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ABSTRACT

DIAGNOSERS FOR DISCRETE EVENT SYSTEMS: IMPROVED

REALIZATION AND EXAMPLES

Kart, Bora Eser
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

February 2014, 97 pages

Many complex systems in different areas such as manufacturing, telecommunications

or transportation can be modeled as Discrete Event Systems (DES). The task of fault

detection and isolation is naturally desired for every system that has the possibility of

any fault occurrences in it. To this end, a DES machine that can detect every modeled

fault after a bounded number of event occurrence called diagnoser is used.

In this thesis, there are two diagnoser realizations corresponding to the notions of

event and language diagnosability. The proposed diagnosers function as centralized

diagnosers that run parallel to the given systems and perform online diagnosis. Differ-

ing from similar studies, we denote our diagnosers as improved diagnosers because

they explicitly give a notification as soon as a faulty behavior is detected. This makes

our diagnosers more useful in practice. In addition, our study simplifies the compu-

tation of the worst-case delay until a fault is detected. Moreover, we further enhance

our improved diagnoser by applying an algorithm to remove unnecessary observa-

tions. As a result, fewer sensors are needed and the constructed diagnosers have a
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smaller size. The merits of the proposed diagnoser approach and the applicability

of our algorithmic implementation are demonstrated by a communication network

system example.

Keywords: diagnoser, DES, failure diagnosis, online diagnosis, event diagnoser, lan-

guage diagnoser
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ÖZ

AYRIK OLAY SİSTEMLERİ İÇİN TANILAYICILAR : GELİŞTİRİLMİŞ

GERÇEKLEŞTİRME VE ÖRNEKLER

Kart, Bora Eser
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç Dr. Şenan Ece Schmidt

Ortak Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt

Şubat 2014, 97 sayfa

Üretim, telekomünikasyon veya ulaştırma gibi farklı alanlardaki bir çok karmaşık

sistem ayrık olaylı sistemler olarak modellenebilmektedir. İçerisinde hata olma ol-

salığı barındıran her sistemdeyse hata tanılama ve tecriti tabii olarak istenmekte-

dir. Bu amaçla, tanılayıcı adı verilen, sınırlı sayıda olay meydana geldikten sonra,

modellenmiş her hatayı tespit edebilen bir ayrık olaylı sistem makinesi kullanılır.

Bu tezde, olay ve dil tanılabilirliği kavramları üzerine iki adet tanılayıcı önerilecek ve

bu tanılayıcıların her biri merkezi ve verilen sistemin paralelinde çalışan çevrimiçi bir

tanılayıcı olarak görev yapacaktır. Benzer çalışmalardan farklı olarak kendi tanılayıcı-

larımızdan gelişmiş tanılayıcılar olarak bahsedeceğiz çünkü bu tanılayıcılar hata tespit

edilir edil- mez açık bir şekilde uyarı vermekteler.Bu da bizim tanılayıcılarımız uygu-

lamada daha kullanışlı yapmaktadır. Ek olarak, çalışmamız en kötü durumdaki gecik-

me hesaplamalarını sadeleştirmektedir. Bunların yanı sıra, gelişmiş tanılayıcımızı

geliştir- diğimiz başka bir yöntem aracılığıyla gereksiz olayları gözlemleme ihtiyacın-

dan kurtararak daha da geliştireceğiz. Böylece daha az sensöre ihtiyaç duyulacak ve

yapılan tanılayıcı daha küçük bir boyuta sahip olacaktır. Önerilen tanılayıcının yarar-
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ları ve algoritmaların uygulanabilirliği bir iletişim ağı örneği ile gösterilmiştir.

Anahtar Kelimeler: tanılayıcı, ayrık olaylı sistemler, çevrimiçi tanılama, olay tanılayıcı,

dil tanılayıcı
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CHAPTER 1

INTRODUCTION

Fault detection and isolation by monitoring the system behavior has become a very

important task for large and complex systems. There are a number of DES approaches

on fault diagnosis for the systems that can be modeled as DES such as manufacturing

systems [1], [2], [3], [4], telecommunications systems [5], [6], transportation systems

[7], HVAC systems [8], [9] and document processing systems [10].

Fault diagnosis stands for the detection of any abnormal or undesired behavior for a

system under partial observation. Furthermore, this notion requires the detection of

the abnormal behavior within a finite time delay after the fault occurred in the system.

In this framework, a DES is called diagnosable if every faulty behavior introduced

to the system can be detected within a finite number of event observations. Since the

fault diagnosis is a widely studied notion in the literature, there are several studies

conducted to test if a DES is diagnosable, or not [8], [11], [12], [2], [13], [3], [14],

[15], [4], [16].

The finite state automaton that is used for the task of fault diagnosis is called the

diagnoser. There are different type of diagnosers according to the technique used

for distinguishing faulty behavior. The diagnoser may perform its diagnosis task

either by using online diagnosis, i.e. observing of the system behavior and evaluating

the outputs generated by the system [8], [5] or by being used as a test bench for

offline diagnosis [11], [2] to test if a given system is diagnosable or not by analyzing

whether previously defined necessary and sufficient conditions are satisfied for the

system. Centralized diagnosis [2], [8], [11], [13], [9], [3] is a diagnosis approach in

which a single diagnosis unit is used for observing the whole behavior of the system
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whilst decentralized diagnosis [17], [12], [18], [14], [19], [15], [4] is the diagnosis

approach in which information is distributed to the several parts of the system and

diagnosis units at different local sites are used to collect the distributed information

and conclude fault occurrence.

This thesis focuses on centralized diagnosis and studies two types of diagnosers. An

event diagnoser may recognize a faulty behavior by introduction of fault events [8],

[2] and a language diagnoser introduces another automaton used for fault specifica-

tion [12], [11]. An event diagnoser diagnoses the occurrence of a previously defined

fault event in the system if all the possible faults can be predicted. However, some

sequence of events can exist which are not desired to appear during the execution

of a system even though none of the events in the sequence can be categorized as a

fault event. For such systems, the normal behavior of the system is defined by an-

other automaton by clearing all the undesired transitions from the possible behavior

automaton of the system. Then, a language-diagnoser can be used to detect faults.

In this thesis work, firstly we introduce a modified event diagnoser and a modified

language diagnoser together with the motivation for developing these improved di-

agnosers considering the previous work in the literature. We then present the con-

struction algorithms for these diagnosers. In addition, we develop an algorithm for

computing the worst-case delay until a fault can be detected and we realize an al-

gorithm for the reduction of the set of observable events by removing unnecessary

observations. All methods and algorithms are illustrated by academic examples and

a communication system example demonstrates the applicability of the thesis work.

The construction algorithm of the modified event-diagnoser is published in [20].

In summary, the contributions of the thesis are as follows:

• Implementation of the construction algorithms for the modified diagnosers us-

ing the software library libFAUDES [21], [22].

• Computation of the worst case detection delay for both diagnosers

• Implementation of an algorithm for the reduction of the observable event set

[23]
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• A detailed case study on a communication network example to illustrate the

merits of the diagnosers and their implementation

After this introduction section, in Chapter 2 the required background information

on discrete event systems is summarized. The construction of the modified event-

diagnoser is described in Chapter 3 and the modified language-diagnoser is developed

in Chapter 4 including the computation of the worst-case detection delay. After giving

an algorithm to have an optimal set of observable events for the improved diagnoser in

Chapter 5, our proposed improved language-diagnoser is applied to a communication

network example in Chapter 6. Concluding remarks and ideas for future work are

given in Chapter 7.
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CHAPTER 2

BACKGROUND

This chapter gives a brief summary of the background information on discrete event

systems (DES) and diagnosability. The basic notions and definitions provided in this

chapter are required for a better understanding of the following chapters. We refer to

[24] for further information.

2.1 Discrete Event Systems (DES)

A DES is described as an event-driven system having a discrete set of states. This

kind of system performs asynchronous transitions between its states at asynchronous

discrete points in time via the occurrence of events. That is, a DES has an event-driven

state transition mechanism.

To be able to develop suitable models for studying DES and describe the behavior of

the system with the goal of design, control or fault diagnosis, a DES can be formally

modeled by languages and automata.

2.2 Languages

The usual way of starting to analyze a DES begins with defining the associated events,

whereby the finite event set is denoted as the alphabet Σ = {σ1, σ2, ..., σm}. A se-

quence of events is called a word or string. From now on, we will use the term string

for sequence of events in a DES. The empty string is writen as the symbol ε and is
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described as a string consisting of no events. If s is a string, its length is denoted as

|s| (the number of events in the string).

Definition 1 (Language) A set of finite-length strings that is formed from events in

its event set Σ is defined as a language.

The important thing to note here for a language is its possibility of having an infinite

number of strings with arbitrary but finite length.

In the scope of thesis, there are some key operations on strings that must be known

by the reader. Therefore, at first, we briefly introduce some terminology about strings

and some of the most common string operations.

Consider the string s = tuv with t, u, v ∈ Σ∗, then

• t is called a prefix of s,

• u is called a substring of s,

• v is called a suffix of s.

In the later parts of this work, we write s/t for the suffix of s after the prefix t.

• Kleene Closure: Let L ⊆ Σ∗ be a lanaguage. Then L∗ := {ε} ∪ LL ∪ LLL . . .

For example, all finite strings of elements of Σ including the empty string ε are

contained in Σ∗, which is the Kleene closure of Σ,

• Union, intersection, difference are applicable to languages as usual set opera-

tions since languages are also sets.

• Concatenation: Let La, Lb ⊆ Σ∗, then La, Lb := { s ε Σ∗| s = sasb, saε La, sbεLb}.

The identity element of the concatenation operation is the language {ε} since

uε = εu = u for any u

• Complement: Let L ⊆ Σ∗, then the complement of L is defined as Lc = Σ∗ - L.
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• Prefix-Closure: Let L ⊆ Σ∗, then we can define the prefix-closure L for language

L as

L := {s ∈ Σ∗|∃t ∈ Σ∗ such that st ∈ L}.

L is said to be prefix-closed if L = L.

Hence, in words, we can say that language L is prefix closed if any prefix of

any string in L is also an element of L.

• Post Language: Let L ⊆ Σ∗ and s ∈ L

The post language of L after s is denoted by L/s and defined as the language

L/s := {t ∈ Σ∗|st ∈ L}.

By definition, L/s = ∅ if s < L

Definition 2 (Natural Projection) : for an observation alphabet Σ̂ ⊆ Σ we define

natural projection as:

P : Σ∗ → Σ̂∗

where
P(ε) := ε

P(σ) :=


ε if σ ∈Σ̂

σ if σ <Σ̂

P(sσ) := P(s)P(σ) for s ∈ Σ∗ and σ ∈ Σ

(2.1)

For better understanding, we can explain the projection operation as an operation that

erases the events which do not belong to the smaller event set Σ̂ from strings s ∈ Σ?.

