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ABSTRACT

PLANAR 3D SCENE REPRESENTATIONS FOR DEPTH COMPRESSION

Özkalaycı, Burak Oğuz

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

February 2014, 167 pages

The recent invasion of stereoscopic 3D television technologies is expected to be

followed by autostereoscopic and holographic technologies. Glasses-free multiple

stereoscopic pair displaying capabilities of these technologies will advance the

3D experience. The prospective 3D format to create the multiple views for such

displays is Multiview Video plus Depth (MVD) format based on the Depth Image

Based Rendering (DIBR) techniques. The depth modality of the MVD format

is an active research area whose main objective is to develop DIBR friendly

efficient compression methods.

As a part this research, the thesis proposes novel 3D planar-based depth repre-

sentations. The planar approximation of the stereo depth images is formulated

as an energy-based co-segmentation problem by a Markov Random Field model.

The energy terms of this problem are designed to mimic the rate-distortion

tradeoff for a depth compression application. A heuristic algorithm is developed

for practical utilization of the proposed planar approximations in stereo depth

compression. The co-segmented regions are also represented as layered planar
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structures forming a novel single referenced MVD format.

The proposed planar based depth compression solutions are compared against

the state-of-the art image/video and MVD compression standards. The com-

pression performances are analyzed for depth reconstruction and novel view ren-

dering by DIBR techniques. All the experiments are performed with the ground

truth texture of the MVD data, since the scope of the thesis is limited with

the depth modality. The visual and objective evaluations show that the pro-

posed planar representations are promising for efficient depth compression with

artifact-free novel view rendering. As a remarkable contribution, the proposed

layered planar MVD representation also brings the depth perception quality

considerations in the MVD compression schemes by decoupling the texture and

geometry to a wide extent.

Keywords: 3DTV, MVD, DIBR, depth compression, energy based co-segmentation,

model fitting
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ÖZ

DERİNLİK SIKIŞTIRILMASI İÇİN DÜZLEMSEL 3B SAHNE
GÖSTERİMLERİ

Özkalaycı, Burak Oğuz

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Şubat 2014 , 167 sayfa

Yakın geçmişte yaşanan 3B televizyon istilasının ardından otosteroskopik ve ho-

lografik teknolojilerin benzer şekilde yaygınlaşacağı tahmin edilmektedir. Bu tek-

nolojilerin özel bir gözlüğe ihtiyaç duymadan aynı anda çok sayıda görüş açısını

izleyiciye sunabilmesi sayesinde 3B gerçeklik hissiyatı zenginleşecektir. İzleyiciye

farklı görüş açılarının sağlanması için en olası 3B veri formatı, Derinlik Görün-

tüsü Temelli Resmetme (DIBR) tekniklerine dayanan Çok-görüntülü Video artı

Derinlik (MVD) formatıdır. MVD formatının içeriğindeki derinlik görüntülerinin

DIBR dostu etkin sıkıştırılması, aktif bir araştırma konusudur.

Bu araştırmanın bir parçası olarak tez, yeni bir 3B düzlemsel derinlik gös-

terimi önermektedir. Önerilen stereo derinlik görüntülerinin düzlemsel kesti-

rim formülasyonu, Markov Rasgele Alanlar modellemesi yardımı ile enerji ta-

banlı bir birlikte-bölütleme problemi olarak düşünülmüştür. Problemin enerji te-

rimleri, derinlik görüntülerinin sıkıştırılmasındaki hız-distorsiyon takasını taklit
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edecek şekilde tasarlanmıştır. Önerilen düzlemsel kestirimin stereo derinlik sıkış-

tırmasında pratik kullanımı için buluşsal bir algoritma geliştirilmiştir. Birlikte-

bölütlenen bölgeler ayrıca katmanlı düzlemsel yapılar şeklinde ifade edilerek yeni

tek referanslı bir MVD gösterimi oluşturulmuştur.

Önerilen düzlemsel tabanlı derinlik sıkıştırma çözümleri, en gelişkin teknolojinin

görüntü/video ve MVD sıkıştırma standartları ile karşılaştırılmıştır. Sıkıştırma

performansları, derinlik geri çatımı ve DIBR teknikleri ile yeni görüntü resmetme

başlıklarında değerlendirilmiştir. Tezin kapsamı derinlik kipi ile sınırlandığından

dolayı tüm deneyler MVD verilerinin orijinal dokuları ile yapılmıştır. Görsel ve

objektif değerlendirmeler, önerilen düzlemsel gösterimlerin etkin derinlik sıkış-

tırma ile doğal yeni görüntü resmetme için umut verici olduğunu göstermektedir.

Önerilen tabakalı düzlemsel MVD gösterimi doku ve geometrideki bozulmaları

büyük ölçüde birbirinden bağımsız hale getirmektedir. Bu sayede kayda değer bir

katkı olarak tabakalı düzlemsel MVD gösterimi, derinlik algı kalitesini dikkate

alan MVD sıkıştırma yaklaşımları beraberinde düşündürmektedir.

Anahtar Kelimeler: 3DTV, MVD, DIBR, derinlik sıkıştırması, enerji tabanlı

birlikte-bölütleme, modele uydurma
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CHAPTER 1

INTRODUCTION

Today 3D became the buzz word of the entertainment, multimedia and consumer

electronics sectors. The revenue success of the 3D theaters triggered the inva-

sion of the 3D technologies to our daily lives. As the first step, the stereoscopic

video added the dimension of depth to the human perception by providing the

left-right eye view separation. However, the forthcoming 3D technology, which

is mentioned as 3D Video (3DV) in general, promises much more realistic per-

ception of the scene by providing interactivity of the viewer with the displayed

scene. However, this interactivity of 3DV comes with a r/evolutionary changes

in the infrastructure of the monoscopic/stereoscopic video systems. Hence, 3DV

systems, which contain scene acquisition, representation, compression, transmis-

sion, rendering and displaying steps, need to be reconsidered as a whole; each

step contains its own problems and various dependencies to other steps.

1.1 Stereoscopic and 3D Video

The principals of the stereo and 3D video are both based on the stereopsis

property of the human visual system (HVS). Stereopsis is the process of visual

perception leading to the perception of depth from the two slightly different

projections of the world onto the retinas of the two eyes. In stereoscopic and 3DV

systems, the left and right eyes of the observer are exposed to slightly different

views of the scene. The relative differences in two retinal images, that are called

retinal disparity, create the depth perception. The two slightly different views

of the same view just make up the stereoscopic video content.
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The shortcomings of the stereoscopic video come out with the rivalry between

the monocular and binocular depth perception cues in HVS. For instance, the

movement of the observer might break down the reality of the scene, since the

observer’s left and right eye views do not change according to his/her movement.

Instead the same left and right eye view during the movement creates a shearing-

like effect on the observer’s perception.

At this point, 3DV systems promise to increase the sense of reality by the inter-

activity of the observer with the scene. This interactivity is simply achieved by

the capability of providing various left and right eye view couples of the scene

in accordance with the observer’s actions, commands, movements or positions.

The interaction between the observer and the 3DV system might be active or

passive. In the active interaction case the 3DV system tracks the observer’s po-

sition or commands and provides the corresponding left and right eye view pair

to the observer. In the passive case, the 3DV system provides all the possible

view combinations to observer’s space and the observer’s views change as he/she

navigates.

1.2 3DV System Architecture

In Figure 1.1, a schematic of a feasible 3DV system architecture is illustrated.

The acquisition, displaying, representation/compression, and rendering units of

the 3DV systems in the literature will be explained in detail in the forthcoming

subsections.

1.2.1 3DV Acquisition and Displays

In the most general form of 3DV systems, the scene of interest is captured by a

synchronized camera array. In order to provide the end user of the 3DV system

to navigate in the scene space realistically, the plenoptic function (light field) of

the scene should be reconstructed from these samples. Chai et. al. [2] analyzed

the sufficient number of samples to reconstruct the plenoptic function in theory

and concluded that spectral support of the plenoptic function is bounded only
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Figure 1.1: 3DV system illustration (Reprinted with permission. Copyright John
Wiley & Sons, Inc. 2010 [1]).

by the minimum and maximum depth of scene objects. However in practice, the

factors, like scene geometry, texture, object and camera motions make it hard

to arrange a sufficient sampling arrangement all the time. Hence, to oversam-

ple the plenoptic function is one of the practical solutions. Another practical

approach is to utilize the scene geometry information in the plenoptic function

reconstruction. Since the depth of the scene objects constrains the plenoptic

function, fewer view samples with the scene geometry information might suffice

to reconstruct the plenoptic function.

The aforementioned two alternatives of plenoptic reconstruction constitute the

tradeoff between the scene geometry information and the number of views of

the scene; this is a very well-known tradeoff in Image Based Rendering (IBR)

techniques. According to IBR, the same quality of novel view rendering can

be obtained by fewer images with more knowledge of the scene geometry [3].

The same tradeoff appears in the 3D content acquisition for representing the

3D scene. The 3D scene can be represented with more views of the scene and

less knowledge of the scene geometry or fewer views and more knowledge of the
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scene geometry.

However, in general the acquisition of the scene geometry information is not as

trivial as capturing different views of the scene. There are commercial time-

of-flight cameras for capturing the depth of the scene; however, they have syn-

chronization and resolution problems compared to conventional cameras. The

conventional acquisition of the scene geometry is achieved in a depth estimation

framework which is a vastly studied topic and known as stereo correspondence

problem [4] in computer vision. The pinhole camera model and projective ge-

ometry constraints are typically utilized on multiple views of the scene for the

solution of this problem. A detailed taxonomy of the stereo correspondence

algorithms is given in [4]. It should also be mentioned that the state-of-the-

art stereo correspondence algorithms require considerable computational effort

and still error prone due to the ill-posed nature of the problem. Hence, the

tradeoff between the scene geometry information and the number of views of

the scene becomes a computational capability tradeoff of the 3DV acquisition

system. For a survey of capturing technologies for 3D video applications, the

interested readers should refer to [5].

The principle of the 3DV displays is mainly based on separating the left and

right eye views of the observer. The widely available 3D displays provide the

Figure 1.2: An illustration of autostereoscopic display (Reprinted with permis-
sion. Copyright John Wiley & Sons, Inc. 2010 [1]).
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stereo view separation with the help of special glasses. The active shutter glasses

technique receives a synchronization signal from the display and toggles the left

and right glass transparency in order to expose the stereo image pair to right

and left eyes of the viewer separately. Another glasses-based approach, called

passive glasses, differentiate the stereo pair by different polarization properties

maintained by the light projector or the retarder in front of the display panel.

The glasses-based approaches are limited to conventional stereo video applica-

tions or head tracking based free view TV applications. Hence, the 3D perception

is limited to two views of the scene or to a single user in the latter case.

There are also glasses-free 3D display technologies, namely autostereoscopic and

holographic displays. The autostereoscopic displays can allocate the viewing

zones of the display to different views of the scene as shown in Figure 1.2. By

proper positioning of the observers, the 3D perception can be achieved by these

displays. In case of holographic displays, the observers can be positioned freely,

since holographic displays generate the light field of the scene at the display

plane. However, the mentioned glasses free technologies are not mature for

consumer applications yet. For the details of the 3D display technologies one

may examine the survey in [6].

1.2.2 3DV Representation and Compression

The acquired 3DV data should be represented in a compression and rendering

efficient way in order to maintain the channel transmission capabilities and create

a realistic 3D impression for the end user. Regarding these challenges, the

suggested 3DV representations in the literature evolved from stereo view towards

view and geometry hybrid solutions. For a detailed survey of representation and

compression approaches in 3D TV applications, it is advised to refer [7] and [8].

1.2.2.1 Conventional Stereo

The conventional stereo video is composed of left and right eye views of the scene.

This primitive 3DV representation has no geometry information about the scene.
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Rendering novel views of the scene is not considered in this representation; hence,

user interaction with 3D scene is out-of-scope. However, in order to enhance the

depth perception of the end user and lower the eye strain implications of a stereo

content, there are some rendering application proposals for conventional stereo

video. For instance, Lang et. al. [9] propose a nonlinear disparity mapping by

an image warping in the guidance of sparse depth estimates of feature points in

the scene.

For the compression of stereoscopic video, the inter-view redundancies are also

utilized in addition to conventional temporal and spatial redundancies of a

standalone video stream. For backward compatibility of the stereoscopic video

stream, a Multi-View Profile (MVP) is specified by ITU-T [10]. In MVP, the

left eye view is coded as MPEG-2 main profile bit stream, whereas the right eye

view is coded as an enhancement layer. In the encoding of enhancement layer,

inter-view redundancies are exploited by using the decoded left view.

1.2.2.2 Multiview Video

In order to give the observer the freedom to navigate to different views of the

scene, the number of the views are increased in the multiview video case. The

number of the views might range from 5 views to hundreds. Increasing the

number of the views increases the rendering capabilities of the end user. The

user is able to navigate in the 3D scene with a wider range and higher visual

quality by increasing the number of the views it receives in multiview video.

However, increasing the number of views in a multiview video also increases the

compression cost. In the worst of simulcast transmission of multiview video, the

bandwidth requirement increase linearly with the number of views; the resul-

tant large bandwidth requirement cannot be handled by present infrastructure.

Hence, for practical applications, the number of the views of the multiview video

does not in general exceed 10 and much more efficient compression techniques

than simulcast are utilized.

In multiview video, in addition to spatial and temporal statistical redundancies

of conventional video, geometrical redundancies exist between the views. The
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Figure 1.3: The recommended Group of Pictures structure in H.264/MVC. The
inter-view prediction directions are marked as red arrows (Reprinted with per-
mission. Copyright Elsevier 2008 [11]).

efficient compression methods for multiview video in the literature all exploit

this inter-view geometric redundancy. One of the state-of-the-art compression

methods is the amendment to H.264/MPEG-4 AVC video compression standard,

called Multiview Video Coding (MVC) [13]. MVC is designed to be backward

compatible with H.264/AVC, while exploiting the interview geometrical redun-

Figure 1.4: In H.264/MVC, the bitrate increase has a linear characteristics like
the simulcast encoding of the views (Reprinted with permission. Copyright
IEEE 2007 [12]).
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dancies. In MVC, spatio-temporal prediction based on hierarchical B pictures

is introduced for exploiting the inter-view redundancies [12]. However, MVC

compression method still has a linear bitrate increasing characteristics for the

increasing number of views as shown in Figure 1.4 [12].

In the literature, there are other multiview video compression approaches which

exploit the geometric redundancies more explicitly by using the epipolar con-

straints over the camera setup. Their common approach for multiview video

compression is to use novel view prediction routines. The geometric constraints

utilized in the novel view prediction might be loose to just derive pairwise ren-

dering optimal disparity maps [15], or very strict to estimate the whole 3D scene

geometry [16], [14], [17]. For these approaches, it can be said that they acquire

the scene geometry information, which is not explicitly available in the multi-

view video representation, to some extent, in order to make an efficient prediction

during compression. An exemplary outline of a backward compatible scalable

multiview video compression method is illustrated in Figure 1.5. In comparison

to MVC approach, the geometry constrained novel view prediction approach

brings computational burden at the encoder/decoder side [18] or rate increase

Figure 1.5: A multiview video encoder, which explicitly utilizes the scene geom-
etry. (Reprinted with permission. Copyright IEEE 2007 [14].)
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by transmitting geometry related auxiliary information extracted/estimated at

the encoder side [15], [14].

1.2.2.3 Video plus Depth

Since the depth perception of the conventional stereo video depends also on

the display size and the observer’s distance to display [19], a video plus depth

representation of conventional stereo video is proposed in ATTEST project [20]

for adaptive stereo video rendering. The target of the ATTEST project was to

design a backward compatible, flexible and modular broadcast 3DTV system.

The backward compatibility of the proposed system, which is standardized as

MPEG-C part 3 and H.264 Auxiliary Picture Syntax, is implemented by trans-

mitting the depth video as an auxiliary data for the conventional 2D video

[21]. From monoscopic video and associated per pixel depth information, novel

views of the 3D scene are synthesized by Depth Image Based Rendering (DIBR)

methods in order to create the stereo view pairs. Hence, the view plus depth

representation provides virtual stereo camera to be arranged optimally for the

display and observer distance at the end user side. An instance from Interview

(view plus depth) data is shown in Figure 1.6.

