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ABSTRACT

TWO CHANNEL ADAPTIVE SPEECH ENHANCEMENT

Zaim, Erman
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Tolga Çiloğlu

February 2014, 66 pages

In this thesis, speech enhancement problem is studied and a speech enhancement sys-

tem is implemented on TMS320C5505 fixed point DSP. Speech degradation due to

the signal leakage into the reference microphone and uncorrelated signals between

microphones are studied. Limitations of fixed point implementations are examined.

Theoretical complexities of weight adaptation algorithms are examined. Moreover,

differences between theoretical and practical complexities of weight adaptation algo-

rithms due to the selected DSP hardware are studied. Effects of the acoustic character-

istics of recording environment on the performance of adaptive algorithms are exam-

ined. Computer simulations are performed on SAD source separation and Widrow’s

speech enhancement systems based on LMS, sign LMS and NLMS adaptive weight

algorithms under both artificial and natural noises in order to compare their perfor-

mances and decide filter length and step size selections. Speech enhancement sys-

tems based on LMS, SE-LMS and NLMS algorithms are implemented real time on

TMS320C5505 fixed point DSP. Performances of these systems are evaluated by per-

forming subjective listening tests. It is shown that implemented speech enhancement

system works consistently and it increases the intelligibility of the speech transmitted
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to other party under various types of real noises.

Keywords: Speech Enhancement, Noise Cancellation, Fixed Point LMS
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ÖZ

İKİ KANALLİ ADAPTİF KONUŞMA İYİLEŞTİRME

Zaim, Erman
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Tolga Çiloğlu

Şubat 2014 , 66 sayfa

Bu tezde, konuşma iyileştirme problemi çalışılmış ve konuşma iyileştirme sistemi

TMS320C5505 sabit nokta sayısal sinyal işleyicisinde uygulanmıştır. Referans mik-

rofondaki sinyal kaçağı ve mikrofonlar arasındaki ilintisiz sinyaller nedeniyle oluşan

konuşma bozulması çalışılmıştır. Sabit nokta uygulamalarının sınırlamaları incelen-

miştir. Ağırlık adaptasyon algoritmalarının teorik karmaşıklığı incelenmiştir. Üste-

lik, ağırlık adaptasyon algoritmalarının teorik ve pratik karmaşıklıkları arasında se-

çilen DSP donanımı nedeniyle oluşan farklar incelenmiştir. Kayıt ortamının akus-

tik özelliklerinin adaptif algoritmaların performansı üzerindeki etkileri incelenmiştir.

LMS, sign LMS ve NLMS adaptif ağırlık algoritma tabanlı SAD kaynak ayırma ve

Widrow’un konuşma geliştirme sistemlerinin performanslarını karşılaştırmak ve filtre

uzunluğu ve adım boyutu seçimlerine karar vermek için hem yapay hem de gerçek

sesler altında bilgisayar simülasyonları yapılmıştır. LMS, SE-LMS ve NLMS algo-

ritmaları tabanlı konuşma geliştirme sistemleri TMS320C5505 sabit nokta sayısal

sinyal işleyicisinde uygulanmıştır. Bu sistemlerin performansları kişisel dinleme test-

leri gerçekleştirilerek değerlendirilmiştir. Uygulanan konuşma geliştirme sisteminin
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sürekli çalıştığı ve çeşitli gerçek sesler altında diğer tarafa iletilen konuşmanın anla-

şılabilirliğini arttırdığı gösterilmiştir.

Anahtar Kelimeler: Konuşma İyileştirme, Gürültü Giderici, Sabit Nokta LMS
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CHAPTER 1

INTRODUCTION

Voice communication is usually performed in high noisy environments. Commercial

telephone calls taking place at a cafeteria and military radios in armored vehicles,

planes, helicopters can be given as examples. In such noisy environments, the intel-

ligibility of speech transmitted to the other party decreases due to the additive back-

ground noise. In order to increase the quality and intelligibility of speech, the effect of

noise on the speech signal should be reduced. For this reason, a system working as a

noise-canceler is used in applications such as mobile phones [1], hands-free speaking

[2], hearing aids, voice control devices [3], in-car speech.

One of the known approaches to purify speech signal from noise is based upon pro-

cessing of signal coming through single channel [4]. Although single channel meth-

ods provide superiority in terms of ease of application and improve the quality of

sensing, they do not contribute to intelligibility, in fact, most of the time they reduce

it.

Another approach involves the use of multiple channels. Along with a microphone

positioned near the mouth of speaker, other microphones are placed in other suitable

places [5]. Signals picked by these microphones are used for noise reduction and such

methods are known to be more effective than single channel noise reduction methods.

The performance of multiple channel noise reduction algorithms is improved by in-

creasing the number of microphones. However, computational complexity is also

proportional to the number of used microphones. Due to this computational com-

plexity, usage of two-channel systems are encouraged. In such a system one micro-

phone is positioned close to the mouth, another microphone is positioned away from
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speech source. The former is called as primary whereas the latter is called as the

secondary or reference microphone. Signal received by this reference microphone

is used to eliminate the noise from the signal received by the primary microphone.

Assuming that speech signal does not reach the reference microphone, the environ-

mental sounds picked from the reference microphone should be modified to look like

the signals reaching the primary one. Widrow’s least square (LS) can be given as

a well known example of this speech enhancement method [11]. Another succesful

approach proposed for the solution of speech enhancement problem is to use source

seperation techniques. Symmetric adaptive decorrelation (SAD) is one of the well-

known source separation algorithm [8]. The performance of LS algorithm degrades

mostly when the leakage from speech source into the reference source increases. SAD

algorithm is suggested in order to enhance speech better when there exists leakage.

Speech enhancement algorithms are usually implemented with FIR filters. For the

weight adaptation of FIR filters, there are many different types of adaptive filters.

Least mean square (LMS) method is a well known and widely used adaptation algo-

rithm [6]. It is usually preferred owing to its simplicity and its ease of application.

Normalized LMS (NLMS) and sign LMS are modified LMS type weight adaptation

algorithms. The performances of these adaptive algorithms usually measured with

misadjustment, tracking capability and convergence speed.

Voice activity detection can be also used for speech enhancement purposes. In such

applications, algorithm is adapted with a great step size parameter when there exists

no speech but only background noise. Then, when speech begins, step-size of the

adaptive filter is selected as a much lower value.

Field programmable gate arrays (FPGAs) and digital signal processors (DSPs) are

used for adaptive filter implementations. However, DSPs are more commonly used.

There are two types of digital signal processors, i.e. floating point digital signal pro-

cessors and fixed point digital signal processors. Adaptive filters are implemented

on both of these DSP types. Although the performance of floating point DSPs in

arithmetic applications is higher and their ease of development is greater, their higher

power consumption and higher prices leave them behind the fixed point digital sig-

nal processors in portable devices where power consumption has a great importance.
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Therefore, mostly fixed point DSPs are preferred in industry. However, if neither

power consumption nor money is a concern, then floating point digital signal pro-

cessors can be used. In this thesis, adaptive filters are implemented in a fixed point

DSP.

Implementation of adaptive filters on a fixed point hardware may suffer from negative

impact called as slowdown phenomenon [9]. Because of this slowdown phenomenon,

algorithm may stop before it goes to the optimal solution due to the dynamic range of

least significant digit (LSD) of the fixed point digital signal processor. Precision also

has an important effect on DSP implementation. Complexities of weight adaptation

algorithms have a great importance in real time implementations since sources of DSP

is limited. These factors are studied in this paper.

1.1 Purpose of This Study

The main motivation in this study is to design an effective two channel adaptive

speech enhancement method on MATLAB simulation platform and then implement

this method on the TMS320C5505 fixed point DSP. The theory of wiener filtering is

examined and SAD and Widrow’s LS method are studied. Moreover, speech enhance-

ment algorithms are performed on MATLAB by using LMS, NLMS and sign LMS

weight adaptation algorithms. These algorithms are compared according to their SNR

values, computational complexity, filter sizes and step sizes. Fixed point solutions for

these algorithms are studied and they are implemented on C5505 EZDSP USB STICK

development kit of Texas Instruments. The performances of implemented filters are

evaluated for their effects on speech intelligibility by subjective listening tests. Prob-

lems of the fixed point algorithms comparing to floating point are also studied.

1.2 Outline of This Study

In Chapter 2, theoretical background of Wiener filter and adaptive filters are given.

Speech enhancement problem is examined in detail in Chapter 3. Hardware and soft-

ware specifications are described in Chapter 4. In Chapter 5, effects of the fixed point

3



DSP selection on implemented adaptive algorithms compared to floating one and the-

oretical and practical complexities of adaptive algorithms are studied. In Chapter

6, MATLAB simulations of adaptive algorithms are given. In Chapter 7, subjective

performance evaluation of implemented adaptive filters is given.
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CHAPTER 2

BACKGROUND

In this chapter, theoretical background on Wiener filter, LMS, NLMS and sign modi-

fied LMS algorithms are given.

2.1 Wiener Filter

Wiener filter is a linear filter which would produce the optimum estimate of a signal

in the MSE sense from a noisy measurement by using a noise free reference signal.

The discrete form of the Wiener filtering problem is given in Figure 2.1.

Figure 2.1: Block Diagram of Wiener Filter

x(n): input signal
d(n): desired signal

y(n): filter output signal
e(n): error signal

where
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x(n) = d(n) + v(n) (2.1)

However, Wiener filter requires some priori statistical information and some assump-

tions. It is assumed that x(n) and d(n) are jointly wide-sense stationary signals with

known autocorrelation Rx(k) and known cross-correlation Rdx(k). It is also assumed

that desired signal d(n) and noise signal v(n) are uncorrelated. The main purpose of

Wiener filter is to estimate the desired signal d(n) from noisy observations i.e. x(n).

