
ABSTRACTION IN REINFORCEMENT LEARNING IN PARTIALLY OBSERVABLE
ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY
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submitted by ERKİN ÇİLDEN in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Halil Altay Güvenir
Computer Engineering Department, Bilkent University

Prof. Dr. Faruk Polat
Computer Engineering Department, METU

Prof. Dr. Kemal Leblebicioğlu
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ABSTRACT

ABSTRACTION IN REINFORCEMENT LEARNING IN PARTIALLY OBSERVABLE
ENVIRONMENTS

Çilden, Erkin

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

February 2014, 82 pages

Reinforcement learning defines a prominent family of unsupervised machine learning meth-
ods in autonomous agents perspective. Markov decision process model provides a solid for-
mal basis for reinforcement learning algorithms. Temporal abstraction mechanisms can be
built on reinforcement learning and significant performance gain can be achieved. If the full
observability assumption of Markov decision process model is relaxed, the resulting model is
partially observable Markov decision process, which constitutes a more realistic but difficult
problem setting. Reinforcement learning research for partial observability focuses on tech-
niques to reduce negative impact of perceptual aliasing and huge state-space. In the broadest
sense, these studies can be divided into two categories. Model based approaches assume that
the state transition model is available to the agent. In the model free approaches, states are
completely hidden from the agent.

In this thesis, we propose methods to generalize a known sequence based automatic temporal
abstraction technique –namely, extended sequence tree method– to partial observability. We
attack the problem in both model based and model free approaches, showing that our methods
accelerate well known representatives of each perspective. Effectiveness of our methods are
demonstrated by conducting experimentation on widely accepted benchmark problems.

Keywords: Reinforcement Learning, Partially Observable Markov Decision Process, Tempo-
ral Abstraction, Extended Sequence Tree
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ÖZ

KISMİ GÖZLEMLENEBİLİR ORTAMLAR İÇİN PEKİŞTİRMELİ ÖĞRENMEDE
SOYUTLAMA

Çilden, Erkin

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Şubat 2014 , 82 sayfa

Pekiştirmeli öğrenme, özerk etmen bakış açısıyla, makine öğrenme yöntemleri arasında önde
gelen bir yönlendirmesiz yöntem ailesi tanımlar. Markov karar süreci modeli, pekiştirmeli
öğrenme algoritmaları için sağlam bir biçimsel temel oluşturur. Pekiştirmeli öğrenme yön-
temlerinin üstüne zamansal soyutlama mekanizmaları inşa edilerek başarımlarında kayda de-
ğer artış elde edilebilmektedir. Eğer Markov karar süreci modelinin tam gözlemlenebilirlik
varsayımı esnetilirse, ortaya çıkan kısmi gözlemlenebilir Markov karar süreci modeli, daha
gerçekçi, ancak zor bir problem alanı tanımlar. Kısmi gözlemlenebilirlik altında pekiştirmeli
öğrenme araştırmaları, algısal aynılık ve çok büyük durum uzayı sorunlarının yol açtığı olum-
suz etkileri azaltacak tekniklere odaklanmıştır. Genel olarak, bu çalışmalar iki kategoriye ayrı-
labilir. Model tabanlı yaklaşımlar durum geçiş modelinin etmen tarafından erişilebilir olduğu
varsayımına dayanır. Modelden bağımsız yaklaşımlarda ise durum bilgileri etmenden tama-
men saklıdır.

Bu tezde, bilinen bir sıralama tabanlı otomatik zamansal soyutlama tekniğini (genişletilmiş
dizi ağacı metodu) kısmi gözlemlenebilir problemler için genelleştiren yöntemler önerilmek-
tedir. Probleme hem model tabanlı, hem de modelden bağımsız bakış açısıyla yaklaşılmış,
önerilen yöntemlerin her iki bakış açısının önde gelen temsilcilerinde hızlanma sağladığı gös-
terilmiştir. Yöntemlerin etkinliği, yaygın kabul gören problemler üzerinde deneylerle göste-
rilmiştir.

Anahtar Kelimeler: Pekiştirmeli Öğrenme, Kısmi Gözlemlenebilir Markov Karar Süreci, Za-
mansal Soyutlama, Genişletilmiş Dizi Ağacı
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CHAPTER 1

INTRODUCTION

Besides its strong psychological and cognitive foundations on learning of mammals, rein-
forcement learning has a short but solid historical algebraic background in machine learning
literature, which is based on trial-and-error oriented methods of learning (learning automata,
classifier systems, etc.) and optimal control (dynamic programming). Reinforcement learning
problem is commonly described along with the notion of a learning agent. This is probably
not only because of the inspired branches of science, but also since agency is an appropriate
model for problems for which direct external supervision is not available, where the learner
is required to adapt the unknown environmental conditions alone.

There are a number of definitions for agency, depending on the level of generalization or
the specific domain of problems attacked. In the broadest sense, [51] defines an agent as
"anything that can be viewed as perceiving its environment through sensors and acting upon
that environment through effectors" (Figure 1.1).

[69] distinguishes two different usages of the term “agent”. Weak notion of agency is defined
to involve relatively more concrete properties like autonomy, social ability, reactivity and pro-
activeness. Weak notion of agency has its foundations mainly through software engineering
perspective, and is thus used in the emerging discipline of agent-based software engineering.
Strong notion of agency, on the other hand, has its foundations on artificial intelligence re-
search, extending weak notion of agency with more mentalistic properties such as knowledge,
belief, intention and obligation as in [53], or even some emotional features as in [4].

Through the agent perspective, artificial intelligence research focuses on development of
methods for an agent to achieve its goals, given its beliefs. This perspective centralizes the
rationality property, although there may be situations where there is no rational action to do,
but the agent still has to come with a meaningful decision [62].

Machine learning, as a sub-discipline of artificial intelligence, focuses on building up a certain
level of autonomy via methods for extracting rational (or near-rational) behaviour patterns
through experience. A major distinction in machine learning is whether this experience is
gathered in a supervised or unsupervised manner. In supervised learning, the agent tries to
develop a behaviour map through the correct instances provided by an external expert. In
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Figure 1.1: An agent interacting with the environment [51].

unsupervised learning, on the other hand, agent has no prior classified instances, thus it tries
to find the regularities in the input [1].

Reinforcement learning, as a machine learning method, perfectly fits the agent based approach
and lies between supervised and unsupervised methods. Since it is an on-line method, a
proper definition should couple its two important aspects: a way to learn through experience
(exploration) and an execution mechanism for the learned solution (exploitation).

The basic idea of reinforcement learning presumes a learner (agent) that interacts with its
surroundings (environment) via its activator mechanisms (actions), and receives feedback (re-
ward) from environment. In the general sense, what reinforcement learning methods do is,
to maintain an internal situation-action mapping function by using realized reward (or pun-
ishment) information repetitively gathered from the environment, in order to make the agent
more adaptive by means of optimizing rewards expected in the future. More formally, a re-
inforcement learning algorithm tries to find a policy of actions an agent ought to take in an
environment so as to maximize an objective function on reward.

Reinforcement learning problems are often modelled as Markov decision processes (MDPs),
under the assumption that states of the environment have Markov property, which means that
any state retains all relevant information to derive (learn) an optimal policy of actions. In other
words, decision of an agent for its next action given the current state, shall be independent of
all previously experienced states. Following the agent oriented view presented in Figure 1.1,
Figure 1.2 gives a gentle insight to a reinforcement learning agent in general.

Semi-Markov decision process (SMDP) model is an important extension of MDP, defining a
process where the single step action assumption of MDP is relaxed. In other words, an action
may take indefinite number of discrete time steps, instead of one. Fortunately, reinforcement
learning methods can safely be extended to include SMDP model.

More realistic problem settings require some ground rules of MDP model to be relaxed. Par-
tially observable Markov decision process (POMDP) is a generalization of MDP where states
and state transition dynamics are no longer fully observable by the agent. POMDP defines
a difficult problem category for reinforcement learning algorithms, since agent is equipped
with limited observations instead of full state information. In other words, exact state infor-
mation is hidden from the agent. Referring again to Figure 1.2, for MDP model, “observation”
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Figure 1.2: A generalized view of a reinforcement learning agent.

component of the control flow is equal to the exact state information, under the unrealistic as-
sumption that sensors are capable of taking a complete picture of the environment’s current
state. For POMDP model, however, observation semantics depicts some limitations of the
sensors of the agent, providing a partial and limited perception of the environment.

For many problems, there is no optimal (or even near-optimal) policy over observation seman-
tics alone, where the agent is supposed to learn the best action to select given any observation.
This kind of policies are called memoryless or reactive, and have a certain significance among
researchers [15, 27, 32, 34, 45]. An obvious alternative to overcome difficulties of memory-
less reinforcement learning methods is incorporating some form of memory in order to derive
internal state estimations to discriminate perceptually aliased observations, which constitute
another extensively studied area of research [12, 26, 38].

As a special treatment in the problem design of a POMDP learning task, the agent can be
provided with the underlying MDP model. If this information is available in advance, par-
tial observability is modelled by an internal belief state, which is nothing but a probability
distribution over state space [28, 29]. Belief state representation of model based approach
is semantically richer than observations alone. However, the resulting belief state space is
very large to cope with. Existing research on belief based partially observable reinforcement
learning mainly focuses on state space reduction and state prediction heuristics, since clas-
sical methods may fail to find a reasonable solution in a reasonable time, or can not find a
solution at all.

Although there is no commonly agreed naming convention in the literature [15], we will refer
to reinforcement learning methods for which the underlying MDP model is not available as
model free within the POMDP context. Using the same convention, we will say that belief
based reinforcement learning methods are model based.

Advances in reinforcement learning research raised ways to improve learning performance by
means of heuristic method extensions for the fully observable setting. One of the methods is
temporal abstraction of atomic responses of the agent, in the form of state-action sequences.
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In many problems, a learning agent tries to solve a task that is in fact composed of various
sub-tasks, which usually constitute a hierarchical structure. Most of the time, each sub-task
repeats many times at different regions of the solution space, but the agent tries to learn each
instance independently by exploring similar situations again and again, negatively affecting
the learning performance, and making it difficult to converge to optimal behaviour in a rea-
sonable time. In that sense, the main aim of temporal abstraction idea is learning faster, rather
than learning a better solution.

A unified view proposes the notion of options [63], a widely accepted temporal abstraction
model, which formulates the problem of temporal abstractions as an SMDP model and extends
the theory of reinforcement learning to include temporally extended actions with an explicit
interpretation in terms of the underlying MDP.

Temporal abstraction heuristics for reinforcement learning initiated by providing the agent
with the abstraction information as a clue prior to the learning procedure [16, 43]. The idea
was then extended to include automated ways to discover the abstraction patterns in parallel
with the reinforcement learning process, which is obviously more consistent with the “on-line
learning” philosophy of reinforcement learning [21, 25, 36, 39, 40, 55, 58].

Recently, few researchers attempted to use temporal abstractions to improve reinforcement
learning agent to solve POMDP problems. Very few studies became frontiers of abstrac-
tion in belief based partially observable reinforcement learning [18, 64, 68], mainly focusing
on non-automated or semi-automated abstraction strategies, mostly attacking the problem
through sub-goal identification. Automated abstraction of memoryless partially observable
reinforcement learning algorithms is even less explored [70]. To our knowledge, there are no
automated abstraction studies designed for memory based partially observable reinforcement
learning methods.

In this thesis, we attempt to develop ways to invoke a fully automated automatic abstraction to
reinforcement learning for partially observable problems. For this purpose, we identified three
main-stream families in reinforcement learning research for POMDP model, which are model
based (belief based) methods, memoryless (or reactive) model free methods and memory
based model free methods. We build our new constructs on a well established automatic
temporal abstraction algorithm, namely extended sequence tree method [21], which falls into
sequence based, or direct automatic abstraction category.

The outline of the thesis is as follows. Following this introduction chapter (Chapter 1), Chap-
ter 2 summarizes the literature on which our studies are based on. Chapter 3 presents how the
extended sequence tree method can be used to improve the model based methods. In Chapter
4, we switch to model free methods, and focus on enhancement of learning reactive policies
through automatic abstraction mechanism. In Chapter 5, we extend the method proposed in
Chapter 4 to improve a memory based model free algorithm, namely Utile Suffix Memory
(USM) [38]. Finally we give our concluding remarks and future work in Chapter 6.
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CHAPTER 2

BACKGROUND

This chapter summarizes the necessary background required to formally set the problem at-
tacked by this thesis, highlighting the relevant topics and pointing the related publications in
the literature. The decision process models are defined first; namely Markov decision pro-
cess, semi-Markov decision process and partially observable Markov decision process. Af-
terwards, the reinforcement learning algorithms used in the thesis are summarized, including
Q-Learning, Replicated Q-Learning, Linear Q-Learning, SARSA(λ) and Utile Suffix Mem-
ory. Finally, the literature on temporal abstractions is summarized, and notable methods on
reinforcement learning in the partially observable case are discussed.

2.1 Markov Decision Processes

When a problem consists of several decision problems presented in a sequence, the agent
needs to decide on the current action by taking into account its effects on the solution of
future stages of the sequence. Moreover, the effects of the current decision is not known by
the agent in advance, which introduces uncertainty [54].

It is often easier and more intuitive to model a decision process with the assumption of a
single step dependency to the previous state. In other words, each state in the model summa-
rizes everything about the current status of the world, without any need to refer to any of the
previous states. If a process has this special characteristic, it is said to possess Markov prop-
erty [29]. A Markov decision process (MDP) defines a formal framework for the sub-class
of sequential decision problems under uncertainty having Markov property, and is formally
defined as follows:

Definition 2.1. An MDP is a tuple 〈S,A, T,R〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S, ∀a ∈ A,∑
s′∈S T (s, a, s′) = 1, and
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• R : S ×A→ < is a reward function.

T (s, a, s′) denotes the probability of making a transition from state s to state s′ by taking
action a. R(s, a) is the immediate expected reward received when action a is executed in
state s. �

The state transition function probabilistically specifies the next state of the environment as a
function of its current state and the agent’s action. The reward function specifies expected
instantaneous reward as a function of the current state and action.

For an MDP, policy is defined to be the set of all functions π linking states of S to actions of
A:

π : s ∈ S → π(s) ∈ A (2.1)

A policy defines which actions to undertake at each step of the decision process and for every
possible state reached by the agent.

When a sequential decision problem can be formulated as an MDP, finding a solution turns out
to be determination of the best policy. Although the methods vary according to the selected
performance measure of reward accumulation (i.e. how best sequence is defined based on a
function of sequence of rewards), two widely used ways to seek for good policies are value
iteration and policy iteration.

Both methods are based on value function concept, which defines a mapping from any state
s to the expected reward return, under either total, discounted or average criterion. Value
iteration method solves the MDP problem by computing a sequence of functions converging
toward the optimal policy. Policy iteration method, on the other hand, generates a sequence
of improving policies.

By these methods, search for an optimal policy can be directly transformed into an optimiza-
tion problem expressed in terms of value functions [54].

The MDP formalism and solution techniques based on value functions provide a basis for
reinforcement learning methods, which is summarized in Section 2.4

2.2 Semi-Markov Decision Processes

MDP formalism assumes that action model consists of single step discrete actions. When
this assumption is relaxed to invoke actions with temporal extension (i.e. when an atomic
action may take variable amount of time) the model is named semi-Markov decision process
(SMDP).
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Formally, an SMDP generalizes the definition of MDP as follows.

Definition 2.2. An SMDP is a tuple 〈S,A, T,R, F 〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S, ∀a ∈ A,∑
s′∈S T (s, a, s′) = 1,

• R : S ×A→ < is a reward function, and

• F is a function giving probability of transition times for each state-action pair.