In addition to provide adaptive rendering capabilities at the end user side, the

video plus depth data is a more compressible representation than the left-right

pair of a stereo view. However, the weak point of the view plus depth repre-

sentation is its proneness to rendering artifacts especially around the occlusion

Figure 1.6: A video plus depth example.
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regions. In stereo view synthesis, the camera position of the monoscopic video is

assumed to be between the novel views. Hence, increasing the depth difference

between the objects in the scene and increasing the novel camera distance to

monoscopic camera enlarges the regions to be rendered in the novel views but

occluded in the center view. In order to handle this occlusion problem, smooth-

ing the depth maps is a common approach [22],[23]. However, depth smoothing

still cannot avoid occlusion related rendering artifacts totally. Hence, the novel

view rendering capabilities of the view plus depth representation are very limited

due to the occlusion phenomenon.

1.2.2.4 Multiview Video plus Depth

In order to tackle the rendering limitations of the video plus depth format, uti-

lization of multiple video plus depth data, which is called Multiview Video plus

Depth (MVD), is proposed in the literature [24]. Since the occluded regions in

one of the view are visible in some of the other views, high quality, occlusion free

novel view rendering is possible by MVD format. By a proper arrangement of

the camera rig orientation, the MVD representation is also capable of rendering

the continuous trajectory of the novel views between the captured views, that

seems to provide the desired interaction of 3DV applications.

ISOMoving Picture Experts Group (MPEG) standardization body issued a “Call

for Proposals on 3D Video Coding Technology” document [25] in order to set

the standard for the 3DV transmission, and the main exploration experiments

of the proposal are performed in 2 and 3 video plus depth data sets. The explo-

ration experiments show that the multiple depth information might provide high

quality novel view rendering while keeping the number of videos as low as 2 or 3

[26]. Hence the 3DV proposal of the MPEG community is expected to provide

increased rendering capabilities at low bit rates as shown in Figure 1.7. One of

the main goals of the proposal is to decouple the rate and the number of output

views, and hence, the rate required for transmitting the 3DV format could be

based only on the transmission constraints [27]. The scene geometry information

included in the 3DV representation decouples the bandwith requirements from

10



the rendering capabilities.

A straightforward and backward compatible approach for the compression of

MVD data is to compress the color/texture videos and depth videos indepen-

dently by an MVC compression scheme. However, more efficient MVD compres-

sion methods are also proposed in the literature; some of these methods share

motion vectors between texture and depth [28], transmits a base view and dis-

occluded texture regions [29], preprocess depth images [30], and encodes depth

images with a non-DCT transforms [31].

The depth modality of the MVD data brings a new optimality question. The

rate-distortion performance of the conventional video coding systems are usually

measured using the Peak Signal to Noise Ratio (PSNR) metric [32]. However,

the depth modality is an auxiliary information, and it is not observed directly

by the end user. The depth maps of a MVD data are utilized in the DIBR

module of a 3DV system; hence, a novel view rendering distortion based metric

is the desired metric for the depth map coding of MVD data. There are novel

view rendering distortion metric proposals in the literature for rate-distortion

performance of depth coding [33],[34] and bit allocation between texture and

depth coding [35].

Figure 1.7: Requirments of the call for proposal on 3D Video coding by MPEG
community (Reprinted with permission. Copyright John Wiley & Sons, Inc.
2010 [1]).
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1.2.3 3DV Rendering

The aim of 3D video rendering is to provide high quality, natural views of the

scene. The number of the views to be rendered might be one for displays of

head tracking systems or around a hundred for autostereoscopic/holographic

displays. In order to provide the scene views, 3DV systems utilize Image Based

Rendering (IBR) techniques. In the literature, IBR is the general title of view

rendering methods based on captured videos or photos. IBR techniques are

classified as pure image based, implicit geometry based and explicit geometry

based approaches in [3]. The tradeoff between the number of views and the

geometry information for 3D scene representation again plays the main role in

this classification. According to Figure 1.8, the IBR techniques utilizes less

number of images towards the more geometry direction for high quality view

rendering.

The rendering quality of the pure image based techniques are satisfactory with

high number of 2D images but not practical for 3DV transmission systems. The

methods in the implicit geometry category use the information of camera posi-

tions and epipolar relations between the views, but the rendering quality is not

reliable, since underlying assumptions can be violated easily. The approaches,

which utilize explicit geometry, are the most popular methods for 3DV systems

to provide high rendering quality with a feasible transmission cost. Especially

the Depth Image Based Rendering (DIBR) methods are under consideration for

standardization within the 3D community [25]. In DIBR, the depth information

Figure 1.8: Geometry based classification of the IBR methods (Reprinted with
permission. Copyright SPIE 2000 [3]).
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about the views makes it possible to 3D warp the pixels to image plane of the

desired novel view.

1.3 Problem Statement and Scope of the Thesis

The desired properties of the forthcoming 3D technology is to be realistic and

interactive. These desired properties should be satisfied according to feasible

infrastructures for a realization in the near future. Hence, for the 3D video ap-

plications, the main problem is to provide high quality 3D rendering capabilities

to the end users through a limited capacity transmission channel. The MVD

data format is the latest response of the 3D community for the forthcoming 3DV

applications.

The multiview depth content and its DIBR based utilization are the main key

topics for the exploration of the MVD format. The depth modality in MVD

presents two fundamental differences against the video modality. The first one

is the characteristics of a typical depth image which is much smoother than the

characteristics of a typical conventional image. The intensity values of a depth

image smoothly vary along a scene object due to the solid nature of the object.

Hence, the depth images can be considered as piecewise continuous signals.

However, the color intensities of an object might change abruptly in a small

neighborhood. The second fundamental difference is the utilization of the depth

modality in MVD is indirect in comparison to video modality. The depth images

are not displayed to the end user of the 3D application but their DIBR results are

displayed. The nonlinearities of the DIBR method makes the depth distortion

analysis much more complicated than the conventional distortion analysis of a

video.

These fundamental differences result in performance degradations, when the

depth modality is handled in a manner similar to a conventional video. As an

example, the depth compression experiments performed in [11] show that the

DCT based depth compression deteriorates the depth boundaries and results in

severe rendering artifacts. Hence, the depth modality of MVD should be re-
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considered regarding its piecewise smooth properties and targeted 3D rendering

applications. The quest for an appropriate depth image representation for effi-

cient compression and high quality 3D rendering is an active research area. A

novel stereo depth representation based on planar models and extends it to a

planar layered MVD representation is proposed in this work. Although the ap-

plications of MVD data are the main focus of this work, the texture information

of the MVD is beyond the scope of this thesis.

The original contributions of this thesis are: i) The depth images of the MVD

data are handled in a unified 3D planar co-segmentation setup. ii) The proposed

co-segmentation is formulated in an energy based approach which introduces the

rate distortion objectives to the segmentation based depth representations in the

literature. iii) An algorithm, which can be used in a lossy depth compression

framework, is proposed to constrain the solutions of the planar representations.

iv) The proposed planar representation and its acquisition algorithm are also

utilized for a novel layered MVD representation which can decouple the texture

and geometric distortions to a wide extent for novel view rendering applications.

1.3.1 Outline of the thesis

In Chapter 2, the proposed co-segmentation based representation of stereo depth

images will be introduced. The energy based formulation of the co-segmentation

problem will be stated by a Markov random field model. The optimization

problem to obtain the maximum a posteriori estimate will be solved by a graph

cut based expectation maximization like algorithm, which is slightly modified in

order to exploit smooth depth image characteristics.

In Chapter 3, the energy based formulation of the planar representation will be

reconsidered for rate distortion optimality properties. The concept of Pareto op-

timality will be discussed and a heuristic algorithm will be developed to obtain

different Pareto optimal solutions which will make the planar depth compression

realizable for different rate constraints. The pure planar and planar prediction

with residual coding versions of the depth compression experiments will be con-

ducted in comparison to state of the art solutions in the literature.
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In Chapter 4, the multi-reference based MVD representation will be converted

to a single reference based MVD representation with the guidance of planar rep-

resentations obtained in the previous chapters. The compression performance

of the novel layered representation will be studied in novel view rendering ap-

plications in comparison to state of the art MVD compression techniques. The

different novel view rendering characteristics of the proposed MVD represen-

tation will be visually compared and discussed for possible depth perception

distortion considerations in MVD compression.

Chapter 5 will summarize the proposed planar representation based stereo depth

and MVD compression techniques with highlighting their advantages and disad-

vantages against other techniques in the literature. The conclusions of the thesis

will be provided based on the novel contributions and their possible utilizations

and advancements in future works.
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CHAPTER 2

PLANAR STEREO DEPTH REPRESENTATION

The raw format of depth images is that of a single channel images whose intensity

value encodes the depth of a 3D point in the scene. In general, single byte

precision is used to represent the disparity between a stereo pair or the depth (z-

value) of the point in 3D space. Range cameras and stereo disparity estimation

techniques are well known depth image sources for 3D applications.

The objects in 3D space have continuous surfaces, in general. This property of a

3D object expresses itself in depth images as smooth variations inside the object

region. However, sharp discontinuities might occur across the object boundaries.

Therefore, depth images can be represented as piecewise smooth functions, in

general.

In Section 2.1, the depth image representations in the literature for 3D ap-

plications will be briefly summarized. Then, the motivations of the proposed

representation will be explained in Section 2.2, and in Section 2.3, its energy

based formulation and solution will be explained in detail. The chapter will end

with various examples of the proposed stereo depth representation in Section

2.4.

2.1 Depth Image Representations: Related Literature

The problem of depth image representations for 3DV applications can be rephrased

as “what is the optimal approximation model of the depth images for efficient

compression and artifact free DIBR rendering?”. While the piecewise smooth-
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Figure 2.1: Original depth image (left), and its DCT-based approximation by
H.264 (right). Note the blurring on the depth boundaries for the DCT-based
approximation (Reprinted with permission. Copyright Elsevier 2008 [11]).

ness models for the depth images plays an important role in the predictability of

the depth images, the artifact free DIBR rendering is usually obtained by sharp

depth discontinuities at object boundaries [24]. As a conventional example, DCT

based representation can exploit the piecewise smoothness of the depth images

but can not conserve the sharp depth discontinuities as shown in Figure 2.1.

In [36] and [37], arbitrary shape adaptive lifting-based wavelet transforms are

proposed for depth image approximation. The proposed lifting operations avoid

filtering across the edges and decrease the number of significant high frequency

wavelet coefficients around the edges. The reduction of the high frequency coef-

ficients also reduces the ringing artifacts around the edges, and hence, preserve

the sharpness of the edges. The experiments performed in [36] and [37] indicate

that the bit-rate reductions maintained by the proposed lifting schemes are much

more than the bit-rate required to encode the required edge information. An

exemplary edge information of a depth map is shown in Figure 2.2. In [37], the

filters used in lifting operations are designed to be optimal for piecewise planar

images. A similar approach, which again requires edge information, is proposed

in [38], and replaces DWT with a graph based transform. A recent study, ad-

vanced these shape adaptive DWT approaches to a scalable architecture both
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Figure 2.2: The edge information encoded by a Shape-Adaptive DWT approach
(Reprinted with permission. Copyright IEEE 2008 [36]).

for depth and edge representation in a rate-distortion optimization friendly way

[39].

In order to efficiently exploit the piecewise linear characteristics of the depth

images, a platelet based transformation is proposed in [11]. A quad-tree guided

refinement procedure is utilized for platelet based representation of the depth

image and an exemplary representation is given in Figure 2.3. In [11], the

performance of the platelet approach is also compared with the Intra mode of

H.264 and H.264/MVC using PSNR values of depth images and rendered novel

views. In these experiments, the platelet approach performed the worst on depth

map reconstruction, whereas performed the best on novel view rendering. In [40],

the platelet representation is extended with some contour prediction methods

exploiting the neighboring context and corresponding edge contents of the color

image.

In [41], the DCT transform based coding artifacts around the depth edges are

proposed to be suppressed by a sparsity-based in-loop de-artifacting filter. The

piecewise smoothness of the depth image characteristics are modeled by the

assumption that the depth images are representable with a sparse set of coef-
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Figure 2.3: Platelet representation of a depth image (Reprinted with permission.
Copyright Elsevier 2008 [11]).

ficients in an over-complete set of transforms. The coefficients of the decoded

depth image in the over-complete set of transforms are thresholded for denoising

at first. Then, the final depth image is obtained by a weighted combination of

all denoised depth images in each transform domain. The weighting operation

favors the sparser representations among the denoised depth images. The exper-

iments in [41] indicate that the proposed sparsity-based in-loop de-artifacting

filter both increases the PSNR performance of the reconstructed depth image

and the rendered novel views.

Segmentation based representations for depth images are also proposed in the

literature as shown in Figure 2.4. In [42], the depth image is segmented into

a desired number of regions and each region is represented with its shape and

mean depth value. A down-scaled proxy of the residual depth image is used to

represent the depth variations in each region. In a similar fashion, the method in

[43] represents each segmented region with its shape and a linear depth model.

As an extreme example of segmentation, a piecewise constant model is utilized
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Figure 2.4: An example for segmentation based depth image representation
(Reprinted with permission. Copyright IEEE 2011 [43]).

in [44] for lossless compression of depth images.

The depth image representations in [45] and [46], mimics the piecewise smooth

characteristics in a diffusion scheme. Regularly or wisely sampled sparse set of

depth values are densified to cover the whole depth image according to a diffusion

equation. In order to avoid diffusion across the depth boundaries, region shapes

or edge information has again been included in the representation.

2.2 Motivation for the Proposed Representation

All the aforementioned depth image representations in the literature concentrate

on conserving the sharp depth discontinuities for high quality DIBR renderings.

While some of them use blocks as representation units to be compatible with the

conventional video coding standards, such as [11], some others prefer arbitrary

shaped regions as the representation units, as in [43]. One of the ultimate

motivations of the proposed depth image representation is to utilize scene objects
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as representation units. The object based approaches in video coding is known

to have broad possibilities in interaction and manipulation while maintaining an

efficient compression [47]. However, the extraction of semantically meaningful

video object segments is still an open research area. Fortunately, the depth

modality in MVD format provides valuable information related with the main

subject of the depth representation problem; i.e. the depth discontinuities along

the object boundaries. Hence, the thesis argues that the depth representation

units should coincide with the semantic object boundaries as much as possible

to provide novel potential 3D applications and interactions.

Piecewise smoothness of the depth images is mostly exploited with constant or

planar models in the literature. Planar models are also widely used for object

segmentation and stereo reconstruction in computer vision [48],[49],[50],[51],[52].

Relying on these studies, the proposed representation should make a planarity

assumption on the scene objects in order to obtain object-like depth represen-

tation segments. While the aforementioned depth representations utilized the

planar depth modelling in 2D image plane, the proposed approach should utilize

a planar modelling in 3D space where the scene objects exist. According to the

pinhole camera model, the correspondence between the image plane point and

the 3D space point is a non-linear relation. Hence, the proposed representation

slightly differs from others and has a motivation to represent depth images in a

3D enviroment.

Except a recent study [39], the aforementioned depth representations, which

explicitly extract the depth discontinuities to be preserved, achieve the depth

boundary extraction in a pre-processing step. In general it is difficult to formu-

late the rate-distortion objectives in such preprocessing steps. Hence, this kind

of disjoint designs makes any optimality arguments questionable. The proposed

approach also aims to unify the rate-distortion objectives with the extraction of

object-like representation units.
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2.3 Energy Based Formulation of the Proposed Representation

Without loss of generality, the depth representation problem will be considered

for the MVD case throughout the rest of the thesis. The raw input format of the

depth modality is assumed to be multiview depth images. As long as the camera

calibration and the depth image of a view are known, the depth values for the

image pixels can be back-projected to 3D space. The proposed planar represen-

tation aims to fit 3D planes to this given 3D point cloud, which is obtained by

back-projecting the pixels of all views. The planar model assignment to a 3D

point also associates that geometric model with a 2D image pixel by the one-to-

one correspondence between 3D points and image pixels. Hence, the proposed

planar model assignments can also be considered as co-segmentation of multiple

depth images, i.e. provide joint segmentation and parameter estimation.

This co-segmentation problem is formulated in an energy minimization frame-

work. Three main cost terms are utilized in order to satisfy three objectives.

The first one is the reconstruction error of the depth images which is called as

data cost term, i.e. the geometric distortion of the representation. Minimizing

the geometric distortion increases the loyalty of the representation to raw data

and indirectly increases the rendering quality. The second cost term, which is

called smoothness cost term, favors the same planar model assignments in every

local neighborhood of the image. Minimizing smoothness term provides smooth

shaped and well-connected planar assignments. Finally, the last cost term is the

label cost term which favors the use of a minimum number of planar models in

the representation. Utilization of the minimum description length principle [53]

helps in clustering the similar planar models under a single assignment which

will hopefully coincide with scene object geometries.

