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ABSTRACT 

 
 

CONTINUOUS-TIME NONLINEAR ESTIMATION FILTERS USING  
UKF-AIDED GAUSSIAN SUM REPRESENTATIONS 

 
 
 

Gökce, Murat 
Ph.D., Department of Electrical and Electronics Engineering, METU  

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 
 

January 2014, 71 pages 
 
 
 

A nonlinear filtering method is developed for continuous-time nonlinear systems 

with observations/measurements carried out in discrete-time by means of UKF-

aided Gaussian sum representations. The time evolution of the probability density 

function (pdf) of the state variables (or the a priori pdf) is approximated by 

solving the Fokker-Planck equation numerically using Euler’s method. At every 

Euler step, the values of the a priori pdf are evaluated at deterministic sample 

points. These values are used with Gaussian radial basis functions to obtain 

weighted sum of Gaussian approximation of a priori pdf. The locations of the 

sample points and mean and covariance values of Gaussian functions are found 

by the help of the prediction step of an Unscented Kalman Filter (UKF). The 

weights of the Gaussian functions are calculated using the method of least 

squares. The pdf of the updated state variables (or a posteriori pdf) is 

approximated similar to a priori case. This time Bayes rule and the help of the 

update step of UKF are used.  In the developed filter, UKF acts as a one step look 

ahead mechanism to determine the high likelihood regions of the a priori and a 

posteriori pdfs and these pdfs are locally approximated around these high 

likelihood regions. As a second filtering method, particle flow is combined with 

UKF-aided Gaussian sum representations approach. Both filters are compared 
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with some of the known nonlinear filtering methods by means of computational 

load and error levels using various scenarios 

 

 

 

Keywords:Continuous-time Systems; Nonlinear Filtering; Fokker-Planck 

Equation; Gaussian sum; Numerical Methods 
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ÖZ 

 
 

UKF YARDIMLI GAUSS TOPLAMI GÖSTERİMİ KULLANAN 
SÜREKLİ ZAMAN LİNEER OLMAYAN KESTİRİM FİLTRELERİ 

 
 
 

Gökce, Murat 
Doktora., Elektrik ve Elektronik Mühendisliği Bölümü, ODTÜ  

Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu 
 

Ocak 2014, 71 sayfa 
 
 
 

Bu çalışmada sürekli zaman lineer olmayan ve kesikli zamanda ölçümler içeren 

sistemler için UKF yardımlı Gauss toplamı yöntemi kullanan lineer olmayan bir 

filtre geliştirilmiştir.Durum değişkenlerinin olasılık yoğunluk fonksiyonunun(oyf) 

zaman devinimi( ya da önsel oyf) Fokker-Planck denkleminin Euler yöntemi 

kullanarak nümerik çözümü ile yaklaşık hesaplanmaktadır.Her Euler adımında 

önsel oyf’nun değeri belirli örnek noktalar için hesaplanmaktadır Bu 

değerlerGauss radyal fonksiyonları ile birlikte kullanılarak önsel oyf’nun ağırlıklı 

Gauss toplamyaklaşımı elde edilmektedir. Örnek noktaların konumu ve Gauss 

fonksiyonlarının ortalama ve kovaryans değerleri Kokusuz Kalman 

Filtre(UKF)’nin tahminleme adımı yardımıyla bulunmaktadır. Gauss 

fonksiyonlarının ağırlıkları en az karaler yöntemi ile hesaplanmaktadır. Durum 

değişkenlerinin güncellenmiş oyf’si(ya da sonsal oyf) de önsel oyf’ye benzer 

şekilde yaklaşık hesaplanmaktadır. Bu durumda Bayes kuralı ve UKF’nin 

güncelleme adımının yardımı kullanılmaktadır. Geliştirilen filtrede UKF önsel ve 

sonsal oyf’lerin yüksek olasılıklı bulunabilceği bölgelerin belirlenmesi için bir 

adım ötesini tahminleme mekanizması olarak kullanılmaktadır. Bahsedilen 

öyf’ler bu yüksek olasıklı bölgeler çevresinde yaklaşık olarak modellenmektedir. 

İkinci bir filtreleme yöntemi olarak parçaçık akışı UKF yardımlı Gauss toplam 

yöntemi ile birleştirilmiştir.Her iki filtre de bazı bilinen lineer olmayan filtreleme 
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yöntemleri ile hesaplama yükü ve hata seviyeleri açısından çeşitli senaryolar 

kullanılarak karşılaştırılmıştır  

 

 

 

Anahtar Kelimeler: Sürekli Zaman Sistemleri; Lineer Olmayan Filtreleme; 

Fokker-Planck Denklemi; Gauss Toplamı; Nümerik Metotlar 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

The general problem of nonlinear filtering can be handled for systems that are 

represented either in continuous-time or discrete-time. Continuous-time systems 

are more general and can be approximated by discrete-time systems using suitable 

discretization methods. Except for a few special case there is no exact (i.e. optimal) 

nonlinear filters in continuous-time and there are several approximate filtering 

methods applied to both continuous-time and discrete-time systems in the 

literature. 

 

The purpose of the thesis is to present the nonlinear filtering problem and to 

introduce new approximate approaches by means of UKF-aided Gaussian sum 

representations to the solution of the problem. Also these new solutions are 

compared with some of the known nonlinear filtering methods using various 

scenarios.  

 

1.1 The Filtering Problem 

 
The main focus of the nonlinear filtering problem is the estimation of the values 

of the states of a system at a specific time using noisy observations extracted from 

that system.  The states can be modeled as stochastic processes, and the time 

evolution of these states can be expressed in terms of an ordinary stochastic 

differential equation represented in Ito form as; 

 

dx =f(x, t)dt + G(x, t)dß(t)            (1.1) 
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with the initial condition, x(t0)=x0. This generic equation defines the dynamical 

model of the system in continuous-time, where the independent variable t 

represents time, and t0denotes the initial time instant.x(t) є Rn denotes the 

markovian stochastic process representing the state vector, f(x,t)єRn  is the drift 

function, G(x, t)єRnxm is a state dependent matrix and ß(t) є Rm  is the Wiener 

process and represents the process noise. The initial state x0 is assumed to be a 

random vector with a known, not necessarily Gaussian pdf p(x, t0).   

 

Measurements are generally obtained at specific time instants (which are also 

called sampling time instants). The relationship between the measurements and 

the states is given by a measurement function which is corrupted with a 

measurement noise. The measurement process can be represented by the 

following discrete-time measurement model; 

 

y(tk)=h(x(tk), tk) + v(tk)            (1.2) 

 

where y єRp is a vector of measurements, h єRp  is the measurement function and 

depends on the state x and time t, tkdenotes the k-th sampling timeand v єRp is a 

zero-mean white measurement noise. It is assumed that the random variables x0, ß 

and v are mutually independent. In order to simplify the notation, we will write xk 

for x(tk), yk for y(tk), etc. 

 

Estimation of the state values using these models involves two steps, namely 

prediction and update steps 

 

When the initial state represented by the random vector x0 at t0 evolves up to the 

instant tk using (1.1), it is represented with a new random vector xk and its pdf 

evolves from p(x, t0|y0)to p(x, tk|y0). The time evolved pdf p(x, tk|y0)isknown as a 

priori pdf at time tk and the a priori pdf is found in the prediction step. If the 

increments of Wiener process in (1.1) areinfinitely divisible [6],  the time evolution 
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of the state pdf for the above dynamical model can be given in terms of  the 

Fokker-Planck equation expressed as 

 

⎟
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⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+⎟

⎠
⎞

⎜
⎝
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∂
∂

−
∂

∂
−=

∂
∂

2
β

2

2
1

x
p(x,t)GGQ

Tr
x

f(x,t)
p(x,t)Trf(x,t)

x
p(x,t)

t
p(x,t) T

  
(1.3) 

 

Starting with an initial pdf, solution of the Fokker-Planck equation gives the a 

priori pdf. 

 

In the update step, the a priori pdf is updated with the information coming from 

the current measurement to refine the state pdf. This improved state pdf is named 

as the a posteriori pdf.  By using the a priori pdf at tk, the a posteriori pdf p(x, 

tk|yk) at tk can be calculated by Bayes’ rule and its value is proportional to the 

product of measurement likelihood and a priori pdf 

 

p(x, tk|yk)~ p(yk |x, tk).p(x, tk|y0)           (1.4) 

 

The filtering problem tries to find these pdfs at every sampling time by prediction 

and update steps. When the a posteriori pdf is found at a sampling time, one can 

make estimations about the state (such as mean, covariance etc.)  at that sampling 

time using the a posteriori pdf. 

 

For the case where the dynamical and measurement models are linear, the filtering 

problem is easy to solve and the a priori and a posteriori pdfs can be found by 

using the Continuous-Discrete Kalman Filter [1]. 

 

However, in a nonlinear system representation, these pdfs cannot be found so 

easily as in the linear case. For a nonlinear dynamical system, Fokker-Planck 

equation cannot be analytically solved using a finite number of parameters except 

for a few special cases. Also, normalization problems may occur even though 
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analytical solutions are available or after Bayes’ rule is applied using a nonlinear 

measurement model. 

 

To overcome these diffuculties many approximation methods were suggested in 

literature. Examples of them are given in the Chapter 2.  

