
DEPENDABILITY DESIGN FOR DISTRIBUTED REAL-TIME SYSTEMS WITH
BROADCAST COMMUNICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YUSUF BORA KARTAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2014

Approval of the thesis:

DEPENDABILITY DESIGN FOR DISTRIBUTED REAL-TIME SYSTEMS WITH
BROADCAST COMMUNICATION

submitted by YUSUF BORA KARTAL in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Electrical and Electronics Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Şenan Ece Schmidt
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Şenan Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Assist. Prof. Dr. Reza Hassanpour
Computer Engineering Dept., Çankaya University

Date: 17.06.2014

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: YUSUF BORA KARTAL

Signature :

iv

ABSTRACT

DEPENDABILITY DESIGN FOR DISTRIBUTED REAL-TIME SYSTEMS WITH
BROADCAST COMMUNICATION

KARTAL, Yusuf Bora

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

June 2014, 98 pages

The operation of distributed systems relies on the timely exchange of message data via de-
pendable communication networks. Previous works suggest hardware redundancy for poten-
tial faults in the underlying network infrastructure to achieve dependability. However, soft-
ware faults and faults that cannot be resolved on the hardware level are not considered in the
existing literature. This work proposes a new method for software fault-tolerant communica-
tion in distributed real-time systems with communication networks that support time-slotted
operation and broadcast transmission.

Our method implements a dependability plane to be integrated to the existing network stack.
It processes dependability information that is piggybacked on application message and uses
a time synchronized checkpointing/rollback recovery strategy. The proposed dependability
plane is modeled in the framework of timed input/output automata (TIOA) to formally prove
its correctness and determine tight bounds for fault-recovery times. Model checking tools are
employed to verify the timing and dependability properties of real-time systems. To this end,
we present an algorithmic approach for converting TIOA models to be used as input of a well-
known model checking software tool UPPAL. We apply our dependability plane design and
integrate it to a previously developed real-time communications framework. We further verify
the TIOA models of the overall protocol stack by employing our algorithmic conversion to
UPPAAL.

Keywords: Distributed systems, real-time, communication, dependability, software fault-
tolerance, timed input/output automata, UPPAAL, formal verification

v

ÖZ

YAYGIN HABERLEŞME YAPAN GERÇEK ZAMANLI DAĞITIK SİSTEMLER İÇİN
GÜVENİLİRLİK TASARIMI

KARTAL, Yusuf Bora

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Schmidt

Haziran 2014 , 98 sayfa

Dağıtık sistemler güvenilir haberleşme ağlarına ihtiyaç duymaktadır. Her ne kadar güvenilir-
lik konusu donanım yedekleme şeklinde literatürde işlenmiş bir konu olsa da yazılım güveni-
lirliği ve donanım yedekleme ile giderilemeyecek hata durumları ele alınmamıştır.

Bu çalışmada, yaygın haberleşme yapan gerçek zamanlı dağıtık sistemlerde hata toleransı sağ-
lanabilmesi için senkronize hata bloğu oluşturma ve geri dönmeye dayalı özgün bir güveni-
lirlik katman tasarımı önerilmektedir. Bahsi geçen güvenilirlik katmanı Zaman Girişli/Çıkışlı
Otomat sentaksı kullanılarak modellenmiştir. Bu sayede hem işlevsel doğruluğunun formal
yollarla kanıtlanması sağlanmış hem de hata kurtarma işlemindeki gecikmeler sıkı zaman kı-
sıtları dahilinde öngörülebilmiştir. Zaman Girişli/ Çıkışlı Otomat (TIOA) işçerçevesi dağıtık
sistemlerin modellenmesinde, UPPAAL yazılım paketi ise sistem modellemesi, simülasyonu
ve doğrulamasında sıklıkla kullanılan araçlardır. Bu çalışmada, TIOA sentaksında modelle-
nen güvenilirlik katmanının UPPAAL ortamına aktarılması için algoritmik bir yöntem ge-
liştirilmiş ve çevrim yapılabilmesi için TIOA modellerinde bulunması gereken özellikler lis-
telenmiştir. Literatürdeki diğer çalışmalardan farklı olarak önerilen çevrim yöntemi gerçek-
zamanlı dağıtık sistemler üzerinde kullanılabilmektedir. Çalışma kapsamında gerçek-zamanlı
dağıtık ve güvenilir bir haberleşme iş çerçevesi (D3RIP) uygulama örneği olarak verilmekte-
dir.

Anahtar Kelimeler: Dağıtık sistemler, gerçek-zamanlı, haberleşme, güvenilirlik, yazılım hata

toleransı, zaman girişli/çıkışlı otomat, UPPAAL, formal doğrulama

vi

To my children Masal Ada and Mehmet Tuna

vii

ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Assoc. Prof. Dr. Şenan Ece

Schmidt. I would like to thank to Assoc. Prof. Dr. Klaus Schmidt for his support. My

special thanks go to the thesis jury members for their expert feedbacks. I would like to thank

TÜBİTAK who supported this study as a scientific project (Career Award 109E261). Finally,

I would like to thank to my wife and parents who supported me throughout the whole time.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ALGORITHMS . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 Concepts of Dependable Computing 5

2.2 Checkpointing and Rollback Mechanisms for Software Fault Tolerance 6

2.3 Timed Input/Output Automata . 8

2.4 UPPAAL as a Formal Modeling and Verification Environment 12

2.5 Real-time Communication Networks and Dependability 16

3 DEPENDABILITY DESIGN FOR DISTRIBUTED REAL-TIME SYSTEMS
WITH BROADCAST COMMUNICATION 17

ix

3.1 Distributed Real-Time System Model 17

3.1.1 General Properties of Distributed Real-Time Systems . . . 17

3.1.2 Generic Node Model . 19

3.1.3 Potential Fault Scenarios 22

3.1.4 Dependability Design Requirements 23

3.2 Distributed Rollback Strategy with Synchronized Checkpointing . . 24

3.2.1 Assumptions . 24

3.2.2 Basic Operation . 25

3.2.3 Acceptance Test Realization 26

3.2.4 Dependability Plane Operation 29

4 CASE STUDY: DEPENDABILITY DESIGN FOR A DISTRIBUTED IN-
DUSTRIAL REAL-TIME PROTOCOL FAMILY 33

4.1 Protocol Framework . 33

4.1.1 Overview . 33

4.1.2 Shared-Medium Broadcast Network 34

4.1.3 Interface Layer . 34

4.1.4 Coordination Layer . 35

4.1.5 Protocol Operation . 36

4.2 TIOA Modeling of D3RIP Framework 38

4.2.1 Framework Layers . 39

4.2.1.1 Shared-Medium Broadcast Network (SM) . . 39

4.2.1.2 Interface Layer (IL) 39

4.2.1.3 Coordination Layer (CL) 40

4.2.2 Dependability Plane (DP) 40

x

4.2.3 D3RIP Operation . 44

4.2.4 Formal Results . 46

4.2.4.1 Progressiveness 46

4.2.4.2 Synchronized Checkpointing 47

4.2.4.3 Rollback . 48

5 MODELING DISTRIBUTED TIOA SYSTEMS IN UPPAAL 51

5.1 TIOA Modeling in UPPAAL . 51

5.2 Assumptions for TIOA Models . 52

5.3 TUConvert Algorithm . 53

5.4 Timed Automata Semantics in UPPAAL 58

5.5 Formal Results . 59

5.6 Modeling Case Study: Distributed Real-Time Protocol 63

5.6.1 Shared Medium Broadcast Network 63

5.6.2 Interface Layer . 64

5.6.3 Coordination Layer . 66

5.6.4 Dependability Plane . 67

6 SIMULATION AND VERIFICATION OF TIOA BASED MODELS IN UP-
PAAL . 69

6.1 Formal Verification of D3RIP Framework 70

6.1.1 Verification of Safety Properties 70

6.1.2 Verification of Reachability Properties 71

6.1.3 Verification Results of D3RIP Framework 71

6.2 Simulation of D3RIP Framework 73

6.2.1 Time-Slotted Interface Layer (TSIL) 74

xi

6.2.2 Urgency-Based Real-time Protocol (URT) 74

6.2.3 Synchronization Based Dependability Protocol (SDEP) . . 75

6.2.4 Simulation Example . 76

6.2.5 Worst-Case Recovery Delay Calculation Example 76

7 CONCLUSIONS . 79

APPENDICES

A TUCONVERT INPUT FILE FORMAT . 81

B TUCONVERT OUTPUT FILE FORMAT 85

C TCTL QUERIES FOR D3RIP VERIFICATION 89

REFERENCES . 91

CURRICULUM VITAE . 97

xii

LIST OF TABLES

TABLES

Table 6.1 Verification Queries . 72

Table 6.2 Verification Results . 73

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Dependability Threats [1] . 6

Figure 2.2 Domino Effect . 7

Figure 2.3 TIOA for UseOldInputA and UseOldInputB [2] 11

Figure 2.4 UPPAAL Operation Overview . 13

Figure 2.5 UPPAAL Templates for UseOldInputA and UseOldInputB 15

Figure 3.1 System architecture. 18

Figure 3.2 Timing diagram of the RT system operation. 19

Figure 3.3 TIOA model of a generic node i. 20

Figure 3.4 TIOA for the shared-medium broadcast network. 21

Figure 3.5 Dependability Plane Illustration . 26

Figure 3.6 Frame encapsulation: DH (dependability header); PH (protocol header)

and application data. 26

Figure 3.7 Dependability Plane as TIOA. 28

Figure 3.8 Message Sequence Diagram of the RT System Operation. 29

Figure 3.9 TIOA model of a generic node i extended by dependability actions. 30

Figure 4.1 Software Architecture. 34

xiv

Figure 4.2 Operational Sequence within a typical time slot 37

Figure 4.3 Framework Architecture Including DP 38

Figure 4.4 TIOA for the shared-medium broadcast channel. 39

Figure 4.5 IL model as TIOA . 41

Figure 4.6 Coordination Layer as TIOA. 42

Figure 4.7 Dependability Plane as TIOA. 43

Figure 4.8 D3RIP Operation . 45

Figure 4.9 Communication via DP,CL,IL and SM 46

Figure 5.1 Transition representation in UPPAAL . 54

Figure 5.2 TUConvert Tool . 58

Figure 5.3 UPPAAL template for the shared-medium broadcast network. 64

Figure 5.4 Interface Layer Implementation In UPPAAL 65

Figure 5.5 Coordination Layer Implementation In UPPAAL 66

Figure 5.6 Dependability Plane Implementation In UPPAAL 67

Figure 6.1 Application Layer Template . 71

Figure 6.2 Timing of the Simulation Case Study . 76

Figure 6.3 Protocol operation: (a) Fault-free slot sequence; (b) Slot sequence with

rollback recovery. 77

xv

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 TUConvert Algorithm . 57

xvi

LIST OF ABBREVIATIONS

AT Acceptance Test

CL Coordination Layer

DH Dependability Header

DP Dependability Plane

IL Interface Layer

NRT Non Real-Time

RT Real-Time

SC Synchronized Checkpointing

SDEP Synchronization Based Dependability Protocol

SM Shared Medium

TCOZ Timed Communicating Object-Z

TCTL Timed Computation Tree Logic

TDMA Time Division Multiple Access

TIOA Timed Input/Output Automata

TSIL Time Slotted Interface Layer

UML Unified Modelling Language

URT Urgency Based Real-Time Protocol

xvii

xviii

CHAPTER 1

INTRODUCTION

Distributed real-time systems are widely used in areas such as factory automation, process
automation, building automation or automotive control [3, 4, 5]. The distributed applications
in such systems are dependent on the real-time data exchange among the distributed system
components over a communication network. To this end, different network architectures with
bus-based, switched or wireless communication facilities are adopted. Hereby, the depend-
ability attributes of the communication network such as maintainability and availability [1]
are key issues in order to support the timely delivery of communication messages for safety-
critical real-time (RT) applications as well as the reliable support of non-real-time (nRT) traf-
fic. A well-accepted method for increasing the dependability of communication systems is
the addition of hardware redundancy to the transmission medium where the system switches
to a redundant hardware resource in case a resource failure is encountered. However, software
faults such as corrupted memory or buffers, race conditions, operating system faults that occur
in the software protocol stack can not be resolved by hardware redundancy.

The distributed real-time computing systems are designed to satisfy certain timing constraints
in addition to the application level behavioral constraints. Such systems require the analysis
and verification of the system properties at the design stage before implementation. To this
end, timed input output automata (TIOA), as introduced in [6], constitute a viable mathemat-
ical framework for modeling and analyzing real-time systems. Furthermore, this framework
is suitable for distributed systems as the timed behavior of a system can be represented by
the composition of multiple TIOA representing its individual components. It is possible to
check certain practical conditions for individual TIOA models and the overall system model
that is obtained after composition. A further method to check if the design of a real-time
distributed system logically fulfills its timing and behavioral specifications is model checking.
Specifically, model checking techniques provide complete proofs of specifications fulfillment
for a given behavioral model of the system. UPPAAL [7] is a well-known automatic model
checking software tool that is based on the modeling framework of timed automata (TA). It
can be observed that, on the one hand, the TIOA framework provides convenient models for
distributed real-time systems and one can manually construct formal proofs for certain sys-
tem properties. On the other hand, UPPAAL is a software tool for formal verification and
employs behavioral TA models of the system components which again should be constructed

1

manually.

The focus of this thesis is the usage of software redundancy to achieve dependability attributes
for the communication of distributed real-time systems, which is facilitated over a time-slotted
network with broadcast capability, by using formal modeling, analysis and verification tech-
niques. The contributions of the thesis are as follows:

• We propose a dependability plane which constitutes a software layer that operates based
on the principle of checkpointing and rollback recovery [8]. Our dependability plane
detects software faults by means of a synchronized acceptance test (AT) on all network
nodes. Our AT inspects dependability information that is piggybacked on application
messages. If the AT fails, all nodes roll back to a non-faulty state upon reception of a
rollback message of the currently transmitting node. We model the proposed depend-
ability plane using the timed input/output automaton (TIOA) formal framework [9] and
show that all faults are resolved with a pre-computed bounded recovery time. We iden-
tify potential fault scenarios that cannot be resolved by the underlying hardware and
hence need to be addressed in the software stack. We then formulate the basic require-
ments of achieving the desired dependability attributes for the described model.

• We present an algorithm TUConvert, that generates UPPAAL TA models from dis-
tributed TIOA models. This algorithm achieves a complete workflow where the TIOA
models for system components are automatically converted to UPPAAL templates and
then formally verified by UPPAAL. To this end, we establish the basic conditions for
TIOA models that are suitable for such conversion.

• We apply the proposed dependability plane design to a family of distributed industrial
real-time protocols proposed in [10] to demonstrate its features. We then use the TU-
Convert Algorithm to obtain the UPAAL TA models for the overall protocol family
including the dependability plane and verify its correct operation.

The remainder of this dissertation is organized as follows: Chapter 2 gives the necessary
background information for a good understanding of the thesis work. The background sec-
tion describes the software dependability concepts, checkpointing and rollback mechanisms
together with the TIOA framework and UPPAAL toolsuite. Our novel dependability plane de-
sign for distributed real-time systems is given in Chapter 3 with the proposed checkpointing
and rollback recovery mechanism. We apply our dependability design on a family of dis-
tributed industrial real-time protocols in Chapter 4. Chapter 5 defines our novel TUConvert
algorithm which is used to convert TIOA models into UPPAAL TA models. We produce the
UPPAAL TA models of the family of distributed industrial real-time protocols by using the
TUConvert tool. The UPPAAL TA models of the framework layers are used for the simulation
and model checking based formal verification studies in Chapter 6. Finally the dissertation
gives some concluding remarks in Chapter 7.

Two journal papers are prepared as a result of this thesis study. The first one defines the

2

TUConvert algorithm, whereas the second one defines our dependability design for distributed
real time systems.

3

4

CHAPTER 2

BACKGROUND

This chapter describes the required background information for the thesis study. Dependable
computing concepts together with the checkpointing and rollback mechanisms for software
fault tolerance are defined in Section 2.1 and 2.2 respectively. On the other hand the TIOA
syntax for formal system modeling is described in Section 2.3 whereas UPPAAL as a simu-
lation and formal verification tool-suite is given in Section 2.4. Finally Section 2.5 defines
the real-time communication networks and the dependability design methodologies that are
employed in real-time communication.

2.1 Concepts of Dependable Computing

Dependability is considered as the ability to deliver service that can be justifiably trusted [1].
The formal treatment of dependability in the literature is based on the definition of threats –
actions that can affect the system’s ability to perform its service; attributes – quantities that
measure the system’s dependability; enforcement techniques – methods that are intended to
improve the system’s dependability [11].

Threats comprise faults, errors and failures. Here, faults/errors describe the deviation of a
device operation/internal system state from what is expected, whereby errors are the conse-
quence of faults. Faults and errors can cause failures, which describe the deviation of the
external system behavior from the specified one [11]. The precise relation between the de-
pendability threat is shown in Figure 2.1.

As shown in Figure 2.1 a fault is defined as a problem that causes a component level error in
the system operation. The effects of the component faults are not seen at the user level until
the faulty component is used within the correct system operation. The errors propagate to
other system components via the component interfaces and cause system failures at user level
causing the system to deviate from correct operation.

Dependability is measured by means of attributes such as reliability, maintainability, avail-
ability and safety. Reliability/maintainability describe the probability of correct service at
time t > 0, assuming that correct service/incorrect service is provided at time t = 0. The

5

notion of availability concerns the probability of correct service at time t > 0 with the only
assumption that repair is initiated immediately whenever incorrect service is detected. Safety
ensures that unacceptable failures do not occur in the presence of faults.

Figure 2.1: Dependability Threats [1]

Dependability of a system can be improved by using enforcement techniques such as fault
prevention, fault-tolerance, fault-removal or fault-forecasting [1]. Fault prevention addresses
the design level preventions to avoid the fault occurrences. The most effective design level
fault prevention method is using structural design and development methodologies. Fault tol-
erance is described as the strength of a system to whitstand system faults. In order to achieve
fault tolerance, the faults should be recognized and avoided before causing errors. Fault re-
moval is the removal process of the detected faults via fault detection and identification. On
the other hand fault forecasting is defined as the process of recognizing an incoming fault by
looking at the the system state changes.

In this study, fault-tolerance for fail-operational systems is of particular interest. That is, it
is desired to ensure continued correct service even in case of faults. Such task is generally
achieved by inserting predictive redundancy into the system in order to counteract faults [11].

2.2 Checkpointing and Rollback Mechanisms for Software Fault Tolerance

Software fault-tolerance concerns faults that are not accounted by the system hardware or
operating system [12]. A frequently used method for software fault-tolerance in distributed
systems is given by the checkpoint/rollback-recovery strategy [13, 14]. The system state is
recorded regularly on stable storage (checkpointing) and the system can hence recover its
computation from such checkpoint in case of fault (rollback). Hereby, it has to be noted that
information exchange among distributed processes requires communication through a net-
work [8]. Moreover, considering distributed real-time systems, is further essential to achieve

6

checkpoint/rollback-recovery without excessive computational effort and without impairing
the real-time system behavior [15, 16].

Concurrent processes in a real-time system have the requirement of completing their execution
within a pre-determined deadline. Failing to fulfill the timeline requirement can cause an
error in the execution fragment. It is difficult to meet the deadline requirement if one or
more processes in the system need restarts in case of a failure. Hence, it is a critical issue in
the design of real-time systems to develop error recovery mechanisms which do not require
restarts.

Since our main focus is achieving software fault tolerance for distributed real-time systems,
the dependability requirements should not require restarts for error recovery. The recovery
block approach is proposed in [17, 18] as means for error recovery without restart. In this
approach, the distributed system entities save their states several times as a procurement for
failure situations. The saved states are used to roll back in case of a failure situation. However
this rollback scheme may result in a cascade of rollbacks which causes the system entities to
roll back to the beginning of their executions. This problem is called as the domino effect.
Domino effect is illustrated in Figure 2.2.

Figure 2.2: Domino Effect

The vertical dashed lines in Figure 2.2 show the inter-process communications. Suppose that
a failure occurs in Process 3 after its 4th recovery block. This causes the third process to roll
back to its 4th recovery block. Since Process 4 has interacted with other processes after its 4th
recovery block, the other two processes should also rollback in order to recover their states
before the 4th recovery block of Process 3. This chain continues and all the processes face
with the obligatory situation to roll back to their initial states.

The literature offers three main approaches to checkpointing [8]. In uncoordinated check-
pointing, distributed processes take checkpoints independently. Such approaches are not suit-
able for real-time systems since they can lead to the domino effect which causes a system
restart. Communication-induced checkpointing enforces checkpointing based on information
that is piggybacked on application messages. That is, checkpointing is coordinated among dis-

7

tributed processes without introducing additional messages [19, 20]. In contrast, coordinated
checkpointing potentially relies on excessive message passing and computations in order to
coordinate checkpointing among distributed processes [8]. However, if clock synchronization
among distributed processes is available, checkpointing can be coordinated without further
message exchange [21, 22, 15].

A particular method for checkpointing/rollback recovery is based on recovery blocks and
acceptance tests (AT) [17, 18]. It assumes an application that is structured in a primary block
that is followed by an AT. If the AT fails, the application enters an alternate block that has
to perform the desired operation. After a further AT, the application continues its normal
operation. In this study, we develop a checkpointing/rollback recovery method for distributed
real-time systems that is based on coordinated checkpointing with synchronized clocks and a
particular recovery block.

2.3 Timed Input/Output Automata

Correctness or performance of timed systems depends on the timing of events and the order of
their occurrence as well as the system evolution between events [2]. The timed input/output
automata (TIOA) framework is developed as a general mathematical framework for modeling
and analyzing timed systems. The fundamental object in the TIOA framework is the timed
input/output automaton. TIOA framework enables the decomposition of a system which eases
the analysis of a distributed system. In this section, we point out the relevant properties and
features of TIOA for our conversion method.

According to the definition in [2], a TIOA is represented by a 6-tupleA = (X,Q,Q0, S ,D,T)
with the following entries:

• X: set of variables that are internal toA,

• Q: set of states with Q ⊆ val(X). Here val(X) denotes the possible valuations of X,

• Q0 ⊆ Q: set of initial states with Q0 6= ∅,

• S : signature, which lists the TIOA actions together with their types. There are input
actions I, output actions O and internal actions H,

• D: set of discrete transitions. Each transition is considered as a triple (q, a, q′) ∈ Q ×
S × Q,

• T : set of trajectories. Trajectories have a domain, which is a specific subset of the set
of the real numbers. For each τ ∈ T and time instant t ∈ R, τ(t) ∈ Q. Here, τ(t) denotes
the state valuation of the trajectory τ at time t.

In this definition, each variable v ∈ X possesses a static and a dynamic type. The static
type captures the possible range of values of v, whereas the dynamic type captures how the

8

valuation of v evolves in time. If v is a discrete variable, its value can only change at discrete
time instants, whereas an analog variable v can change continuously. For convenience, we
write Xd for the discrete variables and Xa for the analog variables. Hence, the state Q of the
TIOA either changes instantaneously with the occurrence of discrete transitions (if a related
transition is possible) or continuously during the evolution of trajectories. An action a ∈ S
is enabled at a state q ∈ Q if the related discrete transition is possible, that is there is a state
q′ ∈ Q such that (q, a, q′) ∈ D. According to the TIOA semantics, input actions (a ∈ I) are
always enabled, whereas output or internal actions (a ∈ O ∪ H) are enabled depending on
D. It has to be noted that the transition relation D generally characterizes an infinite number
of transitions. However, D usually need not be enumerated explicitly, but can be formulated
in terms of pre-conditions on Q that enable actions and the effect of a transition as a rule to
compute the new state after taking the transition.

In order to model physically relevant behavior, several practical conditions are introduced for
TIOA. In particular, a TIOA has to be input action enabling, i.e. q ∈ Q and a ∈ I ⇒ ∃
q′ ∈ Q s.t. q

a
→ q′. Furthermore, a TIOA must be time passage enabling: q ∈ Q⇒ ∃ τ ∈ T

s.t. τ.fval = q and either τ.ltime = ∞ or τ.ltime < ∞ and ∃ q′ ∈ Q, l ∈ L s.t. τ.lval
l
→ q′.

In this expression, τ.fval, τ.lval and τ.ltime denote the first valuation, last valuation and last
time of trajectory τ. Similarly, τ. f time denotes the first time of trajectory τ. Each particular
run of a system that is modeled by a TIOA A is described by an execution. In this context,
an execution fragment is an (S , X)-sequence α = τ1a1τ1a2 · · · , τi ∈ T and ai ∈ S , over the
actions S and the variables X, whereby it holds for the trajectories τi ∈ T and the actions
ai ∈ S that τi.lval

ai+1
→ τi+1.fval. That is, α records all discrete and continuous state changes

that happen during a system run. α is denoted as an execution if it starts from an initial state
α.fval ∈ Q0.