The last two cost terms, smoothness and label terms favor the representation

to be efficiently compressible by enforcing a minimum number of models in

well-shaped regions. Combination of these terms with the minimum geometric

distortion term, provides the desired tradeoff between the rate and distortion

for the proposed representation [54].
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The mathematical formulation of these cost terms is designed as a Markov Ran-

dom Field (MRF) which is an effective way of modelling spatial dependencies in

images. The overall energy to be minimized for planar representation of depth

images is given as,

E(f) =
∑
p

D(fp) +
∑
p,q∈N

V(fp, fq) +
∑
m∈M

δm(f). (2.1)

The details of Markov random field, f , is introduced in the next section.

2.3.1 MRF Modelling

Let M be the set of all possible planar models in 3D space, and mi be an

arbitrary indexing for the elements of M. According to the proposed depth

representation, every pixel of a depth image, p, will be assigned to a planar

model mi(p). Then, f becomes a labelling image whose pixel values, fp, are

the index values of the planar model assignments, i(p). Let the observed depth

values of each pixel be denoted as dp and N be a neighborhood relation over the

pixels.

By the MRF model, fp variables are regarded as a family of random variables

whose joint probability density function is defined according to total clique po-

tentials as,

p(f) =
e−E(f)

Z
(2.2)

where Z =
∑
f∈F

e−E(f) (2.3)

is called partition function, which normalizes the joint probability function to

sum up to 1. According to (2.2), the configurations with smaller total clique

potentials are more probable.

The unary and pairwise potentials are the most widely used clique potentials,

since there are many mature inference techniques for these formulations. By the

recent tools developed for the MRF inference problem, higher order potentials

are also utilized in order to enrich the relations in the model [55]. The factor
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Figure 2.5: Factor graph representation of the MRF model.

graph representation of the proposed representation’s MRF model with unary,

pairwise and higher order potentials, noted as D,V , δ respectively, is given in

Figure 2.5. The resultant posterior probability density function of the field in

factorized form is also given as,

p(f |d) =
1

Z(d)

∏
p

e−Dp
∏
p,q∈N

e−Vp,q
∏

mi∈M

e−δmi , (2.4)

=
1

Z(d)
e−

∑
pDp−

∑
p,q∈N Vp,q−

∑
mi∈M δmi , (2.5)

=
1

Z(d)
e−E(f,d) , (2.6)

where E(f, d) =
∑
p

Dp +
∑
p,q∈N

Vp,q +
∑
mi∈M

δmi
. (2.7)

According to the pinhole camera model, a labelling value fp, defines a depth

value, d̂p, for the pixel p by intersecting the projection ray of the pixel with the

plane mfp in 3D space. With respect to this definition, the unary potential of a

pixel, D is set to distortion of the representation as,

Dp = λD|dp − d̂p| . (2.8)

The pairwise potentials, given in (2.9), are designed as Potts model which favors
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the piecewise constant configurations, as,

Vp,q =

0, if fp = fq

λV , otherwise
. (2.9)

With this potential, the model differences regarded identically without consid-

ering the similarity of planar models. The higher order potentials, δmi
, behave

like binary flags for the existence of an assignment of the planar model, mi, in

the representation, as,

δmi
=

λδ, if ∃p : fp = i

0, otherwise
. (2.10)

Hence the sum of all higher order potentials is linearly proportional to the num-

ber of planar models utilized in the representation. For a given field configu-

ration, the utilization of a planar model can be evaluated by checking all the

random variables of the field. The potential’s dependency to all field variables

makes it a higher order one.

Although the geometric distortions, modeled in unary potentials, result in ren-

dering artifacts indirectly due to DIBR techniques, the rendering distortions are

discarded in the model for simplicity and generality of the depth representation.

In a model which considers including the color images of the views, the unary

potentials can be improved by rendering distortions.

The pairwise and higher order potentials are defined to be homogenous, i.e.

they do not change spatially or according to a specific planar model. In case

any a priori information is known about the depth boundaries or the planar

geometry of the scene, they can be integrated into the formulation by adapting

corresponding potentials.

Although the illustration in Figure 2.5 is one dimensional for visualization con-

cerns, the neighborhood system for pairwise potentials, N , is constructed in 3D

space. LetWi,j be the 3D warping function, which maps a pixel on ith view to its

stereo correspondence in jth view. Assume the views, Ii, are indexed according

to their positions from left to right. The neighborhood of a pixel, Np is defined
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as,

Np = N 8
p ∪ {Wi,i+1(p), W

−1
i−1,i(p) | p ∈ Ii} , (2.11)

where N 8
p = {q |p, q ∈ Ii, ‖p− q‖∞ ≤ 1, p 6= q} , (2.12)

i.e., the N 8
p is the well-known 8-neighborhood of the pixel p on its image plane.

The second set on the right hand side of (2.11) defines the 3D neighborhoods

between views; this is crucial to obtain a coherent co-segmentation of depth

images for multiviews. An illustration of this neighborhood is presented in

Figure 2.6.

2.3.2 Optimization of MRF Energy

According to given depth images, d, the most probable configuration of the

MRF, f , is the Maximum A Posterior (MAP) estimate, as,

f ∗ = argmax
f

p(f |d) , (2.13)

= argmax
f

1

Z(d)
e−E(f,d) , (2.14)

= argmin
f

E(f, d) . (2.15)

Figure 2.6: The bold and dark connections represent the 3D neighborhood of a
pixel according to the MRF model.
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To find the MAP estimate for the MRF model becomes an optimization problem

to minimize the energy terms given in (2.7). Exact solutions for some special

cases and approximate solutions are available in the literature. Greedy algo-

rithms [56],[57],[58] Viterbi-like message passing algorithms [59] and variational

approaches [60] are some of them worth mentioning. Among them, the graph

cut (GC) algorithm is the dominant approach in the computer vision community

due to its efficiency [55]. The fundamentals of the GC algorithm is briefed in

Appendix A.

2.3.3 Continuum of labels

Assume the origin of the 3D space is set as one of the camera center of a view in

the MVD dataset; this is a widely used convention. All the planar surfaces in the

field of view of this camera projects onto an area of its image plane. The only

exception is the planar surfaces crossing the origin, that are projected to a line

on the image plane. Discarding such cases as they do not have an integrable area

of the image plane, the set of planar models,M, to be utilized in the proposed

depth representation can be parametrized as vectors in R3 as,

M = {m = (a, b, c) | ax+ by + cz + 1 = 0} . (2.16)

Ideally, the energy of the MRF model given in (2.7) should be solved for all pos-

sible planar models, m inM. However, as an efficient MRF energy minimizer,

graph cut is a combinatorial algorithm which works on a finite set of labels

(models in the current case). Hence the continuum of the model parameters

should be efficiently explored for the proposed MRF-based approach.

In [61], Isack and Boykov introduced an energy minimization based geometric

multi-model fitting algorithm, which is called Propose Expand And Re-estimate

Labels (PEARL). Different than other multi-model fitting algorithms in the liter-

ature, such as [62],[63],[64]; PEARL algorithm simultaneously assigns and prunes

models by minimizing a MRF-based energy with label costs similar to (2.7).

The continuum of the parameter space is sampled efficiently in Expectation-

Maximization (EM)-like cycles. The pseudo code of PEARL algorithm is given
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Algorithm 2.1 PEARL algorithm [61]
Given a dataset, d, on a field, f , with a neighborhood system, N .

Propose:
1: At initialization, set i=0
2: Sample initial set of models,M0, by fitting geometric models to randomly

sampled data points, dp’s
3: (optional) Add a model, ∅, to represent outliers
4: *(optional for i>0) Sample more or merge/split current models inMi

Expand:
5: Solve the model assignment problem by running α-expansion for the energy

given in (2.7) and for α ∈Mi

6: If the energy does not decrease, stop
Re-estimate Labels:

7: Update the inlier model m ∈ Mi with the one minimizing the fitting error
to data points assigned to that model

8: Discard all models with no inlier assignments
9: Set i = (i+ 1), go to step 2 (or optional to *)

in Algorithm 2.1.

The energy based formulation in the expand step of PEARL avoids the con-

secutive assignments and makes a competition among the available models to

enlarge their support regions on the given dataset. In comparison to consec-

utively assigning models to remaining outlier dataset like in [65], the unified

approach is more robust to noisy datasets as shown in [61]. Different than the

mixture of models and K-means algorithms, the spatial and global regularization

cost terms in the energy formulation also handles the number of models to be

utilized in the solution, and prunes the set of models inherently. The PEARL

steps of expand and re-estimate labels are the analogues to the expectation and

maximization steps of the EM algorithm, respectively.

The original PEARL algorithm is designed to handle model fitting problem

under noisy datasets. It starts with an excessive number of models in the initial

set and updates the ones used in the inlier assignments. The models, which

labeled no inlier data point, are discarded for the next cycles. Hence, the number

of models in the candidate model set of each iteration, Mi, has a trend to

decrease in the original PEARL algorithm [61].
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Algorithm 2.2 Modified PEARL algorithm to fit planar models to depth im-
ages.
Given a dataset, d, on a field, f , with a neighborhood system, N .

Propose:
1: At initialization, set i=0
2: Sample initial set of models,M0, by fitting geometric models to randomly

sampled data points, dp’s
Expand:

3: Solve the model assignment problem by running α-expansion for the energy
given in (2.7) and for α ∈Mi

4: If the energy does not decrease, stop
Re-estimate Labels:

5: Update the inlier model m ∈ Mi with the one minimizing the fitting error
to data points assigned to that model

6: Discard all models with no inlier assignments
7: Add a model minimizing the fitting error to each connected regions according

to current labeling of the field
8: Set i = (i+ 1), go to step 2

The PEARL algorithm is modified for the proposed planar depth representation

in order to efficiently exploit the characteristics of the problem. In the proposed

planar representation of depth images, the given depth dataset is considered

to be noise free with a data loyal perspective (although the conventional depth

acquisition methods as mentioned in Section 1.2.1 might have various and spe-

cific noise characteristics, they are out of the scope of the thesis). Hence, the

outlier model is discarded in the modified PEARL algorithm. In order to find

good models for every depth data point, the trend to decrease in the number of

candidate models is changed into a trend to increase during iterations.

The new planar models are appended to the candidate set at the end of each

iteration until the fitting error is smaller than some predefined threshold or the

number of the models in the candidate set hits the maximum allowed value.

Different than the original PEARL algorithm, new models are not sampled ran-

domly, but by exploiting the spatial smoothness of the depth modality.

Since planar models and depth images are spatially smooth, the fitting error for

a given model should also be spatially smooth. According to this observation, in

case of no proper planar model is available in the candidate set for a regular sur-
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face in the scene, the corresponding model assignments can not change abruptly

due to regularization terms of the utilized energy formulation. This situation

means that erroneous model assignments for depth images are also spatially

smooth. In order to sample good models for erroneous regions, the connected

components of the MRF field with respect to the given model assignment can

be utilized efficiently.

The pseudo code of the modified PEARL algorithm to obtain planar represen-

tation of depth images is given in Algorithm 2.2. The details and the progress

of the algorithm are explained with examples in the next section.

2.4 Planar Model Fitting Examples

In the planar representation experiments, the Middlebury stereo dataset [66]

is utilized. Middlebury dataset is composed of multiples of horizontally shifted

camera views. The disparity maps of the two views are also provided in each set.

Since the internal and external camera parameters are not provided, a generic

camera parameter construction method is utilized (see Appendix B) to create

the corresponding 3D coordinate system. Middlebury dataset utilized in the

experiments are summarized in Table 2.1.

For planar model fitting, the energy function given in (2.7) is minimized by the

modified PEARL algorithm. All experiments are initiated by eight 3D planar

models. For each of them, randomly sampled triplets from the 3D point cloud of

the dataset is used to determine their model parameters. As long as the sampled

triplets are not collinear in 3D space, they define a plane equation.

The progress of the planar models utilized in the representation is shown for

the Moebius dataset in Figure 2.7 where the two columns in the middle are the

planar model labeling (assignment) images of the stereo depth pair and their

corresponding planar reconstruction are given on the left and right columns.

Three of the randomly sampled planar models are utilized in the first iteration

and corresponding connected components of the labelings initiated the planar

model sampling properly. The number of the planar models utilized in the planar
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Table 2.1: Middlebury dataset [66].

Name Left view Right view Left depth Right depth

Aloe

Art

Baby

Books

Cloth

Cones

Dolls

Lampshade

Laundry

Moebius

Monopoly

Plastic

Reindeer

Teddy

Wood
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representation given in Figure 2.7 increases up to 15 and finally converged to

a solution with 14 planar models. The mean PSNR of the reconstructed depth

images for the given example is 36.45dB. The labeling images obtained from the

stereo pair images are quite coherent due to co-segmentation like MRF based

modelling which defined the pairwise neighborhoods of the random variable over

the point cloud in 3D space.

The effect of cost weighting values for the acquired planar representation is

given in visually and numerically in Figure 2.8 and Table 2.2, respectively. The

results show that by tuning the weighting factors of the data, smoothness and

label cost terms, planar approximations with different number of models at

different reconstruction quality can be obtained. The comparative analysis of

the solutions visually and numerically shows that increasing the weight of the

data cost term decreases the reconstruction error and increases the number of

planar models utilized. Increase in the weight of the regularization costs, i.e.

smoothness and labelling costs, results in increased reconstruction error and

decreased number of planar models. Hence, the introduced Algorithm 2.2 can

be regarded as a satisfactory realization of the energy-based formulation of the

planar representation of the stereo depth images.

The local and global characteristics of the smoothness and labeling costs can

also be distinguished by the given results. In comparison to solution in Figure

2.8e, the solution in Figure 2.8d is obtained by increasing the weights of data

and labeling costs 10 and 100 fold, respectively. Figure 2.8d has fewer number

of planar models that shows that the increase in labelling cost is effective in

decreasing the number of planar models. In addition to this increase in global

smoothness the decreasing of the reconstruction error is also achieved with the

higher data cost weight. However, this result is obtained by the diminishing

effect of smoothness costs that resulted in a pathcy labeling image due to weak

local smoothness constraints.

The planar representation examples for the left view of theMiddlebury dataset is

given in Figure 2.9 and their corresponding labelling images are given in Figure

2.10. Based on the given solutions, the proposed planar representation can be
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regarded as capable of extracting the descriptive object boundaries in general.

Plastic and Wood datasets are almost perfectly recovered by the planar models,

since the scene mostly consists of planar objects. However, the Dolls and Cloth

datasets are not efficient examples of planar representation, since labeling images

misses some descriptive object boundaries or introduces artificial boundaries.

Overall the proposed MRF energy based solution to planar representation of

stereo depth images is effective in depth representation with clear object bound-

ary definitions. The energy based formulation is responsive to obtain planar rep-

resentations with specific properties by manipulating the cost weights. These

aspects of the proposed planar approach will be utilized in the forthcoming

chapters for an efficient depth compression method.
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Figure 2.7: The progress of the modified PEARL algorithm in fitting planar
models to Moebius dataset. Left and right columns are the planar depth recon-
struction results according to the labeling images given in the middle columns.
The number of planar models increase from top to bottom.
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: The planar solutions obtained for Moebius dataset by different cost
weighting combinations. For each sub figure, the planar reconstruction is given
at the top and its labelling image is given at the bottom. See Table 2.2 for their
numerical details.

Table 2.2: The number of models and reconstruction accuracies of the depth
images for various cost weightings.

λD λV λδ # Planar Models PSNR (dB) Figure
10 20 104 7 29.95 2.8a
20 10 104 23 39.40 2.8b
20 20 104 14 36.45 2.8c
100 1 106 26 46.27 2.8d
10 1 104 36 45.05 2.8e
10 20 105 2 26.64 2.8f
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(a) Aloe (b) Art (c) Baby

(d) Books (e) Cloth (f) Cones

(g) Dolls (h) Lampshade (i) Laundry

(j) Moebius (k) Monopoly (l) Plastic

(m) Reindeer (n) Teddy (o) Wood

Figure 2.9: The planar depth image reconstruction examples of Middlebury
dataset.
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(a) Aloe (b) Art (c) Baby

(d) Books (e) Cloth (f) Cones

(g) Dolls (h) Lampshade (i) Laundry

(j) Moebius (k) Monopoly (l) Plastic

(m) Reindeer (n) Teddy (o) Wood

Figure 2.10: The planar model labeling images of the reconstructed depth images
given in Figure 2.9.
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CHAPTER 3

STEREO DEPTH COMPRESSION BASED ON

PLANAR REPRESENTATION

MVD data format for the forthcoming 3D applications made the depth com-

pression problem for high quality novel view rendering a recent research area.