 

In this thesis we devoloped a new approach for the approximate solution of the 

nonlinear filtering problem by means of UKF-aided Gaussian sum 

represantations. In our approach the a priori and the a posteriori pdfs are 

approximated by weighted Gaussian sums inside valid search regions These 

regions (or grids) are found by the help of prediction and update steps of an UKF. 

Number of Gaussians and their mean and covariance values are deterministically 

found in these regions. Weights of Gaussians are found by numerical solution of 

Fokker Planck equation for a priori pdf and by appliying Bayes’ rule for a 

posteriori pdf. The developed approach has ability to approximate the whole parts 

of the pdfs or some parts of the pdfs close to the mean by adjusting the size of 

search regions. 

 

Also as a second approach particle flow is combined with UKF-aided Gaussian 

sum representations. Here a priori pdf is approximated as in the first approach. 

But the mean of the a posteriori pdf is estimated using the flow of particles 

 

The details of the developed approaches are given in Chapter 3. Comparison of 

the developed approaches with some of the exisiting nonlinear filtering algorithms 

is given in Chapter 4. Conslusions are drawn in Chapter 5  

.      
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CHAPTER 2 
 
 

EXAMPLES OF NONLINEAR FILTERING ALGORITHMS 
 
 
 

As mentioned in Chapter 1, except for a few special cases there is no exact(i.e 

optimal) filtering methods for nonlinear systems. In [4], nonlinear filtering 

methods for some of these special cases are given. In order to overcome these 

difficulties, many approximation methods were suggested for nonlinear filtering 

[2], [3]. A comparison of some of these methods can be found in [5]. As 

mentioned in [3], two types of approximation methodologies exist in the 

literature. One tries to simplify the models and the other tries to find a global 

approximation for the pdfs. In this chapter a few of the existing  filters using these 

methodologies are described. Some of them are also used in simulations for 

comperisons. 

 

2.1 Converted Measurement Kalman Filter 

 

Converted Measurement Kalman Filter(CMKF) is a popular technique that is used 

in radar tracking problems. In CMKF, a linear dynamical system is used with a 

nonlinear measurement model and the method tries to simplify or linearize the 

nonlinear measurement model. 

 

The dynamical system can be modeled in continuous-time or discrete-time as, 

 

dx =f(x, t)dt + G(x, t)dß(t)            (2.1) 

 

for continuos-time which is given in Chapter 1 as (1.1) or 
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xk+1= F(tk) xk+ G(tk)wk            (2.2) 

 

for discrete-time. w is a zero-mean Gaussian white process noise with covariance 

Qw. Here f(x,t) and G(x,t) are linear functions i.e f(x,t)= f(t)x(t) and G(x,t)=G(t) 

 

In 2D radar tracking problem state space can be in Cartesian coordinates with 4 

dimensions 

 

[ ]yx vyvxx =              (2.3) 

 

where x, y are target positions and vx, vyare target velocities. 

 

For the given state space the nonlinear measurement model can be chosen in 

discrete-time as the 2D radar measurement model in polar coordinates. 
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(2.4) 

 

where r and β are the range and azimuth and the measurement noise v are assumed 

to be independent Gaussian white noises. vris the range error and vβ is the azimuth 

error. 

 

In CMKF, the measurement model is linearized by converting measurements from 

Polar coordinates to Cartesian coordinates. Also measurement noises are 

converted into Cartesian coordinates and the mean and covariance of the 

converted errors are given as close as to their true values. Whether the 

measurement noise is Gaussian or non-Gaussian, the mean and covariance of 

converted errors are assumed to belong to a Gaussian one. 
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After the conversion, both the dynamical system and the measurement model 

become linear which makes the filtering steps easy to solve. For the continuous-

time dynamical system, the prediction and update steps are calculated as in the 

Continuous-Discrete Kalman Filter. For the discrete-time dynamical system, these 

steps are calculated using the standard Kalman Filter steps. 

 

Now we can give how the conversion is done. There exist debiased or unbiased 

conversions for CMKF in literature[7][8].  We will give an improved version of 

unbiased conversion for CMKF[9] here. Using the CMKF with 3D radar 

measurements can be found in  [8][9]. 

 

Conversion of 2D Radar Measurements 

 

Let ⎥
⎦

⎤
⎢
⎣

⎡

k

kr
β

 are the measured range and azimuth values at k-th sampling time. 

Range and azimuth errors are  )(kvr  and )(kvβ  having zero mean and variances 

2
rσ  and 2

βσ . 

 

Define two compansation factors as 

 

[ ]ββλ vE cos=  

[ ]ββλ vE 2cos' =              (2.5) 

 

Errors can be Gaussian or non-Gaussian but these compansation factors are valid 

for both cases. Only the value of the compansation factors are changed for 

Gaussian or non-Gaussian errors. 

 

If the range and azimuth errors are Gaussian the result of expectations will be as 

follows 
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[ ] 2/2

cos βσ
ββλ

−== evE  

[ ] 42' 2

2cos β
σ

ββ λλ β === −evE               (2.6) 

 

Using these compensation factors converted measurements will be  

 

kkc rx
k

βλβ cos1−=  kkc ry
k

βλβ sin1−=           (2.7) 

 

The mean of the converted measurements errors for xk  and yk will be  

 

kkx r
k

βλλμ ββ cos)( 1 −= −  

kky r
k

βλλμ ββ sin)( 1 −= −

            (2.8) 

 

The elements of the covariance matrix of the converted measurements errors for xk  

and yk will be  

 

( )( )krkkkxx rrR
k

βλσβλ ββ 2cos1
2
1cos '22222 +++−=  

( )( )krkkkyy rrR
k

βλσβλ ββ 2cos1
2
1sin '22222 +++−=          (2.9) 

( )( )krkkkkyxxy rrRR
kk

βλσββλ ββ 2sin1
2
1cossin '2222 +++−==  

Since the mean of the converted errors are not zero, the converted measurements 

are biased. To get the unbiased converted measurements we extract the mean of 

the converted errors form the converted measurements. 
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After the conversion the linear measurement model is given as 
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kkk cHxy +=             (2.11) 

where  [ ]yuxu vyvxx
kk
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covariance ⎥
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2.2 Unscented Kalman Filter 

 

The Unscented Kalman Filter (UKF) is an easy and popular method which is in 

the catagory of the methods that try to find a global approximation to the pdf. The 

UKF is firstly published by Julier and Uhlman in 1997[10].  In the prediction and 

update steps of filtering, UKF applies Unscented Transform to the nonlinear 

dynamical and measurement models. Unscented Transform allows to find the 

mean and covariance of a random variable after that variable enters to a nonlinear 

function. Also the found mean and covariance values captures the true mean and 

covariances accurately to the 2nd order of nonlinearity, with errors only 

introduced in the 3rd and higher orders. To use with Kalman Filter, an assumtion 

is done in Unscented Transform. It is assumed that the random variable after the 

transformation is Gaussian. This assumption allows to use Kalman Filter steps to 

calculate the a priori and a posteriori pdfs. By doing so the resulting a priori and 

a posteriori pdfs are approximated with a Gaussian pdf in UKF. 

 

Firstly we will give the Unscented Transform. Then we will give how the 

prediction and update steps are done in UKF using Unscented Transform. 

 

The Unscented Transform 

 

Let x is a n-dimensional random variable with mean mxand covariance Px. 

Consider that random variable x, enters to a nonlinear function g: Rn→ Rm. 
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y=g(x)             (2.12) 

 

To find mean and covariance of the random variable y we first get 2n+1 sigma 

points using mxand Pxin a deterministic way. These sigma points are samples from 

the pdf of random variable x. Nonlinear function is applied to each of the sigma 

points and we get transformed sigma points.  Using these transformed sigma 

points mean my and covariance Py of the random variable y are estimated. The 

sigma points are selected such that the values of my and Py can be estimated from 

these transformed sigma points as accurately as possible. The procedure of finding 

sigma points and estimating mean and covariance of y is as follows; 

 

1. Find the 2n+1 sigma points using mxand Px 
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ixxni
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where the index i means the ith column of the expression in brackets. 

 

2. Find the weights of the sigma points 
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λ is a scaling parameter defined as  ( ) nn −+= καλ 2  
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The constants α, β and κ are used as parameters of the method. 

 

3. Transform the sigma points using the nonlinear function 

 

yi=g(xi)            i=0..........2n             (2.15) 

 

4. Estimate the mean and covariance of y using the transformed sigma points. 
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Filtering Steps for Unscented Kalman Filter 

 

The dynamical system can be modeled as, 

 

dx =f(x, t)dt + G(x, t)dß(t)           (2.17) 

 

for continuos-time which is given in Chapter 1 as (1.1) or 

 

xk+1= f(xk ,tk)+ G(xk ,tk)wk          (2.18) 

 

for discrete-time. 

 

Measurements are obtained in discrete-time as: 

 

yk=h(xk, tk) + vk           (2.19) 

 

dß/dt is a continuous zero-mean Gaussian white process noise with intensity 

Q(t)=Qβ 
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w is a zero-mean Gaussian white process noise with covariance Qw 

 

v is a zero-mean Gaussian white measurement noise with covariance R 

 

The filtering steps in UKF at the k-th sampling time are as follows; 

 

Prediction Step 

 

1. Find the 2n+1 sigma points xi(k-1) using mx(k-1) and Px(k-1) 

 

2. For the discrete-time dynamical system transform the sigma points using the 

noise free nonlinear function 

 

( ) nitkxfkx kii 2........0         ),1()( 1 =−= −
−         (2.20) 

 

For the continuous-time dynamical system integrate each of the sigma point 

through the noise free dymanical system ),( txf
dt
dx

= . The integration can be 

done using numerical methods(Euler i.e.) 