Assuming W(z) represents a transversal filter of length p, filter output y(n) which is

the convolution of w(n) with x(n) is given as

y(n) =

p−1∑
l=0

wl(n)x(n − l) (2.2)

Error signal is defined as

e(n) = d(n) − y(n) (2.3)

Wiener filter is designed to filter the input signal x(n) in order to produce the minimum

mean square error (MSE) estimate, y(n). The cost function of wiener filter is defined

as

ξ = J(n) = E{|e(n)|2} = E{|d(n) − y(n)|2} (2.4)

In order to minimize ξ, it is necessary and sufficient that derivative of ξ with respect

to wk is equal to zero for k = 0, 1, ..., p − 1

∂ξ

∂wk
= E{e(n)

∂e(n)
∂wk
} = 0 (2.5)

Since d(n) is independent of wk,

∂e(n)
∂wk

= −
∂y(n)
∂wk

= x(n − k) (2.6)

Then, from (2.5) and from (2.6) error and input should be orthogonal

E{e(n)x(n − k)} = 0; k = 0, 1, ..., p − 1 (2.7)
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This equation is known as orthogonality principle. Substituting (2.3) into (2.7)

E{d(n)x(n − k)} −
p−1∑
l=0

wlE{x(n − l)x(n − k)} = 0 (2.8)

Since x(n) and d(n) are jointly WSS then,

E{x(n − l)x(n − k)} = Rx(k − l) (2.9)

E{d(n)x(n − k)} = Rdx(k) (2.10)

Substituting (2.9) and (2.10) into (2.8)
p−1∑
l=0

wlRx(k − l) = Rdx(k); k = 0, 1, ..., p − 1 (2.11)

is held. Matrix representation of (2.11) is shown as

Rxw = Rdx (2.12)

where Rx is a Hermitian Toeplitz matrix of autocorrelations of input signal x(n), w is

the vector of filter coefficients solution to the Wiener-Hopf equations, and Rdx is the

cross-correlation between desired signal d(n) and the input signal x(n).

2.2 Least Mean Square

The Wiener-Hopf equation given in the previous section shows that optimum filter

coeeficients of Wiener filter can be obtained if some statistics about signals are known

and signals are stationary. However, in practical applications, these true statistics are

not known. Moreover, autocorrelation and cross correlation terms vary with time.

Therefore, in real time applications instead of these true statistics, some estimated

values are needed to be used. In addition, in order to deal with nonstationary signals,

filter coefficients should be time varying. In this part, one of the most commonly

used and well known adaptation method, LMS algorithm [6] will be investigated.

LMS algorithm is a stochastic gradient approximation that is widely used. In LMS,

the weight vector adaptation is given as

w(n + 1) = w(n) + µE{e(n)x(n)} (2.13)
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As mentioned above, in practical applications, this E{e(n)x(n)} term is generally un-

known. Therefore, in LMS, instead of minimizing the square of error signal E{e2(n)},

e2(n) is minimized. Hence, cost function is selected as

ξ = J(n) = e2(n) (2.14)

Then, weight vector update in equation (2.13) changes for LMS as

w(n + 1) = w(n) + µe(n)x(n) (2.15)

Like the wiener filter (2.3), error signal in LMS is defined as

e(n) = d(n) − y(n) (2.16)

Where y(n) is convolution of filter coefficients with the input signal, x(n)

y(n) = w(n)T x(n) (2.17)

LMS algorithm converges in mean if [11]

0 < µ < 2/λmax (2.18)

Where λmax corresponds to the largest eigenvalue of input correlation matrix Rx. λmax

can be approximated by the trace of input autocorrelation matrix. Therefore, bound

in (2.18) can be narrowed as

0 < µ < 2/tr{Rx} (2.19)

2.3 Normalized Least Mean Square

In normalized LMS, the gradient step size is normalized by the energy of data vector.

NLMS weight update function is defined as

w(n + 1) = w(n) + β
x(n)
||x(n)||2

e(n) (2.20)
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Where β is normalized LMS step size with

0 < β < 2 (2.21)

for the convergence.

In the LMS algorithm, weight update is proportional to input vector x(n). When x(n)

is large, LMS algorithm faces with a problem called as gradient noise amplification.

In NLMS, by dividing weight update by ‖x(n)‖2, this noise amplification problem is

solved.

However, now NLMS has an opposite problem that is, when x(n) is too small, division

by a very small number problem might be seen. Therefore, (2.20) is modified as

w(n + 1) = w(n) + β
x(n)

c + ‖x(n)‖2
e(n) (2.22)

Where c is a very small value added in order to avoid from the possibility of zero

division when input x(n) has a very small value.

2.4 Sign Least Mean Square

Sign modified LMS algorithms are proposed in order to reduce the computational

complexity of LMS. Sign-LMS algorithm replaces the multiplication of error signal

e(n) and input signal x(n) in weight update algorithm (2.15) with the sign operator

to either error e(n), input x(n) or both error and input. Weight update equation for

sign-error algorithm becomes

w(n + 1) = w(n) + µsgn{e(n)}x(n) (2.23)

where

1 i f e(n) > 0

sgn{e(n)} = 0 i f e(n) = 0

−1 i f e(n) < 0

(2.24)

Weight update equation for sign-input algorithm is defined as

w(n + 1) = w(n) + µe(n)sgn{x(n)} (2.25)
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and weight update equation for sign-sign algorithm becomes

w(n + 1) = w(n) + µsgn{e(n)}sgn{x(n)} (2.26)
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CHAPTER 3

SPEECH ENHANCEMENT PROBLEM

In this section, speech enhancement problem and two models for the solution of this

problem, symmetric adaptive decorrelation (SAD) and Widrow’s least square (LS)

will be presented. Moreover, difficulties of speech enhancement such as signal leak-

age into the reference microphone, minimum phase problem, uncorrelated signals

between microphones and reverberation will be examined.

Figure 3.1: Two Channel Speech Enhancement

H11 : acoustic trans f er path o f speech signal on primary microphone

H12 : acoustic trans f er path o f speech signal on secondary microphone

H21 : acoustic trans f er path o f noise signal on primary microphone

H22 : acoustic trans f er path o f noise signal on secondary microphone

The general picture of the speech enhancement for two channel case is given in Figure

3.1. In the first part of Figure 3.1, transfer function of each channel H11(z), H22(z)

and cross coupling effects H12(z), H21(z) are shown. The main purpose is to put an

algorithm into the blank box in order to get a noise free output signal ŝ1 which is close
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to the speech signal s1 by using input signals y1 and y2, picked up from microphones.

In this chapter, signal separation by decorrelation and Widrow’s least square speech

enhancement methods are examined.

3.1 Widrow’s Least Square Model [6]

Figure 3.2: Least Square with Noise Alone

In Figure 3.2, least square noise cancellation when speech source is not available is

shown. In this simplified case, transfer function representing acoustic path between

two microphones is

H(z) = H−1
22 (z)H21(z) (3.1)

However, inverse matrix problem exists in this very simple case. In other words, if

H22(z) is nonminimum phase, H(z) will not be available.
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Figure 3.3: Widrow’s Least Square Speech Enhancement

In Figure 3.3, Widrow’s typical least square speech enhancement model is shown.

Signal leakage from speech source into the reference microphone is assumed to be

equal to zero that is

H12(z) = 0 , ∀z (3.2)

In practical applications, microphones are positioned in such a way that reference mi-

crophone picks up noise signal only while primary microphone picks up both noise

and speech signals [11]. Moreover, it is also assumed that H11 is unitary transform.

If such a perfect condition is met i.e secondary microphone picks up noise only,

H(z) = H−1
22 (z)H21(z) still holds matrix inversion problem. While setting up micro-

phones for practical applications in order to minimize speech leakage in the reference

microphone, one may think to have a distance between two microphones by putting

the first microphone next to the mouth whereas putting the second one away from it.

However, this might lead to an increase in the distance between microphones.

On the other hand, the application of small separation between two microphones may

give favorable effects that significantly reduce filter length required for noise can-

cellation and minimize the presence of reverberation [12]. Moreover, coherence of

noise between two microphones is also very important for noise cancellation. If the

distance between two microphones is decreased, the coherence will be increased,

however, signal leakage from speech source into the reference microphone will be

13



also increased.

In Figure 3.2, a case when speech signal does not exist and only noise signal is avail-

able is given. In this case desired signal becomes

d(n) = H21(z){n(n)} (3.3)

input signal becomes

x(n) = H22(z){n(n)} (3.4)

Then, error signal can be measured as

e(n) = d(n) − y(n) = d(n) − H(z){x(n)} (3.5)

If we put (3.3) and (3.4) into (3.5), error signal becomes

e(n) = {H21(z) − H(z)H22(z)}n(n) (3.6)

and noise is cancelled if H(z) = H21(z)H−1
22 (z) as it was estimated before.

If speech is also available, like given in Figure 3.3, then desired signal becomes

d(n) = H21(z){n(n)} + H11(z){s(n)} (3.7)

and input signal becomes

x(n) = H22(z){n(n)} + H12(z){s(n)} (3.8)

Then, error signal can be measured as

e(n) = d(n) − y(n) = d(n) − H(z){x(n)} (3.9)

In this case, because of the leakage from speech signal into the reference microphone

which is symbolized by H12 in Figure 3.1, H(z) = H21(z)H−1
22 (z) cannot be found

by Widrow’s least square method although if it is assumed that H22(z) is minimum

phased.

14



Voice activity detection (VAD) is a method that is widely used in order to cope up

with this situation. To explain better, when there is no speech activity, the adaptive

filter works and sets some filter coefficients. When speech begins, the adaptation stops

or continues with a smaller step-size. In that way, H(z) = H21(z)H−1
22 (z) is assumed

to be found correctly. However, since acoustic paths are not fixed that is signals are

nonstationary, for the exposure of long speech signals, this system does not work

well.

If it is assumed that H(z) = H21(z)H−1
22 (z) is found with the help of VAD. If we put

this H(z) into (3.9), error signal becomes

e(n) = {H11(z) − H21(z)H−1
22 (z)H12(z)}s(n) (3.10)

In this equation, it is clear that noise can be completely cancelled however there is

a distortion over the speech signal. This distortion will be decreased if H11(z) and

H12(z) are unitary transforms.

