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ABSTRACT

BROADBAND LOADED DIPOLE ANTENNA DESIGN BY GENETIC
ALGORITHM OPTIMIZATION

ASAN, BAHRi

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Sencer Koç

February 2014, 90 pages

It is well known that standard dipole antenna is not convenient to be used in

broadband wireless communication applications because of its narrow frequency

bandwidth. To broaden the bandwidth of a dipole, lumped loading is the gen-

erally applied method. Positive effects of resistive, capacitive and inductive

loading are discussed and proved for a pretty long time.

This thesis investigates broadband lumped loaded dipole antenna design proce-

dure by using genetic algorithm optimization techniques. First, unloaded dipole

antenna numerical analysis formulation is provided by EFIE (Electric Field In-

tegral Equation) derivation. MoM (Method of Moments) is used for numerical

solution. Then, analysis is extended for lumped loaded dipole antenna. Analy-

sis computer code is developed in MATLAB environment and results are com-

pared with NEC (Numerical Electromagnetic Code). To design loaded dipole

antenna with corresponding matching network which satisfies the predefined ra-
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diation parameters, genetic algorithm (GA) optimization methods are used . GA

searches for an optimal solution from random solution set with iterative meth-

ods. Optimization objectives are selected as increasing the minimum antenna

gain and decreasing the maximum VSWR. Load values, positions and matching

network variables are optimized simultaneously. Finally, successfully optimized

broadband loaded dipole antenna and matching network design examples are

presented to verify the used procedure.

Keywords: Loaded Dipole Antenna, Genetic Algorithm, EFIE, Broadband An-

tenna, Optimization, Matching Network

vi



ÖZ

GENETİK ALGORİTMA OPTİMİZASYONU İLE GENİŞ BANTLI DİPOL
ANTEN TASARIMI

ASAN, BAHRi

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Sencer Koç

Şubat 2014 , 90 sayfa

Dipol antenlerin dar frekans bantlarından dolayı genişbant kablosuz haberleşme

uygulamalarına uygun olmadığı bilinmektedir. Dipol antenin bantgenişliğini ar-

tırmak için genellikle yükleme metodu kullanılır. Direnç, kapasitör ve indüktör

ile yapılan anten yüklemelerinin olumlu etkileri uzun zamandır tartışılmış ve

kanıtlanmıştır.

Bu tezde, "Genetik Algoritma" optimizasyon metoduyla genişbant yüklü dipol

anten tasarım prosedürü incelenmiştir. Öncelikle yüksüz dipol anten için nü-

merik analiz formülasyonu "Elektrik Alan İntegral Denklemi" nin çözümüyle

elde edilmiştir. Nümerik çözüm için "Moment Metod" yöntemi kullanılmıştır.

Daha sonra analiz, yüklü anten için genişletilmiştir. Analiz kodu, MATLAB or-

tamında geliştirilmiş ve sonuçlar "NEC (Nümerik Elektromanyetik Kod)" sonuç-

ları ile karşılaştırılmıştır. Önceden belirlenmiş parametreleri sağlayacak şekilde

yüklü dipol anten ve uyumlama devresi tasarımı genetik algoritma optimizas-
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yon metodları kullanılarak yapılmıştır. Genetik algoritma rastgele bir çözüm

kümesinden en uygun sonucu yinelemeli metodlarla arar. Optimizasyon hedef-

leri minimum anten kazançını artırmak ve maksimum VSWR değerini azaltmak

olarak belirlenmiştir. Yüklerin değerleri, pozisyonları ve uyumlama devresi ele-

manları eşzamanlı olarak optimize edilmiştir. Son olarak, kullanılan yöntemi

doğrulamak için başarılı bir şekilde optimize edilmiş genişband yüklü anten ve

uyumlama devresi tasarım örnekleri gösterilmiştir.

Anahtar Kelimeler: Yüklü Dipol Anten, Genetik Algoritma, Genişbantlı Anten,

Optimizasyon, Uyumlama Devresi
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CHAPTER 1

INTRODUCTION

Dipole antennas are widely used in wireless systems especially in mobile commu-

nication and TV-radio broadcasting. Its linear polarization and omnidirectional

radiation pattern in azimuth, provides an advantage to be used extensively.

However with the recent multi-band and broadband applications, communica-

tion antennas are required to be operated in wide frequency ranges. This may

restrict the usage of dipoles since they are inherently narrowband antennas.

Bandwidth of a narrowband antenna is expressed as percentage of the frequency

difference (upper minus lower) over the center frequency. However for broadband

antennas, usually the ratio of upper to lower frequency of operation is used to

express bandwidth [1]. If we define fU as the upper frequency and fL as the

lower frequency of operation, bandwidth for broadband antennas is defined as

Br by [22]

Br =
fU
fL

An antenna can be classified as broadband if the input impedance and the pat-

tern of the antenna do not change significantly over about an octave (fU/fL=2)

or more and satisfy the criteria [22].

In most cases VSWR and the gain are the parameters that determine the an-

tenna bandwidth. According to [10] an antenna can be defined as operational

at frequencies where the return loss (RL), is sufficiently small (below -10 dB) if

the antenna gain is acceptable. It corresponds to a VSWR about 2. Collin also

gives acceptable VSWR limit as 1.5 [4].
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Figure (1.1), which is drawn by the use of NEC data, represents the VSWR

behavior of a 30 cm dipole antenna over the frequencies from half-wavelength

(λ/2) to two wavelengths (2λ). As shown, VSWR of the dipole antenna is accept-

able only where the antenna becomes half-wavelength (λ/2) and 1.5 wavelength

(3λ/2). That’s why dipole antennas are classified as narrowband antennas.

Figure 1.1: VSWR of 30 cm Dipole Antenna, drawn by the use of NEC Data

The reason of this narrowband behavior is the reflections from the ends of the

dipole antenna [10]. To prevent end reflections, a variable internal impedance

per unit length was introduced to the antenna by Wu and King [23]. This

approach is successful in providing linear current distribution over the antenna,

almost independent of frequency. To obtain the same result with negligible

losses, Hallen [6] modified this approach by using variable capacitance instead

of impedance. Several resistive, capacitive and inductive loading investigations

have been done to broaden the bandwidth of the dipole and monopole antennas

[8, 11, 16].

Lumped loading is an alternative method to distributed loading. It causes

smaller ohmic losses since small number of loads are used. It has been shown

in several studies that resistive, capacitive and/or inductive lumped loading

of dipole and monopole antennas can provide the broadband operation [2, 5].

However, lumped loading requires an optimization process for the appropriate
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locations of the loading and the load values.

With the advent of genetic algorithm, it is applied in several antenna loading

studies and has been demonstrated to be a powerful tool for the loaded wire

antenna design [7]. Parallel R-L-C load positions and the values over a monopole

and also a matching network was optimized successfully in [2]. R-L circuit was

loaded to satisfy 5:1 and 20:1 bandwidth for monopole antenna in [18]. L-C

circuit loading was investigated in [5].

1.1 Outline of the Thesis

The problem, considered in this thesis work is the design of a loaded dipole an-

tenna and a corresponding matching network that satisfy the predefined VSWR

and antenna gain requirements over a broad frequency band. Antennas with

bandwidth ratio of 2:1 and more are accepted as broadband antennas according

to [22].

First of all, unloaded dipole antenna analysis is investigated in Chapter 2. A

MATLAB code is written which calculates the dipole antenna radiation param-

eters; antenna gain, input impedance, reflection loss and VSWR.

Dipole antennas are modeled as strips. Strip antenna modeling is based on the

assumption that a thin wire antenna with a non-circular cross section behaves

like a cylindrical antenna of an equivalent radius [10, 22]. This 2D modeling

provides simplicity during construction of the antenna and the establishment of

the formulation. Concerns about the reliability of the formulation, because of the

loss of one dimension, are eliminated by comparing the results with Numerical

Electromagnetic Code (NEC) [3] results.

To analyze the dipole antenna, EFIE (Electric Field Integral Equation) formu-

lation is used. EFIE is based on the boundary condition of the total tangential

electric field, which yields an integral equation that involves induced current

density as a part of integrand. Once the current density is solved, other antenna

parameters are easily calculated [1].
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EFIE is numerically solved by the use of Method of Moments (MoM). MoM

provides a solution of EFIE by expanding the unknown function (surface current

density for antenna radiation) as a linear combination of known functions, with

unknown coefficients. Then, equation is converted to matrix form and unknown

coefficients are calculated by the use of matrix algebra.

After the formulation for unloaded dipole antenna radiation is established, anal-

ysis is extended for lumped loaded dipole antenna in Chapter 3. Lumped loading

is implemented by the modification of boundary condition only at the load po-

sitions. By the use of method suggested in [10], effects of the loads are included

to the general formulation easily by adjusting only the related parts. Moreover,

a matching network that consists of a transformer and a parallel inductance as

suggested in [19] is also implemented in this part.

By the end of Chapter 3, formulation for antenna gain, input impedance and

VSWR have been provided for an arbitrarily loaded dipole antenna and corre-

sponding matching network over a predetermined frequency band. Results of

the MATLAB code and the NEC are compared for unloaded and loaded dipole

antennas with different configurations.

In Chapter 4, "Genetic Algorithm" optimization procedure and implementation

of optimization to lumped loaded dipole antenna is investigated. A computer

program is developed to optimize a loaded dipole antenna and a matching net-

work simultaneously that satisfy the predetermined antenna parameters. This

program uses the results of the program developed in the first part as input to

achieve the optimization.

Objectives of the optimization are decided as maximizing the minimum forward

gain and minimizing the maximum VSWR over a broadband frequency. Antenna

size, load counts, load value limits and operational frequency range are selectable

by the user.

At the end, several optimization examples are done to achieve 4.5:1 bandwidth

over 400-1800 MHz and 5:1 bandwidth over 400-2000 MHz with 30 cm length

loaded dipole antenna. Requirements are decided as minimum -3 dB of system

4



gain and maximum VSWR of 3.5 to be parallel with previous studies [2, 5,

18, 19]. 3 parallel R-L-C circuits are used as loads and matching network is

composed of a parallel inductance and a transformer.
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CHAPTER 2

DIPOLE ANTENNA ANALYSIS

This chapter covers the unloaded dipole antenna analysis. In the first section

EFIE is derived and numerical methods for its solutions are introduced. Then,

formulation for the radiation parameters of the unloaded antenna is provided in

the second section.

2.1 EFIE Derivation

EFIE derivation is based on the following boundary condition; when the antenna

is excited by an incident field Ei, surface currents distribute themselves such that

the total tangential electric field Etotal on the antenna is zero

n̂× Etotal
(r = rs) = 0

where rs represent the points on the antenna surface.

When a conductor exists, total electric field can be written as summation of the

incident and the scattered electric fields:

E
total

(r) = E
i
(r) + E

s
(r).