 

Find the predicted mean and covariance using the integrated or transformed sigma 

points. 
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where T is the sampling period 
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Update Step 

 

3. Find the new 2n+1 sigma points )(kxi using )(km x
−  and )(kPx

−  

 

4. Transform the sigma points using the nonlinear measurement model 

 

( ) nitkxhky kii 2........0         ),()( ==         (2.22) 

 

5. Find the mean my  and covariance Sy and cross covariance Cxy using the 

transformed sigma points. 
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       (2.23) 

 

6. Compute the filter gain Kk, and estimate the mean and covariance of state x at 

sampling time k as in the Kalman Filter 

 

[ ]
T
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         (2.24) 

 

The steps above summarize the filtering steps for UKF. Also a continuous-

discrete UKF version that can be used with continuous-time dynamical systems 

with discrete-time measurement models is given in [11]. Only the prediction step 
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of continuous-discrete UKF differs from the one given here. But the update step is 

same as here. 

 

2.3 Sequential Monte Carlo Methods 

 

In Sequential Monte Carlo(SMC) method a probability density function is 

represented in discrete-time with random samples taken from that pdf.  If we can 

directly sample from the pdf this becomes perfect sampling. Many times, 

especially as the pdf propagates through nonlinear systems, perfect sampling is 

not possible and an auxiliary known density (which is named as importance 

density) is aided for sampling from the original density. This is called as 

Importance Sampling.  In sampling process also every sample has associated with 

a weight. 

 

In the filtering steps of SMC method, samples are mainly time evaluated using the 

dynamical system to find the a priori pdf and their weight are updated using 

measurements to find the a posteriori pdf. This procedure is called as Sequential 

Importance Sampling. As the number of samples increases, better approximations 

for the pdfs can be obtained. But this situation increases the computational load. 

As time passes, some of the samples can be less important and their weights can 

be very small. As a result of this,the divergence problem arouses. In this case, a 

resampling procedure is applied and samples with small weights are discarded. 

This kind of filtering is called as Sequential Importance Sampling with 

Resampling. But resampling can also yield sample impoverishment problem. 

 

The details of SMC Method is given in [3]. As mentioned there, some 

methodologies exist in literature to reduce the effects of divergence and sample 

impoverishment. But choosing a good importance density function can reduce the 

negative effects of divergence and sample impoverishment and is important for a 

good approximation. In its easiest case, transition probability density function is 

chosen as importance density which is known as Particle Filter. But more efficient 
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importance densities can be chosen. For example; a density calculated using an 

Unscented Kalman Filter is used as importance density in Unscented Particle 

Filter. Also other methods can be used for choosing importance density but we 

will give the details of Particle Filter and Unscented Particle Filter here. Particle 

Filters can be found in [3][12]. Unscented Particle Filter is given in [12]. 

 

Now we can give the details of SMC method along with the Particle Filter and 

Unscented Particle Filter based on the expressions given in [3][12] 

 

2.3.1 Perfect Sampling 
 

Let us have a known probability density function, for example the a posteriori 

pdf. Using the Markov property, we can define the a posteriori pdf as 

 

p(x, tk|yk)= P(Xk|Yk)  where Xk={ xk,xk-1…} and Yk={ yk,yk-1…}     (2.25) 

 

As an objective ,let’s say we want to make estimations on the form  

 

( ) [ ] ∫== kkkkkk dXYXPXgXgEXgI )|()()()(        (2.26) 

 

Also let us assume that it is possible to easily sample from the a posteriori pdf. 

Using the samples (or particles), we can represent the a posteriori pdf in discrete-

time as  

 

∑
=

−=
N

i

i
kkkk XX

N
YXP

1
)(1)|(ˆ δ          (2.27) 

 

where i
kX  are particles sampled from the a posteriori pdf, N is the number of 

particles and 1/N  is the weight of each particle. 
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Using the representation of pdf with particles, we can easily obtain the estimation 

as 

 

( ) ∑∫
=

==
N

i

i
kkkkkk Xg

N
dXYXPXgXgI

1
)(1)|(ˆ)()(ˆ        (2.28) 

 

This estimate is unbiased and  ( ) ( ))()(ˆ
kk XgIXgI →  as ∞→N  

 

The problem is that we cannot sample directly from the a posteriori density for 

nonlinear systems. One solution to this problem is Importance Sampling using an 

importance density function. 

 

2.3.2 Importance Sampling 
 

In Importance Sampling, particles are sampled from an importance density 

)|( kk YXπ that is easy to sample instead of the more complex a posteriori pdf.  

Importance density is needed to be chosen such that its domain encapsulates the 

domain that is to be approximated. 

 

Using the importance density, the estimation can be rearranged as  

 

( ) kkk
kk

kk
kk dXYX

YX
YXP

XgXgI )|(
)|(
)|(

)()( π
π∫=        (2.29) 

 

Here importance weight is defined as 

 

)|(
)|(

)(
kk

kk
k YX

YXP
Xq

π
=            (2.30) 

 

Appliying the normalization condition, the estimation becomes 
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        (2.31) 

 

Using the particles sampled from importance density, the estimation can be 

written as 
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where the normalized importance weights are defined as  

 

( ) ( )
( )∑

=

= N

i

i
k

i
ki

k

Xq

XqXq
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~
           (2.33) 

 

Importance sampling makes the representation of the a posteriori pdf as 

 

( )∑
=

−=
N

i

i
kk

i
kkk XXXqYXP

1
)(~)|(ˆ δ          (2.34) 

 

If we could sample from the a posteriori pdf  i.e. )|()|( kkkk YXPYX =π then  

( )
N

Xq i
k

1~ =  and we can get the perfect sampling framework. 

 

2.3.3 Sequential Importance Sampling 
 

In the filtering problem the aim is to find the  )|( kk YXP  using the previous 

estimate )|( 11 −− kk YXP and the measurements. If we can find the importance  
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weights of the )|( kk YXP  using the importance weights of )|( 11 −− kk YXP and 

measurements, then we can make estimations recursively. To achive this, we can 

arrange the a posteriori pdf as 
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Also importance density can be written as 

 

)|(),|()|(),|()|( 11111 −−−−− == kkkkkkkkkkkk YXYXxYXYXxYX πππππ     (2.36) 

 

Using (2.35),(2.36) importance weights can be updated recursively as 
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Using (2.37) we can recursively update importance weights using measurements. 

 

While the importance weights are being updated, some of the weights can be less 

important and their weights can be very small as time passes. In this case, the 

variance of the weights will increases, more particles will be less important with 

time and the estimations will diverge. This is known as divergence problem. As a 

solution to this problem, resampling is done and particles having small importance 

weights are discarded and particles having large importance weights are 

multiplied. But resampling introduces another problem which is known as sample 

impoverishment. This is because particles with large weights will be selected 
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many times which makes dependence and loss of diversity between particles. To 

cope with this problem, some methodologies are offered(i.e jittering). Some of the 

methodologies are mentioned in [3]. To reduce the negative effects, resampling 

can be done as necessary. In order to do this, we need a measure of the 

degeneracy of the particles. As given in [3] a measure can be effective sample size 

which is given as 

 

( )( )∑
=

=
N

i

i
k

eff

Xq
N

1

2~

1
           (2.38) 

 

where ( ){ }N
i

i
kXq 1

~
= are the normalized importance weights. If the variance of the 

particles become large, Neffwill be small. As the value of Neffbecomes lower than a 

threshold,the resampling step can be applied. Several resampling methods have 

been proposed in litarature. Some of them can be found in [12]. 

 

2.3.4 Particle Filter 
 

In the Particle Filter the importance density ),|( 1 k
i
k

i
k yxx −π  used in the weight 

update (2.37) is chosen as the transition probability )|( 1
i
k

i
k xxP −  and the weight 

update becomes as  

 

)()|()( 1
i
k

i
kk

i
k XqxyPXq −=           (2.39) 

 

For a dynamical system in continuous-time given as (2.17) or in discrete-ime 

given as (2.18) with measurements in discrete-time given as (2.19) the following 

steps summarizes the filtering steps for Particle Filter.  

 

1. Initialize the particles by sampling from the an initial pdf P(x0)  

{ } )(~ 010 xPx N
i

i
=  The initial pdf is assumed to known and be easily sampled. 
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Assign the weight of each particle as 1/N. This step is done once in the 

beginning of recursive filtering. 

 

Prediction Step 

 

2. Let us have particles { }N
i

i
kx 11 =−  with weights )( 1

i
kxq − . Evaluate the particles in 

time using the dynamical system. For continuous-time dynamical system, two 

ways of evaluation can be done. 

 

a) Integrate each particle using noise free dynamical system ),( txf
dt
dx

= . 

The integration can be done using numerical methods(Euler i.e.). After 

integration, add random noise to each particle. Random noise can be 

created using N(0, TQβ). 

 

b) Or at every discretization step of numerical integration, add random noise 

to integrated particles. Assume we are using Euler method and we have L 

Euler steps. At every Euler step, add random noise to integrated particle. 