One of the suggested methods to solve this problem is to place microphones in such

a position that speech is delivered in equal distance to both microphones[15]. If this

distance is kept small enough by placing microphones close enough to the mouth,

making an assumption such as H11 = H12 = 1 will be meaningful. In that case, it is

assumed that H21 and H22 are not equal to each other. This means that noise is never

be directly in front of or behind the microphones. However, in practical applications

H21(z) = H22(z) is very likely to occur. Therefore, this is not a practical method.

3.2 Symmetric Adaptive Decorrelation Model

In [7], a signal separation model and its modification for speech enhancement are

presented. In this approach, unlike Widrow’s least square model, signal leakage from

speech source into the reference microphone is also considered. Feedback symmet-

ric adaptive decorrelation approach is given in Figure 3.4. For the simplicity, it is

assumed that H11 and H22 are unitary transformations.

The observed signals y1(t) and y2(t) are the outputs of a 2 x 2 LTI system with inputs
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s1(t) and s2(t) where frequency response H(w) is

H(w) =

 1 H12(w)

H21(w) 1

 (3.11)

It is also assumed that

1 − H12(w)H21(w) , 0 , ∀w (3.12)

If this assumption is not satisfied then H(w) will not be invertible and input signals

can not be recovered. In [7], it is also assumed that input signals s1(t) and s2(t) are

statistically uncorrelated WSS random processes with zero mean.

E{s1(t)sT
2 (t − τ)} = 0 , ∀τ (3.13)

If H12 and H21 were known, input signals can be recovered. However, in practical

applications, these transformations are not known. In [7], the main purpose is to find

the estimates Ĥ12 and Ĥ21 of H12 and H21 in order to find statistically uncorrelated

estimated input signals by inverse filtering as shown in Figure 3.4.

E{ŝ1(t)ŝT
2 (t − τ)} = 0 , ∀τ (3.14)

Figure 3.4: Symmetric Adaptive Decorrelation

Frequency response between input signals y1(t) and y2(t) and output signals ŝ1(t) and

ŝ2(t) is given as

Ĥ−1(w) =
1

1 − Ĥ12(w)Ĥ21(w)

 1 −Ĥ12(w)

−Ĥ21(w) 1

 (3.15)
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where it is assumed that Ĥ(w) is invertible

1 − Ĥ12(w)Ĥ21(w) , 0 , ∀w (3.16)

By using the power spectra between inputs and outputs of LTI system

Pŝ1 ŝ1(w) Pŝ1 ŝ2(w)

Pŝ2 ŝ1(w) Pŝ2 ŝ2(w)

 =
1

|1 − Ĥ12(w)Ĥ21(w)|2

 1 −Ĥ12(w)

−Ĥ21(w) 1

Pŷ1ŷ1(w) Pŷ1ŷ2(w)

Pŷ2ŷ1(w) Pŷ2ŷ2(w)


 1 −ĤT

21(w)

−ĤT
12(w) 1


(3.17)

By using the decorrelation condition in (3.14) and (3.17), (3.18) is hold.

Py1y2(w) − Ĥ12(w)Py2y2(w) − ĤT
21(w)Py1y1(w) + Ĥ12(w)ĤT

21(w)Py2y1(w) = 0 (3.18)

Then Ĥ12 becomes

Ĥ12(w) =
Py1y2(w) − ĤT

21(w)Py1y1(w)

Py2y2(w) − ĤT
21(w)Py2y1(w)

(3.19)

It is clear that this equation does not hold a unique solution. If cross coupling from

speech source into the reference microphone Ĥ21 is chosen as 0, (3.19) becomes

Ĥ12(w) =
Py1y2(w)
Py2y2(w)

(3.20)

This solution is exactly equal to Widrow’s LMS solution [6]. This solution is one of

many solutions of the decorrelation equation. Although this solution gives sufficient

results in many situations, its performance decreases when zero coupling assumption

is not satisfied. In order to measure performance, the ratio of power spectrum of

the desired signal to the power spectrum of the interference signal is used. Signal

estimates ŝ1(t) and ŝ2(t) are the outputs of the 2 x 2 system with inputs ŝ1(t) and ŝ2(t)
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and frequency response

H(w)Ĥ−1(w) =
1

1 − Ĥ12(w)Ĥ21(w)

1 − Ĥ12(w)H21(w) Ĥ12(w) − H12(w)

H21(w) − Ĥ21(w) 1 − H12(w)Ĥ21(w)

 (3.21)

Signal to interference ratio in the first sensor is

S/I =
|1 − Ĥ12(w)H21(w)|2Ps1 s1(w)

|Ĥ12(w) − H12(w)|2Ps2 s2(w)
(3.22)

Where the interference is the signal component involving ŝ2(t). In Widrow’s method,

signal to interference ratio is

S/I =
1

|H21(w)|2
Ps2 s2(w)
Ps1 s1(w)

(3.23)

In LS method, it is assumed that H12 is equal to zero. Therefore, no processing is

applied to the reference signal. Hence, signal to interference ratio is limited by the

interference to signal ratio at the reference microphone. However, in the decorrelation

approach, higher S/I ratios can be hold by finding close estimate of H12. As mentioned

before, H11 is assumed to be unitary transform. It can not be distinguished by using

neither decorrelation nor least square approach, however, it can be made close to unity

by placing microphones appropriately.

In Figure 3.5, feedforward SAD algorithm is shown. LMS, NLMS and sign LMS

algorithms mentioned in Chapter 2 can be used for the weight adaptation of SAD.

NLMS based SAD will be examined here.

Figure 3.5: Symmetic Adaptive Decorrelation
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NLMS weight update equation for SAD becomes

w1(n + 1) = w1(n) +
µ1

c + ‖e2(n)‖2
e1(n)e2(n)

w2(n + 1) = w2(n) +
µ2

c + ‖e1(n)‖2
e2(n)e1(n)

(3.24)

where

0 < µ1 < 2

0 < µ2 < 2
(3.25)

and error signals are defined as

e1(n) = y1(n) − e2(n)w1(n)

e2(n) = y2(n) − e2(n)w2(n)
(3.26)

19



20



CHAPTER 4

HARDWARE COMPONENTS AND SOFTWARE

SPECIFICATIONS

As a hardware development tool, C5505 EZDSP USB STICK development kit of

Texas Instruments is used. Two main hardwares on this platform are TMS320C5505

low power fixed point DSP and TLV320AIC3204 stereo audio codec. Code Com-

poser Studio V5.4.0 is used as a code compiler tool in order to develop the software.

The configuration of TMS320C5505 DSP is done by setting its central processing

unit (CPU) registers and peripheral registers. For instance, CPU clock is set by CPU

registers whereas Inter-Integrated Circuit (I2C) [22] and Integrated Interchip Sound

(I2S) [20] protocols used between DSP and codec are set by peripheral registers. The

detailed description of TMS320C5505 DSP, its registers and settings are given in

Appendix A.

Similarly, all configurations of TLV320AIC3204 audio codec are set through its reg-

isters [21]. The control data is transferred between DSP and audio codec through I2C

serial interface in order to set the registers of the audio codec. With this control in-

terface, sampling rate, clock rates, ADC, DAC gains, microphone and speaker gains,

input and output line switching, I2S data format, etc. are set. The audio data is trans-

ferred between DSP and audio codec via I2S bus protocol. The detailed description

of TLV320AIC3204 audio codec, its registers and settings are given in Appendix B.

The sampling rate of the audio codec is configured as 8 kHz. If it is chosen higher,

time that algorithm spends will be also proportionally higher. Since the primary con-

sideration in this thesis is human speech signal which is usually below 4 kHz, 8 kHz
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sampling rate is chosen. In addition, resolution of the codec is chosen as 16 bit since

higher resolutions will increase the computational complexity. The codec has two

ADCs and two DACs. ADCs are used in order to convert analog signals coming from

selected input line into digital ones. Similarly, DACs are used to sample digital sig-

nals into analog ones, and then these signals are passed through selected line outputs

of codec.

The input RTC oscillator crystal clock in DSP is 32.768 kHz. With the help of a

PLL unit, this frequency is increased to 120 MHz. In other words, one clock cycle

is 0.0083 microseconds (1/120 MHz). As mentioned before, the sampling rate of the

audio codec is configured as 8 kHz. In other words, new audio data will come in

every 0.125 milliseconds. Theoretically, maximum 125/0.0083 = 15060 clock cycle

length algorithm can be run on DSP with these configurations. However, there are

other tradeoffs such as time spent in the entry and exit of interrupts.

For reading data from codec and writing data to codec, two interrupts or one single

interrupt can be used. When two interrupts are used, one of them is used for reading

data from audio codec i.e. RINT and other one is used to write data to audio codec i.e.

XINT. In such implementations, timing management within the interrupt subroutines

will be hard. Therefore, one must be very careful about time spent in RINT and XINT

interrupts. Moreover, time spent in the entry and exit of interrupts will also increase.

However, it has an advantage of dividing the work load in the interrupt subroutine.

It is not preffered to have long time consuming algorithm in single interrupt in multi

task projects. However, in this project since only one task, adaptive filtering, is run, a

single interrupt i.e. RINT is used.

Two different inputs are needed for adaptive algorithms used in this thesis. Hence,

both ADCs of audio codec are used. Basically, in every 0.125 milliseconds two dif-

ferent analog inputs (noisy signal and noise reference signal) are sampled into 16

bit signed digital signals on the ADCs. These digitalized signals are given to DSP

through I2S bus protocol with an I2S software interrupt. In this interrupt, adaptive

algorithm is performed with these two signals. Then, adaptive filter output and noisy

input signals are given back to the audio codec through I2S. These 16 bit signed digi-

tal signals are sampled to analog ones on different DACs and they are passed through
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separate audio lines to the speaker jack of the board. Finally, these signals can be

played through speakers connected to this jack. The block diagram of the physical

relation between the ADC and DAC of audio codec and DSP is given in 4.1.