We next introduce a compact TIOA representation based on the TIOA language [23, 2]. In this
representation, a TIOA is defined by its header, state variables, signature, discrete transitions
and continuous trajectories with the following compact notation.

The header of a TIOA is given as the automaton name together with a list of parameters,
that either represent fixed values of a certain type or that denote a type. In the first case, a
parameter is for example written as n : Real, whereby n represents a value of type Real. In
the second case, we would write M : Type for a type M. Assuming that PF and PT represent
a list of fixed and type parameters, respectively, the header is written as

automaton Name(PF , PT)

States of a timed input/output automaton are the valuations of the variables X. The static
types of these variables are declared in the variables list in the form

x : T := x0

for a variable x ∈ X with type T and initial valuation x0.

9

The signature of a TIOA is given as a list of TIOA actions. We represent each action by

action type a(ya1 : Type, · · · , yaka : Type).

That is, each action is described by its action type (input, output, internal), its name (a) and
an optional list Ya of ka parameters ya1, . . . , yaka with their respective types.

Transitions of a TIOA are specified using a precondition (pre:) and an effect (eff:) in the
form

internal a output a(Ya) input a(Ya)

pre: fa(val(X)) pre: fa(val(X)) ∧ Ya = ua(val(X)) pre:

eff: val(X) := ha(val(X)) eff: val(X) := ha(val(X)) eff: val(X) := ha(val(X),Ya).

Hereby, we distinguish internal, output and input transitions. fa : val(X) → Bool is a predi-
cate on the variable valuation that defines the enabling condition for the transition in case of
internal and output transitions. There is no precondition for input transitions. The parame-
ters Ya are determined as Ya = ua(val(X)) when taking an output transition. The state update
is performed as ha(val(X)) in case of internal and output transitions. For input transitions,
ha(val(X),Ya) performs the state update using the variables Ya that are passed when taking the
transition.

Trajectories of a TIOA are defined by the time evolution of analog variables as well as stop
conditions, that determine when further advance of time is not allowed.

stop when w(val(X))

evolve d(x)� ex for x ∈ Xa

Hereby, d(x) represents the time derivative of x, � represents =, ≤, ≥ and ex is a real-valued ex-
pression containing valuations in val(X). It is assumed that the analog variables evolve accord-
ing to continuous functions, whereby the discrete variable values remain constant throughout
a trajectory. The stopping condition w : val(X) → Bool is fulfilled if the only state where
w(val(X)) is true is the last state of the trajectory. In that case, either a discrete transition
occurs, after which further time evolution is possible or the execution of the TIOA terminates.

In order to illustrate the previously introduced notation, TIOA examples are given in Fig. 2.3.
The automata are taken from [2]with small modifications. Fig. 2.3 shows two TIOA with
the names UseOldInputA and UseOldInputB, which implement a peer-to-peer messaging
scheme. UseOldInputA receives the parameter maxIt with type Int, whereas UseOldInputB
has no parameters. The automaton states are defined by the valuation of three variables. The
discrete variable maxoutd is used as a counter variable, limiting the number of messages.
The analog variable nowa captures the evolution of time, whereas the discrete variable nextd

is used to define the messaging instants. The signature comprises the actions a and b. a is
used as a parametrized output action with parameter cnt in UseOldInputA automaton and as
a parametrized input action with parameter cnt in UseOldInputB.

Looking at the discrete transitions in UseOldInputA, a can happen if the precondition
maxoutd > 0 ∧ nowa = nextd is fulfilled. In that case, the discrete variables maxoutd

10

and nextd are updated and the parameter cnt = maxoutd is passed. If b happens, nextd

is updated. For the discrete transitions in UseOldInputB, it holds that the occurrence of a
updates the discrete variables maxoutd and nextd. The output transition b can happen if
maxoutd > 0 ∧ nowa = nextd. In that case, nextd is updated. In both TIOA, time evolves
continuously with a rate of 1 and the time evolution stops when nowa = nextd. Hereby, note
that the variables are local to the automata, meaning that each TIOA has an own instance of
variables with the same name.

automaton UseOldInputA(maxIt : Int)

state variables

maxoutAd : Int :=
maxIt

nowAa : Real := 0

nextAd : double := 0

signature

output a(cnt : Int)

input b()

transitions
output a(cnt)

pre:

(maxoutAd > 0)∧
(nowAa = nextAd)∧
cnt = maxoutAd

eff:

maxoutAd :=
maxoutAd − 1;
nextAd := in f ty;

input b()

eff:

if nextAd = in f ty
nextAd :=
nowAa + 1

trajectories
stop when

nowAa = nextAd

evolve

d(nowAa) = 1

automaton UseOldInputB()

states

maxoutBd : Int := 0

nowBa : Real := 0

nextBd : double := 0

signature

input a(cnt : Int)

output b()

transitions
output b()

pre:

(maxoutBd > 0)∧
(nowBa = nextBd)

eff:

nextBd := in f ty;

input a(cnt)

eff:

maxoutBd := cnt
if nextBd = in f ty
nextBd :=
nowBa + 1

trajectories
stop when

nowBa = nextBd

evolve

d(nowBa) = 1

Figure 2.3: TIOA for UseOldInputA and UseOldInputB [2]

The previous TIOA definition captures the behavior of a single TIOA. If distributed systems
are considered, it is beneficial to model each system component by a separate TIOA. We
next describe the interaction of multiple TIOA in the TIOA framework. The TIOA syntax
defines the composition operation to form complex systems from individual TIOA. Consider
two TIOA Ai = (Xi,Qi,Q0,i, S i,Di,Ti), i = 1, 2. A1 and A2 are called compatible if they do
not share any variables, internal actions and output actions. That is, X1 ∩ X2 = ∅, H1 ∩ S 2 =

H2 ∩ S 1 = ∅ and O1 ∩ O2 = ∅. The composition A = A1||A2 of two compatible TIOA
combines the variables ofA1 andA2, and identifies the shared external actions ofA1 andA2

by their common name. Formally, the composition is defined by

• X = X1 ∪ X2,

• Q = {x ∈ val(X)|xdXi ∈ Qi, i = 1, 2}, where xdXi is the restriction of x to the variables
in Xi for i = 1, 2,

11

• Q0 = {x ∈ val(X)|xdX1 ∈ Q0,1 ∧ xdX2 ∈ Q0,2},

• I = (I1 ∪ I2) − (O1 ∪ O2), O = O1 ∪ O2, H = H1 ∪ H2, S = I ∪ O ∪ H,

• for x, x′ ∈ Q and a ∈ S , x
a
→ x′ iff for i = 1, 2 either a ∈ S i and xdXi

a
→ x′dXi or a < S i

and xdXi = x′dXi,

• T = {τ ∈ tra js(X)|τ ↓ X1 ∈ T1 ∧ τ ↓ X2 ∈ T2}, where τ ↓ Xi restricts the trajectory τ to
the variables in Xi for i = 1, 2. tra js(X) is the set of all trajectories over X.

In principle, both TIOA in the composition evolve independently. Only if one of the TIOA
performs an output transition involving a shared external action a, the input transitions in the
other automaton with the same name a take place synchronously.

An important property of a timed I/O automaton is the progressiveness, stating that the au-
tomaton has no locally-Zeno behavior [2]. In other words progressiveness of an automaton
implies that the automaton can never make an infinite number of state transitions within a
finite time interval. The composition operation of timed I/O automata is associative and pre-
serves progressiveness.

Theorem 1 LetA1 andA2 be two progressive TIOA. Then,A1||A2 is also progressive [2].

The composition of UseOldInputA and UseOldInputB in Fig. 2.3 has the output actions a
and b, whereas there are no input actions. The initial state is system system has a unique initial
state with maxoutAd = maxoutBd = maxIt, nowAa = nowBa = 0 and nextAd = nextBd = 0.
Time evolution of the composed system is represented by the real-valued variables nowAa and
nowBa which increase with a rate of 1. Since UseOldInputA and UseOldInputB in Fig. 2.3
are progressive, their composition UseOldInputA || UseOldInputB is also progressive.

2.4 UPPAAL as a Formal Modeling and Verification Environment

Formal approaches are frequently employed to check whether a system design logically ful-
fills its timing and behavioral specifications [24, 25]. Model-checking is a powerful technique
that can provide complete proofs of specifications fulfillment if the system behavioral model
is given as a concurrent state-graph model. Model checking is usually carried out by com-
paring the behavioral model of a system with a temporal logic formula defining the system
level requirements. Short verification time, reduced complexity with the possibility of par-
tial function checking and the availability of sequential system behavior verification are the
advantages of model-checking in the formal verification process [26, 27]. UPPAAL [7] is a
well-known automatic verification software tool. It has been used to verify the operation of
different real-time systems such as a robot scrub nurse [28], POSIX operating systems [29]
and timed multitask systems [30]. UPPAAL uses timed automata extended with data vari-
ables as the description language. It also has a simulator that is used to see the behavior of
the system.

12

UPPAAL is a tool suite for modeling, simulation and verification of real-time systems [7, 31]
based on the theory of timed automata (TA) [32]. Typical applications of UPPAAL are control
applications and communication protocols where timing plays a critical role.

UPPAAL consists of three main parts: a description language, a simulator and a model-
checker. UPPAAL uses a non-deterministic description language extended with data types
[31] [33]. The simulator is a validation tool that allows examining the functional behavior of
the modeled system. The simulator provides an inexpensive mean for the detection of faults
and inconsistencies in the early design stage. There are two different simulators in UPPAAL.
The symbolic simulator (simulator) is used to examine the possible dynamic executions (sym-
bolic traces) of a system as a means for validation. The concrete simulator on the other hand
is used to examine the concrete traces of a system where the specific time to fire a transition
can be selected. The verifier is used to check safety and liveness properties by exploring the
state-space of the system. The verifier provides a requirement specification editor for spec-
ifying the system requirements in terms of TCTL (Timed Computation Tree Logic) queries.
The basic workflow of UPPAAL is given in Fig. 2.4.

Figure 2.4: UPPAAL Operation Overview

As shown in Fig. 2.4, UPPAAL operation is started by an operator with a graphical model
of the system entities. The input model is used as a template in order to create behavioral
instances. Input UPPAAL templates depend on a timed automaton extended with certain data
structures such as bounded integer variables, templates and constants. UPPAAL templates
can be important from other system models.

Systems, composed of multiple automata, can be defined by creating the instances of the
input templates. Both symbolic and concrete simulations can be run over the defined systems.
UPPAAL uses the verification engine Verifyta to verify the systems. The operator writes
a number of verification queries in order to check if the model requirements are satisfied.
The queries for model-checking are written in text based Timed Computation Tree Logic
(TCTL) syntax [34] [35]. UPPAAL’s verifyta engine uses these text based queries as inputs.
In addition, the verifyta engine is capable of generating symbolic traces for the unsatisfied
queries. This feature makes the diagnostic analysis of a system model easier via showing the

13

violating state transition for a specific query.

Example applications of UPPAAL for a communication channel and a real-time scheduling
framework are given in [36] and [29] respectively.

In order to represent TA as defined in UPPAAL, we refer to the notation in [31, 37]. We
employ the tupleU = (F, L, l0,V, v0,C, A, I, E) where:

• F is the set of parameters,

• L is the set of locations with the initial location l0 ∈ L,

• V is the set of variables with the initial valuation v0,

• C is the set of channels with input channel c? and output channel c! for each c ∈ C,

• A = {c!, c?|c ∈ C} ∪ {τ} is the set of actions with the silent action τ,

• I : L × val(V) → Bool assigns an invariant for the variable valuation to each location
l ∈ L

• E ⊆ L × (val(V)→ Bool) × A × (val(V)→ val(V)) × L is a set of edges.

We now give a more detailed explanation of the TA definition. F represents parameters that
can be different for different instances of a TA. These parameters are substituted in the TA
declaration in UPPAAL. A TA is permitted to stay in a location l ∈ L as long as its invariant
I(l, v) evaluates to true for v ∈ val(V). If the invariant is violated, either a discrete edge has
to be fired from l or time has to stop which leads to an invalid execution of the TA. Since
invariants are directly associated to locations, we use the notation l.inv to refer to the invariant
of location l. In UPPAAL, an invariant is defined as a conjunction of boolean expressions
which comprise simple conditions on clocks, differences between clocks and boolean expres-
sions without clocks. Clock bounds should be given by integer variables and lower bounds on
clocks are disallowed [38] .

Variables are divided into local variables M and global variables G such that V = M ∪ G.
Hereby, the valuation of local variables in M can only be updated by the TA itself, whereas
the valuation of global variables in G can also be updated by the environment. Moreover, a
subset of the variables constitutes clock variables that evaluate to a real number and evolve
with a time derivative of 1 or 0. In the latter case, the clock realizes a stopwatch. We write
K for the set of clocks and assume that all remaining variables are discrete variables that can
only change when an edge is fired.

Channels synchronize the firing of edges in different TA: in the case of a binary synchro-
nization channel c ∈ C, an edge with output channel c! synchronizes with one edge with
input channel c?; in the case of a broadcast channel c ∈ C, an edge with output channel c!
synchronizes with all edges with input channel c? that can participate in the synchronization.

14

Actions consist of output actions of the form c!, input actions of the form c? and the internal
action τ that is not synchronized. For each edge e = (l, g, a, r, l′) ∈ E, g : val(V) → Bool is
a predicate that denotes the guard, a is an action and r : val(V) → val(V) denotes the update
function. If e fires at a state v ∈ val(V), the state is updated to r(v). Hereby, the edge e can
fire if and only if g evaluates to true for the current variable valuation and I(r(v)) = true. We
write e.guard for the guard and e.update for the update function of e. Moreover, we specify
the synchronization property of e using the related channel c ∈ C and channel type (c? or c!)
by e.sync. If the firing of e is silent, e.sync is unused.

UPPAAL templates that realize the same behavior with the timed I/O automata UseOldInputA
and UseOldInputB are given in Fig. 2.5. Both templates have a single initial location l_init.
The initial location is tagged as committed in order to guarantee that the operation within the
template is started with the outgoing edge transition from the initial location. Both automata
define the same variables. The discrete variable maxout limits the number of discrete transi-
tions whereas next is the discrete variable defining the time instants to fire an edge with an
output channel. The analog variable now is used to keep track of the time evolution. The au-
tomata make their variable initializations while taking the first edge transition from the initial
location l_init to the idle location l_idle. l_idle location is the second location for each au-
tomaton. Time passage is allowed within that location until one of the edges with the actions
a?, b? (input channel) or a!, b! (output channel) is fired.

Figure 2.5: UPPAAL Templates for UseOldInputA and UseOldInputB

Regarding the composition of both automata, the operation is started with the action a! when
the corresponding guard condition (maxout> 0) && (now == next) is fulfilled. UseOldInputB
synchronizes with the action a? and sets it local variables according to the global variable cnt.
The function afunc() implements the effect field of the input transition a?. UseOldInputB
automaton continues the operation with the action b!. UseOldInputA synchronizes with b?
action and updates its local variables according to its internal state within the function bfunc().
The operation is continued until maxout reaches the limit maxIt which is passed as a parameter
to UseOldInputA.

15

2.5 Real-time Communication Networks and Dependability

Many real-time embedded systems such as contemporary automation and manufacturing sys-
tems are implemented as distributed systems to realize complicated tasks where the participat-
ing devices are required to coordinate their operation. To this end, communication networks
are employed to transport the messages that are generated by the system components.

These networks are required to guarantee the timely delivery of messages. In particular, real-
time (RT) messages that are either periodic (e.g., from position control) or sporadic (e.g.,
from limit switches) have to be delivered with small delays. In addition to RT messages, non-
real-time (nRT) messages related to time-uncritical tasks [39] and data communications for
diagnosis or maintenance [40, 41] should also be delivered.

In the recent years, generic network technologies that are widely used for home and office
networks and can be implemented with inexpensive COTS components are employed for real-
time communication. To this end, Ethernet is the most promising standard [5]. Furthermore,
there are efforts to employ wireless standards such as IEEE 802.15.1/BT, IEEE 802.15.4/Zig-
Bee and IEEE 802.11/WLAN [42]. Many of these standards such as shared-medium Ethernet
(IEEE 802.3) and wireless standards are broadcast networks with timing and synchronization
support. Despite their advantages, these standards do not inherently support the timely de-
livery requirements of the industrial applications. Hence, it is an important research problem
to achieve real time guarantees over these standards without modifying the network interface
hardware to ensure the compatibility and low cost implementation.

It is critical to provide dependability support for such communication networks to support the
timely delivery of communication messages [41, 5]. A well-accepted method for increasing
the dependability of communication systems is the addition of hardware redundancy to the
transmission medium [43, 44, 5]. That is, the system switches to a redundant resource in case
a resource failure is encountered. Here, the network, network interfaces and entire network
devices can be considered as resources [45, 46]. The academic literature provides various
approaches for network redundancy based on fast recovery of switches [47, 48] and standard-
ized solutions such as the media redundancy protocol [44]. In addition, different industrial
Ethernet protocols are equipped with redundant network devices (such as Ethernet Powerlink
[49], FTT-Ethernet [50]), redundant network interfaces (such as EtherCAT [51], Ethernet for
Plant Automation [52]) and redundant network channels (such as SERCOS III [53], Time
Critical Control Network [54]).

Although the cited methods support dependability with respect to faults in the network hard-
ware, they do not consider software faults such as corrupted memory or buffers, race con-
ditions, operating system faults that occur in the software protocol stack and can hence not
be resolved by hardware redundancy. A notable difference is the work in [55] that uses re-
dundant controller tasks in order to resolve faults such as corrupted message receptions on
TDMA-based protocols such as FlexRay.

16

CHAPTER 3

DEPENDABILITY DESIGN FOR DISTRIBUTED REAL-TIME
SYSTEMS WITH BROADCAST COMMUNICATION

This chapter defines a general software dependability mechanism for distributed-real time
systems using broadcast communication. We first define the general properties of considered
RT systems in Section 3.1. Then we develop our distributed rollback strategy depending on
synchronized checkpointing in Section 3.2.

3.1 Distributed Real-Time System Model

Before giving our dependability design, we first define the general properties of distributed
real-time systems under discussion. Section 3.1.1 lists the general properties of considered
distributed real-time systems. Then Section 3.1.2 defines a general node model representing
the distributed real-time system node in the framework of TIOA. We define potential fault sce-
narios for the distributed system models in Section 3.1.3. Finally we list certain dependability
requirements of the systems under discussion in Section 3.1.4.

3.1.1 General Properties of Distributed Real-Time Systems

This section defines the general properties that a distributed real-time system should have
in order to apply our dependability design. We first give a basic system architecture for
a distributed real-time system in Fig. 3.1. The system is composed of distributed nodes
communicating over shared medium. That is each transmitted message in the network is
received by all nodes. Each process running on distributed nodes sends and receives messages
regularly. Hence each node in the network have a frequent medium access.

The list of properties that the distributed real-time system should have is as follows:

P1 Synchronization: The distributed system entities (nodes) should operate in a time syn-
chronized fashion.

17

Figure 3.1: System architecture.

P2 Cyclic Operation: The distributed nodes should communicate in a cyclic manner. It
is better to have a time slotted communication where each time-slot is assigned to a
unique node.

P3 Broadcast Communication: Each transmitted message in the communication infrastruc-
ture should be received by all nodes in the network.

P4 Regular Network Access Per Node: In order to get the state information regularly, each
node should send a message within a limited time which can be calculated before sys-
tem operation.

P5 Knowledge About TX Instants of Each Node: Each node in the network should know
the message transmission instants of the other nodes, so that it can recognize an un-
transmitted or wrong transmitted message.

P6 Regular Update of State Information: In order to have an updated state information for
consistency checks, each node should update its state information regularly after each
message reception.

P7 Consistent State Information Among Nodes: There should be a state information which
is consistent at each node for certain time instants in order to make consistency checks
in a distributed manner.

There are certain synchronization procedures such as IEEE1588 [56] to obtain distributed
synchronization defined in P1. The exist system examples communicating in a ring topology
on a shared medium having the properties P2 and P3. The systems composed of sensors and
actuators are the example system architectures where each node has a regular netowrk acsess
with updated state information (properties P4 and P6). Systems implementing distributed
resource allocation have consistent state information (P7) and each node knows about the
message transmission instants of other nodes (P5). Hence there are systems that have the
listed properties P1-P7.

18

3.1.2 Generic Node Model

In order to formalize the discussion, we next develop a TIOA model of a generic network
node that fulfills the properties stated in Section 3.1.1. To this end, we first reason about the
event timing in such generic node according to Fig. 3.2. In principle, P1 and P2 imply that
there is a common slot time T that captures the duration of one time slot of the cyclic system
operation. Considering P3 to P6, the possible actions taken by each node are transmitting (tx)
and receiving messages (rx) as well as data processing (process). We assume that process is
performed in any time slot, whereas the occurrence of tx and rx depends on the system state.
Accordingly, we denote a slot as transmission slot if all actions are executed. Otherwise the
slot is a spare slot. Considering P6, the temporal order of these actions in a transmission slot is
as follows. First, one of the nodes (P4) transmits a message if available and all nodes receive
this message (P3). Respecting P1, we assume that transmission is always started before time
t1 ≥ 0 and reception is completed before t2, whereby t1 < t2 < T . After that, data processing
is performed between t2 and T before the end of the time slot. In spare slots, only process
occurs between time t2 and T .

Figure 3.2: Timing diagram of the RT system operation.

We next present the TIOA model in Fig. 3.3 that captures the described timing behavior of
a generic node i. Time is represented by the analog variable nowa

i that evolves with time
derivative d(nowa

i) = 1. The local state of the node is stored in STd
i and Txd

i and Rxd
i represent

the transmit and receive message buffers respectively. STd
i and Txd

i are initialized by IST and
Im, respectively, whereas Rxd

i is initially empty. As indicated in Fig. 3.2, the possible actions
are txi (output), rx (input) and processi (internal). txi is possible if time is smaller than t1
(nowa

i ≤ t1), a message is ready in the Tx buffer (¬Txi.empty()) and the current time slot
is allocated to the node for message transmission (foc(S T) = i). In transmission slots, the
function foc : AST → N returns a unique node for transmission based on the state variable
valuation in agreement with P4 and P5. In particular, we assume that there is an interval of ∆I

time slots that indicates the largest number of time slots between two transmissions of each
node. In spare slots, foc returns 0 such that no node transmits a message. Note that it is ensured
by the stop condition nowa

i = t1 ∧ foc(STd
i) = i ∧ ¬Txd

i .empty() that txi always occurs before
t1. If txi occurs, the content of the transmit buffer is sent (m := Txi) and removed from the
buffer (set Txi empty). Messages received by rx are stored in the receive buffer (Rxd

i := m).
Data processing is performed after t2 and before T (t2 ≤ nowa

i ≤ T). If processi happens,

19

the state and transmit buffer are updated (STd
i := fST(STd

i ,m) and Txd
i := fTx((STd

i ,m)), the
slot time is reset (nowa

i := 0) and the receive buffer is emptied (set Rxd
i empty). Hereby, the

function fST : AST × M → {0, 1} performs the state update based on the state variables and
fTx : AST × M → M determines new messages for transmission.

The variables messd, nextd, colld and nowa define the variables of the TIOA. messd (type
M) holds the current message on the network, nextd (type int) represents the completion of
the next message transmission, colld (type bool) is true if there is a collision – two messages
from different nodes at the same time – on the network. nowa (type Real) captures the time
after the last message transmission.

TIOA Nodei(t1 : int, t2 : int,T : int, AST : Type, IST : AST,M : Type, Im : M)

states

nowa
i : R := 0

STd
i : AST := IST

Txd
i : M := Im

Rxd
i : M := empty

signatures

output tx(m : M)i

input rx(m : M)

internal process()i

transitions

output tx(m)i

pre:

nowa
i ≤ t1

¬Txi.empty() ∧ foc(STd
i) = i

eff:

set m := Txi

set Txi empty

input rx(m : M)

eff:

Rxd
i := m

internal process()i

pre:

t2 ≤ nowa
i ≤ T

eff:

STd
i := fST(STd

i , Rx
d
i)

Txd
i := fTx(STd

i ,m)
nowa

i := 0
set Rxd

i empty

trajectories
stop when

nowa
i = t1 ∧ foc(STd

i) = i ∧ ¬Txd
i .empty()

nowa
i = T

evolve

d(nowa
i) := 1

Figure 3.3: TIOA model of a generic node i.

