela specification(s)

are produced. Applying verification with the help of SNIP model is demonstrated and

exemplified through case studies described in Chapter 3.

4.1 Need to Verify

XChor specification, which describes the behavior of service-oriented systems, sup-

ports variability in order to provide flexibility and to increase reusability of services.

In variable-intensive service systems such as XChor choreography, verification is a

costly and complex task due to having to check consistency of all possible choreogra-

phies and related services (orchestrations and atomic services). In XChor variable-

intensive systems, variation points and related variants are scattered over variable

choreography, orchestrations and atomic services. For small systems where variabil-

ity is limited, consistency checking of variable choreography and related interacting

services can be handled. Due to the complexity that comes with variability, dead-

locks and incompleteness in composition behavior cannot be seen directly from vari-

able choreography specification, even if variability is limited. For large scale systems

this process is very complicated and error prune due to having to check all possible

choreography against required variable behavior. To achieve consistent service ar-

171

chitecture and to reduce complexity of verification during adaptation to changes and

maintenance, a formal model is required for quality assurance purposes.

4.2 Verification Approaches for Variable Systems

One of the approaches addressing formal verification of systems is model checking.

System models and system properties are two main artifacts in model checking. Sys-

tem models describe the system behavior, while system properties define the speci-

fications that are supposed to be satisfied by the system. Among these approaches,

Modal Transition Systems (MTS)[64], PL-CSS (Product Line - Concurrent Commu-

nicating Systems, adaptation of the CCS process algebra) [71], and FTS[50] are the

ones tackling formal verification of variable-intensive systems. In variable systems,

it is important to relate product behavior to its properties in order to analyze where

and how a property is violated. Focusing on software product lines, FTS enables such

relations by linking possible product features with transitions which describes inner

processes of possible products. To this end, FTS approach utilizes a feature model of

a product line to reveal product features and constraints over them in TVL (Text based

Variability Language) syntax[51]. It makes use of the product line behavior written

in fPromela language along with the feature model [50]. fPromela language is an

extension of Promela language which enables to guard statements with features and

includes assertion statements. Assertion statements in fPromela specification are used

for checking properties of the system through comparing the property with a value.

SNIP model checker [50] is used as the verification tool which takes the feature model

and fPromela specification of the product line. The tool verifies the fPromela specif-

cation against temporal properties and checks possible deadlocks. That the flow graph

of choreography composition is not connected leads to a deadlock in fPromela. That

is the situation when a variation binding causes a non-complete graph which is rep-

resented by fPromela specification. In that case, SNIP results with a deadlock along

with violated product features and additional information about where the deadlock

occurs. Likewise in assertion violation where the system property is not satisfied is

provided with violated product features.

FTS approach is selected and applied for verification purposes of XChor variable

172

choreography in that

• Variability of a system is specified explicitly by means of a feature model.

• Explicit variability of the system, features are associated with behavior of the

product line.

• Information about possible deadlocks and assertion violations are presented

with the violated features which eases the error finding and correction.

• Even XChor variability model and feature model of the product lines are not

mapped one-to-one, feature model construction is achievable from configura-

tion interfaces of service and choreographies.

• Composition behavior specification in fPromela Language and XChor choreog-

raphy specification are close to each other which makes transformation easier.

• Parallel composition is achievable which enables to run several choreographies

simultaneously.

Along with its advantages to apply model checking to choreographies, the coverage

of model checking is only for behavior variability. In XChor language, service and

choreography interfaces can be changed by configuration interfaces and variability

associations defined in choreography specifications. These interface changes lead to

existence or non-existence of functions and parameters which are referenced within

choreography specifications. In other words, due to service interface changes, one of

the service function cannot be provided by a service even though it is stated that the

service takes part in an interaction. Therefore, the service interaction with this func-

tionality cannot occur within the choreography. Such interface consistency checking

cannot be directly addressed by FTS. Therefore, an additional mechanism is needed

to achieve interface variability checking which is left as future work.

4.3 Model Checking of Variable XChor Choreographies

The application of FTS model to XChor variable choreographies requires model

transformation, because variability and behavior modeling are handled differently

173

Table 4.1: Variability and Behavior Models in XChor and FTS

Variability Model Behaviour Model
XChor XChor Variability Model XChor Choreography Model

FTS Feature model in TVL fPromela

which is shown in Table 4.1. The source model XChor, utilizes its own variability

model in order to specify variation points and their associations between choreogra-

phy and services. On the other hand, the target model, FTS utilizes TVL for repre-

senting product line’s feature model as the input for verification of the product line

behavior defined in fPromela. Therefore, a transformation needs to be conducted

between these models while preserving their semantics.

According to Table 4.1, transformation is twofold; one for variability model explained

in Section 4.3.1 and one for behavior model indicated with transformation rules in

Section 4.3.2. After then, the usage of created FTS models for model checking of

choreographies is explained in Section 4.3.3.

4.3.1 From Variability Model in XChor to TVL Feature Model

The target model, TVL employs a hierarchical structure including features, their at-

tributes and constraints among them. The source model, XChor includes variation

points (internal, external and configuration), related variants, constraints and varia-

tion point associations. Due to the semantic difference between TVL and XChor

variability model, a mapping should be defined. Variability model in XChor requires

all specified variation points to be added to the root of newly created feature model as

mandatory. Moreover, TVL has no support for directly mapping configuration varia-

tion point logic to features. Variation points taking part in configurations should not

be added to the root of the feature model, as the semantic relations among a set of

variation point is hidden. The rest can be added to the root. A step by step description

of constructing a TVL model from variability in XChor model is as follows:

Step 1 Variability Information Extraction Extract variation points stated as "exter-

nalVP", "internalVP", "configuration" and "vp" from configuration interfaces

174

of choreography and services. Extract related variants labeled as "mandatory",

"optional" and "alternative".

Step 2 Root Construction Construct a root and name it with the application name.

Step 3 Feature Additions Assume that all variant and variation point names are dis-

tinct.

For Choreography For all choreographies

3.1 Add a mandatory feature to the root with choreography name, let’s

say chor1.

3.2 If and only if a VP does not participate in any configuration vari-

ation point, add it to chor1 as a feature and its related variants as

sub-features. Otherwise, skip it.

3.3 If a VP is a configuration variation point, then add it to the chor1

as a mandatory feature and its variants as "optional", "mandatory"

or "alternative" sub-features. For optional add someOf relation, for

alternative add oneOf relation and for mandatory add allOf relation.

For each of its variant, add a new feature as optional with new sub-

features stated under "mapping" part as mandatory.

3.4 Repeat 3.2 and 3.3 steps until no variation point exists.

3.5 By use of variability association information gathered from Step 2,

add each association as constraint.

Add all logical constraints of choreography as feature constraints.

Step 4 fPromela Feature List Construction Construct a list of leaf features resid-

ing in fPromela which are annotations for variability in behavior.

4.3.2 From XChor Behavior Model to fPromela

The process logic in XChor specification is transformed to the fPromela equivalent.

The syntax of fPromela and Promela are the same. fPromela has almost all function-

alities of Promela. The main difference between fPromela and Promela lies in the

feature convention. fPromela has a new type called features that can be used to guard

175

statements with feature specific expressions. In [113] transforming VxBPEL variabil-

ity logic to fPromela is explicitly defined for variable orchestrations. However, this

approach does not cover choreography but sheds light to the way to transform.

Among variation point types, configuration variation point provides a high level un-

derstanding for configuration purposes while hiding details of how low level, internal

binding logic is done. Therefore, these types of variation points do not take part in

process specification, thus they do not need to be transformed to fPromela. All varia-

tion points except configuration should be transformed to fPromela in order to prevent

information loss.

Each function realized by choreographies is transformed to fPromela equivalent sepa-

rately. Then these functions are gathered in a single fPromela file as a pml file named

with the application. The rules for transforming XChor behaviour specification and

variability to equivalent fPromela constructs are listed in Table 5.2, Table 5.4 and Ta-

ble 5.5 where P1, P2,.., Pn represent XChor Composite or Atomic Interaction specifi-

cations, fPromela-equvalent-P1, fPromela-equvalent-P2,. . . , fPromela-equvalent-Pn

represent fPromela equivalent specifications of P1, P2,. . . , Pn.

Atomic interaction covers basic send and receive operations along with additional

keywords; refers, in-sequence, atomic, viewer, multiple times, pickOne, stopmessage

from, wait .. until, inactivity-interval, referedDestinations, withNotification. Among

these keywords,

• viewer and refers keywords are not transformed to fPRomela in that it does not

add any interaction to the behavior.

• wait .. until and inactivity-interval are not transformed to fPRomela equivalent

because real time representation is not modeled in Promela. A relative counter

can be set instead.

The gd...dg; part in Table 5.4 covers variable parts which is interpreted as if structures

in Promela. Variation points and selected variants are references to features in the

extracted feature model explained in Section 4.3.1. Transformation rules and feature

model construction are implemented by using python programming language.

176

Ta
bl

e
4.

2:
Tr

an
sf

or
m

at
io

n
R

ul
es

X
C

ho
r

fP
ro

m
el

a

s1
re

ce
iv

e
fr

om
{s
2,
s3
,.
.s
n
}

fo
re

ac
h

se
rv

ic
e

in
s2

,s
3,

..s
n

m
es

sa
ge

<f
un

ct
>(

pa
r1

,p
ar

2.
..p

ar
n)

cr
ea

te
a

ch
an

ne
lc

ha
n

ch
an

_s
1s

x<
fu

nc
t>

w
he

re
x

is
in

ra
ng

e(
2.

..n
)

w
ith

th
e

nu
m

be
ro

fp
ar

am
et

er
s

st
at

ed
in

(p
ar

1,
pa

r2
...

pa
rn

)

an
d

<f
un

ct
>

is
th

e
fu

nc
tio

n
na

m
e

Fo
ri

ns
ta

nc
e,

if
th

er
e

ar
e

3
pa

ra
m

et
er

s:
ch

an
ch

an
_s

1s
x<

fu
nc

t>
=

[1
]o

ft
yp

e
by

te
,b

yt
e,

by
te

In
se

rt
ch

an
_s

1s
x<

fu
nc

t>
?p

ar
1,

pa
r2

...
pa

rn
;f

or
ea

ch
se

rv
ic

e
s2

,s
3,

..s
n

s1
se

nd
{s
2,
s3
,.
.s
n
}

fo
re

ac
h

se
rv

ic
e

in
s2

,s
3,

..s
n

m
es

sa
ge

<f
un

ct
>(

pa
r1

,p
ar

2.
..p

ar
n)

cr
ea

te
ch

an
ch

an
_s

1s
x<

fu
nc

t>
;w

he
re

x
is

in
ra

ng
e(

1.
..n

)i
fi

td
oe

s
no

te
xi

st

In
se

rt
ch

an
_s

1s
x<

fu
nc

t>
!p

ar
1,

pa
r2

...
pa

rn
;f

or
ea

ch
se

rv
ic

e
s2

,s
3,

..s
n

an
d

<f
un

ct
>

is
th

e
fu

nc
tio

n
na

m
e

177

Table
4.3:Transform

ation
R

ules-cont’d

X
C

hor
fProm

ela

sequence(P1
P2)

{
f
P
rom

ela
−

equ
iv
a
len

t−
P
1};{

f
P
rom

ela
−

equ
v
a
len

t−
P
2};

paralel(P1
P2)

fProm
ela-equvalent-P1;fProm

ela-equivalent-P2;

selectexpr(P1
P2)

if::fProm
ela-equivalent-expr

Þ

if

::fProm
ela-equivalent-P1;

::fProm
ela-equivalent-P2;

fi;

::else
Þ

skip;

fi;

178

Ta
bl

e
4.

4:
Tr

an
sf

or
m

at
io

n
R

ul
es

-c
on

t’d

X
C

ho
r

fP
ro

m
el

a

re
pe

at
ex

pr
(P

1
P2

)
do ::

fP
ro

m
el

a-
eq

ui
va

le
nt

-e
xp

rÞ
fP

ro
m

el
a-

eq
ui

va
le

nt
-P

1;
fP

ro
m

el
a-

eq
ui

va
le

nt
-P

2;

::
el

se
Þ

br
ea

k;

od
;

gu
ar

d(
ex

pr
)P

1
if ::

fP
ro

m
el

a-
eq

ui
va

le
nt

-e
xp

rÞ
fP

ro
m

el
a-

eq
ui

va
le

nt
-P

1;

::
el

se
Þ

sk
ip

;

fi;

V
ar

ia
bi

lit
y

A
tta

ch
m

en
t

gd

::
fP

ro
m

el
a-

eq
ui

va
le

nt
-v

pa
tta

ch
m

en
tÞ

fP
ro

m
el

a-
eq

uv
al

en
t-

P1
;

::
el

se
Þ

sk
ip

;

dg
;

179

4.3.3 Model Checking After Transformation

After the transformation, fPromela specification and related feature model of the ap-

plication which includes a set of choreography and services is ready to be checked

against deadlocks and assertions. No assertion is added during the transformation.

Developers and testers can add user defined assertions and required system properties

to fPromela specification, which can afterwards be checked against these properties

with the help of SNIP tool[50].

From the src folder of the model checker SNIP, user verification can be verified with

following command line code, meaning that appname.pml fPromela file is checked

with appname.tvl feature model file, where appname is the name of the application:

./snip -check -fm path/to/appname.tvl path/to/appname.pml

If there are no deadlocks or assertion violations, the model works fine. Otherwise, via

SNIP output, the developer can investigate the source of the problem. The process

flow might not be able to continue and reach the final state because of its feature

model selections and restrictions. SNIP outputs the line where the process gets stuck

in the infinite loop. For instance, if one of the interactions, send or receive, is absent

which results in the whole choreography is not processing any further, then a deadlock

occurs. It repeats itself waiting for a result and finally produces an error indicating

where the deadlock occurs as an expression with features. The feature expression or

absent interaction give a clue about what to change. Correction can be done directly

in fPromela and feature model or in XChor models. If XChor models or variability

specifications are tailored, fPromela and feature model files can be reproduced by

Table 4.5: An excerpt of feature list for fPromela specification

typedef features {

bool Cruise;

bool Carrental;

bool Activities;

bool Hotel;

bool Airline

};

features f;

180

using transformation implementation which is a time saving approach for service

oriented application developers. Moreover, for semantic flow of the application, de-

velopers can define new variables and write assertion statements in order to ensure

the choreographies behave as intended.

4.4 Verification of The Case Study

Case Studies provided in Section 3.2 are used here to demonstrate the verification

approach step by step.

4.4.1 Travel Itinerary - Single Choreography

As a single choreography specification, travel itinerary along with its configuration

interface are transformed to FTS. A TVL model file is constructed by following the

steps explained in Section 4.3.1 and PML file describing planitinerary function of

the choreography with variability in Section 4.3.2. Excerpts from constructed feature

Table 4.6: An excerpt from constructed feature model in TVL

root Application{

group allOf{

Travelitinerary group allOf{

Itinerary group oneOf{

Vacationpackage group allOf{

Facilities group group[0..3]{

Cruise,

Carrental,

Activities

},

Booking group allOf{

Hotel,

Airline

},

},

Regular group allOf{

...

}

},

},

}

}

181

model is listed in Table 4.6 and a part of fPromela specification in Table 4.7.

Travel itinerary feature model includes only features related to "Itinerary" configura-

tion variation point and related constraints. Feature list includes only the leaf nodes of

the feature model which are used in PML file in order to specify variation in behavior.

Full TVL and PML file contents can be found in Appendix D.

Travel itinerary choreography realizes only one function planitinerary which is trans-

formed to fPromela as an active proctype. In the excerpt of generated fPromela code

indicated in 4.7, the variable parts dependent on Airline feature (f.Airline) are covered

with gd..dg;. Traveler sends travel agency a trip query with startdate, enddate and de-

tails parameters in the first chan_travelertravelagency_querytrip!startdate,enddate,de

tails; line. Then if Airline features becomes true, chan_travelagencyairline_request

price!startdate,enddate; line is executed; travel agency service sends a price request

to airline service along with startdate and enddate parameters.

Table 4.7: An excerpt from generated fPromela code for travelitinerary choreography
of Travel Itinerary System

...

active proctype planitinerary() {

{

chan_travelertravelagency_querytrip!startdate,enddate,details;

};

{

gd

::f.Airline ->

chan_travelagencyairline_requestprice!startdate,enddate;

::else -> skip;

dg;

...

{

if

::if

::if

::(hotelbookingconfirmation == temp_hotelbookingconfirmation

&& flightticketconfirmation == temp_flightticketconfirmation) ->

gd

::f.Airline ->

temp = temp+1;

{

chan_travelagencyairline_bookflight!arrival,departure;

chan_travelagencyairline_bookflightnot?notification;

};

...

}

182

4.4.2 Biometric Security System - Multiple Choreography

Biometric Security System has three choreographies interacting with each other, namely

adaptablesecuritysystem, credentialmng and alert. These three choreographies along

with their configuration interfaces are transformed to FTS.

Table 4.8: An excerpt from constructed feature model in TVL

root Application{

group allOf{

Adaptablesecuritysystem group allOf{

Authentication_type group someOf{

Biometrics group allOf{

I_encryption_parameters group allOf{

Setparams

},

I_auth_type group [1..1]{

Fingerprint,

Fingervein,

Iris,

Face

}

},

...

},

Credentialmng group allOf{

opt Biometricdevice,

...

},

Alert group allOf{

Emergency_notification group someOf{

Telephonecall,

Mediasend

},

...

}

}

Setparams_4 -> Setparams;

}

A TVL model file is constructed by following the steps explained in Section 4.3.1

and fPromela specification file indicating verify and enroll functions of adaptablese-

curitysystem choreography, alert function of alert choreography, and getcredentials

function of credentialmng choreography with variability in Section 4.3.2. Excerpts

from constructed feature model is presented in Table 4.8 and a part of fPromela

specification in Table 4.10 and Table 4.11. Adaptable security system feature model

includes features for each choreography indicating their configuration variation points

183

and external variation points and related constraints. Feature list includes only the leaf

nodes of the feature model which are used in PML file in order to depict variation in

behavior. Full TVL and fPromela specification as a PML file content can be found in

Appendix D.

Table 4.9: An excerpt of feature list for fPromela specification

typedef features {

bool Setparams;

bool Fingerprint;

bool Fingervein;

bool Iris;

bool Face;

bool Defaultparams;

bool Mode_offline;

bool Mode_online;

bool Faketransaction

...

};

features f;

Adaptable security system choreography realizes four functions verify, enroll, alert

and getcredentials which are transformed to fPromela as an active proctype. In the

excerpt of generated fPromela code depicted in Table 4.10,

Table 4.10: An excerpt from generated fPromela code for Adaptable Security System

active proctype verify() {

{

gd

::((f.Fingerprint && !f.Fingervein && !f.Iris && !f.Face) ||

(f.Fingervein && !f.Fingerprint && !f.Iris && !f.Face) ||

(f.Iris && !f.Fingerprint && !f.Fingervein && !f.Face) ||

(f.Face && !f.Fingerprint && !f.Fingervein && !f.Iris)) ->

do

::(noofbiometricauthtypeselected!= 0) ->

chan_userchor_credentialmng_getcredentials!34;

chan_userchor_credentialmng_getcredentials?processeddata;

chan_chor_credentialmngencryption_setparams!parameters;

noofbiometricauthtypeselected = noofbiometricauthtypeselected - 1;

::else -> break;

od

::else -> skip;

dg;

};

184

Table 4.11: An excerpt from generated fPromela code for Adaptable Security System-
cont’d

{

gd

::f.Mode_online -> temp = temp+1;

{ chan_tempthirdparty_getconnection?temp;};

{ chan_thirdpartyencryption_setparams!parameters;};

::else -> skip;

dg;

};

...

}

active proctype enroll() {

...

{

gd

::f.Mode_online -> chan_encryptionthirdparty_savehasheddata!hasheddata;

::else -> skip;

dg;

};

{

gd

::f.Mode_offline -> chan_encryptionstorage_sethasheddata!hasheddata;

::else -> skip;

dg;

};

...

}

active proctype alert() {

...

{

gd

::f.Telephonecall -> chan_cameraalertsender_call!destination;

::else -> skip;

dg;

};

...

}

active proctype getcredentials() {

{

gd

::f.Biometricdevice -> temp = temp+1;

{chan_tempconnection_connectdevice!deviceid;};

...

::else -> skip;

dg;

};

...

}

the variable part condition related to Fingerprint, Fingervein, Iris and Face features

represents that if one of the features are selected, then the do..od; repeating part is

executed until noofbiometricauthtypeselected is zero. After this part is executed or

185

skipped, if Mode_online feature is true, the variable part is executed sequentially; first

"chan_tempthirdparty_getconnection?temp;" and then " chan_thirdpartyencryption

_setparams!parameters;". In other words, after thirdparty service receives a getcon-

nection message, it sets the key information as parameters to encryption service.

After TVL and fPromela files are generated, they are ready to be verified by the SNIP

tool. Travel itinerary system has no deadlocks or assertion violations, so the output

of the SNIP tool is as follows indicating that 772 states are explored while executing

possible choreoraphies:

No never claim, checking only asserts and deadlocks..

No assertion violations or deadlocks found

[explored 772 states, re-explored 0].

There are several reasons why a deadlock occurs in choreographies; for instance a

receive without a send action and the number of receives exceeding the available

channel size. It can be thought that when a send interaction is specified, there is

an implied receive associated with that send interaction. However, if only a receive

interaction is defined, there is no way to make sure an associated send interaction

exists. This situation results in a deadlock and whole choreography cannot process

any further.

When there is no associated send interaction with the following receive statement

as in "responsewindow receive fromcomparison message show()", SNIP tool outputs

information about (i) where the deadlock occurs, (ii) which feature selection causes

this deadlock and (iii) the program stack information provided as follows:

No never claim, checking only asserts and deadlocks..

Found deadlock [explored 42 states, re-explored 0].

- Products by which it is violated (as feature expression):

(Videorecord & Biometricdevice & Faketransaction &

!Fingerprint & Fingervein) | (Videorecord & Biometricdevice

& Faketransaction & Fingerprint & !Fingervein)

- Stack trace:

features = /

globals.temp = 0

globals.notification = 0

...

186

...

-- Final state repeated in full:

features = (Videorecord &

Biometricdevice & Faketransaction & !Fingerprint & Fingervein) |

(Videorecord & Biometricdevice & Faketransaction & Fingerprint

& !Fingervein)

globals.temp = 0

globals.notification = 0

...

globals.usernamepass = 34

globals.fakeinterface = 1

globals.temp_fakeinterface = 1

pid 00, encryption @ end

pid 01, credentials @ end

pid 02, verify @ NL129

--

The deadlock can be resolved in two different ways.

1. Convert receive interaction "responsewindow receive fromcomparison message

show()" to a send interaction "comparison sendresponsewindow message show()".

2. Add a new send interaction before receive: "comparison sendresponsewindow

message show()" preceeds "responsewindow receive fromcomparison message

show()".

Developers can also provide their own TVL feature models to be used in verifica-

tion in SNIP. Transformation from XChor to fPromela does not add any assertion to

the behavior model. Developers can insert additional assert statements to verify the

system semantically. Assertion violations can result from wrong semantics of TVL

feature model.

The TVL model of adaptable security system choreography, mode_online and mode_

offline are optional variants of authentication_mode. In adaptable security system,

result is defined for newly inserted assertion statement as "int result;". In verify

function, result indicates that "user" is verified when it equals to one or that "user" is

rejected when it equals to zero. In the following setting of adaptive security system,

the "comparison" service returns zero as the comparison result which is the case for

mode_offline.

187

active proctype comparison() {

chan_tempcomparison_compare!0;

}

active proctype verify() {

...

gd

::f.Mode_online ->

temp = temp+1;

{

chan_encryptionthirdparty_verify!1;

chan_encryptionthirdparty_verify?result;

};

{

gd

::f.Faketransaction ->

chan_thirdpartycomparison_fakeanalysis!1;

chan_thirdpartycomparison_fakeanalysis?fakeinterface;

::else -> skip;

dg;

};

::else -> skip;

dg;

gd

::f.Mode_offline ->

temp = temp+1;

{

chan_encryptionstorage_gethasheddata!temp;

chan_storagecomparison!temp;

};

{

chan_tempcomparison_compare?result;

assert(result == 1);

};

{

gd

::f.Faketransaction ->

chan_storagecomparison_fakeanalysis!comparisonresult;

::else -> skip;

dg;

};

::else -> skip;

dg;

...

}

188

As the optional behavior of mode_online and mode_offline variants, there is a pos-

sible selection that two of them are set to be true simultaneously. Then, the vari-

able parts guarded by f.Mode_online and f.Mode_offline conditions are executed se-

quentially. First the result coming from "thirdparty" service is set to one because

f.Mode_online part is executed. Then with the result sent by "comparison" service,

the value of result is set to zero. The assertion ensuring that whether the result came

from "thirdparty" service or not is violated. SNIP output of assertion violation is

depicted as follows:

No never claim, checking only asserts and deadlocks..

Assertion at line 139 violated [explored 21 states, re-explored 0].

- Products by which it is violated (as feature expression):

(Faketransaction & !Fingerprint & Fingervein & Mode_offline &

Mode_online) | (Faketransaction & Fingerprint & !Fingervein &

Mode_offline & Mode_online)

...

globals.temp_fakeinterface = 1

pid 00, encryption @ end

pid 01, comparison @ end

pid 02, credentials @ end

pid 03, verify @ NL139

pid 04, enroll @ NL198

pid 05, alert @ NL230

pid 06, getcredentials @ NL265

--

The system generates two different results values due to an error of TVL seman-

tics because two different comparisons are executed at the same time. Therefore,

mode_online and mode_offline features should be mutually exclusive and the rela-

tion between them should be changed from optional to alternative in the TVL feature

model.

4.5 Discussion

It might seem that constructs are easily converted to fPromela equivalent ones; how-

ever structural activities preserving sequential behavior need more effort due to native

189

concurrent behavior of fPromela. Transforming more than one choreography to a sin-

gle fPromela specification is another challenging issue. Moreover, transforming vari-

ability associations and their logic are handled choreography-wide. Fault handling

requires further research and will be also transformed into fPromela.

Table 4.12: Verification Results

Choreography Verification

Choreography Function Interact Variation TT (ms) EX (ms) ES
Point

1 1 10 1 12 447 41
1 1 20 1 20 483 316
1 2 20 1 111 437 2356
1 1 10 3 29 427 81
1 1 20 3 159 595 772
1 2 20 3 146 589 17408
1 1 10 5 74 462 337
1 1 20 5 81 496 1636
1 2 20 5 195 963 32100
2 2 15 5 439 758 10082
2 2 30 5 529 1200 37244
2 2 30 10 307 5734 114926
3 3 30 5 940 2109 69314
3 3 30 10 704 7671 109336
3 4 30 5 638 9352 323331
3 4 30 10 334 46704 509925

A set of experiments are conducted with one to three choreographies (Chor) including

one to four functions with totally ten to thirty service interactions (Interact) and vari-

ation points (internal, external and configuration) ranging from one to ten. For one

choreography experimentation travel itinerary choreography is utilized, while two

and three choreography experiments adaptable security system is used. Transforma-

tion times (TT) based on our approach, the execution times (EX) of verification with

SNIP in milliseconds and the number of explored states (ES) are represented in Table

4.12.

The results show that the execution time to transform and prepare FTS models in-

190

creases with the number of variations, choreographies and functions along with their

interactions. Verification is getting slower with the increase in the variation, due to

increase in the number of explored states. Because each choreography function is

executed as a parallel active process in FTS, an increase in function number results

in increase in execution time and explored states. Considering execution times in

milliseconds, verification of variable choreographies takes reasonable effort even in

case of increasing the numbers of variations, choreographies, functions and interac-

tions. Our approach provides the verification basis for variable XChor choreographies

which can then be enhanced by user defined assertion and property additions.

191

192

CHAPTER 5

TRANSFORMATION OF XCHOR MODELS TO EXISTING

LANGUAGES

This chapter comprises a step by step approach for transforming XChor models to

existing languages, namely BPEL4Chor, VxBPEL and BPEL. Existing choreography

or orchestration languages can not fulfill the requirements of variability specification

in choreography and variability association with interacting orchestrations. Although

XChor Language is a richer model, VxBPEL and BPEL4Chor are closer specifica-

tions to XChor representing variable orchestrations and choreography respectively.

For VxBPEL, the lack of information about internalization or externalization of vari-

ation points restricts our approach. Whole COVAMOF model should be provided

along with VxBPEL specification. Moreover, XChor variability attachment specifi-

cations have a complex structure to directly transform to VxBPEL variability specifi-

cation easily. In order to overcome this situation, an additional mechanism is needed.

For BPEL4Chor, there is no support for variability specification which requires a

variability handling mechanism other than choreography specification. Transform-

ing to BPEL4Chor model after resolving all variability is a solution to this situation.

On the other hand, BPEL4Chor model can be transformed to XChor models without

variability specification. Therefore, XChor models are not directly transformed fully

to existing languages and transformations are processed along with assumptions and

further requirements.

193

5.1 Transformation to BPEL4Chor, VxBPEL and BPEL

The target models can not satisfy representation of variable XChor models wholly.

Therefore, first differences and similarities between models are discussed, then as-

sumptions and requirements for the transformation are stated in the following subsec-

tions.

5.1.1 Differences and Similarities Between Models

5.1.1.1 BPEL4Chor and XChor Models

Forming Choreographies Creating and generating choreographies using BPEL4Chor

Language can be top-down and bottom-up. In the top-down approach, a chore-

ography including topology and grounding is specified in BPEL4Chor language

and all interacting orchestration skeletons as abstract business processes are

created. In bottom-up approach, a choreography specification in BPEL4Chor

can be generated from a set of already abstract process definitions of BPEL

orchestrations. Message links and technical information in groundings are

gathered from WSDL interfaces of orchestrations. Like BPEL4Chor, chore-

ographies can be formed and gathered either top-down or bottom-up in XChor.

However, XChor does not include all technical information required for chore-

ography grounding, therefore the skeleton of choreography grounding is gen-

erated with blanks to filled later by developers. The developer should fill the

blanks with the appropriate function names in WSDL. In the presence of the

abstract process definition in a configuration interface, the BPEL orchestration

skeleton is constituted using this definition and parts of choreography ground-

ing is filled through this information.

Multiple Choreography Specification BPEL4Chor allows developers to define only

one choreography, whereas XChor facilitates to define and reuse multiple chore-

ographies. Therefore, for each choreography in XChor, there should be one

BPEL4Chor choreography topology and grounding models. To interrelate all

choreographies in XChor, each choreography specification in BPEL4Chor re-

veals its interface as a service to enroll in the ultimate choreography in BPEL4

194

Chor.

Executability Netiher XChor nor BPEL4Chor models are executable. BPEL4Chor

is transformed to BPEL abstract process definitions which requires further spec-

ification for executable processes. Likewise, XChor models are not relying on

any executable structure.

Service Interactions BPEL4Chor has bindSenderTo to send a link from source to

destination. Besides, it is used for the realization of refersTo(<a set of ser-

vices>) withnotification in XChor. With partifipantRefs, when service A sends

a message to service B, if service C is defined in partifipantRefs, then service

B can directly interacting with service C and service A is out of concern.

Event Handling BPEL4Chor is based on BPEL specification which includes event

handling mechanism. Therefore the whole choreography with orchestration

specifications can specify required events, whereas XChor has no support of

event handling.

Fault Handling BPEL4Chor is based on BPEL specification which enables the defi-

nition and handling of faults, while XChor has a basic fault specification mech-

anism which can be mapped to that of BPEL4Chor.

5.1.1.2 VxBPEL and XChor Models

Abstract Process Definition Configuration files of services comprise abstract pro-

cess definitions if specified which can be seen as BPEL abstract processes with

variability. VxBPEL does not specify abstract business processes. However,

from abstract process definitions of services, a skeleton of VxBPEL orchestra-

tions can be generated with variability information specified in COVAMOF.

Variability Representation Some variability specifications in abstract process def-

initions can not directly be transformed to VxBPEL equivalent ones due to

different characteristics of variability reference mechanism in service compo-

sitions, namely the variability attachment structure.

Interface Variability VxBPEL does not address interface variability, while XChor

has the ability to alter service and choreography functions and parameters via

195

their configuration interfaces. VxBPEL can only be used for variability in com-

position in XChor context.

5.1.1.3 BPEL and XChor Models

Service Interactions Main goal of BPEL specifications is to represent composition

among collaborating services at orchestration level. Therefore, BPEL is ca-

pable of designating all service interactions specified in XChor choreography

specifications and interactions stated in abstract business process part of the

services.

Variability Representation Only the parts without variation indicating service in-

teractions can be transformed to BPEL specifications due to lack of variability

support in BPEL.

5.1.2 Assumptions and Requirements for Model Transformation

5.1.2.1 XChor Models to BPEL4Chor Transformation

• All interactions have sender and receiver specification.

• No unbound variation point exists in XChor choreography specification, be-

cause BPEL4Chor does not have any support for variability management mech-

anism. All variation points of XChor choreography specification should be re-

solved and bound before transforming to BEPL4Chor.

• All choreographies should have a service interface in which choreography func-

tionalities are declared. This is a must for multiple choreography interaction.

• WSDL files of interacting services and choreographies are created for web ser-

vices from technical point of view which resides in grounding part. But these

creations in transformation is not a must.

• BPEL4Chor can interrelate VxBPEL variable orchestrations by means of or-

chestrations’ provided interfaces without variability.

196

• If any choreography has variability in choreography specification, an error is

generated and transformation of XChor models to BPEL4Chor is suspended.

• BPEL4Chor enables the specification of different types explicitly via partic-

ipantTypes, whereas XChor assumes that every service has its own type. In

other words, every service represents a different type in XChor.

• All interacting services have abstract process definition parts in their configu-

ration interfaces. In BPEL4Chor, topology model includes only message links

and all structured interaction logic reside in the abstract business process defini-

tions of services. However, in XChor all interactions are modeled within chore-

ography specification if service configuration interfaces do not include abstract

process definition parts. Therefore, the behavioral logic of each interacting ser-

vice should be specified and be consistent with choreography specification.

5.1.2.2 BPEL4Chor Models to XChor Transformation

• BPEL4Chor follows single choreography approach, so there is only one chore-

ography specification defined.

• As BPEL4Chor does not have any support for variability management mecha-

nism, no variability in configuration interface for service and choreography is

specified.

• WSDL files should be provided which specifies service functions and their pa-

rameters. The service functions are used to construct service interfaces.

• XChor supports a a basic fault handling mechanism and does not support event

handling. Therefore, the parts specifying event handling mechanism in BPEL4Chor

are not transformed to XChor.

• The global view indicating control flow is not provided by BPEL4Chor mod-

els. Therefore, to help constructing choreography specifications, messageLink

specifications are specified sequentially.

197

5.1.2.3 XChor Model to VxBPEL Transformation

• XChor choreographies are transformed to a set of variable VxBPEL orchestra-

tions.

• XChor service orchestrations, transformed to VxBPEL equivalent, are these

that have no variability mapping specification across a choreography.

• Due to structural differences in variability specification, an additional configu-

ration file which includes variability attachment logic should be generated after

transformation.

• All transformed VxBPEL orchestrations have a service interface; it can be a

WSDL file.

Table 5.1: Mapping of Variability Modeling of XChor and VxBPEL

XChor COVAMOF
Variation Point Variation Point

External Variation Point None
Internal Variation Point Variation Point

Configuration Variation Point Configurable Variation Point
Variant Variant

Constraint Dependency

5.2 The Transformation Approach to BPEL4Chor, VxBPEL and BPEL

After binding variability of choreographies, two approaches can be applied:

1. The choreographies are transformed to BPEL4Chor choreography models and

interacting services are transformed either to BPEL or VxBPEL depending on

whether configuration interfaces exist or not.

2. The choreographies are transformed to VxBPEL variable orchestrations and

interacting services are transformed either to BPEL or VxBPEL depending on

whether configuration interfaces exist or not.

198

5.2.1 Transformation to BPEL4Chor

Each XChor choreography specification and its interacting services are transformed

to BPEL4 Chor models; a topology, a grounding and a set of abstract process defini-

tions due to lack of support for multi choreography concept in BPEL4Chor. Besides,

XChor supports multi functionality in choreography specification, so there should be

one BPEL4Chor topology for each defined function in the choreography specifica-

tion. Topology model, comprising participants and message links, is constructed from

choreography specification. Grounding model and wsdl definitions are formed with

the help of interacting service interfaces. Participant Behavior Description model is

created from the abstract process definition part of each interacting services. How-

ever, XChor does not force to define all send activities corresponding to receive ones.

Therefore, all related corresponding send and receive activities are created during

transformation. If any interacting service has unbound variability, then the service is

transformed to VxBPEL specification which is described in Section 5.2.3. Transfor-

mation rules are listed in Table 5.2 and Table 5.4 for the Topology model, Table 5.5

for the Grounding model, and Table 5.7 for the Abstract Business Process Definition

model. Table 5.7 displays the case if a service starts with its interaction with a receive

interaction, then createInstance = "yes" is added within receive tag.

In Topology, message links describe the connection between two services along with

their activities; send and receive. The technical part, the binding of activities to real

wsdl functions is done in Grounding. Therefore, there is always a corresponding

entry in grounding related with a message link.

5.2.2 Transformation from BPEL4Chor

BPEL4Chor models defining a choreography; namely topology, grounding and par-

ticipant behavior description model are transformed to XChor models; choreogra-

phy specification, service interfaces, configuration interfaces of services respectively.

As BPEL4Chor models define only one choreography through topology model, only

one choreography specification in XChor is created. The topology model specifies

only message links between service, so the control flow semantics are scattered over

199

Table
5.2:R

ules
forTransform

ation
to

B
PE

L
4C

hor

X
C

hor
C

horeography
M

odel
B

P
E

L4C
hor

Topology
M

odel

C
horeography

nam
e

Topology
nam

e

choreography
<chornam

e>
<topology

nam
e=”<chornam

e_functionnam
e>”

...
targetN

am
espace="http://exam

ple.com
/configuredchoreography/"<chornam

e>"

F
unction

<functionnam
e>:

xm
lns="urn:H

PI_IA
A

S:choreography:schem
as:choreography:topology:2006/12"

...
xm

lns:chordef="http://exam
ple.com

/configuredchoreography/"<chornam
e>"

xm
lns:xsi="http://w

w
w

.w
3.org/2001/X

M
L

Schem
a-instance"

xsi:schem
aL

ocation="urn:H
PI_IA

A
S:choreography:schem

as:choreography:

topology:2006/12
http://w

w
w

.iaas.uni-stuttgart.de/schem
as/bpel4chor/topology.xsd">

...</topology>

200

Ta
bl

e
5.

