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ABSTRACT 

 

ATTITUDE CONTROL OF AN EARTH ORBITING SOLAR SAIL SATELLITE 

TO PROGRESSIVELY CHANGE THE SELECTED ORBITAL ELEMENT 

 

 

Ataş, Ömer 

M.S., Department of Aerospace Engineering 

Supervisor   : Prof. Dr. Ozan Tekinalp 

 

 

February 2014, 79 pages 

 

 

 

Solar sailing is currently under investigation for space propulsion. Radiation pressure 

from the Sun is utilized to propel the spacecraft. This thesis examines locally optimal 

steering law to progressively change the selected orbital elements, without considering 

others, of an Earth centered Keplerian orbit of a cube satellite with solar sail. The 

proper attitude maneuver mechanization is proposed to harvest highest solar radiation 

force in the desired direction for such Earth orbiting satellites. The satellite attitude 

control is realized by developing quaternion feedback controller. The changes of the 

orbital elements are observed.  

 

Keywords: Solar Sail, Orbital Elements, Locally Optimal Steering Law, Attitude 

Control, Quaternion Feedback Control. 
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ÖZ 

 

 

DÜNYA YÖRÜNGESİNDE DOLAŞAN GÜNEŞ YELKENLİ UYDUNUN 

YÖRÜNGE PARAMETRESİNİN YAVAŞ YAVAŞ DEĞİŞTİRİLMESİ 

AMACIYLA YÖNELİM KONTORLÜ 

 

 

 

Ataş, Ömer 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi   : Prof. Dr. Ozan Tekinalp 

 

 

Şubat 2014, 79 sayfa 

 

 

 

Son dönemlerde güneş yelkenlerinin uzayda itki kaynağı olarak kullanılmasıyla ilgili 

çalışmalar artmıştır. Bu tezde local optimal yönelim ile Dünya merkezli bir yörüngede 

dolanan Güneş yelkenli uydunun seçilmiş yörünge parametresinin tedrici olarak 

değiştirilmesi amacıyla gerekli yönelimin bulunması için bir algoritma önerilmiştir. 

Dünya merkezli Kepler orbitalindeki yelkenli bir küp uydu, Güneşe göre uygun 

yönelim belirlenilerek quaternion geri beslemeli kontrol ile yönlendirilimiş ve orbital 

elemanlarındaki değişim diğerlerinden bağımsız olarak maksimize edilmiştir. 

Yörünge parametrelerindeki değişim izlenmiştir.    

 

Anahtar Kelimeler: Güneş Yelkeni, Yörünge Parametreleri, Yerel Optimal 

Yönlendirme Kanunu, Quaternion Geri Beslemeli Kontrol, Yönelim Kontrolü. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Including the deep space probe missions, there are thousands of space missions that 

have been launched since the first space mission. But the extended of our space trip is 

limited by the internal combustion rocket engines and the amount of the fuel. On board 

traditional chemical propulsion requires large storage tanks for a spacecraft to carry 

the propellant for a space mission. Today approximately 95 percent of mass of a space 

shuttle is fuel [1]. That’s why international space agencies, universities and some 

private space corporations do research on solar sails to decrease the need to the rocket 

engines and fuels in the space. There are many advancements over chemical 

propulsion, including nuclear fission, fusion reactors and other novel concepts. But 

most of them are either not proven or impractical for the next decades compared with 

solar sails which are proved for propulsion capabilities [2].   

 

1.1 History of Solar Sail Concept 

Even so the solar sailing has been considered as a practical means of spacecraft 

propulsion only recently, the basic ideas are by no means new [3].  The actual solar 

sailing concept has a long history, which is dating back to the Soviet pioneers of 

astronautics [4]. The existence of radiation pressure was first demonstrated by Scottish 

physicist James Clerk Maxwell in 1873. But it was not measured experimentally until 

Russian physicist Peter Lebedew [4]. He experimentally established the existence of 

force exerted by light upon gases [5]. Konstantin Tsiolkovsky, and his co-worker, 

Fridrickh Tsander , Both wrote the ‘Using tremendous mirrors of very thin sheets’ and 

‘Using the pressure of light to  
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Figure 1.1 Solar Sail [6] 

attain cosmic velocities’ in 1924 [4]. The term of solar sailing was used in the late 

1950’s and was popularized by Arthur C. Clarke in the short story Sunjammer (The 

Wind From the Sun) in May 1964 [7].  NASA used sailing techniques to extend the 

operational life of the Mariner 10 spacecraft in 1974-1975. A problem in control 

system was causing Mariner 10 to go off course. By controlling the attitude of Mariner 

10 and the angle of the solar power panels relative to the sun, ground controllers were 

able to correct the problem without using precious fuel [8]. 

 

1.2 Literature Survey 

Recent, attention has been focused on the utilization of  solar sail for orbital elements 

control, sustaining displaced orbits, halo orbits, interplanetary travel and attitude 

control. This literature review is based on the studies on these topics.  

 

There are very few books about the solar sail. McInnes’s book [4] stands out among 

them in terms of content and clarity. He introduces solar sail orbits and mission 

applications, puts emphasis on solar sail orbital dynamics and gives analysis of solar 

radiation pressure. In the book, orbital analysis are separately conducted for Sun-

centered and planet-centered orbits. He explains the locally optimal steering law and 

the usage of it to change the orbital elements of a Sun centered orbit. Studied displaced 

orbits for solar sails around Sun.  
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The study of Wie [9] presents a mathematical formulation of the thrust vector control 

design problem of solar sail spacecraft. Using Gauss’s form of the 

variational equations and finds the desired orientation of solar sail thrust vector 

orientation in order to maximize the rate of change of inclination. He also gives 

examples of solar sail trajectory design and simulations. 

 

In the study of Benjamin [10] , the attitude of the solar sail is controlled by means of 

displaying the center of mass of the solar sail with respect to center of solar radiation 

pressure. By using this attitude control he shows the availability of solar sail for 

interplanetary travels especially for Earth-Mars, Earth-Venus and Earth-Jupiter 

trajectories.  

 

One of the possible usages is monitoring sun from a closer distance in order to make 

an accurate prediction on solar upcoming winds. [11]. A solar sail spacecraft with 

particle detector may be located between Earth and Sun to detect the upcoming solar 

winds. As it is stated in [11] the L1 Lagrangian point of Earth-Sun system, at a distance 

of 1.5 million [km] upstream from the Earth, offers opportunity to detect the storm 

condition about one hour before the solar wind reaches the Earth. 

 

Halo orbits are also in the possible application field of solar sails. Farres and Jorba 

[12], describe the dynamics of solar sail around a Halo orbit. They derive a station 

keeping strategy for solar sails around Halo orbit. 

 

Solar sails may also be used to deorbit satellites at the end of their life time. Lucking 

and his colleagues [13] derive the required area to mass ratio of a solar sail to deorbit 

from MEO analytically, and the results are verified numerically, they also analyse 

inclined and eccentric orbits. The author of this thesis has also worked on such project 

called DeOrbitSail (European Union 7th framework project).    

 

1.3 Solar Sail Missions 

Many solar and drag sail projects have been undertaken as ground studies are proposed 

but not realized. In recent years, however, demonstration missions have succeeded in 

deploying large sails in space, as well as confirming deployment and demonstrating 
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solar sailing capabilities. In this section some important solar sail missions are 

summarized. 