T (s, a, s′) denotes the probability of making a transition from state s to state s′ by taking
action a. F (t|s, a) denotes the probability that starting at s, action a completes within time
t. R(s, a) is the expected reward that will be received until next transition when action a is
executed in state s; it allows rewards be received during a transition from one state to another,
and computed as

R(s, a) = k(s, a) +

∫ ∞
0

∫ t

0
ρ(s, a, t)dtdF (t|s, a) (2.2)

where k(s, a) is a fixed reward received upon executing action a at state s, and ρ(s, a, t) is a
reward rate given that the transition takes t time units [7]. �

Obviously, MDP is a special case of SMDP with a step function having a jump at 1.

For almost any realistic MDP problem, the problem domain naturally imposes situations
where the agent switches into a sub-policy region (i.e. skill or sub-goal) where there is no
new opportunity for decision making until a number of steps passes. Importance of SMDP
formalism is its ability to model such skills or abstract actions on top of MDP, by means of
transition time probability function F . Most of the time, an abstract action is defined over
a set of primitive actions. For example, in robotic soccer domain, action of passing the ball
is composed of a series of kick primitive actions to position the ball and accelerate primitive
actions to accelerate in the desired direction [59].

The temporal annotation to MDP provided by SMDP gives rise to performance improvement
opportunities via temporal abstractions, or task hierarchies, as summarized in Section 2.5

2.3 Partially Observable Markov Decision Processes

It is often the case that the agent does not have enough information to infer the real cur-
rent state of the decision process. It observes the process but does not know its exact state.
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Partially observable Markov decision process (POMDP) model is designed to cope with this
problem as a further generalization of an MDP.

Definition 2.3. A POMDP is a tuple 〈S,A, T,R,Ω, O〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S, ∀a ∈ A,∑
s′∈S T (s, a, s′) = 1, and

• R : S ×A→ < is a reward function.

• Ω is a finite set of observations the agent can experience of its world, and

• O : S × A → P(Ω) is the observation function, which gives, for each action and
resulting state, a probability distribution over possible observations. O(s, a, o) denotes
the probability of making observation o given that the agent took action a and landed
in state s.

�

Informally, a POMDP is an MDP in which the agent is unable to perfectly observe the current
state. Instead, it produces an observation based on the action and resulting state [28]. In the
agent perspective, POMDP framework can be viewed to provide a way to define a limited
sensor model, so that the agent can only grasp the environment through certain features of the
state space.

Clearly, MDP is a special case of POMDP where Ω = S and ∀s ∈ S,O(s, a, s) = 1. Flex-
ibility of the observation function in POMDP model gives its generalization characteristics,
however, this expressive power comes with its drawbacks. The model is so general that, even
very restrictive or less informative observation functions can be defined. Thus, observation
semantics alone is usually not sufficient to solve a given POMDP problem.

Although the agent lacks the exact knowledge of its state, it can enrich its awareness by
collecting information such as history of observations and performed actions. In fact, the
following information is sufficient for the agent to build a complete information state so that
the problem satisfies the Markov property:

• the initial probability distribution over state s0

• the history composed of all past observations and of the current observation (o0, ..., ot)

• the history of past actions (a0, ..., at−1)
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Figure 2.1: A general structural view of a belief based POMDP agent, which can be decom-
posed into a state estimator (SE) deriving a belief state, and a policy (π).

If an agent has the above knowledge, the information state space becomes complete and the
problem turns out to be an MDP. However, in practice, the size of this information state
space grows at each time step of the process, and the overall state representation quickly
becomes intractable. Moreover, obviously, this solution is not applicable for processes of
infinite horizon.

A widely used solution to this problem is maintaining a belief state as in Figure 2.1. The
learning agent makes decisions based on observations and acts accordingly, satisfying the
observation oriented POMDP semantics. However, it keeps an internal belief state, b, to
represent all of its previous experience. The state estimator (SE) component updates the
current belief state information using the last action, the recent observation, and the previous
belief state. π is a conventional policy function. However, π is now a function of belief state,
rather than the exact state of the world [28].

For this model to effectively preserve Markov property of the process, the belief state de-
scription should provide sufficient statistics relative to the control of the process, so that the
complete information state requirement is fulfilled.

Belief states ensure sufficient statistics by effectively fusing the past history and the initial
belief state of the agent. In other words, given the agent’s current belief state, no additional
data about its past actions or observations would supply any further information about the
current state of the world. This makes a decision process over belief states Markovian [28, 54].

The policy component π in Figure 2.1 of POMDP agent should map the current belief state
into an action. Since the belief state is a sufficient statistic, the solution of POMDP turns out
to be the solution of the following special construct:

Definition 2.4. A belief-MDP is a tuple 〈B, A, τ, ρ〉, where

• B, the set of belief states, comprise the belief state space
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• A, the set of actions, as in Definition 2.1,

• τ(b, a, b′) is the state transition function, which is defined as

τ(b, a, b′) = Pr(b′|a, b) =
∑
o∈Ω

Pr(b′|a, b, o)Pr(o|a, b) (2.3)

where

Pr(b′|b, a, o) =

{
1 ifSE(a, b, o) = b′

0 otherwise
(2.4)

• ρ(b, a) is the reward function on belief states, constructed from the original reward
function on world states:

ρ(b, a) =
∑
s∈S

R(s, a) (2.5)

�

An optimal policy for the continuous belief-MDP defined in Definition 2.4 will provide opti-
mal behaviour for the original POMDP. What remains then, is to solve this MDP in a reason-
able time. Unfortunately, solving the continuous belief-MDP is known to be very difficult in
the general sense [28].

Fortunately, there is an important property of the value function for the belief-MDP, that it
is piecewise linear and convex (PWLC) [57]. Thanks to this property, the value function
can be represented with only a finite number of parameters, making it possible to construct a
parsimonious representation of the value function. A famous method for constructing parsi-
monious representation of value functions is the WITNESS algorithm [10]. By this way, size
of the continuous space MDP can effectively be reduced and exact value iteration methods
can be applied.

Still, however, the above theoretical works can only be applied to toy problems and have
limited impact on practical situations. Thus, algorithms that look for approximate solutions
to POMDPs have been designed.

In machine learning perspective, notable studies are based on processing of the belief state to
get an MDP approximation. In [23], some widely used approximation methods are summa-
rized. Among those stated methods are grid based value interpolation/extrapolation methods,
curve fitting approximations, grid based linear function methods etc., all of which can effec-
tively be used to “downsize” the POMDP problem to a corresponding MDP approximation
and make it possible to apply MDP learning methods for a nearly optimal solution.
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Figure 2.2: A structural view for a general reinforcement learning algorithm through a learn-
ing agent perspective.

2.4 Reinforcement Learning under Full Observability

Reinforcement learning algorithms resemble simple principles borrowed from the study of
animal or human cognition, such as the increased tendency to perform an action in a context
if its consequences are generally positive in that context [54].

Mathematical formalization of reinforcement learning, in machine learning point of view, is
based on optimal control framework [5], through the notion of MDP [62].

The structural view of a classical reinforcement learning algorithm is given in Figure 2.2.
More or less, all reinforcement learning algorithms follow this structural pattern, where the
learning functionality (bounded by the dotted rectangle) is equipped with some learning up-
date mechanism coupled with an action selection module, together with an internal policy
database which is regularly updated through iterated invocation of these functions. Learning
update engine is supplied with state (s) and reward (r) information from the environment, and
the decided action (a) from the action selection mechanism. Agent interacts with outer world
(environment) through its sensors and actuators.

Solving MDPs via the methods described in Section 2.1 (namely policy iteration and value
iteration) is usually impractical for large scale and complex MDPs, due to time and space
complexity issues to cope with the computing and storing of the huge state transition matrices
(usually referred as curse of modelling and curse of dimensionality, respectively).

State-of-the-art reinforcement learning framework is a synthesis of topics from four different
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fields: classical dynamic programming, artificial intelligence (temporal differences), stochas-
tic approximation (simulation), and function approximation (regression, Bellman error, and
neural networks) [22].

Although there are researchers avoiding to discriminate dynamic programming and reinforce-
ment learning methods, and prefer to handle them as different instances of the same MDP
solution method, some others categorize reinforcement learning to stand somewhere between
dynamic programming and machine learning, inheriting characteristics of both sides. From
either point of view, the main distinguishing feature of reinforcement learning from dy-
namic programming towards machine learning is that, reinforcement learning does not as-
sume knowledge of problem dynamics.

In other words, a reinforcement learning agent does not know the transition and reward func-
tion of the underlying MDP in advance, so it tries to find the optimal solution by incremental
estimation of the value function (V ). Value function gives the value of being in a state on
the way to goal. Alternatively, a function named Q representing the value of each action in
each state can also be used. In fact, reinforcement learning attempts to formulate and solve
the very same MDP problem through a different perspective, which is much more realistic for
many real life problem areas, such as robotics and intelligent agent systems.

A simple way of performing the value function estimation consists of using the average cu-
mulated reward over different trajectories obtained by following a policy π. If Rk(s) is the
expected utility in state s along trajectory k, then an estimation of the value function V is s
based on the average after k + 1 trajectories is

∀s ∈ S, Vk+1(s) =
R1(s) +R2(s) + · · ·+Rk(s) +Rk+1(s)

k + 1
(2.6)

To avoid storing all the rewards, this computation can be reformulated in an incremental way:

∀s ∈ S, Vk+1(s) = Vk+1(s) +
1

k + 1
[Rk+1(s)− Vk(s)] (2.7)

To get Vk+1(s), one just needs to store Vk(s) and k. We can even avoid storing k, using a
more generic formula:

∀s ∈ S, Vk+1(s) = α[Rk+1(s)− Vk(s)] (2.8)

where α is positive and should decrease with time. This iterative formula converges to an
optimal value function:

lim
k→∞

Vk(s) = V π(s) (2.9)
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The incremental estimation (Equation 2.8) is the heart of most reinforcement learning meth-
ods [54]. In the following sub-sections, reinforcement learning algorithms that have gained
significant attention are described.

2.4.1 Temporal Difference Method

Temporal difference (TD) concept [60] is probably the most central idea of modern reinforce-
ment learning methods. Under discounted reward assumption, temporal difference method
rephrases the incremental estimation formula (Equation 2.8) to the following update rule:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.10)

where α is called the learning rate while γ is the discount rate. Note that the total reward
R is no longer in the scene. Instead, at time t + 1, the agent immediately makes a useful
update using the observed reward rt+1 to the discounted value estimation V (st+1), with a
correction −V (st), which is the temporal difference part. Now the agent does not need to
wait for “collecting” all the rewards through the trajectory up to the goal state (or to the end
of the episode). It makes updates while learning the qualities of visited states.

2.4.2 Q-Learning Algorithm

Q-Learning algorithm is based on the TD method, with two differences. First, it operates on
state-action pairs rather than states (i.e. Q function). Second, it is not necessary to determine
the action at the next step to calculate updates. The update rule for Q-Learning is

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (2.11)

In this case, the learned action-value function, Q, directly approximates Q∗, the optimal
action-value function, independent of the policy being followed.

Making use of this update rule, Q-Learning is one of the most important breakthroughs in
reinforcement learning research [66]. Q-Learning is probably the most widely used rein-
forcement learning algorithm due to its simplicity. The pseudo-code of the algorithm is given
in Algorithm 1.

Intuitively, Q-Learning algorithm imposes its Q-values to be stored in tables. However, for
state spaces with excessive number of spanning features, this method becomes intractable,
where function approximation techniques such as artificial neural networks can be considered
instead [30].
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Algorithm 1 Q-Learning

1: Initialize Q(s, a) arbitrarily
2: repeat
3: Let s be the current state
4: repeat
5: Choose a from s using policy derived from Q (e.g., ε-greedy)
6: Take action a, observe r and the next state s′

7: Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]

8: s← s′

9: until s is terminal
10: until some convergence criterion is met

2.5 Temporal Abstractions in Reinforcement Learning

After gradual saturation of the reinforcement learning theory and its applications, researchers
focused on finding ways to make improvements on aspects like quality of solutions, learning
speed, memory space requirements, and so on. One of the notable improvement opportunities
in learning speed is the determination of frequently occurring patterns in solution space, so
that the agent does not need to discover the same useful sub-policy over and over again.

Although it is not easy to point a commonly agreed naming convention in the literature, the
term temporal abstraction is used frequently to address this notion, since a sub-policy in the
solution space can be viewed as an abstract action (or a macro action) executed through a
certain amount of consequent discrete time steps.

Figure 2.3 is a summary of temporal abstraction methods in reinforcement learning, through a
perspective that categorizes methods according to how the abstraction information is obtained
by the learning agent. Before the overview of the literature on these concepts, an important
definition, namely options framework, is provided in Section 2.5.1. Section 2.5.2 focuses on
methods in which abstraction clue is provided by the designer of the agent. Finally, Section
2.5.3 describes learning of abstractions. All of the sections mentioned assume reinforcement
learning in the MDP formalism.

2.5.1 Options Framework

As summarized in Section 2.2, in SMDP model, the actions are treated as black boxes, or
indivisible flows of execution, which are used as they are, irrespective of their internals. All
temporal abstraction mechanisms make use of state-action sub-sequences that can be used as
an indivisible package, as if it is an ordinary action.

Options framework [63] formalizes this idea by extending reinforcement learning through
embedding a discrete-time SMDP over MDP to include temporally extended actions with an
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Figure 2.3: A summary of temporal abstraction methods in reinforcement learning, based on
the perspective of how abstraction information is obtained by the learning agent.

explicit interpretation in terms of the underlying MDP. While keeping the unit time transition
dynamics of MDPs, actions are generalized in the sense that they may last for a number of dis-
crete time steps and referred to as options. An “option” is a temporally extended counterpart
of an “action”.

Definition 2.5. An option is a tuple 〈I, πoption, β〉 where

• I is the initiation set, which is a set of states that the option can be initiated at,

• πoption is the local policy of the option, and

• β is a probability distribution induced by the termination condition.

Once an option is initiated by an agent at a state s ∈ I, option’s local policy π is followed
until the option terminates at a specific condition determined by β. �

An interpretation of option may assume that action selection inside the option is made only
based on the current state, which is called Markov option. On the other hand, an alternative
interpretation may relax this rule, so that πoption and/or β are allowed to depend on all prior
events that occurred since the beginning of the option, which is called semi-Markov option.
Definition 2.6 provides a basis for formalizing consecutive events, required by all methods
based on options framework.

Definition 2.6. A history is defined as

htτ = st, at, rt+1, st+1, at+1, ..., rτ , sτ
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where states, actions and rewards observed by the agent are listed starting from time t until
time τ . �

Given the set of all possible histories, when β and π are defined over this set instead of S,
it is possible to induce an SMDP where each action of the SMDP is an option. By this way,
reinforcement learning methods applicable to SMDP can be employed by replacing the action
set with the option set.

An option is essentially a fixed policy. In the options framework, the system is restricted to
a set of options in every disjoint subset of the state space. In any state, one has to choose an
option from the set of options available in that state. When the system enters a new subset
of the state space, a new set of options becomes available. Since each option is like a fixed
policy, it is composed of primitive actions. In a more general sense, the underlying goal in
such a setting is to search over a restricted set of policies in each subset of the state space.

The Q-Learning update rule for selecting an option, θ, in a state s is as follows:

Q(s, θ) = Q(s, θ) + α[r + γt max
θ′∈Θs

Q(s′, θ′)−Q(s, θ)] (2.12)

where Θs is the set of options that can be initiated at s, θ ∈ Θ (Θ being the set of all available
options), and other symbols are as in basic Q-Learning. This version of Q-Learning converges
to optimal Q-values for all s ∈ S and θ ∈ Θ under conditions similar to those for the Q-
Learning algorithm [20].

Importance of the options framework is that it provides a formal basis for temporal abstrac-
tion methods for reinforcement learning. Furthermore, some automated temporal abstraction
methods make use of the formalism constructed by options.