There is an inverse operation called inverse projection P−1 by which we can obtain all

the strings of the larger event set from a given smaller set.

After indicating that notation 2A means the power set of A, i.e. the set of all subsets

of A, we can formulate the definition of the inverse projection.
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Definition 3 (Inverse Projection) : Inverse projection P−1 : Σ̂∗ → 2Σ∗ is defined as

P−1(ŝ) := {s ∈ Σ∗ | p(s) = ŝ} (2.2)

for Σ ⊆ Σ̂∗.

We can as well apply the natural projection to languages by applying the natural

projection to each string of a languages. For L ⊆ Σ∗ , natural projection is defined as

P(L) := {t ∈ Σ̂∗|∃s ∈ L such that p(s) = t}

and for L ⊆ Σ̂∗,

P−1(L) := {t ∈ Σ∗|∃s ∈ L such that p(s) = t}

Therefore, in general P−1[P(L)] , L but rather L ⊆ P−1[P(L)] for L ⊆ Σ∗.

2.3 Automata

A convenient way of representing languages is the use of automata. In this section, we

will formally define the notion of an automaton. First, we start with non-deterministic

automata.

Definition 4 (Non-deterministic Automata) : A non-deterministic automaton is a

denoted by Gnd and is a five-tuple defined as

Gnd = (X, Σ, δnd, X0, Xm) (2.3)

where the meanings of the elements of five-tuple are:

X : the set of states,

Σ : the finite set of events including the empty string ε,

δnd : X × Σ→ 2X the transition function

X0 : the set of initial states and X0 ⊆ X

Xm : the set of marked states and Xm ⊆ X
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There is also an active event function Γ : X → 2Σ that returns the set of all events σ

for which δnd(x, σ) is defined for the state x of Gnd . It may take place in the definition

but we are omitting it in the definition since it can easily be derived from δnd.

For applying δnd to a string u, we can extend its domain to X × Σ∗.

δnd(x, uσ) := {z | z ∈ δnd(y, σ) and y ∈ δnd(x, u) }

We will use the words automaton and generator for the object defined with this five-

tuple. It can be thought that the word generator is the reason for which we use notation

G for the object.

Since we have defined what an automaton is, now we are capable of defining what

generated language is by considering all of the directed traces of a generator.

Definition 5 ( Generated Language) : The generated language of Gnd is defined as

L(Gnd) = {s ∈ Σ∗ | ∃x ∈ xo and δnd(x, s) is defined} (2.4)

There is also another notion of automata called deterministic automaton and it is

nothing but a frequently used special case case of non-deterministic automaton. The

differences between deterministic automata and non-deterministic automata is given

by the fact that deterministic automata have only one initial state and their transition

function δ maps to a unique successor state for each predecessor state.

Definition 6 (Deterministic Automata) : A deterministic automaton is denoted by

G and is a five-tuple defined as

G = (X, Σ, δ, x0, Xm) (2.5)

where the elements of these five-tuple machine have the same definition as in the defi-

nition of non-deterministic automaton except the transition function δ and initial state

x0.

δ : X ×Σ→ X, the transition function causes a transition to a unique state in set

X for each event δ ∈ Σ in a state x ∈ X.
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The transition function δ can be extended from domain X × Σ to X × Σ∗ to be able to

apply to strings as well

δ(x, ε) := x

δ(x, sδ) := { δ(δ(x, s), σ) | s ∈ Σ∗ and σ ∈ Σ }

If the state space X of such an object is a finite set, we call it a finite-state automaton.

Therefore, we use the term deterministic finite-state automaton for such G and non-

deterministic-finite state automaton for the previously defined Gnd.

The generated language definition for the deterministic automaton G is similar to the

one for Gnd.

L(G) = {s ∈ Σ∗ | ∃x ∈ xo and δnd(x, s) is defined }

After completing the definition of generated language for deterministic automaton

and what a finite-state automaton is, we will end this section by describing what a

deadlock is since it will be used in our assumptions later.

If an automaton G reaches to a state x of its where Γ(x) = ∅ and x < Xm, this is called

a deadlock. It is called a deadlock because no further event can be executed hereafter.

So we can say that the system blocks the given string and enters a deadlock state.

Finally, we introduce the parallel (synchronous) composition G1 ‖ G2 for automata.

In substance, it can be thought that G1 ‖ G2 represents an interconnection of systems

G1 and G2. The parallel composition synchronizes events that are shared between G1

and G2, whereas the remaining events occur independently. Consider two automata

G1 = (X1,Σ1, σ1, x01, Xm1)

G2 = (X2,Σ2, σ2, x02, Xm2)

Definition 7 (Parallel Composition) : The parallel composition of G1 and G2 gives

us the automaton
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G1 ‖ G2 := Ac(X1 × X2,Σ1 ∪ Σ2, δ, (x01, x02), Xm1 × Xm2) (2.6)

where

δ((x1, x2), σ) :=



(δ(x1, σ), δ(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2)

(δ(x1, σ), x2) if σ ∈ Γ1(x1) \ Σ2

(x1, δ(x2, σ)) if σ ∈ Γ1(x2) \ Σ1

undefined otherwise

as the operator Ac means that we only care about the accessible part of the automaton

from the initial state. To be more explicit for the operation, an event in the set Σ1 ∩Σ2

is called a shared event and can only be executed on the composed system if two

automata G1 and G2 can both execute it simultaneously. Hence we can say that two

component automata are synchronized on the shared events.

From the parallel composition of automata, the parallel composition of languages can

also be obtained.

L(G1 ‖ G2) = L(G1) ‖ L(G2)

2.4 Diagnosis

In this chapter, we will give a brief description of diagnosis and diagnosability, then

introduce the reader with event diagnosability and language diagnosability.

2.4.1 The notion of Diagnosability

Diagnosability is one of the most studied properties of DES in the scope of analysis.

In this part, we will present diagnosability of DES with respect to failure events. The

basic purpose for studying diagnosability is to identify if any certain failure events oc-

curred during execution of the system. There can happen observable or unobservable

failure events in a system and our main concern for this thesis work is the unobserv-

able failure events. The reason for dealing only with the unobservable failures is

obvious since it will be a trivial case to deal with the observable failures taking into
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account that they are already observable and detectable. To achieve the task of iden-

tifying the occurrence of certain unobservable events will be achieved by tracking all

of the observable events that occur in the system and estimating the actual state of the

system.

[8] and [11] conducted the initial studies on the diagnosability subject and introduce

a systematic procedure for both detection and isolation of failure events. For this

purpose, necessary and sufficient conditions for a language to be diagnosable are pro-

vided. These conditions are studied under existence of several restrictive assumptions

such as liveness of the system and absence of unobservable event cycles. For now,

we will only say that the verification of the diagnosability property of the system is

performed off-line.

A diagnoser is used online for tracking system information about potential failure

occurrences. If the diagnoser is able to detect the occurrence of a failure within a

finite delay, it can be said that the system is diagnosable. The important thing that

must be noted here is that a diagnoser works online to detect if a failure happened

in the system while diagnosability verification is made with an offline analysis of the

system.

We need to introduce some other notions such as unobservable events and liveness

before defining the diagnosability according to [8]. Let us have a deterministic finite

state automaton

G = (X,Σ, δ, x0, Xm) (2.7)

There can be two types of events in the whole event set Σ. Some of these events

are observable so that we can detect their occurrence in the system while the rest are

unobservable. Therefore, we will split the event set Σ of the automaton G into two

partitions as

Σ = Σo ∪ Σuo (2.8)

where Σo represents the set of observable events and Σuo represents the set of un-
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observable events in the system. To be more explicit for the readers, we may call

commands that a controller issued, sensor readings measured immediately after the

execution of these controller commands and the changes recorded by sensor readings

as observable events. Beside this, the unobservable events may be the failure events.

Moreover they can be any other events that cause a change in the system but are not

recorded by the sensors.

As mentioned formerly, we are dealing with the detection of the occurrence of failure

events that happened in a running system. The set of failure events to be diagnosed

is denoted by Σ f ⊆ Σ. Since it is already discussed that it would be a trivial case to

diagnose observable failures by only observing them as they are already observable

events, we can assume that Σ f ⊆ Σuo without loss of any generality.

Studying diagnosis means that our main objective is to identify, if any, the occurrence

of the failure events by observing only the events in Σo in the traces generated by the

system. But it may sometimes be impossible to uniquely diagnose each fault occurred

in the system due to inadequate instrumentation’s rendering it impossible. Moreover,

we may simply be interested in detecting the occurrence of a failure event in a set of

failure events when the effects of this set of failure events on the system are recorded

as same. Therefore, for this purpose the set of failure events Σ f is partitioned into

disjoint sets corresponding to different failure types exists in the system.

Σ f = Σ f 1 ∪ Σ f 2 ∪ ... ∪ Σ f m (2.9)

This partition is denoted by Π f and Π f = {1, ...,m} denotes the index set enumerating

the partitions for the failure types. Therefore, if we are talking about a failure of type

Fi, indeed we mean some event from the set Σ f i. It will be obvious that a failure of

type Fi has occurred will mean that some event from that set has occurred.

We define some final preliminary notions before defining what diagnosability is for

the reader. Let po denotes the operation of simply erasing the unobservable events in

a given string for the system. Thus we will define the projection po = Σ∗ → Σ∗o as the

the definition of projection that we explained formerly :
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po(ε) = ε

po(σ) = σ i fσ ∈ Σo

po(σ) = ε i fσ ∈ Σuo

po(sσ) = po(s)po(σ) i f s ∈ Σ∗, σ ∈ Σ∗

(2.10)

And the inverse projection of po on the language L is denoted by p−1
L and is defined

as

p−1
L (y) = {s ∈ L ‖ po(s) = y} (2.11)

Since we will use it later, it is better to define here Xo as

Xo = {x0} ∪ {x ∈ X ‖ there is an observable transition ending in x} (2.12)

and Lo(G, x) with Lσ(G, x) as

Lo(G, x) = {s ∈ L(G, x) ‖ s = uσ, u ∈ Σ∗uo, σ ∈ Σo}

Lσ(G, x) = {s ∈ Lo(G, x) ‖ s f = σ}

(2.13)

to denote the set of all traces that originating from state x, ending at the first observ-

able event and traces that ends with a particular observable event σ correspondingly

where L(G, x) denotes the set of all traces that originate from state x of system G.

Finally, we explain the use of s f notation to denote the final event of a trace s and

define the operation Π as

Π(Σ f i) = {sσ f ∈ L ‖ σ f ∈ Σ f i} (2.14)

where Π(Σ f i) defines the set of all traces of L that end with a failure event belonging

to the class Σ f i. With the slight abuse of the notation, to make it look similar to the

notation σ ∈ s which denotes the fact that σ is an event in the trace s, we may write
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Σ f i ∈ s to denote the fact that σ f ∈ s for some σ f ∈ Σ f i. To be more formally, it can

also be expressed as:

s ∩ Π(Σ f i) , ∅

where s is the prefix-closure of s.