1.3.1 NanoSail-D 

NanoSail-D was a NASA sail demonstration mission. After the destruction of the 

original NanoSail-D satellite in 2008 launch failure [14]. NanoSail-D2 was launched 

in 2010 and deorbited in approximately 8 months [15] 

 

Figure 1.2 Deployed NanoSail-D [15] 

Due to size and a tight schedule, NanoSail-D was not able to carry significant 

diagnostic instrumentations and relied on ground imaging to confirm deployment [14]. 

 

Figure 1.3 Ground imaging of NanoSail-D2 [15] 



5 

 

1.3.2 IKAROS 

IKAROS is a JAXA mission which has demonstrated the first deep space solar sail. 

The mission launched in May 2010 and deployed its 200 m2 solar sail in June 2010 

[16]. Rather than using any rigid booms or frame, the IKAROS sail was deployed and 

kept stretched using centrifugal force. Several cameras were incorporated in the 

mission design, so there is ample evidence of the successful deployment of this sail. 

The effectiveness of the solar sailing mission was evaluated with attitude and trajectory 

data. IKAROS combined many new technologies for solar sailing and ultra-

lightweight deployable structure, as well as a unique steering system. As a deep space 

mission, it was able to demonstrate the use of solar radiation pressure in an 

environment where SRP is more significant than atmospheric drag. 

 

Figure 1.4 Deployed IKAROS from deployable camera [16] 
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Figure 1.5 IKAROS steering system [16] 

  1.3.3 DLR Gossamer 

DLR’s gossamer project will launch three solar sails of increasing size into orbits of 

increasing altitude, with Gossamer-1 slated for 2013 [17]. Gossamer-1 will be a 5-by-

5 m sail flown with the QB50 CubeSat project in a 300-320 km orbit. The Gossamer-

1 baseline design is a square sail that will be extended by four tip-deployed booms of 

DLR’s design [18] 

 

Figure 1.6 Gossamer-1 deployment sequence [18] 
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1.3.4 LightSail 

The Planetary Society’s LightSail program will comprise three solar sail projects. The 

first, LightSail-1, will be a 32 m2, 4.5 µm thick, mylar sail. The Planetary Society is 

searching for launch opportunities for LightSail-1. The Planetary Society had 

previously planned a 2005 solar sail mission, Cosmos-1, which was unable to reach 

orbit due to a launch vehicle failure [19]  

 

 

Figure 1.7 The LightSail-1 spacecraft bus with extended solar panels [19] 

1.3.5 CU Aerospace’s CubeSail 

CU Aerospace together with the University of Illinois are designing a mission to 

demonstrate deployment and measure the thrust on a 0.077-by-260 m membrane 

(around 20m2). This membrane will be deployed from two 1.5U cubesats that will 

separate from each other in orbit. It is intended as a first step towards a larger sail 

concept called UltraSail. This last consists of multiple structures that extend kilometers 

long film blades to ultimately form a heliogyro  [20]. 
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Figure 1.8 Artist's rendition of CubeSail solar sail deployment  [21]. 

  1.3.6 Surrey Space Centre’s CubeSail 

CubeSail is a project to build and deploy in space a 5-by-5 m sail with attitude control 

in a 3U CubeSat standard package [22]. A significant portion of the research in 

CubeSail is going into the characterization of two competing boom concepts and a 

number of sail packing strategies [23]. 

 

Figure 1.9 Surrey Space Centre CubeSail concept  [22] 
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1.3.7 DeOrbitSail Project 

The Deorbitsail project is a European Union 7th Framework program project lead by 

Surrey Space Centre is the coordinator and Middle East Technical University 

Aerospace Department is one of partner of the project. The collaboration is aim to 

build a 3U CubeSat sized satellite with a deployable sail to demonstrate rapid 

deorbiting.  

Thus it will utilize the increased aerodynamic drag from the large surface area. 

Aerodynamic drag is the force that acts opposite the relative velocity vector of a 

satellite in low Earth orbit (LEO). It is a result of air molecules interacting with the 

satellite surface and the general result is a decrease in orbit eccentricity and semi-major 

axis over time. Eventually a satellite that is influenced by drag will return to the Earth 

and either burn up in the atmosphere or impact the surface (or have fragments that 

impact the Earth surface). [24]. 

 

 

Figure 1.10 DeOrbitSail Deployment [25] 

The Deorbitsail project aims to demonstrate that deorbiting can be achieved with a 

deployable sail, and to provide a proven design for the deployment system that can be 

re-used as a deorbiting device on future spacecraft. The Satellite will launch in 2014. 

 1.4  Purpose of the Thesis 
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The purpose of this study to mechanize the calculation of necessary attitude for solar 

sails to achieve propulsion goals. In addition to show that, by using solar sail, the 

orbital elements can be changed progressively for an Earth orbiting satellite. For this 

purpose proper sail direction is calculated. The desired attitude in terms of to-go 

quaternion is calculated based on the current sail direction and desired sail direction. 

Then the Lyapunov function based nonlinear attitude control law is used to steer the 

spacecraft. 

 

 1.5 Contents of the Thesis Report 

 

In chapter 2, the physics of radiation pressure is described with two perspectives of 

physics. And force model of solar sails is explained. 

 

In chapter 3, the formulation of the problem is given. The orbital dynamics, the method 

of maximizing orbital element rate of change and the desired to-go attitude 

mechanization are described in detail.  

 

In chapter 4, simulation results are given and explained for increasing  semi-major 

axis, eccentricity and inclination. 

In chapter 5, general conclusion and future work are presented. 

 

Finally in appendix, simulation results are given for decreasing semi-major axis, 

eccentricity and inclination. 
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CHAPTER 2 

 

 

RADIATION PRESSURE 

 

 

 

2.1 The Physics of Radiation Pressure 

This section follows heavily the chapter of ‘Solar radiation pressure’ of McInnes book 

[4].  

2.1.1 Quantum physics description 

From the quantum physics point of view energy and momentum are carried by packets. 

The light packets are called photons. The origin of concept of photons is the 

investigation of the thermal radiation by Planck and others at the beginning of 20th 

century [4]. In 1905 Einstein successfully showed that incident light on a metal consist 

of individual quanta that interacted with the electrons in the metal. This study of 

Einstein is called photoelectric effect and that study brought him the Nobel Prize in 

1921. 

Denoting, 𝐸𝑝 as the energy of a photon of frequency vp can be calculated from Planck 

Law; 

  𝐸𝑝 = ℎ𝑝𝑣𝑝 (2.1) 

where hp is Planck constant. In addition to equation (2.1) the mass-energy equivalence 

of special relativity the total energy of a moving objects to be written as. 

 𝐸𝑝
2 = 𝑚0

2𝑐4 + 𝑝2𝑐2 (2.2) 

Where m0 is the rest mass of the object, p is the momentum and c is the speed of light. 

The first term in equation (2.2) is the rest energy of the object and the second term is 

the energy of the body due to its motion. Because of the zero rest mass of photon, the 

energy of it can be written as  
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 𝐸𝑝 = 𝑝𝑐 (2.3) 

So from equations (2.1) and (2.3) the amount of momentum which is carried by one 

photon is found as, 

  𝑝 =
ℎ𝑝𝑣𝑝

𝑐
 (2.4) 

This result is derived from by combining the quantum physics with relativity. To find 

the pressure exerted on a surface of a body, the amount of total momentum transported 

by a flux of light must be found. 

The energy flux of light W at a distance r from the sun can be written in terms of the 

solar luminosity Ls and scaled by the Sun-Earth distance RE as [4]. 