2.5.2 Hierarchical Reinforcement Learning

From MDP point of view, it is already known that some problems have a special structure
making them amenable to a partitioning so called hierarchical decomposition [19]. With such
a decomposition, one can essentially solve MDPs with smaller solution spaces at a lower level
which supply solutions to a control optimization problem at a higher level. In other words,
the overall MDP can effectively be divided into disjoint sets where an MDP is solved in each
set without or sometimes with consideration of the MDP in another set. These solutions form
the input to a higher level problem for which it is now not necessary to make decisions at the
lower level. Considerable research has been performed in developing hierarchical methods for
reinforcement learning. In fact, this idea appears to be a challenging frontier of reinforcement
learning research [22].

Due to historical naming conventions, we will refer to the temporal abstraction methods that
invoke the abstraction strategy as a design clue to the agent prior to the learning process
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as hierarchical reinforcement learning algorithms. Although not directly relevant with our
dissertation, in order to take a complete picture of the temporal abstraction strategies in re-
inforcement learning, two notable hierarchical reinforcement learning algorithms are briefly
described in the following two sub-sections.

MAXQ MAXQ is a hierarchical reinforcement learning method based on decomposing the
target MDP manually into a hierarchy of smaller MDPs and decomposing the value function
of the target MDP into an additive combination of the value functions of the sub-MDPs of the
hierarchy. It is based on the assumption that the programmer can identify useful sub-goals and
define sub-tasks that achieve these sub-goals. By defining such sub-goals, the programmer
constrains the set of policies that need to be considered during reinforcement learning, thus
decreasing learning time.

MAXQ method makes use of a decomposition procedure that takes a given MDP M and
decomposes it into a finite set of sub-tasks (or sub-MDPs) {M0,M1, ...,Mn} with the con-
vention that M0 is the root sub-task (i.e., solving M0 solves the entire original MDP M ). The
resulting graph is called the MAXQ graph. The solution is obviously a hierarchical policy
which is a set of policies π = {π0, π1, ..., πn}, one for each sub-task, that indicate how each
node should choose its actions.

MAXQ method modifies Q-Learning algorithm to invoke the MAXQ graph to learn hierar-
chical policy, named MAXQ-Q, and is proved to converge [16].

Hierarchical Abstract Machines In the hierarchical abstract machines (HAM) frame-
work, in addition to the system state and actions, one considers a hierarchy of machines,
which is essentially a program, when executed by an agent in an environment, constrains the
actions that the agent can take in each state. Machines for HAM are defined by a set of states,
a transition function, and a start function that determines the initial state of the machine. There
are four machine state types:

• action states execute an action in the environment,

• call states execute another machine as a subroutine,

• choice states non-deterministically select a next machine state,

• stop states halt execution of the machine and return control to the previous call state.

The next machine state is determined by the transition function after an action or call state
as a function of the current machine state, and depending on the resulting environment state
[43].

HAM method gives rise to the opportunity of reducing the problem complexity by using a
formalism based on the fact that, an MDP annotated with a HAM under certain constraints
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can be used to define a reduced SMDP with an optimal solution.

Thus, HAM can be used in cases where the effort required to obtain a solution typically
scales too high with the size of the problem. By focusing on exploration of the state space,
HAM constraints can reduce the negative impact of the blind search phase that reinforcement
learning agents usually suffer when learning a new environment. Moreover, operating in a
reduced state space can effectively accelerate learning [44].

2.5.3 Learning Temporal Abstractions

As the immediate successor of hierarchical reinforcement learning studies (Section 2.5.2),
some researchers have focused on ways of learning abstractions, in other words, automated
derivation of temporal abstractions along with the underlying reinforcement learning proce-
dure [3]. One track of research in this area is sub-goal based, meaning that it focuses on iden-
tification of sub-goals, and trying to achieve a useful partitioning scheme [25, 36, 39, 55, 58].
Methods of the other track, called sequence based or direct methods, invoke common sub-
sequence analysis of multiple successful histories, without identification of sub-goals [21, 40].

The following two sub-sections summarize the related literature, with an emphasis on se-
quence based methods, which is the focus of attention in this thesis.

2.5.3.1 Sub-goal Based Methods

[58] presents a statistical extension to classical reinforcement learning methods by discover-
ing options automatically. In this method, a reinforcement learning agent is first allowed to
explore the environment and gather statistical data. The gathered data is then used to iden-
tify potential sub-goals and initiation states. Then, the agent learns the internal policies of
identified options by classical reinforcement learning methods. Finally, the agent exploits
the learned behaviour. Algorithm is based on the intuition that, if states occur frequently on
trajectories that represent solutions to random tasks, then these states may be important, and
can be used to derive options. This approach is probably the simplest implementation for the
bottleneck state idea. A drawback of the method is that there is an implicit assumption of
tabular form representation for value function.

[39] presents a data mining method using which a reinforcement learning agent can discover
useful sub-goals automatically by mining an ensemble of behavioural trajectories accumu-
lated by the learning agent as it interacts with its environment. This study focuses on discovery
of sub-goals by searching for bottlenecks in the search space. Inspired by multiple-instance
learning problem as defined in [17], it adopts the concept of diverse density of [37] to discover
bottleneck regions. The key observation here is the similarity of diverse density concept and
the bottleneck region concept of sub-goals in reinforcement learning. A mapping is made be-
tween the maximum diverse density and the bottleneck region which the agent passes through
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on multiple successful trajectories and not on unsuccessful ones.

[36] attempts to use clustering techniques on the state space for sub-task discovery in rein-
forcement learning. The basic idea behind the method is that, instead of taking clusters of
states into account as ordinary states, they use them as intermediate stages in the learning
process, thus define an option to be a sub-policy that allows the agent to efficiently shift from
one cluster of states to another. The method consists of a learning part and a clustering part.

[55] attempts to identify temporal abstractions in a reinforcement learning problem by using
the notion of access states. It defines an access state as a sub-goal state that allows the agent
to transition to a part of the state space that is otherwise unavailable or difficult to reach from
its current region (or bottleneck states as frequently named in the literature, like a doorway
between two rooms). The method detects this transition using the concept of relative novelty,
which is defined to be the measure of short-term novelty a state introduces to the agent. For
this purpose, a method called relative novelty algorithm is defined, which identifies a sub-goal
and creates a temporally extended activity that takes the agent effectively to this state. Novelty
is defined as how frequently a state is visited since a designated start time. Relative novelty
algorithm relies on the relative novelty of a state in a transition sequence, which is defined to
be the ratio of the novelty of states that followed it (including itself) to the novelty of the states
that preceded it. The key observation here is that, target states have higher relative novelty
scores than the others. One shortcoming of the method is the empirical and heuristic setting
of parameters of relative novelty algorithm depending on the problem domain.

[25] is a good example for task hierarchy construction via decomposition of state space into
a number of nested sub-MDP regions. Decomposition is possible when

• some of the variables in the state vector represent features in the environment that
change at less frequent time intervals,

• variables that change value more frequently retain their transition properties in the con-
text of the more persistent variables, and

• the interface between regions can be controlled.

Proposed algorithm, HEXQ, uses the state variables to construct a hierarchy. For deterministic
shortest path problems HEXQ will find a globally optimal policy and with stochastic actions
HEXQ, as MAXQ, is recursively optimal. However, HEXQ lacks a way to automatically
combine exits that result in the same next state.

2.5.3.2 Sequence Based Methods

Sequence based or direct way of learning temporal abstractions is a relatively less explored
area, and has its basis in the notion of options framework (Section 2.5.1). Notable methods of
this approach are acQuire-macros and extended sequence tree methods.
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acQuire-macros One of the remarkable studies in direct learning of options is the acQuire-
macros algorithm [40], which tries to identify common action sequences at regular intervals
by

• detecting frequently occurring successful trajectories,

• eliminating similar results, and

• creating options for the remaining trajectories.

acQuire-macros algorithm is based on a special case of semi-Markov option, named condi-
tionally terminating sequence (CTS). A CTS is defined as a sequence of n ordered pairs σ =

〈C1, a1〉 〈C2, a2〉 ... 〈Cn, an〉, where Ci ⊆ S is the continuation set and ai ∈ A. At step i, ai
is selected and executed, and the sequence advances to the next step if current state s is in Ci,
otherwise the sequence terminates.

The most important feature of CTSs is that they can be used to compactly represent frequently
occurring and useful patterns of actions in a reinforcement learning problem, that can eventu-
ally be used as options for the underlying reinforcement learning algorithm.

However, since a CTS represents a linear flow of execution, it cannot be used to represent
situations in which different courses of actions may be followed depending on the observed
history of events. Many real-life problems, however, inherently contain sub-tasks for which
reuse of learned abstractions build-up a solution hierarchy for the overall problem, obviously
through a number of decision points.

Extended Sequence Tree Method Extended sequence tree (EST) method [21] improves
the acQuire-macros algorithm, by transforming useful histories into a tree data structure, in
order to make it possible to incorporate conditional branching in action selection, and make
use of available abstractions in a more compact and effective way.

The method is based on memorization of successful sub-policies, derived from recorded his-
tories. A typical simplified outline of a reinforcement learning algorithm augmented by the
EST abstraction method is given in Algorithm 2.

There are three main components of EST.

• The first one is the EST data structure, which serves as an option repository in the
form of a tree whose edges are labelled with actions, and nodes contain continuation
sets. The formal definition of EST data structure is as follows (although it is usually
explicitly distinguished throughout in this thesis, the term “extended sequence tree”
can sometimes be used to mean either the whole method, or the data structure only,
depending on the context):
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Algorithm 2 REINFORCEMENT-LEARNING-WITH-EST
1: initialize T to an empty EST
2: initialize policy π . set initial policy arbitrarily
3: repeat
4: observe state s and append it to empty history e
5: repeat
6: a← SELECT-ACTION(s, T ) . modified to handle both EST and underlying

reinforcement learning algorithm
7: perform a, observe s′ and r . r is the immediate reward
8: π ← REINFORCEMENT-LEARNING-UPDATE(s, s′, a, r)
9: append a, r and s to e

10: s← s′

11: until s is terminal
12: T ← UPDATE-SEQUENCE-TREE(T, e)
13: until some convergence criterion is met

Definition 2.7. An extended sequence tree is a tuple 〈N,E〉, where N is the set of
nodes and E is the set of edges. Each node represents a unique action sequence that is
used to reach that node; the root node, denoted by ∅, represents the empty action set.
If the action sequence of node q can be obtained by appending action a to the action
sequence represented by node p, then p is connected to q by an edge with label 〈a, ψ〉;
it is denoted by the tuple 〈p, q, 〈a, ψ〉〉. ψ is the eligibility value of the edge to indicate
how frequently the action sequence of q is executed. Furthermore, q holds a list of tuples
〈s1, ξs1 , Rs1〉, ... , 〈sk, ξsk , Rsk〉 stating that action a can be chosen at node p if current
state observed by the agent is in {s1, ... , sk}, which is called the continuation set of
node q, denoted contq. Rsi is the expected total cumulative reward that the agent can
collect by selecting action a at state si after having executed the sequence of actions
represented by node p. ξsi is the eligibility value of state si at node q and indicates how
frequently action a is actually selected at state si. �

The EST data structure is designed as a repository of valuable histories. Every stored
history represents a state-action sequence starting with a distinguished initiation state.
At this point, it is useful to redefine history (Definition 2.6) to be initiated by a state and
to be generated by a policy π, as follows:

Definition 2.8. A history is called a π-history of state s if it starts with state s and it
is obtained by following a policy π until the end of an episode (or between designated
conditions, such as reaching a reward peak). �

Briefly, a procedure tries to update an -initially empty- EST, by adding successful π-
histories, at the end of each episode. By this way, an alternative tree of solution routes
that are previously proven to be successful becomes available during execution of un-
derlying reinforcement learning algorithm, ready to be invoked whenever it is beneficial
to do so.
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Figure 2.4 illustrates a sample EST data structure. The problem domain is the fully
observable version of the tiny navigation environment defined in [33], and summarized
in Section 3.3. The tree is constructed automatically by execution of EST method
together with Q-Learning. Starting from the node immediately below the root node,
every node and the edge that connects it to the parent node defines an exploitation step
in the option. The current node and its parent edge is interpreted as “if one of the states
in the current node is observed by the agent, the agent shall invoke the action given in
the parent edge.” After an exploitation step, the control passes to the node level defined
by the children of the current node. The idea is to run an exploitation sequence using
the tree from the root node to a leaf node. Note that each path in the tree is a successful
sub-policy of the solution space, embodying a potential option.

• The second component is the action selection procedure (called by Algorithm 2 at line
6) which is a modified action selection mechanism in such a way that it can switch
the control flow between the action selection of the underlying reinforcement learning
algorithm and that of the EST method, by comparing the expected value of the cur-
rent situation calculated by the policy function of the underlying reinforcement learn-
ing algorithm, and the expected value of the experiences accumulated in the EST data
structure.

The modified action selection mechanism is designed to make the proper decision,
whether to trigger an option execution or not, at each discrete time step. If an option
is not initiated, it executes the regular reinforcement learning action invocation proce-
dure. If an option is initiated, on the other hand, it passes the control flow to follow the
EST data structure beginning from the root node. At each time step, the control flow is
passed to the child node that contains the continuation set element which best represents
the currently observed situation, executing the action labelling the parent edge.

This routine is repeated until either a leaf node is reached, or the current node does
not represent the current situation well. In either case, the option execution is aborted.
Meanwhile, after every action execution through the EST trace, a regular single step up-
date is executed by the underlying reinforcement learning algorithm, in order to update
the reinforcement learning policy throughout the experienced option exploitation.

• The third component is the tree update mechanism (Algorithm 3) regularly called upon
achievement of a goal state (or a reward peak, alternatively) (Algorithm 2, line 12).
First, all possible promising π-histories are extracted from a full length successful
history by means of state equivalences (Algorithm 3, line 1). Then, all derived sub-
histories are fused into the EST data structure representing the sequences in a compact
manner, where each path from the root to a leaf represents a successful sub-policy (Al-
gorithm 3, lines 2-4). Update mechanism is also responsible for pruning of relatively
unused paths from the tree (Algorithm 3, line 5), handled by a decay and a threshold
mechanism keeping track of eligibility values ψ and ξ in EST data structure.

The resulting annotated reinforcement learning algorithm discovers and utilizes useful tem-
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Figure 2.4: An extended sequence tree data structure for the fully observable tiny navigation
environment problem. F stands for forward, RR for rotate-right and RL for rotate-left actions.
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Algorithm 3 UPDATE-SEQUENCE-TREE(T , e)
Require: T is an EST
Require: e is a history of the form s1a1r2...st−1at−1rtst observed by the agent during a

specific period of time.
Ensure: T updated

1: H ← GENERATE-PROBABLE-HISTORIES(e)
2: for all h of H do
3: ADD-HISTORY(h, T )
4: end for
5: UPDATE-NODE(root node of T ) . recursively traverse and update tree for maintenance
6: return T

poral abstractions by generating an EST data structure and using it as a meta-action guide.

Since the underlying reinforcement learning algorithm stays intact, provided that the action
selection mechanism allows sufficient exploration (i.e. each state-action pair is visited in-
finitely often), the extended learning model preserves many of the theoretical properties –
such as convergence to an optimal value function or policy– of the underlying reinforcement
learning algorithm. The reported test results demonstrate the advantages of EST over other
approaches in the literature [21].

It is easy to modify Algorithm 2 for non-episodic problems. For those kind of problems, a
history up to a designated “reward-peak” point is collected, and immediately after sensing
the reward-peak, the sequence tree is updated, history is cleared, and any other sequence tree
related variable is reset.