2.4.2 Event Diagnosability

The reader is introduced with the necessary preliminary definitions and notions for-

merly, now it seems possible to make a definition of diagnosability formally. We will

use the formal definition of diagnosability presented in [8]. In order to highlight the

objective of the kind of diagnosability and since, later on we will mention about other

kinds of diagnosability, we call this notion of diagnosability as event diagnosability.

To start with, we need the system under investigation meet some important assump-

tions. These assumptions are liveness and having no cycles of unobservable events.

Assumption 1 The language L(G) is live. Hence, there is a transition defined at each

state x in X and the system can not reach a deadlock state at which no transition event

is possible.

Assumption 2 No cycles of unobservable events exist in the system G, i.e.

∃n0 ∈ N such that ∀ust ∈ L, s ∈ Σ∗uo ⇒ |s| ≤ n0 (2.15)

In other words, since the diagnosing failures task is based on tracking observable

events, system G does not generate any numbers of arbitrarily long sequences of

unobservable events. Hence, we can say that the assumption in Equation 2.15 ensures

the regularity of the occurrence of observations.

As indicated in the previous parts, by studying diagnosability, our main purpose is

to detect the occurrence of a failure of any failure type. We can briefly say that a

language L is diagnosable if detection of the fault is succeeded within a finite delay

by tracking only the observable events generated by the system.
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It mentioned in [8] that there are two important definitions of diagnosability sur-

vey. First definition is referred as diagnosability and the second one is referred as

I-diagnosability.

Definition 8 (Diagnosability) : A prefix-closed and live language L is said to be di-

agnosable with respect to the projection operation po and with respect to the partition

Π f on Σ f if the following proposition holds.

(∀i ∈ Π f )(∃ni ∈ N)[∀s ∈ Π(Σ f i)](∀t ∈ L \ s)[‖t‖ ≥ ni ⇒ D] (2.16)

where the diagnosability condition D is defined as:

D : ω ∈ P−1
L [po(st)]⇒ Σ f i ∈ ω (2.17)

For making the definition more clear to the reader, let us have a string s ∈ L generated

by the system and ending in a failure event f from the set Σ f i. The diagnosability con-

dition D for event-diagnosis indicates us that every trace belonging to the language

L, i.e. ω ∈ L, that produces the same record of observable events as the string st

should contain in it should contain a failure from the event set Σ f i for a sufficiently

long continuation t of s. Therefore, along every continuation t of s, the occurrence

of a failure of Fi can be detected with a finite delay, in at most ni transitions gener-

ated in the system after the string s. To sum up, diagnosability property of a system

requires that every failure event should lead to observations distinct enough to enable

identification of that failure type uniquely.

If there are multiple failures from the same set of same failure type partition, Fi,

occurring along a trace s of L, the definition that we have made recently does not

require the detection of each of these failure occurrences separately. Concluding that

a failure from the set Σ f i has happened within finitely many events after the occurrence

of the first failure in the trace s is sufficient.

To be able to help the reader understand the definition of diagnosability for event-

diagnosis in a better way, we will use the example system given in Figure 2.1

Figure 2.1 shows a system to that we will demonstrate what event-diagnosis and diag-

nosability are in a more explicit way. Consider system G where observable events of
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Figure 2.1: Example system for event-diagnosability

the system are Σo = {α, β, γ, δ} while unobservable event set Σuo = {σuo, σ f 1, σ f 2, σ f 3}

includes only one non-failure event, i.e. σuo and σ f 1, σ f 2 and σ f 3 representing failure

events. Let the initial state x0 of the system be the state denoted with number 1. If

the failure partition is chosen as Σ f 1 = {σ f 1, σ f 2} and Σ f 2 = {σ f 3}, it is not required

to distinguish between occurrences of failures σ f 1 and σ f 2. With a quick analysis on

the system G, it is easily seen that the system is diagnosable with this partition with

finite delays n1 = 2 and n2 = 1.

On the other hand, if we select the failure partition as if it is Σ f 1 = {σ f 1}, Σ f 2 = {σ f 2}

and Σ f 3 = {σ f 3}, the system becomes not diagnosable because then it is not possible

to detect the occurrence of failure event σ f 2 by tracking only the observable events

generated by the system.

2.4.3 Language Diagnosability

In this chapter, after presenting the notion of event diagnosis and I-diagnosability, we

will present the notion of language-diagnosability where abnormal behaviors of the

system are specified with language differing from the case in event-diagnosis. Let us

first begin this section with a formal definition of language-diagnosis.

Definition 9 (Language Diagnosability) :A prefix-closed language L is said to be

language-diagnosable with respect to a prefix-closed language Ln ⊆ L and a projec-
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tion operation po over the events defined in L if the following holds.

(∃nd ∈ N)(∀s ∈ L \ Ln)(∀t ∈ L \ s)[(L \ Ln = ∅) ∨ (‖t‖ ≥ nd)⇒ Dl] (2.18)

where the diagnosability condition Dl is defined as:

Dl : P−1
L [po(st)] ∩ Ln , ∅ (2.19)

Moreover, the worst case failure detection delay of L with respect to Ln and po is

defined as follows:

ddia = min(nd) (2.20)

Thus, the language L provided with the worst-case detection delay parameter ddia is

called as a ddia − step language − diagnosable with respect to Ln and po. Beside

this, Ln and L represent the normal behavior and the possible behavior of the system,

respectively. Therefore, the abnormal behavior for language L is represented by the

notation L \ Ln := L ∩ Ln.

In order that we can help the reader understand the notion of language diagnosability

more clearly, let us illustrate this notion on an example system, its possible behavior

and normal behavior.

Figure 2.2: Example possible system G behavior for language-diagnosability

Figure 2.2 shows the possible behavior of our system and Figure 2.3 shows the de-

sired normal behavior of its, which we call it spec of the system later on. It is easy

to notice that the normal behavior of the system is exactly the system that is a part

of the possible behavior cleared of the failure events and their corresponding paths.
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In our system observable event set is composed of the letters belonging to the Greek

alphabet, i.e. Σo = {α, β} while unobservable event set is composed of unobservable

normal events which are indicated by the Latin alphabet and unobservable failure

events denoted by σ f 1 and σ f 2, that is σuo = {a, σ f 1, σ f 2}. All of the system behavior

other than the normal behavior can be obtained by G \GN .

Figure 2.3: Example normal system behavior GN for language-diagnosability

Unfortunately, diagnosability case is violated in our example. Even though an ob-

server is able to uniquely diagnose the occurrence of failure σ f 2, which is not de-

scribed in normal behavior GN of system G, immediately after the occurrence of

observable event β, the faulty string ”aσ f 1” including the failure event σ f 1 cannot be

resolved by the observer. It cannot be resolved because there are non-faulty strings

with the same observation in the set of all possible extensions of our faulty string

”aσ f 1”. Therefore, system G is not language-diagnosable with respect to normal be-

havior spec GN and natural projection function po.

2.5 Discussion and Comparison with Related Work in Literature

In this section of the thesis work, we will briefly mention about the works in the lit-

erature related with the notion of diagnosability, as a superset notion both including

event and language diagnosability. First of all, we will start by correlating two no-

tions, language diagnosability and event diagnosability, then have a glance over other

notions related with the diagnosability.

To begin with correlating the notions of language and event diagnosability, we note

that language-diagnosability is more general than event-diagnosability. First, language-

diagnosability does not require restrictive assumptions such as the absence of dead-
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lock states and unobservable cycles. Second, any event-diagnosability problem can

be converted into a language-diagnosability problem [11]. Hereby, the specification

K for language-diagnosis simply needs to contain all strings without fault events.

Next, we point to some related work in the literature. It is very clear that our diag-

nosability notion is highly related with partial observation problem since the notion

is with respect to a the observation function, i.e. natural projection. Although the

diagnosability problem hasn’t been studied in advance with high reputation, partial

observation problems in DES’s such as observability, observability with delay, invert-

ibility etc. have been a recently popular investigation in the literature. The researches

of [25], [26], [27], [28], [29], [30], [31] can be shown as examples of these stud-

ies. Nonetheless, diagnosability is a distinctly different concept even thought it seems

to be related to formerly mentioned subjects. Partitioning the failure events, need

to identify each failure type within a finite time, possibility of the case of multiple

failures, possible unobservable events other than the failure events, no need of di-

agnosis during normal operation of the system can be counted for the differences of

diagnosability notion. Now we will introduce the other notions to the reader some of

which we may inspire later on and have a brief discussion on each other to show the

differences and the similarities between these notions and diagnosability.

In his paper [32], Lin proposes the reader a state-based approach for studying diag-

nosability. A partial state information exists in the approach via an output function.

The problems of off-line and on-line diagnosis is addressed in the research. By the

off-line diagnosis term, analyzing the system to be diagnosed in a test-bed procedure

can be thought. In this procedure, a sequence of test commands, observing the result-

ing outputs and drawing inferences on the set of possible states in which the system

could be is involved. This can also be thought as the verification of diagnosability

problem for the system. On the other hand, the system is assumed to be operating

normally in on-line diagnosis. Identifying the state of the system is the aim of diag-

nosis process but differing from the off-line diagnosis case, possible occurrences of

other uncontrollable events in the system must be accounted for diagnostic process.

In [32], the author gives a guaranteed algorithm that is supposed to converge if the

system is on-line diagnosable.
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An extended off-line diagnosability research in which Bavishi considers testability

of given DES is conducted in [33]. Moreover algorithms for determining both the

optimal set of sensors to ensure testability and infimal partition of the state space is

also presented in his study.

Language observability notion is introduced to the reader in Lin’s study [27] as a

supervisory control problem with the constraint of partial event observation. Thus,

a language based definition of observability and state conditions for the existence of

a solution to this control problem in terms of observability and controllability of the

language is presented. In the problem, it is not necessary to explicitly determine the

occurrence of unobservable events or identify the system state. We can conclude that

diagnosability notion is different than the notion of observability introduced in this

study.

The problem of state identification for DES is addressed in Ramadge’s paper [31].

The system is modeled by a non-deterministic automaton with full event observability

and partial state observability with an output map in his study. Reconstructing the

state of the system after each event is the problem and there is an observer-state

feedback approach for the synthesis of the controller. The work done in Ramadge’s

paper is also incomparable with the diagnosability problem in our case.

A slightly different approach for observability that is assuming a partial event obser-

vation model with no state observation directly is presented in the study of Özveren

and Willsky [28]. They mark a system as observable if it is possible to determine the

current state of it exactly using a record of observable events separated by a bounded

number of events. Also they define a DES called an observer that is producing esti-

mates of the state of the system after each observable event generated in the system.

