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ABSTRACT 

 

 

INVESTIGATION OF THE EFFECT OF TURBULENCE ON ENTROPY 

GENERATION IN TURBOMACHINERY 

 

ORHAN, Ömer Emre 

PhD, Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Oğuz UZOL 

 

January 2014, 138 pages 

 

The aim of this thesis is to apply a newly developed methodology to calculate 

entropy production. Entropy production calculations have always attracted attention 

due to its extreme importance in efficiency improvement. Efficiency improvement 

can be achieved via several optimization techniques and Entropy Generation 

Minimization (EGM) is one of the most acknowledged ones.  

When it comes to the design and analysis of turbomachinery components, the 

performance deterioration due to various real flow effects such as secondary flows, 

profile losses or tip-leakage losses is generally represented through semi-empirical 

loss coefficients. Instead of relying on these coefficients one can use entropy 

generation rates as a consistent and quantitative measure of lost work due to 

irreversibilities, which can be calculated globally using the inlet and exit values of 

calculated pressures and temperatures of a system. However, if complete quantitative 

descriptions of velocity and temperature fields are available, one can compute field 

distributions of local viscous and thermal entropy generation rates by post-processing 

the available data.  

Another way of calculating entropy generation is possible using the combination of 

entropy transport equation with the positive definite entropy generation equation. In 

this study, a new entropy transport equation has been developed with the turbulence 

models and calculated using commercial CFD software. This new equation has been 
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applied for the calculation of entropy generation around a gas turbine stator blade 

and the results have been compared with the results of the existing calculation 

methods. 

 

Keywords: Entropy, turbulence, turbomachinery, efficiency, CFD 
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ÖZ 

 

 

TURBOMAKĐNALARDA ENTROPĐ OLUŞUMUNA TÜRBÜLANS ETKĐSĐNĐN 

ĐNCELENMESĐ 

 

ORHAN, Ömer Emre 

Doktora, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Oğuz UZOL 

 

Ocak 2014, 138 sayfa 

 

Bu çalışmanın amacı, yeni geliştirilmiş olan entropi oluşum hesaplama yöntemini 

uygulamaktır. Entropi oluşum hesaplamaları, verimliliği arttırma üzerindeki çok 

önemli etkisi nedeniyle her zaman dikkat çekmiştir. Verimlilik iyileştirmesi, çeşitli 

yöntemlerle hesaplanabilir ve Entropi Oluşum Minimizasyonu (EOM) bunlar 

arasında en bilinenlerindendir. 

Turbomakina parçalarının tasarım ve analizlerinde, ikincil akışlar, profil ve tip akım 

kayıpları şeklinde ortaya çıkan performans düşüşleri yarı-empirik kayıp katsayıları 

ile ifade edilmektedir. Bunlara güvenmek yerine, entropi oluşum hızları, sistemin 

hesaplanan giriş ve çıkış basınç ve sıcaklık değerleri ile tersinmezlikten kaynaklanan 

kayıp işin tutarlı ve nicel bir oranı olarak hesaplanabilir. Fakat, bütün sistem için hız 

ve sıcaklık verileri var ise, lokal viskoz ve termal entropi oluşum hızları, bu veriler 

kullanılarak hesaplanabilir. 

Entropi oluşumunu hesaplamanın bir diğer yöntemi ise entropi transport denklemi ile 

mutlak pozitif entropi oluşum denkleminin birleştirilmesidir. Bu çalışmada, türbülans 

modelleri eklenerek yeni bir entropi transport denklemi geliştirilmiş ve ticari bir 

HAD yazılımında uygulanmıştır. Bu yeni denklem, bir gaz türbini stator kanadı 

çevresindeki entropi oluşumunun hesaplanması için kullanılmış ve sonuçlar diğer 

hesaplama yöntemlerinin sonuçlarıyla karşılaştırılmıştır. 
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3  

4 INTRODUCTION 

 

 

 

“Entropy”, “Turbulence” and “Turbomachinery” are the three keywords that a 

researcher would be very cautious and maybe anxious when they appear all together 

in one sentence. However, at the same time, one can easily feel that they are 

extremely important and fundamental parameters, especially in the case of 

turbomachinery flows. This is due to the fact that entropy is considered to be the 

main cause of inefficiency and losses in thermodynamics; therefore a thorough 

understanding of entropy is needed to overcome the difficulty of achieving more 

efficient machines.  

 

The main driver of this thesis comes from the idea of understanding this complex 

internally connected phenomenon of entropy and how it is affected by turbulence. 

This relation, when studied analytically with a theoretical background, will then be 

applied to specific problems, being a 2D turbomachinery flow around a gas turbine 

stator in this case. But before diving into the details of entropy, one has to understand 

what entropy is, which is described in the next section. 

 

Equations and definitions about entropy have been discussed by many scientists and 

entropy is considered as a thermodynamic property of a system. This is later used to 

quantify the disorder which is closely related with the efficiency of a system. 

Increasing efficiency and/or decreasing the losses have always been a hot topic for 

scientists and engineers since efficiency-loss interaction is defining the performance 

of machines, especially for the turbomachines. Therefore, many studies have been 

conducted about entropy and turbulence in turbomachines. Some important and 

relevant studies about these subjects are summarized in the next section. 
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1.1 Literature Survey and Past Studies 

 

Literature survey and past studies have been evaluated based on two main categories. 

The first one is related with calculation of entropy generation. Second category is 

related with turbulence related issues like Direct Numerical Simulations (DNS) to be 

used for a-priori testing and entropy turbulence entropy interactions. 

 

There are various areas and subjects where entropy generation calculations have been 

conducted. Erbay et al. [33] investigated the two dimensional entropy generation 

between two parallel plates for a transient convective transfer whereas Yapıcı et al. 

[34] presented the local entropy generation for a suddenly expanding pipe. Both 

studies utilize the general descriptions of viscous and thermal entropy generations. In 

[35], Giangaspero and Sciubba, utilized the local entropy generation maps in order to 

design a LED-based spotlight. Ertesvåg and Kolbu [36], created an entropy 

production for a turbulent combustion case using CFD. Naterer et al. [37] [38], on 

the other hand, focused on the numerical and experimental aspects of entropy. In 

their study, Adeyinka and Naterer performed an experiment to measure the entropy 

production indirectly [39]. 

 

Entropy-turbulence interactions attracted attention of many researchers leading to 

several thesis studies. Among those, the one performed by Kramer-Bevan [24] is 

important due to its unique approach to turbulence-entropy formulations. In addition 

to Kramer-Bevan, Hauke [40] and Edward [41] from Stanford University, performed 

studies showing the importance of entropy in adequate formulation of turbulence. 

 

Loss predictions in turbomachinery could be based on the direct solution of the 

entropy generation equation. The entropy production actually can be used as a 

performance parameter if it can be calculated accurately as a part of the flow 

solution. One of the first ideas of utilizing the so called Entropy Generation 

Minimization (EGM) technique was developed by Bejan [5]. Bejan indicates that 

EGM, in addition to the importance of the first law of thermodynamics, shall have an 

important role in the analysis of systems involving heat transfer and viscous 
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dissipation phenomena, which are dominant in turbomachinery flows demonstrating 

the necessity of entropy generation calculation. Bejan also in his study based on 

relationship between the constructal law and the design of biosphere [32] states that: 

 

“…for a flow system to persist in in time (to live), it must evolve such that it provides 

easier and easier access to its currents.” 

 

This definition is similar to what one is trying to achieve via EGM methodology.  

 

In the design and analysis of turbomachinery components, the performance 

deterioration due to various real flow effects such as secondary flows, profile losses 

or tip-leakage losses is generally represented through semi-empirical loss 

coefficients. Instead of relying on these coefficients one can use entropy generation 

rates as a consistent and quantitative measure of lost work due to irreversibilities, 

which can be calculated globally using the inlet and exit values of calculated 

pressures and temperatures of a system. However, if complete quantitative 

descriptions of velocity and temperature fields are available, one can compute field 

distributions of local viscous and thermal entropy generation rates by post-processing 

the available data. One such example for an air-cooled gas turbine stator blade can be 

found in Natalini and Sciubba [6]. The effective loss of work or destruction of exergy 

(Sciubba [7]) is related to the entropy generation through the Gouy-Stodola theorem 

as explained in Bejan [5] and Natalini and Sciubba [6]. Sciubba has some more 

interesting studies related with the utilization of entropy generation in [30] and [31]. 

 

Drost and White [8] realized the lack of entropy generation applications to complex 

problems and pointed out that up to that time there was no integration of the entropy 

generation equations with the CFD codes. They emphasized that since no analytical 

formulations of local entropy generation in turbulent flows exist in open literature, 

that part of the calculation could not be benchmarked for turbulent flows. Kock and 

Herwig [9], calculated the entropy generation for a heated pipe. In their study, the 

entropy production mechanisms were divided into four different groups such as the 

ones due to mean and fluctuating velocity fields and heat flux. The study concluded 
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that the entropy production can be a parameter to define the efficiency of the system 

analyzed. McEligot et al. [10], on the other hand, performed a calculation of entropy 

production using the already available DNS data by Abe et al [11] instead of using a 

CFD code. Their study was mainly concentrated on the near wall region where they 

compared two different approaches about pointwise calculation of entropy 

generation.  

 

There are several studies available that applied entropy generation methodologies 

using CFD approach. Iandoli et al. [15] provides some practical examples for the 

application of entropy generation formulation to turbomachines. In their study 

thermal entropy generation contours around the stator blades and the hub have been 

calculated [15]. On the other hand, Alabi et al. [16] computed the entropy generation 

contours around the B747-200 aircraft. This shows that, the entropy generation can 

also be used to identify the performance on a more macroscopic level instead of a 

component level. 

 

Entropy generation calculation as part of turbomachinery design is becoming an 

integral part of turbomachinery calculations like velocity and temperature fields due 

to the fact that it affects directly the efficiency. Schmitz et al [42], performed a 

comparison of experimental results and calculations for an axial turbine blade and 

entropy contours form an important part of this study. Other studies involve the 

calculations around the supercritical compressor blades by Song [43], multistage 

flows around transonic gas turbine compressors by Culver [44], transient viscous 

flow calculations around a turbine stage by Shavalikul [45] and an experimental 

study about pressure exchange in supersonic flows by Bulusu [46]. 

 

It has been emphasized before that entropy and turbulence are closely correlated. In 

order to understand the details of this correlation; one also needs to go deeply into 

turbulence. Since complete understanding of turbulence is not possible, several 

closure strategies involving turbulence models are needed. In order to check the 

validity of turbulence models a-priori testing using DNS databases is widely used as 

reference.  
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Kawamura et al. has many channel flow studies involving DNS solutions for 

different Reynolds and Prandtl numbers [11] [47] [48] [49] [50] [51]. Another group 

of useful studies have been performed by Moin et al. both for the channel and flat 

plate cases [52] [53] [54] [55]. In addition, Iwamoto et al [56] and Brandt [57] and 

have similar studies like Kawamura and Moin. On top of DNS studies, Österlund 

[58] provides experimental results for turbulent boundary layer flow over a flat plate. 

 

Since entropy-generation equation together with the turbulent effects involve some 

turbulent scalars, a review of studies about turbulent scalar evaluations has been 

performed. Na et al [59] presents the effect of Prandtl number on temperature 

fluctuations. Pasinato [60] utilized DNS to understand the physics beyond velocity-

temperature fluctuations for channel and plane Couette flows. Donzis et al in [61] 

and [62] compare the scalar dissipation rate calculations with the experimental 

results. 

 

All of the above mentioned studies reveal the importance of calculating the entropy 

generation as a performance parameter. However, all of them are based on a 

calculation that requires the solution of the velocity and temperature fields. Adeyinka 

and Naterer [12] proposed a more direct approach which involves including the 

Reynolds Averaged Entropy Transport equations, known as the Reynolds Averaged 

Clausius-Duhem equality, as a part of the solution process in turbulent flows. This 

technique of course involves a closure problem, similar to the closure of Reynolds 

stresses in the momentum equation, related to the calculation of mean entropy 

generation in terms of other mean flow quantities. A closure model was proposed by 

Adeyinka and Naterer [12] and tested in a turbulent channel flow between two 

parallel plates using Direct Numerical Simulation (DNS) data obtained by Moser et 

al. [13]. The findings of the study performed by Adeyinka and Naterer [12] are the 

main drivers of this thesis. 

 

1.2 Thesis Motivation and Objectives 

There are two main approaches of calculating the entropy field in general: 
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The first one can be considered to be a “global” approach such that only the inlet and 

exit values of mean pressures and temperatures of a system are used to estimate the 

amount of entropy change that occurs within the system [3]. This method is 

straightforward and very easy to implement since no additional information related to 

the flow variations or turbulence is needed.  

 

The second approach is relatively more advanced such that it attempts to obtain the 

entropy field by integrating locally calculated viscous and thermal entropy 

generation rates through a transport equation as long as a complete quantitative 

description of the mean velocity and mean temperature fields is available. This 

second approach can be considered as a “direct” method and the related Reynolds-

Averaged form of the entropy transport equation is first introduced by Adeyinka and 

Naterer [12]. The right-hand-side of the Reynolds Averaged Entropy Transport 

equation, which we will represent in short as the RAET equation from now on (and 

may appropriately be pronounced as “rate”) represents the rate of local entropy 

generation and involves many correlations related to the fluctuating temperature and 

velocity fields, which are difficult to model in general. However, an “approximate” 

solution may be obtained by disregarding all turbulence related terms on the right-

hand-side and just keeping the terms related to the mean flow variations.  

 

The potential of using the second approach as described above for better estimating 

the entropy field constitutes the main motivation for this study. 

 

In this framework, one of the objectives of this thesis is to first apply and extend the 

entropy production modeling approach by Adeyinka and Naterer [12]. For this 

purpose, available models from existing literature on various turbulence-temperature 

correlations have been collected and adopted for modeling all necessary terms on the 

right-hand-side of the RAET equation. Therefore a complete closed differential 

equation set is generated that can be integrated in a coupled manner to obtain the 

mean entropy field. To the author’s knowledge, this is the first study that attempts to 

implement a model for each one of the turbulence related terms in the right-hand-side 

of the RAET equation and that comes up with a closed equation set, which can then 
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work together with a RANS solver. For testing the prediction performance of the 

implemented models for the turbulence-temperature correlations, Direct Numerical 

Simulation (DNS) data for a non-isothermal fully developed channel flow are used 

(Schlatter [14]). 

 

A second objective of the thesis is to develop a working methodology to obtain a 

solution to the entropy field through the RAET equation system as described above. 

This of course involves the utilization of a RANS solver, the converged results of 

which can be used as an input background flow field to solve the RAET equation 

system. For a steady-state problem, the implementation involves first obtaining a 

converged solution for the mean flow field by solving RANS equations together with 

an appropriate turbulence model and then integrating the RAET equation system 

using the data from the converged mean flow field. If all turbulence related terms in 

the RAET equation are to be included in the solution through appropriate models, the 

calculation for the entropy field involves the solution of six coupled transport 

equations in total. 

 

A third objective of the current study is to apply the developed methodology to a 

non-isothermal turbomachinery flow field simulation to investigate the differences in 

the predicted entropy fields with and without the effects of turbulence. For this 

purpose the axial turbine cascade geometry of Natalini and Sciubba [6] is used and 

various comparisons are performed as presented in detail in this thesis. 
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1.3 Outline of Thesis 

 

In Chapter 2, the governing entropy transport equations are developed. First the 

relationship between the available work and entropy generation is defined using the 

Gouy-Stodola theorem. Then the general entropy generation equation is derived 

including the thermal and viscous parts. This equation is combined later with the 

entropy transport equation and turbulence effects are considered after Reynolds 

averaging is applied. 

