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ABSTRACT 

 

PERFORMANCE COMPARISON OF NEWTON AND NEWTON-GMRES 

METHODS IN 3-D FLOW ANALYSIS 

 

 

Yıldızlar, Buket 

M.S., Department of Aerospace Engineering 

Supervisor:  Assoc. Prof. Dr. Sinan Eyi 

 

 

February 2014, 53 pages 

 

Because of CPU time problems, an alternative to Newton’s method is investigated in 

order to make a flow analysis in a 3-D Supersonic Nozzle. Calculation and forming 

of the Jacobian matrix get harder as the system gets larger. On the contrary, Newton-

GMRES approach does not require direct access to the Jacobian matrix. Due to the 

fact that it provides a dramatic decrease in CPU time, Newton-GMRES method is 

examined.  

 

To compare their performance on a supersonic nozzle, 3-D Euler Equations are 

solved with Newton’s and Newton-GMRES methods respectively. A parametric 

study is conducted for Newton-GMRES method to find the optimal solution with 

respect to CPU times elapsed.  In order to analyse Newton-GMRES method’s 

behavior on larger systems, different test cases are generated. The code is developed 

for Newton-GMRES method with Fortran77.  

 

 

Keywords: 3-D Euler Equations, Newton-GMRES Method, Newton’s Method 

Jacobian  
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ÖZ 

 

3-BOYUTLU AKIŞLARDA NEWTON VE NEWTON-GMRES 

YÖNTEMLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI 

 

 

YILDIZLAR, Buket 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Sinan EYİ 

 

 

Şubat 2014, 53 sayfa 

 

Newton Yöntemi 3 Boyutlu Süpersonik Lülelerde yapılan akış analizlerinde çok 

fazla CPU gereksinimi yaratmaktadır. Bunun doğurduğu maliyeti azaltma isteği, yeni 

bir yöntem arayışına sebep olmuştur. Jakobi matrisinin hesaplanması ve 

oluşturulması özellikle sistem büyüdükçe zorlaşmaktadır. Diğer bir yandan Newton-

GMRES yöntemi, direkt olarak Jacobi matrisine ihtiyaç duymaz. Özellikle büyük ve 

seyrek matrislerle sağladığı yakınsaklık değeri ve CPU’daki bariz tasarrufu sebebiyle 

Newton-GMRES metodu ele alınmıştır. 

 

3 Boyutlu Süpersonik bir lüledeki performanslarını karşılaştırmak amacıyla 3 

Boyutlu Euler denklemleri sırayla her iki yöntemle çözülmüştür. Newton-GMRES 

yönteminde kullanılan parametreler üzerinden bir kıyaslama ve optimum elde etme 

çalışması gerçekleştirilmiştir. Newton-GMRES yönteminin büyük sistemlerdeki 

performansını gözlemleyebilmek için farklı büyüklüklerde test durumları 

yaratılmıştır. Newton-GMRES yöntemi için gerekli kod Fortran 77 yardımıyla 

geliştirilmiştir 

 

Anahtar kelime; 3 Boyutlu Euler Denklemleri, Newton-GMRES Yöntemi, Newton 

Yöntemi, Jakobi Matrisi.  
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

1.1 Background. 

CFD is an important research area which has been used most of the engineering and 

science disciplines since the computer technology is progressing day by day. As long 

as it consumes plenty of time and effort to solve physics of flow either analytically or 

experimentally, the demand of estimation of the solution of a flow by the help of 

CFD methods is increasing more than expected 

 

Explicit methods were one of the oldest concerns of CFD society. Due to the 

memory problems of computers, they were the only alternative to direct solution 

method. The main disadvantage of these explicit methods is stability. Recent 

advances in computer technology and solution algorithms allow efficient solution of 

very large linear systems of equations. These advances have been motivating 

researchers to develop implicit algorithms to solve the flow equations since usage of 

implicit methods is more beneficial compared to the explicit ones. Implicit flow 

solvers are more stable and the residual can be reduced to very low values within a 

small number of iterations. Today, still there is a tendency to use explicit schemes for 

some class of unsteady flow problems. However the equations of different 

disciplines can be strongly coupled with flow equations in an implicit algorithm.   

 

Newton’s method can be named as the most common implicit solution technique in 

CFD. It is a root finding algorithm in the vicinity of a suspected root. It provides 

quadratic convergence.  In spite of this superior convergence, it requires the exact 

linearization of the residuals. This linearization process can only be done after 
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calculations of Jacobian matrices. They are matrices which are composed of 

derivatives of flux vectors with respect to flow variables. In large sparse systems, it 

requires a sustainably large computer memory to store the Jacobian matrix. Also 

evaluation and factorization of the Jacobians are other important issues that need 

memory. Although the size of this matrix can be very large, it is sparse in the most of 

the flow problems. The selection of good initial solution is important in Newton 

method. If the initial solution is not chosen properly, Newton method may diverge . 

 

To keep the advantages and to avoid disadvantages of Newton method, Jacobian-free 

Newton methods are getting more attention and especially the memory problem led 

researchers to canalize to inexact Newton methods instead of exact Newton method. 

Inexact Newton methods are iterative techniques to solve the flow in an approximate 

manner in order to benefit from the amount of work per iteration. Quasi-Newton 

methods belong to the class of Inexact Newton methods. The idea behind this class 

of methods is to solve the linear system arises from each Newton step with a linear 

solver. 

 

One of these Quasi-Newton methods is Newton-GMRES method. GMRES is derived 

as a linear solver for large, sparse, unsymmetric semi-positive definite systems. It 

belongs to Krylov subspace methods family. Krylov methods are the most common 

used linear iterative solvers and GMRES is the most preferred one. It is very 

attractive while dealing with Jacobian matrices. It does not need exact Jacobian. One 

can decrease the CPU time needed to solve the flow by using quasi-Newton method. 

On the other hand, loss of the superior convergence that is supplied by Newton’s 

method is inevitable. The question is the limit of this exchange between work load 

and accuracy. The aim of study is to make a comparison between Newton’s Method 

and Newton-GMRES method on a supersonic nozzle geometry. 

1.2 Scope Of The Thesis 

The object of this study is to implement Newton-GMRES method into supersonic 

flows as an alternative to Newton method which is a reliable and efficient solver. The 

flow analysis is based on the three dimensional Euler equations. More than one goal 
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are planned to achieve. A unique version of the Newton-GMRES code is one of the 

targets of this work. Then implementation of it into 3-D Euler equations is carried 

out in order to observe its performance on a 3-D supersonic nozzle. To make a 

reliable comparison, same order of residual is aimed to achieve in both of the 

methods Newton and Newton-GMRES. 

 

1.3 Literature Survey                                                                                                                                                                         

As it was mentioned in the background part, with the help of improvement in 

computer technology, implicit methods gained value in CFD in the early nineties. 

Implicit methods gave the scientists the easiness of coupling the equations from 

different disciplines with flow equations in one algorithm.  The most favorable of 

these techniques was Newton’s method because of its superior convergence. With 

respect to other iterative techniques, Newton’s method results in earlier iterations, 

which makes it attractive. 

 

Wigton [1] did one of the first implementations of Newton’s method. While solving 

a transonic flow over a multi-element airfoil with conventional solution techniques, 

he faced with unsuccessful convergence histories. Then, he implemented Newton’s 

method into flow. To compute the Jacobian matrix, he preferred to use MACSYMA, 

a symbolic mathematics system. He developed a method named nested dissection 

node reordering which decreases the memory requirements of large spare systems’ 

storage. Due to the efficient results obtained, Newton’s method became a promising 

method in 3-D applications. Today still similar techniques are used for large sparse 

systems. 

One of the important disadvantages of Newton’s method is the significance of initial 

conditions selection. Bender and Khosia [2] studied on the use of Newton’s method 

for the solution of inviscid compressible and viscous incompressible transonic flows. 