Then, boundary condition on the antenna surface can be defined as:

n̂× Etotal
(r = rs) = n̂× (E

i
(r = rs) + E

s
(r = rs)) = 0

n̂× Ei
(r = rs) = −n̂× Es

(r = rs)). (2.1)
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In general the scattered electric field (Es) generated by the induced surface

current density (J) is given by [1]:

E
s

= −jωA−∇Φ

where A is the magnetic vector potential and Φ is the scalar electric potential.

For observation points on the antenna surface, we are interested only in the

tangential components:

E
s

t = −jωAt −∇tΦ (2.2)

where subscript "t" denotes the tangential component. Vector potential and

scalar potential, by the use of "Continuity Equation", can be written as:

At(r) =
µ

4π

∫
s

J(r′)
e−jkR

R
ds′

Φ(r) =
1

4πε

∫
s

σ(r′)
e−jkR

R
ds′

∇ · J = −jωσ

Φ(r) = − 1

jωε4π

∫
s

∇ · J(r′)
e−jkR

R
ds′

where σ is the surface charge density, r is the observation point, r′ is the source

point and R is the distance between the source and the observation points,

R = |r − r′|.

Then, tangential Es

t field can be written as:

E
s

t(r) = −jωµ
4π

∫
s

J(r′)
e−jkR

R
ds′ +

1

jωε4π

∫
s

∇t(∇ · J(r′))
e−jkR

R
ds′.

Since tangential scattered electric field Es

t on the antenna surface is known by

the use of (2.1), we can locate our observation point "r" on the antenna surface;

E
s

t(r = rs) = −Ei

t(r = rs)

E
i

t(r = rs) =
jωµ

4π

∫
s

J(r′)
e−jkR

R
ds′ − 1

jωε4π

∫
s

∇t(∇ · J(r′))
e−jkR

R
ds′

(2.3)
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Left hand side of equation (2.3) will be non-zero only at the source region, since

E
i incident field exist only there. When "r" is selected out of the source region,

equation will be equal to zero.

2.1.1 Antenna Model

In this study, dipole antennas are modeled as rectangular, two dimensional

strips. A circular dipole with radius "a" is replaced with an equivalent strip

of "aeqv" width. Equivalence will be discussed in the corresponding Section

(3.3.4). Strips are located on the (x− z) plane and length of dipole is oriented

to the z axis. Hence, antenna has been positioned between the points (±aeqv
2
, 0, 0)

and (±aeqv
2
, 0, l) as shown in Figure (2.1). Feed point coordinate is (0, 0, l

2
) for

center fed dipole.

To solve the integral equation (2.3), which is called EFIE, for surface current

density (Js) numerically; integral domain, which is the antenna surface, should

be divided into smaller parts. Then, integral will operate on these smaller parts

individually and contributions from all parts will be added. Division of the

antenna surface into smaller parts is called "Mesh Generation". In this study,

triangular mesh generation is used. Triangular mesh model is the most widely

used model in antenna analysis applications, since it conforms to any geometrical

surface and permits the simple description of the surface and patches to the

computer [17]. Antenna surface is divided into planar triangular patches as

shown in Figure (2.1).

2.1.2 RWG Basis Functions

The EFIE equation of (2.3) is solved numerically by the use of Method of Mo-

ments (MoM). MoM suggests to divide the unknown Js into "n" known func-

tions, which is called basis function, with unknown coefficients. Then, surface

current density will be expressed by the use of these coefficients and the basis

functions.

Basis function in a problem should be chosen to best represent the unknown.
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(−aeqv
2
, 0, l) (aeqv

2
, 0, l)

(−aeqv
2
, 0, 0)

(aeqv
2
, 0, 0)

• •

• •

x

z

l/2

l/2

⇐=Feed Point

Figure 2.1: Strip Antenna Mesh Model

RWG (Rao-Wilton-Glisson) basis functions have been proven to be useful in

antenna radiation problems. The fact that make RWG basis functions valuable

is that they allow smooth current density at the edges and eliminate the fictitious

charges at the basis elements [17]. RWG basis functions are used in this study,

since it successfully represents the current over the antenna.

RWG basis function (fn) is defined over two triangles and a common edge.

fn(r) =


ln

2A+
n
ρ+
n (r), r in T+

n

ln
2A−n

ρ−n (r), r in T−n

0 otherwise

10



Vn+

ρ+
n

ρ−n

V −n

ln

T+
n

T−n

Figure 2.2: RWG Basis Function

RWG basis function is defined on triangular patches, that are obtained by trian-

gular mesh generation. Every non-boundary edge and two triangles surrounding

this edge are named as RWG element which is shown in Figure 2.2. Since trian-

gles more then one edges, every triangle may be a part of more then one RWG

element. Triangles are named plus (T+
n ) and minus (T−n ) assuming that current

flow is from plus triangle to minus. A+
n and A−n are the areas of the plus and

minus triangles, respectively and ln is the common edge length. ρ+
n (r) is the

vector defined from free vertex of the (T+
n ) triangle to the source point "r" and

ρ−n (r) is the vector defined from source point "r" to free vertex of the triangle

(T−n ).

By the use of RWG basis expansion the surface electric current on the antenna

surface is expressed as the sum of the contributions over all edge elements with

unknown coefficients as:

J(r) =
N∑
n=1

Infn(r)

where fn(r) represents the RWG basis function and In represents the unknown

coefficients [10].

11



Figure 2.3: RWG Current Flow

The properties of RWG basis functions that give rise to a very good representa-

tion of the current that flow on the antenna surface are listed below [17]:

i) RWG functions do not allow current to have component normal to the edges

other than the common edge of the RWG element. Basis functions have only

tangential components to the other edges, which means no current flows into the

non-common edges (∇ · J = 0). This implies that there will be no line charges

along these edges (except common edge) since, according to the continuity equa-

tion, ∇ · J = −jωσ.

ρ+
n

ρ−n

2A+
n

ln

2A−n
ln

T+
n T−n

Figure 2.4: RWG Basis Function
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ii) RWG basis functions allow the normal component of the current along the

common edge to be continuous. As seen in the Figure 2.4, normal component of

fn is 2A±n
ln

which is just the height of the RWG triangles T±n with common edge.

If we normalize fn with ln
2A±n

in T±n respectively, normal components become unit

vectors with the same direction. This satisfies the continuity of current normal

to the common edge and artificial line charges at the common edge are avoided.

Furthermore, since the normal component of the basis function fn at the nth
edge is unity, each coefficient In may be interpreted as normal component of the

current density flowing past the nth edge [17].

iii) The divergence of fn is proportional to the charge density and can be calcu-

lated as [17]:

∇ · fn =


ln
A+

n
, ,r in T+

n

− ln
A−n
, ,r in T−n

0, otherwise

(2.4)

which means charge density is constant on the triangles T±n and the total charge

associated with one triangle pair is zero.

When RWG basis functions are applied, vector potential is obtained as:

J(r′) =
N∑
n=1

Infn(r′)

A(r) =
µ

4π

N∑
n=1

In

∫
s

fn(r′)
e−jkR

R
ds′ (2.5)

A(r) =
µ

4π

N∑
n=1

In

(∫
T+
n

ln
2A+

n

ρ+
n (r′)

e−jk|r−r
′|

|r − r′|
ds′ +

∫
T−n

ln
2A−n

ρ−n (r′)
e−jk|r−r

′|

|r − r′|
ds′
)

If we also simplify ∇ · fn by using (2.4), scalar potential can be defined as:

Φ(r) = − 1

jωε4π

N∑
n=1

In

∫
s

∇ · fn(r′)
e−jkR

R
ds′ (2.6)

Φ(r) = − 1

jωε4π

N∑
n=1

In

(∫
T+
n

ln
A+
n

e−jk|r−r
′|

|r − r′|
ds′ −

∫
T−n

ln
A−n

e−jk|r−r
′|

|r − r′|
ds′
)

At an observation point "r", vector potential A(r) and scalar potential Φ(r) are

13



expressed as sum of "N" RWG integrals, defined on "N" edges. Therefore, Ei

t

can be expressed in the same manner by combining (2.5) and (2.6).

E
i

t(r) =
jωµ

4π

N∑
n=1

In

∫
s

fn(r′)
e−jkR

R
ds′ − 1

jωε4π

N∑
n=1

In∇t

∫
s

∇ · fn(r′)
e−jkR

R
ds′

=
jωµ

4π

N∑
n=1

In

(∫
T+
n

ln
2A+

n

ρ+
n (r′)

e−jk|r−r
′|

|r − r′|
ds′ +

∫
T−n

ln
2A−n

ρ−n (r′)
e−jk|r−r

′|

|r − r′|
ds′
)

− 1

jωε4π

N∑
n=1

In∇t

(∫
T+
n

ln
A+
n

e−jk|r−r
′|

|r − r′|
ds′ −

∫
T−n

ln
A−n

e−jk|r−r
′|

|r − r′|
ds′
)

(2.7)

2.1.3 Delta-Gap Source Model

Delta-Gap source model is the simplest way which is very suitable to use with

RWG edge elements [10]. Delta-gap term refers to an infinitesimally small por-

tion of the antenna, where voltage source is connected, as shown in Figure (2.5).

Delta-Gap voltage source connected to the center of a dipole antenna results

in an incident field ,Ei, at the location of the voltage source on the antenna

surface. In our model, delta-gap source corresponds to existence of Ei field at

only one RWG edge, which is at the source position as shown in Figure 2.5.

This approach provides simple implementation for voltage source excitation of

antenna and also for antenna input impedance calculation. Input impedance

calculation will be defined in the related section.

This delta-gap source implementation results non-zero Ei only when observation

point is selected at the source point. Ei is zero for all observation points selected

on the antenna.

If we define Ei in the same direction as the surface current flow, as shown in the

14



−

Js ⇑

+

Js ⇑

Vant }Ei ∆ l ⇐=Driving edge

Figure 2.5: Delta-Gap Source Model

Figure 2.5, Vant can be written as:

Vant =

∫ ∆

0

E
i · âzdz

or

E
i

=
Vant
∆

where ∆ is the gap width, which tends to zero for Delta-Gap Source model.

Then, incident electric field at the feeding edge can be written as:

E
i

= Vantδ(z)âz. (2.8)

We can now use this result in (2.7).

If the feeding edge is selected as the observation point, since Ei defined in (2.8)
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is completely tangential (in âz direction), we can write:

Vantδ(z) =
jωµ

4π

N∑
n=1

In

∫
s

fn(r′)
e−jkR

R
ds′ − 1

jωε4π

N∑
n=1

In∇t

∫
s

∇ · fn(r′)
e−jkR

R
ds′

Vantδ(z) =
jωµ

4π

N∑
n=1

In

(∫
T+
n

ln
2A+

n

ρ+
n (r′)

e−jk|r−r
′|

|r − r′|
ds′ +

∫
T−n

ln
2A−n

ρ−n (r′)
e−jk|r−r

′|

|r − r′|
ds′
)

− 1

jωε4π

N∑
n=1

In∇t

(∫
T+
n

ln
A+
n

e−jk|r−r
′|

|r − r′|
ds′ −

∫
T−n

ln
A−n

e−jk|r−r
′|

|r − r′|
ds′
)
. (2.9)

At any other observation point on the antenna surface, left hand side, would be

zero but right hand side would be the same.

