
PERFORMANCE COMPARISON OF NEWTON AND NEWTON-GMRES

METHODS IN 3-D FLOW ANALYSIS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BUKET YILDIZLAR

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

AEROSPACE ENGINEERING

FEBRUARY 2014

Approval of the thesis:

PERFORMANCE COMPARISON OF NEWTON AND NEWTON-GMRES

METHODS IN 3-D FLOW ANALYSIS

submitted by BUKET YILDIZLAR in partial fulfillment of the requirements for the

degree of Master of Science in Aerospace Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences ________________

Prof. Dr. Ozan Tekinalp

Head of Department, Aerospace Engineering ________________

Assoc. Prof. Dr. Sinan Eyi

Supervisor, Aerospace Engineering Dept., METU ________________

Examining Committee Members

Prof. Dr. Sinan Akmandor

Aerospace Engineering Department, METU ________________

Assoc. Prof. Dr. Sinan Eyi

Aerospace Engineering Department, METU ________________

Assoc. Prof. Dr. Oğuz Uzol

Aerospace Engineering Department, METU ________________

Assoc. Prof. Dr. D. Funda Kurtuluş

Aerospace Engineering Department, METU ________________

Dr. Özgür Ekici

Mechanical Engineering Department, Hacettepe University ________________

 Date: 07.02.2014

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Buket Yıldızlar

Signature :

v

ABSTRACT

PERFORMANCE COMPARISON OF NEWTON AND NEWTON-GMRES

METHODS IN 3-D FLOW ANALYSIS

Yıldızlar, Buket

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Sinan Eyi

February 2014, 53 pages

Because of CPU time problems, an alternative to Newton’s method is investigated in

order to make a flow analysis in a 3-D Supersonic Nozzle. Calculation and forming

of the Jacobian matrix get harder as the system gets larger. On the contrary, Newton-

GMRES approach does not require direct access to the Jacobian matrix. Due to the

fact that it provides a dramatic decrease in CPU time, Newton-GMRES method is

examined.

To compare their performance on a supersonic nozzle, 3-D Euler Equations are

solved with Newton’s and Newton-GMRES methods respectively. A parametric

study is conducted for Newton-GMRES method to find the optimal solution with

respect to CPU times elapsed. In order to analyse Newton-GMRES method’s

behavior on larger systems, different test cases are generated. The code is developed

for Newton-GMRES method with Fortran77.

Keywords: 3-D Euler Equations, Newton-GMRES Method, Newton’s Method

Jacobian

vi

ÖZ

3-BOYUTLU AKIŞLARDA NEWTON VE NEWTON-GMRES

YÖNTEMLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI

YILDIZLAR, Buket

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan EYİ

Şubat 2014, 53 sayfa

Newton Yöntemi 3 Boyutlu Süpersonik Lülelerde yapılan akış analizlerinde çok

fazla CPU gereksinimi yaratmaktadır. Bunun doğurduğu maliyeti azaltma isteği, yeni

bir yöntem arayışına sebep olmuştur. Jakobi matrisinin hesaplanması ve

oluşturulması özellikle sistem büyüdükçe zorlaşmaktadır. Diğer bir yandan Newton-

GMRES yöntemi, direkt olarak Jacobi matrisine ihtiyaç duymaz. Özellikle büyük ve

seyrek matrislerle sağladığı yakınsaklık değeri ve CPU’daki bariz tasarrufu sebebiyle

Newton-GMRES metodu ele alınmıştır.

3 Boyutlu Süpersonik bir lüledeki performanslarını karşılaştırmak amacıyla 3

Boyutlu Euler denklemleri sırayla her iki yöntemle çözülmüştür. Newton-GMRES

yönteminde kullanılan parametreler üzerinden bir kıyaslama ve optimum elde etme

çalışması gerçekleştirilmiştir. Newton-GMRES yönteminin büyük sistemlerdeki

performansını gözlemleyebilmek için farklı büyüklüklerde test durumları

yaratılmıştır. Newton-GMRES yöntemi için gerekli kod Fortran 77 yardımıyla

geliştirilmiştir

Anahtar kelime; 3 Boyutlu Euler Denklemleri, Newton-GMRES Yöntemi, Newton

Yöntemi, Jakobi Matrisi.

vii

 To everybody who loves me

viii

ACKNOWLEDGEMENTS

I would like to express my appreciation to my thesis supervisor Assoc. Prof. Dr.

Sinan Eyi for his great guidance and invaluable help during my master thesis.

I wish to express my sincere thanks to my thesis committee, Prof. Dr. İ.Sinan

Akmandor, Assoc. Prof. Dr. Oğuz Uzol, Assoc. Prof. Dr. D. Funda Kurtuluş and to

Dr. Özgür Ekici.

I am grateful to Naz Tuğçe Öveç for helping me on coding. Without her help, I could

not even start

Special thanks to Sogand Yousefbeigi and Tuğçe Garip for their great support and

motivation

I also thank to all of my friends that tried to help me as much as they can, no matter

the problem was.

I am thankful to my parents and sisters for their trust and patience. Also thanks to our

new family member Kaan for bringing joy to my last 3 months with his nice photos.

This study was supported by the Scientific and Technological Research Council of

Turkey (TUBITAK-112M129)

.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES ..xii

CHAPTERS

1 INTRODUCTION .. 1

1.1 Background. .. 1

1.2 Scope Of The Thesis.. 2

1.3 Literature Survey ... 3

1.4 Outline .. 5

2 FLOW ANALYSIS .. 7

2.1 Governing Equations ... 7

2.2 Spatial Disretization .. 10

2.3 Flux Splitting ... 13

2.4 Boundary Conditions ... 15

2.4.1 Inlet Boundary Conditions .. 15

2.4.2 Outlet Boundary Conditions .. 16

2.4.3 Wall Boundary Conditions .. 16

2.4.4 Symmetry Boundary Conditions ... 17

3 SOLUTION ALGORITHM .. 19

3.1 Newton’s Method .. 20

3.1.1 Jacobian Matrix .. 21

3.2 Newton-GMRES Method .. 25

3.2.1 Arnoldi Iteration ... 28

x

3.2.2 Linear Least Square Problem Solution .. 29

3.2.3 Givens Rotation .. 30

3.3 Preconditioning ... 31

4 RESULTS .. 33

4.1 Solution of Three Nonlinear Equations .. 33

4.2 Solution of 3-D Euler Equations in Nozzles .. 34

4.3 Parametric Study ... 44

4.4 Mesh Independence Analysis .. 46

5 CONCLUSION and FUTURE WORKS .. 49

5.1 Conclusion .. 49

5.2 Future Works .. 50

REFERENCES ... 51

xi

LIST OF TABLES

TABLES

Table 4.1 Sizes of the Grids Generated... 34

Table 4.2 Test Cases .. 35

Table 4.3 CPU Time Comparisons ... 40

Table 4.4 CPU Time Comparison with Eisenstat’s Formulation (sec) 45

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Control Volume Representation ... 13

Figure 2.2 Boundary Conditions ... 15

Figure 3.1 Solution Algorithm of Newton’s Method ... 19

Figure 3.2 Solution Algorithm of Newton-GMRES Method 19

Figure 4.1 Comparison of Newton and Newton-GMRES Methods on Three Equation

 .. 34

Figure 4.2 Generation of Coarse Grid ... 36

Figure 4.3 Generation of Medium Grid ... 36

Figure 4.4 Generation of Fine Grid ... 36

Figure 4.5 Convergence Histories Comparison for C1 ... 37

Figure 4.6 Convergence Histories Comparison for C2 ... 37

Figure 4.7 Convergence Histories Comparison for M1 .. 38

Figure 4.8 Convergence Histories Comparison for M2 ... 38

Figure 4.9 Convergence Histories Comparison for F1 ... 39

Figure 4.10 Mach Contours Obtained by Newton-GMRES Method 41

Figure 4.11 Mach Contours Obtained by Newton Method 41

Figure 4.12 Pressure Distribution Obtained by Newton-GMRES Method 42

Figure 4.13 Pressure Distribution Obtained by Newton Method 42

Figure 4.14 Velocity Vectors Obtained By Newton-GMRES Method 43

Figure 4.15 Velocity Vectors Obtained By Newton Method 43

Figure 4.16 Effect of k on Coarse Grid ... 45

Figure 4.17 Effect of k on Medium Grid .. 46

Figure 4.18 Mesh Inpedepence with Newton-GMRES Method on 1
st

Order

Discretization ... 47

file:///C:/Users/user/Desktop/buketdzl2702.docx%23_Toc381277892
file:///C:/Users/user/Desktop/buketdzl2702.docx%23_Toc381277893

xiii

Figure 4.19 Mesh Inpedepence with Newton-GMRES Method on 2
nd

Order

Discretization ... 47

xiv

1

CHAPTER 1

INTRODUCTION

1.1 Background.

CFD is an important research area which has been used most of the engineering and

science disciplines since the computer technology is progressing day by day. As long

as it consumes plenty of time and effort to solve physics of flow either analytically or

experimentally, the demand of estimation of the solution of a flow by the help of

CFD methods is increasing more than expected

Explicit methods were one of the oldest concerns of CFD society. Due to the

memory problems of computers, they were the only alternative to direct solution

method. The main disadvantage of these explicit methods is stability. Recent

advances in computer technology and solution algorithms allow efficient solution of

very large linear systems of equations. These advances have been motivating

researchers to develop implicit algorithms to solve the flow equations since usage of

implicit methods is more beneficial compared to the explicit ones. Implicit flow

solvers are more stable and the residual can be reduced to very low values within a

small number of iterations. Today, still there is a tendency to use explicit schemes for

some class of unsteady flow problems. However the equations of different

disciplines can be strongly coupled with flow equations in an implicit algorithm.