Figure 4.1: Physical Interfaces Between Codec and DSP

The general software block diagram of adaptive algorithms implemented on DSP is

given in Figure 4.2.
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Figure 4.2: Software Block Diagram of Adaptive Filters on DSP

Firstly, DSP is initialized and its CPU and peripheral registers are set in order to

configure clock rate, I2C, I2S and interrupts. Then, codec is initialized and its config-

urations such as sampling rate, ADC and DAC gains, selected lines for microphones

and speakers, etc are done. After that, coefficients of adaptive filter are cleared. Fi-

nally, I2S interrupt is enabled and speech enhancement algorithm begins running in

interrupt subroutine.

As mentioned before, in every 0.125 milliseconds, interrupt subroutine is called. Ev-

ery entry and exit of this interrupt also spends some time, i.e. clock cycles. In order

to decrease the time spent in these entries and exits, the feature of I2S protocol which

is called as packed mode is enabled. With this mode, instead of every 0.125 mil-
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liseconds, in every 0.250 milliseconds the interrupt subroutine is called with double

number of data. With the help of this feature, time spent in the entry and exit of inter-

rupt subroutine is decreased. To explain better, instead of running adaptive algorithm

once in every 0.125 milliseconds, it is called twice in every 0.250 milliseconds. In

other words, instead of entering the interrupt subroutine twice, it is entered once in

every 0.250 milliseconds.

TMS320C5505 DSP has four 40 bit accumulators [23]. Accumulators consist of 16

high order bits, 16 low order bits and 8 guard bits. These guard bits are used in

order to prevent overflow in multiplications. In this study, adaptive filters are com-

pletely implemented in assembly because of the high computational needs. LMS

assembly command of TMS320C5505 is used in order to perform LMS based weight

adaptations [19]. The usage of accumulators, precision and complexities of weight

adaptation algorithms will be examined in detail in the next chapter.
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CHAPTER 5

FIXED POINT LIMITATIONS AND ALGORITHM

COMPLEXITIES

In this chapter, theoretical and practical complexities of LMS, NLMS and sign LMS

algorithms are examined. Digital errors, slowdown phenomenon and precision are

studied.

5.1 Complexities of Adaptive Algorithms

In Table 5.1, theoretical complexities of sign error LMS, LMS and NLMS weight

adaptation algorithms are given in terms of additions, multiplications and divisions.

However, these complexities depend on the implemented hardware environment. There-

fore, these theoretical complexities changes in practical applications. As mentioned

before, in this study, TMS320C5505DSP is used and effect of this DSP on computa-

tional complexities are discussed in this section.

Table5.1: Theoretical Complexities of Adaptive Weight Algorithms

aaaaaaaaaaaaaa
Algorithm Type

Operation Type

Multiplication Addition Division Sign

LMS 2N+1 2N
SE-LMS 2N 2N 1
NLMS 3N+1 3N 1

N : length of filter

27



The transversal FIR filter structure is used in implementations. This type of filter

structures require the use of a delay line of input samples x(n). The samples x(n),

x(n-1), . . . , x(n-N+1) are needed to be stored in data memory. They are stored in a

circular buffer in reverse order. Similarly, filter weight coefficients w0,w1, . . . ,wN−1

are stored in a circular data memory buffer in forward order. Since TI 55x DSP

structure can access two different data memory address in one cycle, there is no need

to store one of these variables in program memory. By using two inputs, the input

sample x(n) and filter weight coefficients w(n), filter output y(n) is calculated (2.17).

y(n) = w(n)T x(n) (5.1)

Then, filter taps are updated according to the equation

wi(n + 1) = wi(n) + weightupdate (5.2)

(5.1) and (5.2) are same for all adaptive filters mentioned in this study. In TMS320C5-

505, these two operations (5.1) and (5.2) are performed in one clock cycle by using

LMS instruction. The main differences between complexities of algorithms are due

to the measurement of the weight update equation.

Let’s remember the weight update equation of LMS algorithm (2.15)

w(n + 1) = w(n) + µe(n)x(n) (5.3)

Multiplication of input signal x(n) with the error signal e(n) is measured in one clock

cycle. One more clock cycle is needed to multiply the result with step size, µ. Another

clock cycle is needed in order to save filter coefficients. Therefore, 4N clock cycle

work load is performed in LMS loop.

The weight update equation of NLMS algorithm is given in (2.22)

w(n + 1) = w(n) + β
x(n)

c + ‖x(n)‖2
e(n) (5.4)

The division part in this weight adaptation algorithm (5.4) has a great effect on both

computational complexity and the precision. It is a general rule in fixed point environ-

ment to do multiplication first and then do division in order to have higher precision.
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Since C5505 DSP does not have any hardware for division, divisions are performed

by using subtraction and it requires high computational load.

If x(n)/‖x(n)‖2 is firstly done, then precision will be lost since the result will be zero

for the small values of x(n). The best solution is to perform multiplication first i.e.

x(n)∗e(n), then do division. This is a general rule for division in fixed point arithmetic

in order to increase the precision. Twenty more clock cycles are needed in order to

do division. Therefore, 22N clock cycle work load is performed in NLMS loop.

Sign LMS algorithms (SE-LMS, SD-LMS, SS-LMS) are presented in order to reduce

the computational complexities of LMS algorithm by decreasing the number of mul-

tiplications. However, this approach does not have any computational benefits for

DSP implementations because sign of the error calculation does not have computa-

tional advantage over classical LMS algorithm. In fact, sometimes it might increase

the computational load. The weight update equation of SE-LMS algorithm is given

in (2.23)

w(n + 1) = w(n) + µsgn{e(n)}x(n) (5.5)

For the sign checking, six clock cycles are needed. In SE-LMS algorithm sign of

error is calculated only once outside the loop. Therefore, similar to LMS algorithm,

4N clock cycle work load is performed in SE-LMS loop. However, in SD-LMS algo-

rithm, sign of error is calculated inside the loop. Therefore, complexity of SD-LMS

increases compared to LMS. Six more clock cycles are needed in order to do sign

checking. Therefore, 10N clock cycle work load is performed in SD-LMS loop.

The complexities of these weight adaptation methods linearly depend on filter length.

Complexity of Widrow’s LS method is half of that of SAD algorithm for every case

since LS method updates one channel where SAD method updates two channels.

5.2 Slowdown Phenomenon and Digital Errors

Weight update equation for LMS is given in [6]

w(k + 1) = w(k) + 2µe(k)x(k) (5.6)
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Magnitude of adaptation term in (5.6) can never be smaller than LSD. When 2µe[k]x[k]

is smaller than LSD, adaptation of the filter stops for that coefficient.

|2µek0 xk0 − p| < LS D (5.7)

This phenomenon in (5.7) is called as digital termination [10]. Rms value of |xk0 | can

be written as

Xrms = σ2
x + m2

x (5.8)

As an approximation in (5.7), |xk0 | is replaced with its rms value given in (5.8). Then,

(5.7) becomes

|ek0 | <
LS D

2µXrms

∆
= ed(µ) (5.9)

where ed(µ) is defined as digital residual error (DRE). (5.9) clearly shows than DRE

is inversely proportional to step size. On the contrary, for floating point i.e high

precision case, error is reduced by decreasing step size. If the stopping phenomenon

does not exist and only source of error is the quantization of coefficients, quantization

error QE can be defined as

QE = E{(yk − ŷk)2} (5.10)

From (5.10), it is clear that QE decreases when the filter length gets larger whereas

DRE is decreasing with the increasing step size values. In the floating point case,

decreasing step size minimizes the mean square error. Therefore, while chosing time

varying step sizes, it is reasonable to select an algorithm which decreases step size

within time in floating point case. For the fixed point case, DRE is inversely pro-

portional to µ whereas steady state error increases with µ. Therefore, this optimal

strategy for the floating point case is not suitable for the fixed point case. In [13], it is

shown that this phenomenon does not stop adaptation as previously believed, but in-

stead severely reduces the convergence rate. Thus, instead of stopping phenomenon,

slowdown phenomenon exists. [9] examines slowdown phenomenon in detail. It is

shown that steady state MSE is determined mostly by the data bits length and for

smaller values of step size, effect of the slowdown phenomenon can be decreased by

using more coefficients bits [9].
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5.3 Fixed Point Precision

Multiplication of 16 bit signed integers is realized in all of the implemented filters. In

DSP 40 bit accumulators are used in order to this multiplication. 16 high order bits

are selected for the result in order to prevent overflow. However, underflow condition

might occur in this case. To explain better, if two small 16 bit signed integers are

multiplied, the result will be in the low order 16 bits of the accumulator and high order

bits will be zero. When these high order bits are picked for the result, underflow will

occur which is not a case in the high precision floating point simulations. Therefore,

performance of the adaptive filters in fixed point case will depend on these selections.

Let’s remember the error equation defined in (2.3)

e(n) = d(n) − y(n) (5.11)

In order to get this error signal in fixed point implementations, 16 bit filter output

signal y(n) is extracted from 16 bit desired signal. In order to prevent the overflow,

this process performed on the 40 bit accumulator and the result is shifted to the right

one bit (5.12) and low order 16 bits are selected for result.

ê(n) = e(n) >> 1 (5.12)

Because of this one bit shift called as se, it is expected to have an output signal having

smaller amplitude compared to desired signal.

Now, let’s remember the filter update equation of the LMS algorithm given in (2.15)

w(n + 1) = w(n) + µe(n)x(n) (5.13)

First of all, in order to decrease the clock cycle used by the algorithms, µ is always

selected as powers of 2. By selecting the µ as powers of 2, the multiplications can be

performed as right shifts which is less complex in the practical implementations. The

multiplication of error signal and input signal is performed on a 40 bit accumulator.

Now, let’s remember the filter convolution equation of LMS algorithm given in (5.14)

y(n) = w(n)T x(n) (5.14)
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These multiplication and addition series are also performed on a 40 bit accumulator.