This equation is the discretized form of (2.3) for the dipole antenna geometry

studied in this text. The unknowns are current expansion coefficients in this

equation. If equation (2.9) is rearranged, it can be seen that, a known voltage

source is expressed as the summation of "N" known basis functions fn with

"N" unknown coefficients In, (n = 1 · · ·N).

V = I1f 1 + I2f 2 + · · ·+ INfN

To solve this equation which has "N" unknowns, "N" equations are needed. If

we write this equation at "N" different observation points (testing points), the

"N" necessary equations are obtained. This set of N equations can be solved

for the unknown expansion coefficients.

2.1.4 Galerkin Testing Function

Galerkin testing function is used to solve (2.9) in this study. Galerkin Testing

Function means testing function (fm) is selected as the same of basis function

(fn). Since scattered field Es is known only at the antenna surface, observation

points at the equation are selected from there.

We define inner product as

〈f,g〉 ≡
∫
s

f · gds.
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Taking the inner product of both sides of (2.3) with testing function, we get:

E
i

t = jωAt(r) +∇tΦ(r)

〈Ei

t,fm〉 = jω〈At,fm〉+ 〈∇tΦ,fm〉.

We need to calculate 〈At,fm〉 and 〈∇tΦ,fm〉, where we can use, [17],

〈∇tΦ,fm〉 = −
∫
t

Φ∇s · fmds.

Since testing functions (fm) are chosen to be same as the expansion functions

(fn) and ∇ · fn was calculated in (2.4), it can be shown that:

〈∇tΦ,fm〉 = −lm
[

1

A+
m

∫
T+
m

Φds− 1

A−m

∫
T−m

Φds

]
= lm

[
Φ(rc−m )− Φ(rc+m )

]
where Φ(rc±m ) are the scalar electric potentials at the center of the plus and minus

signed triangles of the testing function. The average of Φ over each triangle is

approximated by the value of Φ at the triangle centroid.

With a similar approach, the inner product of the vector magnetic potential At
with testing functions can be written as:

〈At, fm〉 = lm

[
1

2A+
m

∫
T+
m

A · ρ+
mds

′ +
1

2A−m

∫
T−m

A · ρ−mds′
]

=
lm
2

[
A(rc+m ) · ρc+m + A(rc−m ) · ρc−m

]
.

A(rc±m ) are the vector potentials at the centers of the plus (T+
m) and minus (T−m)

signed triangles of the testing element. ρc+m is the vector defined from free vertex

(V +
m ) of the plus signed triangle of the testing element, to the center of that

element. ρc−m is the vector defined from center of the minus signed triangle of

the testing element to the free vertex (V −m ) of the minus signed triangle, as shown

in Figure (2.6).

Combining the above results, we get:

〈Ei

t,fm〉 = jω
lm
2

[
A(rc+m ) · ρc+m + A(rc−m ) · ρc−m

]
+ lm

[
Φ(rc−m )− Φ(rc+m )

]
(2.10)

17



V −mV +
m lm

ρc+m
rc+m• rc−m

ρc−m
•

T−mT+
m

(0,0)

rc+m

•

Figure 2.6: Testing RWG Element

We finally use the results derived in the Delta-Gap section in (2.10). If "m" is

the index of the feeding edge, by using (2.8) we get

〈Ei

t, fm〉 =

∫
(T+

m+T−m)

E
i

t · fmds = Vant

∫
(T+

m+T−m)

δ(z)âz · fmds′ = lmVant, (2.11)

and for all other testing edges on the antenna surface we have

〈Ei

t, fm〉 = 0

since Ei is zero there, as stated before.

2.1.5 MOM Interaction (Impedance) Matrix

By the use of Galerkin Testing method, we select "N" observation points (as

the same of the source points), m = 1 · · ·N to form "N" equations to solve "N"

unknown In coefficients.

Then, if we combine the results and rewrite (2.10);

〈Ei
,fm〉 = jω〈A,fm〉+ 〈∇Φ,fm〉

= jωlm

[
A(rc+m ) · ρ

c+
m

2
+ A(rc−m ) · ρ

c−
m

2

]
+ lm

[
Φ(rc−m )− Φ(rc+m )

]
18



with the following definitions

A(rc+m ) =
µ

4π

N∑
n=1

In

[∫
(T+

n +T−n )

fn(r′)
e−jk|r

c+
m −r′|

|rc+m − r′|
ds′

]

=
µ

4π

N∑
n=1

In

[∫
(T+

n +T−n )

fn(r′)
e−jk|r

c−
m −r′|

|rc−m − r′|
ds′

]

Φ(rc+m ) = − 1

jωε4π

N∑
n=1

In

[∫
(T+

n +T−n )

∇ · fn(r′)
e−jk|r

c+
m −r′|

|rc+m − r′|
ds′

]

= − 1

jωε4π

N∑
n=1

In

[∫
(T+

n +T−n )

∇ · fn(r′)
e−jk|r

c−
m −r′|

|rc−m − r′|
ds′

]

where rc±m is the vector defined from coordinate center to the center of the plus

and minus triangle of themth testing RWG element, and e−jk|rc±m −r′|

|rc±m −r′|
is the Green’s

function.

Then (2.10) becomes:

〈Ei
,fm〉 =

N∑
n=1

In

{
jωlm

µ

4π

[ (∫
(T+

n +T−n )
fn(r′) e

−jk|rc+m −r′|

|rc+m −r′|
ds′
)
· ρ

c+
m

2
+

(∫
(T+

n +T−n )
fn(r′) e

−jk|rc−m −r′|

|rc−m −r′|
ds′
)
· ρ

c−
m

2

]
+lm

1

jωε4π

[ (∫
(T+

n +T−n )
∇ · fn(r′) e

−jk|rc+m −r′|

|rc+m −r′|
ds′
)
−(∫

(T+
n +T−n )

∇ · fn(r′) e
−jk|rc−m −r′|

|rc−m −r′|
ds′
)]}

and can be replaced by the following system of equations:

〈Ei
,fm〉 =

N∑
n=1

InZmn

where m = 1, · · · , N .

The left hand side, namely, 〈Ei
,fm〉 is calculated in Section (2.1.4), and we know

that:

〈Ei
,fm〉 =

lmVant , if m is feeding edge

0 , for all other edges
(2.12)
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r+
n

rc+1

rc+2

|r+
n − rc+m |

rc+m

ρ′+n

•
•

•

•

Figure 2.7: Distance between Source and Testing Elements

We can define a vector V , where Vm = 〈Ei
,fm〉 and m = 1, · · · , N :

V =



V1

...

Vm
...

VN


=



0
...

lmVant
...

0



Hence, following equation is obtained:

N∑
n=1

InZmn = Vm
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which can be expressed in the matrix form:
Z11 Z12 Z13 · · · Z1N

Z21 Zmn
...

... . . .

ZN1 ZN2 · · · ZNN




I1

In
...

IN

 =


V1

Vm
...

VN



We can also express Zmn, named "MoM Interaction (Impedance) Matrix" as:

Zmn = lm

[
jω

(
A+
mn ·

ρc+m
2

+ A−mn ·
ρc−m
2

)
+ Φ−mn−Φ+

mn

]
(2.13)

with definitions:

A+
mn =

µ

4π

[∫
T+
n +T−n

fn(r′)
e−jk|r

c+
m −r′|

|rc+m − r′|
ds′

]

A−mn =
µ

4π

[∫
T+
n +T−n

fn(r′)
e−jk|r

c−
m −r′|

|rc−m − r′|
ds′

]

Φ+
mn = − 1

4jπωε

[∫
T+
n +T−n

∇ · fn(r′)
e−jk|r

c+
m −r′|

|rc+m − r′|
ds′

]

Φ−mn = − 1

4jπωε

[∫
T+
n +T−n

∇ · fn(r′)
e−jk|r

c−
m −r′|

|rc−m − r′|
ds′

]

As seen from the definitions above, impedance matrix is only dependent on

geometry of conductor and the frequency. For the same geometry, impedance

matrix should be reevaluated for different frequencies by the use of equation

(2.13).

2.1.6 Barycentric Subdivision

Impedance matrix, defined in the equation (2.13) is not completely ready to be

calculated numerically. Last step is to introduce a numerical method to calculate

the inner integrals of this equation, which are symbolized as A±mn and Φ±mn.

In these equations integrals are evaluated on the RWG elements that are defined

as plus and minus signed triangles. Integrand is either the Green’s function,

21



G(r′) = e−jk|rc±m −r′|

|rc±m −r′|
or its product with ρ±n (r′). These integrals can be approxi-

mated by replacing the integrand with its value at the centroid of the respective

triangle, T+
n or T−n .

In Section (2.1.4) the testing functions are also approximated with this approach,

thus |rm − r′| terms in the Green’s function are replaced by |rc±m − r′|.

However, there is another point that should be taken into consideration. If this

approximation, which was done for testing functions, is applied to basis functions

also, Green’s function G(r) would be singular at the self-terms (when m = n)

of the impedance matrix, that is, we would have

e−jk|r
c±
m −r′|

|rc±m − r′|
=
e−jk|r

c±
m −rc±m |

|rc±m − rc±m |
=

1

0

One solution to eliminate this singularity, is to divide the equation into two

parts for self-terms and to calculate the singular part analytically while other

part is calculated numerically. However, "Barycentric Subdivision Method" is

used in this study instead, which corresponds to dividing each triangle into 9

smaller triangles and approximating the integrand by its value at the centers of

these smaller triangles, over each sub-triangle.

Hence, integral equation with integrand of Green’s function can be calculated

as:

∫
Tm

G(r′)ds′ =
Am
9

9∑
k=1

G(r′
c
k)∫

Tm

e−jk|r
c±
m −rn|

|rc±m − rn|
ds′ =

Am
9

9∑
k=1

e−jk|r
c±
m −rck|

|rc±m − rn|
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Figure 2.8: Barycentric Subdivision

when it is applied to A±mn and Φ±mn, we get:

A±mn =
µ

4π

(∫
T+
n

ln
2A+

n

ρ+
n (r′)

e−jk|r
c±
m −r′|

|rc±m − r′|
ds′ +

∫
T−n

ln
2A−n

ρ−n (r′)
e−jk|r

c±
m −r′|

|rc±m − r′|
ds′

)

=
µ

8π

ln
9

(
9∑

k=1

ρ+
n (rck)

e−jk|r
c±
m −rck|

|rc±m − rck|
ds′ +

9∑
k=1

ρ−n (rck)
e−jk|r

c±
m −rck|

|rc±m − rck|
ds′

)

Φ±mn = − 1

4jπωε

(∫
T+
n

ln
A+
n

e−jk|r
c±
m −r′|

|rc±m − r′|
ds′ +

∫
T−n

ln
A−n

e−jk|r
c±
m −r′|

|rc±m − r′|
ds′

)

= − 1

4jπωε

ln
9

(
9∑

k=1

e−jk|r
c±
m −rck|

|rc±m − rck|
ds′ +

9∑
k=1

e−jk|r
c±
m −rck|

|rc±m − rck|
ds′

)

By the use of barycentric subdivision, impedance matrix can now be obtained

numerically.