 

Chapter 3 concentrates on the a-priori testing of the models for turbulence-

temperature correlations appearing in the right-hand-side of the RAET equation. 

Model equations for parameters such as, �i������������, �i′� ′������ and �� ′��������� are formed to be 

utilized in the RAET equation and these model equations are evaluated based on the 

DNS data available. 

 

The methodology developed in Chapter 2 and 3 is applied to the two dimensional 

cascade problem given in Natalini and Sciubba [6] and the results are presented in 

Chapter 4. 

 

The study is finalized with the conclusions and comments about future work which 

are given in Chapter 5. 
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CHAPTER 2 

5  

 

6 ENTROPY GENERATION MODELING 

 

 

 

In order to cope with Entropy Generation Minimization (EGM), first entropy 

generation shall be understood. About the close interaction between entropy 

generation and lost available work Bejan states that [17]: 

 

“Unlike lost available work, which is subject to convention, the entropy generation 

Sgen depends solely on the degree of thermodynamic irreversibility of the system. If 

engineering systems and their components are to operate such that the destruction of 

available work is minimized, then the design of such systems and components must 

begin with the minimization of entropy generation.” 

 

In this section, first the relationship between the available work and entropy 

generation is defined using the Gouy-Stodola theorem. This theorem is named after 

the two famous scientists, Gouy [18] and Stodola [19]. Then the general entropy 

generation equation is derived including the thermal and viscous parts. This equation 

is combined later with the entropy transport equation and turbulence effects are 

considered after Reynolds averaging is applied. 

 

2.1 Formulization of Entropy Generation 

 

According to Gouy-Stodola theorem, the relationship between the lost available work 

and the entropy generation is defined by [17]: 

 	
 ��� = ������
                    (2.1) 

 

where T is the absolute temperature of the environment in Kelvin. 
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As a result of this theorem, lost available work is directly proportional to the entropy 

generation and is responsible for the inequality sign in the second law of 

thermodynamics. It also defines the level of irreversibility of a system has and the 

more irreversible the process, the more it is shifted away from equality. 

 

On the other hand, entropy generation is as well connected with the entropy transport 

equation with the following equation [20]: 

 ���� +������� �≡ � ����
 � ≥ 0                  (2.2) 

 

where  

 � = �� is the volumetric entropy, s is the specific entropy of a state. 

 

Entropy flux,  ! can be defined as: 

  ! = ����!�� +�"�#                    (2.3) 

 

with �!�and $! being the velocity and heat flux components in the corresponding 

direction, respectively. 

 

The only remaining part of Eq. (2.2) that is not detailed is the entropy generation 

term on the right-hand-side (RHS). This term is generally resolved into the thermal 

and viscous parts through a second law analysis of a unit volume as shown in Figure 

2.1. 
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Figure 2.1 Second law analysis for an unit volume [17]. 

 

Writing the input-output balance for the RHS of Eq. (2.2) for the unit volume given 

above yields [17]: 

 

����
 %&%' = � "()*+(*( ,�#)*-*(,� �%' +�".)*+.*. ,/#)*-*.,/ �%& 0�"(# �%' 0 ".# �%& + 1� + ��� %&2 13� +
�4(�� %&2�1� + �5�� %&2 �%' +�1� + ��/ %'2 13/ + �4.�/ %'2�1� + �5�/ %'2 �%& 0��3� ��%' 0 ��3/��%& +���5��� �%&�%'                 (2.4) 

 

In Eq. (2.4), the first four terms on the RHS are entropy generation terms related with 

heat transfer; the next four terms are entropy terms which represent the net 

convection of entropy into the system and the last one is the time rate of entropy 
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generated inside the control volume. 

 

Rearranging some of the terms and dividing by dxdy gives [17]: 

 ����
 = � 6# �1�"(�� + �".�/ 2 0� 6#7 1$� �#�� + $/ �#�/2 + ��� 1��� + 3� ��� +�3/ ��/2 + ��[�5�� +3� �5�� + 3/ �5�/ + ���4(�� + �4.�/ �]                  (2.5) 

 

Assuming that the flow is incompressible makes the terms in square brackets zero. 

Eq. (2.5) can be rearranged in order to obtain a more compact form [17]: 

 ����
 = � 6# �∇�$ 0 6#7 �$�∇�� + ��� ;;�                 (2.6) 

 

where 
;;� is the substantial derivative of s. 

 

Another way of writing the differential entropy is the Gibbs equation [21]: 

 �%� = %< + =�%�65�                   (2.7) 

 

Since Eq. (2.6) involves the substantial derivative of the entropy, Eq. (2.7) can be 

converted to the substantial derivative form such as [17]: 

 � ;;� =� 5# ;�;� 0� >5# �;5;�                     (2.8) 

 

The only remaining unknown is the substantial form of the internal energy, � ;�;� 
which is possible through first law of thermodynamics [17]: 

 � ;�;� = �0�∇�$ 0 =��∇�v� + �@A                  (2.9) 

 

where @ and A are the viscosity and the viscous dissipation function, respectively. 
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Inserting Eq. (2.9) into Eq. (2.8) and then combining the result with Eq. (2.6) gives: 

 ����
 = �0 6#7 �$�∇�� +�B# �A                (2.10) 

 

If Fourier law of conduction is applied for q which is: 

 $ = �0C�∇���                  (2.11) 

 

where k is the thermal conductivity of the medium applied, then the final form of the 

entropy generation equation can be obtained as: 

 ����
 = � D#7 ���∇���� +�B# �A                 2.12) 

 

Tensor form of Eq. (2.12) could be needed as well for simplicity of presentation 

during Reynolds averaging: 

 ����
 = � D#7 ���#����� +� E�F# �G���F                (2.13) 

 

where the viscous stress,�H!I is given as [20]: 

 

H!I = �@�[J�G���F +��GF���K 0��L ��GM��M �N!I]               (2.14) 

 

and N!I is the Kronecker delta that turns the viscous dissipation, A into: 

 

A =� �G���F � [J�G���F +��GF���K 0��L ��GM��M �N!I]               (2.15) 

 

One important feature of Eq. (2.12) is being positive definite meaning that if 

temperature and velocity gradients exist inside the medium, the result will always be 

finite and positive. Therefore, it is also called “positive definite” form of entropy 
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generation equation. 

 

At this point, Eq. (2.2) is re-written by combining above results into an overall 

entropy transport equation that is valid for incompressible flows: 

 

��5��� +� ���� ���!� 0�D# �#���� = D#7 �1�#���2� +�B# �G���F J�G���F +��GF���K           (2.16) 

 

2.2 The Clasius-Duhem Equality 

 

Eq. (2.16) is a general expression for instantaneous entropy generation and transport 

in incompressible flows. In order to consider the effects of turbulence, Reynolds 

averaging of this equation can be performed inserting the mean and fluctuating parts 

for each term to give [20]: 

 

��5O)PQ��� + ���� ����! + �!���� + ���� 0�D# �O#)#PQ��� � =
D#7 1�O#)#PQ��� 2� + �E�F)E�FP�R ��G�)G�P���F                (2.17) 

 

Taking the Reynolds average of all the terms: 

 

��5�)P������������������ + ���� ����i + �i
���� + ������������������������������ 0�D# ��#)#P���i

��������� = D#7 1��#)#P���i
2�������������� + �Eij)Eij

P�# ��Gi)Gi
P���j

�������������������
                   (2.18) 

 

As a result of Reynolds averaging, average of a fluctuating component and average 

of the product of a fluctuating component with a mean component are zero such as 

[22]: 

 ��S = 0�TU%����V���� = 0                 (2.19) 

 

Following the principles of Eq. (2.19), Eq. (2.18) can be rearranged as [23]: 
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��5V��� +� ���� 1��iS�V + ��i
��������� 0�D# �#��i

�����2 = D#7 �1�#��i
2������������ +� Eij# �Gi��j

������
            (2.20) 

 

This equation is called the Clausius-Duhem equality. It is considered to be highly 

complex due to the modeling effort that would be needed for various correlations 

related to velocity, temperature and entropy fluctuations, which would appear after a 

decomposition of the equation. Following sections focus on such an effort. 

 

2.3 Effects of Turbulence in Entropy Generation Modeling 

 

In this section, modeling of turbulence related terms appearing in the entropy 

generation is discussed. 

 

If the left hand side of Eq. (2.13) is multiplied by T we obtain, 

 ������
 = � DR ���#����� +�H!I �G���F                (2.21) 

 

After decomposition, Reynolds averaging and few other manipulations as detailed in 

[24], this equation can be converted to: 

 

��������
������ +� �������
 ����������� = C� ���� �WU���������� �#���� + C� ���i
�WU��� �#P��i

���������������� + HijS �GiS��F +�Hij
� �Gi

P��j

��������
 

                   (2.22) 

In order to obtain the correlation for �������
 �����������
, Eq. (2.2) can be multiplied by T and 

then time averaged to give [20]: 

 

��������
������ +� �������
 ����������� = ��� �X��5V��� +� ���� 1��iS�V + ��i
��������� 0�D# �#��i

�����2Y + �� ���i
���i

��V����������������� +
�� ���i

���iS������������������� +��� ���i
���i

��������������������� + �C� ���i
�WU��� �#P��i

�����������������             (2.23) 

 

If Eq. (2.20) is as well multiplied with T, Reynolds-averaged and then subtracted 

from Eq. (2.23), correlation equation for �������
 �����������
 is obtained: 
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�������
 ����������� = ��� ZZ&i
���i

��V������������������ + �� ZZ&i
���iS�������������������� +��� ZZ&i

���i
���������������������� 0 �C�� ZZ&i

�WU�����������������
 

                   (2.24) 

 

Rearranging Eq. (2.24) using chain rule of calculus and incompressible flow 

assumption gives [20]: 

 

�������
 ����������� = ������i
������� �V��� + ���iS ��� �P��i

��������� +��� ��5Gi
PP��������������� + �C�� ���i

�WU����������������
          (2.25) 

 

This equation is the new model equation for �������
 �����������
, which will be useful for the 

consideration of effects of turbulence in the entropy generation equation. 

 

Overall mean entropy generation equation including the effects of turbulence can be 

obtained combining Eq.(2.20), Eq.(2.22) and Eq.(2.25) to give [20]: 

 

��������
������ = ��� �X��5V��� +� ���� 1��iS�V + ��i
��������� 0�D# �#��i

�����2Y = �C� ���� �WU���������� �#���� +C� ���i
�WU��� �#P��i

���������������� + HijS �GiS��F +�Hij
� �Gi

P��j

�������� 0��������i
������� �V��� + ���iS ��� �P��i

��������� +��� ���5Gi
PP���i

������������� +
�C�� ���i

�WU������������������                 (2.26) 

 

2.4 Small Thermal Turbulence Assumption Based Modeling 

 

Eq. (2.26) involves terms like �i��������� and 
���� �WU��������� that need modeling. For this 

purpose, a model developed by Kramer-Bevan [24] is implemented. This model is 

based on a very important assumption, which is called the “Small Thermal 

Turbulence Assumption (STTA)”. This assumption states that the fluctuating 

component of temperature is small compared to the mean component. 

 

Each term at the RHS of Eq. (2.26) will be treated separately and Eq. (2.26) will be 
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converted into a more useful form as discussed in the following section. 

 

2.4.1 Model equation for the velocity-entropy correlation [iiii�\������� 
 

Kramer-Bevan [24] developed a model for the velocity-entropy correlation following 

the state equation of entropy for an ideal gas: 

 � = �] +�^ _4##̀ ,## 0 ^ a55` ,55 =��] +�_4�WU ##̀ 0 �a�WU 55`            (2.27) 

 

If Eq. (2.27) is time averaged: 

 �V = �]S +�_4�WU ##̀������ 0�a�WU 55`���������                (2.28) 

 

In order to obtain a model for WU� term, WU� can be expressed using a Taylor series 

expansion around the point 
#P#� = 0�leading to [24]: 

WU� = �WU�� + W U 11 + #P#� 2 = �WU�� +�#P#� 0�6� �#P#� �� +⋯            (2.29) 

 

If the higher order terms are neglected and time averaged Eq. (2.29) reduces to; 

 

WUT����� = � WU�� + #P#������������ = �WU��                (2.30) 

If this derivation is substituted into Eq. (2.28); 

 �V = �]S + _4 WU ##̀S 0 �a WU 55S̀                  (2.31) 

 

If this is subtracted from the instantaneous value to give; 

 �� = � 0��]S = � �] +�_4�WU ##̀ 0 �a�WU 55` 0���] + _4 WU ##̀S 0 �a WU 55S̀ �          (2.32) 

 �� = _4�WU ##� 0 a�WU 55S = _4 WU�1 + #P#� �� 0 a�WU��1 + 5P5S ��             (2.33) 
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Final form of the entropy-velocity correlation is; 

 �� = _4 �#P#� 0 a 5P5S                  (2.34) 

 

If this new correlation is used in the �i��������� term neglecting the density effects 

assuming incompressible flow; 

 �i
��������� = � ef#� ��i

���������                 (2.35) 

 

Eq. (2.35) is the new model equation for the velocity-entropy correlation based on 

STTA. 

 

2.4.2 Model equation for temperature fluctuation correlation 
gghiiii �ijk�� gkPghiiii����������������

 

 

The model equation for 
���i �WU��� �#P��i����������������

 can be obtained using the STTA as well. Using 

the chain rule of Calculus [24]: 

 

���i
�WU��� �#P��i

���������������� = � 6#� ��#P��i

�#P��i

���������� +� ���i
�6#���� �#P��i

���������������
              (2.36) 

 

This equation can be manipulated to give: 

 

���i
�WU��� �#P��i

���������������� = � 6#� ���#P��i
������������ +� ���i

�6#�����������6� ��#P7���i

��������
              (2.37) 

 

The final form can be written as: 

 

���i
�WU��� �#P��i

���������������� = � 6#�����#P��i
���������� +� ���i

�6#���6� ��#P7����������i
              (2.38) 
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where 

 

��#P��i
���������� = 6� � ���i

l6m ��i
������������ 0 ��#P7����������i

n 0� 6m ��i
���������� �#���i

0 6�m �iS ��#P7����������i
            (2.39) 

 

and o is the thermal diffusivity [22]. 

 

This final form given in Eq. (2.38) will be utilized in the final form of the entropy 

generation equation. 