Recalling the structural pattern of a reinforcement learning algorithm as given in Figure 2.2,
the EST mechanism can be viewed as a wrapper around it, and the resulting structural view of
Algorithm 2 is given in Figure 2.5. Action selection now passes through a filter of EST, and
an episode history is deposited in a history database, to be used to derive EST data structure.
The important thing to note here is, the area outside the the dotted rectangle is invoked off-
line (i.e. not invoked during reinforcement learning), which gives rise to the opportunity of
parallelism or pipelining.

2.6 Reinforcement Learning under Partial Observability

Although reinforcement learning methods depend on the MDP formalism to ensure conver-
gence, there is no technical barrier preventing their invocation to problems with partial ob-
servability. An obvious practice would be replacing the states with observations in a rein-
forcement learning setting. However, most of the time, this approach fails to converge to an
optimal policy, mostly because of a problem named as perceptual aliasing.

In a fully observable (MDP) domain agent has the full state information at any time. Even if
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Figure 2.5: A structural view for a reinforcement learning algorithm augmented with EST
mechanism.

the actions are non-deterministic, the resulting state is always available to the agent. This set-
ting is based on the assumption that sensors of the agent sense everything in the environment
without any restriction. It is almost never the case in real life.

In a more realistic setting, where sensors of an agent are inaccurate and noisy, it is frequently
the case that the agent senses two different states to be the same, or similar. More formally,
if the same observation is obtained by the agent in two distinct states, where different actions
should be performed, the situation is called perceptual aliasing [67]. The actual problem is
that the resulting observation based process model is not Markovian. When two distinct states
require separate actions, the agent has no chance to fulfil this requirement for sure, by using
its observation semantics only.

Additionally, belief state formalism (Section 2.3) introduces a continuous problem space issue
via belief-MDP construct, which makes the curse of dimensionality problem mentioned in
Section 2.4 much worse, or even impossible to cope with.

Reinforcement learning studies in POMDP literature are in basically variants of widely known
classical algorithms, which focus on diminishing the adverse effects of perceptual aliasing and
huge state space.
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Figure 2.6: Overview of learning approaches for POMDP problems.

An overview of existing learning approaches for POMDP problems is sketched in Figure 2.6.
Although many researchers focus on solving POMDP problems via different dynamic pro-
gramming or planning based methods, this section focuses solely on reinforcement learning
point of view and some heuristic methods that might be relevant for our study. Specifically,
this thesis highlights

• model based methods (the environment model is known)

• model free methods (the environment model is unknown)

– memoryless methods: the agent tries to develop a reactive policy

– memory based methods: the agent makes use of a form of memory

For each category, the most widely used or cited algorithms are emphasized. The reader may
refer to [8], [41] or [52] for a broader perspective of POMDP solution techniques, including
reinforcement learning.

The following sub-sections summarize the related literature and underlining certain shortcom-
ings and limiting conditions.
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2.6.1 Model Based Methods: Known Environment Model

Most of the time, the designer has the opportunity to provide the agent with some additional
information about underlying state transitions. Although the agent still can not make a clear
discrimination of two perceptually aliased states, a state map, for instance, is more informa-
tive than observation space alone. Since finding an exact solution to a POMDP is highly
intractable, it is practically useful to solve the known model first, and then merge it with the
POMDP solution; or, invoke approximation methods, which can either be over belief states or
belief values. Reinforcement learning studies for POMDP which are built on the assumption
of a known environment model define an important category of its own, and are summarized
below.

2.6.1.1 Methods using the Solution of Underlying MDP

Assume the environment model for a POMDP problem is known by the agent, and assume
further that it can be modelled via an MDP. In the literature, the MDP model in this formula-
tion is called underlying MDP of the problem. One alternative to solve this POMDP problem
is to solve the underlying MDP first, and then combine this solution with the belief state by
approximation heuristics.

[8] describes various examples of this approach. One of them is most likely state (MLS) ap-
proximation. In this intuitive approximation technique, the agent picks the state with the high-
est probability by using the underlying MDP. Another such heuristic is theQMDP approxima-
tion. QMDP approximation is based on estimation of the value function of the belief-MDP
by using the value function of the underlying MDP weighted according to the distribution
encoded in the belief state.

2.6.1.2 Belief Value Approximation Methods

Another approach to approximately solving POMDPs via reinforcement learning is to main-
tain an exact belief state, but approximate the (PWLC) value function of the belief-state MDP.

As briefly described in Section 2.3, a common way to cope with the limited observation, while
maintaining the Markov property, is to relax the problem setting by providing the agent with
the underlying MDP model, so that it can maintain an internal belief state using T and O. A
belief state b is a probability distribution over S. Let b(s) denote the probability assigned to
world state s by belief state b (∀s ∈ S, 0 ≤ b(s) ≤ 1;

∑
s∈S b(s) = 1). At each time step,

new belief state estimation b′ should be computed, given an old belief state b, executed action
a, and an observation o. The new belief state in some state s′, b′(s′), is obtained by using the
following equation:
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b′(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)b(s)

Pr(o|a, b)
(2.13)

It is possible to convert a POMDP into a belief-MDP, so that the problem is transformed into
solving a continuous space MDP. Although it is very difficult to solve a continuous space
MDPs, there is a practical solution category for belief-MDP based (or model based) rein-
forcement learning approaches, which attacks the problem by maintaining exact belief state,
but approximating the value function on belief-MDP instead of using its exact value.

[42] introduces a reinforcement learning algorithm called SPOVA-RL (Smooth Partially Ob-
servable Value Approximation-reinforcement learning) using a new approximation scheme
for POMDP problems, based on a continuous, differentiable representation of the value func-
tion.

[33] highlights two similar reinforcement learning algorithms of the same category, namely
Replicated Q-Learning and Linear Q-Learning, defined over belief based POMDP model.
Both methods generalize Q-Learning to apply to vector valued states and use a single vector,
qa, to approximate theQ function for each action a asQa(b) = qa·b, as a linear approximation
of the exact Q function. Although a single vector representation per action is not sufficient
for most problems, this simple approximation is empirically shown to be effective [12]. The
update rule of Replicated Q-Learning is:

∆qa(s) = αb(s)(r + γmax
a′

Qa′(b
′)− qa(s)) (2.14)

where α is the learning rate, b is a belief state, a is the action executed, r is the immediate
reward and b′ is the resulting belief state. This update rule is evaluated for every s ∈ S after
each state transition. In Linear Q-Learning, the components of qa are adjusted to match the
coefficients of the linear function that predicts Q values. With a minor change in Equation
(2.14), the update rule becomes:

∆qa(s) = αb(s)(r + γmax
a′

Qa′(b
′)− qa · b) (2.15)

It is worth noting that, when the belief state is deterministic, both Equations (2.14) and (2.15)
reduce to ordinary Q-Learning.

Following a notation similar to the structural view in Figure 2.2, Replicated Q-Learning and
Linear Q-Learning algorithms can be sketched as in Figure 2.7. The main difference to note
here is that, the agent now perceives an observation, instead of the full state, and is also
equipped with the state transition function T , by which it is able to update its belief state
before feeding it into the learning update engine.

In this thesis, Replicated Q-Learning and Linear Q-Learning are used as the representative
algorithms for the model based partially observable reinforcement learning category.
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Figure 2.7: A structural view for a belief state based reinforcement learning algorithm for
POMDP problems.

2.6.1.3 Belief State Approximation Methods

It is also possible to maintain an exact value function for the belief-state MDP, but approxi-
mate the belief state. Boyen-Koller algorithm [6] does this for an environment model specified
compactly as a dynamic Bayesian network (DBN), using sampling to perform approximate
belief state updating.

2.6.2 Model Free Methods: Unknown Environment Model

This category of POMDP problem setting defines a difficult scenario, where the agent has
no prior information about the environment, and tries to explore it by trial-and-error cycles,
under limited observability.

2.6.2.1 Memoryless Methods

An obvious way of applying reinforcement learning in POMDP problems is to use “obser-
vations” which are available to learner, instead of “states” which are hidden from learner.
For instance, the learner can use Q(o, a) values instead of Q(s, a) values. Depending on
the strength of the adverse effect of perceptual aliasing (although not descriptive enough,
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this strength can intuitively be quantified by |S|/|Ω| ratio within a problem), obviously this
method is destined to succeed arbitrarily.

[32] shows that in non-Markovian environments, finding good deterministic memoryless poli-
cies (even for a very weak definition of good) is intractable, even when a complete map of the
environment is available to the agent for preprocessing.

Nevertheless, there are a few enhancement efforts on memoryless methods. In their work,
[34] make use of a certain family of reinforcement learning algorithms with eligibility traces
(namely SARSA(λ)) to empirically show that they can work very well on hidden state prob-
lems that have memoryless policy solutions. Similarly, [2] propose a memoryless reinforce-
ment learning algorithm named VAPS (value and policy search), making search both in value
function space and policy space, and converges for environments with partial observability
where a memoryless policy exists.

In this thesis, SARSA(λ) is preferred as the representative memoryless algorithm in the model
free reinforcement learning methods for POMDP problems, which is a well known and easy
to use alternative.

SARSA(λ) Algorithm An important variant of Q-Learning (Algorithm 1) is SARSA [62],
where the update rule of Q-Learning (Equation 2.11) is rewritten as:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.16)

While Q-Learning algorithm updates Q-values based on the best estimate, SARSA executes
these updates in an on-policy manner, meaning that, it always updates the Q-value corre-
sponding to the executed action, regardless of whether it is the best possible action or not.

A variant of the classical SARSA algorithm widely accepted for its relatively better perfor-
mance in generation of memoryless policies under partial observability is SARSA(λ) (Al-
gorithm 4). Due to a mechanism called eligibility traces, it is able to derive good policies
directly mapping observations to actions, if there exists any [34, 50]. Eligibility trace mech-
anism invokes a naive form of history tracing into the learning procedure, by keeping track
of a trace for each observation-action pair, determining how eligible that pair is. Eligibility
trace update procedure is also embedded into the learning algorithm, with a decay parameter
0 ≤ λ ≤ 1.

Although SARSA(λ) is originally designed assuming the MDP formalism, it is empirically
shown that invocation of eligibility traces as a weak form of history performs well for POMDP
problems that have memoryless policy solutions [34].
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Algorithm 4 SARSA(λ)
1: repeat
2: initialize Q(s, a) arbitrarily and e(s, a) = 0, ∀s, a
3: initialize s,a
4: repeat
5: take action a, observe r, s′

6: choose a′ from s′ using policy derived from Q (e.g., ε-greedy)
7: δ ← r + γQ(s′, a′)−Q(s, a)

8: e(s, a)← e(s, a) + 1

9: for all s, a do
10: Q(s, a)← Q(s, a) + αδe(s, a)

11: e(s, a)← γλe(s, a)

12: end for
13: s← s′

14: a← a′

15: until s is terminal
16: until some convergence criterion is met

2.6.2.2 Methods with Internal Memory

If a reinforcement learning agent is augmented with a form of internal memory, it becomes
possible to approximate the complete information state, based on the current observation and
history. This approximation can then be appropriately replaced with the “state” notion of the
reinforcement learning method. The learning agent continuously updates the approximation
function and value function, resulting in faster convergence and better policies compared to
the memoryless policies. Clearly, this enhancement is due to significant disambiguation of
perceptually aliased states. Researchers implemented many variants of this idea.

Using a finite size history is perhaps the most straightforward way to enhance the internal
information state. The main motivation is to use a history of last n steps as the information
state. [31] presents the results of experiments that use a finite size history window of past
observations and actions. In this method, the designer of the agent shall properly analyse and
set the size of the memory needed to model the world, prior to learning.

Memory bits method, introduced by [46], is another memory based method which is inspired
by the notion of stigmergy (stigmergy is the process by which the results of an insect’s activity
act as a stimulus to further activity) by means of external “memory bits”. Obviously, the
impact of this approach to approximate the complete information state is relatively limited,
and requires special treatment in action space to manipulate the external memory.

Long short-term memory is a gradient-based approach introduced by [26] as an extension
of Recurrent-Q algorithm [31]. Long short-term memory makes use of a special recurrent
neural network (RNN) specifically designed to capture relevant features of the problem space.
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Recurrent-Q algorithm also uses a RNN to learn to discriminate perceptually aliased states.
Recurrent-Q algorithm includes complex neurons that learn to turn on or off their memory
inputs and outputs.

The variable length history methods attack the problem of maintaining an internal memory
with a flexible size that can be adaptively extended whenever required. [38] presents a series
of instance-based methods that keep all past interactions of the agent with the environment
in the form of tuples of action-reward-observation known as “instances”. Nearest Sequence
Memory (NSM), Utile Suffix Memory (USM), and U-Tree algorithms are variations of the
same instance-based reinforcement learning idea, with increasing effectiveness.

Utile Suffix Memory Algorithm Utile Suffix Memory (USM) algorithm [38] is one of the
fundamental memory based reinforcement learning algorithms for model free learning in par-
tially observable domains. Using a history database of observations, actions and rewards, the
agent eventually learns to discriminate underlying (hidden) states based on statistical differ-
ences among the same observations with different history, effectively overcoming the percep-
tual aliasing problem by time.

At the core of the USM algorithm lies a suffix tree, used as a repository of short term histories
derived from raw experiences, called instances. There is no limit on the depth of the tree.
The depth is dynamically increased throughout the learning process as necessary to resolve
perceptually aliased states via observation-action histories. In-depth expansion of the tree is
realized via keeping track of fringe nodes up to a certain predefined depth, and promoting a
fringe node and its necessary relatives whenever a new distinction if found to be valuable. An
example USM-style suffix tree structure is given in Figure 2.8. The tree represents a repository
of short term instances (back to time t − 2, inclusive) found to be useful to distinguish the
current observation (at time t).

In fact, USM suffix tree is a clustered version of the raw experiences (i.e. action-observation-
reward tuples) of the agent, with a clustering schema where the deeper layers of the tree add
distinctions based alternately on previous observations and actions. There are three types of
nodes in terms of distinctive meaning:

• Internal nodes are old leaf nodes and currently have no significance other than identifi-
cation of a path from root to a leaf.

• Leaf nodes constitute the current Q table, each holding a Q value for a pair of distinctive
state and action.

• Fringe nodes are potential future leaf nodes and are continually applied statistical tests
against current leaves for identifying new distinctions.

USM is perhaps one of the most effective memory based reinforcement learning algorithms
for problems with hidden state, and is used to represent memory based family of reinforce-
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Figure 2.8: A sample USM-style suffix tree data structure. Observations are indicated by
integers, actions by letters. The dashed nodes are fringe nodes.

ment learning methods in this thesis. [38] also presents a more popular algorithm, U-Tree,
which is essentially a generalized version of USM in which observation and action spaces
are factored into their dimensions. In other words, USM is the single dimensioned version of
U-Tree algorithm. Since EST is not capable of distinguishing multiple dimensions of problem
space, U-Tree algorithm is not appropriate for our purposes.

2.7 Temporal Abstractions for Reinforcement Learning under Partial Observ-
ability

For POMDP case, there is a limited number of studies on temporal abstractions for reinforce-
ment learning. Most of the relevant studies are from the planning literature [11, 24, 48, 65],
which are out of reinforcement learning context.

In the following two sub-sections, existing few studies on temporal abstractions for reinforce-
ment learning in partially observable case are summarized, in both model based and model
free perspective.

2.7.1 Model Based Methods

A promising study combining existing framework of MDP and belief state approximation is
by [64], which explores invocation of temporally extended actions in POMDPs. A model
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based reinforcement learning algorithm is proposed over grid-points in belief space, which
uses macro-actions and Monte Carlo updates of the Q-values. The algorithm is then applied
to large scale robot navigation and demonstrated the various advantages of macro-actions in
POMDPs. Experimental results show that with macro-actions an agent experiences a signifi-
cantly smaller part of the belief space than with simple primitive actions. In addition, learning
is faster because an agent can look further into the future and propagate values of belief points
faster. And finally, well designed macros, such as macros that can easily take an agent from
a high entropy belief state to a low entropy belief state, enable agents to perform information
gathering. The shortcoming of the method is that, incorporation of macro-actions requires
a clever design, and they are not derived automatically throughout reinforcement learning
process.