3:
R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
to

B
PE

L
4C

ho
r-

co
nt

’d

In
te

ra
ct

in
g

se
rv

ic
es

an
d

ch
or

eo
gr

a-

ph
ie

s

Pa
rt

ic
ip

an
ts

<p
ar

tic
ip

an
ts

>

us
e

ch
or

eo
gr

ap
hy

<c
ho

rn
am

e1
>

<p
ar

tic
ip

an
tn

am
e=

"<
ch

or
na

m
e1

"
ty

pe
="

<c
ho

rn
am

e1
>_

ty
pe

"/
>

im
po

rt
se

rv
ic

e
<s

er
vi

ce
1>

<p
ar

tic
ip

an
tn

am
e=

"<
se

rv
ic

e1
>"

ty
pe

="
<s

er
vi

ce
1>

_t
yp

e"
/>

</
pa

rt
ic

ip
an

ts
>

Ty
pe

so
fi

nt
er

ac
tin

g
se

rv
ic

es
an

d
ch

or
e-

og
ra

ph
ie

s

pa
rt

ic
ip

an
tT

yp
es

<p
ar

tic
ip

an
tT

yp
es

>

<p
ar

tic
ip

an
tT

yp
e

na
m

e=
"<

ch
or

na
m

e1
>_

ty
pe

"
pa

rt
ic

ip
an

tB
eh

av
io

rD
e-

sc
ri

pt
io

n=
"<

ch
or

na
m

e1
>:

<
ch

or
na

m
e1

>"
/>

<p
ar

tic
ip

an
tT

yp
e

na
m

e=
"<

se
rv

ic
e1

>_
ty

pe
"

pa
rt

ic
ip

an
tB

eh
av

io
rD

es
cr

ip
-

tio
n=

"<
se

rv
ic

e1
>:

<s
er

vi
ce

1>
"/

>

</
pa

rt
ic

ip
an

tT
yp

es
>

201

Table
5.4:R

ules
forTransform

ation
to

B
PE

L
4C

hor-cont’d

X
C

hor
C

horeography
M

odel
B

P
E

L4C
hor

Topology
M

odel

C
horeography

specification
ParticipantTypes

Partnertype
definitions

form
ultiple

send
<participantType

nam
e="<

function>_<sender>_type"
participantB

ehav-

iorD
escription="<

function>_<sender>:<
function>_<sender>"/>

PartnerSetdefinition
<participantSet

nam
e="<

function>_<sender>"
type="<

func-

tion>_<sender>_type">

<participant
nam

e="<service2>"
scope="<service2>:<function>_FE

"
/>

for

each
receiverservice2,service3,...servicen

</participantSet>

Partner
type

definitions
for

m
ultiple

re-

ceive

<participantType
nam

e="<
function>_<sender>_type"

participantB
ehav-

iorD
escription="<

function>_<sender>:<
function>_<sender>"/>

Partner
type

definitions
for

m
ultiple

re-

ceive

<participantType
nam

e="<
function>_<receiver>_type"

participantB
ehav-

iorD
escription="<

function>_<receiver>:<
function>_<receiver>"/>

202

Ta
bl

e
5.

5:
R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
to

B
PE

L
4C

ho
r-

co
nt

’d

X
C

ho
r

C
ho

re
og

ra
ph

y
M

od
el

B
P

E
L4

C
ho

r
To

po
lo

gy
M

od
el

In
te

ra
ct

in
g

se
rv

ic
es

an
d

ch
or

eo
gr

ap
hi

es
M

es
sa

ge
L

in
ks

<s
er

vi
ce

1>
se

nd
{<

se
rv
ic
e2

>
}

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)
<m

es
sa

ge
L

in
k

na
m

e=
"<

fu
nc

tio
n>

L
in

k"

se
nd

er
="

<s
er

vi
ce

1>
"

se
nd

A
ct

iv
ity

="
ge

t<
fu

nc
tio

n>
"

re
ce

iv
er

="
<s

er
vi

ce
2>

"
re

ce
iv

eA
ct

iv
ity

="
<f

un
ct

io
n>

"

m
es

sa
ge

N
am

e=
"<

fu
nc

tio
n>

"/
>

<s
er

vi
ce

1>
re

ce
iv

e
fr

om
{<

se
rv
ic
e2

>
}

<m
es

sa
ge

L
in

k
na

m
e=

"<
fu

nc
tio

n>
L

in
k"

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)
se

nd
er

="
<s

er
vi

ce
1>

"
se

nd
A

ct
iv

ity
="

ge
t<

fu
nc

tio
n>

"

203

Table
5.6:R

ules
forTransform

ation
to

B
PE

L
4C

hor-cont’d

X
C

hor
C

horeography
M

odel
B

P
E

L4C
hor

G
rounding

M
odel

Forevery
m

essagelink
created

in
topology

<m
essageL

ink
nam

e="<receiverfunction>L
ink"

porttype
=

"ns:receiver_pt"

a
corresponding

groundign
specification

operation
=

<receiverfunction/>

<service1>
send

{
<

serv
ice2

>
}

PB
D

ofservice1

m
essage

<function>(<param
eters>)

<"invoke"
w

su:id="<function>"/>

<service1>
send

PB
D

ofservice1

send
{
<

serv
ice2

>
,<

serv
ice3

>
,..

<
serv

icen
>
}

<
forE

ach
w

su:id="<function>FE
"

paralel=
"yes">

m
essage

<function>(<param
eters>)

<scope
w

su:id="<function>Scope">

<sequence>

<invoke
w

su:id="<function>">

</sequence>

</scope>

<forE
ach>

204

Ta
bl

e
5.

7:
R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
to

B
PE

L
4C

ho
r-

co
nt

’d

X
C

ho
r

C
ho

re
og

ra
ph

y
M

od
el

B
P

E
L4

C
ho

r
Pa

rt
ic

ip
an

tB
eh

av
io

r
D

es
cr

ip
tio

n
(P

B
D

)

<s
er

vi
ce

1>
re

ce
iv

e
fr

om
{<

se
rv
ic
e2

>
}

PB
D

of
se

rv
ic

e2

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)
<r

ec
ei

ve
w

su
:id

="
<f

un
ct

io
n>

"
cr

ea
te

In
st

an
ce

=
"y

es
"/

>
or

<r
ec

ei
ve

w
su

:id
="

<f
un

ct
io

n>
"

/>

PB
D

of
se

rv
ic

e1

<s
er

vi
ce

1>
re

ce
iv

e
fr

om
<

fo
rE

ac
h

w
su

:id
="

<f
un

ct
io

n>
FE

"
pa

ra
le

l=
"y

es
">

{<
se
rv
ic
e2

>
,<

se
rv
ic
e3

>
,.
.
<

se
rv
ic
en

>
}

<s
co

pe
w

su
:id

="
<f

un
ct

io
n>

Sc
op

e"
>

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)
<s

eq
ue

nc
e>

<r
ec

ei
ve

w
su

:id
="

<f
un

ct
io

n>
"

cr
ea

te
In

st
an

ce
=

"y
es

"/
>

</
se

qu
en

ce
>

</
sc

op
e>

<f
or

E
ac

h>

205

Table
5.8:R

ules
forTransform

ation
to

B
PE

L
4C

hor-cont’d

X
C

hor
C

horeography
M

odel
B

P
E

L4C
hor

ParticipantB
ehavior

D
escription

(P
B

D
)

repeatexpr(P1
P2)

<w
hile>

<condition
opaque

=
"yes">

B
PE

L
4C

hor-equivalentP1

B
PE

L
4C

hor-equivalentP2

</w
hile>

sequence
(P1

P2)
<sequence>

B
PE

L
4C

hor-equivalentP1

B
PE

L
4C

hor-equivalentP2

</sequence>

paralelexpr(P1
P2)

<flow
>

B
PE

L
4C

hor-equivalentP1

B
PE

L
4C

hor-equivalentP2

</flow
>

guard(expr)P1
<if>

<condition
opaque

=
"yes">

B
PE

L
4C

hor-equivalentP1

</if>

206

participant behavior descriptions. The sequence of the participantSet specifications

and scoping mechanism are used to reveal which participant behavior descriptions

are interacting with each other. Type definitions and partnerSet specifications are

not covered by XChor, so these are not transformed. While service interactions are

formed by message links in topology model, concrete service functions are taken

from grounding model and control flow semantics come from participant behavior

description in order to create choreography specification. However, still developer

intervention is needed to preserve control flow semantics, because although message

links are provided in topology, the control flow of the global interaction is missing.

Service interfaces are constructed based on the grounding model. For each participant

behavior description model, one configuration interface without variability specifica-

tion is constructed. Abstract process definition part of service configuration interface

is filled with participant behavior description model content. Transformation rules are

listed in Table 5.9 for Choreography Specification, Table 5.10 for the Configuration

Interface, and Table 5.13 for the the Service Interfaces.

As XChor enables to define more than one function for a choreography, a <func-

tionname> should be provided by developer describing the whole service interaction

in BPEL4Chor. MessageLinks in Topology model cannot specify service composi-

tion on its own, Participant Behavior Descriptions are used for revealing control flow

semantics. The process of forming choreography specification is as follows:

1. Follow the messageLink specification sequence in Topology model.

2. Start from the first messageLink specification within messageLinks.

3. Process Participant Behavior Descriptions of sender and receiver and find sendAc-

tivity and receiveActivity in BPEL specification.

4. If there is a structured activity above this service interaction, then use this struc-

tured activity in choreography specification as is.

5. Check the consistency of structured activity including these activities in Partic-

ipant Behavior Descriptions of sender and receiver. If they are not consistent

with each other, add this new structured activity of callee service to the chore-

ography specification.

207

Table
5.9:R

ules
forTransform

ation
from

B
PE

L
4C

hor

B
P

E
L4C

hor
Topology

M
odel

X
C

hor
C

horeography
M

odel

C
horeography

nam
e

Topology
nam

e

<topology
nam

e=”<chornam
e>”

choreography
<chornam

e>

targetN
am

espace=
"http://exam

ple.com
/

...

configuredchoreography/"<chornam
e>"

...

</topology>
...

Participants
Interacting

servicesand
choreographies

<participants>

<participant
nam

e="<service1>"

type="<servicetype>_type"/>

im
portservice

<service1>

</participants>

participantTypes

<participantTypes>

<participantType
nam

e="<servicetype>"
participant-

B
ehaviorD

escription="<service1>:<service1>"/>

</participantTypes>

C
horeography

Function

Function
<functionnam

e>:

w
here

<functionnam
e>

is
provided

by
developer

208

6. Process the next messageLink and go to step 3.

5.2.3 Transformation to VxBPEL and BPEL

There are two cases; transforming from XChor choreography and transforming from

abstract process definition for any XChor service. In the XChor choreography trans-

formation case, for each function of the choreography specification there is one equiv-

alent VxBPEL variable orchestration with its interface represented in WSDL. In ab-

stract process definition of service case, only one VxBPEL variable orchestration

is created as an abstract process in BPEL with variability attachments. Interac-

tions in functions of choreography and abstract business processes are transformed

to VxBPEL or BPEL-equivalent ones with the help of transformation rules listed in

Table 5.14, Table 5.16 and Table 5.17. If any unbound variability exist in ser-

vice’s configuration file, then abstract process definition is converted to VxBPEL-

equivalent, otherwise to BPEL-equivalent. Variation point specifications in XChor

configuration interfaces and variability attachments indicating variable parts of chore-

ography specification are transformed to VxBPEL ones as displayed in Table 5.18

and Table 5.20.

VxBPEL configures service composition based on specified configurable variation

points which are realized by variation points defined within an orchestration. Con-

figuration variation points in configuration interfaces are directly converted to Con-

figurable variation points, however the relation between variants can not be spec-

ified, such as mandatory, optional or alternative. In XChor the variable parts are

labeled with variability attachments which can include more than one variation point

and related variant selection. For instance "#vp i_auth_type ifOneSelected(finger-

print fingervein iris face)" and "i_auth_mode ifSelected (mode_online)#". However

in VxbPEL inline variability enables to define simple variation point and variant spec-

ifications such as one variation point along with multiple variants. We can not easily

settle complex variability logic like in "#vp i_auth_type ifOneSelected(fingerprint

fingervein iris face) and i_auth_mode ifSelected(mode_online)#". The complex logic

can be converted to VxBPEL one, but the VxBPEL code gets complicated. There-

fore, variability attachment transformation is changed with regard to its complexity.

209

Table
5.10:R

ules
forTransform

ation
from

B
PE

L
4C

hor-cont’d

B
P

E
L4C

hor
ParticipantB

ehavior
D

escription
(P

B
D

)
X

C
hor

C
onfiguration

Interface

Foreach
PB

D

<process
...

C
onfiguration

interface
vconf_<servicenam

e>
of

service

<servicenam
e>

nam
e=<servicenam

e>
...>

PB
D

ofservice1
<service1>

receive
from

<service2>

<receive
w

su:id="<function>"
m

essage
<function>(<param

eters>)

<param
eters>

inform
ation

com
es

from
W

SD
L

interfaces

and
<service2>

inform
ation

com
es

from
m

essageL
inks

PB
D

ofservice1
<service1>

send
<service2>

<reply
w

su:id="<function>"
m

essage
<function>(<param

eters>)

<param
eters>

inform
ation

com
es

from
W

SD
L

interfaces

and
<service2>

inform
ation

com
es

from
m

essageL
inks

210

Ta
bl

e
5.

11
:R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
fr

om
B

PE
L

4C
ho

r-
co

nt
’d

B
P

E
L4

C
ho

r
Pa

rt
ic

ip
an

tB
eh

av
io

r
D

es
cr

ip
tio

n
(P

B
D

)
X

C
ho

r
C

on
fig

ur
at

io
n

In
te

rf
ac

e

PB
D

of
se

rv
ic

e1

<
fo

rE
ac

h
w

su
:id

="
<i

d>
"

pa
ra

le
l=

"y
es

">
<s

er
vi

ce
1>

re
ce

iv
e

fr
om

<s
co

pe
w

su
:id

="
<s

co
pe

id
>"

>
{<

se
rv
ic
e2

>
,<

se
rv
ic
e3

>
,.
..
}

<s
eq

ue
nc

e>
m

es
sa

ge
<f

un
ct

io
n>

(<
pa

ra
m

et
er

s>
)

<r
ec

ei
ve

w
su

:id
="

<f
un

ct
io

n>
"

w
he

re
<s

er
vi

ce
2>

,<
se

rv
ic

e3
>,

...

cr
ea

te
In

st
an

ce
=

"y
es

"/
in

fo
rm

at
io

n
co

m
es

fr
om

pa
rt

ic
ip

an
tS

et
sp

ec
ifi

ca
tio

n>

</
se

qu
en

ce
>

re
la

te
d

w
ith

<s
co

pe
id

>

</
sc

op
e>

an
d

<p
ar

am
et

er
s>

in
fo

rm
at

io
n

<f
or

E
ac

h>
co

m
es

fr
om

W
SD

L
in

te
rf

ac
es

<w
hi

le
>

re
pe

at
ex

pr
(P

1
P2

)

<c
on

di
tio

n
op

aq
ue

=
"y

es
">

X
C

ho
r-

eq
ui

va
le

nt
P1

X
C

ho
r-

eq
ui

va
le

nt
P2

</
w

hi
le

>

211

Table
5.12:R

ules
forTransform

ation
from

B
PE

L
4C

hor-cont’d

B
P

E
L4C

hor
ParticipantB

ehavior
D

escription
(P

B
D

)
X

C
hor

C
onfiguration

Interface

<sequence>
sequence

(P1
P2)

X
C

hor-equivalentP1

X
C

hor-equivalentP2

</sequence>

<flow
>

paralelexpr(P1
P2)

X
C

hor-equivalentP1

X
C

hor-equivalentP2

</flow
>

if
guard(<exp>)P1

<condition
opaque

=
"yes">

w
here

<exp>
is

provided

B
PE

L
4C

hor-equivalentP1
by

developer

</if>

212

Ta
bl

e
5.

13
:R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
fr

om
B

PE
L

4C
ho

r-
co

nt
.

W
SD

L
Fi

le
s

X
C

ho
r

Se
rv

ic
e

In
te

rf
ac

e
M

od
el

<d
efi

ni
tio

ns
na

m
e=

"<
se

rv
ic

e1
>"

Se
rv

ic
e

in
te

rf
ac

e
<s

er
vi

ce
1>

Fo
re

ac
h

m
es

sa
ge

<m
es

sa
ge

na
m

e=
"<

fu
nc

tio
nn

am
e>

">
fu

nc
tio

n
<f

un
ct

io
nn

am
e>

<p
ar

tn
am

e=
"<

pa
ra

m
na

m
e1

>"
/>

in
pu

t
(<

pa
ra

m
-

na
m

e1
>,

<p
ar

am
na

m
e2

>,
...

)

<p
ar

tn
am

e=
"<

pa
ra

m
na

m
e2

>

</
m

es
sa

ge
>

...
...

<s
er

vi
ce

na
m

e=
"<

se
rv

ic
en

am
e>

">
po

rt
N

am
e

<s
er

vi
ce

na
m

e>
bi

nd
in

g
<b

in
d-

in
gl

oc
at

io
n>

<p
or

tb
in

di
ng

="
tn

s:
fu

nc
tio

na
na

m
e_

B
in

di
ng

"
na

m
e=

"<
se

rv
ic

e1
>"

>

<s
oa

p:
ad

dr
es

s
lo

ca
tio

n=
"<

bi
nd

in
gl

oc
at

io
n>

">

</
po

rt
>

213

Table
5.14:R

ules
forTransform

ation
to

V
xB

PE
L

and
B

PE
L

X
C

hor
C

horeography
M

odel
B

P
E

L
M

odel

C
horeography

specification
...

<service1>
send

{
<

serv
ice2

>
}

<bpel:invoke
aei:id="<id>"

nam
e="<service2>"

m
essage

<function>(<param
eters>)

operation="<function>"
partnerlink="<function>"

inputV
ariable="<param

eters>"/>

<service1>
<bpel:flow

>

send
{
<

serv
ice2

>
,<

serv
ice3

>
,..

<
serv

icen
>
}

<bpel:invoke
aei:id="<id>"

nam
e="<service2>"

m
essage

<function>(<param
eters>)

operation="<function>"
partner-

link="<function>"

inputV
ariable="<param

eters>"/>

<bpel:invoke
aei:id="<id>"

nam
e="<service3>"

...

<bpel:invoke
aei:id="<id>"

nam
e="<servicen>"

...

</bpel:flow
>

<service1>
send

<service2>
<bpel:invoke

aei:id="<id>"
nam

e="<service2>"

m
essage

<function>(<param
eters>)

operation="<function>"
partnerlink="<function>"

%
<contextelem

ent>
=

<service2>.<function>%
outputV

ariable="<contextelem
ent>"

inputV
ariable="<param

eters>">

214

Ta
bl

e
5.

15
:R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
to

V
xB

PE
L

an
d

B
PE

L

X
C

ho
r

C
ho

re
og

ra
ph

y
M

od
el

B
P

E
L

M
od

el

<s
er

vi
ce

1>
re

ce
iv

e
fr

om
{<

se
rv
ic
e2

>
}

<b
pe

l:r
ec

ei
ve

ae
i:i

d=
"<

id
>"

na
m

e=
"<

se
rv

ic
e1

>"

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)
op

er
at

io
n=

"<
fu

nc
tio

n>
"

pa
rt

ne
rl

in
k=

"<
fu

nc
tio

n>
"

va
ri

ab
le

="
<p

ar
am

et
er

s>
"/

>

<s
er

vi
ce

1>
<b

pe
l:fl

ow
>

re
ce

iv
e

fr
om
{<

se
rv
ic
e2

>
,<

se
rv
ic
e3

>
,.
.
<

se
rv
ic
en

>
}

<b
pe

l:r
ec

ei
ve

ae
i:i

d=
"<

id
>"

na
m

e=
"<

se
rv

ic
e1

>"

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)
op

er
at

io
n=

"<
fu

nc
tio

n>
"

pa
rt

ne
r-

lin
k=

"<
fu

nc
tio

n>
"

va
ri

ab
le

="
<p

ar
am

et
er

s>
"/

>

<b
pe

l:r
ec

ei
ve

ae
i:i

d=
"<

id
>"

na
m

e=
"<

se
rv

ic
e1

>"

...

<b
pe

l:r
ec

ei
ve

ae
i:i

d=
"<

id
>"

na
m

e=
"<

se
rv

ic
e1

>"

...

</
bp

el
:fl

ow
>

<s
er

vi
ce

1>
se

nd
{<

se
rv
ic
e2

>
}

<b
pe

l:i
nv

ok
e

ae
i:i

d=
"<

id
>"

na
m

e=
"<

se
rv

ic
e2

>"

m
es

sa
ge

<f
un

ct
io

n>
(<

pa
ra

m
et

er
s>

)w
ith

N
ot

ifi
ca

tio
n

op
er

at
io

n=
"<

fu
nc

tio
n>

"
pa

rt
ne

rl
in

k=
"<

fu
nc

tio
n>

"

in
pu

tV
ar

ia
bl

e=
"<

pa
ra

m
et

er
s>

"

ou
tp

ut
V

ar
ia

bl
e=

"<
no

tifi
ca

tio
n>

"/
>

215

Table
5.16:R

ules
forTransform

ation
to

V
xB

PE
L

and
B

PE
L

-cont’d

X
C

hor
C

horeography
M

odel
B

P
E

L
M

odel

<service1>
<bpel:invoke

aei:id="<id>"
nam

e="<service2>"

send
{
<

serv
ice2

>
}

m
essage

<function>(<param
eters>)

operation="<function>"
partnerlink="<function>"

referedD
estinations{

<
serv

ice3
>
,..

<
serv

icen
>
}

inputV
ariable="<param

eters>"/>

<bpel:flow
>

<bpel:invoke
aei:id="<id>"

nam
e="<service3>"

...

<bpel:invoke
aei:id="<id>"

nam
e="<servicen>"

...

</bpel:flow
>

<service1>
<bpel:sequence>

send
{
<

serv
ice2

>
,<

serv
ice3

>
,..

<
serv

icen
>
}

<bpel:invoke
aei:id="<id>"

nam
e="<service2>"

m
essage

<function>(<param
eters>)

operation="<function>"
partner-

link="<function>"

in-sequence
inputV

ariable="<param
eters>"/>

<bpel:invoke
aei:id="<id>"

nam
e="<service3>"

...

<bpel:invoke
aei:id="<id>"

nam
e="<servicen>"

...

</bpel:sequence>

216

Ta
bl

e
5.

17
:R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
to

V
xB

PE
L

an
d

B
PE

L
-c

on
t’d

X
C

ho
r

C
ho

re
og

ra
ph

y
M

od
el

B
P

E
L

M
od

el

pa
ra

lle
l(

<b
pe

l:fl
ow

ae
i:i

d=
"<

id
>"

>

A
to

m
ic

or
C

om
po

si
te

In
te

ra
ct

io
n

B
PE

L
-e

qu
iv

al
en

tI
nt

er
ac

tio
n-

co
de

)
</

bp
el

:fl
ow

>

se
qu

en
ce

(
<b

pe
l:s

eq
ue

nc
e

ae
i:i

d=
"<

id
>"

>

A
to

m
ic

or
C

om
po

si
te

In
te

ra
ct

io
n

B
PE

L
-e

qu
iv

al
en

tI
nt

er
ac

tio
n-

co
de

)
</

bp
el

:s
eq

ue
nc

e
>

re
pe

at
<e

xp
r>

(
<b

pe
l:w

hi
le

ae
i:i

d=
"<

id
>"

>

A
to

m
ic

or
C

om
po

si
te

In
te

ra
ct

io
n

<b
pe

l:c
on

di
tio

n>
"<

B
PE

L
-e

qu
iv

al
en

t

ex
pr

>"
</

bp
el

:c
on

di
tio

n>

)
B

PE
L

-e
qu

iv
al

en
tI

nt
er

ac
tio

n-
co

de

</
bp

el
:w

hi
le

>

gu
ar

d
<e

xp
r>

<b
pe

l:i
fa

ei
:id

="
<i

d>
">

A
to

m
ic

or
C

om
po

si
te

In
te

ra
ct

io
n

<b
pe

l:c
on

di
tio

n>
"<

B
PE

L
-e

qu
iv

al
en

t

ex
pr

>"
</

bp
el

:c
on

di
tio

n>

B
PE

L
-e

qu
iv

al
en

tI
nt

er
ac

tio
n-

co
de

</
bp

el
:if

>

217

Table
5.18:R

ules
forTransform

ation
to

V
xB

PE
L

and
B

PE
L

-cont’d

X
C

hor
C

horeography
M

odel
V

xB
P

E
L

M
odel

<Sim
ple

V
ariability

A
ttachm

ent>

(i)#vp
<V

P1>
<vxbpel:V

ariationPointnam
e

=
V

P1>

ifSelected(<V
1>)

<vxbpel:V
ariants>

...#
A

tom
ic

orC
om

posite
Interaction

<vxbpel:V
ariantnam

e
=

V
1>

(ii)#vp
<V

P1>
<vxbpel:V

PB
pelC

ode>

ifO
neSelected(<V

1>)
B

PE
L

-equivalent

...#
A

tom
ic

orC
om

posite
Interaction

interaction-code

(iii)#vp
<V

P1>
</vxbpel:V

PB
pelC

ode>

ifA
llSelected(<V

1>)
</vxbpel:V

ariant>

...#
A

tom
ic

orC
om

posite
Interaction

</vxbpel:V
ariants>

</vxbpel:V
ariationPoint>

218

Ta
bl

e
5.

19
:R

ul
es

fo
rT

ra
ns

fo
rm

at
io

n
to

V
xB

PE
L

an
d

B
PE

L
-c

on
t’d

X
C

ho
r

C
ho

re
og

ra
ph

y
M

od
el

V
xB

P
E

L
M

od
el

<v
xb

pe
l:V

ar
ia

tio
nP

oi
nt

na
m

e
=

V
PC

ou
nt

er
>

<v
xb

pe
l:V

ar
ia

nt
s>

<v
xb

pe
l:V

ar
ia

nt
na

m
e

=
V

C
ou

nt
er

>

#v
p

<v
xb

pe
l:V

PB
pe

lC
od

e>

<C
om

pl
ex

V
ar

ia
bi

lit
y

A
tta

ch
m

en
ts

>
B

PE
L

-e
qu

iv
al

en
t

...
#

A
to

m
ic

or
C

om
po

si
te

In
te

ra
ct

io
n

in
te

ra
ct

io
n-

co
de

</
vx

bp
el

:V
PB

pe
lC

od
e>

</
vx

bp
el

:V
ar

ia
nt

>

</
vx

bp
el

:V
ar

ia
nt

s>

</
vx

bp
el

:V
ar

ia
tio

nP
oi

nt
>

219

Table
5.20:R

ules
forTransform

ation
to

V
xB

PE
L

and
B

PE
L

-cont’d

X
C

hor
C

horeography
M

odel
V

xB
P

E
L

M
odel

<vxbpel:C
onfigurableV

ariationPoint
id

=
"<id>"

default-

V
ariant=

"<defaultV
ariant>">

<vxbpel:N
am

e>"<explanation>"</vxbpel:N
am

e>

<vxbpel:R
ationale>...</vxbpel:R

ationale>

<vxbpel:V
ariants>

<vxbpel:V
ariantnam

e
=

"<nam
e>">

<vxbpel:V
ariantInfo>...</vxbpel:V

ariantInfo>

<vxbpel:R
equiredC

onfiguration>

<vxbpel:V
PC

hoices>

<vxbpel:V
PC

hoice

vpnam
e

=
"<vpnam

e>"

variant=
"<variant>"/>

...

</vxbpel:V
PC

hoices>

</vxbpel:R
equiredC

onfiguration>

</vxbpel:V
ariant>

</vxbpel:V
ariants>

</vxbpel:C
onfigurableV

ariationPoint>

220

For simple cases the variability is converted to VxBPEL equivalent one, for complex

cases a new variation point is created automatically and the logic of the complex vari-

ability attachment is stored in a newly created configuration file. For instance if there

is a variation attachment residing in choreography specification, then vp_1 and v_1

are created and an assignment is added to the configuration file.

For configuration of VxBPEL variable orchestrations, an additional configuration

mechnasim needed to analyze both VxBPEL variability specification in configurable

variation points and assignments in configuration file. Contents of the file is as fol-

lows:

vp_1.v_1 = #vp i_auth_type ifOneSelected(fingerprint fingervein iris face) #

Transformation to BPEL4Chor, VxBPEL and BPEL are applied to travel itinerary

system case study and related models and the following files are generated and can

be found in Appendix E:

• Generated BPEL4Chor files: topology and grounding for travelitinerary chore-

ography and participant behavior description for travel agency,

• Generated VxBPEL file for travelitinerary choreography and its BPEL model

after selection of "airline" variant of "booking" and "activities" variant of "fa-

cilities" variation point.

221

222

CHAPTER 6

VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT

LINES WITH XCHOR

This chapter represents the usage of XChor models in order to provide a solution to

achieve management of variability in Software Product Lines. Software product lines

(SPL) is a set of methods, tools and techniques for developing similar software sys-

tems from a common set of software assets via systematic reuse of commonalities

and management of variability. The coarse building blocks of the system, software

assets define composition rules between a collection of artifacts to achieve a com-

mon goal plus a set of variability. The key issue for effective creation of products

is reusing SPL architecture, both in asset and artifact levels by extending and con-

figuring through variation points. In the asset level, specification of variability, its

effects on composition, its relation with other asset and artifact variability need to be

addressed. In artifact level, variation should be exposed to be configured by assets.

Due to the complex nature of variability, providing a consistent configuration of as-

sets and artifacts is a challenging issue. To address this challenge, XChor is applied to

Software Product Lines approach as a way to cope with variation specifications and

integration of these in both asset and artifact levels.

6.1 Software Product Lines

A software product line is a set of software intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

223

way[52]. An increasing number of organizations are building their products within

product line settings in order to achieve large scale productivity gains, improve time

to market, maintain a market presence, compensate for an inability to hire, leverage

existing resources, and achieve mass customization.

In January 1997, the Carnegie Mellon Software Engineering Institute (SEI) launched

the Product Line Practice Initiative to help facilitate and accelerate the transition to

sound software engineering practices using a product line approach. The goal of

this initiative is to provide organizations with an integrated business and technical

approach to systematic reuse, so they can produce and maintain similar systems of

predictable quality more efficiently and at a lower cost.

A key strategy for achieving this goal has been the creation of a conceptual framework

for product line practice. The SEI Framework for Software Product Line Practice

describes the foundational product line concepts and identifies the essential activities

and practices that an organization must master before it can expect to successfully

field a product line of software or software intensive systems. The framework is a

living document that is evolving as experience with product line practice grows.

The framework’s contents are based on information gathering workshops, extensive

work with collaboration partners, surveys and investigations, and continued research.

The SEI has also incorporated practices reported at its international Software Product

Line Conferences and collected from the community.

In March 1998, the SEI hosted its first Department of Defense (DoD) product line

practice workshop, "Product Lines: Bridging the Gap—Commercial Success to DoD

Practice". Topics discussed and documented included DoD barriers and mitigation

strategies, and similarities and differences between DoD product line practice and

commercial product line practices. Subsequent workshops were held in successive

years[75].

Software product lines capitalize on the commonalities and bounded variabilities

among similar products, can address problems such as [54] dissatisfaction with cur-

rent project/product performance need to reduce cost and schedule complexity of

managing and maintaining too many product variants, and need to quickly respond

224

to customer and marketplace demands. A key component enabling the effective res-

olution of these problems is the use of a product line architecture that allows an orga-

nization to identify and reuse software artifacts for the efficient creation of products

sharing some commonality, but varying in known and managed ways.

Software product families have achieved a broad recognition in the software industry.

Many organizations either have adopted or are considering adopting the technology.

The key artifacts in software product families are the development, evolution and

use of a product family architecture and a set of shared components. Being able to

develop a software artifact once and use it in several products or systems is, obviously,

one of the main benefits to be achieved.[41]

The software product line strategy for producing software intensive products has pro-

duced very promising results for early adopters of the approach. Hewlett-Packard,

for example, experienced a twenty fivefold decrease in defects using a product line

approach. Cummins, Inc., the world’s largest manufacturer of large diesel engines,

reduced the effort needed to produce the software for a new engine from 250 person

months to three person-months or less.

The product line strategy is widely used in hard goods manufacturing but has only re-

cently been a major influence on software product development processes. A product

line approach seeks to achieve gains in productivity and time to market by designing

a set of products to have many parts in common. So this is, in a sense, yet another

software reuse scheme, but it is one that has proven effective in actual industrial ex-

perience. The product line approach also seeks to identify and manage the variations

among the products.

The success of the software product line strategy is due, at least partially, to its com-

prehensive nature. The software product line strategy defines specific tasks for the or-

ganizational management, technical management, and software engineering aspects

of product production. However, its comprehensive nature also means that the ef-

fort to initiate a software product line can be more than that required to adopt a new

programming language or change the design method being used.

The comprehensive nature of the product line strategy makes it an umbrella under

225

Figure 6.1: The Roles and Interactions[52].

which a range of techniques and methods can be assembled. Agile development

methods, model driven architectures, and generative programming can all be part of

a successful product line organization.

The product line definition identifies the main roles in a product line organization.

Core asset developers provide a range of assets, such as architectures, specifications,

and implementations, to product developers for their use in producing products. Prod-

uct line managers coordinate and facilitate the work of these two groups as illustrated

in Figure 6.1. Executives in the organization set strategic goals such as producing

more products more quickly and allocate responsibility for achieving those goals.

The organization adopting the product line approach develops a business case that

defines objectives, such as increasing productivity, for the product line. The orga-

nization identifies the set of products to be included in the product line using scop-

ing techniques that determine the areas of commonality among the products and the

points at which the products vary from one another. The products to be produced in

the product line are selected so that the objectives of the product line are achieved. If

the goal is improved productivity, products might be chosen so that variations among

the products are minimized and reuse of components is maximized.

Using the information from the scoping activity and considering the objectives de-

fined in the business case, the organization develops a product line architecture. This

architecture incorporates sufficient variation to encompass all of the products in the

product line. The architecture serves as the basic guide for specifying and acquiring

the other resources that will be used to create the products.

The core asset developers provide the resources needed to produce the selected prod-

226

ucts. This includes the architecture, the system components that populate the ar-

chitecture, plans such as production plans and test plans, and templates for process

definitions. At points of variation among the products, multiple assets are designed

and implemented to cover the possible product permutations.

The core assets of a product line can be more completely specified than traditional

reusable components. This is possible because they are designed to work for the

specific products in the product line. The assets can be produced for less cost than a

similar asset intended for general use in an unspecified environment.

The product developers select the appropriate assets and use these to produce the

products identified during product line scoping. Products are assembled quickly and

efficiently due to all of the planning and design done by the core asset developers.

The product developers may add product specific features that are not shared by other

products and hence are not created using core assets. Product line organizations have

used a variety of techniques ranging from standard component integration techniques

to program generators to produce products from the assets[90].

6.1.1 Variability Notion in Software Product Lines

The success of the software product line strategy is due to its comprehensive nature as

well as effective variability management[42]. Variability can be modeled in all phases

of product family development addressing traceability and automation issues ranging

from requirements to implementation. Different modeling techniques focus differ-

ent parts of development processes, for instance expressing requirement variability

in terms of features; feature modeling with commonality and variability of product

lines/families. Moreover, variability modeling and traceability supports evolution in

which several evolution categories are presented[127, 128] :

• New product line

• Introduction of new product

• Adding new feature

• Extend standards support

227

• New version of infrastructure

• Improvement of quality attribute

For effective management issues and reusability of variability models, some models

support the separation of concerns idea in which variability is separated from domain

knowledge, defined and related with domain artifacts. As stated in [129] in the context

of identifying, constraining, implementing and managing of variability, main parts

and issues are features, types of features, variability points, types of variability points,

variants, realization techniques, software entities, components and frameworks.

Variability points can be introduced in various levels of abstraction in development of

product lines; architecture description, detailed design documentation, source code,

compiled code, linked code, and running code[98]. Each variability point can be in

one of the following states at each variability level stated in [72]; implicit, designed

and bound. When a variability point is introduced to a feature model, it is denoted as

implicit. When its design is decided in the architectural design phase, it becomes de-

signed. After the variability point is finally bound to a particular variant, it is bound.

Binding, when a variability point is bound to a variant, can occur at product archi-

tecture, derivation time, compilation time, linking time, start-up time and runtime. A

variability point can be either open or closed. If new variants can be added to a vari-

ation point, then it is open. On the other hand, if there is no way to add new variants,

then it is closed.

6.2 Software Product Lines and Variability of SOA

A software product line is a set of software intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way[52]. Software product lines capitalize on the commonalities and bounded vari-

abilities among similar products. Therefore, variability management is the key issue

enabling product line architecture incorporate sufficient variation to encompass all of

the products in the product line. In the level of assets, variation points, variants and

relation with each other are defined and managed. In the level of artifacts, supported

228

variabilities are provided to be configured by assets. Asset and related artifact vari-

ability should be mapped and compatible with each other for consistency. By this

way, artifacts can provide desired behavior stated in the asset. Therefore, variability

consistency check can be done at the asset level.

One way to specify variation is expressing requirement variability in terms of fea-

tures; feature modeling with commonality and variability of product lines. Besides,

this mechanism can be used to support evolution as stated in [127, 128]. Along with

features specified in the problem domain, a variability model indicating solution do-

main variability points, constraints and dependencies between them, related variants,

variant bindings and realizations are defined. Variability points can be introduced

in various levels of abstraction in development of SPL: Architecture description, de-

tailed design documentation, source code, compiled code, linked code, and running

code. Here, we focused on architecture description level of abstraction revealing be-

havioral model where feature model, variability model and architectural views are

depicted in Figure 6.2.

6.2.1 Choreography/Orchestration Relation with Asset/Artifacts

Assets and artifacts are reusable parts shaped with the analysis of domain feature

model and reference architecture. Assets are not usually executable, but descriptive

abstractions including a collection of artifacts plus variabilities. They are used in

order to:

• Provide conceptual modularization for understandability,

• Manage variability in one place,

• Define composibility rules between artifacts, and

• Define and encapsulate context information which comes from reference archi-

tecture.