The notion of observability with delay is also defined in the study for a system in

which it is possible to have perfect knowledge not of the current state of the system

but of the state before some finite number of transitions.

Diagnosability is studied as an event detection problem in [8]. Diagnosability is a

stronger notion than the observability if it is thought as a problem of state identifi-

cation because of the necessity of identifying every failure state uniquely in contrast

to [28]. A system is observable/observable with delay as long as there exists at least
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one state which is uniquely identifiable at intermittent points in time whereas diag-

nosability only requires the identification of failure states with a finite delay. It only

requires this identification for failure states because there is no similar need for the

normal states. Therefore, a system can execute arbitrarily long sequences of events,

in normal failure-less operation, with no single state being uniquely detectable even

with some delay. Moreover, a system failing to be observable/observable with delay

in the post-failure operation since there isn’t any state that can be uniquely identifi-

able can still be diagnosable. The main reason behind this fact is our not requiring

unique identification not of every failure state but only of every set of partition.

The state estimation problem for a partially observed automaton is also studied in

Caine [25]. An input state-output automaton model with partial state information

available through an output function is used for the system. Initial state and current

state observability using two different type of observers is addressed in the study,

classical dynamic observers and logic based dynamical observers. Classical dynamic

observer is a finite state automaton which takes the observable system behavior, the

sequence of input-output pairs as its input and generates a sequence of state esti-

mates either of the initial state or the current state of the system. On the other hand,

the logic based observers are kind of observers for which a logic based dynamical

system is built in the framework of predicate calculus. This kind of observer gener-

ates a sequence of logic propositions describing the properties of the system. Their

adaptability to changes in the system model is a very useful feature of these kind of

observers. In [25], the author also assumes all future states in time is known, once the

current state of the system is determined.

Invertibility is introduced in [29] by Özveren and Willsky as another notion which is

closely related with the notion of diagnosability. An invertible language is defined as

a language for which we can reconstruct full event sequence up to a finite bounded

number of events by using the knowledge of tracked observable event sequence till

that time. Indeed, invertibility is a stronger notion than diagnosability because we

don’t need reconstruction of entire event sequences for a system to be diagnosable

and we are interested in identifying the occurrence of specific failure events only.

Moreover, if the failure events are partitioned into sets, we are only interested in

identifying the occurrence of one of a set of events. Additionally, if there is a case
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of multiple failures from the same set of the failure partition, diagnosability does not

require detection of every single occurrence of these failures and finds enough to be

able to conclude that a failure event from the set has occurred at least once in the

system. Thus, we can say that a diagnosable is system can be non-invertible.

This concludes the discussion and comparison of diagnosability notion with other

related works that have appeared in the literature.
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CHAPTER 3

MODIFIED EVENT DIAGNOSER

In this section we introduce a finite state machine that is built for checking if the

given system has the properties mentioned formerly in Section 2.4.1. The machine

is built from the system model G and is named as diagnoser since it simply performs

the diagnosing task by observing the on-line behavior of G. This diagnoser machine

realizes the test of event-diagnosability and it is the basis for this thesis work.

3.1 Basic Event-Diagnoser

We first present the basic diagnoser proposed by [8] and describe its construction.

Afterwards, we will explain what kind of improvements are necessary for a better

realization. This discussion leads to the construction of an improved diagnoser.

3.1.1 Construction of Basic Event-Diagnoser

First of all, we recall that all system observations are made through the natural pro-

jection po, whereby all unobservable events in Σuo cannot be seen. In particular, all

fault events in Σ f are unobservable.

Now we can start by defining a set of failure labels ∆ f = {F1, F2, ..., Fm} where |Πi| =

m . Next, we introduce the set of labels as follows.

∆ = {N} ∪ 2{∆ f∪{A}} (3.1)
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In this notation, N is a label that must be interpreted as having the meaning of normal

while A must be interpreted as ambiguous. These labels will be used for defining the

attributes of the states of diagnoser and they will be explained in more detail later

on in this chapter. On the other hand, Fi will have a meaning that a failure from

set of failure type Fi may occurred until the system reaches to that state where i ∈

1, ...,m Recalling the definition of Xo from Equation 2.12, we describe all the possible

attributes of diagnoser states that may exist in a diagnoser as

Qo = 2Xo×∆ (3.2)

The diagnoser for a given system now can be defined as the finite state machine

Gd = (Qd,Σo, δd, q0) (3.3)

Hereby, marked states need not be considered and all elements of the four-tuple have

the usual interpretation. The initial state of our diagnoser is assumed to be normal

(non-faulty) as

q0 = {(x0, {N})} (3.4)

The state space of the diagnoser Gd is the resulting subset of Qo, i.e. defined in Equa-

tion 3.2 composed only of the reachable states of the diagnoser from its initial state

q0 under transition function δd. δd construction will be explained after we mention

about some preliminary functions necessary for the construction. A state qd of Gd is

of the form

qd = {(x1, l1), ..., (xn, ln)} (3.5)

since Qd is a subset of Qo where xi ∈ Xo and li ∈ ∆, i.e. li ⊆ {{N}, {A}, {Fi1 , Fi2 , ..., Fim}

and
⋃k

j i j ⊆ 1, 2, ...,m.

As we mentioned formerly in Section 2.5, Özveren and Willsky proposed an observer

for G in [28] for giving the estimation of the current state of the system after occur-
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rence of each observable event generated by the system. Meanwhile, the diagnoser

Gd can be thought as an extended observer in which a label of the form ∆ is appended

to state estimation. The labels attached to the state estimates carry failure occurrence

information and failures are diagnosed by checking these labels.

We need to define the following three functions before giving the definition of the

transition function δd of the diagnoser, i.e. label propagation function LP, the range

function R, label correction function LC.

Definition 10 (Label Propagation Function) : Given that x ∈ Xo, l ∈ ∆, s ∈ Lo(G, x),

label propagation function is LP : Xo × ∆ × Σ∗ → ∆ defined as

LP{(x, l, s)} :=


{N} i f l = {N} ∪ ∀i[Σ f i < s]

{A} i f l = {A} ∪ ∀i[Σ f i < s]

{Fi : Fi ∈ l ∨ Σ f i ∈ s} otherwise

(3.6)

Definition 11 (Range Function) : The range function R : Qo × Σo → Qo is defined

as

R(q, σ) :=
⋃
x,l∈q

⋃
s∈Lσ(G,x)

{(δ(x, s), LP(x, l, s)} (3.7)

Definition 12 (Label Correction Function) : The label correction function LC :

Qo → Qo is defined as

LC(q) := {(x, l) ∈ q | x appears only once in all the pairs in q} ∪ {(x, A ∪ li1 ∩ li2

∩... ∩ lik) whenever ∃ two or more pairs (x, li1), ..., lik in q}
(3.8)

The label existing in any state x of the diagnoser along a trace s indicates if a fail-

ure of that type occurred or not when the system moves along trace s and generates

transitions into state x. We can understand that the state x could have resulted from a

failure event of a particular type, let’s say Fi, or not if there exists two pairs such as

(x, l), (x, l′) in return of function R(q, σ) for some state q of our diagnoser. This condi-

tion requires us to attach label to x to indicate that there is an ambiguity for that state

x. Therefore, the label A for x means that ”either Fi or not Fi” happened. Please note
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that we don’t distinguish between cases ”Fi or F j”, ”F j or Fk” or ”N or Fi”. We will

use the label A instead in all these situations. It may cause an information loss, but

label A will still be enough for diagnosing task, hence determination of diagnosability

of the system.

Now we can define the transition function δd : Qo × Σo → Qo as

q2 = δd(q1, σ)⇔ q2 = LC[R(q1, σ)] (3.9)

with σ ∈ ed(q1) where ed(q1) is defined as

ed(q1) =
⋃

(x,l)∈q1

{P(s) | s ∈ Lo(G, x)} (3.10)

In the equation, ed(q1) denotes the set of all possible transitions of the diagnoser ex-

isting at the state q1 that is set of active events in system Gd at this state. We can

summarize the construction of the formerly mentioned Gd in three steps,where q1

defines the current state of our diagnoser G which carries the state estimation infor-

mation with corresponding labels, σ defines the next observed event in the system, q2,

is the next state into which the diagnoser will make transition is computed, as follows:
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1) Obtain the reachable states of x for generated event σ by S (x, σ) = {δ(x, sσ)

where s ∈ Σ∗uo} for each of the state estimate x in a state q1 of the diagnoser,

2) Propagate label l corresponding to x to label l’ with x′ where x′ ∈ δ(x, σ) = x′

according to the given rules.

i . the label l’ is {N} if l = {N} and s contains no failure events

ii . the label l’ is {A} if l = {A} and s contains no failure events

iii . the label l’ is {Fi} if l = {A, Fi} and s contains no failure events

iv . the label l’ is {Fi, F j} if l = {A} or {F j} and s contains failure events from

the set Σ f i,Σ f j

v . the label l’ is {Fi, F j, Fk} if l = {Fi, F j} or {A, Fi, F j} and s contains failure

events from the set Σ f k

3) Replace all (x′, l′), (x′, l′′) ∈ q2 as Fi and F j components of both l’ and l” by

(x′, A, Fi, F j) where q2 is the set of all (x′, l′) pairs computed according to

step rules 1 and 2 for each (x, l) ∈ q2. We associate all common components

of the labels of estimate x′ with x′ itself if the same state estimate x′ appears

in q2 with different labels. Additionally, we attach label A to x′ in such a case

with ambiguity.

It is important to note that the label A indicating the ambiguity is not propagated

to the next state in case iii, iv and v. It does not cause a loss of information that

will be necessary for determining the diagnosability attribute beside it does lead to

a reduction in the state space of our diagnoser. Finally, we note that we assume the

initial state of the system is known since the diagnoser conducts an on-line diagnosis

task by running in parallel with the system from the start.

In order to illustrate the diagnoser construction, we provide the simple example in

Figure 3.1. The system is stated as G whereas its corresponding diagnoser constructed

according to the rules described formerly is stated as Gd and shown in Figure 3.2.

The observable event set for the system in the example is denoted by greek letters,

i.e. Σo = {α, β, γ, δ, σ} and the unobservable event set Σuo is composed of elements

29



σuo, σ f 1, σ f 2 and σ f 3 where Σ = Σo ∪ Σuo. The fault events are σ f 1, σ f 2 and σ f 3.

Failure set is chosen to be partitioned into two sets such as Σ f 1 = {σ f 1} and Σ f 2 =

{σ f 2, σ f 3}.

Figure 3.1: Example system model for illustrating event-diagnosability

3.1.2 Diagnosability Verification Using the Diagnoser

In order to investigate diagnosability based on the diagnoser Gd, we state several

properties of the diagnoser that can be derived from its construction rules.