They concentrated on vanishing the problem of sensitivity of Newton’s method on 

initial conditions. It was concluded that the minimization of Euclidian norm reduces 

this importance of initial conditions selection. 
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Venkarakrishan [3] also worked on the same topic with Wigton: solution of transonic 

flows over an airfoil. It was one of the most remarkable implementation of Newton’s 

method and the modification of adding diagonal term into the advance sparse matrix 

solution method enhanced the convergence even better than Bender and Khosia in 

case of using poor initial conditions. They demonstrated that the method displayed a 

quadratic convergence. One of his deductions was the usage of Newton’s method’s 

inconvenience since it requires high CPU as the system gets larger. In other words, 

he pointed out that application of Newton’s method was impractical on 3-D 

problems. With his conclusions, scientists started to interest in quasi Newton’s 

methods. 

Orkwis [4] worked both exact Newton’s and quasi-Newton’s methods and he showed 

that quasi-Newton's method solvers did not exhibit quadratic convergence, but could 

be more efficient than the exact Newton's method in selected cases in the meaning of  

lower memory requirements. 

 

The main idea of the quasi-Newton’s methods is to combine a linear solver with 

Newton’s method and to solve Newton equations arise in each step with this linear 

solver. The Jacobian matrices are either simplified or approximated. As long as there 

are many kinds of iterative solvers, there is a wide range of this type of solution 

techniques. As Krylov subspace methods have a special feature of using matrices just 

as an operator, there is a demand to this class of linear solvers. The most preferred 

one in Krylov family is GMRES [5].  

 

Before GMRES, Conjugate gradient like methods were used as solver for symmetric 

positive definite matrices [6]. With combining other solution procedures it provides 

rapid and reliable convergence histories. However it did not work with 

nonsymmetric systems. [6]. Since nonsymmetric matrices are very common types 

faced in CFD, CG like methods didn’t become popular in CFD community.  In early 

eighties some implementations of CG with modifications were tried with 

nonsymmetric matrices by Elman [7]. GMRES was found by Saad and Schultz in 
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1983 as a variant of CG methods that can be applied to nonsymmetric systems. It 

finds out the best possible solution in k-dimensional Krylov subspace. 

 

GMRES can also be applied to linear systems without combining with a Newton’s 

method. Wigton [8] derived another version of GMRES that is applicable to 

nonlinear systems in 1984. The most important drawback of this technique was 

storage problem. It requires much more memory capacity due to this nonlinearity 

fact. 

 

To reduce this memory requirement matrix free methods combining with Krylov 

linear solvers were begun to use. Gear and Saad [9], Brown and Hindmarsh [10] and 

Chan and Jackson [11] are some of the earlist works done on this subject. Brown and 

Saad [12] are the first who introduced matrix free Newton-GMRES method. In order 

to improve the global convergence properties, they also proposed a procedure called 

linesearch backtracking. 

 

1.4  Outline 

In the second Chapter flow model is formed. Governing 3-D Euler Equations in 

generalized form are introduced.  Spatial discretization types used are explained. 

General information on upwind schemes is given and Van Leer flux splitting method 

is presented which was selected to be used in Newton Method. Boundary conditions 

that were applied on geometry are briefly described. 

 

Third Chapter is composed of solution algorithms. Newton Method is defined. 

Selected version of Jacobian matrix calculation is explained. Then Newton-GMRES 

method is presented. Information on Givens rotation and minimization is given. 

Commonly used preconditioner types are introduced.  

 

Convergence histories of Newton and Newton-GMRES methods are given in 

Chapter 4. Plots of Mach number, pressure and velocity vectors in both Newton and 

Newton-GMRES methods are shown. Comparisons of CPU-time in each test cases 
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are done. The effect of parameters used in Newton-GMRES method on convergence 

acceleration and CPU time are examined in “Parametric Study” part. Preliminary 

analysis is also added under the section of “Solution of Three Equations”. 

 

Conclusion is performed in last chapter.  Future work suggestions are done. 
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CHAPTER 2  

 

 

FLOW ANALYSIS 

 

 

 

Prediction of behavior of fluids in design phase saves scientists from huge financial 

loss. For given specific flow conditions, flow model should be formed in such a way 

that selections must have the capability to protect physics of the flow. The flow 

model directly affects the accuracy of the solution. Advanced flow models are 

composed of advanced time discretization, dense grids and good selection of 

boundary conditions. Using highly resolved grids and/or complex flow properties 

will be reflected in cost of computation. Simplified versions would reduce that cost 

while decreasing the accuracy of the flow simulation. 

 

Size of the Jacobian is a function of the number of equations solved and the size of 

the grid. To solve a flow, either Navier-Stokes or Euler Equations can be selected. It 

should be noted that, Navier-Stokes equations requires much more memory, which is 

one of the disadvantages of them. As long as our study is composed of a comparison 

of Newton’s method and Newton-GMRES, size of Jacobian is still important. 3-D 

Euler Equations are solved in order to keep Jacobian size smaller in Newton’s 

method.  

 

2.1 Governing Equations 

Euler Equations are simplified versions of Navier-Stokes Equations. One can obtain 

them by excluding viscous terms. They can be named as approximation to Navier-

Stokes equations. Euler equations derived from conservation of mass (continuity), 

momentum, and energy in a control volume. 3-D Euler Equations in Cartesian 

coordinates can be written as follows under assumptions of steady inviscid flow:
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( ) ( ) ( )
0

F Q G Q H Q

x y z
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ρu p

F ρuv
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( e p)u
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 


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 
 
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2

t

ρv

ρuv

G ρv p

ρwv

( e p)v

 
 
 
  
 
 
    

2

t

ρw

ρuw

H ρvw

ρw p

( e p)w

 
 
 
 
 

 
    

 

Here, Q denotes flow variables vector where the others showing the flux vector. u, v 

and w are the components of velocity in x y and z coordinates respectively.  ρ  is the 

density, p pressure and et is the total energy per unit volume.   is defined as specific 

heat ratio.  Pressure can be computed from ideal gas relation as follows: 

2 2 2

( 1) ( )
2

t

u v w
p e 

 
  

                    (3) 

As it is much easier to work with generalized coordinates on an arbitrary geometry, 

the governing equations are transformed into generalized coordinates from Cartesian 

coordinates. While x,y and z are the Cartesian coordinates, ,   and  are  curvilinear 

coordinates.                                                                               

( , , )

( , , )

( , , )

x y z

x y z

x y z

 

 

 







                       (4) 

Partial derivates in the Cartesian coordinates , ,
x y z

  

  
 are transformed into 

generalized form as: 
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x x x

y y y

z z z

x

y

z

  
  

  
  

  
  

   
  

   

   
  

   

   
  

                         (5) 

 

x , 
y , 

z , 
x , 

y  
z ,

x , 
y  and 

z  are the transformation metrics and they can be 

computed by the following procedure: 

x y z

x y z

x y z

d dx dy dz

d dx dy dz

d dx dy dz

   

   

   

  

  

  
  

dx x d x d x d

dy y d y d y d

dz z d z d z d

  

  

  

  

  

  

  

  

  
                (6) 

Hence; 

x y z

x y z

x y z

d dx

d dy

d dz

   

   

   

    
    

     
            

dx x x x d

dy y y y d

dz z z z d

  

  

  







    
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     
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An equality can be written between these two transformation matrices as follows. 

Also, the determinant of one of these matrices is equal to transformation Jacobian.

1

det

x y z

x y z

x y z

x y z

x y z

x y z

x x x

y y y

z z z

J
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  

  
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  

  
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  

  



   
   

   
   

  

 
 

  
 
                  (8) 

 

By using metrics, the 3-D Euler equations in Cartesian coordinates may be 

transformed into generalized coordinates is written in a form of: 

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )
0

F Q G W H W  

  
  

                    (9) 
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where 

1
ˆ

t

ρ

ρu

Q ρv
J

ρw

ρe

 
 
 
 
 
 
   ,         

1
ˆ

x

y

z

t

ρU

ρuU p

F ρvU p
J

ρwU p

( e p)U









 
 


 
  
 

 
                    (10) 

1
ˆ

x

y

z

t

ρV

ρuV p

G ρvV p
J

ρwV p

( e p)V









 
 


 
  
 

 
   ,      

1
ˆ

x

y

z

t

ρW

ρuW p

H ρvW p
J

ρwW p

( e p)W









 
 


 
  
 

 
    

 

U, V and W are contravariant velocities. They are calculated as: 

x y z

x y z

x y z

U u v w

V u v w

W u v w

  

  

  

  

  

  
                    (11) 

 

2.2 Spatial Disretization 

Finite volume method is applied as spatial discretization. In FVM, the flow domain is 

divided into cells. The flow variables are stored in the center of the cells. Fluxes are 

computed on the cell faces. The cells’ corners coincide with grid points. After 

computation of spatial derivatives of flux vectors, the differential form of the steady, 

3-D Euler equations given in Equation (1) can be discretized for an arbitrary 

hexahedral control volume. 