The different statistical characteristics and DIBR-based utilization of the depth

data brought unconventional image/video coding approaches to the literature.

Non-rectangular or even arbitrary shaped coding units are utilized in the depth

image representation as mentioned in Section 2.1. All these representations are

motivated by the paramount observation that for an efficient depth compression

with high quality novel view rendering results, sharp depth discontinuities at

object boundaries should be preserved [11].

The introduced planar representation in the previous chapter will be considered

as a depth compression tool in this chapter. The next section will introduce

an MRF energy design method for a representation with the desired number of

planar models. Then the obtained planar reconstruction of the depth image will

be used as a depth prediction method and a residual coder will be integrated into

the proposed depth coding approach. Lastly the compression experiments will

be provided in comparison to conventional state of the art image/video coding

methods.
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3.1 Energy Design for Compression Applications

The proposed planar representation of depth images can be regarded as a depth

compression tool. As long as the camera calibration of the 3D setup is avail-

able at the receiver side, the planar approximations of the depth images can

be transmitted by encoding all the utilized planar model parameters and their

corresponding labeling images. While the planar approximation introduces the

distortion of the proposed lossy depth compression, bits required to encode the

planar model parameters and their labeling images become the rate of the com-

pression.

The planar representation experiments in Section 2.4 showed that the λ values

determine the main characteristics of the obtained solution by weighting the data

fitting and regularization energy terms. The MRF energy formulation given in

(2.7)-(2.10) is rewritten below as a weighted summation of energy terms by

emphasizing the weighting coefficients of the energy terms:

E(f, d) = λD
∑
p

Dp + λV
∑
p,q∈N

Vp,q + λδ
∑
mi∈M

δmi
, (3.1)

Dp = |dp − d̂p| , (3.2)

Vp,q =

0, if fp = fq

1, otherwise
, (3.3)

δmi
=

1, if ∃p : fp = i

0, otherwise
. (3.4)

The well known rate-distortion tradeoff in lossy data compression presents itself

as a tradeoff between the data costs and regularization costs, smoothness and

label costs, in the proposed MRF based formulation [54]. In order to decrease the

distortion of the planar approximation, the planar model assignments should be

specialized to each region; this may result in utilization of more planar models

and locally more dynamic assignment maps. On the other hand, when fewer

number of planar models are utilized, the assignment maps might extend and

get smoother in spatial domain, whereas fitting error of the planar models could

be greater.
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By definition, the data cost term of the proposed MRF-based model is equal to

the distortion objective of the planar reconstruction. By designing the sum of

smoothness and label cost terms to be equal to the rate needed to encode the

utilized planar model parameters and their assignment maps, it is possible to

obtain rate-distortion optimal realization of planar reconstruction by minimizing

the MRF energy. The label cost terms can easily be defined as the rate cost

of encoding a planar model, but then the smoothness cost should be defined to

be the rate cost of encoding the labeling images. Since efficient shape or image

encoders utilize the context in a complex way, it is difficult to represent the bit

costs of that coding algorithm in pairwise energy terms of the smoothness cost.

Although it is challenging to design exact rate-distortion objective function in

the proposed MRF model, the combination of smoothness and label costs may

be considered as a proxy for the rate objective. This is a legitimate assumption,

since for the set of all natural depth images, a representation with fewer number

of planar models and smoother labeling images will have a smaller entropy which

results in decreasing the rate of any regular lossless compression algorithm.

In this manner, the MRF energy also becomes a proxy formulation of the

rate-distortion optimization problem for the planar depth reconstruction. In

this perspective, the planar depth reconstructions obtained by minimizing the

MRF energy given in (3.1) are related to rate-distortion optimality in some

sense. Hence different than other arbitrary shape based depth representation

approaches [46],[43],[42], the proposed optimization scheme extracts the region

shapes in considering the rate-distortion optimality objective, indirectly.

3.1.1 Pareto Optimality in Rate-Distortion

The implicit relation between the regularization costs and the rate can be for-

mulated as a multi-objective or a vector optimization problem of finding rate-

distortion optimal settings. In multiobjective optimization, the problem is stated

as desirable and in general conflicting objectives but their detailed combination

for the main problem is unknown. The conflicting nature between the objectives

avoids all the minimum objectives to be satisfied at the same feasible solution. A
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Figure 3.1: Example of a Pareto curve in 2-dimensional objective space with a
feasible set of C (Reprinted with permission. Copyright Springer 2008 [67]).

solution whose none of the objectives can be improved without degrading some

of the other objectives is called a Pareto optimal solution [67]. In Figure 3.1, the

image of the feasible set in the objective space is shown and the set of Pareto

curve/surface is illustrated.

The main goal of the multiobjective optimization is to obtain the Pareto opti-

mal surface and guide the decision maker in selecting the favored solution among

them. Since the multiobjective optimization problems are in general computa-

tionally challenging and expensive, the exact and complete set of Pareto optimal

solutions are not attainable in general. A survey of the approaches to approx-

imate the solution set of the multiobjective optimization problems is given in

[68].

One of the simplest approaches is to combine the objectives by positive weights

to a single objective function, and it is known as the scalarization method. It is

proven that the optimal solutions of the scalarized problem with positive weights

are always Pareto optimal and under convexity assumptions of the feasible set,
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all Pareto optimal solutions are optimal solutions of scalarized problems with

some positive weights [69].

There are two technical shortcomings of the scalarization method. The first one

is the fact that the uniform sampling of weightings does not sample the Pareto

surface uniformly in general, and the second one is that the scalarization method

can not provide Pareto optimal solutions on the non-convex part of the Pareto

surface [67].

In addition to these drawbacks, there are also practical difficulties in determining

the proper weights to sample the relevant portion of the Pareto surface for the

decision maker. The weights of the objectives do not necessarily correspond

directly to the relative importance of the objective functions. The decision

maker might not know how to change the weights to consistently change the

solution. These possible difficulties make it difficult to develop an (heuristic)

algorithm to manipulate the weights to reach a satisfactory region of the Pareto

surface [67].

In multiobjective optimization perspective, the MRF formulation of the pro-

posed planar representation, (3.1), is a scalarization instance as,

E(f, d) = λDED + λVEV + λδEδ (3.5)

where the multiobjective problem is stated as,

min[ED(f, d), EV(f, d), Eδ(f, d)] . (3.6)

Since the data, smoothness and label costs are desirable objectives of rate-

distortion optimality, a solution minimizing the (3.5) for any positive weighting

is a Pareto optimal solution in the rate-distortion sense. In the next section,

a heuristic algorithm will be introduced to determine the appropriate weight-

ings to obtain a desired solution from the Pareto surface of the multiobjective

problem.
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3.1.2 Proposed Algorithm to Weight Costs

For a given encoder, an ideal compression instance can be obtained from the

rate-distortion optimal solution set by constraining the rate. The corresponding

Lagrangian formulation of the rate-distortion, R-D, is given as,

min J , where J = D + λR . (3.7)

In practice, although exact rate-distortion optimization is infeasible, the given

Lagrangian function is utilized in the decisions of an encoder in order to satisfy

the physical constraints, such as the channel capacity [70].

The weight of the data cost with respect to the regularization costs, smooth-

ness and label cost, provides the similar rate-distortion optimization tool of an

encoder for the proposed planar representation based compression. However,

different than (3.7), the MRF energy formulation given in (3.1) has two degrees

of freedom between the cost weights.

The two degrees of freedom of the cost weights are determined by a heuristic

algorithm which iteratively updates them towards to a favorable solution of the

decision maker. Since one of the motivations in representing the depth images by

planar models is to extract object-like representation units, the decision maker

of the multiobjective problem is designed to select the minimum distortion so-

lutions from the Pareto surface with a constraint on the maximum number of

planar models utilized in the solution. According to such decision maker design,

the set of selected Pareto optimal solutions might provide the characteristics of

the planar representation for varying number of models.

Since the nature of the problem under data and regularization costs mimics

the rate distortion trends, the changes in weightings result in a predictable

direction of change in the solution as exemplified in Table 2.2. The developed

heuristic algorithm simply tunes the weight of data or the label cost for a fixed

smoothness cost weight. If the current solution violates the maximum number

of planar model constraint, the label cost weight is increased or the data cost

weight is decreased. Otherwise, the data cost weight is increased or the label

cost is decreased in order to utilize more planar models for a better data fitting.
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The scalarization of the objective costs can be minimized approximately by the

PEARL algorithm described in the Section 2.3.3. In the straightforward ap-

proach, the computational burden of finding the desired Pareto optimal solution

will be higher, since PEARL algorithm should be executed for each weight as-

signment. In order to avoid utilization of PEARL algorithm multiple times,

the weight updating heuristic is integrated into the iterations of the PEARL

algorithm in the proposed algorithm.

The pseudo-code of the algorithm to obtain a solution of at most n planar mod-

els with the minimum distortion is given in Algorithm 3.1. The algorithm starts

with a relaxation part (the first while loop of the algorithm) which aims to

sample appropriate planar models for depth images. In this part, the labeling

cost is not utilized and the data cost is increased until the number of planar

models utilized in the MRF assignment is 3 times the targeted number, n. After

obtaining the excessive number of planar models, the labeling cost is included

in the formulation and it is increased until the number of utilized planar mod-

els satisfy the constraint. Before each PEARL iteration the MRF assignment,

planar models and weightings are backed up in order to reverse the last PEARL

update. If a MRF assignment satisfies the constraint on the number of utilized

planar models, then the upper bound on the labeling cost weight λδ is updated

with the current weight. In order to find a solution with a smaller distortion,

the backed up MRF assignment, planar models and weights are loaded to try a

smaller label cost weight λδ between the upper and lower bound. According to

the number of utilized models in the new MRF assignment, the upper or lower

bound of label cost weight is updated for fine tuning. Among the MRF assign-

ments obtained during the fine tuning, the one with the minimum distortion is

kept as the solution. The algorithm stops when the gap between the upper and

lower bounds of the label cost weight get smaller than a predefined threshold.

3.2 Encoding of Proposed Planar Representation

In order to reconstruct the stereo depth images which are represented with the

proposed planar approximation, the camera calibration information, the utilized
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Algorithm 3.1 Modified PEARL with weight updates
E(f, d) = λD

∑
pDp + λV

∑
p,q∈N Vp,q + λδ

∑
mi∈M δmi

nf := Number of planar models utilized in f
ef := Total depth distortion of planar reconstruction w.r.t. f
M := set of candidate planar models

1: procedure Fit Planar Models(E(f, d), n)
2: f̂ ← ∅ , M̂ ← ∅ and ef̂ ←∞
3: (λD, λV , λδ)← (1, 1, 0)

4: M ← randomly sample 2n planar models
5: f ← random labeling
6: while nf < 3n and ef > εe do
7: fback ← f and Mback ←M . Save a restore point
8: Update f, nf , ef ,M by a PEARL iteration
9: λD ← 2λD

10: end while
11: λδ ← 1 and λminδ ← 1

12: while nf > n do
13: fback ← f and Mback ←M

14: Update f, nf , ef ,M by a PEARL iteration
15: if nf ≤ n then
16: λmaxδ ← λδ
17: if ef < ef̂ then
18: f̂ ← f and M̂ ←M

19: end if
20: λδ ← (λminδ + λmaxδ )/2

21: f ← fback and M ←Mback

22: else
23: λminδ ← λδ
24: λδ ← 4λδ
25: end if
26: if λmaxδ − λminδ < ελδ then
27: return f̂ and M̂
28: end if
29: end while
30: end procedure
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Figure 3.2: The planar depth encoder’s byte-stream package definition.

planar model parameters and assignment maps of these models should be known.

The byte-stream package for the proposed planar encoder is given in Figure 3.2.

The camera calibration information is discarded in the bit stream, since it is con-

sidered to be a part of the configuration of a 3D application or system. However,

for the case of fronto-parallel stereo-view setup, such as Middlebury dataset, the

calibration information can be encoded in a single number representing the max-

imum disparity value in pixel unit, by the 3D space generation method given in

Appendix B.

The number of the utilized planar models, N , is encoded by a single byte and it is

followed by 3N floating points for encoding parameters of planar models as given

in (2.16). Then, an unsigned integer number encodes the size of the payload

encoding the assignment maps in bytes and it is followed by the payload. Such

a stream definition is decodable by reading the bytes in appropriate groupings.

The compression of the assignment maps should be achieved in a lossless scheme.

Since the assignment maps are piecewise constant images, they are efficiently

compressible in general. Similar shape/boundary information utilized in depth

compression is encoded by chain/crack codes [37],[44],[71], JBIG [72],[46] and

PAQ [45] tools which are well-known in the data compression community. Any

of these tools can be utilized in encoding the assignment maps. The common

approach of all these methods is to predict the probability of the next coding

unit in the stream according to its spatial context and then entropy code the

stream by an arithmetic coder with the estimated probabilities [73].

Since the values of an assignment map vary between 0 and N − 1 for a planar

approximation utilizing N models, log2N bits are sufficient to encode an as-

signed value of a pixel. In raster scan order the values of consecutive pixels can

be packed into a byte for a better compression efficiency. The number of pixels

packed into a byte can be recovered at the decoder side according to the simple
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formula given in below:

n =

⌊
8

log2N

⌋
(3.8)

An example of an assignment map and its byte packed representation is given in

Figure 3.3. The byte packing results in downscaling in the horizontal direction

and introduces new intensity values at the boundaries of assignments as shown

in the zoomed details in Figure 3.3.

3.3 Planar Models as Depth Prediction

Planar approximations might not be convenient and fully representative for an

arbitrary scene geometry. In order to compensate the planar approximation

errors, the residuals can be encoded up to a desired reconstruction quality or

up to a rate constraint. In this perspective, the planar representation becomes

a prediction tool of a residual coding approach.

Figure 3.3: Top row: The labeling image given at left side encodes the 9 planar
model assignments. The byte packed version of the labeling image is given at
right side. Bottom row: A zoomed detail of the same region for the labeling
and byte packed labeling images from left to right. Red boxes show the zoomed
region. (Images are histogram equalized for better visualization.)
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In [74], a similar MRF energy formulation with data, smoothness and label

costs are utilized by Delong et al. in image compression for lossless and lossy

cases. They hypothetically encode an image according to an intensity probabil-

ity model which is a histogram or a Gaussian mixture model assigned by the

PEARL algorithm. Their data cost term is the expected number of bits re-

quired to entropy code the intensities according to assigned probability model.

The smoothness cost is the expected number of bits needed to encode the coding

scheme changes during the traversal of the image pixels. And finally, the label

cost is the number of bits needed to describe the coding scheme with respect to

the assigned probability model.

The same interpretation of the energy terms for the proposed planar depth

representation is,

E(f, d) =
∑
p

− logP (dp|mfp) + λV
∑
p,q∈N

Vp,q + λδ
∑
mi∈M

δmi
(3.9)

where − logP (dp|mfp) = λD|dp − d̂p| . (3.10)

In this perspective, the probability of a pixel depth value is modelled by a

Laplacian distribution with a mean value that back-project the pixel to a 3D

point on the plane of the corresonding model assignment.

In lossy compression case, Delong et al. replace the original image with its

distorted version in the MRF formulation. The distorted version of the image is

found by a rate-distortion optimality constraint solved iteratively by a coordinate

descent optimization between MRF energy (equivalent to expected rate) and the

distorted image.

According to Delong et al.’s formulation in [74], the energy cost minimized by

the PEARL algorithm is equal to the expected number of bits needed in the

lossless/lossy compression of the image by the corresponding model assignments.

However, this hypothetical formulation does not construct an encoder and hence,

the corresponding bit stream is not obtained. The expected bit costs for coding

scheme changes and their description is also defined in an ad-hoc manner which

does not have any relation to a realizable encoder. Another drawback of their

model is that the entropy coding of intensity values does not utilize a context
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which is known to be a very efficient approach in image coding [75], [76]. The

context-free modelling of the intensity probabilities decreases the compression

performance of the hypothetical experiment severely in comparison to standard

image compression techniques.

The hypothetical compression framework given in [74] is a unified formulation

of the geometric model fitting and the residual coding steps. Hence, it can

update its geometric model fitting solution by considering the residual coding

part and vice versa. For a practical realization of the stereo depth encoder, this

interdependency is discarded in the proposed approach with the residual coding.

The planar approximation and residual coding are considered as two consecutive

steps, i.e. the planar approximation results are considered to condition the

residual coding.

Similar intra-depth prediction methods are proposed for HEVC standard to

model the planar depth regions by linear or bi-linear 2D representations [77],[40].

However, beyond these 2D interpretations, the proposed planar representation

models the planar regions in 3D space by the motivation of planar approximation

of the scene geometry.