Newton’s method can be named as the most common implicit solution technique in

CFD. It is a root finding algorithm in the vicinity of a suspected root. It provides

quadratic convergence. In spite of this superior convergence, it requires the exact

linearization of the residuals. This linearization process can only be done after

2

calculations of Jacobian matrices. They are matrices which are composed of

derivatives of flux vectors with respect to flow variables. In large sparse systems, it

requires a sustainably large computer memory to store the Jacobian matrix. Also

evaluation and factorization of the Jacobians are other important issues that need

memory. Although the size of this matrix can be very large, it is sparse in the most of

the flow problems. The selection of good initial solution is important in Newton

method. If the initial solution is not chosen properly, Newton method may diverge .

To keep the advantages and to avoid disadvantages of Newton method, Jacobian-free

Newton methods are getting more attention and especially the memory problem led

researchers to canalize to inexact Newton methods instead of exact Newton method.

Inexact Newton methods are iterative techniques to solve the flow in an approximate

manner in order to benefit from the amount of work per iteration. Quasi-Newton

methods belong to the class of Inexact Newton methods. The idea behind this class

of methods is to solve the linear system arises from each Newton step with a linear

solver.

One of these Quasi-Newton methods is Newton-GMRES method. GMRES is derived

as a linear solver for large, sparse, unsymmetric semi-positive definite systems. It

belongs to Krylov subspace methods family. Krylov methods are the most common

used linear iterative solvers and GMRES is the most preferred one. It is very

attractive while dealing with Jacobian matrices. It does not need exact Jacobian. One

can decrease the CPU time needed to solve the flow by using quasi-Newton method.

On the other hand, loss of the superior convergence that is supplied by Newton’s

method is inevitable. The question is the limit of this exchange between work load

and accuracy. The aim of study is to make a comparison between Newton’s Method

and Newton-GMRES method on a supersonic nozzle geometry.

1.2 Scope Of The Thesis

The object of this study is to implement Newton-GMRES method into supersonic

flows as an alternative to Newton method which is a reliable and efficient solver. The

flow analysis is based on the three dimensional Euler equations. More than one goal

3

are planned to achieve. A unique version of the Newton-GMRES code is one of the

targets of this work. Then implementation of it into 3-D Euler equations is carried

out in order to observe its performance on a 3-D supersonic nozzle. To make a

reliable comparison, same order of residual is aimed to achieve in both of the

methods Newton and Newton-GMRES.

1.3 Literature Survey

As it was mentioned in the background part, with the help of improvement in

computer technology, implicit methods gained value in CFD in the early nineties.

Implicit methods gave the scientists the easiness of coupling the equations from

different disciplines with flow equations in one algorithm. The most favorable of

these techniques was Newton’s method because of its superior convergence. With

respect to other iterative techniques, Newton’s method results in earlier iterations,

which makes it attractive.

Wigton [1] did one of the first implementations of Newton’s method. While solving

a transonic flow over a multi-element airfoil with conventional solution techniques,

he faced with unsuccessful convergence histories. Then, he implemented Newton’s

method into flow. To compute the Jacobian matrix, he preferred to use MACSYMA,

a symbolic mathematics system. He developed a method named nested dissection

node reordering which decreases the memory requirements of large spare systems’

storage. Due to the efficient results obtained, Newton’s method became a promising

method in 3-D applications. Today still similar techniques are used for large sparse

systems.

One of the important disadvantages of Newton’s method is the significance of initial

conditions selection. Bender and Khosia [2] studied on the use of Newton’s method

for the solution of inviscid compressible and viscous incompressible transonic flows.

They concentrated on vanishing the problem of sensitivity of Newton’s method on

initial conditions. It was concluded that the minimization of Euclidian norm reduces

this importance of initial conditions selection.

4

Venkarakrishan [3] also worked on the same topic with Wigton: solution of transonic

flows over an airfoil. It was one of the most remarkable implementation of Newton’s

method and the modification of adding diagonal term into the advance sparse matrix

solution method enhanced the convergence even better than Bender and Khosia in

case of using poor initial conditions. They demonstrated that the method displayed a

quadratic convergence. One of his deductions was the usage of Newton’s method’s

inconvenience since it requires high CPU as the system gets larger. In other words,

he pointed out that application of Newton’s method was impractical on 3-D

problems. With his conclusions, scientists started to interest in quasi Newton’s

methods.

Orkwis [4] worked both exact Newton’s and quasi-Newton’s methods and he showed

that quasi-Newton's method solvers did not exhibit quadratic convergence, but could

be more efficient than the exact Newton's method in selected cases in the meaning of

lower memory requirements.

The main idea of the quasi-Newton’s methods is to combine a linear solver with

Newton’s method and to solve Newton equations arise in each step with this linear

solver. The Jacobian matrices are either simplified or approximated. As long as there

are many kinds of iterative solvers, there is a wide range of this type of solution

techniques. As Krylov subspace methods have a special feature of using matrices just

as an operator, there is a demand to this class of linear solvers. The most preferred

one in Krylov family is GMRES [5].

Before GMRES, Conjugate gradient like methods were used as solver for symmetric

positive definite matrices [6]. With combining other solution procedures it provides

rapid and reliable convergence histories. However it did not work with

nonsymmetric systems. [6]. Since nonsymmetric matrices are very common types

faced in CFD, CG like methods didn’t become popular in CFD community. In early

eighties some implementations of CG with modifications were tried with

nonsymmetric matrices by Elman [7]. GMRES was found by Saad and Schultz in

5

1983 as a variant of CG methods that can be applied to nonsymmetric systems. It

finds out the best possible solution in k-dimensional Krylov subspace.

GMRES can also be applied to linear systems without combining with a Newton’s

method. Wigton [8] derived another version of GMRES that is applicable to

nonlinear systems in 1984. The most important drawback of this technique was

storage problem. It requires much more memory capacity due to this nonlinearity

fact.

To reduce this memory requirement matrix free methods combining with Krylov

linear solvers were begun to use. Gear and Saad [9], Brown and Hindmarsh [10] and

Chan and Jackson [11] are some of the earlist works done on this subject. Brown and

Saad [12] are the first who introduced matrix free Newton-GMRES method. In order

to improve the global convergence properties, they also proposed a procedure called

linesearch backtracking.

1.4 Outline

In the second Chapter flow model is formed. Governing 3-D Euler Equations in

generalized form are introduced. Spatial discretization types used are explained.

General information on upwind schemes is given and Van Leer flux splitting method

is presented which was selected to be used in Newton Method. Boundary conditions

that were applied on geometry are briefly described.

Third Chapter is composed of solution algorithms. Newton Method is defined.

Selected version of Jacobian matrix calculation is explained. Then Newton-GMRES

method is presented. Information on Givens rotation and minimization is given.

Commonly used preconditioner types are introduced.

Convergence histories of Newton and Newton-GMRES methods are given in

Chapter 4. Plots of Mach number, pressure and velocity vectors in both Newton and

Newton-GMRES methods are shown. Comparisons of CPU-time in each test cases

6

are done. The effect of parameters used in Newton-GMRES method on convergence

acceleration and CPU time are examined in “Parametric Study” part. Preliminary

analysis is also added under the section of “Solution of Three Equations”.

Conclusion is performed in last chapter. Future work suggestions are done.

7

CHAPTER 2

FLOW ANALYSIS

Prediction of behavior of fluids in design phase saves scientists from huge financial

loss. For given specific flow conditions, flow model should be formed in such a way

that selections must have the capability to protect physics of the flow. The flow

model directly affects the accuracy of the solution. Advanced flow models are

composed of advanced time discretization, dense grids and good selection of

boundary conditions. Using highly resolved grids and/or complex flow properties

will be reflected in cost of computation. Simplified versions would reduce that cost

while decreasing the accuracy of the flow simulation.

Size of the Jacobian is a function of the number of equations solved and the size of

the grid. To solve a flow, either Navier-Stokes or Euler Equations can be selected. It

should be noted that, Navier-Stokes equations requires much more memory, which is

one of the disadvantages of them. As long as our study is composed of a comparison

of Newton’s method and Newton-GMRES, size of Jacobian is still important. 3-D

Euler Equations are solved in order to keep Jacobian size smaller in Newton’s

method.