Then, high order 16 bits of the accumulator are taken in order to prevent overflow and

get more precision. If there were not any guard bits, this scaling should be performed

before the multiplication and the precision will be lost. Thanks to 8 guard bits of

the accumulator, higher precision can be achieved. When DSP settings for overflow

is set by SATD, then number in the accumulator will be set to maximum positive

number if the result is positive and it will be equal to minimum negative number if

the result is negative in the occurrence of overflow. To explain better, with additions

of positive numbers, negative numbers will not be held as a result. Bit length equation

of convolution of filter coefficients with input can be given as

by = log2(p) + bx + bw (5.15)

where

bw : bit length o f the input

bw : bit length o f the f ilter coe f f icient

by : bit length o f the output

p : f ilter length

Therefore, it is safe to say that no overflow will occur although a filter with 256 taps

is selected in 40 bit accumulators. In addition, when shorter filter length is selected

it will be more precise to select lower bits. In other words, it will cause loss in

the computation of the precision if the high order 16 bit is always chosen although

it is guaranteed that higher order two bits will be always zero. Therefore, shifting

symbolized by sy is performed in the convolution process.

ŷ(n) = y(n) >> sy (5.16)

When we put (5.16) and (5.14) into (5.12), we get

ê(n) = (d(n) − [wT (n)x(n)]2sy)2se (5.17)

when we put (5.17) into weight update equation (2.15)

w(n + 1) = w(n) + µ[x(n)[d(n) − [w(n)xT (n)]2sy]2se] (5.18)
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with further calculation (5.18) becomes

w(n + 1) = w(n) + µ2sy2se[[x(n)d(n)2s−y] − [w(n)x(n)xT (n)]] (5.19)

As a result, 2sy2se is the difference between the floating point and fixed point step

sizes.
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CHAPTER 6

COMPUTER SIMULATIONS

There are many changing parameters in the adaptive filters, therefore, some high pre-

cision tests are performed on the computer by using MATLAB before studying in

fixed point environment. For this purpose, filter lengths, step sizes, and performances

of various adaptive algorithms will be examined. Moreover, effects of acoustic char-

acteristics of recording environments will be studied. However, it would be difficult

to compare the performance of algorithms with mathematical expressions if neither

the noise reference signal nor the original speech signal is known.

In order to do some studies in high precision MATLAB environment, there are sev-

eral estimated methods. One way to achieve this goal is to add noises artificially to

the known desired signal. In this method, audio path between microphones are sim-

ulated. However, it has a great importance to work with original recordings instead

of simulating the audio path between microphones. Therefore, this method is not

preferred.

Another method is to work on a case where no speech signal is available. In this

case, adaptive algorithms mentioned up to now will try to get rid of the noise. There-

fore, error signal e(n) will be attenuated to zero in the ideal case. Hence, in order

to understand the effect of filter sizes and step sizes of the filters on the performance

of algorithms, the attenuation value between desired signal and error signal can be

compared. This method gives a great advantage to understand the performances of

different adaptive filters with different lengths and different step sizes under various

types of real signals however; this simplified case will not simulate the case where

both speech and noise exists.
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Finally, the last method is to

• play the speech signal alone and record it in both microphones

• play the noise signal alone and record it in both microphones

• then sum noise and speech part of both microphones on MATLAB and perform the

adaptive algorithms

Comparing with other methods mentioned above, this method simulates better since

both speech and noise signals are taken into account and characteristics of the envi-

ronment where recordings are made are also taken into account.

Therefore, a test set up is constructed in order to compare the performances of adap-

tive filters. The test setup consists of two microphones, Edirol UA-1000 USB audio

capture shown in Figure 6.1, a speaker and a MATLAB code recording the data in

wave format. Sennheiser ME 104 and Sennheiser ME 64 microphones both of which

have a cardioid acoustic pick up pattern are used as primary and secondary micro-

phones respectively. Speaker is used in order to simulate the noise. Experimental

studies are done in order to decide the optimum location of the microphones and it

is experimentally seen that the location of the microphones might have significant

effects on the results. Therefore, once it is decided, the position of the microphones

does not change during the recordings.

Figure 6.1: Edirol UA-1000 USB Audio Capture
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6.1 LMS Filter Length and Step Size Experiments

In order to understand the effect of filter length and step size choices and acous-

tic characteristics of recording environments on performances of LMS based adap-

tive speech enhancement algorithms, SNR measurements are performed with various

types of noises in two different environments. The first environment is a moderate-

reverberant room with dimensions 6.5m * 2.3m * 2.5m. In Figure 6.2 and Figure 6.3,

front and back views of test setup are given. The second one is an anechoic chamber

with dimensions 0.8m * 0.8m * 2.0m. Sampling rate is chosen as 8 kHz. LMS filter

is run for 100000 samples and both input and output SNR values are measured from

last 50000 samples.

Figure 6.2: Front View of Recording Test Setup
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Figure 6.3: Back View of Recording Test Setup

6.1.1 Single 500Hz Tone Noise

In this part noise signal consists of single 500Hz sinusoidal signal. In Table 6.1 and

Table 6.2, SNR values of the output signal for two different acoustic environment are

given in dB where input SNR is equal to 0.87 dB for all cases. From both Table 6.1

and Table 6.2, it is clear that high improvement in SNR values can be achieved with

very low filter lengths. It is an expected result because of the periodicity of the noise

signal. The effect of the step size selection is also seen from this table. Approxi-

mately 13 dB increase in SNR value is held at most in the moderate-reverberant room

whereas 25dB increase is held in anechoic room. This difference clearly shows the

effect of the acoustic characteristics of environments on the performance of speech

enhancement algorithm.
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Table6.1: Output SNR (in dB) of LMS Algorithm for Single 500Hz Sinusoidal Noise
in a Moderate Reverberant Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 1.1 3.17 9.94 12.58 12.99 12.83
32 1.34 5.32 12.85 13.27 12.96 12.51
64 1.82 8.92 13,6 13.55 12.87 12.11
128 2.75 12.61 13.64 13.5 12.22 10.94
256 4.53 13.67 13.59 13.3 11.18 9.37
512 7.61 13.74 13.41 12.9 9.58 7.43

1024 11.64 13.69 12.95 12.01 7.65 5.63
2048 13.57 13.5 12.01 10.46 5.73 3.96

Table6.2: Output SNR (in dB) of LMS Algorithm for Single 500Hz Sinusoidal Noise
in an Anechoic Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 0.95 1.55 4.17 7.32 22.92 23.86
32 1.01 2.21 7.32 13.13 24.18 23.73
64 1.15 3.53 13.20 21.66 24.23 23.39
128 1.42 6.09 21.75 24.97 23.53 22.05
256 1.94 10.90 24.99 24.62 22.00 19.83
512 2.98 18.82 24.61 23.82 19.81 16.96

1024 5.02 24.73 23.83 22.52 16.95 13.57
2048 8.89 24.81 22.52 20.56 13.57 10.11

6.1.2 Multiple Tone Noise

In this part 500Hz, 1000Hz and 2000Hz tones are added and multiple tone noise is

held from their compositions.
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Table6.3: Output SNR (in dB) of LMS Algorithm for Multiple Tone Sinusoidal Noise
in a Moderate Reverberant Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 -6.06 3.07 11.14 16.39 18.01 17.26
32 -3.76 5.43 17.11 18.92 18.12 16.5
64 -0.447 9.63 20.06 20.21 17.41 14.83

128 2.35 16 20.14 19.55 15.05 11.85
256 4.52 20.02 19.82 18.37 12.08 8.4
512 7.95 20.51 18.41 16.19 8.5 4.29

1024 13.86 20.16 16.22 13.3 4.32 -0.59
2048 19.43 18.98 13.31 9.8 -0.62 diverge

Table6.4: Output SNR (in dB) of LMS Algorithm for Multiple Tone Sinusoidal Noise
in an Anechoic Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 -8.06 -4.00 9.77 17.34 18.60 18.31
32 -7.58 0.01 17.35 18.60 18.47 17.75
64 -6.65 6.84 19.00 19.13 18.08 16.52

128 -4.86 15.76 19.39 19.22 16.58 14.03
256 -1.52 19.09 19.18 18.51 14.00 10.77
512 4.21 19.34 18.50 17.14 10.77 7.39

1024 13.01 19.27 17.12 14.87 7.38 4.29
2048 18.74 18.76 14.84 11.81 4.29 1.81

In Table 6.3 and Table 6.4, SNR values of the output signal are given in dB where

input SNR is equal to -8.73 dB for all cases. Unlike the single tone case, increasing

filter lengths lead to more serious increment in the attenuation levels. However, rel-

atively small filter lengths still lead to sufficient attenuation levels. This is expected

since the stationarity of the noise signal is still reserved with a longer period. There-

fore, very small filter lengths does not lead as good results as ones of single tone case.

There is not any significant differences between SNR values of Table 6.3 and Table

6.4. Maximum approximately 28 dB increase is held in the SNR value. This is not

expected result since same algorithm increases SNR approximately 13 dB in single

tone experiment. However, it becomes clear when Fourier Transforms of the desired

signal given in Figure 6.4 is examined. The desired speech signal does not have any
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dominant component in 1000Hz and 2000Hz. However, 500Hz has a dominant effect

on this desired speech signal. Because of the correlation between noise and speech

signals, performance is degraded. However, it is also expected to see higher increase

in SNR if single 1000Hz tone was used instead of 500Hz. It is experimentally seen

that the output SNR value of single tone experiment with 1000Hz is higher than those

of both single 500Hz tone and multiple tone experiments.