[18] presents a way to automatically create and reuse useful sub-goals for partially observable
problems in reinforcement learning context. In their work, a state is considered as a sub-
goal if it is visited frequently on successful trajectories. Once sub-goals are created, RNNs
are used to attain them. Then learned RNNs are integrated into the main RNN as experts.
Although the method clearly falls into the family of sub-goal based automated temporal ab-
stractions, the abstraction procedure is defined up to the sub-goal identification phase, lacking
the mechanisms to explicitly construct and make use of options.

2.7.2 Model Free Methods

For the memoryless case, a notable algorithm is HQ-Learning [68]. HQ-Learning is a sub-
goal oriented hierarchical extension of Q-learning in which POMDPs are decomposed into a
fixed number of reactive (memoryless) policies, assuming each sub-goal completion is com-
pletely observable. Good results are shown on partially observable maze environments with a
relatively large number of states. One of the main problems with the method is managing the
transfer of control between sub-policies in the presence of noise. Another important problem
is that, the proposed architecture is essentially a multi-agent design. Although one can argue
that this design can be transformed into a single agent setting, the method relies on the num-
ber of agents used to partition the problem, and this number should be provided in advance.
Thus, it requires an educated guess on the number of agents in order to to avoid shortcomings
in learning, depending on the nature of the problem.

[70] presents another study on memoryless case that attacks the abstraction problem for rein-
forcement learning with hidden states, by means of derivation of abstractions automatically
by their algorithm called Macro/SARSA(λ). Macro/SARSA(λ) is a hybrid algorithm bring-
ing classical SARSA(λ) and a simple routine that acquires macro actions from short term
experiences. However, their method suffers from irrelevant macro action generation since it
does not have mechanisms to explicitly handle perceptual aliasing.

To our knowledge, there are no temporal abstraction studies that attempt to accelerate a mem-
ory based case of reinforcement learning setting for partially observable problems.
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CHAPTER 3

ACCELERATING MODEL BASED PARTIALLY
OBSERVABLE REINFORCEMENT LEARNING

And there is evidence that believers are happier. So why not believe? It is even
possible to believe while knowing that belief is absurd.

– Michael Foley, The Age of Absurdity

This chapter proposes a belief based EST method as a direct automatic abstraction mechanism
to enhance an underlying model based reinforcement learning algorithm.

Our choice of underlying model based reinforcement learning algorithms imposes a learn-
ing setting with exact maintenance of belief states, and approximated use of value function,
as summarized in Section 2.6.1.2. In this setting, a trivial modification in EST would be to
replace every occurrence of state swith belief b in the EST method, and update all related sup-
porting procedures accordingly. However, since the belief state space is infinite, this solution
is practically impossible to work.

Thanks to discretization methods, it is possible to devise a finite approximation of the infinite
belief state space. By using belief state discretizations instead of actual belief states, it be-
comes practically possible to invoke EST method over a model based reinforcement learning
algorithm.

3.1 Belief Discretization Methods

Before presenting the belief based EST method, different belief state discretization methods
that can be used by our new EST approach are presented in the following three sub-sections.
In section 3.2, belief based EST method will be described followed by related experimenta-
tions.
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Algorithm 5 DGRID(b,M)

Require: belief state b over S
Require: resolution of grid M ∈ N+

Ensure: a grid coordinate representing discretization of b
1: Create an |S|-vector x such that x(s) = M

∑|S|
i=s b(i) for 1 ≤ s ≤ |S|

2: Let v be the largest integer |S|-vector such that v(s) < x(s) for all s ∈ S.
3: Let d be an |S|-vector such that d(s) = x(s)− v(s) for all s ∈ S.
4: Let p be an |S|-vector that contains a permutation of the integers 1, 2, ..., |S| that orders

the components of d in descending fashion, so that d(p(1)) ≥ d(p(2)) ≥ ... ≥ d(p(|S|)).
5: Find the vertices {vi : 1 ≤ s ≤ |S|} of the sub-simplex in G′ that contains x as follows:

v1(s) = v(s), for 1 ≤ s ≤ |S|

vi+1(s) =

{
vi(s) + 1, if s = p(i)

vi(s), otherwise

6: return v.

3.1.1 Fixed-Resolution Regular Grid Discretization

Grid based approximation is one of the effective approaches to overcome the dimensionality
problem of POMDPs. This family of methods defines a transformation from belief space into
a fully observable MDP with a state space that consists of all probability distributions over
the core states of the POMDP. For a POMDP with n core states, the transformed state space
is called the n-dimensional simplex, or belief simplex [71]. Fixed resolution regular grid [35]
is one of the most popular methods, in which the points of the grid are spaced in a regular
pattern and divide the belief simplex into equal-sized sub-simplices.

DGRID(b,M) function in Algorithm 5 defines a slightly modified version of the original
method, where final two steps of Lovejoy’s original algorithm are truncated. Algorithm 5 finds
and returns an integer vector of size |S| representing the grid coordinate of the corresponding
discretization of b within the regular grid generated by resolution M . The truncated part,
calculating the barycentric coordinates to be used by any interpolation schema that may be
required, is not necessary for our purpose.

The major drawback of the algorithm is the exponential growth of the size of the grid as we
scale M .

3.1.2 State Rank Discretization

Most Likely State (MLS) approximation [9] is probably the most intuitive and straightforward
belief discretization scheme in the literature. [13] proposes a discretization method which
generalizes MLS approach using a rank based mechanism, inspired by statistical ranking.
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Algorithm 6 DRANK(b, pthreshold)

Require: belief state b over S
Require: a threshold value for cumulative probability pthreshold ∈ [0.0, 1.0]

Ensure: a vector of state identifiers representing discretization of b
1: let bhash be a hash table such that bhash[si] = b(si) for si ∈ S, 1 < i < |S|
2: let v be a vector of state identifiers si ∈ S
3: v ← 〈〉
4: psum ← 0.0

5: repeat
6: smax ← arg max(bhash) . resolve ties by a deterministic method, such as lexical

comparison of state identifiers
7: append smax to v
8: psum ← psum + bhash[smax]

9: delete entry indexed by smax from bhash

10: until psum ≥ pthreshold
11: return v

By DRANK(b, pthreshold) function given in Algorithm 6, we propose a further generalized
version of our original algorithm, which constructs an ordinal state rank vector that is trun-
cated at a given cumulative probability threshold, and can be used as a discrete approximation
of a belief state.

For example, consider a belief state b that is represented by the list 0.3, 0.15, 0.0, 0.15, 0.4,
defining probabilities for being in states s1, s2, s3, s4 and s5, respectively. Assuming the
conflict between ranks of s2 and s4 are resolved by comparison of their subscripted indices
(i.e. 2 < 4), DRANK produces the approximate state vectors 〈s5〉, 〈s5, s1〉 and 〈s5, s1, s2, s4〉
for pthreshold values 0.0, 0.5 and 1.0 respectively.

Note that, for pthreshold = 0.0, DRANK algorithm is equivalent to the MLS approximation.
Given a belief state b, it gives the world state s with the highest probability:

MLS(b) = arg max
s∈S

b(s) (3.1)

= DRANK(b, 0.0) (3.2)

Another feature of the DRANK algorithm is that it crops all impossible states (i.e. {s | s ∈
S ∧ b(s) = 0.0}) implicitly. Although an impossible state has meaning in the belief state
formation, it is obviously redundant for a rank based discretization method.

37



Algorithm 7 DAUG(b, pthreshold, n)

Require: belief state b over S
Require: a threshold value for cumulative probability pthreshold ∈ [0.0, 1.0]

Require: number of partitions n ∈ N+ for normalized entropy discretization
Ensure: a tuple of state identifier vector and a positive integer representing discretization of

b

1: let v be a vector of state identifiers si ∈ S
2: v ← DRANK(b, pthreshold) . by Algorithm 6
3: Hd(b)← bnH(b)c . by equations 3.3 and 3.4
4: return 〈v,Hd(b)〉

3.1.3 Augmented State Rank Discretization

For discretization of belief state, [49] makes use of Augmented MDP (AMDP) representation.
Augmented MDP approach is based on the fact that, for most POMDP problems, uncertainty
of the system is domain specific and localized. Under this assumption, it is usually possible
to summarize a belief vector by a tuple of MLS and the entropy of the belief state. Whenever
MLS of a belief state suffers from perceptual aliasing, the level of uncertainty represented by
the entropy distinguishes it from other similar belief states.

Entropy of a belief state b is given by

H(b) = −
|S|∑
i=1

b(si)log2b(si) (3.3)

H(b) =
H(b)

H(bu)
(3.4)

where bu is the uniform distribution over all states, and H(b) is the entropy normalized to lie
in the interval [0, 1]. Combining MLS and normalized entropy, the low dimensional represen-
tation b̃ of belief b is the tuple

b̃ =
〈
MLS(b);H(b)

〉
(3.5)

Obviously, the entropy value makes b̃ a continuous variable. In order to make AMDP space
finite sized, [49] discretizes the entropy value into a fixed number of cells.

The fact that b̃ =
〈
DRANK(b, 0.0);H(b)

〉
suggests an extension to the original AMDP to

cover state rank discretization mechanism defined in Section 3.1.2. More generalized version
of AMDP approximation method is proposed in Algorithm 7, which unites DRANK with
entropy discretization. AMDP is just a special case of DAUG, where pthreshold = 0.
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DAUG method provides a means to increase the granularity of DRANK for problem domains
that might make use of distinguishing effect of entropy augmentation.

3.2 Belief Based Extended Sequence Tree Algorithm

Given a number of belief discretization methods, it is now possible to redesign EST method
to cover model based reinforcement learning algorithms Linear Q-Learning and Replicated
Q-Learning for partial observability.

Let D be a discretization function over belief state space. We redefine building blocks of EST
method using belief state discretization, starting with the redefinition of history (Definition
2.6).

Definition 3.1. A D-history is defined as

hDtτ = D(bt), at, rt+1, D(bt+1), at+1, ..., rτ , D(bτ )

where actions and rewards observed by the agent are listed starting from time t until time
τ . �

Next, the original extended sequence tree (Definition 2.7) is modified to handle discretized
belief states.

Definition 3.2. A D-extended sequence tree (D-EST) is a tuple 〈N, E〉, where N is the set
of nodes and E is the set of edges. Each node represents a unique action sequence that is
used to reach that node; the root node, denoted by ∅, represents the empty action set. If the
action sequence of node q can be obtained by appending action a to the action sequence
represented by node p, then p is connected to q by an edge with label 〈a, ψ〉; it is denoted
by the tuple 〈p, q, 〈a, ψ〉〉. ψ is the eligibility value of the edge to indicate how frequently the
action sequence of q is executed. Furthermore, let di denoteD(bi) (D being the discretization
function over belief state space); q holds a list of tuples 〈d1, ξd1 , Rd1〉, ... , 〈dk, ξdk , Rdk)〉
stating that action a can be chosen at node p if current approximation of belief state observed
by the agent is in {d1, ..., dk}, which is called the continuation set of node q, denoted contq.
Rdi is the expected total cumulative reward that the agent can collect by selecting action a
upon gathering a belief state with approximation di after having executed the sequence of
actions represented by node p. ξdi is the eligibility value of approximation di at node q and
indicates how frequently action a is actually selected at some state yielding a belief state with
approximation di. �

Finally, we enhance the model based reinforcement learning algorithm with the new EST
mechanism, which we call Belief based EST or BEST, as in Algorithm 8. This modifies the
original EST method such that, the underlying reinforcement learning method is now one of
the model based algorithms (Linear Q-Learning or Replicated Q-Learning), and EST actors
are replaced with the new ones as defined in Definitions 3.1 and 3.2.
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Algorithm 8 BEST(D)
Require: D is a discretization function over belief space

1: let TD be a D-EST
2: initialize TD ← tree with empty root node only
3: repeat
4: let current denote the active node of TD
5: initialize current← root node of TD
6: let b be the current belief state
7: initialize episode D-history hD ← D(b)

8: active← false

9: repeat
10: if active = true then
11: a← select action using D(b) and TD, updating active as side effect
12: else
13: a← select action using current value function, updating active as side effect
14: end if
15: take action a, observe r and construct next belief state b′

16: execute underlying reinforcement learning update rule (Equation 2.14 or 2.15)
17: append r, a, D(b′) to hD
18: b← b′

19: until environment signals a terminal state
20: update TD by episode history hD
21: until a termination condition holds

Function D can be replaced by one of the discretization methods, as long as it provides a
finite set of approximate states for D-EST data structure. The invoked discretization method
is not intended to replace belief states in the underlying model based learning procedure, but
is used to build up a finite set of representative state approximations to be used in BEST.

Action selection mechanism (lines 10-14) shall invoke Qa(b) = qa.b approximation in line
13, instead of direct derivation of the state-action value. Additionally, if the action selection
strategy directs the flow of control to TD (line 12), the mechanism shall need to compare
existing belief approximations in the continuation sets of nodes.

In a certain perspective, BEST is a generalization attempt to EST in order to cover a more
general reinforcement learning family, just like model based reinforcement learning is a gen-
eralization of classical reinforcement learning. To be more specific; similar to Q-learning,
which is a special case of algorithms presented in sub-section 2.3, EST is a special case of
BEST, for which D = MLS.

Following the convention of Figure 2.7, Figure 3.1 summarizes how BEST structurally ap-
pends the base reinforcement learning algorithms.

In the following section, we provide empirical evidence presenting that, with an appropriate
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Figure 3.1: A structural view for a belief state based reinforcement learning algorithm for
POMDP problems, together with BEST extension.

belief discretization method, BEST effectively improves learning performance of underlying
model based reinforcement learning algorithm.

3.3 Experiments

A number of experiments are done to provide empirical evidence that BEST actually enhances
performance of selected partially observable reinforcement learning methods. The domains
are of different sizes and difficulties, which are selected among widely used benchmark prob-
lems in POMDP literature, which are described in the following paragraphs:

Figure 3.2: Cassandra’s tiny navigation problem (Mini-hall).

• Tiny navigation environment (Mini-hall) [33] is a hallway navigation problem with
deterministic actions and limited deterministic sensors (Figure 3.2).
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The problem is intended to model a robot navigating in a simple office environment.
There are four cells, one of which is a distinguished goal cell, and initially the agent
may be in any cell except the goal cell (indicated by a flag), facing one of the four
compass directions. The agent can observe relative location of the surrounding walls,
and whether it is in goal cell or not. Possible actions are forward, rotate left and rotate
right.

The purpose of the learning agent is to devise the policy to reach a designated goal cell
of the simulated grid world, in minimum number of actions. This is a simple problem
with full determinism, representing the most trivial situation in our problem set.

Figure 3.3: Chrisman’s space shuttle docking problem (Shuttle) [12].

• Space shuttle docking problem (Shuttle) [12] is a simplified discrete simulation of a
space shuttle, alternating between two space stations to deliver supplies (Figure 3.3). In
this problem, agent’s focus is on maximization of total reward throughout this delivery
process, by trying to learn how to go to the least recently visited station.

Three possible movements are deterministic go forward, turn around actions, and the
noisy backup action. With a certain noise, the shuttle agent can see the state station in
front of it, or it can sense that it is docked in one of the stations, or it can see nothing.

What distinguishes this problem from others is that it lacks a designated goal state, so
the task is not inherently episodic. Although the problem size is small, unreliability of
sensors and actions places the problem to a more difficult category than Mini-hall in
our set.

Figure 3.4: Dung’s Virtual Office problem [18].