 

2.4.3 Model equation for temperature-entropy correlation�k� g\Pghiiii��������
 

 

Following the STT assumption, �� �P��i���������
 term can be rewritten using Eq. (2.34); 

 �� �P��i
≅��� ���i

��_4 �#P#� �                (2.40) 

 

Using the chain rule of Calculus; 

 �� ���i
�1_4 �#P#� 2 = �_4����� ���i

16#�2 +�ef#� ���� �#P��i
�             (2.41) 

 

When the time averaging is applied; 

 

�� �P��i

������� ≅ �_4������������ ���i
16#�2 +� ef�#���� ����#P7����������i

��              (2.42) 

 

This form of �� �P��i���������
 will be used in the final form of the entropy generation equation. 
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2.4.4 Model equation for velocity-temperature-entropy correlation k� g��q[iiiiP\P�ghiiii�������������
 

 

Following the STT assumption, �� ���5GiPP���i  can be presented using Eq. (2.34) as; 

 �� ���5Gi
PP���i

�≅ ��� ���i
���_4 �#P#� �i

��               (2.43) 

 

Using the chain rule of Calculus; 

 �� ���i
�1�_4 �#P#� �i

�2 = ��_4�i
������ ���i

16#�2 +��_4 �#P#� ���i
��i

����           (2.44) 

 

The final term of Eq. (2.44) can be rearranged as; 

 �� ���i
��i

���� = ������ �Gi
P��i
+��i

� �#P��i
�              (2.45) 

 

The first term in the parenthesis, 
�GiP��i  is zero due to continuity which gives; 

 

�� ���i
��i

���� = � 6� ��Gi
P#P7���i

                 (2.46) 

 

Substituting this into Eq. (2.44) and Reynolds averaging gives the final form of the �� ���5GiPP���i  term; 

 

�� ���5Gi
PP���i

������������� �≅ ��_4�i
���������������� ���i

16#�2 + 5ef�#���� ���Gi
P#P7���i

���������
             (2.47) 

 

2.5 Final Form of Entropy Generation Equation 

 

In Section 2.3, turbulence contribution to entropy generation was obtained as; 
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�������
 ����������� = ������i
������� �V��� + ���iS ��� �P��i

��������� +��� ��5Gi
PP��������������� + �C�� ���i

�WU����������������
          (2.25) 

 

If the results of Section 2.4.1 to 2.4.4 are combined to give; 

 

 

�������
 ����������� = �����i
������� �V��� + ���iS_4������������ ���i

16#�2 +� ef�#���� �J��#P7����������i
K + �_4�i

���������������� ���i
16#�2 +

5ef�#���� ���Gi
P#P7���i

���������
                  (2.48) 

 

The last term in Eq. (2.25) is zero since; 

 

�� ���i �WU���������������� = �� ���i �WU���������������� = 0               (2.49) 

 

If Eq. (2.22) is recalled; 

 

��������
������ +� �������
 ����������� = C� ���� �WU���������� �#���� + C� ���i
�WU��� �#P��i

���������������� + HijS �GiS��F +�Hij
� �Gi

P��j

��������
 

                   (2.22) 

 

Revised form of the entropy generation equation including the effects of turbulence 

can then be obtained after subtracting Eq. (2.48) from Eq. (2.22) and then divided 

by��S ; 

 

�����
������ = D#�� � ���� �WU���������� �#���� + D#�� � ���i
�WU��� �#P��i

���������������� + Eij���#�� �GiS��F + 6#�� �Hij
� �Gi

P��j

�������� 0�15#�� ����i
������� �V���2 0

�5ef#� �iS ������������� ���i
16#�2 0� ef��#�7 �iS J��#P7����������i

K 0 5ef#�� �i
���������������� ���i

16#�2 0 5ef��#�7 ���Gi
P#P7���i

����������       (2.50) 

 

Keeping in mind the entropy generation equation is also given in Eq. (2.20); 

 

�����
������ = ��5V��� +� ���� 1��iS�V + ��i
��������� 0�D# �#��i

�����2 = D#7 �1�#��i
2������������ +� Eij# �Gi��j

������
           (2.20) 
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If the left hand sides of Eq. (2.50) and Eq. (2.20) are combined; 

 

��5V��� +� ���� 1��iS�V + ��i��������� 0�D#� �#����2 = D#�� � ���� �WU���������� �#���� + D#�� � ���i �WU��� �#P��i���������������� + Eij���#�� �GiS��F +
6#�� �Hij� �GiP��j�������� 0�15#�� ����i������� �V���2 0�5ef#� �iS ������������� ���i

16#�2 0� ef��#�7 �J��#P7����������i
K 0

5ef#�� �i
���������������� ���i

16#�2 0 5ef��#�7 ���Gi
P#P7���i

����������               (2.51) 

 

In the meantime, for an arbitrary scalar,�∅D, a general transport equation can be 

written as [29], 

 ��5∅M��� +� ���� 1��!∅D 0 Γu �∅M���2 = �∅M              (2.52) 

 

where 

 Γu and �∅M are the diffusivity and the source terms respectively. 

 

Therefore, Eq. (2.51) can be rearranged in resemblance with Eq. (2.52) to give: 

 

��5�S�� + ���� X��v����� 0 �D)Dwxy � �z����Y = � D#�7 ��#������ + D#�7 ���#P��i
���������� + D� � ���i

16#�2 ��#P7����������i
+ Eij���#�� �GiS��F +

{|#�� �0 �15#�� ��i
��������� �V���2 0�5ef#� �iS ������������� ���i

16#�2 0� 5ef��#�7 �J��#P7����������i
K 0 5ef#�� �i

���������������� ���i
16#�2 0

5ef��#�7 ���Gi
P#P7���i

����������                  (2.53) 

 

Eq. (2.53) is called as “Reynolds Averaged Entropy Transport (RAET)” equation. 

The terms on the right hand side of Eq. (2.53) are responsible for the entropy 

production in an incompressible turbulent flow. The first four terms are responsible 

for entropy production due to irreversible heat transfer. Terms 5 and 6 are production 

terms due to viscous effects where }~ is defined as the true dissipation of turbulent 

kinetic energy [12]. Remaining terms are scalar fluctuating terms composed of 
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temperature-velocity correlations. 

 

In the next section detailed evaluation of models for these terms will be done using a-

priori testing methodology based on a DNS database. 
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CHAPTER 3 

 

 

7 A-PRIORI TESTING OF MODELS TO BE USED IN THE REYNOLDS 

AVERAGED ENTROPY TRANSPORT (RAET) EQUATION 

 

 

 

In this chapter, model equations for various parameters such as  �i������������, �i ′� ′������ and �� ′���������, which appear in the RAET equation (Eq. 2.53), will be presented and then will 

be evaluated based on available DNS data from the literature. 

 

There are several modeling approaches already available in the literature, especially 

for �i′� ′������ and �� ′���������, but literature on modeling of �i������������ is very limited. For �i ′� ′������ and �� ′���������, Hanjalic [25] provides a thorough approach starting with the transport 

equations for these terms and ending up with Differential Second Moment (DSM) 

closure equations. Durbin and Pettersson [26] and Schiestel [65] present some details 

on the modeling of �i������������ . 
 

3.1 Transport Equation Based Modeling of [iiii′′′′k′′′′������������
, [iiii′′′′k′′′′��������� and Ok′′′′Q���������

 

 

3.1.1 Transport equation for [�′k′���������
 

 

Although, it is possible to encounter the evolution equations of �i������������ as given in 

[26] and [65], it has not been possible to find any model transport equation for �i������������ 
parameter. Therefore in this thesis a model equation for �i������������ is developed and 

tested. 

 

The conservation equation for the fluctuating velocity and temperature are given as: 
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�G�P�� + ��S �G�P��F = 0�I� ��������F 0 ���F O�!��I� 0 �i
��j

��������Q 0 65 ��P��� + � �7G�P��F��F             (3.1) 

 

�#P7�� + ��S �#P7��F = 02�j
���� �#���F 0 2�� ���F O�j

��� 0 �j
���������Q + 2��� �7#P��F��F            (3.2) 

 

Multiplying Eq. (3.1) with ���gives, 

 ��� �G�P�� + �����S �G�P��F = 0����j
� ��������F 0 ��� ���F O�!��I� 0 �i

��j
��������Q 0 ��� 65 ��P��� +���� �7G�P��F��F                    (3.3) 

 

Multiplying Eq. (3.2) with �!�gives, 

 

�!� �#P7�� + �!���S �#P7��F = 02�!��j
���� �#���F 0 2�!��� ���F O�j

��� 0 �j
���������Q + 2��!��� �7#P��F��F

                     (3.4) 

 

Summing Eq. (3.3) and Eq. (3.4) gives the overall transport equation for �′!� ′� 

 

l��� �G�P�� + �!� �#P7�� n + l�����S �G�P��F + �!���S �#P7��F n = l0����j
� ��������F 0 2�!��j

���� �#���Fn +l0��� ���F O�!��I� 0 �i
��j

��������Q 0 2�i
��� ���F O�I��� 0 �j

���������Qn + l����� �7G�P��F��F +2��!��� �7#P��F��Fn 0 ��� 65 ��P���                  (3.5) 

 

Reynolds averaging of this equation gives; 

 

��Gi
P#P7�������������� + �j

S ��Gi
P#P7��������������F = l0�j

������������ ��i�����F 0 2�i
��j

������������� �#���Fn + l0 ���F 1�i
��j

���������������2 +
�j
� ���j

O�i
����Q������������������n + l������ �7Gi

P��j��j

������������ + 2��i
��� �7#P��j��j

�������������n + ������� ���F ��i
��j

��������� +
2�i

��������� ���F ��j
���������� 0 65 ���� ��P��i

���������
                 (3.6) 
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The fifth and sixth terms on the RHS represent the correlation of the molecular 

diffusion with the fluctuating temperature and velocity. It is expected that the scales 

of these terms are relatively small compared to the other terms in Eq. (3.6), so an 

order of magnitude analysis is performed to verify this assumption [27]. 

 

For the order of magnitude analysis, it is assumed that [27]: 

 

- Fluctuating velocities, u scale with � = ��v��v�������6/� 

 

- Conserved scalar fluctuations, s scale with � = c�S 6/�
 where c is any scalar 

variable 

 

- Mean velocity and scalar gradients scale with �/W and �/W 
 

where the scales given above are the scales of the energy containing eddies. 

 

The scales of the molecular diffusion terms can be obtained with the philosophy 

described above; 

 

������ �7Gi
P��j��j

������������ ≅ ����� G�7                  (3.7) 

 

2��i
��� �7#P��j��j

������������� ≅ ����� G�7                  (3.8) 

 

On the other hand, scales of the first and second term in Eq. (3.6) can be obtained as; 

 �j
������������ ��i�����F �≅ ���� G� = 7G7�                   (3.9) 

 �i
��j

������������� �#���F �≅ ���� � = 7G7�                 (3.10) 

 

If the RHS of Eq.(3.7) is rearranged; 
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���� G�7 = 1�G�2�7G7� = 6��w 17G7� 2 ≪ 7G7�               (3.11) 

 

where a<� is the turbulent Reynolds number. 

 

Order of magnitude analysis for the diffusion terms reveals that they can be 

neglected since scales of other terms in Eq. (3.6) are relatively higher than these 

terms. 

 

As a result, the final form of Eq. (3.6) can be obtained as; 

 

��Gi
P#P7�������������� + �j

S ��Gi
P#P7��������������F = 0�j

������������ ��i�����F 0 2��i
��j

������������� �#���F 0 ���F 1�i
��j

���������������2 0 65 ���� ��P��i

���������
                   (3.12) 

 

The correlations appearing on the RHS of Eq. (3.12) need modeling. The following 

terms together with the proposed modeling terms are [26]: 

 

 

0�i
��j

������������� = _6 D� ����j
��k

����������OGi
P#P�������Q��M +��i

��k
����������OGj

P#P�������Q��M ��            (3.13) 

 

where C1 is an arbitrary constant.  

 

It was not possible to find a suitable modeling approach for the term �i
��j

��������������� in the 

literature, therefore it is modeled based on an analogy with the modeling of  �i
��j

�������������. 
 

0 ���F 1�i
��j

���������������2 = _� D� � ���F [��j
��k

����������1Gi
P#P7���������2��M �]             (3.14) 

 

The fluctuating pressure term can be modeled as a slow term and a rapid term [26]. 

 

���� ��P��i

��������� = 0_L �D �i
��������� + _��k

���������� ��i��M���� + _��k
���������� ��M��i

����
             (3.15) 
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The first term at the RHS of Eq. (3.15) is the slow part whereas the other terms are 

the rapid part.  

 

Combining all these terms gives the final model transport equation for �i������������: 
;�Gi

P#P7����������;� = ��0�j
������������ ��i�����F + 2_6 D� ��j

��k
����������OGi

P#P�������Q��M +��i
��k

����������OGj
P#P�������Q��M �� �#���F +

_� D� � ���F [��j
��k

����������1Gi
P#P7���������2��M �] 0 65 ��_L �D �i

�������������              (3.16) 

For the sake of simplicity and since it is considered to be sufficient [26] only the first 

term of the pressure term, i.e. the slow part, is kept in the equation. 

 

In the literature, also an algebraic model for �i������������ is proposed by Schiestel [65] : 

 

�i
������������ = 0_66 D� ���i

��j
�������� �1#P7�����2��F + �2��j

��������� �OGi
P#P�������Q��F �             (3.17) 

 

Both the transport equation model (Eq. 3.16) as well as the algebraic model of 

Schiestel are tested using the available DNS database and the results are presented in 

the upcoming sections.  

 

3.1.2 Transport equation for [iiii′k′������ 
 

The conservation equation for the fluctuating velocity and temperature are given as: 

 

�G�P�� + ��S �G�P��F = 0�I� ��i�����F 0 ���F O�!��I� 0 �i
��j

��������Q 0 65 ��P��� + � �7G�P��F��F             (3.1) 

 

 

�#P�� + ��S �#P��F = 0�j
� �#���F 0 ���F O�j

��� 0 �j
���������Q 0 � �7#P��F��F            (3.18) 
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Multiplying Eq. (3.1) with ��gives, 

 �� �G�P�� + ����S �G�P��F = 0���j
� ��i�����F 0 �� ���F O�!��I� 0 �i

��j
��������Q 0 �� 65 ��P��� + ��� �7G�P��F��F 

                   (3.19) 

 

Multiplying Eq. (3.18) with �!�gives, 

 �!� �#P�� + �!���S I �#P��F = 0�!��j
� �#���F 0 �!� ���F O�j

��� 0 �j
���������Q 0 ��!� �7#P��F��F          (3.20) 

 

Summing Eq. (3.19) and Eq. (3.20) gives the overall transport equation for �′!�� 
 

[�� �G�P�� + �!� �#P�� ] + l����S �G�P��F + �!���S �#P��Fn =0�j
��� ��i�����F 0 �!��j

� �#���F 0 �!� ���F O�j
��� 0 �j

���������Q 0 �!� ���F O�j
��� 0 �j

���������Q 0 �� 65 ��P��� +���� �7G�P��F��F 0 ���!� �7#P��F��F                (3.21) 

 

Reynolds averaging of Eq. (3.21) gives; 

 

��Gi
P#P������������� + �j

S ��Gi
P#P�������������F = 0�j

��������� ��i�����F 0 �i
��j

�������� �#���F 0 �� ���j
O�i

��j
�Q����������������� 0 �i

� ���j
O�j

���Q����������������� 0
65�� ����i

�������+����� �7G�P��F��F 0 ��!� �7#P��F��F               (3.22) 

 

The sixth and seventh terms at the RHS of Eq. (3.22) are neglected due to smaller 

scales of turbulence as explained in the previous section. Therefore the final form of 

the transport equation for �i′� ′������is; 

 

;�Gi
P#P��������;� = 0�j

��������� ��i�����F 0 �i
��j

�������� �#���F 0 ���j
O�i

��j
���Q���������������� 0 65�� ��P��i

�������
            (3.23) 

 

This transport equation can be revised with the modeling principles as explained in 
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[25] and detailed in the previous section to give; 

 