Random noise can be created using N(0,(T/L)Qβ) at every Euler Step. The 

pseudo code for numerical integration using L Euler steps can be given as  

 

  for i=1:L 

 x(i)=x(i-1) + h*f(x(i-1), (i-1)) 

 x(i) = x(i) + random noise 

  end 

 

 where h=(T/L) and random noise ~ N(0,(T/L)Qβ) .  

 

For discrete-time dynamical system, evaluate each particle using noise free 

dynamical system and then add random noise to each particle. Random noise can 

be created using N(0, Qw).  
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In the dynamical systems given in (2.17) and (2.18), we used Gaussian noise. But 

there can be non-Gaussian noise in dynamical systems. In this case, random noise 

can be created using non-Gaussian pdf.  

 

After this step, we have the predicted particles { }N

i
i

kkx
11| =− with weights )( 1

i
kxq −  . 

The weights of the particles do not change in this step. The a priori pdf will be 

related to 

 

∑
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−−−− −=
N

i

i
kkkk

i
kkk xxxqyxP

1
1|1|11 )()()|( δ         (2.40) 

 

Update Step 

 

3. Set new particles as predicted particles i
kk

i
k xx 1| −= . Update the weights of the 

new particles using likelihood and old weights as 

 

)()|()( 1
i
k

i
kk

i
k xqxyPxq −=           (2.41) 

 

4. Normalize the updated weights   
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           (2.42) 

 

5. Calculate the efficient sample size Neff. If Neff  <Nthereshold resample the 

particles and reset the importance weights of each particle to 1/N. 

 

6. Set the sampling time to k+1 and go to step 2 
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By using the particles, mean and covariance of the state variable can be estimated 

as 
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       (2.43) 

 

2.3.5 Unscented Particle Filter 
 

The Importance density used in Particle Filter does not use the information 

collected from the measurements. The quality of the particles can be improved by 

choosing an importance density incorporating the information collected as a result 

of the measurements. This also helps to reduce the divergence and sample 

impoverishment problems. In the Unscented Particle Filter, this incorparation is 

done by choosing an importance density that is calculated using an auxiliary UKF. 

In this case, the weight update becomes as  

 

)(
),|(
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1
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i
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i
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i
kki

k Xq
yxx

xxPxyPXq −
−

−=
π

        (2.44) 

 

where the importance density ),|( 1 k
i
k

i
k yxx −π  is a Gaussian found using the UKF.  

 

For a given system as in the Particle Filter, the following steps summarize the 

filtering steps for Unscented Particle Filter.  

1. Initialize the particles by sampling from the initial pdf { } )(~ 010 xPx N
i

i
=  The 

initial pdf is assumed to known and be easily sampled. Assign the weight of 

each particle as 1/N. Also assign an inital covariance value for each particle. 

This covariance value is uqual for every particle and can be the covariance 

value of the initial pdf. 
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Importance Density Calculation 

 

2. Let us have particles { }N
i

i
kx 11 =−  with weights )( 1

i
kxq −  and covariances 

{ }N

i
i

kxP
1)1( =− . Calculate an importance density for each of the particle by 

inserting every particle to an UKF. After this step, we have new particles 

{ }N
i

i
kx 1=  which are updated using UKF. Here we add noise to this UKF updated 

particles to find new particles  

 

i
k

i
k

i
k

i
k

PP

noiserandomxx

=

+= _
 

 

),0(~_ i
kPNnoiserandom  where i

kP  is the updated covariance for the ith 

particle.  

 

For every particle, the value of the importance density will be  

   

),(),|( 1
i

k
i
k

i
kk

i
k

i
k PxxNyxx −=−π          (2.45) 

The weights of new particles { }N
i

i
kx 1= do not change in this step )()( 1

i
k

i
k xqxq −=  

 

Prediction Step 

 

3. We also predict the particles { }N
i

i
kx 11 =−  as in Particle Filter case. This process is 

essential in order to calculate the transition probability. After this step, we 

have the predicted particles { }N

i
i

kkx
11| =− with weights )( 1

i
kxq −  . The a priori pdf 

will be as in (2.40) 
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Update Step 

 

4. Update the weights of the new particles { }N
i

i
kx 1= using likelihood, transition 

probability, importance density and old weights as 
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         (2.46) 

 

Here we know the likelihood, importance density and old weights. Also the 

transition probability can be found easily. Since the noise is chosen as Gaussian 

for the given dynamical system, the value of transition probability will be 

),()|( 1|1 βTQxxNxxP i
kk

i
k

i
k

i
k −− −=  for continuos-time dyamical system and 

),()|( 1|1 w
i

kk
i
k

i
k

i
k QxxNxxP −− −=  for discrete-time dynamical system. 

5. Normalize the updated weights   
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6. Calculate the efficient sample size Neff. If Neff  <Nthereshold resample the 

particles and reset the importance weights of each particle to 1/N. 

 

Set the sampling time to k+1 and go to step 2 

 

2.4 Particle Flow Filter 

 

Although Particle Filter gives result near to optimal when used with sufficiently 

large particles, for problems where the dimension of the state variable is large 



25 
 

(d>3 i.e), it requires too much particles to achieve low error levels. This makes it 

not practically applicable to many problems.  

 

A few years ago, Daum proposed a new filter which is called as Particle Flow 

Filter[13]. The first steps of the Particle Flow Filter is similar to Particle Filters.  It 

samples many points from an initial density at first. Then evolve this particles in 

time using the dynamical system. But after this step, Particle Flow Filter uses a 

flow function to flow particles to the correct region of state space. Flow function 

is found using likelihood. Flow of particles is achieved by solving an ODE which 

uses the flow function.   

 

Required number of particles is not too high as in the Particle Filter case.  In [14], 

it is shown that in a radar tracking problem with 6 dimensional state space, 

between 1000 and 10000 particles are enough for a low estimation error while 

using with measurements having low measurement error.  There is no particle 

degeneracy or resampling in Particle Flow Filter. But another issue similar to 

particle degeneracy exists. This is due to infinite speed particles.  In [15] a list of 

methods is offered in a table to cope with this problem. But none of them removes 

this problem absolutely. In fact, infinite speed particles may require a 

methodology similar to resampling to eliminate them.   

 

Now we can give the details of Particle Flow Filter based on the expressions given 

in [13]. 

 

Derivation of Flow Function using Poisson Equation 

 

Suppose that we apply the prediction step of Particle Filter and we have the 

predicted particles. The fundamental idea of particle flow is to create a differential 

equation to implement Bayes’ rule for update step. This differential equation is 

chosen as an ordinary differential equation (ODE). A homotopy is used to create 

this ODE.  A scalar valued parameter, called as λ is introduced, that plays the role 



26 
 

of time, and which varies from 0 to 1. You can think of λ as a little loop of 

synthetic time, which we insert at each sampling time. By using the λ parameter, 

the Bayes’ rule for the a posteriori pdf can be rearranged as 

 

)(
)().(),()(

λ
λ

λ

K
xhxgxpyxp kk ==         (2.48) 

 

where )()( 1−= kk yxpxg is the a priori pdf and  )()( kk xypxh = is the likelihood. 

)(λK  normalizes the density ),( λxp . 

 

λ = 0 is the initial condition before the measurement arrives and λ = 1 is the 

uptaded conditional density that we want to reach. A log homotopy is defined 

using (2.48) as 

 

( ) ( ) ( ) ( ))(log)(log)(log)(log λλ Kxhxgxyp kk −+=        (2.49) 

 

Next, we suppose that there exists a continuous flow of particles induced by the 

flow of probability density from λ = 0 to λ = 1 . This flow of particles can be 

defined with following dynamics. 

 

),( λ
λ

xf
d
dx

=             (2.50) 

 

The Fokker-Planck equation related to this dynamics or ODE is given as  

 

 ⎟
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x
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λ

           (2.51) 

 

If we can find a solution of Fokker-Planck Equation for the flow function ),( λxf , 

then we can flow the particles using (2.50). Now we can show how this can be. 
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By derivating the equation (2.49) according to λ, we can get 
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           (2.52) 

 

For nowhere vanishing densities, we can arrange the Fokker Planck equation 

(2.51)  by using (2.52) as follows 
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If we define  
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We can get 

 

η=)(qdiv             (2.55) 

 

The above is the divergence form of the Fokker Planck equation 

 

Here we can find the 
λ

λ
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∂ )(log K  as 
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we can now recognize this as the expected value of logh(x) with respect to the 

density p(x,λ): 

 

[ ])(log)(log xhEK
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Using the divergence form, there is obviously no unique solution for q, because 

there are too few equations and too many unknowns. If an assumption is made 

that vector field q is the gradient of a scalar-valued potential, called V(x,λ): 
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And we put it into Fokker-Planck equation then we get the Poisson’s equation as 
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          (2.59) 

 

For state variables with dimension d ≥ 3 V(x,λ) can be computed using a 

convolution integral as follows: 

 

∫ −−
−= dy

yx
cxxV d 2),(),( ληλ

  
where  2/4/1

2
ddc π⎟

⎠
⎞

⎜
⎝
⎛ −Γ=

         
(2.60) 

 



29 
 

Using the definition of η and assuming that we can differentiate under the integral 

with respect to x, we get: 
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we recognize that this integral is an expected value with respect to the probability 
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Finally, using the predicted particles, we can apply the Monte Carlo 

approximation for integrals (or expectation): 
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Also we can find (2.57) as 
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In which xidenotes the ith particle. The summation can be over the subset of k, 

nearest neighbors of a given particle, rather than over all particles. If we summed 

over all particles, then the computational complexity would be quadratic in N. 