Considering the timing behavior of the generic node as explained previously, the TIOA model
in Fig. 3.3 already fulfills P1 to P6 in Section 3.1.1.

We further introduce the TIOA model S M in Fig. 3.4 of the shared-medium broadcast network
in Fig. 3.1. We model the shared-medium broadcast network by a TIOA with the name S M

20

and the parameters n and M in Fig. 3.4. Here, n is a parameter of type int that identifies the
number of nodes on the network, whereas M is a parameter that specifies the message format
to be transmitted on the network: for each message m with type M, there is a field m.length
that specifies the message length.

automaton S M(n : int,M : Type)

states

messd : M := empty
colld : bool := false
nextd : int := 0
nowa : Real := 0

signature

input TX(m : M)i

output RX(m : M)

transitions
input TX(m)i

eff:
if ((colld = false) ∧(messd is empty))
messd := m
nextd:=m.length

else
colld := true
nextd := 0
set messd empty
nowa := 0

output RX(m)

pre:
(nowa = nextd) ∧ (messd not empty)
eff:
set messd empty
nextd := 0

trajectories

stop when

(nowa = nextd) ∧ (messd not empty)

evolve
d(nowa) = 1

Figure 3.4: TIOA for the shared-medium broadcast network.

The signature of the TIOA is given by the actions TXi for i = 1, . . . , n and RX. TXi is an input
action that describes message passing from node i to the shared-medium broadcast network.
Its parameter is the message m. The output action RX indicates that the transmission of a
message is completed and the message is passed to all connected nodes.

The transition for TXi has no pre-condition, since it belongs to an input action. Its effect
depends on the state of S M. If no message is currently transmitted and no collision occurred
previously, message transmission is started (messd = m) and the time for completion of
the transmission is determined (nextd := m.length). Otherwise, a collision is detected and
all messages are discarded. In both cases, the analog variable nowa is reset. The transition
for the output action RX(m) occurs under the pre-condition that transmission of a message is
completed and the parameter m is assigned the transmitted message (nowa = nextd)∧ (messd

not empty) ∧ (m = messd). In that case the variables are updated such that currently no
messages are transmitted.

Finally, the trajectories show that time evolves with a time derivative of 1 (d(nowa) = 1) and

21

time stops when (nowa = nextd) ∧ (messd not empty) in order to enforce sm2il(m).

The behavior of S M is such that any node can transmit a message at any time. If the network
is idle, the transmission is completed after the transmission delay of the message. Otherwise,
a collision occurs, in which case S M shows further time evolution but does not allow any
further actions.

Together, it holds that behavior of the overall system under consideration according to Fig.
3.1 is given by

S M||Node1|| · · · ||Noden.

Respecting the definition of foc, it is readily observed that at most one node is allowed to
transmit a message in each time slot. That is, there are no collisions on the shared-medium
broadcast network. In addition, the definition of the shared action rx in Nodei, i = 1, . . . , n and
in S M ensures that each message that is transmitted by some node i before time t1 is received
by all nodes in the same time slot before time t2. Then, data processing is done with the same
received message by all nodes after time t2. In order to also incorporate P7 in our model, we
assume that data consistency should be achieved after processing. We introduce the function
fCON : AST×AST → {0, 1} such that for any state variables S T, S T ′ ∈ AST, fCON(S T, S T ′) = 1
if and only if the data in S T and S T ′ is consistent. The consistency of the state information
is application dependant. In our Node model, it depends on the equality of state variables in
different nodes. Then, P7 holds if for any two nodes i and j, fCON(STd

i , ST
d
i) = 1 at time T in

each time slot.

3.1.3 Potential Fault Scenarios

As is discussed in the previous section, the correct operation of the described system relies on
the fact that the state variables of all nodes are consistent at the end of each time slot and that
all transmitted messages are correctly received by all nodes. Although this result is formally
correct by the design of the node model, it is obtained under the assumption of fault-free
protocol operation. However, as is pointed out in the related literature [57, 5], the potential
occurrence of software faults as well as hardware faults has to be taken into account. In
principle such faults can originate in the software components of the system as well as in the
underlying hardware and operating system layers if they are undetected in those layers [12].
We next assess possible faults to be expected during the system operation and classify these
faults according to [1, 57]. We assume that faults occur accidentally during system operation
and are neither caused in the development phase nor by an incompetent user. Hence, we
consider the fault classes of system boundaries (internal or external), persistence (permanent
or transient) and dimension (software or hardware) [57].

1. One possible fault is caused by the network link for example due to bit errors. Such
external hardware fault is usually transient and has the effect that a transmission slot
remains empty, that is, no message is received by any node. This effect is observed by

22

all network nodes since the allocation of transmission slots is known by the nodes using
the function foc and in compliance with P5.

2. Another fault is potentially caused by wrong function evaluations of fST that lead to
incorrect state update. Such internal software fault of a single node is usually permanent
and is only observable in comparison to the state of other network nodes. The effect of
such fault is the immediate or future inability of the faulty node to transmit messages
in the correct time slot because of a wrong result of foc or fTx. Hence, it is possible that
time slots are missed or collisions are caused.

3. It is further possible that software assets such as buffers or the operating system are
faulty. Such internal software faults are usually transient but lead to permanent errors
in the system state (similar to the case in 2). Hence, they cause the same effect.

4. Finally timing errors which cause transient synchronization problems can be encoun-
tered such that P1 is violated. Timing faults such as hardware or software timing jitters
and delays, can lead to missed time slots or collisions. Moreover, such faults can cause
the faulty node to transmit a message within a spare time slot. In either case, such fault
can be detected by the connected healthy nodes within the network due to P5.

3.1.4 Dependability Design Requirements

The main objective of this chapter is the software fault-tolerance of distributed real-time sys-
tems as described in Section 3.1.2 with respect to faults as listed in Section 3.1.3. We next put
forward several properties of the system under consideration that require particular attention
in the dependability design in order to corroborate our design choices.

We first note that our system model has to be considered as a distributed real-time system
with strong interaction between the system components. In particular, the state variables of
all system components are supposed to be consistent and are potentially updated in each time
slot, whereas the network bandwidth is limited. In addition, the correct protocol operation
relies on message passing during fault-free operation, which complicates fault recovery [8].
Hence, we deduce the following requirements.

R1 Nodes should exchange messages for consistency checks of the state variables.

R2 Checkpoints should be taken frequently without need for additional message passing.

Our system model requires message exchange for its correct operation. In particular, the time
slot ownership is determined by the system itself and there is no unrestricted network access
for any node. This leads to the following requirements.

R3 Data exchange for dependability support should be piggybacked on application mes-
sages.

23

R4 Each node should/can only provide dependability data in its owned transmission slots.

Every node is aware of the ownership of any time slot. In particular, each node can identify if
slots are used correctly or not if a message is sent in each transmission slot. Hence, we have
the following requirement.

R5 A node should transmit a (potentially empty) message in each time slot it owns.

Under requirement R5, each node receives a message in each transmission slot. Hence, it is
possible to perform a consistency check in each transmission slot.

R6 A consistency check should be performed at each node at the end of each transmission
slot.

As described in Section 3.1.3, there can be faults that cause a faulty node to transmit within
a spare time slot or cause a collision in a wrong transmission slot. Hence, a consistency
check needs to be performed whenever a message is received on the shared medium and it is
beneficial to prevent nodes that participate in a collision from sending further messages.

R7 A consistency check should be performed in each time slot where a message is received.

R8 Nodes that participate in a collision should avoid further transmissions untill the fault
situation is solved.

3.2 Distributed Rollback Strategy with Synchronized Checkpointing

This section defines our dependability design depending on the facts and the node model given
in Section 3.1. We first give our assumptions for the dependability design in Section 3.2.1.
Then the basic operation of our strategy is defined in Section 3.2.2. Our design depends on
an acceptance test mechanism for consistency checks. Section 3.2.3: defines the acceptance
test realization. Then we give the generic model of our Dependability Plane in Section 3.2.4.

3.2.1 Assumptions

We first formulate realistic assumptions that should be satisfied, such that the described check-
pointing and rollback strategy is successful.

It is not possible to detect system faults if the number of faulty nodes in the system exceeds a
certain limit. As given in [58, 59] the total number of nodes should be more than twice of the
number of faulty nodes. Hence the first assumption is:

24

A1 The relation between the number of nodes N in the system and the number of concurrent
faulty nodes F is given as follows: N ≥ 2 · F + 1.

In order to begin the operation the system needs a baseline that is guaranteed to be fault free.
Otherwise the system can not define a healthy checkpoint to roll-back in case of a system
fault. Hence our second assumption is:

A2 There are no configuration faults at the beginning of the system operation such that the
system is fault free at initialization.

3.2.2 Basic Operation

Respecting the stated requirements, we propose a novel distributed rollback strategy with
synchronized coordinated checkpointing in order to achieve dependability of our distributed
real-time system. The main features of our strategy are

F1 A dependability plane (DP) that is connected to the shared-medium broadcast network
and to the software process on each node.

F2 A dependability header (DH) that is piggybacked on messages transmitted on the
broadcast network.

F3 Synchronized checkpointing (SC) in order to store local copies of the state variables
STd

i .

F4 An acceptance test (AT) at the end of each transmission slot and erroneously occupied
spare slot.

F5 A rollback message (RM) that is transmitted in the first transmission slot of a node that
is certain about a fault occurrence.

More precisely, the DP is realized as depicted in Fig. 3.5, whereby it is assumed that the DP
constitutes a secure storage. At the beginning of each time slot, the valuation of the current
state variables STd

i is stored by the DP. Moreover, DP keeps track of the slot ownership as
decided by foc. That is, our dependability design ensures frequent SC without any message
exchange in line with R2.

It is required to check the consistency of the state variables STd
i according to R1. This is

achieved by DP that includes a copy of the state variables of the sender node (see Fig. 3.6) in
compliance with R3, R4 and R5.

In principle, the described system operation ensures that a message is sent in each transmis-
sion slot in case of correct operation. That is, it is possible for each node to compare its state
variables with the received DP. Accordingly, each node performs the acceptance test (AT) at

25

the end of each transmission slot in view of R6. In addition, our DP checks each time slot in
order to see whether it is occupied. In compliance with R7, the DP also triggers the AT in case
of an unexpected message reception within a spare time slot. Furthermore, the DP disallows
further transmissions of a node that participates in a collision according to R8.

Figure 3.5: Dependability Plane Illustration

AT determines the local view of each node about the necessity of a rollback action and stores
this information in a state variable atDLd

i of DP. If a node with a rollback decision obtains
a transmission slot, it sends a rollback message, where the DP in Fig. 3.6 contains atDLd

i =

f alse. This message is received by all nodes such that all nodes roll back to a correct state
that is stored in the DP. After the rollback operation, the system operation continues correctly
from the rollback state. It has to be noted that the proposed strategy addresses the previously
stated requirements R1 to R8. Since the AT and the resulting rollback action are the most
critical components of our strategy, a detailed description of the AT based on the potential
fault scenarios according to Section 3.1.3 is given in the sequel.

Figure 3.6: Frame encapsulation: DH (dependability header); PH (protocol header) and ap-
plication data.

3.2.3 Acceptance Test Realization

From the local point of view of a generic node i, we identify the following observations that
should lead to an unsuccessful AT and hence cause rollback.

O1 The content of the state variable STd
i of node i is not consistent with the variable received

in DP of a correctly transmitted message of another node.

O2 No messages are received within a RT or nRT transmission slot.

O3 An unexpected message comes within a spare slot.

26

There is at least one possible scenario that can cause each of the above observations. In
case O1, there can be two reasons for the variable mismatch. Either the receiver node or
the transmitter node has corrupted state variable STd

i . In case O2, we identify three possible
causes: a faulty receiver node can wrongly assume that a spare slot is a transmission slot, a
faulty transmitter node can miss its transmission slot or a faulty node can use a transmission
slot that is allocated to another node, whereas the resulting collision is also observed as an
unoccupied transmission slot. In case O3, there are two possible fault scenarios: either the
receiver node is faulty and considers a transmission slot as spare, or the transmitter node is
faulty considering a spare slot as it’s transmission slot.

According to the DP design, all of the above observations should cause an immediate rollback
request to a correct time slot by the owner of the next transmission slot. In this context, two
issues have to be taken into account. First, it has to be considered that, even if a fault is
observed at a certain time slot, it is not known when the fault actually occurred. In order to
evaluate this delay, we use the worst-case inter-transmission delay ∆I as introduced in Section
3.1.2. Any faulty node will obtain network access within at most ∆I time slots. Second, it is
possible that the transmission of the rollback request is delayed. In the worst case, F nodes
are prevented from transmitting a rollback request due to an observed collision. In that case,
it is required to wait until the node F + 1 owns a transmission slot. That is, we introduce
the worst-case F-node transmission delay ∆T which is the maximum number of time slots
until F + 1 different nodes own at least one transmission slot. Note that both ∆I and ∆T

are application-dependent parameters that can be determined for each practical distributed
real-time system realization. Together, the worst-case fault detection delay ∆F evaluates to

∆F = ∆I + ∆T. (3.1)

It is readily observed that, whenever a rollback request is transmitted by a node at a slot x, this
implies that slot x − ∆F was correct in all nodes since it is either before or right at the correct
previous transmission slot of the faulty node according to (3.1). Moreover, it can be deduced
that the latest time for a fault-recovery is ∆F time slots after a fault-occurrence. Denoting the
duration of a time slot as dS lot, this leads to a worst-case recovery-time of dS lot × ∆F.

In view of the previous discussion, DP keeps a state variable history of ∆F time slots and
the AT checks for the situations defined in O1-O3 in every transmission slot and reception
slot. If a node observes a faulty condition, it sets a rollback request flag and waits for its
next transmission slot. Then, the node with the next transmission slot transmits the rollback
request message. According to (3.1), the fault happened at most ∆I time slots in the past and
transmission is delayed at most ∆T such that the at least the oldest item on the state variable
history is correct. With the rollback request, each node rolls back to this oldest state. We note
that a node that has raised a rollback request flag, does not repeatedly carry out the AT until a
rollback occurs.

After the informal description of the dependability plane operation in this section, we formally
model our dependability plane in the form of TIOA in Fig. 3.7.

27

TIOA DPi(∆F : int, t1 : int, t2 : int,T : int, AST : Type, ADL : Type, vDL : ADL, ACS :
Type,M : Type)

states

nowa
i : R := T

Histd
i : Q[AST] := empty

atDLd
i : B := true

ocDLd
i : int := 0

recDLd
i : B := f alse

atResd
i : B := true

stpTxd
i : B := f alse

vCSd
i : ACS := empty

signatures

output reqst(atRes : B)i
input updst(vS T : AST)i
input rx(m : M)
internal at()i
output rback(vS T : AST)i

transitions

input updst(vS T)i

eff:
if Histd

i .Size() = ∆F
Histd

i .RemoveLast()
Histd

i .Push(vS T)
ocDLd

i =: foc(vS T.CS, vDL)

internal at()i

pre:
atResd

i = true ∧ nowa
i = t2

ocDLd
i = true ∨ recDLd

i = true

eff:
if fCS(Hist.Top().CS,
vCSd

i) 6= true
atDLd

i := f alse
if ocDLd

i 6= recDL
d
i

atDLd
i := f alse

if (ocDLd
i = i) ∧ ¬recDLd

i
stpTxd

i := true
recDLd

i := f alse

input rx(m)

eff:
vCSd

i := m.CS
atResd

i := m.atRes
recDLd

i := true

output rback(Histd
i .Last())i

pre:
atResd

i = f alse
nowa

i = t2
eff:
Histd

i .Clear()
atDLd

i := true
ocDLd

i := 0
recDLd

i := f alse
stpTxd

i := f alse
vCSd

i := empty

output reqst(atRes)i

pre:
nowa

i = T
eff:
nowa

i := 0

trajectories
stop when

(atResd
i = true) ∧ (nowa

i = t2) ∧ (ocDLd
i = true ∨

recDLd
i = true)

(atResd
i = f alse) ∧ (nowa

i = t2)

evolve

d(nowa
i) := 1

Figure 3.7: Dependability Plane as TIOA.

28

The header parameters of DPi are the worst-case fault detection delay ∆F, the timing parame-
ters t1, t2, T , the dependability plane input parameter vDL. The data types passed as automa-
ton parameters are AS T , ADL, ACS and M for history keeping variables, dependability plane
state variables, message transmitting node state variables and message variables respectively.

Discrete transitions of DPi are defined by the actions updst, at, rx, rback and reqst. The
input updst action is used to receive the local state information of the connected Node i au-
tomaton whereas the rx input action is used to receive the state information of the message
transmitting node. DPi carries an acceptance test which is triggered by the internal at action
transition. Here the automaton makes a concistency check between the local and received
state informations. The output rback action is used to trigger a rollback request to the local
Node i and finally the reqst action is used to request the local state information of Node i.

3.2.4 Dependability Plane Operation

This Section defines the operational steps of the Dependability Plane. The operation of the
whole system (Node || DP || SM) is shown as a message sequence diagram in Fig. 3.8.

Figure 3.8: Message Sequence Diagram of the RT System Operation.

As seen in Fig. 3.8, the operation is started by the Node automaton. It transmits its current
state information (via updst action) to DP automaton. Then it transmits a message (via tx
action) on which the acceptance test result of the previous time slot as well as the current state

29

information is piggybacked. Shared Medium (SM) automaton forwards the incomming mes-
sage to each of the connected nodes via the rx action. The message information is forwarded
both to the node and the DP automaton. DP behavior, after receiving the incoming message,
varies depending on the acceptance test result (atRes) in the message. DP either triggers an
acceptance test (via at action) to see the current result of the network or triggers a rollback
action via the rback action. At the end of each time slot, the node automaton calculates the
state variables via the process action) while the DP automaton makes a request (via the reqst
action) to the Node automaton for the next time slot.

The node automaton given in Fig. 3.3 is updated according to the dependability requirements.
The updated node model is given in Fig. 3.9.

TIOA Nodei(t1 : int, t2 : int,T : int, AST : Type, IST : AST,M : Type, Im : M)

states

nowa
i : R := 0

STd
i : AST := IST

Txd
i : M := Im

Rxd
i : M := empty

updSTd
i : B := f alse

stpTxd
i : B := f alse

atResd
i : B := true

signatures

output tx(m : M)i
input rx(m : M)
internal process()i
input reqst(tRes : B)i
output updst(S T : AST)i
input rback(rbS T : AST)i

transitions

input reqst(tRes)

eff:
updSTd

i := true
atResd

i := tRes

output updst(STd
i)

pre:
updSTd

i = true ∧ nowa
i ≤ t1

eff:
updSTd

i := f alse

output tx(m)i

pre:
nowa

i ≤ t1 ∧ foc(STd
i) = i ∧ atResd

i = true
eff:
set m := Txi
set m.atRes = atResd

iset m.S T = STd
iset Txi empty

input rx(m : M)

eff:
Rxd

i := m

input rback(rbS T : AST)

eff:
STd

i := rbS t
nowa

i := 0

internal process()i

pre:
t2 ≤ nowa

i ≤ T
eff:
STd

i := fST(STd
i , Rx

d
i)

Txd
i := fTx(STd

i ,m)
nowa

i := 0
set Rxd

i empty

trajectories
stop when

updSTd
i = true ∧ nowa

i = t1
nowa

i = t1 ∧ foc(STd
i) = i ∧ atResd

i = true
nowa

i = T

evolve

d(nowa
i) := 1

Figure 3.9: TIOA model of a generic node i extended by dependability actions.

30

In summary, this chapter describes our dependability design for broadcast communication
of distributed real-time systems in the form of a dependability plane. To this end, a generic
node model for distributed real-time systems with broadcast communication is defined. We
further describe the dependability requirements of the systems under discussion and define our
dependability plane based on a dependability header that is piggybacked on messages. The
main idea of our design depends on a rollback mechanism that is initiated after the failure of
an acceptance test hat is run in each time slot. Moreover we show that our design works in
the presence of at most F faulty nodes assuming that the total number of nodes in the system
is given by N ≥ 2 · F + 1. Finally, we are able to compute the maximum time delay ∆F until
a fault recovery is achieved in a distributed real-time system implementing our design.

31

32

CHAPTER 4

CASE STUDY: DEPENDABILITY DESIGN FOR A
DISTRIBUTED INDUSTRIAL REAL-TIME PROTOCOL

FAMILY

This chapter gives the dependability plane design of a distributed real-time industrial protocol
family depending on the design methodology given in Section 3. The dependability plane
design is given as a TIOA with formal statements proving the correct operation of the layer
design.

4.1 Protocol Framework

The protocol family as proposed in [10] is designed as a purely distributed protocol on a
shared-medium broadcast network with a distributed clock synchronization algorithm. It sup-
ports RT communication, whereby it allows for dynamically changing the bandwidth alloca-
tion to different network nodes. That is, this protocol family is particularly useful for control
applications that incorporate information about their instantaneous communication require-
ments. Although the protocol formulation is general, its potential realization is targeted for
shared-medium Ethernet in combination with the industrial standard IEEE 1588 [56] for pre-
cise clock synchronization. We next give an overview of this protocol family and then describe
the relevant information about the protocol architecture for our dependability extension.

4.1.1 Overview

The protocol stack proposed in [10] is depicted in Figure 4.1. It is designed to operate on
a broadcast network such as shared-medium Ethernet and comprises two protocol layers –
an Interface Layer (IL) and a Coordination Layer (CL). Here, IL implements time-slotted
medium access for both RT and nRT traffic to the broadcast network. The CL is responsible
for (i) deciding whether the current time slot is allocated to RT or nRT traffic and (ii) determin-
ing which node is eligible to transmit a message in case of RT slots. That is, it is foreseen that
multiple applications such as distributed RT control applications can be connected to the CL,

33

whereas all messages from nRT applications (such as diagnostics or high-level messages) are
directly handled by the IL. In contrast to existing protocols, the protocol family in [10] allows
for dynamically changing the slot allocation during run-time based on application specific
data. Unique allocation of nRT slots is provided by the IL in this framework. We denote each
slot that is assigned to a unique node as a transmission slot and all remaining slots as spare
slots. In order to establish a common time base for the time-slotted operation, the framework
further includes the use of a synchronization protocol.

Figure 4.1: Software Architecture.

4.1.2 Shared-Medium Broadcast Network

The shared-medium broadcast network defined in Fig. 3.4 relies on the assumption that there
is only one node transmitting a message at a certain time. Collision occurs in case of multiple
message transmissions. The shared medium simply obtains an incoming message from the IL
via the action IL2SM. Then, it forwards the message to the connected nodes by triggering the
SM2IL action. In case of a second message arrival before forwarding a message, the medium
simply raises a collision flag and both messages are dropped. The operation of the shared
medium is compatible with conventional shared-medium Ethernet (IEEE 802.3).

4.1.3 Interface Layer

Considering that the protocol family is designed to be entirely distributed, each network node
implements an identical IL. Hence, we consider the IL of a generic node i, denoted as ILi,
in the sequel. ILi holds a set of state variables vILd

i in order to decide about the ownership
of nRT slots. The task of ILi is to realize time-slotted access to the underlying broadcast
network. In each time slot, the IL performs the following actions.

• Requesting RT message from CL (reqrt): The CL decides if the current slot is a RT
slot that belongs to ILi. So at the beginning of each time slot, ILi asks CLi for a RT
message.

• RT data passing from CL (cl2ilrt): The CL decides if the current slot is a RT slot that

34

belongs to ILi. In the positive case, a RT message is stored in the RT transmit buffer of
ILi.

• nRT message passing from nRT applications (ap2ilNrt): As shown in Figure 4.1, ILi

has a direct connection with the nRT application running on top of the protocol stack.
The nRT messages are passed directly to ILi via the ap2ilNrt action that is triggered
by the nRT application.

• Message passing to the broadcast network (il2sm): The nRT slot ownership is decided
by ILi. If the current slot is a RT/nRT slot that belongs to ILi, the message in the
RT/nRT transmit buffer is transmitted to the shared medium.

• Message reception from the broadcast network (sm2il): If a message m is received from
the broadcast network in a RT slot, the received data is stored in a RT message buffer.
Otherwise, the data is stored in a nRT message queue.

• RT message forwarding to the CL (il2clrt): If a RT message was received in the current
slot, it is directly forwarded to the CL.

• nRT message forwarding to nRT applications il2apNrt: nRT message transmission to
the nRT application is controlled by the application itself. All the nRT messages that
are buffered in ILi are forwarded to the application via il2apNrt input action that is
triggered by the nRT application.

• Layer update (update): In order to get ready for the next time-slot, the state variable
vILd

i is updated at the end of each time slot.