;�Gi
P#P��������;� = 0�1 0 _������j

���������� ��S���F 0 �i
��j

������� �#���F + _� D� ���F ��j
��D������� �OGi

P#PQ�����������M � 0 _� 65 �Gi
P#P����������D �

                   (3.24) 

 

3.1.3 Transport equation for k������
 

 

If Eq. (3.18) is recalled for the general transport of the scalar ��; 
 

�#P�� + �I �#P��F = 0�j
� �#��F 0 ���F O�j

��� 0 �j
���������Q 0 � �7#P��F��F            (3.18) 

 

Multiplying Eq. (3.18) with 2�� gives; 

 2�� �#P�� + �I2�� �#P��F = 0�j
�2�� �#���F 0 ���F 2��O�j

��� 0 �j
���������Q 0 �2�� �7#P��F��F       (3.25) 

 

Rearranging and Reynolds averaging of Eq. (3.25) gives; 

 

��#P7�������� + �I ��#P7��������F = 02��j
��������� �#���F 0 ��Gj

P#P7������������F 0 2���� �7#P��j��j

����������
            (3.26) 

 

The final form of the transport equation for the scalar ��� is; 

 

;#P7�����;� = 02��j
��������� �#���F 0 ��Gj

P#P7������������F 0 2���� �7#P��j��j

����������
             (3.27) 

 

Then the model equation for ��� can be given as; 

 

;#P7�����;� = 02��i
���������� �#���� 0 6�e� #P

7������D �� + _6] D� ���F ��i
��j

������� �#P7�������� �             (3.28) 
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3.2 A-priori Testing Using Direct Numerical Simulation (DNS) Database 

 

3.2.1 The DNS Database 

 

In order to investigate the performance of the model equations described in 

the previous section a-priori testing methodology is applied using a DNS 

database. This database is obtained by simulating an incompressible non-

isothermal fully developed turbulent channel flow using SIMSON solver (A 

Pseudo-Spectral Solver for IncoMpreSsible BOuNdary Layer Flows) as 

described in detail in [14]. The simulations are performed using the for a a<E 
of 180 (Reynolds number based on the friction velocity) which is obtained by 

fixing the bulk Reynolds number to 2800. The domain size is 4π x 2 x 2π 

measured in channel half heights as illustrated in Figure 3.1. The coordinates 

x,y and z refer to the streamwise, wall-normal and spanwise directions, 

respectively. The simulation is performed using 128x128x128 grid points in 

physical space together with dealiasing using the 3/2 rule in the wall-parallel 

directions. In addition to the velocity field, three passive scalars with Prandtl 

numbers of 0.2, 0.71 and 2 are advected, as in a previous study in turbulent 

boundary layers [66]. Time integration is achieved using a combined third 

order Runge-Kutta/Crank-Nicolson scheme.  

 

  

 

 

Figure 3.1 Schematic representation of the DNS channel flow taken from [28]. 

 

Boundary conditions are periodic in the streamwise and spanwise directions and no 
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slip boundary conditions are applied for the upper and lower walls. The flow is non-

isothermal and this is supplied via two different temperatures for the upper and lower 

walls [14].  

 

In order to calculate the turbulence statistics, DNS solver called SIMSON (A 

Pseudo-Spectral Solver for IncoMpreSsible BOuNdary Layer Flows) was used [14]. 

With the help of the tool, it was possible to get all individual terms given in the 

equations and then implement the necessary algebra to check the validity of the 

model equations. 

 

Implementing all the equations for �i������������ and �i ′� ′������ for the channel case, three 

different equations are obtained for three different spatial directions whereas for ���, 

only one equation is developed since it has no correlation component with velocity. 

 

3.2.2 Reduced Forms of the Model Equations for the Steady State Fully 

Developed Channel Flow 

3.2.2.1 Equations for [i
�k����������

 

If the model equation for �i′� ′��������
 is recalled; 

 

;�Gi
P#P7����������;� �= �0�j

������������ ��i�����F + 2_6 D� J�j
��k

����������OGi
P#P�������Q��M +��i

��k
����������OGj

P#P�������Q��M �K �#���F +
����_� D� � ���F [��j

��k
����������1Gi

P#P7���������2��M �] 0 65 �_L �D �i
�������������             (3.16) 

 

Components of this equation for three spatial coordinates simplified for the steady 

state fully developed channel flow case (which makes all LHS’s zero) can be written 

as: 
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0 = 03����������� ��S�/ + 2_6 D� �3�3������� ��GP#P�����������/ + ��3������� ��4P#P�����������/ � �#��/ + _� D� ��/ J3�3������� ��GP#P7����������/ K 0
e�5 �D ���������������                  (3.29) 

 

0 = 2_6 D� ���3������� ��4P#P�����������/ + 3��������� ���P#P������������/ �� �#��/ + _� D� ��/ J3�3������� ��4P#P7����������/ K 0 e�5 �D ��3������������
                   (3.30) 

 

0 = 2_6 D� ����3������� ���P#P������������/ + ��3������� ���P#P������������/ �� �#��/ + _� D� ��/ J3�3������� ���P#P7�����������/ K 0 e�5 �D ����������������
                   (3.31) 

 

Different model constants for _6, _� and _L are available in the literature but the 

recommended ones are; 

 0.11� ≤ _6, _� �≤ 0.2� and _L = 3.0 

 

However, effects of changing these model constants will be evaluated in the 

upcoming sections of this study. 

 

3.2.2.2 Equations for [iiii′k′������ 
If the model equation for �i′�������� is recalled; 

 

;�Gi
P#P��������;� = 0�1 0 _������j

���������� ��S���F 0 �i
���������� �#���F + _� D� ���F ��j

��D������� �OGi
P#PQ�����������M � 0 e�5 �Gi

P#P����������D � 

                  (3.24) 

 

Similar to the previous section, components of this equation for three spatial 

coordinates simplified for the steady state fully developed channel flow case can be 

written as: 
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0 = 0�1 0 _���������������� ��S�� 0 ��3������� �#��� + _� D� ���F �3�3������� ��GP#P������������ � 0 e�5 �GP#P����������D �  

                   (3.32) 

 

0 = 03�3������� �#��� + _� D� ���F �3�3������� ��4P#P������������ � 0 e�5 �4P#P����������D �             (3.33) 

 

0 = 0��3������� �#��� + _� D� ���F �3�3������� ���P#P������������� � 0 e�5 ��P#P�����������D �             (3.34) 

 

Recommended model coefficients are [25]: 

 _� = 0.55, _� = 0.15, _� = 3.5 
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3.2.2.3 Equations for k′�����
 

If the model equation for � ′����� is recalled; 

 

;#P7�����;� = 02��i
���������� �#���� 0 6�e� #P

7������D �� + _6] D� ���F ��i
��j

������� �#P7�������� �             (3.28) 

 

Simplified version of this equation for the steady state fully developed channel flow 

case�can be written as: 

 

0 = 023��������� �#��/ 0 6�e� #P
7������D � + _6] D� { ��/ �3�3������� �1#P72��������

�/ �}            (3.35) 

 

Recommended coefficients for Eq. (3.35) are given as [25]: 

 _¢ = 0.5, _6] = 0.2 
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3.2.3 Results of A-priori Testing  

In this section, results for all the turbulent parameters of interest are investigated in 

more detail for the channel test flow case. Parameters are defined from Eq. (3.28) to 

Eq. (3.34). LHS of all equations are zero since £�  is zero for this channel flow case. 

Therefore the performance of all equations is compared through their deviations from 

zero and all the terms at the RHS are obtained from the DNS solution values. 

 

Before going into the details of the turbulent parameters, a first check will be 

conducted for Eq. (3.13) which can be recalled as  

 

0�i
��j

������������� = _6 D� ����j
��k

����������OGi
P#P�������Q��M +��i

��k
����������OGj

P#P�������Q��M ��            (3.13) 

For different values of i,j and k Eq. (3.13) reduces to simple forms.  

 

For ¤ = 1, ¥ = 1�TU%�C = 2 

0�������������� = 2_6 D� ��3����������GP#P����������                (3.36) 

 

For ¤ = 1, ¥ = 2�TU%�C = 2 

0��3����������� = _6 D� ��3�3���������OGP#P�������Q�� +���3���������O4P#P������Q�� ���             (3.37) 

 

Since the flow inside the channel is dominated by the streamwise direction, two 

parameters given above are selected to be compared. Recommended values for the 

constant _6 range between 0.11 and 0.2 whereas a default value is given as 0.15 [26]. 

Figure 3.2 presents the LHS vs. RHS of Eq. (3.36) for the default value of 0.15 for _6 

as a function of �')��∗� which is the non-dimensional y coordinate. 

 

 �∗��') = /G§4  where �E is the wall shear velocity and 3 is the kinematic viscosity. 
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Figure 3.2 LHS vs. RHS of Eq (3.36) for C1=0.15. 

 

It is clear from Figure 3.2 that for the corresponding default coefficient, LHS of Eq. 

(3.36) does not match well with the RHS. Therefore, the default value for C1 is 

increased up to a level that a reasonable match is obtained. Figure 3.3 shows the 

comparison of Eq. (3.36) for different values of C1.  The best fit is observed when 

C1=0.90. 
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Figure 3.3 LHS vs. RHS of Eq (3.36) for different values of C1. 
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Although the matching is quite good in general for the new value of the constant, it is 

not possible to obtain a perfect match especially in the near wall regions. With a 

simple model such as the one given in Eq. (3.13), it is not possible to capture the 

complex near wall phenomena. 

 

The same check can also be performed for ��3����������� following the same principle. 

Figure 3.4 shows LHS and RHS of Eq. (3.37) for the default value of 0.15. 

 

 

 

Figure 3.4 LHS vs. RHS of Eq (3.37) for C1=0.15. 

 

The general trend of both curves is similar however the scales are different. 

Therefore the default value for the constant C1 is changed in Figure 3.5 to have the 

trends fit in a better manner. As a result of this analysis, the best fit is obtained with 

C1=0.3. but it is clear that, as in Eq. (3.36), the match is not perfect in the near wall 

region. 
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Figure 3.5 LHS vs. RHS of Eq (3.37) for different values of C1. 
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3.2.3.1 Results for [i
�k����������

 

Results for the parameter �i
������������ are given in Figures 3.6, 3.7 and 3.8 The main 

characteristic of these figures are that the general trend for the parameter has been 

obtained for a specific model constant values and these values are all different for 

different spatial directions. Another observation is that the trends near the wall do not 

match very well. The model prediction is relatively better compared to the upper wall 

region. Especially, for the upper wall, there is an overshoot in the modelling although 

the trend is similar. 

 

After evaluating the performance of Eq. (3.13), governing equations for the turbulent 

scalars are tested. Eq. (3.16) is the model transport equation for �i
������������; 

 

;�Gi
P#P7����������;� = 0�j

������������ ��i�����F + 2_6 D� J�j
��k

����������OGi
P#P�������Q��M +��i

��k
����������OGj

P#P�������Q��M �K �#���F +
_� D� � ���F [��j

��k
����������1Gi

P#P7���������2��M �] 0 65 �_L �D �i
�������������              (3.16) 

The first term at the RHS is the so called “mechanical production; mean flow 

deformation interacting with turbulent heat flux” [25] or the “tilting production” 

[27]. Second term is the thermal production which is a result of nonuniform 

temperature field interacting with turbulent stresses [25]. Third term is a modelled 

term caused by turbulent diffusion transport and the final one is due to fluctuating 

pressure temperature correlation. The default constants as given in [25] and in [26] 

are; _6, _� = 0.15�TU%�_L = 3 

 

As explained in the previous sections the LHS of Eq. (3.29) to Eq. (3.31) are zero 

due to the fact that the y component of the mean velocity is zero in the channel. 

Therefore, the validity of the model transport equations is evaluated based on the 

level of their deviation from zero for the sum of RHS terms. 
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In Figure 3.6, individual terms that constitute Eq. (3.29) which is a simplified form 

of Eq. (3.16) for y direction, are plotted for the default values as stated above 

together with their sum. Since all the equations are symmetric around the centerline 

of the flow, only one side of the plot is shown in order to have a better visualization. 

 

0 = 03����������� ��S�/ + 2_6 D� �3�3������� ��GP#P�����������/ + ��3������� ��4P#P�����������/ � �#��/ + _� D� ��/ J3�3������� ��GP#P7����������/ K 0
e�5 �D ���������������                  (3.29) 

 

 

 

Figure 3.6 RHS of Eq (3.29) for default values of C1. 

 

Figure 3.6 shows that for the default constants, the general trend of Eq. (3.29) does 

not deviate much from zero up to a value where the near wall effects are important.  

It is also clear that, the general trend is defined by the first and second terms which 

are the production terms. 

With the default values of the constants, both production terms are positive. 

Therefore, the value of the second term has to be opposite of the first one to have 

almost a zero trend. 

Change in the general trend can be observed in the following figure. 
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Figure 3.7 RHS of Eq (3.29) for different values of C1. 



45 

An analysis similar to the one conducted for Eq. (3.29) can be repeated for Eq. 

(3.30); 

 

0 = 2_6 D� ���3������� ��4P#P�����������/ + 3��������� ���P#P������������/ �� �#��/ + _� D� ��/ J3�3������� ��4P#P7����������/ K 0 e�5 �D ��3������������
                   (3.30) 

 

One production term is missing in Eq. (3.30) since the mean velocity in y-direction 

and all of its derivatives are zero. Therefore, there are three terms at the RHS of Eq. 

(3.30) and the default constant values are the same as for Eq. (3.29). 

In Figure 3.8, an overall view of Eq. (3.30) for the default constants can be seen. 

 

 

 

Figure 3.8 RHS of Eq (3.30) for default values of C1, C2 and C3. 

 

For the default values of the constants, the third term has negligible effect on the 

RHS terms. It can be observed that the scale of the production term is comparable to 

the scale of the diffusion term. However, an adjustment is necessary to have a total 

zero for the RHS terms. Effects of changing the default values of the constants can 

be seen in Figure 3.9.  
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Figure 3.9 RHS of Eq (3.30) for different values of C1 keeping C2 and C3 

constant. 
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Figure 3.10 RHS of Eq (3.30) for different values of C2 keeping C1 and C3 

constant. 
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It is observed that the order of magnitude of Eq. (3.30) for the channel flow case is 

10 times lower compared to Eq. (3.29). In addition, trend analysis for Eq. (3.31) for �������������is not performed due to the fact that this term is relatively small compared to 

the other terms. 

 

One can understand, looking at Figures 3.9 and 3.10, that adjusting the constants for 

Eq. (3.30) is not trivial. On the other hand, increasing C2 has an effect of neutralizing 

the production very close to the wall, but it then introduces another effect around 

y
+=140-160. Therefore, it is decided to check the performance of direct modeling the �i
������������ term. 

 

Direct modeling of �i
������������ is given by Eq. (3.17); 

 

�i
������������ = 0_66 D� ���i

��j
�������� �1#P7�����2��F + �2��j

��������� �OGi
P#P�������Q��F �             (3.17) 

 

The resulting passive scalar for i=1 and j=1,2 is; 

 

������������ = 0_66 D� ������������ �1#P7�����2�¨ + 2����������� �OGP#P�������Q�¨ + ��3������� �1#P7�����2�� + �2�3��������� �OGP#P�������Q�� �     (3.38) 

 

The first two terms of Eq. (3.38) are zero due to zero derivatives in x direction. 