• Any xi ∈ Xo appears at most in one pair (xi, li) of any state of Qd as stated in the

construction

• Let q ∈ Qd,

(x1, l1), (x2, l2) ∈ q⇔ ∃s1, s2 ∈ L

where

s1 f , s2 f ∈ Σo, δ(xo, s1) = x1, δ(xo, s2) = x2 and P(s1) = P(s2)

• Let q1, q2 ∈ Qd and s ∈ Σ∗ where (x1, l1) ∈ q1, (x2, l2) ∈ q2, δ(x1, s1) = x2 and

δd[q1, P(s)] = q2

(Fi < l2) ∧ (A < l2)→ Fi − uncertain
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Figure 3.2: The Diagnoser Gd

The last property given indicates that the failure label Fi propagates from state to state

if it is not replaced by label A due to the label correction function LC. Therefore, we

can conclude that every successor x′ carries the failure label Fi as its predecessor

unless ambiguity is revealed during the construction transitions. Similarly, if along a

trace s ∈ L, a state x carries the normal label N, so must all of its predecessors.

Definition 13 (Fi-certain state) : A state q ∈ Qd is called as an Fi − certain state if

∀(x, l) ∈ q, Fi ∈ l.

Definition 14 (Fi-uncertain state) : A state q ∈ Qd is called as an Fi − uncertain

state if (x, l), (y′, l′) ∈ q where Fi ∈ l and Fi < l′.

Definition 15 (Ambiguous state) : A state q ∈ Qd is called as an Ambiguous state if

∃(x, l) ∈ q where A ∈ l

It holds that x . y for the definition of an Fi-uncertain state. Moreover, if a state q of

Qd is not Fi-uncertain, it does not mean that q is Fi-certain. To be more clear, a state

q ∈ Qd can be neither Fi-uncertain nor Fi-certain for ∀(x, l) ∈ q and Fi < l. We arrive

at the following conclusions from the construction method of the diagnoser.

i. If q is Fi-certain then Σ f i ∈ ω, ∀ω ∈ P−1
L (u) where δd(q0, u) = q
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ii. If q∈ Qd is Fi-uncertain then ∀s1, s2 ∈ L such that Σ f i ∈ s1,Σ f i < s2, P(s1) =

P(s2), δd(q0, P(s1)) = q and δ(x0, s1) , δ(x0, s2)

iii. If q∈ Qd is ambiguous then ∃s1, s2 ∈ L and ∃i ∈ Π f such that Σ f i ∈ s1,Σ f i <

s2, P(s1) = P(s2), δd(q0, P(s1)) = q and δ(x0, s1) = δ(x0, s2)

Now, it is obvious that a failure Fi has occurred in the system, if the current state of

the diagnoser is Fi-certain regardless of what the current state of the given system G

is. As indicated beforehand, this is exactly the type of diagnosis task that Sampath

proposes to the reader in [8].

We give a more detailed analysis of the conditions Fi-uncertain and ambiguous. If

there exists an Fi-uncertain state in Gd, it means that there are two strings s1 and s2 in

L(g) such that s1 contains a failure event of failure type Fi while s2 does not contain

any event from that set besides their having the same record of observable events.

Hence, it is usual to conclude that a failure type possibly occurred in the given system

but we cannot be certain about this with the observed sequence of events. On the

other hand, the presence of an ambiguous state in Gd of the diagnoser corresponds to

the case where we have two strings s1 and s2 having the same record of observable

events and generated by the system such that all possible continuations of these strings

in L(g) are the same. Since the system will end up in same state of G after any

continuation, we call this type of traces as Fi-ambiguous traces.

Some final definitions including Fi− indeterminatecycle that are needed for using the

diagnoser to test diagnosability.

Definition 16 (Cycle of states) : A cycle is composed of a set of states x1, x2, ..., xn ∈

X in G if ∃ s ∈ L(G, x1) such that s= σ1σ2...σn and δ(xl, σl) = x(l+1)modn, l = 1, 2, ..., n.

Considering the occurrence of possible cycles in both Gd and G′, we will now define

the notion of Fi-indeterminate cycle.

Definition 17 (Fi-indeterminate cycle) : A set of Fi-uncertain states q1, q2, ..., qn ∈

Qd is said to form an Fi-indeterminate cycle if
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1) States q1, q2, ..., qn forms a cycle in Gd with δd(ql, σl) = ql+1, l = 1, ..., n−1, δd(qn, σn) =

q1 where σl ∈ Σo, l = 1, ..., n and

2) ∃ (xl
k, ll

k), (yl
r, l̃r

l ) ∈ ql, l = 1, ..., n, k = 1, ...,m r = 1, ...,m′ such that

a) Fi ∈ lk
k, Fi < l̃k

k for all l, k and r,

b) The sequences of state xl
k, l = 1, ..., n, k = 1, ...,m and xl

k, l = 1, ..., n, r =

1, ...,m′ form cycles in G’ with
(xl

k, σl, xl+1
k) ∈ δ′G, l = 1, ..., n − 1, k = 1, ...,m,

(xn
k, σn, x1

k+1) ∈ δ′G, k = 1, ...,m − 1

and

(xn
m, σn, x1

1) ∈ δ′G
and

(yl
r, σl, yl+1

r) ∈ δ′G, l = 1, ..., n − 1, r = 1, ...,m′,

(yn
r, σl, yl+1

r+1) ∈ δ′G, r = 1, ...,m′ − 1,

and

(ym
n, σn, y1

1) ∈ δ′G .

To be more explicit, an Fi-indeterminate cycle in Gd is a cycle composed of Fi-

uncertain states including

• A corresponding cycle of observable events in G′ which has only states carrying

Fi in their labels in Gd (sequence of xl
k) and

• A corresponding cycle of observable events in G′ involving only states that do

not carry failure label Fi (sequence of xl
k)

m and m′ here are the number of times that the cycle q1, q2, . . . , qn in Gd is completed

before the cycle in G′ is completed. Moreover, nm and nm′ are the cycle lengths in

xl
k and xl

k, respectively.

An Fi-indeterminate cycle in Gd indicates the existence of two traces s1 and s2 in L

with arbitrarily long sequence of events such that the record of observable events for

both traces are identical while s1 contains a failure of type Fi but s2 does not contain

such a failure of type Fi. We now present some examples in order to illustrate the

aforementioned notions up to now.
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The following figures depict 3 different systems with their corresponding observable

state machines, G′ and the diagnosers corresponding to these systems. Each system

captures a distinct case for describing the given notions.

Figure 3.3: Example of a system that will lead to a diagnoser Gd with an Fi-
indeterminate cycle in it.

In Figure 3.3, we have a system G with observable event set Σo = {α, β, δ, γ, τ} and

unobservable event set Σuo ={σ f 1} which equals to the defined set of failures in the

system G, i.e. Σ f .

The corresponding diagnoser Gd is depicted in Figure 3.4. Gd has a cycle of F1-

uncertain states for the trace including ”βγδ” after a single α is generated in the

system. It next needs to be checked if it is an F1-indeterminate cycle according to
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Figure 3.4: Corresponding diagnoser Gd.

the previous definitions. The first cycle in G′ is composed of states {7, 11, 12} and

these states appear with label N in the states of diagnoser Gd. The other cycle in G′

is composed of states {3, 4, 5} and these states appear with an F1 label in the corre-

sponding states of Gd. Therefore, we can easily say that this pertains to the case that

we described in notion of Fi-indeterminate cycle with x1
1 = 3, x1

2 = 4, x1
3 = 5 and

y1
1 = 7, y1

2 = 11, y1
3 = 12 and m = m′ = 1. Hence, the system is not diagnosable.

Figure 3.5: Example of a system having a diagnoser Gd with a cycle of Fi-uncertain
states but don’t have an Fi-indeterminate in it.

There is an another system is defined with the observable event set Σo = {α, β, δ, γ, τ}

and the unobservable event set Σuo ={σ f 1} as depicted with its generator G′ and cor-

responding diagnoser Gd in Figure 3.5.

The corresponding diagnoser Gd can be seen in Figure 3.6.

The system G also has a cycle of F1-uncertain states. As the previous example the

cycle in Gd corresponds directly to a cycle in G′ as expected. The loop of G′ is
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Figure 3.6: Corresponding diagnoser Gd.

completed with only one completion of the loop in Gd, i.e. m= m′= 1. This cycle

corresponds to a cycle only composed of states with F1 label. Therefore, the cycle in

the diagnoser in Gd is not an F1-indeterminate since it only includes a corresponding

cycle in Gd with F1 label and not with N labels even though the diagnoser of our last

two examples are completely same. Hence, this system is diagnosable.

In our final example in Figure 3.7, we now have a system with an observable event

set Σo = {α, β, γ} and unobservable event set Σuo ={σuo, σ f 1} where failure events are

Σ f = {Σ f 1}. Again we have a cycle of F1-uncertain states in its. It corresponds to two

cycles in generator G′.

Figure 3.7: Another example of a system G with an Fi-indeterminate cycle in its
corresponding Gd.

One of these cycles is composed of F1 labeled states, i.e. the set xl
k is {3, 4} and the

other cycle is composed of N labeled states, i.e. the set yl
r is {5, 6, 8, 9} or {8, 9, 5, 6}.

It must also be noticed that the cycle after the failure occurred needs to be completed

twice whilst the cycle that belongs to the non-faulty trace is completed only once.

Therefore m = 1 and m′ = 2.
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After illustrating the notion of F1-indeterminate cycle with three explanatory exam-

ples, we end this section by noting the necessary conditions stated in [8] for a diag-

noser Gd to detect every possible failure.

Assuming that there is no multiple failure occurrence of same type during the system

process, a language L that defines this system is event-diagnosable if and only if its

diagnoser Gd satisfies the following two conditions

1) No indeterminate cycles exists in diagnoser Gd for all failure types of Fi

2) No ambiguous state q exists in Qd of Gd assuming that there cannot happen mul-

tiple failures of the same type.

3.2 Motivation for Modified Event Diagnoser

In this section we will show that though the diagnoser Gd constructed in the previous

section is enough for deciding whether its corresponding system G is diagnosable or

not, it is not straightforward to obtain a diagnosis decision. Hence, we propose a more

suitable way for online diagnosis.

For illustration, we consider a system very similar to the example system given in

Figure 3.1 which is modeled by a prefix-closed, live language L, depicted in Figure

3.9. The failure events are Σ f = Σ f 1 ∪ Σ f 2 is where Σ f 1 = {σ f i},Σ f 2 = {σ f 2, σ f 3}.

The constructed diagnoser for the system given in Figure 3.9 is shown in Figure 3.10.

The diagnoser Gd in this figure is a good illustrative example since it is composed of

all the possibilities of states allowed for a system to be diagnosable and defined in Sec-

tion 3.1.1, i.e. [2N - Normal], [6N 11F1 14F1F2 Fi-uncertain], [12F1 F1-certain]. By

Figure 3.8: Diagnoser Gd for G.
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Figure 3.9: Motivating Diagnosable System Model G

such a diagnoser, we can understand that a failure event of type Fi occurred whenever

we hit a Fi-certain state via tracking the observable events generated by the system.