Since the IL of each node performs the same computations and receives the same data from the
connected CL, it is ensured that the IL state variables in all nodes are synchronized [10]. As
a consequence, unless a fault occurs, a unique node is identified for transmission of both RT
and nRT messages in each time slot. Moreover, considering that all messages are transmitted
on a broadcast network, the IL of each node receives the same message in each time slot.
We further note that the IL operation relies on a precise clock synchronization of all nodes
that is performed by a synchronization protocol as depicted in Figure 4.1. In a practical
implementation, the distributed synchronization protocol IEEE 1588 [56] can be used for this
purpose as is exemplified in [60].

4.1.4 Coordination Layer

Analogous to the IL, the CL operation of each individual network node is identical. Hence,
we describe the CL of a generic node i, denoted as CLi. The task of CLi is to forward RT
messages from the application layer to the IL and vice versa, decide about the type of each
time slot (RT or nRT) and uniquely determine the ownership of each RT slot. To this end,
CLi holds state variables vCLd

i that are updated in each time slot. The operation of CLi is as
follows.

35

• Message reception from RT applications (ap2cl): CLi has an interface with the RT
application running on the protocol stack. Available RT messages are received from
the connected RT applications. Each message is placed in the transmit buffer of the
respective application.

• Reception of RT message request from IL (reqrt): The slot type (RT or nRT) and slot
ownership are decided based on the state variables vCLd

i . CLi internally computes the
slot type and ownership information when the reqrt input action is triggered by ILi

• RT message passing to IL (cl2ilrt): If the current slot is a RT slot and belongs to node
i, an application message in the transmit buffer of CLi is forwarded to ILi.

• RT message reception from IL (il2clrt): RT messages that belongs to node i are re-
ceived from ILi. The internal state variable vCLd

i is updated according to the current
state of CLi and incoming RT message.

• RT message forwarding to the RT applications (cl2ap): The received RT message at the
top of the receive buffer is forwarded to the RT application via the input action CL2AP
triggered by the connected RT applications.

Since the CL of each node performs the same computations and receives the same data from
the connected IL, it is ensured that the CL state variables are identical in all nodes [10]. As
a consequence, unless a fault occurs, the CL always suggest a unique node for the message
transmission in RT slots.

4.1.5 Protocol Operation

In order to clarify the protocol operation, we summarize the sequential actions that are taken
by the different layers in each time slot as depicted in Figure 4.2 which is showing the action
sequences within a typical time slot.

Considering Figure 4.2 if it is a RT time slot, the RT application transmits a message to CL
via the ap2cl transition. ILi asks for an available RT message to CLi via reqrt. CL makes its
internal computations to decide the type and the owner of the time-slot within this transition.
When it decides that it is a RT time-slot reserved for node i, it informs ILi by transmitting the
RT message via the cl2ilrt transition. ILi after taking the RT message, immediately forwards
it to SM by il2sm output action. SM, after taking the incoming message from node i, transmits
the message to the connected nodes including node i via sm2il transition. Then ILi forwards
the message to CLi by the output il2clrt action transition. After CLi takes the RT message,
the RT application obtains the RT message via cl2ap transition. The operation within one
time-slot ends with the internal update transition of ILi,

Second, if it is a nRT time-slot, as shown in Figure 4.2 one of the connected nRT applications
is willing to transmit a nRT message. At the beginning of the time-slot, the nRT application

36

Figure 4.2: Operational Sequence within a typical time slot

transmits a message to IL via the ap2ilnrt transition. ILi asks for an available RT message
to CLi via reqrt. CL makes its internal computations to decide the type and the owner of
the time-slot within this transition. When it decides that it is not a RT time-slot, it informs
ILi by transmitting an empty RT message via the cl2ilrt transition. ILi after taking the
empty message makes its internal computations to determine whether it is a nRT time-slot
reserved for node i. If the decision is positive, it immediately forwards the message at the
top of the nRT message queue to SM by il2sm output action. SM, after taking the incoming
message from node i, transmits the message to the connected nodes including node i via sm2il
transition. After ILi takes the nRT message, the nRT application gets the nRT message via
il2apnrt transition. The operation within one time-slot ends with the internal update transition
of ILi.

We finally note that the same actions are performed in each time slot, whereby always at
most one node has the right to transmit and all other nodes listen to and process the messages
transmitted on the broadcast network. As an important feature of the proposed protocol, all
RT messages are received by the CL of each node such that the CL data are always consis-
tent among all nodes. Moreover, the operation of the IL of each node maintains consistent
information about the ownership of nRT slots.

Before starting the dependability design, we first check whether the protocol family satisfies
the necessary properties defined in Section 3.1.1. First of all regarding P1, the distributed
nodes in the defined framework are synchronized by the software synchronization protocol

37

IEEE1588. The protocol family implements a time-slotted shared medium access such that
each node in the network transmits a message within a time slot. Hence it satisfies P2 and P3.
The protocol framework implements a distributed resource allocation such that the medium
access schedule is determined locally at each node in a synchronized fashion. In order to avoid
message collisions the medium access schedule is consistent among distributed nodes. Hence
there is a consistent state information (P7) in the distributed nodes and by this information
each node knows the message transmission instants (P5). Moreover scheduling mechanism
can be defined in order each node to have a regular medium access fulfilling the required
property defined in P4. Finally, regarding P6 the local state information at each node is
updated at the end of each time-slot. In summary, our distributed protocol exhibits all the
properties defined in Section 3.1.1.

4.2 TIOA Modeling of D3RIP Framework

The D3RIP protocol family is designed to support the dependable operation of networking
protocols for distributed industrial applications having both real-time and non-real-time com-
munication. In particular, D3RIP formalizes the dependability extension for the distributed
real-time protocol framework defined in the previous section.

The protocol stack given in Figure 4.3 is designed to operate on a broadcast network such
as shared-medium Ethernet. It defines three protocol layers – an Interface Layer (IL), a Co-
ordination Layer (CL) and a Dependability Plane (DP). Here, IL and CL realize the actual
protocol functionality as previously described in [10].

Figure 4.3: Framework Architecture Including DP

The major difference of D3RIP to the existing protocol family is the dependability plane that
is targeted to achieve software fault-tolerance. In this section, we formalize our suggested DP
in the TIOA framework. In particular, we extend the existing TIOA models of SM, IL and
CL in order to realize the distributed synchronized checkpointing/rollback recovery strategy
described in Section 3.2. In addition, we define the new DP in the form of a TIOA.

38

4.2.1 Framework Layers

Considering that our framework is designed to be entirely distributed, each network node
implements identical layers. Hence, we consider the IL, CL and DP of a generic node i,
denoted as ILi, CLi and DPi respectively.

4.2.1.1 Shared-Medium Broadcast Network (SM)

The SM TIOA model is given in Figure 4.4. SM is defined such that messages are dropped
in case of collision (action il2smi). Moreover, since SM is connected to both IL and DP, the
action sm2ildl is shared with ILi and DPi for i = 1, . . . , n.

TIOA S M(N : int,M : type)

states

messd : M := empty

nextd : int := 0

nowa : Real := 0

signature

input il2sm(m : M)i

output sm2ildl(m : M)

transitions
input il2sm(m)i

eff:

if (messd is empty)
messd := m
nextd:=m.length

else
nextd := 0
set messd empty
nowa := 0

output sm2ildl(m)

pre:

(nowa = nextd) ∧ (messd not empty)

eff:

set messd empty
nextd := 0

trajectories

stop when

(nowa = nextd) ∧ (messd not empty)

evolve

d(nowa) = 1
Figure 4.4: TIOA for the shared-medium broadcast channel.

4.2.1.2 Interface Layer (IL)

The TIOA model of the IL is given in Figure 4.5. In order to realize the interface between IL
and DP, new states and actions are introduced in comparison to the IL definition in [10]. The
layer updates are implemented according to the design rules defined in Section 3.2.4. The
flags sendvILd

i , stpTxd
i and atd

i indicate the necessity of passing the state variables vILd
i

to DPi, the necessity of not transmitting any more messages and the success of the latest
acceptance test, respectively. The output action updvili is defined to carry vILd

i to DPi at the

39

fixed time tIL1 in each time slot for synchronized checkpointing. The input action sendresi
provides the results of the acceptance tests from DPi and updates stpTxd

i and atd
i accordingly.

The input action rback is triggered by DPi and receives correct IL and CL rollback state
information ilHT and clHT . Then, ILi rolls back to the received state by updating vILd

i ,
TxnRTd

i and RxnRTd
i . The input action sm2ildl receives the messages coming from S M at

each transmission slot.

4.2.1.3 Coordination Layer (CL)

The TIOA model of CL is given in Figure 4.6. In comparison to [10], the new state sendvCLd
i

is introduced. It is true if the state variable vCLd
i has to be passed to DP. This is performed by

the output action updvcl at time tCL0 after reqrt. Similar to IL, the input action rback rolls
back to the correct state clHT supplied by DPi. The states vCLd

i , Txd
i and Rxd

i are updated
accordingly.

4.2.2 Dependability Plane (DP)

As described in Section 3.2, the layer operation proposes a novel distributed rollback strat-
egy with synchronized coordinated checkpointing in order to achieve dependability of our
framework. We now present our dependability plane implementation given in Figure 4.7.

Considering the general formulation of IL and CL in the form of a protocol family, our DP is
general in the sense that its realization can be adapted to the respective member of the protocol
family. To this end, we introduce a parameter vDL and functions foc, fCL and fIL.

DP design fits the structure of the general dependability plane design in Fig. 3.7. updvil and
updvcl actions implements the updst action of the general DP automaton. at action of the
general model is implemented by the atest action. Finally, sm2DL, rback and reqst actions
of the general DP automaton are implemented by the sm2ildl, rback and sendres actions
respectively.

Parameters: The header parameters of DPi are the worst-case fault detection delay ∆F, the
timing parameters tDL0, tDL1, the data types AIL and ACL for IL and CL state variables, respec-
tively, and the dependability plane input parameters vDL of data type ADL. vDL contains data
related to the respective member of the protocol family and is used for consistency checks in
the AT.

States: The time evolution is captured by the analog state nowa
i . The remaining variables

are all discrete. The queues ILHistd
i and CLHistd

i keep a bounded history of the IL and CL
state respectively, and the integer stNod

i manages the internal action transitions. stNod
i is set

to 1 if an acceptance test is required, is set to 2 if information needs to be passed to the IL
and is set to 3 if rollback is required. Otherwise, stNod

i = −1. The boolean atDLd
i keeps the

acceptance test result, the boolean ocDLd
i indicates if the current slot is a transmission slot

40

TIOA ILi(dS lot : int, tIL0 : int, tIL1 : int, tIL2 : int, tIL3 : int,M : Type,Q : Type, AIL : Type,HIL :
Type, InitIL : AIL)
states

nowa
i : R := dS lot; TxRTd

i : M := empty
TxnRTd

i : Q := empty; RxRTd
i : M := empty

RxnRTd
i : Q := empty; RTILd

i : B := false
myILd

i : B := false; reqILd
i : B := false

vILd
i : AIL := InitIL; sendvILd

i : B := false
stpTxd

i : B := false; atd
i : B := true

signature

output il2sm(m : M)i; output reqrt()i
input cl2ilrt(bmy : B, bRT : B,m : M)i
input ap2ilNrt(m : M)i; input il2apNrt(q : Q)i
output il2clrt(m : M)i; internal update()i
output updvil(vIL : AIL,T xnRT : Q,
RxnRT : Q,myIL : B)i
input sendres(atRes : B, stpT x : B)
input rback(ilHT : HIL, clHT : HCL)
input sm2ildl(m : M)

transitions
internal update()i
pre:
nowa

i = dS lot
eff:
vILd

i = fupd(vILd
i , RTIL

d
i)

nowa
i := 0

reqILd
i := true

sendvILd
i := true

output updvil(vILd
i , TxnRT

d
i , RxnRT

d
i , myIL

d
i)i

pre:
sendvILd

i = true∧
nowa

i = tIL1

eff:
sendvILd

i := false

input sendres(atRes, stpT x)i

eff:
atd

i := atRes
stpTxd

i := stpT x

input rback(ilHT, clHT)i

eff:
vILd

i := ilHT.vIL
TxnRTd

i := ilHT.TxnRT
RxnRTd

i := ilHT.RxnRT
nowa

i := 0
reqILd

i := true
sendvILd

i := true
atd

i := true

output reqrt()i
pre:
reqILd

i = true∧
nowa

i = tIL0

eff:
reqILd

i = false

input cl2ilrt(bmy, bRT,m)i

eff:
RTILd

i = bmy
myILd

i = fmy(vILd
i , RTIL

d
i , bRT, i)

TxRTd
i = m

input il2apNrt(RxnRTd
i)i

eff:
set RxnRTd

i empty

input ap2ilNrt(m)i

eff:
TxnRTd

i .Push(m)

output il2sm(m)i
pre:
nowa

i = tIL2 ∧ myIL
d
i ∧ ¬stpTx

d
i ∧ (¬(TxRTd

i empty)∧
RTILd

i) ∨ (¬RTILd
i ∧ ¬(TxnRTd

i .Top() empty))
eff:
if RTILd

i
set m = TxRTd

i
set TxRTd

i empty
else

set m = TxnRTd
i .Top()

TxnRTd
i .Pop()

m.vCL = TxRTd
i .vCL

set m.atRes = atd
i

set m.vIL = vILd
i

myILd
i = false

input sm2ildl(m)
eff:
if RTILd

i
RxRTd

i = m
else
RxnRTd

i .Push(m)

output il2clrt(m)i
pre:
nowa

i = tIL3∧
¬(RxRTd

i empty)

eff:
set m = RxRTd

i
set RxRTd

i empty

Trajectories T

stop when
(nowa

i = dS lot) ∨ ((nowa
i = tIL0) ∧ (reqILd

i = true)) ∨ (sendvILd
i ∧ (nowa

i = tIL1))
((nowa

i = tIL2) ∧ myILd
i ∧ ¬stpTx

d
i ∧ (¬(TxRTd

i empty) ∧ RTILd
i) ∨ (¬RTILd

i ∧ ¬(TxnRTd
i .Top empty)))

nowa
i = tIL3 ∧ ¬(RxRTd

i empty)
evolve
d(nowa

i) = 1
Figure 4.5: IL model as TIOA

41

TIOA CLi(deli : int, tCL0 : int,M : Type,Q : Type,V : Type, ACL : Type,HCL : Type, InitCL : ACL)
states

senda
i : R := deli

Txd
i : V := empty

Rxd
i : Q := empty

RTCLd
i : B := false

myCLd
i : B := false

chd
i : int := 0

reqCLd
i : B : = false

vCLd
i : ACL : = InitCL

sendvCLd
i : B : = false

signatures

input ap2cl(m : M, ch : int)i
input il2clrt(m : M)i
input reqrt()i
output cl2ilrt(RTCL : B,
myCL : B,m : M)i
input cl2ap(q : Q)i
output updvcl(vCL : ACL,T x : V,Rx : Q,
RTCL : B)i
input rback(ilHT : HIL, clHT : HCL)

transitions

input ap2cl(m, ch)i

eff:
Txd

i [ch] := m

input il2clrt(m)i

eff:
Rxd

i .Push(m)
vCLd

i := gupd(vCLd
i ,m)

input reqrt()i

eff:
RTCLd

i = gRT(vCLd
i , t)

(myCLd
i , ch

d
i) := gmy(vCLd

i , i)senda
i := 0

reqCLd
i := true

sendVCLd
i := true

output updvcl(vCLd
i , Txd

i , Rx
d
i , RTCLd

i)i

pre:
sendVCLd

i = true∧
senda

i = tCL0
eff:
sendVCLd

i := false

input rback(ilHT, clHT)i

eff:
vCLd

i := clHT.vCL
Txd

i := clHT.T x
Rxd

i := clHT.Rx

output cl2ilrt(RTCLd
i , myCL

d
i ,m)i

pre:
reqCLd

i ∧ (senda
i = deli)

eff:
if myCLd

i
m := Txd

i [chd
i]

set Txd
i [chd

i] empty
else

set m empty
m.vCL := vCLd

i
reqCLd

i := false

input cl2ap(Rxd
i)i

eff:
set Rxd

i empty

trajectories
stop when

(sendVCLd
i = true) ∧ (senda

i = tCL0)
(reqCLd

i = true) ∧ (senda
i = deli)

evolve
d(senda

i) := 1

Figure 4.6: Coordination Layer as TIOA.

and the boolean recDLd
i captures if a message was received in the current slot. The boolean

mySlotd
i indicates if the current slot is owned by node i or not and the boolean stpTxd

i decides
if further transmissions should be prohibited. Finally, rvCLd

i and rvILd
i store the received CL

and IL state variables respectively.

Signatures and Transitions: The input transition updvcli is triggered at the beginning of
the time slot by CLi. It carries the state variables vCL and message buffers T x, Rx of CLi

in addition to the boolean variable RTCL to indicate the type of the current time-slot (RT or
nRT). The checkpoint vCL, T x, Rx is stored in CLHistd

i , keeping the queue length bounded
by ∆F. Moreover, the slot is considered as occupied (ocDLd

i = true) if it is an RT slot. The
time variable nowa

i is reset to 0 in order to initiate the cyclic operation of DPi.

The input transition updvil is triggered by ILi. It carries the state variables vILd
i in addition

to the slot ownership information myIL and the message buffers T xnRT and RxnRT . DPi

42

TIOA DPi(∆F : int, tDL0 : int, tDL1 : int, AIL : Type, ACL : Type, ADL : Type, vDL : ADL)
states

nowa
i : R := tDL1

ILHistd
i : Q[AIL] := empty

CLHistd
i : Q[ACL] := empty

stNod
i : I := −1

atDLd
i : B := true

ocDLd
i : B := f alse

recDLd
i : B := f alse

mySlotd
i : B := f alse

stpTxd
i : B := f alse

rvCLd
i : ACL := empty

rvILd
i : AIL := empty

signatures

input updvcl(vCL : ACL, T x : V,Rx : Q,RTCL : B)i
input updvil(vIL : AIL,myIL : B,T xnRT : Q,
RxnRT : Q)i
input sm2ildl(m : M)
internal atest()i
output rback(ilH : AIL, clH : ACL)i
output sendres(atRes : B, stpT x : B)i

transitions

input updvcl(vCL,T x,Rx,RTCL)i

eff:
nowa

i := 0
if CLHistd

i .Size() = ∆F

CLHistd
i .RemoveLast()

CLHistd
i .Push(vCL,T x,Rx)

if RTCL = true
ocDLd

i := true
else
ocDLd

i := f alse

input updvil(vIL,myIL,T xnRT,RxnRT)i

eff:
if ILHistd

i .Size() = ∆F

ILHistd
i .RemoveLast()

ILHistd
i .Push(vIL,T xnRT,RxnRT)

if ocDLd
i = f alse

ocDLd
i =: foc(vIL, vDL)

if ocDLd
i = true

stNod
i := 1

mySlotd
i := myIL

input sm2ildl(m)
eff:
rvCLd

i := m.vCL
rvILd

i := m.vIL
recDLd

i := true
if m.atRes = f alse
stNod

i := 3
else
stNod

i := 1

internal atest()i
pre:
stNod

i = 1 ∧ atDLd
i = true∧

nowa
i = tDL0

eff:
if fCL(CLHist.Top().vCL, rvCL) 6= true
atDLd

i := f alse
if fIL(ILHist.Top().vIL, rvIL) 6= true
atDLd

i := f alse
if ocDLd

i 6= recDL
d
i

atDLd
i := f alse

if mySlotd
i ∧ ¬recDL

d
i

stpTxd
i := true

stNod
i := 2

recDLd
i := f alse

output sendres(atDLd
i , stpTx

d
i)i

pre:
stNod

i = 2∧
nowa

i = tDL1
eff:
stNod

i := −1

output rback(ILHistd
i .Last(), CLHistd

i .Last())i

pre:
stNod

i = 3∧
nowa

i = tDL0
eff:
ILHistd

i .Clear()
CLHistd

i .Clear()
stNod

i := −1
atDLd

i := true
ocDLd

i := f alse
recDLd

i := f alse
stpTxd

i := f alse

trajectories
stop when

(stNod
i = 1) ∧ atDLd

i = true ∧ (nowa
i = tDL0)

(stNod
i = 2) ∧ (nowa

i = tDL1)
(stNod

i = 3) ∧ (nowa
i = tDL0)

evolve
d(nowa

i) := 1

Figure 4.7: Dependability Plane as TIOA.

43

stores the checkpoint vIL, T xnRT , RxnRT in ILHistd
i , keeping the queue length bounded

by ∆F. If the slot is a nRT slot (ocDLd
i = f alse), the slot occupancy is decided based on

the information from the dependability plane input parameter vDL. Here, vDL has to contain
information about the nRT slot ownership of other nodes since vIL only keeps information
about the slot ownership of node i [10]. The slot occupation information is decided via the
function foc(vIL, vDL), whose realization depends on the specific protocol implementation.
Example realizations are given in Chapter 6. If the slot is occupied, the AT is requested
(stNod

i = 1). The mySlotd
i variable is set according to the incoming information from ILi.

DPi receives messages coming from S M by the input transition sm2ildl. DPi stores the
received state variables m.vCL and m.vIL in the respective states and checks if a rollback is
requested (m.atRes = f alse). In the positive case, stNod

i is set to 3 to trigger the output rback
transition. Otherwise stNod

i is set to 1 to trigger the internal atest transition.

The internal transition atest evaluates the consistency between the local system state and the
observed system state. The acceptance test fails if (i) the local state variables and the received
state variables (CL and IL) are inconsistent, (ii) the expected slot occupancy is different from
the observed message reception (ocDLd

i 6= recDL
d
i) or (iii) a collision happens in the trans-

mission slot of node i (mySlotd
i ∧ ¬recDL

d
i). In the latter case, also stpTxd

i = true is set
in order to stop further transmissions. In addition, we note that the functions fCL and fIL are
used to perform the consistency check of CL and IL variables, respectively. These functions
are defined such that only in case of non-faulty operation in any time slot and for any two
different nodes i 6= j

fCL(vCLd
i , vCL

d
j) = true (4.1)

fIL(vILd
i , vIL

d
j) = true (4.2)

The realization of these functions depends on the respective member of our protocol family.
An example realization is given in Chapter 6.

The output transition sendres is triggered after each atest transition. DPi sends the AT result
and the decision about further transitions stpTxd

i to ILi.

The output transition rback is triggered if stNod
i has the value 3 (rollback is requested by a

transmitter node). In that case, DPi provides the correct rollback state information of ILi and
CLi that is stored as the last entry of ILHistd

i and CLHistd
i , respectively. Furthermore, all

other values are reset.

4.2.3 D3RIP Operation

We next summarize the overall operation of our dependable protocol family in each time slot.
To this end, we use the message sequence diagram in Figure 4.8.

If it is a RT time-slot, the application transmits a RT message via the ap2cl transition to CLi.

44

On the other hand, if it is a nRT time-slot the application transmits a nRT message to ILi via
the ap2ilnRT transition.

Figure 4.8: D3RIP Operation

Then, at the very beginning of the time slot, ILi sends a RT message request to CLi via the
reqrt. After reqrt, CLi transmits its state information to DPi via updvcl. In addition, CLi

finishes its computations and passes the slot type to ILi via cl2ilrt. In a RT transmission slot
that is owned by node i, CLi transmits a RT message to ILi. Otherwise, an empty message
only with the state variable information vCLd

i is provided via cl2ilrt.

After executing cl2ilrt, ILi sends its state information to DPi with updvil. In RT slots that
are owned by node i, ILi sends the received RT message via il2sm. Otherwise, ILi decides if
it owns the nRT slot and transmits a nRT message to SM in the positive case via il2sm.

A message received by SM is immediately forwarded to IL and DP of the connected nodes
by sm2ildl. DPi has two choices depending on the information stored in the dependability

45

header of the message. If there is a rollback request within the message, it triggers rback to
execute a rollback in ILi and CLi. If there is no rollback request, DPi executes the internal
atest and sends its result to ILi via sendres.

When there is no rollback request, there are two possible operations for ILi. In case of a
RT slot, ILi transmits the incoming message to CLi via il2clrt. Otherwise, ILi stores the
incoming message until it is polled by a nRT application. The time slot is completed and
a new time slot is started with the clock reset in ILi that is triggered by the internal update
transition of ILi.

The incoming message is transmitted to the application via the cl2ap transition in case of a RT
time-slot. In case of a nRT time-slot the application gets the nRT message via the il2apnRT
transition. The designed protocol family with the Dependability Plane is implemented in [61].

It is important to configure the IL, CL and DP automaton timings in order to avoid race
conditions. The timing configuration is dependent on the hardware platform that the protocol
family is running on. Hence with the correct timing configuration of the automatons the
protocol operation given in Fig. 4.8 does not face with race conditions.