 

If singularity problems occur  in (2.63) then we can add a small positive variable 

(α) to the denominator, as follows 
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where ( ) βα /2/dCTr=  

 

Here C is the conditional covariance of particles which can be found using 

particles, the parameter β can be on the order of 10 to 100. 

 

After this step, the flow function and the ODE will be like that 

 

),( λ
λ

xf
d
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=         where  ),(/),(),( λλλ xp
x
xVxf
∂

∂
=       (2.66) 

 

By solving this ODE from 0=λ   to 1=λ  for each particle, the particals flow to 

their correct place. 

 

In practice there is a problem with that flow function. As mentioned in [13], there 

will be some particles that are very far from the peak of the likelihood, h(x), and 

this will cause p(x, λ) to have very small numerical values, and hence the particle 

speed will be extremely large. These infinite speed particles cause depletion of 

particles, which is analogous to particle degeneracy in Particle Filters.  In [13] a 

list of methods offered to reduce this problem. In fact these infinite speed particles 

are needed to be eliminated and a methodology similar to resampling can 

eliminate the infinite speed particles and fix the particle size at every sampling 

time.   

 

Altough the details of filtering steps for Particle Flow Filter has not exist in 

literature yet, we can apply the following filtering steps for Particle Flow Filter. 

Here the system model is assumed to be as in the Particle Filter case. 
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1. Initialize the particles by sampling from the an initial pdf P(x0) 

{ } )(~ 010 xPx N
i

i
=  The initial pdf is assumed to known and be easily sampled. 

Assign the weight of each particle as 1/N.  

 

In Particle Flow Filter, the weights of particles are not needed to be updated. So 

their value can stay as 1/N. 

 

Prediction Step 

 

2. Let us have particles { }N
i

i
kx 11 =−  . Predict the particles as in Particle Filter case. 

 

Flow of Particles(Update Step) 

 

3. Calculate the flow function for each of the particles using (2.63) or (2.65) and 

(2.64). 

 

4. Flow the particles using the ODE (2.66). 

 

5. Set λ=1 and calculate 
∑
=

N

i

i
k

i
k

xp

xp

1
),(

),(

λ

λ
values using the definitions (2.48) for each 

of the particle. Here the unnormalized  λλ )().(),( xhxgxp =  can be used. 

Eliminate the particles having small values than a threshold value. These can 

be infinite speed particles. 

 

6. Mean and covariance values can be estimated as in (2.43) using the survived 

particles. The weight of each particle can be taken as 1/N. 

 

7. To fix the particle size, eliminated particles can be replaced with the ones 

having big values.  
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8. Set the sampling time to k+1 and go to step 2 

 

Exact Flow for Gaussian Densities 

 

In the previous section, we found the flow function by solving the Poisson 

Equation. But as briefly given in [16], Fokker-Planck equation can be solved 

using some other methods. Especially when the a priori and likelihood are 

Gaussian, a stable flow function can be easily found using the separation of 

variables method. Now we can give how this flow function can be found. 

Using (2.49), Fokker-Planck equation (2.51) can be arranged as follows  
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        (2.67) 

 

When the a priori (g) and likelihood (h) are Gaussian as  
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If the form of flow function is chosen as f=Ax+b, equation (2.67) can be solved 

exactly by equating like coefficients on the RHS & LHS. Substituting a priori, 

likelihood and  into equation (2.67) and equating like coefficients of x and terms 

that are quadratic in x results in the following exact solution for the particle flow; 
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where 
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HRHPHPHA TT 1)(
2
1 −+−= λ  

[ ]xAzRPHAIAIb T +++= −1)()2( λλ         (2.69) 

 

The method used to solve the equation (2.67) to find A and b of f is called as 

“separation of variables”. It is essentially the same as the exact solution of the 

Fokker-Planck equation for the Kalman filter problem for linear systems. 
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CHAPTER 3 
 
 

CONTINUOUS-TIME NONLINEAR ESTIMATION FILTERS USING 
UKF-AIDED GAUSSIAN SUM REPRESENTATIONS 

 
 
 

In the previous chapters, the filtering problem and some of the known filters that 

are applied for the solution of the problem are given. Basicly, there are two types 

of solution methodologies for the approximate solution of the filtering problem. 

One tries to simplify the models and the other tries to find a global approximation 

for the pdfs. We gave sample filters for both of the methodologies in Chapter 2.  

 

A possible approach for pdf approximation methodology is based on the 

representation of the a priori and a posteriori pdfs by using a mixture (or, sum) of 

weighted Gaussians. For this purpose, we developed the UKF-aided Gaussian 

Sum Filter. Also as a second filter, we integrated the Particle Flow to UKF-aided 

Gaussian Filter. Now we can give the details of both filters. 

 

3.1 UKF-aided Gaussian Sum Filter 

 

In literature, there are filters that use the weighted Gaussian sums. The Gaussian 

Sum Filter (GSF) [17] has been developed for this purpose. In GSF, the pdfs are 

approximated using weighted Gaussian sums. However, the weights of the 

Gaussians are only updated while approximating the a posteriori pdf.  In the 

Adaptive Gaussian Sum Filter (AGSF) [18], whichis an extension of the GSF, the 

weights of Gaussians are updated while approximating both the a priori and a 

posteriori pdfs. 

 

The filter developed here also uses weighted Gaussian sums and weights of 

Gaussians are updated while both finding the a priori and a posteriori pdfs. But 

the means, covariances and weights of Gaussians are calculated in a different way 
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When we look at the differences, firstly valid search regions are determined for 

the a priori and a posteriori pdfs with the help of UKF in the developed filter. 

Number of used Gaussians and their mean and covariance values are 

deterministically found in these regions later. Also weights of Gaussians are 

calculated using least squares method in the manner of curve fitting with Gaussian 

functions which differs than the optimization problem defined in AGSF. The 

developed filter has ability to approximate the whole parts of the pdfs or some 

parts of the pdfs close to the mean by adjusting the size of search regions. 

 

In the UKF-aided Gaussian Sum Filter,the above procedure for approximation of 

the a priori and the a posteriori pdfs are done mainly in two steps for the given 

system in Chapter 1. These steps are as follows; 

 

• Gaussian Sum Approximation of the a priori pdf by means of the 

numerical solution of the Fokker-Planck equation using weighted 

Gaussian sums. 

 
• Gaussian Sum approximation of the a posteriori pdf by using the 

approximated a priori pdf and likelihood in Bayes’ rule. 

 
The required steps for the developed filter can be seen from the diagram given in 

Figure 1 

 

 

 

 

 

 

 

 
Figure 1 The Filtering Steps for UKF-aided Gaussian Sum Filter 
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Now we can give the details of these steps. 

 

Gaussian Sum Approximation of the a priori pdf (Prediction Step) 
 

For the given continuous-time dynamical system, the Fokker-Planck equation, 

which yields the time evolution of the a priori pdf, is given as follows 
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Since the analytical solution of the Fokker-Planck equation is not available in 

general, it has to be solved approximately by means of a numerical approach. For 

any t, the function p(x,t) is approximated in terms of weighted sum of Gaussians 

and the partial differential equation (3.1) reduces to an ordinary differential 

equation. In the steps given below, it is explained how these Gaussian functions 

are chosen, and how they evolve in time. 

 

The evolution of p(x,t)is approximated over a “moving” grid (i.e set of sample 

points) by using Euler’s method. The relationship between these sample points 

and the Gaussian functions used in the approximation of p(x,t)is important and is 

explained below. Beginning from an initial pdf )|,(),( 000 ytxptxp =  at 0t , 

n=T/∆T Euler steps can be used to find the )|,(),( 011 ytxptxp =  (a priori pdf) at 

Ttt += 01 . The following steps summarize the calculation of the mean, 

covariance and weights of the Gaussians used in the a priori pdf approximation in 

a single Euler step from 0t to Tt Δ+0 . The remaining Euler steps are similarly 

defined. 

 

1. Predicted mean Ttx Δ+0
ˆ and covariance TtP Δ+0

ˆ  values are found by applying the 

prediction step of UKF to the mean 
0t

x  and covariance 
0t

P  values of initial 
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pdf (at later Euler steps, initial pdf is the a priori pdf calculated at the previous 

Euler step). For this purpose the unscented transform is applied using 
0t

x , 
0t

P . 

The nonlinear function used in the transformation is ),( 000
txTfx tt Δ+  

 

2. A uniform grid (search region) is chosen in the neighborhood of Ttx Δ+0
ˆ . The 

extent of the grid is defined as the matrix 

( )( ))ˆ()ˆ(ˆ
00000 Ttt

T
TttTt xxxxldiagPc Δ+Δ+Δ+ −−+ where l≥0 and c is the scaling 

factor. The number of sample points are determined according to the extent of 

the grid and their value is uniformly chosen by means of the diagonal entries 

of the extent of the grid. The Gaussian sum approximation of the a priori pdf 

in the grid is obtained by choosing the means of the Gaussians ( i
Tt Δ+0

μ ) as the 

sample points and for covariances the following holds. 

 

For 0<c<1, the covariances of Gaussians can be taken as the same value as  

TtP Δ+0
ˆν    where ν ≥1. 