2.1 Governing Equations

Euler Equations are simplified versions of Navier-Stokes Equations. One can obtain

them by excluding viscous terms. They can be named as approximation to Navier-

Stokes equations. Euler equations derived from conservation of mass (continuity),

momentum, and energy in a control volume. 3-D Euler Equations in Cartesian

coordinates can be written as follows under assumptions of steady inviscid flow:

8

() () ()
0

F Q G Q H Q

x y z

  
  

   (1)

where

t

ρ

ρu

Q ρv

ρw

ρe

 
 
 
 
 
 
  

2

t

ρu

ρu p

F ρuv

ρuw

(e p)u

 
 


 
 
 
 
   (2)

2

t

ρv

ρuv

G ρv p

ρwv

(e p)v

 
 
 
  
 
 
  

2

t

ρw

ρuw

H ρvw

ρw p

(e p)w

 
 
 
 
 

 
  

Here, Q denotes flow variables vector where the others showing the flux vector. u, v

and w are the components of velocity in x y and z coordinates respectively. ρ is the

density, p pressure and et is the total energy per unit volume.  is defined as specific

heat ratio. Pressure can be computed from ideal gas relation as follows:

2 2 2

(1) ()
2

t

u v w
p e 

 
  

 (3)

As it is much easier to work with generalized coordinates on an arbitrary geometry,

the governing equations are transformed into generalized coordinates from Cartesian

coordinates. While x,y and z are the Cartesian coordinates, ,  and  are curvilinear

coordinates.

(, ,)

(, ,)

(, ,)

x y z

x y z

x y z

 

 

 







 (4)

Partial derivates in the Cartesian coordinates , ,
x y z

  

  
 are transformed into

generalized form as:

9

x x x

y y y

z z z

x

y

z

  
  

  
  

  
  

   
  

   

   
  

   

   
  

    (5)

x ,
y ,

z ,
x ,

y
z ,

x ,
y and

z are the transformation metrics and they can be

computed by the following procedure:

x y z

x y z

x y z

d dx dy dz

d dx dy dz

d dx dy dz

   

   

   

  

  

  

dx x d x d x d

dy y d y d y d

dz z d z d z d

  

  

  

  

  

  

  

  

  
 (6)

Hence;

x y z

x y z

x y z

d dx

d dy

d dz

   

   

   

    
    

     
        

dx x x x d

dy y y y d

dz z z z d

  

  

  







    
    

     
         (7)

An equality can be written between these two transformation matrices as follows.

Also, the determinant of one of these matrices is equal to transformation Jacobian.

1

det

x y z

x y z

x y z

x y z

x y z

x y z

x x x

y y y

z z z

J

  

  

  

  

  

  

  

  

  



   
   

   
   

  

 
 

  
 
  (8)

By using metrics, the 3-D Euler equations in Cartesian coordinates may be

transformed into generalized coordinates is written in a form of:

ˆ ˆˆ ˆ ˆ ˆ() () ()
0

F Q G W H W  

  
  

 (9)

10

where

1
ˆ

t

ρ

ρu

Q ρv
J

ρw

ρe

 
 
 
 
 
 
   ,

1
ˆ

x

y

z

t

ρU

ρuU p

F ρvU p
J

ρwU p

(e p)U









 
 


 
  
 

 
   (10)

1
ˆ

x

y

z

t

ρV

ρuV p

G ρvV p
J

ρwV p

(e p)V









 
 


 
  
 

 
   ,

1
ˆ

x

y

z

t

ρW

ρuW p

H ρvW p
J

ρwW p

(e p)W









 
 


 
  
 

 
  

U, V and W are contravariant velocities. They are calculated as:

x y z

x y z

x y z

U u v w

V u v w

W u v w

  

  

  

  

  

  
 (11)

2.2 Spatial Disretization

Finite volume method is applied as spatial discretization. In FVM, the flow domain is

divided into cells. The flow variables are stored in the center of the cells. Fluxes are

computed on the cell faces. The cells’ corners coincide with grid points. After

computation of spatial derivatives of flux vectors, the differential form of the steady,

3-D Euler equations given in Equation (1) can be discretized for an arbitrary

hexahedral control volume.

Spatial derivatives of flux vectors can be computed from the flux balance across a

cell

1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

i j k i j k

i j k i j k

i j k i j k

F F F

G G G

H H H













 

 

 

 

 

 
 (12)

Then, discretized steady 3-D Euler equation becomes:

11

ˆ ˆˆ
0

F G G  

  
  

   (13)

For a cell centered finite volume method Equation (13) can be arranged as:

1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2
ˆ ˆˆ ˆ ˆ ˆ() () () 0i j k i j k i j k i j k i j k i j kF F G G H H          

 (14)

Also it should be noted that, flow domain is divided into equal spaces:

1       

In above equations, cell interfaces are denoted as i±1/2, j±1/2 and k±1/2. Flow

variables at cell interfaces are evaluated by interpolation from the cell center. With

using flow variables at cell interfaces, fluxes are calculated. The interaction between

the neighbor cells generates the flux. This flux forms the convective portion of Euler

Equations and it shows hyperbolic character.

By spatial discretization,
1/ 2, , , 1/ 2, , , 1/ 2

ˆˆ ˆ, ,i j k i j k i j kF G H  
 can be written as:

1/ 2, , 1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2 , , 1/ 2

ˆ ˆˆ ˆ ˆ() ()

ˆ ˆ ˆ ˆ ˆ() ()

ˆ ˆˆ ˆ ˆ() ()

L R

i j k i j k i j k

L R

i j k i j k i j k

L R

i j k i j k i j k

F F Q F Q

G G Q G Q

H H Q H Q

 

  

 

  

 

  

  
 

  
 

  
  (15)

A simplification can be done by approximating the variables at the cell faces to the

variables defined at the closest cell centers. L and R is defined as left and right.

1/ 2 1/ 2 1

1/ 2 1/ 2 1

1/ 2 1/ 2 1

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

L R

i i i i

L R

j j j j

L R

k k k k

Q Q Q Q

Q Q Q Q

Q Q Q Q

  

  

  

 

 

 
 (16)

If higher order of accuracy is desired to be achieved, MUSCL (Monotonic Upstream-

Centered Scheme Conservation Law)[13] scheme interpolation can be used. The

flow variables at the cell faces are computed from the flow variables at the centers of

the four neighboring cells in case of using MUSCLE.

12

   

   

1/ 2

1/ 2 1 1

1ˆ ˆ (1) (1)
4

1ˆ ˆ (1) (1)
4

L

i i i

R

i i i

Q Q r

Q Q r

  

  



  

     

     
 (17)

where r equals to:

i
i

i

r





 and  are forward and backward operators and defined as:

1 1
ˆ ˆ ˆ ˆ,i i i i i iQ Q Q Q      

The parameter  1,1   specifies the order of differencing. If it is equal to 1, the

differencing turns into central differencing. -1 gives second-order fully-upwind

differencing and 1/3 means second-order fully-upwind differencing

 r is named as limiter function. It is used to avoid the solution affected by

oscillations and also prevent from spurious solutions that take place where high

gradients are observed.

Through the study two kinds of limiter functions are used: with 0  and 1/3 

respectively. For 0  , Van Albada and for 1/3  Karen limiter functions are

chosen. Then the equations given in Eq. (17) transforms into a form below:

1/ 2 1/ 2

1/ 2 1 1/ 2

ˆ ˆ

ˆ ˆ

L L

i i i

R R

i i i

Q Q

Q Q





 

  

 

  (18)

For 0  :

2 2

2 2

() ()

2

ia b b a

a b

 




  


 

For 1/3 

2 2

2 2

(2) (2)

3

a b b a

a b ab

 




  


  

13

where

1 1

,

,

L i L i

R i R i

a b

a b 

  

  

As it is mentioned above, the reason of using limiter function is to prevent the

solution from being affected from oscillations. Hence, in order to deactivate the

function in smooth regions, a small number  is added to the formulation of  . It is

defined as 0,0008 in both Koren’s and Van Albada limiters.

Figure 2.1 Control Volume Representation

2.3 Flux Splitting

It is seen that, after spatial discretization 1/ 2, , , 1/ 2, , , 1/ 2
ˆˆ ˆ, ,i j k i j k i j kF G H   are formed in

terms of ˆ ˆˆ ˆ ˆ ˆ, , , , ,F F G G H H      . These functions may be calculated by using

different flux splitting techniques as Steger Warming, Van Leer , Roe or AUSM.

Steger Warming and Van Leer [14] are belong to family of flux vector splitting and

the others are known as flux difference splitting techniques.

The flux vector can be computed either by central differencing method or upwind

schemes. The first way depends on averaging the flow variables at the cell interfaces.

14

The advantage of using upwind schemes is, it does not need artificial dissipation

which is used in central differencing technique.