Default value of for the constant C11 is 0.11 as given in Schiestel [65]. Figure 3.11 

presents the comparison of the LHS vs. RHS of Eq. (3.38). 
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Figure 3.11 LHS vs. RHS of Eq (3.38) for default values of C11. 

 

Figure 3.11 shows that the trend fit between the both sides of the equation is very 

good, however an adjustment for C11 is necessary. Figure 3.12 presents the results for 

different values of C11. 
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Figure 3.12 LHS vs. RHS of Eq (3.38) for different values of C11. 
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Figure 3.13 LHS vs. RHS of Eq (3.38) for different values of C11. 

 

An analysis of Figure 3.13 reveals the fact that increasing C11 has a negative effect 

on the near wall region, whereas it has a positive effect for the regions far from the 

boundaries. For example C11=0.4-0.6 have very good match around the centerline 

but the fit is not as good as C11=0.2-0.3 for the near wall region. 

 

Similar trend analysis can be performed for 3����������� as well which is given below: 

 

3����������� = 0_66 D� ����3������� �1#P7�����2�¨ + 2�3��������� �OGP#P�������Q�¨ + 3�3������� �1#P7�����2�� + �2�3��������� �O4P#P������Q�� �     (3.39) 
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For the default value of C11 the following plot is obtained. 

 

 

 

Figure 3.14 LHS vs. RHS of Eq (3.39) for default value of C11. 

 

In the flowing plots, C11 is adjusted to have a better fit. C11 is changed from 0.02 to 

0.08. Decreasing C11 has a flattening effect on the RHS terms. This can be observed 

from Figure 3.15. However, a better fit is obtained increasing C11 especially in the 

near wall regions but at the same time, deviation increases approaching the centerline 

of the flow. It is not possible to obtain a reasonable fit either for ������������ or 3����������� using 

algebraic models. 
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Figure 3.15 LHS vs. RHS of Eq (3.39) for different values of C11. 
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A comparison of the performances for the transport equation and the direct model of �i������������ shows that the direct modeling is better than the transport equation. This 

might be due to �i
��j

��������������� term for which there is no model equation available. The 

performance of the transport equation for �i������������can later be evaluated if a reliable 

model for �i
��j

��������������� is developed. However, for the completeness of the modeling 

strategy, �i������������ is modeled with the transport equations and the results coming from 

the solution of the transport equation are utilized in the following section. 

  



55 

3.2.3.2 Results for [i
�k������� 

 

After finalizing the analysis for �i������������ the same procedure will be applied for �i��������� 
related terms. 

 

The equation for ���������� is given as; 

 

0 = 0�1 0 _���������������� ��S�� 0 ��3������� �#��� + _� D� ���F �3�3������� ��GP#P������������ � 0 e�5 �GP#P����������D �  

                   (3.32) 

 

The first two terms are mechanical and thermal production terms respectively 

whereas the third term is coming from turbulent diffusion. The last term is coming 

from modeling of the fluctuating pressure-temperature correlation [25]. 

 

Default values for the constants are given as [25] [26]; 

 _� = 0.55, _� = 0.15�TU%�_� = 3.50 

 

 

 

Figure 3.16 RHS of Eq (3.32) for default values of C6, C7 and C8. 
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A first glance at Figure 3.16 reveals that the effect of the mechanical production term 

is much more dominant than the other terms. Therefore, an effort to minimize this 

term will lead to zero RHS of Eq. (3.32). C6 is chosen as 0.9 in order to cancel out 

the effect of this term as shown in Figure 3.17. 

 

 

 

Figure 3.17 RHS of Eq (3.32) for default values of C7 and C8 and for C6 =0.9. 

 

Although the scale of the production term is decreased, it is still very dominant over 

the other terms. Therefore, it would only be possible to cancel out this term choosing 

C6 =1.0 Comparison of the other terms is performed with C6 =1.0 in Figure 3.18. 
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Figure 3.18 RHS of Eq (3.32) for different values of C7 and C8 and for C6 =1.0. 
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Eliminating the production term and adjusting the constant for the turbulent diffusion 

transport term is not satisfactory to get a zero value around the wall regions. 

Therefore, for this case only the following set of constants are selected; 

 _� = 0.90, _� = 0.75�TU%�_� = 3.50 

 

The consequence of selecting the constants above will be evaluated later during their 

application in the benchmark case. 

 

The number of RHS terms for 3��������� is three as in the case of Eq. (3.30) since the 

mean velocity in y direction is zero for the channel flow case. 

 

0 = 03�3������� �#��� + _� D� ���F �3�3������� ��4P#P������������ � 0 e�5 �4P#P����������D �             (3.33) 

 

Default constants for Eq. (3.33) are [25] [26]; 

 _� = 0.15�TU%�_� = 3.50 

 

Figure 3.19 represents the RHS of Eq. (3.33) for default values of C7 and C8. In the 

absence of the mechanical production term, thermal production term is the 

dominating one. In comparison to thermal production term, the other two terms being 

the turbulent diffusion transport and the term coming from the modeling of 

fluctuating pressure-temperature correlation are relatively smaller. However, a 

further analysis, as shown in Figure 3.20, is performed to see the effect of changing 

C7. 
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Figure 3.19 RHS of Eq (3.33) for default values of C7 and C8. 
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Figure 3.20 RHS of Eq (3.33) for different values of C7 and for C8=3.5. 
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Increasing C7 has a neutralizing effect for y+= 140-160 but it increases the near wall 

effect as in Eq. (3.30). It also observed that the scale of Eq. (3.33) is around 5 times 

smaller than Eq. (3.32). Another observation is that, as opposed to other equations, 

there is a constant deviation from zero for Eq. (3.33) due to thermal production term. 

Although, the order of magnitude for this term is very small, it is an interesting 

feature that has not been observed before. 

 

3.2.3.3 Results for k������
 

After finalizing the evaluation of the correlations involving velocity, the final 

analysis will be performed for Eq. (3.35) for the square of the fluctuating temperature 

term. 

 

0 = 023��������� �#��/ 0 6�e� #P
7������D � + _6] D� { ��/ �3�3������� �1#P72��������

�/ �}            (3.35) 

 

Default constants for Eq. (3.35) are given as; 

 _¢ = 0.50�TU%�_6] = 0.20 

 

The results of Eq. (3.35) for the default constants are shown in Figure 3.21. 
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Figure 3.21 RHS of Eq (3.35) for default values of C9 and C10. 

 

Similar trend as observed for Eq. (3.33) can be seen in Figure 3.21 for Eq. (3.35). 

There is a constant deviation from zero and the dominating term is the thermal 

production term. In order to have a better understanding of the other terms an 

adjustment study is performed as shown in Figures 3.22 and 3.23. 
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Figure 3.22 RHS of Eq (3.35) for different values of C9 and for C10=0.20. 
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Figure 3.23 RHS of Eq (3.35) for different values of C10 and for C9=0.10. 
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New constants for Eq. (3.35) are chosen as; 

 _¢ = 0.10�TU%�_6] = 0.10 

 

As a result of the a-priori testing the following conclusions have been reached: 

 

- For most of the equations default constants had to be changed with new ones 

to match the model results to the DNS data.  

 

- It is clearly observed that the model equations do not perform well in the near 

wall regions.  

 

- DNS data utilized here is a flow case which does not include a mean 

streamwise pressure gradient and  no curvature effects are considered. 

Therefore one must be cautious when applying these models to cases like 

turbomachinery cascade flows. Scotti and Piomelli [67] evaluated different 

turbulence models using a-priori testing with DNS and LES data. Marquillie 

et al. performed a DNS study of a channel with curved surface for a moderate 

Reynolds number [68]. The results of the models could be modified in case a 

DNS database with curvature effects is obtained. However, only modifying 

the existing constants or models from the results of DNS studies with 

curvature effects might be misleading. This has to be investigated thoroughly. 

 

- For the adjustment of the constants, only general trend analysis is applied. 

For the channel flow case, the equations of interest are overdetermined. In the 

literature there are methods to calculate the constants for an overdetermined 

case. One possibility is to calculate the coefficients using matrix 

representation as shown below in Eq. (3.38): 
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«T6 ¬6 6T� ¬� �⋮ ⋱ ⋮T� ¬� �°������±
_�#_6#_# ² ���= �����«

1� �³<´µ61� �³<´µ�⋮1� �³<´µ�
°�            (3.38) 

 

This representation is of the form ¶& = · but matrix ¶
 is not in diagonal 

form. Therefore first it has to be transformed into a diagonal matrix using its 

transpose and then the solution can be obtained with the inverse of the 

diagonal matrix. 

�¶#¶�¸6�¶#¶�& = ¶¸6¶#·����� /!��,¹ººº» ����& = ¶¸6¶#·           (3.39) 

 

Solution of Eq. (3.39) will give the coefficient matrix x which is composed of 

the constants for the model equations. 

 

- Although, the near wall region performance is poor, general trend fit between 

the model and DNS results is observed. The way to improve the near wall 

performance shall be checked during future studies. 

 

- For the channel flow case, production terms are more dominant than the 

diffusion terms. The effect of production terms are clearly seen in the near 

wall region. 

 

- Scales of turbulent effects are dominant in the streamwise direction for the 

channel flow case. The scales are 5-10 times smaller in the spanwise 

direction. However, this might not be the case for other flow cases. 

Therefore, flow characteristics of each flow shall be evaluated separately. 

 

- Turbulent terms can also be modeled using algebraic models. An example of 

this is performed in Section 3.2.4.3 for �i������������. There are several algebraic 

models for �i��������� as well. One of the famous ones can be obtained through 

Reynolds’ analogy: 
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�i
′�′��������� = 0 Dw5e¼ �#����                (3.40) 

 

Modeling of the turbulent terms using algebraic equations are easier and require less 

computational power. However, transport equations contain more terms compared to 

algebraic models which enable them to capture more turbulence related physics. 
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CHAPTER 4 

 

 

8 DIRECT AND APPROXIMATE LOCAL ENTROPY CALCULATION 

FOR A NON-ISOTHERMAL AXIAL TURBINE CASCADE 

 

 

 

This chapter presents a sample application of the direct and approximate local 

entropy calculation on a non-isothermal axial turbine cascade. The local entropy 

generation calculations are obtained by solving the direct and approximate forms of 

the RAET equation. Keep in mind that the approximate equation does not include 

any turbulence related terms. The direct solution involves the solution of additional 

model transport equations related to the velocity-temperature fluctuations as 

presented in the previous chapters. 

 

4.1 Cascade Geometry 

 

The two dimensional cascade geometry is given in Natalini and Sciubba [6]. This is 

an air-cooled turbine stator cascade. For the purpose of this study, the air cooling 

holes inside blade have not been modeled, but the blade surface is kept at constant 

temperature. A generic representation of the geometry can be seen in Figure 4.1. 
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Figure 4.1 Two dimensional cascade geometry in meters. 

 

The governing equations are solved using commercial CFD software Ansys 

FLUENT version 14.5.  

 

4.2 Boundary Conditions 

 

Velocity inlet is applied as inlet boundary condition and pressure outlet as outlet 

boundary condition. Upper and lower surfaces are selected as periodic. They are half 

pitch distance away from the chord representing surfaces exposed to the flow 

conditions. The details of the applied boundary conditions are given in Figure 4.2. 
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Figure 4.2 Boundary conditions applied to the stator blade. 

 

The boundary conditions are applied as given in [6] such as the blade surface and the 

air temperatures are 1118 K and 1300 K, respectively. The inlet velocity is Vg=103 

m/s. The inlet conditions for turbulence are kg=0.01 Vg
2 and Єg=0.006 Vg

2 for the 

turbulent kinetic energy and dissipation rate of turbulent kinetic energy, respectively.  

 

After identifying the geometry together with the boundary conditions, a mesh is 

generated which is capable of capturing the flow features around the stator blade. 

 

Since the entropy generation involves both the viscous and thermal components, the 

mesh shall be sufficient enough to capture the viscous effects especially around the 

blade as seen in Figure 4.3. Therefore, a comparison of the mesh with or without 

boundary layers is performed. In Figure 4.4, it is possible to visualize both meshes 

without boundary layers and with boundary layers. 
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Figure 4.3 Overall view of the mesh generated. 

 

 

 

Figure 4.4 Mesh around the blade. upper: no BL, lower: with 20 levels of BL. 
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In order to obtain a wall y+ value around 1, a boundary of 20 layers is attached for 

the accurate calculation of especially the viscous phenomena. Approximately 35000 

elements are used. The number of grid points is decided after a grid convergence 

study up to about 50000 elements, which showed that the calculated total entropy 

generation rate values do not change much after about 35000 elements. 

 

Grid convergence is decided after checking different models with different number 

of cells. Figure 4.5 presents the velocity magnitude on a line passing through the 

wake region of the flow. It is clearly evident from Figure 4.5 that, there is a sharp 

change between the model with 20899 elements and the model with 35117 elements. 

However, that deviation cannot be observed clearly between the models with 35117 

and 51195 elements. Therefore, it is decided to continue with the model containing 

35117 elements for further studies. 

 

 

 

Figure 4.5 Velocity profiles on a line at the wake region with respect to number 

of cells. 
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4.3 Results 

 

After it is decided that a satisfactory mesh is obtained with sufficient number of 

elements, the flow field around the stator blade cascade is solved using a pressure 

based solver. As turbulence model, Reynolds Stress Model (RSM) is chosen. 

Reynolds stress model solves the transport equations for the Reynolds stresses, 

therefore is considered to be more accurate than two or one equation models in most 

of the flow cases. This is also in line with the aim of this thesis which is to obtain the 

entropy generation via solving the entropy transport equation. Before solving the 

transport equations for the passive scalars, a stable solution is obtained solving the 

continuity, momentum and energy equations. Later, the transport equations are 

solved and more than 100000 iterations have been performed in order to reach a 

converged solution. 

 

The effect of additional transport equations on the equations governing the fluid flow 

is evaluated on the basis of computational time. It has been observed that solution of 

the entropy transport equation using the direct approach increases the computational 

time by 15%. This includes solution of the transport equations for turbulent terms �i������������, �i��������� and �������. 
 

4.3.1 Calculated Velocity and Pressure Field  

 

Before going into the details of entropy generation calculations, general 

characteristics of the flow are evaluated. Figure 4.6 and Figure 4.7 show the axial 

and vertical velocity as well as the velocity magnitude distributions within the 

cascade. The stagnation regions, high velocity peaks on the blade suction side, the 

acceleration of the flow through the cascade and the low momentum wake zones are 

clearly observed from the distributions. 
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Figure 4.6 Axial and vertical velocity contours around the stator blades. 
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Figure 4.7 Velocity magnitude contours around the stator blades. 

 

On the blade suction surface the boundary layer gets thicker after mid-chord location 

due to the adverse pressure gradient near the blade surface, which can be seen in the 

static pressure distribution given in Figure 4.8. 
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Figure 4.8 Static pressure contours around the stator blades. 

 

The total pressure and total temperature contours are given in Figure 4.9. The loss in 

total pressure due to blade boundary layers and wakes is clearly visible. General drop 

in total temperature is observed, which is accentuated within the blade wakes. 
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Figure 4.9 Total pressure and temperature contours around the stator blades. 
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Comparison of the calculated flow field with the study performed by Natalini and 

Sciubba [6], will be based on contours of Bejan numbers. Bejan number is a useful 

parameter in understanding the relation between the viscous and thermal entropy 

generation rates and is defined by formulation given below: 

 

�½ = �# @{1�G��2� + 1�4�/2� + 6� 1�G�/ + �4��2�}                (4.1) 

 

�# =� D¾�¿#7 {1��#���2� + 1��#�/�2�}                  (4.2) 

 ·< = � f-)f                    (4.3) 

 

where sv and sT are viscous and thermal entropy generation respectively. 