4.2.4 Formal Results

We finally state several desirable properties of our dependability design with their formal
proofs. To this end, we investigate the composition

DP_CL_IL_S M = S M||(||i∈IILi)||(||i∈ICLi)||(||i∈IDPi) (4.3)

of DP, CL, IL and the shared-medium broadcast network, as illustrated in Figure 4.9.

Figure 4.9: Communication via DP,CL,IL and SM

4.2.4.1 Progressiveness

The DP given in Fig. 4.7, as well as the overall protocol family is progressive. Hence it
does not have infinite number of transitions within a finite time interval. Depending on the

46

composition relation defined in Section 2.3, the overall protocol family is progressive. That
is, it is ensured that a finite number of transitions are taken in each finite time interval.

Lemma 1 DP as given in Fig. 4.7 is progressive.

Proof 1 The locally controlled actions are atest, sendres and rback. atest is only executed at
time tDL0 if stNoi = 1 and stNoi := 2 is set with each occurrence. Hence, an infinite number
of atest occurrences requires infinite time. An analogous argument holds for sendres at time
tDL1 and stNoi = 2 (reset to stNoi := −1) and rback at time tDL0 and stNoi = 3 (reset to
stNoi := −1).

It holds that the overall protocol family is progressive. That is, it is ensured that a finite
number of transitions are taken in each finite time interval.

Proposition 1 DP_CL_IL_S M as depicted in Figure 4.9 is progressive.

Proof 2 It is shown in [10] that CL_IL_S M = S M||(||i∈IILi)||(||i∈ICLi) is progressive. Since
DPi is progressive for all i = 1, . . . , n according to Lemma 1, Theorem 1 in Section 2.3 directly
implies that DP_CL_IL_SM is progressive.

4.2.4.2 Synchronized Checkpointing

We next address the consistency of the synchronous checkpoints that are taken by DP. That
is, the contents of the DP variables are consistent in all time slots as long as no fault occurs.

Proposition 2 Assume that a successful rollback action is performed latest ∆F time slots
after a fault occurrence. Then, it holds for any k ∈ N0 at k · dS lot + tIL0 + tCL0 + tDL0 that
fCL(CLHistd

i .Last(), CLHistd
j .Last()) = true, stNod

i = stNod
j and fIL(ILHistd

i .Last(),
ILHistd

j .Last()) = true for any k ∈ N0 and i, j ∈ I.

Lemma 2 It holds that updvili, i ∈ I occurs synchronized at times k ·dS lot+ tIL1 and updvcli,
i ∈ I occurs synchronized at times k · dS lot + tIL0 + tCL0 for k ∈ N0.

Proof 3 The locally controlled output action updvil of ILi i ∈ I occurs exactly once in each
time slot tIL1 time units after the associated internal action update is triggered since the pre-
condition sendvILd

i is disabled after one occurrence. Since the local clocks nowa
i and nowa

j
of any nodes i, j ∈ I evolve synchronously, updvili also occurs synchronously for all i ∈ I in
each time slot.

47

Similarly the locally controlled output action updvcl of CLi, i ∈ I, can only occur once
in each time slot tCL0 time units after the associated input action reqrt, whereas reqrt is
triggered at the times k · dS lot + tIL0. Considering the synchronicity of the local clocks senda

i
and senda

j for i, j ∈ I, updvcli occurs synchronously at k · dS lot + tIL0 + tCL0 in all nodes.

Lemma 3 It holds for any k ∈ N0 at time k · dS lot + tIL1 that fCL(CLHistd
i .Top().vCL,

CLHistd
j .Top().vCL) = true and fIL(ILHistd

i .Top().vIL, ILHistd
j .Top().vIL) = true for any

non-faulty nodes i, j ∈ I.

Now it is possible to prove Proposition 2:

Proof 4 We prove the assertion by induction. Initially it holds for all i ∈ I that CLHistd
i .Last() =

empty, ILHistd
i .Last() = empty and stNod

i = −1. Now, assume that for some k ∈ N0

and time k · dS lot + tIL0 + tCL0 + tDL0, fCL(CLHistd
i .Last().vCL, CLHistd

j .Last().vCL) = true,
fIL(ILHistd

i .Last().vIL, ILHistd
j .Last().vIL) = true and stNod

i = stNod
j for all i, j ∈ I.

Then next update for CLHist and ILHist happens with the occurrence of updvcli (at time
(k + 1) · dS lot + tIL0 + tCL0) and updvili (at time (k + 1) · dS lot + tIL1), respectively which are
synchronized for all i ∈ I according to Lemma 3.

There are two possible cases. In the first case, the number of entries of CLHistd
i and ILHistd

i
is smaller than ∆F − 1. Then, according to the definition of updvcl and updvil in DPi, it
holds that CLHistd

i .Last() is empty and ILHistd
i .Last() is empty after the update. Hence,

fCL(CLHistd
i .Last().vCL, CLHistd

j .Last().vCL) = true and fIL(ILHistd
i .Last().vIL,

ILHistd
j .Last().vIL) = true also at time (k + 1) · dS lot + tIL0 + tCL0 + tDL0. In the second

case, the number of entries of CLHistd
i and ILHistd

i is at least ∆F − 1. That is, after the
update with updvcl and updvil, the entry at position ∆F − 1 moves to CLHistd

i .Last() and
ILHistd

i .Last(), respectively. Considering that this entry was stored ∆F time slots in the past,
it must be correct in all nodes by assumption (otherwise a successful rollback should have
occurred). Again, this implies that fCL(CLHistd

i .Last().vCL, CLHistd
j .Last().vCL) = true and

fIL(ILHisttd
i .Last().vIL,

ILHistd
j .Last().vIL) = true also at time (k + 1) · dS lot + tIL0 + tCL0 + tDL0. This concludes the

induction.

4.2.4.3 Rollback

We finally investigate the properties of our rollback recovery strategy. It holds that an accep-
tance test is performed in every transmission slot and in every spare slot where a message is
wrongly transmitted.

Proposition 3 Consider DP_CL_IL_S M as defined in Equation (4.3). It is guaranteed that
an acceptance test is performed in each transmission slot and in each slot where a message
is transmitted.

48

Proof 5 DPi triggers the internal atest action at exactly tDL0 time units after the updvcl input
action. atest action trigger is controlled via the stNOd

i variable which is set to 1, within updvil
action in case of a transmission slot and within sm2ildl input action in case of a message
reception from S M. This mechanism guarantees that an acceptance test is performed in each
transmission slot and in each slot where a message is received.

We finally point out that indeed every fault as specified in O1 to O3 (in Section 3.2.3) is
tolerated with a successful rollback operation carried out within ∆F time slots as is required
by F5 in Section 3.2.2.

Theorem 2 Consider DP_CL_IL_S M as defined in (4.3). It is guaranteed that if a fault
occurs at time slot k, the correct protocol operation is resumed at time slot k + ∆F latest.

Lemma 4 DP design guarantees that, a rollback occurs at most ∆F time slots after the fault
occurrence.

Proof 6 Lemma is proved by induction. Assume that at a certain time instant a fault is oc-
curred. Regarding the dependability design, at least DPi of one node i recognizes the fault.
Node i waits for its turn to transmit the rollback request which is at most ∆I slot times. Then
in the worst case scenario there exists a collision and ∆T spare slots, before the third node
transmits the rollback request, because of stopping 2 collided nodes. So there exists a total of
∆F = ∆I + ∆T number of time slots until a fault is fixed by a rback request from a healty node.

Lemma 5 DP design guarantees that; if a rollback occurs latest ∆F time slots after any fault
occurrence then, rollback state is correct.

Proof 7 Assuming that the current time slot is x, as described in Lemma 4, the rollback
request in the network can be delayed for at most ∆F − 1 time slots. Hence the state at time
slot x − ∆F is guaranteed to be a healthy state.

Now the proof of Theorem 2 can be done depending on Lemma 4 and 5.

Proof 8 A rollback request may occur within ∆F time slots after the fault occurs. So rolling
back for ∆F time slots guarantees that the network will resume its correct operation.

In this section we have given a protocol family, which fulfills the properties defined in Section
3.1.1. We have designed the dependability plane of the protocol family as an application
example of our design. Finally we have concluded the section with the formal proofs showing
the correctness of our dependability design defined in Chapter 3.

49

50

CHAPTER 5

MODELING DISTRIBUTED TIOA SYSTEMS IN UPPAAL

In this chapter, the task of generating networks of TA models from a composition of TIOA
models is addressed. We first define our motivation in Section 5.1. Section 5.2 discusses
several restrictions on TIOA models that have to be fulfilled in order to enable conversion
to UPPAAL. Our conversion procedure the TUConvert Tool that implements it is defined in
Section 5.3 . After the algorithm definition, in Section 5.4 we describe the Timed Automata
semantics that is used in UPPAAL. Section 5.5 formally shows the correctness of our conver-
sion scheme. We emphasize that our algorithm is suitable for distributed real-time systems,
since it respects all synchronization properties of systems that are modeled by multiple syn-
chronized TIOA.

5.1 TIOA Modeling in UPPAAL

Distributed real-time computing systems are designed to satisfy certain timing constraints in
addition to the application level behavioral constraints. Such systems require the analysis and
verification of the system properties before implementation.

To this end, timed input output automata (TIOA), as introduced in Section 2.3, forms a vi-
able mathematical framework for modeling and analyzing real-time systems. Furthermore
this framework is suitable for distributed systems as the timed behavior of a system can be
represented by the composition of multiple TIOA representing its individual components. It is
possible to check practical conditions for individual TIOA models such as progressiveness to
ensure continued system operation. It is a nice property of the framework that progressiveness
is preserved after composition.

Besides modeling, verification of a system design is an important branch of system design.
Formal approaches are frequently employed to check whether a system design logically ful-
fills its timing and behavioral specifications [24, 25]. Specifically model-checking is a power-
ful technique that can provide complete proofs of specifications fulfillment. Model checking
is usually carried out by comparing the behavioral model of a system with a temporal logic
formula defining the system level requirements. Short verification time and reduced complex-
ity with the possibility of partial function checking are the advantages of model-checking in

51

the formal verification process [26, 27]. Model-checking requires to model the system behav-
ior as a concurrent state-graph. UPPAAL [7] is a well-known automatic verification software
tool which can be used to generate behavioral models of the distributed real-time models. It
has been used to verify the operation of different real-time systems such as a robot scrub nurse
[28], POSIX operating systems [29] and timed multitask systems [30]. UPPAAL uses timed
automata extended with data variables as the description language. It also has a simulator that
is used to see the behavior of the system.

It can be observed that, on the one hand, the TIOA framework provides convenient models
for distributed real-time systems and one can manually construct formal proofs for certain
system properties. On the other hand, UPPAAL is a software tool for formal verification
and employs behavioral models of the system components which again should be constructed
manually. The motivation for this part of our study is to achieve a complete workflow where
the TIOA models for system components are automatically converted to UPPAAL templates
and then formally verified by UPPAAL.

5.2 Assumptions for TIOA Models

Before presenting our conversion algorithm, we discuss several conditions, that should be
fulfilled by a TIOAA in order to be converted to an UPPAAL model.

First, it has to be respected that UPPAAL only allows specifying a unique initial evaluation
of the template variables.

Assumption 1 The initial state set Q0 of A is a singleton, that is Q0 = {q0} with the unique
initial state q0.

Second, with the same reasoning, it must be possible to represent the data types in A in
UPPAAL.

Assumption 2 The data types used in A can be represented in UPPAAL (a similar assump-
tion is made in [62]).

Third, other than the Statistical Model Checker, TA in UPPAAL are designed for the repre-
sentation of time as a continuous variable with time derivative 1 or 0, whereas the general
definition of TIOA allows using differential equations in order to describe the evolution of
trajectories. Hence, we formulate the following assumption.

Assumption 3 The trajectory evolution of each analog (clock) variable ca of A is given by
d(ca) = 1 or d(ca) = 0 (a similar assumption is made in [62]). Moreover, there are no
arithmetic operations on clock variables except for “resets” ca := b in the effect part of A,
whereby b is smaller than the current valuation of ca.

52

UPPAAL allows resetting clock variables to a constant value such as 0. With Assumption 3
we avoid forward jumps in time in the TA operation.

Action preconditions and trajectory stop conditions are defined as predicate on the TIOA state.
We assume that these predicates are given in a standardized form.

Assumption 4 The precondition for the transition of each action a ofA is given in DNF:

f a(val(X)) = (f a1(val(X)) ∨ · · · ∨ f ala(val(X))) ∧ uA(YA)

with the clauses f ai(val(X)) depending on the variable valuation val(X) and the clause uA(YA)
depending on the optional parameters YA. The stop condition ofA is given in DNF

w(val(X)) =
(
w1(val(Xd)) ∧ (x1 = v1(val(Xd)))

)
∨ · · · ∨

(
wm(val(Xd)) ∧ (xm = vm(val(Xd)))

)
,

whereby xi ∈ Xa for i = 1, . . . ,m. That is, literals with analog variables are defined as
xi = vi(val(Xd)), meaning that the analog variable xi ∈ Xa reaches the value vi(val(Xd)).

We briefly discuss the implications of the different assumptions. Assumption 1 is a realistic
assumption for practical systems that generally start from a unique initial state. Assumption 2
is not a severe restriction considering that a large number of relevant data types can be defined
in the C++ programming language. Assumption 3 does not allow modeling systems with
dynamic behavior different from the mere evolution of time. Although this is a restriction of
generality, we show in Section 5.6 that practical systems such as communication protocols can
be modeled under this assumption.1 Finally, Assumption 4 allows for a convenient conversion
of predicates to UPPAAL.

The TIOA models that are used to generate the UPPAAL models in Fig. 2.5 fulfill the above
listed assumptions. First of all both automata have a unique initial state (Assumption 1).
All the data types used in the TIOA models are well-defined in UPPAAL (Assumption 2).
The analog variable nowa used in the TIOA models has a rate of change of 1 and there is
no arithmetic operation on nowa (Assumption 3). Finally, input action preconditions of the
corresponding TIOA models are defined in DNF with w1(val(Xd)) = (maxoutd > 0) and
v1(val(Xd)) = nextd where the analog literal is given by x1 = nowa (Assumption 4).

Based on the previous assumptions, it is now possible to state our conversion algorithm.

5.3 TUConvert Algorithm

The TUConvert algorithm takes a TIOA A as defined in Section 2.3 as input and produces
the corresponding TAU in UPPAAL as the output. In the following, we provide a step-wise
description of TUConvert. To this end, we discuss all features of a generic TIOAA and give

1 Also note that ODEs could be included in the assumption in order to define hybrid automata for simulation
in UPPAAL. However, we focus on the TIOA models that are suitable for model-checking.

53

an equivalent TA representation U. We further relate our description to the pseudo-code of
Algorithm 1.

TIOA Parameters

The TIOA definition contains a list of parameters PF , that represent fixed values of a certain
type and parameters PT that denote a type. We directly pass parameters representing a fixed
value of a certain type as parameters F = PF of the UPPAAL model in line 1 of Algorithm 1.
On the other hand the parameters PT are defined as global structures in UPPAAL in lines 2 to
5 of Algorithm 1.

TIOA Variables

Since the TIOA state variables X are local, we identify them with the local variables M of
U as type(x) vx = x0;. The data type of each variable in M is simply chosen as the data
type of the corresponding TIOA variable in X. Note that a representation of this data type
in UPPAAL always exists because of Assumption 2. Also depending on Assumption 3, each
analog variable ofA is represented as a clock variable inU as clock kx = x0. In Algorithm
1, the local variables are defined between line 6 to 12. Note that type(x) denotes the data type
of the respective TIOA variable x to be represented in UPPAAL.

Discrete Transitions of TIOA

In our UPPAAL template model, we define the location l_idle in line 25 of Algorithm 1. The
discrete transitions inA are represented by self-loop edges originating from l_idle inU. The
basic structure is shown in Fig. 5.1.

Figure 5.1: Transition representation in UPPAAL

That is, we assume thatU stays in l_idle until the edge ea is fired, which is identified with the
actual execution of the corresponding transition ta in A. Based on this basic representation
the main task is now constructing the edge definitions and constructing the fields of the edge
ea depending on the type of ta.

For transitions ta with an input action a ∈ I we define a single edge ea in line 32 of Algorithm
1. Here, we write for example l_idle

ea
→ l_idle to characterize the selfloop edge ea.

On the other hand, for the transitions ta with an output or internal action a ∈ O∪H the number
of defined edges depends on the number la of clauses in the DNF f a of the corresponding

54

transition precondition as defined in Assumption 4. For each clause f ai, an edge eai is defined
in line 37 of Algorithm 1.

Guard: The guard field of ea corresponds to the preconditions of the corresponding transition
ta. Since there are no preconditions for transitions with input actions, no guard is defined for
all ta such that a ∈ I. In case a ∈ O ∪ H with the precondition f a(val(X)) = f a1(val(X)) ∨
· · · ∨ f ala(val(X)), the guard condition eai.guard = f ai(val(M)) is added to eai in line 38 of
Algorithm 1. Hereby, we use the fact that X in A is identified with the local variables M of
U.

Sync: The synchronization field of ea determines which output channels are triggered or which
input channels are waited for by ea in order to perform synchronized actions. In the TIOA
framework, it is required to synchronize transitions for external actions with common names
among different TIOA. By definition, such transitions are triggered by the TIOA, whose tran-
sition belongs to an output action.

In the TA, we propose to introduce a broadcast channel ca ∈ C inU for each external action
a ∈ I∪O. This makes it possible to synchronize actions with the same name in different TIOA
when converting transitions. The broadcast channels are introduced in Algorithm 1 in line 19
to 22. Regarding the synchronization, we use ea.sync = ca? for actions a ∈ I. For actions
a ∈ H ∪ O, we use eai.sync = ca! for all i = 1, . . . , la. The related statements In Algorithm 1
can be found in line 33 and 41.

Update: When a transition ta in a TIOAA(P) is taken, the new valuation of the TIOA variables
X is determined by the part “eff” of the TIOA representation.

If ta belongs to an internal or output action a ∈ H∪O, the new valuation of X only depends on
the current valuation of X. This computation can be directly converted to a computation on the
local variables M ofU as shown in line 43 of Algorithm 1. In addition, each output transition
a ∈ O passes the parameter values val(Ya) = ua(val(X)) to the corresponding input transitions.
For each variable y ∈ Ya, we introduce a global variable gy in U (line 15 in Algorithm 1)
and write Ga for the set of all such variables. Then, we assign the global variables Ga :=
ua(val(M)) in line 40 of Algorithm 1. In case of an input action a ∈ I, the valuation of
X is updated based on its current valuation and parameters passed by the TIOA. In the TA
U, this is performed by assigning ua(M,Ga) to the local variables in line 34 of Algorithm
1. Concerning parameter passing for external actions in TIOA, it has to be noted that output
channels are executed before the corresponding input channels, that is the update of the global
variables Ga is performed instantaneously. As a consequence, all UPPAAL templates, where
ca is an input channel always access the latest valuation of Ga. Note that the definition of
global variables for parameter passing appears in line 13 to 22 of Algorithm 1.

In summary, we obtain the following operation when executing transitions. If a transition ta
with an internal action a ∈ H is taken,U takes the selfloop edge ea and the local variables M
are updated. A transition ta with an output action a ∈ O is taken if one of the corresponding
edges eai , i = 1, . . . , la in U fulfills its guard condition. In that case, the local variables

55

M as well as the global variables Ga for parameter passing are updated. In addition, the
broadcast output channel ca is triggered, leading to the instantaneous execution of the related
input actions in other TIOA. That is, synchronization of transitions with a common name, as
required by the TIOA definition is achieved in the proposed UPPAAL representation.

TIOA Trajectories

According to the TIOA definition, the “trajectories” part ofA describes the evolution of ana-
log variables over time between the occurrences of discrete transitions. For the conversion
to UPPAAL, we now make use of Assumption 3 by realizing each analog variable x ∈ Xa

by a clock variable va ∈ K with time derivative d(va) = 1 in UPPAAL. It is further re-
quired to realize the stop conditions that are formulated as a predicate on the valuation of
the variables X. According to Assumption 4, it holds that time is allowed to evolve in A
as long as w(val(X)) = f alse but time must stop (or a discrete transition must occur) as
soon as w(val(X)) = true. Considering the representation w(val(X)) = (w1(val(Xd)) ∧ x1 =

v1(val(Xd))∨· · ·∨(wm(val(Xd))∧xm = vm(val(Xd)) in Assumption 4, we use the corresponding
invariant l_idle.inv= (¬w1(val(M))∨kx1 ≤ v1(val(M))∧· · ·∧(¬wm(val(M))∨kxm = vm(val(M))
in U. The conversion of stop conditions into invariants of the idle location is performed in
line 26 of Algorithm 1.

Initialization

According to Assumption 1, the variables X ofA are initialized with unique values. InU, this
corresponds to initializing the local variables M. UPPAAL allows variable initialization under
the automaton declarations while defining the variables. However this method is valid only
for constant value initialization. However TIOA parameters, as well as constants, are used for
variable initialization in TIOA. Hence we need a way of on the fly initialization for automata
variables. To this end, we introduce a separate location l_init with the property initial in U,
and introduce and edge einit such that l_init

einit
→ l_idle. We label l_init as committed such

that the edge einit is taken immediately as the first edge of the system execution. einit has an
empty guard and sync field. Only the update field executes the function InitAutomaton(q0)
that assigns the initial state q0. In Algorithm 1, l_init is defined in line 23, einit is introduced
in line 28 and the initialization is performed in line 29 with the function InitAutomaton(q0).

The UPPAAL templates given in Fig. 2.5 are produced by the TUConvert algorithm. The
integer parameter maxIt of UseOldInputA in Fig. 2.3 is passed as the parameter of the cor-
responding UPPAAL template. The discrete variables maxoutAd and nextAd correspond to
the local variables maxoutA and nextA, whereas the analog variable nowAa is converted to
the clock nowA in UPPAAL. In addition, the locations l_init and l_idle with the edge einit

for initialization are defined for each TIOA. The discrete transitions of the TIOA are defined
by selfloop edges. In UseOldInputA, the edge ea for action A receives the output channel
ea.sync = a! and the guard ea.guard = maxoutA > 0)&&(nowA == nextA) is used. The up-
date maxoutA = maxoutA − 1 and nextA = in f ty is performed in ea.update = Afunc(). Since
B is an input action in UseOldInputA, the corresponding edge eb obtains an input channel

56

eb.sync = B? and has no guard condition. The update is performed with eb.update = Bfunc()
that realizes the effect of the transition B in UseOldInputA. The conversion of UseOldInputB
is analogous.

input :A
output:U

1 F := PF

2 // Global Structures
3 for all p ∈ PT do
4 typedef struct type(p);
5 end
6 // Local Variables (O)
7 for all x ∈ Xd do
8 type(x) vx = x0;

9 end
10 for all x ∈ Xa do
11 clock kx = x0;
12 end
13 // Global Variables (G)
14 for all a ∈ O do
15 for all parameters y ∈ Ya passed by ta do
16 type(y) gy;

17 end
18 end
19 // Channels
20 for all a ∈ (I ∪ O) do
21 broadcast channel ca;
22 end
23 // Locations (L)

24 initial location l_init;
25 location l_idle;
26 l_idle.inv = (¬w1(val(M)) ∨ (x1 ≤

v1(val(M)))) ∧ (¬w2(val(M)) ∨ (x2 ≤

v2(val(M)))) ∧ · · ·
27 // Edges (E)

28 edge einit; with l_init
einit
→ l_idle

29 einit.update = InitAutomaton(q0);
30 for all a ∈ S do
31 if a ∈ I then
32 edge ea with l_idle

ea
→ l_idle

33 ea.synch = ca?;
34 ea.update = ha(val(M),Ya)

35 else
36 for i = 1, . . . , ka do
37 edge eai st l_idle

eai
→ l_idle

38 eai.guard = f ai(val(M));
39 if a ∈ O then
40 Ga := ua(val(M));
41 eai.synch = ca!;

42 end
43 eai.update = ga(val(M))

44 end
45 end
46 end

Algorithm 1: TUConvert Algorithm

The TUConvert algorithm as outlined in Algorithm 1 is implemented in the form of the TU-
Convert tool [63].

TUConvert receives an input xml file that is written in the TIOA syntax and produces an
output xml file which can be opened in UPPAAL. The input xml file for the automata Use-
OldInputA and UseOldInputB and corresponding output xml file with their definitions are
given in Appendix A and Appendix B respectively. A screen-shot is shown in Fig. 5.2.