 

For c≥1, l can be chosen as zero and the covariances of Gaussians can be 

taken as the same value as TtP Δ+0
ˆν  where 0<ν<1. 

 

3. A second set of sample points is generated around 
0t

x . The extent of this grid 

and the number of sample points are determined similar to Ttx Δ+0
ˆ  case.  The 

reason for constructing the second grid is due to the simultaneous appearance 

of p(x,t0) and p(x,t0+∆T) in Euler discretized Fokker Planck equation 

( )0000000 ),|,()|,()|,( tytxpTgytxpyTtxp Δ+=Δ+ . These two sets of 

sample points can be combined as: 
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4. Using the values in step 2, the weighted Gaussian sum approximation of 

unnormalized a priori pdf for the current step can be modeled as: 
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−
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μμ
 and N>1. The weights of Gaussians 

are calculated in step 5. 

 

5. The value of the unnormalized a priori pdf can be found by using the Euler 

discretized Fokker-Planck Equation as follows: 

 

 ( )0000000 ),|,()|,()|,( tytxpTgytxpyTtxp Δ+=Δ+           (3.4) 
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By equating (3.3) and (3.4) at the sample points we have the following linear 

equation systemfor the unknown weights: 
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    BwA Tt =Δ+0
.            (3.6) 

 

The least squares solution of this system for the weightscan be given as 

 

 BAAAw TT
Tt

1)(
0

−
Δ+ =                 (3.7) 

 
If AAT  is nearly singular, maximum values along each row of Amatrix may be 

used. In this case,NxN part of the A(M+N)xN matrix will be diagonal for distinct 

values, avoiding the inversion problems 

The above procedure is repeated at every Euler stepfor the approximation of the a 

priori pdf  by means of  weighted Gaussian sums. 

 

Gaussian Sum Approximation of the a posteriori pdf (Update Step) 

 

After n Euler steps, the approximatea priori pdf  is obtained as 

)|,(ˆ),(ˆ 011 ytxptxp =  for Tntt Δ+= 01 . By using the likelihood ),|( 11 txyp and 

the approximate a priori pdf in Bayes’ rule, the unnormalized a posteriori pdf  at 

1t can be found as; 

 

 )|,(ˆ),|()|,( 011111 ytxptxypytxp = �          (3.8) 

 

As a result of the multiplication operation with ),|( 11 txyp , normalization of  the  

a posteriori pdf is difficult . For this reason, the unnormalized a posteriori pdf is 
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also approximated with a weighted Gaussian sum. The update step of the UKF is 

used for finding the mean and covariance values of Gaussians for the a posteriori 

pdf approximation and the weights of the Gaussians are again found by solving the 

matrix equation obtained by evaluating the a posteriori pdf at the sample points. 

 

The steps for the weighted Gaussian sum approximation of the a posteriori pdf at 

time t1 are given below.  

1. Updated mean
1

~
tx  and covariance 

1

~
tP  values are found by applying the update 

step of UKF to the mean 
1

ˆ tx  and covariance 
1t̂

P  values of the approximate a 

priori pdf at time t1. 

 

2. A uniform grid is chosen around the updated mean 
1

~
tx  and the extent of the 

grid and the number of sample points are determined using the diagonal 

entries of ( )( ))~ˆ()~ˆ(~
11111 tt

T
ttt xxxxldiagPc −−+  . Means of Gaussians ( i

t1
~μ ) are 

chosen as the sample points in the uniform gird. Covariances of the Gaussians 

( i
tP
1

~ ) are assigned to the same value chosen similar to a priori case  

 

3. In this case, there is a single set of sample points which involves the means of 

the Gaussians given in step 2. This set is shown as; 
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4. Using the values in step 2, the weighted Gaussian sum approximation of 

unnormalized a posteriori pdf at time t1 can be modeled as; 
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where K>1. The weights of these Gaussians are calculated in step 5. 

 

5. Equating (3.8) and (3.10) at the sample points, we have the following linear 

equation systemfor the unknown weights: 
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The solution can be obtained as  BAAAw TT ~~)~~(~ 1−=       (3.12) 

 

The AAT ~~
matrix here is an KxK symmetric positive definite matrix given as in 

[19].  

 

For both a priori and a posteriori pdfs, approximate expressions are obtained in 

terms of weighted Gaussian sum expressions defined over “moving” grids. The 

location and extent of these grids are obtained by the aid of UKF, which acts as a 

one step look ahead mechanism to determine where a priori and a posteriori pdfs 

are expected to reside.  The number of Gaussians and their covariance values are 

determined in terms of these grids, which “move” as the pdfs evolve in time. In 

general, this approach provides a local approximation for the pdfs in regions 

defined in the close neighborhood of the values provided by the UKF results. In 

order to obtain “almost global” approximations, the grid extent (and, therefore the 

number of Gaussians) must be increased. Of course, the choice of the covariance 

values is also critical for a successful approximation.  By using sufficient number 

of Gaussians and sample points, important parts or details of the pdfs can be 

captured and approximated. Currently, we do not propose a theoretical approach 

for the choice of the number of Gaussians, number of sample points or covariance 

values. They are chosen empirically according to the problem. 
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3.2 UKF-aided Gaussian Sum Filter with Particle Flow 

 

Assuming that the a priori pdf is known and we have particles belonging to the a 

priori pdf, we see that a differential equation to implement Bayes’ rule for update 

step is created in Particle Flow Filter. This differential equation uses flow function 

and flow function is calculated using a priori pdf and likelihood.  

 

In  the UKF-aided Gaussian Sum Filter with Particle Flow, a priori pdf is 

calculated same as in the UKF-aided Gaussian Sum Filter. Then a flow function is 

calculated using the Gaussian sum a priori pdf and likelihood using the separation 

of variables method. Using this flow function  particles which are chosen from 

thea priori pdf are flowed. Also a Gaussian sum a posteriori pdf is found to 

eliminate the infinite speed particles. In order to find the a posteriori pdf, first 

likelihood is approximated as a Gaussian and every Gaussian of a priori pdf are 

updated using the Gaussian likelihood with standard Kalman Filter.  

 

The below procedure summarizes the filtering steps of UKF-aided Gaussian Sum 

Filter with Particle Flow. 

 

Filtering steps for UKF-aided Gaussian Sum Filter with Particle Flow 

 

1. Beginning from an initial pdf, calculate the Gaussian sum a priori pdf as in 

the UKF-aided Gaussian Sum Filter. Initial pdf can be a posteriori pdf 

foundin the previous sampling time. 

 

2. Calculate the flow function using the a priori pdf and likelihood. Choose 

particles from the a priori pdf and flow the particles using the flow function.  

 

3. Approximate the likelihood with a Gaussian. Then update each Gaussian 

component of the a priori pdf with approximatedlikelihood using standard 

Kalman Filter to find the Gaussian sum a posteriori pdf.  
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4. To eliminate the infinite speed particles, calculate the mean of the a posteriori 

pdf. Take the flowed particles that are close to the mean. By using these 

particles, estimations about the state can be done. (such as mean of the state) 

 

We give the details of step 1 in UKF-aided Gaussian Sum Filter.  Estimation of 

likelihood with a Gaussian can be done using Unscented Transform or by 

conversion if the measurement model is a radar measurement model.  Also Matlab 

“quad” function can be used if the measurement model is one dimensional. By 

using the “quad” function, mean and covariance of likelihood can be calculated 

for systems having one dimensional state variableand the mean and covariance 

can be assumed to belong to a Gaussian one. Also if the likelihood has more than 

one components (such as sum of two densities), then every component of 

likelihood can be approxiamated as a Gaussian and can be updated with each 

Gaussian component of a priori pdf. Now we can express how the flow function 

can be found and the particles are eliminated.  

 

Calculating the Flow Function using a priori pdf and likelihood 
 

Remember from the Particle Flow Filter that we define an ODE for the flow of 

particles and its corresponding Fokker-Planck equation as 
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Here g(x) is the Gaussian sum a priori pdf coming from the prediction step of the 

UKF-aided Gaussian Sum Filter. We can define it as  
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h(x) is the likelihood and we also known its form.  

 

As given in (2.67), Fokker-Planck equation can be arranged as  
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Also we can write it as  
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In the above equation, if we take the Taylor series approximation of 
dx

gd )log( ,  

dx
hd )log(  and )log(h around each particle, we can define a flow function 

iii bxAf +=  for ith particle similar to Gaussian case and we can use the 

separation of variables method to find the sAi and sbi .  For this purpose first we 

need particles. In the developed filter mean of the each Gaussian component of a 

priori pdf  ( ixcenter  values) can be taken as particles.  

 

Following steps give the calculation of flow fuction for each particle. 
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1. Define the first order Taylor series approximation of 
dx

gd )log(  around ith 

particle. 

 

[ ])( 21)log(
ixcenterxGG

dx
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−+≈          (3.18) 

 

For the given a priori pdf G1 and G2 are found as 

 

1/3)log(1 TT
dx

gdG
ixcenter

==
 

 

( ) ( )21/)3 2(1 0)log(1 TTTTT
dx

gdjacoboianG
ixcenter

−=⎟
⎠
⎞

⎜
⎝
⎛=          (3.19) 

 

where 
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2. Define the first order Taylor series approximation of 
dx

hd )log(
 around ith 

particle. 
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ixcenterdx
hdH )log(1 =

ixcenterdx
hdjacoboianH ⎟
⎠
⎞

⎜
⎝
⎛=

)log(2        (3.22) 

 

One can calculate H1 and H2 using the known form of likelihood 

 

3. Define the second order Taylor series approximation of )log(h  around ith 

particle. 