Choreography in SOA space deals with other choreographies, orchestrations and

atomic services. Likewise, asset in SPL gathers interacting artifacts together while

229

managing their variability as in this global view. The choreography model in asset

describes a collaboration/composition between a collection of artifacts in order to

achieve a common goal. Assets and their choreography definitions form the required

behavior of product observed from a global viewpoint. There is no restriction on

how artifacts are composed to achieve a common goal. Therefore, orchestration and

choreography concepts can be used to realize artifact composition. In our scope, as-

set is not a process which is strongly related with orchestration in the SOA context.

Instead, assets deal with composition in choreography point of view as depicted in

Figure 6.2.

Figure 6.2: SPL and SOA Concept Relations.

Artifacts can be seen orchestrations or atomic services, whereas assets can be real-

ized with choreography revealing service compositions. Composition context, de-

pendency on usage of other artifacts, and composition rules over artifact types are

strongly related with choreography definition of an asset. Asset Model includes:

• Artifacts and their dependencies

• Variability points and their dependencies

• Public artifacts (provided)

• External artifacts (required)

• Context

230

• Constraints

• Choreography

Choreography defines the behavioral part of the asset by specifying artifact composi-

tion. At first sight, choreography can be seen as a flow of artifacts or can be modeled

by orchestration concepts. In fact, specifications of orchestration and choreography

resemble each other but they are different in their composition approaches; first one

requires a central orchestrator, whereas the second one is a description of how par-

ticipants work together without a control mechanism. In this case, an asset includes

more than one process in it without a central mechanism, meaning choreography. In

this setting, to manage variability at the asset level, there needs to be a choreography

model and a language with variability support.

In Reusable Asset Specification (RAS)[19], assets are categorized as executable and

non-executable. For executable assets, usage part describes how to compose which

can be mapped to choreography in our case. The approach uses MDA approach

without including feature mapping. Moreover, RAS asset includes activity for artifact

composition, as a simple workflow. Moreover, RAS asset includes activity in order

to compose artifacts, however activity comprises a simple workflow.

6.2.2 Component and Service Interfaces

Within component-oriented and service-oriented approaches, at least three kinds of

interface categories supported by a component can be identified:

• Provided interfaces

• Required interfaces

• Configuration interfaces

Services provided by a component are exposed through provided interfaces. Required

interfaces instead represent services that the component expects from other compo-

nents. Components are connected through connectors that wire each compatible pair

231

of provided and required interfaces together. Configuration interface is specific to

product lines. It provides a point of access for a product developer to configure the

component instance according to product specific requirements. A component con-

figuration interface is associated with each variability point. So basically, the config-

uration interfaces make variability of the component explicit for the developer.[40] At

the architectural level we have three entities that can be made to vary: components,

their relationships and connectors as variants. In this context, component identifica-

tion and related interfaces can be mapped to assets. An asset can have a configuration

interface enabling variability management which can be seen by the developers. Here,

mainly asset variability is taken into consideration, however connector variability can

also be handled.

6.3 Managing Variability with XChor in Software Product Lines

This section elaborates how XChor models can be used in SPL in order to manage

variability after analyzing XChor and SPL concepts and depicting XChor under Soft-

ware Product Line Engineering Framework introduced in [107].

6.3.1 Relation of Software Product Line and XChor Concepts

Software Product Line (SPL) engineering comprises two interrelated processes: do-

main and application engineering in which requirements engineering, design, imple-

mentation and testing phases are applied for each. Within this context, XChor ap-

proach targets domain and application design, a part of implementation and testing

phases for service-orientation. XChor covers a part of implementation, yet choreog-

raphy specifications are not executable artifacts. In fact, services can be realized with

use of intended technologies by using provided XChor service interfaces. In domain

engineering process, to represent domain design and a part of implementation, XChor

models with their variability are provided. XChor models are verified according to

specified variability via Featured Transition Systems explained in Chapter 4. In ap-

plication engineering process, application design and a part of implementation are

revealed with the analysis and configuration of XChor models via variability binding.

232

Application testing can be achieved by Promela and SNIP model checker.

In order to cover and satisfy all phases in SPL:

• Domain requirements engineering phase should be related with XChor vari-

ability model. For instance if a feature model is provided for variability repre-

sentation, then proper mappings between feature model and variability model

should be defined.

• Domain implementation phase should include a consistently associated runtime

environment for XChor service models. A transformation should be defined

from XChor models to runtime environment data model.

XChor choreography models, including interface, configuration interface and speci-

fication, satisfy the asset model in SPL and XChor services are handled as artifacts

which can be an orchestration or an atomic service. An abstract derivation process is

depicted in Figure 6.3.

Figure 6.3: SPL and SOA Concept Relations.

In order to derive possible choreographies from domain design, XChor choreogra-

phy includes variability mechanism. Variability of choreography can be categorized

in two; (i) Variability resulting from SPL requirements, and feature model and (ii)

233

Variability resulting from inner variability structure of the architecture.

Variability resulting from SPL requirements: Functional requirements represent do-

main capabilities which can be realized by domain artifacts and assets. Vari-

ability of these functional requirements can be represented by different models,

one of which is feature modeling, a prominent one. While a feature model is re-

lated with the XChor model variability, functional requirements are associated

with a set of choreography functionalities.

Variability resulting from inner variability structure of the architecture: Abstraction

of inner variability details of variation point bindings requires high level vari-

ation point descriptions, in our case configuration variation points. For config-

uration purposes a configurable variation point specifies proper bindings to a

set of variation points which are referenced from choreography specifications.

Apart from that, choreography can establish variability associations between

services in order to form a consistent interaction.

6.3.2 XChor in Software Product Line Framework

The Software Product Line Engineering Framework introduced in [107] has two main

processes; domain and application engineering. Domain engineering process is com-

posed of five key sub-processes dealing with domain artifacts; product management,

domain requirements engineering, domain design, domain realization, and domain

testing. Application engineering comprises four sub-processes dealing with applica-

tion artifacts; namely application requirements engineering, application design, ap-

plication realization, and application testing.

XChor targets variability in space while focusing on service interactions as choreogra-

phies and services within the SOA context. Within this framework, XChor facilitates

following abilities:

• to define domain artifacts via choreography specification and interfaces of ser-

vice and choreography,

• to represent domain variability model via configuration interfaces,

234

• to reveal domain architecture via service interactions within choreography spec-

ifications,

• to form domain realization artifacts from detailed design view via all XChor

models.

6.4 Application of our approach to Axiomatic Design for Component Orienta-

tion

Within component oriented software development approaches, Axiomatic Design for

Component Orientation (ADCO)[132] is a way to design systems based on divide-

and-conquer and find and integrate techniques.

Figure 6.4: Axiomatic Design for Component Orientation (ADCO) Approach with

XChor[123].

ADCO brings together Axiomatic Design (AD) and Component Orientation (CO)

which supports service-oriented development. The approach utilizes Feature Model[76]

235

and Axiomatic Design Theory[121] to identify requirements and components that sat-

isfies requirements in mature domains including all functional requirements (FRs),

design parameters (DPs) and process variables (PVs). The alteration process of ma-

ture domains includes creation of new services or alteration of existing ones in which

service maintenance appears as a challenge. In case of variability in service compo-

sition specifying and managing variability explicitly cannot be achieved easily with

collaboration diagrams or even if a feature model is integrated with FRs.

An application of the usage of XChor within SPL is explained in [123] in which a

step by step method is proposed to enrich ADCO approach with XChor Language

to fulfill the need of developing reusable service-oriented systems. The integration

of ADCO and XChor is represented in Figure 6.4 by connecting into two phases,

respectively feature model and DP-PV mapping. Two main approaches of handling

ADCO with XChor in domain engineering are defined; fully automatic and evolving.

In fully automatic approach, all mappings have been completed beforehand in order

to reveal intended applications after feature selection without developer intervention.

In evolving approach, a step by step explanation is provided to establish a mature

domain with the help of ADCO and XChor. Mapping of feature model to XChor

variability model has preconditions: (i) Feature model should be syntactically correct,

(ii) Feature model must represent at least one product, (iii) Feature model has at least

one variability in that this variability differentiates the derivated products.

236

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter summarizes this thesis study, reveals contributions, and faced challenges

and states future work.

7.1 Summary

Several organizations develop business processes for the use within and across orga-

nization boundaries. Being agile and flexible requires easily changeable processes

where reusable service interactions play a key role. The challenge comes from reuse

in composition and coordination of interacting services. For this purpose, many ap-

proaches have been proposed to tackle complexity and change via variability manage-

ment mechanisms, middleware and reconfiguration solutions, dynamic adaptations,

and rule-based approaches. Within these approaches, by using variability manage-

ment mechanisms, reusing existing services and service architecture in an efficient

and systematic way is a difficult task.

This study proposes a metamodel and its realization XChor Language. They both are

based on reusing existing architecture via explicit variability definition and manage-

ment in SOA, systematically modeling commonalities and variations across a similar

set of service-oriented applications provided by an organization. In this direction, a

comparison framework is introduced with three main components; (i)variability mod-

eling, (ii) composition and configuration of models and (iii) tool support. Existing

variability models, orchestration and choreography languages are compared based on

this comparison framework. Based on this comparison results, shortcomings of ex-

237

isting approaches, needs and requirements of systematically managing variability in

choreography level in SOA are revealed. The challenges of designation of variability

needs within service-oriented context lie in determination of

• the types of variation points and variants,

• associations between variation points and variants,

• the parts where and how variability associations are stated,

• the effect of variation points on shared elements of choreography,

• the parts where and how choreography variability in composition is stated or

referenced from outside,

• the relationships of service and choreography capabilities with variability and

where they are specified.

This study follows choreography approach in order to integrate variable orchestration

and atomic services consistently from the global point of view. Taking into account

challenges of variability scattered throughout the architecture in order to make vari-

able service-oriented system development feasible, the metamodel of XChor com-

prises variability model, choreography model and their mapping.

Variability model of XChor enables to specify external and internal variation points

with mandatory, optional and alternative variants. Configuration Variation Points are

the structures where high level variation points can be mapped to low level variation

points in order to increase understandability and decrease complexity. Logical and

numerical constraints are defined among variation points and variants.

Choreography model of XChor facilitates to define service interactions as choreog-

raphy specifications with variability support in composition. Following separation of

concerns paradigm, variability of choreography and services is specified outside their

capability definition. In other words, all possible capabilities are specified in chore-

ography and service interfaces without variability. With the use of XChor variability

model, choreography, orchestration and atomic services can define their own inter-

face variability in their configuration interfaces where existing function and related

238

parameters can be altered. By this way, choreography can associate its own variabil-

ity bindings to that of interacting service’s either specifying a one-to-one mapping or

altering service interface functions or parameters by enabling and disabling. In this

model, type, role and participant type concepts, with which role based specifications

and multiple service behavior of the same time are specified, are not covered.

Mapping of Choreography and Variability Models creates an alteration mechanism

for service and choreography interfaces via variation points. The values and existence

of shared variables utilized in choreography specifications and system variables are

determined by variation point bindings with use of Parameter Settings part in con-

figuration interfaces of choreography. The variability referencing mechanism from

choreography specification enables to define the variable parts of service interactions.

7.2 Contributions

Main contribution lies on the ability of metamodel and XChor Language to specify

variability in interface (service and choreography), variability in composition and

variability associations. Variability constructs are treated as first class entities and

can be defined in all levels of SOA, namely choreography, orchestration, and atomic

services. This explicit variation specification and establishment of their associations

enable to develop consistent service-oriented compositions. By this way, our study

addressed consistent variability bindings and configurations scattered over interacting

orchestrations and atomic services.

Specification. The metamodel and XChor Language facilitates to define variation

points, variants, and constraints the explicitly treating them as first class en-

tities. The metamodel differentiates between external and internal variation

points, and enriches variation point concept by providing a high level con-

figuration facility, namely configuration variation point specification. By the

variation point mechanism, services and choreographies can alter their own

interfaces internally or externally. The important part of the metamodel ad-

dresses variation point associations, mappings in choreography specifications

which facilitate to interrelate variation point bindings of interacting services.

239

However, misuse of variation point associations can lead to inconsistent con-

figurations, because of intervention to the same part of the service interface

from configuration interfaces of choreography and the service interface. In any

case, inconsistencies are captured during analysis of XChor models. In chore-

ography and service level, optional and alternative variation point types are not

supported by XChor. In other words, all specified variation points are treated

as mandatory. For creation and specification of XChor models, Eclipse envi-

ronment with Xtext Domain Specific Language Framework is used. In order

to create XChor models, developers should download Eclipse Environment for

Xtext from [22], create a new project under a directory, include XChor.xtext

metamodel specification in Xtext. A developer manual is provided indicating

usage details of the metamodel and XChor Language.

Analysis. Analysis of XChor models, such as consistency checking can be done after

their specification. To this end, XChorS tool is implemented for analyzing

specified variabilities and revealing missing variations, inconsistencies where

all warnings and errors are shown to developers.

Configuration. XChor model configuration enables to bind proper variation point

bindings, to set parameters, to configure service and choreography interfaces

and to form choreography specifications with regard to variation point bindings.

XChor model configuration can be available only for development time.

Verification XChor models are transformed to Featured Transition models in order

to be formally verified. FTS enables to check system behavior regardless of

interface variability. Basic transformed models enables to be checked whether

the system has deadlocks or not. For further verification, additional assertions

can be inserted by developers to analyze and verify system behavior.

Transformation. Transformation from XChor models to BPEL4Chor, VxBPEL and

BPEL represents the applicability of XChor models in existing environments,

even if XChor models can not fully be mapped because of lack of variability

support in BPEL4Chor and difference between VxBPEL and XChor variabil-

ity models. Moreover, after transformation, generated models can be verified

with different mechanisms; BPEL4Chor language models can be verified via

240

BPEL2oWFN[87] approach and VxBPEL variable orchestrations via the ap-

proach introduced in [113].

Executability. XChor is a non-executable modeling approach, therefore there is no

executable environment developed. The models can be mapped to BPEL or-

chestrations for executability with a limited coverage. Because in case of vari-

ability, there should be a management mechanism to handle linking time, start

time and runtime variability.

As a summary, main contribution of this thesis stands for defining, modifying, and

managing variability scattered over atomic service, orchestration and choreography,

as well as configuring all XChor models in a consistent way. As a result of our

contributions, we improve development of variable service-oriented systems reducing

its complexity level while providing consistent configuration and behavior among

choreography, orchestration and atomic services with regard to variability binding.

7.3 Evaluation

The metamodel and XChor language brings a new approach of specification and man-

agement of variability in all granularity levels with a single model which provides a

consistent collaboration among namely choreography, orchestration and atomic ser-

vice. The approach reveals the variability needs of interacting services and how they

can be configured consistently. The metamodel and language become prominent

with specification of relations between choreography and variability models. Among

them, variability association mechanism is introduced with the use of explicit behav-

ior of variability. By this way, choreography variability and specification of required

proper bindings of interacting services are managed at an abstract, choreography level

which eases understanding of choreography goals. Revealing variability logic explic-

itly through specification of variation points and variability associations establishes a

structure that is easy to manage and understand by non-technical and technical busi-

ness process developers. Hidden variation logic is removed from service interfaces,

compositions and configuration logic. While interface and composition variability

are supported, connector variability is left as a future work.

241

The metamodel and language supports interaction model by defining choreography

specifications and interconnection model by enabling services to define their abstract

business processes. Because the main focus is managing variability integrated with

all granularity levels, it is not claimed that fully mapping from current languages is

achieved. For instance, BPEL statements in Participant Behavior Descriptions model

of BPEL4Chor can not be fully transformed to XChor because XChor does not sup-

port event handling and a full fault handling mechanism. All required tools are pro-

vided to developers including (i) specification and constructing a variable service

compositions, (ii) analysis and configuration of variable XChor models, (iii) veri-

fication of variable XChor models, and (iv) transformation to closer specifications;

namely BPEL4Chor and VxBPEL.

7.4 Future Work

While the study represents a significant improvement in variability management in

choreography model for developing consistent service-oriented systems and provid-

ing reuse, it also opens a number of further long term or short term research areas.

Metamodel and its realization XChor Language have been studied, constructs, analy-

sis, configuration, verification tools have been provided in this study. In order to form

a complete approach from head to toe, the following long term research areas can be

addressed:

Runtime environment There are different approaches to handle the runtime vari-

ability management ranging from agent-oriented decision models, rule based

systems to dynamic linking. A runtime environment should be provided so as

to fully support variability management in all binding times.

Configuration A mechanism should be provided in order to support derivation time,

compile time, linking, startup and runtime configurations so as to fully support

processing in all variation binding times.

Variability in Connectors The metamodel and XChor language tools are available

as open source. The metamodel and accordingly language should be extended

242

to fulfill variability in connectors, for instance via mediations, artificial intelli-

gence structures, decision models.

Transformation from XChor to FTS model for verification In XChor functions and

function parameters of service and choreography interfaces can be changed

by configuration interfaces and variability associations defined within XChor

choreographies. These interface changes lead to existence or non-existence of

functions and parameters which are referenced within choreography specifi-

cations. In other words, due to service interface changes, one of the service

function can not be provided by a service. Therefore, the service interaction

including this function can not be achieved in choreography behavior. These

interface consistency checking can not be directly addressed by FTS. Therefore,

an additional mechanism is applied to fulfill this need.

Transformation from BPEL4Chor and VxBPEL Although BPEL4Chor does not

support variability specification, transformation from a set of BPEL4Chor spec-

ifications to XChor models eases choreography specification process. Then

developers can create configuration interfaces with a set of variability and man-

ually fill choreography specifications with variability associations, context ele-

ments and variability attachments, the structures where a set of variation points

are referenced. Due to non-existence of multiple choreography support (more

than one interacting choreographies) in BPEL4Chor, an additional mechanism

is needed to differentiate and gather possible choreographies. Participant be-

havior descriptions is partially created from abstract process definition parts of

services which needs human intervention in some case. Therefore, the trans-

formation does not cover all semantics which are left as a future work. In

transformation from VxBPEL case, the differences between variability mod-

els requires additional information of variability types specified by developers.

Moreover, one choreography specification can be generated from one VxBPEL

variable orchestration. In case of multiple VxBPEL orchestration specification,

a new high level choreography specification is created indicating all VXBPEL

orchestration interactions.

Short term issues that can be addressed are as follows:

243

• Developer and user manuals indicating installation and usage guides with an

example project should be provided.

• XChorS GUI which eases development and configuration process, guides de-

velopers and users ,increases understanding of XChor models with XChor ap-

plication developer and user view options should be provided. For instance,

whereas developer can see external and internal variation points and internal

structure of the choreography specification, the model user can only observe

external variability and behavior of the models.

244

REFERENCES

[1] Organization for the advancement of structured information standards, oasis.
http://www.oasis-open.org/home/index.php, last visited on November 2013.

[2] Standard generalized markup language,sgml. (ISO 8879:1986,
http://www.iso.org/iso/catalogue_detail?csnumber=16387, 1986, last vis-
ited on November 2013.

[3] World wide web. http://en.wikipedia.org/wiki/Www, 1989, last visited on
November 2013.

[4] W3c. http://www.w3.org/, 1994, last visited on November 2013.

[5] extensible markup language specification, xml. http://www.w3.org/TR/WD-
xml-961114, http://www.w3.org/XML/hist2002, 1996, last visited on Novem-
ber 2013.

[6] Indigo project. http://msdn.microsoft.com/en-us/magazine/cc164026.aspx,
1999, last visited on November 2013.

[7] Web service concept. http://msdn.microsoft.com/en-
us/library/ms954826.aspx, 1999, last visited on November 2013.

[8] Electronic business using extensible markup language, ebxml.
http://www.ebxml.org/, 2000, last visited on November 2013.

[9] Universal description, descovery and integration specification, uddi.
http://uddi.xml.org/, 2000, last visited on November 2013.

[10] Web service description language specification, wsdl.
http://www.w3.org/TR/wsdl, 2000, last visited on November 2013.

[11] Web services flow language specification, wsfl.
http://xml.coverpages.org/wsfl.html, 2000, last visited on November 2013.

[12] Working draft of wsdl pointing need for choreography.
http://www.w3.org/2005/12/wscwg-charter.html, 2000, last visited on
November 2013.

[13] Xlang specification. http://www.ebpml.org/xlang.htm, 2000, last visited on
November 2013.

245

[14] Reo coordination language, reo. http://reo.project.cwi.nl, 2001, last visited on
November 2013.

[15] Web service conversation language specification, wscl.
http://www.w3.org/TR/wscl10/, 2002, last visited on November 2013.

[16] Orc coordination lanugage, orc. http://orc.csres.utexas.edu/index.shtml, 2004,
last visited on November 2013.

[17] Service oriented architecturei soa. http://msdn.microsoft.com/en-
us/magazine/cc164026.aspx, 2004, last visited on November 2013.

[18] W3c web services glossary. http://www.w3.org/TR/ws-gloss/, 2004, last vis-
ited on November 2013.

[19] Ras ,reusable asset specification 2.2. http://www.omg.org/spec/RAS/, 2005,
last visited on November 2013.

[20] Jolie language specification. http://www.jolie-lang.org/, 2006, last visited on
November 2013.

[21] Web services coordination specification, ws-coordination. http://docs.oasis-
open.org/ws-tx/wscoor/2006/06, 2006, last visited on November 2013.

[22] Xtext 2.3.1. http://www.eclipse.org/Xtext/, 2012, last visited on November
2013.

[23] J. van Gurp A. G. J. Jansen, R. Smedinga and J. Bosch. First class feature
abstractions for product derivation. Software, IEE Proceedings, 151(4):187–
197, January 20048.

[24] Wil M. Aalst, Arjan J. Mooij, Christian Stahl, and Karsten Wolf. Formal meth-
ods for web services. chapter Service Interaction: Patterns, Formalization, and
Analysis, pages 42–88. Springer-Verlag, Berlin, Heidelberg, 2009.

[25] M. Abu-Matar. Toward a service-oriented analy-
sis and design methodology for software product lines.
http://www.ibm.com/developerworks/webservices/library/ar-
soaspl/index.html, 2007.

[26] Phillipa Oaks Alistair Barros, Marlon Dumas. A critical overview of the web
services choreography description language (ws-cdl). BPTrends Newsletter,
www.bptrends.com, 2005.

[27] Timo Asikainen, Tomi Männistö, and Timo Soininen. Kumbang: A domain
ontology for modelling variability in software product families. Adv. Eng. In-
form., 21(1):23–40, January 2007.

246

[28] Timo Asikainen, Timo Soininen, and Tomi Männistö. A koala-based ap-
proach for modelling and deploying configurable software product families.
In FrankJ. Linden, editor, Software Product-Family Engineering, volume 3014
of Lecture Notes in Computer Science, pages 225–249. Springer Berlin Hei-
delberg, 2004.

[29] Darren C. Atkinson, Daniel C. Weeks, and John Noll. The design of evolu-
tionary process modeling languages. In APSEC, pages 73–82. IEEE Computer
Society, 2004.

[30] Felix Bachmann, Michael Goedicke, Julio Leite, Robert Nord, Klaus Pohl,
Balasubramaniam Ramesh, and Alexander Vilbig. A meta-model for repre-
senting variability in product family development. In FrankJ. Linden, editor,
Software Product-Family Engineering, volume 3014 of Lecture Notes in Com-
puter Science, pages 66–80. Springer Berlin Heidelberg, 2004.

[31] M.R. Barbacci, N.A. Habermann, and M. Shaw. The Software Engineering
Institute: Bridging Practice and Potential. 1985.

[32] Adam Barker, Christopher D. Walton, and David Robertson. Choreographing
web services. IEEE Trans. Serv. Comput., 2(2):152–166, April 2009.

[33] Alistair Barros, Marlon Dumas, and ArthurH.M. Hofstede. Service interac-
tion patterns. In WilM.P. Aalst, Boualem Benatallah, Fabio Casati, and Fran-
cisco Curbera, editors, Business Process Management, volume 3649 of Lecture
Notes in Computer Science, pages 302–318. Springer Berlin Heidelberg, 2005.

[34] George Baryannis, Olha Danylevych, Dimka Karastoyanova, Kyriakos Kri-
tikos, Philipp Leitner, Florian Rosenberg, and Branimir Wetzstein. Service
research challenges and solutions for the future internet. pages 55–84, Berlin,
Heidelberg, 2010. Springer-Verlag.

[35] Bernhard Bauer and JörgP. Müller. Mda applied: From sequence diagrams to
web service choreography. In Nora Koch, Piero Fraternali, and Martin Wirs-
ing, editors, Web Engineering, volume 3140 of Lecture Notes in Computer
Science, pages 132–136. Springer Berlin Heidelberg, 2004.

[36] Martin Becker. Towards a general model of variability in product families. In
Proceedings of the First Workshop on Software Variability Management, 2003.

[37] A. K. Bhattacharjee and R. K. Shyamasundar. Scriptorc: A specification lan-
guage for web service choreography. In APSCC, pages 1089–1096. IEEE,
2008.

[38] Barry Boehm. Managing software productivity and reuse. volume 32, pages
111–113, Los Alamitos, CA, USA, September 1999. IEEE Computer Society
Press.

247

[39] Nicola Boffoli, Marta Cimitile, Maria Maggi Fabrizio, and Giuseppe Visaggio.
Managing soa system variation through business process lines and process ori-
ented development. In Workshop on Service-Oriented Architectures and Soft-
ware Product Lines (SOAPL), pages 61–68. Springer Berlin Heidelberg, 2009.

[40] Jan Bosch. Design and use of software architectures: adopting and evolving
a product-line approach. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[41] Jan Bosch. Staged adoption of software product families. Software Process:
Improvement and Practice, 10(2):125–142, 2005.

[42] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink,
and Klaus Pohl. Variability issues in software product lines. In Revised Papers
from the 4th International Workshop on Software Product-Family Engineering,
PFE ’01, pages 13–21, London, UK, UK, 2002. Springer-Verlag.

[43] Gary Brown. Pi calculus for soa. http://sourceforge.net/projects/pi4soa/, last
visited on November 2013.

[44] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. Towards a formal framework for choreography. In WETICE, pages
107–112. IEEE Computer Society, 2005.

[45] Fabio Casati, Ski Ilnicki, Li-jie Jin, Vasudev Krishnamoorthy, and Ming-Chien
Shan. Adaptive and dynamic service composition in eflow. In Proceedings of
the 12th International Conference on Advanced Information Systems Engineer-
ing, CAiSE ’00, pages 13–31, London, UK, UK, 2000. Springer-Verlag.

[46] Fabio Casati, Ski Ilnicki, Li-Jie Jin, and Ming-Chien Shan. An open, flexible,
and configurable system for service composition. In Proceedings of the Second
International Workshop on Advance Issues of E-Commerce and Web-Based In-
formation Systems (WECWIS 2000), WECWIS ’00, pages 125–, Washington,
DC, USA, 2000. IEEE Computer Society.

[47] Soo Ho Chang and Soo Dong Kim. A variability modeling method for adapt-
able services in service-oriented computing. In Proceedings of the 11th Inter-
national Software Product Line Conference, SPLC ’07, pages 261–268, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[48] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability manage-
ment in software product lines: a systematic review. In Proceedings of the
13th International Software Product Line Conference, SPLC ’09, pages 81–
90, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[49] Henry William Chesbrough. Open Innovation: The new imperative for creat-
ing and profiting from technology. Harvard Business Review Press, 2003.

248

[50] Andreas Classen. Modelling and Model Checking Variability-Intensive Sys-
tems. PhD thesis, PReCISE Research Centre, Faculty of Computer Science,
University of Namur (FUNDP), 5000 Namur, Belgium, October 2011.

[51] Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based ap-
proach to feature modelling: Syntax and semantics of tvl. Sci. Comput. Pro-
gram., 76(12):1130–1143, December 2011.

[52] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2002.

[53] Thomas Cottenier and Tzilla Elrad. Engineering distributed service compo-
sitions. In Proceedings of the First International Workshop on Engineering
Service Compositions, WECS’05, pages 51–58, Amsterdam, The Netherlands,
2005. IEEE Computer Society.

[54] Gary Chastek Dave Zubrow. Measures for software product lines, software
engineering measurement and analysis initiative. Technical Report TN-031,
CMU/SEI, 2005. Technical Note.

[55] Gero Decker, Margarit Kirov, Johannes Maria Zaha, and Marlon Dumas. Mae-
stro for let’s dance: An environment for modeling service interactions. In
Demonstration Session of the 4th International Conference on Business Pro-
cess Management (BPM), 2006.

[56] Gero Decker, Oliver Kopp, Frank Leymann, Kerstin Pfitzner, and Mathias
Weske. Modeling service choreographies using bpmn and bpel4chor. In
Proceedings of the 20th international conference on Advanced Information
Systems Engineering, CAiSE ’08, pages 79–93, Berlin, Heidelberg, 2008.
Springer-Verlag.

[57] Arie van Deursen, Merijn de Jonge, and Tobias Kuipers. Feature-based prod-
uct line instantiation using source-level packages. In Proceedings of the Sec-
ond International Conference on Software Product Lines, SPLC 2, pages 217–
234, London, UK, UK, 2002. Springer-Verlag.

[58] Business Modeling & Integration (BMI) Domain Task Force
(DTF). Business process markup language specification, bpml.
http://www.ebpml.org/bpml.htm, 2002, last visited on November 2013.

[59] Schahram Dustdar and Wolfgang Schreiner. A survey on web services compo-
sition. Int. J. Web Grid Serv., 1(1):1–30, August 2005.

[60] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Printice Hall, 2005.

[61] Paul C. Clements Felix Bachmann. Variability in software product lines. Tech-
nical Report TR-012, ESC-TR-2005-012, CMU/SEI, 2005.

249

[62] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg,
Dumitru Roman, and John Domingue. Enabling Semantic Web Services: The
Web Service Modeling Ontology. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[63] Roy Thomas Fielding. Representational State Transfer, REST. Phd thesis,
University of California, Irvine, http://www.ics.uci.edu/ fielding/pubs/disser-
tation/top.htm, 2000.

[64] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foundation for
behavioural conformance in software product line architectures. In Proceed-
ings of the ISSTA 2006 workshop on Role of software architecture for testing
and analysis, ROSATEA ’06, pages 39–48, New York, NY, USA, 2006. ACM.

[65] Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan.
Service-oriented adaptation in ubiquitous computing environments. In Pro-
ceedings of the 2009 International Conference on Computational Science and
Engineering - Volume 02, CSE ’09, pages 458–463, Washington, DC, USA,
2009. IEEE Computer Society.

[66] Kurt Geihs, Roland Reichle, Michael Wagner, and MohammadUllah Khan.
Modeling of context-aware self-adaptive applications in ubiquitous and
service-oriented environments. In Software Engineering for Self-Adaptive Sys-
tems, volume 5525 of Lecture Notes in Computer Science, pages 146–163.
Springer Berlin Heidelberg, 2009.

[67] David Gelernter and Arthur J. Bernstein. Distributed communication via
global buffer. pages 10–18, 1982.

[68] Roberto Gorrieri, Claudio Guidi, and Roberto Lucchi. Reasoning about inter-
action patterns in choreography. In Proceedings of the 2005 international con-
ference on European Performance Engineering, and Web Services and Formal
Methods, international conference on Formal Techniques for Computer Sys-
tems and Business Processes, EPEW’05/WS-FM’05, pages 333–348, Berlin,
Heidelberg, 2005. Springer-Verlag.

[69] Short Keith with Cook Steve Greenfield Jack and Kent Stuart. Software Facto-
ries: Assembling Applications with Patterns, Models, Frameworks and Tools.
Wiley Publishing, 2004.

[70] Lombard Hill Group. What is software reuse? http://www.lombardhill.com/,
last visited on November 2013.

[71] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling and
model checking software product lines. In Proceedings of the 10th IFIP WG
6.1 international conference on Formal Methods for Open Object-Based Dis-
tributed Systems, FMOODS ’08, pages 113–131, Berlin, Heidelberg, 2008.
Springer-Verlag.

250

[72] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of vari-
ability in software product lines. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, WICSA ’01, pages 45–, Washington,
DC, USA, 2001. IEEE Computer Society.

[73] IAAS. Open source bpel4chor tools. https://github.com/IAAS, last visited on
November 2013.

[74] Thales Tat Consultancy Service IBM, Franhoufer FOKUS. Common variabil-
ity language (cvl). http://www.omgwiki.org/variability/doku.php, last visited
on November 2013.

[75] Patrick Donohoe Lawrence G. Jones John K. Bergey, Sholom Cohen. Soft-
ware product lines: Experiences from the eighth dod software product line
workshop. Technical Report TR-023 ESC-TR-2005-023, CMU/SEI, 2005.

[76] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, November 1990.

[77] Lars Åke Fredlund. Implementing ws-cdl. In Proceedings of JSWEB 2006 (II
Jornadas Científico-Técnicas en Servicios Web), BPM’05, Santiago de Com-
postela, Spain, 2006.

[78] Sedigheh Khoshnevis. An approach to variability management in service-
oriented product lines. In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 1483–1486, Piscataway, NJ, USA,
2012. IEEE Press.

[79] Barbara Kitchenham and Stuart Charters. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Technical Report EBSE
2007-001, Keele University and Durham University Joint Report, 2007.

[80] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. Vxbpel:
Supporting variability for web services in bpel. Inf. Softw. Technol., 51(2):258–
269, February 2009.

[81] Oliver Kopp, Lasse Engler, Tammo Lessen, Frank Leymann, and Jörg
Nitzsche. Interaction choreography models in bpel: Choreographies on the en-
terprise service bus. In Albert Fleischmann, Werner Schmidt, Robert Singer,
and Detlef Seese, editors, Subject-Oriented Business Process Management,
volume 138 of Communications in Computer and Information Science, pages
36–53. Springer Berlin Heidelberg, 2011.

[82] Charles W. Krueger. Variation management for software production lines.
In Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, pages 37–48, London, UK, UK, 2002. Springer-Verlag.

251

[83] Peter Kim Krzysztof Czarnecki, Chang Hwan. Cardinality-based feature mod-
eling and constraints: A progress report. OOPSLA’05, 2005.

[84] Ulrich W. Eisenecker Krzysztof Czarnecki, Simon Helsen. Staged configura-
tion using feature models. In SPLC, pages 266–283, 2004.

[85] Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. A framework for
rule-based dynamic adaptation. In Proceedings of the 5th international con-
ference on Trustworthly global computing, TGC’10, pages 284–300, Berlin,
Heidelberg, 2010. Springer-Verlag.

[86] Gang Liu, Shengqi Lu, and Ronghua Chen. The role-oriented process mod-
eling language. In Software Engineering and Service Science (ICSESS), 2013
4th IEEE International Conference on, pages 1–5, 2013.

[87] Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig. Ana-
lyzing BPEL4Chor: Verification and Participant Synthesis. In Web Services
and Formal Methods, Forth International Workshop, WS-FM 2007 Brisbane,
Australia, pages 46–60. Springer-Verlag, September 2007.

[88] Ayesha Manzer. Formalization of Core-competency Process for Integration
of Value-add Chains. Phd thesis, Middle East technical University, Ankara,
Turkey, 2002.

[89] Deasy Kevin M. Martin Anne C. The effect of software support needs on
the department of defense software acquisition policy: Part 1 a framework for
analyzing legal issues. Technical Report 87-TR-2, CMU/SEI, 1987.

[90] John D. McGregor. Software product lines. Journal of Object Technology,
3(3):65–74, 2004.

[91] David William Mennie. An architecture to support dynamic composition of
service components and its applicability to internet security. In 5 th Interna-
tional Workshop on Component-Oriented Programming – WCOP 2000 at the
14th European Conference on Object-Oriented Programming - ECOOP 2000,
2000.

[92] Microsoft. Component object model / distributed component object model,
com/ dcom. http://www.microsoft.com/com/default.mspx, 1996, last visited
on November 2013.

[93] Bardia Mohabbati, Marek Hatala, Dragan Gašević, Mohsen Asadi, and Marko
Bošković. Development and configuration of service-oriented systems fami-
lies. In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC
’11, pages 1606–1613, New York, NY, USA, 2011. ACM.

[94] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Jolie: a java orchestration language interpreter engine. Electron. Notes Theor.
Comput. Sci., 181:19–33, June 2007.

252

[95] Thomas Motal, Marco Zapletal, and Hannes Werthner. The business choreog-
raphy language (bcl) - a domain-specific language for global choreographies.
In SERVICES II, pages 150–159. IEEE Computer Society, 2009.

[96] Nataliya A. Mulyar. Patterns for Process-Aware Information Systems: An Ap-
proach Based on Colored Petri Nets. Phd thesis, Technische Universiteit Eind-
hoven, 2009.

[97] Dirk Muthig and Colin Atkinson. Model-driven product line architectures.
In Proceedings of the Second International Conference on Software Product
Lines, SPLC 2, pages 110–129, London, UK, UK, 2002. Springer-Verlag.

[98] Tommi Myllymäki. Variability management in software product-lines. Tech-
nical Report 30, Institute of Software Systems, Tampere University of Tech-
nology, 2002.

[99] Nanjangud C. Narendra and Karthikeyan Ponnalagu. Towards a variability
model for soa-based solutions. 2012 SC Companion: High Performance Com-
puting, Networking Storage and Analysis, 0:562–569, 2010.

[100] Tuan Nguyen, Alan Colman, Muhammad Adeel Talib, and Jun Han. Managing
service variability: state of the art and open issues. In Proceedings of the 5th
Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’11,
pages 165–173, New York, NY, USA, 2011. ACM.

[101] Alex Norta. A choreography language for ebusiness collaboration. In Pro-
ceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages
468–469, New York, NY, USA, 2011. ACM.

[102] OASIS. Web services business process execution
language specification, ws-bpel. https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel, 2007, last visited
on November 2013.

[103] OMG. Common object request broker architecture specification, corba.
http://www.corba.org/, 1991, last visited on November 2013.

[104] OMG. Business process model and notation-bpmn 2.0 specification.
http://www.omg.org/spec/BPMN/2.0/, 2011, last visited on November 2013.

[105] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-oriented computing: State of the art and research challenges.
Computer, 40(11):38–45, November 2007.

[106] Joonseok Park, Mikyeong Moon, and Keunhyuk Yeom. Variability modeling
to develop flexible service-oriented applications. Journal of Systems Science
and Systems Engineering, 20(2):193–216, 2011.

253

[107] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[108] Maryam Razavian and Ramtin Khosravi. Modeling variability in the compo-
nent and connector view of architecture using uml. In Proceedings of the 2008
IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA ’08, pages 801–809, Washington, DC, USA, 2008. IEEE Computer
Society.