 

Spatial derivatives of flux vectors can be computed from the flux balance across a 

cell  

1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

i j k i j k

i j k i j k

i j k i j k

F F F

G G G

H H H













 

 

 

 

 

 
                   (12) 

Then, discretized steady 3-D Euler equation becomes: 
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ˆ ˆˆ
0

F G G  

  
  

                       (13) 

For a cell centered finite volume method Equation (13) can be arranged as: 

1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) 0i j k i j k i j k i j k i j k i j kF F G G H H          

              (14) 

 

Also it should be noted that, flow domain is divided into equal spaces: 

1         

 

In above equations, cell interfaces are denoted as i±1/2, j±1/2 and k±1/2. Flow 

variables at cell interfaces are evaluated by interpolation from the cell center. With 

using flow variables at cell interfaces, fluxes are calculated. The interaction between 

the neighbor cells generates the flux. This flux forms the convective portion of Euler 

Equations and it shows hyperbolic character.  

  

By spatial discretization, 
1/ 2, , , 1/ 2, , , 1/ 2

ˆˆ ˆ, ,i j k i j k i j kF G H  
 can be written as: 

1/ 2, , 1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2 , , 1/ 2

ˆ ˆˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( )

L R

i j k i j k i j k

L R

i j k i j k i j k

L R

i j k i j k i j k

F F Q F Q

G G Q G Q

H H Q H Q

 

  

 

  

 

  

  
 

  
 

  
                                                   (15) 

 

A simplification can be done by approximating the variables at the cell faces to the 

variables defined at the closest cell centers. L and R is defined as left and right. 

1/ 2 1/ 2 1

1/ 2 1/ 2 1

1/ 2 1/ 2 1

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

L R

i i i i

L R

j j j j

L R

k k k k

Q Q Q Q

Q Q Q Q

Q Q Q Q

  

  

  

 

 

 
                                  (16) 

 

If higher order of accuracy is desired to be achieved, MUSCL (Monotonic Upstream-

Centered Scheme Conservation Law)[13] scheme interpolation can be used. The 

flow variables at the cell faces are computed from the flow variables at the centers of  

the four neighboring cells in case of using MUSCLE. 
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   

   

1/ 2

1/ 2 1 1

1ˆ ˆ (1 ) (1 )
4

1ˆ ˆ (1 ) (1 )
4

L

i i i

R

i i i

Q Q r

Q Q r

  

  



  

     

     
                (17) 

where r equals to:  

i
i

i

r





  

  and  are forward and backward operators and  defined as: 

1 1
ˆ ˆ ˆ ˆ,i i i i i iQ Q Q Q      

 

The parameter  1,1    specifies the order of differencing. If it is equal to 1, the 

differencing turns into central differencing. -1 gives second-order fully-upwind 

differencing and 1/3 means second-order fully-upwind differencing 

 

 r  is named as limiter function. It is used to avoid the solution affected by 

oscillations and also prevent from spurious solutions that take place where high 

gradients are observed.   

 

Through the study two kinds of limiter functions are used: with 0   and 1/3   

respectively. For 0  , Van Albada and for 1/3   Karen limiter functions are 

chosen. Then the equations given in Eq. (17) transforms into a form below: 

 

1/ 2 1/ 2

1/ 2 1 1/ 2

ˆ ˆ

ˆ ˆ

L L

i i i

R R

i i i

Q Q

Q Q





 

  

 

                                 (18) 

 

For 0  : 

2 2

2 2

( ) ( )

2

ia b b a

a b

 




  


 
 

For 1/3   

2 2

2 2

(2 ) ( 2 )

3

a b b a

a b ab

 




  


  
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where 

1 1

,

,

L i L i

R i R i

a b

a b 

  

  
 

 

As it is mentioned above, the reason of using limiter function is to prevent the 

solution from being affected from oscillations. Hence, in order to deactivate the 

function in smooth regions, a small number   is added to the formulation of  . It is 

defined as 0,0008 in both Koren’s and Van Albada limiters. 

 

 

Figure 2.1 Control Volume Representation 

2.3 Flux Splitting 

It is seen that, after spatial discretization 1/ 2, , , 1/ 2, , , 1/ 2
ˆˆ ˆ, ,i j k i j k i j kF G H    are formed in 

terms of ˆ ˆˆ ˆ ˆ ˆ, , , , ,F F G G H H      . These functions may be calculated by using 

different flux splitting techniques as Steger Warming, Van Leer , Roe or AUSM. 

Steger Warming and Van Leer [14] are belong to family of flux vector splitting and 

the others are known as flux difference splitting techniques. 

 

The flux vector can be computed either by central differencing method or upwind 

schemes. The first way depends on averaging the flow variables at the cell interfaces. 
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The advantage of using upwind schemes is, it does not need artificial dissipation 

which is used in central differencing technique.  

 

In this study, Van Leer method is applied. In Van Leer scheme, flux vector is splitted 

with respect to the contravariant Mach number, M.  Splitted fluxes are examined with 

respect to Mach number, M, at first as below; 

 

: 1

, 1

0, 1

0, 1

, 1

SupersonicCase M

F M
F

M

M
F

F M








 




 

  

1

2

1 2 3 2

3

2 2 2 2

2

1

1

2

( 1) 2
( )

4

2

2 2

1 1 2

SubsonicCase M

U c
k u

M U c
F c k k k k v

U c
k w

U c a u v w
U








 





 
 
 
   
  
  
 
         
  
   

  
  
     
   

                  (19) 

where 

1 2 3
2 2 2 2 2 2 2 2 2 2 2 2

,      ,      ,      
x y z yx z

x y z x y z x y z x y z

u v w
U k k k

    

           

 
   

       

 

 c is the speed of sound and  is the specific heats ratio. The flux vector in 

direction, Ĝ , is  formed by replacing x , y  and z with x , y  and z  respectively. 

Also same action is carried on in order to obtain Ĥ  . 
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2.4 Boundary Conditions 

Boundary conditions used are inlet boundary conditions, outlet boundary conditions 

wall boundary conditions and symmetry boundary conditions. Quarter of the nozzle 

is analysed. The boundary condition that is valid on the selected portion of the 

geometry are shown on the Figure 2.2 

 

The implementation of boundary conditions to the flow is done by ghost cells. 

Specified boundary conditions are loaded into these ghost cells. They are added to 

the exterior of the flow. 

 

 

Figure 2.2 Boundary Conditions 

2.4.1 Inlet Boundary Conditions 

The information that propagates from the inlet, changes direction up to being 

supersonic or subsonic.  

 

In case of being supersonic, all of the parameters are calculated from the information 

coming from outside. Hence it is the simplest case. Ghost cells are composed from 

the variables set from free stream. 

 



16 

In subsonic case, a part of the information proceeds from inside to outside. The 

airflow at inlet is subsonic in the nozzle analysed. Pressure values are used from 

inner cells of the nozzle inlet. Because of being 3-D, 5 different parameters are 

needed. The other parameters which are total pressure, total temperature, Mach 

number and density are calculated from information propagating from outside. 

Pressure is calculated by Equation (3) given before.  Note that, at inlet, there is a 

flow in only one direction, 0, 0v w  . u is specified from the mass flow rate 

through the nozzle.  