2.2 Radiation Parameters

Once surface currents are determined, calculation of radiation fields generated

by these currents is straightforward. E field can be expressed in terms of vector

23



and scalar potentials as

E(r) = −jωA(r)−∇Φ(r).

Using the expansion of surface current in terms of RWG basis functions, we get

A(r) =
µ

4π

∫
s

N∑
n=1

Infn(r′)︸ ︷︷ ︸
J(r′)

G(r, r′)ds′

Φ(r) = − 1

jωε4π

∫
s

N∑
n=1

In∇ · fn(r′)G(r, r′)ds′

and the E field becomes

E(r) =
N∑
n=1

In[−jωµ
4π

∫
s

fn(r′)G(r, r′)ds′ +
1

jωε4π

∫
s

∇t(∇ · fn(r′))G(r, r′)ds′]

(2.14)

In the far field region, E field can be written by retaining only the terms varying

with 1/r and eliminating the terms with 1/r2 and 1/r3, since they become

negligible when r is high. Moreover, H field can be calculated by the use of

H(r) =
1

η
âr × E(r). (2.15)

2.2.1 Dipole Model

To calculate both E and H fields in far and near zones "Dipole Model" can be

used as proposed in [9, 10]. In dipole model, an RWG element, consisting of

two triangles and a common edge, is replaced by an equivalent small (Hertzian)

dipole, from center of the first triangle to the center of the second one. Then,

total radiated fields are calculated as sum of fields radiated by all these Hertzian

dipoles.

Before replacing the RWG elements with dipoles, equivalent dipole length and

current should be found. We will compare the magnetic vector potential A of

RWG element to that of a Hertzian dipole to find out the equivalent dipole.
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Moment of one RWG element is calculated in [17]

m =

∫
(T+

n +T−n )

fn(r′)ds′ =
ln
2

(ρc+n + ρc−n ).

Since 1
2
(ρc+n + ρc−n ) = (rc−n − rc+n ) as shown in Figure (2.9), moment becomes

m = ln(rc−n − rc+n ). (2.16)

Vn+

ρc+n ρc−n

V −n

1
2
(ρc+n + ρc−n )

rc+n

(0,0)

rc−n

ln

•

Figure 2.9: Geometry of Vectors

Magnetic potential of an RWG element is given as

A(r) = In[
µ

4π

∫
(T+

n +T−n )

fn(r′)
e−jk|r−r

′|

|r − r′|
ds′].

By the use of (2.16) and approximating the distance between the observation

point and the source point R = |r − r′| by the distance |r − rc|, where rc is the
centroid of the RWG element,

A(r) = µInln(rc−n − rc+n )
e−jkR

4πR
. (2.17)

For a Hertzian dipole of length l and current I0, located at the coordinate origin

in âz direction, generated vector potential A is given in [1] as

A(r) = µI0l
e−jkR

4πR
âz

25



where, R = |r − rc| and rc is the centroid of the dipole.

If we assume that dipole is positioned in the (rc−n − rc+n ) direction to be similar

with RWG element

A(r) = µI0l
e−jkR

4πR

(rc−n − rc+n )

|rc−n − rc+n |
. (2.18)

Equating (2.17) to (2.18) results in

µInln(rc−n − rc+n )
e−jkR

4πR
= µI0l

e−jkR

4πR

(rc−n − rc+n )

|rc−n − rc+n |
Inln|rc−n − rc+n | = I0l. (2.19)

Here, we may assume I0 = Inln and l = |rc−n − rc+n |. Therefore, an RWG element

can be considered to be equivalent to a Hertzian dipole of length |rc−n − rc+n |,
and current Inln.

strip

rc1

rc2

rc3 rcn

Figure 2.10: Dipole Model

2.2.2 Radiation Fields

By using dipole model, we have "N" Hertzian dipole over the surface of the

antenna, since "N" RWG elements are defined.

E and H fields radiated by the source J that is valid for both far and near field

regions is, [1]:

E = −j 1

4πωε

∫
V

[
(J · ∇)∇+ k2J)

] e−jkR
R

dv′ (2.20)

H = −j 1

4π

∫
V

[
J ×∇

] e−jkR
R

dv′ (2.21)

These formulas can be used for radiation problem where Js is the induced surface

current density and Es and Hs are secondary fields created by surface current.
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For a single Hertzian dipole, Js turns into fnIn and R can be taken as r which

is the distance from center of the dipole to the observation point.

By reducing the volume integral to surface integral:

En(r) = −j In
4πωε

∫
s

[
k2 e

−jkr

r
fn +

(
2

r3
+

2jk

r2
− k2

r

)
e−jkr(fn · âr)âr

]
ds′

(2.22)

Hn(r) =
In
4π

∫
s

(fn × âr)
[
jke−jkr

(
1

r
+

1

jkr2

)]
ds′ (2.23)

where âr is the unit vector in the direction of the observation point.

By the use of (2.16) and (2.19), numerical forms of the equations (2.22) and

(2.23) can be written as below [10]:

Hn(r) =
jk

4π
(m× r)Ce−jkr (2.24)

En(r) =
η

4π
((M −m)[

jk

r
+ C] + 2MC)e−jkr (2.25)

where;

m = Inln(rc−n − rc+n )

C =
1

r2
[1 +

1

jkr
]

M =
(r ·m)r

|r|2

To calculate the En(r) field and the Hn(r) field due to a single RWG element,

(2.24) and (2.25) are used. Total fields at a point r, Etotal(r) and H total(r) can

be obtained by adding all the fields created by all edge elements.

Etotal(r) =
M∑
m=1

Em(r − 1

2
(rc+m + rc−m ))

H total(r) =
M∑
m=1

Hm(r − 1

2
(rc+m + rc−m ))

2.2.3 Input Impedance, Reflection Coefficient and VSWR

Input impedance is one of the important parameters of the antenna. Calculation

of the reflection coefficient Γ, return loss "RL" and the VSWR are straightfor-

ward when input impedance is known, since they are directly related.
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Antenna input impedance can be defined as the ratio of the feeding voltage

strength to the current flowing into the feeding edge. Implementation of Delta-

Gap source model with RWG elements provides a simple calculation for the

input impedance, since voltage source is thought to be connected to a single

RWG element only, as described in Section (2.1.3).

−
+↑ VantIant

Figure 2.11: Delta-Gap Source Model Simulation

If we excite antenna as shown in Figure 2.11 with voltage source of strength

Vant, it will cause a current flow over the feeding RWG edge, which is denoted

by Iant. Antenna input impedance can be calculated simply as

Zin =
Vant
Iant

(2.26)

As we investigated in Section (3.3.4), all RWG elements can be expressed by an

equivalent dipole of length |rc+m − rc−m |, and current (Imlm). When "m" corre-

sponds to the index of the RWG element at the feed point, we have Vm = Vantlm

in (2.12).

Since Im coefficients are already calculated and lm edge lengths and Vm voltage
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strength are known, antenna input impedance can easily be calculated.

Vm = Vantlm

Iant = Imlm

Zin =
Vant
Iant

=
Vm
lm

1

Imlm

=
Vm
Im

1

(lm)2
=
Zmm
(lm)2

Reflection coefficient (Γ) shows the amount of back reflection of electromagnetic

wave which is wanted to be transferred from transmission line to the antenna.

It is the result of the mismatch of the antenna input impedance and the char-

acteristic impedance of the transmission line. It is defined as;

Γ =
Zin − Z0

Zin + Z0

where Z0 is the characteristic impedance of the transmission line that connects

the source to the antenna. VSWR is defined as;

V SWR =
1 + |Γ|
1− |Γ|

In all applications, reflection coefficient (Γ) and VSWR are desired to be low.

Matching networks are used to decrease the back reflection at the input antenna

port in the following sections.

2.2.4 Radiation Density, Radiated Power, Directivity and Gain

2.2.4.1 Radiation Density

Radiation density, (W) is defined as average power of the radiated field per unit

area and it is calculated by the "Poynting Vector" [1].

W (r) =
1

2
Re[E(r)×H∗(r)] (2.27)
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Once E and H fields are determined by the use of formulas (2.25) and (2.24),

radiated power at any observation point can be calculated by (2.27).

In the far field, E and H fields and the propagation vector are mutually orthog-

onal. This means that the radiation density (W ) is in the propagation direction

in the far field region.

W (r) =
1

2η
|E(r)|2âr

2.2.4.2 Total Radiated Power

To find out the total radiated power Prad, we should integrate Poynting vector

over a closed surface surrounding the transmitter antenna.

Prad =

∫
s

1

2η
|E(r)|2ds′

"s" is the surface surrounding the antenna.

2.2.4.3 Radiation Resistance

Once the total radiated power Prad is calculated, we can calculate the radiation

resistance. If antenna is thought as a radiator, following formula can be written

to calculate the radiated power [1]:

Prad =
1

2
Rrad|I|2.

Then radiation resistance can be calculated as:

Rrad =
2Prad
|I|2

where I is the feed current.
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2.2.4.4 Feed Power

Feed power is the power input to the antenna at the feeding edge. This is the

input power that will be radiated.

Pfeed =
1

2
Re(IV ∗) =

1

2
Re(Zin|I|2)

V is the source voltage at the feed and I is the feed current. Zin is the input

impedance calculated in Section 2.2.3 and real part of the input impedance is

equal to the radiation resistance Rrad an for ideal antenna. So, for lossless ideal

antenna, "Feed Power" (Pfeed) and the "Total Radiated Power" (Prad) are equal.

It means that, antenna radiates all the power fed to the antenna.

2.2.4.5 Directivity

Directivity is another parameter that is used for analyzing antennas. Directivity

function is defined as the ratio of the power radiated by the antenna in a given

direction to the power that would be radiated in the same direction if all the

radiated power were distributed uniformly to the space. Directivity is given by

the following formula:

Directivity =
W (θ, φ)(4πr2)

P total
rad

.