• Virtual Office [18] problem is a navigation problem that has two bottleneck states (D1
and D2), and two goal states (G) that can be reached through each bottleneck state
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separately (Figure 3.4).

The agent is expected to learn to move from any random starting position in the hall
H (the left room) to one of the goals in the right rooms. The agent can observe with
certainty whether there is wall at each of the four compass directions or not. Due to
this observation semantics, the observations in the upper right room are same as obser-
vations in the lower right room except the goal positions. Action space is composed
of movement actions to the four compass directions. If the agent reaches the goal, it
receives a reward of +10. For any other movement, the agent gets a reward of −1.0.
The door states D1 and D2 clearly impose a hierarchical structure in the solution policy
for the domain. Fortunately, there T and O functions are deterministic in this problem.

Figure 3.5: State/observation space of Pineau’s Cheese-Taxi problem [47].

• Cheese-Taxi [47] is a hybrid of two well known problems, namely Cheese Maze [38]
and Taxi Domain [16]. Cheese-Taxi combines them to join the state uncertainty aspects
proper to the Cheese Maze and the hierarchical structure proper to the Taxi Domain,
which are the motives that make it a member of our set (Figure 3.5).

The problem simulates a taxi agent, where the agent must pickup a passenger located at
state S10 and then deliver the passenger to a destination cell, either S0 or S4, selected
randomly. The agent can execute seven actions: North, South, East, West, Query,
Pickup, Putdown, and can perceive ten distinct observations: O1, O2, O3, O4, O5,
O6, O7, destinationS0, destinationS4, and null. Observations O1 through O7 indicate
wall placement in all four directions immediately adjacent to the location. Note that,
states S5, S6 and S7 look identical, as do respectively S1, S3 and S8, S9. Other states
are uniquely identified by corresponding observations. Destination observations are
provided without noise to the agent in response to the Query action, only when the
passenger is onboard. The agent perceives a Null observation after the Pickup and
Putdown actions.

The goal of the agent is to deliver the passenger at the correct location and receive the
+20 reward. Incorrect use of Pickup and Putdown are punished with a reward of
−10. There are two sources of uncertainty in this problem. The initial location of the
taxi is randomly distributed over maze cells and can only be disambiguated by taking a
sequence of motion actions.

• Hallway is a middle sized domain (Figure 3.6) in a series of hallway navigation prob-
lems proposed by [8]. Observation and action semantics is the same as in Mini-hall
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Figure 3.6: Cassandra’s Hallway navigation problem [8].

domain. Additionally, it has three distinguishing states where the agent can perfectly
sense its absolute location, so that agent can gain an advantage if it devises a policy
making use of these three states.

The domain is relatively large and extremely noisy, which makes it harder than the
previous problems.

Figure 3.7: Rock sampling problem with a 3x3 grid and 3 rocks [56].

• Rock sampling problem (RockSample[x,y]) [56] is a scalable problem that models rover
science exploration, where x is the dimension of square-shaped grid world and y is
number of rocks in the environment (Figure 3.7).

In addition to the four compass directions, the rower can execute Sample, Check1,
Check2, ... Checky actions. Each rock in the world is randomly set to either “valuable”
or “valueless” for sampling. The aim of the rover agent is to Sample all “valuable”
rocks, and then go to the designated exit state. It always knows the coordinates of itself
and the rocks, but it does not know in advance, which rocks are “valuable” (i.e. worth
sampling). By performing the dedicated sensory action Checki for each rock, it can
imperfectly perceive whether the rock is valuable or not, via a noisy sensor depending
on distance. When the rover samples a rock, the rock becomes “valueless”.

RockSample is the most challenging problem of our set because of its following prop-
erties: (1) The environment is non-stationary, since after sampling a rock it becomes
valueless. Moreover, each randomly generated initial state configuration defines a dif-
ferent maximum total reward that can be expected. (2) Observation space is not only
very restricted, but also unreliable.

3.3.1 Setup

Table 3.1 summarizes the experimented problem domains, providing the sizes of problems in
terms of state, action and observation spaces, noise in the problem’s transition function (T )
and observation function (O) and the reference publication for the domain.

Each problem domain is experienced with different settings of pthreshold, M and n as given

44



Table 3.1: Problem Domains

Sizes
Problem |S| |A| |Ω| Noise Ref.
Mini-hall 13 3 9 - [33]
Shuttle 8 3 5 T/O [12]
Virtual Office 38 4 12 - [18]
Cheese-Taxi 35 7 10 T [47]
Hallway 60 5 21 T/O [8]
RockSample[3,3] 257 9 2 O [56]

Table 3.2: Experiment Settings

DGRID DRANK DAUG

Problem M pthreshold n pthreshold

Mini-hall 7 0.2 10 0.0
Shuttle 3 0.1 5 0.0
Virtual Office 3 0.6 5 0.0
Cheese-Taxi 15 1.0 15 1.0
Hallway 10 1.0 20 1.0
RockSample[3,3] 5 1.0 10 1.0

in Table 3.2, which are identified via a number of trial-and-error experimentations. These pa-
rameters were observed to provide performance gain compared to learning without abstraction
for the given problem. Additionally, they perform relatively better in terms of performance
parameters like CPU time and memory footprint.

Default learning settings for problems are given in Table 3.3. The only exception is the Rock-
Sample domain, for which ε is taken as 0.3, in order to promote exploration and achieve faster
convergence, since learning failed to converge in a reasonable time with the default settings.

For all experiments, Modified-ε-Greedy method in [21] is updated by the required changes in
the action selection mechanism, as discussed in Sections 2.5.3.2 and 3.2.

Each problem is experimented with a bare model based reinforcement learning algorithm (i.e.
Linear Q-Learning or Replicated Q-Learning; without BEST) against the same algorithm en-

Table 3.3: Learning Settings

Parameter Value
α 0.125
γ 0.9
ε 0.1
ψdecay 0.95
ξdecay 0.99
ψthreshold 0.01
ξthreshold 0.01
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hanced with BEST (by Algorithm 8) for every discretization function using the settings for
the problem as given in Table 3.2. The experiments were run for varying number of episodes
for each problem, depending on the convergence behavior. All test runs were executed 250
times and the results were averaged over episodes of each run. Primary performance criterion
is the average reward gained by the agent per time-step (reward-per-step); except for Rock-
Sample domain, due to its non-stationary nature, average accumulated reward (total reward)
is measured instead.

For Shuttle problem, due to its non-episodic nature, an episode is assumed to last 250 steps,
after which a new episode begins. For the same reason, in this problem, Algorithm 8 is
modified with a “reward-peak” strategy, where maximum possible reward (instead of episode
end) is used to trigger a sequence-tree update.

3.3.2 Results and Discussion

Before presenting the results of the experimentations, it will be convenient to have a measure
of the scales of selected problems in mind. Although defining uncertainty throughout an
agent’s experience within an environment is not trivial, normalized entropy of belief states
(Equation 3.4) may give a rough idea about how blur the agent senses the environment it is
trying to explore. Figure 3.8 shows normalized average belief entropy values measured over
plain Replicated Q-Learning (without BEST) experiments for each domain. Remember that a
lower value means less uncertainty. It can clearly be seen from the plot that RockSample[3,3]
domain is the most misty environment of the problem set, while Shuttle domain provides the
most complete information state to the agent on the average.

Figures 3.9 to 3.14 show the average performances of each setting given in Table 3.2 through-
out the episodes of the experiment. Plots are smoothed for visual clarity.

BEST has some extra CPU time cost, which is given in Figure 3.15. For every domain and
for each discretization method, this figure shows the CPU time overhead of BEST over the
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Figure 3.8: Average normalized belief entropy levels of problems.
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Figure 3.9: Experiment results for Mini-hall domain
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Figure 3.10: Experiment results for Shuttle domain
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Figure 3.11: Experiment results for Virtual Office domain

underlying learning algorithm, as a percentage value.

As another important performance parameter is the memory footprint, Table 3.4 shows the
average number of nodes generated by BEST for each domain, given the underlying rein-
forcement learning algorithm and the discretization method.

Figure 3.16 provides the ratio of abstract actions in all actions taken during learning. Namely,
it is the average usage rate of “options” compared to all primitive “actions” taken, as a per-
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Figure 3.12: Experiment results for Cheese-Taxi domain
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Figure 3.13: Experiment results for Hallway domain
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Figure 3.14: Experiment results for RockSample[3,3] domain

centage value.

Finally, Table 3.5 is a summary of discretized state space size generated by the BEST for a
for each discretization method, given each problem domain.

For almost all cases, significant performance gain is achieved by the use of BEST on top of
model based reinforcement learning. However, interpretation of parameters that play role on
the “significance” level of performance gain is not straightforward.
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Mini-hall, as one of the simplest problems of our set, seemed to take more advantage of
BEST than other problems. With appropriate parameter values, all discretization methods
make BEST boost learning, beginning from the very early stages of learning (Figure 3.9).
Even for small values of M , n and pthreshold, like the ones in Table 3.2, BEST succeeds
to improve underlying learning algorithm, mostly because, on the average, almost 50% of
actions are abstracted and used as “options” (Figure 3.16), which is the property that leads
BEST to success, even for such a small sized domain.

Shuttle, another small domain of the problem set, also made significant performance gain by
using BEST. Although abstraction potential is much less than other problems (as indicated by
very low option usage percentages in Figure 3.16), its deterministic nature (as pointed by low
uncertainty in Figure 3.8) gives rise to performance increase, even for very small values of
discretization parameters (Table 3.2).

As seen in Figure 3.11, BEST also performed well on Virtual Office, one of the problems
specially designed suitable to temporal abstraction. Note the high values of option usage
percentages for this problem in Figure 3.16.

The other problem that is designed for temporal abstraction is Cheese-Taxi domain that also
benefits from BEST (Figure 3.12). Especially at the initial stages of learning, BEST supports
underlying learning algorithm very well. For this problem domain, although DRANK boosts
performance at the earlier episodes, it fails to successfully represent the noisy nature of the
domain later on. DAUG and DGRID (with appropriate parameters) perform much better with
their ability to define a more granule discretized state space for BEST (Table 3.5).

For extremely noisy domains like Hallway, it is highly probable that BEST discovers some
options that are in fact not correct, but accidentally succeeded (due to noise) and recorded
as a successful history, thus added to the D-EST data structure. Although these paths are
pruned later from the D-EST, the pruning mechanism has some latency in our settings, due
to conservative decay and threshold parameter values given in Table 3.3, which explains the
late recovery of the DGRID curves. Additionally, as the number of problem states increases
and average belief entropy gets high, the number of discretization required increases. As a
consequence, in accordance with the relatively large discretized belief state space generated
(Table 3.5), high CPU time overhead can be observed, as is the case for the Hallway problem
(Figure 3.15).

When we compare the discretization methods, the most remarkable gaps in the average num-
ber of nodes are observed in the Hallway domain (Table 3.4). DRANK andDAUG require sig-
nificantly more nodes than in the DGRID case. This is because DGRID discretization seems
to be more suitable in the long term for generation of more frequently invoked (or more use-
ful) options for the Hallway domain (Figure 3.16) by using less number of discretized states
(Table 3.5). In general, it is more likely to have such gaps for extremely noisy and relatively
large domains like Hallway. For this kind of situations, DRANK and DAUG have a tendency
to represent the continuous belief state space with more number of discretized states. This
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(b) Replicated Q-Learning

Figure 3.15: Average CPU time overhead percentages.

may easily trigger the production of different discretizations for similar belief states, leading
to the generation of more options as the solution of the same sub-task.

Finally, for the RockSample[3,3] problem, BEST with any discretization method clearly out-
performs a model based reinforcement learning setting without BEST. Although this do-
main exhibits the highest uncertainty (Figure 3.8), BEST successfully supports the under-
lying learning algorithm with a relatively moderate percentage of option usage throughout an
episode (Figure 3.16).

Complexity of all three discretization algorithms presented in this paper are O(|S|log|S|).
Thus, it is hard to identify a direct effect of a selected discretization method to the overall com-
putational cost. However, together with the nature of the problem domain, the discretization
method used seems to determine the size of the discretized belief state space, thus indirectly
effecting the number of D-EST nodes and CPU time overhead.

Model based reinforcement learning with BEST can reach an average reward peak at a much
earlier episode than learning alone (e.g. for Shuttle domain, model based reinforcement learn-
ing catches its peak near 100th episode, while the same algorithm with BEST reaches similar
values before 20th episode), and succeeds to increase total reward due to option invocations.

Table 3.4: Average number of nodes in D-EST

Linear Q-Learning Replicated Q-Learning
Problem DGRID DRANK DAUG DGRID DRANK DAUG

Mini-hall 103.47 62.17 104.83 105.37 62.69 105.36
Shuttle 51.19 43.43 50.65 55.45 45.83 53.71
Virtual Office 419.80 427.03 381.76 431.14 424.25 374.68
Cheese-Taxi 886.78 525.93 794.50 828.06 505.79 788.09
Hallway 9959.80 48588.29 54999.75 12470.42 79783.73 88499.95
RockSample[3.3] 1518.97 1289.17 1382.53 691.71 555.63 612.44
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Figure 3.16: Average usage of options among all action steps.

For this reason, CPU time overhead is generally fairly acceptable due to early convergence
and apparent increase in average rewards. Moreover, it is always possible to run BEST in
parallel with the underlying learning algorithm with a certain number of episodes latency, due
to its off-line nature.

Of course, there are issues where BEST needs improvement. Perhaps the most important
one is that, the success of BEST requires correct selection or adjustment of abstraction and
discretization parameters. Unfortunately, there is no common practice on how to estimate
the correct values of these parameters for a specific domain, except some sort of an educated
guess.

Table 3.5: Average discretized belief state space size generated

Linear Q-Learning Replicated Q-Learning
Problem DGRID DRANK DAUG DGRID DRANK DAUG

Mini-hall 19.13 13.04 18.18 19.19 12.95 18.01
Shuttle 16.71 7.95 13.11 16.78 7.96 13.01
Virtual Office 49.52 46.88 38.32 49.91 46.99 38.55
Cheese-Taxi 68.08 49.58 68.30 65.40 48.84 67.72
Hallway 2774.11 14049.06 14442.85 3064.65 16999.05 17743.92
RockSample[3,3] 1156.36 889.17 1430.64 1046.57 751.03 1124.92
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CHAPTER 4

LEARNING REACTIVE POLICIES FASTER FOR
REINFORCEMENT LEARNING WITH HIDDEN STATE

As you adequately put, the problem is choice. But we already know what you’re
going to do, don’t we?

– The Architect (portrayed by Helmut Bakaitis), The Matrix: Revolutions

Some of the early studies in reinforcement learning for problems with hidden state focused
on generation of memoryless policies that can produce acceptable solutions throughout the
observation alone, for a given POMDP problem. In this chapter, we propose a method for en-
hancing one of the representative reinforcement learning algorithms of this category, namely
SARSA(λ), using extended sequence tree abstraction method [14].

As described in Section 2.6, the main problem for reinforcement learning with the hidden state
constraint is perceptual aliasing, especially when the underlying MDP model is not available
to the agent in advance.

Since EST method assumes MDP setting, construction of EST data structure, which is nothing
but a tree representing useful loop-free histories in a compact manner, makes the assumption
that there is no aliasing on states. Thus, EST method is extremely fragile under partial ob-
servability assumption, since a misleading unification of two perceptually aliased states easily
directs the agent to a completely wrong direction in solution space.

In order to overcome this problem, a way to identify and get rid of perceptually aliased cases
on EST is needed. At this point, it is worth reminding that EST data structure is mainly used
for “exploitation” of successful sub-policies under the assumption that EST always keeps only
successful histories. Using this fact, it is easy to see that a misleading exploitation (i.e. an
EST path leading to nowhere valuable) shall help to identify “false positive” paths on the tree.