The bits required to encode the coding scheme definitions and their spatial

support is realized by the stream package defined in the previous section. By

appending the residual coding payload to this package definition as shown in

Figure 3.4, the planar representation can be utilized as a prediction method in

depth compression application.

3.4 Experiments

Since the main concern of the thesis is to investigate the possibilities of planar

representations in depth compression for 3D applications, all the compression

experiments in the rest of the thesis are performed by the freely available coding

tools within the data/image/video compression communities. It is clear that

the compression algorithms to be mentioned for planar models can be optimized

by considering the distinct characteristics of the planar represented data, but
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Figure 3.4: The planar prediction based depth encoder’s byte-stream package
definition.

these potential improvements in compression performance are discarded for the

moment.

It is also important to notify that throughout the depth compression experi-

ments in this thesis, the effects of texture compression on novel view rendering

is discarded for all compared techniques by utilizing the original texture infor-

mation for the stereo views. Since possible performance improvements in com-

pression and novel view rendering are not considered by cooperating the texture

information, the texture distortions are not considered as a variable during the

evaluations.

In order to sweep the parameters of the experiments extensively, the modified

PEARL algorithm with weight updates is speeded up by downscaling the stereo

depth images. The details of the speedup are explained in the next subsection.

3.4.1 Speedup of Planar Model Fitting

Each PEARL update is a computationally demanding process. In addition to

this, the relaxation part of the modified PEARL algorithm with weight up-

dates increases the number of planar models in the candidate set that results in

enormous memory needs. In order to ease these difficulties, the number of the

variables in the MRF model is decreased by downscaling the stereo depth images.

S times downscaling is applied to guarantee the maximum width and height of

the depth images to be smaller or equal to 240 and 120 pixels, respectively. The

nearest neighbor downscaling [78] is preferred to avoid creating non-existing 3D

points on the object borders by a smooth interpolation operator.

By scaling the internal camera calibration matrices, the 3D points corresponding

to downscaled depth images are back projected into the same 3D space defined
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by the full scale depth images. Based on this fact, the speedup in planar model

fitting is obtained by finding the planar models that can efficiently approximate

the scene geometry, according to the downscaled depth images.

The solution obtained by Algorithm 3.1 for the downscaled MRF model, f̂S, M̂ ,

is used as an initialization for the full scale MRF modelling. The model assign-

ments of the full scale field are obtained by the nearest neighbor upscaling of the

labeling solution, f̂S. The weights of the cost terms obtained in the downscaled

MRF energy are also scaled as,

(λD, λV , λδ) = (λSD, Sλ
S
V , S

2λSδ ) , (3.11)

in order to mimic the same scalarization of the objectives for the full scale MRF

energy.

The reason for the weight scaling defined in (3.11) can be explained by counting

the number of terms in the summations of each cost terms. The number of

Figure 3.5: The labeling and the corresonding depth reconstruction of Teddy
dataset is given in the top and bottom rows, respectively. From left to right
columns, the solution for the downscaled model, initialization of the full scale
model and the final solution of the full scale model are shown.
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labeling cost terms is equal in downscaled and full scale formulations since the

same planar models are utilized in both cases. The number of data cost terms is

scaled with the number of pixels, i.e. proportional to increase in area, which is

the square of the scale, S2. The number of non-zero smoothness cost terms only

occur at the boundaries of the labeling regions, hence they increase proportional

to the increase in the circumference of the regions which is in the order of scale, S.

Hence, the weight scaling in (3.11) compensates the changes in the scalarization

of the objectives by upscaling the model.

To avoid any PEARL update in the full scale model, the planar models in

the candidate set, M̂ , are fixed and a final minimization of the MRF energy

is achieved until the convergence of α-expansion moves [58] of the graph cut

algorithm. An example illustrating the evolution of the solution from downscaled

model to final solution in full scale is given in Figure 3.5.

3.4.2 Comparative Planar Compression Experiments

For the lossless compression of the labeling image, available compression tools

are evaluated and the one with the best compression efficiency is selected without

considering the computational time and memory usage of the algorithm. The

results of the evaluated lossless compression tools for a representative labeling

image is given in Figure 3.6. Based on these results, PAQ8 compression tool is

selected as the encoder of the labeling images for the rest of the experiments.

In brief, PAQ8 compression tool uses a binary arithmetic coder which models

the probabiltiy density of a bit by a weighted mixing of various context models.

The weights of the context models are updated on the fly in order to adapt to

data characteristics. The PAQ algorithm family is considered as an improved

prediction by partial matching algorithm which is one of the best approaches

in lossless natural language compression applications [79]. The details of the

algorithm can be found in [80] and [81]. It is worth to mention that PAQ8 is one

of the top 10 performers in the lossless photo compression benchmark available

in [82] and [83].
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Compression Tool Number of Bytes
PAQ8 [80] 1561
GRALIC [82] 2266
JBIG [84] 3294
LZMA [85] 3732
PPM [79] 4161
PNG [86] 4567
ZIP [87] 4663
CALIC [75] 4708
X264 [88] 5050
JPEG-LS [89] 5474
RLE [90] 11942

Figure 3.6: Compression performances of the lossless coding tools for the labeling
image given at the left side.

The depth compression experiments are conducted in comparison to two im-

age/video compression standards, JPEG 2000 and HEVC. While JPEG 2000 is

a mature DWT based image compression standard, HEVC is the state-of-the-art

DCT based video compression standard whose extensions are still in progress.

Since HEVC is a video coding standard, its intra mode is employed during the

stereo depth image compression experiments. In the intra mode of the HEVC,

angular, planar and DC based methods are available for spatial prediction of

block regions in raster scan order [91]. 2D and local nature of the planar intra

prediction mode of the HEVC should be mentioned to underline the differences

with the proposed planar representation.

In order to compare the state of the art stereo view compression techniques,

the HEVC-MV [92] extension is utilized in the experiments. The stereo depth

images are seeded to encoder as a conventional stereo image pair. While the

left depth image is intra-coded, the right depth image is predictive coded by

leveraging the spatial redundancies between the views.

In addition to multiview coding a state of the art 3D video coding technique,

HEVC-3D, is also included in the experiments. The HEVC-3D extension is the

prospective recommendation of the Joint Collaborative Team on Video Coding

(JCT-VC) for the compression of MVD data format. In addition to predic-
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tion and transform tools available in HEVC standard, the HEVC-3D extension

widens its block compression techniques with wedgelet and contour based rep-

resentations for depth compression [93].

The two-view plus two-depth case is utilized for the experiments of the HEVC-3D

encoder. As a complete approach for MVD compression, HEVC-3D standard can

utilize the decoded texture information in the depth compression algorithms. By

considering this property of the encoder, two separate experiments are designed

for HEVC-3D. In the first one, the texture information of the views are discarded

by providing totally zero intensity stereo pair for the two-view of the MVD

data. In the second case, the original views are provided to encoder as texture

information and they are encoded with the same quantization parameter used for

the depth images. In both experiments, the payload of the depth compression by

HEVC-3D extension is measured by considering only the streams corresponding

to the depth images.

The proposed planar representation is utilized in stereo depth compression ex-

periments as pure depth compression and depth prediction tools as introduced

in Sections 3.2 and 3.3, respectively. The defined byte-stream packages of each

case are generated and the distortion analysis of the experiments is achieved by

decoding these packages. The parameter n of Algorithm 3.1 that constraints

the maximum number of planar models to be utilized in the solution, is swept

between 4 and 48. This wide range makes it possible to analyze the planar ap-

proximations of the depth images from high to low distortion cases. The depth

compression results are evaluated objectively by the PSNR and SSIM index

which is accepted as a more human perception friendly metric [94].

Since PEARL-based planar model fitting algorithm provides approximate solu-

tions, the Pareto optimal curve can be approximated as the upper convex hull

bound of the obtained solutions. In the figures, the solutions for the proposed

planar layered representation are shown as point scatters and their upper convex

hull bound as a Pareto optimal curve estimate.

The depth compression results for Middlebury dataset is presented in Figures

3.8 and 3.11 for PSNR and SSIM, respectively. Except Cloth dataset, the depth

55



map compression performance on the Pareto curve estimate of the planar rep-

resentation is superior than JPEG 2000 compression. Cloth dataset is the only

stereo image set which contains a single object which does not have clear object

boundaries, but smoothly deformed surfaces. The average depth compression

performance of the planar representation over the estimated Pareto optimal

curve is comparable with the HEVC compression.

The depth compression performance of the proposed planar representation sur-

passes the HEVC and even its MVC and 3D extensions for some of the datasets

in Middlebury collection. The best case among this collection is Art dataset

which has many clear object boundaries. The performance relation of the pla-

nar representation for clear object boundary cases can be realized by comparing

Aloe and Cloth datasets. In Aloe dataset, a plant in a pot places in front of a

scene covered with the same textile in a similar deformed geometry. The compar-

ison shows that the worst case setup for the proposed planar depth compression

is jumped to the second best case as a result of the experiments by inserting a

dynamic shaped object into the scene.

This characteristic can be reasoned by the shape encoding of the planar model

assignments. The analytic representation of the depth maps in planar models has

almost no cost for compression but encoding their spatial support constitutes

the main cost. For the scenes, which has very smooth depth variations and

fuzzy discontinuities, the crisp planar model assignments introduce redundant,

unnatural object boundaries. The enforcement of crisp boundaries results in the

utilization of the shape encoder for an inappropriate case.

However, in case of sharp depth discontinuities in the scene, the smooth depth

variations along the object surfaces are approximated by the planar models with

a negligible cost. The explicit encoding of the discontinuities with the shape

encoder takes the advantage over the block-wise transform based approaches,

similar to aforementioned depth boundary encoding based approaches in the

literature.

Other inefficient utilization examples of the shape encoder for depth boundaries

are the cases where the scenes consist of few planar objects, such as Plastic,
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Wood, and Monopoly. The relaxation part of the planar model fitting Algorithm

3.1 samples excessive number of planar models and the final solution might end

up with unnatural boundaries on the smooth surfaces possibly due to noise in

the depth values. The performance drop of the planar depth compression at

high rates is due to excessive number of planar model fitting for these datasets.

In Figure 3.7, the visual comparison of the planar approach with the other

compression standards is presented for Art dataset. The compared results are

obtained at similar bit rates.

SSIM performance of the planar approach in comparison to other compression

standards is much better, as expected. The explicit encoding of the depth dis-

continuities favors the structural similarity of the reconstruction. However, the

ringing artifacts of the conventional block-wise DWT and DCT based approaches

might degrade structural similarity.

The comparative novel view rendering results of the depth compression methods

are illustrated in Figures 3.14-3.17 for PSNR and SSIM, respectively. All the

novel view rendering experiments utilized the ground truth texture information

of the views. The available captured views at the midpoint of the side views are

utilized as the ground truth images while measuring the PSNR and SSIM scores

of the novel view rendering experiments.

PSNR scores of the novel view rendering experiments converge to an upper

bound of the PSNR scores for the novel view rendering which utilizes the ground

truth texture and depth information of the side views. A novel view rendering

friendly efficient depth compression method should converge to this bound, as

fast as possible.

Similar to depth compression simulations, JPEG 2000 again performs the worst

in novel view rendering. The convergence of the rendering quality for JPEG

2000 might not occur in the rate bounds of the experiments. In general, the

performance of the planar approach is superior than JPEG 2000, except Cloth

dataset; a similar result to depth compression comparison. The gap between

the planar and the MVC and 3D extensions of the HEVC standards is smaller
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(a) JPEG2K: 29.59, 0.873 (b) JPEG2K: 26.80, 0.851

(c) HEVC: 34.42, 0.914 (d) HEVC: 29.20, 0.914

(e) HEVC-MV: 35.02, 0.957 (f) HEVC-MV: 29.64, 0.920

(g) HEVC-3D: 37.64, 0.972 (h) HEVC-3D: 31.66, 0.951

(i) Planar: 37.43, 0.989 (j) Planar: 30.19, 0.938

Figure 3.7: Visual comparison of the depth compression results in depth recon-
struction and novel view rendering. PSNR (dB) and SSIM scores are also stated
consecutively. The rate of the compression methods from top to bottom are
equal to 0.0547, 0.0647, 0.0601, 0.0652, 0.0673 bits per pixel.
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in novel view rendering. In general, the planar approach has better novel view

rendering results than HEVC standard. These observations might be concluded

as the inter-view prediction schemes utilized in the MVC and 3D extensions of

the HEVC can be helpful in advancing the planar approach. However without

these improvements the proposed planar depth compression approach is still

comparable against the state-of-the-art MVD compression techniques in novel

view rendering.

The novel view rendering performance of the planar approach should be men-

tioned, especially for the datasets with the planar objects in the scene. Compar-

ing the PSNR plots of the depth reconstruction and novel view rendering results

of the datasets, Plastic, Wood, and Monopoly shows that the depth reconstruc-

tion performance gap disappears during novel view rendering at high rates. For

the planar scene cases, the planar depth compression converges to the upper

bound of the novel view rendering at least as fast as the state-of-the-art MVD

compression techniques. The inferior depth reconstruction performance at high

rates does not affect the novel view rendering adversely. Based on these obser-

vations, the proposed representation should be regarded as an efficient depth

compression method, especially for planar regions, as expected.

However, the more interesting results are obtained for the datasets Art, Aloe,

and Reindeer. The novel view rendering performance of the planar approach is

at least as good as the MVC extensions of the HEVC standard. The dominant

characteristics of these datasets cannot be claimed to be planar, but their com-

mon property might be vital object boundaries for image content description.

The higher performance on novel view rendering can be explained by the bound-

ary description capability of the proposed planar representation. As mentioned

before, for a satisfactory novel view rendering, the reconstruction of sharp depth

boundaries is important for DIBR techniques. As long as the distortions due to

planar approximation of the object surfaces are tolerable for DIBR, the proposed

planar compression can benefit in rendering quality by maintaining clear depth

boundaries.
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3.4.3 Comparative Planar Prediction Experiments

During these experiments, utilization of the planar representation of the depth

images as a prediction method, the DWT and DCT based residual encoders

are studied. The transform based residual encoding is a very popular technique

in video compression community due to intra and inter prediction mechanisms

[95],[96]. For implementation practicality, the JPEG 2000 and intra mode of

HEVC are utilized as residual image encoders throughout the experiments for

DWT and DCT, respectively.

The residual images are obtained according to proposed planar representation

based approximations of the stereo depth pairs. The number of the planar

models is constrained to be at most 10 in all prediction experiments. The residual

image values theoretically can range between -255 and 255. They are represented

as 9 bit unsigned images by adding an offset value of 255.

The byte-streams of the experiments utilizing the planar representation as a

prediction tool are obtained as the byte package definition given in Figure 3.4.

The payloads of the residual encoding are obtained by JPEG 2000 and HEVC

for the DWT and DCT-based experiments, respectively. The quantization and

target distortion parameters of the encoders are scanned uniformly to obtain a

rate-distortion plot for the planar prediction scenario.

The results of the planar prediction experiments for depth compression and novel

view rendering are given in Figures 3.20 and 3.23, respectively, for the DWT-

based analysis. The planar prediction has a positive effect on depth compression

for all the datasets, except Cloth. The novel view rendering is also affected

positively in general by the base planar prediction. The distribution of the

positive contribution of planar prediction over the datasets is similar to the

results obtained in the pure planar compression experiments of the previous

section.

The similar planar prediction experiments for DCT case are conducted by uti-

lizing the HEVC standard in Figures 3.26 and 3.29. For the HEVC case it is

difficult to say the planar prediction has a positive effect in all cases. However,
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the datasets on which the planar representation based compression has better

results, the planar prediction also has a positive effect in depth compression and

novel view rendering.

Woods dataset is an extreme example of the efficiency of the planar prediction

in novel view rendering results. Since all the scene has a planar geometry in

Woods dataset, the base planar prediction already provides a novel view render-

ing quality very close to the maximum possible quality obtained by increasing

the compression rate. The residual coding can even degrade the depth recon-

struction and novel view rendering quality by increasing the rate.

The DWT and DCT-based residual compression experiments are analyzed sep-

arately, in order to generalize the possible potentials of the proposed planar rep-

resentation as a prediction tool for different residual transforming techniques.

Since the residual images are provided similar to the conventional images to

these transform based encoders, the error in the quantization step of the en-

coders can not be guaranteed to decrease the final reconstruction error, but the

reconstruction error of the residual image. This leakage in the experiment is

observed for the most of the datasets at the coarse quantization schemes espe-

cially for HEVC. Even the residual encoding of the experiments are not optimal,

the results show the proposed planar prediction as a potential tool for efficient

depth compression and novel view rendering.