57

Figure 5.2: TUConvert Tool

5.4 Timed Automata Semantics in UPPAAL

This section defines the semantics for UPPAAL TA models that are used in Section 5.5 to es-
tablish the behavioral equivalence of distributed TIOA models and their UPPAAL TA models
from TUConvert. We adapt the semantics in [37] to the special TA that result from TUCon-
vert for this purpose. It is important to note that, our special case offers consistent semantics
for dealing with shared variables which constitutes a novelty in the existing literature. In or-
der to describe the semantics of a TA in UPPAAL, we introduce the notation (l, v)

e
→ (l′, v′)

to denote a transition from location l ∈ L and state v ∈ val(V) to location l′ ∈ L and state
v′ ∈ val(V) either by firing an edge e ∈ E or by time passage e ∈ R. In addition, for v ∈ val(V)
and d ∈ R, we use the operator v ⊕ d [37] such that for each y ∈ V ,

v ⊕ d(y) =

 v(y) + d if y ∈ K
v(y) otherwise

That is, only the valuation of clock variables in K is updated when time passes. Then, the
semantics of a TA can be represented by a labeled transition system 〈Y, y0,→〉 with the states
Y ⊆ L × val(V), the initial state y0 = (l0, v0) and the transition relation→ such that

(l, v)
d
→ (l, v ⊕ d) if ∀d′ ∈ R : 0 ≤ d′ ≤ d ⇒ I(l, v ⊕ d′) = true

(l, v)
e
→ (l′, v′) if e = (l, g, a, r, l′) with g(v) = true, v′ = r(v), I(l′, v′) = true.

We finally define the execution semantics of a network of TA models as employed in this
work. To this end, we consider a setN = {U1, . . . ,Un} of n modelsUi = (Fi, Li, l0,i, Vi, v0,i,

Ci, Ai, Ii, Ei), i = 1, . . . , n. Hereby, we note that the global variables G ⊆ V1 ∩ · · · ∩ Vn are
shared by all TAs and can in principle be modified by any TA. In the scope of this work, it is
sufficient to assume that no global variable is a clock variable and the valuation of each global
variable g ∈ G can only be updated by a unique TA when taking edges with output channels.

Assumption 5 Let N be a network of TA models with the global variables G. Then we
assume that, for each g ∈ G, g < K and there is a uniqueUi ∈ N that is permitted to update
g when taking an edge with an output channel.

This is a critical assumption that guarantees the correct message exchange between interacting
automatons. This assumption guarantees that the global message carrying variables can only

58

be updated before the corresponding output transition is triggered. Hence the automaton
waiting for the corresponding input action transition will obtain the updated value.

Using Assumption 5, the execution semantics for N is given by the labeled transition system
〈Y, y0,→〉 with the variables Y = L1 × · · · × Ln × val(O1) × · · · × val(On) ×G, the initial state
y0 = (l0,1, . . . , l0,n,m0,1, . . . ,m0,n, g0) and the transition relation→ as follows

Time Passage

(l1, . . . , ln,m1, . . . ,mn, g)
d
→ (l1, . . . , ln,m1 ⊕ d, . . . ,mn ⊕ d, g) if d ∈ R and ∀d′ ∈ R and i = 1, . . . , n :

0 ≤ d′ ≤ d ⇒ Ii(li,mi ⊕ d′, g) = true.

Silent Transitions

(l1, . . . , li, . . . , ln,m1, . . . ,mi, . . . ,mn, g)
τ
→ (l1, . . . , l′i , . . . , ln,m1, . . . ,m′i , . . . ,mn, g′)

if ∃ei = (li, τ, gi, ri, l′i) ∈ Ei such that gi(mi, g) = true, (m′i , g
′) = ri(mi, g), Ii(l′i ,m

′
i , g
′) = true

Shared Transitions

(l1, . . . , ln,m1, . . . ,mn, g)
c
→ (l′1, . . . , l

′
n,m

′
1, . . . ,m

′
n, g
′) if c ∈ C,

e j = (l j, c!, g j, r j, l′j) ∈ E j for one j with g j(m j, g) = true, (m′j, g
′) = r j(m j, g), I j(l′j,m

′
j, g
′) = true

ei = (li, c?, gi, ri, l′i) ∈ Ei for 1 ≤ i ≤ n with gi(mi, g) = true, (m′i , g) = ri(mi, g), Ii(l′i ,m
′
i , g) = true

l′k = lk and m′k = mk for all remaining 1 ≤ k ≤ n.

That is, time passage requires that all automata fulfill their respective invariant while clock
variable valuations increase and the remaining variable valuations do not change. A silent
transition can occur in a single automaton if there is a corresponding edge whose guard is
fulfilled and such that the variable valuation meets the invariant of the target location after the
update.

Shared transitions require the firing of one edge with an output channel c! in one of the
automata, whereby all automata are synchronized on edges with the input channel c? if their
guard is fulfilled and the updated variable valuation meets the respective invariant. Hereby,
the global variables g are only updated by the automaton with the edge with the output channel
according to Assumption 5. All remaining automata remain in the same location and do not
update their local variable valuations.

5.5 Formal Results

The main objective of TUConvert is the conversion of a network of TIOA to a network of
UPPAAL automata models for formal verification. To this end, it is essential that both models
represent the same behavior for the completeness of the conversion procedure. Consider a

59

composition of TIOA models given by A = ||ni=1Ai and assume that N is the network of
UPPAAL automata models resulting from the application of TUConvert to A1, . . . ,An. In
this section, we show that both models exhibit an equivalent behavior in the sense that

1. every execution inA has a correspondence in N

2. every possible path in N has a corresponding execution inA

We formalize this important fact in the following theorem.

Theorem 3 LetA1, . . . ,An be TIOA models andU1, . . . ,Un be the corresponding UPPAAL
automata models obtained by Algorithm 1. Write A = ||ni=1Ai and N for the network of
UPPAAL automata models.

1. Let τ0a1τ1 · · · akτk be an execution inA. Then there exist states y j = (l_idle, . . . , l_idle,
m1, j, . . . ,mn, j, g j) ∈ val(Y) for each j = 1, . . . , k such that

(a) ∀d, 0 ≤ d ≤ τ j.ltime − τ j.ftime:

(l_idle, . . . , l_idle,m1, j, . . . ,mn, j, g j)
d
−→ (l_idle, . . . , l_idle,m1, j⊕d, . . . ,mn, j⊕d, g j)

exists in N and
τ j(τ j. f time + d)dXi = mi, j ⊕ d

for all i = 1, . . . , n.

(b) (l_idle, . . . , l_idle,m1, j⊕d, . . . ,mn, j⊕d, g j)
a j+1
−→ (l_idle, . . . , l_idle,m1, j+1, . . . ,mn, j+1, g j+1)

exists in N and
τ j+1. f valdXi = mi, j+1

for each i = 1, . . . , n.

2. Assume that there exist states y j = (l_idle, . . . , l_idle,m1, j, . . . ,mn, j, g j) ∈ val(Y), times
d0, . . . , dk−1 ∈ R and actions a1, . . . , ak ∈ A such that ∀ j = 1, . . . , k − 1,

(a) ∀d, 0 ≤ d ≤ d j, (l_idle, . . . , l_idle,m1, j ⊕ d, . . . ,mn, j ⊕ d, g j) ∈ val(Y)

(b) (l_idle, . . . , l_idle,m1, j⊕d j, . . . ,mn, j⊕d j, g j)
a j+1
−→ (l_idle, . . . , l_idle,m1, j+1, . . . ,mn, j+1, g j+1)

Then, there exist τ0, . . . , τk−1 ∈ T such that

τ0a1τ1 · · · τk−1ak

is an execution inA.

In order to prove Theorem 3, we first state two lemmas. Lemma 6 is concerned with the corre-
spondence of trajectories in TIOA and time passage in UPPAAL automata models generated
by TUConvert. Lemma 7 establishes the relation between the occurrence of actions in TIOA
and the firing of edges in the corresponding UPPAAL automata models.

60

Lemma 6 Consider the compatible TIOA A1, . . . ,An with A = ||ni=1Ai and the correspond-
ing network of UPPAAL automata modelsN = {U1, . . . ,Un} that is generated with Algorithm
1. Assume x = (x1, . . . , xn) ∈ Q is a state of A and (l1, . . . , ln,m1, . . . ,mn, g) ∈ Y is a state of
N such that xi = mi for all i = 1, . . . , n. Let τ ∈ T be a trajectory with τ. f val = x.

Then, τ is an execution fragment in A if and only if ∀d with 0 ≤ d ≤ τ.ltime − τ. f time,

the transition (l1, . . . , ln,m1, . . . ,mn, g)
d
−→ (l1, . . . , ln,m1 ⊕ d, . . . ,mn ⊕ d, g) exists in N and

τ(τ. f time + d)dXi = mi ⊕ d for all i = 1, . . . , n.

Proof 9 Assume that τ is an execution fragment inA

⇔ ∀i = 1, . . . , n, τ. f valdXi ∈ Qi and τ ↓ Xi ∈ Ti

⇔ no stop condition is fulfilled

⇔ ∀t, τ. f time ≤ t ≤ τ.ltime,wi(τ(t)dXi) = f alse

We note that it holds that τ(t) = τ. f val ⊕ d for all t = τ. f time + d because of Assumption 3.
Hence mi ⊕ d = τ. f val ⊕ ddXi for all d, 0 ≤ d ≤ τ.ltime − τ. f time.

⇔ ∀d, 0 ≤ d ≤ τ.ltime − τ. f time, l_idle.inv(mi ⊕ d) = true (see line 26 in TUConvert)

⇔ ∀d, 0 ≤ d ≤ τ.ltime − τ. f time, (l1, . . . , ln,m1, . . . ,mn, g)
d
−→ (l1, . . . , ln,m1 ⊕ d, . . . ,mn ⊕ d, g)

exists in N and τ(τ. f time + d)dXi = mi ⊕ d for all i = 1, . . . , n.

Lemma 7 Consider the compatible TIOA A1, . . . ,An with A = ||ni=1Ai and the correspond-
ing network of UPPAAL automata modelsN = {U1, . . . ,Un} that is generated with Algorithm
1. Assume x ∈ Q is a state ofA and (l_idle, . . . , l_idle,m1, . . . ,mn, g) ∈ Y is a state ofN such
that xdXi = mi for all i = 1, . . . , n. Let a ∈ S be an action inA.

Then, x
a
−→ x′ is a transition inA with x′ ∈ Q if and only if there exists a state (l_idle,

. . . , l_idle,m′1, . . . ,m
′
n, g
′) such that the transition

(l_idle, . . . , l_idle,m1, . . . ,mn, g)
a
−→ (l_idle, . . . , l_idle,m′1, . . . ,m

′
n, g
′)

exists in N .

Moreover, in that case, it holds for all i = 1, . . . , n that x′dXi = m′i .

Proof 10 Let x
a
−→ x′ be a transition in A. That is, the action a is enabled at the state x of

61

A.

⇔ ∃i such that a ∈ Oi or a ∈ Hi, and the precondition f ai (xdXi) = true.

For all remaining i such that a ∈ S i, it holds that a ∈ Ii sinceA1, . . . ,An are compatible

⇔ for i such that a ∈ Oi or a ∈ Hi, there is an edge ea with l_idle
ea
−→ l_idle and

ea.synch = ca! and ea.guard(mi) = true since mi = xdXi (see line 32, 41, 38 in TUConvert).

Then, ga = ha(mi) is set if a ∈ Oi, whereas ga is unused if a ∈ Hi.

Furthermore, ∀i = 1, . . . , n, ea.update(mi, gA) = ea.update(xi, gA) = x′dXi = m′i
(see line 34, 40, 43 in TUConvert) and l_idle.inv(x′dXi) = true because of Assumption 3

and line 26 in TUConvert

⇔ (l_idle, . . . , l_idle,m1, . . . ,mn, g)
a
−→ (l_idle, . . . , l_idle,m′1, . . . ,m

′
n, g
′) exists in N

and x′dXi = m′i for all i = 1, . . . , n.

Now it is possible to prove Theorem 3.

Proof 11 1. We prove the assertion by induction. Initially, we consider the trajectory τ0

and consider x0 = (x1,0, . . . , xn,0) = τ0. f val. Since τ0. f val = q0, it holds for each i =

1, . . . , n that xi,0 = q0,i by definition of the TIOA composition and by Assumption 1. Let
y = (l1, . . . , ln,m0,1, . . . ,m0,n, g0) be the initial state of N . Then, it holds that li = l_init
by line 23 of TUConvert. Since the edges l_init

einit
−→ l_idle are committed in each Ui,

i = 1, . . . , n with line 28 of TUConvert, it is also true that each Ui transitions to idle
location while initializing the state variables (line 29) immediately at time 0. Hence,
at time 0, the state of N assumes the value y0 = (l_idle, . . . , l_idle,m0,1, . . . ,m0,n, g0),
whereby m0,i = xi,0 = qi,0 for all i = 1, . . . , n. That is, at time 0, we have the state x of
A and the state y0 of N such that mi,0 = xi,0 for all i = 1, . . . , n.

Then, it is true that m0 = τ0(0). Since τ0 is an execution inA and τ0. f val = x, Lemma
6 implies that 1.(a) in Theorem 3 is fulfilled.

Next, we assume that the conditions in Theorem 3 1. are fulfilled for τ0a1τ1 · · · a jτ j. We
need to show that these conditions are also true for τ0a1τ1 · · · a jτ ja j+1τ j+1.

We first note that, for d j = τ j.ltime − τ j. f time, τ j(d j)dXi = m j,i ⊕ d j for all i = 1, . . . , n
according to the induction assumption. Considering that a j+1 is enabled at state m j

in A, Lemma 7 implies that there exist mi, j+1 for i = 1, . . . , n and g j+1 ∈ G such that

(l_idle, . . . , l_idle,m1, j, . . . ,mn, j, g j)
a j+1
−→ (l_idle, . . . , l_idle,m1, j+1, . . . ,mn, j+1, g j+1) and

mi, j+1 = τ0a1τ1 · · · a j+1τ j+1. f valdXi for all i = 1, . . . , n. Since, τ0a1τ1 · · · a j+1τ j+1 is an
execution inA, the same argument as before implies that for all d, 0 ≤ d ≤ τ j+1.ltime−

τ j+1. f time, (l_idle, . . . , l_idle,m1, j+1, . . . ,mn, j+1, g j+1)
d
−→ (l_idle, . . . , l_idle,m1, j+1 ⊕

d, . . . ,mn, j+1⊕d, g j+1) and mi, j+1⊕d = τ j+1(τ j+1. f time+d)dXi for all i = 1, . . . , n. This
completes the proof of 1.

2. The proof of this item follows the same argument as in item 1. in reverse direction and
is omitted for brevity.

62

To sum up Theorem 3 guarantees that each execution fragment and state of an input TIOA
has a corresponding equivalent in the output UPPAAL model. Hence we say that, TUConvert
defines a complete conversion procedure. Moreover the correspondance relation between the
input TIOA and output UPPAAL models has a one to one mapping characteristics. While
TUConvert generates a unique output for any correct input, the conversion is in general not
unique.

5.6 Modeling Case Study: Distributed Real-Time Protocol

We now apply the TUConvert algorithm to the distributed real-time control suite for industrial
control systems given in Section 4.2 in the TIOA formalism. The framework has a layered
architecture over a shared medium broadcast channel as shown in Figure 4.3, whereby the
Interface Layer (IL), Coordination Layer (CL) and Dependability Plane (DP) are the main
layers. This section gives the UPPAAL templates of the framework layers by using Algorithm
1. The protocol family including the dependability plane are verified by using the UPPAAL
tool suite. The verification details are given in Chapter 6

5.6.1 Shared Medium Broadcast Network

The UPPAAL template of the shared medium broadcast network, which is generated by Al-
gorithm 1, is given in Fig. 5.3.

The SM template defines the variables X of the corresponding TIOA model as local variables.
l_init and l_idle are the locations of the template. l_init is defined as the committed initial
location of the template Hence, it is guaranteed that the template operation is started from
this location by an outgoing edge transition handling the initial value assignment of the local
variables. l_idle is used as the location where time passage is allowed, and the template is
designed to wait at the l_idle location for an input channel trigger IL2SM? or for the time
instant to trigger the output channel SM2ILDL!.

Separate loopback edges are defined in the UPPAAL template for each of the possible ac-
tions il2sm and sm2ildl. The transition preconditions and effects of the corresponding TIOA
transitions in Fig. 4.4 are used to define the guard and update conditions of the correspond-
ing edges respectively. The shared-medium broadcast network shares the actions sm2ildl
and il2sm with the interface layers of the distributed nodes connected to the shared-medium
broadcast network. Hence SM2ILDL and IL2SM are defined as global broadcast channels.

Note that the defined channels appear in the synch fields of the corresponding edges in the
UPPAAL template in Fig. 5.3. The functions IL2SMfunc() and SM2ILDLfunc() implements
the "eff" fields of the corresponding discrete transitions IL2SM and SM2ILDL given in Fig.
4.4 respectively.

63

Figure 5.3: UPPAAL template for the shared-medium broadcast network.

5.6.2 Interface Layer

As described in Section 4.1.3, IL provides time-slotted access to the underlying shared-
medium broadcast channel. Moreover it handles the slot allocation for non-real-time mes-
sages of different network nodes. The TIOA model for the IL is given in Figure 4.5. Note
that IL is designed such that an instance of the layer runs on each node that participates in the
communication. Because of this reason, we specify entities that are specific to each instance
(node) by the index i. In order to perform the conversion to UPPAAL, we first confirm that all
assumptions in Section 5.2 are fulfilled. The initial state is unique (Assumption 1), the single
analog variable nowa

i evolves with d(nowa
i) = 1 and the only operation on nowa

i is the reset
(Assumption 3). Considering that the types M, Q, AIL and HIL are represented by structs in
the C programming language, also Assumption 2 holds. Finally Assumption 4 holds for IL
since nowa

i is the only analog variable and hence there is only one disjunct in the transition
preconditions. We now construct the UPPAAL template of IL.

TIOA Parameters: The values dS lot, tIL0, tIL1, tIL2, tIL3 and InitIL are passed as parameters
F ofU. In addition, global structures for the types M, Q, AIL and HIL are defined.

TIOA Variables: All variables X in the “states” part of the IL TIOA are defined as local
variables L ofU according to their data type. The only real-valued variable nowa

i is converted
as the clock variable.

TIOA Signature: The external actions of the IL TIOA are il2smi, sm2ildl, cl2ilrti, ap2ilNrti,
il2apNrti, il2clrti, reqrti, updvili, sendresi and rbacki. For each such action, a broadcast
channel is introduced (for example, ccl2ilrt for the action cl2ilrt). Moreover, a global vari-
able is generated for each parameter, that is passed, when taking the respective transition. For
example, considering the output action il2clrt(m : M)i, there is a global variable of type M.

TIOA Transitions: The UPPAAL template U is at the location lidle, where time can pass.
Each transition in IL TIOA is represented by a loopback edge, that is originating from the
location lidle in the UPPAAL automata.

64

We discuss two examples. The edge esm2ildl for the input transition sm2ildl is defined without
guard condition, since there is no precondition in the IL TIOA. The edge is synchronized with
edges in other TIOA via the broadcast channel csm2ildl that is used as input channel csm2ildl? in
the sync field of esm2ildl. Finally, the pseudo code in the “eff” part of the IL TIOA is directly
translated to the syntax of U. Now consider the internal transition update. Here, the pseudo
code in the “pre” part is directly translated to the UPPAAL syntax in the guard field of the
edge eupdate. Similarly, the pseudo code in the “eff” part appears as “update” field in the
UPPAAL template. Finally, the “sync” field of the edge eupdate remains empty.

TIOA Trajectories: The invariant of lidle is deduced from the stop condition in the “trajecto-
ries” part ofA. Consider for example, the expression reqILd

i ∧ (nowd
i = tIL0) in the stop con-

dition of the IL TIOA. This expression is converted in the invariant ¬reqILd
i ∨ (nowd

i ≤ tIL0)
in location lidle.

Initialization: Initialization of the variables V is performed instantaneously in the committed
initial location linit. The variables V are initialized according to their initialization in the
“states” part of the IL TIOA. For example, RTILd

i is initialized as false.

The derived UPPAAL model of IL is given in Fig. 5.4.

Figure 5.4: Interface Layer Implementation In UPPAAL

65

5.6.3 Coordination Layer

The CL of the proposed protocol suite is responsible for the communication coordination of
the real-time slots provided by the IL. CL has communication interfaces with IL, DP and the
connected control applications (see Figure 4.3). Loosely speaking, CL uses data provided
from the control application during run-time in order to uniquely assign real-time slots to the
nodes participating in the communication, hence, avoiding collisions on the shared medium
broadcast channel. The CL TIOA is given in Figure 4.6. Similar to the IL, it has to be noted
that an instance of the CL is running on each node, specified by the index i.

Figure 5.5: Coordination Layer Implementation In UPPAAL

The corresponding UPPAAL template of the CL is given in Figure 5.5. The model is produced
by using the TUConvert algorithm. Since the procedure is analogous to the IL conversion, we
only point out special features of the CL.

TIOA Variables: One clock variable is introduced for the analog variable senda
i of the CL

TIOA. All other variables are defined according to their data types.

TIOA Signature: The external actions il2clrti, cl2ilrti, reqrti, ap2cli, cl2api, updvcli and
rbacki are used as communication interfaces of CL with IL, DP and the control application
running on top. These external actions are used as common broadcast channels between CL
and interface automatons. The parameters RTCLd

i , myCLd
i and m, that are passed by the output

action cl2ilrti are written to global variables in CL template.

TIOA Transitions: Regarding the transitions of the CL TIOA, we emphasize the synchro-
nization of shared actions. The “sync” field of the loopback edge ecl2ilrti is used to trigger
an output channel ccl2ilrti!, whereas the “sync” field for the corresponding edge ecl2ilrti in
the IL model is an input channel ccl2ilrti?. An analogous correspondence is observed for the
input actions il2clrti and reqrti. We also determine the invariant of the location lidle as the

66

negation of the stop condition: ¬reqCLd
i ∨ (senda

i ≤ deli).

The remaining steps of the conversion procedure are analogous to the detailed description in
Section 5.6.2. Hence, we refrain from repeating these steps.

5.6.4 Dependability Plane

The dependability plane, as the main subject of Chapter 3, is responsible for fullfiling the
dependability related requirements of the proposed framework. DP, as given in Figure 4.3,
has communication interfaces with IL, CL and the shared medium broadcast channel (SM).

Figure 5.6: Dependability Plane Implementation In UPPAAL

DP uses data provided from the connected framework layers IL,CL and the information
padded to the application message from SM to make a consistency check in order to de-
termine a node level fault condition. DP TIOA is given in Figure 3.7. Similar to the IL and
CL, it has to be noted that an instance of the DP is running on each node, specified by the
index i.

The corresponding UPPAAL template of the DP is given in Figure 5.6. The model is pro-
duced by using the TUConvert algorithm. Since the procedure is analogous to the IL and CL
conversion, we only point out special features of the DP.

TIOA Variables: One clock variable is introduced for the analog variable nowa
i of the DP

TIOA. All other variables are defined according to their data types.

TIOA Signature: The external actions updvili, updvcli, sendresi, rbacki and sm2ildli are
used as communication interfaces of DP with IL, CL and SM. These external actions are used
as common broadcast channels between DP and interface automatons.

TIOA Transitions: DP uses shared actions with the interface automatons in order to have

67

a synchronized operation. Global variables are used for parameter passing between DP and
IL,CL or SM. The conversion procedure for DP model is similar to the CL and IL models as
described in Section 5.6.2 and Section 5.6.3 respectively.

68

CHAPTER 6

SIMULATION AND VERIFICATION OF TIOA BASED
MODELS IN UPPAAL

Formal verification generally deals with the problem of whether a system design logically
implies its specification. [25] Model-checking is a powerful technique to formally verify a
system, whose behavioral model is given as a concurrent state-graph model. Model checking
is done by comparing the behavioral model of the system with a temporal logic formula [26]
and has several important verification advantages such as:

• Shortening the formal verification process via automation,

• Reducing the complexity of the verification process via partial function checking,

• Enabling the user to directly express the properties needed to verify a sequential system
behavior via the property specification logic. [27]

There are two main types of specifications that attract the academia and industry in the concept
of formal verification. The first one implies that “bad things will never happen”, while the
second implies that “good things will happen” [35]. Timed Computation Tree Logic (TCTL)
[26] like branching temporal logic formulates these two types of specifications with certain
keywords. These properties are called as the safety and reachability properties within the
TIOA and TCTL contexts.

TCTL is an extension of the computation tree logic with specific timing constraints. The for-
mulae of TCTL are built from state predicates, by boolean connectives and temporal operators
[27]. TCTL uses two common state formulae operators <> and [] meaning paths and states
respectively. For path formulae A operator is used to imply for all and E operator is used to
imply there exist. [64]. Example TCTL formulas are given in 6.1 and 6.2 with their meanings.