In this chapter, a careful pruning strategy on the EST data structure is proposed to make this
identification. This novel pruning strategy makes it possible to accumulate useful sub-policies
from episode histories, with SARSA(λ) as the underlying reinforcement learning algorithm
for problems with hidden state.
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4.1 History Aware Extended Sequence Tree Data Structure

Before necessary modifications on EST method procedures, the EST data structure is rede-
fined as follows:

Definition 4.1. A history aware extended sequence tree data structure (HA-EST) is a tuple
〈N, E〉, where N is the set of nodes and E is the set of edges. Each node represents a unique
action sequence that is used to reach that node; the root node, denoted by ∅, represents the
empty action set. If the action sequence of node q can be obtained by appending action
a to the action sequence represented by node p, then p is connected to q by an edge with
label 〈a, ψ〉; it is denoted by the tuple 〈p, q, 〈a, ψ〉〉. ψ is the eligibility value of the edge
to indicate how frequently the action sequence of q is executed. Furthermore, q holds a list
of tuples 〈〈o1,Π

p
1〉, ξ〈o1,Πp1〉, R〈o1,Πp1〉〉, ... , 〈〈ok,Π

p
k〉, ξ〈ok,Πpk〉, R〈ok,Πpk〉〉 stating that action a

can be chosen at node p if current observation and previous continuation set element makes a
pair that is in {〈o1,Π

p
1〉, ..., 〈ok,Π

p
k〉} which is called the continuation set of node q, denoted

contq. Πp
i denotes the element of contp that is the immediate ancestor of current continuation

set element, meaning that Πp
i was the previous continuation set element chosen in the previous

option exploitation step. A continuation set element is indexed by the pair 〈oi,Πp
i 〉. R〈oi,Πpi 〉

is the expected total cumulative reward that the agent can collect by selecting action a upon
gathering a pair 〈oi,Πp

i 〉 after having executed the sequence of actions represented by node p.
ξ〈oi,Πpi 〉 is the eligibility value of pair 〈oi,Πp

i 〉 at node q and indicates how frequently action
a is actually selected at some state yielding the pair 〈oi,Πp

i 〉. �

∅
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Figure 4.1: An example HA-EST data structure.
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Figure 4.1 is an example tree following the Definition 4.1. Continuation set elements in a node
are now pairs consisting of an observation and a parent continuation set element (represented
by dotted arrows). For this reason, a node of HA-EST may now contain the same observation
more than once. Additionally, by this way, every continuation set element in a node is a
step on a unique path from root node to a leaf node, unlike the case in the original EST data
structure. Putting it the other way, from any continuation set element, there is only one path
through continuation set elements up to the root node. This property will be useful for our
pruning mechanism.

Construction of HA-EST requires minimal change in the original EST procedures (Algo-
rithms 2 and 3). In the function generating potentially useful sub-histories (called at line 1 of
Algorithm 3), the only change is that “states” are replaced with “observations”. In the tree
update phase (i.e. Algorithm 3), “state” information is replaced with the information pair
consisting of “observation” and “previous step mark before that observation”, represented by
〈oi,Πp

i 〉 in Definition 4.1. Mechanisms for history addition and action selection are explained
in the following section.

4.2 Extended Sequence Tree Abstraction with Misleading Sub-policy Removal

Every history represented by HA-EST is potentially ambiguous. In other words, any path
from the root node to a leaf node through continuation set elements may involve observations
that are aliases of some distinct states. These paths should be removed from the tree, so that
eventually only unambiguous sub-policies remain. Even when the number of perceptually
aliased states are high for a problem, just a few “discriminating” observations (i.e. obser-
vations corresponding to states that do not suffer from perceptual aliasing) may lead as the
initiation points for unambiguous successful histories.

For this purpose, a pruning mechanism is developed and integrated to the “history addition”
(called at line 3 of Algorithm 3) and “action selection” (called at line 6 of Algorithm 2)
mechanisms of the EST method.

We first define a Forbidden Sub-policy Repository (FSR) that stores histories in the form of
observation-action sequences. There are alternative ways to implement such a repository, with
varying effectiveness in terms of time and space. Our implementation of FSR is in the form
of a tree data structure, which we found to be fairly acceptable. The aim of FSR is keeping
track of sub-sequences that have previously been proven to be misleading on the way to goal.

Algorithm 9 is the modified history addition algorithm that prevents insertion of sub-sequences
that were added into FSR before, and constructs the continuation set element links as defined
in Definition 4.1.

Action selection is the final mechanism to be altered. The original action selection method
of EST runs through the nodes beginning from the root until either a leaf node is reached
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Algorithm 9 ADD-HISTORY(h, T )
Require: h is a history of the form o1a1r2...ot−1at−1rtot

Require: T is a HA-EST
1: h′ ← o1a1...ot−1at−1ot . rewards removed
2: if any path in FSR is a prefix of h′ then . history has ambiguities
3: exit . do not add history to HA-EST
4: end if
5: Π← NULL . parent continuation set element link
6: R[t]← rt . time indexed array of discounted cumulative rewards
7: for i← t− 1 to 1 do
8: R[i]← ri + γR[i+ 1]

9: end for
10: ncurrent ← root node of T
11: for i← 1..t− 1 do
12: if ∃ a node n such that ncurrent is connected to n by an edge with label 〈ai, ψ〉 then
13: Increment ψ.
14: if n contains a continuation set element indexed by 〈oi,Π〉 then . update values

in continuation set element found
15: Increment ξ〈oi,Π〉
16: R〈oi,Π〉 ← R〈oi,Π〉 + α(R[i]−R〈oi,Π〉)
17: else . create new continuation set element in n
18: Add a new tuple 〈〈oi,Π〉, 1, R[i]〉 to node n.
19: end if
20: else
21: Create a new node n containing the tuple 〈〈oi,Π〉, 1, R[i]〉.
22: Connect ncurrent node to n by an edge with label 〈ai, 1〉.
23: end if
24: Π← link to continuation set element that contains 〈oi,Π〉 in n . prepare parent link

for next iteration
25: ncurrent ← n

26: end for
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Figure 4.2: A structural view for a reinforcement learning algorithm with hidden states to-
gether with ESTMSR extension.

or a node does not represent the current situation. In either case, end of the current option is
triggered and control is given back to the underlying reinforcement learning algorithm. Under
the assumption that domain is stationary and completely deterministic, HA-EST has a useful
property to detect ambiguity (Determinism requires that, for any given state, an action results
in the same state transition all the time. An environment is stationary if it does not change
throughout the learning process). If one of the following events happens, it means the tree
path that has been followed was misleading the agent:

• given that the flow of control is on a certain HA-EST node, if the current observation
does not exist in any child node (which means the control will exit the option exploita-
tion in the next time step)

• the corresponding action is executed for a continuation set element which has no chil-
dren, but the goal state has not been reached

Each of the above conditions ensures that the path exploited up to that point contains at least
one hidden state suffering from perceptual aliasing. In other words, under the determinism
assumption, any option defined by HA-EST should execute until goal state, or must be deleted
otherwise.

When the above situation occurs, our modified action selection mechanism recalls the last
processed continuation set element, finds all leaf continuation set elements that are reachable
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from that element, and finally prunes every continuation set element path in the tree that
can be traversed from each leaf continuation set element found, up to the root, by following
parent continuation set element links. After deletion, all deleted continuation set element
paths, which are nothing but observation-action sequences, are added to FSR, to prevent them
to be added into HA-EST again.

We name our HA-EST based method that attacks perceptual aliasing problem using this prun-
ing mechanism as EST with Misleading Sub-policy Removal (ESTMSR).

Following the convention of Figure 2.2, Figure 4.2 summarizes how ESTMSR structurally
appends reinforcement learning algorithms which produce reactive policies for problems with
hidden state. Note that, all states (s) in Figure 2.2 are replaced with observations (o).

It is also worth noting that if the problem is fully observable and deterministic, MSR mecha-
nism is never triggered and reduces to classical EST.

4.3 Experiments

ESTMSR method is effective on problem domains that fulfil two assumptions. The first as-
sumption is explained in the previous section as determinism and an unchanging environment.
For this reason, all selected problem domains have deterministic and unchanging nature. The
other assumption is that, the selected problem domain shall have at least one memoryless pol-
icy solution, which is implicitly imposed by SARSA(λ), meaning that there must be some-
thing learnable through observations only, for the learning algorithm to be successful.

• One of our benchmark problems is tiny navigation environment (Mini-hall) [33], as
described in Section 3.3 (Figure 3.2).

Figure 4.3: Sutton’s grid world domain. G represents the goal state [32].

• A larger problem is Sutton’s grid world [61], which is a 9×6 grid world with surround-
ing and some interior walls (Figure 4.3). The agent starts with any of the cells, and it
can move in any of the four compass directions at a time, trying to reach the goal state
at the north-east corner of the world. The environment responds with a 0 reinforce-
ment signal for each movement, except upon reaching the goal cell, the agent receives
a reward of +1.
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The original problem is fully observable, and the partially observable variant is intro-
duced in [32]. Partial observability is defined as observing the neighbouring 8 grid
cells.

Figure 4.4: McCallum’s maze domain. G is the goal state, and each number indicate the
observation sensed by the agent at the given state [38].

• Final problem domain is McCallum’s maze [38]. It is a 7×5 maze with narrow hallways,
in which agent is only able to sense its surrounding walls. Agent starts an episode from
one of the randomly assigned corners. Actions are movement steps to the four compass
directions, as in Sutton’s grid world. The environment responses to the agent with a
reinforcement of -1.0, if an action attempts to move into the wall, +5.0 upon reaching
the goal state, and -0.1 for any other action. Figure 4.4 is an illustration of the domain
together with observation identifiers corresponding to states.

McCallum’s maze is a widely used benchmark problem due to its highly ambiguous
nature. Note that, the states on north-to-south and west-to-east corridors (observed as 5
and 10, respectively) are observed to be the same.

Although this problem domanin has no optimal memoryless policy solution, a near
optimal policy might perform fairly well under a stochastic action selection mechanism,
like ε-Greedy.

4.3.1 Setup

Table 4.1 summarizes the experimented problem domains, providing the sizes of problems in
terms of state, action and observation spaces, and the reference publication for the domain.

Learning settings used for experimentation are given in Table 4.2. For every problem domain,

Table 4.1: Problem Domains

Sizes
Problem |S| |A| |Ω| Ref.
Mini-hall 13 3 9 [33]
Sutton’s maze 47 4 31 [32]
McCallum’s maze 23 4 9 [38]
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Table 4.2: Learning Settings

Parameter Value
α 0.01
γ 0.9
λ 0.9
ε 0.1
ψdecay 0.95
ξdecay 0.99
ψtreshold 0.01
ξtreshold 0.01

250 experiments are executed and the results are averaged over episodes of each run. ε-Greedy
exploration strategy is invoked in action selection for all problems, with a constant ε value.

“Reward-per-step” is the performance criterion for Mini-hall and McCallum’s maze domain,
while “number of steps to goal” is the correct measure for evaluation in Sutton’s grid world
domain. For visual clarity, the resulting plots are smoothed.

4.3.2 Results and Discussion

In general, results show that ESTMSR performs well and increases learning performance for
the selected problem domains.

In the tiny navigation environment, ESTMSR boosts learning starting with the very early
stages of the experiment. Moreover, in the long term, learned abstractions assist the agent
to increase average reward obtained, since the refined abstract actions contain no observation
ambiguity, and can by-pass the stochastic action decision semantics (Figure 4.5).

Also in Sutton’s grid world domain, ESTMSR supports the underlying SARSA(λ) algorithm
by increasing learning performance at the very beginning of the episode (Figure 4.6). The
hallway near the goal state (see Figure 4.3) constitutes a useful sub-policy pattern that should
exist in every possible solution, since the agent should pass through these states –each of
which possess a unique discrimination observation– in order to achieve the goal state. Thus,
the agent is able to make use of abstractions starting immediately after the initial construction
of HA-EST. Pruning does its job very well, trying to keep the HA-EST data structure full of
useful and unambiguous sub-policies.

ESTMSR performs surprisingly well for McCallum’s maze, despite it has no memoryless so-
lution (Figure 4.7). Of course, the success in each episode comes from the stochastic nature of
the applied action selection mechanism, namely ε-Greedy. In order to better understand how
ESTMSR provides the performance improvement, consider the HA-EST data structure given
in Figure 4.8, referring Figure 4.4 as a guide. HA-EST has saturated after many episodes, and
tells us that the only useful and unambiguous memoryless sub-policies for this domain are
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Figure 4.7: Experiment results for McCallum’s maze domain.

o2-N-o5-N-G and o8-S-o5-S-G (“oi” stands for observation with id i, “N” for north, “S” for
south). If this guidance of HA-EST were absent, since o5 is an ambiguous observation, no
single action would lead the agent to the goal state either from o2 or from o8. By ESTMSR,
the agent is now aware that o2 and o8 are discriminating observations that lead to useful
sub-policies.

Table 4.3 is a comparison of several metrics collected and averaged over episodes for each
domain.

• Average use of options shows the average percentage of actions that are invoked within
an option (i.e. abstract action) compared to the total number of actions executed in the
episode.

Mini-hall seem to make most use of temporal abstraction compared to other domains,
since the useful abstraction near the goal state is relatively long. Once the ESTMSR

extracts that abstraction, it makes extensive advantage from it.

• Average number of HA-EST nodes is an indicator of the average memory footprint the
ESTMSR mechanism uses, for every episode.

McCallum’s maze has the smallest footprint, which is consistent with the relatively
less abstraction potential, as discussed before. Sutton’s grid world, on the other hand,
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Figure 4.8: HA-EST data structure for McCallum’s Maze domain at the end of an experiment.

triggers a deeper and wider branching of HA-EST in accordance since it has the most
number of distinct observations in our problem set.

• Average CPU usage metric is the CPU time in milliseconds, that is used by the algo-
rithms on the average for an experiment to finish.

Generally speaking, ESTMSR may reduce total CPU time required for learning a reac-
tive policy, if it can significantly reduce the number of learning steps at all. The CPU
time saving is in fact a consequence of a trade-off between ESTMSR overhead and the
gain obtained in terms of number of learning steps. In Mini-hall problem, for example,
obviously the cost of ESTMSR mechanism exceeds the gain.

With the MSR mechanism, ESTMSR rapidly prunes sub-policies that would cause wrong ab-
stractions, by making use of agent’s immediate experiences. Meanwhile, ESTMSR success-
fully supports the agent by providing and testing its potentially useful abstractions throughout
the learning process. Moreover, although SARSA(λ) is selected here as a powerful repre-
sentative of its category, by making minor modifications, it is always possible to replace
SARSA(λ) with any underlying observation based memoryless reinforcement learning algo-
rithm (like Q-Learning, Q(λ), SARSA, TD(λ) etc.).

ESTMSR also has some shortcomings that need improvement. First of all, as mentioned be-
fore, the method is effective on deterministic and stationary problems only. A non-determinism

Table 4.3: Comparison of some experiment metrics

avg. use of avg. num. of avg. CPU usage (msec)
Problem options (%) HA-EST nodes without ESTMSR with ESTMSR

Mini-hall 59 28.83 351 471
Sutton’s grid world 18 407.65 13065 5005
McCallum’s maze 11 5.18 23329 6038
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factor in the environment can easily cause complete pruning of the HA-EST, resulting in an
ineffective abstraction mechanism.

Another problem is that, ESTMSR fails to extract intermediate abstractions (i.e. sub-policies
that are free of perceptual aliasing problem, but do not lead to a goal state) in the environment.
In other words, due to its operational nature, it focuses on abstractions near the goal state,
tending to eliminate any macro that is far earlier than the goal region.
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CHAPTER 5

ENHANCING UTILE SUFFIX MEMORY ALGORITHM

We demand rigidly defined areas of doubt and uncertainty!