 

As defined by Eq. (4.3), Bejan number gives the ratio of the viscous entropy 

generation rate to total entropy generation rate. Figure 4.10 presents the Bejan 

number contours around the stator blade. As expected, the viscous entropy 

generation is seen around the blade since this is the region where high viscous effects 

are dominant. 
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Figure 4.10 Bejan number contours around the stator blade. 

 

A closer view of the Bejan numbers around the blade is given in Figure 4.11. Bejan 

number has a value of 0.4-0.6 in the vicinity of the wall. This is in accordance with 

the study performed by Natalini and Sciubba [6]. There are some regions where the 

Bejan number decreases to 0-0.2. The effect of thermal boundary layer in this region 

is diminishing whereas viscous effects start dominating. Figure 4.11 indicates that 

the thermal entropy generation effects are limited to a very thin boundary layer 

region around the blade. Over this thin boundary layer, viscous effects become 

dominant in specific regions, especially in some regions around the wake. This is 

believed to be due to high levels of turbulence being more dominant on the thermal 

effects. 
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Figure 4.11 Detailed view of Bejan number contours around the stator blade. 
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4.3.2 Results About Entropy Generation  

 

Entropy transport equation is solved using the UDF (User Defined Function) 

capability of Ansys Fluent. A total of 6 different transport equations have been 

solved. These transport equations can be listed as: 

 

��5�S�� + ���� X��i����� 0 Dxy �z����Y =
�0 ���� ����i

���������� +� D#�7 ��#������ + D#�7 ���#P��i
���������� + D� � ���i

16#�2 ��#P7����������i
+ Eij���#�� �GiS��F + {|#�� �0

�15#�� ����i
������� �V���2 0�5ef#� �iS ������������� ���i

16#�2 0� 5ef��#�7 �J��#P7����������i
K 0 5ef#�� �i

���������������� ���i
16#�2 0

5ef��#�7 ���Gi
P#P7���i

����������                  (2.52) 

 

;�Gi
P#P7����������;� = ��0�j

������������ ��i�����F + 2_6 D� ��j
��k

����������OGi
P#P�������Q��M +��i

��k
����������OGj

P#P�������Q��M �� �#���F +
_� D� � ���F [��j

��k
����������1Gi

P#P7���������2��M �] 0 65 ��_L �D �i
�������������              (3.16) 

 

;�Gi
P#P��������;� = 0�1 0 _������j

���������� ��S���F 0 �i
��j

������� �#���F + _� D� ���F ��j
��D������� �OGi

P#PQ�����������M � 0 _� 65 �Gi
P#P����������D �

                   (3.24) 

 

 

;#P7�����;� = 02��i
���������� �#���� 0 6�e� #P

7������D �� + _6] D� ���F ��i
��j

������� �#P7�������� �             (3.28) 

 

All of the above equations can be converted into a form; 

 ��5∅M��� +� ���� 1��!∅D 0 Γu �∅M���2 = �∅M              (2.51) 

 

This is the form of a general transport equation with Γu and �∅M being the diffusivity 
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and source terms. It is possible to define such equations using the UDS (User 

Defined Scalar) feature of Fluent. Details of the scalar, such as the diffusivity and 

source are defined via UDF and then implemented in the software interface. Details 

of the UDF and UDS can be found in Appendix A. 

 

Entropy generation calculations can be considered to be approximate and direct. The 

details of the direct calculation are explained above. In approximate calculations, 

first the flow field is obtained with quantitative descriptions of velocity and 

temperature fields. Then, the viscous and thermal components of the entropy are 

calculated using the available definitions as given in [6]: 

 

�½ = �# @{1ÀG��2� + 1�4�/2� + 6� 1�G�/ + �4��2�}                (4.1) 

 

�# =� D¾�¿#7 {1��#���2� + 1��#�/�2�}                  (4.2) 

 

Eq.s (2.52), (3.16), (3.24) and (3.28) involve terms likes Reynolds stresses and 

passive scalars which are created by the turbulent nature of the flow. Below details of 

these parameters are discussed before going into the details of entropy generation 

itself. In Figures 4.12 and 4.13, flow characteristics of the Reynolds stresses are 

given. 
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Figure 4.12 Reynolds stress contours around the stator blades; ����������. 
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Figure 4.13 Reynolds stress contours around the stator blades; ��3������� and 3�3������� 
respectively. 
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Looking at Figures 4.12 and 4.13, it can be seen that the Reynolds stresses are 

dominant in the wake related regions, especially for ���������� and 3�3�������. On the other 

hand, ��3������� is more concentrated in a region between the blades starting with one-

third of the chord. 

 

Figure 4.14 and 4.15 show the contours for heat fluxes ���������� 3���������and ������� 
respectively. The concentration in the regions where there is high turbulence 

intensity is apparent. ���������� is much more effective in the wake region like ���������� and 3�3�������. However, 3��������� is concentrated in a very confined region in the wake but is 

widely spread in the lower boundary layer of each blade. It can also be observed that 

the concentration of both terms is around the boundary layers. This is an expected 

feature since the transport equations for both are dominated by the production terms 

which are mainly happening in and around the boundary layers. 

 

In Figure 4.15, ������� gets the peak values around the blade walls where the thermal 

gradients are highest. The level of generation decreases as one gets away from the 

blade walls. In addition, considerable values are observed in the wake region and this 

effect is carried with the wake. 
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Figure 4.14 ���������� and 3��������� contours around the stator blades. 
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Figure 4.15 ������� contours around the stator blades. 

 

Figure 4.16 shows the contours for heat fluxes ������������ and 3����������� respectively. As 

opposed to what is observed in Figures 4.12, 4.13 and 4.14, this time the wake region 

concentration of the scalars is not clearly visible. However, the concentration around 

the blade surface is more. This is where the thermal boundary layer develops 

between the flow and the blade surface due to the highest temperature gradient. 

Another concentration region is around the stagnation region, especially for ������������. 
This is found to be reasonable due to the fact that the flow is mainly in the 

streamwise direction. A similar region is also visible for 3����������� but it is not as clear 

and dominant as ������������. 
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Figure 4.16 ������������ and 3����������� contours around the stator blades. 
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After analyzing the parameters which are important in the calculation of entropy and 

entropy generation, details of specific entropy and entropy generation are discussed. 

Figures 4.17 and 4.18 present all the turbulent related parameters that are needed for 

the direct calculation of the specific entropy. From the figures, it can be concluded 

that the correlations involving only one parameter like ���������� 3�3������� and ������� have a 

similar trend. It can be seen in Figure 4.17 that the effective region for all the 

parameters is the wake region and the region around the boundary layers. This is also 

valid for ������� but this parameter is more dominant than the Reynolds stresses in the 

boundary layer. However, the diffusive character of the Reynolds stresses is more 

apparent than �������. 
 

When it comes to correlations involving two parameters like ��3�������, ���������� and 3���������, a 

kind of similarity can be seen as well. Localization of the gradients for the stagnation 

region and the inter-blade spacing is evident. For ��3�������, high levels of Reynolds 

stresses start to form after almost one third of the chord and continues to the end of 

wake region. However, ���������� and 3��������� are more localized near the boundary layer.  

 

Finally, a comparison of the two parameter correlations with the three parameter 

correlations show that, the effect of fluctuating temperature is more for the three 

parameter correlations. This is because ������������ and 3����������� are not intensively carried to 

the wake region. However, this feature can be seen for ���������� and 3���������. For all the 

parameters, it is also possible to see a concentrated region in the inter-blade spacing. 

The size of this effected region is larger for ������������ and 3����������� than ���������� and 3���������. 
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Figure 4.17 Contours of ���������� 3�3�������, ���������� and �������. 
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Figure 4.18 Contours of ��3�������, 3��������� ������������ and 3�����������. 
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Results up to now have been presented based on the default coefficients of the model 

transport equations. However, as a result of a-priori testing, different model 

coefficients have been obtained. Figures below represent the comparisons of 

turbulent parameters obtained using default model coefficients and coefficients after 

a-priori testing. 

 

 

 

 

Figure 4.19 Contours of ���������� and 3��������� for default and a-priori coefficients. 
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Figure 4.20 Contours of ������� ������������ and 3����������� for default and a-priori coefficients. 
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Left hand sides of Figures 4.19 and 4.20 are the results from default coefficients 

whereas the right hand sides are coming from the results after a-priori testing. In 

Figure 4.19, contours for ���������� and 3��������� are plotted. Having a close look at both 

figures, one cannot observe a significant difference in results. The same can be 

observed for Figure 4.20 for which the contours of ������� ������������ and 3�����������  are plotted. 

As a result of this conclusion, for the upcoming sections, results of the a-priori tested 

case will be presented for the sake of completeness. 

 

As discussed in the previous sections, specific entropy can be calculated in two main 

ways; directly and approximately. Direct calculation can be performed using Eq. 

(2.53) which includes many terms related with turbulence. 

 

��5�S�� + ���� X��i����� 0 �D)Dwxy � �z����Y = � D#�7 ��#������ + D#�7 ���#P��i
���������� + D� � ���i

16#�2 ��#P7����������i
+ Eij���#�� �GiS��F +

{|#�� �0 �15#�� ��i
��������� �V���2 0�5ef#� �iS ������������� ���i

16#�2 0� 5ef��#�7 �J��#P7����������i
K 0 5ef#�� �i

���������������� ���i
16#�2 0

5ef��#�7 ���Gi
P#P7���i

����������                  (2.53) 

 

Another method is to calculate the entropy approximately combining Eqs (4.1) and 

(4.2) to get the total of viscous and thermal entropy generation. Eqs (4.1) and (4.2) 

can be combined to give: 

 

����� = �# @ Á1�G��2� + 1�4�/2� + 6� 1�G�/ + �4��2�Â + D#7 {1��#���2� + 1��#�/�2�}            (4.3) 

 

which forms the RHS of the approximate entropy generation equation: 

 

��5�S�� + ���� X��i����� 0 � Dxy� �z����Y = D#�7 ��#������ + Eij���#�� �GiS��F               (4.4) 

 

Eq. (4.4) can be considered to be Reynolds averaged form of Eq. (2.16). 

 

Direct specific entropy is calculated using Eq. (2.53) whereas approximate specific 
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entropy is obtained through Eq. (4.4). 

 

Figure 4.21 presents the results for direct and approximate specific entropies 

calculated from Eqs (2.53) and (4.4). In addition, RHS terms for Eqs (2.53) and (4.4) 

are plotted in Figure 4.22. 
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Figure 4.21 Direct and approximate specific entropy contours. 
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Figure 4.22 Direct and approximate source terms. 
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Figure 4.21 clearly shows that the entropy is much more widely spread in the direct 

calculation case. However, it is more confined to just after the blade region for the 

approximate calculations and the thickness of the wake is approximately constant 

after the blade. In the direct case, the spreading of the wake is visible and shall be 

expected due to high turbulence at the wake region. 

 

Diffusivity of entropy is a lot higher for the direct case whereas almost no diffusivity 

is observed for the approximate one. In both cases, the decay of entropy can be seen 

going away from the blade. The same is observed for RHS terms for which are 

responsible for the generation of specific entropies. 

 

The level of specific entropies is different for both cases. From the contour plots, it 

seems that the levels are higher for the direct case especially at the tip of the blade. In 

order to see this phenomenon in a more quantitive manner, a line is drawn 

perpendicular to the wake core. The location of the line with respect to the blade can 

be seen in Figure 4.23. 

 

 

 

Figure 4.23 Location of the wake line considered for comparison. 
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Wake line extends from the almost freestream flow region on both sides and crosses 

through the wake effective region. 

 

Before going into the details of entropies along the wake line, static pressure and 

velocity profiles are drawn in Figure 4.24. 

 

 

 

Figure 4.24 Static pressure and velocity magnitude profiles along the wake line 

respectively. 
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In Figures 4.25 and 4.26, profiles for �������, ����������, 3���������, ������������ and 3����������� are plotted 

respectively. 

 

 

 

Figure 4.25 �������, ���������� and 3��������� profiles along the wake line respectively. 
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Figure 4.26 ������������ and 3����������� profiles along the wake line respectively. 

 

Following figure quantitively compare both the direct and the approximate specific 

entropies. 

  



103 

 

 

 

Figure 4.27 Specific entropies for direct and approximate solutions on the wake 

line. 

 

In Figure 4.27, y axis is the specific entropy values and x axis is the nondimensional 

curve legth which is  

 Ã∗ = � ,¸,Ä¾(�¿ÅÆ                     (4.5) 

 

where d is the coordinate along the wake line, dmax is the coordinate where the 

maximum entropy occurs and lref is a reference length. 

 

Looking at Figure 4.27, direct specific entropy is almost four times higher than 

approximate entropy generation values at the point where the maximum entropy 

occurs. This difference diminishes along the freestream flow. However, there is an 

almost constant offset between the freestream entropy values of 3 J/kgK. This offset 

is believed to be coming from turbulence effects included in the direct calculation. 

Boundary layer induced turbulence penetrates into the freestream causing a 

difference between the freestream entropy values. 
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For the approximate entropy values, only the mean quantities are considered and the 

gradients of the mean quantities are effective in the core region of the wake. 

Since the scales are different for direct and approximate specific entropies, a non-

dimensional parameter, s* for entropy is formed in order to have a better insight. 

 

Nondimensional entropy is formulated as: 

 s∗ = � Ä¾(                    (4.6) 

 

where smax is the maximum specific entropy. 

 

For the direct specific entropy, offset value is subtracted from all values to have the 

same basis of comparison.  

 

In Figure 4.28, nondimensional specific entropy is plotted as a function of 

nondimensional curve length. Along the pressure side of the blade, two lines are 

almost identical but approximate entropy has a slight wider distribution.  However, 

along the suction side, the wake region is wider starting from the center and the gap 

increases while approaching the freestream. This is due to the additional source terms 

coming mainly from turbulence. 
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Figure 4.28 Nondimensional specific entropies for direct and approximate 

solutions on the wake line. 

 

Comparison of the source terms appearing in both methods can illustrate the reason 

for this difference. Figure 4.29 presents the source terms for direct and approximate 

methods. 
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Figure 4.29 Source terms for direct and approximate solutions on the wake line. 

 

The level of source terms is in the order of thousands whereas it is around fifty for 

the approximate case. This difference is responsible for the additional entropy 

generation that can be captured by the direct method. 

 

Source terms can also be nondimensionalized to have a better overview about the 

evolution of the parameters. If each of the source terms is nondimensionalized by its 

maximum value over the wake line, the pattern in Figure 4.30 is obtained. 
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Figure 4.30 Nondimensional source terms for direct and approximate solutions on 

the wake line. 

 

A direct observation from Figure 4.30 is the perfect fit of the extremes for the 

approximate terms with the values on the direct terms. It is clear from this figure that 

the additional source terms are responsible for higher entropy values. This can also 

be observed through the area between both curves. 

 

A final check of what is discussed above could be done through visualization of the 

contour plots for both the direct and approximate specific entropies around the wake 

line in a detailed manner. Figure 4.31 presents the contours for direct and 

approximate specific entropies respectively. 