[109] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter
Fensel. Web service modeling ontology. Appl. Ontol., 1(1):77–106, January
2005.

[110] Davide Rossi and Elisa Turrini. Epml: an executable process modeling lan-
guage for process-aware applications. In Proceedings of the 2008 ACM sym-
posium on Applied computing, SAC ’08, pages 132–133, New York, NY, USA,
2008. ACM.

[111] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen,
Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. Music: Middleware
support for self-adaptation in ubiquitous and service-oriented environments.
In Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 164–182. Springer Berlin Heidelberg, 2009.

[112] Serge Salicki and Nicolas Farcet. Expression and usage of the variability in
the software product lines. In Frank Linden, editor, Software Product-Family
Engineering, volume 2290 of Lecture Notes in Computer Science, pages 304–
318. Springer Berlin Heidelberg, 2002.

[113] Mustafa Yucefaydalı Selma Süloğlu, Riza Aktunc. Verification of variable ser-
vice orchestrations using model checking. In Proceedings of 3rd International
Symposium on Business Modeling and Software Design. ACM, 2013.

[114] Antonio Ruiz-Cortes Pablo Trinidad Sergio Segura, David Benavides. An ap-
proach to variability management in service-oriented product lines. In In first
Workshop on Service-oriented Architectures and Product Lines. SEI, 2007.

[115] Robert Wolfe-Steve Olding Shahin Samadi, Nadine Alameh and David Isaac.
Strategies for enabling software reuse within the earth science community. In
Proceedings of the IEEE International Geoscience and Remote Sensing Sym-
posium, volume 3. IEEE International, 2004.

[116] B.G. Silverman. Software cost and productivity improvements: An analogical
view. Computer, 18(5):86–96, 1985.

254

[117] Marco Sinnema and Sybren Deelstra. Classifying variability modeling tech-
niques. Inf. Softw. Technol., 49(7):717–739, July 2007.

[118] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. Covamof: A
framework for modeling variability in software product families. In RobertL.
Nord, editor, Software Product Lines, volume 3154 of Lecture Notes in Com-
puter Science, pages 197–213. Springer Berlin Heidelberg, 2004.

[119] Ian Sommerville. Software Engineering. Addison-Wesley, 2010.

[120] Zoran Stojanovic and Ajantha Dahanayake. Service-oriented Software System
Engineering Challenges And Practices. IGI Publishing, Hershey, PA, USA,
2005.

[121] Nam Pyo Suh. Axiomatic Design: Advances and Applications. Oxford Uni-
versity Press, USA, 2001.

[122] Selma Suloglu. Xchor language representation in xtext.
http://www.xchor.com/XChorLanguage-xtext.pdf, 2012, last visited on
November 2013.

[123] Selma Suloglu, Cengiz Togay, and Ali H. Dogru. Managing variability in ser-
vice composition with axiomatic design. In Proceedings of 18th International
Conference on Society for Design and Process Science, SDPS 2013. SDPS,
2013.

[124] BEA Sun, SAP and Intalio. Web services choreography interface specification,
wsci. http://www.w3.org/TR/wsci/, 2002, last visited on November 2013.

[125] Chang-ai Sun, Tieheng Xue, and Marco Aiello. Valysec: A variability anal-
ysis tool for service compositions using vxbpel. In Proceedings of the 2010
IEEE Asia-Pacific Services Computing Conference, APSCC ’10, pages 307–
314, Washington, DC, USA, 2010. IEEE Computer Society.

[126] Hongyu Sun, Robyn R. Lutz, and Samik Basu. Product-line-based require-
ments customization for web service compositions. In Proceedings of the 13th
International Software Product Line Conference, SPLC ’09, pages 141–150,
Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[127] Mikael Svahnberg and Jan Bosch. Characterizing evolution in product line
architectures. In Proceedings of the 3rd annual IASTED, International Con-
ference on Software Engineering and Applications, pages 92–97.

[128] Mikael Svahnberg and Jan Bosch. Evolution in software product lines: Two
cases. Journal of Software Maintenance, 11(6):391–422, November 1999.

[129] Mikael Svahnberg and Bosch Jan van Gurp, Jilles. A taxonomy of variability
realization techniques: Research articles. Softw. Pract. Exper., 35(8):705–754,
July 2005.

255

[130] Rajesh K. Thiagarajan, Amit K. Srivastava, Ashis K. Pujari, and Visweswar K.
Bulusu. Bpml: A process modeling language for dynamic business models. In
WECWIS, pages 239–241.

[131] Steffen Thiel and Andreas Hein. Systematic integration of variability into
product line architecture design. In GaryJ. Chastek, editor, Software Product
Lines, volume 2379 of Lecture Notes in Computer Science, pages 130–153.
Springer Berlin Heidelberg, 2002.

[132] Cengiz Togay, Ali H. Dogru, and John Urcun Tanik. Systematic component-
oriented development with axiomatic design. Journal of Systems and Software,
81(11):1803–1815, 2008.

[133] N.Yasemin Topaloglu and Rafael Capilla. Modeling the variability of web ser-
vices from a pattern point of view. In Liang-Jie(LJ) Zhang and Mario Jeckle,
editors, Web Services, volume 3250 of Lecture Notes in Computer Science,
pages 128–138. Springer Berlin Heidelberg, 2004.

[134] André van der Hoek. Design-time product line architectures for any-time vari-
ability. Sci. Comput. Program., 53(3):285–304, December 2004.

[135] W3C. Simple object access protocol, soap. http://www.w3.org/TR/soap/,
1998, last visited on November 2013.

[136] W3C. Text markup language specification, html. http://www.w3.org/html/,
2004, last visited on November 2013.

[137] World Wide Web W3C. Web services choreography description language
specification, ws-cdl. http://www.w3.org/2005/12/wscwg-charter.html, 2005,
last visited on November 2013.

[138] Yong Wang, Xiang Yi, Kai Li, and Meilin Liu. An actor-based language to uni-
fying web service orchestration and web service choreography. In Computer
Science and Information Processing (CSIP), 2012 International Conference
on, pages 1055–1060, 2012.

[139] Hanpin Wang Yu Huang. A petri net semantics for web service choreography.
In SAC, pages 1689–1690, 2007.

[140] J. M. Zaha, M. Dumas, A. H.M. ter Hofstede, A. Barros, and G. Decker. Bridg-
ing global and local models of service-oriented systems. Trans. Sys. Man Cy-
ber Part C, 38(3):302–318, May 2008.

[141] Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hofst-
ede. Let’s dance: a language for service behavior modeling. In Proceedings
of the 2006 Confederated international conference on On the Move to Mean-
ingful Internet Systems: CoopIS, DOA, GADA, and ODBASE - Volume Part

256

I, ODBASE’06/OTM’06, pages 145–162, Berlin, Heidelberg, 2006. Springer-
Verlag.

[142] Yongwang Zhao, Dianfu Ma, Min Liu, and Chunyang Hu. Coordination be-
havioral structure: A web services coordination model in dynamic environ-
ment. In Proceedings of the Seventh IEEE/ACIS International Conference
on Computer and Information Science (icis 2008), ICIS ’08, pages 611–617,
Washington, DC, USA, 2008. IEEE Computer Society.

257

258

APPENDIX A

XCHOR METAMODEL REALIZATION IN XTEXT

1 grammar oorg . x t e x t . d o c t o r a t e . xchor . Xchor wi th org . e c l i p s e . x t e x t .

common . T e r m i n a l s

2

3 g e n e r a t e xchor " h t t p : / / www. x t e x t . oorg / d o c t o r a t e / xchor / Xchor "

4

5

6 / **

7 * V a r i a b l e Choreography Model i s a s e t o f A b s t r a c t E lemen t s

s p e c i f i e d t o d e f i n e

8 * (i) c h o r e o g r a p h y s p e c i f i c a t i o n s wi th v a r i a b i l i t i e s ,

9 * (i i) s e r v i c e and c h o r e o g r a p h y i n t e r f a c e s and

10 * (i i i) t h e i r c o n f i g u r a t i o n i n t e r f a c e s .

11 * Root o f t h e grammar

12 *

13 * /

14 VarChorModel :

15 (e l e m e n t s += A b s t r a c t E l e m e n t) *

16 ;

17 / **

18 * An ID a s s i g n e d t o v a r i a t i o n p o i n t s whe the r t h e y r e s i d e i n

c o m p o s i t i o n o r

19 * t a k e p a r t i n c o n f i g u r i n g s e r v i c e i n t e r f a c e s v i a mapping or

20 *

21 * R es id e i n c o m p o s i t i o n : @composi t ion

22 * Take p a r t i n c o n f i g u r i n g s e r v i c e i n t e r f a c e s : @ v c o n f s e r v i c e

23 * Take p a r t i n c o n f i g u r a t i o n v a r i a t i o n p o i n t r e a l i z a t i o n :

@ v c o n f r e a l i z a t i o n

259

24 * /

25 Tag :

26 "@" (name = " c o m p o s i t i o n " | name =" v c o n f s e r v i c e " | name = "

v c o n f r e a l i z a t i o n ")

27 ;

28

29 / **

30 * Ass ignment o f t h e r e t u r n v a l u e o f a s e r v i c e (I n t e r f a c e) f u n c t i o n

(F u n c t i o n) t o a

31 * C o n t e x t E l e m e n t which i s a s h a r e d v a r i a b l e o f c h o r e o g r a p h y

32 *

33 * /

34 ChorComputa t ion :

35 "%comp " name = [C o n t e x t E l e m e n t] "=" s = [I n t e r f a c e] " . " f = [

F u n c t i o n] "%"

36 ;

37

38 / **

39 * A b s t r a c t Element d e f i n i t i o n which can be e i t h e r

40 * a c h o r e o g r a p h y d e f i n i t i o n (Choreography) ,

41 * c o n f i g u r a t i o n o f a s e r v i c e / c h o r e o g r a p h y (V a r C o n f i g u r a t i o n M o d e l)

o r

42 * i n t e r f a c e o f s e r v i c e / c h o r e o g r a p h y (I n t e r f a c e) .

43 * Here s e r v i c e c o n c e p t c o v e r s a t omi c and o r c h e s t r a t e d s e r v i c e s

44 * /

45 A b s t r a c t E l e m e n t :

46 Choreography | V a r C o n f i g u r a t i o n M o d e l | I n t e r f a c e

47 ;

48

49 / **

50 * Choreography d e f i n i t i o n which

51 * (i) i m p o r t s i t s c o n f i g u r a t i o n i n t e r f a c e (v i a VConfModelImport) ,

52 * i n t e r a c t i n g c h o r e o g r a p h i e s (v i a Chor Impor t) and s e r v i c e s (v i a

S e r v i c e I m p o r t) ,

53 * (i i) d e f i n e s s h a r e d v a r i a b l e s (v i a C o n t e x t E lemen t s) ,

54 * (i i i) maps c h o r e o g r a p h y v a r i a b i l i t y wi th o t h e r s e r v i c e s and

choreography s

260

55 * v a r i a t i o n p o i n t and v a r i a n t s p e c i f i c a t i o n s (v i a VMMapping)

56 * (i v) d e f i n e s t h e c h o r e o g r a p h y c o m p o s i t i o n f o r each f u n c t i o n wi th

i n l i n e v a r i a t i o n

57 * a t t a c h m e n t s a s a gua rd t o e x e c u t e t h e p i e c e o f c h o r e o g r a p h y (v i a

Compos i t ion)

58 *

59 * /

60 Choreography :

61 " c h o r e o g r a p h y " name=ID

62 (v c o n f m o d e l i m p o r t = VConfModelImport) ?

63 (c i m p o r t s += Chor Impor t) *

64 (s i m p o r t s += S e r v i c e I m p o r t) +

65 (" C o n t e x t E lemen t s " (c o n t e x t s += C o n t e x t E l e m e n t) *) ?

66 (" Choreography V a r i a b i l i t y Mapping " (mappings += VMMapping) *) ?

67 (" F u n c t i o n " func += [F u n c t i o n] " : " comp += Compos i t ion) +

68 ;

69

70

71 / **

72 * I mp or t mechanism t o i n c l u d e choreography s c o n f i g u r a t i o n

I n t e r f a c e

73 * There can be more t h a n one c o n f i g u r a t i o n I n t e r f a c e o f t h e same

c h o r e o g r a p h y .

74 *

75 * /

76 VConfModelImport :

77 " i m p o r t c o n f i g u r a t i o n " impor tedNamespace = [

VarC onf igu ra t i onM ode l4C hor]

78 ;

79

80 / **

81 * I mp or t mechanism t o i n c l u d e s e r v i c e s u t i l i z e d (S e r v i c e I n t e r f a c e)

i n c h o r e o g r a p h y

82 * c o m p o s i t i o n wi th s p e c i f i e d s e r v i c e c o n f i g u r a t i o n i n t e r f a c e (

V a r C o n f i g u r a t i o n M o d e l 4 S e r v i c e)

83 * i f r e q u i r e d .

261

84 * There can be more t h a n one c o n f i g u r a t i o n I n t e r f a c e o f t h e same

s e r v i c e .

85 *

86 * /

87 S e r v i c e I m p o r t :

88 " i m p o r t s e r v i c e " s = [S e r v i c e I n t e r f a c e] (" wi th c o n f i g u r a t i o n "

impor tedNamespace = [V a r C o n f i g u r a t i o n M o d e l 4 S e r v i c e]) ?

89 ;

90

91 / **

92 * I mp or t mechanism t o i n c l u d e o t h e r c h o r e o g r a p h i e s (C h o r I n t e r f a c e)

i n t e r a c t e d wi th t h e c u r r e n t c h o r e o g r a p h y

93 *

94 * /

95 Chor Impor t :

96 " use c h o r e o g r a p h y " name = [C h o r I n t e r f a c e]

97 ;

98

99 / **

100 * An a b s t r a c t i o n o f two t y p e s o f i n t e r f a c e : Choreography and

S e r v i c e

101 *

102 * /

103 I n t e r f a c e :

104 C h o r I n t e r f a c e | S e r v i c e I n t e r f a c e

105 ;

106

107 / **

108 * A d e f i n i t i o n o f i n t e r f a c e f o r a choreography , t h e opened f a c e t o

o t h e r c h o r e o g r a p h i e s

109 * i n c u d i n g i n v a r i a n t s (I n v a r i a n t) , e x t e r n a l i z e d f u n c t i o n s (

F u n c t i o n) , p o r t d e s c r i p t i o n (P o r t) and

110 * r e q u i r e d i n t e r f a c e s from o t h e r c h o r e o g r a p h i e s (R e q u i r e d I n t e r f a c e

) .

111 *

112 * /

113 C h o r I n t e r f a c e :

262

114 " Choreography i n t e r f a c e " name = Qual i f i edName " of " chorname = ID

115 (i n v a r i a n t s += I n v a r i a n t) *

116 ((f u n c t i o n s += F u n c t i o n) +)

117 p o r t += P o r t

118 (" r e q u i r e d i n t e r f a c e s "

119 (r e q i n t s += R e q u i r e d I n t e r f a c e) *) ?

120 ;

121

122 / **

123 * A d e f i n i t i o n o f demanded f u n c t i o n s from o t h e r c h o r e o g r a p h i e s

s e p e r a t e d by ;

124 *

125 * /

126 R e q u i r e d I n t e r f a c e :

127 " from " name = Qual i f i edName " f u n c t i o n " "{" (f += [F u n c t i o n]) (" , "

(f += [F u n c t i o n])) * "}"

128 ;

129

130 / **

131 * A d e f i n i t i o n o f a s e r v i c e i n t e r f a c e i n c l u d i n g i n v a r i a n t s (

I n v a r i a n t) ,

132 * f u n c t i o n s (F u n c t i o n) and p o r t s p e c i f i c a t i o n (P o r t) .

133 *

134 * /

135 S e r v i c e I n t e r f a c e :

136 " S e r v i c e i n t e r f a c e " name = ID

137 ((i n v a r i a n t s += I n v a r i a n t) *)

138 ((f u n c t i o n s += F u n c t i o n) +)

139 p o r t += P o r t

140 ;

141

142 / **

143 * D e f i n i t i o n o f a f u n c t i o n i n c l u d i n g i t s name , p r e and p o s t

c o n d i t i o n s (C o n d i t i o n S e t) ,

144 * i n p u t p a r a m e t e r s (Params) and

145 * i t s o u t p u t (Param) .

146 *

263

147 * /

148 F u n c t i o n :

149 " f u n c t i o n " name = ID

150 (" p r e c o n d i t i o n " p recond += C o n d i t i o n S e t) ?

151 (" p o s t c o n d i t i o n " p o s t c o n d += C o n d i t i o n S e t) ?

152 (" i n p u t " i p a r s = Params) ?

153 (" o u t p u t " opa r = Param) ?

154 ;

155

156 / **

157 * A s e t o f c o n d i t i o n s (C o n d i t i o n) composed v i a " o r " and " and "

l o g i c a l r e l a t i o n s h i p s .

158 *

159 * /

160 C o n d i t i o n S e t :

161 " (" c1 += C o n d i t i o n ((" o r " | " and ") c2 += C o n d i t i o n) * ") "

162 ;

163

164 / **

165 * A d e f i n i t i o n o f t h e v a l u e o f an o b j e c t i s e q u a l o r n o t e q u a l t o

a b o o e l a n v a l u e

166 * (t r u e o r f a l s e) .

167 *

168 * /

169 C o n d i t i o n :

170 name = ID ("==" | " ! = ") BOOLEAN

171 ;

172

173 / **

174 * A v a r i a b l e d e f i n i t i o n i n c h o r e o g r a p h y / s e r v i c e i n t e r f a c e a s s i g n e d

t o

175 * a b o o l e a n v a l u e which i s v a l i d t h r o u g h o u t t h e c h o r e o g r a p h y /

s e r v i c e c o m p o s i t i o n

176 * /

177 I n v a r i a n t :

178 " i n v a r i a n t " name = ID "==" BOOLEAN

179 ;

264

180

181 / **

182 * An a b s t r a c t i o n o f t h r e e t y p e s o f v a r i a t i o n p o i n t :

183 * i n t e r n a l , e x t e r n a l and c o n f i g u r a t i o n v a r i a t i o n p o i n t .

184 *

185 * /

186 V a r P o i n t :

187 C o n f i g u r a t i o n V a r P o i n t | I n t e r n a l V a r P o i n t | E x t e r n a l V a r P o i n t

188 ;

189

190 / **

191 * A v a r i a t i o n p o i n t d e f i n i t i o n which i s i n v i s i b l e t o o u t e r c o n t e x t

so as t o

192 * d e s c r i b e a v a r i a b i l i t y wi th a s e t o f v a r i a n t s (V a r i a n t S e t) and

s p e c i f i e d b i n d i n g t ime (BINDING) .

193 *

194 * /

195 I n t e r n a l V a r P o i n t :

196 v t = " i n t e r n a l V P " name=ID : v a r i a n t s = V a r i a n t S e t " b ind ingTime

" b t ime =BINDING

197 ;

198

199 / **

200 * A v a r i a t i o n p o i n t d e f i n i t i o n which i s v i s i b l e t o o u t e r c o n t e x t

t o be c o n f i g u r e d by o t h e r

201 * s e r v i c e s / c h o r e o g r a p h i e s . I t s p e c i f i e s i t s v a r i a b i l i t y wi th a s e t

o f v a r i a n t s (V a r i a n t S e t) and

202 * s p e c i f i e d b i n d i n g t ime (BINDING) .

203 * Note t h a t " e x t e r n a l V P " s h o u l d be used w h i l e d e f i n i n g a v a r i a t i o n

p o i n t f o r c h o r e o g r a p h i n

204 * c o n f i g u r a t i o n i n t e r f a c e and " vp " s h o u l d be used f o r s e r v i c e

v a r i a t i o n i n c o n f i g u r a t i o n i n t e r f a c e

205 *

206 * /

207 E x t e r n a l V a r P o i n t :

208 (v t = " e x t e r n a l V P " | v t 2 = " vp ") name=ID : v a r i a n t s =

V a r i a n t S e t " b ind ingTime " b t ime =BINDING

265

209 ;

210

211

212 / **

213 * An a b s t r a c t h igh l e v e l v a r i a t i o n p o i n t d e f i n i t i o n t h a t maps i t s

v a r i a n t s t o

214 * a s e t o f i n t e r n a l v a r i a t i o n p o i n t s w i th t h e i r v a r i a n t s e l e c t i o n s

, s p e c i f y i n g each r e a l i z a t i o n .

215 * I t can be e i t h e r i n t e r n a l o r e x t e r n a l which i s s p e c i f i e d by "

v a r t y p e " keyword .

216 * I t d e f i n e s a s e t o f v a r i a n t s (V a r i a n t S e t) and t h e i r r e a l i z a t i o n

(C o n f V a r i a n t W i t h C h o i c e s) ,

217 * d e f a u l t v a r i a n t (V a r i a n t) s e l e c t i o n and b i n d i n g t ime (BINDING) .

218 *

219 * /

220 C o n f i g u r a t i o n V a r P o i n t r e t u r n s C o n f i g u r a t i o n V a r P o i n t :

221 " c o n f i g u r a t i o n " ({ I n t e r n a l V a r P o i n t } name= Qual i f i edName : "

varType " v t = " i n t e r n a l V P " | { E x t e r n a l V a r P o i n t } name=

Qual i f i edName : " varType " v t = " e x t e r n a l V P ")

222 (v a r i a n t s = V a r i a n t S e t)

223 (" r e a l i z a t i o n " r e a = STRING) ((c o n f v a r i a n t s +=

C o n f V a r i a n t W i t h C h o i c e s) +)

224 (" d e f a u l t V a r i a n t " d e f a u l t V a r i a n t = [V a r i a n t]) (" t y p e " t y p e =

CONFTYPE " b ind ingTime " b t ime = BINDING)

225 ;

226

227 / **

228 * A v a r i a n t d e f i n i t i o n o f a c o n f i g u r a t i o n v a r i a t i o n p o i n t

i n c l u d i n g a s e t o f c h o i c e s .

229 *

230 * /

231 C o n f V a r i a n t W i t h C h o i c e s :

232 " c o n f v a r i a n t " name = ID " mapping "

233 (c h o i c e s += Choice) +

234 ;

235

236 / **

266

237 * S e l e c t i o n d e f i t i o n o f a v a r i a t i o n p o i n t among d e f i n e d ones and

r e l a t e d s e l e c t e d v a r i a n t s

238 * as w e l l a s minimum and / o r maximum number o f v a r i a n t s e l e c t i o n s

as o p t i o n a l

239 *

240 * /

241 Choice :

242 "VPName" vp = [V a r P o i n t] " s e l e c t e d V a r i a n t s (" (v a r s += [V a r i a n t]) +

(" ; min : " INT) ? (" , max : " INT) ? ") "

243 ;

244

245 / **

246 * A s e t o f v a r i a n t s (V a r i a n t) g rouped by as mandatory , o p t i o n a l

and a l t e r n a t i v e .

247 * A l t e r n a t i v e v a r i a n t s a r e s p e c i f i e d wi th minimum and maximum

number o f s e l e c t i o n s .

248 *

249 * /

250 V a r i a n t S e t :

251 { V a r i a n t S e t } (" mandatory " (v a r i a n t s += V a r i a n t) *) ?

252 (" o p t i o n a l " (v a r i a n t s += V a r i a n t) *) ?

253 (" a l t e r n a t i v e " (v a r i a n t s += V a r i a n t) * " (min : " INT " , max : " INT ")

") ?

254 ;

255

256 / **

257 * A v a r i a b l e d e f i n i t i o n o f a v a r i a t i o n p o i n t which a c t i v a t e s

f u n c t i o n s o f s e r v i c e s (M e t h o d s W i t h o u t D e f i n e d S e r v i c e s)

258 * or i t s f u n c t i o n s s t a t e d i n t h e i n t e r f a c e (

M e t h o d s W i t h o u t D e f i n e d S e r v i c e s) and / o r

259 * s e t s a p a r a m e t e r (F u n c t i o n) t o a f u n c t i o n (F u n c t i o n) s t a t e d i n

s e r v i c e i n t e r f a c e i f r e q u i r e d .

260 *

261 * /

262 V a r i a n t r e t u r n s V a r i a n t :

263 " v a r i a n t " name = ID ((" : a c t i v a t e M e t h o d s (" (m1 =

M e t h o d s W i t h D e f i n e d S e r v i c e s | m2 = M e t h o d s W i t h o u t D e f i n e d S e r v i c e s

267

) ") ") ?

264 (" : s e t P a r a m e t e r (t o F u n c t : " f = [F u n c t i o n] " , p a r a m e t e r : " p a r s =

Param (" ; t o F u n c t : " func += [F u n c t i o n] " , p a r a m e t e r : " f p a r s +=

Param) * ") ") ?

265)

266 ;

267

268 / **

269 * A s e t o f f u n c t i o n s (F u n c t i o n) wi th r e l a t e d s e r v i c e s s e p e r a t e d

by comma .

270 *

271 * /

272 M e t h o d s W i t h D e f i n e d S e r v i c e s :

273 " s e r v i c e : " s = [S e r v i c e I n t e r f a c e] " , f u n c t : " f u n c t = [F u n c t i o n]

(" , " f u n c t s += [F u n c t i o n]) * (" ; s e r v i c e : " s2 += [

S e r v i c e I n t e r f a c e] " , f u n c t : " f u n c t 2 += [F u n c t i o n] (" , " f u n c t s 2

+= [F u n c t i o n]) *) *

274 ;

275

276 / **

277 * A s e t o f f u n c t i o n s o f i t s own s e p e r a t e d by comma .

278 *

279 * /

280 M e t h o d s W i t h o u t D e f i n e d S e r v i c e s :

281 f u n c t = [F u n c t i o n] (" , " f u n c t s += [F u n c t i o n]) *

282 ;

283

284 / **

285 * Bind ing d e f i n i t i o n o f o t h e r s e r v i c e s t o c u r r e n t s e r v i c e /

c h o r e o g r a p h y wi th a d e f i n e d h o s t .

286 *

287 * /

288 P o r t :

289 " portName " name = ID " b i n d i n g " h o s t = TEXT

290 ;

291

292 / **

268

293 * An a b s t r a c t i o n o f two t y p e s o f c o n f i g u r a t i o n model

294 * V a r C o n f i g u r a t i o n M o d e l 4 S e r v i c e f o r s e r v i c e and

295 * Var Conf ig u ra t i on Mode l4 Chor f o r c h o r e o g r a p h y

296 *

297 * /

298 V a r C o n f i g u r a t i o n M o d e l :

299 V a r C o n f i g u r a t i o n M o d e l 4 S e r v i c e | Va r Conf igu ra t i on Mode l4C hor

300 ;

301

302 / **

303 * A d e f i n i t i o n o f a c o n f i g u r a t i o n i n t e r f a c e f o r a s e r v i c e

i n c l u d i n g

304 * (i) a s e t o f e x t e r n a l v a r i a t i o n p o i n t s (E x t e r n a l V a r P o i n t) w i th a

t a g (Tag)

305 * d e f i n i n g t h e r o l e o f i t i f r e q u i r e d ,

306 * (i i) c o n s t r a i n t s (C o n s t r a i n t) among e x t e r n a l v a r i a t i o n p o i n t s

and

307 * (i i i) i t s a b s t r a c t p r o c e s s d e f i n i t i o n (Compos i t ion) which

s p e c i f i e s e x t e r n a l b e h a v i o r

308 * of t h e s e r v i c e wi th o t h e r s e r v i c e s .

309 *

310 * /

311 V a r C o n f i g u r a t i o n M o d e l 4 S e r v i c e :

312 " C o n f i g u r a t i o n i n t e r f a c e " name = ID " of s e r v i c e " s e r v i c e n a m e = [

S e r v i c e I n t e r f a c e]

313

314 ((t a g += Tag) ? v a r s += E x t e r n a l V a r P o i n t) *

315

316 (" C o n s t r a i n t s "

317 (c o n s t r a i n t s += C o n s t r a i n t) *) ?

318

319 (" a b s t r a c t p r o c e s s d e f i n i t i o n "

320 p r o c e s s d e f = Compos i t ion

321

322) ?

323 ;

324

269

325 / **

326 * A d e f i n i t i o n o f a c o n f i g u r a t i o n i n t e r f a c e f o r a c h o r e o g r a p h y

i n c l u d i n g

327 * (i) a s e t o f i n t e r n a l , e x t e r n a l and c o n f i g u r a t i o n v a r i a t i o n

p o i n t s (V a r P o i n t)

328 * wi th a t a g (Tag) d e f i n i n g t h e r o l e o f them i f r e q u i r e d ,

329 * (i i) c o n s t r a i n t s (C o n s t r a i n t) among v a r i a t i o n p o i n t s and

330 * (i i i) p a r a m e t e r s e t t i n g s (P a r a m e t e r S e t t i n g) which i n c l u d e s a s e t

o f d e f i n e d

331 * p a r a m e t e r s used i n c h o r e o g r a p h y .

332 *

333 * /

334 VarC onf igu ra t i on Mode l4C hor :

335 " C o n f i g u r a t i o n i n t e r f a c e " name = ID " of c h o r e o g r a p h y " chorname =

Qual i f i edName

336

337 ((t a g += Tag) ? v a r s += V a r P o i n t) *

338

339 (" C o n s t r a i n t s "

340 (c o n s t r a i n t s += C o n s t r a i n t) *) ?

341

342 (" P a r a m e t e r S e t t i n g s "

343 (p a r a m e t e r s e t t i n g += P a r a m e t e r S e t t i n g) *) ?

344 ;

345

346 / **

347 * An a s s i g n m e n t o f a v a l u e t o C o n t e x t E l e m e n t s r e s i d e d i n

c h o r e o g r a p h y s p e c i f i c a t i o n .

348 *

349 * /

350 P a r a m e t e r S e t t i n g :

351 " p a r a m e t e r " name = [C o n t e x t E l e m e n t] ("= # o f V a r i a n t s S e l e c t e d {" (

v a r s += [V a r i a n t]) + "} Of " vp = [V a r P o i n t] |

352 "= v a l u e (" v a r += [V a r i a n t] (" , " v a r s += [V a r i a n t]) * ") " | "

e x i s t s w h e n s e l e c t e d {" vp =[V a r P o i n t] " . " v =[V a r i a n t]

353 (" , " vp2 +=[V a r P o i n t] " . " v2 +=[V a r i a n t]) * "} ")

354 ;

270

355

356

357 / **

358 * An a b s t r a c t i o n o f two t y p e s o f c o n s t r a i n t s :

359 * L o g i c a l C o n s t r a i n t and N u m e r i c a l C o n s t r a i n t

360 *

361 * /

362 C o n s t r a i n t :

363 L o g i c a l C o n s t r a i n t | N u m e r i c a l C o n s t r a i n t

364 ;

365

366 / **

367 * A d e f i n i t i o n d e p i c t i n g a c o n s t r a i n i n g r e l a t i o n s h i p i n which a

v a r i a t i o n

368 * p o i n t and / o r r e l a t e d v a r i a n t s d e c i d e a n o t h e r v a r i a t i o n p o i n t s

and / o r i t s s e l e c t e d v a r i a n t s

369 * s t a t u s e i t h e r exc luded , i m p l i e d , r e q u i r e d o r n e g a t e d .

370 *

371 * /

372 L o g i c a l C o n s t r a i n t :

373 (p1 = [V a r P o i n t] (p2 = [V a r i a n t]) ?) c =CONST p3 = [V a r P o i n t]

(" s e l e c t e d V a r i a n t s (" (v a r s += [V a r i a n t]) + (" , min : " INT) ? (" ,

max : " INT) ? ") ") ?

374 ;

375

376 / **

377 * A d e f i n i t i o n d e p i c t i n g a c o n s t r a i n i n g r e l a t i o n s h i p i n which a

v a r i a t i o n

378 * p o i n t and r e l a t e d v a r i a n t r e s u l t i n an a s s i g n m e n t o f a v a l u e t o

a n o t h e r v a r i a t i o n p o i n t

379 * and r e l a t e d v a r i a n t o r t o a p r o p e r t y wi th e x p r e s s i o n s (g r e a t e r

than , l e s s than , g r e a t e r t h a n or equa l ,

380 * l e s s t h a n o r equa l , equa l , n o t e q u a l)

381 *

382 * /

383 N u m e r i c a l C o n s t r a i n t :

384 vp1 = [V a r P o i n t] v1 = [V a r i a n t] n c o n s t = NUMCONST

271

385 r h s = RHS exp = EXPR

386 (STRING | pro2 = P r o p e r t y | " va lueOf{" (v a r s += [V a r i a n t]) * "} ")

387 ;

388

389 RHS:

390 pro1 = P r o p e r t y | (vp2 = [V a r P o i n t] v2 = [V a r i a n t])

391 ;

392 / **

393 * A s p e c i f i c a t i o n o f a sys tem p r o p e r t y wi th i t s name

394 *

395 * /

396 P r o p e r t y :

397 name = ID

398 ;

399

400 / **

401 * A s h a r e d e l e m e n t d e f i n i t i o n used i n c h o r e o g r a p h y c o m p o s i t i o n

402 *

403 * /

404 C o n t e x t E l e m e n t :

405 name = Qual i f i edName (d e f a u l t v a l u e = INT | STRING | ID | BOOLEAN)

406 ;

407

408 / **

409 * An a b s t r a c t i o n o f two t y p e s o f v a r a i b i l i t y mapping

410 * VMServiceMapping f o r s e r v i c e and

411 * VMChorMapping f o r c h o r e o g r a p h y

412 * /

413 VMMapping :

414 VMServiceMapping | VMChorMapping

415 ;

416

417 / **

418 * A s t r u c t u r a l mapping from c h o r e o g r a p h y v a r i a t i o n t o s e r v i c e

v a r i a t i o n .

419 * F i r s t v a r i a t i o n p o i n t s a r e mapped and t h e n each v a r i a n t o f

r e l a t e d c h o r e o g r a p h y

272

420 * v a r i a t i o n p o i n t i s mapped t o t h a t o f s e r v i c e v a r i a t i o n p o i n t .

421 *

422 * /

423 VMServiceMapping :

424 "VP" vp = [V a r P o i n t] " maps s e r v i c e " s e r v i c e = [S e r v i c e I n t e r f a c e]

"VP" svp = [V a r P o i n t]

425 (" V a r i a n t " v a r s += [V a r i a n t] " maps V a r i a n t " (mvars += [V a r i a n t]

) +)+

426 ;

427

428 / **

429 * A s t r u c t u r a l mapping from c h o r e o g r a p h y v a r i a t i o n t o u t i l i z e d

c h o r e o g r a p h y v a r i a t i o n .

430 * F i r s t v a r i a t i o n p o i n t s a r e mapped and t h e n each v a r i a n t o f

r e a l t e d c h o r e o g r a p h y v a r i a t i o n

431 * p o i n t i s mapped t o t h a t o f u t i l i z e d c h o r e o g r a p h y v a r i a t i o n p o i n t

.

432 *

433 * /

434 VMChorMapping :

435 "VP" vp = [V a r P o i n t] " maps c h o r e o g r a p h y " cho r = [Choreography] "

VP" cvp = [V a r P o i n t]

436 (" V a r i a n t " v a r s += [V a r i a n t] " maps V a r i a n t " (mvars += [V a r i a n t]

) +)+

437 ;

438 / **

439 * A d e f i n i t i o n o f an a t t a c h m e n t t o c h o r e o g r a p h y c o m p o s i t i o n i n

o r d e r t o d e f i n e t h e c o n d i t i o n s o f

440 * v a r i a t i o n p o i n t and v a r i a n t s e l e c t i o n s .

441 * R e l a t i o n s h i p s between v a r i a t i o n p o i n t and v a r i a n t s used a r e :

442 * " i f O n e S e l e c t e d " i f one o f t h e v a r i a n t s i n a v a r i a n t s e t i s

s e l e c t e d

443 * " i f A l l S e l e c t e d " i f a l l o f t h e v a r i a n t s i n a v a r i a n t s e t i s

s e l e c t e d

444 * " i f S e l e c t e d " i f some of t h e v a r i a n t s i n a v a r i a n t s e t i s

s e l e c t e d

445 * " e x c l : " i s used when a s e t o f v a r i a n t s needed n o t t o be s e l e c t e d .

273

446 * The c o m p o s i t i o n segment t a g g e d wi th V a r i a b i l i t y A t t a c h m e n t i s

added t o t h e c o m p o s i t i o n i f

447 * t h e s e l e c t i o n s a r e r e a l i z e d .

448 * /

449 V a r i a b i l i t y A t t a c h m e n t :

450 "#vp " vp += [V a r P o i n t] (" i f O n e S e l e c t e d (" | " i f A l l S e l e c t e d (" | "

i f S e l e c t e d (") (vs += [V a r i a n t]) + (" ; e x c l : " (vsexc += [V a r i a n t

]) +) ? ") "

451 ((" and " | " o r ") vp2 += [V a r P o i n t] (" i f O n e S e l e c t e d (" | "

i f A l l S e l e c t e d (" | " i f S e l e c t e d (") (vs2 += [V a r i a n t]) + (" ;

e x c l : " (vsexc2 += [V a r i a n t]) +) ? ") ") * "#"

452 ;

453

454 / **

455 * A d e f i n i t i o n o f a s e t o f i n t e r a c t i o n s i n o r d e r t o r e a l i z e a

common g o a l v i a one o r more a to mi c

456 * (A t o m i c I n t e r a c t i o n s) and / o r c o m p o s i t e (C o m p o s i t e I n t e r a c t i o n)

i n t e r a c t i o n s t a n g l e d wi th each o t h e r .

457 *

458 * /

459 Compos i t ion :

460 (i n t e r a c t i o n s += (A t o m i c I n t e r a c t i o n | C o m p o s i t e I n t e r a c t i o n) (WS

i n t e r a c t i o n s += (A t o m i c I n t e r a c t i o n | C o m p o s i t e I n t e r a c t i o n)) *)

+

461 ;

462

463 / **

464 * A d e f i n i t i o n o f an i n t e r a c t i o n between s e r v i c e s wi th / w i t h o u t a

gua rd (I n t C o n d i t i o n) i n c l u d i n g

465 * a s e t o f s e l e c t i o n o f an i n t e r a c t i o n among o t h e r s (S e l e c t I n t) ,

466 * r e p e a t i n g a s e t o f i n t e r a c t i o n s (R e p e a t I n t) ,

467 * p a r a l e l l i z a t i o n o f a s e t o f i n t e r a c t i o n s (P a r a l e l I n t)

468 * and f l o w i n g down i n a s e q u e n c e (S e q u e n c e I n t) .