 𝑊 = 𝑊𝐸 (
𝑅𝐸

𝑟
)

2

 (2.5) 

 𝑊𝐸 =
𝐿𝑠

4𝜋𝑅𝐸
2 (2.6) 

Where WE is the energy flux at Earth’s distance from the Sun. By using equation (2.5) 

the total energy reaches a surface area A which is normal to the incident light at a 

distance 1 astronomical unit (au) in time ∆t is given by 

 ∆𝐸 = 𝑊𝐴∆𝑡 (2.7) 

Then the transported momentum ∆p may be written as 

 ∆𝑝 =
∆𝐸

𝑐
 (2.8) 

The pressure P is defined as the momentum transported per unit time on a unit area, 

 𝑃 =
1

𝐴
(

∆𝑝

∆𝑡
) (2.9) 

Then  

 𝑃 =
𝑊

𝑐
 (2.10) 

For a perfectly reflective surface the amount of pressure P is given by equation (2.10) 

is doubled, because of the reaction of the reflected light. The orbit of the Earth is 

elliptic that’s why the flux received at the Earth surface varies by approximately 3.5 

percent over the year. The flux is generally accepted as a constant WE of  1368 [Js-1m-
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2] . And the pressure on a perfectly reflective surface normal to the solar flux at 1 Au 

is 9.2×10-6 [Nm-2].  

2.1.2 Electromagnetic description 

Electromagnetic wave is composed of electric and magnetic fields. When the 

electromagnetic wave interacts with the sail material the electric field 𝐄 induces a 

current 𝐣 in the sail. And magnetic field 𝐁 creates Lorenz force in the direction of 

propagation of light. 

 𝐋l = 𝐣 × 𝐁 (2.11) 

Where 𝐋l is the Lorenz force. The reflection of incident light is generated by the 

induced current. As it is shown in the Figure 2.1 for a propagating wave in the direction 

of the x-axis the force exerted on a current is given by [4]. 

 

Figure 2.1 Electromagnetic radiation pressure description [4] 

 

 𝑑𝑓 = 𝑗𝑧𝐵𝑦𝑑𝑥𝑑𝑦𝑑𝑧 (2.12) 

 

Where jz is the induced current density in the reflective surface. The pressure on the 

current element is given as 

 𝑑𝑃 = 𝑗𝑧𝐵𝑦𝑑𝑥 (2.13) 

   

From Maxwell’s equation the current term in equation (2.13) may be replaced as 

follows  

𝐁 

𝐄 

𝐣 

𝑩 

z 

y 
x 

surface 

𝐣 × 𝐁 

Lorentz force 
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 𝑑𝑃 = −
𝜕

𝜕𝑥
(

1

2
𝜀0𝐸𝑧

2 +
1

2𝜇0
𝐵𝑦𝑧

2 ) 𝑑𝑥 (2.14) 

 𝑈 =
1

2
𝜀0𝐸𝑧

2 +
1

2𝜇0
𝐵𝑦𝑧

2  (2.15) 

 Where U is the energy density of the electromagnetic wave, 𝜀0 is the electric 

permittivity of the space and 𝜇0is the permeability of the space. Then the pressure 

exerted on a surface of thickness ∆𝑙 can be found by integrating the equation (2.15) as 

 𝑃 = − ∫
𝜕𝑈

𝜕𝑥
𝑑𝑥

∆𝑙

0

 (2.16) 

As it can be understood the pressure on the perfectly absorbing materials will be  

 𝑃 = 𝑈 (2.17) 

Equation (2.17) indicates that pressure is equal to the energy density of the radiation. 

Now consider two waves which are separated with a distance ∆𝑥 and are incident on 

a surface area 𝐴, as shown in Figure 2.2 the volume of the space between the waves is 

𝐴∆𝑥.   

 

Figure 2.2  Energy density of electromagnetic wave [4] 

 ∆𝑥 = 𝑐∆𝑡 (2.18) 

Where c is speed of light and ∆𝑡 is the travel time then energy density may be written 

as 

 𝑈 =
∆𝐸

𝐴(𝑐∆𝑡)
 (2.19) 

Where ∆𝐸 is the energy contained in the volume element. The energy flux may be 

written as 

Incident wave 1 

Incident wave 2 

𝑬 

𝑩 

∆𝑥 

Surface area A 

𝐟 
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 𝑊 =
1

𝐴
(

∆𝐸

∆𝑡
) (2.20) 

And finally  

 𝑃 = 𝑈 =
𝑊

𝑐
 (2.21) 

In conclusion the expression given in equation (2.21) is equivalent to the expression 

given in equation (2.10). Therefore quantum mechanical and electromagnetic 

approaches give the same radiation pressure. 

2.2 Solar Radiation Force Models 

In the previous topics the radiation pressure was given. In this section solar sail force 

models are presented. The models do not include the effect of sail film wrinkles, 

thermal deformation and structural vibration. 

2.2.1 Force on a perfectly reflective solar sail 

The force exerted on a solar sail is the function of solar sail orientation with respect to 

Sun. In McInnes book [4] the model is explained as follows  

 

Figure 2.3 Perfectly reflecting solar sail [4] 

As shown in Figure 2.3 𝐮i is the incident light and 𝐮r is the reflected light and α is the 

angle between sail normal and incident light. The force exerted on the sail due to 𝐮i is 

given as follows 

 𝐟𝐢 = 𝑃𝐴(𝐮i ∙ 𝐧)𝐮i (2.22) 

𝐮i 

𝐮r 

𝐧 Sail 

𝛼 
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Where 𝐧 is the sail normal and  𝐴(𝐮i ∙ 𝐧) is the projected area in the  𝐮i direction. The 

reflected light 𝐮r will exert a force of equal magnitude on the sail, but in the opposite 

direction. 

 𝐟𝐫 = −𝑃𝐴(𝐮i ∙ 𝐧)𝐮r (2.23) 

By using the vector identity  

 𝐮i − 𝐮r = 2(𝐮i ∙ 𝐧)𝐧 (2.24) 

The total force on the solar sail is given as 

 𝐟 = 2𝑃𝐴(𝐮i ∙ 𝐧)2𝐧 (2.25) 

From equations (2.5) and (2.10) the total force can be express as  

 

 𝐟 =
2𝐴𝑊𝐸

𝑐
(

𝑅𝐸

𝑟
)

2

(𝐮i ∙ 𝐧)2𝐧 (2.26) 

The performance of the solar sail can be parameterized by using the mass and the area 

of the solar sail. The mass per unit area of the sail is known as sail loading, which is 

given as 

 𝜎 =
𝑚

𝐴
 (2.27) 

 And by using the angle between solar sail normal and incident light, the specific force 

on solar sail may be written as 

 𝐚 =
2𝑊𝐸

𝑐

1

𝜎
(

𝑅𝐸

𝑟
)

2

𝑐𝑜𝑠2(𝛼)𝐧 (2.28) 

 

2.2.2 Force on a non-perfect solar sail 

Considering the reflectivity, absorption and emissivity of a solar sail an exact solar sail 

force model can be derived [4].  
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Figure 2.4 Non-perfect solar sail [4] 

Solar radiation force may be written as 

 𝐟 = 𝐟𝐫 + 𝐟𝐚 + 𝐟𝐞 (2.29) 

Where 𝐟𝐫, 𝐟𝐚 and 𝐟𝐞 are the forces due to reflection, absorption and emission 

respectively. The coefficient for reflection �̃�, absorption �̌� and emission 𝜏 is [4]  

  �̃� + �̌� + 𝜏 = 1 (2.30) 

On the reflective side 𝜏 = 0, so 

 �̌� = 1 − �̃� (2.31) 

As shown in Figure 1.5 solar sail normal is 𝐧 and 𝐥 is the unit normal vector to the 

solar sail normal 𝐧. 𝐮 is the direction of the incident light and 𝐬 is the direction of the 

reflected light and 𝐦 is the direction of the resultant solar force vector. By considering 

the non-ideal solar sail the resulting force vector can be written as 

 

𝐟𝐧 = 𝑃𝐴 {(1 + �̃�𝑠)𝑐𝑜𝑠2(𝛼) + 𝐵𝑓(1 − 𝑠)�̃�𝑐𝑜𝑠(𝛼)

+ (1 − �̃�)
𝜀𝑓𝐵𝑓 − 𝜀𝑏𝐵𝑏

𝜀𝑓 + 𝜀𝑏
𝑐𝑜𝑠(𝛼)} 𝐧 

(2.32) 

    

 𝐟𝐥 = 𝑃𝐴(1 − �̃�𝑠)𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼)𝐥 (2.33) 

Where 𝐵𝑓and 𝐵𝑏 indicate the front and back surface of the non-Lambertian solar sail. 