 

From the detailed views around the wake line, it is easier to capture the effect of the 

suction side. In both figures, specific entropy is higher towards the suction side and 

this also explains the difference being more on the suction side for Figures 4.28 and 

4.30. 
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Figure 4.31 Detailed contours of specific entropies for direct and approximate 

solutions around the wake line. 
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Finally, starting with Figure 4.21 and then proceeding figures till Figures 4.31 clearly 

demonstrates the difference between the direct and approximate entropy calculations. 

It is believed that the approximate entropy can serve the designers and pioneers up to 

a certain level. For someone who is interested in detailed design and understanding 

of a system involving high turbulence certainly needs a thorough understanding of 

loss mechanisms. Since loss mechanisms are strongly related with entropy, a full 

understanding of entropy is needed as discussed before. Although, it is 

computationally more intense and requires longer simulation times, direct entropy 

calculations are needed for complex systems like turbines, compressors and engines.  
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CHAPTER 5 

 

 

9 CONCLUSION AND FUTURE WORK 

 

 

 

The effect of calculating the entropy generation rate directly using the Reynolds-

Averaged Entropy Transport equation is demonstrated by comparing the direct 

results with the ones that are calculated by post-processing the velocity and 

temperature fields for a two-dimensional turbine cascade configuration. Results show 

that there could be significant differences especially in the spatial distributions of 

entropy fields. This type of approach could offer significant improvements in entropy 

and loss prediction in turbomachinery flows. However, this approach needs more 

studies especially for accurate modeling of temperature fluctuations and temperature-

velocity correlations in the entropy transport equation. 

 

The main difficulty in modeling the direct calculation of entropy through solving the 

entropy transport equation lies in the turbulence modeling part. Entropy transport 

equation involving turbulent effects requires a lot of modeling efforts. Especially the 

scalar parameters that are results of fluctuating velocity and temperature correlations 

have to be investigated in detail.  

Within this study, only limited modeling approaches have been tested, but turbulence 

modeling world is like a bottomless well as explained by Phil Thompson, senior 

scientist of NCAR [27]: 

 

“Lots of people have tried to develop a fundamental theory of turbulence. Some very 

well known people have given up on it. But I just can’t give up on it – it’s like a 

beautiful mistress. You know that she treats you badly, she’s being ornery, but you 

just can’t stay away from her. So periodically, this question comes up again in my 

mind, and I keep casting about for some different and simple and natural way of 

representing the motion of a fluid, and some way of treating the analytical 
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difficulties. And I seem to get a little bit closer sometimes….” 

 

It has not been possible to cover all complex phenomena related with entropy within 

the contents of this thesis and it is believed that the following list of subjects could be 

further investigated to have a better feeling about what has been done within this 

study: 

 

- A different model for the turbulent entropy generation could be developed 

other than proposed in this thesis 

 

- DNS data used here is a channel flow without pressure gradient and curvature 

effects. The results of a-priori testing could be modified if a better DNS data 

is found. 

 

- Model equations for the turbulent terms are complex in their nature that there 

is a lot of modeling effort in them. Turbulence modeling is a very active 

research subject and the model equations for the turbulent related terms could 

be improved to have better result for the turbulent related terms. 

 

- The benchmark case studied here is a 2D model with a fixed turbine stator 

blade. However, there are more complex flow cases in real engineering 

applications. This 2D model shall be extended to 3D models involving 

rotational fluid motion. 

 

- Other systems shall also be used as benchmark like compressors and engines 

where entropy also plays a big role in loss mechanisms. If the methodology 

discussed here can be utilized globally for most of the complex systems 

involving entropy, then it is possible to conclude that the method has 

achieved a great success. 

 

In conclusion, entropy generation calculation is one of the most attractive topics in 

engineering fields. Entropy generation coupled with turbulence has gained some 
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attention in the past but there are still some mysterious points waiting to be resolved. 

Therefore, it is expected by the author that more interesting studies will come in the 

future and use of entropy generation as a tool will be much broader. 
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APPENDIX A 

 

 

USER DEFINED FUNCTION (UDF) USED IN ANSYS FLUENT 

 

 

 

/* This UDF is about the calculation of transport equations for the passive scalars t2, 

ut , vt, ut2, vt2 and specific entropy,s*/ 

 

#include "udf.h" 

#include "mem.h" 

#include "math.h" 

/* C_UDSI(c,t,0) = t2 */ 

/* C_UDSI(c,t,1) = ut */ 

/* C_UDSI(c,t,2) = vt */ 

/* C_UDSI(c,t,3) = ut2 */ 

/* C_UDSI(c,t,4) = vt2 */ 

/* C_UDSI(c,t,5) = s */ 

DEFINE_ON_DEMAND(entropy) 

{ 

Domain *d; 

Thread *t; 

cell_t c; 

d=Get_Domain(1); 

thread_loop_c(t,d) 

{ 

begin_c_loop(c,t) 

{ 

C_UDSI(c,t,6)=C_RUU(c,t); 

C_UDSI(c,t,7)=C_RUV(c,t); 

C_UDSI(c,t,8)=C_RVV(c,t); 
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C_UDSI(c,t,9)=C_UDSI(c,t,1)/C_T(c,t); /* ut/T */ 

C_UDSI(c,t,10)=C_UDSI(c,t,2)/C_T(c,t); /* vt/T */ 

C_UDSI(c,t,11)=(1/C_T(c,t)); /* 1/T */ 

C_UDSI(c,t,12)=C_UDSI(c,t,3)/C_T(c,t); /* ut2/T */ 

C_UDSI(c,t,13)=C_UDSI(c,t,4)/C_T(c,t); /* vt2/T */ 

C_UDSI(c,t,14)=C_UDSI(c,t,0)/C_T(c,t); /* t2/T */ 

C_UDSI(c,t,15)=C_UDSI_G(c,t,0)[0]; 

C_UDSI(c,t,16)=C_UDSI_G(c,t,0)[1]; 

C_UDSI(c,t,17)=C_UDSI_G(c,t,1)[0]; 

C_UDSI(c,t,18)=C_UDSI_G(c,t,1)[1]; 

C_UDSI(c,t,19)=C_UDSI_G(c,t,2)[0]; 

C_UDSI(c,t,20)=C_UDSI_G(c,t,2)[1]; 

C_UDSI(c,t,21)=C_UDSI_G(c,t,3)[0]; 

C_UDSI(c,t,22)=C_UDSI_G(c,t,3)[1]; 

C_UDSI(c,t,23)=C_UDSI_G(c,t,4)[0]; 

C_UDSI(c,t,24)=C_UDSI_G(c,t,4)[1]; 

C_UDSI(c,t,25)=log(C_T(c,t)); 

C_UDSI(c,t,26)=C_UDSI_G(c,t,25)[0]; 

C_UDSI(c,t,27)=C_UDSI_G(c,t,25)[1]; 

C_UDSI(c,t,28)=C_T_G(c,t)[0]; 

C_UDSI(c,t,29)=C_T_G(c,t)[1]; 

C_UDSI(c,t,30)=((C_R(c,t)*C_CP(c,t)/C_K_L(c,t))*C_UDSI(c,t,3))-

C_UDSI_G(c,t,0)[0]; 

C_UDSI(c,t,31)=((C_R(c,t)*C_CP(c,t)/C_K_L(c,t))*C_UDSI(c,t,4))-

C_UDSI_G(c,t,0)[1]; 

C_UDSI(c,t,0)=0; 

C_UDSI(c,t,1)=0; 

C_UDSI(c,t,2)=0; 

C_UDSI(c,t,3)=0; 

C_UDSI(c,t,4)=0; 

C_UDSI(c,t,5)=0; 

C_UDSI(c,t,9)=0; 
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C_UDSI(c,t,10)=0; 

C_UDSI(c,t,12)=0; 

C_UDSI(c,t,13)=0; 

C_UDSI(c,t,14)=0; 

C_UDSI(c,t,15)=0; 

C_UDSI(c,t,16)=0; 

C_UDSI(c,t,17)=0; 

C_UDSI(c,t,18)=0; 

C_UDSI(c,t,19)=0; 

C_UDSI(c,t,20)=0; 

C_UDSI(c,t,21)=0; 

C_UDSI(c,t,22)=0; 

C_UDSI(c,t,23)=0; 

C_UDSI(c,t,24)=0; 

C_UDSI(c,t,25)=0; 

C_UDSI(c,t,26)=0; 

C_UDSI(c,t,27)=0; 

C_UDSI(c,t,28)=0; 

C_UDSI(c,t,29)=0; 

C_UDSI(c,t,30)=0; 

C_UDSI(c,t,31)=0; 

C_UDSI(c,t,32)=0; 

} 

end_c_loop(c,t) 

} 

} 

/*t2 source*/ 

DEFINE_SOURCE(t2_src,c,t,dS,eqn) 

{ 

real source; 

C_UDSI(c,t,6)=C_RUU(c,t); 

C_UDSI(c,t,7)=C_RUV(c,t); 
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C_UDSI(c,t,8)=C_RVV(c,t); 

C_UDSI(c,t,15)=C_UDSI_G(c,t,0)[0]; 

C_UDSI(c,t,16)=C_UDSI_G(c,t,0)[1]; 

/*1st source */ 

C_UDMI(c,t,0)=-

4*C_R(c,t)*((C_UDSI(c,t,1)*C_T_G(c,t)[0])+(C_UDSI(c,t,2)*C_T_G(c,t)[1])); 

/*2nd source */ 

#define c9 0.5 

C_UDMI(c,t,1)=C_R(c,t)*((-

(1/c9)*(C_D(c,t)/C_K(c,t))*C_UDSI(c,t,0))+(2*C_UDSI(c,t,0)*( 

C_DUDX(c,t)+C_DVDY(c,t)))); 

/*3rd source */ 

#define c10 0.2 

C_UDMI(c,t,2)=c10*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_UDSI_G(c,t,7)[1]*C_UDSI

_G(c,t,0)[0])+( 

C_RUV(c,t)*C_UDSI_G(c,t,15)[1])+(C_UDSI_G(c,t,7)[0]*C_UDSI_G(c,t,0)[1])+(

C_RUV(c,t)* 

C_UDSI_G(c,t,16)[1])); 

C_UDMI(c,t,37)=C_UDMI(c,t,0)+C_UDMI(c,t,1)+C_UDMI(c,t,2); 

source=C_UDMI(c,t,37); 

dS[eqn]=0.0; 

return source; 

} 

/*t2 diffisuvity*/ 

DEFINE_ANISOTROPIC_DIFFUSIVITY(t2_aniso_diff,c,t,i,t2_aniso) 

{ 

#define c10 0.2 

t2_aniso[0][0]=c10*(C_K(c,t)/C_D(c,t))*C_RUU(c,t); 

t2_aniso[1][1]=c10*(C_K(c,t)/C_D(c,t))*C_RVV(c,t); 

t2_aniso[0][1]=t2_aniso[1][0]=0.0; 

} 

/*ut source*/ 
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DEFINE_SOURCE(ut_src,c,t,dS,eqn) 

{ 

real source; 

C_UDSI(c,t,6)=C_RUU(c,t); 

C_UDSI(c,t,7)=C_RUV(c,t); 

C_UDSI(c,t,8)=C_RVV(c,t); 

C_UDSI(c,t,17)=C_UDSI_G(c,t,1)[0]; 

C_UDSI(c,t,18)=C_UDSI_G(c,t,1)[1]; 

/*1st source */ 

#define c6 0.55 

C_UDMI(c,t,4)=2*c6*C_R(c,t)*((C_UDSI(c,t,1)*C_DUDX(c,t))+(C_UDSI(c,t,2)*C

_DUDY(c,t))); 

/*2nd source */ 

C_UDMI(c,t,5)=-

2*C_R(c,t)*((C_RUU(c,t)*C_T_G(c,t)[0])+(C_RUV(c,t)*C_T_G(c,t)[1])); 

/*3rd source */ 

#define c7 0.15 

C_UDMI(c,t,6)=c7*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_UDSI_G(c,t,7)[1]*C_UDSI_

G(c,t,1)[0])+( 

C_RUV(c,t)*C_UDSI_G(c,t,17)[1])+(C_UDSI_G(c,t,7)[0]*C_UDSI_G(c,t,1)[1])+(

C_RUV(c,t)* 

C_UDSI_G(c,t,18)[1])); 

/*4th source */ 

#define c8 3.5 

C_UDMI(c,t,7)=-4*c8*(C_D(c,t)/C_K(c,t))*C_UDSI(c,t,1); 

C_UDMI(c,t,38)=C_UDMI(c,t,4)+C_UDMI(c,t,5)+C_UDMI(c,t,6)+C_UDMI(c,t,7); 

source=C_UDMI(c,t,38); 

dS[eqn]=-((1-c6)*C_DUDX(c,t))-(4*c8*(C_D(c,t)/C_K(c,t))); 

return source; 

} 

/*ut diffisuvity*/ 

DEFINE_ANISOTROPIC_DIFFUSIVITY(ut_aniso_diff,c,t,i,ut_aniso) 
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{ 

#define c7 0.15 

ut_aniso[0][0]=c7*(C_K(c,t)/C_D(c,t))*C_RUU(c,t); 

ut_aniso[1][1]=c7*(C_K(c,t)/C_D(c,t))*C_RVV(c,t); 

ut_aniso[0][1]=ut_aniso[1][0]=0.0; 

} 

/*vt source*/ 

DEFINE_SOURCE(vt_src,c,t,dS,eqn) 

{ 

real source; 

C_UDSI(c,t,6)=C_RUU(c,t); 

C_UDSI(c,t,7)=C_RUV(c,t); 

C_UDSI(c,t,8)=C_RVV(c,t); 

C_UDSI(c,t,19)=C_UDSI_G(c,t,2)[0]; 

C_UDSI(c,t,20)=C_UDSI_G(c,t,2)[1]; 

/*1st source */ 

#define c6 0.55 

C_UDMI(c,t,8)=2*c6*C_R(c,t)*((C_UDSI(c,t,1)*C_DVDX(c,t))+(C_UDSI(c,t,2)*C

_DVDY(c,t))); 

/*2nd source */ 

C_UDMI(c,t,9)=-

2*C_R(c,t)*((C_RUV(c,t)*C_T_G(c,t)[0])+(C_RVV(c,t)*C_T_G(c,t)[1])); 

/*3rd source */ 

#define c7 0.15 

C_UDMI(c,t,10)=c7*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_UDSI_G(c,t,7)[1]*C_UDSI

_G(c,t,2)[0])+( 

C_RUV(c,t)*C_UDSI_G(c,t,19)[1])+(C_UDSI_G(c,t,7)[0]*C_UDSI_G(c,t,2)[1])+(

C_RUV(c,t)* 

C_UDSI_G(c,t,20)[1])); 

/*4th source */ 

#define c8 3.5 

C_UDMI(c,t,11)=-4*c8*(C_D(c,t)/C_K(c,t))*C_UDSI(c,t,2); 
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C_UDMI(c,t,39)=C_UDMI(c,t,8)+C_UDMI(c,t,9)+C_UDMI(c,t,10)+C_UDMI(c,t,1

1); 

source=C_UDMI(c,t,39); 

dS[eqn]=0.0; 

return source; 

} 

/*vt diffisuvity*/ 

DEFINE_ANISOTROPIC_DIFFUSIVITY(vt_aniso_diff,c,t,i,vt_aniso) 