469 *

470 * /

471 C o m p o s i t e I n t e r a c t i o n :

274

472 (" gua rd (" gua rd = I n t C o n d i t i o n S e t ") ") ? (" p r e c e d e n t ") ? (

i n t e r a c t i o n = S e l e c t I n t | i n t e r a c t i o n = R e p e a t I n t | i n t e r a c t i o n

= P a r a l e l I n t | i n t e r a c t i o n = S e q u e n c e I n t)

473 (" t i m e o u t " INT) ?

474 ;

475

476 / **

477 * A d e f i n i t i o n o f a s e l e c t i o n between a s e t o f i n t e r a c t i o n s among

s e r v i c e s which can be a tom ic (A t o m i c I n t e r a c t i o n) o r

478 * c o m p o s i t e (C o m p o s i t e I n t e r a c t i o n) wi th / w i t h o u t v a r i a b i l i t y

a t t a c h m e n t (V a r i a b i l i t y A t t a c h m e n t) .

479 * S e l e c t I n t i s w r i t t e n i n such a way t h a t t h e b l o c k i s s t a r t e d

wi th " s e l e c t " , i n t e r a c t i o n s

480 * a r e s u r r o u n d e d wi th p a r a n t h e s i s .

481 *

482 * /

483 S e l e c t I n t :

484 (va = V a r i a b i l i t y A t t a c h m e n t) ? " s e l e c t " (cond = I n t C o n d i t i o n S e t) ?

" (" i n t e r a c t i o n s += (A t o m i c I n t e r a c t i o n | C o m p o s i t e I n t e r a c t i o n)

+ ") "

485 ;

486

487 / **

488 * A d e f i n i t i o n o f a r e p e a t i t i o n o f a s e t o f i n t e r a c t i o n s between

s e r v i c e s which can be a tom ic (A t o m i c I n t e r a c t i o n) o r

489 * c o m p o s i t e (C o m p o s i t e I n t e r a c t i o n) wi th an e x i t c o n d i t i o n and wi th

/ w i t h o u t v a r i a b i l i t y a t t a c h m e n t (V a r i a b i l i t y A t t a c h m e n t) .

490 * R e p e a t I n t i s w r i t t e n i n such a way t h a t t h e b l o c k i s s t a r t e d

wi th " r e p e a t " f o l l o w i n g a c o n d i t i o n and

491 * a s e t o f i n t e r a c t i o n s a r e s u r r o u n d e d wi th p a r a n t h e s i s .

492 *

493 * /

494 R e p e a t I n t :

495 (va = V a r i a b i l i t y A t t a c h m e n t) ? " r e p e a t " cond = I n t C o n d i t i o n S e t

" (" (i n t e r a c t i o n s += (A t o m i c I n t e r a c t i o n | C o m p o s i t e I n t e r a c t i o n))

+ ") "

496 ;

275

497

498 / **

499 * A d e f i n i t i o n o f a p a r a l e l i z a t i o n o f a s e t o f i n t e r a c t i o n s

between s e r v i c e s which can be a to mic (A t o m i c I n t e r a c t i o n) o r

500 * c o m p o s i t e (C o m p o s i t e I n t e r a c t i o n) wi th / w i t h o u t v a r i a b i l i t y

a t t a c h m e n t (V a r i a b i l i t y A t t a c h m e n t) .

501 * P a r a l e l I n t i s w r i t t e n i n such a way t h a t t h e b l o c k i s s t a r t e d

wi th " p a r a l e l " , i n t e r a c t i o n s

502 * a r e s u r r o u n d e d wi th p a r a n t h e s i s .

503 *

504 * /

505 P a r a l e l I n t :

506 (va = V a r i a b i l i t y A t t a c h m e n t) ? " p a r a l l e l (" (i n t e r a c t i o n s += (

A t o m i c I n t e r a c t i o n | C o m p o s i t e I n t e r a c t i o n)) + ") "

507 ;

508

509 / **

510 * A d e f i n i t i o n o f a s e q u e n c e o f a s e t o f i n t e r a c t i o n s between

s e r v i c e s which can be a to mic (A t o m i c I n t e r a c t i o n) o r

511 * c o m p o s i t e (C o m p o s i t e I n t e r a c t i o n) wi th / w i t h o u t v a r i a b i l i t y

a t t a c h m e n t (V a r i a b i l i t y A t t a c h m e n t) .

512 * S e q u e n c e I n t i s w r i t t e n i n such a way t h a t t h e b l o c k i s s t a r t e d

wi th " s e q u e n c e " , i n t e r a c t i o n s

513 * a r e s u r r o u n d e d wi th p a r a n t h e s i s .

514 *

515 * /

516 S e q u e n c e I n t :

517 (va = V a r i a b i l i t y A t t a c h m e n t) ? " s e q u e n c e (" (i n t e r a c t i o n s += (

A t o m i c I n t e r a c t i o n | C o m p o s i t e I n t e r a c t i o n)) + ") "

518 ;

519

520 / **

521 * A s p e c i f i c a t i o n o f a b a s i c i n t e r a c t i o n between two s e r v i c e s wi th

/ w i t h o u t v a r i a b i l i t y a t t a c h m e n t (V a r i a b i l i t y A t t a c h m e n t) .

522 * A t o m i c I n t e r a c t i o n i s w r i t t e n

523 * wi th / w i t h o u t a gua rd c o n d i t i o n (I n t C o n d i t i o n) ,

276

524 * d e p i c t i o n o f s o u r c e and d e s t i n a t i o n s e r v i c e s (I n t e r f a c e) wi th "

send " o r " r e c e i v e " a c t i o n s ,

525 * a message (Message) ,

526 * wi th / w i t h o u t a c o m p u t a t i o n e f f e c t t o a C o n t e x t E l e m e n t (

ChorComputa t ion) and

527 * wi th o t h e r a d d i t i o n a l c o n s t r u c t s .

528 * I f t h e a c t i o n i s " r e c e i v e " from a s e t o f s e r v i c e s and one s h o u l d

be s e l e c t e d t h e n " pickOne " i s added . (f o r r a c i n g incoming

messages p a t t e r n)

529 * I f more t h a n one r e c e i v e i s a c c o m p l i s h e d from a s o u r c e t o a

d e s t i n a t i o n , t h e n " m u l t i p l e t i m e s " s h o u l d be added .

530 * I f t h e " send " a c t i o n r e q u i r e s n o t i f i c a t i o n from d e s t i n a t i o n ,

t h e n " w i t h N o t i f i c a t i o n " i s added .

531 * I f an a to mi c a c t i o n i s l i m i t e d wi th a d u r a t i o n , t h e n " w a i t "

keyword wi th a t ime s p e c i f i c a t i o n s h o u l d be p r o v i d e d .

532 * When an a to mi c a c t i o n wants t o e x p l i c i t l y d e p i c t a f a u l t when a

problem i s o c c u r r e d , a " f a u l t " s h o u l d be d e f i n e d .

533 * I f i n t e r a c t i o n i s " send " w i l l i n g t o g e t a r e q u e s t from one of

a v a l i a b l e d e s t i o n a t i o n s wi th a l i m i t e d d u r a t i o n , t h e n

534 * " c a l l i n g S e q u e n c e " (f o r c o n t i n g e n t r e q u e s t s p a t t e r n) i s d e f i n e d

wi th a s e q u e n c e o f d e s t i n a t i o n s .

535 * I f t h e i n t e r a c t i o n c a u s e s an i n t e r a c t i o n ; s e n d i n g t h e v a l u e o f

t h e c o m p u t a t i o n t o a n o t h e r s e r v i c e / s e r v i c e s ,

536 * t h e n " r e f e r e d D e s t i n a t i o n s " i s d e f i n e d .

537 * I f t h e A t o m i c I n t e r a c t i o n c a u s e s one or more changes i n

Contex tE lemen t s v a l u e s , t h e n a s e t o f ChorComputa t ion i s

d e f i n e d .

538 *

539 * /

540 A t o m i c I n t e r a c t i o n :

541 (va = V a r i a b i l i t y A t t a c h m e n t) ?

542 (" gua rd (" gua rd = I n t C o n d i t i o n S e t ") ") ?

543 (s o u r c e = [I n t e r f a c e] t y p e = " send " "{" (d e s t i o n a t i o n += [

I n t e r f a c e]) + "} " (" in s e q u e n c e ") ? (" a t om ic ") ? (" v i e w er ") ? |

544 d e s t i n a t i o n = [I n t e r f a c e] t y p e = " r e c e i v e " (" from{" (r s o u r c e +=

[I n t e r f a c e]) * "} ") ? (" m u l t i p l e t i m e s ") ? (" pickOne ") ?)

545 (message += Message)

277

546 (" s t o p m e s s a g e from " s t o p s e r v i c e = [I n t e r f a c e]) ?

547 (" w a i t " (t = Time) ? (" u n t i l " INT " messagescame ") ?) ?

548 (" i n a c t i v i t y i n t e r v a l " i n a c t = Time) ?

549 (" r e f e r e d D e s t i n a t i o n s (" r e f p a r t += [I n t e r f a c e] ((" , " r e f p a r t += [

I n t e r f a c e]) *) ? ") ") ?

550 (" w i t h N o t i f i c a t i o n " (" (min : " min = INT " , max : " max = INT ") ") ?)

?

551 (f += F a u l t s (" t o r e f e r r a l s ") ?) ?

552 (comp += ChorComputa t ion) *

553 ;

554

555 / **

556 * A d e f i n i t i o n o f message i n c l u d i n g s e t o f p a r a m e t e r s (Param) ,

s e m a n t i c a l d e s c r i p t i o n ,

557 * r e f e r i n g s e r v i c e (I n t e r f a c e) and i t s f u n c t i o n (F u n c t i o n) .

558 *

559 * /

560 Message :

561 " message " name = [F u n c t i o n] (" (" (p a r += [Param] (" , " p a r += [

Param]) *) ? ") ")

562 (" r e f e r s " (s e r v i c e += [I n t e r f a c e] " . " f u n c t += [F u n c t i o n]) *) ?

/ / ? *

563 (" s e m a n t i c (" s = STRING ") ") ?

564 ;

565

566 / **

567 * A s e t o f I n t e r a c t i o n C o n d i t i o n s (I n t C o n d i t i o n) .

568 *

569 * /

570 I n t C o n d i t i o n S e t :

571 i c o n d += I n t C o n d i t i o n ((" o r " | " and ") i c o n d += I n t C o n d i t i o n) *

572 ;

573

574 / **

575 * A s p e c i f i c a t i o n o f a c o n d i t i o n used t o gua rd a p a r t o f an

i n t e r a c t i o n .

278

576 * I n t C o n d i t i o n can be e i t h e r a d e f i n i t i o n o f a c o n d i t i o n wi th

e x p r e s s i o n and n u m e r i c a l / non n u m e r i c a l v a l u e s o r

577 * a s p e c i f i c a t i o n o f number .

578 *

579 * /

580 I n t C o n d i t i o n :

581 p1 = GUARDTEXT ((exp = EXPR (STRING | INT | ID | BOOLEAN)) | " t i m e s

") ?

582 ;

583

584 / **

585 * A s e t o f p a r a m e t e r s s e p a r a t e d by comma and s u r r o u n d e d wi th

p a r e n t h e s i s

586 *

587 * /

588 Params :

589 p a r s = " (" p1 = Param (" , " p2 += Param) * ") "

590 ;

591

592 / **

593 * A p a r a m e t e r d e f i n i t i o n wi th i t s name

594 *

595 * /

596 Param :

597 name = ID

598 ;

599

600 / **

601 * A sys tem f a i l u r e wi th i t s name and e x p l a n a t i o n and s e n d s f a u l t

n o t i f i c a t i o n t o c o r r e s p o n d i n g s e n d e r s

602 *

603 * /

604 F a u l t s :

605 " f a u l t (" fname1 = FAULTTYPES (" , " fname2 += FAULTTYPES) * (" ,

t e r m i n a t e I f " number = INT " f a i l s ") ? ") "

606 ;

607

279

608 / **

609 * A s p e c i f i c a t i o n o f how names of some e l e m e n t s i n c h o r e o g r a p h y

s h o u l d be d e f i n e d .

610 *

611 * /

612 Qual i f i edName :

613 ID (_ ID) * ;

614

615 / **

616 * The amount o f d u r a t i o n wi th r e l a t e d u n i t s

617 *

618 * /

619 Time :

620 name = INT (" second " |" s e c o n d s " | " hour " | " h o u r s " | " day " | " days " | "

month " | " months ")

621 ;

622 / **

623 * The r e s t o f t h e grammar r u l e s d e f i n e c o n s t a n t v a l u e s used i n

o t h e r r u l e s .

624 *

625 * /

626 GUARDTEXT:

627 ID | INT

628 ;

629

630 TEXT :

631 (ID | INT | " : " | " / ") +

632 ;

633

634 CONST:

635 r e q u i r e s = r e q u i r e s | e x c l u d e s = e x c l u d e s | i m p l i e s = i m p l i e s

| n e g a t e s = n e g a t e s

636 ;

637

638 enum NUMCONST:

639 c o n s t = " c o n s t "

640 ;

280

641 BOOLEAN:

642 " t r u e " | " f a l s e "

643 ;

644

645 enum EXPR :

646 g t = " " | g t e = " = " | l t = " " | l t e = " = " | equ = "=="| neq = " ! = " |

eq = "="

647 ;

648

649 enum CONFTYPE:

650 subs = " s u b s t i t u t i o n " | p a r a =" p a r a m e t e r i z a t i o n " | add =" a d d i t i o n "

651 ;

652

653 BINDING :

654 d e v t = " dev t ime "| de rv = " d e r i v a t i o n " | comp = " c o m p i l a t i o n " | l i n k

= " l i n k i n g " | s t r t = " s t a r t up " | r u n t =" r u n t i m e "

655 ;

656

657 FAULTTYPES :

658 " d e l i v e r y " | " p a r a m e t e r " | " n o t r e a d y " | " w a i t t i m e o u t " | "

i n s u f f i c i e n t m e s s a g e " | " n o t a v a l i a b l e "

659 ;

281

282

APPENDIX B

TRAVEL ITINERARY SYSTEM IN XCHOR LANGUAGE

1 c h o r e o g r a p h y t r a v e l i t i n e r a r y

2

3 i m p o r t c o n f i g u r a t i o n vconf_ t r a v e l i t i n e r a r y

4 i m p o r t s e r v i c e a i r l i n e

5 i m p o r t s e r v i c e h o t e l

6 i m p o r t s e r v i c e t r a v e l a g e n c y wi th c o n f i g u r a t i o n vconf_ t r a v e l a g e n c y

7 i m p o r t s e r v i c e t r a v e l e r w i th c o n f i g u r a t i o n vconf_ t r a v e l e r

8 i m p o r t s e r v i c e c a r r e n t a l

9 i m p o r t s e r v i c e c r u i s e

10 i m p o r t s e r v i c e a c t i v i t y p r o v i d e r

11

12 C o n t e x t E lemen t s

13 f l i g h t t i c k e t c o n f i r m a t i o n f a l s e

14 h o t e l b o o k i n g c o n f i r m a t i o n f a l s e

15 c r u i s e c o n f i r m a t i o n f a l s e

16 c a r r e n t a l c o n f i r m a t i o n f a l s e

17 a c t i v i t y c o n f i r m a t i o n f a l s e

18 i n t e l e m 0

19 s t r i n g e l e m " s t r "

20

21 Choreography V a r i a b i l i t y Mapping

22 VP booking maps s e r v i c e t r a v e l a g e n c y VP p l a n

23 V a r i a n t a i r l i n e maps V a r i a n t w i t h a i r l i n e

24 V a r i a n t h o t e l maps V a r i a n t w i t h h o t e l

25 VP f a c i l i t i e s maps s e r v i c e t r a v e l a g e n c y VP p l a n

26 V a r i a n t a c t i v i t i e s maps V a r i a n t w i t h a c t i v i t i e s

27 V a r i a n t c a r r e n t a l maps V a r i a n t w i t h c a r r e n t a l

283

28 V a r i a n t c r u i s e maps V a r i a n t w i t h c r u i s e

29 VP f a c i l i t i e s maps s e r v i c e t r a v e l e r VP a c t i v i t y s e l e c t i o n

30 V a r i a n t a c t i v i t i e s maps V a r i a n t w i t h a c t i v i t y

31

32 F u n c t i o n p l a n i t i n e r a r y :

33 s e q u e n c e (

34 t r a v e l e r send{ t r a v e l a g e n c y } message q u e r y t r i p (s t a r t d a t e ,

endda te , d e t a i l s)

35 p a r a l l e l (

36 #vp booking i f S e l e c t e d (a i r l i n e) # t r a v e l a g e n c y send{ a i r l i n e }

message r e q u e s t p r i c e (s t a r t d a t e , e n d d a t e)

37 #vp booking i f O n e S e l e c t e d (h o t e l) # t r a v e l a g e n c y send{ h o t e l }

message r e q u e s t p r i c e (s t a r t d a t e , endda te , d e t a i l s)

38 #vp f a c i l i t i e s i f A l l S e l e c t e d (c r u i s e) # t r a v e l a g e n c y send

{ c r u i s e } message r e q u e s t p r i c e (package id , d a t e)

39 #vp f a c i l i t i e s i f S e l e c t e d (c a r r e n t a l) # t r a v e l a g e n c y send

{ c a r r e n t a l } message r e q u e s t p r i c e (carmodel , d a t e)

40 #vp f a c i l i t i e s i f S e l e c t e d (a c t i v i t i e s) # s e q u e n c e (

41 t r a v e l a g e n c y send{ a c t i v i t y p r o v i d e r } message l i s t a c t i v i t i e s

(p l a c e , d a t e) r e f e r e d D e s t i n a t i o n s (t r a v e l e r)

42 t r a v e l e r send{ t r a v e l a g e n c y } message s e t s e l e c t e d a c t i v i t i e s (

s e l e c t e d l i s t)

43 t r a v e l a g e n c y send{ a c t i v i t y p r o v i d e r } message r e q u e s t p r i c e (

s e l e c t e d l i s t , d a t e)

44)

45)

46 t r a v e l a g e n c y send { t r a v e l e r } message

g e t a v a l i a b l e t r i p o p t i o n s (t r a v e l e r I D)

47 t r a v e l e r r e c e i v e from{ t r a v e l a g e n c y } message

g e t a v a l i a b l e t r i p o p t i o n s (t r a v e l e r I D)

48 #vp booking i f S e l e c t e d (a i r l i n e) # s e q u e n c e (

49 t r a v e l e r send{ t r a v e l a g e n c y } message s e l e c t a i r l i n e (a i r l i n e I D)

50 %comp i n t e l e m = t r a v e l a g e n c y . s e l e c t a i r l i n e %

51)

52 #vp booking i f S e l e c t e d (h o t e l) # s e q u e n c e (

53 t r a v e l e r send{ t r a v e l a g e n c y } message s e l e c t h o t e l (h o t e l I D)

54 %comp s t r i n g e l e m = t r a v e l a g e n c y . s e l e c t h o t e l %

284

55)

56

57 #vp f a c i l i t i e s i f S e l e c t e d (c r u i s e) # s e q u e n c e (

58 t r a v e l e r send{ t r a v e l a g e n c y } message s e l e c t c r u i s e (package id ,

d a t e)

59 %comp c r u i s e c o n f i r m a t i o n = t r a v e l a g e n c y . s e l e c t c r u i s e %

60)

61

62 #vp f a c i l i t i e s i f S e l e c t e d (c a r r e n t a l) # s e q u e n c e (

63 t r a v e l e r send{ t r a v e l a g e n c y } message s e l e c t c a r r e n t a l (ca rmode l

)

64 %comp c a r r e n t a l c o n f i r m a t i o n = t r a v e l a g e n c y . s e l e c t c a r r e n t a l %

65)

66

67 #vp f a c i l i t i e s i f S e l e c t e d (a c t i v i t i e s) # s e q u e n c e (

68 t r a v e l e r send{ t r a v e l a g e n c y } message s e t s e l e c t e d a c t i v i t i e s (

a c t i v i t y l i s t)

69 %comp a c t i v i t y c o n f i r m a t i o n = t r a v e l a g e n c y .

s e t s e l e c t e d a c t i v i t i e s %

70 t r a v e l a g e n c y send{ t r a v e l e r } message g e t c o n f i r m e d p l a n

()

71)

72

73 s e l e c t (

74 gua rd (h o t e l b o o k i n g c o n f i r m a t i o n == t r u e and

f l i g h t t i c k e t c o n f i r m a t i o n == t r u e) p a r a l l e l (

75 #vp booking i f S e l e c t e d (a i r l i n e) # s e q u e n c e (

76 t r a v e l a g e n c y send{ a i r l i n e } message b o o k f l i g h t (a r r i v a l ,

d e p a r t u r e) w a i t 3 s e c o n d s w i t h N o t i f i c a t i o n

77 t r a v e l a g e n c y send{ a i r l i n e } message p r o c e s s t i c k e t (

cus tomer ID) r e f e r e d D e s t i n a t i o n s (t r a v e l e r)

78)

79 #vp booking i f S e l e c t e d (h o t e l) # s e q u e n c e (

80 t r a v e l a g e n c y send{ h o t e l } message bookroom (a r r i v a l ,

d e p a r t u r e , d e t a i l s) w a i t 3 s e c o n d s w i t h N o t i f i c a t i o n

81 t r a v e l a g e n c y send{ h o t e l } message p r o c e s s v o u c h e r (

cus tomer ID) r e f e r e d D e s t i n a t i o n s (t r a v e l e r)

285

82)

83

84 t r a v e l e r r e c e i v e from{ t r a v e l a g e n c y } message

g e t c o n f i r m e d p l a n ()

85)

86 s e q u e n c e (

87 t r a v e l a g e n c y send{ t r a v e l e r } message

g e t t r i p p l a n c a n c e l a t i o n ()

88 t r a v e l a g e n c y send{ t r a v e l e r } message g e t t r i p p l a n c a n c e l a t i o n

()

89 t r a v e l e r r e c e i v e from{ t r a v e l a g e n c y } message

g e t t r i p p l a n c a n c e l a t i o n ()

90)

91)

92)

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ t r a v e l i t i n e r a r y o f c h o r e o g r a p h y

t r a v e l i t i n e r a r y

2

3 e x t e r n a l V P booking :

4 o p t i o n a l

5 v a r i a n t h o t e l

6 v a r i a n t a i r l i n e

7 b ind ingTime dev t ime

8

9 e x t e r n a l V P f a c i l i t i e s :

10 o p t i o n a l

11 v a r i a n t c r u i s e : a c t i v a t e M e t h o d s (p l a n i t i n e r a r y) : s e t P a r a m e t e r (

t o F u n c t : p l a n i t i n e r a r y , p a r a m e t e r : p l a n n e d)

12 v a r i a n t c a r r e n t a l : a c t i v a t e M e t h o d s (s e r v i c e : c a r r e n t a l , f u n c t :

r e n t)

13 v a r i a n t a c t i v i t i e s

14 b ind ingTime dev t ime

15

16 c o n f i g u r a t i o n i t i n e r a r y :

17 varType e x t e r n a l V P

18 a l t e r n a t i v e

286

19 v a r i a n t r e g u l a r

20 v a r i a n t v a c a t i o n p a c k a g e

21 (min : 1 , max : 1)

22 r e a l i z a t i o n " i t i s r e a l i z e d by booking and f a c i l i t i e s v a r i a t i o n

p o i n t s "

23 c o n f v a r i a n t r e g u l a r mapping

24 VPName booking s e l e c t e d V a r i a n t s (h o t e l a i r l i n e ; min : 1 , max : 2)

25 VPName f a c i l i t i e s s e l e c t e d V a r i a n t s (c r u i s e c a r r e n t a l

a c t i v i t i e s ; min : 0 , max : 3)

26 c o n f v a r i a n t v a c a t i o n p a c k a g e mapping

27 VPName booking s e l e c t e d V a r i a n t s (h o t e l a i r l i n e)

28 VPName f a c i l i t i e s s e l e c t e d V a r i a n t s (c r u i s e c a r r e n t a l

a c t i v i t i e s ; min : 0 , max : 3)

29 d e f a u l t V a r i a n t r e g u l a r

30 t y p e p a r a m e t e r i z a t i o n

31 b ind ingTime dev t ime

32

33 P a r a m e t e r S e t t i n g s

34 p a r a m e t e r h o t e l b o o k i n g c o n f i r m a t i o n e x i s t s w h e n s e l e c t e d {booking .

h o t e l }

35 p a r a m e t e r f l i g h t t i c k e t c o n f i r m a t i o n e x i s t s w h e n s e l e c t e d {booking .

a i r l i n e }

36 p a r a m e t e r c r u i s e c o n f i r m a t i o n e x i s t s w h e n s e l e c t e d { f a c i l i t i e s .

c r u i s e }

37 p a r a m e t e r c a r r e n t a l c o n f i r m a t i o n e x i s t s w h e n s e l e c t e d { f a c i l i t i e s .

c a r r e n t a l }

38 p a r a m e t e r a c t i v i t y c o n f i r m a t i o n e x i s t s w h e n s e l e c t e d { f a c i l i t i e s .

a c t i v i t i e s }

1 Choreography i n t e r f a c e t r a v e l o f t r a v e l i t i n e r a r y

2

3 f u n c t i o n p l a n i t i n e r a r y

4 i n p u t (p l a n)

5 o u t p u t t r i p p l a n

6

7 portName t r a v e l b i n d i n g l o c a l h o s t :8081

1 S e r v i c e i n t e r f a c e t r a v e l a g e n c y

287

2

3 f u n c t i o n q u e r y t r i p

4 i n p u t (s t a r t d a t e , endda te , d e t a i l s)

5 o u t p u t t r i p i n f o

6

7 f u n c t i o n s e l e c t h o t e l

8 i n p u t (h o t e l I D)

9

10 f u n c t i o n s e l e c t a i r l i n e

11 i n p u t (a i r l i n e I D)

12

13 f u n c t i o n s e n d c o n f i r m e d p l a n

14 i n p u t (cus tomer ID)

15 o u t p u t c o n f i r m e d p l a n

16

17 f u n c t i o n s e n d t r i p p l a n c a n c e l a t i o n

18 i n p u t (cus tomer ID)

19

20 f u n c t i o n s e t s e l e c t e d a c t i v i t i e s

21 i n p u t (s e l e c t e d l i s t)

22

23 f u n c t i o n s e l e c t a c t i v i t i e s

24 i n p u t (a c t i v i t y l i s t)

25

26 f u n c t i o n s e l e c t c r u i s e

27 i n p u t (package id , d a t e)

28

29 f u n c t i o n s e l e c t c a r r e n t a l

30 i n p u t (ca rmode l)

31

32 portName agency b i n d i n g l o c a l h o s t :8080

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ t r a v e l a g e n c y of s e r v i c e t r a v e l a g e n c y

2

3 e x t e r n a l V P p l a n :

4 o p t i o n a l

288

5 v a r i a n t w i t h h o t e l : a c t i v a t e M e t h o d s (s e l e c t h o t e l , q u e r y t r i p ,

s e n d c o n f i r m e d p l a n , s e n d t r i p p l a n c a n c e l a t i o n)

6 v a r i a n t w i t h a i r l i n e : a c t i v a t e M e t h o d s (s e l e c t a i r l i n e , q u e r y t r i p ,

s e n d c o n f i r m e d p l a n , s e n d t r i p p l a n c a n c e l a t i o n)

7 v a r i a n t w i t h c r u i s e : a c t i v a t e M e t h o d s (s e l e c t c r u i s e , q u e r y t r i p ,

s e n d c o n f i r m e d p l a n , s e n d t r i p p l a n c a n c e l a t i o n)

8 v a r i a n t w i t h c a r r e n t a l : a c t i v a t e M e t h o d s (s e l e c t c a r r e n t a l ,

q u e r y t r i p , s e n d c o n f i r m e d p l a n , s e n d t r i p p l a n c a n c e l a t i o n)

9 v a r i a n t w i t h a c t i v i t i e s : a c t i v a t e M e t h o d s (s e t s e l e c t e d a c t i v i t i e s ,

s e l e c t a c t i v i t i e s , q u e r y t r i p , s e n d c o n f i r m e d p l a n ,

s e n d t r i p p l a n c a n c e l a t i o n)

10 b ind ingTime dev t ime

11

12 a b s t r a c t p r o c e s s d e f i n i t i o n

13 s e q u e n c e (

14 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message q u e r y t r i p (s t a r t d a t e ,

endda te , d e t a i l s)

15 p a r a l l e l (

16 #vp p l a n i f S e l e c t e d (w i t h a i r l i n e) # t r a v e l a g e n c y send{ a i r l i n e }

message r e q u e s t p r i c e (s t a r t d a t e , e n d d a t e)

17 #vp p l a n i f S e l e c t e d (w i t h h o t e l) # t r a v e l a g e n c y send{ h o t e l }

message r e q u e s t p r i c e (s t a r t d a t e , endda te , d e t a i l s)

18 #vp p l a n i f S e l e c t e d (w i t h c r u i s e) # t r a v e l a g e n c y send{ c r u i s e }

message r e q u e s t p r i c e (package id , d a t e)

19 #vp p l a n i f S e l e c t e d (w i t h c a r r e n t a l) # t r a v e l a g e n c y send

{ c a r r e n t a l } message r e q u e s t p r i c e (carmodel , d a t e)

20 #vp p l a n i f S e l e c t e d (w i t h a c t i v i t i e s) # s e q u e n c e (

21 t r a v e l a g e n c y send{ a c t i v i t y p r o v i d e r } message l i s t a c t i v i t i e s (

p l a c e , d a t e) r e f e r e d D e s t i n a t i o n s (t r a v e l e r)

22 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message

s e t s e l e c t e d a c t i v i t i e s (s e l e c t e d l i s t)

23 t r a v e l a g e n c y send{ a c t i v i t y p r o v i d e r } message r e q u e s t p r i c e (

s e l e c t e d l i s t , d a t e)

24)

25)

26 t r a v e l a g e n c y send{ t r a v e l e r } message g e t a v a l i a b l e t r i p o p t i o n s (

t r a v e l e r I D)

289

27 #vp p l a n i f S e l e c t e d (w i t h a i r l i n e) # s e q u e n c e (

28 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message s e l e c t a i r l i n e (

a i r l i n e I D)

29 %comp f l i g h t t i c k e t c o n f i r m a t i o n = t r a v e l a g e n c y . s e l e c t a i r l i n e %

30)

31 #vp p l a n i f S e l e c t e d (w i t h h o t e l) # s e q u e n c e (

32 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message s e l e c t h o t e l (

h o t e l I D)

33 %comp h o t e l b o o k i n g c o n f i r m a t i o n = t r a v e l a g e n c y . s e l e c t h o t e l %

34)

35

36 #vp p l a n i f S e l e c t e d (w i t h c r u i s e) # s e q u e n c e (

37 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message s e l e c t c r u i s e (

package id , d a t e)

38 %comp c r u i s e c o n f i r m a t i o n = t r a v e l a g e n c y . s e l e c t c r u i s e %

39)

40

41 #vp p l a n i f S e l e c t e d (w i t h c a r r e n t a l) # s e q u e n c e (

42 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message s e l e c t c a r r e n t a l (

ca rmode l)

43 %comp c a r r e n t a l c o n f i r m a t i o n = t r a v e l a g e n c y . s e l e c t c a r r e n t a l %

44)

45

46 #vp p l a n i f S e l e c t e d (w i t h a c t i v i t i e s) # s e q u e n c e (

47 t r a v e l a g e n c y r e c e i v e from{ t r a v e l e r } message s e l e c t a c t i v i t i e s (

a c t i v i t y l i s t)

48 %comp a c t i v i t y c o n f i r m a t i o n = t r a v e l a g e n c y . s e t s e l e c t e d a c t i v i t i e s

%

49)

50

51 s e l e c t (

52 guard (h o t e l b o o k i n g c o n f i r m a t i o n == " t r u e " and

f l i g h t t i c k e t c o n f i r m a t i o n == " t r u e ") p a r a l l e l (

53 #vp p l a n i f S e l e c t e d (w i t h a i r l i n e) # s e q u e n c e (

54 t r a v e l a g e n c y send{ a i r l i n e } message b o o k f l i g h t (a r r i v a l ,

d e p a r t u r e) w a i t 3 s e c o n d s

290

55 t r a v e l a g e n c y send{ a i r l i n e } message p r o c e s s t i c k e t (

cus tomer ID) r e f e r e d D e s t i n a t i o n s (t r a v e l e r)

56)

57 #vp p l a n i f S e l e c t e d (w i t h h o t e l) # s e q u e n c e (

58 t r a v e l a g e n c y send{ h o t e l } message bookroom (a r r i v a l ,

d e p a r t u r e , d e t a i l s) w a i t 3 s e c o n d s

59 t r a v e l a g e n c y send{ h o t e l } message p r o c e s s v o u c h e r (cus tomer ID

) r e f e r e d D e s t i n a t i o n s (t r a v e l e r)

60)

61 t r a v e l a g e n c y send{ t r a v e l e r } message s e n d c o n f i r m e d p l a n (

cus tomer ID)

62)

63 t r a v e l a g e n c y send{ t r a v e l e r } message s e n d t r i p p l a n c a n c e l a t i o n (

cus tomer ID)

64)

65)

1 S e r v i c e i n t e r f a c e t r a v e l e r

2

3 f u n c t i o n g e t a v a l i a b l e t r i p o p t i o n s

4 i n p u t (t r a v e l e r I D)

5

6 f u n c t i o n s e l e c t a c t i v i t i e s

7 i n p u t (a c t i v i t y l i s t)

8 o u t p u t s e l e c t e d l i s t

9

10 f u n c t i o n g e t c o n f i r m e d p l a n

11 i n p u t (c o n f i r m e d p l a n)

12

13 f u n c t i o n g e t t r i p p l a n c a n c e l a t i o n

14 i n p u t (c a n c e l l a t i o n)

15

16 portName t r a v e l e r b i n d i n g l o c a l h o s t :8082

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ t r a v e l e r o f s e r v i c e t r a v e l e r

2

3 e x t e r n a l V P a c t i v i t y s e l e c t i o n :

4 a l t e r n a t i v e

291

5 v a r i a n t w i t h a c t i v i t y : a c t i v a t e M e t h o d s (g e t a v a l i a b l e t r i p o p t i o n s

, s e l e c t a c t i v i t i e s)

6 v a r i a n t w i t h o u t a c t i v i t y : a c t i v a t e M e t h o d s (

g e t a v a l i a b l e t r i p o p t i o n s)

7 (min : 1 , max : 1)

8 b ind ingTime dev t ime

9

10 a b s t r a c t p r o c e s s d e f i n i t i o n

11 s e q u e n c e (

12 t r a v e l e r send{ t r a v e l a g e n c y } message q u e r y t r i p (s t a r t d a t e ,

endda te , d e t a i l s)

13 t r a v e l e r r e c e i v e from{ t r a v e l a g e n c y } message

g e t a v a l i a b l e t r i p o p t i o n s (t r a v e l e r I D)

14 #vp a c t i v i t y s e l e c t i o n i f S e l e c t e d (w i t h a c t i v i t y) # t r a v e l e r send

{ t r a v e l a g e n c y } message s e l e c t a c t i v i t i e s (a c t i v i t y l i s t)

15 t r a v e l e r r e c e i v e from{ t r a v e l a g e n c y } message g e t c o n f i r m e d p l a n ()

16 t r a v e l e r r e c e i v e from{ t r a v e l a g e n c y } message

g e t t r i p p l a n c a n c e l a t i o n ()

17)

1 S e r v i c e i n t e r f a c e h o t e l

2

3 f u n c t i o n r e q u e s t p r i c e

4 i n p u t (s t a r t d a t e , endda te , a d d i t i o n a l r e q u e s t s)

5 o u t p u t p r i c e

6

7 f u n c t i o n m a k e r e s e r v a t i o n

8 i n p u t (a r r i v a l , d e p a r t u r e , a d d i t i o n a l r e q u e s t s)

9 o u t p u t c o n f i r m a t i o n

10

11 f u n c t i o n bookroom

12 i n p u t (a r r i v a l , d e p a r t u r e , a d d i t i o n a l r e q u e s t s)

13 o u t p u t c o n f i r m a t i o n

14

15 f u n c t i o n p r o c e s s v o u c h e r

16 i n p u t (cus tomer ID)

17 o u t p u t vouche r

292

18

19 portName h o t e l b i n d i n g l o c a l h o s t :8087

1 S e r v i c e i n t e r f a c e a i r l i n e

2

3 f u n c t i o n r e q u e s t p r i c e

4 i n p u t (s t a r t d a t e , e n d d a t e)

5 o u t p u t p r i c e

6

7 f u n c t i o n b o o k f l i g h t

8 i n p u t (a r r i v a l , d e p a r t u r e , a d d i t i o n a l r e q u e s t s)

9 o u t p u t c o n f i r m a t i o n

10

11 f u n c t i o n p r o c e s s t i c k e t

12 i n p u t (cus tomer ID)

13 o u t p u t e t i c k e t

14

15 portName a i r l i n e b i n d i n g l o c a l h o s t :8084

1 S e r v i c e i n t e r f a c e c r u i s e

2

3 f u n c t i o n r e q u e s t p r i c e

4 i n p u t (package id , d a t e)

5 o u t p u t p r i c e

6

7 f u n c t i o n b o o k c r u i s e

8 i n p u t (package id , da t e , numbeofperson)

9 o u t p u t c o n f i r m a t i o n

10

11 portName c r u i s e b i n d i n g l o c a l h o s t :8087

1 S e r v i c e i n t e r f a c e c a r r e n t a l

2

3 f u n c t i o n r e q u e s t p r i c e

4 i n p u t (carmodel , d a t e)

5 o u t p u t p r i c e

6

7 f u n c t i o n r e n t

293

8 i n p u t (d a t e i n t e r v a l , ca rmode l)

9 o u t p u t c o n f i r m a t i o n

10

11 portName c a r r e n t a l b i n d i n g l o c a l h o s t :8085

1 S e r v i c e i n t e r f a c e a c t i v i t y p r o v i d e r

2

3 f u n c t i o n l i s t a c t i v i t i e s

4 i n p u t (p l a c e , d a t e)

5 o u t p u t a c t i v i t y l i s t

6

7 f u n c t i o n r e q u e s t p r i c e

8 i n p u t (a c t i v i t y l i s t , d a t e)