Lambertian surface appears equally bright when viewed from any aspect [4]. Where 

𝜀𝑓 and 𝜀𝑏 are the front and back emissivity of the sail. 

𝐮 

𝐬 

𝐧 

𝛼 

𝐥 𝐦 
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 Detail derivation of the equation (2.32) and (2.33) may be found in [4]. 

 In this chapter the physics of radiation pressure is explained. And radiation force 

models are introduced.  
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CHAPTER 3 

 

 

FORMULATION OF THE PROBLEM 

 

 

 

3.1 Reference Frames 

 

  3.1.1 Earth centered inertial frame  

Inertial frame of reference is defined to be stationary in space or moving at a constant 

velocity. The Earth centered inertial frame is used to define the motion of the solar 

sail. The origin of the frame is at the center of the earth. The Z-axis pointing the Earth’s 

rotation axis, the x-axis is in the equatorial plane and pointing from Sun to Earth and 

y-axis completes the right handed system.  

 

Figure 3.1 Illustration of ECI 

As it is seen in the Figure 3.2 the frame is assumed to be stationary in the space and 

X-axis is aligned with the line of intersection of ecliptic plane and equatorial plane in 

the direction from Sun to Earth.  

 

X 

Y 

Z 

Equatorial 

sunline 
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Figure 3.2 Orientation of Earth centered frame 

3.1.2 Orbital frame of reference 

The origin of the frame is at the center of the satellite. Keplerian orbital elements are 

used to define the position of a satellite. The fundamental plane is the instantaneous 

orbital plane of the satellite. Zo-axis is directed from center of Earth to center of 

satellite and Yo-axis is perpendicular to the fundamental plane in the positive direction 

of instantaneous orbital angular momentum vector. And Xo-axis completes the triad, 

and is in the velocity vector direction for circular orbits. 

 

Figure 3.3 Illustration of orbital frame 

  

 

 
X 

Y 

Z 

Xo 
Yo 

Zo 

 

Earth 
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  3.1.3 Body fixed coordinate system 

Body fixed coordinate system is used to define the attitude dynamics of the vehicle. In 

body fixed coordinate system mass moment of inertia of a rigid body is constant. The 

origin of the frame is at the mass center of the body. As shown in Figure 3.3, x-axis is 

the roll axis and it is normal to the solar sail and directed from non-reflective side of 

the solar sail. The y-axis is the pitch axis, it is in the sail plane, and z-axis is the yaw 

axis and it is in the sail plane 

 

Figure 3.4 Body fixed coordinate system 

3.2 Orbital Mechanics of the Solar Sail 

The equation of the orbital motion of a satellite with respect to the Earth centered 

inertial Cartesian coordinates may be expressed as 

 

�̈� = −𝜇
𝐗

𝑟3
+ 𝐟𝐗 

�̈� = −𝜇
𝐘

𝑟3
+ 𝐟𝐘 

�̈� = −𝜇
𝐙

𝑟3
+ 𝐟𝐙 

(3.1) 

The double dots on 𝐗, 𝐘 and 𝐙 is the second time derivative of them. Where  𝑟 =

√𝐗2 + 𝐘2 + 𝐙2, and 𝐟𝐗, 𝐟𝐘 and 𝐟𝐙 are the inertial frame components of the acceleration 

due to solar radiation force acting on the spacecraft. And 𝜇 = 𝐺𝑀 where 𝐺 is 

gravitational constant and  𝑀 is the mass of the Earth.  

 

x 

y 

z 
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3.3  Osculating Orbital Elements  

 

The motion of a satellite can be expressed also in terms of the orbital elements. The 

variaton of six orbtal elements,  𝑎 is the semi-major axis, 𝑒 is the eccentricity, 𝑖 is the 

inclination, Ω is the right ascension of the ascending node, 𝑤 is the argument of 

periapse, and 𝑣 is the true anomaly, are expressed in 6 first order differential equations, 

they are called Gauss’s form which may be written as [26] [27]. 

 
𝑑𝑎

𝑑𝑡
=

2𝑎2

ℎ
(𝑒𝑠𝑖𝑛(𝑣)𝐑 +

𝑝

𝑟
𝐓) (3.2) 

 

 
𝑑𝑒

𝑑𝑡
=

1

ℎ
{𝑝𝑠𝑖𝑛(𝑣)𝐑 + [(𝑝 + 𝑟)cos (𝑣) + 𝑟𝑒]𝐓} (3.3) 

 

 
𝑑𝑖

𝑑𝑡
=

𝑟𝑐𝑜𝑠(∅)

ℎ
𝐍 (3.4) 

 

 
𝑑Ω

𝑑𝑡
=

𝑟𝑠𝑖𝑛(∅)

ℎ𝑠𝑖𝑛(𝑖)
𝐍 (3.5) 

 

 
𝑑𝑤

𝑑𝑡
=

1

ℎ𝑒
[−𝑝𝑐𝑜𝑠(𝑣)𝑅 + (𝑝 + 𝑟)sin (𝑣)𝐓] −

𝑟𝑠𝑖𝑛(∅)cos (𝑖)

ℎ𝑠𝑖𝑛(𝑖)
𝐍 (3.6) 

 

 
𝑑𝑣

𝑑𝑡
=

ℎ

𝑟2
+

1

𝑒ℎ
[𝑝𝑐𝑜𝑠(𝑣)𝐑 − (𝑝 + 𝑟)sin (𝑣)𝐓] (3.7) 

Where  

∅ = 𝑣 + 𝑤, is argument of latitude 

𝑝 = 𝑎(1 − 𝑒2), is the semi-latus rectum 

𝑟 =
𝑝

1+𝑒𝑐𝑜𝑠(𝑣)
  , is the instantaneous radius of the satellite  

ℎ = √𝜇𝑝, is the magnitude of the angular momentum  

 

Where R, T and N are the specific forces in the radial, transverse, and orbit normal 

directions.  

In the case of circular orbit or zero inclination Gauss’s form of planetary equations i.e. 

equations (3.5),(3.6) and (3.7) are singular. Because in circular orbit, the true anomaly 



23 

 

and the argument of periapsis are undefined. And also for zero inclination some terms 

in differential equations also go to infinity. To get rid of singularity nonsingular 

equinoctial elements may be used. Since desired solar sail orientation with respect to 

orbital element and sunline, is needed, the Gauss’s form of planetary equations are 

used.  

 

3.4  Locally Optimal Orientation of Solar Sail 

 

Locally optimal steering laws are used to maximize the instantaneous rate of change 

of orbital elements. However, these locally optimal orientation laws do not guarantee 

global optimality [4]. 