The state-of-the-art compression tools, such as HEVC and its 3D extension, pro-

vides various prediction modes in order to be adaptive to the image/depth char-

acteristics. Based on the superior results of the proposed planar prediction for

some of the datasets, it can be considered as an efficient depth prediction mode

candidate for these standards. The explicit boundary information provided by

the proposed planar approach can also be utilized in possible redundancy and

artifact removal techniques on the compression and rendering applications of the

MVD data.
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CHAPTER 4

PLANAR LAYERED MVD REPRESENTATION

The representation of a scene for a high quality novel view rendering is an on-

going research for the last few decades. During this period, the model based

rendering techniques advanced in photorealism such that it is now hard to dis-

tinguish an image as real or synthetic. However, the real-world geometry is

exceedingly complicated that the state of the art scene geometry acquisition

techniques still can not provide sufficiently accurate models to utilize them in

novel view rendering applications.

The alternative of the geometry based approach is the image based rendering

(IBR) techniques. According to the plenoptic sampling theorem, it is possible

to obtain perfect light field renderings from the samples of the light field at the

minimum sampling rate which is determined by the minimum and maximum

depth values of the scene [97], provided that given constraints hold. However,

sampling the light field of a scene at the minimum sampling rate still results in a

high number of views for the IBR applications. The number of images required

for satisfactory rendering results can be reduced by incorporating the geometry

information to the scene representation. This is the well-known tradeoff between

the geometry and image based representations for rendering [98].

For feasible 3D applications, the scene representation solutions evolved by con-

sidering this tradeoff to MVD data format, which is expected to limit the number

of views to 2 or 3 with their depth images [25]. The straightforward handling

of the MVD format is to consider each texture and depth image in their native

format. However, in order to improve compression and rendering capabilities
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of MVD data, novel representations are proposed in the literature. In the next

section, MVD representations in the literature will be summarized and the fol-

lowing section will introduce a planar layer based MVD representation. Finally,

the chapter will conclude with experimental results of the proposed MVD rep-

resentation.

4.1 MVD Representations in the Litearture

The MVD representations can be classified into multi-reference and single refer-

ence based representations. In the raw format of the MVD data, each view is a

reference point to represent the scene geometry and texture. The raw format has

the advantage of backward compatible system designs by maintaining a gradual

progress in the representation. The inclusion of the depth modality into the

multiview video format brings new redundancies to be considered for efficient

compression. Depth compensated inter-view predictions and inter-component

predictions are new redundancy removal topics for the MVD representation [31].

As an example, the residual videos are proposed to replace the original texture

videos in [99]. The residual videos are obtained by 3D warping of one of the

views selected as the base view. This approach reasons its efficiency on the re-

dundancies still exist between the residual images. The proposed representation

also has the capability to fully recover the raw MVD data.

In [100], a ray-space based representation is utilized for the MVD data. The set

of texture images and depth images are considered as an epipolar plane image

(EPI) and an epipolar plane depth image (EPDI), respectively. The plenoptic

constraints on EPDI and EPI are utilized to obtain global depth and texture

information. The obtained global depth and texture information is represented

in the multi-reference structure of the MVD format in a non-redundant way.

In [29], a non-symmetric multi-reference MVD representation is proposed in

order to exploit the inter-view redundancies explicitly. In their study, Domanski

et al., considers the mid-view of a multiview set as the base reference view and

the side views as the complementary parts of the MVD representation. Only
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the disoccluded regions with respect to the dominant base view are encoded in

the side views. Similar asymmetric approaches are also introduced in [101] as

auxiliary information for inpainting occluded regions and in [102] as accumulated

occlusion layers.

In [102], the authors also consider accumulating the occluded regions on the

reference base view by 3D warping to obtain a single reference representation

based on Layered Depth Image (LDI) format [103]. In LDI representation the

projection rays of a single reference view are used to sample the visible and

occluded surface points of the scene. The depth and color information of each

surface point is kept in LDI in order to render novel views of the scene by

simple visibility checks. Alternative layer extraction methods are discussed in

[104],[105]. A similar LDI based approach is applied by a foreground/background

segmentation in [106]. Another LDI based approach defines the depth layers by

an object segmentation perspective [107].

In [108], the idea of depth ordered layers is combined with the multi-reference

based representation. The so-called Depth Enhanced Stereo (DES) representa-

tion consists of two LDIs at the left and right views. The DES format is proposed

as a unified, generic and backward compatible format for 3D applications and

displays. Another backward compatible representation is proposed in [109] by

mixing the conventional stereo and LDI.

In a recent study, [110], a constant depth layer based single reference represen-

tation is proposed for multiview images whose depth information is obtained by

the method. The number of the constant depth layers is determined according

to the plenoptic sampling theory [97] for a given baseline distance between the

views. The depth values of the layers are determined by a Lloyd-Max quantiza-

tion algorithm to minimize the assignment errors on the depth map. Although

the main motivation of this study is obtaining high novel view rendering per-

formance, a constant depth layer based texture compression proposed in [111]

studies the compression efficiency of a similar layered representation.

Examples for multi-reference and single reference MVD representations are il-

lustrated in Figure 4.1.
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(a) LDI (b) DES

Figure 4.1: Examples of MVD representations in the literature. (Reprinted with
permission. Copyright IEEE 2009 [108])

4.2 Proposed Planar Layered MVD Representation

As mentioned in the previous section, LDI based representations in the literature

defines their layer models according to scene objects, foreground/background

relations and/or constant depth approximations. The proposed planar layered

MVD representation can be considered as an enhancement of the constant depth

layer model to a planar one. While the constant depth approximation is jus-

tified by the plenoptic sampling theory in [110], the main motivation of the

proposed representation is to define an object-like layers, as in [107], but in a

fully automated and more compression friendly manner.

The proposed representation utilizes the previously introduced planar model

fitting algorithms to assign a planar layer to each pixel. The number of the

layers is regarded as a parameter which tunes the geometric approximation of the

representation. Exactly the same planar representations obtained in Chapter 3

for the depth image pairs are packed into a single reference MVD representation.

The single reference view of the proposed representation is a novel view at the

middle of the left and right views of the stereo pair. However, the field of view of

the reference view is extended in the horizontal direction to cover all the regions

visible to left and right views. This means, the image plane of the reference view
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Figure 4.2: A planar layer extraction example for Art dataset. Left and right
colums are the texture and planar labelings of the stereo pair. Mid column is
the texture and the approximated planar depth of the extracted layer.

is extended in the horizontal direction as mentioned in [102].

According to layer definition, the depth maps of the layers are approximated

by the corresponding planar model. Hence, the depth/geometry information

of the proposed representation can be recovered by the spatial support of the

layers and their planar model assignments. The spatial support of each layer

is obtained by 3D warping the planar model assignment masks of the left and

right views to the reference view in the middle. This operation can be regarded

as merging the two reference views to a single reference view.

The texture of the layers is also obtained by merging the texture of side views

on the reference view by 3D warping. For each layer, the texture images to

be warped are defined by masking the the left and right texture images with

the corresponding planar model labelling. At this point it is important to note

that the 3D warpings for texture and spatial support are achieved by using the

ground truth depth values of the pixels, but not their planar approximations.

Otherwise, each view’s texture information warped to the reference view may

not coincide due to depth approximations. An illustrative example of a planar

layer extraction is given in Figure 4.2.

The resulting planar layered MVD representation can be encoded as texture
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Figure 4.3: A 3D illustration of the planar layered MVD representation of Art
dataset. Its corresponding layer information in 2D image planes are presented
in Figure 4.4. In order to visualize the 3D extent of the planar layers, various
camera views are rendered.

92



F
ig
ur
e
4.
4:

A
pl
an

ar
la
ye
re
d
M
V
D

re
pr
es
en
ta
ti
on

ex
am

pl
e
fo
r
A
rt

da
ta
se
t.

T
he

to
p
tw

o
ro
w
s
re
pr
es
en
ts

th
e
M
V
D

da
ta

in
it
s
ra
w

fo
rm

at
.
T
he

bo
tt
om

tw
o
ro
w
s
ar
e
th
e
te
xt
ur
e
im

ag
es

of
th
e
la
ye
rs

an
d
th
ei
r
de
pt
h
ap

pr
ox

im
at
io
ns

ac
co
rd
in
g
to

th
e
pl
an

ar
m
od

el
as
si
gn

m
en
ts
.

93



layers with their arbitrary boundary shape information and planar model pa-

rameters assigned to them. An example of MVD data is represented by 6 planar

layers is given in the Figure 4.3 and 4.4 with its planar geometry approximations.

The compression of texture layers can be performed efficiently by shape adaptive

versions of DCT [112] or DWT [113] based encoders. These shape adaptive ap-

proaches also require the shape information of the boundaries explicitly. Hence,

the proposed planar layered based MVD representation consists of layers whose

shape, texture and planar model should be encoded.

Since the proposed representation merge the pixel information of the two ref-

erence view into a single one, the shape masks of the layers overlap at the

occluded regions. Hence, the binary shape masks of the layers can be encoded

as bit-planes of an image. As an example, the resulting shape image, whose

bit-planes are the binary masks of the layers, is given in Figure 4.5 with the

labeling images used during its layer extraction.

The novel view rendering for the proposed planar layered representation can be

achieved by consecutively 3D warping the texture layers to the desired view. In

order to satisfy the visibility constraints of the scene geometry, a z-buffer should

be utilized. Since the geometry of the layers is planar, the 3D warping process

can be done very efficiently by the well-known texture mapping techniques in

computer graphics [114]. Such computer graphics based novel view rendering

implementation also handles the z-buffer inherently.

The byte-stream package of the proposed planar layered representation’s encoder

is similar to the one defined in Section 3.2. The stream package starts with the

number of planar models and their parameters, and they are followed by the

size of the payloads of the shape and the texture information of the layers.

The package ends with the streams of the shape and texture information of

the layers consecutively. The byte-package defined for the planar layered based

MVD representation is illustrated in Figure 4.6.
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Figure 4.5: The left and right images are the labelings obtained by a planar
representation of the stereo depth images. The shape of the extracted layers are
bit-plane coded in the middle image. The number of planar models is 8 and
histogram equalization is applied to labeling images for better visualization.

4.3 Experiments

The experiments studied the compression and novel view rendering capabilities

of the proposed planar layered MVD representation in comparison to state of

the art video coding standard, HEVC and its 3D extensions for the MVC and

MVD formats and JPEG 2000. Without loss of generality the proposed layered

MVD representation is analyzed for the two view case of MVD data.

Since the main problem definition of the thesis is an efficient depth represen-

tation for 3D applications, efficient handling and compression schemes for the

texture component of the proposed layered representation are not considered

and left as a future research topic. However, for the sake of completeness of

the representation, lossless compression of the texture information is utilized in

order to be able to obtain the streams of the proposed approach.

The layer texture images are handled as ordinary images and a common loss-

less image compression file format, PNG [115], is utilized to encode them. The

concatenated PNG streams of the layered textures form the texture payload of

the proposed MVD representation. For a fair comparison, the stereo views of

the raw MVD data are also encoded with PNG to obtain its texture payload.

Figure 4.6: The layered planar MVD encoder’s byte-stream package definition.
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In contrast to a fixed number of views for the raw case, the number of encoded

texture image changes by the number of layers utilized in the proposed rep-

resentation. However, the layer texture images are sparse as shown in Figure

4.4, and their average sparsity increases by the increasing number of layers. In

fact, the total texture information decreases by the merging operation of the

two reference representation into a single reference representation.

In order to concentrate on the depth representation/compression efficiency of

the proposal, the payloads of the texture and the other representation units for

the scene geometry are studied separately. In Figure 4.7, the texture payload

of the raw MVD data is compared against the proposed planar layered rep-

resentation for varying number of layers. As an extreme case of single layer

planar MVD representation, the layer texture extraction method would obtain

a single texture image full of all visible points warped to reference camera in

the middle. Hence, the size of the texture information should be almost halved

with this rough sketch. By increasing the number of layers, the layered repre-

sentation’s capability to model the occluded regions will increase and the total

texture information of the representation should increase. Hence, the dominant

trend of increasing texture payload for the increasing number of layers can be

found congruent with the expected. Another reason of the increase in the bit

budget for the increasing number of layers can be the inherent shape encoding in

the texture compression experiments due to utilization of conventional lossless

image compression tools for the layer textures. Despite the sparseness of the

layer textures is handled with generic tools, the results show that the proposed

planar layered representation can enjoy the texture compression efficiency of the

single reference based representations by handling the texture in an appropriate

form, such as LDI [102].

The shape masks of the extracted planar layers are encoded in a lossless manner

by the PAQ8 compression tool. Since the shape mask of each layer is bit-

plane coded, the layers are grouped into set of maximum 8 layers to define 8-bit

per pixel images. The resulting set of images is compressed by PAQ8 and the

obtained stream is set as the layer shape information payload of the the proposed

representation.
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Figure 4.7: The payload of the texture information in bit per pixel for the MVD
representations in the raw and the proposed layered format. The payloads are
obtained by lossless compression of the texture images by PNG encoder.
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The novel view renderings for the raw MVD format is obtained by the refer-

ence rendering software provided by the standardization activities on the 3D

extension of the HEVC [93]. However, the same software is not utilized for the

proposed representation, since the software is designed for a two reference based

approach. Accordingly for the proposed representation, the novel view render-

ings are obtained by a simple 3D warping algorithm with z-buffer. The possible

holes left after warping all the layers are filled by extrapolating the texture in-

formation horizontally. The extrapolation side of the holes is selected as the

deeper one by checking the z-buffer.

The novel view rendering results are analyzed for three equally spaced views

between the left and the right views of the given MVD. The PSNR and SSIM

metrics are utilized for measuring the novel view rendering quality with respect

to ground truth captured images provided by Middlebury dataset.

In Figures 4.8-4.15 and 4.16-4.23, the novel view rendering scores in PSNR and

SSIM are given, respectively, in three columns for these camera positions. At the

mid-view, the proposed planar layered MVD representation provides the best

rendering results, especially for the SSIM metric at lower bit rates. However,

it performs the worst in general for the novel view renderings located on the

left and right quarters of the baseline. The comparative performance change

according to the position of the novel view is due to differences between the

single and two reference based MVD representations.

In DIBR, the rendering results get better by decreasing the distance of the

novel view to a reference view. In fact for the raw MVD representation, the

novel views located at the reference views are already given by definition. Due

to this fact, the JCT-VC included a 3-view plus 3-depth MVD scenario in their

MVD coding standardization activities [25] to avoid the rendering performance

drop in the middle of the viewing range of the 3D content. This DIBR related

fact is observed as a novel view rendering performance drop at the side views for

the proposed planar layered representation, since its single reference is defined

to be at the mid point of the stereo pair.

Mid novel view rendering scores around the rendering quality for the ground

98



truth depth case owe to the layer texture extraction method of the proposed

approach. The texture information of the layers is extracted according to given

depth maps of the views; hence, the texture information of the proposed planar

layers does not contain any rendering artifacts due to depth distortions. How-

ever, when a novel view is not located at the reference view of the proposed

representation, the planar approximations on depth information introduces ren-

dering artifacts.

The sources of the rendering distortions for the proposed representation can

be examined in two topics as texture- and geometry-based distortions. The

texture-based distortions are introduced by the irreversible nature of the texture

accumulation of multiple views into a single reference system. The texture of

the regions visible by multiple views are blended by the DIBR process during

layer extraction of the proposed approach. Hence, the novel view rendering of

a given view in the raw MVD set cannot be recovered in general as long as no

supplementary information is added to the representation. Although there are

factors, such as lighting and the reflectance properties of the scene geometry

that violates the Lambertian assumptions in blending the texture information,

similar single reference based representations are proposed in the literature in

order to explicitly remove textural redundancies [102],[29].

The geometric distortions introduced by the planar approximations of the scene

also cause texture distortions in novel view rendering. Such geometric distortions

might result in gradual horizontal shifts in the positions of the scene objects. In

case the layer assignments of the proposed representation are congruent with the

object boundaries, the planar layers with their texture information become an

object representation with some approximations both in geometry and texture.

Hence, object-wise planar layer assignments can be considered as manipulating

the scene object in 3D space. However, the rate distortion similar energy for-

mulation for the planar layer extraction of the proposed representation might

violate the object boundaries. Such layer assignments break the visual integrity

of the object in novel view rendering. This characteristic novel view rendering

artifact of the proposed representation is shown in Figure 4.24 for Aloe dataset.
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The texture based rendering distortions cannot be avoided since they are struc-

tural distortions of the proposed planar layered representation by definition.