9 o u t p u t p r i c e

10

11 f u n c t i o n e n r o l l a c t i v i t y

12 i n p u t (a c t i v i t y , da t e , numbeofperson)

13 o u t p u t c o n f i r m a t i o n

14

15 portName a c t i v i t y p r o v i d e r b i n d i n g l o c a l h o s t :8089

294

APPENDIX C

ADAPTABLE SECURITY SYSTEM IN XCHOR LANGUAGE

1

2 c h o r e o g r a p h y a d a p t a b l e s e c u r i t y s y s t e m

3

4 i m p o r t c o n f i g u r a t i o n vconf_ a d a p t a b l e s e c u r i t y s y s t e m

5

6 use c h o r e o g r a p h y cho r_ a l e r t

7 use c h o r e o g r a p h y cho r_ c r e d e n t i a l m n g

8

9 i m p o r t s e r v i c e c o n n e c t i o n

10 i m p o r t s e r v i c e e n c r y p t i o n wi th c o n f i g u r a t i o n vconf_ e n c r y p t i o n

11 i m p o r t s e r v i c e c r e d e n t i a l s

12 i m p o r t s e r v i c e a t t e m p t c a l c

13 i m p o r t s e r v i c e compar i son wi th c o n f i g u r a t i o n vconf_compar i son

14 i m p o r t s e r v i c e responsewindow

15 i m p o r t s e r v i c e i n t e r f a c e p r e p wi th c o n f i g u r a t i o n vm_ i n t e r f a c e p r e p

16 i m p o r t s e r v i c e t h i r d p a r t y wi th c o n f i g u r a t i o n vm_ t h i r d p a r t y

17 i m p o r t s e r v i c e u s e r

18 i m p o r t s e r v i c e warn ing

19

20 / / Sha red v a r i a b l e s

21 C o n t e x t E lemen t s

22 / / u se r s wrong a t t e m p t s

23 w r o n g a t t e m p t s 0

24 / / f a k e i n t e r f a c e c o n t e n t e n a b l i n g

25 f a k e i n t e r f a c e f a l s e

26 / / b i o m e t r i c s e l e c t e d a u t h e n t i c a t i o n t y p e v a r i a n t s s p e c i f i e s t h e

number

295

27 n o o f b i o m e t r i c a u t h t y p e s e l e c t e d 0

28 / / d e f u a l t p a r a m e t e r s f o r e n c r y p t i o n

29 d e f a u l t p a r a m s " username_passw "

30 / / u s e r e n t e r e d c r e d e n t i a l d a t a

31 u s e r n a m e p a s s " "

32 / / e x t r a c t e d f e a t u r e s o f u s e r b i o m e t r i c d a t a

33 p r o c e s s e d d a t a " "

34

35 Choreography V a r i a b i l i t y Mapping

36 VP i _ e n c r y p t i o n _ p a r a m e t e r s maps s e r v i c e e n c r y p t i o n VP

e n c r y p t i o n _params

37 V a r i a n t d e f a u l t p a r a m s maps V a r i a n t w i t h d e f a u l t p a r a m s

38 V a r i a n t s e t p a r a m s maps V a r i a n t wi thpa rams

39 VP i _ t r a n s a c t i o n _ t y p e maps s e r v i c e compar i son VP a n a l y s i s

40 V a r i a n t f a k e t r a n s a c t i o n maps V a r i a n t f a k e

41 V a r i a n t r e a l t r a n s a c t i o n maps V a r i a n t r e a l

42 VP i _ a u t h _ t y p e maps s e r v i c e t h i r d p a r t y VP u s e r _ d e v i c e

43 V a r i a n t username_passw maps V a r i a n t ATM Mobile PDA PC

44 V a r i a n t one t imepassw maps V a r i a n t ATM Mobile PDA PC

45 V a r i a n t e s i g n maps V a r i a n t ATM Mobile PDA PC

46 V a r i a n t f i n g e r p r i n t maps V a r i a n t PC

47 V a r i a n t f i n g e r v e i n maps V a r i a n t PC

48 V a r i a n t i r i s maps V a r i a n t PC

49 V a r i a n t f a c e maps V a r i a n t PC

50 VP i _ a u t h _ t y p e maps c h o r e o g r a p h y c r e d e n t i a l m n g VP d e v i c e c o n

51 V a r i a n t f i n g e r p r i n t maps V a r i a n t b i o m e t r i c d e v i c e

52 V a r i a n t f i n g e r v e i n maps V a r i a n t b i o m e t r i c d e v i c e

53 V a r i a n t i r i s maps V a r i a n t b i o m e t r i c d e v i c e

54 V a r i a n t f a c e maps V a r i a n t b i o m e t r i c d e v i c e

55

56 F u n c t i o n v e r i f y :

57 s e q u e n c e (

58 #vp i _ a u t h _ t y p e i f O n e S e l e c t e d (f i n g e r p r i n t f i n g e r v e i n i r i s

f a c e) # r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d t i m e s (

59 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)

60 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %

296

61 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)

62)

63

64 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # s e q u e n c e (

65 t h i r d p a r t y r e c e i v e message g e t c o n n e c t i o n ()

66 t h i r d p a r t y send{ e n c r y p t i o n } message s e t p a r a m s (p a r a m e t e r s)

67)

68 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)

69 %comp u s e r n a m e p a s s = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %

70 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)

71 e n c r y p t i o n r e c e i v e message e n c r y p t (c r e d e n t i a l s)

72

73 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # s e q u e n c e (

74 e n c r y p t i o n send{ t h i r d p a r t y } message v e r i f y (d a t a)

75 #vp i _ t r a n s a c t i o n _ t y p e i f S e l e c t e d (f a k e t r a n s a c t i o n) #

t h i r d p a r t y send{compar i son} message f a k e a n a l y s i s (

c o m p a r i s o n r e s u l t)

76 %comp f a k e i n t e r f a c e = compar i son . f a k e a n a l y s i s %

77)

78 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o f f l i n e) # s e q u e n c e (

79 e n c r y p t i o n send{ s t o r a g e } message g e t h a s h e d d a t a ()

r e f e r e d D e s t i n a t i o n s (compar i son)

80 #vp i _ t r a n s a c t i o n _ t y p e i f S e l e c t e d (f a k e t r a n s a c t i o n) #

s t o r a g e send{compar i son} message f a k e a n a l y s i s ()

81)

82

83 guard (f a k e i n t e r f a c e == f a l s e) s e q u e n c e (

84 compar i son send{ a t t e m p t c a l c } message c a l c u l a t e _wrong

_ a t t e m p t s (r e s u l t)

85 %comp w r o n g a t t e m p t s = a t t e m p t c a l c . c a l c u l a t e _wrong_ a t t e m p t s %

86 gua rd (w r o n g a t t e m p t s == 3) p a r a l l e l (

87 compar i son send{responsewindow} message show ()

88 a t t e m p t c a l c send{ c o n n e c t i o n } message c l o s e c o n n e c t i o n ()

89)

297

90 gua rd (w r o n g a t t e m p t s 3) p a r a l l e l (

91 compar i son send{responsewindow} message show ()

92 a t t e m p t c a l c send{warn ing} message warn (r e s p o n s e _warn ing)

93)

94)

95 guard (f a k e i n t e r f a c e == t r u e) #vp i _ t r a n s a c t i o n _ t y p e i f S e l e c t e d (

f a k e t r a n s a c t i o n) # p a r a l l e l (

96 s e q u e n c e (

97 compar i son send{ i n t e r f a c e p r e p } message p r e p a r e i n t e r f a c e ()

98 i n t e r f a c e p r e p send{responsewindow} message show ()

99)

100 compar i son send{cho r_ a l e r t } message a l e r t ()

101)

102)

103 F u n c t i o n e n r o l l :

104 s e q u e n c e (

105 u s e r send{cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)

106 %comp u s e r n a m e p a s s = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %

107 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)

108 #vp i _ a u t h _ t y p e i f O n e S e l e c t e d (f i n g e r p r i n t f i n g e r v e i n i r i s

f a c e) # r e p e a t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d t i m e s (

109 u s e r send {cho r_ c r e d e n t i a l m n g } message g e t c r e d e n t i a l s (

d e v i c e p a r a m e t e r)

110 %comp p r o c e s s e d d a t a = cho r_ c r e d e n t i a l m n g . g e t c r e d e n t i a l s %

111 cho r_ c r e d e n t i a l m n g send{ e n c r y p t i o n } message s e t p a r a m s (

p a r a m e t e r s)

112)

113 e n c r y p t i o n r e c e i v e message e n c r y p t (c r e d e n t i a l s)

114 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o n l i n e) # e n c r y p t i o n send

{ t h i r d p a r t y } message s a v e h a s h e d d a t a (h a s h e d d a t a)

115 #vp i _ a u t h _mode i f S e l e c t e d (mode_ o f f l i n e) # e n c r y p t i o n send

{ s t o r a g e } message s e t h a s h e d d a t a (h a s h e d d a t a)

116 i n t e r f a c e p r e p send{responsewindow} message show ()

117)

298

1 Choreography i n t e r f a c e cho r_ a d a p t a b l e s e c u r i t y s y s t e m of

a d a p t a b l e s e c u r i t y s y s t e m

2

3 f u n c t i o n v e r i f y

4 p r e c o n d i t i o n (a u t h e n t i c a t i o n _mode_ s e l e c t e d == t r u e)

5 p o s t c o n d i t i o n (v e r i f i c a t i o n _ r e s u l t _ s e t == t r u e)

6 i n p u t (u s e r _ i n f o)

7 o u t p u t r e s p o n s e

8

9 f u n c t i o n e n r o l l

10 o u t p u t e n r o l l m e n t n o t i f i c a t i o n

11

12 portName v e r i f y u s e r b i n d i n g hostname :8082

13

14 r e q u i r e d i n t e r f a c e s

15 from chor_ c r e d e n t i a l m n g f u n c t i o n { g e t c r e d e n t i a l s }

16 from chor_ a l e r t f u n c t i o n { a l e r t }

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ a d a p t a b l e s e c u r i t y s y s t e m of

c h o r e o g r a p h y a d a p t a b l e s e c u r i t y s y s t e m

2

3 / / d e t e r m i n e s number o f d i f f e r e n t b i o m e t r i c a u t h e n t i c a t i o n t y p e s

4 @composi t ion

5 i n t e r n a l V P i _ a u t h _ t y p e :

6 mandatory

7 v a r i a n t username_passw

8 o p t i o n a l

9 v a r i a n t one t imepassw

10 v a r i a n t e s i g n

11 a l t e r n a t i v e

12 v a r i a n t f i n g e r p r i n t

13 v a r i a n t f i n g e r v e i n

14 v a r i a n t i r i s

15 v a r i a n t f a c e

16 (min : 1 , max : 2)

17 b ind ingTime r u n t i m e

18

299

19 / / d e t e r m i n e s a u t h e n t i c a t i o n mode

20 @composi t ion

21 i n t e r n a l V P i _ a u t h _mode :

22 a l t e r n a t i v e

23 v a r i a n t mode_ o n l i n e : a c t i v a t e M e t h o d s (s e r v i c e : t h i r d p a r t y , f u n c t :

g e t c o n n e c t i o n , s a v e h a s h e d d a t a , v e r i f y)

24 v a r i a n t mode_ o f f l i n e : a c t i v a t e M e t h o d s (s e r v i c e : s t o r a g e , f u n c t :

g e t h a s h e d d a t a)

25 (min : 1 , max : 1)

26 b ind ingTime dev t ime

27

28 / / d e t e r m i n e s t r a n s a c t i o n t y p e

29 @composi t ion

30 i n t e r n a l V P i _ t r a n s a c t i o n _ t y p e :

31 o p t i o n a l

32 v a r i a n t r e a l t r a n s a c t i o n

33 v a r i a n t f a k e t r a n s a c t i o n

34 b ind ingTime dev t ime

35

36 / / d e t e r m i n e s t h e c o n t e n t o f e n c r y p t i o n p a r a m e t e r s

37

38 @ v c o n f r e a l i z a t i o n

39 i n t e r n a l V P i _ e n c r y p t i o n _ p a r a m e t e r s :

40 a l t e r n a t i v e

41 v a r i a n t d e f a u l t p a r a m s

42 v a r i a n t s e t p a r a m s

43 (min : 1 , max : 1)

44 b ind ingTime r u n t i m e

45

46 c o n f i g u r a t i o n a u t h e n t i c a t i o n _ t y p e :

47 varType e x t e r n a l V P

48 o p t i o n a l

49 v a r i a n t u s e r i n f o

50 v a r i a n t b i o m e t r i c s

51 r e a l i z a t i o n " i t i s r e a l i z e d by i _ e n c r y p t i o n _ p a r a m e t e r s and i

_ a u t h _ t y p e v a r i a b i l i t y p o i n t s "

52 c o n f v a r i a n t u s e r i n f o mapping

300

53 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (d e f a u l t p a r a m s)

54 c o n f v a r i a n t b i o m e t r i c s mapping

55 VPName i _ a u t h _ t y p e s e l e c t e d V a r i a n t s (f i n g e r p r i n t f i n g e r v e i n

i r i s f a c e ; min : 1 , max : 1)

56 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (s e t p a r a m s)

57 d e f a u l t V a r i a n t u s e r i n f o

58 t y p e p a r a m e t e r i z a t i o n

59 b ind ingTime dev t ime

60

61 c o n f i g u r a t i o n a u t h e n t i c a t i o n _mode :

62 varType e x t e r n a l V P

63 a l t e r n a t i v e

64 v a r i a n t o n l i n e

65 v a r i a n t o f f l i n e

66 (min : 1 , max : 1)

67 r e a l i z a t i o n " i t i s r e a l i z e d by i _ a u t h _mode and i _ e n c r y p t i o n

_ p a r a m e t e r s v a r i a b i l i t y p o i n t s , s e t t i n g params f o r

s e s s i o n k e y "

68 c o n f v a r i a n t o n l i n e mapping

69 VPName i _ a u t h _mode s e l e c t e d V a r i a n t s (mode_ o n l i n e)

70 VPName i _ e n c r y p t i o n _ p a r a m e t e r s s e l e c t e d V a r i a n t s (s e t p a r a m s)

71 c o n f v a r i a n t o f f l i n e mapping

72 VPName i _ a u t h _mode s e l e c t e d V a r i a n t s (mode_ o f f l i n e)

73 d e f a u l t V a r i a n t o f f l i n e

74 t y p e p a r a m e t e r i z a t i o n

75 b ind ingTime dev t ime

76

77 c o n f i g u r a t i o n f a k e _ t r a n s a c t i o n _ e n a b l i n g :

78 varType e x t e r n a l V P

79 o p t i o n a l

80 v a r i a n t f a k e _ t r a n s

81 v a r i a n t r e a l _ t r a n s

82 r e a l i z a t i o n " i t i s r e a l i z e d by i _ t r a n s a c t i o n _ t y p e v a r i a b i l i t y

p o i n t "

83 c o n f v a r i a n t f a k e _ t r a n s mapping

84 VPName i _ t r a n s a c t i o n _ t y p e s e l e c t e d V a r i a n t s (f a k e t r a n s a c t i o n)

85 c o n f v a r i a n t r e a l _ t r a n s mapping

301

86 VPName i _ t r a n s a c t i o n _ t y p e s e l e c t e d V a r i a n t s (r e a l t r a n s a c t i o n)

87 d e f a u l t V a r i a n t f a k e _ t r a n s

88 t y p e a d d i t i o n

89 b ind ingTime dev t ime

90

91 C o n s t r a i n t s

92 i _ a u t h _ t y p e f a c e r e q u i r e s i _ a u t h _mode s e l e c t e d V a r i a n t s (mode

_ o n l i n e)

93 i _ a u t h _mode mode_ o n l i n e c o n s t p r o t o c o l =" h t t p s "

94 i _ a u t h _ t y p e e s i g n c o n s t i _ e n c r y p t i o n _ p a r a m e t e r s

d e f a u l t p a r a m s = va lueOf{username_passw e s i g n }

95 i _ a u t h _ t y p e e s i g n c o n s t i _ e n c r y p t i o n _ p a r a m e t e r s Mobile =

va lueOf{Mobile PC}

96

97 P a r a m e t e r S e t t i n g s

98 p a r a m e t e r n o o f b i o m e t r i c a u t h t y p e s e l e c t e d = # o f V a r i a n t s S e l e c t e d

{ f i n g e r p r i n t f i n g e r v e i n i r i s f a c e } Of i _ a u t h _ t y p e

99 p a r a m e t e r d e f a u l t p a r a m s = v a l u e (username_passw , onet imepassw ,

e s i g n)

100 p a r a m e t e r f a k e i n t e r f a c e e x i s t s w h e n s e l e c t e d { i _ t r a n s a c t i o n _ t y p e .

f a k e t r a n s a c t i o n }

1 c h o r e o g r a p h y a l e r t

2

3 i m p o r t c o n f i g u r a t i o n vconf_ a l e r t

4

5 i m p o r t s e r v i c e g p s l o c a t o r

6 i m p o r t s e r v i c e camera wi th c o n f i g u r a t i o n vconf_camera

7 i m p o r t s e r v i c e a l e r t s e n d e r

8

9 F u n c t i o n a l e r t :

10 s e q u e n c e (

11 g p s l o c a t o r r e c e i v e message g e t a d d r e s s ()

12 #vp emergency_ n o t i f i c a t i o n i f S e l e c t e d (t e l e p h o n e c a l l) # camera

send { a l e r t s e n d e r } message c a l l (d e s t i n a t i o n)

13 #vp emergency_ c o n t e n t i f S e l e c t e d (p i c t u r e) # s e q u e n c e (

14 g p s l o c a t o r send{camera} message t a k e p i c t u r e ()

302

15 camera send{ a l e r t s e n d e r } message s e t c o n t e n t (p i c t u r e)

16)

17 #vp emergency_ c o n t e n t i f S e l e c t e d (v i d e o r e c o r d) # s e q u e n c e (

18 g p s l o c a t o r send{camera} message r e c o r d v i d e o (d u r a t i o n)

19 camera send{ a l e r t s e n d e r } message s e t c o n t e n t (v i d e o)

20)

21 #vp emergency_ n o t i f i c a t i o n i f S e l e c t e d (mediasend) # camera send

{ a l e r t s e n d e r } message s e n d m e d i a c o n t e n t ()

22)

1 Choreography i n t e r f a c e cho r_ a l e r t o f a l e r t

2

3 f u n c t i o n a l e r t

4 p r e c o n d i t i o n (s e s s i o n == f a l s e)

5 p o s t c o n d i t i o n (t h i r d p a r t y _ a l e r t e d == t r u e and a la rm_mode == t r u e)

6

7 portName a l e r t b i n d i n g hostname :5555

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ a l e r t o f c h o r e o g r a p h y a l e r t

2

3 e x t e r n a l V P d e s t i n a t i o n :

4 mandatory

5 v a r i a n t bank

6 o p t i o n a l

7 v a r i a n t p o l i c e

8 b ind ingTime dev t ime

9

10 e x t e r n a l V P emergency_ n o t i f i c a t i o n :

11 o p t i o n a l

12 v a r i a n t t e l e p h o n e c a l l : a c t i v a t e M e t h o d s (s e r v i c e : a l e r t s e n d e r ,

f u n c t : s e t c o n t e n t , c a l l)

13 v a r i a n t mediasend : a c t i v a t e M e t h o d s (s e r v i c e : a l e r t s e n d e r , f u n c t :

s e t c o n t e n t , s e n d m e d i a c o n t e n t)

14 b ind ingTime dev t ime

15

16 e x t e r n a l V P emergency_ c o n t e n t :

17 mandatory

18 v a r i a n t g p s d a t a

303

19 v a r i a n t d a t e t i m e

20 o p t i o n a l

21 v a r i a n t p i c t u r e

22 v a r i a n t v i d e o r e c o r d

23 b ind ingTime dev t ime

1 c h o r e o g r a p h y c r e d e n t i a l m n g

2

3 i m p o r t c o n f i g u r a t i o n vconf_ c r e d e n t i a l m n g

4

5 i m p o r t s e r v i c e c o n n e c t i o n

6 i m p o r t s e r v i c e i m a g e r e t r i e v a l

7 i m p o r t s e r v i c e c r e d e n t i a l s

8

9 C o n t e x t E lemen t s

10 b i o m e t r i c _ d a t a " "

11 p r o c e s s e d d a t a " "

12 d e v i c e p a r a m e t e r " "

13

14 F u n c t i o n g e t c r e d e n t i a l s :

15 s e q u e n c e (

16 #vp d e v i c e c o n i f S e l e c t e d (b i o m e t r i c d e v i c e) # s e q u e n c e (

17 c o n n e c t i o n r e c e i v e message c o n n e c t d e v i c e (d e v i c e i d)

18 %comp b i o m e t r i c _ d a t a = c o n n e c t i o n . c o n n e c t d e v i c e %

19 c o n n e c t i o n send { i m a g e r e t r i e v a l } message e x t r a c t _ f e a t u r e s (

b i o m e t r i c _ d a t a)

20 %comp p r o c e s s e d d a t a = i m a g e r e t r i e v a l . e x t r a c t _ f e a t u r e s %

21)

22 c r e d e n t i a l s r e c e i v e message g e t c r e d e n t i a l ()

23)

1 Choreography i n t e r f a c e cho r_ c r e d e n t i a l m n g of c r e d e n t i a l m n g

2

3 f u n c t i o n g e t c r e d e n t i a l s

4 i n p u t (d e v i c e p a r a m e t e r)

5 o u t p u t p r o c e s s e d d a t a

6

7 portName c r e d e n t i a l m n g b i n d i n g l o c a l h o s t :8050

304

8

9 r e q u i r e d i n t e r f a c e s

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ c r e d e n t i a l m n g of c h o r e o g r a p h y

c r e d e n t i a l m n g

2

3 e x t e r n a l V P d e v i c e c o n :

4 mandatory

5 v a r i a n t use rnamepassword

6 o p t i o n a l

7 v a r i a n t b i o m e t r i c d e v i c e

8 b ind ingTime dev t ime

1 S e r v i c e i n t e r f a c e a l e r t s e n d e r

2

3 f u n c t i o n s e t c o n t e n t

4 i n p u t (c o n t e n t)

5

6 f u n c t i o n c a l l

7 i n p u t (d e s t i n a t i o n)

8

9 f u n c t i o n s e n d m e d i a c o n t e n t

10

11 portName a l e r t s e n d e r b i n d i n g l o c a l h o s t :8040

1 S e r v i c e i n t e r f a c e a t t e m p t c a l c

2

3 f u n c t i o n c a l c u l a t e _wrong_ a t t e m p t s

4 p o s t c o n d i t i o n (c o n n e c t i o n _ c l o s e d == t r u e o r u s e r _warned == t r u e)

5 i n p u t (s e s s i o n _ i d)

6 o u t p u t no_wrong_ a t t e m p t s

7

8 portName a t t e m p t c a l c b i n d i n g hostname :5055

1 S e r v i c e i n t e r f a c e camera

2

3 f u n c t i o n t a k e p i c t u r e

4 o u t p u t p i c t u r e

5

305

6 f u n c t i o n r e c o r d v i d e o

7 i n p u t (d u r a t i o n)

8 o u t p u t v i d e o

9

10 portName camera b i n d i n g l o c a l h o s t :8020

1 C o n f i g u r a t i o n i n t e r f a c e vconf_camera o f s e r v i c e camera

2

3 e x t e r n a l V P mode :

4 o p t i o n a l

5 v a r i a n t p i c t u r e : a c t i v a t e M e t h o d s (t a k e p i c t u r e)

6 v a r i a n t v i d e o : a c t i v a t e M e t h o d s (r e c o r d v i d e o)

7 b ind ingTime dev t ime

1 S e r v i c e i n t e r f a c e compar i son

2

3 f u n c t i o n compare

4 o u t p u t r e s u l t

5

6 f u n c t i o n f a k e a n a l y s i s

7 i n p u t (c o m p a r i s o n r e s u l t)

8 o u t p u t r e s u l t

9

10 portName compar i son b i n d i n g hostname :2011

1 C o n f i g u r a t i o n i n t e r f a c e vconf_compar i son o f s e r v i c e compar i son

2 @ v c o n f s e r v i c e

3 vp a n a l y s i s :

4 o p t i o n a l

5 v a r i a n t f a k e : a c t i v a t e M e t h o d s (f a k e a n a l y s i s , compare)

6 v a r i a n t r e a l : a c t i v a t e M e t h o d s (compare)

7 b ind ingTime dev t ime

8

9 a b s t r a c t p r o c e s s d e f i n i t i o n

10 s e q u e n c e (

11 compar i son r e c e i v e from{ s t o r a g e } message compare (d a t a)

12 compar i son send{ a t t e m p t c a l c } message c a l c u l a t e _wrong_ a t t e m p t s (

r e s u l t)

306

13)

14 #vp a n a l y s i s i f S e l e c t e d (f a k e) # s e q u e n c e (

15 compar i son r e c e i v e from{ t h i r d p a r t y } message f a k e a n a l y s i s (

c o m p a r i s o n r e s u l t)

16 compar i son send{ i n t e r f a c e p r e p } message p r e p a r e i n t e r f a c e ()

17)

18 compar i son send{responsewindow} message show ()

1 S e r v i c e i n t e r f a c e c o n n e c t i o n

2

3 f u n c t i o n o p e n c o n n e c t i o n

4 o u t p u t s e s s i o n i d

5

6 f u n c t i o n c o n n e c t d e v i c e

7 i n p u t (d e v i c e i d)

8

9 f u n c t i o n c l o s e c o n n e c t i o n

10 p r e c o n d i t i o n (conn_opened == t r u e)

11 p o s t c o n d i t i o n (conn_ c l o s e d == t r u e)

12 i n p u t (s e s s i o n _ i d)

13

14 portName c o n n e c t i o n b i n d i n g hostname :4544

1 S e r v i c e i n t e r f a c e c r e d e n t i a l s

2

3 f u n c t i o n g e t c r e d e n t i a l

4 p r e c o n d i t i o n (c r e d e n t i a l s _ e n t e r e d == t r u e)

5 p o s t c o n d i t i o n (c r e d e n t i a l s _ g a t h e r e d == t r u e)

6 o u t p u t c r e d e n t i a l s

7

8 portName c r e d e n t i a l s _ g a t h e r i n g b i n d i n g hostname :8080

1 S e r v i c e i n t e r f a c e e n c r y p t i o n

2

3 f u n c t i o n e n c r y p t

4 p r e c o n d i t i o n (s e s s i o n c r e a t e d == t r u e)

5 p o s t c o n d i t i o n (d a t a _ e n c r y p t e d == t r u e)

6 i n p u t (c r e d e n t i a l s)

307

7 o u t p u t h a s h e d d a t a

8

9 f u n c t i o n s e t p a r a m s

10 p r e c o n d i t i o n (params_ r e q u i r e d == t r u e)

11 p o s t c o n d i t i o n (s e t _params == t r u e)

12 i n p u t (p a r a m e t e r s)

13

14 portName e n c r y p t i o n b i n d i n g hostname :8082

1 C o n f i g u r a t i o n i n t e r f a c e vconf_ e n c r y p t i o n o f s e r v i c e e n c r y p t i o n

2 vp e n c r y p t i o n _params :

3 a l t e r n a t i v e

4 v a r i a n t wi thpa rams : a c t i v a t e M e t h o d s (e n c r y p t , s e t p a r a m s) :

s e t P a r a m e t e r (t o F u n c t : e n c r y p t , p a r a m e t e r : params)

5 v a r i a n t w i t h d e f a u l t p a r a m s : a c t i v a t e M e t h o d s (e n c r y p t)

6 (min : 1 , max : 1)

7 b ind ingTime r u n t i m e

1 S e r v i c e i n t e r f a c e g p s l o c a t o r

2

3 f u n c t i o n g e t a d d r e s s

4 i n p u t (l o n g t i t u d e l a t t i t u d e)

5 o u t p u t a d d r e s s

6

7 portName g p s l o c a t o r b i n d i n g l o c a l h o s t :8050

1 S e r v i c e i n t e r f a c e i m a g e r e t r i e v a l

2 f u n c t i o n e x t r a c t _ f e a t u r e s

3 p r e c o n d i t i o n (b i o _ d a t a _ g a t h e r e d == t r u e)

4 p o s t c o n d i t i o n (f e a t u r e s _ e x t r a c t e d == t r u e)

5 i n p u t (b i o m e t r i c _ d a t a)

6 o u t p u t e x t r a c t e d _ t e m p l a t e

7

8 portName i m a g e r e t r i e v a l b i n d i n g hostname :8080

1 S e r v i c e i n t e r f a c e i n t e r f a c e p r e p

2

3 f u n c t i o n p r e p a r e i n t e r f a c e

4 p o s t c o n d i t i o n (i n t e r f a c e _ p r e p a r e d == t r u e)

308

5 o u t p u t i n t e r f a c e _ c o n t e n t

6

7 portName i n t e r f a c e c o n t e n t b i n d i n g hostname :2000

1 C o n f i g u r a t i o n i n t e r f a c e vm_ i n t e r f a c e p r e p o f s e r v i c e i n t e r f a c e p r e p

2 vp c o n t e n t :

3 o p t i o n a l

4 v a r i a n t f a k e

5 v a r i a n t r e a l

6 b ind ingTime dev t ime

1 S e r v i c e i n t e r f a c e responsewindow

2

3 f u n c t i o n show

4 p r e c o n d i t i o n (c o n t e n t _ p r e p a r e d == t r u e)

5 p o s t c o n d i t i o n (r e s u l t _showed == t r u e)

6 i n p u t (c o n t e n t)

7 o u t p u t r e s p o n s e _window

8

9 portName responsewindow b i n d i n g hostname :4444

1 S e r v i c e i n t e r f a c e s t o r a g e

2

3 f u n c t i o n g e t h a s h e d d a t a

4 p r e c o n d i t i o n (d a t a _ s t o r e d == t r u e)

5 o u t p u t s t o r e d h a s h e d d a t a

6

7 f u n c t i o n s e t h a s h e d d a t a

8 i n p u t (h a s h e d d a t a)

9

10 portName s t o r a g e b i n d i n g hostname :2010

1 S e r v i c e i n t e r f a c e t h i r d p a r t y

2

3 i n v a r i a n t c o n n e c t i o n == t r u e

4

5 f u n c t i o n g e t c o n n e c t i o n

6 p r e c o n d i t i o n (d r i v e r _ i n s t a l l a t i o n == t r u e)

7 p o s t c o n d i t i o n (s e s s i o n c r e a t e d == t r u e)

309

8 i n p u t (u s e r _ i d)

9 o u t p u t s e s s i o n _key

10

11 f u n c t i o n s a v e h a s h e d d a t a

12 p r e c o n d i t i o n (d a t a _ p r e p a r e d == t r u e)

13 p o s t c o n d i t i o n (s u c c e s s f u l l _ save == t r u e o r f a i l e d _save == t r u e)

14 i n p u t (h a s h e d d a t a)

15 o u t p u t s u c c e s s f u l _ save_ack

16

17 f u n c t i o n v e r i f y

18 p r e c o n d i t i o n (d a t a _ p r e p a r e d == t r u e)

19 p o s t c o n d i t i o n (u s e r _ v e r i f i e d == t r u e o r u s e r _ d e n i e d == t r u e)

20 i n p u t (d a t a)

21 o u t p u t r e s p o n s e _warn ing

22

23 portName d a t a s e n d i n g b i n d i n g hostname :8081

1 C o n f i g u r a t i o n i n t e r f a c e vm_ t h i r d p a r t y o f s e r v i c e t h i r d p a r t y

2 vp u s e r _ d e v i c e :

3 o p t i o n a l

4 v a r i a n t PC

5 v a r i a n t Mobile

6 v a r i a n t ATM

7 v a r i a n t PDA

8 b ind ingTime r u n t i m e

1 S e r v i c e i n t e r f a c e u s e r

2

3 f u n c t i o n p r o v i d e c r e d e n t a i l s

4 o u t p u t u s e r c r e d e n t i a l s

5

6 portName u s e r b i n d i n g l o c a h o s t :8045

1 S e r v i c e i n t e r f a c e warn ing

2

3 f u n c t i o n warn

4 p r e c o n d i t i o n (s e s s i o n == f a l s e)

5 p o s t c o n d i t i o n (u s e r _warned == t r u e)

310

6 o u t p u t warn ing_message

7

8 portName warn ing b i n d i n g hostname :4555

311

312

APPENDIX D

GENERATED FTS FILES FOR VERIFICATION OF CASE

STUDIES

D.1 TVL Feature Model File for Travel Itinerary System

1 r o o t A p p l i c a t i o n {

2 group a l l O f {

3 A d a p t a b l e s e c u r i t y s y s t e m group a l l O f {

4 A u t h e n t i c a t i o n _ t y p e group someOf{

5 B i o m e t r i c s group a l l O f {

6 I _ e n c r y p t i o n _ p a r a m e t e r s group a l l O f {

7 Se tpa rams

8 } ,

9 I _ a u t h _ t y p e group [1 . . 1] {

10 F i n g e r p r i n t ,

11 F i n g e r v e i n ,

12 I r i s ,

13 Face

14 }

15 } ,

16 U s e r i n f o group a l l O f {

17 I _ e n c r y p t i o n _ p a r a m e t e r s _1 group a l l O f {

18 D e f a u l t p a r a m s

19 }

20 }

21 } ,

22 A u t h e n t i c a t i o n _mode group oneOf{

23 O f f l i n e group a l l O f {

313

24 I _ a u t h _mode group a l l O f {

25 Mode_ o f f l i n e

26 }

27 } ,

28 On l i ne group a l l O f {

29 I _ a u t h _mode_2 group a l l O f {

30 Mode_ o n l i n e

31 } ,

32 I _ e n c r y p t i o n _ p a r a m e t e r s _3 group a l l O f {

33 Se tpa rams_4

34 }

35 }

36 } ,

37 Fake_ t r a n s a c t i o n _ e n a b l i n g group someOf{

38 Real_ t r a n s group a l l O f {

39 I _ t r a n s a c t i o n _ t y p e group a l l O f {

40 R e a l t r a n s a c t i o n

41 }

42 } ,

43 Fake_ t r a n s group a l l O f {

44 I _ t r a n s a c t i o n _ t y p e _5 group a l l O f {

45 F a k e t r a n s a c t i o n

46 }

47 }

48 }

49 } ,

50 C r e d e n t i a l m n g group a l l O f {

51 Devicecon group someOf{

52 B i o m e t r i c d e v i c e

53 } ,

54 Devicecon_6 group a l l O f {

55 Usernamepassword

56 }

57 } ,

58 A l e r t group a l l O f {

59 Emergency_ n o t i f i c a t i o n group someOf{

60 T e l e p h o n e c a l l ,

314

61 Mediasend

62 } ,

63 D e s t i n a t i o n group someOf{

64 P o l i c e

65 } ,

66 D e s t i n a t i o n _7 group a l l O f {

67 Bank

68 } ,

69 Emergency_ c o n t e n t group someOf{

70 P i c t u r e ,

71 V i d e o r e c o r d

72 } ,

73 Emergency_ c o n t e n t _8 group a l l O f {

74 Gpsdata ,

75 D a t e t i m e

76 }

77 }

78 }

79 Se tpa rams_4 -> Se tpa rams ;

80 }

D.2 fPromela File for Travel Itinerary System

1 chan chan_ t e m p t h i r d p a r t y _ g e t c o n n e c t i o n = [1] o f { b y t e }

2 chan chan_ c o m p a r i s o n i n t e r f a c e p r e p _ p r e p a r e i n t e r f a c e = [1] o f { b y t e }

3 chan chan_cho r_ c r e d e n t i a l m n g e n c r y p t i o n _ s e t p a r a m s = [4] o f { b y t e }

4 chan chan_ s t o r a g e c o m p a r i s o n _compare = [1] o f { b y t e }

5 chan chan_ c o m p a r i s o n a t t e m p t c a l c _ c a l c u l a t e _wrong_ a t t e m p t s = [1] o f

{ b y t e }

6 chan chan_ t e m p e n c r y p t i o n _ e n c r y p t = [1] o f { b y t e }

7 chan chan_ e n c r y p t i o n s t o r a g e _ g e t h a s h e d d a t a = [1] o f { b y t e }

8 chan chan_ s t o r a g e c o m p a r i s o n = [1] o f { b y t e }

9 chan chan_ a t t e m p t c a l c c o n n e c t i o n _ c l o s e c o n n e c t i o n = [1] o f { b y t e }

10 chan chan_ a t t e m p t c a l c w a r n i n g _warn = [1] o f { b y t e }

11 chan chan_ e n c r y p t i o n t h i r d p a r t y _ v e r i f y = [1] o f { b y t e }

12 chan chan_ c o m p a r i s o n c h o r _ a l e r t _ a l e r t = [1] o f { b y t e }

13 chan chan_ e n c r y p t i o n t h i r d p a r t y _ s a v e h a s h e d d a t a = [1] o f { b y t e }

315

14 chan chan_compar i sonresponsewindow_show = [2] o f { b y t e }

15 chan chan_ t h i r d p a r t y c o m p a r i s o n _ f a k e a n a l y s i s = [1] o f { b y t e }

16 chan chan_ t h i r d p a r t y e n c r y p t i o n _ s e t p a r a m s = [1] o f { b y t e }

17 chan chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s = [4] o f { b y t e }

18 chan chan_ i n t e r f a c e p r e p r e s p o n s e w i n d o w _show = [2] o f { b y t e }

19 chan chan_ e n c r y p t i o n s t o r a g e _ s e t h a s h e d d a t a = [1] o f { b y t e }

20 chan chan_ c a m e r a a l e r t s e n d e r _ s e n d m e d i a c o n t e n t = [1] o f { b y t e }

21 chan chan_ t e m p g p s l o c a t o r _ g e t a d d r e s s = [1] o f { b y t e }

22 chan chan_ c a m e r a a l e r t s e n d e r _ s e t c o n t e n t = [2] o f { b y t e }

23 chan chan_ c a m e r a a l e r t s e n d e r _ c a l l = [1] o f { b y t e }

24 chan chan_ g p s l o c a t o r c a m e r a _ t a k e p i c t u r e = [1] o f { b y t e }

25 chan chan_ g p s l o c a t o r c a m e r a _ r e c o r d v i d e o = [1] o f { b y t e }

26 chan chan_ t e m p c o n n e c t i o n _ c o n n e c t d e v i c e = [1] o f { b y t e }

27 chan chan_ c o n n e c t i o n i m a g e r e t r i e v a l _ e x t r a c t _ f e a t u r e s = [1] o f { b y t e }