Hereby, we can conclude that the basic diagnoser proposed by [8] and constructed by

the rules defined formerly is successfully performing its diagnosis task.

Figure 3.10: Basic Diagnoser Gbd for motivating system model G

Nevertheless, the suggested diagnoser model does not have states with observable

state attributes and labels. Therefore, we need to track all the observable events gen-

erated by the system to determine the current state of the diagnoser from the start

state of the given system. Moreover, we cannot determine that the current state of

the diagnoser is an Fi-certain state, hence recognize that a failure event of type Fi is

occurred although we track all the observable events and determine the current state

of the diagnoser. What we need is analyzing the label of the current diagnoser state

revealing its attribute and doing some other computations and deciding if that state is

Fi-certain or not and this brings too much necessary calculations after each observed
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transition.

One of the improvements that we propose in this thesis work is a more easily us-

able diagnoser which highlights the arrival at an Fi-certain state by triggering a fault-

detection event. Such an event diagnoser for the same example system is shown in

Figure 3.11.

The modified diagnoser helps the observer by inserting an observable fault-detection

event transitions into each Fi-certain state in which we can be sure about the oc-

currence of that failure type of unobservable failure for the first time along that trace.

These fault-detection events are marked by ”FAILURE-1” and ”FAILURE-2” and cor-

respond to unobservable failure event partitions Σ f 1 and Σ f 2. Beside these, the first

Fi-certain states along a trace are now marked states for illustration.

We can list the advantages of these fault-detection events as:

• There is no need to track the information about in which state the diagnoser is

now and hence, the observer does not require tracking all the observable events

generated by the system. Merely noticing the corresponding fault-detection

event becomes enough to identify the occurrence of that failure.

• Even though the current state of the diagnoser is determined without tracking

the generated observable events, an observer still needs to perform an analysis

of each detected state to understand whether it is an Fi-certain state or not.

There is no such need for an observer having an modified diagnoser.

• Since fault-detection events are generated whenever the first occurrence of an

event of corresponding failure type is certainly noticed, a reaction to the fault

is immediately possible.
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3.3 Modified Event Diagnoser with Fault-Detection Events

In this section, we describe how the modified diagnoser is constructed by building on

the former construction method of the basic diagnoser given in Section 3.1.1.

We use the deterministic finite state machine

Gmd = (Qmd,Σmd, δmd, q0md, Xmd) (3.11)

We can describe the elements of the given five-tuple definition for the modified diag-

noser by re-using the element descriptions of the basic diagnoser.

Qmd = Qbd +
⋃

Qtransient states

Σmd = Σbd +
⋃

(FAILURE − Πi)

q0md = q0bd

Xmd =
⋃

Fi-certain states

(3.12)

where the terms having the subscript md are elements of the modified diagnoser and

terms having bd subscript are elements of the basic diagnoser.

Qtransient states is introduced for the new set of unlabeled states from where the modified

diagnoser generates observable fault-detection events. Fi-certain states which occur

for the first time along a trace corresponding to that failure event type are denoted as

marked states for better illustration.

The only remaining element of the five-tuple representation which has not been de-

scribed is the transition function δmd of the modified diagnoser. This function is iden-

tical to δbd except for transitions that lead to an Fi-certain state for the first time

along a generated trace. If δbd does so, then the transition function of the modified

diagnoser δmd enters to a transient state qtransient state ∈ Qtransient state and then generates

the corresponding observable fault-detection event with a transition that leads to the

state reached by δbd. The explained procedure is summarized in the following pseudo

code with the inputs rOrigGen (system model G), rAttrFTMap (failure type map Π),

rDiagGen (modified diagnoser result Gmd).
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Algorithm 1 Pseudo Code for Modified Diagnoser

EVENT DIAGNOS ER (rOrigGen, rAttrFT Map, rDiagGen)
Begin
if (!IsLive(G) or CycleOfUnobsEvents(G)) then // Check assumptions

return;
end if
Obtain set of all failure partitions
possible laterfailureTypes[q0]←− Πi //set of all failure partitions
while !newDiagStates.Empty() do

currDiagState←− the next state of Gmd
for each Fi ∈ possible laterfailureTypes[currDiagState] do

if is fcertain(currDiagState) then // do fcertain(currDiagState)
Add fault-detection event FAILURE-Πi to Σ

Insert a newstate to Qd
Copy incoming transitions and l of currDiagState to newstate and delete
Add transition via FAILURE-Πi from currDiagState to newstate to δmd
Remove FAILURE-Πi from possible laterfailureTypes[newstate]
currDiagState←− newstate

end if
end for
for Each x ∈ qd where qd = {(x1, l1), ..., (xn, ln)} and qd = currDiagState do

Obtain set of reachable states ∀σ ∈ Γ(x)
end for
for Each σ ∈ Σ corresponds to a state − label pair (q, l) do

for Each element of label of the pair do
Run Label Propagation on each element

end for
if New state-label pair (q, l) is not in the candidate pair set then

Insert the new pair into the set
end if
Insert new event − (state − labelpair)pair for that event

end for
for Each event of event − (state − labelpair)pairs do

Run Label Correction function on each state-label pair
if New label l belongs to any existing qd of Gmd then

nextstate←− qd
else if There exists no state with the new label l then

Create a new q ∈ Qmd and with l and nextstate←− q
end if
if Corresponding event σ < Σmd has not caused to a transition yet then

Add σ to Σmd
end if
Add the transition δ(currDiagS tate, σ) = nextstate to δ

end for
Erase currDiagState from newDiagStates

end while
End
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To conclude, the most important advantage of the modified diagnoser is the detection

of the first occurrence of any possible unobservable failure event and highlighting

the detection moment by an observable fault-detection event. What the modified

diagnoser needs for performing the detection of the first occurrence of an Fi-certain

state along a generated trace can be summarized in three steps: 1. determining the

arrival to an Fi-certain state; 2. noticing that this arrival occurs for the first time along

the trace generated up to now since the start at the initial state; 3. if both of the

previous two conditions are fulfilled, generating an observable corresponding fault-

detection event Failure-Πi in the modified diagnoser.

3.4 More Event Diagnoser Examples

In Figure 3.12, we see a system model G1 including 12 states in it. Observable events

of this system are denoted by Σo = {α, β, δ, σ, γ} while unobservable event set Σuo

equals to the set Σ f = σ f 1. Please note here that failure event set has only one partition

and hence we have only one type of failure, i.e. f1 in this system. The corresponding

basic diagnoser and modified diagnoser for this system are given in Figure 3.13 and

Figure 3.14 respectively.

Figure 3.12: Example System G1

For the basic diagnoser case, even though it seems to be enough for detection of a

first time occurrence of any failure type, an observer still needs to track all observable

events, make necessary analysis and calculations for each state.
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Figure 3.13: Basic diagnoser Gmd for the system G1

On the other hand, now with the help of the modified diagnoser, it is trivial to rec-

ognize where we are sure about a first time occurrence of any failure type along a

generated trace. A generation of the observable fault-detection event FAILURE-1 by

the diagnoser machine is enough for this purpose.

Please note that though a modified diagnoser is obtained and injection of FAILURE-

1 event to the alphabet informs us about the first occurrence of Σ f 1 type failure, this

system is not diagnosable since it includes an Fi-indeterminate cycle in the diagnoser.

In that sense, the modified diagnoser will indicate anyway the faults that can be diag-

nosed.

Figure 3.14: Modified diagnoser Gmd for the system G1

Figure 3.15: Another example system G2

We have another system G2 with failure event set Σ f = Σuo = { f 1, f 2}while observable
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event set is defined as Σo = {a, b, c, d}. On the other hand, failure partition for this

system is divided into two groups which are Σ f 1 = { f 1} and Σ f 2 = { f 2}.

Corresponding basic diagnoser and modified diagnoser which are constructed from

the given system G2 according to formerly described algorithms are given Figure 3.16

and Figure 3.17 respectively.

Figure 3.16: Basic diagnoser Gbd for the system G2

Again in the basic diagnoser that is proposed in [8], there are Fi-certain states indicat-

ing that if the running system generates long enough traces, an observer will end up

his trace in that Fi-certain state and understand that a failure event of corresponding

failure type occurred certainly. Nonetheless, the observer needs computations for this

result.

Figure 3.17: Modified diagnoser Gmd for the system G2

If we look at our modified diagnoser in Figure 3.17, we can see the desired fault-

detection events ”FAILURE-1” and ”FAILURE-2” corresponding to unobservable fail-

ure events f 1 and f 2 are inserted in it. Therefore, an observer can immediately and
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easily detect the state in which he is sure for the first time about the occurrence of any

failure without requiring anything else by just observing these failure events.
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CHAPTER 4

MODIFIED LANGUAGE DIAGNOSER

In the previous chapter, we introduced the modified event diagnoser. This diagnoser

is able to detect and identify the occurrence of fault events by observing the observ-

able system events whenever the system is diagnosable. Though this seems to be an

acceptable method because unwanted failure events can be introduced when model-

ing the system, using failure events does not cover the case of unwanted sequences of

observable/unobservable events. For instance, we may not want the event sequence

”αβγ” instead of ”αβσγ” to be generated which means that the system skipped one

necessary operation denoted by σ during its execution. Hereby, we can understand

the relevance of language-diagnosability that generalizes event-diagnosability.

We now proceed similar to the previous chapter in order to determine a modified

language-diagnoser. We first show how a language-diagnoser can be built and how it

is used for verifying diagnosability. Finally, we present our constructon proccedure

fot the modified language-diagnoser.

4.1 Basic Language Diagnoser

We consider language diagnosis as introduced in Section 2.4.3. That is, the system

is composed of two behaviors which are called normal system behavior given by the

specification K ⊆ Σ? and the possible system behavior given by the plant automaton

G = (X,Σ, δ, x0).

Using language-diagnoss, each fault is represented by a specification langauge K.
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That is, different from the case of event-diagnosis, always a single fault is considered

per specification. If it is necessary to consider different faults, it is only required

to formulate a separate specification for each fault. Since it is sufficient to consider a

single specification, it is enough to mark all unspecified behavior with label F (faulty).

Then, the set of all language-diagnoser state labels is given by

∆ = {N} ∪ {F} (4.1)

Analogous to the construction of the event diagnoser, label N has the meaning of a

normal operation while label A means that the state owning it is ambiguous. Further-

more label F indicates that the system may have generated a fault until reaching that

state. By using this information and the previous definition of Xo, we describe all the

possible diagnoser state attributes with Equation 4.2.

Qo = 2Xo×∆ (4.2)

We again define the language-diagnoser as a four-tuple

Gd = (Qd,Σo, δd, q0) (4.3)

where Qd is a subset of Qo. The elements of this language diagnoser have the usual

meaning of elements of a finite state machine.