2 2 2

int int

2 2

2

( 1) ( )
2

1
( ( ) 2( 1)( )

2

( )

( ) 0

( ) 0

1 ( )
( )

1 2

boundary erior t erior

boundary boundary boundary

boundary

boundary

wall

boundary

t boundary

u v w
p e

p p u

u u

v

w

p u
e

 

    

 








 

 
  

   







 


 

 

2.4.2 Outlet Boundary Conditions 

If the downstream velocity is supersonic, all of the parameters are taken from interior 

cells. In subsonic case, one of the parameters is taken from upstream. As the 

geometry used is a supersonic nozzle, supersonic case is valid for our case. 

 

2.4.3 Wall Boundary Conditions 

Density, tangential velocity and total energy are taken from the interior cells. Since 

there is a wall, mass flux is equal to zero on wall boundary. Hence, normal 

component of the velocity is zero. In order to preserve it zero, a symmetry plane is 

formed and an artificial velocity which has the same magnitude but on opposite 

direction is put on the wall boundary. 
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   

   

   

   

int

int

intint

intint

intint

int

2

2

2

n erior

boundary erior

erior n xboundary erior

erior n yboundary erior

erior n zboundary erior

t tboundary erior

U U n

u u U n

v v U n

w w U n

e e

 

  

  

  

 

 



 

 

 



 

 

In the equation above, Uinterior  is the velocity defined at the center of the cell at the  

neighbor of wall. n represents the unit normal at the wall surface. It is composed of 

, ,x y zn n n .  , ,n n nu v w  and 
int int int, ,erior erior erioru v w  are the components of normal velocity 

and interior velocity respectively 

 

2.4.4 Symmetry Boundary Conditions 

In nozzle geometry, it is very effective to analyse the flow for the quarter of the 

nozzle and extrapolate the results to the full geometry by using symmetry planes. 

Since the magnitudes calculated are the same for the other ¼ parts of the geometry, 

only manipulating the directions are enough to have all information in each cell of 

the nozzle. 

 

All of the variables are same on each quarter of the nozzle except normal velocity 

components to the symmetry planes. They are taken symmetric with respect to the 

symmetry line. 
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CHAPTER 3  

 

 

SOLUTION ALGORITHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two different solution algorithm is used separately. First of the approaches is 

Newton’s Method.  3-D Euler equations are solved with Newton’s method.  Jacobian 

calculations are done analytically. Then Newton-GMRES method is applied to flow. 

Newton’s algorithm is modified with adding GMRES linear solver. Details on

Initialize Solution 

Calculate Residual 

    toll 

Calculate Jacobian 

Sparse Matrix Solver 

           

STOP 

YES 

NO

I 

   

Initialize Solution 

Calculate Residual 

    toll 

Arnoldi Iteration 

           

STOP 

YES 

NO

I 

   

Least Square Solution G
M

R
E

S
 

Figure 3.1 Solution Algorithm of 

Newton’s Method 

Figure 3.2 Solution Algorithm of Newton-

GMRES Method 
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GMRES method are also be given in Section 3.2. The diagrams of solution 

algorithms are given in Figure 3.1 and Figure 3.2 above. 

 

3.1 Newton’s Method 

As the 3-D Euler equations discretized above, now they can be written in a form of: 

ˆˆ( ) 0R Q                                                                                                                    (20) 

R̂  denotes the residual vector and it can be written as  

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )ˆˆ( )
F Q G Q H Q

R Q
  

  
                                                                            (21) 

 ˆR̂ Q  which is a system of nonlinear equations can be linearized by Taylor 

expansion about (k)
th
 iteration

 
 Note that higher order terms are neglected.  

1

ˆ
ˆ ˆ ˆˆ ˆ( ) ( )

ˆk k k

k

R
R Q R Q Q

Q






 
   

 
                                                                                (22) 

Here,  
ˆ

ˆ

R

Q




 is the Jacobian matrix. Equating the residual to 0 in (k+1)

th
 iteration 

gives: 

ˆ
ˆ ˆ( )

ˆ k k

k

R
Q R Q

Q





 
   

 
                                                                                             (23) 

The flow variable vector Q̂  is updated at the (k+1)
th
 iteration as follows: 

1
ˆ ˆ ˆ

k k kQ Q Q                                                                    (24) 

                                                  

As it is shown above, in the solution of Euler equations with Newton’s method, 

Jacobian matrix must be computed. The entries of Jacobian matrix are the derivatives 

of the residual vector with respect to the flow variables vector. In the calculation of 

these derivatives a finite difference method or analytical derivation method can be 

used, and the resulting matrices are called numerical or analytical Jacobians, 

respectively. In this study analytical derivation method is used. Its advantages and 

analytical derivation of Jacobian matrix can be found in the next section. 
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3.1.1 Jacobian Matrix 

There are two different techniques in order to compute the Jacobian matrix; 

analytical or numerical. Numerical method is an easier application which based on 

finite differencing the flux vector. It is simple and can be performed no matter how 

complex is the scheme. However, numerical calculation has accuracy problems. 

Analytical calculation is better on accuracy but it requires differentiation which 

consumes more time and effort [15]. Also recalculation for each flux discretization 

scheme, makes the process much more complex.  In this study, Jacobian matrix will 

be calculated analytically because of its accuracy advantage. 

 

Analytical Calculation of Jacobian Matrix   

The discretized residual vector can be formed by plugging Equation 15 into Equation 

(14): 

, , 1 1 1 1
, , , , , , , ,

2 2 2 2

1 1 1 1
, , , , , , , ,

2 2 2 2

1
, , ,

2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ     ( ) ( ) ( ) ( )

ˆˆ ˆ     ( )

L R L R

i j k
i j k i j k i j k i j k

L R L R

i j k i j k i j k i j k

L

i j k i j

R F Q F Q F Q F Q

G Q G Q G Q G Q

H Q H

   

   

   

   





   
      
   

   
      
   

  1 1 1
, , , , ,

2 2 2

ˆ ˆ ˆˆ ˆ( ) ( ) ( )R L R

k i j k i j k
Q H Q H Q  

  

   
    

   

                           (25) 

 

The Jacobian matrix composes of the derivatives of the residual vector at each cell 

with respect to the flow variables. Taking the derivatives of residual , ,
ˆ

i j kR with 

respect to a flow variable , ,
ˆ

i j kQ , gives the residual Jacobian: 
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1 / 2 , , 1 / 2 , ,

1 / 2 , , 1 / 2 , ,

, 1 / 2 ,

, ,

1/ 2, , 1/ 2, ,

, , , , , ,

1/ 2, , 1/ 2, ,

, , , ,

, 1/ 2, , 1/ 2,

, ,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ
ˆ ˆ  

ˆ

i j k i j k

i j k i j k

i j k

L R

i j k

i j k i j k

i j k i j k i j k

L R

i j k i j k

i j k i j k

L

i j k i j

i j k

Q QR
A A

Q Q Q

Q Q
A A

Q Q

Q
B B

Q

 

 



 

 

 

 

 

 

 
 

  

 
 

 


 



, 1 / 2,

, 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2

, , 1/ 2

, ,

, 1/ 2, , 1/ 2,

, , , ,

, , 1/ 2 , , 1/ 2

, , , ,

, , 1/ 2

ˆ

ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ
ˆ ˆ              

ˆ ˆ

ˆ
ˆ

ˆ

i j k

i j k i j k

i j k i j k

i j k

R

k

i j k

L R

i j k i j k

i j k i j k

L R

i j k i j k

i j k i j k

L

i j k

Q

Q

Q Q
B B

Q Q

Q Q
C C

Q Q

Q
C



 

 



 

 

 

 









 
 

 

 
 

 






, , 1 / 2

, , 1/ 2

, , , ,

ˆ
ˆ

ˆ

           

i j k

R

i j k

i j k i j k

Q
C

Q Q










                                                     (26) 

where 

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ,

ˆ ˆ

L R

L R

L R

F F
A A

Q Q

G G
B B

Q Q

H H
C C

Q Q

 
 

 
 

 
 

 
 
 

 
 
 

 
 
 

 

 

Analytical derivation of Residual Jacobian needs three sets of derivatives. 