A [] p; %For all states p holds (6.1)

E <> q; %There exists a path where q holds (6.2)

69

While verifying distributed real-time systems, modeled in TIOA syntax, the system verifi-
cation can be accomplished via verifying the individual automatons as well as verifying the
whole system. This idea is based on the composition property of Timed Input/Output Au-
tomaton framework. UPPAAL uses a subset of TCTL allowing to write queries for both
safety and reachability properties of TIOA systems.

In Section 6.1 verification of the critical safety and reachability properties of Timed In-
put/Output Automatons are described over the framework layers given in Section 4.1.

6.1 Formal Verification of D3RIP Framework

6.1.1 Verification of Safety Properties

Safety properties describe the automaton specifications that should be satisfied for all con-
ditions. The most widely used safety property, which is essential for all real-time system
automatons is “Deadlock Freedom”.

“Deadlock Freedom”, as the name implies is the safety property of an automaton that guaran-
tees the full-time operation without any action-locks. In other words the property guarantees
the automaton’s ability to make event-triggered transitions.

“Deadlock Freedom” can be verified by using the TCTL query 6.3.

A [] not deadlock; (6.3)

Query 6.3 defines the necessary and sufficient condition for dead-lock freedom of an automa-
ton and it is directly implementable in UPPAAL.

Since safety properties are independent of the execution fragment of the automaton under
consideration, full coverage is a prerequisite for the verification of safety properties. UPPAAL
calculates the coverage percentile of the system under discussion. Hence we use this property
to guarantee full state coverage in the system operation. (i.e number of visited locations =

number of total locations)

Safety properties are not restricted to just “Deadlock Freedom”. The rules and state transition
preconditions which are not dependent on the execution fragment of the automatons are also
considered as Safety Properties. Safety properties of the D3RIP framework layers are verified
in UPPAAL.

70

6.1.2 Verification of Reachability Properties

Reachability properties define the automaton specifications which can be satisfied by at least
one reachable state within the automaton definition. Reachability properties are mostly used
in the design phase of the automaton. They describe the automaton specifications that are
satisfied in at least one case. Form of the TCTL queries defining the reachability properties
are given in Query 6.4.

E <> q; %There exists a path that property q is satisfied (6.4)

Reachability properties are used mainly in the automaton design phase. Reachability proper-
ties of the D3RIP framework layers are verified in UPPAAL.

6.1.3 Verification Results of D3RIP Framework

UPPAAL can be used to model systems composed of multiple automata. Deadlock freedom,
time synchronization and content synchronization like safety properties and reachability prop-
erties are the most critical properties of such systems. In our case, we want to verify these
properties for the parallel operation of our UPPAAL templates.

We have designed a simple application layer template to run over the designed nodes. The
application layer template, shown in Fig. 6.1, sends and receives messages in a ring topology.
We have set two different networks composed of 2 and 3 nodes respectively. The commu-
nication starts with first node by transmitting the first message to the second node. Message
transmission continues in a ring topology.

Figure 6.1: Application Layer Template

71

The queries that are used in the verification process are given in Table 6.1. The first query
is used to verify the safety property stating that the system is deadlock free. The second
query is used to verify an example reachability property of the network via checking the state
reachability of l_idle in SM. The queries from 3 to 4 are used to verify the time synchronized
operation of the distributed nodes by checking whether the IL automata of each node issue a
message request to the CL automata at the same time.

Table6.1: Verification Queries

Query
Num-
ber

Query

1 A� not deadlock
2 E^ S M.l_idle
3 A� (IL1.bReqIL == true) & &

(IL1.nowIL == t1) imply IL2.nowIL == t1
4 A� (IL1.bReqIL == true) & &

(IL1.nowIL == t1) imply IL3.nowIL == t1
5 A� (CL1.vCL.iCnt == CL2.vCL.iCnt) & &

(CL1.sendCL == CL2.sendCL) imply (CL1.vCL == CL2.vCL)
6 A� (CL1.vCL.iCnt == CL3.vCL.iCnt) & &

(CL1.sendCL == CL3.sendCL) imply (CL1.vCL == CL3.vCL)
7 A� (IL1.nowIL == IL2.nowIL) & &

(IL1.vIL.iCnt == IL2.vIL.iCnt) imply (IL1.vIL == IL2.vIL)
8 A� (IL1.nowIL == IL3.nowIL) & &

(IL1.vIL.iCnt == IL3.vIL.iCnt) imply (IL1.vIL == IL3.vIL)

Since the message transmitting node is decided on the fly, the variable contents that are used
in the decision process should be the same at each node in the network. The queries from
5 to 8 are written to check the content synchronization of the distributed nodes via checking
contents of the variables vIL and vCL of the network layers.

The queries given in Table 6.1 are applied to 2 different network configurations. In the first
configuration the network is composed of 2 nodes that are sending real-time messages to each
other. In the second configuration we inserted 1 additional node into the network such that
3 nodes send and receive messages in a ring topology respectively. We successfully verified
the described queries with a positive result using UPPAAL on a laptop computer having a 2
GHz Intel T5750 dual core processor with 3 GB RAM. We have used a 32 bit Windows-7
operating system. The verification times and the peak memory usages of UPPAAL are given
in Table 6.2 in order to show the complexity of the system under consideration.

As seen from Table 6.2, the fastest verification with minimum resource consumption is achieved
for the reachability properties. On the other hand the verification of the safety properties, takes
much longer verification times with increasing resource consumption.

The second important result that is observed from Table 6.2 is the increasing verification time
and memory usage in case of an increasing number of nodes in the network configuration. The

72

Table6.2: Verification Results

Query
Number

Number
of Nodes

Verification
Time

Peak Resident
Memory Us-
age

Peak Virtual
Memory
Usage

1 2 438.144s 907,268KB 1,823,396KB
1 3 1436.730s 1,234,721KB 2,357,261KB
2 2 0.281s 21,124KB 59,200KB
2 3 0.39s 50,744KB 120,892KB
3 2 272.011s 875,621KB 1,801,138KB
3 3 652.311 987,288KB 2,030,728KB
4 3 652.118 987,188KB 2,029,123KB
5 2 274.063s 902,648KB 1,813,900KB
5 3 1669s 63,320KB 136,792KB
6 3 1654s 63,904KB 137,956KB
7 2 273.313s 897,912KB 1,804,924KB
7 3 647.30s 981,204KB 2,024,987KB
8 3 646.123s 980,998KB 2,023,789KB

verification times and memory usages seem to increase in quadratically in the node number.
For instance, the verification of deadlock freedom for a 3 node network takes nearly 1437
seconds with a 2.36 GB peak virtual memory usage whereas it takes 438 seconds with a 1.8
GB peak virtual memory usage in a 2 node network configuration.

As discussed in this section, model checking eases the verification process. However for
certain properties, especially for the safety properties, it can take time and high memory to
verify the property. Although it seems that it is not feasible to use model checking for the
verification of such properties, it is still feasible to reserve some time for verification since it
is a one time process that is carried at the end of system design.

We give a detailed list of verification queries in Appendix C. The queries are given with the
properties they verified. With the given list of queries the properties that are verified in Section
4.2.4 are verified via model checking.

6.2 Simulation of D3RIP Framework

The protocol layers given in Section 5.6 are defined in a general way without the explicit
definition of certain functions. This section defines a protocol family using the framework
layers defined in Section 5.6 to make a simulation. The developed IL, CL and DP protocols
are given in Sections 6.2.1, 6.2.2 and 6.2.3 respectively

73

6.2.1 Time-Slotted Interface Layer (TSIL)

The time-slotted interface layer (TSIL) protocol is a protocol member of the IL protocol fam-
ily as described in Section 4.2.1.2. It was first described without dependability support in
[10] and instantiates the decision variables vILd

i as well as the protocol functions fupd and
fmy for each node i ∈ I. Here, vILd

i is equipped with three attributes: vILd
i .cnt cycli-

cally counts the successive nRT slots, vILd
i .cyc is introduced such that the slot assignment

cyclically repeats after vILd
i .cyc time slots, and the nRT slot set vILd

i .nRTSet of node i de-
scribes the time slots that can be used for nRT messages by ILi. Naturally, it is required that
vILd

i .nRTSet ∩ vIL
d
j .nRTSet = ∅ for i, j ∈ I, i 6= j. Furthermore, fupd and fmy are given as

follows.

fupd(vILd
i ,

RTILd
i).cnt

=

vILd

i .cnt if RTILd
i = true

(vILd
i .cnt + 1)

mod vILd
i .cyc otherwise

fmy(vILd
i ,

RTILd
i , b2, i)

=

b2 if RTILd

i = true
true if ¬RTILd

i ∧ vIL
d
i .cnt

∈ vILd
i .nRTSet

false otherwise.

That is, the slot counter vILd
i .cnt is incremented by fupd only in nRT slots. fmy is defined

such that the ownership of RT slots is determined by the upper layer (variable b2), while the
ownership of nRT slots is locally decided by checking vILd

i .nRTSet.

6.2.2 Urgency-Based Real-time Protocol (URT)

We refer to Section 4.2.1.3 for the general CL formulation. We present the urgency-based
real-time protocol (URT) as an example of the CL protocol family. URT is designed to dy-
namically update information about the right to transmit, for each network device, in the form
of communication requests. The decision variable is a priority queue vCLd

i .PQ, that holds
requests in the form of a tuple (b, c, eT, dT), where b denotes a device, c is a channel, eT is
an eligibility time and dT is a deadline, that is measured relative to the time instant, where
the request is issued. Semantically, a request (b, c, eT, dT) states, that the device b can send
the next message of the channel c after time eT , and must send the next message before dT .
Accordingly, each message m transmitted on URT contains a set of requests m.par.req as its
protocol parameter. Upon message reception, the requests are stored in vCLd

i .PQ, i ∈ I, or-
dered by eligibility time and deadline, such that in each time slot, the device with the most
urgent eligible request gets access to the medium. It has to be noted that the underlying as-
sumption for this protocol is, that the urgency of requests is decided by the upper layer control
application.

Formally, the update functions for URT are defined as follows. If gupd(vCLd
i ,m.par, t) is called

and RTCLd
i = true, the first request (i.e., the request that was eligible in the previous RT slot),

74

is removed from vCLd
i .PQ if m.par is not empty, i.e., a valid RT message has been received.

Otherwise, the first request reenters vCLd
i .PQ, since the required transmission did not happen,

yet. Furthermore, all requests in par.req are inserted in vCLd
i .PQ, after the current absolute

time t is added to all relative times in each request. The remaining function definitions are.

gupd(PQd
i ,m) = PQd

i .Pop(); PQd
i .Push(m.ph)

gRT(PQd
i , t) =

 true if PQd
i .Top().eT ≤ t

false otherwise

gmy(PQd
i , i) =

(true, a) if PQd

i .Top().b = i
∧PQd

i .Top().c = a
(false, 0) otherwise

That is, a slot is declared as RT slot, if the first request in the priority queue is eligible, and it
belongs to the device i, if it is specified in that request.

6.2.3 Synchronization Based Dependability Protocol (SDEP)

We refer to Section 4.2.2 for the general definition of DP. We next realize the dependability
plane for the previously described protocols TSIL and URT. The dependability header of the
transmitted messages contains the vIL and vCL structures of the message transmitting node.
To this end, it is necessary to instantiate the parameter vDL and the functions foc, fIL and fCL.
Regarding foc, it is desired to deduce if a nRT slot is a transmission slot. According to the
interface layer example TSIL in Section 6.2.1, this is the case if and only if the current nRT
slot counter belongs to the nRT set vILd

i .nRTSet of some node i ∈ I. Since this information
is only available to node i but not to all other nodes, we use vDL as a set that contains the
union of all nRT sets:

vDL =
⋃
i∈I

vILd
i .nRTSet. (6.5)

Moreover, the nRT counter is available at each node i as vILd
i .cnt. Hence, we use

foc(vILd
i , vDL) =

 true if vILd
i .cnt ∈ vDL

false otherwise
.

In order to check the consistency of the decision variables vILd
i (TSIL) using fIL, we com-

pare the nRT slot counter of node i with the counter value received in the IL part vIL of the
dependability header of any incoming nRT message. That is, we perform

fIL(vILd
i , vIL) =

 true if vILd
i .cnt = vIL.cnt

false otherwise
.

Finally, the correct protocol operation requires that the decision variables of the CL are identi-
cal in all nodes. That is, fCL directly compares vCLd

i of node i and vCL from the dependability
header of any incoming message.

75

fCL(vCLd
i , vCL) =

 true if vCLd
i = vCL

false otherwise

6.2.4 Simulation Example

A three node simulation network is set up, by using the defined protocol family, in order to
see the behavior of the developed dependability plane. The simulated network uses the shared
medium fully utilized. Each of the nodes transmit a real-time message in its transmission slot.
The simulation timing and the dynamic time slot assignments are given in Figure 6.2 ng and
the dynamic time slot assignments are given in Figure 6.2

Figure 6.2: Timing of the Simulation Case Study

There are three applications, AP-1, AP-2 and AP-3, each running on a separate node. The
simulation is started by AP-1 transmitting a real-time message M0. At the very beginning
of the second time slot, AP-2 faces with an internal fault caused of corrupted vCL structure.
When it transmits its message appending its vCL structure, the other healthy nodes receiv-
ing the message recognizes the fault condition. AP-3 having the third time slot transmits a
rollback request to the network immediately. All the nodes observing the rollback request,
rolls back to the state that is recorded at the first time-slot. From that point on the operation
continues from the initial state by a RT message transmission from AP-1.

That is, the worst-case recovery time is indeed dS lot · ∆F and should be bounded by 20 ms in
RT applications according to [65]. An example for this computation is given in Section 6.2.5.

6.2.5 Worst-Case Recovery Delay Calculation Example

We refer to the application example in [10] in order to illustrate the rollback recovery. In
this example, there is a set of 7 network nodes I = {1, · · · , 7} that transmit both RT and nRT
messages. The requests for RT messages have an eligibility time of 4 ms and it is known from
the application that there are at most Qmax = 3 requests in the priority queue PQd

i of the CL at
any time. Regarding the usage of TSIL as described in Section 6.2.1, we suggest a uniform
distribution of nRT slots among the 7 nodes. That is, we use the following nRT sets for the
nodes in I: vILd

1.nRTSet = {0}, vILd
2.nRTSet = {1}, vILd

3.nRTSet = {2}, vILd
4.nRTSet =

76

{3}, vILd
5.nRTSet = {4}, vILd

6.nRTSet = {5}, vILd
7.nRTSet = {6}. The cycle parameter is

vILd
i .cnt = 7 for all i ∈ I and the DP parameter vDL evaluates to vDL = {0, . . . , 6}.

In line with our experiments in [60], we assume a slot time of dS lot = 250 µs. Considering
that the eligibility time for requests is 4 ms (16 time slots) and there are at most 3 requests
in PQd

i , this implies that at most 3 out of 16 time slots are used as RT slots. A possible
configuration is shown in Figure 6.3 (a).

Figure 6.3: Protocol operation: (a) Fault-free slot sequence; (b) Slot sequence with rollback
recovery.

Here, nRT slots are successively allocated to the different nodes, interrupted by RT slots that
are used according to the requests in PQd

i . From such allocation, the relevant delays ∆I and ∆T

can be determined. Considering the inter-transmission delay ∆I, there will always be 7 nRT
slots and at most 3 RT slots between two transmission slots of any node. Hence, ∆I = 10 as is
shown in Figure 6.3 (a). Similarly, the transmission of three nodes is interrupted by at most 2
RT slots of the same nodes. The third RT slot or the next nRT slot must belong to a different
node. Hence, ∆T = 4 as is also shown in Figure 6.3 (a). Together, we obtain ∆F = 14. That
is, the worst-case fault recovery-time is 14 · 250 µs = 3.5 ms which complies with the grace
period of 20 ms for time-critical systems [65].

We finally describe a rollback scenario. Assume that node 1 encounters a software fault by
a wrong update of its counter variable vILd

1.cnt = 2 (instead of 1) after its first transmission
slot. In that case, node 1 detects the inconsistency in its acceptance test in the next slot by
applying fIL(vILd

1, vIL). Here, vIL comes in the protocol header in the nRT message that is
sent by node 2. Since vILd

1.cnt = 2 and vIL.cnt = 1, the acceptance test returns false and
node 1 waits for its next transmission slot (after ∆I time slots) to send a rollback message.
However, due to the wrong counter variable, node 1 misses its next transmission slot and
incorrectly transmits one slot later. The missed slot (with nRT counter value 0) is detected
by all other nodes since they expect the transmission of an nRT messages (0 ∈ vDL). That
is, the acceptance test of all nodes except for node 1 returns false and these nodes prepare a
rollback message for their next transmission slot. Since node 1 incorrectly transmits in the
transmission slot of node 2, a collision occurs and node 2 cannot successfully transmit the
rollback message. Hence, node 3 in the next transmission slot provides a rollback messages
and all nodes roll back to the confirmed correct state at the beginning of the operation. This
scenario is illustrated in Figure 6.3 (b).

77

In this chapter, we have created a protocol family using the framework layers defined in Chap-
ter 5. A network has been simulated by using the defined protocol family and an application
layer automata. Simulation of the defined network has been carried out with two different
network configurations and the worst-case recovery delay for our dependability design is
calculated for an example. Finally we have verified the complete protocol family by using
the UPPAAL tool-suite. Hence we have confirmed the applicability of TUConvert by a dis-
tributed real-time system example using simulation and formal verification of the converted
layer models.

78

CHAPTER 7

CONCLUSIONS

In this thesis, we develop a generic dependability design methodology for the communication
networks of distributed real-time systems. The proposed dependability plane is designed
to work with broadcast capable and time slotted networks. Different from previous work,
we focus on software fault-tolerance instead of hardware fault-tolerance. We first assess the
potential fault scenarios and determine which faults can be detected by the distributed nodes.
We further evaluate the maximum number of time slots that can pass until a fault is detected
and fault resolution is initiated by some node.

Accordingly, we define a novel strategy for software fault tolerance that is based on synchro-
nized checkpointing and rollback to a non-faulty protocol state. A main advantage of our
strategy is the avoidance of additional communication messages by piggybacking depend-
ability information on application messages that are transmitted by each node in a regular
manner. The usage of protocol-specific information helps finding a close rollback state. Our
dependability design is formalized by timed input/output automata (TIOA) models and its
correctness is verified by formal proofs.

In addition, the formal verification of the design is carried out by the model checking software
tool UPPAAL. To this end, we present an algorithmic approach for the conversion of TIOA
models to UPPAAL timed automata (TA) models. First, basic conditions for TIOA models
that are suitable for such conversion are established. Second, the algorithm TUConvert for
the conversion of TIOA models to UPPAAL templates is developed. As a particular novel
feature, this algorithm allows for the conversion of distributed real-time system models, that
are composed of various TIOA models. In this case, separate UPPAAL ’TA models that are
synchronized by broadcast channels are generated. Third, the practicability of the presented
algorithm is demonstrated by its application to a distributed industrial communication proto-
col suite that was previously defined in the form of TIOA models. We implemented the tool
TUConvert to automate the conversion.

We demonstrate the features of both the proposed dependability design and the TUConvert
algorithm by applying them on a real-time communication protocol family. To this end, we
develop the dependability plane by modeling it as TIOA. We then integrate the dependability
plane model to the existing TIOA models of the protocol stack. The verification of the overall

79

stack is carried out by converting the models to the UPPAAL TA models using TUConvert.
It is shown that the desired properties of the protocol family can be successfully verified by
using the verification engine of UPPAAL. Lastly we have built a simulation network in the
UPPAAL environment and highlight the operational characteristics of the protocol family
under an example fault scenario.

80

APPENDIX A

TUCONVERT INPUT FILE FORMAT

The input file format of TUConvert is designed according to the TIOA definition used in
this report. The input file is designed in a tree format. The root of the file is formed by the
system. TIOA forms the first branch. The TIOA name, parameters of a certain type, parameters
defining variable types, and states of TIOA are written under the TIOA branch with name,
parameter, types and states keywords respectively. The states of TIOA are defined by two
branches. The variables branch is used for variable declerations whereas the init branch is
used for initialiation.

The next sub-branch of TIOA is the signatures. Each automata signature is defined by name,
type, array, ID and size fields. The array field of the signature is used to point whether
the corresponding signature is a singleton or not. ID and size fields are not mandatory for
singleton signatures. If the signature is used as an array the ID and size fields are used to
define the array index and the array size of the signature. The signature parameters are defined
in the parameter sub-branch of the signature.

The transitions of the TIOA are defined under the transitions branch. A transition is defined by
the name, type, parameter, array, ID and noTimeZones fields. The ID field is not mandatory
in case of a singleton signature. The noTimeZones field is used to define the number of
disjuncts defined in the transition precondition. The transition behavior is defined by the pre,
paramassn and eff. The pre field is defined for internal and output transitions and defines
the transition preconditions whereas the paramassn field is defined for output transitions and
is used to assign the action parameter. The eff field simply defines the effect field of the
transition.

The final branch of TIOA is the trajectories. The evolve rate and stop conditions are defined
under the evolve rate and stop sub-branches. After defining the automatons in the system, the
input xml is ended with the system declerations that are defined under the decleration branch.

<?xml version="1.0" encoding="utf-8"?>

<system>

<TIOA>

<name>UseOldInputA</name>

<parameter>int &maxIt</parameter>

81

<types/>

<states>

<variables>int maxoutA;

real nowA;

double nextA;

int infty;

</variables>

<init>maxoutA = maxIt;

nowA = 0;

nextA = 0;

infty = 1000;

</init>

</states>

<signatures>

<signature name="A" type="output" array="false" ID="" size="">

<parameter>int cnt</parameter>

</signature>

<signature name="B" type="input" array="false">

<parameter/>

</signature>

</signatures>

<transitions>

<transition name="A" type="output" parameter="int cnt"

array="false" ID="" noTimeZones=’1’>

<pre>(maxoutA > 0) && (nowA == nextA)</pre>

<paramassn>cnt = maxoutA</paramassn>

<eff>maxoutA = maxoutA - 1;

nextA = infty;

</eff>

</transition>

<transition name="B" type="input" parameter="" array=’false’>

<eff>if (nextA == infty)

{

nextA = nowA + 1;

}

</eff>

</transition>

</transitions>

<trajectories>

<stop>nowA == nextA</stop>

<evolve rate=’1’>nowA</evolve>

</trajectories>

</TIOA>

82

<TIOA>

<name>UseOldInputB</name>

<parameter/>

<types/>

<states>

<variables>int maxoutB;

real nowB;

double nextB;

int infty;

</variables>

<init>maxoutB = 0;

nowB = 0;

nextB = 0;

infty = 1000;

</init>

</states>

<signatures>

<signature name="A" type="input" array="false">

<parameter>int cnt</parameter>

</signature>

<signature name="B" type="output" array="false">

<parameter/>

</signature>

</signatures>

<transitions>

<transition name="A" type="input" parameter="int cnt"

array=’false’ noTimeZones=’1’>

<eff>maxoutB = cnt;

if (nextB == infty)

{

nextB = nowB + 1;

}

</eff>

</transition>

<transition name="B" type="output" parameter="" array="false" noTimeZones=’1’>

<pre>(maxoutB > 0) && (nowB == nextB)</pre>

<paramassn/>

<eff>nextB = infty;</eff>

</transition>

</transitions>

<trajectories>

<stop>nowB == nextB</stop>

<evolve rate=’1’>nowB</evolve>

83

</trajectories>

</TIOA>

<declaration>

int mxInteger = 100;

t1 = UseOldInputA(mxInteger);

t2 = UseOldInputB();

system t1,t2;

</declaration>

</system>

84

APPENDIX B

TUCONVERT OUTPUT FILE FORMAT

The output file format is compatible with the UPPAAL input file format.