 

Before, describing the general mechanization of changing orbital elements, we can 

begin with a simple and intuitive way of maximization of rate of change of semi-major 

axis by considering orbital energy. 

  

  3.4.1 Energy approach for semi-major axis 

 

For orbital decay the radiation force vector must be oriented in such a way to decrease 

the orbital energy, or for orbital rise the radiation force vector must be oriented to 

increase the orbital energy. For this reason the sail must be oriented such that the 

component of the drag or thrust due to solar radiation is maximized. Consider the 

orbital equation given below with gravitational attraction, and solar sail characteristic 

acceleration [4]  

 
𝑑2𝐫

𝑑𝑡2
+ 𝜇

𝐫

𝑟3
= 𝐾(𝐬 ∙ 𝐧)2𝐧 (3.8) 

 

K is specific force of solar sail due to solar radiation, μ Earth’s gravitational parameter, 

and n is the sail normal, and s sun-line direction vector.  An energy equation may be 

obtained by multiplying equation (3.8) by the velocity vector, v.  

 
𝑑2𝐫

𝑑𝑡2
∙ 𝐯 + 𝜇

𝐫 ∙ 𝐯

𝑟3
= 𝐾(𝐬 ∙ 𝐧)2𝐧 ∙ 𝐯 (3.9) 
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Figure 3.5 Solar sail orientation  

Since the left hand side of the above equation (3.9) represents the rate of change of 

total energy 

 
𝑑𝐸

𝑑𝑡
= 𝐾(𝐬 ∙ 𝐧)2𝐧 ∙ 𝐯 (3.10) 

The right hand side of the equation (3.10) may be written as: 

 (𝐬 ∙ 𝐧)2𝐧 ∙ 𝐯 = 𝑐𝑜𝑠2(𝛼) 𝑐𝑜𝑠 (𝜓 − 𝛼) (3.11) 

Where 𝜓 is the angle between sunline and the velocity vector and 𝛼 is the angle 

between sunline and the solar sail normal as shown in Figure 3.5.  To find the angles 

that will result on maximum solar drag or solar thrust. We take the derivative of 

equation (3.10) with respect to angle 𝛼, 

 
𝑑

𝑑𝛼
(

𝑑𝐸

𝑑𝑡
) =

𝑑

𝑑𝛼
𝐾(𝒔 ∙ 𝒏)2𝒏 ∙ 𝒗 = 0 (3.12) 

 

 
𝑑

𝑑𝛼
(

𝑑𝐸

𝑑𝑡
) =

𝑑

𝑑𝛼
(2𝑃𝐴𝑐𝑜𝑠2(𝛼 )cos(𝜓 − 𝛼)) (3.13) 

 
𝑑

𝑑𝛼
(𝑐𝑜𝑠2(𝛼) cos(𝜓 − 𝛼)) =

1

2
[sin (𝜓) − 3sin (𝜓 − 2𝛼)]cos (𝛼) (3.14) 

The root of the right hand side of the equation (3.14) will give us the values of 𝛼 which 

maximize the rate of change.  

 sin (𝜓) − 3 sin(𝜓 − 2𝛼) = 0 (3.15) 

  sin(𝜓 − 2𝛼) =
1

3
sin (𝜓) (3.16) 

Now by taking the inverse of both sides we have 

 𝜓 − 2𝛼 = sin−1 (
sin (𝜓)

3
) (3.17) 
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Or we have  

 𝜓 − 2𝛼 = 𝜋 − sin−1 (
sin (𝜓)

3
) (3.18) 

After some arrangements 

  

 𝛼1 =
1

2
[𝜓 − sin−1 (

sin (𝜓)

3
)] (3.19) 

 

 𝛼2 =
1

2
[𝜓 + sin−1 (

sin (𝜓)

3
) − 𝜋] (3.20) 

These values of 𝛼’s are give the orientation of solar sail normal with respect to sunline 

to maximize the rate of change of orbital energy and semi-major axis of the solar sail.  

  3.4.2 Best direction approach to change orbital elements 

 

The Gauss’s planetary equations defined in the previous section may be written in the 

following form for arbitrary orbital elements [4]. 

 
𝑑𝑍

𝑑𝑡
= 𝛌(𝑍) ∙ 𝐟 (3.21) 

Where 𝛌 = (λ𝐑, λ𝐓, λ𝐍) is the vector function of the orbital element, and 𝐟 = (𝐑, 𝐓, 𝐍) 

is the solar sail force. To maximize the rate of change of element 𝑖, the radiation 

pressure force component in the direction of 𝛌 must be maximized. The radiation force 

on the perfectly reflective solar sail is given in equation (2.25). When dot product with 

𝛌(𝑍) is carried out. 

 f𝛌 = 2𝑃𝐴(𝐧 ∙ 𝐬)2𝐧 ∙ 𝛌(𝑍) (3.22) 

 

From the Figure 3.6 the equation (3.22) may be written as 

 

 f𝛌 = 2𝑃𝐴𝑐𝑜𝑠2(𝛼) cos (𝜓 − 𝛼) (3.23) 
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Figure 3.6 Solar sail orientation to maximize the increase in 𝛌(𝑍) 

In order to maximize the change we need to take the derivative with respect to 𝛼 

 
𝑑fλ

𝑑𝛼
=

𝑑

𝑑𝛼
(2𝑃𝐴𝑐𝑜𝑠2(𝛼 )cos(𝜓 − 𝛼))  (3.24) 

As it can be seen equation (3.13) and (3.24) have the same form. So following 

procedures will be the same to find solar sail desired orientation with respect to 

sunline.  

 

Figure 3.7 Solar sail orientation to maximize the decrease in 𝛌(𝑍) 

The root 𝛼1 represents the orientation of the solar sail shown in Figure 3.6. And when 

the solar sail normal is oriented in that fashion it will maximize the increase in  

𝛌(𝑍). And the root 𝛼2 represents the orientation of the solar sail shown in Figure 3.7, 

which maximize the decrease in the orbital element 𝛌(𝑍).  

 

 

 

 

 
s 

 

𝛌(𝑍) 

𝜓 
𝛼 

 s 

 

𝛌(𝑍) 

𝜓 

𝛼 
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3.5 Quaternions to describe Satellite Attitude 

 

It is desirable to use quaternion for attitude parameterization.  If the current attitude 

with respect to a reference frame is given in terms of a quaternion such as: 

44321 qqqqqq  qkji , 𝑞 = 𝛅sin (
𝜑

2
) + cos (

𝜑

2
) where 𝛅 represents the unite 

vector where the rotation take place and 𝜑 is the angle of rotation,  the desired attitude 

is )( 4dd  d , and attitude change to reach the desired attitude from the current 

attitude expressed by quaternion is )( 4tt  t . And 𝑡 is named as the to-go quaternion. 

 

Between these quaternions  the following relations may be written. 

 

 

𝑑 = 𝑞𝑡 

 = (𝐪 + 𝑞4)(𝐭 + 𝑡4) 

= 𝐪 × 𝐭 + 𝑞𝟒𝐭 + 𝑡4𝐪 − 𝐪 ∙ 𝐭 + 𝑞4𝑡4 

(3.25) 

Then the to-go quaternion may be calculated from: 

 𝑡 = 𝑞−1𝑑 (3.26) 

Where 𝑞−1 is the inverse quaternion or the conjugate quaternion. 