In this study, Van Leer method is applied. In Van Leer scheme, flux vector is splitted

with respect to the contravariant Mach number, M. Splitted fluxes are examined with

respect to Mach number, M, at first as below;

: 1

, 1

0, 1

0, 1

, 1

SupersonicCase M

F M
F

M

M
F

F M








 




 



1

2

1 2 3 2

3

2 2 2 2

2

1

1

2

(1) 2
()

4

2

2 2

1 1 2

SubsonicCase M

U c
k u

M U c
F c k k k k v

U c
k w

U c a u v w
U








 





 
 
 
   
  
  
 
         
  
   

  
  
     
   

     (19)

where

1 2 3
2 2 2 2 2 2 2 2 2 2 2 2

, , ,
x y z yx z

x y z x y z x y z x y z

u v w
U k k k

    

           

 
   

       

 c is the speed of sound and  is the specific heats ratio. The flux vector in 

direction, Ĝ , is formed by replacing x , y and z with x , y and z respectively.

Also same action is carried on in order to obtain Ĥ  .

15

2.4 Boundary Conditions

Boundary conditions used are inlet boundary conditions, outlet boundary conditions

wall boundary conditions and symmetry boundary conditions. Quarter of the nozzle

is analysed. The boundary condition that is valid on the selected portion of the

geometry are shown on the Figure 2.2

The implementation of boundary conditions to the flow is done by ghost cells.

Specified boundary conditions are loaded into these ghost cells. They are added to

the exterior of the flow.

Figure 2.2 Boundary Conditions

2.4.1 Inlet Boundary Conditions

The information that propagates from the inlet, changes direction up to being

supersonic or subsonic.

In case of being supersonic, all of the parameters are calculated from the information

coming from outside. Hence it is the simplest case. Ghost cells are composed from

the variables set from free stream.

16

In subsonic case, a part of the information proceeds from inside to outside. The

airflow at inlet is subsonic in the nozzle analysed. Pressure values are used from

inner cells of the nozzle inlet. Because of being 3-D, 5 different parameters are

needed. The other parameters which are total pressure, total temperature, Mach

number and density are calculated from information propagating from outside.

Pressure is calculated by Equation (3) given before. Note that, at inlet, there is a

flow in only one direction, 0, 0v w  . u is specified from the mass flow rate

through the nozzle.

2 2 2

int int

2 2

2

(1) ()
2

1
(() 2(1)()

2

()

() 0

() 0

1 ()
()

1 2

boundary erior t erior

boundary boundary boundary

boundary

boundary

wall

boundary

t boundary

u v w
p e

p p u

u u

v

w

p u
e

 

    

 








 

 
  

   







 


2.4.2 Outlet Boundary Conditions

If the downstream velocity is supersonic, all of the parameters are taken from interior

cells. In subsonic case, one of the parameters is taken from upstream. As the

geometry used is a supersonic nozzle, supersonic case is valid for our case.

2.4.3 Wall Boundary Conditions

Density, tangential velocity and total energy are taken from the interior cells. Since

there is a wall, mass flux is equal to zero on wall boundary. Hence, normal

component of the velocity is zero. In order to preserve it zero, a symmetry plane is

formed and an artificial velocity which has the same magnitude but on opposite

direction is put on the wall boundary.

17

   

   

   

   

int

int

intint

intint

intint

int

2

2

2

n erior

boundary erior

erior n xboundary erior

erior n yboundary erior

erior n zboundary erior

t tboundary erior

U U n

u u U n

v v U n

w w U n

e e

 

  

  

  

 

 



 

 

 



In the equation above, Uinterior is the velocity defined at the center of the cell at the

neighbor of wall. n represents the unit normal at the wall surface. It is composed of

, ,x y zn n n . , ,n n nu v w and
int int int, ,erior erior erioru v w are the components of normal velocity

and interior velocity respectively

2.4.4 Symmetry Boundary Conditions

In nozzle geometry, it is very effective to analyse the flow for the quarter of the

nozzle and extrapolate the results to the full geometry by using symmetry planes.

Since the magnitudes calculated are the same for the other ¼ parts of the geometry,

only manipulating the directions are enough to have all information in each cell of

the nozzle.

All of the variables are same on each quarter of the nozzle except normal velocity

components to the symmetry planes. They are taken symmetric with respect to the

symmetry line.

18

19

CHAPTER 3

SOLUTION ALGORITHM

Two different solution algorithm is used separately. First of the approaches is

Newton’s Method. 3-D Euler equations are solved with Newton’s method. Jacobian

calculations are done analytically. Then Newton-GMRES method is applied to flow.

Newton’s algorithm is modified with adding GMRES linear solver. Details on

Initialize Solution

Calculate Residual

 toll

Calculate Jacobian

Sparse Matrix Solver

STOP

YES

NO

I

Initialize Solution

Calculate Residual

 toll

Arnoldi Iteration

STOP

YES

NO

I

Least Square Solution G
M

R
E

S

Figure 3.1 Solution Algorithm of

Newton’s Method

Figure 3.2 Solution Algorithm of Newton-

GMRES Method

20

GMRES method are also be given in Section 3.2. The diagrams of solution

algorithms are given in Figure 3.1 and Figure 3.2 above.

3.1 Newton’s Method

As the 3-D Euler equations discretized above, now they can be written in a form of:

ˆˆ() 0R Q  (20)

R̂ denotes the residual vector and it can be written as

ˆ ˆ ˆ ˆˆ ˆ() () ()ˆˆ()
F Q G Q H Q

R Q
  

  
   (21)

 ˆR̂ Q which is a system of nonlinear equations can be linearized by Taylor

expansion about (k)
th
 iteration

 Note that higher order terms are neglected.

1

ˆ
ˆ ˆ ˆˆ ˆ() ()

ˆk k k

k

R
R Q R Q Q

Q






 
   

 
 (22)

Here,
ˆ

ˆ

R

Q




 is the Jacobian matrix. Equating the residual to 0 in (k+1)

th
 iteration

gives:

ˆ
ˆ ˆ()

ˆ k k

k

R
Q R Q

Q





 
   

 
 (23)

The flow variable vector Q̂ is updated at the (k+1)
th
 iteration as follows:

1
ˆ ˆ ˆ

k k kQ Q Q   (24)

As it is shown above, in the solution of Euler equations with Newton’s method,

Jacobian matrix must be computed. The entries of Jacobian matrix are the derivatives

of the residual vector with respect to the flow variables vector. In the calculation of

these derivatives a finite difference method or analytical derivation method can be

used, and the resulting matrices are called numerical or analytical Jacobians,

respectively. In this study analytical derivation method is used. Its advantages and

analytical derivation of Jacobian matrix can be found in the next section.

21

3.1.1 Jacobian Matrix

There are two different techniques in order to compute the Jacobian matrix;

analytical or numerical. Numerical method is an easier application which based on

finite differencing the flux vector. It is simple and can be performed no matter how

complex is the scheme. However, numerical calculation has accuracy problems.

Analytical calculation is better on accuracy but it requires differentiation which

consumes more time and effort [15]. Also recalculation for each flux discretization

scheme, makes the process much more complex. In this study, Jacobian matrix will

be calculated analytically because of its accuracy advantage.

Analytical Calculation of Jacobian Matrix

The discretized residual vector can be formed by plugging Equation 15 into Equation

(14):

, , 1 1 1 1
, , , , , , , ,

2 2 2 2

1 1 1 1
, , , , , , , ,

2 2 2 2

1
, , ,

2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ() () () ()

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ () () () ()

ˆˆ ˆ ()

L R L R

i j k
i j k i j k i j k i j k

L R L R

i j k i j k i j k i j k

L

i j k i j

R F Q F Q F Q F Q

G Q G Q G Q G Q

H Q H

   

   

   

   





   
      
   

   
      
   

  1 1 1
, , , , ,

2 2 2

ˆ ˆ ˆˆ ˆ() () ()R L R

k i j k i j k
Q H Q H Q  

  

   
    

   

 (25)

The Jacobian matrix composes of the derivatives of the residual vector at each cell

with respect to the flow variables. Taking the derivatives of residual , ,
ˆ

i j kR with

respect to a flow variable , ,
ˆ

i j kQ , gives the residual Jacobian:

22

1 / 2 , , 1 / 2 , ,

1 / 2 , , 1 / 2 , ,

, 1 / 2 ,

, ,

1/ 2, , 1/ 2, ,

, , , , , ,

1/ 2, , 1/ 2, ,

, , , ,

, 1/ 2, , 1/ 2,

, ,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ
ˆ ˆ

ˆ

i j k i j k

i j k i j k

i j k

L R

i j k

i j k i j k

i j k i j k i j k

L R

i j k i j k

i j k i j k

L

i j k i j

i j k

Q QR
A A

Q Q Q

Q Q
A A

Q Q

Q
B B

Q

 

 



 

 

 

 

 

 

 
 

  

 
 

 


 



, 1 / 2,

, 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2

, , 1/ 2

, ,

, 1/ 2, , 1/ 2,

, , , ,

, , 1/ 2 , , 1/ 2

, , , ,

, , 1/ 2

ˆ

ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ
ˆ

ˆ

i j k

i j k i j k

i j k i j k

i j k

R

k

i j k

L R

i j k i j k

i j k i j k

L R

i j k i j k

i j k i j k

L

i j k

Q

Q

Q Q
B B

Q Q

Q Q
C C

Q Q

Q
C



 

 



 

 

 

 









 
 

 

 
 

 






, , 1 / 2

, , 1/ 2

, , , ,

ˆ
ˆ

ˆ

i j k

R

i j k

i j k i j k

Q
C

Q Q










 (26)

where

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ,

ˆ ˆ

L R

L R

L R

F F
A A

Q Q

G G
B B

Q Q

H H
C C

Q Q

 
 

 
 

 
 

 
 
 

 
 
 

 
 
 

Analytical derivation of Residual Jacobian needs three sets of derivatives.