<?xmlversion = ”1.0”encoding = ”ut f − 8”? >
< nta >
< declaration >
chanA;
intcnt;
chanB;
< /declaration >
< template >
< name > UseOldInputA < /name >
< parameter > int&maxIt < /parameter >
< declaration > intmaxoutA;
clocknowA;
doublenextA;
intin f ty;
voidInitAutomaton()
{

maxoutA = maxIt;
nowA = 0;
nextA = 0;
in f ty = 1000;
}

voidA f unc()
{

maxoutA = maxoutA − 1;
nextA = in f ty;
cnt = maxoutA; }
voidB f unc()
{

i f (nextA == in f ty)
{

85

nextA = nowA + 1;
}

}

< /declaration >
< locationid = ”id0”x = ” − 250”y = ”0” >
< namex = ” − 250”y = ”20” > l_init < /name >
< committed/ >
< /location >
< locationid = ”id1”x = ”0”y = ”0” >
< namex = ”0”y = ”20” > l_idle < /name >
< labelkind = ”invariant”x = ”0”y = ”40” > nowA <= nextA < /label >
< /location >
< initre f = ”id0”/ >
< transition >
< sourcere f = ”id0”/ >
< targetre f = ”id1”/ >
< labelkind = ”assignment”x = ” − 165”y = ”0” > InitAutomaton() < /label >
< /transition >
< transition >
< sourcere f = ”id1”/ >
< targetre f = ”id1”/ >
< labelkind = ”guard”x = ”167”y = ”125” > (maxoutA > 0)&&(nowA == nextA) <
/label >
< labelkind = ”assignment”x = ”167”y = ”145” > A f unc() < /label >
< labelkind = ”synchronisation”x = ”167”y = ”165” > A! < /label >
< nailx = ”0”y = ”500”/ >
< nailx = ”433”y = ”249”/ >
< /transition >
< transition >
< sourcere f = ”id1”/ >
< targetre f = ”id1”/ >
< labelkind = ”synchronisation”x = ”50”y = ” − 250” > B? < /label >
< labelkind = ”assignment”x = ”50”y = ” − 230” > B f unc() < /label >
< nailx = ”433”y = ” − 250”/ >
< nailx = ”0”y = ” − 500”/ >
< /transition >
< /template >
< template >
< name > UseOldInputB < /name >
< parameter/ >
< declaration > intmaxoutB;
clocknowB;
doublenextB;

86

intin f ty;
voidInitAutomaton()
{

maxoutB = 0;
nowB = 0;
nextB = 0;
in f ty = 1000;
}

voidA f unc()
{

maxoutB = cnt;
i f (nextB == in f ty)
{

nextB = nowB + 1;
}

}

voidB f unc()
{

nextB = in f ty; }
< /declaration >
< locationid = ”id0”x = ” − 250”y = ”0” >
< namex = ” − 250”y = ”20” > l_init < /name >
< committed/ >
< /location >
< locationid = ”id1”x = ”0”y = ”0” >
< namex = ”0”y = ”20” > l_idle < /name >
< labelkind = ”invariant”x = ”0”y = ”40” > nowB <= nextB < /label >
< /location >
< initre f = ”id0”/ >
< transition >
< sourcere f = ”id0”/ >
< targetre f = ”id1”/ >
< labelkind = ”assignment”x = ” − 165”y = ”0” > InitAutomaton() < /label >
< /transition >
< transition >
< sourcere f = ”id1”/ >
< targetre f = ”id1”/ >
< labelkind = ”synchronisation”x = ”167”y = ”125” > A? < /label >
< labelkind = ”assignment”x = ”167”y = ”145” > A f unc() < /label >
< nailx = ”0”y = ”500”/ >
< nailx = ”433”y = ”249”/ >
< /transition >
< transition >

87

< sourcere f = ”id1”/ >
< targetre f = ”id1”/ >
< labelkind = ”guard”x = ”50”y = ” − 250” > (maxoutB > 0)&&(nowB == nextB) <
/label >
< labelkind = ”assignment”x = ”50”y = ” − 230” > B f unc() < /label >
< labelkind = ”synchronisation”x = ”50”y = ” − 210” > B! < /label >
< nailx = ”433”y = ” − 250”/ >
< nailx = ”0”y = ” − 500”/ >
< /transition >
< /template >
< system >

intmxInteger = 100;
t1 = UseOldInputA(mxInteger);
t2 = UseOldInputB();
systemt1, t2;
< /system >

< /nta >

88

APPENDIX C

TCTL QUERIES FOR D3RIP VERIFICATION

• A� not deadlock

– Safety property stating the deadlock freedom of the system that is composed of
SM, IL, CL and DL

• A� (DL1.stNo == 3) & & (DL1.nowDL == t0) imply IL.noS tt == 26

– Safety property stating that within a finite time interval, it is not possible for IL to
make infinite number of state transitions. (i.e there is no locally Zeno behavior.)
So IL is progressive.

Here noS tt is a counter that is defined to count the number of state transitions. In
the implemented network configuration, IL should take 26 state transitions when
DL triggers the rollback action.

• E^ IL.l_idle

– Reachability property stating that l_idle state of IL is reachable.

• E^ CL.l_idle

– Reachability property stating that l_idle state of CL is reachable.

• E^ DL.l_idle

– Reachability property stating that l_idle state of DL is reachable.

• A� (IL1.bReqIL == true) & & (IL1.nowIL == t1) imply IL2.nowIL == t1

– Safety property stating that the protocol layers located on the distributed nodes
operates synchronously for a 2 node network.

• A� (IL1.bReqIL == true) & & (IL1.nowIL == t1) imply IL3.nowIL == t1

– Safety property stating that the protocol layers located on the distributed nodes
operates synchronously for a 3 node network.

• A� (CL1.vCL.iCnt == CL2.vCL.iCnt) & & (CL1.sendCL == CL2.sendCL) imply
(CL1.vCL == CL2.vCL)

89

– Safety property stating that CL located on the distributed nodes on a 2 node
network has consistent state variables hence D3RIP is suitable for synchronized
checkpointing

• A� (CL1.vCL.iCnt == CL3.vCL.iCnt) & & (CL1.sendCL == CL3.sendCL) imply
(CL1.vCL == CL3.vCL)

– Safety property stating that CL located on the distributed nodes on a 3 node
network has consistent state variables hence D3RIP is suitable for synchronized
checkpointing

• A� (IL1.nowIL == IL2.nowIL) & & (IL1.vIL.iCnt == IL2.vIL.iCnt) imply
IL1.vIL == IL2.vIL

– Safety property stating that IL located on the distributed nodes on a 2 node net-
work has consistent state variables hence D3RIP is suitable for synchronized
checkpointing

• A� (IL1.nowIL == IL3.nowIL) & & (IL1.vIL.iCnt == IL3.vIL.iCnt) imply
IL1.vIL == IL3.vIL

– Safety property stating that IL located on the distributed nodes on a 3 node net-
work has consistent state variables hence D3RIP is suitable for synchronized
checkpointing

• A� (DL1.stNo == 3) & & (DL1.nowDL == t0) imply GmessILS M.par.ATRes ==

f alse

– Safety property stating that DL of node 1 trigs the rollback process if the accep-
tance test result received from the message transmitting node is false.

90

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-
omy of dependable and secure computing,” Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

[2] D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager, The Theory of Timed IO
Automata, Second Edition. Morgan and Claypool Publishers, 2010.

[3] T. Sauter and A. Treytl, “Communication systems as an integral part of distributed au-
tomation systems,” in Distributed Manufacturing, H. Kühnle, Ed. Springer London,
2010, pp. 93–111.

[4] T. Sauter, S. Soucek, W. Kastner, and D. Dietrich, “The evolution of factory and building
automation,” Industrial Electronics Magazine, IEEE, vol. 5, no. 3, pp. 35–48, 2011.

[5] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within industrial dis-
tributed environment — a survey,” Industrial Informatics, IEEE Transactions on, vol. 9,
no. 1, pp. 182–189, 2013.

[6] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “Timed i/o automata: A mathe-
matical framework for modeling and analyzing real-time systems,” Real-Time Systems
Symposium, IEEE International, vol. 0, p. 166, 2003.

[7] P. P. Kim G. Larsen and W. Yi, “Uppaal in a nutshell,” 1994.

[8] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of rollback-
recovery protocols in message-passing systems,” ACM Comput. Surv., vol. 34, no. 3, pp.
375–408, Sep. 2002.

[9] D. E. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory of timed I/O au-
tomata,” MIT Laboratory for Computer Science, Cambridge, MA, Tech. Rep. MIT-LCS-
TR-917, 2003.

[10] K. Schmidt and E. Schmidt, “Distributed real-time protocols for industrial control sys-
tems: Framework and examples,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 23, no. 10, pp. 1856–1866, 2012.

[11] G. Buja and R. Menis, “Dependability and functional safety: Applications in industrial
electronics systems,” Industrial Electronics Magazine, IEEE, vol. 6, no. 3, pp. 4–12,
2012.

[12] Y. Huang and C. M. R. Kintala, “Software implemented fault tolerance technologies and
experience,” in International Symposium on Fault-Tolerant Computing, 1993, pp. 2–9.

[13] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems,”
Software Engineering, IEEE Transactions on, vol. SE-13, no. 1, pp. 23–31, 1987.

91

[14] G.-M. Chiu and C.-R. Young, “Efficient rollback-recovery technique in distributed com-
puting systems,” Parallel and Distributed Systems, IEEE Transactions on, vol. 7, no. 6,
pp. 565–577, 1996.

[15] P. Ramanathan and K. G. Shin, “Use of common time base for checkpointing and roll-
back recovery in a distributed system,” IEEE Trans. Softw. Eng., vol. 19, no. 6, pp.
571–583, Jun. 1993.

[16] J. Tsai, “Flexible symmetrical global-snapshot algorithms for large-scale distributed sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 3, pp. 493–
505, 2013.

[17] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, “A program structure
for error detection and recovery,” in Operating Systems, Proceedings of an International
Symposium. London, UK, UK: Springer-Verlag, 1974, pp. 171–187.

[18] B. Randell, “System structure for software fault tolerance,” Software Engineering, IEEE
Transactions on, vol. 10, no. 6, pp. 437–449, Apr. 1975.

[19] J.-M. Helary, A. Mostefaoui, and M. Raynal, “Communication-induced determination of
consistent snapshots,” Parallel and Distributed Systems, IEEE Transactions on, vol. 10,
no. 9, pp. 865–877, 1999.

[20] A. C. Simon, S. E. P. Hernandez, J. R. P. Cruz, and P. G.-G. K. Drira, “A scalable
communication-induced checkpointing algorithm for distributed systems,” IEICE Trans-
actions on Information and Systems, vol. 96, no. 4, pp. 886–896, 2013.

[21] Z. Tong, R. Kain, and W. Tsai, “Rollback recovery in distributed systems using loosely
synchronized clocks,” Parallel and Distributed Systems, IEEE Transactions on, vol. 3,
no. 2, pp. 246–251, 1992.

[22] S. Neogy, A. Sinha, and P. Das, “Distributed checkpointing using synchronized clocks,”
in International Computer Software and Applications Conference, 2002, pp. 199–204.

[23] S. J. Garland, D. Kaynar, N. A. Lynch, J. A. Tauber, and M. Vaziri, “Tioa tutorial,” 2005.

[24] C. Constant, T. Jeron, H. Marchand, and V. Rusu, “Integrating formal verification and
conformance testing for reactive systems,” Software Engineering, IEEE Transactions
on, vol. 33, no. 8, pp. 558 –574, aug. 2007.

[25] Y. Zhu and T. Marshall, “Design verification using formal techniques,” in ASIC, 2001.
Proceedings. 4th International Conference on, 2001, pp. 21 –28.

[26] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time systems,” in Logic
in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Symposium on
e, jun 1990, pp. 414 –425.

[27] A. Ayoub, A. M. Wahba, A. M. Salem, and M. A. Sheirah, “Tctl-based verification
of industrial processes.” in FDL. ECSI, 2003, pp. 456–468. [Online]. Available:
http://dblp.uni-trier.de/db/conf/fdl/fdl2003.htmlAyoubWSS03

[28] F. Miyawaki, K. Masamune, S. Suzuki, K. Yoshimitsu, and J. Vain, “Scrub nurse robot
system-intraoperative motion analysis of a scrub nurse and timed-automata-based model
for surgery,” Industrial Electronics, IEEE Transactions on, vol. 52, no. 5, pp. 1227–
1235, oct. 2005.

92

http://dblp.uni-trier.de/db/conf/fdl/fdl2003.html AyoubWSS03

[29] P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi, “A formally verified application-level
framework for real-time scheduling on POSIX real-time operating systems,” Software
Engineering, IEEE Transactions on, vol. 30, no. 9, pp. 613–629, sept. 2004.

[30] H. Bel Mokadem, B. Berard, V. Gourcuff, O. De Smet, and J. Roussel, “Verification
of a timed multitask system with uppaal,” Automation Science and Engineering, IEEE
Transactions on, vol. 7, no. 4, pp. 921 –932, oct. 2010.

[31] G. Behrmann, R. David, and K. G. Larsen, “A tutorial on uppaal.” Springer, 2004, pp.
200–236.

[32] R. Alur and D. L. Dill, “Automata for modeling real-time systems,” in Proceedings of
the Seventeenth International Colloquium on Automata, Languages and Programming.
New York, NY, USA: Springer-Verlag New York, Inc., 1990, pp. 322–335. [Online].
Available: http://dl.acm.org/citation.cfm?id=90397.90438

[33] M. Mikucionis, K. G. Larsen, J. I. Rasmussen, B. Nielsen, A. Skou, S. U.
Palm, J. S. Pedersen, and P. Hougaard, “Schedulability analysis using UPPAAL:
Herschel-planck case study,” in Proceedings of the 4th international conference on
Leveraging applications of formal methods, verification, and validation - Volume Part
II, ser. ISoLA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 175–190. [Online].
Available: http://portal.acm.org/citation.cfm?id=1939345.1939369

[34] S. Li, S. Balaguer, A. David, K. G. Larsen, B. Nielsen, and S. Pusinskas, “Scenario-
based verification of real-time systems using UPPAAL,” Form. Methods Syst. Des.,
vol. 37, no. 2–3, pp. 200–264, dec. 2010.

[35] F. Wang, G.-D. Huang, and F. Yu, “Tctl inevitability analysis of dense-time systems:
From theory to engineering,” Software Engineering, IEEE Transactions on, vol. 32,
no. 7, pp. 510 –526, july 2006.

[36] W. Yi, P. Pettersson, and M. Daniels, “Automatic verification of real-time communi-
cating systems by constraint-solving,” in Proc. of the 7th International Conference on
Formal Description Techniques, 1994, pp. 223–238.

[37] J. Berendsen and F. Vaandrager, “Compositional abstraction in real-time model
checking,” in Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in
Computer Science, F. Cassez and C. Jard, Eds. Springer Berlin Heidelberg, 2008, vol.
5215, pp. 233–249. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-85778-5_
17

[38] “Uppaal web help,” [Available Online]: http://www.it.uu.se/research/group/darts/uppaal
/help.php?file=WebHelp.

[39] J. Moyne and D. Tilbury, “The emergence of industrial control networks for manufac-
turing control, diagnostics, and safety data,” Proceedings of the IEEE, vol. 95, no. 1, pp.
29–47, Jan. 2007.

[40] P. Neumann, “Communication in industrial automation - what is going on?” Control
Engineering Practice, vol. 15, pp. 1332–1347, 2007.

[41] L. Seno, F. Tramarin, and S. Vitturi, “Performance of industrial communication systems:
Real application contexts,” Industrial Electronics Magazine, IEEE, vol. 6, no. 2, pp. 27–
37, 2012.

93

http://dl.acm.org/citation.cfm?id=90397.90438
http://portal.acm.org/citation.cfm?id=1939345.1939369
http://dx.doi.org/10.1007/978-3-540-85778-5_17
http://dx.doi.org/10.1007/978-3-540-85778-5_17

[42] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in industrial networks,”
Proceedings of the IEEE, vol. 93, no. 6, pp. 1130–1151, June 2005.

[43] G. Prytz, “Redundancy in industrial Ethernet networks,” in Factory Communication Sys-
tems, IEEE International Workshop on, 2006, pp. 380–385.

[44] A. Giorgetti, F. Cugini, F. Paolucci, L. Valcarenghi, A. Pistone, and P. Castoldi, “Per-
formance analysis of media redundancy protocol (MRP),” Industrial Informatics, IEEE
Transactions on, vol. 9, no. 1, pp. 218–227, 2013.

[45] K. Hansen, “Redundancy Ethernet in industrial automation,” in Emerging Technologies
and Factory Automation, IEEE Conference on, vol. 2, 2005, pp. 941–947.

[46] H. Kirrmann and D. Dzung, “Selecting a standard redundancy method for highly avail-
able industrial networks,” in Factory Communication Systems, IEEE International Work-
shop on, 2006, pp. 386–390.

[47] C.-H. Chen and N.-F. Huang, “Lib: A last-in-backup based fast recovery scheme for
ring-based industrial networks,” Communications Letters, IEEE, vol. 15, no. 6, pp. 680–
682, 2011.

[48] M. Huynh, S. Goose, P. Mohapatra, and R. Liao, “RRR: Rapid ring recovery submil-
lisecond decentralized recovery for Ethernet ring,” Computers, IEEE Transactions on,
vol. 60, no. 11, pp. 1561–1570, 2011.

[49] “Real-time Ethernet: EPL (Ethernet powerlink): Proposal for a publicly available spec-
ification for real-time Ethernet,” Doc. IEC 65C/356a/NP, 2004.

[50] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo, “FTT-Ethernet: a flexible real-time
communication protocol that supports dynamic qos management on ethernet-based sys-
tems,” Industrial Informatics, IEEE Transactions on, vol. 1, no. 3, pp. 162–172, 2005.

[51] G. Prytz and J. Skaalvik, “Redundant and synchronized EtherCAT network,” in Indus-
trial Embedded Systems, International Symposium on, 2010, pp. 201–204.

[52] A. Xu, L. Jiang, and H. Yu, “Research of fault-tolerance technique for high availability
industrial Ethernet,” in Information and Automation, International Conference on, 2009,
pp. 301–305.

[53] “Real-time Ethernet: SERCOS III: Proposal for a publicly available specification for
real-time Ethernet,” Doc. IEC 65C/358/NP, 2004.

[54] “Real-time Ethernet: TCnet (Time-Critical Control Network): Proposal for a publicly
available specification for real-time Ethernet,” Doc. IEC 65C/353/NP, 2004.

[55] J. Lisner, “Efficiency of dynamic arbitration in TDMA protocols,” in Dependable Com-
puting - EDCC 5, ser. Lecture Notes in Computer Science, M. Cin, M. Kaâniche, and
A. Pataricza, Eds. Springer Berlin Heidelberg, 2005, vol. 3463, pp. 91–102.

[56] (2002, Nov.) IEEE 1588 standard for a precision clock synchronization protocol
for networked measurement and control systems. [Online]. Available: http:
//ieee1588.nist.gov

94

http://ieee1588.nist.gov
http://ieee1588.nist.gov

[57] W. Hummer, C. Inzinger, P. Leitner, B. Satzger, and S. Dustdar, “Deriving a unified
fault taxonomy for event-based systems,” in Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems. New York, NY, USA: ACM, 2012,
pp. 167–178.

[58] P.-L. Lai, J. J. M. Tan, C.-P. Chang, and L.-H. Hsu, “Conditional diagnosability measures
for large multiprocessor systems.” IEEE Trans. Computers, vol. 54, no. 2, pp. 165–175,
2005. [Online]. Available: http://dblp.uni-trier.de/db/journals/tc/tc54.html#LaiTCH05

[59] E. P. Duarte, E. P. Duarte, T. Nanya, and T. Nanya, “A hierarchical adaptive distributed
system-level diagnosis algorithm a hierarchical adaptive distributed system-level
diagnosis algorithm,” Transactions on Computers, vol. 47, no. 1, pp. 34–45, 1998.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=656078

[60] A. Kaya, E. G. Schmidt, K. W. Schmidt, and T. Moor, “Dynamic distributed real-time
industrial Ethernet Protocol (D2RIP): Architecture, implementation and experimental
evaluation,” Industrial Informatics, IEEE Transactions on, 2013.

[61] O. B. Sezer, “Implementation and evaluation of the dependability plane for the dynamic
distributed dependable real time industrial protocol (d3rip),” Master’s thesis, Middle
East Technical University, Department of Electrical and Electronics Engineering, 2013.

[62] C. M. Robson, “Timed input/output automata and uppaal,” Master’s thesis, Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, 2004.

[63] Y. Kartal, “Tuconvert tool [online],” 2014. [Online]. Available: http://www.eee.metu.
edu.tr/~eguran/D3RIP/TUConvert_pkg.exe

[64] S. Mondal and S. Sural, “Security analysis of temporal-rbac using timed automata,” in
Information Assurance and Security, 2008. ISIAS ’08. Fourth International Conference
on, sept. 2008, pp. 37 –40.

[65] M. Felser, “Media redundancy for profinet io,” in Factory Communication Systems,
2008. WFCS 2008. IEEE International Workshop on, 2008, pp. 325–330.

95

http://dblp.uni-trier.de/db/journals/tc/tc54.html#LaiTCH05
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=656078
http://www.eee.metu.edu.tr/~eguran/D3RIP/TUConvert_pkg.exe
http://www.eee.metu.edu.tr/~eguran/D3RIP/TUConvert_pkg.exe

96

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kartal, Yusuf Bora
Nationality: Turkish (TC)
Date and Place of Birth: 13.04.1983, Ankara
Marital Status: Married
Phone: +905052293779

EDUCATION

Degree Institution Year of Graduation
M.S. METU/Electrical and Electronics Engineering 2007
B.S. METU/Electrical and Electronics Engineering 2005

PROFESSIONAL EXPERIENCE

Year Place Enrollment
2010 October- ASELSAN Inc. Radar Systems Design Engineer
2004 November-2010 October ASELSAN Inc. Software Engineer

FOREIGN LANGUAGES

Advanced English, Good German

PUBLICATIONS

International Conference Publications

• Y.B. Kartal, E. G. Schmidt, K. W. Schmidt, “Modeling and Formal Verification of Dis-
tributed Real-Time Systems Using Timed Input/Output Automata and UPPAAL ”, 2014
(submitted for review)

97

• Y.B. Kartal, E. G. Schmidt, K. W. Schmidt, “Dependability Design for a Distributed
Industrial Real-Time Protocol Family”, 2014 (under preperation)

• Y.B. Kartal, E. G. Schmidt, K. W. Schmidt, “The Verification of a Novel Framework
for Real-Time Shared Medium Communication Network Protocols”, 2012

• Ç. Turan, A. Dökmen, S. Akdağ, Y.B. Kartal, “Gömülü Yazılım Geliştirme Pratikleri”,
2009

• Y.B. Kartal, E. G. Schmidt, “ İlgiye Odaklı Programlamanın Gerçek Zamanlı Gömülü
Sistemler Üzerinde Bir Değerlendirmesi”, 2007

• Y.B. Kartal, E. G. Schmidt, “An Evaluation of Aspect Oriented Programming for Em-
bedded Real-Time Systems”, 2007

HOBBIES

Swimming, Reading, Music

98

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Background
	Concepts of Dependable Computing
	Checkpointing and Rollback Mechanisms for Software Fault Tolerance
	Timed Input/Output Automata
	UPPAAL as a Formal Modeling and Verification Environment
	Real-time Communication Networks and Dependability

	Dependability Design For Distributed Real-Time Systems With Broadcast Communication
	Distributed Real-Time System Model
	General Properties of Distributed Real-Time Systems
	Generic Node Model
	Potential Fault Scenarios
	Dependability Design Requirements

	Distributed Rollback Strategy with Synchronized Checkpointing
	Assumptions
	Basic Operation
	Acceptance Test Realization
	Dependability Plane Operation

	Case Study: Dependability Design For A Distributed Industrial Real-Time Protocol Family
	Protocol Framework
	Overview
	Shared-Medium Broadcast Network
	Interface Layer
	Coordination Layer
	Protocol Operation

	TIOA Modeling of D3RIP Framework
	Framework Layers
	Shared-Medium Broadcast Network (SM)
	Interface Layer (IL)
	Coordination Layer (CL)

	Dependability Plane (DP)
	D3RIP Operation
	Formal Results
	Progressiveness
	Synchronized Checkpointing
	Rollback

	Modeling Distributed TIOA Systems in UPPAAL
	TIOA Modeling in UPPAAL
	Assumptions for TIOA Models
	TUConvert Algorithm
	Timed Automata Semantics in UPPAAL
	Formal Results
	Modeling Case Study: Distributed Real-Time Protocol
	Shared Medium Broadcast Network
	Interface Layer
	Coordination Layer
	Dependability Plane

	Simulation and Verification of TIOA Based Models in UPPAAL
	Formal Verification of D3RIP Framework
	Verification of Safety Properties
	Verification of Reachability Properties
	Verification Results of D3RIP Framework

	Simulation of D3RIP Framework
	Time-Slotted Interface Layer (TSIL)
	Urgency-Based Real-time Protocol (URT)
	Synchronization Based Dependability Protocol (SDEP)
	Simulation Example
	Worst-Case Recovery Delay Calculation Example

	CONCLUSIONS
	APPENDICES
	TUConvert Input File Format
	TUConvert Output File Format
	TCTL Queries for D3RIP Verification
	REFERENCES
	CURRICULUM VITAE