Quaternion derivative may be written as: 

 

�̇� = −
1

2
�̃�𝐪 +

1

2
𝑞4𝛚 

�̇�4 = −
1

2
𝛚𝑇𝐪 

(3.27) 

Or in matrix vector form, 

 

{
�̇�
�̇�4

} =
1

2
[

−�̃� 𝛚
−𝛚𝑇 0

] {
𝐪
𝑞4

} 

=
1

2
[

0 ω3

−ω3 0

−ω2 ω1

ω1 ω2

    ω2 −ω1

−ω1 −ω2

0 ω3

−ω3 0

] {

𝑞1

𝑞2
𝑞3

𝑞4

} 

 

(3.28) 

Where,                                  �̃� = [

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0
] 

Similarlly for the to-go quaternion the following may be written  

 �̇� = −
1

2
�̃�𝐭 −

1

2
𝑡4𝛚 (3.29) 
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�̇�4 =
1

2
𝛚𝑇𝐭 

 

 

{
�̇�

�̇�4
} =

1

2
[
−�̃� −𝛚
𝛚𝑇 0

] {
𝐭

𝑡4
} 

=
1

2
[

0 ω3

−ω3 0

−ω2 −ω1

ω1 −ω2

    ω2 −ω1

ω1 ω2

0 −ω3

ω3 0

] {

𝑞1

𝑞2
𝑞3

𝑞4

} 

 

(3.30) 

 

 

3.6 Determination of Desired Attitude of the Solar Sail 

 

Since the locally optimal angular orientation of solar sail normal with respect to 

sunline is found as a function of angle between function vector 𝛌(𝑍)  and sunline 𝐬 the 

following relations can be used to go to desired attitude. In this case we follow the 

development given in the McInnes Book [4].  Here the main difference is that in the 

Book of McInnes, the sun vector lies in the orbital plane.  However, there will be out 

of plane forces, which will cause the change in inclination as well as the motion of the 

right ascension of the ascending node. In this case, it is meaningful to use satellite 

measured attitudes.  First assume that the satellite x-axis, is in the normal direction of 

the solar sail Thus, the solar sail normal direction is originally 𝐧 = [1 0 0] in body 

fixed coordinate system.Both the direction of the sun as well as the direction of the 

𝛌(𝑍) vector is measured in the body fixed frame.  

In order to find a way to orient the solar sail in order to increase the change, let 

 𝛄 =
𝐬 × 𝛌

‖𝐬 × 𝛌‖
 (3.31) 

Then rotate 𝐬 by 𝛼 according to 
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Figure 3.8 Cross product of sunline and vector function 

 𝐪𝑟 = [cos (
𝛼

2
) 𝛄sin (

𝛼

2
)] (3.32) 

Then the desired normal direction can be calculated by rotating sunline 𝐬 about vector 

𝛄 through the angle 𝛼 

 𝐧𝒅 = 𝐪𝑟𝐬𝐪𝑟
∗ (3.33) 

Where 𝐪𝑟
∗ is the conjugate of  𝐪𝑟.  Once the desired normal direction 𝐧𝒅 is found, the 

to-go quaternion to carry out the attitude control may be found from current sail normal 

direction and desired sail normal direction. Since two vectors are known the angle 

between them may be found as, 

 𝛽 = cos−1 (
𝐧 ∙ 𝐧𝒅

‖𝐧‖‖𝐧𝒅‖
) (3.34) 

The direction of the to-go quaternion may be found from 

 𝐞 =
𝐧 × 𝐧𝒅

‖𝐧 × 𝐧𝒅‖
 (3.35) 

 

 𝐭 = [𝐞𝑠𝑖𝑛(
𝛽

2
)  cos (

𝛽

2
)] (3.36) 

 

 

Figure 3.9 Illustration of to-go from n to 𝒏𝒅 

As it is seen in Figure 3.9, no matter what the orientation of the normal and desired, 

normal positive rotation about e through the angle 𝛽 will bring the normal to the 

desired normal orientation. 

Therefore the way of reorientation of sail normal is described. 

 

𝐧𝒅 

𝛽 
n 

e 

  
𝛽 

e 

  

𝒏𝒅 

n 

(a) 

  
(b) 
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3.7  Attitude Dynamics and Control 

 

The attitude of the rigid solar sail may be define as 

 𝐉�̇� + 𝛚 × 𝐉𝛚 = 𝐮 (3.37) 

Where 𝐉 is the inertia matrix, 𝛚 is angular velocity vector and 𝐮 is the control torque. 

𝛚 = [

ωx

ωy

ωz

]         𝐮 = [

ux

uy

uz

]   

Quaternion is the most convenient and numerically efficient way of representing the 

attitude of spacecraft. As given in equation (3.38) a quaternion is formed by four 

parameters 

 
q = [𝑞1  𝑞2  𝑞3  𝑞4] 

= [𝐪  𝑞4] 
(3.38) 

And the attitude kinematics equations in quaternion form is given as follows, 

 {
�̇�
�̇�4

} =
1

2
[

0 ω𝑧

−ω𝑧 0

−ω𝑦 ω𝑥

ω𝑥 ω𝑦

    ω𝑦 −ω𝑥

−ω𝑥 −ω𝑦

0 ω𝑧

−ω𝑧 0

] {
𝐪
𝑞4

} (3.39) 

And derivative of to-go quaternion may be written as  

 {
�̇�

�̇�4
} =

1

2
[

0 ω𝑧

−ω𝑧 0

−ω𝑦 −ω𝑥

ω𝑥 −ω𝑦

    ω𝑦 −ω𝑥

    ω𝑥   ω𝑦

0 −ω𝑧

   ω𝑧 0

] {
𝐭

𝑡4
} (3.40) 

Once we found the to-go quaternion in section 3.6, nonlinear attitude control of the 

spacecraft may be carried out using the following positive definite Lyapunov function 

[27]: 

 𝑉 =
1

2
𝛚𝑇𝐊−1𝐉𝛚 + 2(1 ± t4) (3.41) 

Provided that 1
K  is positive definite, this expression is always positive definite.  Its 

time rate change may be written as: 

 �̇� = 𝛚𝑇𝐊−1𝐉�̇� ± 2ṫ4 (3.42) 

 

 �̇� = 𝛚𝑇𝐊−1(−𝛚 × 𝐉𝛚 + 𝐮) ∓ 𝛚𝑇𝐭 (3.43) 

 

Setting the decay rate to   
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 �̇� = −𝛚𝑇𝐊−1𝐂𝛚 (3.44) 

where 𝐂 is also positive definete. And control law takes the following form 

 

 𝐮 = 𝛚 × 𝐉𝛚 + 𝐊𝐭 − 𝐂𝛚 (3.45) 

 

The closed-loop system with controller given in equation (3.45) is globally 

asymptotically stable if  𝐊−1𝐂 if a positive definite matrix. By selecting 𝐊 and 𝐂 such 

that, 

 𝐊 = 𝑘𝑐𝐉 (3.46) 

 

 𝐂 = 𝑐𝑐𝐉 (3.47) 

Will guarantee the stability. Where 𝑘𝑐 and 𝑐𝑐  are positive scalar constants. 

And finally we have  

 𝐮 = 𝛚 × 𝐉𝛚 + 𝑘𝑐𝐉𝐭 − 𝑐𝑐𝐉𝛚 (3.48) 

 

Controller gain constants  𝑘𝑐 and 𝑐𝑐 can be chosen for a specified maneuver time 

(4/ξωn) from the following relationship [27]. 

 �̈� + 𝑐𝑐�̇� +
𝑘𝑐

2
𝜃 = �̈� + 2ξωn�̇� + ωn

2�̇� (3.49) 

Where 𝜃 is the rotation angle about the eigenaxis.  