1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2
ˆ ˆ ˆ ˆˆ ˆ, , , , , i j k i j k i j k i j k i j k i j kA A B B C C     

      denote the derivatives

of splitted fluxes with respect to flow variables interpolated at the cell faces. To

compute these derivatives, Steger-Warming, Van Leer or AUSM flux schemes can

be differentiated.

The others are the derivates of flow variables interpolated at cell faces with respect to

the flow variables at cell centers. They can be computed with either first or second

order discretization.

23

A first order of accuracy can be achieved by using first order discretization which

leads to equate the flow variables at right (ˆ RQ) to the values at the cell center of the

cell that is at the right cell face and (ˆ LQ) to the variables defined at the face of the

cell that is at left. .

1 , , 1 1, ,, , , ,
2 2

1 1, , 1 , ,, , , ,
2 2

1 , , 1 , 1,, , , ,
2 2

1 , 1, 1 , ,, , , ,
2 2

1 , , 1 ,, , , ,
2 2

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

L R

i j k i j ki j k i j k

L R

i j k i j ki j k i j k

L R

i j k i j ki j k i j k

L R

i j k i j ki j k i j k

L R

i j k ii j k i j k

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

 

 

 

 

 

 

 

 

 

  , 1

1 , , 1 1 , ,, , , ,
2 2

ˆ ˆ ˆ ˆ,

j k

L R

i j k i j ki j k i j k
Q Q Q Q



 
 

 (27)

 In first order discretization, Jacobian,
, ,

, ,

ˆ

ˆ
i j k

i j k

R

Q




, is computed by:

, ,

1 1 1 1 1 1, , , , , , , , , , , ,
2 2 2 2 2 2

, ,

ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ
i j k

i j k i j k i j k i j k i j k i j k

i j k

R
A A B B C C

Q

     

     


     


 (28)

, , , , , ,

1 1 1, , , , , ,
2 2 2

1, , , 1, , , 1

, , , , , ,

1 1 1, , , , , ,
2 2 2

1, , , 1, , 1,

ˆ ˆ ˆ
ˆ ˆˆ, ,

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆˆ, ,

ˆ ˆ ˆ

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

R R R
A B C

Q Q Q

R R R
A B C

Q Q Q

  

  

  

  

  

  

  
  

  

  
     

  

 (29)

where

1/ 2, , 1/ 2, ,

1/ 2, , 1/ 2, ,

1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2,

, 1/ 2, , 1/ 2,

, 1/ 2, , 1/ 2,

, , 1/ 2

, , 1/ 2

, , 1/ 2

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ
ˆ ˆ,

ˆ

i j k i j k

i j k i j kL R

i j k i j k

i j k i j k

i j k i j kL R

i j k i j k

i j k

i j k L

i j k

F F
A A

Q Q

G G
B B

Q Q

H
C C

Q

 

 

 

 





 
 
 

 
 
 





, , 1/ 2

, , 1/ 2

, , 1/ 2

ˆ

ˆ
i j k

i j k R

i j k

H

Q









24

In second order discretization, the flow variables at the cell faces are evaluated by

using 4 neighboring cell. Flow variables at the centers of neighboring cells are

interpolated by MUSCL method to find the variables at the cell face.Then the

interpolated flow variables in one direction are :

 

 

 

1 1 1
2 2 2

1 1 1
2 2 2

1 1
2 2

1 1
2 2

1, , , ,, , , , , ,

, , 1, ,, , , , , ,

2, , 1, , , , 1, ,, , , ,

1, ,, , , ,

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, , ,

ˆ

L R L R L R

i j k i j ki j k i j k i j k

L R L R L R

i j k i j ki j k i j k i j k

L R L R

i j k i j k i j k i j ki j k i j k

L R L R

i j ki j k i j k

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q





 

 

  

  

   

 







  , , 1, , 2, ,
ˆ ˆ ˆ, , ,i j k i j k i j kQ Q Q 

 (30)

The variables in other directions can be derived similarly.

The Jacobian matrices are :

1/ 2, , 1/ 2, , 1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2,

, ,

, , , , 1, , 1, ,

, , , , , , , , , ,

, , , ,

, , , ,

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

i j k i j k i j k i j k

i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

L R

i j k i j k

i j k i j k

Q Q Q QR
A A A A

Q Q Q Q Q

Q Q
B B

Q Q

   

 

   

 

 

   
   

    

 
 

 

, 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2 , , 1/ 2 , , 1/ 2

, 1, , 1,

, , , ,

, , , , , , 1 , , 1

, , , , , , , ,

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

i j k i j k

i j k i j k i j k i j k

L R

i j k i j k

i j k i j k

L R L R

i j k i j k i j k i j k

i j k i j k i j k i j k

Q Q
B B

Q Q

Q Q Q Q
C C C C

Q Q Q Q

 

   

 

 

   

 

 
 

 

   
   

   
 (31)

1/ 2, , 1/ 2, , 1/ 2, , 1/ 2, ,, ,

, , , , 1, , 1, ,

1, , 1, , 1, , 1, , 1, ,

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i j k i j k i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

Q Q Q QR
A A A A

Q Q Q Q Q

      

 

   
   

    

, 1/ 2, , 1/ 2, , 1/ 2, , 1/ 2,, ,

, , , , , 1, , 1,

, 1, , 1, , 1, , 1, , 1,

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i j k i j k i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

Q Q Q QR
B B B B

Q Q Q Q Q

      

 

   
   

    
 (32)

, , 1/ 2 , , 1/ 2 , , 1/ 2 , , 1/ 2, ,

, , , , , , 1 , , 1

, , 1 , , 1 , , 1 , , 1 , , 1

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i j k i j k i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

Q Q Q QR
C C C C

Q Q Q Q Q

      

 

   
   

    

25

1/ 2, , 1/ 2, ,, ,

1/ 2, , 1/ 2, ,

2, , 2, , 2, ,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
 

  

1/ 2, , 1/ 2, ,, ,

1/ 2, , 1/ 2, ,

2, , 2, , 2, ,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
  

  

, 1/ 2, , 1/ 2,, ,

, 1/ 2, , 1/ 2,

, 2, , 2, , 2,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
 

  
 (33)

, 1/ 2, , 1/ 2,, ,

, 1/ 2, , 1/ 2,

, 2, , 2, , 2,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
  

  

, , 1/ 2 , , 1/ 2, ,

, , 1/ 2 , , 1/ 2

, , 2 , , 2 , , 2

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
 

  

, , 1/ 2 , , 1/ 2

, , 1/ 2 , , 1/ 2

, ,

, , 2 , , 2 , , 2

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

i j k i j k

L R

i j k

i j k i j k i j k

Q QR
A A

Q Q Q

 

 

 

  

 
  

  

3.2 Newton-GMRES Method

In Equations (31), (32) and (33) Jacobian matrices are shown. Their derivation and

calculation are given in previous section. The complexity of their calculation is easy

to see. To avoid from this forming and computation work load, Newton-GMRES

method is studied.

To solve the system of nonlinear equations given in Equation (3), inexact methods

were investigated. They can be generalized as finding ˆ
kQ such in each iteration

step, k.

ˆ ˆ ˆˆ ˆ ˆ() () ()k k k k kR Q R Q Q R Q   (34)

Note that, when 0k  equation (33) gets the form of

ˆ
ˆ ˆ()

ˆ k k

k

R
Q R Q

Q





 
   

 
 (35)

which corresponds to Newton’s method.

26

The importance of selection of
k is to prevent the solution from oversolving. This

problem was investigated by Einsenstat [16] and some procedures were presented. In

this work Equation 36 is used in order to skip first unnecessary iterations.

1

ˆ()

ˆ()

k

k

k

R Q

R Q



 


 
 
 
 

 (36)

where  0,1  and  1,2 

Pueyo and Zingg [17] found that taking 0,5k  in first 10 iterations and then

selecting 0,1k  is giving a better efficiency for the cases they analysed. By

inspring from Pueyo and Zingg, it is tried to examine if there are much more efficient

solutions by combining different k values manually. Each of the approaches are

applied and most appropriate one is chosen with respect to residuals calculated.

Newton-GMRES method can be defined as an implementation of Newton’s method

combined with the iterative linear algebra method GMRES in order to be used as an

approximate solver for each Newton step. Newton-GMRES is an iterative method

which is one of the Newton-Krylov methods which are a kind of inexact Newton

Methods.