{ 

#define c7 0.15 

vt_aniso[0][0]=c7*(C_K(c,t)/C_D(c,t))*C_RUU(c,t); 

vt_aniso[1][1]=c7*(C_K(c,t)/C_D(c,t))*C_RVV(c,t); 

vt_aniso[0][1]=vt_aniso[1][0]=0.0; 

} 

/*ut2 source*/ 

DEFINE_SOURCE(ut2_src,c,t,dS,eqn) 

{ 

real source; 

C_UDSI(c,t,6)=C_RUU(c,t); 

C_UDSI(c,t,7)=C_RUV(c,t); 

C_UDSI(c,t,8)=C_RVV(c,t); 

C_UDSI(c,t,21)=C_UDSI_G(c,t,3)[0]; 

C_UDSI(c,t,22)=C_UDSI_G(c,t,3)[1]; 

/*1st source */ 

C_UDMI(c,t,12)=2*C_R(c,t)*(C_UDSI(c,t,3)*C_DVDY(c,t)-

C_UDSI(c,t,4)*C_DUDY(c,t)); 

/*C_UDMI(c,t,12)=0; */ 

/*2nd source */ 

#define c3 3.0 

C_UDMI(c,t,13)=-4*c3*(C_D(c,t)/C_K(c,t))*C_UDSI(c,t,3); 

/*3rd source */ 

#define c1 0.15 
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C_UDMI(c,t,14)=2*c1*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_RUU(c,t)*C_UDSI_G(c,

t,1)[0]*C_T_G(c,t)[0])+(C_RUV(c,t)*C_UDSI_G(c,t,1)[1]*C_T_G(c,t)[0])+(C_RU

V(c,t)*C_UDSI_G(c,t,1)[0]*C_T_G 

(c,t)[1])+(C_RVV(c,t)*C_UDSI_G(c,t,1)[1]*C_T_G(c,t)[1])); 

/*4th source */ 

#define c2 0.15 

C_UDMI(c,t,15)=c2*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_UDSI_G(c,t,7)[0]*C_UDSI

_G(c,t,3)[1])+( 

C_RUV(c,t)*C_UDSI_G(c,t,22)[0])+(C_UDSI_G(c,t,7)[1]*C_UDSI_G(c,t,3)[0])+(

C_RUV(c,t)* 

C_UDSI_G(c,t,21)[1])); 

/*C_UDMI(c,t,15)=0;*/ 

C_UDMI(c,t,40)=C_UDMI(c,t,12)+C_UDMI(c,t,13)+C_UDMI(c,t,14)+C_UDMI(c,

t,15); 

source=C_UDMI(c,t,40); 

dS[eqn]=0.0; 

return source; 

} 

/*ut2 diffisuvity*/ 

DEFINE_ANISOTROPIC_DIFFUSIVITY(ut2_aniso_diff,c,t,i,ut2_aniso) 

{ 

#define c2 0.15 

ut2_aniso[0][0]=c2*(C_K(c,t)/C_D(c,t))*C_RUU(c,t); 

ut2_aniso[1][1]=c2*(C_K(c,t)/C_D(c,t))*C_RVV(c,t); 

ut2_aniso[0][1]=ut2_aniso[1][0]=0.0; 

} 

/*vt2 source*/ 

DEFINE_SOURCE(vt2_src,c,t,dS,eqn) 

{ 

real source; 

C_UDSI(c,t,6)=C_RUU(c,t); 

C_UDSI(c,t,7)=C_RUV(c,t); 
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C_UDSI(c,t,8)=C_RVV(c,t); 

C_UDSI(c,t,23)=C_UDSI_G(c,t,4)[0]; 

C_UDSI(c,t,24)=C_UDSI_G(c,t,4)[1]; 

/*1st source */ 

C_UDMI(c,t,16)=2*C_R(c,t)*(C_UDSI(c,t,4)*C_DUDX(c,t)-

C_UDSI(c,t,3)*C_DVDX(c,t)); 

/*C_UDMI(c,t,16)=0; */ 

/*2nd source */ 

#define c3 3.0 

C_UDMI(c,t,17)=-4*c3*(C_D(c,t)/C_K(c,t))*C_UDSI(c,t,4); 

/*3rd source */ 

#define c1 0.15 

C_UDMI(c,t,18)=2*c1*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_RUU(c,t)*C_UDSI_G(c,

t,2)[0]*C_T_G(c, 

t)[0])+(C_RUV(c,t)*C_UDSI_G(c,t,2)[1]*C_T_G(c,t)[0])+(C_RUV(c,t)*C_UDSI_

G(c,t,2)[0]*C_T_G 

(c,t)[1])+(C_RVV(c,t)*C_UDSI_G(c,t,2)[1]*C_T_G(c,t)[1])); 

/*4th source */ 

#define c2 0.3 

C_UDMI(c,t,19)=c2*C_R(c,t)*(C_K(c,t)/C_D(c,t))*((C_UDSI_G(c,t,7)[0]*C_UDSI

_G(c,t,4)[1])+( 

C_RUV(c,t)*C_UDSI_G(c,t,24)[0])+(C_UDSI_G(c,t,7)[1]*C_UDSI_G(c,t,4)[0])+(

C_RUV(c,t)* 

C_UDSI_G(c,t,23)[1])); 

/*C_UDMI(c,t,19)=0; */ 

C_UDMI(c,t,41)=C_UDMI(c,t,16)+C_UDMI(c,t,17)+C_UDMI(c,t,18)+C_UDMI(c,

t,19); 

source=C_UDMI(c,t,41); 

dS[eqn]=0.0; 

return source; 

} 

/*vt2 diffisuvity*/ 
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DEFINE_ANISOTROPIC_DIFFUSIVITY(vt2_aniso_diff,c,t,i,vt2_aniso) 

{ 

#define c2 0.15 

vt2_aniso[0][0]=c2*(C_K(c,t)/C_D(c,t))*C_RUU(c,t); 

vt2_aniso[1][1]=c2*(C_K(c,t)/C_D(c,t))*C_RVV(c,t); 

vt2_aniso[0][1]=vt2_aniso[1][0]=0.0; 

} 

/*direct entropy source*/ 

DEFINE_SOURCE(entropy_src,c,t,dS,eqn) 

{ 

real source; 

real prt=0.7; 

C_UDSI(c,t,11)=(1/C_T(c,t)); 

C_UDSI(c,t,26)=C_UDSI_G(c,t,25)[0]; 

C_UDSI(c,t,27)=C_UDSI_G(c,t,25)[1]; 

C_UDSI(c,t,9)=C_UDSI(c,t,1)/C_T(c,t); /* ut/T */ 

C_UDSI(c,t,10)=C_UDSI(c,t,2)/C_T(c,t); /* vt/T */ 

C_UDSI(c,t,28)=C_T_G(c,t)[0]; 

C_UDSI(c,t,29)=C_T_G(c,t)[1]; 

C_UDSI(c,t,30)=((C_R(c,t)*C_CP(c,t)/C_K_L(c,t))*C_UDSI(c,t,3))-

C_UDSI_G(c,t,0)[0]; 

C_UDSI(c,t,31)=((C_R(c,t)*C_CP(c,t)/C_K_L(c,t))*C_UDSI(c,t,4))-

C_UDSI_G(c,t,0)[1]; 

/*1st RHS term*/ 

/*C_UDMI(c,t,20)=(-

2*C_R(c,t)/C_T(c,t))*(C_UDSI(c,t,1)*C_UDSI_G(c,t,5)[0]+C_UDSI(c,t,2 

)*C_UDSI_G(c,t,5)[1]); 

*/ 

C_UDMI(c,t,20)=2*C_K_T(c,t,prt)*((pow(C_T_G(c,t)[0],2))+(pow(C_T_G(c,t)[1],2

))); 

/*2nd RHS term*/ 

/*C_UDMI(c,t,21)=2*C_K_L(c,t)*(((C_UDSI_G(c,t,11)[0]*C_T_G(c,t)[0])+((1/C_
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T(c,t))*C_UD 

SI_G(c,t,28)[0]))+((C_UDSI_G(c,t,11)[1]*C_T_G(c,t)[1])+((1/C_T(c,t))*C_UDSI_

G(c,t,29)[ 

1]))); 

*/ 

C_UDMI(c,t,21)=0.0; 

/*3rd RHS term*/ 

C_UDMI(c,t,22)=(2*C_K_L(c,t)/(pow(C_T(c,t),2)))*((C_T_G(c,t)[0]*C_T_G(c,t)[0

])+(C_T_G 

(c,t)[1]*C_T_G(c,t)[1])); 

/*4th RHS term*/ 

/*4a*/ 

C_UDMI(c,t,23)=(C_K_L(c,t)/C_T(c,t))*((C_UDSI_G(c,t,11)[0]*C_UDSI_G(c,t,1)[

0])+( 

C_UDSI_G(c,t,11)[1]*C_UDSI_G(c,t,1)[1])); 

/*4b*/ 

C_UDMI(c,t,24)=(C_K_L(c,t)/(C_T(c,t)*C_T(c,t)))*((C_UDSI_G(c,t,30)[0]-

(2*(C_R(c,t)* 

C_CP(c,t)/C_K_L(c,t))*C_UDSI(c,t,1)*C_T_G(c,t)[0])-

((C_R(c,t)*C_CP(c,t)/C_K_L(c,t))* 

C_U(c,t)*C_UDSI_G(c,t,0)[0]))+(C_UDSI_G(c,t,31)[1]-

(2*(C_R(c,t)*C_CP(c,t)/C_K_L(c,t 

))*C_UDSI(c,t,2)*C_T_G(c,t)[1])-

((C_R(c,t)*C_CP(c,t)/C_K_L(c,t))*C_V(c,t)*C_UDSI_G(c, 

t,0)[1]))); 

/*5th RHS term*/ 

C_UDMI(c,t,25)=(C_MU_L(c,t)/C_T(c,t))*((C_DUDY(c,t)*(C_DUDY(c,t)+C_DV

DX(c,t)))+( 

C_DVDX(c,t)*(C_DVDX(c,t)+C_DUDY(c,t)))+(2*C_DUDX(c,t)*C_DUDX(c,t))+(

2*C_DVDY(c,t)* 

C_DVDY(c,t))); 

/*6th RHS term*/ 



134 

C_UDMI(c,t,26)=4*C_R(c,t)*(C_D(c,t)/C_T(c,t)); 

/*7th RHS term*/ 

C_UDMI(c,t,27)=(-

2*(C_R(c,t)*C_CP(c,t)/C_T(c,t)))*(((C_U(c,t)/(2*C_T(c,t)))*C_UDSI_G( 

c,t,0)[0])+(C_UDSI(c,t,0)*C_UDSI_G(c,t,11)[0])+((C_V(c,t)/(2*C_T(c,t)))*C_UDS

I_G(c,t, 

0)[1])+(C_UDSI(c,t,0)*C_UDSI_G(c,t,11)[1])); 

/*8th RHS term*/ 

C_UDMI(c,t,28)=(-

2*(C_R(c,t)*C_CP(c,t)/C_T(c,t)))*(((C_UDSI(c,t,3)*C_UDSI_G(c,t,11)[0 

])+((0.5/C_T(c,t))*C_UDSI_G(c,t,3)[0]))+(C_UDSI(c,t,4)*C_UDSI_G(c,t,11)[1])+(

(0.5/C_T 

(c,t))*C_UDSI_G(c,t,4)[1])); 

/*9th RHS term*/ 

/*C_UDMI(c,t,29)=((C_K_L(c,t)/(C_T(c,t)*C_T(c,t)))*C_UDSI_G(c,t,0)[0])+((2*C

_K_L(c,t)/ 

C_T(c,t))*C_UDSI(c,t,0)*C_UDSI_G(c,t,11)[0])+((C_K_L(c,t)/(C_T(c,t)*C_T(c,t)))

*C_UDSI_ 

G(c,t,0)[1])+((2*C_K_L(c,t)/C_T(c,t))*C_UDSI(c,t,0)*C_UDSI_G(c,t,11)[1]); 

*/ 

C_UDMI(c,t,29)=0.0; 

C_UDMI(c,t,30)=C_UDMI(c,t,20)+C_UDMI(c,t,21)+C_UDMI(c,t,22)+C_UDMI(c,

t,23)+C_UDMI(c,t 

,24)+C_UDMI(c,t,25)+C_UDMI(c,t,26)+C_UDMI(c,t,27)+C_UDMI(c,t,28)+C_UD

MI(c,t,29); 

/*C_UDMI(c,t,5)=150000000; */ 

source=C_UDMI(c,t,30); 

dS[eqn]=0.0; 

return source; 

} 

/*direct entropy diffisuvity*/ 

DEFINE_ANISOTROPIC_DIFFUSIVITY(entropy_diff,c,t,i,entropy_aniso) 
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{ 

real prt=0.7; 

entropy_aniso[0][0]=(C_K_T(c,t,prt)+C_K_L(c,t))/C_CP(c,t); 

entropy_aniso[1][1]=(C_K_T(c,t,prt)+C_K_L(c,t))/C_CP(c,t); 

entropy_aniso[0][1]=entropy_aniso[1][0]=0.0; 

} 

/*DEFINE_DIFFUSIVITY(entropy_diff,c,t,i) 

{ 

real prt=0.7; 

return (C_K_T(c,t,prt)+C_K_L(c,t))/C_CP(c,t); 

} 

*/ 

/*indirect entropy source*/ 

DEFINE_SOURCE(indir_entropy_src,c,t,dS,eqn) 

{ 

real source; 

/*3rd RHS term*/ 

C_UDMI(c,t,31)=(2*C_K_L(c,t)/(pow(C_T(c,t),2)))*((C_T_G(c,t)[0]*C_T_G(c,t)[0

])+(C_T_G(c,t)[1 

]*C_T_G(c,t)[1])); 

/*5th RHS term*/ 

C_UDMI(c,t,32)=(C_MU_L(c,t)/C_T(c,t))*((C_DUDY(c,t)*(C_DUDY(c,t)+C_DV

DX(c,t)))+(C_DVDX(c,t)*( 

C_DVDX(c,t)+C_DUDY(c,t)))+(2*C_DUDX(c,t)*C_DUDX(c,t))+(2*C_DVDY(c,t

)*C_DVDY(c,t))); 

C_UDMI(c,t,33)=C_UDMI(c,t,31)+C_UDMI(c,t,32); 

source=C_UDMI(c,t,33); 

dS[eqn]=0.0; 

return source; 

} 

/*indirect entropy diffisuvity*/ 

DEFINE_ANISOTROPIC_DIFFUSIVITY(indir_entropy_diff,c,t,i,indir_entropy_ani
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so) 

{ 

/*real prt=0.7;*/ 

/* 

indir_entropy_aniso[0][0]=(C_K_T(c,t,prt)+C_K_L(c,t))/C_CP(c,t); 

indir_entropy_aniso[1][1]=(C_K_T(c,t,prt)+C_K_L(c,t))/C_CP(c,t); 

*/ 

indir_entropy_aniso[0][0]=C_K_L(c,t)/C_CP(c,t); 

indir_entropy_aniso[1][1]=C_K_L(c,t)/C_CP(c,t); 

indir_entropy_aniso[0][1]=indir_entropy_aniso[1][0]=0.0; 

} 

/* 

DEFINE_DIFFUSIVITY(indir_entropy_diff,c,t,i) 

{ 

real prt=0.7; 

return (C_K_T(c,t,prt)+C_K_L(c,t))/C_CP(c,t); 

} 

*/ 
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