 𝑘𝑐 = 2ωn
2 (3.50) 

 

 𝑐𝑐 = 2ξωn (3.51) 

Where ωn is natural frequency and ξ is damping ratio. In this way proper agility may 

be achieved. 
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CHAPTER 4 

 

 

SIMULATION RESULTS 

 

 

 

In this chapter simulations will be given for increasing orbital elements, particularly 

for semi-major axis, eccentricity and inclination.  

 

 The flowchart is shown in Figure 4.1. The simulation code is developed in 

MATLAB/Simulink environment to simulate the satellite orbital motion as well as 

attitude dynamics.  

 

Figure 4.1 Simulation schematics 
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 Since the purpose of this work is to show the instantaneous maximization of decay or 

rise in orbital elements, and the associated attitude control problem, only a simple 

gravitational field without the spherical harmonics, is considered in the simulation. 

The physical properties of the satellite are listed in Table 4.1 together with the 

controller parameters.  A non-diagonal inertia matrix is chosen to include the inertial 

coupling between the coordinates. The control system parameters on the other hand 

are chosen for the system to have good damping and acceptable response time. 4th 

order Runge-Kutta numerical integration is performed for time step ∆𝑡 = 30 s. 

 

Table 4.1 Cube sail and control properties 

Parameter Value 

Mass 6 [kg] 

Inertia [7.1589 -0.03 -0.03;-0.03 3.5794 -
0.03;-0.03 -0.03 3.5794] [kgm2] 

Solar sail area 25 [m2] 

Natural Frequency  𝜔𝑛=0.01 [rad/s] 

Damping Ratio 𝜉 = 0.7 

 

Initial condition for the solar sail orbit is given in the Table 4.2 

 

Table 4.2 Initial orbital parameters 

Orbital elements Magnitude 

Semi-major axis (α) 42000[km] 

Eccentricity (e)  0.2 

Inclination (i) 45[deg] 

RAAN (Ω) 90[deg] 

Argument of periapse (w) 90[deg] 

True anomaly(v) 270[deg] 
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Figure 4.2 Initial orbital conditions 

Body fixed coordinate system of the solar sail is initially aligned with Earth centered 

inertial coordinate system. Simulations will be run for 5 orbits and orbit period will be 

assumed to be constant during the simulations. During the simulation it is assumed 

that sunline vector direction is constant because daily change of sunline direction is 

about 0.986 [deg/day].  

 

 4.1  Two Body Simulation without Radiation Pressure  

 

The simulation will be run without any perturbation or solar radiation force. To show 

the numerical errors. The initial conditions are given in Table 4.2 
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Figure 4.3 Orbital elements change only for two body  

Because of the restricted number of integers the numerical errors accumulated. 

That’s why there can be slight change in the simulation even there is no perturbations  

 

4.2  Two Body Simulation with Radiation Pressure and Constant  

 Attitude 

In this section the simulation will be run including the solar radiation force on the 

spacecraft with constant attitude. 

During the simulation the reflective side of solar sail is kept normal to the sunline. In 

other words solar sail normal is aligned with sunline direction vector.  
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Figure 4.4 Orbital elements change with radiation pressure 

Figure 4.4 shows the effect of solar radiation pressure on the satellite orbital 

elements. From the figure, a slow progress in the orbital elements is evident. 

 

4.3 Increasing Semi-major Axis by Energy Method  

 

As it is explained in section 3.4.1 the semi-major axis can be changed by considering 

the orbital energy of the solar sail. In this section semi-major axis will be changed by 

increasing the orbital energy. Initial orbital configuration for the simulation of 

increasing the semi-major axis by energy method is shown in Figure 4.5, and it has 

zero eccentricity with zero inclination and 42000 km semi-major axis. 
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Figure 4.5 Initial orbital conditions for zero inclination 

 

  

Figure 4.6 Orbital elements change by increasing orbital energy 
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Since the sunline is parallel to the orbital plane there is no out of plane component of 

solar radiation force. Consequently the inclination remains constant. It may be 

observed from the simulation results presented in Figure 4.6 that there is a continuous 

increase in semi-major axis. 

 

Figure 4.7 Angular position of velocity and desired sail normal with respect to 

sunline for increasing semi-major axis by energy method 

 

The angles between sunline and velocity 𝜓 and sunline and sail normal 𝛼 are plotted 

in Figure 4.7. The figure shows that the angle between sunline and velocity vector 

changes between 0 and 180 [deg] and corresponding angular orientation of desired 

sail normal and sunline changes between 90 and 0 [deg].  
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Figure 4.8 Solar sail flips 

 

Figure 4.9 Body fixed frame angular rates 
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The above figure shows the angular rates in the body fixed frame. Actually there are 

no rotation about roll and pitch axis but vibrations about zero. These vibration are due 

to non- zero terms in the inertia matrix. As it can be seen in Figure 4.8 for each full 

orbital rotation sail makes a flip that’s why there is peaks Figure 4.9  about yaw axis, 

which is initially along orbit normal direction. 

 

Figure 4.10 Controller torques about body axes 

In between flips the rotation of the satellite is continuous and it completes its full 

rotation approximately in one day that’s why controller torques are very small. 
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Figure 4.11 Orientation of  solar sail with respect to inertial frame 

 

The rotation sequence of Euler angles are 1 ← 2 ← 3. Axis 3 is the Z- axis ,axis 2 is 

the Y –axis and axis1 is the X-axis. Initially the body frame axes are aligned with the 

inertial frame axes and yaw axis is normal to the orbital plane of the spacecraft. So  

only one axis of rotation is required to reorient the solar sail.     

 

In this section semi-major axis changed by changing the orbital energy. For this 

simulation a very simple initial orbit is chosen to understand the behavior of the solar 

force on the spacecraft.   
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4.4 Raising Semi-major Axis 

 

As it is stated in the previous sections the control aim is to maximize the instantaneous 

rate of change of a particular orbital element. In this section by using the equations in 

section 3.3. Proper solar sail steering law will be generated to maximize the rate of 

change of semi-major axis. From equation (3.2) we have the following vector function 

for semi-major axis. 

 𝛌(𝑎) = [𝑒𝑠𝑖𝑛𝑣   
𝑝

𝑟
  0] (4.1) 

This vector is transformed to the Earth centered inertial frame using the following 

transformation [27]. 

 

 

[

𝜆𝑎𝑋

𝜆𝑎𝑌

𝜆𝑎𝑍

] = [
𝑐𝑜𝑠Ω −𝑠𝑖𝑛Ω 0
𝑠𝑖𝑛Ω 𝑐𝑜𝑠Ω 0

0 0 1
] [

1 0 0
0 𝑐𝑜𝑠𝑖 −𝑠𝑖𝑛𝑖
0 𝑠𝑖𝑛𝑖 𝑐𝑜𝑠𝑖

]

× [
cos (𝑣 + 𝑤) −𝑠𝑖𝑛(𝑣 + 𝑤) 0
𝑠𝑖𝑛(𝑣 + 𝑤) 𝑐𝑜𝑠(𝑣 + 𝑤) 0

0 0 1

] [

𝜆𝑎𝑅

𝜆𝑎𝑇

𝜆𝑎𝑁

] 

(4.2) 

 

By using 𝛌(𝑎𝑋𝑌𝑍)  and the procedure described in section 3.4, required angle between 

sunline and 𝛌(𝑎𝑋𝑌𝑍) is calculated. Then the desired attitude is found and finally by 

using the procedure described in section 3.7 required control torques can be found to 

achieve attitude maneuver. 