While using Newton-GMRES method, there is no need to compute Jacobian matrix

which is one of the most important feature of this method. It only requires the action

of the Jacobian R̂ on a vector v which can be approximated by finite difference

and this process leads us to make computation without evaluating a matrix which

means the process is matrix free [18]

ˆ ˆ() ()ˆ()
R Q v R Q

R Q v




 
  (37)

where  is a scalar which is used to perturb the flow variables, Q̂ . While applying

this method, the selection of  directly affects the solution. Nielsen [19] showed that

2 mv  (38)

27

where
m is machine zero. In the computer used in thesis work, the machine zero is

known as 1610 and v values are lower than 1. By trial, it is seen that, selecting  as

710 gives best results. It controls the truncational and round off errors. It should be

noted that, this selection is so close to Nielsen’s formulization and setting it to a

number does not require calculation of  again and again.

Krylov subspace methods are for solution of linear problems Ax b . It starts with an

initial
0x and at each step it determines an iterate x with a correction in the Krylov

subspace. Hence, they don’t need direct access to the entries of A

 1

0 0 0, ,..., n

kK span r Ar A r (39)

 where r is the initial residual..

The algorithm of application of GMRES to k
th

 Newton equation is given below as

outlined in [20]

GMRES Algorithm

 1.Select 0ˆ
kQ and set m=0

 0 0ˆ ˆ ˆˆ ˆ() ()k k k kr R Q Q R Q   

 0

k kr  , 0

1 /k kv r 

 2.Construct Hessenberg matrix by carrying out Arnoldi process [21]

 While ˆˆ()m

k k kr R Q do

 Set 1m m 

 Calculate ˆˆ ()k nR Q v then

,

1 ,

1

1, 1

1 1 1,

ˆˆ(()) 1,2,....

ˆˆ ()

/

T

i m k m i

m

m k m i m i

i

m m m

m m m m

h R Q v v i m

v R Q v h v

h v

v v h





 

  

 

 







 3.Find the vector my such that :

28

1 2

min k m me H y  where  1 1,0,0,0....
T

e 

(Apply Givens type transformation to
mH to compute the Q-R factorization to make

easier to solve the least square system)

 4.Set

 1

m

k k m mr e H y 

 5.Define

  1 2 3, , ...m mV v v v v

 0ˆ ˆm

k k m mQ Q V y   

 6.Iterate until residual vector m

kr satisfies the stopping iteration which is:

 ˆˆ()m

k k kr R Q or ˆ ˆ m

k kQ Q  

The step size found by GMRES is used to perform Newton iteration:

1
ˆ ˆ ˆ

k k kQ Q Q    (40)

ˆ
kQ is named as descent direction. It is taken as 0 at first iteration.

3.2.1 Arnoldi Iteration

Step 2 can be defined as the heart of GMRES where the Arnoldi iteration takes place.

The part given as calculation of ,v h starting from ˆˆ ()k nR Q v is named as Arnoldi

algorithm. The aim of the Arnoldi process is to form an orthonormal basis for a

Krylov subspace. For a given matrix A and a non-zero vector x and with a dimension

defined by m, using Arnoldi iteration one constructs a matrix V such that:

2 1() (, , ,....,)mcol span V span x Ax A x A x (41)

where TV V I

By applying Arnoldi iteration, instead of analyzing a given large scale matrix A, only

examining a small subset of A that includes the rightmost or largest eigenvalue in

magnitude is provided. Projecting A into a low dimensional subspace, one may

approximate these large eigenvalues into an easier form. Then problem becomes a

29

small eigenvalue problem which is easy to solve with well known QR factorization

techniques explained in linear least square problem solution section.

Arnoldi iterations stops when
1mv 
 cannot be computed. In other words, while

,

1

ˆˆ () 0
m

k m i m i

i

R Q v h v


   Arnoldi algorithm finishes. The procedure ends with forming

an upper Hessenberg matrix from a given dense matrix. An upper Hessenberg

matrix,
ijH , is defined as a matrix whose entries are zero where 2j i  . On

Equation (42), an Hessenberg matrix is formed for 5 4x as an illustration.

. . . .

. . . .

0 . . .

0 0 . .

0 0 0 .

H

 
 
 
 
 
 
  

 (42)

3.2.2 Linear Least Square Problem Solution

After constructing the Hessenberg matrix in step 2, one solves the linear least square

system. It is not a must but in order to lower the CPU time elapsed in solution

process of linear least square problem, one may still shift the matrix achieved into a

lower or upper matrix for simplicity. The procedures that can be applied are given in

next section. In this section, the last version of the matrix is taken into account and

solution of minimization problem is investigated. Consider the over determined

linear system

Ax b where ,mxnA m n

Here, x is the solution of the least square that minimizes the Euclidian norm of

r b Ax  where r is the residual vector.

2 2

2 2
min minr b Ax 

 (43)

There are different algorithms that find the minimum which are normal equations,

QR factorization and singular value decomposition, SVD. The first method is the

cheapest one. However, because of the lack of accuracy, it is not very commonly

30

used technique. If the system is full rank; ıt is selected to use QR factorization while

solving the minimization problem. Also it is very attractive if the system involves

Hessenberg matrices which is the main attribute of GMRES method

QR factorization can be formed by different methods such as Gram-Schmit,

Householder or Givens Rotation. As upper
mH matrix is close to a upper triangular

matrix, it is very efficient to use Givens Rotation as a solution technique. Upper

Hessenberg matrices can be classified as sparse systems which mean they include

significant number of zeros as entries. While applying Householder procedure

temporary nonzero elements arise in intermediate steps, which means need of extra

temporary storage. Hence it is recommended to apply Givens rotation in GMRES

since the matrix formed in minimization step is composed of an upper Hessenberg

matrix.

1m m kH y e (44)

While applying QR factorization, Hessenberg matrix is written as multiplication of a

triangular matrix, R , and an orthonormal matrix, Q .

mH QR where TQ Q I

By substituting above equalities into left hand side of Equation (44) and simplifying,

system becomes:

1

1

m k

T T

m k

T

m k

QRy e

Q QRy Q e

Ry Q e













 (45)

3.2.3 Givens Rotation

As a note, it was given that, in order to solve the least square system Givens Rotation

can be applied to the Hessenberg matrix that was formed. Givens transformation is a

method that composes of series of rotations in order to zero the lower triangular of a

given matrix.

 The idea behind Given’s rotation is to make 0ky  where

31

(, ,)Ty G i k x

Since , ,i j ky y y is given as below, sin , coss c   should be computed as in

Equation (46)

i i i

k k k

j j

y cx sx

y cx sx

y x

 

 



/

/

i

k

c x t

s x t



 
 where

2 2

i kt x x  (46)

A Givens rotation matrix can be represented as

1 0 . . 0 . . 0 . . 0

0 1 .

. . .

. . 0

0 .

(, ,) . .

. 0

0 . .

. . .

. 1 0

0 . . 0 . . 0 . . 0 1

c s i

G i k s c k

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  (47)

sin , coss c  

3.3 Preconditioning

Preconditioning refers to transform a given linear system into a form that is easy to

solve with an iterative solver. This becomes applicable with constructing a

preconditioning matrix M . There are different kinds of forming a preconditioned

system with using this M matrix. First of all one should find this preconditioning

matrix. There are few requirements that M have to satisfy. Preconditioned system

solution should be inexpensive and close to original matrix A and must be invertable

[22]. The ideal case of M is being equal to A . Consequently, multiplication of
1M 

32

and A gives identity matrix. However, this causes high computational cost and

system becomes explicitly solved. Hence an approximation of A matrix is a better

choice to compose M matrix. M can be applied from left, right or in a splitted form

to system Ax b .

Preconditioning from left : 1 1M Ax M b 

Preconditioning from right: 1 1M Ax M b 

Splitted preconditioning : 1 1 1 1

L R L RM AM x M bM    (in special cases)

Left preconditioning is an easier process with respect to right preconditioning. That

does not need any extra computation in the algorithm except multiplying the residual

with M matrix at the beginning of inner loop. On the other hand, in case of using

right preconditioner, one should perform a multiplication of
1M 
 with x while

updating their values at outer loop.

There are various techniques of preconditioning. Most commons applied to GMRES

are sorted as: diagonal preconditioner ILU(0), ILU(2) which are ILU Factorization

Preconditioners.

Diagonal preconditioner is also named as Jacobi Preconditioner. One can form it

easily. It is composed of the diagonal element of Jacobi matrix. But as long as it is

not convenient to construct the exact Jacobian because of its expenses, an

approximation of the Jacobi is selected to form a diagonal preconditioner. It does not

classified as most effective but in some kinds of problems it works well [23]. Block

Jacobi preconditioners also depend on same principle. The only difference between

them is to zero in the blocks except at the diagonal instead of zero in the entries

except the ones on the diagonal. Block Jacobi is expected to be more efficient than

diagonal preconditioning.