2.2.4.6 Antenna Efficiency

Efficiency of an antenna (e0) can be defined by considering two type of losses;

losses due to the reflections at the antenna terminal because of the mismatch

(er) and losses due to the structure of the antenna (ecd). In general efficiency

can be calculated as:

e0 = erecd

where er = 1 − |Γ|2 and ecd=conduction and dielectric efficiency. ecd is also

named as antenna radiation efficiency [1].
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2.2.4.7 Gain

Antenna gain represents, the ratio of the power radiated in a given direction to

the power that would be radiated in the same direction if all the power were

distributed uniformly to space. Directivity and gain are similar parameters but,

former is calculated using the radiated power, while the latter is calculated using

the input power. For an ideal antenna, directivity and gain are identical since

all the input power would be radiated. However, since there are always losses in

real life, gain and directivity are related by the antenna radiation efficiency.

Gain =
W (θ, φ)(4πr2)

Pin

Gain = ecdDirectivity

2.2.4.8 Absolute Gain

In the gain definition, losses due to the mismatch between the transmission line

and the antenna (er) are not taken into account. Thus we can introduce a

definition, absolute gain, that considers also the reflection loss [1]

Gabs = erGain = (1− |Γ|2)Gain (2.28)

= e0Directivity.

Absolute gain is proportional to the ratio of power delivered to the observation

point to the power that is generated from voltage source of the antenna. For

this reason absolute gain is named also as "system gain". [19]
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CHAPTER 3

LOADED DIPOLE ANTENNA ANALYSIS

3.1 Antenna Loading

←−

−→
IL

+

−
VL

⇑I

⇑I

⇑I

E
load ↓

E
source

i ↑E
source

s ↓ Vant

ZL

+

-

←−

−→
Iant

Figure 3.1: Geometry of Loaded Dipole

To formulate the problem with lumped loads, we will reconsider the derivation.

The scattered field is given as

Es = −jωA−∇Φ
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where the scattered field Es is related to the incident field Ei by the use of

boundary condition; Etotal

t should vanish over the surface of the antenna.

The standard MoM formulation yields

〈Ei
,fm〉 =

N∑
n=1

InZmn.

On the antenna surface this equation can be expressed as

〈−Es
,fm〉 =

N∑
n=1

InZmn (3.1)

where we have

〈Ei
,fm〉 = 〈−Es

,fm〉 = lmVant

if m is the feeding edge. For all edges except the feeding edge

〈Ei
,fm〉 = 〈−Es

,fm〉 = 0

since Ei exists only at the feeding edge.

The method used for inserting a lumped load to the antenna is similar to what

we have done for Delta-Gap voltage source excitation. Load is assumed to be

connected to a single RWG element as shown in Figure 3.2.

C V

Figure 3.2: Loading of Voltage Source and Lumped Load

The presence of, loading causes a modification of boundary condition at the

loaded edge. The tangential component of the total electric field is no longer

zero at the load position but it is equal to Eload [12, 13].

E
total

= E
i
+ E

s
= E

load
= −VL

d
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where d is the gap width of the port that load is connected. As d tends to zero

E
load

= E
i
+ E

s
= −VLδ(z − zk)

where zk is the load position. Since Ei
= 0 at the loaded edge k

E
s

= −VLδ(z − zk). (3.2)

Equation (3.2) is in the form of (2.8). Then by the use of (2.11), we get

〈−Es
,fk〉 = VLlk

where fk is the testing function at the loaded edge k and lk is the length of the

loaded edge k.

Then by the use of (3.1)

〈−Es
,fk〉 =

N∑
n=1

InZkn = VLlk

Zk1I1 + Zk2I2 + . . .+ ZkkIk + . . .+ ZkNIN = VLlk

The terminal equation of the load VL = −ILZL must be satisfied at the load,

where IL is the current flowing over the loaded edge, IL = Iklk (2.19)

Zk1I1 + Zk2I2 + . . .+ ZkkIk + . . .+ ZknIN = −IkZLlk2

Rearranging this equation, we get

Zk1I1 + Zk2I2 + . . .+ (Zkk + ZLlk
2)Ik + . . .+ ZknIN = 0

and the MoM matrix equation becomes
Z11 Z12 Z13 · · · Z1n

Z21
. . . ...

... (Zkk + ZLlk
2)

Zm1 Zm2 · · · Zmn




I1

...

Ik

In

 =


V1

...

Vk

Vm


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This result shows that the antenna loading can be taken into account by a

modification of the loaded self-term elements of the MoM Impedance matrix.

This method provides great convenience, especially in computer programming.

Since loading effects only the self-terms of the MoM matrix, loaded antenna

impedance matrix can be written as the sum of two matrices

[Z][I] = ([Z0] + [ZL])[I] = [V ] (3.3)

where [Z0] is the NxN impedance matrix without loading and [ZL] is the loaded

impedance matrix with diagonal elements ZLlk2. Only the loaded edge (k) self-

terms (Zkk) of [ZL] are nonzero [14]. If load values are changed, there is no need

to calculate Z0 again, since it doesn’t contain loading effects, only [ZL] is to be

modified for different load values. Since load number (k) is usually very small

compared to the edge number (N), this method provides simplicity especially

in load value optimization process. Details will be given in the corresponding

section.

3.2 Matching Network

As discussed in Section (2.2.3), VSWR and the reflection coefficient (Γ) are

very important parameters for antenna designers. Especially for broadband

dipole antenna designs, providing small VSWR and small reflection coefficient

are mostly one of the hardest subjects of optimization since dipole antennas

have VSWR peaks at frequencies for which dipole length is an integer multiple

of wavelength (λ). To decrease the VSWR, a matching network can be connected

to the input of the antenna. The task of the matching network is to provide

stable and appropriate input impedance over the operational frequency range of

the antenna.

Matching network, used in this study consist of a parallel inductance and a

transformer. Figure 3.3 shows the matching network. ZA is the antenna input

impedance defined in Section (2.2.3). By the use of matching network, input
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Figure 3.3: Matching Network

impedance Zin is calculated as;

Zin = n2(ZLm//ZA) (3.4)

where, "n" is the transformer turns ratio, and ZLm is the impedance of the

inductance used in matching network, ZLm = jωLm.

Since characteristic impedance (Z0) of the transmission line is taken as 50 Γ, we

get

Γ =
Zin − 50

Zin + 50

V SWR =
1 + |Γ|
1− |Γ|

where "n" and the ZLm are the parameters, that can be optimized to have lower

Γ and VSWR.

3.3 Validation of the Code

In this section, antenna analysis code that is developed in MATLAB is inves-

tigated. This code is based on the procedure described up to this point. Strip

antenna surface is divided into planar triangular grids and RWG basis function

is defined on these triangles. By the use of (2.13), MoM impedance matrix is

obtained and surface currents are calculated. Numerical formulas (2.25) and
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(2.24) are then used to calculate the radiation fields created by these surface

currents.

For loaded dipole antenna analysis, impedance matrix is modified based on the

load positions and values. After then, the same procedure is used to calculate

the radiation fields. To investigate the broadband behavior of the unloaded and

loaded dipole antennas, calculations are done over a selected broad frequency

band and results are demonstrated as a function of frequency. Verification of

the developed code is done by comparing the results with the NEC.

3.3.1 Mesh Generation

Antenna surface is divided into planar triangular patches since RWG basis func-

tion is defined on triangular grids. When the length and the width of the strip

antenna is determined, triangular mesh modeling can be easily performed. For-

mulation in [20] is used to generate automatic triangular mesh over the strip

surface. This formulation is applicable to all rectangular objects.

Since the width of the dipole antenna is very small compared to its length,

surface current has only axial component (âz) according to the thin wire theory

[14]. Therefore, width of the strip is covered by only two triangles to form a

single RWG element in this direction, whereas length of the strip is divided into

numerous triangles to handle the current distribution in this direction. As the

triangle patch dimensions are decreased, the results approximate better to the

real results, since smaller mesh dimensions correspond to more samples over the

computational domain.

In the developed program, coordinate information of the mesh is saved in two

variables:

t(3 × N) - Node number for each triangle. One column represents three nodes
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of a single triangle. Total number of triangles is N .

t =


1 2 . . .

2 4 . . .

3 3 . . .


p(3 × P ) - Cartesian Node Coordinates, one column represents position of a

single node in x, y and z coordinates. Total number of nodes is P .

p =


0 5 5 10 . . .

2.5 0 5 2.5 . . .

0 0 0 0 . . .



4

2

1

3

1 2

Figure 3.4: Mesh Geometry

3.3.2 Frequency Sweep

Frequency dependence of the impedance matrix is investigated in the Section

(2.1.5). For broadband antennas, analysis should be done over desired broad

frequency band. Therefore, frequency should be swept over the frequency range

in "N" steps which results in repeating the calculation of the impedance matrix

"N" times.

Frequency step number should be selected high enough to take more samples

over the frequency range. Although, high sampling rate increases the process-
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ing work, since some parameters may change dramatically with the changing

frequency (such as gain), dense sampling is needed [2].

3.3.3 Numerical Electromagnetic Code (NEC)

To validate the code developed in MATLAB, NEC results are used as reference.

NEC is an antenna simulation program that gives enough approximate values

for the basic antenna parameters; forward gain, input impedance, reflection

coefficient and VSWR. These four parameters are selected as the criterion to

compare our results to the NEC results.

Basic difference between NEC and our analysis is the antenna construction

method. NEC simulates 3D, circular wire antennas. However, we modeled

the dipole antenna as a rectangular strip [3]. An equivalent strip width is given

as a = 0.25aeqv in [10], where "a" is the radius of the dipole and "aeqv" is the

width of the strip. This equivalence is examined by comparing the results. For

this purpose, examples are repeated for strip models with different widths and

different grid dimensions.

3.3.4 Dipole Antenna without Loading

As a first example we consider an unloaded, center fed dipole antenna of length

30 cm. In NEC, the radius is taken as 0.125 cm and the surface of the antenna

is divided into 61 equal segments. For comparison purposes, the radius (a) and

the segment number of the NEC model is kept constant.

Forward gain is defined in terms of spherical coordinates of θ and φ in NEC.

Since dipole antenna has symmetric radiation pattern in azimuth, φ can be

chosen arbitrarily. Whereas, θ is taken as 90 degrees for forward gain. In our

model, antenna is positioned in x-z plane, and observation point is selected

across the feeding edge, i.e. x=0 cm, z=15 cm and y arbitrary.

Several dipole antennas are considered with different strip widths to find the

equivalent strip antenna for cylindrical dipole with radius of 0.125 cm. Figures
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3.6, 3.7 and 3.8, show the results for strip widths of 0.125cm, 0.375 cm and 0.5

cm, respectively. According to the results, strip width of 0.375 cm and 0.5 cm

with 120 triangles gave very close results to NEC. Therefore, for dipole of radius

0.125 cm, strip of width 0.375 cm (a = 0.3aeqv) and 0.5 cm (a = 0.25aeqv) can

be taken as an equivalent strip antenna, verifying the statements in [10, 22]. An

additional case is also considered to show the effect of grid number in Figure(3.9).