1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2
ˆ ˆ ˆ ˆˆ ˆ, , , ,  ,  i j k i j k i j k i j k i j k i j kA A B B C C     

      denote the derivatives 

of splitted fluxes with respect to flow variables interpolated at the cell faces. To 

compute these derivatives, Steger-Warming, Van Leer or AUSM flux schemes can 

be differentiated. 

 

The others are the derivates of flow variables interpolated at cell faces with respect to 

the flow variables at cell centers. They can be computed with either first or second 

order discretization. 
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A first order of accuracy can be achieved by using first order discretization which 

leads to equate the flow variables at right ( ˆ RQ ) to the values at the cell center of the 

cell that is at the right cell face and ( ˆ LQ ) to the variables defined at the face of the 

cell that is at left.   . 

1 , , 1 1, ,, , , ,
2 2

1 1, , 1 , ,, , , ,
2 2

1 , , 1 , 1,, , , ,
2 2

1 , 1, 1 , ,, , , ,
2 2

1 , , 1 ,, , , ,
2 2

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

L R

i j k i j ki j k i j k

L R

i j k i j ki j k i j k

L R

i j k i j ki j k i j k

L R

i j k i j ki j k i j k

L R

i j k ii j k i j k

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

 

 

 

 

 

 

 

 

 

  , 1

1 , , 1 1 , ,, , , ,
2 2

ˆ ˆ ˆ ˆ,

j k

L R

i j k i j ki j k i j k
Q Q Q Q



 
 

                                                                   (27) 

 In first order discretization, Jacobian, 
, ,

, ,

ˆ

ˆ
i j k

i j k

R

Q




, is computed by:   

, ,

1 1 1 1 1 1, , , , , , , , , , , ,
2 2 2 2 2 2

, ,

ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ
i j k

i j k i j k i j k i j k i j k i j k

i j k

R
A A B B C C

Q

     

     


     


                         (28) 

, , , , , ,

1 1 1, , , , , ,
2 2 2

1, , , 1, , , 1

, , , , , ,

1 1 1, , , , , ,
2 2 2

1, , , 1, , 1,

ˆ ˆ ˆ
ˆ ˆˆ, ,

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆˆ, ,

ˆ ˆ ˆ

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

R R R
A B C

Q Q Q

R R R
A B C

Q Q Q

  

  

  

  

  

  

  
  

  

  
     

  

                       (29) 

where 

1/ 2, , 1/ 2, ,

1/ 2, , 1/ 2, ,

1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2,

, 1/ 2, , 1/ 2,

, 1/ 2, , 1/ 2,

, , 1/ 2

, , 1/ 2

, , 1/ 2

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ,

ˆ ˆ

ˆ
ˆ ˆ,

ˆ

i j k i j k

i j k i j kL R

i j k i j k

i j k i j k

i j k i j kL R

i j k i j k

i j k

i j k L

i j k

F F
A A

Q Q

G G
B B

Q Q

H
C C

Q

 

 

 

 





 
 
 

 
 
 





, , 1/ 2

, , 1/ 2

, , 1/ 2

ˆ

ˆ
i j k

i j k R

i j k

H

Q








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In second order discretization, the flow variables at the cell faces are evaluated by 

using 4 neighboring cell.  Flow variables at the centers of neighboring cells are 

interpolated by MUSCL method to find the variables at the cell face.Then the 

interpolated flow variables in one direction are : 

 

 

 

1 1 1
2 2 2

1 1 1
2 2 2

1 1
2 2

1 1
2 2

1, , , ,, , , , , ,

, , 1, ,, , , , , ,

2, , 1, , , , 1, ,, , , ,

1, ,, , , ,

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, , ,

ˆ

L R L R L R

i j k i j ki j k i j k i j k

L R L R L R

i j k i j ki j k i j k i j k

L R L R

i j k i j k i j k i j ki j k i j k

L R L R

i j ki j k i j k

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q





 

 

  

  

   

 







  , , 1, , 2, ,
ˆ ˆ ˆ, , ,i j k i j k i j kQ Q Q 

                                                         (30) 

The variables in other directions can be derived similarly. 

 

The Jacobian matrices are : 

1/ 2, , 1/ 2, , 1/ 2, , 1/ 2, ,

, 1/ 2, , 1/ 2,

, ,

, , , , 1, , 1, ,

, , , , , , , , , ,

, , , ,

, , , ,

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

i j k i j k i j k i j k

i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

L R

i j k i j k

i j k i j k

Q Q Q QR
A A A A

Q Q Q Q Q

Q Q
B B

Q Q

   

 

   

 

 

   
   

    

 
 

 

, 1/ 2, , 1/ 2,

, , 1/ 2 , , 1/ 2 , , 1/ 2 , , 1/ 2

, 1, , 1,

, , , ,

, , , , , , 1 , , 1

, , , , , , , ,

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ           

ˆ ˆ ˆ ˆ

i j k i j k

i j k i j k i j k i j k

L R

i j k i j k

i j k i j k

L R L R

i j k i j k i j k i j k

i j k i j k i j k i j k

Q Q
B B

Q Q

Q Q Q Q
C C C C

Q Q Q Q

 

   

 

 

   

 

 
 

 

   
   

   
             (31) 

 

1/ 2, , 1/ 2, , 1/ 2, , 1/ 2, ,, ,

, , , , 1, , 1, ,

1, , 1, , 1, , 1, , 1, ,

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i j k i j k i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

Q Q Q QR
A A A A

Q Q Q Q Q

      

 

   
   

    
 

, 1/ 2, , 1/ 2, , 1/ 2, , 1/ 2,, ,

, , , , , 1, , 1,

, 1, , 1, , 1, , 1, , 1,

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i j k i j k i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

Q Q Q QR
B B B B

Q Q Q Q Q

      

 

   
   

    
           (32) 

, , 1/ 2 , , 1/ 2 , , 1/ 2 , , 1/ 2, ,

, , , , , , 1 , , 1

, , 1 , , 1 , , 1 , , 1 , , 1

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i j k i j k i j k i j k

L R L R

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

Q Q Q QR
C C C C

Q Q Q Q Q

      

 

   
   

      
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1/ 2, , 1/ 2, ,, ,

1/ 2, , 1/ 2, ,

2, , 2, , 2, ,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
 

  
 

1/ 2, , 1/ 2, ,, ,

1/ 2, , 1/ 2, ,

2, , 2, , 2, ,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
  

  
                                                   

, 1/ 2, , 1/ 2,, ,

, 1/ 2, , 1/ 2,

, 2, , 2, , 2,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
 

  
                                                        (33) 

, 1/ 2, , 1/ 2,, ,

, 1/ 2, , 1/ 2,

, 2, , 2, , 2,

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
  

  
 

, , 1/ 2 , , 1/ 2, ,

, , 1/ 2 , , 1/ 2

, , 2 , , 2 , , 2

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

L R

i j k

i j k i j k

i j k i j k i j k

Q QR
A A

Q Q Q

  

 

  

 
 

  
 

, , 1/ 2 , , 1/ 2

, , 1/ 2 , , 1/ 2

, ,

, , 2 , , 2 , , 2

ˆ ˆˆ
ˆ ˆ

ˆ ˆ ˆ

i j k i j k

i j k i j k

L R

i j k

i j k i j k i j k

Q QR
A A

Q Q Q

 

 

 

  

 
  

  
 

 

3.2 Newton-GMRES Method 

In Equations (31), (32) and (33) Jacobian matrices are shown. Their derivation and 

calculation are given in previous section. The complexity of their calculation is easy 

to see. To avoid from this forming and computation work load, Newton-GMRES 

method is studied. 

 

To solve the system of nonlinear equations given in Equation (3), inexact methods 

were investigated. They can be generalized as finding ˆ
kQ such in each iteration 

step, k. 

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )k k k k kR Q R Q Q R Q                                (34) 

Note that, when 0k   equation (33) gets the form of 

ˆ
ˆ ˆ( )

ˆ k k

k

R
Q R Q

Q





 
   

 
                          (35) 

which corresponds to Newton’s method. 
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The importance of selection of 
k is to prevent the solution from oversolving. This 

problem was investigated by Einsenstat [16] and some procedures were presented. In 

this work Equation 36 is used in order to skip first unnecessary iterations. 