28 chan chan_ t e m p c r e d e n t i a l s _ g e t c r e d e n t i a l = [1] o f { b y t e }

29 b y t e d e v i c e i d ;

30 b y t e b i o m e t r i c _ d a t a ;

31 b y t e temp ;

32 b y t e d e s t i n a t i o n ;

33 b y t e p i c t u r e ;

34 b y t e d u r a t i o n ;

35 b y t e v i d e o ;

36 b y t e n o t i f i c a t i o n ;

37 b y t e d e v i c e p a r a m e t e r ;

38 b y t e p a r a m e t e r s ;

39 b y t e c r e d e n t i a l s ;

40 b y t e d a t a ;

41 b y t e c o m p a r i s o n r e s u l t ;

42 b y t e r e s u l t ;

43 b y t e r e s p o n s e _warn ing ;

44 b y t e h a s h e d d a t a ;

45 i n t w r o n g a t t e m p t s =0;

46 i n t n o o f b i o m e t r i c a u t h t y p e s e l e c t e d =0;

47 b y t e d e f a u l t p a r a m s =117;

48 b y t e temp_ p r o c e s s e d d a t a =98;

49 b y t e d e v i c e p a r a m e t e r =34;

50 b y t e u s e r n a m e p a s s =34;

316

51 b y t e p r o c e s s e d d a t a =34;

52 b y t e b i o m e t r i c _ d a t a =34;

53 boo l f a k e i n t e r f a c e =0;

54 boo l temp_ f a k e i n t e r f a c e =1;

55

56 t y p e d e f f e a t u r e s {

57 boo l Se tpa rams ;

58 boo l F i n g e r p r i n t ;

59 boo l F i n g e r v e i n ;

60 boo l I r i s ;

61 boo l Face ;

62 boo l D e f a u l t p a r a m s ;

63 boo l Mode_ o f f l i n e ;

64 boo l Mode_ o n l i n e ;

65 boo l R e a l t r a n s a c t i o n ;

66 boo l F a k e t r a n s a c t i o n ;

67 boo l B i o m e t r i c d e v i c e ;

68 boo l Usernamepassword ;

69 boo l T e l e p h o n e c a l l ;

70 boo l Mediasend ;

71 boo l P o l i c e ;

72 boo l Bank ;

73 boo l P i c t u r e ;

74 boo l V i d e o r e c o r d ;

75 boo l Gpsda ta ;

76 boo l D a t e t i m e

77 } ;

78 f e a t u r e s f ;

79

80 a c t i v e p r o c t y p e e n c r y p t i o n () {

81 chan_ t e m p e n c r y p t i o n _ e n c r y p t ! c r e d e n t i a l s ;

82 chan_ t e m p e n c r y p t i o n _ e n c r y p t ! c r e d e n t i a l s ;

83 }

84 a c t i v e p r o c t y p e t h i r d p a r t y () {

85 chan_ t e m p t h i r d p a r t y _ g e t c o n n e c t i o n ! temp ;

86 }

87 a c t i v e p r o c t y p e c r e d e n t i a l s () {

317

88 chan_ t e m p c r e d e n t i a l s _ g e t c r e d e n t i a l ! temp ;

89 }

90 a c t i v e p r o c t y p e v e r i f y () {

91 {

92 gd

93 : : ((f . F i n g e r p r i n t && ! f . F i n g e r v e i n && ! f . I r i s && ! f . Face) || (

f . F i n g e r v e i n && ! f . F i n g e r p r i n t && ! f . I r i s && ! f . Face) || (

f . I r i s && ! f . F i n g e r p r i n t && ! f . F i n g e r v e i n && ! f . Face) || (f

. Face && ! f . F i n g e r p r i n t && ! f . F i n g e r v e i n && ! f . I r i s)) ->

94 do

95 : : (n o o f b i o m e t r i c a u t h t y p e s e l e c t e d != 0) ->

96 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ! 3 4 ;

97 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ? p r o c e s s e d d a t a ;

98 chan_cho r_ c r e d e n t i a l m n g e n c r y p t i o n _ s e t p a r a m s ! p a r a m e t e r s ;

99 n o o f b i o m e t r i c a u t h t y p e s e l e c t e d = n o o f b i o m e t r i c a u t h t y p e s e l e c t e d

- 1 ;

100 : : e l s e -> b r e a k ;

101 od

102 : : e l s e -> s k i p ;

103 dg ;

104 } ;

105 {

106 gd

107 : : f . Mode_ o n l i n e ->

108 temp = temp +1;

109 {

110 chan_ t e m p t h i r d p a r t y _ g e t c o n n e c t i o n ? temp ;

111 } ;

112 {

113 chan_ t h i r d p a r t y e n c r y p t i o n _ s e t p a r a m s ! p a r a m e t e r s ;

114 } ;

115 : : e l s e -> s k i p ;

116 dg ;

117 } ;

118 {

119 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ! 3 4 ;

120 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ? u s e r n a m e p a s s ;

318

121 } ;

122 {

123 chan_cho r_ c r e d e n t i a l m n g e n c r y p t i o n _ s e t p a r a m s ! p a r a m e t e r s ;

124 } ;

125 {

126 chan_ t e m p e n c r y p t i o n _ e n c r y p t ? c r e d e n t i a l s ;

127 } ;

128 {

129 gd

130 : : f . Mode_ o n l i n e ->

131 temp = temp +1;

132 {

133 chan_ e n c r y p t i o n t h i r d p a r t y _ v e r i f y ! d a t a ;

134 } ;

135 {

136 gd

137 : : f . F a k e t r a n s a c t i o n ->

138 chan_ t h i r d p a r t y c o m p a r i s o n _ f a k e a n a l y s i s ! 1 ;

139 chan_ t h i r d p a r t y c o m p a r i s o n _ f a k e a n a l y s i s ? f a k e i n t e r f a c e ;

140 : : e l s e -> s k i p ;

141 dg ;

142 } ;

143 : : e l s e -> s k i p ;

144 dg ;

145 } ;

146 {

147 gd

148 : : f . Mode_ o f f l i n e ->

149 temp = temp +1;

150 {

151 chan_ e n c r y p t i o n s t o r a g e _ g e t h a s h e d d a t a ! temp ;

152 chan_ s t o r a g e c o m p a r i s o n ! temp ;

153 } ;

154 {

155 gd

156 : : f . F a k e t r a n s a c t i o n ->

157 chan_ s t o r a g e c o m p a r i s o n _compare ! temp ;

319

158 : : e l s e -> s k i p ;

159 dg ;

160 } ;

161 : : e l s e -> s k i p ;

162 dg ;

163 } ;

164 {

165 i f

166 : : (f a k e i n t e r f a c e ==temp_ f a k e i n t e r f a c e) ->

167 {

168 chan_ c o m p a r i s o n a t t e m p t c a l c _ c a l c u l a t e _wrong_ a t t e m p t s ! 0 ;

169 chan_ c o m p a r i s o n a t t e m p t c a l c _ c a l c u l a t e _wrong_ a t t e m p t s ?

w r o n g a t t e m p t s ;

170 } ;

171 {

172 i f

173 : : (w r o n g a t t e m p t s == 3) ->

174 chan_compar i sonresponsewindow_show ! temp ;

175 chan_ a t t e m p t c a l c c o n n e c t i o n _ c l o s e c o n n e c t i o n ! temp ;

176 : : e l s e -> s k i p ;

177 f i ;

178 } ;

179 {

180 i f

181 : : (w r o n g a t t e m p t s < 3) ->

182 chan_compar i sonresponsewindow_show ! temp ;

183 chan_ a t t e m p t c a l c w a r n i n g _warn ! r e s p o n s e _warn ing ;

184 : : e l s e -> s k i p ;

185 f i ;

186 } ;

187 : : e l s e -> s k i p ;

188 f i ;

189 } ;

190 {

191 i f

192 : : (f a k e i n t e r f a c e ==temp_ f a k e i n t e r f a c e && p r o c e s s e d d a t a ==temp

_ p r o c e s s e d d a t a) ->

320

193 gd

194 : : f . F a k e t r a n s a c t i o n ->

195 temp = temp +1;

196 {

197 chan_ c o m p a r i s o n i n t e r f a c e p r e p _ p r e p a r e i n t e r f a c e ! temp ;

198 } ;

199 {

200 chan_ i n t e r f a c e p r e p r e s p o n s e w i n d o w _show ! temp ;

201 } ;

202 chan_ c o m p a r i s o n c h o r _ a l e r t _ a l e r t ! temp ;

203 : : e l s e -> s k i p ;

204 dg ;

205 : : e l s e -> s k i p ;

206 f i ;

207 } ;

208 }

209 a c t i v e p r o c t y p e e n r o l l () {

210 {

211 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ! 3 4 ;

212 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ? u s e r n a m e p a s s ;

213 } ;

214 {

215 chan_cho r_ c r e d e n t i a l m n g e n c r y p t i o n _ s e t p a r a m s ! p a r a m e t e r s ;

216 } ;

217 {

218 gd

219 : : ((f . F i n g e r p r i n t && ! f . F i n g e r v e i n && ! f . I r i s && ! f . Face) || (

f . F i n g e r v e i n && ! f . F i n g e r p r i n t && ! f . I r i s && ! f . Face) || (

f . I r i s && ! f . F i n g e r p r i n t && ! f . F i n g e r v e i n && ! f . Face) || (f

. Face && ! f . F i n g e r p r i n t && ! f . F i n g e r v e i n && ! f . I r i s)) ->

220 do

221 : : (n o o f b i o m e t r i c a u t h t y p e s e l e c t e d != 0) ->

222 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ! 3 4 ;

223 chan_ u s e r c h o r _ c r e d e n t i a l m n g _ g e t c r e d e n t i a l s ? p r o c e s s e d d a t a ;

224 chan_cho r_ c r e d e n t i a l m n g e n c r y p t i o n _ s e t p a r a m s ! p a r a m e t e r s ;

225 n o o f b i o m e t r i c a u t h t y p e s e l e c t e d = n o o f b i o m e t r i c a u t h t y p e s e l e c t e d

- 1 ;

321

226 : : e l s e -> b r e a k ;

227 od

228 : : e l s e -> s k i p ;

229 dg ;

230 } ;

231 {

232 chan_ t e m p e n c r y p t i o n _ e n c r y p t ? c r e d e n t i a l s ;

233 } ;

234 {

235 gd

236 : : f . Mode_ o n l i n e ->

237 chan_ e n c r y p t i o n t h i r d p a r t y _ s a v e h a s h e d d a t a ! h a s h e d d a t a ;

238 : : e l s e -> s k i p ;

239 dg ;

240 } ;

241 {

242 gd

243 : : f . Mode_ o f f l i n e ->

244 chan_ e n c r y p t i o n s t o r a g e _ s e t h a s h e d d a t a ! h a s h e d d a t a ;

245 : : e l s e -> s k i p ;

246 dg ;

247 } ;

248 {

249 chan_ i n t e r f a c e p r e p r e s p o n s e w i n d o w _show ! temp ;

250 } ;

251 }

252

253 a c t i v e p r o c t y p e a l e r t () {

254 {

255 chan_ t e m p g p s l o c a t o r _ g e t a d d r e s s ! temp ;

256 } ;

257 {

258 chan_ t e m p g p s l o c a t o r _ g e t a d d r e s s ? temp ;

259 } ;

260 {

261 gd

262 : : f . T e l e p h o n e c a l l ->

322

263 chan_ c a m e r a a l e r t s e n d e r _ c a l l ! d e s t i n a t i o n ;

264 : : e l s e -> s k i p ;

265 dg ;

266 } ;

267 {

268 gd

269 : : f . P i c t u r e ->

270 temp = temp +1;

271 {

272 chan_ g p s l o c a t o r c a m e r a _ t a k e p i c t u r e ! temp ;

273 } ;

274 {

275 chan_ c a m e r a a l e r t s e n d e r _ s e t c o n t e n t ! p i c t u r e ;

276 } ;

277 : : e l s e -> s k i p ;

278 dg ;

279 } ;

280 {

281 gd

282 : : f . V i d e o r e c o r d ->

283 temp = temp +1;

284 {

285 chan_ g p s l o c a t o r c a m e r a _ r e c o r d v i d e o ! d u r a t i o n ;

286 } ;

287 {

288 chan_ c a m e r a a l e r t s e n d e r _ s e t c o n t e n t ! v i d e o ;

289 } ;

290 : : e l s e -> s k i p ;

291 dg ;

292 } ;

293 {

294 gd

295 : : f . Mediasend ->

296 chan_ c a m e r a a l e r t s e n d e r _ s e n d m e d i a c o n t e n t ! temp ;

297 : : e l s e -> s k i p ;

298 dg ;

299 } ;

323

300 }

301

302 a c t i v e p r o c t y p e g e t c r e d e n t i a l s () {

303 {

304 gd

305 : : f . B i o m e t r i c d e v i c e ->

306 temp = temp +1;

307 {

308 chan_ t e m p c o n n e c t i o n _ c o n n e c t d e v i c e ! d e v i c e i d ;

309 } ;

310 {

311 chan_ t e m p c o n n e c t i o n _ c o n n e c t d e v i c e ? b i o m e t r i c _ d a t a ;

312 } ;

313 {

314 chan_ c o n n e c t i o n i m a g e r e t r i e v a l _ e x t r a c t _ f e a t u r e s ! 3 4 ;

315 chan_ c o n n e c t i o n i m a g e r e t r i e v a l _ e x t r a c t _ f e a t u r e s ?

p r o c e s s e d d a t a ;

316 } ;

317 : : e l s e -> s k i p ;

318 dg ;

319 } ;

320 {

321 chan_ t e m p c r e d e n t i a l s _ g e t c r e d e n t i a l ? temp ;

322 } ;

323 }

D.3 TVL Feature Model File for Adaptable Security System

1 r o o t A p p l i c a t i o n {

2 group a l l O f {

3 T r a v e l i t i n e r a r y group a l l O f {

4 I t i n e r a r y group oneOf{

5 V a c a t i o n p a c k a g e group a l l O f {

6 F a c i l i t i e s group [0 . . 3] {

7 Cru i se ,

8 C a r r e n t a l ,

9 A c t i v i t i e s

324

10 } ,

11 Booking group a l l O f {

12 Hote l ,

13 A i r l i n e

14 }

15 } ,

16 R e g u l a r group a l l O f {

17 F a c i l i t i e s _1 group [0 . . 3] {

18 C r u i s e _2 ,

19 C a r r e n t a l _3 ,

20 A c t i v i t i e s _4

21 } ,

22 Booking_5 group [1 . . 2] {

23 H o t e l _6 ,

24 A i r l i n e _7

25 }

26 }

27 }

28 }

29 }

30 A c t i v i t i e s _4 -> A c t i v i t i e s ;

31 H o t e l _6 -> H o t e l ;

32 C a r r e n t a l _3 -> C a r r e n t a l ;

33 A i r l i n e _7 -> A i r l i n e ;

34 C r u i s e _2 -> C r u i s e ;

35 }

D.4 fPromela File for Adaptable Security System

1 chan chan_ a i r l i n e t r a v e l e r = [1] o f { b y t e }

2 chan chan_ t r a v e l a g e n c y a i r l i n e _ r e q u e s t p r i c e = [1] o f {byte , b y t e }

3 chan chan_ t r a v e l a g e n c y a c t i v i t y p r o v i d e r _ r e q u e s t p r i c e = [1] o f {byte ,

b y t e }

4 chan chan_ t r a v e l a g e n c y t r a v e l e r _ g e t a v a l i a b l e t r i p o p t i o n s = [1] o f

{ b y t e }

5 chan chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t c r u i s e = [1] o f { b y t e }

6 chan chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t c a r r e n t a l = [1] o f { b y t e }

325

7 chan chan_ t r a v e l e r t r a v e l a g e n c y _ q u e r y t r i p = [1] o f {byte , by te , b y t e }

8 chan chan_ t r a v e l e r t r a v e l a g e n c y _ s e t s e l e c t e d a c t i v i t i e s = [2] o f { b y t e }

9 chan chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t a i r l i n e = [1] o f { b y t e }

10 chan chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t h o t e l = [1] o f { b y t e }

11 chan chan_ t r a v e l a g e n c y h o t e l _ r e q u e s t p r i c e = [1] o f {byte , by te , b y t e }

12 chan chan_ h o t e l t r a v e l e r = [1] o f { b y t e }

13 chan chan_ t r a v e l a g e n c y c r u i s e _ r e q u e s t p r i c e = [1] o f {byte , b y t e }

14 chan chan_ t r a v e l a g e n c y a i r l i n e _ b o o k f l i g h t = [1] o f {byte , b y t e }

15 chan chan_ t r a v e l a g e n c y a i r l i n e _ p r o c e s s t i c k e t = [1] o f { b y t e }

16 chan chan_ t r a v e l a g e n c y t r a v e l e r _ g e t c o n f i r m e d p l a n = [1] o f { b y t e }

17 chan chan_ t r a v e l a g e n c y a i r l i n e _ b o o k f l i g h t n o t = [1] o f { b y t e }

18 chan chan_ t r a v e l a g e n c y a c t i v i t y p r o v i d e r _ l i s t a c t i v i t i e s = [1] o f {byte

, b y t e }

19 chan chan_ t r a v e l a g e n c y t r a v e l e r _ g e t t r i p p l a n c a n c e l a t i o n = [2] o f { b y t e

}

20 chan chan_ t r a v e l a g e n c y h o t e l _bookroom = [1] o f {byte , by te , b y t e }

21 chan chan_ a c t i v i t y p r o v i d e r t r a v e l e r = [1] o f { b y t e }

22 chan chan_ t r a v e l a g e n c y c a r r e n t a l _ r e q u e s t p r i c e = [1] o f {byte , b y t e }

23 chan chan_ t r a v e l a g e n c y h o t e l _bookroomnot = [1] o f { b y t e }

24 chan chan_ t r a v e l a g e n c y h o t e l _ p r o c e s s v o u c h e r = [1] o f { b y t e }

25 b y t e temp ;

26 b y t e n o t i f i c a t i o n ;

27 b y t e s t a r t d a t e ;

28 b y t e e n d d a t e ;

29 b y t e d e t a i l s ;

30 b y t e p a c k a g e i d ;

31 b y t e d a t e ;

32 b y t e ca rmode l ;

33 b y t e p l a c e ;

34 b y t e s e l e c t e d l i s t ;

35 b y t e t r a v e l e r I D ;

36 b y t e a i r l i n e I D ;

37 b y t e h o t e l I D ;

38 b y t e a c t i v i t y l i s t ;

39 b y t e temp ;

40 b y t e a r r i v a l ;

41 b y t e d e p a r t u r e ;

326

42 b y t e cus tomer ID ;

43 i n t i n t e l e m =0;

44 b y t e s t r i n g e l e m =115;

45 boo l f l i g h t t i c k e t c o n f i r m a t i o n =0;

46 boo l h o t e l b o o k i n g c o n f i r m a t i o n =0;

47 boo l c a r r e n t a l c o n f i r m a t i o n =0;

48 boo l a c t i v i t y c o n f i r m a t i o n =0;

49 boo l c r u i s e c o n f i r m a t i o n =0;

50 boo l temp_ f l i g h t t i c k e t c o n f i r m a t i o n =1;

51 boo l temp_ h o t e l b o o k i n g c o n f i r m a t i o n =1;

52

53 t y p e d e f f e a t u r e s {

54 boo l C r u i s e ;

55 boo l C a r r e n t a l ;

56 boo l A c t i v i t i e s ;

57 boo l H o t e l ;

58 boo l A i r l i n e

59 } ;

60 f e a t u r e s f ;

61

62 a c t i v e p r o c t y p e p roc_chan_ t r a v e l a g e n c y a i r l i n e _ b o o k f l i g h t n o t () {

63 chan_ t r a v e l a g e n c y a i r l i n e _ b o o k f l i g h t n o t ! n o t i f i c a t i o n

64 }

65 a c t i v e p r o c t y p e p roc_chan_ t r a v e l a g e n c y h o t e l _bookroomnot () {

66 chan_ t r a v e l a g e n c y h o t e l _bookroomnot ! n o t i f i c a t i o n

67 }

68 a c t i v e p r o c t y p e p l a n i t i n e r a r y () {

69 {

70 chan_ t r a v e l e r t r a v e l a g e n c y _ q u e r y t r i p ! s t a r t d a t e , endda te , d e t a i l s ;

71 } ;

72 {

73 gd

74 : : f . A i r l i n e ->

75 chan_ t r a v e l a g e n c y a i r l i n e _ r e q u e s t p r i c e ! s t a r t d a t e , e n d d a t e ;

76 : : e l s e -> s k i p ;

77 dg ;

78 gd

327

79 : : f . H o t e l ->

80 chan_ t r a v e l a g e n c y h o t e l _ r e q u e s t p r i c e ! s t a r t d a t e , endda te , d e t a i l s ;

81 : : e l s e -> s k i p ;

82 dg ;

83 gd

84 : : f . C r u i s e ->

85 chan_ t r a v e l a g e n c y c r u i s e _ r e q u e s t p r i c e ! package id , d a t e ;

86 : : e l s e -> s k i p ;

87 dg ;

88 gd

89 : : f . C a r r e n t a l ->

90 chan_ t r a v e l a g e n c y c a r r e n t a l _ r e q u e s t p r i c e ! carmodel , d a t e ;

91 : : e l s e -> s k i p ;

92 dg ;

93 gd

94 : : f . A c t i v i t i e s ->

95 temp = temp +1;

96 {

97 chan_ t r a v e l a g e n c y a c t i v i t y p r o v i d e r _ l i s t a c t i v i t i e s ! p l a c e , d a t e ;

98 chan_ a c t i v i t y p r o v i d e r t r a v e l e r ! temp ;

99 } ;

100 {

101 chan_ t r a v e l e r t r a v e l a g e n c y _ s e t s e l e c t e d a c t i v i t i e s ! s e l e c t e d l i s t ;

102 } ;

103 {

104 chan_ t r a v e l a g e n c y a c t i v i t y p r o v i d e r _ r e q u e s t p r i c e ! s e l e c t e d l i s t ,

d a t e ;

105 } ;

106 : : e l s e -> s k i p ;

107 dg ;

108 } ;

109 {

110 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t a v a l i a b l e t r i p o p t i o n s ! t r a v e l e r I D

;

111 } ;

112 {

328

113 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t a v a l i a b l e t r i p o p t i o n s ? t r a v e l e r I D

;

114 } ;

115 {

116 gd

117 : : f . A i r l i n e ->

118 temp = temp +1;

119 {

120 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t a i r l i n e ! 0 ;

121 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t a i r l i n e ? i n t e l e m ;

122 } ;

123 : : e l s e -> s k i p ;

124 dg ;

125 } ;

126 {

127 gd

128 : : f . H o t e l ->

129 temp = temp +1;

130 {

131 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t h o t e l ! 1 1 5 ;

132 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t h o t e l ? s t r i n g e l e m ;

133 } ;

134 : : e l s e -> s k i p ;

135 dg ;

136 } ;

137 {

138 gd

139 : : f . C r u i s e ->

140 temp = temp +1;

141 {

142 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t c r u i s e ! 1 ;

143 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t c r u i s e ?

c r u i s e c o n f i r m a t i o n ;

144 } ;

145 : : e l s e -> s k i p ;

146 dg ;

147 } ;

329

148 {

149 gd

150 : : f . C a r r e n t a l ->

151 temp = temp +1;

152 {

153 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t c a r r e n t a l ! 1 ;

154 chan_ t r a v e l e r t r a v e l a g e n c y _ s e l e c t c a r r e n t a l ?

c a r r e n t a l c o n f i r m a t i o n ;

155 } ;

156 : : e l s e -> s k i p ;

157 dg ;

158 } ;

159 {

160 gd

161 : : f . A c t i v i t i e s ->

162 temp = temp +1;

163 {

164 chan_ t r a v e l e r t r a v e l a g e n c y _ s e t s e l e c t e d a c t i v i t i e s ! 1 ;

165 chan_ t r a v e l e r t r a v e l a g e n c y _ s e t s e l e c t e d a c t i v i t i e s ?

a c t i v i t y c o n f i r m a t i o n ;

166 } ;

167 {

168 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t c o n f i r m e d p l a n ! temp ;

169 } ;

170 : : e l s e -> s k i p ;

171 dg ;

172 } ;

173 {

174 i f

175 : :

176 i f

177 : : i f

178 : : (h o t e l b o o k i n g c o n f i r m a t i o n == temp_ h o t e l b o o k i n g c o n f i r m a t i o n

&& f l i g h t t i c k e t c o n f i r m a t i o n == temp

_ f l i g h t t i c k e t c o n f i r m a t i o n) ->

179 gd

180 : : f . A i r l i n e ->

330

181 temp = temp +1;

182 {

183 chan_ t r a v e l a g e n c y a i r l i n e _ b o o k f l i g h t ! a r r i v a l , d e p a r t u r e ;

184 chan_ t r a v e l a g e n c y a i r l i n e _ b o o k f l i g h t n o t ? n o t i f i c a t i o n ;

185 } ;

186 {

187 chan_ t r a v e l a g e n c y a i r l i n e _ p r o c e s s t i c k e t ! cus tomer ID ;

188 chan_ a i r l i n e t r a v e l e r ! temp ;

189 } ;

190 : : e l s e -> s k i p ;

191 dg ;

192 gd

193 : : f . H o t e l ->

194 temp = temp +1;

195 {

196 chan_ t r a v e l a g e n c y h o t e l _bookroom ! a r r i v a l , d e p a r t u r e , d e t a i l s ;

197 chan_ t r a v e l a g e n c y h o t e l _bookroomnot ? n o t i f i c a t i o n ;

198 } ;

199 {

200 chan_ t r a v e l a g e n c y h o t e l _ p r o c e s s v o u c h e r ! cus tomer ID ;

201 chan_ h o t e l t r a v e l e r ! temp ;

202 } ;

203 : : e l s e -> s k i p ;

204 dg ;

205 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t c o n f i r m e d p l a n ? temp ;

206 : : e l s e -> s k i p ;

207 f i ;

208 : : {

209 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t t r i p p l a n c a n c e l a t i o n ! temp ;

210 } ;

211 {

212 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t t r i p p l a n c a n c e l a t i o n ! temp ;

213 } ;

214 {

215 chan_ t r a v e l a g e n c y t r a v e l e r _ g e t t r i p p l a n c a n c e l a t i o n ? temp ;

216 } ;

217 f i ;

331

218 : : e l s e -> s k i p ;

219 f i ;

220 } ;

221 }

332

APPENDIX E

GENERATED BPEL4CHOR, VXBPEL AND BPEL FILES

E.1 BPEL4Chor Files - Topology, Grounding and PBDs

1 < t o p o l o g y name=" t r a v e l i t i n e r a r y "

2 t a r g e t N a m e s p a c e =" urn : " t r a v e l i t i n e r a r y "

3 xmlns =" urn : HPI_IAAS : c h o r e o g r a p h y : schemas : c h o r e o g r a p h y : t o p o l o g y

: 2 0 0 6 / 1 2 "

4 xmlns : c h o r d e f =" h t t p : / / example . com / " t r a v e l i t i n e r a r y "

5 xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema- i n s t a n c e "

6 x s i : s chemaLoca t ion =" urn : HPI_IAAS : c h o r e o g r a p h y : schemas :

c h o r e o g r a p h y : t o p o l o g y : 2 0 0 6 / 1 2 h t t p : / / www. i a a s . u n i - s t u t t g a r t . de

/ schemas / b p e l 4 c h o r / t o p o l o g y . xsd ">

7

8 < p a r t i c i p a n t T y p e s>

9 < p a r t i c i p a n t T y p e name=" q u e r y t r i p _ s e n d e r _ t y p e "

p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =" q u e r y t r i p _ s e n d e r : q u e r y t r i p

_ s e n d e r " />

10 < p a r t i c i p a n t T y p e name=" c r u i s e _ t y p e "

p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =" c r u i s e : c r u i s e " />

11 < p a r t i c i p a n t T y p e name=" c a r r e n t a l _ t y p e "

p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =" c a r r e n t a l : c a r r e n t a l " />

12 < p a r t i c i p a n t T y p e name=" t r a v e l e r - t r a _ t y p e "

p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =" t r a v e l e r - t r a : t r a v e l e r - t r a " />

13 < / p a r t i c i p a n t T y p e s>

14

15 < p a r t i c i p a n t s >

16 < p a r t i c i p a n t name=" c r u i s e " t y p e =" c r u i s e _ t y p e " />

17 < p a r t i c i p a n t name=" c a r r e n t a l " t y p e =" c a r r e n t a l _ t y p e " />

333

18 < p a r t i c i p a n t name=" t r a v e l e r - t r a " t y p e =" t r a v e l e r - t r a _ t y p e " />

19 < p a r t i c i p a n t S e t name=" q u e r y t r i p _ s e n d e r " t y p e =" q u e r y t r i p _ s e n d e r

_ t y p e " f o r E a c h =" q u e r y t r i p F E />

20 < p a r t i c i p a n t name=" t r a v e l a g e n c y - t r a t y p e =" q u e r y t r i p _ s e n d e r

_ t y p e " f o r E a c h =" q u e r y t r i p F E />

21 < p a r t i c i p a n t name=" a i r l i n e t y p e =" q u e r y t r i p _ s e n d e r _ t y p e "

f o r E a c h =" q u e r y t r i p F E />

22 < / p a r t i c i p a n t S e t >

23 < / p a r t i c i p a n t s >

24

25 <messageLinks>

26 <messageLink name=" q u e r y t r i p L i n k " s e n d e r =" t r a v e l e r - t r a "

s e n d A c t i v i t y =" r e q u e s t q u e r y t r i p " r e c e i v e r =" t r a v e l a g e n c y - t r a "

r e c e i v e A c t i v i t y =" q u e r y t r i p " messageName ="1" />

27 <messageLink name=" r e q u e s t p r i c e L i n k " s e n d e r =" t r a v e l a g e n c y - t r a "

s e n d A c t i v i t y =" r e q u e s t r e q u e s t p r i c e " r e c e i v e r =" a i r l i n e "

r e c e i v e A c t i v i t y =" r e q u e s t p r i c e " messageName ="2" />

28 <messageLink name=" r e q u e s t p r i c e L i n k " s e n d e r =" t r a v e l a g e n c y - t r a "

s e n d A c t i v i t y =" r e q u e s t r e q u e s t p r i c e " r e c e i v e r =" c r u i s e "

r e c e i v e A c t i v i t y =" r e q u e s t p r i c e " messageName ="3" />

29 <messageLink name=" r e q u e s t p r i c e L i n k " s e n d e r =" t r a v e l a g e n c y - t r a "

s e n d A c t i v i t y =" r e q u e s t r e q u e s t p r i c e " r e c e i v e r =" c a r r e n t a l "

r e c e i v e A c t i v i t y =" r e q u e s t p r i c e " messageName ="4" />

30 <messageLink name=" g e t a v a l i a b l e t r i p o p t i o n s L i n k " s e n d e r ="

t r a v e l a g e n c y - t r a " s e n d A c t i v i t y ="

r e q u e s t g e t a v a l i a b l e t r i p o p t i o n s " r e c e i v e r =" t r a v e l e r - t r a "

r e c e i v e A c t i v i t y =" g e t a v a l i a b l e t r i p o p t i o n s " messageName ="5" />

31 <messageLink name=" s e l e c t a i r l i n e L i n k " s e n d e r =" t r a v e l e r - t r a "

s e n d A c t i v i t y =" r e q u e s t s e l e c t a i r l i n e " r e c e i v e r =" t r a v e l a g e n c y -

t r a " r e c e i v e A c t i v i t y =" s e l e c t a i r l i n e " messageName ="6" />

32 <messageLink name=" s e l e c t c r u i s e L i n k " s e n d e r =" t r a v e l e r - t r a "

s e n d A c t i v i t y =" r e q u e s t s e l e c t c r u i s e " r e c e i v e r =" t r a v e l a g e n c y -

t r a " r e c e i v e A c t i v i t y =" s e l e c t c r u i s e " messageName ="7" />

33 <messageLink name=" s e l e c t c a r r e n t a l L i n k " s e n d e r =" t r a v e l e r - t r a "

s e n d A c t i v i t y =" r e q u e s t s e l e c t c a r r e n t a l " r e c e i v e r =" t r a v e l a g e n c y

- t r a " r e c e i v e A c t i v i t y =" s e l e c t c a r r e n t a l " messageName ="8" />

334

34 <messageLink name=" b o o k f l i g h t L i n k " s e n d e r =" t r a v e l a g e n c y - t r a "

s e n d A c t i v i t y =" r e q u e s t b o o k f l i g h t " r e c e i v e r =" a i r l i n e "

r e c e i v e A c t i v i t y =" b o o k f l i g h t " messageName ="9" />

35 <messageLink name=" p r o c e s s t i c k e t L i n k " s e n d e r =" t r a v e l a g e n c y - t r a "

s e n d A c t i v i t y =" r e q u e s t p r o c e s s t i c k e t " r e c e i v e r =" a i r l i n e "

r e c e i v e A c t i v i t y =" p r o c e s s t i c k e t " messageName ="10" />

36 <messageLink name=" s e n d c o n f i r m e d p l a n L i n k " s e n d e r =" t r a v e l a g e n c y -

t r a " s e n d A c t i v i t y =" r e q u e s t s e n d c o n f i r m e d p l a n " r e c e i v e r ="

t r a v e l e r - t r a " r e c e i v e A c t i v i t y =" s e n d c o n f i r m e d p l a n "

messageName ="11" />

37 <messageLink name=" g e t c o n f i r m e d p l a n L i n k " s e n d e r =" t r a v e l a g e n c y -

t r a " s e n d A c t i v i t y =" r e q u e s t g e t c o n f i r m e d p l a n " r e c e i v e r ="

t r a v e l e r - t r a " r e c e i v e A c t i v i t y =" g e t c o n f i r m e d p l a n " messageName

="12" />

38 <messageLink name=" s e n d t r i p p l a n c a n c e l a t i o n L i n k " s e n d e r ="

t r a v e l a g e n c y - t r a " s e n d A c t i v i t y ="

r e q u e s t s e n d t r i p p l a n c a n c e l a t i o n " r e c e i v e r =" t r a v e l e r - t r a "

r e c e i v e A c t i v i t y =" s e n d t r i p p l a n c a n c e l a t i o n " messageName ="13" /

>

39 <messageLink name=" g e t t r i p p l a n c a n c e l a t i o n L i n k " s e n d e r ="

t r a v e l a g e n c y - t r a " s e n d A c t i v i t y ="

r e q u e s t g e t t r i p p l a n c a n c e l a t i o n " r e c e i v e r =" t r a v e l e r - t r a "

r e c e i v e A c t i v i t y =" g e t t r i p p l a n c a n c e l a t i o n " messageName ="14" />

40 <messageLink name=" c a n c e l o r d e r L i n k " s e n d e r =" t r a v e l e r - t r a "

s e n d A c t i v i t y =" c a n c e l o r d e r " r e c e i v e r =" t r a v e l a g e n c y - t r a "

r e c e i v e A c t i v i t y =" g e t c a n c e l o r d e r " messageName ="15" />

41 < / messageLinks>

42 < / t o p o l o g y>

1 <g r o u n d i n g t o p o l o g y =" t r a v e l i t i n e r a r y ">

2 xmlns : t o p =" urn : t r a v e l i t i n e r a r y " xmlns : zab =" urn : t r a v e l a g e n c y - t r a "

xmlns : r s t =" urn : t r a v e l e r - t r a " xmlns : fgh =" urn : a i r l i n e " xmlns : j k l ="

urn : c a r r e n t a l " xmlns : g h i =" urn : c r u i s e " xmlns =" urn : HPI_IAAS :

c h o r e o g r a p h y : schemas : c h o r e o g r a p h y : g r o u n d i n g : 2 0 0 6 / 1 2 ">

<messageLinks>

3 <messageLink name=" q u e r y t r i p L i n k " p o r t T y p e =" zab : t r a v e l a g e n c y - t r a _ p t

o p e r a t i o n =" q u e r y t r i p " />

335

4 <messageLink name=" r e q u e s t p r i c e L i n k " p o r t T y p e =" fgh : a i r l i n e _ p t

o p e r a t i o n =" r e q u e s t p r i c e " />

5 <messageLink name=" r e q u e s t p r i c e L i n k " p o r t T y p e =" g h i : c r u i s e _ p t

o p e r a t i o n =" r e q u e s t p r i c e " />

6 <messageLink name=" r e q u e s t p r i c e L i n k " p o r t T y p e =" j k l : c a r r e n t a l _ p t

o p e r a t i o n =" r e q u e s t p r i c e " />

7 <messageLink name=" g e t a v a l i a b l e t r i p o p t i o n s L i n k " p o r t T y p e =" r s t :

t r a v e l e r - t r a _ p t o p e r a t i o n =" g e t a v a l i a b l e t r i p o p t i o n s " />

8 <messageLink name=" s e l e c t a i r l i n e L i n k " p o r t T y p e =" zab : t r a v e l a g e n c y -

t r a _ p t o p e r a t i o n =" s e l e c t a i r l i n e " />

9 <messageLink name=" s e l e c t c r u i s e L i n k " p o r t T y p e =" zab : t r a v e l a g e n c y - t r a

_ p t o p e r a t i o n =" s e l e c t c r u i s e " />

10 <messageLink name=" s e l e c t c a r r e n t a l L i n k " p o r t T y p e =" zab : t r a v e l a g e n c y -

t r a _ p t o p e r a t i o n =" s e l e c t c a r r e n t a l " />

11 <messageLink name=" b o o k f l i g h t L i n k " p o r t T y p e =" fgh : a i r l i n e _ p t

o p e r a t i o n =" b o o k f l i g h t " />

12 <messageLink name=" p r o c e s s t i c k e t L i n k " p o r t T y p e =" fgh : a i r l i n e _ p t

o p e r a t i o n =" p r o c e s s t i c k e t " />

13 <messageLink name=" s e n d c o n f i r m e d p l a n L i n k " p o r t T y p e =" r s t : t r a v e l e r -

t r a _ p t o p e r a t i o n =" s e n d c o n f i r m e d p l a n " />

14 <messageLink name=" g e t c o n f i r m e d p l a n L i n k " p o r t T y p e =" r s t : t r a v e l e r - t r a