If we compare the two strip models of width 0.5 cm with different triangle

numbers, shown in Figures (3.8) and (3.9), strip model with 120 triangles gave

better results than the model with 60 triangles. This is an expected result, since

dipole antenna in NEC is modeled as 61 equal cylindrical segments, which can

be thought as combination of two adjacent triangle patches of our strip model.

For unloaded dipole, it can be seen from the "Input Reactance" graphs that,

first resonance occurs when l = λ/2 (actually 0.47− 0.48λ), which corresponds

to 470-480 MHz and repeats in every λ/2 steps in frequency. Moreover, from

the "Input Resistance" graphs it is seen that, at the frequencies where l = λ

and multiples, input resistance becomes high, because of the very low current at

the feed point. Conversely, current at the feed point is high when l = λ/2 and

odd multiples, resulting in low input resistance. Since input resistance is close

to 50 Ω at the first resonance point (almost 70 Ω), reflection coefficient is very

low. When l = λ, (actually 0.8−0.9λ) second resonance (anti-resonance) occurs.

At this point, reflection coefficient is high because of the high input resistance

(larger than 1000 Ω).

Operating frequency band of a dipole antenna is typically limited with the low

reflection coefficient regions. Broadband optimization applications attempts to

decrease the reflection coefficient over much wider frequency bands.

According to [4], as the antenna radius is increased, the reactance and the re-

sistance of the antenna become more nearly uniform, resulting in broader band.

Moreover, resonance frequencies also get smaller as the antenna becomes thicker.
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3.3.5 Loaded Dipole Antenna

To investigate the effects of the resistive, capacitive and inductive loading, they

are considered separately. Graphs are drawn only for the equivalent strip an-

tenna of 0.5 cm width with 120 triangles.

For resistive loading, Figures (3.10) and (3.11); for capacitive loading, Figures

(3.12) and (3.13); for inductive loading, Figures (3.14) and (3.15) are given

below as examples. In all cases, there are two equal loads located at l/4 and

3l/4, where l is the antenna length. Only the load values are changed. The same

geometries are also solved in NEC and results are included in respective figures.

According to the results, resistively loaded dipoles, represent smoother impedance

and gain behavior compared to unloaded dipole. Average VSWR is decreased

and minimum gain is increased over the bandwidth with resistive loading. Ca-

pacitive loading also results in smoother impedance behavior. Moreover it causes

impedance curves to shift slightly to right (higher resonance frequencies). There-

fore, resonance frequency increases and antenna behaves as if it were shorter than

it really is [10]. The effect of capacitive loading is more prominent when the load

capacitance is smaller as can be seen from a comparison of Figures (3.12) and

(3.13). On the other hand, inductive loading causes dipole to behave as if it

were longer then it physically is, i.e., shifts the curves to the left.

3.3.6 Dual-band Dipole Antenna

Parallel-tuned resonant circuits can be used with a long dipole to constitute a

multi-band dipole antenna that operates as a shorter dipole at high frequency

and as a longer dipole at lower frequency. For the structure shown in Figure

(3.5), the L-C circuit is chosen to be resonant at the frequency where l1 be-

comes half-wavelength (l1 = λ/2). The resonant circuit provides a very high

impedance and isolates the outer portions of the dipole from the inner section

at this frequency. At some desired lower frequency the L-C circuit has a net in-

ductive reactance and forms a loading coil to tune the dipole antenna of length

l[4]. This is known as antenna trap.
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Figure 3.5: L-C Trap Antenna

To implement a trap, 2 parallel L-C circuits are included in a 30 cm dipole

at positions l/4 (7.5 cm) and 3l/4 (22.5 cm). Therefore, the distance between

traps is l1=15 cm. At the frequency where l1 becomes half-wavelength, L-C

trap should resonate and isolate the outer parts. Since l1=15 cm, the desired

resonance frequency can be calculated as 1 GHz. Therefore, the L-C trap should

resonate at 1 GHz.

ω =
1√
LC

= 2πf = 2π109

√
LC =

1

2π109

LC =
1

4π2
10−18 = 25× 10−21 (3.5)

At the lower frequency of 500 MHz, where full length (l =30 cm) of the antenna

becomes half-wavelength, L-C circuit doesn’t resonate and has a net reactance

which is proportional to the inductance value of L. Therefore, antenna behaves

like a inductively loaded dipole at this frequency.

To decrease the load effect and the loss, L can be selected low, i.e., L=5nH.

Moreover, C should be chosen to satisfy the equation (3.5), i.e., C=5pF. There-

fore, we expect antenna to resonate at 1 GHz because of the trap and at 500

MHz and the odd multiple frequencies, because of the 30 cm length inductively

loaded dipole. The results are shown in Figure (3.16) and are in agreement with

the above discussion.
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Figure 3.6: Unloaded Dipole Antenna; l=30 cm, w=0.25 cm with 120 triangles
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Figure 3.7: Unloaded Dipole Antenna; l=30 cm, w=0.375 cm with 120 triangles
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Figure 3.8: Unloaded Dipole Antenna; l=30 cm, w=0.5 cm with 120 triangles
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Figure 3.9: Unloaded Dipole Antenna; l=30 cm, w=0.5 cm with 60 triangles
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Figure 3.10: Resistively Loaded Dipole Antenna; 2x100 Ω at l/4 and 3l/4
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Figure 3.11: Resistively Loaded Dipole Antenna; 2x200 Ω at l/4 and 3l/4
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Figure 3.12: Capacitively Loaded Dipole Antenna; 2x1 pF at l/4 and 3l/4
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Figure 3.13: Capacitively Loaded Dipole Antenna; 2x10 pF at l/4 and 3l/4
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Figure 3.14: Inductively Loaded Dipole Antenna; 2x10 nH at l/4 and 3l/4
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Figure 3.15: Inductively Loaded Dipole Antenna; 2x20 nH at l/4 and 3l/4
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Figure 3.16: L-C Trap; 5 nH and 5 pF at l/4 and 3l/4
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CHAPTER 4

GENETIC ALGORITHM OPTIMIZATION OF LOADED

DIPOLE

4.1 Genetic Algorithm Procedure

Genetic algorithm is an optimization method inspired by genetics theory of

biology. Basically it relies on the assumption that, good parents will reproduce

good individuals. Genetic algorithm optimization searches for global optimum

by the use of natural selection, cross-over and the mutation operators.

Genetic algorithm procedure starts with the generation of an initial population

(P0) which consist of possible solutions of the optimization problem. Every pos-

sible solution in the population is named as a "chromosome". One chromosome

should include all the features of the problem that are required to be optimized.

Every single feature is called a "gene". After a population is generated, fitness

of all chromosomes in the population are evaluated by the use of a cost func-

tion. Cost function calculates the amount of proximity of the result obtained

to the targeted result. Then, according to the cost function results, some of

the weak chromosomes are eliminated by "Natural Selection" (Ps). After the

natural selection, survivors are matched by some selection methods to gener-

ate new offsprings by the use of "crossover" operator (Pc). Lastly, to prevent

the optimization from stalling, mutation process, which means changing some

properties of some chromosomes randomly, is implemented (Pm).

As a result, a new population is generated which is composed of mutated parents

and new offsprings. Further generations are obtained by the same procedure
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Start Optimization

Initial Population (P0)

Natural Selection (Ps)

Crossover (Pc)
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Convergence Check

Convergence

No Convergence

Stop Optimization

Figure 4.1: Genetic Algorithm Flowchart

until cost value drops below a target value. Flowchart is shown in Figure 4.1.

4.1.1 Chromosomes and Binary Encoding

Chromosomes are the individuals that are composed of genes. Every gene rep-

resents a solution to one feature that is required to be optimized and every

chromosome is also a solution to whole problem. In most cases, binary represen-

tation is used to express the chromosomes since it provides easy implementation
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of crossover and mutation operators. In an optimization problem, fitness of the

chromosomes are calculated usually in decimal numbers however genetic algo-

rithm is applied in binary domain. Therefore to use binary representation, a

conversion should be defined between binary and decimal domains.

A conversion of binary representation to decimal number can be defined as

X = Xmin +
Xmax −Xmin

2nbit − 1

nbit−1∑
n=0

bn2n (4.1)

where Xmin and Xmax are the minimum and the maximum limits of the vari-

able and "nbit" is the bit length of the value. bn are the bits of the binary

representation of X, "nbit" bits string b0, . . . , bnbit [2].

As seen from (4.1), length of the binary representation and the limits of the

variables specify the variable resolution, since space between minimum (Xmin)

and maximum (Xmax) limits of the variable is divided into 2nbit − 1 pieces and

variable can take values that are multiples of Xmax−Xmin

2nbit−1
.

Limits of the variables are defined based on the optimization problem. For

example, to optimize a load position in a loaded dipole problem, maximum

value that position of the load can take is the length of the antenna (l0) while

minimum point is very close to zero. Then the position gene limits are defined

as 0 < Position < l0.

However, resolution of a variable should be decided according to the desired

precision of that value. If change in the load position more than "n" cm results

in appreciable difference, then "n" cm resolution is reasonable. According to the

variable limits and the resolution, bit string length (nbit) is decided.

Chromosomes are produced by concatenating the binary representations of the

genes. Then, length of the chromosome bit string is the sum of the gene bit

strings in that chromosome.

For the antenna loading optimization problem, with parallel R-L-C circuit loads,

and we allocate "NR" bits for R value, "NL" bits for L value and "NC" bits

for C value and "NP" bits for the position of the load, and end up with a
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Figure 4.2: Load Position Binary Representation

N = NR +NL +NC +NP bit chromosome.

For one lumped load situation, chromosome can be formed as:

Chromosome = 1R . . . NR︸ ︷︷ ︸
Gene1:R−V alue

| 1L . . . NL︸ ︷︷ ︸
Gene2:L−V alue

| 1C . . . NC︸ ︷︷ ︸
Gene3:C−V alue

| 1P . . . NP︸ ︷︷ ︸
Gene4:Position

.

For antenna with "M" similar loads, chromosome length would be M × N .

Binary representation of this chromosome can be written as:

Chromosome = 1 . . . N︸ ︷︷ ︸
1st−Load

| 1 . . . N︸ ︷︷ ︸
2nd−Load

| 1 . . . N︸ ︷︷ ︸
3rd−Load

| · · · | 1 . . . N︸ ︷︷ ︸
Mth−Load

.

4.1.2 Initial Population

It would be beneficial to start with an initial population that contains all possible

solutions in the search space. However, it is generally not possible to use such
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a large population. Then, it would be desirable to have good individuals with

high fitness values in the initial population. Generally, it is not possible to make

a good initial estimation for optimal solution over the search space, and initial

population is created randomly [21].

Number of the chromosomes in the population (npop) is an important parameter

that should be specified by the user. Selecting population size larger provides

solution space to be sampled in more detail and results in faster convergence

to the solution. However, larger population size also requires more processing

power and more data storage. Therefore, population size itself also needs to

be optimized for different problems. Generally npop of around 100 is suggested

([21]).