 

In this section simulation is run for an inclined orbit with initial orbital configuration 

given in Table 4.2 to show the effectiveness of proper attitude determination and going 

to desired attitude mechanization. 
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Figure 4.12 Orbital elements change when maximizing change in semi-major axis 

 

Increase in the semi-major axis for this initial orbit and for the solar sail properties is 

shown in Figure 4.12. This increase in semi-major axis results in decrease in 

eccentricity and inclination. This behavior of eccentricity can be explained by the 

orientation of the perigee and by solar sail performance. The inclination changes due 

to out of plane component of radiation force. 

By increasing semi-major axis geostationary (GEO) satellites can be moved to 

graveyard orbits. Graveyard orbit is an orbit just above the GEO altitude, roughly 300 

km above. The simulation shows that, by carrying a light weight solar sail to orbit, and 

deploy it at the end of life, it is feasible to move the satellite to the graveyard orbit. 
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Figure 4.13 Angular positions of semi-major axis function and desired sail normal 

with respect to sunline for increasing semi-major axis 

 

As it seen, in the Figure 4.13 angle between sunline and vector function of semi-major 

axis changes between 45 and 135 degree. This interval depends on the inclination 

angle. 
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Figure 4.14 Body fixed frame angular rates for increasing semi-major axis 

 

As it can be seen in the Figure 4.14 solar sail rotates about its 2 axes to orient its normal 

with respect to sunline vector. The error in the roll axis is due to non- diagonal terms 

in the inertia tensor of the satellite. 
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Figure 4.15 Controller torques about body axes for increasing semi-major axis 

 

Initially the solar sail makes a rapid rotation to go to a proper orientation from its initial 

orientation afterwards, its rotations becomes smooth and consequently  control torques 

are quite small. 
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Figure 4.16 Orientation of solar sail with respect to inertial frame to increase the 

semi-major axis 

 

Rotations about axis 3 and 2 brings the solar sail normal into correct orientation but 

one more rotation is required to completely align the frames so third rotation appears 

about axis 1 
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4.5 Increasing Eccentricity 

 

To increase the eccentricity the following vector is used: 

 𝛌(𝑒) = [𝑝𝑠𝑖𝑛𝑣   [(𝑝 + 𝑟)𝑐𝑜𝑠𝑣 + 𝑟𝑒]  0] (4.3) 

 

Figure 4.17 Orbital elements change when maximizing change in eccentricity 

Figure 4.17 shows that eccentricity is steadily increasing. Since eccentricity is related 

to both shape and size of the orbit. In order to increase the eccentricity periapsis 

decreases and apoapsis increases. That’s why increasing eccentricity causes 

oscillations of semi-major axis. The inclination is also oscillatory due to orbit normal 

forces.   
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Figure 4.18 Angular positions of semi-major axis function and desired sail normal 

for increasing eccentricity 

 

Angular orientation of vector function of inclination and desired solar sail normal is 

given in Figure 4.18  
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Figure 4.19 Body fixed frame angular rates for increasing eccentricity 

 

Rotation about sail normal does not change the orientation of it with respect to sunline. 

Since the aim of the attitude maneuver is to orient the sail normal there is no rotation 

about roll but vibration due to non-diagonal term in the inertia matrix. 
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Figure 4.20 Controller torques about body axes for increasing eccentricity 

 

Reorienting the spacecraft from initial condition to desired orientation requires large 

rotation. So at the beginning controller torque is very big compare to the other times. 
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Figure 4.21 Orientation of solar sail with respect to inertial frame to increase the 

eccentricity 

 

Figure 4.21 shows the orientation of the solar sail  

 

4.6 Increasing Inclination 

 

The following vector direction is used for increasing the inclination. 

 𝛌(𝑖) = [0   0  
𝑟𝑐𝑜𝑠𝜃

ℎ
] (4.4) 

 

Orbit number 

R
o
ll

 [
D

eg
] 

P
it

ch
 [

D
eg

] 
Y

aw
 [

D
eg

] 



54 

 

 

Figure 4.22 Orbital elements change when maximizing increase in inclination 

 

İn order to change the inclination of the orbit the force component in the direction of 

orbit normal must be maximized. This means that the force component in the orbital 

plane will be minimized automatically. 
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Figure 4.23 Angular position of inclination vector function and  desired sail normal 

for increasing inclination 

 

As it can be seen in Figure 4.23 in order to change the inclination of the orbit the 

direction of the thrust must be perpendicular to the orbital plane that’s why the angular 

change between inclination vector function and sail normal are stepwise 
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. 

Figure 4.24 Body fixed frame angular rates for increasing inclination 
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Figure 4.25 Controller torques about body axes for increasing inclination 

 

Due to rapid flip motion of the satellite the pulses of control toques are needed, as 

shown in Figure 4.25 
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Figure 4.26 Orientation of solar sail with respect to inertial frame to increase the 

inclination 

 

Figure 4.26 shows the Euler angles. From the figure it may be observed that the main 

activity is in the pitch axis. 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

 5.1 Conclusion 

 

In this thesis, an attitude control mechanization is developed for steering the solar sail 

spacecraft. For this purpose locally optimal steering laws are employed for an Earth 

orbiting solar sail spacecraft.  

 

The steering angles are obtained for progressively changing semi-major axis, 

eccentricity and inclination. 

 

The mechanization developed effectively calculates the necessary to-go quaternions 

to be used for Lyapunov based nonlinear control. 

 

Trough the simulations, it is shown that both the locally optimal steering approach and 

attitude control mechanization developed is quite effective. 

 

 5.2 Future Work 

 

In this thesis particular orbital element’s rate of change is maximized without 

considering the change of other orbital elements. In the future proper attitude control 

algorithms and methods will be investigated to make a desired orbital maneuver by 

considering coupling in orbital elements 
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APPENDIX A 

 

 

DECREASING ORBITAL ELEMENTS 

 

 

 

In this chapter simulations will be given for decreasing orbital elements, particularly 

for semi-major axis, eccentricity and inclination. Cube sail and controller properties 

are given in Table 4.1 and initial orbit given in Table 4.2 

 A.1 Decreasing Semi-major Axis 

 

Figure A.1 Orbital elements change when decreasing semi-major axis 
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Figure A.2 Angular position of semi-major vector function and desired sail normal 

for decreasing semi-major axis 
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Figure A.3 Body fixed frame angular rates for decreasing semi-major axis 
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Figure A.4 Controller torques about body axes for decreasing semi-major axis 
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Figure A.5 Orientation of solar sail with respect to inertial frame to decreasing semi-

major axis 
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 A.2 Decreasing Eccentricity 

  

 

Figure A.6 Orbital elements change when decreasing eccentricity 
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Figure A.7 Angular position of eccentricity vector function and desired sail normal 

for decreasing eccentricity 
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Figure A.8 Body fixed frame angular rates for decreasing eccentricity 
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Figure A.9 Controller torques about body axes for decreasing eccentricity 
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Figure A.10 Orientation of solar sail with respect to inertial frame to decreasing 

eccentricity 
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A.3  Decreasing Inclination 

 

 

Figure A.11 Orbital elements change when decreasing inclination 

 

S
em

i-
m

aj
o

r 
ax

is
 [

k
m

] 
E

cc
en

tr
ic

it
y
 

In
cl

in
at

io
n
 [

D
eg

] 

Orbit number 



76 

 

 

 

Figure A.12 Angular position of inclination vector function and desired sail normal 

for decreasing inclination 
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Figure A.13 Body fixed frame angular rates for decreasing inclination 
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Figure A.14 Controller torques about body axes for decreasing inclination 
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Figure A.15 Orientation of solar sail with respect to inertial frame to decrease 

inclination 
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