However, the geometry based novel view rendering distortions can be dissipated

by decreasing the planar fitting error; i.e. by increasing the number of planar

layers properly. The expected increase in PSNR and SSIM scores of the novel

view renderings is shown on the left and right columns of the Figures 4.8 to 4.23.

Another interesting observation for the proposed method is slightly decreasing

trend of the novel view rendering quality at the reference view for increasing bit

rates, i.e. increasing number of layers. This phenomena can be explained by the

alpha mating related artifacts at the layer boundaries. To increase the number

of layers will result in more texture boundaries which are prone to artifacts in

DIBR based texture extraction and novel view rendering steps of the proposed

planar representation.

4.3.1 Visual Assessment

The objective evaluation of the proposed planar MVD representation by the

PSNR and SSIM scores at different view points show that the performance of the

proposed representation might vary according to the content of the MVD data.

In general, the novel view rendering performance for mid-view is satisfactory due

to its single reference based representation. However, the performance of the

planar layered representation might drop severely as the view is located further

from the reference mid-view. The basic 3D warping algorithm utilized in texture

extraction and novel view rendering processes of the proposed representation

can be accounted for a meaningful part of the performance drop against a state-

of-the-art renderer [93] utilized for the other two reference based experiments.

However, the visual characteristics of the proposed representation on novel view

rendering and geometric distortions are worth to be analyzed in detail.

In Figures 4.25 to 4.27, the visual novel view rendering results in the middle

and at the left or right quarter of the baseline are presented for three of the

datasets in Middlebury set. The ground truth camera views of the novel views

are also included for visual comparison. The compression instances for JPEG

100



2000, HEVC and proposed planar layered representation are selected visually

according to the PSNR plots. For Art and Moebius datasets, all the instances

provide similar PSNR scores at the shown quarter baseline view. The instances

of Books dataset are selected to be obtained at the similar bit-rates for each

MVD compression approach. The numeric details in PSNR, SSIM and bits per

pixel (bpp) of the instances are also given in Tables 4.2 to 4.4.

The novel view rendering characteristics of the JPEG 2000 and HEVC are quite

similar, but HEVC is more effective in compression due to utilization of various

state-of-the-art spatial predictive mechanisms of the standard. Either compres-

sion standard might not preserve the sharp depth discontinuities which results

in rendering artifacts at the object boundaries. The brushes and pencils in Art

dataset are rendered as a fuzzy point cloud, whithout any object integrity. The

other objects with greater spatial support also show rendering artifacts at the

boundaries.

In contrast to the conventional compression standards, the planar layered rep-

resentation based novel view renderings draws those brushes and pencils clearly.

In general the object boundaries are well preserved in the planar case which is

an expected positive outcome of the explicit boundary definition of the planar

layers. However, the object integrities might still be lost in the planar layered

case, if the layer boundaries do not coincide with the object boundaries. Such

an example is visible at the bottom of the brush on the left side of the Figure

4.25e. However, in comparison to fuzzy characteristics of the rendering artifacts

observed in JPEG 2000 and HEVC, this kind of artifacts are very concrete by

the well-defined geometry on the texture layers of the proposed MVD represen-

tation.

The similar novel view rendering characteristics can be observed for Moebius

dataset in Figure 4.26. The game cards and the geometric object at the right

bottom of the scene suffer with the fuzzy object boundaries in JPEG 2000 and

HEVC experiments. On the other hand there is no striking rendering artifact

for the proposed planar case. However, the measured PSNR and SSIM scores of

the rendered views located at the right quarter of the baseline are very similar
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for all experiments. The pleasant rendering results obtained for the proposed

approach also differs from the others by doubling the bit-rate in order to encode

ten planar layers of the representation.

The bit-rate costs of the novel view renderings given in Figure 4.27 is approxi-

mately the same for Books dataset. Visually the results are also comparable but

the PSNR scores of the view at the left quarter of the baseline presents a 2 dB

difference between HEVC and proposed planar layered representation (see Ta-

ble 4.4). The difference between SSIM scores are also congruent with the PSNR

scores. The rendering quality difference, visually hard to notice but presented

with the objective quality metrics are due to geometric approximation of the

scene by the planar models.

Such geometric differences cause the object boundaries to shift away from its

ground truth position for any novel view different than the reference view in the

middle of the baseline. The magnitude of the shift increases as the position of

the novel view gets further from the reference view. The visual example given in

Figure 4.24 for the object boundary violation of layer assignments also illustrates

the gradually increasing boundary shift towards the side views.

Such mismatches at the object boundaries can cause severe degradations in

PSNR and SSIM scores. In order to demonstrate the extent of such geometric

distortion over the objective metrics, the PSNR and SSIM scores between two

novel view renderings located at the 1/100 and 2/100 of the baseline is calculated.

The ground truth texture and depth information is utilized during DIBR. 1%

baseline distance between the two novel views typically limits the maximum

disparity to one pixel for Middlebury datasets. The objective results given in

Table 4.1 show a wide variance related to texture and geometry of the content.

The visual comparison of the novel view rendering results of the MVD compres-

sion approaches shows that the PSNR and SSIM metrics for the visual quality

are far from predicting the visual performance of the proposed planar layered

representation. The DIBR friendly geometry information of the proposed MVD

representation provides much concrete and coherent rendering results with the

same PSNR or SSIM scores at the bit-rates, whereas JPEG 2000 and HEVC can
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Table 4.1: Objective evaluation of novel view renderings by PSNR and SSIM
measures for geometric distortions resulting in horizontal shifts of one pixel at
most.

Name PSNR (dB) SSIM index
Aloe 39.84 0.985
Art 33.09 0.958
Baby 43.26 0.987
Books 32.24 0.949
Cloth 34.66 0.951
Cones 33.26 0.947
Dolls 34.32 0.961

Lampshade 44.85 0.993
Laundry 32.14 0.949
Moebius 35.19 0.965
Monopoly 33.53 0.962
Plastic 40.54 0.993
Reindeer 32.66 0.937
Teddy 35.57 0.974
Wood 40.19 0.971

not preserve the sharp depth boundaries. PSNR and SSIM measurements given

in Table 4.1 also provide evidence for possible severe drops of these objective

metrics due to geometric distortions introduced by the planar approximations.

Although 2D visual inspection of the rendering results of the planar approxi-

mations shows unnoticeable differences, their effects on depth perception should

be evaluated. The boundary shifts directly change the disparity between the

stereo pairs and alter the perceived depth. Since the ultimate goal of a 3D ap-

plication is a satisfactory 3D experience in general, the depth perception of the

compressed MVD data will be discussed in the next subsection.

4.3.2 Depth Perception Comparison

In the 3D research community, quality assessment is an important problem to

guide the research activities into efficient solutions for the 3D applications of

interest [116]. In general visual communications, the depth perception is the

main added value of the 3D applications. HVS has many depth perception

mechanisms but the stereopsis is the mainly exploited one in 3D displays [117].
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(a) JPEG 2000 rendering @0.25 (b) JPEG 2000 rendering @0.5

(c) HEVC rendering @0.25 (d) HEVC rendering @0.5

(e) Planar MVD rendering @0.25 (f) Planar MVD rendering @0.5

(g) Camera view @0.25 (h) Camera view @0.5

Figure 4.25: Visual comparison of novel view rendering results obtained for
the Art dataset by different MVD compression schemes and the corresponding
ground truth camera views.
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(a) JPEG 2000 rendering @0.5 (b) JPEG 2000 rendering @0.75

(c) HEVC rendering @0.5 (d) HEVC rendering @0.75

(e) Planar MVD rendering @0.5 (f) Planar MVD rendering @0.75

(g) Camera view @0.5 (h) Camera view @0.75

Figure 4.26: Visual comparison of novel view rendering results obtained for the
Moebius dataset by different MVD compression schemes and the corresponding
ground truth camera views.
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(a) JPEG 2000 rendering @0.25 (b) JPEG 2000 rendering @0.5

(c) HEVC rendering @0.25 (d) HEVC rendering @0.5

(e) Planar MVD rendering @0.25 (f) Planar MVD rendering @0.50

(g) Camera view @0.5 (h) Camera view @0.75

Figure 4.27: Visual comparison of novel view rendering results obtained for the
Books dataset by different MVD compression schemes and the corresponding
ground truth camera views.
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Measuring the depth perception quality and visual comfort based on stereopsis

and other depth clues is among the challenging goals of 3D quality assessment

[116]. For MVD-based applications, the 3D quality assessment is also compli-

cated by the DIBR based artifacts [118].

The common approach for evaluating the depth perception is to conduct subjec-

tive tests and to obtain mean opinion scores (MOS). By a different perspective,

a monoscopic subjective test protocol is also proposed recently in order to ana-

lyze the novel view rendering quality under depth compression [119]. However,

subjective tests are time consuming and hard to compare objectively. Hence,

there is an active research on obtaining an objective metric for assessing the 3D

quality of a content. In the literature, there are full reference [120], restricted

reference [121],[122], and no reference [123] quality metric proposals for DIBR

based applications. Most of these proposals pay attention to measure the re-

construction quality of depth boundaries in their assessment. The correlations

between the MOS and the conventional 2D objective metrics are also studied in

[124] and it is reported that distinct items can have the same objective scores

but very different subjective scores and vice versa.

The various approaches in the literature show the difficulty of the objective eval-

uation of the depth perception for conventional and DIBR based stereo view.

The limited assessment and even contradicting cases are reported for the con-

ventional 2D objective metrics. The results given in the previous subsections for

objective scores and 2D visualization are in accordance with these facts of the

unsolved 3D assessment problem. In order to analyze the results thoroughly,

the depth perception is simulated by the anaglyph method [125] in the Figures

4.28 to 4.30.

Anaglyph stereo is a primitive visualization technique which is prone to ghosting

artifacts severely. By the motivation of comparing the depth perception artifacts,

the chroma channels of the rendered views are discarded in the anaglyph images

to limit the ghosting artifacts. The baseline distance between the rendered

stereo pairs for anaglyph images is set to 1/10 of the baseline distance between

the stereo pair of the MVD. For example, the anaglyph stereo picture located

125



at the midpoint; i.e. 0.5 of baseline, is composed of rendered views at 0.45 and

0.55 of the baseline. Since the Middlebury dataset does not provide sufficiently

dense views to create the anaglyph stereo pairs from captured views, the ground

truth cases are obtained by DIBR techniques utilizing the original depth and

texture information.

The perceived depth for the example given for Art dataset is almost the same

for all cases. However, the DIBR artifacts at the depth boundaries for the JPEG

2000 and HEVC are disturbing the visual comfort. The proposed planar case

is almost as good as the ground truth novel view renderings, except for the

object breakdowns at the rendered side view. Similar comments can be stated

for the example given for Moebius dataset. The example given for Books have

limited boundary artifacts in the results of JPEG 2000 and HEVC. The visual

quality of all compression results is comparable to ground truth rendering result.

However, the depth differences between the books stacked on the right cannot

be perceived for the proposed planar representation case. This nuance is based

on the geometric distortion induced by the planar approximation of that region

with a single planar model.

The proposed layered planar MVD representation has a quite different geometric

distortion characteristic in comparison to conventional multi reference based

MVD representations. In multi reference based MVD cases, the depth distortion

on side views of the view to be rendered might result in horizontal texture

shifts. In the extreme case, these texture shifts might cause double view or blur

on rendered the novel views. Hence, the geometric distortion in conventional

two reference based representations is prone to degrade the texture quality of

the novel view renderings. However the single reference based representations,

such as LDI and the proposed representation, remove the texture incoherencies

due to geometric distortions by handling the texture information with a single

reference.

An extreme case of geometric distortion is given for Aloe dataset in the left

column of the Figure 4.31 in anaglyph technique. The planar layered represen-

tation of the example was given in Figure 4.24. In order to compare the effects of
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geometric distortion, the ground truth renderings are also presented in the right

column of the figure. The plant’s branch towards the camera is perceived very

differently in the proposed planar case and the ground truth case. The planar

approximation decreased the depth perception of objects coming out of the 2D

displaying plane. However, the texture quality and depth perception consistency

across the views are quite stable and coherent for the proposed layered planar

representation under extreme geometric distortion.

The potential of proposed layered planar MVD representation to tolerate these

extreme geometric distortions can be explained by the single reference based

representation of the texture information of the layers. While extracting the

texture information, the ground truth depth images are utilized in the 3D warp-

ing operations. As long as the spatial support of the corresponding planar model

does not change, the texture to be obtained for that layer should be the same.

Hence, the texture information of the layers is defined according to the labeling

images of the planar assignments; however, it is independent of the assigned

planar model geometries.

This phenomena can be considered as decoupling of the textural and geometric

distortions of the proposed planar MVD representation. To illustrate the textu-

ral concreteness of the proposed MVD representation in novel view rendering,

exactly the same 4 planar assignment based novel view renderings with the pro-

posed and the raw MVD formats are presented in Figure 4.32 for Teddy dataset.

While the extreme geometric distortions result in doubled boundaries of the

objects, especially in the mid view for the two reference based raw MVD rep-

resentation, such textural distortions do not exist in the renderings of proposed

MVD representation.

The coherent texture and geometric properties of the proposed layered planar

representation are important novelties of the proposal and it might lead to new

optimality formulations in depth compression. In case of objective assessment

of depth perception quality is available, the geometric distortions might be opti-

mized for a pleasant depth perception without any degradations on the texture

coherency of the novel view renderings. Hence, assuming the texture quality
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is unchanged, the proposed MVD representation should provide encoded MVD

data at different depth perception qualities. The concept of just noticeable depth

difference studied in [126] should play a fundamental role in assessing the re-

construction quality of the depth perception in such a framework.
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(a) JPEG 2000 rendering @0.25 (b) JPEG 2000 rendering @0.5

(c) HEVC rendering @0.25 (d) HEVC rendering @0.5

(e) Planar MVD rendering @0.25 (f) Planar MVD rendering @0.5

(g) Original MVD rendering @0.25 (h) Original MVD rendering @0.5

Figure 4.28: The comparison of the depth perception of the Art dataset for
different MVD compression schemes. The views from left to right are located
at the left quarter and in the middle of the baseline. The anaglyph technique is
applied by red-cyan encoding. Best viewed in digital copy with a proper zoom
in.
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(a) JPEG 2000 rendering @0.5 (b) JPEG 2000 rendering @0.75

(c) HEVC rendering @0.5 (d) HEVC rendering @0.75

(e) Planar MVD rendering @0.5 (f) Planar MVD rendering @0.75

(g) Original MVD rendering @0.5 (h) Original MVD rendering @0.75

Figure 4.29: The comparison of the depth perception of the Moebius dataset for
different MVD compression schemes. The views from left to right are located in
the middle and at the right quarter of the baseline. The anaglyph technique is
applied by red-cyan encoding. Best viewed in digital copy with a proper zoom
in.
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(a) JPEG 2000 rendering @0.25 (b) JPEG 2000 rendering @0.5

(c) HEVC rendering @0.25 (d) HEVC rendering @0.5

(e) Planar MVD rendering @0.25 (f) Planar MVD rendering @0.5

(g) Original MVD rendering @0.25 (h) Original MVD rendering @0.5

Figure 4.30: The comparison of the depth perception of the Books dataset for
different MVD compression schemes. The views from left to right are located
at the left quarter and in the middle of the baseline. The anaglyph technique is
applied by red-cyan encoding. Best viewed in digital copy with a proper zoom
in.
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(a) Renderings @0.25

(b) Renderings @0.5

(c) Renderings @0.75

Figure 4.31: The depth perception comparison of the layered planar MVD under
extreme geometric distortion (4 planar model) with the uncompressed raw MVD
format for the Aloe dataset. The left column shows the rendering results for
the proposed layered planar MVD representation. The anaglyph technique is
applied by red-cyan encoding. Best viewed in digital copy with a proper zoom
in.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary of the Thesis

This thesis proposes, a planar segmentation based approach to handle the two

important topics in depth compression for 3DV application: exploitation of the

smooth characteristics of the depth modality and the preservation of the clear

depth discontinuities for artifact free novel view rendering. Different than the

other linear and planar approximations in the literature, the proposed approach

defines the planarity in the 3D space of the scene. The multiple depth images of

the scene provided by the MVD data are considered as a 3D point cloud to be ap-

proximated by 3D planes. In this perspective, the approximation/representation

problem of the depth images turned into a co-segmentation problem; i.e. depth

estimaton and object segmentation are obtained simultaneously.