One modified genetic algorithm method, named Micro-GA (Micro Genetic Al-

gorithm) is proposed in [19] which requires really low number of population size

(5 for the example in [19]). Mutation operator is not used in micro-GA and

population is regenerated randomly after every 5 steps, except the healthiest

chromosome. It is an alternative genetic algorithm method for users that don’t

want to use large population sizes.

4.1.3 Evaluation of Fitness

After the initial population is produced randomly, fitness of all chromosomes

in the population are evaluated by the use of cost function. First, genes of the

chromosome are separated since they were concatenated to form the chromo-

some. As an example, for a chromosome with 2 genes and both genes consisting

of 4 bit strings, we can write:

Chromosome=[01011100]

Gene1=[0101], Gene2=[1100]

Then, every gene is converted to the decimal number by the use of (4.1) since

cost function is defined in decimal numbers. Continuing the above example, we

may assume that the maximum value of the variable as 15 and its minimum
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value as 0, to obtain:

X = Xmin + Xmax−Xmin

2nbit−1

∑nbit−1
n=0 bn2n

Gene1 = 0 + 15−0
15

(1× 20 + 1× 22) = 5

Gene2 = 0 + 15−0
15

(1× 22 + 1× 23) = 12

The value represented by "Gene-1" is 5 and "Gene-2" is 12. Then, fitness of the

chromosomes are evaluated by using the cost function. A simple cost function

can be defined as:

Cost : f(X1 . . . Xn) =
n∑
k=1

Xk
2.

Then the cost for this chromosome is:

Cost =
2∑

k=1

Xk
2 = 52 + 32 = 34.

Cost function selection is the most important part of any optimization algorithm.

Its choice should facilitate convergence to the global minimum. The result of

the cost function represents the difference between the candidate solution and

the optimal solution. This subject will be further investigated in Section (5.3).

In most cases, cost function is defined to incorporate more than one goal. As

an example, requirements of an antenna design may be determined as maximiz-

ing the system gain while minimizing the VSWR. Such a problem is known as

multiple-objective optimization. A common way of dealing with multiple ob-

jectives is to normalize the cost of each objective weight and add the weighted

costs to get a single cost function [7], i.e.,

Costtotal = α ∗ Cost1 + β ∗ Cost2

where α and β are weights and Cost1 and Cost2 are the cost functions for system

gain and VSWR.
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4.1.4 Natural Selection and Mate Selection

Natural selection is a process which allows the healthiest members of the pop-

ulation to survive for the production of the next generation. Implementation

is simply keeping the "n" healthiest chromosomes and discarding the rest. If

one population consists of "m" chromosomes, healthiest "n" will survive and

the other "m− n" will be discarded. This is the implementation of the genetic

principle of "survival of the fittest". The next generation consists of these best

chromosomes and the individuals which are generated from them by the use of

crossover and mutation operators.

A mate selection method is required to choose parents of the new offsprings.

Roulette wheel selection which is used in this thesis work is one of the most

commonly used methods. Parents are selected in a random way but proportional

to the fitness of the chromosomes. The aim of the roulette wheel selection is to

select healthiest mates that will produce better offsprings.

The members that survive after natural selection are sorted according to their

cost values. Then a probability of selection is assigned to every chromosome

based on its rank in the sorted population for rank based probability. Every

member will have different probabilities. If we have "n" members and "pm"

represents the probability of the mth element in the rank and the chromosomes

are sorted ascending order of fitness, the probability of the mth element is

pm =
n−m+ 1

(1 + 2 + · · ·+ n)

For example, if "n" is 4, the probabilities are

p1 = 4/(1 + 2 + 3 + 4) = 0.4 = %40

p2 = 3/(1 + 2 + 3 + 4) = 0.3 = %30

p3 = 2/(1 + 2 + 3 + 4) = 0.2 = %20

p4 = 1/(1 + 2 + 3 + 4) = 0.1 = %10 (4.2)

In roulette wheel selection, a wheel is assumed that has the names of each

chromosome written on it [7]. Every chromosome covers a segment proportional
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Figure 4.3: Roulette Wheel Selection

to its probability (pn), which is calculated in (4.2). Wheel is rotated and when it

stops, the chromosome that the arrow of the system points at is selected. Since

we need a pair to have an offspring, wheel is rotated twice for each matching.

To implement roulette wheel selection, a random number "r" between 0 and 1 is

generated. The chromosomes are located on the wheel to cover the range from

0 to 1, based on their probabilities as:

chromosome1 = 0 ≤ r ≤ 0.4

chromosome2 = 0.4 < r ≤ 0.7

chromosome3 = 0.7 < r ≤ 0.9

chromosome4 = 0.9 < r ≤ 1.0

Another type of roulette wheel selection can be defined where probabilities are

specified according to the cost of the chromosomes. Then the probability of the

mth chromosome is;

Costm
(Cost1 + Cost2 + · · ·+ Costn)
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where "n" is the number of the selected members. However this type of selection

is rarely used since it causes close valued chromosomes to have close probabilities.

4.1.5 Crossover and Offspring Generation

Crossover operator generates new offsprings from the chosen mates which are

selected by the roulette wheel selection. Single point crossover, which is imple-

mented in this study, is the process of generating two offsprings by combining

two selected parents. If two selected chromosomes, called as mother and father,

are "n" bit strings; a random number "r" is generated, which is between 0 and

"n". First offspring is the combination of [1 . . . r] bits of mother chromosome

and [(r + 1) . . . n] bits of father chromosome. Second offspring is the reverse of

first one, [1 . . . r] bits of father chromosome and [(r + 1) . . . n] bits of mother

chromosome.

To implement this type of crossover, mask generation is used. After "r" is

determined, two masks are generated:

Mask1 = [111 . . . 1︸ ︷︷ ︸
1 to r

| 000 . . . 0︸ ︷︷ ︸
(r+1) to n

]

Mask2 = [000 . . . 0︸ ︷︷ ︸
1 to r

| 111 . . . 1︸ ︷︷ ︸
(r+1) to n

]

and offsprings can be defined by the use of these masks:

Offspring1 = Mask1×Mother +Mask2× Father

Offspring2 = Mask1× Father +Mask2×Mother

As an example, if chromosomes are 16 bit strings and random number "r" is 10,

then we would get:

mother = [1001011010|001011]

father = [0011101000|100110]

Offspring1 = [1001011010︸ ︷︷ ︸
mother

| 100110︸ ︷︷ ︸
father

]

Offspring2 = [0011101000︸ ︷︷ ︸
father

| 001011︸ ︷︷ ︸
mother

]
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The ratio of the chromosomes that are subjected to crossover operation, to the

total chromosome number is called the "crossover rate". High crossover rate

provides faster convergence to the optimal solution, although it may cause the

fitter chromosomes to be lost sometimes. Crossover rate is suggested to be

between 0.8 and 1 in [2] and between 0.6 and 0.8 in [15].

4.1.6 Mutation

Mutation operator is used to prevent optimization to converge to local optimal

solution before the solution space is searched in detail. These local optima

may cause the algorithm to stall and the global optimum can not be reached.

Mutation induces random variations in the population. In binary representation

mutation is implemented by simply, altering the bits in the population that are

selected randomly.

•• •
•

•

minimum
local

minimum
global

Figure 4.4: Mutation Operation

parent = [0011001011]

child = [0001001111]

If desired, healthiest chromosome can be excluded from mutation process. This

ensures that the cost changes monotonically and prevents loosing the healthiest
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chromosome.

Mutation rate is the ratio of bits that will be mutated to the total number of bits

of the population. If it is selected too low, it won’t make appreciable change;

but if it is selected too high, it may cause divergence. Mutation rate between

0.0001 and 0.005 is recommended in [2], these suggestions are evaluated in the

Section (5.2).

4.1.7 Termination of the Algorithm

The fittest element of the new generation is subjected to the convergence check

after the mutation process. This is the last step of a single optimization cycle as

shown in Figure (4.1). If the best chromosome satisfies the optimization require-

ments, algorithm is terminated; if not, cycle continues with natural selection.

Maximum generation number is added to the optimization algorithm as an addi-

tional control. In some optimization problems, results may not converge to the

desired values because of the improperly selected predefined parameters. For

these cases, a limit for maximum generation should be defined to terminate the

algorithm, when generation number is reached to this limit.

65



66



CHAPTER 5

OPTIMIZATION EXAMPLES

In this chapter, several dipole antenna loading optimization examples are pre-

sented. Objectives of the optimization are selected as forward gain of the system

(Gsys) and the VSWR. To calculate the fitness of the chromosomes, a computer

program, based on the theory described in the second and third chapters are

used. Moreover, a genetic algorithm code is developed and combined with this

program to iteratively optimize loaded dipole antennas.

5.1 Predefined Parameters in the Problem

The length of the dipole is kept constant at 30 cm and optimization is carried

over 2 different frequency ranges; namely, 400-1800 MHz and 400-2000 MHz.

Requirements of the optimization are selected as maximum VSWR of 3.5 and

minimum system gain of -3 dB.

Gain and VSWR behavior of the unloaded 30 cm length dipole is investigated in

the Chapters 1 and 2. Therefore for the comparison of the results, data obtained

in these chapters is used.

Dipole antenna is loaded with 3 parallel R-L-C circuits, and a matching network

consisting of a transformer with turns ratio of "n" and a parallel inductance is

considered. In one chromosome, there are 4 genes for each load. One gene for R

value, one for L, one for C and one for the position of the load. Since we have 3

loads, there are 12 genes in a chromosome. With additional 2 genes, representing

the turns ratio of transformer and the inductance value in the matching network,
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total is 14 genes. If we use 7 bits for all variables, one chromosome is a 14×7 = 98

bit string.

V

L
oa
d

3

h3

L
oa
d

2

h2

L
oa
d

1

h1

M.N.

Figure 5.1: Optimized Antenna Structure

The limits for the variables are decided as following: R = 0−5000 Ω, L = 0−5000

nH, C = 0− 5000 pF, H(Position) = 0− 30 cm, n(turnsratio) = 0.1− 1.
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Since every variable is represented in 7 bits, resolutions are calculated as

ResR =
(Rmax −Rmin)

27 − 1
= 39.4Ω

ResL =
(Lmax − Lmin)

27 − 1
= 39.4 nH

ResC =
(Cmax − Cmin)

27 − 1
= 39.4 pF

ResH =
(Hmax −Hmin)

27 − 1
= 2.3 mm

Resn =
(nmax − nmin)

27 − 1
= 0.007

5.2 Genetic Algorithm Operators

Population size of 50, 100 and 200 are tried, 100 and 200 chromosomes gave

acceptable results. After the natural selection, best 10 of chromosomes are sur-

vived. These 10 chromosomes are transferred directly to the new population.