It is stated that ILU type preconditioners are more attractive in many problems while

application method is still simple [24]. ILU(0) is the cheapest case with zero fill in

value. They require sparse form of the original matrices

33

CHAPTER 4

RESULTS

Chapter 4 is composed of four sections. In the first part, a preliminary study is

presented whose results are promotive to work with larger systems. Second section

includes the test cases. Comparisons are held on six different test cases. Grid sizes

and discretization types are changed in order to observe the act of Newton-GMRES

method while the system is getting larger. CPU times and convergences histories of

different cases for both Newton and Newton-GMRES method are given. Parameters

that affects Newton-GMRES method’s convergence are analysed. Also a mesh

independence study is given in section 4.4

The code of Newton-GMRES is developed by using Fortran77 by manipulating the

code used in [25] . The analysis is conducted on 2.3 GHz, AMD Opteron6227

processor.

4.1 Solution of Three Nonlinear Equations

In order to test the algorithm formed is working well or not, a system composed of

three nonlinear equations was constructed.

3 2

3 2

2

: 2 2 0

5 7 0

1 0

The system x y

x z

yz

  

  

 

: 1, 1, 1

'

 1.4422500, 0.500000, 1.414214

-

 1.4422425, 0.499999, 1.414207

Inıtıal values x y z

Solutionby Newton s Method

x y z

Solutionby Newton GMRES Method

x y z

  

  

  

34

The system is both solved with Newton and Newton-GMRES method. Results were

pretty sufficient. Same accuracy was provided with Newton-GMRES method. As

long as the system is so small, CPU calculations couldn’t been held.

Success that is achieved while solving three nonlinear equations can be seen on

convergence history comparison of preliminary study in Figure 4.1 given below

Figure 4.1 Comparison of Newton and Newton-GMRES Methods on Three

Equations

4.2 Solution of 3-D Euler Equations in Nozzles

CPU times are calculated with respect to grid sizes and order of construction. They

are formed to see the effect of grid size to the convergence and CPU time. Grid sizes

were selected as they are tabulated below. They are formed in-house

Table 4.1 Sizes of the Grids Generated

Coarse Grid 17x5x5

Medium Grid 33x9x9

Fine Grid 65x17x17

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
210

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

35

As it was mentioned in flow analysis, spatial discretization is an important process

on improving the accuracy. If higher order discretization is selected CPU time is

getting higher in return of more accurate solution.

Table 4.2 Test Cases

Test Case Grid Size Order

C1 17x5x5 1

C2 17x5x5 2

M1 33x9x9 1

M2 33x9x9 2

F1 65x17x17 1

F2 65x17x17 2

Test cases are tabulated above with respect to order of discretization and grid sizes.

Abbreviations C, M and F denote coarse, medium and fine grids. 1 and 2 show the

order of discretization.

36

 Figure 4.2 Generation of Coarse Grid Figure 4.3 Generation of Medium Grid

Figure 4.4 Generation of Fine Grid

37

Figure 4.5 Convergence Histories Comparison for C1

Figure 4.6 Convergence Histories Comparison for C2

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

38

Figure 4.7 Convergence Histories Comparison for M1

Figure 4.8 Convergence Histories Comparison for M2

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

39

Figure 4.9 Convergence Histories Comparison for F1

Newton-GMRES method is a combination of an inner and outer iteration as it was

mentioned before. While second order discretization is applied, it is expected to have

longer convergence histories. However it is seen that, the inner loop converges in

further iterations. This is not observed in convergence histories figures as they only

show the Newton iteration counts. Also it should be noted that, for first and second

order discretizations, different k values are selected in order to shorten the CPU

time elapsed. This also changes the count of iterations.

Implementation of Newton’s method into F2 case is not carried out due to

UMFPACK performance. UMFPACK gives error message related to insufficient

memory and which is faced by other researcehers very common. It is recommended

to switch to another matrix solver as PETSc or MUMPS

In convergence histories, Newton method converges around 10
th

 iteration for each

case. On the other hand, Newton-GMRES method converges at least around 700
th

cycle. Although the number of iterations is approximately two order of magnitude

smaller in Newton method, the CPU time is less in Newton-GMRES method.

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

40

Table 4.3 CPU Time Comparisons

Test Cases CPU Time Elapsed (sec)

M1 Newton-GMRES 15.480

Newton 80.195

C1 Newton-GMRES 1.548

Newton 2.299

M2 Newton-GMRES 20.78

Newton 242.757

C2 Newton-GMRES 1.985

Newton 3.192

F1 Newton-GMRES 255.770

Newton 3584.438

F2 Newton-GMRES 731.201

The difference between the CPU times increases as the mesh size is getting larger.

This is because of the reason that Newton method requires the solution of very large

matrix updated at each iteration. As far as the CPU time is concerned, the

performance of Newton- GMRES method is getting better as the mesh size increases.

Due to the quadratic convergence property of Newton’s method, a residual value

between 10
-9

 and 10
-14

 can’t be selected as stopping criteria for many of the cases.

On the other hand, while applying Newton-GMRES method, after 10
-12

solution

slows down.. Also the accuracy of solutions with residual 10
-14

 and 10
-12

 are pretty

similar; solving Newton-GMRES with residual of 10
-14

 can be defined as loss of

time for this specific purpose of solving the system generated for this study. The

CPU time elapsed in F1 with Newton-GMRES is 498.7 sec if residual is set to 10
-12

where for 10
-14

731 sec. Same problem is encountered at each of the test cases.

GMRES method is getting better as the mesh size increases. The lowest iteration was

achieved in small grid with higher order discretization. However when CPU time

calculations are taken into account, this dramatic difference in iteration numbers lost

their importance.

 Mach and pressure contours of 3-D Supersonic Nozzle with medium grid and first

order of discretization are plotted below for both of the solution methods. Also

41

velocity vector distributions are presented. Since the residual level reduced to same

order of magnitude, the similarity between the contour plots of Newton-GMRES and

Newton’s Method is shown below.

Figure 4.10 Mach Contours Obtained by Newton-GMRES Method

Figure 4.11 Mach Contours Obtained by Newton Method

Y X

Z

mach: 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3

Y X

Z

mach: 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3

42

Figure 4.12 Pressure Distribution Obtained by Newton-GMRES Method

Figure 4.13 Pressure Distribution Obtained by Newton Method

Y X

Z

pres: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Y X

Z

pres: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

43

Figure 4.14 Velocity Vectors Obtained By Newton-GMRES Method

Figure 4.15 Velocity Vectors Obtained By Newton Method

44

4.3 Parametric Study

At the beginning of Newton-GMRES process, one should identify the parameters

0 , ,k kQ   . Computation of  is given in Chapter 2. It is used to perturb the system

and defining it as close to zero as possible is the main purpose of given techniques of

calculations. By decreasing the value of  , residual is also approaches much more

smaller magnitudes.

Both of the solution techniques emphasized are locally convergent methods. Local

convergence implies that, Newton and Newton-GMRES methods are successful

providing good initial approximations. To put it in different words, convergence can

only be achieved if the initial selection of flow variables done well.

Apart from initializing the flow variables, in Newton-GMRES method one also

defines a step size in the inner loop of the algorithm, 0

kQ . Selection of 0

kQ also

evidently affects the convergence of the process. It is observed that initializing 0

kQ

with 0 accelerates the convergence of the method as a result of this local

convergence property.

While conducting the study, it is seen that the solution is sensitive to selection of

forcing term, k . As they were mentioned above, there are various strategies to

choose k . With different selections of ,  Equation (36) is applied to the code in

order to find optimum value of this forcing term. Medium grid is chosen to compare

the efficiencies provided by different selections of k . In Eisenstat’s suggestion

given in Equation (36), it depends on both residual of the previous iteration and also

the updated version in addition to ,  values. A k value is selected arbitrarily for

the first iteration.

It is noted that the effect of  is limited with respect to the effect of  . However,

the order of their importance is the same if one goes out of the interval that was

45

defined for these to variable. System does not converge in situation of selection of

arbitrary numbers.

0,5k 

Table 4.4 CPU Time Comparison with Eisenstat’s Formulation (sec)

Pueyo and Zingg suggested to use a higher k for first few iterations and then lower

the value in order to prevent oversolving problems. Idea is implemented and seen

that using a fixed number is giving a better CPU time results if the selection made

carefully.

Figure 4.16 Effect of k on Coarse Grid

Forcing Term

C
P

U
T

im
e

E
la

p
s
e

d
(s

e
c
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

C1

C2




0.1 0.4 0.5 0.6 0.9

1.1 26.465 14.794 12.427 13.561 14.022

1.3 27.907 16.783 15.296 15.273 15.343

1.5 28.245 17.460 15.978 15.363 15.314

1.8 28.1647 19.569 16.595 16.219 15.049

1.9 27.930 18.192 17.004 16.447 14.358

46

Figure 4.17 Effect of
k on Medium Grid

With trial and error it is examined that, the best selection can be done by using k as

0,6 for Case M1, 0,8 for Case M2. On the other hand, setting k to 0,5 would be a

better preference while working on case C1 and 0,6 is an appropriate choice of k

for case C2. This study implies that, for different systems, it is convenient to make an

analysis of k with respect to CPU time. A tendency to higher values of forcing

terms in larger systems is observed.

k selection is a vital process while solving the system. In case of selecting either

values closer to 0 or close to 1, a convergence couldn’t be achieved in most of the

situations. On the other hand, Eisenstat formula still works in such situations.