1

ˆ( )

ˆ( )

k

k

k

R Q

R Q



 


 
 
 
 

                    (36) 

where  0,1   and  1,2   

 

Pueyo and Zingg [17] found that taking 0,5k   in first 10 iterations and then 

selecting 0,1k   is giving a better efficiency for the cases they analysed. By 

inspring from Pueyo and Zingg, it is tried to examine if there are much more efficient 

solutions by combining different k  values manually. Each of the approaches are 

applied and most appropriate one is chosen with respect to residuals calculated. 

 

Newton-GMRES method can be defined as an implementation of Newton’s method 

combined with the iterative linear algebra method GMRES in order to be used as an 

approximate solver for each Newton step. Newton-GMRES is an iterative method 

which is one of the Newton-Krylov methods which are a kind of inexact Newton 

Methods. 

 

While using Newton-GMRES method, there is no need to compute Jacobian matrix 

which is one of the most important feature of this method. It only requires the action 

of the Jacobian R̂  on a vector v  which can be approximated by finite difference   

and this process leads us to make computation without evaluating a matrix which 

means the process is matrix free [18]  

ˆ ˆ( ) ( )ˆ( )
R Q v R Q

R Q v




 
                     (37) 

where   is a scalar which is used to perturb the flow variables, Q̂ . While applying 

this method, the selection of   directly affects the solution. Nielsen [19] showed that 

2 mv                       (38) 
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where 
m  is machine zero.  In the computer used in thesis work, the machine zero is 

known as 1610  and v  values are lower than 1. By trial, it is seen that, selecting    as 

710  gives best results. It controls the truncational and round off errors. It should be 

noted that, this selection is so close to Nielsen’s formulization and setting it to a 

number does not require calculation of    again and again. 

 

Krylov subspace methods are for solution of linear problems Ax b . It starts with an 

initial 
0x  and at each step it determines an iterate x with a correction in the Krylov 

subspace. Hence, they don’t need direct access to the entries of A  

 

 1

0 0 0, ,..., n

kK span r Ar A r                     (39) 

 where r is the initial residual.. 

 

The algorithm of application of GMRES to k
th

 Newton equation is given below as 

outlined in [20]  

GMRES Algorithm 

 1.Select 0ˆ
kQ  and set m=0 

  0 0ˆ ˆ ˆˆ ˆ( ) ( )k k k kr R Q Q R Q     

 0

k kr  , 0

1 /k kv r   

 2.Construct Hessenberg matrix by carrying out Arnoldi process [21] 

 While ˆˆ( )m

k k kr R Q  do 

 Set 1m m   

 Calculate ˆˆ ( )k nR Q v  then 

 

,

1 ,

1

1, 1

1 1 1,

ˆˆ( ( ) ) 1,2,....

ˆˆ ( )

/

T

i m k m i

m

m k m i m i

i

m m m

m m m m

h R Q v v i m

v R Q v h v

h v

v v h





 

  

 

 






 

 3.Find the vector my  such that : 
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1 2

min k m me H y  where  1 1,0,0,0....
T

e   

(Apply Givens type transformation to 
mH  to compute the Q-R factorization to make 

easier to solve the least square system) 

 4.Set 

 1

m

k k m mr e H y   

 5.Define  

  1 2 3, , ...m mV v v v v  

 0ˆ ˆm

k k m mQ Q V y     

 6.Iterate until residual vector m

kr satisfies the stopping iteration which is:  

 ˆˆ( )m

k k kr R Q  or ˆ ˆ m

k kQ Q    

The step size found by GMRES is used to perform Newton iteration: 

1
ˆ ˆ ˆ

k k kQ Q Q                        (40) 

ˆ
kQ  is named as descent direction. It is taken as 0 at first iteration. 

 

3.2.1  Arnoldi Iteration 

Step 2 can be defined as the heart of GMRES where the Arnoldi iteration takes place. 

The part given as calculation of ,v h  starting from ˆˆ ( )k nR Q v  is named as Arnoldi 

algorithm. The aim of the Arnoldi process is to form an orthonormal basis for a 

Krylov subspace. For a given matrix A and a non-zero vector x and with a dimension 

defined by m, using Arnoldi iteration one constructs a matrix V such that: 

2 1( ) ( , , ,...., )mcol span V span x Ax A x A x                  (41) 

where  TV V I           

 

By applying Arnoldi iteration, instead of analyzing a given large scale matrix A, only 

examining a small subset of A that includes the rightmost or largest eigenvalue in 

magnitude is provided. Projecting A into a low dimensional subspace, one may 

approximate these large eigenvalues into an easier form. Then problem becomes a 
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small eigenvalue problem which is easy to solve with well known QR factorization 

techniques explained in linear least square problem solution section. 

       

Arnoldi iterations stops when 
1mv 
 cannot be computed. In other words, while  

,

1

ˆˆ ( ) 0
m

k m i m i

i

R Q v h v


    Arnoldi algorithm finishes. The procedure ends with forming 

an upper Hessenberg matrix from a given dense matrix. An upper Hessenberg 

matrix, 
ijH , is defined as a matrix whose entries are zero where 2j i  . On 

Equation (42), an Hessenberg matrix is formed for 5 4x  as an illustration. 

. . . .

. . . .

0 . . .

0 0 . .

0 0 0 .

H

 
 
 
 
 
 
  

                                (42) 

 

3.2.2 Linear Least Square Problem Solution 

After constructing the Hessenberg matrix in step 2, one solves the linear least square 

system. It is not a must but in order to lower the CPU time elapsed in solution 

process of linear least square problem, one may still shift the matrix achieved into a 

lower or upper matrix for simplicity. The procedures that can be applied are given in 

next section. In this section, the last version of the matrix is taken into account and 

solution of minimization problem is investigated. Consider the over determined 

linear system 

Ax b  where  ,mxnA m n  

Here, x is the solution of the least square that minimizes the Euclidian norm of 

r b Ax   where r is the residual vector.  

2 2

2 2
min minr b Ax 

                   (43) 

There are different algorithms that find the minimum which are normal equations, 

QR factorization and singular value decomposition, SVD. The first method is the 

cheapest one. However, because of the lack of accuracy, it is not very commonly 
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used technique. If the system is full rank; ıt is selected to use QR factorization while 

solving the minimization problem. Also it is very attractive if the system involves 

Hessenberg matrices which is the main attribute of GMRES method  

   

QR factorization can be formed by different methods such as Gram-Schmit, 

Householder or Givens Rotation. As  upper 
mH  matrix is close to a upper triangular 

matrix, it is very efficient to use Givens Rotation as a solution technique. Upper 

Hessenberg matrices can be classified as sparse systems which mean they include 

significant number of zeros as entries. While applying Householder procedure  

temporary nonzero elements arise in intermediate steps, which means need of extra 

temporary storage. Hence it is recommended to apply Givens rotation in GMRES 

since the matrix formed in minimization step is composed of an upper Hessenberg 

matrix. 

1m m kH y e                                 (44) 

While applying QR factorization, Hessenberg matrix is written as multiplication of a 

triangular matrix, R , and an orthonormal matrix, Q . 

mH QR  where TQ Q I  

 

By substituting above equalities into left hand side of Equation (44) and simplifying, 

system becomes: 

1

1

m k

T T

m k

T

m k

QRy e

Q QRy Q e

Ry Q e













                    (45) 

 

3.2.3 Givens Rotation 

As a note, it was given that, in order to solve the least square system Givens Rotation 

can be applied to the Hessenberg matrix that was formed. Givens transformation is a 

method that composes of series of rotations in order to zero the lower triangular of a 

given matrix.  

 

 The idea behind Given’s rotation is to make 0ky   where 
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( , , )Ty G i k x         

Since , ,i j ky y y  is given as below,  sin , coss c    should be computed as in 

Equation (46)  

i i i

k k k

j j

y cx sx

y cx sx

y x

 

 


 

/

/

i

k

c x t

s x t



 
 where 

2 2

i kt x x         (46) 

A Givens rotation matrix can be represented as 

1 0 . . 0 . . 0 . . 0

0 1 .