The initial state of the language diagnoser is assumed to be normal at the beginning.

q0 = {(x0, {N})} (4.4)

Moreover, any state qd of the basic language diagnoser is in the form of

qd = {(x1, l1), ..., (xn, ln)} (4.5)

where
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Figure 4.1: Example system model G for illustrating language-diagnosability

xi ∈ Xo li ∈ ∆, i.e. li ⊆ {{N}, {F}}

since Qd is a subset of Qo.

We have completed defining the preliminaries for basic language diagnoser which

show minor modifications compared to corresponding basic event diagnoser.

To help the reader understand the construction algorithm and steps of basic language

diagnoser, we will illustrate this construction process by using the same example

system that we used for illustrating the event diagnoser construction process. The

system is modeled as in Figure 4.1.

The system G in Figure 4.1 is modeled exactly in the same way as in event diagnoser

case. We have again the same observable event set Σ0 = {α, β, γ, δ, σ} and unobserv-

able event set Σuo ={σuo, σ f 1, σ f 2} where Σ = Σo∪Σuo. Only difference between these

models is the failure partition, as expected. We do not have any failure partitions

in language diagnoser model since we will denote all abnormal, undesired events by

label F, i.e. Σ f = {σ f 1, σ f 2}.

Specification language model which includes only both observable and unobservable

normal events and defines the normal behavior of G can be seen in Figure 4.2.
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Figure 4.2: Language specification GN for system model G

As stated earlier, we need to think cooperation of this language specification with all

the possible behavior of the given system and obtain G = GP ‖ GN before starting to

the construction of our basic language diagnoser.

To obtain such a language model, we can itemize the necessary steps which will be

given in more detail later on as algorithm in pseudo code form.

i. Mark all the states of possible behavior language, i.e. whole system

ii. Mark all the states of specification language

iii. Complement the marked specification language

iv. Obtain the parallel composition of possible and complement of spec automata

v. Remove the unobservable event transitions from the composed machine to obtain

the non-deterministic basis for diagnoser

vi. Obtain the diagnoser by shrinking the non-deterministic machine to a determin-

istic one

The automata that are obtained at the intermediate steps of the construction process is

illustrated in Figure 4.3. First automaton in this figure is obtained by applying paral-

lel composition on marked versions of possible behavior and complement of normal

behavior of the machine given in Figure 4.1. The second automaton is nothing but

the same automaton that is cleared off the unobservable event transitions as described

in step v. The reader can understand the process more clearly by analyzing the inter-

mediate automata.
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Figure 4.3: Intermediate-step automata for basic language diagnoser construction
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Finally, the basic diagnoser which is being completely constructed after applying six

formerly described steps in order is given in Figure 4.4.

Figure 4.4: Basic language diagnoser Gbd corresponding to system G

Remark 1 : We have recently informed the reader sufficiently about the construction

process of basic language diagnoser, furthermore mentioned about the similarities

and the differences between the construction process of basic event and language

diagnosers. On the other hand, the necessary conditions that a basic language di-

agnoser needs to have for being able to help an observer detect all abnormal cases

in a language model is nothing but the similar conditions as defined in basic event

diagnoser, i.e. in Section 3.1.2. The definitions such as Fi-certain state, Fi-uncertain

state, ambiguous state, Fi-indeterminite cycle etc. have also the same meanings as

defined in the same section. Please refer to Section 3.1.1 for more details.

Remark 2 : It is clear that the proposed language diagnoser here by [8] marks all

the undesired behavior as the same type and does not distinguish between them. To

be able to detect more than one type of failures, we need a specification model for

each type of failure. Then, we can use each specification language for obtaining sep-

arate diagnosers corresponding to each specification model, hence each failure type.

Running these separate diagnosers in parallel will be enough for online detection of

any corresponding type of failure occurred in the system.
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4.2 Modified Language Diagnoser with Fault-Detection Events

We propose to use the same idea as in Section 3.2 of introducing observable fault-

detection events in order to simplify language-diagnosis. The idea is recalled in the

following example. The system model is given in Figure 4.2.

Figure 4.5: Motivating system model G

To describe the given system G briefly, we can point to its set of event partitions.

Observable events of system model G are Σo = {α, β, γ, δ, σ} whereas unobservable

events are denoted by Σuo ={σuo, σ f 1, σ f 2, σ f 3}. Note that no failure events are intro-

duced to the system as expected. All the faulty behavior is modeled by a specification

language. Furthermore, being observable or not observable is not an issue for the

alphabet of the specification language. The specification for this example is given in

Figure 4.6.

Figure 4.6: Specification language automaton Gspec for the system G
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The basic language diagnoser Gbd for this example system is shown in Figure 4.7.

We can easily notice that there are F-certain states in Gbd. Therefore, if an abnormal

event occurred in the system according to specification language Gspec, an observer

can understand it whenever he recognizes an arrival to such F-certain state assuming

that the system has executed enough transitions.

Figure 4.7: Basic language diagnoser Gbd for the system G with language specifica-
tion Gspec

The modified language diagnoser which directly highlights every arrival to an F-

certain state by an observable fault-detection event is shown in Figure 4.8.

It can be directly seen that Gmd is a more practical language diagnoser realization

compared to Gbd due to insertion of fault-detection event FAILURE to the language

diagnoser alphabet. The fault-detection event FAILURE occurs immediately when-

ever the modified language diagnoser Gmd is sure about the first time violation of the

specification along a generated event sequence. For illustration, states in which the

modified language diagnoser is sure about the occurrence of any specification viola-

tion for the first time are marked. Considering that the idea of the modified language-

diagnoser is analogous to the idea of the modified event-diagnoser, it comes with the

same advantages as listed in Section 3.2.

In order to explain the construction of the modified language-diagnoser, we use the

analogous notation to Section 3.3. The modified language-diagnoser is a state ma-

chine
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Figure 4.8: Modified language diagnoser Gmd for the system G with language speci-
fication Gspec

Gmd = (Qmd,Σmd, δmd, q0md, Xmd) (4.6)

where the elements of this five-tuple have the meanings of

Qmd = Qbd +
⋃

Qtransient states

Σmd = Σbd + FAILURE

q0md = q0bd

Xmd =
⋃

F-certain states

(4.7)

Again, the terms having the subscript md are elements of the modified diagnoser and

terms having the subscript bd are elements of the basic diagnoser.

Inputs : rGen - System Model (Possible Behavior), G

rSpec - Specification Language Gspec

rDiagGen - Modified Diagnoser Gmd

Outputs : void

It is obvious that the elements of Gmd are nothing but slightly modified versions of

the corresponding Gbd elements as mentioned during the introduction phase of the
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Algorithm 2 Pseudo Code for Modified Language Diagnoser

LANGUAGEDIAGNOS ER (rGen, rS pec, rDiagGen)
Begin
Gspec complement ←− Gspec
Gpar comp ←− G ‖ Gspec complement and obtain composition map cmap
Remove unobs. transitions of Gpar comp to have a nondeterministic basis Gobs for
Gmd
Remove unobs. transitions from cmap
Create q0md and assign lq0md

←− N
Start matching Gobs states with Gmd states
while !dstates.Empty() do

dstate←− the next state of Gmd
if is fcertain(dstate) and firstfailureonpath[dstate]=false then

Do necessary changes on diagnoser for insertion FAILURE events
end if
Obtain the set of reachable states for Gobs correspondent of dstate
for Each corresponding state q ∈ Gobs of cmap do

Collect transition states of q
end for
Clear l of dstate
for Each transition event collected via corresponding Gobs state // parsing Even-

twise do
Add Arg1 of corresponding cmap element of corresponding Gobs of current

diagnoser state with the label of Gobs state
if Not end of transitions then

Continue with next transition
end if
for ∀ qd ∈ Qd of Gmd do

if l of dstate is not equal to l′ of qd then
continue

end if
if qd ∈ Xmd and firstfailureonpath[dstate]=false then

δmd ←− δ(dstate, FAILURE)=qd
else

δmd ←− δ(dstate, parsedevent)=qd
end if

end for
if !(∃ l′=l) then

Create qd ∈ Qd with corresponding l
δmd ←− δ(dstate, parsedevent)=qd

end if
Clear l of dstate

end for
end while
End
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modified language diagnoser. Since the fact behind the idea of enhancement is the

introduction of fault-detection events to the diagnoser automaton whenever the gener-

ated event sequence is traced enough to detect any abnormal event occurrence, we can

see that automaton terms having md and bd as subscripts differ only by Qtransient states,

FAILURE event and marking of F-certain states as expected. To make them more

clear for the reader, we can say that Qtransient states are the states into which the modi-

fied diagnoser will make transition immediately after the last event helps it understand

an F-certain state will be reached first time along that trace, hence just before gen-

erating FAILURE event and reaching into corresponding Fs-certain state. FAILURE

events are the fault-detection event to indicate that something not expected according

to given specification language Gspec is happened in the system. Final term Xmd is

the same F-certain states as in the case of basic language diagnoser, but now they are

marked for better illustration.

Now it should be trivial to obtain δmd. We can split the behavior of δmd into two. First

of them is the case in which transition function of basic language diagnoser δbd returns

an F-certain state that an observer meets for the first time along the corresponding

state. In this case, δmd just throws the aforementioned FAILURE event and enters to a

qtransient state ∈ Qtransient states and then passes to the same resultant state with the same

input event. Otherwise, δmd does exactly the same transition as δbd.

On the other hand, please note that all of these elements are also similar to the ele-

ments of modified event diagnoser which is mentioned in Section 3.3 since the logic

behind both of the modified diagnosers are same. The only difference between them

is the existence of only one type of observable FAILURE event for every kind of

abnormal behavior instead of FAILURE-Πi corresponding to each type of failure.

More detailed explanation on the algorithm for construction of such an modified lan-

guage diagnoser is given as in the form of a pseudo code. The ones who want to get

involved in the subject deeper can inspect the pseudo code of the software implemen-

tation of modified language diagnoser.
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We will end this section by some illustrative example systems in order to let the

reader make comparisons for corresponding basic and modified language diagnosers

and understand the notion in a better way.

4.3 Computation of Worst Case Detection Delay

In Section A we have introduced the algorithm proposed by [Yoo] which can be used

to test the existence of a worst case detection delay for language diagnosability. Exis-

tence of a worst case detection delay was important since it makes us understand that

the system is language diagnosable.

On the other hand, in this section we introduce a method for the practical computation

of the exact worst case detection delay after verifying its existence. This approach

differs from the other studies in the literature which only consider the existence of a

theoretical upper bound for the detection delay. We determine an exact number based

on the constructed modified language diagnoser.