However, it can’t be concluded that the results would be optimum.

4.4 Mesh Independence Analysis

As the mesh gets finer, the effect of it to the solution decreases. After a point they

converge to a same value. The effect of meshes generated to the system defined is

analysed below for 1
st
 and 2

nd
 order of discretization.

Forcing Term

C
P

U
T

im
e

E
la

p
s
e

d
(s

e
c
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

16

18

20

22

24

26

M1

M2

47

Figure 4.18 Mesh Inpedepence with Newton-GMRES Method on 1
st

Order

Discretization

Figure 4.19 Mesh Inpedepence with Newton-GMRES Method on 2
nd

Order

Discretization

x

M
a

c
h

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

F1

M1

C1

x

M
e

s
h

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3
F2

M2

C2

48

While analyzing the first plot, it can be concluded that, the similarity of the solutions

between fine and medium grid is more than the similarity between coarse and

medium grid. The difference decreases rapidly while going from coarse to fine

meshes. Hence, it is predicted that a fourth grid finer than the ones generated before

coincides with the results received with fine grid. Due to memory problems it could

not been performed. It is seen that for second order of discretization, the sensitivity

to the mesh becomes insignificant after the medium grid. Fine and medium grids

almost overlap.

49

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this thesis, both Newton’s method and an iterative method are applied to solve 3-D

Euler equations respectively. In Newton’s method, Van Leer Upwind scheme is

used. Two different discretization techniques are implemented in order to make a

detailed comparison. A second order discretization: MUSCLE and first order

discretization are tried before implementing Newton’s and Newton-GMRES

methods.

While solution is conducting with Newton’s Method, the necessity of calculation of

Jacobian matrix has arise. This calculation is carried out with Analytical approach.

UMFPACK based on converting a full matrix into a sparse matrix and applying LU

decomposition is used in Newton’s method to solve the system. A 3-D supersonic

nozzle is selected as test case. Different grid sizes are also examined.

The main objective of this study is to implement Newton-GMRES method algorithm

into the flow analysis of a 3-D supersonic nozzle. A code is developed by combining

Arnoldi iteration Givens rotation and QR factorization. The effect of forcing term

and  are observed. Their optimum values are found either by using well known

procedures or trial and error techniques. With these modifications, residual can be

decreased up to 10
-14

 besides its significantly small CPU times. Despite of increasing

CPU time, a 2
nd

 order discretization converges apparently earlier iterations while

combining with Newton-GMRES method

50

Finally, these two methods are compared on a 3-D supersonic nozzle geometry with

various grids. Flow analysis are carried out and observed on Mach contours and

pressure distribution. With respect to Newton’s method, approximately same results

are obtained. Unignorable CPU time saving is provided by Newton-GMRES method

for all test cases that were tried out.

As it is explained, Jacobi preconditioner is the basic preconditioner. As a starting

point to preconditioning procedure, implementation of Jacobi preconditioner is

experienced. Unfortunately, the system diverges after application of Jacobi

preconditioning. This type of preconditioning does not guarantee to work effectively.

However divergence causes to finalize the study without preconditioning with

regarding to the prosperous results in terms of CPU time obtained before applying

preconditioner.

5.2 Future Works

It is noticed in the literature research that implementing a preconditioner to the

system before starting to the Newton-GMRES method is also a good suggestion in

order to enhance the accuracy more than it was provided. However this approach will

break down the matrix-free structure of the method which is one of the most

important feature of this method. As long as this step requires an approximate

Jacobian matrix, computation of it would increase the CPU time. A matrix free

preconditioner implementation can be a possibility to improve both accuracy and

CPU time together.

Due to being locally convergent methods, initial approximations come into

prominence. Globalization procedures are applicable in order to insure convergence

with an arbitrary initial selection.

.

Flux calculations for 3-D Euler equations are only conducted for Van Leer flux

scheme. Different upwind schemes like Steger Warming or Roe Flux splitting

methods can also be tried to see their effect on the solver’s performance.

51

REFERENCES

[1] Wigton, L B., “Application of MACSYMA and Sparse Matrix Technology to

Multi-element Airfoil Calculations”, AIAA Paper 87-1142, 1987.

[2] Bender, E.E and Kosla, P.K., “Application of Sparse Matrix Solvers and

Newton’s Method to Fluid Flow Problems”, AIAA Paper 88-3700, 1988.

 [3] Venkatakrishnan, V., “Newton Solution of Inviscid and Viscous Problems”,

AIAA Journal, Vol. 27, July 1989, pp. 885-891.

 [4] Orkwis, P. D., “Comparison of Newton’s and Quasi-Newton’s Method Solvers

for the Navier-Stokes Equations”, AIAA Journal, Vol. 31, May 1993, pp. 832-836.

 [5] Saad, Y., and Schultz, M.H., “GMRES: A Generalized Minimal Residual

Algorithm For Solving Non-Symmetric Linear Systems”, SIAM Journal on Scientific

and Statistical Computing, Vol. 7, July 1986.

 [6] Wong, Y.S., and Hafez M., “Application of Conjugate Gradient Methods to

Transonic Finite Difference and Finite Element Calculations”, AIAA Paper 81-1032

[7] Elman, H.C.,”Iterative Methods for Large, Sparse, Nonsymmetric Systems of

Linear Equations”, Yale University Department of Computer Science Research

Report 229, April 1982.

 [8] Wigton, L.B., “GMRES Acceleration of Computational Fluid Dynamics Codes”

AIAA Paper A85-40933, 1984.

52

[9] Gear C.W., Saad Y., “Iterative solution of linear equations in ODE codes”, SIAM

Journal on Scientific and Statistical Computing, Vol. 4, 1983, pp.583–601,

[10] Brown P.N., Hindmarsh A.C., “Matrix-free methods for stiff systems of ODEs”,

SIAM Journal on Numerical Analysis Vol. 23, 1986, pp. 610–638.

 [11] Chan T.F., Jackson K.R.,” Nonlinearly preconditioned Krylov subspace

methods for discrete Newton algorithms”, SIAM Journal on Scientific and Statistical

Computing, Vol.5, 1984, pp. 533–542

 [12] Brown P.N. and Saad Y., “Hybrid Krylov Methods for Nonlinear Systems of

Equations”, SIAM Journal on Scientific and Statistical Computing, Vol.3, May 1990,

pp.450-481.

 [13] Van Leer, B., “Towards the Ultimate Conservative Difference Scheme, V. A

Second Order Sequel to Godunov's Method”, Journal of Computational Physics,

Vol. 32,1979, pp. 101–136.

[14] Van Leer, B., “Flux Vector Splitting for the Euler Equations”, ICASE Report

82-30, September 1982.

[15] Onur, O. and Eyi, S., “Effects of the Jacobian Evaluation on Newton’s Solution

of the Euler Equations”, International Journal for Numerical Methods in Fluids, Vol.

49, pp 211-231, 2005

 [16] Eisenstat, S.C., and Walker, H.F., “Choosing the Forcing Terms in an Inexact

Newton Method”, SIAM Journal on Scientific Computation., Vol.17, pp.16-32,

January 1996.

[17] Pueyo, A., Zingg, D.W., “An Efficient Newton-GMRES Solver for

Aerodynamic Computations”, 13
th

 AIAA Paper, A97-32464, 1997.

53

 [18] C. T. Kelly, “Iterative Methods for Linear and Nonlinear Equations,” Frontiers

Appl. Math. 18, SIAM, Philadelphia, 1999.

[19] Nielsen, E.,J., Anderson, W.K., Walters, R.W., and Keyes, D.E., “Application

of Newton-Krylov Methodology to a Three Dimensional Unstructured Euler Code”,

AIAA Paper 95-1733-CP, June 1995.

 [20] Bellevia, S., and Morini B., “A Globally Convergent Newton-GMRES

Subspace Method for Systems of Nonlinear Equations,” SIAM J. Sci. Comput., Vol.

23, No.3, pp.940-960, 2001.

[21] W. E. Arnoldi, “The Principal of Minimized Iteration in the Solution of the

Matrix Eigenvalue Problem,” Quart. Appl. Math., pp.17-29, 1951.

[22] Saad, Y., “Iterative Methods for Sparse Linear Systems (Ed.2)”, SIAM, 2001.

 [23] Auzinger W., “Iterative Solution of Large Linear Systems”, Retrieved January

15, 2014, from

 http://www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2011/downloads/script-

p-106-122.pdf, 2014.

[24] Persson, P.O., and Peraire, J. “Newton-GMRES Preconditioning for

Discontinuous Galerkin Discretizations of the Navier-Stokes Equations.” SIAM

Journal on Scientific Computing, Vol 23, No.6, 2008, pp. 2709-2733

[25] Onur, Ö., “Effect of Jacobian Evaluation on Direct Solution of the Euler

Equations,” Master thesis, Middle East Technical University, 2005

http://www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2011/downloads/script-p-106-122.pdf
http://www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2011/downloads/script-p-106-122.pdf