[ ] [ ])( 2 )()( 10)log( i
T
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where 
ixcenter

hH )log(0 = and H1 and H2 are given in step 2. 

 

If we put these Taylor series approximations and flow function iii bxAf +=  for 

the ith particle we get the following result 
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We can use themethod ofseparation of variablesto find iA  and ib  by equating like 

coefficients of x and terms that are quadratic in x in the above formula. By doing 

so, we get the following expressions for iA  and ib  

( ) 2 2 2 
2
1 HHGA T

i λ+−=  

) 2 
2
12  

2
11 2  

(3.25)                           1  2 1  )2 2(

i
TT

ii
TT

i

ii
T

ii
T

i

xcenterH)HxcenterHAHxcenter

AHAG-xcenter*A((GHGb

−−+−

++−=

λ

λλ

 

 
After that step, each particle is flowed or uptaded using the following ODE 
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iii bxAxf
d
dx

+== ),( λ
λ

 with intial condition ixcenterx =0  

 

This ODE can be solved using Euler method. 

 

After all particles are flowed, we found the Gaussian sum a posteriori pdf which 

is explained in the 3rd step of filtering steps. To eliminate the infinite speed 

particles we define a threshold value and we found the mean of the a posteriori 

pdf. Then we calculate the euclidian distances between this mean value and all 

flowed particles as 

xmeanxflowede ii −=           (3.26) 

where ixflowed is the ith flowed particle and xmean is the mean of the a 

posteriori pdf. We choose the particles where their euclidian distances are smaller 

than the threshold (TH) value
 

 

THei <             (3.27)
 

 
Estimated mean value of the state can be found by using the survived particles  
 

∑
=

=
L

i
ixflowed

L
xest

1

1
           (3.28) 

 

where L is the number of survived particles.  
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CHAPTER 4 
 
 

SIMULATION RESULTS 
 
 
 

In order to assess the performance of the developed filters, firstly we implemented 

them in a nonlinear system with a single state variable. The performance for 

higher dimensional nonlinear systems incorporating non-Gaussian measurement 

noise are also investigated by using two radar tracking scenarios.Developed filters 

are compared with the Particle Filter (PF), UKF and CMKF in these simulations. 

The simulations are carried out on a computer with Intel Core i3 CPU and 1.8 GB 

RAM using MATLAB version 7.9.0.529. 

 

A. Nonlinear system with a single state variable 

 

Consider the following continuous-time nonlinear system with a discrete-time 

measurement model. 

 

)()2.1cos(8
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25
2 2 tdwdtt

x
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           (4.1) 

k
k

k v
x

y +=
120

3

 

 

w is a Wiener process with Gaussian increments whose intensity is taken as 10. 

Sampling period for measurements is taken as T=1 s. kv  is the Gaussian 

measurement noise ~N(0,1). Simulated data are generated using the Euler-

Maruyama method [20] with 1000 steps per second and the simulation lasts for 

100s. Two configurations are used while implementing the UKF-aided Gaussian 

Sum Filter. The first one uses 4 Gaussians while approximating the a priori pdf 

and 5 Gaussians while approximating the a posteriori pdf. The second one uses 40 
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Gaussians while approximating the a priori pdf and 50 Gaussians while 

approximating the a posteriori pdf. Totally 12 grid points are used in the first 

configuration and 190 grid points are used in the second configuration. The 

parameters of the filter is as follows; In the first configuration c=1, l=0, v=1/7 for 

a posteriori pdf. For a priori pdf c=1/5, l=1, v=1 for n=10 Euler discretization 

steps, c=1/8 l=1, v=1 for n=20 Euler discretization steps and c=1/10 l=1, v=1 for 

n=5 Euler discretization steps For different Euler discretization steps, parameters 

for a priori pdf are chosen such that the width of the grids are very close to each 

other. In the second configuration c=100, l=0, v=1/10 for a priori pdf and c=50, 

l=0, v=1/20 for a posteriori pdf and n=10 Euler discretization steps are used. 

While implementing UKF-aided Gaussian Sum Filter with Particle Flow 4 

Gaussians are used while approximating the a priori pdf and the parameters of the 

filter are c=1/30, l=1, v=1 for a priori pdf and . n=10 Euler discretization steps are 

used. Matlab “quad” function is used to approximate the likelihood as a Gaussian. 

Also UKF and Sequential Importance Sampling (SIR) PF are implemented on the 

given system for comparison. n=10 Euler discretization steps. Estimation errors 

are given in Table 1 in terms of the Mean of Mean Absolute Error (MMAE) 

together with Computation Loads (normalized with respect to UKF) after 300 

Monte Carlo runs. 
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where T=100 s and N=300 runs. 

 

Figure 2 gives the Mean of Absolute Error (MAE) after 300 Monte Carlo runs. 
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Table 1 Comparison of MMAE and computation load 

Filter 
No Filters 

Mean of  
Mean Absolute 

Error 
(MMAE) 

Average 
Computation 
Load for One 

Period 
(Unitless) 

1 UKF 
1.68 1 

2 SIR Particle Filter 
with 1000 particles 

0.95 276.8 

3 SIR Particle Filter 
with 200 particles 

0.96 55.7 

4 
UKF-aided Gaussian 
Sum Filter with 
40+50 Gaussians 

0.94 78.9 

5 

UKF-aided Gaussian 
Sum Filter with 4+5 
Gaussians n=20 
discretization steps 

1.14 15.2 

6 

UKF-aided Gaussian 
Sum Filter with 4+5 
Gaussians n=10 
discretization steps 

1.16 8.9 

7 

UKF-aided Gaussian 
Sum Filter with 4+5 
Gaussians n=5 
discretization steps 

1.22 5.1 

8 

UKF-aided Gaussian 
Sum Filter with 
Particle Flow with 4 
Gaussians 

1.12 20.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 MAE after 300 Monte Carlo runs 
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For the system with a single state variable, reasonable accuracy can be achieved 

with about one hundred particles in the particle filter [21]. However, for obtaining 

comparable accuracy in higher dimensions, the number of particles increases 

extensively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.Unnormalized approximations 
for the a priori pdfs during the first 10 
seconds of a sample Monte Carlo run: 
(a) Almost exact pdfs; (b) Approximate 
pdfs  with UKF-aided Gaussian Sum 
Filter with 40+50 Gaussians; (c) 
Approximate pdfs  with UKF-aided 
Gaussian Sum Filter with 4+5 
Gaussians. 

Figure 4. Unnormalized approximations 
for the a posteriori during the first 10 
seconds of a sample Monte Carlo run: 
(a) Almost exact pdfs; (b) Approximate 
pdfs  with UKF-aided Gaussian Sum 
Filter with 40+50 Gaussians; (c) 
Approximate pdfs  with UKF-aided 
Gaussian Sum Filter with 4+5 
Gaussians. 

 

In Fig.s. 3 and 4, the graphs in the first columns are the almost exact 

unnormalized a priori and a posteriori pdfs obtained by SIR PF simulations 
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involving 1000 particles. The second and third columns contain the graphs of the 

local approximations of the unnormalized a priori and a posteriori pdfs over 

different grids which use UKF-aided Gaussian Sum Filter. As it can be seen from 

Fig.s3 and 4, UKF-aided Gaussian Sum Filter can successfully approximate the 

pdfs in the specified areas. For the configuration corresponding to approximation 

with a few Gaussians (Columns (c)), only a limited portion of the pdfs close to the 

mean are estimated, with low computational load. Since approximations are 

carried out in informationally meaningful areas predicted by the UKF, it turns out 

that the error levels are acceptable. 

 

B Radar Tracking Scenario 1 

 

A maneuvering target moving according to Curvilinear Motion Model (CMM) is 

simulated. The simulated paths are generated using a continuous time polar 

CMM. The differential equation for the continuous-time polar CMM is given as 

follows; 

 

)(

10
01
00
00
00
00

0
0

sin
cos

tw
V
a
a

V
V

a
a

V
y
x

n

t

n

t

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
φ
φ

φ

&

&

&

&

&

&

                 (4.4) 

 

where (x,y),V,φ  are the target position in Cartesian coordinates, speed, and 

heading angle, and at, an denote the target tangential (along-track) and normal 

(cross track) accelerations in the horizontal plane. This is the generic model [22] 

for maneuvering targets where 

 

1. an=0, at=0 — rectilinear, constant velocity (CV) motion; 
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2. an=0, at≠0 — rectilinear, accelerated motion (constant acceleration (CA) 

motion if  at =  constant); 

3. an≠0, at=0— circular, constant speed motion (coordinated turn (CT) motion if 

an=constant). 

 

are generated. The target motion starts from the location (200m, 200m) with 0.1 

m/s speed, 4.30 radians heading angle and at=0.01 m/s2 tangential and an=0.01 

m/s2 normal accelerations w(t) is zero mean Gaussian noise with Standard 

deviation σw=3.2x10-4 m/s2. The motion lasts for 500s. During each time period 

(T=1s), we simulate the motion using 1000 steps of Euler-Maruyama method. The 

radar measurements obtained by the following 2D radar measurement model by 

sampling the states every second. 
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where vr and vβ are independent zero mean Gaussian white noises m
rv 24.0=σ and 

.0084.0 radv =
β

σ The stationary observer (radar) is located at (10 km,10 km). 