Figure 6.4: Fourier Transform of Desired Signal

6.1.3 Armored Military Vehicle Noise

In Table 6.5 and Table 6.6, SNR values of the output signal are given in dB where
input SNR is equal to -5.09 dB for all cases. Comparing with the previous results, it
is clear that this recorded armored military vehicle noise is more difficult one because
of its non stationarity. In order to have a greater output SNRs, very large filter lengths
are necessary. A filter having less than 512 taps do not contribute significantly to
the output SNR. This is also an expected result because stationarity in the noise sig-
nal compared to single or multiple tone experiments is lost. Effect of the acoustic
characteristics of environments on the performance is also seen from the differences
between SNR values in Table 6.5 and Table 6.6.
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Table6.5: Output SNR (in dB) of LMS Algorithm for Nonstationary Armored Mili-
tary Vehicle Noise in a Moderate Reverberant Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 -5.04 -4.86 -4.63 -4.61 -4.6 -4.59
32 -4.97 -4.46 -4.23 -4.21 -4.2 -4.19
64 -4.91 -4.16 -3.8 -3.77 -3.76 -3.75

128 -4.86 -3.89 -3.35 -3.3 -3.26 -3.23
256 -4.77 -3.4 -2.65 -2.57 -2.49 -2.44
512 -4.65 -2.75 -1.07 -0.84 -0.77 -0.86

1024 -4.45 -1.64 1.9 2.58 1.98 1.16
2048 -4.41 -1.35 3.12 3.98 2.21 1.01

Table6.6: Output SNR (in dB) of LMS Algorithm for Nonstationary Armored Mili-
tary Vehicle Noise in an Anechoic Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 -3.99 -3.47 -3.39 -3.36 -3.22 -3.14
32 -0.37 0.24 0.29 0.27 -0.20 -0.68
64 3.94 5.28 5.32 4.67 1.73 0.53

128 5.09 6.89 6.12 4.67 0.97 -0.06
256 6.05 7.58 5.07 3.12 -0.01 diverge
512 6.12 6.40 3.01 1.44 diverge diverge

1024 5.85 4.71 1.35 0.23 diverge diverge
2048 5.36 2.87 0.08 diverge diverge diverge

6.1.4 Tank Noise

In Table 6.7 and Table 6.8 SNR values of the output signal are given in dB where input

SNR is equal to -3.39 dB for all cases. Similar to the armored military vehicle noise,

a filter having less than 512 taps do not contribute significantly to the attenuation

value. Therefore, in order to the have a successful result, larger filter taps should be

used in the implementations. Effect of the acoustic characteristics of rooms on the

performance is also seen from the differences between SNR values in Table 6.7 and

Table 6.8.
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Table6.7: Output SNR (in dB) of LMS Algorithm for Nonstationary Tank Noise in a
Moderate Reverberant Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 -3.34 -3.02 -2.63 -2.58 -3.39 -2.51
32 -3.29 -2.65 -2.13 -2.07 -2.53 -2.02
64 -3.2 -2.14 -1.36 -1.28 -2.03 -1.19
128 -3.03 -1.18 -0.23 0.1 0.01 0.02
256 -2.74 -0.12 1.21 1.55 1.82 1.77
512 -2.31 0.6 2.33 2.89 3.31 3.09

1024 -1.75 1.1 4.04 5.17 5.58 4.66
2048 -1.23 1.31 4.61 5.86 5.37 3.74

Table6.8: Output SNR (in dB) of LMS Algorithm for Nonstationary Tank Noise in
an Anechoic Room

aaaaaaaaaa
Filter Length

Step Size
0.0001 0.001 0.005 0.01 0.05 0.1

16 -1.10 -0.44 -0.36 -0.36 -0.49 -1.01
32 2.35 4.22 4.41 4.32 3.32 -0.66
64 4.77 8.02 8.81 8.29 4.76 2.37
128 4.73 9.25 10.07 8.58 3.30 2.75
256 4.64 9.01 8.19 6.26 1.38 1.24
512 4.42 8.30 6.23 4.14 diverge diverge

1024 4.37 7.31 3.88 1.93 diverge diverge
2048 4.21 5.74 1.75 0.11 diverge diverge

From Table 6.1, Table 6.3, Table 6.5 and Table 6.7, it is clearly seen that LMS filter

with larger tap is necessary in order to deal with nonstationary signals. Selection of

the step size also has a great importance. A step size giving good results for one

noise could give insufficient results for another type of noise. Moreover, it can also

diverge. This is an expected result because autocorrelation matrix of the noisy speech

signal changes with added noise. Stability of the filter according to step size depends

on the eigenvalues of the autocorrelation matrix (2.19). Moreover, in the real time

applications if there is not any prior knowledge about the environment that the algo-

rithm will work, a necessity for a time varying step size algorithm which increase the

computational load occurs. However, if this is a specific system for instance a system

for the pilot on plane cockpit, helicopter cockpit or for tank or car driver, adaptive
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algorithms with fixed step sizes should also give sufficient performance. Effect of the

acoustic characteristics of recording environment is also seen in these simulations. In

an anechoic room higher increment in SNRs can be held by filters with smaller taps

compared to ones in a reverbarent room.

6.2 Filter Performances

Performance measurements for different adaptive filter types, Widrow’s LS method

with LMS and modified LMS and SAD with NLMS are performed in this part. Adap-

tive filters are run for 100000 samples and both input and output SNR values are

measured from last 50000 samples. During all the experiments step sizes are kept

fixed. They are not the step sizes giving the maximum SNR for all cases. The perfor-

mance of these adaptive filters with fixed step sizes under different noise conditions

are tested. Only moderate-reverberant room recordings are used.

6.2.1 Single 500Hz Tone Noise

In Table 6.9, SNR values of the output signal are given in dB for various types of
filters where input SNR is equal to 0.87 dB for all cases and noise signal is recorded
500Hz sinusoidal tone. As expected, all of the filters give high SNRs for this single
tone noise due to the stationarity of input signal.

Table6.9: Output SNR (in dB) of Adaptive Algorithms for Single 500Hz Sinusoidal
Noise

aaaaaaaaaaa
Filter Length

Filter Type
LS with

LMS
LS with
SD-LMS

LS with
SE-LMS

LS with
SS-LMS

LS with
NLMS

SAD with
NLMS

16 12.58 13.05 13.1 13.1 12.58 9.74
32 13.27 13.13 13.38 13.3 13.27 12.56
64 13.55 13.16 13.63 13.34 13.57 12.31

128 13.5 12.67 13.59 12.98 13.5 11.27
256 13.3 11.76 13.46 12.38 13.3 9.74
512 12.9 10.31 13.3 11.32 12.91 7.67

1024 12.01 8.37 12.8 9.73 12.03 5.76
2048 10.46 6.38 11.64 7.77 10.51 4.1
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6.2.2 Multiple Tone Noise

In Table 6.10, SNR values of the output signal are given in dB for various types of

filters where input SNR is equal to -8.73 dB for all cases and noise signal is recorded

multi tone noise consists of 500Hz, 1000Hz and 2000Hz sinusoidal tones. As ex-

pected, all of the filters give successful results for this multiple tone noise. Figure

6.5 shows the noisy input signal, LMS based LS filter output signal for 2048 taps and

desired signal in time domain.

Table6.10: Output SNR (in dB) of Adaptive Algorithms for Multiple Tone Sinusoidal
Noise

aaaaaaaaaaa
Filter Length

Filter Type
LS with

LMS
LS with
SD-LMS

LS with
SE-LMS

LS with
SS-LMS

LS with
NLMS

SAD with
NLMS

16 16.39 6.49 18.15 7.96 16.38 16.61
32 18.92 11.6 19.2 15.27 18.92 16.48
64 20.21 17.91 20.21 16.08 20.21 15.0

128 19.55 19.82 19.41 12.04 19.59 12.21
256 18.37 19.42 17.92 8.02 18.51 8.69
512 16.19 17.72 15.63 3.63 16.57 4.28

1024 13.3 15.04 12.75 0.32 14.21 -0.86
2048 9.8 11.41 9.24 -5.22 11.72 diverge
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Figure 6.5: Noisy, LMS Output and Desired Signals in Time Domain
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6.2.3 Armored Military Vehicle Noise

In Table 6.11, SNR values of the output signal are given in dB for various types of

filters where input SNR is equal to -5.09 dB for all cases and noise signal is recorded

nonstationary armored vehicle noise. As expected, performance of all of the filters

degrades significantly compared to experiments performed with stationary noise sig-

nals. Figure 6.6 shows the noisy input signal, output signal of LS filter with SE-LMS

weight adaptation for different taps and desired signal in time domain for all 100000

samples. From Figure 6.6 and Table 6.11, it is clearly seen that there is a need for an

adaptive filter with larger taps in order to deal with this noise. In the implementations,

larger filters should be implemented to get a better enhancement.

Table6.11: Output SNR (in dB) of Adaptive Algorithms for Nonstationary Armored
Vehicle Noise

aaaaaaaaaaa
Filter Length

Filter Type
LS with

LMS
LS with
SD-LMS

LS with
SE-LMS

LS with
SS-LMS

LS with
NLMS

SAD with
NLMS

16 -4.61 -4.61 -4.63 -4.61 -4.61 -4.35
32 -4.21 -4.21 -4.23 -4.21 -4.21 -4.31
64 -3.77 -3.78 -3.79 -3.77 -3.77 -3.82

128 -3.3 -3.3 -3.33 -3.3 -3.3 -3.25
256 -2.57 -2.56 -2.62 -2.58 -2.57 -2.39
512 -0.84 -0.8 -0.9 -0.8 -0.84 -0.92

1024 2.58 2.52 2.7 2.83 2.75 1.1
2048 3.98 3.49 4.51 4.33 3.95 2.2
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Figure 6.6: Desired, Noisy and SE-LMS Output Signals in Time Domain
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6.2.4 Tank Noise

In Table 6.12, SNR values of the output signal are given in dB for various types of

filters where input SNR is equal to -3.39 dB for all cases and noise signal is recorded

non stationary tank noise.

Table6.12: Output SNR (in dB) of Adaptive Algorithms for Nonstationary Tank Noise

aaaaaaaaaaa
Filter Length

Filter Type
LS with

LMS
LS with
SD-LMS

LS with
SE-LMS

LS with
SS-LMS

LS with
NLMS

SAD with
NLMS

16 -2.58 -2.55 -2.62 -2.57 -2.58 -2.83
32 -2.07 -2.05 -2.1 -2.06 -2.07 -2.5
64 -1.28 -1.24 -1.32 -1.26 -1.28 -2.01

128 0.1 -0.05 -0.15 -0.07 -0.1 -0.59
256 1.55 1.69 1.5 1.69 1.55 0.93
512 2.89 3.14 2.9 3.23 2.88 0

1024 5.17 5.54 5.45 6.04 5.13 4.82
2048 5.86 5.72 6.45 6.67 5.77 3.78

Figure 6.7 shows the noisy input signal, SAD filter output signal for 2048 taps and

desired signal in time domain.