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this chapter, ESTMSR is used to speed up Utile Suffix Memory (USM) algorithm by
means of automatic temporal abstractions through observations. Although ESTMSR is de-
signed to improve memoryless reinforcement learning algorithms, it is quite possible to in-
voke ESTMSR on top of a memory based algorithm like USM. Moreover, we present a way
to extend ESTMSR to integrate the USM tree data structure, so that the resulting method can
remember and make use of some intermediate abstractions that ESTMSR would typically
prune immediately.

We will call the new method ESTMSR/USM to emphasize the mutual dependency of MSR

pruning mechanism and USM tree data structure on the way to success.

5.1 Modifying ESTMSR for Utile Suffix Memory Algorithm

ESTMSR has some limitations. As described in Section 4.3.2, possibly the most important
one is that, although it generates some intermediate abstractions at the early steps of learn-
ing, it prunes them later due to its all-or-nothing nature. Thus, ESTMSR can not generate
intermediate temporal abstractions at all.

Before the ESTMSR/USM method is described, it can be useful to more formally define the
USM’s suffix memory mechanism.

A history instance represented by USM at time step t is a transition It = 〈It−1, at−1, ot, rt〉,
and is deposited in the leaf node whose suffix, σ, matches some suffix of the actions and
observations of the transition instances that precede It in time. In other words, a transition
It belongs to the leaf with a label that is some suffix of [...ot−3at−3ot−2at−2ot−1]. The set
of instances associated with the leaf labelled σ is written It(σ). The suffix tree leaf which
instance It belongs to is written L(It).
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Algorithm 10 GENERATE-PROBABLE-HISTORIES(h)
Require: h is a history of the form o1a1r2...ot−1at−1rtot

1: best[Lt−1]← Lt−1at−1rtLt . best holds current most promising history candidates
2: R[Lt−1]← rt . R[Lt] holds the total cumulative reward for best[Lt]
3: for i← t− 2 down to 1 do
4: . from rear to front
5: if R[Li] is not set or ri1 + γR[Li+1] > R[Li] then
6: . if Li is either not encountered before or has a lower return estimate
7: best[Li]← Liairi+1 ◦ best[Li+1] . create or update the candidate history

corresponding to state Li.
8: R[Li]← ri+1 + γR[Li+1] . update maximum reward.
9: end if

10: end for
11: let besto be a multimap . reduce all history entries to single observations
12: for every element of best indexed by l do
13: ho ← apply ω to state entries of all transition in best[l]
14: besto[ω(l)]← ho

15: end for
16: return besto

As an example, recall the USM tree given in Figure 2.8. It is nothing but a Q table for state
estimations represented by suffixes a0, 1b0, c0, 1. For instance, suppose the current history of
the agent is defined by the transition Icurrent = [...0a1b0]; then the internal information state
of the agent is the leaf node representing the suffix L(Icurrent) ≡ 1b0.

The original EST mechanism makes use of state equivalences during the construction of use-
ful history portions, based on experiences. For this equivalence test, ESTMSR directly uses
observations instead of states, and prunes the paths that are experienced to be misleading later
on. USM data structure, on the other hand, is capable of discriminating observation instances,
dynamically updated throughout learning. Most of the time, USM method can discriminate
some observations at the early stages of learning. With the USM data structure, the state
equivalence test of EST can be carried on using USM states for the given history instances.
By this way, beginning at the very early stages, probable history generation can be done more
effectively using suffixes, or equivalently by using the leaf nodes of USM.

For this purpose, the procedure responsible for probable history generation of ESTMSR is
modified to make the state equivalence test through USM leaf nodes instead of sole observa-
tions, as seen in Algorithm 10. Li stands for L(Ihi ) where Ihi is the instance of the history h
at time i. ω(L) gives the observation of the instance represented by L. Note that, the result-
ing continuation set elements of HA-EST data structure still involve single observations, not
suffixes or observation-action sequences. This will give ESTMSR/USM mechanism the op-
portunity to be invoked more frequently, especially at the beginning of learning, compared to
a hypothetical USM instance based design. All of the other mechanisms of ESTMSR remain
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Figure 5.1: A structural view for the USM algorithm together withESTMSR/USM extension.

unchanged.

WithESTMSR/USM , much deeper HA-EST trees are generated and used for option exploita-
tion. Probability of catching and making use of repeating observation sequences in the domain
that are useful on the path to goal increases, which is not possible for EST or ESTMSR for
partially observable problems. On the average, since the number of option paths will in-
crease in the long term (i.e. pruning mechanism will be less eager, since more HA-EST paths
will succeed to reach the goal), one can expect ESTMSR/USM to give better results than
ESTMSR for USM as the underlying reinforcement learning algorithm.

An important property of ESTMSR/USM is that it reduces to ordinary EST if the problem is
fully observable and deterministic, and USM fringe depth parameter is set to zero.

A structural view of ESTMSR/USM extension to USM algorithm is given in Figure 5.1. Note
that some mechanisms and data structures like HA-EST, FSR and MSR trigger are inher-
ited from ESTMSR. Observation flows, on the other hand, are enhanced by USM memory
extensions this time, enriching the history generation procedure.
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5.2 Experiments

Like ESTMSR, ESTMSR/USM method is effective on problem domains that have determin-
istic nature. Performance of USM both with ESTMSR and ESTMSR/USM are experimented
against USM alone, using the following deterministic benchmark problems:

• First one of the benchmark problems is, again, the tiny navigation environment (Mini-
hall) [33], as described in Section 3.3 (Figure 3.2). This problem is not only the simplest
of our set, it also possesses a structure that helps ESTMSR make use of full advantage
of its nature: the single useful temporal abstraction package is adjacent to the goal state.

• Virtual Office [18] problem is the next problem that is used for experimentation. The
problem characteristics are briefly described in Section 3.3 (Figure 3.4). The impor-
tance of this problem in our set is that it is relatively large, has multiple goals and
bottleneck states, imposing a hierarchical solution.

• The next problem domain is McCallum’s maze, which is described in in Section 3.3
[38] (Figure 4.4). As in the Mini-hall problem, there are useful temporal actions near
the goal state, which are known to be successfully identifiable by ESTMSR (see Figure
4.8). However, there are other useful intermediate abstractions in the domain that are
expected to be captured and used by the ESTMSR/USM method.

Figure 5.2: An extended version of McCallum’s maze, specially designed for testing
ESTMSR/USM .

• Finally, an extension of McCallum’s maze, specially designed for testing the effective-
ness of ESTMSR/USM is proposed, as illustrated in Figure 5.2. The transition and
observation semantics is identical with the original problem. The main difference here
is that, there is no discriminating observation near the goal state, as opposed to the
original McCallum’s maze. While observations identified by 2 and 8 are uniquely dis-
ambiguates their corresponding states in the original maze, there are two of them both
in this domain. So, ambiguity of the observations are spread to all of the states except
the starting states (i.e. the four corners). In other words, there are no distinguishable
abstraction packages near the goal state, thus an abstraction procedure should make use
of intermediate abstractions to achieve a speed-up.
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Table 5.1: Problem Domains

Sizes
Problem |S| |A| |Ω| Ref.
Mini-hall 13 3 9 [33]
Virtual Office 38 4 12 [18]
McCallum’s maze 23 4 9 [38]
McCallum’s maze extended 32 4 9 -

5.2.1 Setup

Table 5.1 summarizes the experimented problem domains, providing the sizes of problems in
terms of state, action and observation spaces, and the reference publication for the domain.

Learning settings used for experimentation are given in Table 5.2. ε-Greedy is used as the
action selection strategy for all problems, with a constant ε value. Kolmogorov-Smirnov (K-
S) test for USM algorithm (as defined in [38]) is executed after each time step.

For every problem domain, 100 experiments are executed and the results are averaged over
the episodes of each run. “Reward-per-step” is the performance criterion for success. For
visual clarity, result plots are smoothed.

5.2.2 Results and Discussion

In general, results show that USM can benefit from both ESTMSR and ESTMSR/USM to
increase the learning performance for the selected problem domains.

In the Mini-hall domain, both abstraction mechanisms boost learning, beginning with the
very early steps of the experiments (Figure 5.3). ESTMSR/USM performs better at the be-
ginning of the experiment, but falls behind ESTMSR later on. This is due to a property
of ESTMSR/USM falling short sometimes: At the early stages of learning, ESTMSR/USM

uses a relatively immature USM construct to derive state estimations, which may not be de-

Table 5.2: Learning Settings

Parameter Value
α 0.125
γ 0.9
ε 0.1
K-S test treshold 0.01
max. fringe depth for USM 4
ψdecay 0.95
ξdecay 0.99
ψtreshold 0.01
ξtreshold 0.01
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Figure 5.3: Experiment results for Mini-
hall domain.
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Figure 5.4: Experiment results for Virtual
Office domain.
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Figure 5.5: Experiment results for McCal-
lum’s maze domain.
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Figure 5.6: Experiment results for McCal-
lum’s maze extended domain.

tailed enough to give a meaningful discrimination over observations. At the same time, it
can sometimes be the case that, using immature state estimations, ESTMSR/USM derives
observation-action sequences that lead to a goal state, but is longer than it should be, due to
some redundant loops ending with the same observations. Although longer paths assist well at
the beginning of the experiment, since ESTMSR/USM fails to detect the loops, it may spend
extra time to exploit these redundant option steps, which is the case in the tiny navigation
problem. In the long term, learned abstractions assist the agent to increase average reward ob-
tained for both abstraction methods, since the refined abstract actions contain no observation
ambiguity, and can by-pass the stochastic action decision semantics (i.e. ε-Greedy) of USM.

In Virtual Office domain,ESTMSR/USM performs significantly better thanESTMSR (Figure
5.4). When the transition dynamics of the problem is examined, it can be identified that each
of the two goal states are reached through long observation-action sequences with ambiguous
observations, which are better maintained by ESTMSR/USM method in the long term.

Both abstraction mechanisms perform well for McCallum’s maze, which is specially designed
by its creator to demonstrate the power of USM algorithm (Figure 5.5). In other words, this
problem is where USM shines by itself. Nevertheless, both ESTMSR and ESTMSR/USM

improves learning performance of USM successfully. However, there is no significant differ-
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Table 5.3: Comparison of some experiment metrics

avg. use of options (%) avg. num. of HA-EST nodes
Problem ESTMSR ESTMSR/USM ESTMSR ESTMSR/USM

Mini-hall 43 68 26.46 65.80
Virtual Office 6 38 3.09 515.49
McCallum’s maze 18 51 5.97 33.18
McCallum’s maze extended 1 43 1.43 207.01

ence between performance increase provided by two abstraction methods.

In McCallum’s maze extended, on the other hand, ESTMSR loses its power due to the design
property of the domain as described previously. Moreover, its performance is almost the same
as the USM algorithm alone. ESTMSR/USM significantly outperforms USM and ESTMSR,
especially at the early stages of learning.

Metrics given in Table 5.3 supports the argument that ESTMSR/USM extracts and makes
use of more abstractions (in fact, intermediate abstractions) than ESTMSR. ESTMSR/USR

not only generates more HA-EST nodes on the average (up to 150 times), but also takes
advantage of those abstractions by invoking them properly. An interesting result to note is
ESTMSR values of McCallum’s maze extended, which did not make use of any abstractions
at all, as expected.

Average total CPU times elapsed for all experiments are given in Table 5.4. In almost all
cases, USM with no EST takes more time than the cases with abstraction. In fact, these
results mostly depend on the USM learning parameters, and the nature of the selected problem
domain. Cost of USM tree maintenance (statistical tests, fringe promotions, and history links
etc.) seems to dominate the cost of maintaining EST data structure, in such a way that gain
achieved byESTMSR orESTMSR/USM (in terms of number of steps to goal) can drastically
reduce total time spent. Obviously, these results could have been completely different if some
other USM learning setting were used. Nevertheless, these results show that, ESTMSR and
ESTMSR/USM can provide some gain also in terms of CPU time.

An example HA-EST data structure for McCallum’s maze is given in Figure 5.7 (refer to
Figure 4.4 as a guide to observation identifiers). Dotted arrows represent links from the par-
ent continuation set elements. This is a tree (much larger than a HA-EST tree derived by
ESTMSR, as in Figure 4.8) that can incorporate intermediate abstractions even if the corre-

Table 5.4: CPU usage in milliseconds

Problem USM USM w/ ESTMSR USM w/ ESTMSR/USM

Mini-hall 2498 2792 1917
Virtual Office 46621 43241 34146
McCallum’s maze 997 823 755
McCallum’s maze extended 234434 238939 106960
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Figure 5.7: HA-EST data structure for McCallum’s maze domain at an intermediate step of
experiment with ESTMSR/USM . The rightmost branch (o12-W-o10-W-o8-S-o5-S) is mis-
leading (since o10 is not observed twice) and will be pruned as soon as it is executed. All
other branches will remain.

sponding observations included are ambiguous. However, a side effect of this property is its
disability to detect redundant loops within the extracted options.

MSR is a mechanism for EST to rapidly prune sub-policies that would cause wrong ab-
stractions, by making use of agent’s immediate experiences through observations. While
ESTMSR successfully supports the agent by providing and testing its potentially useful ab-
stractions, ESTMSR/USM can make an improvement on the quality of the derived option,
especially by covering intermediate abstractions missed by ESTMSR.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis proposes methods to accelerate well known reinforcement learning algorithms
that are designed for partial observable problems, by modifying the original EST abstraction
method.

BEST expands the existing EST abstraction method to cover model based reinforcement
learning algorithms designed for POMDPs, via discretization of belief space. Some belief
discretization methods suitable for use in BEST are also proposed. Effectiveness of BEST
together with the discretization methods are shown via experimentation over six partially ob-
servable problem domains, and the results are discussed extensively.

An obvious future research direction for BEST is the automatic extraction or incremental
adjustment of discretization parameters. Additionally, application of other belief discretiza-
tion schema would be valuable. Expanding this study to cover more model based partially
observable reinforcement learning algorithms, like SPOVA is another challenging research
direction.

Another reinforcement learning paradigm focused in this thesis is model free partially observ-
able setting. As the representative algorithm under memoryless agent assumption, SARSA(λ)
is enhanced by temporal abstractions. The proposed method, namely ESTMSR, performs
well and improves learning performance significantly, under certain assumptions. The method
is experimented on three problems with hidden state, and the results are discussed.

In the last part of the thesis, another EST variant is proposed to accelerate reinforcement learn-
ing for partial observability, assuming memory based model free setting. Since ESTMSR

fails to effectively handle intermediate abstractions, a modification on ESTMSR is proposed
to enhance a well known algorithm of this category, namely USM. The proposed abstraction
method, ESTMSR/USM , makes use of USM state information, and thus performs very well
to leverage USM learning. Experimentation comparing the performances of USM, USM with
ESTMSR and USM with ESTMSR/USM is carried out with four problem domains and the
results are discussed.

One of the major drawbacks of ESTMSR/USM is that it fails to catch redundant repetitions
of observation-action sequences. An alternative solution can be using fringe leaf nodes in-
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stead of official leaf nodes in history generation, however, it may cause over-discrimination
of estimated states, harming the quality of options in the long term.

Unfortunately, bothESTMSR andESTMSR/USM fail to handle non-determinism and changes
in the environment. One of the promising research directions is to relax this requirement, po-
tentially by incorporation of some statistical methods for the pruning mechanism.

All of the EST extensions proposed in this thesis are generalized versions of the original EST,
just like POMDP is a generalization of MDP. In other words, under certain conditions, the
proposed methods reduce to EST. In that sense, although the picture is still not complete, this
study can be seen as a comprehensive attempt to generalize automatic temporal abstraction to
reinforcement learning in partially observable domains.
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