. . .

. . 0

0 .

( , , ) . .

. 0

0 . .

. . .

. 1 0

0 . . 0 . . 0 . . 0 1

c s i

G i k s c k

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
                            (47) 

sin , coss c    

 

3.3 Preconditioning 

Preconditioning refers to transform a given  linear system into a form that is easy to 

solve with an iterative solver. This becomes applicable with constructing a 

preconditioning matrix M . There are different kinds of forming a preconditioned 

system with using this M matrix. First of all one should find this preconditioning 

matrix. There are few requirements that M have to satisfy. Preconditioned system 

solution should be inexpensive and close to original matrix A  and must be invertable 

[22]. The ideal case of M  is being equal to A . Consequently, multiplication of 
1M 
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and A  gives identity matrix. However, this causes high computational cost and 

system becomes explicitly solved. Hence an approximation of A  matrix is a better 

choice to compose M matrix. M  can be applied from left, right or in a splitted form 

to system Ax b . 

Preconditioning from left  : 1 1M Ax M b   

Preconditioning from right: 1 1M Ax M b   

Splitted preconditioning    : 1 1 1 1

L R L RM AM x M bM      (in special cases) 

 

Left preconditioning is an easier process with respect to right preconditioning. That 

does not need any extra computation in the algorithm except multiplying the residual 

with M  matrix at the beginning of inner loop. On the other hand, in case of using 

right preconditioner, one should perform a multiplication of 
1M 
 with x  while 

updating their values at outer loop. 

  

There are various techniques of preconditioning. Most commons applied to GMRES 

are sorted as: diagonal preconditioner ILU(0), ILU(2)  which are ILU Factorization 

Preconditioners. 

 

Diagonal preconditioner is also named as Jacobi Preconditioner. One can form it 

easily. It is composed of the diagonal element of Jacobi matrix. But as long as it is 

not convenient to construct the exact Jacobian because of its expenses, an 

approximation of the Jacobi is selected to form a diagonal preconditioner. It does not 

classified as most effective but in some kinds of problems it works well [23].  Block 

Jacobi preconditioners also depend on same principle. The only difference between 

them is to zero in the blocks except at the diagonal instead of zero in the entries 

except the ones on the diagonal. Block Jacobi is expected to be more efficient than 

diagonal preconditioning. 

 

It is stated that ILU type preconditioners are more attractive in many problems while 

application method is still simple [24]. ILU(0) is the cheapest case with zero fill in 

value. They require sparse form of the original matrices 
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CHAPTER 4  

 

 

RESULTS 

 

 

 

Chapter 4 is composed of four sections. In the first part, a preliminary study is 

presented whose results are promotive to work with larger systems. Second section 

includes the test cases.  Comparisons are held on six different test cases. Grid sizes 

and discretization types are changed in order to observe the act of Newton-GMRES 

method while the system is getting larger. CPU times and convergences histories of 

different cases for both Newton and Newton-GMRES method are given.  Parameters 

that affects  Newton-GMRES method’s convergence are analysed. Also a mesh 

independence study is given in section 4.4 

 

The code of Newton-GMRES  is developed by using Fortran77 by manipulating the 

code used in [25] . The analysis is conducted on 2.3 GHz, AMD Opteron6227 

processor.          

  

4.1 Solution of Three Nonlinear Equations 

In order to test the algorithm formed is working well or not, a system composed of 

three nonlinear equations was constructed. 

3 2

3 2

2

: 2 2 0

5 7 0

1 0

The system x y

x z

yz

  

  

 

 

: 1, 1, 1

'

  1.4422500,   0.500000,   1.414214 

-

  1.4422425,   0.499999,   1.414207

Inıtıal values x y z

Solutionby Newton s Method

x y z

Solutionby Newton GMRES Method

x y z

  

  

  
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The system is both solved with Newton and Newton-GMRES method.  Results were 

pretty sufficient. Same accuracy was provided with Newton-GMRES method. As 

long as the system is so small, CPU calculations couldn’t been held. 

 

Success that is achieved while solving three nonlinear equations can be seen on 

convergence history comparison of preliminary study in Figure 4.1 given below 

 

 

Figure 4.1 Comparison of Newton and Newton-GMRES Methods on Three 

Equations 

4.2 Solution of 3-D Euler Equations in Nozzles 

 

CPU times are calculated with respect to grid sizes and order of construction. They 

are formed to see the effect of grid size to the convergence and CPU time. Grid sizes 

were selected as they are tabulated below. They are formed in-house 

Table 4.1 Sizes of the Grids Generated 

Coarse Grid 17x5x5 

Medium Grid 33x9x9 

Fine Grid 65x17x17 
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As it was mentioned in flow analysis, spatial discretization is an important process 

on improving the accuracy. If higher order discretization is selected CPU time is 

getting higher in return of more accurate solution. 

Table 4.2 Test Cases 

Test Case Grid Size Order 

C1 17x5x5 1 

C2 17x5x5 2 

M1 33x9x9 1 

M2 33x9x9 2 

F1 65x17x17 1 

F2 65x17x17 2 

 

Test cases are tabulated above with respect to order of discretization and grid sizes. 

Abbreviations C, M and F denote coarse, medium and fine grids. 1 and 2 show the 

order of discretization.  
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      Figure 4.2 Generation of Coarse Grid       Figure 4.3 Generation of Medium Grid 

 

 

 

 

Figure 4.4 Generation of Fine Grid 
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Figure 4.5 Convergence Histories Comparison for  C1 

 

 

 

Figure 4.6 Convergence Histories Comparison for  C2 
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Figure 4.7 Convergence Histories Comparison for  M1 

 

 

 

Figure 4.8 Convergence Histories Comparison for M2 

 

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES

Iteration

R
e

s
id

u
a

l

10
0

10
1

10
2

10
310

-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Newton

Newton-GMRES



39 

 

Figure 4.9 Convergence Histories Comparison for F1 

Newton-GMRES method is a combination of an inner and outer iteration as it was 

mentioned before. While second order discretization is applied, it is expected to have 

longer convergence histories. However it is seen that, the inner loop converges in 

further iterations.  This is not observed in convergence histories figures as they only 

show the Newton iteration counts. Also it should be noted that, for first and second 

order discretizations, different k  values are selected in order to shorten the CPU 

time elapsed. This also changes the count of iterations. 

 

Implementation of Newton’s method into F2 case is not carried out due to 

UMFPACK performance. UMFPACK gives error message related to insufficient 

memory and which is faced by other researcehers very common. It is recommended 

to switch to another matrix solver as PETSc or MUMPS 

 

In convergence histories, Newton method converges around 10
th

 iteration for each 

case. On the other hand, Newton-GMRES method converges at least around 700
th

 

cycle. Although the number of iterations is approximately two order of magnitude 

smaller in Newton method, the CPU time is less in Newton-GMRES method. 
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Table 4.3 CPU Time Comparisons 

Test Cases CPU Time  Elapsed (sec) 

M1 Newton-GMRES 15.480 

Newton 80.195 

C1 Newton-GMRES 1.548 

Newton 2.299 

M2 Newton-GMRES 20.78 

Newton 242.757 

C2 Newton-GMRES 1.985 

Newton 3.192 

F1 Newton-GMRES 255.770 

Newton 3584.438 

F2 Newton-GMRES 731.201 

 

The difference between the CPU times increases as the mesh size is getting larger. 

This is because of the reason that Newton method requires the solution of very large 

matrix updated at each iteration. As far as the CPU time is concerned, the 

performance of Newton- GMRES method is getting better as the mesh size increases. 

 

Due to the quadratic convergence property of Newton’s method, a residual value 

between 10
-9

  and 10
-14

 can’t be selected as stopping criteria for many of the cases. 