Figure 6.7: Desired, Noisy and SAD Output Signals in Time Domain

Similarly to the previous test, it is clearly seen that there is a need for an adaptive
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filter with larger taps in order to deal with real non stationary noises. Therefore, in the

implementations, larger filters should be implemented to get a better enhancement.

6.3 Performances SAD and Widrow’s LS

In this part of the thesis, SAD and Widrow’s LS methods are compared. In order to

compare the performances of LS and SAD algorithms, filter size is selected as 2048

and it is kept fixed during the experiment. Step sizes giving the highest output SNR

are used in experiments. Recorded signals are processed further in order to increase

the signal leakage. SNR of reference microphone is changed and experiments are

performed with these different SNRs. LMS weight adaptation methods are used in

both algorithms. In Table 6.13, differences between input and output SNRs of LS and

SAD methods for different NSR at reference microphone are given in dB.

Table6.13: SNR improvement of LS and SAD

LS with LMS SAD with LMS NSR at Reference

6.57 6.63 38
6.55 6.61 32
6.4 6.58 24
6.36 6.52 12
5.6 5.7 0

Performances of both SAD and LS algorithms are very close. The difference between

SNR values is less than 0.2dB. However, complexity of LS method is half of that of

SAD method since weight adaptation is performed twice in SAD method. Therefore,

LS filter having twice length of that of SAD filter can be implemented when the

complexities of algorithms are kept same. Therefore, it is seen that Widrow’s LS is

superior to SAD especially when complexity is considered. Moreover,signal leakage

is mostly prevented when microphones are placed appropriately in the test setup.
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CHAPTER 7

SUBJECTIVE LISTENING TESTS

Test setup mentioned in Chapter 6 is used in order to evaluate the performances of

implemented adaptive filters. Two different types of recordings are performed with

this setup. In the first part, noise source is played and talker also speaks and recording

is performed. In the second part, firstly recording of the talker is done. Then, record-

ing of noise is performed by keeping the setup same. These recordings are processed

with MATLAB in order to create wave format files with different SNRs.

Another test setup consists of a computer, C5505 EZDSP USB STICK development

kit and a recording device is used in order to perform speech enhancement. The com-

puter is used to play two channel wave format audio file. Line output of computer is

connected into the line input of development kit and the result is given to the recording

device through the line output of development kit.

In this chapter, performances of implemented adaptive filters are evaluated by using

these setups. The speech quality and intelligibility can be quantified using subjective

and objective measures. In this chapter, subjective speech intelligibility measures are

used. In subjective listening tests, a large number of human participants are asked to

listen to the speech voice and provide a rating of perceived quality of it in accordance

with a predetermined opinion scale. In Absolute Category Rating (ACR), the filter

output signal is rated by itself. The result is rated on a scale of 1 to 5 where 1 shows

“bad” and 5 means “excellent”. This scaling is known as the Mean Opinion Score,

MOS.

In Degradation Category Rating (DCR), the opposite version of MOS scale is pre-
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sented. Both original speech signal and enhanced filter output signal are listened and

disturbances in speech signals are rated relatively in accordance with Degradation

MOS rating scale of 1 to 5 where 1 shows “very annoying” and 5 means “inaudible.

In another approach called as Comparison Category Rating (CCR), the various fil-

ter output signals are listened and these signals are compared with each other. The

advantage of the CCR method over the DCR procedure is the possibility to assess

speech processing that either degrades or improves the quality of the speech [16].

Diagnostic Rhyme Test (DRT) is also used in order to measure the intelligibility of

speech signals. DRT is an ANSI standard for measuring speech intelligibility [17].

In DRT, listeners are given a list composed of 96 word pairs constructed from a

consonant-vowel-consonant sound and differing only in the first phoneme. Test words

are played and listeners are asked to select one of the words from given word pair.

Carrier sentences are not used.

In order to compare the performances of systems, output of adaptive filters and noisy

input signals are recorded by using the test setups mentioned above. In this part, only

real noises which are armored military vehicle noise, tank noise and helicopter noise

recorded in a moderate-reverberant room are used. Artificial noises like single tone

or multiple tones are not used since they are not the noises encountered in practical

applications. Recorded voices are listened to a group consists of ten people. Three

different tests are performed. In the first part, DRT is conducted. In the second part, a

paragraph consists of three sentences is listened and rated according to MOS. In the

third part, three different sentences are filtered with LMS, SE-LMS and NLMS. Then,

two of them are listened to a test group and listeners are asked to choose which one is

better. For the simplicity SD-LMS and SS-LMS are not implemented. SAD algorithm

is not implemented because its complexity is higher and according to the simulation

results of Chapter 6, Widrow’s LS performs better than SAD algorithm. The simula-

tion results of Chapter 6 are used in order to determine the implemented filter length.

LMS and SE-LMS algorithms are implemented with 2000 taps. Moreover, NLMS

with 400 taps is implemented. Due to the computational complexities and hardware

constraints mentioned in Chapter 3, NLMS with a filter length as long as LMS cannot

be implemented on 5505 DSP. The performances of LMS with 2000 taps, SE-LMS
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with 2000 taps and NLMS with 400 taps are compared with three different tests.

7.1 Diagnostic Rhyme Test

In Chapter 6, SNR values of algorithms are measured. However, it is known that

quality and intelligibility of speech can be degraded although SNR at filter output

gets higher. Moreover, SNR and segmental SNR cannot be measured with real data

because of the alignment. In this part, the main concern is to evaluate the intelligi-

bility of speech in Turkish language. Therefore, word list of Turkish Intelligibility

Test (TIT) developed by TÜBİTAK-UEKAE’s Acoustics laboratory is used [18]. It

is developed by considering DRT standard [17]. DRT is based on how the initial

constant is recognized properly. Similar consonants are selected. The word pair lists

include the words that can be detected false by human ear due to voicing, nasality,

sustention, sibilation, compactness and graveness effects [18]. Orders of noisy words

and processed words are mixed. During the presentation process, subjects are lis-

tened rhyming pairs with Sennheiser HD 202 headphones in a silent room. Tests are

conducted with native speakers of the Turkish language. The results of Turkish Intel-

ligibility Test is given in Figure 7.1. The overall results for different input SNR values

are given in Table 7.1.
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Figure 7.1: TIT Results

Table7.1: Overall TIT Results

Armored Vehicle Noise Tank Noise

Input
SNR

Noisy Input
Signal

LMS Output
Signal

SE-LMS
Output
Signal

Noisy Input
Signal

LMS Output
Signal

SE-LMS
Output
Signal

-15 dB 19.2 64.2 63.5 20.4 67.1 71.0
-9 dB 53.5 81.0 77.7 57.5 80.6 82.1
-3 dB 73.3 91.0 91.9 79.0 93.3 93.8
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From this table, the effect of Widrow’s LS speech enhancement method on the intel-

ligibility of speech is seen. When input SNR is -9 dB, approximately 30% increase

is seen in the number of words that are understood correctly. When input SNR is

-15 dB, the improvement in the intelligibility of speech becomes clearer. The intel-

ligibility of noisy speech signal is very low at -15dB SNR. Approximately two of

every ten words cannot be understood. The intelligibility can be increased up to 70%.

When input SNR is higher, this difference is lower since the intelligibility of noise

signal is relatively higher. However, 20% increase is seen in the number of words that

are understand correctly. Both LMS and SE-LMS weight adaptation algorithms give

similar results.

7.2 Mean Opinion Score

The average MOS of adaptive filters is shown in Table 7.2.

Table7.2: MOS Results for LMS, SE-LMS and NLMS Based Speech Enhancement
Systems

aaaaaaaaaa
Noise Type

Filter Type
Noisy Input LMS SE-LMS NLMS

Armored Military Vehicle Noise 1 3.1 3.2 1.4
Tank Noise 1 3.1 2.8 1.9

Helicopter Noise 1 2.3 2.2 1.8

From these results, it is clear that both SE-LMS and LMS algorithms show high per-

formances in all noise types. It is an expected result under the light of the computer

simulation results of Chapter 6. In other words, results achieved in MATLAB sim-

ulations are held with their fixed point implementations. Performance of NLMS is

lower compared to others. This is also an expected result since in Chapter 6, it is

shown that in order to deal with these natural noises in a moderate-reverberant room,

larger filter taps are needed. However, compared to noisy input signal, NLMS still

give improvement in the intelligibility of speech.

55



7.3 Mutual Comparison

As mentioned before, filter outputs of three different sentences with each noise type

are recorded. Adaptive filters are run from beginning for each of these three sentences.

That is, after the first sentences are recorded, filter is reinitialized and filter coefficients

are set to zero. Then, the following recording is done. By this way, effect of the

convergence of the filters is also seen. The results are given in Table 7.3. Here, the

blank box means that corresponding filter is not evaluated.

Table7.3: Mutual Comparison of LMS, SE-LMS, NLMS Adaptive Filters

aaaaaaaaaa
Noise Type

Filter Type
LMS SE-LMS NLMS

Armored Military Vehicle Noise First Sentence 6 4
Armored Military Vehicle Noise Second Sentence 10 0
Armored Military Vehicle Noise Third Sentence 0 10

Tank Noise First Sentence 10 0
Tank Noise Second Sentence 7 3 0
Tank Noise Third Sentence 10 0

Helicopter Noise First Sentence 5 5
Helicopter Noise Second Sentence 6 4
Helicopter Noise Third Sentence 4 6

Both LMS and SE-LMS always perform better that NLMS especially for armored

military vehicle and tank noises. It is expected since filter length of NLMS is insuf-

ficient. For the helicopter noise, performance of NLMS is closer to other algorithms.