To generate new offsprings mates are selected by the use of "roulette wheel"

selection. It was observed that, rank sorted and cost based probability assign-

ments did not make much difference, and rank sorted probability assignment is

used in optimization. Then, offsprings are generated by single point crossover.

Point for the crossover is selected randomly. With new offsprings, number of

chromosomes are raised to 100 or 200 again. Mutation is applied with a rate

of "nmut". Mutation rate of 0.05 is found to be a good choice in our example,

although it is higher than the recommendations. To keep the best individual,

the best chromosome is not mutated.

5.3 Cost Function

Cost function contains the system gain and the VSWR. To satisfy the optimiza-

tion requirements, the minimum system gain and the maximum VSWR over the
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frequency band are considered. The cost function is defined as

Cost = αFg + βFv

where Fg is the cost for the gain and Fv is the cost for VSWR and α, β are the

coefficients. In the optimization examples that are presented below, values α=10

and β=1 are used and they gave acceptable results. The difference between

obtained value and the desired value is normalized with the desired gain and

VSWR:

Fv =

0 , if (V SWR)max ≤ V0

(V SWR)max−V0
V0

, otherwise
(5.1)

Fg =

0 , if (Gsys)min ≥ G0

G0−(Gsys)min

G0
, otherwise

(5.2)

where G0 is the target system gain of -3 dB and V0 is the target VSWR of 3.5 [5].

System gain, (Gsys) or the absolute gain, (Gabs) is defined in Section (2.2.4.8).

Gsys = (1− |Γ|2)︸ ︷︷ ︸
ReflectionEfficiency

G(θ = 90,Φ)︸ ︷︷ ︸
AntennaGain

By the use of genetic algorithm optimization, cost is decreased in each gener-

ation, where system gain is maximized and VSWR is minimized as shown in

Figure (5.2).

Antenna gain, (G(θ = 90,Φ)) can be used instead of system gain in the cost

function. However, since Gsys includes both effects of VSWR and the antenna

gain and it is proportional to the amount of power that is transferred from

transmission line to the observation point, we used Gsys. Antenna forward gain

information is also given in the optimization example results for comparison.

5.4 Impedance Matrix Manipulation

Since genetic algorithm optimization is an iterative process, it has high compu-

tational cost. For one frequency sweep with 100 steps, impedance matrix should
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Figure 5.2: Genetic Algorithm Optimization

be calculated 100 times. During the optimization process, since we have 100-

200 elements in the population, to find out the maximum gain and minimum

VSWR over the band, all calculations must be done 10000-20000 times for each

generation.

A method to decrease computational burden, based on Sherman, Morrison,

Woodbury matrix inversion lemma is described in [2]. In this approach, the

large MoM impedance matrix of the unloaded dipole is inverted only once for

each frequency. As discussed in Section (3.1), MoM impedance matrix can be

written as Z = (ZL + Z0), where Z0 is the unloaded impedance matrix and ZL

is a diagonal matrix determined by the R-L-C loads. We know that Z0 changes

only with the frequency and loading effects are expressed in ZL. Then, we don’t

need to calculate Z0 for every optimization cycle. It can be calculated for all

frequencies for once and then only ZL will be calculated for different load com-
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binations. Since ZL has only m (number of loads, which is chosen to be 3 in

this work) non-zero components, computational load decreases drastically, [2].

In MATLAB code, calculation of the cost function can be done in 10 seconds

for a population of 200 members, by the use of this method.

5.5 Evaluation of the Results

Three broadband dipole antennas obtained by the use of genetic algorithm op-

timization technique, are described in this section.

First optimization is done for a dipole antenna with 4.5:1 bandwidth, operating

over 400-1800 MHz frequency range. Antenna is optimized successfully. Opti-

mization results are shown in Figure (5.4) with the resultant configuration and

results without matching network are shown in Figure (5.3). Algorithm resulted

in two R-L and one R-L-C loads. Minimum system gain is higher than -2.5 dB

and maximum VSWR is lower than 3.2. System gain was increased considerably

except the first resonance frequency with respect to the unloaded antenna.

Minimum antenna forward gain is also presented. If we compare the resultant

forward antenna gain with the unloaded dipole antenna forward gain, that is

discussed in Section (3.3.4), decrease in the loaded antenna gain on overall fre-

quency band is seen. The reason of the low forward gain is the losses due to the

loading. Loads on the antenna dissipated some of the power and prevented the

radiation of some antenna input power. Figure (5.5) compares the input power

to the radiated power. If the loss due to the loads are added to the radiated

power (where this summation is named as total power and shown by "x" in

graph), it is seen that input power is exactly equal to the total power (total

power and the input power drawings are overlapping). Therefore it is clear that

the difference of the radiated power and input power is completely caused by the

loading loss. This result shows that, antenna radiation efficiency is decreased

while total power radiated to the observation point is increased over the band.

This is an expected result whereas broadening the bandwidth can be achieved

by loading with additional load losses. Moreover, directivity pattern of the an-

72



tenna is also shown in Figure (5.5). It is seen that although gain of the antenna

is decreased, it is still directive in the forward direction.

Second optimization example is done for 5:1 bandwidth dipole operating over

400-2000 MHz. Algorithm resulted the optimized parameters shown in Figure

(5.6) and (5.7). Resultant loads were two R-L and one R-L-C circuits. Minimum

system gain of -2.9 dB and maximum VSWR of 3.2 are obtained. Loss due to

the loading and the directivity vs gain comparison are shown in Figure (5.8).

Finally one more dipole antenna with bandwidth of 5:1 over 400-2000 MHz is

designed. Acceptable results are taken and shown in Figures (5.9), (5.10) and

(5.11). Maximum VSWR was less than 3.5 over most of the band and minimum

system gain was 2.8 dB. These loaded antennas demonstrated good system gain

especially at the frequencies (1800 MHz) where unloaded antenna has null as

shown in Figure (5.12).
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Loads Resistance(Ω) Inductance(nH) Capacitance(pF) Position(cm)
1 4724 3543 0 4.5
2 2087 157 0 28.3
3 472 157 2559 18.5
Lm 118 nH
n 0.36
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Figure 5.3: Optimized Dipole-1 without Matching Network
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Figure 5.4: Optimized Dipole-1 at 400-1800 MHz
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Figure 5.5: Optimized Dipole-1
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Loads Resistance(Ω) Inductance(nH) Capacitance(pF) Position(cm)
1 2323 3583 0 4.7
2 472 39 0 25.5
3 1614 3622 669 15.2
Lm 157 nH
n 0.38
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Figure 5.6: Optimized Dipole-2 without Matching Network
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Figure 5.7: Optimized Dipole-2 at 400-2000 MHz

78



400 600 800 1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

dB

Frequency(MHz)

Gain vs Directivity

 

 

Gain
Directivity

400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

W
at

ts

Frequency(MHz)

Input Power vs Radiated Power

 

 
Input Power
Radiated Power
Total Power
Loss

Figure 5.8: Optimized Dipole-2
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Loads Resistance(Ω) Inductance(nH) Capacitance(pF) Position(cm)
1 5000 4882 0 25.5
2 4961 4961 0 3.1
3 2874 118 0 24.6
Lm 156 nH
n 0.4
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Figure 5.9: Optimized Dipole-3 without Matching Network
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Figure 5.10: Optimized Dipole-3 at 400-2000 MHz
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Figure 5.11: Optimized Dipole-3

82



400 600 800 1000 1200 1400 1600 1800 2000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency (MHz)

G
ai

n 
(d

B
)

Forward Gain

400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

Frequency (MHz)

V
S

W
R

VSWR of Unloaded Dipole

Figure 5.12: Unloaded Dipole

83



84



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis work, a procedure for broadband loaded dipole antenna design

is presented. As a starting point, EFIE derivation for unloaded and loaded

dipole antenna is provided for dipole antenna analysis. Then a "Genetic Algo-

rithm" based optimization method to design broadband dipole antennas with

low VSWR and high gain is discussed.

Genetic algorithm has been used in loaded wire antenna designs for years. A

loaded wire antenna design by the use of genetic algorithm was done by Rogers

to achieve 5:1 bandwidth over 200-1000 MHz, with VSWR less than 3.5 and

system gain greater than -4 dB [18]. In a similar study, 20:1 bandwidth wire

antenna design is achieved with VSWR less then 3 and system gain greater then

-3.2 dB [19]. A successful loaded wire antenna design is given in [2] between

30-450 MHz, where system gain and VSWR are required to be greater than 0

db and less than 3.5.

Monopole antennas were not studied in this work. However, since a monopole

antenna, which is located on an infinitely large perfect conductor can be modeled

as a dipole antenna by the use of "Image Theory", this analysis and optimization

tool can also be used for loaded monopole antenna design.

In this work, three broadband dipole antennas of 30 cm length were designed

with bandwidths 4.5:1 over 400-1800 MHz, 5:1 over 400-2000 MHz. All antennas
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achieved the design goals of maximum 3.5 VSWR and minimum -3 dB system

gain, over most of the design bandwidth.

It was investigated in the Section (5.5) that losses due to the loading caused

forward antenna gain to decrease. It was found that, the ability to operate the

antenna over a broadband with low VSWR comes at the expense of efficiency

[18]. However, since VSWR was decreased in a considerable amount, power

transferred to the antenna from transmission line is increased. This was shown

by the increase of the system gain (Gsys), since it takes into account both the

transmission line mismatch and the antenna gain. According to the Figures(5.4),

(5.7) and (5.10); loading decreased the VSWR and increased the system gain in

spite of causing additional losses.

For further investigation, dissipated power in the loads were calculated by the

use of load impedance and the port current. It was then compared with the

difference of radiated and input power. Although the gain of the antenna is

decreased due to the power dissipated by the loads, they were still directive as

shown in the "Directivity vs Antenna Gain" figures.

6.2 Future Work

This optimization process was designed to decrease maximum VSWR and to

increase minimum system gain over a broad bandwidth. However in some appli-

cations, average gain and VSWR may be considered more important. Therefore,

in addition to the to the maximum VSWR and minimum gain requirements, av-

erage gain and VSWR optimization can be included as an additional objective.

The antennas that were designed in this study were not realized. Since opti-

mization resulted in arbitrary load values, which are not available commercially,

these loads should be produced specially. Some similar studies are documented

in [2] and [18]. Moreover, when resultant optimized load values are changed

slightly, it is seen that results are not effected that much, although results are

more sensitive to load position changes. Therefore, optimized load values can be

modified to have more realizable load values which will give very close results.
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Another alternative is using loads that are potentially realizable. However this

time it will be hard to optimize the antenna since population size will decrease.

In conclusion, for further studies, optimization may be extended to form an

array of loaded dipoles in order to have directive patterns for direction finding

(DF) applications. This time array elements and spacings will need to be added

to the optimized parameters. Genetic algorithm optimization samples exist in

the literature for antenna array designs.
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