_ p t o p e r a t i o n =" g e t c o n f i r m e d p l a n " />

15 <messageLink name=" s e n d t r i p p l a n c a n c e l a t i o n L i n k " p o r t T y p e =" r s t :

t r a v e l e r - t r a _ p t o p e r a t i o n =" s e n d t r i p p l a n c a n c e l a t i o n " />

16 <messageLink name=" g e t t r i p p l a n c a n c e l a t i o n L i n k " p o r t T y p e =" r s t :

t r a v e l e r - t r a _ p t o p e r a t i o n =" g e t t r i p p l a n c a n c e l a t i o n " />

17 <messageLink name=" c a n c e l o r d e r L i n k " p o r t T y p e =" zab : t r a v e l a g e n c y - t r a

_ p t o p e r a t i o n =" g e t c a n c e l o r d e r " />

1 < p r o c e s s a b s t r a c t P r o c e s s P r o f i l e =" urn : HPI_IAAS : c h o r e o g r a p h y : p r o f i l e

: 2 0 0 6 / 1 2 " name=" t r a v e l a g e n c y - t r a " t a r g e t N a m e s p a c e =" urn : booking :

agency " xmlns =" h t t p : / / docs . o a s i s -open . o rg / wsbpel / 2 . 0 / p r o c e s s /

a b s t r a c t " xmlns : wsu=" urn : wsu ">

2 < s e q u e n c e>

3 < r e c e i v e wsu : i d =" q u e r y t r i p " c r e a t e I n s t a n c e =" yes " />

4 < f low>

5 < i n vo ke wsu : i d =" r e q u e s t p r i c e " />

336

6 < i n vo ke wsu : i d =" r e q u e s t p r i c e " />

7 < i n vo ke wsu : i d =" r e q u e s t p r i c e " />

8 < / f low>

9 < i n vo ke wsu : i d =" g e t a v a l i a b l e t r i p o p t i o n s " />

10 < r e c e i v e wsu : i d =" s e l e c t a i r l i n e " />

11 < r e c e i v e wsu : i d =" s e l e c t c r u i s e " />

12 < r e c e i v e wsu : i d =" s e l e c t c a r r e n t a l " />

13 <p i c k>

14 <onMessage wsu : i d =" g e t c a n c e l o r d e r "

15 < i f >

16 < c o n d i t i o n opaque =" yes " />

17 < f low>

18 < s e q u e n c e>

19 < i n vo ke wsu : i d =" b o o k f l i g h t " />

20 < i n vo ke wsu : i d =" p r o c e s s t i c k e t " />

21 < / s e q u e n c e>

22 < i n vo ke wsu : i d =" s e n d c o n f i r m e d p l a n " />

23 < / f low>

24 < / i f >

25 < i n vo ke wsu : i d =" s e n d t r i p p l a n c a n c e l a t i o n " />

26 < / onMessage>

27 < / p i c k>

28 < / s e q u e n c e>

29 < / p r o c e s s>

1 < p r o c e s s a b s t r a c t P r o c e s s P r o f i l e =" urn : HPI_IAAS : c h o r e o g r a p h y : p r o f i l e

: 2 0 0 6 / 1 2 " name=" t r a v e l e r - t r a " t a r g e t N a m e s p a c e =" urn : booking :

agency " xmlns =" h t t p : / / docs . o a s i s -open . o rg / wsbpel / 2 . 0 / p r o c e s s /

a b s t r a c t " xmlns : wsu=" urn : wsu ">

2 < s e q u e n c e>

3 < f o r E a c h p a r a l l e l =" yes " wsu : i d =" q u e r y t r i p F E ">

4 < scope wsu : i d =" q u e r y t r i p S c o p e ">

5 < s e q u e n c e>

6 < i n vo ke wsu : i d =" q u e r y t r i p " />

7 < / s e q u e n c e>

8 < / s cope>

9 < / f o r E a c h>

337

10 < r e c e i v e wsu : i d =" g e t a v a l i a b l e t r i p o p t i o n s " />

11 < r e c e i v e wsu : i d =" g e t c o n f i r m e d p l a n " />

12 < r e c e i v e wsu : i d =" g e t t r i p p l a n c a n c e l a t i o n " />

13 < / s e q u e n c e>

14 < / p r o c e s s>

E.2 VxBPEL and BPEL Files

1 <b p e l : p r o c e s s xmlns : xsd =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema" name="

t r a v e l i t i n e r a r y _ p l a n i t i n e r a r y " e x t 1 : l i n k s A r e T r a n s i t i o n s =" yes "

e x t : d i s a b l e S e l e c t i o n F a i l u r e =" yes " xmlns : e x t 1 =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 9 / 0 6 / b p e l / e x t e n s i o n / l i n k s " s u p p r e s s J o i n F a i l u r e

=" yes " xmlns : bpmndi =" h t t p : / / www. omg . org / spec /BPMN/ 2 0 1 0 0 5 2 4 / DI "

e x t : c r e a t e T a r g e t X P a t h =" yes " xmlns : v xb pe l =" h t t p : / / www. t u r k s e l m a .

com / vx bp e l " xmlns : e x t =" h t t p : / / www. a c t i v e b p e l . o rg / 2 0 0 6 / 0 9 / b p e l /

e x t e n s i o n / que ry_ h a n d l i n g " xmlns : abx =" h t t p : / / www. a c t i v e b p e l . o rg /

b p e l / e x t e n s i o n " t a r g e t N a m e s p a c e =" h t t p : / / v e r i f i c a t i o n p r o c e s s " a e i

: e d i t S t y l e ="BPMN" xmlns : b p e l =" h t t p : / / docs . o a s i s -open . o rg / wsbpel

/ 2 . 0 / p r o c e s s / e x e c u t a b l e " xmlns : a e i =" h t t p : / / www. a c t i v e b p e l . o rg

/ 2 0 0 9 / 0 2 / b p e l / e x t e n s i o n / i g n o r a b l e ">

2 <b p e l : e x t e n s i o n s>

3 <b p e l : e x t e n s i o n mus tUnde r s t and =" no " namespace =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 9 / 0 2 / b p e l / e x t e n s i o n / i g n o r a b l e " />

4 <b p e l : e x t e n s i o n mus tUnde r s t and =" no " namespace =" h t t p : / / www. omg .

org / spec /BPMN/ 2 0 1 0 0 5 2 4 / DI " />

5 <b p e l : e x t e n s i o n mus tUnde r s t and =" yes " namespace =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 6 / 0 9 / b p e l / e x t e n s i o n / que ry_ h a n d l i n g " />

6 <b p e l : e x t e n s i o n mus tUnde r s t and =" yes " namespace =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 9 / 0 6 / b p e l / e x t e n s i o n / l i n k s " />

7 < / b p e l : e x t e n s i o n s>

8 <b p e l : p a r t n e r L i n k s>

9 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" q u e r y t r i p " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="4640414432" />

10 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : A i r l i n e P r o c e s s P L T " name="

r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

338

a i r l i n e P r o c e s s : A i r l i n e P r o c e s s " a e i : i d ="2431418264" />

11 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : Ho te lP roces sPLT " name="

r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

h o t e l P r o c e s s : H o t e l P r o c e s s " a e i : i d ="1395626079" />

12 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : C r u i s e P r o c e s s P L T " name="

r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

c r u i s e P r o c e s s : C r u i s e P r o c e s s " a e i : i d ="5267441382" />

13 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : C a r r e n t a l P r o c e s s P L T " name

=" r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

c a r r e n t a l P r o c e s s : C a r r e n t a l P r o c e s s " a e i : i d ="6160963606" />

14 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns :

A c t i v i t y p r o v i d e r P r o c e s s P L T " name=" l i s t a c t i v i t i e s "

p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

a c t i v i t y p r o v i d e r P r o c e s s : A c t i v i t y p r o v i d e r P r o c e s s " a e i : i d

="5105280568" />

15 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l e r P r o c e s s P L T " name

=" l i s t a c t i v i t i e s _temp " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e

=" t r a v e l e r P r o c e s s : T r a v e l e r P r o c e s s " a e i : i d ="9206277718" />

16 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e t s e l e c t e d a c t i v i t i e s " p a r t n e r R o l e =" P r o v i d e r " a e i :

i n t e r f a c e =" t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="7448427495" />

17 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns :

A c t i v i t y p r o v i d e r P r o c e s s P L T " name=" r e q u e s t p r i c e " p a r t n e r R o l e

=" P r o v i d e r " a e i : i n t e r f a c e =" a c t i v i t y p r o v i d e r P r o c e s s :

A c t i v i t y p r o v i d e r P r o c e s s " a e i : i d ="8771548067" />

18 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l e r P r o c e s s P L T " name

=" g e t a v a l i a b l e t r i p o p t i o n s " p a r t n e r R o l e =" P r o v i d e r " a e i :

i n t e r f a c e =" t r a v e l e r P r o c e s s : T r a v e l e r P r o c e s s " a e i : i d

="7167471986" />

19 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t a i r l i n e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="6908201778" />

20 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t h o t e l " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

339

="1721862691" />

21 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t c r u i s e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="3579635831" />

22 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t c a r r e n t a l " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e

=" t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="0826709246" />

23 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l e r P r o c e s s P L T " name

=" g e t c o n f i r m e d p l a n " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l e r P r o c e s s : T r a v e l e r P r o c e s s " a e i : i d ="6856152159" />

24 < / b p e l : p a r t n e r L i n k s>

25 <b p e l : v a r i a b l e s>

26 <b p e l : v a r i a b l e name=" i n t e l e m " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

27 <b p e l : v a r i a b l e name=" s t r i n g e l e m " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

28 <b p e l : v a r i a b l e name=" c r u i s e c o n f i r m a t i o n " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

29 <b p e l : v a r i a b l e name=" c a r r e n t a l c o n f i r m a t i o n " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

30 <b p e l : v a r i a b l e name=" a c t i v i t y c o n f i r m a t i o n " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

31 < / b p e l : v a r i a b l e s>

32 <b p e l : f low a e i : i d ="7852398760">

33 <b p e l : s e q u e n c e a e i : i d ="4753089694">

34 <b p e l : i n vo ke o p e r a t i o n =" q u e r y t r i p " p a r t n e r l i n k =" q u e r y t r i p "

name=" t r a v e l a g e n c y " a e i : i d ="1470070611" v a r i a b l e ="

s t a r t d a t e " />

35 <b p e l : f low a e i : f o r k J o i n =" yes " a e i : i d ="2091793067">

36 <vx bp e l : V a r i a t i o n P o i n t name=" booking ">

37 <vx bp e l : V a r i a n t s>

38 <vx bp e l : V a r i a n t name=" a i r l i n e ">

39 <vx bp e l : VPBpelCode>

40 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k ="

r e q u e s t p r i c e " name=" a i r l i n e " a e i : i d ="7704360219"

340

v a r i a b l e =" s t a r t d a t e " />

41 < / v xb pe l : VPBpelCode>

42 < / v xb pe l : V a r i a n t>

43 <vx bp e l : V a r i a n t name=" h o t e l ">

44 <vx bp e l : VPBpelCode>

45 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k ="

r e q u e s t p r i c e " name=" h o t e l " a e i : i d ="2512554302"

v a r i a b l e =" s t a r t d a t e " />

46 < / v xb pe l : VPBpelCode>

47 < / v xb pe l : V a r i a n t>

48 < / v xb pe l : V a r i a n t s>

49 < / v xb pe l : V a r i a t i o n P o i n t>

50 <vx bp e l : V a r i a t i o n P o i n t name=" f a c i l i t i e s ">

51 <vx bp e l : V a r i a n t s>

52 <vx bp e l : V a r i a n t name=" c r u i s e ">

53 <vx bp e l : VPBpelCode>

54 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k ="

r e q u e s t p r i c e " name=" c r u i s e " a e i : i d ="8397945070"

v a r i a b l e =" p a c k a g e i d " />

55 < / v xb pe l : VPBpelCode>

56 < / v xb pe l : V a r i a n t>

57 <vx bp e l : V a r i a n t name=" c a r r e n t a l ">

58 <vx bp e l : VPBpelCode>

59 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k ="

r e q u e s t p r i c e " name=" c a r r e n t a l " a e i : i d

="9625798902" v a r i a b l e =" ca rmode l " />

60 < / v xb pe l : VPBpelCode>

61 < / v xb pe l : V a r i a n t>

62 <vx bp e l : V a r i a n t name=" a c t i v i t i e s ">

63 <vx bp e l : VPBpelCode>

64 <b p e l : s e q u e n c e a e i : i d ="1704764723">

65 <b p e l : i n vo ke o p e r a t i o n =" l i s t a c t i v i t i e s "

p a r t n e r l i n k =" l i s t a c t i v i t i e s " name="

a c t i v i t y p r o v i d e r " a e i : i d ="6917304196" v a r i a b l e

=" p l a c e " />

66 <b p e l : f low a e i : f o r k J o i n =" yes " a e i : i d ="4355232778"

>

341

67 <b p e l : i n vo ke o p e r a t i o n =" l i s t a c t i v i t i e s _temp "

p a r t n e r l i n k =" l i s t a c t i v i t i e s _temp " name="

t r a v e l e r " a e i : i d ="2257857948" />

68 < / b p e l : f low>

69 <b p e l : i n vo ke o p e r a t i o n =" s e t s e l e c t e d a c t i v i t i e s "

p a r t n e r l i n k =" s e t s e l e c t e d a c t i v i t i e s " name="

t r a v e l a g e n c y " a e i : i d ="5558653459" v a r i a b l e ="

s e l e c t e d l i s t " />

70 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k

=" r e q u e s t p r i c e " name=" a c t i v i t y p r o v i d e r " a e i : i d

="0485344646" v a r i a b l e =" s e l e c t e d l i s t " />

71 < / b p e l : s e q u e n c e>

72 < / v xb pe l : VPBpelCode>

73 < / v xb pe l : V a r i a n t>

74 < / v xb pe l : V a r i a n t s>

75 < / v xb pe l : V a r i a t i o n P o i n t>

76 < / b p e l : f low>

77 <b p e l : i n vo ke o p e r a t i o n =" g e t a v a l i a b l e t r i p o p t i o n s " p a r t n e r l i n k

=" g e t a v a l i a b l e t r i p o p t i o n s " name=" t r a v e l e r " a e i : i d

="0509001798" v a r i a b l e =" t r a v e l e r I D " />

78 <b p e l : r e c e i v e o p e r a t i o n =" g e t a v a l i a b l e t r i p o p t i o n s " p a r t n e r l i n k

=" g e t a v a l i a b l e t r i p o p t i o n s " name=" t r a v e l e r " a e i : i d

="6344151910" v a r i a b l e =" t r a v e l e r I D " />

79 <vx bp e l : V a r i a t i o n P o i n t name=" booking ">

80 <vx bp e l : V a r i a n t s>

81 <vx bp e l : V a r i a n t name=" a i r l i n e ">

82 <vx bp e l : VPBpelCode>

83 <b p e l : s e q u e n c e a e i : i d ="2654629829">

84 <b p e l : i n vo ke o u t p u t V a r i a b l e =" i n t e l e m " o p e r a t i o n ="

s e l e c t a i r l i n e " p a r t n e r l i n k =" s e l e c t a i r l i n e " name

=" t r a v e l a g e n c y " a e i : i d ="6292378011" v a r i a b l e ="

a i r l i n e I D " />

85 < / b p e l : s e q u e n c e>

86 < / v xb pe l : VPBpelCode>

87 < / v xb pe l : V a r i a n t>

88 <vx bp e l : V a r i a n t name=" h o t e l ">

89 <vx bp e l : VPBpelCode>

342

90 <b p e l : s e q u e n c e a e i : i d ="0623588291">

91 <b p e l : i n vo ke o u t p u t V a r i a b l e =" s t r i n g e l e m " o p e r a t i o n

=" s e l e c t h o t e l " p a r t n e r l i n k =" s e l e c t h o t e l " name="

t r a v e l a g e n c y " a e i : i d ="5541067870" v a r i a b l e ="

h o t e l I D " />

92 < / b p e l : s e q u e n c e>

93 < / v xb pe l : VPBpelCode>

94 < / v xb pe l : V a r i a n t>

95 < / v xb pe l : V a r i a n t s>

96 < / v xb pe l : V a r i a t i o n P o i n t>

97 <vx bp e l : V a r i a t i o n P o i n t name=" f a c i l i t i e s ">

98 <vx bp e l : V a r i a n t s>

99 <vx bp e l : V a r i a n t name=" c r u i s e ">

100 <vx bp e l : VPBpelCode>

101 <b p e l : s e q u e n c e a e i : i d ="2258916978">

102 <b p e l : i n vo ke o u t p u t V a r i a b l e =" c r u i s e c o n f i r m a t i o n "

o p e r a t i o n =" s e l e c t c r u i s e " p a r t n e r l i n k ="

s e l e c t c r u i s e " name=" t r a v e l a g e n c y " a e i : i d

="4593472620" v a r i a b l e =" p a c k a g e i d " />

103 < / b p e l : s e q u e n c e>

104 < / v xb pe l : VPBpelCode>

105 < / v xb pe l : V a r i a n t>

106 <vx bp e l : V a r i a n t name=" c a r r e n t a l ">

107 <vx bp e l : VPBpelCode>

108 <b p e l : s e q u e n c e a e i : i d ="0671685516">

109 <b p e l : i n vo ke o u t p u t V a r i a b l e =" c a r r e n t a l c o n f i r m a t i o n "

o p e r a t i o n =" s e l e c t c a r r e n t a l " p a r t n e r l i n k ="

s e l e c t c a r r e n t a l " name=" t r a v e l a g e n c y " a e i : i d

="6741086100" v a r i a b l e =" ca rmode l " />

110 < / b p e l : s e q u e n c e>

111 < / v xb pe l : VPBpelCode>

112 < / v xb pe l : V a r i a n t>

113 <vx bp e l : V a r i a n t name=" a c t i v i t i e s ">

114 <vx bp e l : VPBpelCode>

115 <b p e l : s e q u e n c e a e i : i d ="5479513147">

116 <b p e l : i n vo ke o u t p u t V a r i a b l e =" a c t i v i t y c o n f i r m a t i o n "

o p e r a t i o n =" s e t s e l e c t e d a c t i v i t i e s " p a r t n e r l i n k ="

343

s e t s e l e c t e d a c t i v i t i e s " name=" t r a v e l a g e n c y " a e i :

i d ="2085641222" v a r i a b l e =" a c t i v i t y l i s t " />

117 <b p e l : i n vo ke o p e r a t i o n =" g e t c o n f i r m e d p l a n "

p a r t n e r l i n k =" g e t c o n f i r m e d p l a n " name=" t r a v e l e r "

a e i : i d ="0403061426" />

118 < / b p e l : s e q u e n c e>

119 < / v xb pe l : VPBpelCode>

120 < / v xb pe l : V a r i a n t>

121 < / v xb pe l : V a r i a n t s>

122 < / v xb pe l : V a r i a t i o n P o i n t>

123 < / b p e l : s e q u e n c e>

124 < / b p e l : f low>

125 <vx bp e l : C o n f i g u r a b l e V a r i a t i o n P o i n t s>

126 <vx bp e l : C o n f i g u r a b l e V a r i a t i o n P o i n t d e f a u l t V a r i a n t =" r e g u l a r " i d

=" i t i n e r a r y ">

127 <vx bp e l : Name> i t i n e r a r y < / v xb pe l : Name>

128 <vx bp e l : R a t i o n a l e>" i t i s r e a l i z e d by booking and f a c i l i t i e s

v a r i a t i o n p o i n t s "< / v xb pe l : R a t i o n a l e>

129 <vx bp e l : V a r i a n t s>

130 <vx bp e l : V a r i a n t name=" v a c a t i o n p a c k a g e ">

131 <vx bp e l : V a r i a n t I n f o> . . . < / v xb pe l : V a r i a n t I n f o>

132 <vx bp e l : R e q u i r e d C o n f i g u r a t i o n>

133 <vx bp e l : VPChoices>

134 <vx bp e l : VPChoice vpname =" f a c i l i t i e s " v a r i a n t =" c r u i s e

" />

135 <vx bp e l : VPChoice vpname =" f a c i l i t i e s " v a r i a n t ="

c a r r e n t a l " />

136 <vx bp e l : VPChoice vpname =" f a c i l i t i e s " v a r i a n t ="

a c t i v i t i e s " />

137 <vx bp e l : VPChoice vpname =" booking " v a r i a n t =" h o t e l " />

138 <vx bp e l : VPChoice vpname =" booking " v a r i a n t =" a i r l i n e " />

139 < / v xb pe l : VPChoices>

140 < / v xb pe l : R e q u i r e d C o n f i g u r a t i o n>

141 < / v xb pe l : V a r i a n t>

142 <vx bp e l : V a r i a n t name=" r e g u l a r ">

143 <vx bp e l : V a r i a n t I n f o> . . . < / v xb pe l : V a r i a n t I n f o>

144 <vx bp e l : R e q u i r e d C o n f i g u r a t i o n>

344

145 <vx bp e l : VPChoices>

146 <vx bp e l : VPChoice vpname =" f a c i l i t i e s " v a r i a n t =" c r u i s e

" />

147 <vx bp e l : VPChoice vpname =" f a c i l i t i e s " v a r i a n t ="

c a r r e n t a l " />

148 <vx bp e l : VPChoice vpname =" f a c i l i t i e s " v a r i a n t ="

a c t i v i t i e s " />

149 <vx bp e l : VPChoice vpname =" booking " v a r i a n t =" h o t e l " />

150 <vx bp e l : VPChoice vpname =" booking " v a r i a n t =" a i r l i n e " />

151 < / v xb pe l : VPChoices>

152 < / v xb pe l : R e q u i r e d C o n f i g u r a t i o n>

153 < / v xb pe l : V a r i a n t>

154 < / v xb pe l : V a r i a n t s>

155 < / v xb pe l : C o n f i g u r a b l e V a r i a t i o n P o i n t>

156 < / v xb pe l : C o n f i g u r a b l e V a r i a t i o n P o i n t s>

157 < / b p e l : p r o c e s s>

1 <b p e l : p r o c e s s xmlns : xsd =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema" name="

t r a v e l i t i n e r a r y _ p l a n i t i n e r a r y " e x t 1 : l i n k s A r e T r a n s i t i o n s =" yes "

e x t : d i s a b l e S e l e c t i o n F a i l u r e =" yes " xmlns : e x t 1 =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 9 / 0 6 / b p e l / e x t e n s i o n / l i n k s " s u p p r e s s J o i n F a i l u r e

=" yes " xmlns : bpmndi =" h t t p : / / www. omg . org / spec /BPMN/ 2 0 1 0 0 5 2 4 / DI "

e x t : c r e a t e T a r g e t X P a t h =" yes " xmlns : v xb pe l =" h t t p : / / www. t u r k s e l m a .

com / vx bp e l " xmlns : e x t =" h t t p : / / www. a c t i v e b p e l . o rg / 2 0 0 6 / 0 9 / b p e l /

e x t e n s i o n / que ry_ h a n d l i n g " xmlns : abx =" h t t p : / / www. a c t i v e b p e l . o rg /

b p e l / e x t e n s i o n " t a r g e t N a m e s p a c e =" h t t p : / / v e r i f i c a t i o n p r o c e s s " a e i

: e d i t S t y l e ="BPMN" xmlns : b p e l =" h t t p : / / docs . o a s i s -open . o rg / wsbpel

/ 2 . 0 / p r o c e s s / e x e c u t a b l e " xmlns : a e i =" h t t p : / / www. a c t i v e b p e l . o rg

/ 2 0 0 9 / 0 2 / b p e l / e x t e n s i o n / i g n o r a b l e ">

2 <b p e l : e x t e n s i o n s>

3 <b p e l : e x t e n s i o n mus tUnde r s t and =" no " namespace =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 9 / 0 2 / b p e l / e x t e n s i o n / i g n o r a b l e " />

4 <b p e l : e x t e n s i o n mus tUnde r s t and =" no " namespace =" h t t p : / / www. omg .

org / spec /BPMN/ 2 0 1 0 0 5 2 4 / DI " />

5 <b p e l : e x t e n s i o n mus tUnde r s t and =" yes " namespace =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 6 / 0 9 / b p e l / e x t e n s i o n / que ry_ h a n d l i n g " />

345

6 <b p e l : e x t e n s i o n mus tUnde r s t and =" yes " namespace =" h t t p : / / www.

a c t i v e b p e l . o rg / 2 0 0 9 / 0 6 / b p e l / e x t e n s i o n / l i n k s " />

7 < / b p e l : e x t e n s i o n s>

8 <b p e l : p a r t n e r L i n k s>

9 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" q u e r y t r i p " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="4640414432" />

10 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : A i r l i n e P r o c e s s P L T " name="

r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

a i r l i n e P r o c e s s : A i r l i n e P r o c e s s " a e i : i d ="2431418264" />

11 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : Ho te lP roces sPLT " name="

r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

h o t e l P r o c e s s : H o t e l P r o c e s s " a e i : i d ="1395626079" />

12 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : C r u i s e P r o c e s s P L T " name="

r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

c r u i s e P r o c e s s : C r u i s e P r o c e s s " a e i : i d ="5267441382" />

13 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : C a r r e n t a l P r o c e s s P L T " name

=" r e q u e s t p r i c e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

c a r r e n t a l P r o c e s s : C a r r e n t a l P r o c e s s " a e i : i d ="6160963606" />

14 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns :

A c t i v i t y p r o v i d e r P r o c e s s P L T " name=" l i s t a c t i v i t i e s "

p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

a c t i v i t y p r o v i d e r P r o c e s s : A c t i v i t y p r o v i d e r P r o c e s s " a e i : i d

="5105280568" />

15 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l e r P r o c e s s P L T " name

=" l i s t a c t i v i t i e s _temp " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e

=" t r a v e l e r P r o c e s s : T r a v e l e r P r o c e s s " a e i : i d ="9206277718" />

16 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e t s e l e c t e d a c t i v i t i e s " p a r t n e r R o l e =" P r o v i d e r " a e i :

i n t e r f a c e =" t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="7448427495" />

17 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns :

A c t i v i t y p r o v i d e r P r o c e s s P L T " name=" r e q u e s t p r i c e " p a r t n e r R o l e

=" P r o v i d e r " a e i : i n t e r f a c e =" a c t i v i t y p r o v i d e r P r o c e s s :

A c t i v i t y p r o v i d e r P r o c e s s " a e i : i d ="8771548067" />

346

18 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l e r P r o c e s s P L T " name

=" g e t a v a l i a b l e t r i p o p t i o n s " p a r t n e r R o l e =" P r o v i d e r " a e i :

i n t e r f a c e =" t r a v e l e r P r o c e s s : T r a v e l e r P r o c e s s " a e i : i d

="7167471986" />

19 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t a i r l i n e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="6908201778" />

20 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t h o t e l " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="1721862691" />

21 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t c r u i s e " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="3579635831" />

22 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l a g e n c y P r o c e s s P L T "

name=" s e l e c t c a r r e n t a l " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e

=" t r a v e l a g e n c y P r o c e s s : T r a v e l a g e n c y P r o c e s s " a e i : i d

="0826709246" />

23 <b p e l : p a r t n e r L i n k p a r t n e r L i n k T y p e =" ns : T r a v e l e r P r o c e s s P L T " name

=" g e t c o n f i r m e d p l a n " p a r t n e r R o l e =" P r o v i d e r " a e i : i n t e r f a c e ="

t r a v e l e r P r o c e s s : T r a v e l e r P r o c e s s " a e i : i d ="6856152159" />

24 < / b p e l : p a r t n e r L i n k s>

25 <b p e l : v a r i a b l e s>

26 <b p e l : v a r i a b l e name=" i n t e l e m " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

27 <b p e l : v a r i a b l e name=" s t r i n g e l e m " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

28 <b p e l : v a r i a b l e name=" c r u i s e c o n f i r m a t i o n " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

29 <b p e l : v a r i a b l e name=" c a r r e n t a l c o n f i r m a t i o n " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

30 <b p e l : v a r i a b l e name=" a c t i v i t y c o n f i r m a t i o n " e l e m e n t =" t r a v e l a g :

t r a v e l a g e n c y P r o c e s s R e q u e s t " />

31 < / b p e l : v a r i a b l e s>

32 <b p e l : f low a e i : i d ="7852398760">

347

33 <b p e l : s e q u e n c e a e i : i d ="4753089694">

34 <b p e l : i n vo ke o p e r a t i o n =" q u e r y t r i p " p a r t n e r l i n k =" q u e r y t r i p "

name=" t r a v e l a g e n c y " a e i : i d ="1470070611" v a r i a b l e ="

s t a r t d a t e " />

35 <b p e l : f low a e i : f o r k J o i n =" yes " a e i : i d ="2091793067">

36 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k ="

r e q u e s t p r i c e " name=" a i r l i n e " a e i : i d ="7704360219"

v a r i a b l e =" s t a r t d a t e " />

37 <b p e l : s e q u e n c e a e i : i d ="1704764723">

38 <b p e l : i n vo ke o p e r a t i o n =" l i s t a c t i v i t i e s " p a r t n e r l i n k ="

l i s t a c t i v i t i e s " name=" a c t i v i t y p r o v i d e r " a e i : i d

="6917304196" v a r i a b l e =" p l a c e " />

39 <b p e l : f low a e i : f o r k J o i n =" yes " a e i : i d ="4355232778">

40 <b p e l : i n vo ke o p e r a t i o n =" l i s t a c t i v i t i e s _temp "

p a r t n e r l i n k =" l i s t a c t i v i t i e s _temp " name=" t r a v e l e r

" a e i : i d ="2257857948" />

41 < / b p e l : f low>

42 <b p e l : i n vo ke o p e r a t i o n =" s e t s e l e c t e d a c t i v i t i e s "

p a r t n e r l i n k =" s e t s e l e c t e d a c t i v i t i e s " name="

t r a v e l a g e n c y " a e i : i d ="5558653459" v a r i a b l e ="

s e l e c t e d l i s t " />

43 <b p e l : i n vo ke o p e r a t i o n =" r e q u e s t p r i c e " p a r t n e r l i n k ="

r e q u e s t p r i c e " name=" a c t i v i t y p r o v i d e r " a e i : i d

="0485344646" v a r i a b l e =" s e l e c t e d l i s t " />

44 < / b p e l : s e q u e n c e>

45 < / b p e l : f low>

46 <b p e l : i n vo ke o p e r a t i o n =" g e t a v a l i a b l e t r i p o p t i o n s " p a r t n e r l i n k

=" g e t a v a l i a b l e t r i p o p t i o n s " name=" t r a v e l e r " a e i : i d

="0509001798" v a r i a b l e =" t r a v e l e r I D " />

47 <b p e l : r e c e i v e o p e r a t i o n =" g e t a v a l i a b l e t r i p o p t i o n s " p a r t n e r l i n k

=" g e t a v a l i a b l e t r i p o p t i o n s " name=" t r a v e l e r " a e i : i d

="6344151910" v a r i a b l e =" t r a v e l e r I D " />

48 <b p e l : s e q u e n c e a e i : i d ="2654629829">

49 <b p e l : i n vo ke o u t p u t V a r i a b l e =" i n t e l e m " o p e r a t i o n ="

s e l e c t a i r l i n e " p a r t n e r l i n k =" s e l e c t a i r l i n e " name="

t r a v e l a g e n c y " a e i : i d ="6292378011" v a r i a b l e =" a i r l i n e I D " />

50 < / b p e l : s e q u e n c e>

348

51 <b p e l : s e q u e n c e a e i : i d ="5479513147">

52 <b p e l : i n vo ke o u t p u t V a r i a b l e =" a c t i v i t y c o n f i r m a t i o n "

o p e r a t i o n =" s e t s e l e c t e d a c t i v i t i e s " p a r t n e r l i n k ="

s e t s e l e c t e d a c t i v i t i e s " name=" t r a v e l a g e n c y " a e i : i d

="2085641222" v a r i a b l e =" a c t i v i t y l i s t " />

53 <b p e l : i n vo ke o p e r a t i o n =" g e t c o n f i r m e d p l a n " p a r t n e r l i n k ="

g e t c o n f i r m e d p l a n " name=" t r a v e l e r " a e i : i d ="0403061426" />

54 < / b p e l : s e q u e n c e>

55 < / b p e l : s e q u e n c e>

56 < / b p e l : f low>

57 < / b p e l : p r o c e s s>

349

350

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Süloğlu, Selma

Nationality: Turkish (TC)

Date and Place of Birth: 30.09.1980, Eskişehir

Marital Status: Single

Phone: 0 312 297 61 57

Fax: 0 312 297 61 54

EDUCATION

Degree Institution Year of Graduation

M.S. Natural and Applied Sciences 2006

B.S. Social Sciences 2003

High School Süleyman Çakır High School 1998

High School Kılıçoğlu Anatolian High School 1997

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2010- SOSOFT Information Technologies Co-Founder - Project Manager

2007-2011 Middle East Technical University Research and Teaching Assistant

2006-2007 Middle East Technical University METU-ISTEC Project Personel

2005-2006 Datasel Information Systems Software Engineer

2004 Mobilsoft, Meteksan System Stajer Software Engineer

351

PUBLICATIONS

International Conference Publications

• Selma Suloglu, Cengiz Togay, Ali H. Dogru, "Managing Variability In Service

Composition with Axiomatic Design", In 18th International Conference on So-

ciety for Design and Process Science (SDPS 2013), October 27-31, 2013, To

be published.

• Selma Suloglu, Riza Aktunc, Mustafa Yucefaydalı, “ Verification of Variable

Service Orchestrations using Model Checking“, In 2nd International Workshop

on Quality Assurance for Service-Based Applications (QASBA), July 15, 2013,

Lugano, Switzerland.

• Selma Suloglu, Bedir Tekinerdogan, Ali Dogru, “ XChor: Chreography Lan-

guage For Integration of Variable Orchestration Languages“, In 3rd Interna-

tional Symposium on Business Modeling and Software Design, Noordwijker-

hout, Netherlands, July 8-10, 2013.

• Eren Akbıyık, Selma Süloğlu, Cengiz Togay and Ali H. Doğru, “Service Ori-

ented Systems Design Through Process Decomposition”, The Eleventh World

Conference on Integrated Design and Process Technology, pp: 332-338, Tauic

hung, Taiwan, June 1-6, 2008.

• Semih Çetin, N. İlker Altıntaş, Halit Oğuztüzün, Ali H. Doğru, Özgür Tüfekçi

and Selma Süloğlu, “A Mashup-Based Strategy for Migration to Service-Oriented

Computing”, IEEE International Conference on Pervasive Services, İstanbul,

Turkey, pp: 169-172, July 15-20, 2007.

• Semih Çetin, N. İlker Altıntaş, Halit Oğuztüzün, Ali H. Doğru, Özgür Tüfekçi

and Selma Süloğlu, “Legacy Migration to Service-Oriented Computing with

Mashups” International Conference on Software Engineering Advances, Au-

gust 2007.

352

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background
	Problem Statement
	Approach
	Contribution
	Outline Of Thesis

	BACKGROUND
	Chronological History of Web Standards, Organizations and Paradigms
	Definitions and Main Terminology
	Service Oriented Architecture (SOA)
	Composition in SOA

	Systematic Literature Review
	Orchestration Languages
	Choreography Languages

	Variability Management
	Variability in Software Systems
	Variability Notion in SOA
	Variation Support in Existing Approaches
	Existing Variability Models

	Comparison Framework
	Variability Modeling
	Composition and Configuration of Models
	Tool Support
	Discussion and Problem Statement

	VARIABILITY IN CHOREOGRAPHY LANGUAGE: XCHOR
	Variability Modeling Requirements for Choreography Languages
	Case Study
	Case Study: Travel Itinerary System
	Case Study: Adaptable Security System

	A Metamodel for Variability Management in Choreography
	Variability Specification
	Choreography Specification
	Choreography to Variability Mapping

	XChor Language
	XChor Language Constructs
	Variation Specification Constructs
	Choreography Specification Constructs.
	Variation and Choreography Mapping Constructs.

	XChor Models
	Configuration Interface
	Choreography
	Service and Choreography Interface

	Tool Support for XChor
	Application Development with XChor
	XChor Language Evaluation under Comparison Framework
	Validation of XChor
	Modeling Service Variability through XChor Language
	Exposed variability
	Composition variability
	Partner variability
	Partner exposed variability

	Modeling Choreography through XChor Language
	Single-transmission bilateral interaction patterns
	Single-transmission multilateral interaction patterns
	Multi-transmission interaction patterns
	Routing patterns

	VERIFICATION OF XCHOR MODELS
	Need to Verify
	Verification Approaches for Variable Systems
	Model Checking of Variable XChor Choreographies
	From Variability Model in XChor to TVL Feature Model
	From XChor Behavior Model to fPromela
	Model Checking After Transformation

	Verification of The Case Study
	Travel Itinerary - Single Choreography
	Biometric Security System - Multiple Choreography

	Discussion

	TRANSFORMATION OF XCHOR MODELS TO EXISTING LANGUAGES
	Transformation to BPEL4Chor, VxBPEL and BPEL
	Differences and Similarities Between Models
	BPEL4Chor and XChor Models
	VxBPEL and XChor Models
	BPEL and XChor Models

	Assumptions and Requirements for Model Transformation
	XChor Models to BPEL4Chor Transformation
	BPEL4Chor Models to XChor Transformation
	XChor Model to VxBPEL Transformation

	The Transformation Approach to BPEL4Chor, VxBPEL and BPEL
	Transformation to BPEL4Chor
	Transformation from BPEL4Chor
	Transformation to VxBPEL and BPEL

	VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES WITH XCHOR
	Software Product Lines
	Variability Notion in Software Product Lines

	Software Product Lines and Variability of SOA
	Choreography/Orchestration Relation with Asset/Artifacts
	Component and Service Interfaces

	Managing Variability with XChor in Software Product Lines
	Relation of Software Product Line and XChor Concepts
	XChor in Software Product Line Framework

	Application of our approach to Axiomatic Design for Component Orientation

	CONCLUSION AND FUTURE WORK
	Summary
	Contributions
	Evaluation
	Future Work

	REFERENCES
	APPENDICES
	XChor Metamodel Realization in Xtext
	Travel Itinerary System in XChor Language
	Adaptable Security System in XChor Language
	Generated FTS Files for Verification of Case Studies
	TVL Feature Model File for Travel Itinerary System
	fPromela File for Travel Itinerary System
	TVL Feature Model File for Adaptable Security System
	fPromela File for Adaptable Security System

	Generated BPEL4Chor, VxBPEL and BPEL Files
	BPEL4Chor Files - Topology, Grounding and PBDs
	VxBPEL and BPEL Files

	CURRICULUM VITAE