However, it is seen in the previous experiment that performances of all filters with

helicopter noise is generally poor. In all mutual comparison tests, LMS is superiour

to SE-LMS although the difference is very close. It could be said that convergences

of LMS is a bit better. Moreover, LMS and SE-LMS show similar performances like

MOS test done in the second part. As a result of this, it can be said that LMS and

SE-LMS are superiour to NLMS algorithm due to the filter length limitation.
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CHAPTER 8

CONCLUSIONS

In this thesis work, a speech enhancement system is implemented real-time on TMS3-

20C5505 fixed point DSP. Speech enhancement problem and existing methods for the

solution of this problem are examined. Two different models for this problem i.e.,

SAD source separation and Widrow’s LS speech enhancement models are studied.

Assumptions made in these models, their advantages, disadvantages and contributions

to the solution of speech enhancement problem are examined.

Differences between these models for instance signal leakage into the reference mi-

crophone is studied. Some parameters like acoustic transfer path of speech signal on

primary microphone and acoustic transfer path of noise signal on secondary micro-

phone can not be recovered by both methods. However, effect of these parameters

can be minimized by arranging the position of microphones. These models are com-

pared with each other and uncorrelated noise, correlation between speech and noise

are studied in experiments.

Limitations of fixed point implementation, differences between fixed point and float-

ing point adaptive algorithms are also examined. Speech degradation due to the signal

leakage into the reference microphone and uncorrelated signals between microphones

are studied. Under the light of these terms, the position of microphones is experimen-

tally studied. It was expected to see that SAD overcomes LS when signal leakage

in the reference microphone increases. However, it is experimentally seen that the

increment in the output SNR is less than 0.2 dB and complexity of LS is half of that

of SAD since weight adaptation is performed twice in SAD method. It is experi-

mentally seen that LS methods enhance speech signal a bit better than SAD when
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the complexity is considered. Nonminimum phase matrix inversion problem is also

examined.

Effects of the selection of step size and filter length of adaptive algorithms on their

performances under artificial and real noises are examined in MATLAB. Under the

light of these studies, appropriate step sizes and filter lengths have been selected for

implemented filters.

Adaptive LMS, sign LMS, NLMS weight adaptation algorithms are examined. The-

oretical complexities of these weight adaptation algorithms are examined. Moreover,

differences between theoretical and practical complexities of weight adaptation algo-

rithms due to the selected DSP hardware are studied. Computation power of DSP and

complexities of algorithms in terms of clock cycles are examined.

Negative effect of the correlation between original speech signal and additive noise

signal on the performance of adaptive filters is simulated. It is experimentally shown

that the filter performance degrades when the correlation between original speech

signal and additive noise signal increases. Moreover, it is seen that performances of

adaptive filters under real recorded noises degrade largely compared to stationary arti-

ficial single and multiple tone noises. Moreover, effects of the acoustic characteristics

of recording environment on the performance of adaptive algorithm are experimen-

tally shown. When the reverberant in the recording place increases, it becomes more

difficult to enhance speech because length of FIR filters modeling the acoustic paths

needs to be selected longer. Effects of the acoustics characteristics of environment on

SNR values and filter tap selection are examined in detail.

LS and SAD algorithms are simulated in MATLAB and evaluated according to SNR

values. Moreover, LMS, SE-LMS and NLMS based speech enhancement algorithms

are implemented on DSP and performances of these filters under various real noises

with different input SNRs are rated with DRT, MOS and mutual comparison. Speech

enhancement is succeeded even at low SNR levels. In the simulations, it is seen that

NLMS is superior to other adaptation algorithms. However, NLMS with enough taps

in order to enhance speech in a moderate reverberant room cannot be implemented

due to the hardware constraints. Intelligibility of speech is measured by using DRT.

When input SNR is -9 dB, approximately 30% increase is seen in the number of words
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that are understood correctly. By using subjective tests, it is shown that implemented

systems with LMS and SE-LMS algorithms enhance intelligibility.

As a result, an effective speech enhancement system is implemented and sufficient

improvement is held on the intelligibility of the speech transmitted to the other parties

under real recorded noises such as tank noise, armored military vehicle noise and

helicopter noise.

8.1 Future Work

As a future work, NLMS based speech enhancement algorithm having as much taps as

LMS and sign error LMS can be implemented on a DSP with different architecture or

higher clock rate. With a DSP having more computational capacity, the resolution of

codec can be increased. Moreover, time varying step size algorithms can be studied.

Performances of these algorithms can be compared.

Another future work is to develop this study and get a self powered end product. This

product can be placed into the existing radios and improvement in the intelligibility

of speech transmitted to the other party can be measured.
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APPENDIX A

TMX320C5505 CONFIGURATION

There are four PLL control registers and source clock of PLL unit, its multiplication

and division values are set through them. RTC Clock in DSP is given as PLL input

clock and 120 MHz is set as frequency of CPU clock. By giving external clock,

TMX320C5505 can be run with 150 MHz CPU clock.

There is an I2C bus available in DSP. With this interface, DSP can control more than

one codec or other devices supporting this communication protocol. In this study,

control data between codec and DSP is sent through this interface. I2C has two pins

SCL and SCA.

There are four I2S buses which allow serial transfer of full-duplex streaming data

between DSP and an external I2S peripheral device such as an audio codec. DSP

is configured as master whereas codec is configured as slave. I2S has four pins I2S

Clock, I2S Frame Sync Clock, I2S Data Transmit and I2S Data Receive. I2S sup-

ports different data lengths with different data formats. Packed mode is set used.

From codec to DSP, LADC data 1, RADC data 1, LADC data 2 and RADC data 2

i.e. four 16 bit words are sent. LADC data 1 corresponds to signal sampled from

codec’s left analog to digital converter at time t whereas RADC data 2 corresponds

to signal sampled from codec’s right analog to digital converter at time t+1. In this

study, former one corresponds to noisy input signal whereas second one corresponds

to reference signal and I2S0 bus is used for the data transmission between DSP and

audio codec.

This DSP has four DMA controllers which are used to move data among internal

memory, external memory and peripherals without intervention from the CPU and in
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the background of CPU operation. They are all identical but they cannot access every

resources.

In this study, I2S is configured such that it will give notification when data is received

from the codec. This notification can be configured as DMA interrupt or CPU inter-

rupt. In this study, a CPU interrupt is used. When this interrupt occurs, four 16 bit

data are read from four I2S data receive registers, then after the CPU operations, four

output 16 bit data are written to four I2S data transmit registers respectively in order

to give them to audio codec. I2S is configured with I2SCTRL register such that mono

mode is enabled, loopback is disabled, frame-synchronization polarity is low, receive

data is sampled on the rising edge and transmit data shifted on the falling edge, 1

bit data delay, packed mode is set, no sign extension, 16 bit data word, master and

I2S/left-justified format.
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APPENDIX B

TLV320AIC3204 STEREO AUDIO CODEC CONFIGURATION

TLV320AIC3204 has two ADCs, two DACs. It supports operations from 8 kHz mono

voice playback to audio stereo 192 kHz DAC playback. In this study 8 KHZ sampling

rate with 16 bit word length is used.

ADC path of TLV320AIC3204 has six analog inputs which can be mixed and/or

multiplexed in single-ended and/or differential configuration, two programmable gain

amplifiers (PGA) with a range of 0 to +47.5dB, digital volume control with a range

of -12 to +20 dB and AGC.

DAC path of TLV320AIC3204 has 2 headphone amplifiers which are usable in single-

ended or differential mode having analog volume setting with a range of -6 to +29

dB. It also has 2 line-out amplifiers which are usable in single-ended or differential

mode having analog volume setting with a range of -6 to +29dB and digital volume

control with a range of -63.5 to +24 dB.

Audio data can flow between DSP and the TLV320AIC3204 on the digital audio data

serial interface or audio bus. This very flexible bus includes left or right-justified data

options, support for I2S or PCM protocols, programmable data length options, a TDM

mode for multichannel operation, very flexible master-slave configurability for each

bus clock line, and the ability to communicate with multiple devices within a system.

In this study I2S protocol is used in order to transfer audio data between codec and

DSP. In this study, I2S0 bus of DSP is used for the data transmission between DSP

and audio codec.

TLV320AIC3204 control interface supports SPI or I2C communication protocols.

In this study, in order to configure codec from DSP, I2C protocol is used. In the
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following some important settings of the TLV320AIC3204 for this study are given.

By writing 0x01 into page 0 reg1, software reset is performed.

By writing 0x0D into page 0 reg27, I2S, 16 bit and master mode are set.

By writing 0x03 into page 0 reg4, PLL clock input is selected. By writing 0x08 into

page 0 reg6, 0x07 into page 0 reg7, 0x80 into page 0 reg8, 0xA0 into page 0 reg30,

0x91 into page 0 reg5, 0x02 into page 0 reg13, 0x00 into page 0 reg14, 0x80 into page

0 reg20, 0x88 into page 0 reg11, 0x82 into page 0 reg12, 0x88 into page 0 reg18 and

reg19, PLL settings, ADC and DAC clock settings for 8 kHz sampling are performed.

By writing 0x08 into page 1 reg12, LDAC is routed to HPL and similarly, by writing

0x08 into page 1 reg13, RDAC is routed to HPR.

By writing 0x02 into page 1 reg64, RDAC gain is controlled by LDAC. By writing

0xF4 into page 1 reg65, RDAC and LDAC gains are set to -35 dB. By writing 0xD4

into page 1 reg63, RDAC plays right audio interface data, LDAC plays left audio

interface data. In addition, LDAC and RDAC are powered up.

By writing 0x00 into page 1 reg16 and 0x00 into page 1 reg17, HPL and HPR are

unmuted with 0 dB gain. By writing 0x09 into page 1 reg30, HPL and HPR are

powered up.

By writing 0x3A into page 1 reg59 and reg60, MIC PGA left and right are unmuted.

By writing 0xC0 into page 0 reg81, left and right ADC are powered up and by writing

0x00 into page 0 reg82, they are unmuted.
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