Target tracking is carried out by using the UKF-aided Gaussian Sum Filter and 

UKF-aided Gaussian Sum Filter with Particle Flow and the results are compared to 

those obtained by UKF. The UKF used here has two versions. One uses the 

continuous-time polar CMM and the other uses continuous-time Cartesian CMM 

as dynamical models. The continuous-time Cartesian CMM is given as follows 
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Where yxyx &&,,, are the target positions and velocities in Cartesian coordinates. at 

and an are as the acceleration components given in the continuous-time polar 

CMM.  

 

Continuous-time Polar and Cartesian CMM are used with UKF-aided Gaussian 

Sum Filter and UKF-aided Gaussian Sum Filter with Particle Flow. The results are 

compared with those obtained by UKF using continuous-time Polar and Cartesian 

CMM. 

 

While using continuous-time Polar CMM, initial state and covariance values are 

given as follows. 
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While using continuous-time Cartesian CMM, initial state and covariance values 

are given as follows. 
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Small initial values are assigned to at and an. If at= an=0, UKF fails to work 

properly with continuous-time Cartesian CMM. 
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n=10 Euler discretization steps (per second) are used in all filters. 

 

While using continuous-time polar CMM, 6 Gaussians are used to approximate the 

a priori pdf and 10 Gaussians are used to approximate the a posteriori pdf in UKF-

aided Gaussian Sum Filter. Totally 26 grid points are used. The parameters of the 

filter are as follows; c=1/800, l=8000, v=1 for a priori pdf and c=1/100, l=0, v=1 

for a posteriori pdf. Also 6 Gaussians are used to approximate the a priori pdf in 

UKF-aided Gaussian Sum Filter with Particle Flow and unbiased conversion is 

used while approximating the likelihood as a Gaussian. The parameters of the filter 

are c=1/800, l=8000, v=1 for a priori pdf.  

 

While using continuous-time Cartesian CMM, same number of Gaussians as in the 

continuous-time Polar CMM case are used in UKF-aided Gaussian Sum Filter and 

UKF-aided Gaussian Sum Filter with Particle Flow. Only the parameters are 

changed. In the UKF-aided Gaussian Sum Filter c=1/500, l=5000, v=1 for a priori 

pdf and c=1/100, l=0, v=1 for a posteriori pdf are used. In the UKF-aided 

Gaussian Sum Filter with Particle Flow c=1/500, l=5000, v=1 for a priori pdf are 

used.  

 

After 300 Monte Carlo runs, the results for the Root Means Square (RMS) 

Position Error during 500 s are shown in Fig.s. 5, 6. Root Means Square (RMS) 

Position Error at a specific time is given with the following formula. 
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where N=300 runs. 
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Figure.5. RMS position error while using continuous-time polar CMM as 
dynamical model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.6. RMS position error while using continuous-time Cartesian CMM as 
dynamical model 
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Using continuous-time Cartesian CMM gives better results than the continuous-

time polar CMM. A possible reason for using continuous-time Cartesian CMM, 

which gives better results, is that continuous-time Cartesian CMM has nonlinear 

terms only in two state equations, whereas continuous-time polar CMM has 

nonlinear terms in three state equations. Computational loads (normalized with 

respect to UKF) of the compared filters are given in Table 2. 

 

Table 2 Average Computational Load for Radar Tracking Scenario 1 

Filter 
No Filters 

Average 
Computation 
Load for One 

Period 
(Unitless) 

1 UKF using continuous-time polar CMM 
1 

2 UKF using continuous-time Cartesian CMM 
1 

3 UKF aided  Gaussian Sum Filter using 
continuous-time polar CMM 

28.25 

4 UKF aided  Gaussian Sum Filter using 
continuous-time Cartesian CMM 

26.24 

5 
UKF aided  Gaussian Sum Filter with 
Particle Flow using continuous-time polar 
CMM 

27.6 

6 
UKF aided  Gaussian Sum Filter with 
Particle Flow using continuous-time 
Cartesian CMM 

25.3 

 

As it can be seen from Table 2, the computational load of the developed filters are 
reasonable.  
 

C Radar Tracking Scenario 2 

 

In this scenario the performance of the developed filter is investigated for target 

tracking with glint noise in its measurement model. A target moving according to 

Constant Velocity (CV) model is simulated. The simulated paths are generated 

using discretized version of the continuous-time CV model. Continuous-time CV 

model is given as follows; 
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where yxyx &&,,, are the target position and velocities in Cartesian coordinates. w(t) 

is a Gaussian white noise with w(t)~N(0, 2
wσ ) Discrete-time version of continuous-

time CV model is given as follows; 
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Sampling period is chosen as T=1 s. The target starts moving from (200 m, 200 m)  

with 0.01 m/s velocity components. The uncertainty in velocities is modeled by 

Gaussian zero mean noise with standard deviation 2m/s 1.0=wσ . The motion lasts 

for 500s. The radar measurements are obtained as:  
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where rv is zero mean Gaussian noise with m 24.0=
rvσ  

βv  is chosen as glint noise, which is modeled via the mixture of two Gaussian 

distributions and its unnormalized pdf is given as 
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In the simulations, the glint noise is used with two different value sets 

 

Value set1 has values 021 == ββ μμ  and rad. 01.01 =βσ and rad. 0071.02 =βσ  

Value set2 has values 021 == ββ μμ  and rad. 14 01.01 =βσ and 

rad. 0063.02 =βσ  

 

The glint noise has zero mean and standard deviation rad. 0079.0=
β

σ v  for both of 

the value sets. The stationary observer is located at (10 km,10 km). The developed 

filters are implemented to track the target and the results are compared with those 

obtained by a CMKF. While using the measurement model in CMKF, we assume 

that βv  is a zero-mean Gaussian noise with rad. 0079.0=
β

σ v  

 

Continuous-time CV model is used in the developed filters. Glint noise is used as 

likelihood in the calculations. n=10 steps of Euler discretization(per second) is 

used while solving Fokker-Planck equation. In the UKF-aided Gaussian Sum Filter 

10 Gaussians are used while approximating the a priori and a posteriori pdfs and 

totally 40 grid points are used. The parameters of the filter are as follows; c=1/800, 

l=8000, v=1 for a priori pdf and c=1/100, l=0, v=1 for a posteriori pdf. In the 

UKF-aided Gaussian Sum Filter with Particle Flow 10 Gaussians are used while 

approximating the a priori pdf. The parameters of the filter are c=1/800, l=8000, 

v=1 for a priori pdf. Since likelihood has 2 components because of glint noise, 

unbiased conversion is applied to every component of likelihood in UKF-aided 

Gaussian Sum Filter with Particle Flow. Developed filters and CMKF are started 

with the following initial state and covariance values 
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The developed filter and CMKF are compared with the generated data using both 

value sets of glint noise.  

 

After 300 Monte Carlo runs, the results for the RMS position error during 500 s 

are shown in Fig.s. 7, 8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.7. RMS position error while using value set 1 
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Figure.8 RMS position error while using value set 2 
 

As it can be seen from the figures, the developed filters take the advantage of using 

directly the non-Gaussian glint noise in its calculations and make less error than 

the CMKF. Also as the variance difference of Gaussians used in glint noise gets 

larger, the error level of CMKF increases. The error levels of the developed filters 

are almost same when applied to data generated by different value sets. 

 

Computational loads (normalized with respect to CMKF) of the compared filters 

are given in Table 3. 

 

Table 3 Average Computational Load for Radar Tracking Scenario 2 

Filter 
No Filters 

Average 
Computation 
Load for One 

Period 
(Unitless) 

1 
CMKF using discrete-time version of 
continuous-time CV model 

1 

2 UKF aided Gaussian Sum Filter using 
continuous-time CV Model 

492.6 

3 UKF aided Gaussian Sum Filter with Particle 
Flow using continuous-time CV Model 

493.5 
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Since CMKF only involves conversion and standard Kalman Filter steps without 

discretization, it has very small computational load. Also computational load of the 

developed filters are reasonable. Since a linear dynamical model (CV model) is 

used, the prediction step of UKF is not needed and the prediction step of Kalman 

Filter is used while approximating the a priori pdf. 
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CHAPTER 5 
 
 

CONCLUSIONS 
 
 
 

An approximate estimation method which is named as UKF-aided Gaussian Sum 

Filter is proposed for nonlinear systems represented in terms of a continuous-time 

dynamical model and discrete-time measurement model. The approach tries to 

approximate the a priori and a posteriori pdfs in the filtering steps using weighted 

Gaussian sum representations. The method has the ability to approximate the pdfs 

in a given search area. As it is shown in the one dimensional example, almost exact 

pdfs can be captured using the developed filter by adjusting the grid used in the 

search area. Also as a second approximate estimation method Particle Flow is 

integrated with the UKF-aided Gaussian Sum Filter and a new flow function based 

on Taylor series approximation is used. Both filters can also be used in higher 

dimensional systems and under non-Gaussian noises. The simulation results for 

these cases indicate that developed filters gives smaller error values with a 

reasonable computational load when compared with some of the existing nonlinear 

filtering methods. 
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