On the other hand, while applying Newton-GMRES method, after 10
-12 

solution 

slows down.. Also the accuracy of solutions with residual 10
-14 

 and 10
-12

 are  pretty 

similar; solving Newton-GMRES with residual of 10
-14 

 can be defined as loss of 

time for this specific purpose of solving the system generated  for this study. The 

CPU time elapsed in F1 with Newton-GMRES is 498.7 sec if residual is set to 10
-12

 

where for 10
-14 

731 sec. Same problem is encountered at each of the test cases. 

 

GMRES method is getting better as the mesh size increases. The lowest iteration was 

achieved in small grid with higher order discretization. However when CPU time 

calculations are taken into account, this dramatic difference in iteration numbers  lost 

their importance. 

 

 Mach and pressure contours of 3-D Supersonic Nozzle with medium grid and first 

order of discretization are plotted below for both of the solution methods. Also 
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velocity vector distributions are presented. Since the residual level reduced to same 

order of magnitude, the similarity between the contour plots of Newton-GMRES and 

Newton’s Method is shown below. 

 

 

Figure 4.10 Mach Contours Obtained by Newton-GMRES Method 

 

 

Figure 4.11 Mach Contours Obtained by Newton Method 
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Figure 4.12 Pressure Distribution Obtained by Newton-GMRES Method 

 

 

 

 

 

Figure 4.13 Pressure Distribution Obtained by Newton Method 
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Figure 4.14 Velocity Vectors Obtained By Newton-GMRES Method 

 

 

 

 

 

Figure 4.15 Velocity Vectors Obtained By Newton Method 
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4.3 Parametric Study 

At the beginning of Newton-GMRES process, one should identify the parameters 

0 , ,k kQ   . Computation of   is given in Chapter 2. It is used to perturb the system 

and defining it as close to zero as possible is the main purpose of given techniques of 

calculations. By decreasing the value of  , residual is also approaches much more 

smaller magnitudes. 

 

Both of the solution techniques emphasized are locally convergent methods. Local 

convergence implies that, Newton and Newton-GMRES methods are successful 

providing good initial approximations. To put it in different words, convergence can 

only be achieved if the initial selection of flow variables done well.  

 

Apart from initializing the flow variables, in Newton-GMRES method one also 

defines a step size in the inner loop of the algorithm, 0

kQ . Selection of 0

kQ  also 

evidently affects the convergence of the process. It is observed that initializing 0

kQ  

with 0 accelerates the convergence of the method as a result of this local 

convergence property.    

  

While conducting the study, it is seen that the solution is sensitive to selection of 

forcing term, k . As they were mentioned above, there are various strategies to 

choose k . With different selections of ,   Equation (36) is applied to the code in 

order to find optimum value of this forcing term. Medium grid is chosen to compare 

the efficiencies provided by different selections of k . In Eisenstat’s suggestion 

given in Equation (36), it depends on both residual of the previous iteration and also 

the updated version in addition to ,   values. A k value is selected arbitrarily for 

the first iteration. 

 

It is noted that the effect of    is limited with respect to the effect of  . However, 

the order of their importance is the same if one goes out of the interval that was 



45 

defined for these to variable. System does not converge in situation of selection of 

arbitrary numbers.  

0,5k   

Table 4.4 CPU Time Comparison with Eisenstat’s Formulation (sec) 

    

 

 

 

 

 

Pueyo and Zingg suggested to use a higher k  for first few iterations and then lower 

the value in order to prevent oversolving problems. Idea is implemented and seen 

that using a fixed number is giving a better CPU time results if the selection made 

carefully. 

 

 

 

Figure 4.16 Effect of k  on Coarse Grid 
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Figure 4.17 Effect of 
k  on Medium Grid 

With trial and error it is examined that, the best selection can be done by using k  as 

0,6 for Case M1, 0,8 for Case M2. On the other hand, setting k to 0,5 would be a 

better preference while working on case C1 and 0,6 is an appropriate choice of k  

for case C2. This study implies that, for different systems, it is convenient to make an 

analysis of k  with respect to CPU time. A tendency to higher values of forcing 

terms in larger systems is observed.  

 

k  selection is a vital process while solving the system. In case of selecting either 

values closer to 0 or close to 1, a convergence couldn’t be achieved in most of the 

situations. On the other hand, Eisenstat formula still works in such situations. 

However, it can’t be concluded that the results would be optimum. 

 

4.4 Mesh Independence Analysis 

As the mesh gets finer, the effect of it to the solution decreases. After a point they 

converge to a same value. The effect of meshes generated to the system defined is 
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Figure 4.18 Mesh Inpedepence with Newton-GMRES Method on 1
st 

Order 

Discretization 

 

 

 

Figure 4.19 Mesh Inpedepence with Newton-GMRES Method on 2
nd 

Order 

Discretization 
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While analyzing the first plot, it can be concluded that, the similarity of the solutions 

between fine and medium grid is more than the similarity between coarse and 

medium grid. The difference decreases rapidly while going from coarse to fine 

meshes. Hence, it is predicted that a fourth grid finer than the ones generated before 

coincides with the results received with fine grid. Due to memory problems it could 

not been performed. It is seen that for second order of discretization, the sensitivity 

to the mesh becomes insignificant after the medium grid. Fine and medium grids 

almost overlap. 
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CHAPTER 5  

 

 

CONCLUSION AND FUTURE WORKS 

 

 

 

5.1 Conclusion 

In this thesis, both Newton’s method and an iterative method are applied to solve 3-D 

Euler equations respectively. In Newton’s method, Van Leer Upwind scheme is 

used. Two different discretization techniques are implemented in order to make a 

detailed comparison. A second order discretization: MUSCLE and first order 

discretization are tried before implementing Newton’s and Newton-GMRES 

methods. 

 

While solution is conducting with Newton’s Method, the necessity of calculation of 

Jacobian matrix has arise. This calculation is carried out with Analytical approach. 

UMFPACK based on converting a full matrix into a sparse matrix and applying LU 

decomposition is used in Newton’s method to solve the system. A 3-D supersonic 

nozzle is selected as test case. Different grid sizes are also examined. 

 

The main objective of this study is to implement Newton-GMRES method algorithm 

into the flow analysis of a 3-D supersonic nozzle. A code is developed by combining 

Arnoldi iteration Givens rotation and QR factorization. The effect of forcing term 

and   are observed.  Their optimum values are found either by using well known 

procedures or trial and error techniques. With these modifications, residual can be 

decreased up to 10
-14

 besides its significantly small CPU times. Despite of increasing 

CPU time, a 2
nd

 order discretization converges apparently earlier iterations while 

combining with Newton-GMRES method 
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Finally, these two methods are compared on a 3-D supersonic nozzle geometry with 

various grids. Flow analysis are carried out and observed on Mach contours and 

pressure distribution. With respect to Newton’s method, approximately same results 

are obtained. Unignorable CPU time saving is provided by Newton-GMRES method 

for all test cases that were tried out. 

 

As it is explained, Jacobi preconditioner is the basic preconditioner. As a starting 

point to preconditioning procedure, implementation of Jacobi preconditioner is 

experienced. Unfortunately, the system diverges after application of Jacobi 

preconditioning. This type of preconditioning does not guarantee to work effectively. 

However divergence causes to finalize the study without preconditioning with 

regarding to the prosperous results in terms of CPU time obtained before applying 

preconditioner.  

 

5.2 Future Works 

It is noticed in the literature research that implementing a preconditioner to the 

system before starting to the Newton-GMRES method is also a good suggestion in 

order to enhance the accuracy more than it was provided. However this approach will 

break down the matrix-free structure of the method which is one of the most 

important feature of this method. As long as this step requires an approximate 

Jacobian matrix, computation of it would increase the CPU time. A matrix free 

preconditioner implementation can be a possibility to improve both accuracy and 

CPU time together. 

 

Due to being locally convergent methods, initial approximations come into 

prominence. Globalization procedures are applicable in order to insure convergence 

with an arbitrary initial selection.  

.  

Flux calculations for 3-D Euler equations are only conducted for Van Leer flux 

scheme. Different upwind schemes like Steger Warming or Roe Flux splitting 

methods can also be tried to see their effect on the solver’s performance. 
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