The planar co-segmentation of stereo depth images is formulated by an energy

minimization framework. A MRF model is utilized in defining the energy costs

of the co-segmentation problem. The combination of data and regularization

terms, named smoothness and label costs, provided a rate distortion similar

tradeoff to the solutions. The optimization problem of the energy terms is ap-

proximately solved by a modified PEARL algorithm. The modifications of the

PEARL algorithm utilized the smoothness of the depth images to revert the

candidate model set to be in an increasing regime. The planar model sam-

pling is achieved by fitting planar models for the connected components of the

assignments to obtain object-like representations.
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The weights for the energy cost terms are considered in order to obtain planar

representations at different reconstruction quality for a practical depth compres-

sion framework. A heuristic algorithm is designed to select the favorite solution

among the Pareto optimal set of the multiple objectives. The favorite solutions

are defined as the ones with the minimum geometric distortion, while satisfying

the constraint on the maximum number of planar models to be utilized. By

this formulation, the planar reconstructions of the stereo depth images can be

obtained for various number of planar models in a systematic way.

The depth compression experiments are performed by encoding the planar mod-

els and their spatial support, i.e. by labeling images. The objectives of the co-

segmentation energy is designed to be related with the rate distortion optimality

of the representations. The proposed segmentation based depth compression ap-

proach defines the depth segments with a rate distortion sense different than the

other segmentation based approaches in the literature.

The depth compression experiments are conducted in comparison to state-of-

the-art DWT and DCT based compression tools, JPEG 2000 and variants of

HEVC, respectively. The depth reconstruction and novel view rendering results

are evaluated by PSNR and SSIM metrics. Since planar approximations might

not be convenient for every scene geometry, the planar representation is also

considered as a prediction tool in a residual coding fashion.

Lastly, a novel MVD representation is derived from the planar representations

by merging them into a single reference based representation, such as LDI. The

layers of the proposed MVD representation are defined as the planar surfaces

approximating the stereo depth images. The texture information of the layers

is obtained by merging the texture of the pixels assigned to that planar model.

Since the texture extraction of the layers can be performed with the ground

truth depth images, the proposed layered planar MVD representation decouples

the rendering distortions related to geometry and texture in a wide extent.

The different novel view rendering characteristics of the proposed single refer-

enced system are analyzed in comparison to rendering results of the state-of-

the-art compression methods. The objective measures are discussed by visual
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comparison of the results. The effects of the planar approximations on the depth

perception are also illustrated for the novel MVD representation.

5.2 Conclusions

The energy based co-segmentation framework is successful in obtaining coherent

representation units across the stereo depth images. Visually these segments

coincide with the scene object boundaries in general. However, the method is

still prone to segmentation errors which can result in broken object renderings

at the end.

The heuristic algorithm developed to obtain various planar representations in a

systematic way shows the responsiveness of the energy terms on the obtained

solution. However, the approximations of the optimization algorithms, GC and

PEARL, avoid the obtained solutions as the Pareto optimal instances to create

a convex trajectory for the rate distortion plots. The most scattered plots occur

at higher rates for the scenes containing limited number of objects or mostly

planar surfaces. This observation shows possible breakdowns of the heuristic

algorithm in seeking a redundant number of models.

The sampled instances of Middlebury dataset shows various textural and geo-

metric variations; hence, the results of the experiments are convenient to make

conclusions and generalizations about the compression performance of the pro-

posed approach. As long as the depth images contain descriptive boundaries for

the objects in the scene, the planar representations become efficient in depth

reconstruction, and especially, in novel view rendering. The analytic represen-

tation of the planar regions reconstructs the depth of non-boundary regions

almost for free. Since the main compression cost of the planar approach is the

boundary encoding of the labeling images, the efficient cases can be explained

by this reasoning. For the scenes mostly composed of planar surfaces, the planar

compression at low rates gives comparable novel view rendering results with the

state of the art MVD compression standard, HEVC-3D.

Although, the planar depth reconstruction might be inferior than the recon-
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structions of HEVC variants, the sharp discontinuity preserving properties of

the proposed planar representation step in to provide better novel view ren-

dering results. This fact shows itself by comparing the relative performance

of planar representation in depth reconstruction and novel view rendering. In

general, while the planar depth reconstruction results are comparable with the

HEVC results, the novel view rendering results become comparable to HEVC-

MV or even HEVC-3D. Hence, the proposed planar compression of stereo depth

images can be regarded as an efficient approach for rendering applications of

3DV.

The planar representation as a prediction tool provides superior results for the

DWT based comparative experiments. However, the same cannot be stated for

DCT based experiments. The datasets, which are efficient cases of pure planar

representation, show better depth reconstructions and novel view rendering re-

sults. Based on this variable performance, the proposed planar approach can be

included in the prediction modes of contemporary depth encoders like HEVC-

3D.

The proposed layered planar MVD representation’s most important aspect is

its capabilities in decoupling the distortions on texture and geometry to a wide

extent for the novel view renderings. The single reference based definition of the

proposed MVD accounts for this property. For representations with multiple ref-

erences, extreme depth distortions are not tolerable, since they can break down

the stereo correspondences between the multiple references. Such stereo corre-

spondence errors result in blurred or doubled views for novel view renderings.

However, for the proposed single reference based representation, the texture of

layers are extracted according to the ground truth depth images; i.e. correct

stereo correspondences. Hence, the texture information of a layer depends only

on the labeling images obtained by the planar co-segmentation, but not the

utilized planar models. This property constitutes the decoupled texture and

geometry of the proposed MVD representation.

The objective comparison in novel view rendering of the proposed MVD rep-

resentation with raw MVD format encoded by the state-of-the-art encoders is
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also affected by the decoupling phenomena. The proposed approach has quite

high rendering quality even at low rates for the mid-view which is also the ref-

erence view of the representation. This performance is the consequence of the

ground truth depth utilization in texture extraction. The novel view rendering

performance of the proposed approach drops by shifting the view towards the

side views. However, the visual evaluation of the rendering results with low

scores indicates that the proposed representation should be preferred to render-

ings obtained from the HEVC encoded raw MVD data. The concrete textural

properties of the proposed representation make the difference at this point.

The tolerance of the proposed representation to extreme geometric distortions

brings the depth perception quality related questions. For the planar represen-

tations using a few number of models, the depth variations in the scene might

be lost. Hence, the depth distortions above the just noticeable threshold can

degrade the depth perception and 3D experience. Accordingly, while the pro-

posed layered planar representation enjoys the concrete and high quality texture

reproduction of the scene, it might suffer with reduced depth perception due to

possible rough geometric approximations. The relation between texture quality

and depth reproduction in 3D experience is an unsolved problem of 3DV as-

sessment. However, the proposed representation widens the MVD compression

alternatives by its tolerance to extreme geometric distortions.

5.3 Future Work

Towards a practical solution for 3DV applications, the first major missing topic

of the proposed approach is the texture compression of the MVD data and the

second one is the temporal changes in MVD data. Although the scope of the

thesis is limited to the depth modality of the MVD data, a complete solution

always has the advantage of utilizing all possible redundancy forms like inter-

view, inter modality and temporal. The methods in the literature to exploit these

redundancies should be considered and adapted to the proposed approaches and

representations.
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In order to have a complete idea of the compression efficiency of the proposed

layered planar MVD representation, the texture compression of the layers might

be the first problem to approach. The lossless texture compression experiment

results are promising to obtain a more efficient lossy texture coding for the

proposed MVD representation. It is also reasonable to expect the single reference

representation to handle the inter-view textural redundancies better by explicitly

merging the texture information of multiple visible regions. At this point, the

available shape information of the layers should be kept in mind to handle the

sparsity of the texture images of the layers.

Exploitation of temporal redundancy in this problem might necessitate various

modifications. The temporal smoothness of the depth surfaces can be handled in

the energy based formulation of the planar fitting problem. The motion vectors

estimated for the temporal predictions of the texture can be considered in en-

riching the neighborhood definition of the MRF to a spatio-temporal one. More

practical approaches might leave the planar model fitting formulation untouched

and concentrate on efficient temporal initializations of the MRF solutions. The

temporal evolutions of the planar layers may be considered to be encoded or

constrained by a global camera motion model. These are just a few possibilities

in considering the temporal dimension.

The thesis shows the efficient usage of the planar representation in depth com-

pression for novel view rendering applications by the generic compression tools.

The piecewise constant characteristics of the labeling images and the bit-plane

coded layer shapes of the proposed MVD can be studied to obtain better com-

pression ratios by tailoring the shape encoder. Context-based entropy coded

chain or crack codes based approaches [71], [44] can be considered in improving

the shape compression routines of the proposals.

The broken object-like rendering artifacts of proposed MVD representation can

be studied to obtain more coherent co-segmentation results with the scene ob-

jects. The edge information of the depth and texture images can be introduced

in the energy formulation to favor the labeling discontinuities to occur at depth

or texture edges. The novel view rendering quality metrics can be considered to
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advance the model fitting cost terms in the energy formulation. At the extreme

case, the planar model based stereo object estimation costs introduced in [48]

can be adapted to the rate-distortion like energy formulation of the proposed

approaches.

The tolerance of proposed MVD representation to the extreme geometric dis-

tortions should be studied to analyze its effects on 3D experience. The limited

capabilities of the conventional video metrics in the assessment of 3D experience

and depth perception might require subjective test for these analyses. Based

on this analysis, possible geometric manipulation applications, such as display

adaptation, can be developed in the framework of layered planar MVD repre-

sentation.

To summarize, the proposed planar representation based approaches are promis-

ing for rendering friendly compression applications. Especially, the proposed

layered planar MVD representation’s properties in decoupling the texture and

geometry needs to be analyzed thoroughly. Although there are serious diffi-

culties in the 3D assessment of the results, the proposed MVD representation

deserves to be considered as a promising alternative by introducing the extreme

geometric manipulations into the 3D compression community.
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APPENDIX A

GRAPH CUT ALGORITHM

The graph cut algorithm interprets the MRF energy minimization problem as the

well-known maximum flow problem of the optimization theory. The maximum

flow problem for a given network finds the maximum flow capacity from a single

source to a single sink. According to max-flow min-cut theorem, the maximum

flow is equal to the minimum capacity removed from the network to avoid any

flow from source to sink, and it is called s-t min-cut problem [55].

In case of MRF, when the energy function is in a submodular quadratic pseudo-

boolean form, an equivalent flow network can be constructed and its minimum

cut encodes the field configuration for the minimum MRF energy [55]. While

the pseudo-boolean form enforces the MRF to be a binary random field, the

quadratic form allows pairwise energy terms at most. For the submodularity,

all the pairwise energy terms in the MRF energy function should satisfy the

condition,

Vp,q(0, 1) + Vp,q(1, 0) ≥ Vp,q(0, 0) + Vp,q(1, 1) . (A.1)

In graph cut approach, the submodular quadratic pseudo-boolean MRF energy

function is represented as flow capacities of directed edges in a graph. The

diagram given in Figure A.1 is a simple case of two random variable and it

explains the relation between the edge capacities and the unary and pairwise

potentials of the MRF model. An s-t cut is a subset of vertices, S, which

includes the source node but not the sink node. Hence, the s-t cut encodes a

binary assignment to vertices, i.e, the random variables of the MRF, by being

or not being an element of set S. The cost of an s-t cut is the sum of the
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Figure A.1: A graph construction example for two random variables with unary
and pairwise energies. (Reprinted with permission. Copyright The MIT Press
2011 [55])

capacities of the directed edges connecting vertices in S to vertices not included

in S and it is equivalent to the MRF energy of encoded binary assignment

by construction. Possible s-t cuts and the corresponding costs are shown in

an example with two random variables in Figure A.2. In optimization theory,

there exist algorithms that find the minimum s-t cut, when all the directed

edge capacities are nonnegative; this condition is satisfied by the submodularity

constraint [55].

Hence, the min s-t cut solution of the graph cut approach solves the second order

submodular MRF energies exactly for binary cases. When there are multiple

labels for MRF assignments the graph cut approach is utilized to find the efficient

updates or moves of a greedy algorithm. Two popular update rules utilizing the

graph cut algorithm are the α-expansion and α − β swap moves [58]. While in

α-expansion the current MRF assignments can be changed to α label or keeps

Figure A.2: Possible s-t cuts for two random variable case (Reprinted with
permission. Copyright Andrew Thomas Delong 2011 [127]).
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its current assignment, in α − β swap moves the random variables currently

assigned to α or β label can be swapped and the rest keeps its current assignment.

Illustrations of the moves are given in Figure A.3. For both assignment update

rules, all possible moves can be represented by a binary coding like change

or keep its assignment. The best move which makes the maximal decrease in

the MRF energy can be obtained by solving the s-t min-cut problem of the

corresponding binary representation. The moves are applied for every label or

label pair consecutively until no energy decrease is possible with the utilized

update rule. The resulting local minimum with the greedy algorithm is a good

approximation in general, and for the α-expansion rule it is within a known

factor of the global optimum [58].

A.0.1 MRF optimization with label costs

The label cost term potential defined in 2.10 is a higher order potential function

of all random variables in the field. It is a global regularization term of the

MRF model. However, it violates the quadratic form of the MRF energy; hence,

it is not possible to trivially generate a directed graph to solve it as a graph

cut problem. In [74] Delong et al. proposed two methods respectively for α-

expansion and α−β swap moves to minimize the energy terms with label costs.

The method for the α − β swap moves proposes to compare the costs of the

three possible moves at each assignment updates. The first possible move is the

conventional best α − β swap move for the energy function without the label

Figure A.3: GC based MRF update rule examples. From left to right; initial la-
beling map, α−β swap move and α-expansion move (Reprinted with permission.
Copyright IEEE 1999 [58]).
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Figure A.4: Graph construction for a label cost (Reprinted with permission.
Copyright Andrew Thomas Delong 2011 [127]).

costs. The other two possible moves are the ones which eliminate the α or β

assignments by swapping all β values to α or vice versa. The costs of these three

assignments are compared with considering the labeling costs and the minimum

one is selected as the α− β swap move.

The method for the α-expansion move includes higher order label cost terms

in the graph construction. According to the general graph construction method

proposed in [72], the label costs are converted into quadratic forms with the help

of an auxiliary variable, y. The details about quadratic conversion can be found

in [127]. The graph constructed according to the label cost in the quadratic

form is illustrated in Figure A.4. The right side of this figure shows that any

s-t cut that contains more than one variables of type x should also contain the

auxiliary variable y to be a minimum s-t cut. With this graph construction trick,

the label costs can be encoded in the graph representing the MRF energy.

A simple graph construction example to solve the s-t min-cut problem for an

α-expansion move is given in Figure A.5. While the black edges of the graph

account for the higher order potential of the label costs, the gray edges account

for the combination of unary and pairwise potentials. In the given example, the

α-expansion move for the label α considers only the label costs of the β and γ

labels since α-move can not.
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Figure A.5: A graph construction example for an α-expansion move with labeling
cost. The current labeling of the 1-D field of 6 variable is given at the top. The
auxiliary nodes and the edges for the label cost are highlighted.
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APPENDIX B

MIDDLEBURY CAMERA CALIBRATION MATRICES

The projection matrix of a camera maps a point in 3D space to a 2D point on the

image plane of the camera. This mapping is a linear function if the points in the

domain and the range set are represented in homogenous coordinate systems.

According to pinhole camera model the projection matrix, P , can be decom-

posed into internal, K, and external calibration matrices [128]. The external

calibration matrix is also composed of rotation, R, and translation, T , matrices

as,

P = K [R |T ] . (B.1)

TheMiddlebury dataset provides disparity maps of two cameras which have pure

horizontal translational shift between them. The disparity maps of the views

are given as 8-bit gray scale images which encode the disparity values between

0 and dmax, linearly.

In order to obtain a generic camera calibration matrix compatible with the scene

geometry, the internal (K )and external (R, T ) calibration matrices of the stereo

pair are defined as,

K =


dmax 0 w/2

0 dmax h/2

0 0 1

 , (B.2)

R =


1 0 0

0 1 0

0 0 1

 , (B.3)
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Tleft =


0

0

0

 , Tright =


−1
0

0

 . (B.4)

The w and h are the width and the height of the images respectively.
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APPENDIX C

HEVC-3D RENDERER CONFIGURATION

All the novel view rendering experiments in this thesis, utilizing the renderer

software given by the HEVC-3D extension, used the following configuration.

Table C.1: Parameter values of HEVC-3D renderer.

RenderDirection 0

RenderMode 0

TemporalDepthFilter 0

SimEnhance 0

ShiftPrecision 2

HoleFillingMode 1

BlendMode 0

BlendZThresPerc 30

BlendUseDistWeight 1

BlendHoleMargin 6

Sweep 0
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