To mention briefly about how wcdd is computed using the diagnoser, we will use the

modified diagnoser Gmd and the marked states Xmd of this diagnoser which are known

to be the marked F-certain states that are met first time along a generated sequence

since the automaton starts to perform its operation. We will backtrace from each F-

certain state to any normal labeled qimd of Gmd and. For each arrival to a normal state

q jmd , a forward trace on G up to each xi having label F of qimd will be searched from

the x j having label N corresponding to normal state q jmd by using the trace obtained

from the backtrace. After each traversal, if wanted states are reached by consuming

the traces, detection delays are stored and evaluated at the end.
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Algorithm 3 Pseudo Code for Worst Case Detection Delay

Begin
Obtain the set of F-certain states into which there exists an fault-detection transition
for Each F-certain state in the set do

Go back to state from which FAILURE transition stems from to enter the right
path

Backward DFS by accumulating the events from the parsed F-certain until a
normal state is reached

Obtain the set of indices corresponding to generator states in the label of parsed
state

for Each index d corresponding to a generator state in the index set do
for Each state index g in the normal diagnoser state do

Forward DFS with accumulated trace from parsed g until reaching d
if any abnormal behavior not existing in Gspec is met first time along the

accumulated trace then
Record its depth

end if
if target state d is reached by consuming the accumulated trace then

Record the depth of recorded abnormal behavior in wcdd pool
end if

end for
end for

end for
Output the greatest number in wcdd pool as wcdd
End

59



4.4 More Examples on Language Diagnoser

We will start this section by a system given in Figure 4.9 . The system is very similar

to the system of the first example in Section 3.4 and only difference is that the tran-

sition from state 5 to state 3 is realized via event τ instead of δ in order to make the

system language diagnosable.

Figure 4.9: Example System G1

Observable event set of the system in Figure 4.9 is Σo = {α, β, δ, σ, γ} and unobservable

event set is Σuo = {σ f 1} as in the event diagnoser example. Don’t forget to note

that no failure partition exists for the given system. All of the abnormal behavior is

defined according to the specification language which is obtained only by clearing the

undesired events from the possible behavior automaton and given in Figure 4.10.

Figure 4.10: Specification Language Automaton G1spec for Example System G1

Corresponding basic and modified language diagnosers can be seen in Figure 4.11

and Figure 4.12 respectively.
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Figure 4.11: Basic Diagnoser G1bd w.r.t G1spec & G1

Even though the basic diagnoser, Gbd, of the given system seems to have loops, i.e.

{3F-4F-5F} and {6N-8F11N-9F2N}, it does not violate the necessary condition for

being diagnosable since none of the loops are Fi-indeterminate. Moreover there are

no ambiguous states in the diagnoser, therefore an observer can understand that there

is something abnormal happened in the system using the diagnoser through additional

computations and analysis.

On the other hand, in our modified diagnoser for the same system, it is easy to notice

the FAILURE events which are inserted in order to indicate every abnormal behavior

occurred in the system according to given language specification. These FAILURE

events will save us from all the addidional computations to be able to detect abnormal

behaviors of the system.

Finally, we will compute the worst case detection delay of our modified diagnoser

G1md for this system. Even though, we obtain the result directly from the software

program by using the algorithm described in Section 4.3, we will still describe the al-

gorithm steps in more detail only for this example system since it is the first time the

reader meets its application on a system. There are three backtraces to normal states

from marked F-certain states of G1md. We can list these traces ignoring FAILURE as

s1: γ − σ − β − α from ”10F” to ”1N”

s2: γ − σ − β from ”10F” to ”6N”

s3: τ − σ − β − α from ”3F” to ”1N”
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Now, we will reverse these traces on G1 by starting from the state they have ended

and compute their detection delays. In fact, the traces obtained from G1md and corre-

sponding detection delays ∆dd on the traces were respectively found out to be as

s1 −→ α − σ f 1 − β − σ − γ, ∆dds1 = 3

s2 −→ σ f 1 − β − σ − γ, ∆dds2 = 3

s3 −→ σ f 1 − α − β − σ − γ, ∆dds3 = 4

By evaluating all the information supplied, it is obvious that wcddGmd1 = max(∆dds1 ,

∆dds2 , ∆dds3) = 4. Hereby, we can conclude that our modified diagnoser will notify

the user for the occurrence of faulty behavior after at most 4 event generations of the

plant.

Figure 4.12: Modified Diagnoser G1md w.r.t G1spec & G1

There is another system automaton G2 is defined in Figure 4.13. Observable event set

of the system is Σo = {α, β, γ, δ} and unobservable event set is Σuo = {σ f 1, σ f 2}. We do

not have any failure partition set in the system as expected. Additionally, it is easily

noticable that normal execution of the system is realized through states 1 − 2 − 4 − 5

and it returns to the start state 1 via transition with event d after any failure occured.

Therefore, specification automaton G2spec of system G2 that is the possible system

behavior without any abnormal behavior is given in Figure 4.14.

Corresponding basic language diagnoser and modified language diagnosers with fault-

detection event, i.e. FAILURE are given in Figure 4.15 and Figure 4.16, respectively.
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Figure 4.13: Example System G2

Figure 4.14: Specification Language G2spec for Example System G2

We will end analyzing this example by computing its worst case detection delay. The

worst case detection algorithm given in Section 4.3 found out that wcddG2md = 3 by

evaluating 4 traces discovered by backtracing from marked F-certain states of G2md

to first normal state on the way. Since, local detection delays for these traces were

computed as ∆dds1 = 1, ∆dds2 = 3, ∆dds3 = 2 and ∆dds4 = 2, wcddG2md equals 3.

Therefore, we can say conclude that this system is capable of detecting an abnormal

behavior in at most 3 events generated by the system.

The aforesaid traces are :

s1 −→ σ f 1 − δ, ∆dds1 = 1

s2 −→ σ f 2 − δ − σ f 1 − δ, ∆dds2 = 3

s3 −→ σ f 1 − δ − α, ∆dds3 = 2

s4 −→ σ f 1 − δ − β, ∆dds4 = 2

Remark 3 We conclude the modified language diagnoser chapter by highlighting

that the algorithms proposed for constructing a modified diagnoser in Section 4.2 and
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Figure 4.15: Basic Diagnoser G2bd w.r.t G2spec & G2

Figure 4.16: Modified Diagnoser G2id w.r.t G2spec & G2

computing its worst case detection delay in Section 4.3 is applicable to any existing

system that can be modeled by a DES with a specification automaton of normal be-

havior. Even though the given system is not language diagnosable with respect to the

normal behavior automaton and masking function, algorithms will anyway produce a

modified language diagnoser alerting all of the failure occurrences that are possible

to be diagnosed and compute their corresponding worst case detection delays.

Moreover, since both of the algorithms are based on DFS algorithm and traversing the

automata components corresponding to given system according to DFS, the resultant

diagnoser automaton and wcdd computations are unique and any other outputs are

impossible.
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CHAPTER 5

REDUCTION OF THE OBSERVABLE EVENT SET

In the former part of the thesis work, we discussed the necessity, construction al-

gorithm and advantages of the modified language diagnoser realization for notions of

event and language diagnosability. To make our modified diagnoser further enhanced,

we will look for the possibility of reducing the observable event set of the diagnoser

alphabet in this chapter.

5.1 Reduction of the Observable Event Set

For this purpose, we analyze the problem of selecting an optimal set of observable

events which can still make us accomplish the pre-assigned task of diagnosability.

Having a reduced and optimal set of observable events without losing the diagnos-

ability attribute of the system is important because each observable event requires its

own detection by a sensor and also usually causes a larger size of the related diag-

noser. By this study, we will have the opportunity of both ignoring some events by

treating them as if they are unobservable even when they are indeed observable and

hence, require fewer sensors for detection of any failure occurrence.

We will implement an algorithm that is based on the study Jiang [23] for the reduc-

tion of observable event set. Two methods are proposed to obtain an optimal set of

sensors, or equivalently an optimal observation mask for mask-monotonic systems.

Also in [23], Jiang states that since diagnosability is preserved under an increase in

the information of event observation and it is mask monotonic. Moreover, and proves

that mask these two methods One of them is called bottom-up method and the other
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is called top-down method.

Consider a plant G with alphabet Σ and a set of observable events Σo ⊆ Σ. The non-

faulty behavior of the system is given by a specification K ⊆ L(G) and we assume

that K is language-diagnosable for G and p : Σ? → Σ?o . We are interested in subsets

Σs ⊆ Σo such that still K is language-diagnosable for G and the reduced observation

ps : Σ? → Σ?s . In the best case, we find a set Σs such that it is not possible to remove

and observations from Σs because otherwise diagnosability is violated. Such set Σs is

called optimal.

The approach for finding an optimal Σs is based on a property of diagnosability that is

found in [23]. Diagnosability is mask-monotonic. This means that diagnosability can

only be violated by removing event observations. In contrast, a system will always

stay diagnosable if new observations are added.

In this thesis, we realize the top-down method as proposed in [23].

Top-down method : The method is based on recursively finding a Σs ⊆ Σo by remov-

ing events from Σo and testing if diagnosability is violated. The algorithms stops if

no more observable events can be removed.

In [23], it is verified in detail with corresponding proofs, the top-down algorithm for

finding a minimum partition in the set of all partitions satisfying the desired attribute

results in a minimum partition set without violating the conditions of that attribute. Of

course, it generates a partition only if there exists such a minimum partition in the set

of all partitions that does not violate our mask-monotonic property, i.e. diagnosability.

At this point, we will adapt the proposed algorithm for which existence of the solution

is guaranteed by [23].

The last important thing to be noted for the top-down algorithm is its not assuring

uniqueness of the resultant optimal set although existence of such solution is guaran-

teed. If there exists more than one optimal sensor sets, we may obtain any of them

after applying the algorithm depending on the order in which we remove the events

from the set Σo.

After explaining the algorithm in more detail by giving the pseudo code of it, we will
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end this section by applying the algorithm on the previous illustrative systems given

in Section 4.4.

The algorithms is implemented with the inputs rGen (plant model) and rSpec (speci-

fication language).

Algorithm 4 Pseudo Code for Reduction of the Observable Event Set

OPT IMIZEDIAGEVENTS (rGen, rS pec)
Begin
Deduce all the observable event system of the copied system
for Each observable event do

Set parsed event as unobservable
if The system is not language diagnosable w.r.t given rSpec then

Reset the event as observable
else

Erase the event from the observable event set
end if

end for
End

5.2 Reduced Modified Language Diagnosers for Previous Examples

We will first try to optimize the modified diagnoser G1md which is previously con-

structed for the system given in Figure 4.9. Without losing the property of language

diagnosability our algorithm shrank the observable event set Σo1md ={α, β, σ, γ, τ} of

G1md to Σo1rmd ={γ, τ}. The corresponding reduced modified language diagnoser is

constructed as in Figure 5.1.

Figure 5.1: Reduced Modified Language Diagnoser G1rmd
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The decrease in the size of required observations for language diagnosis is notice-

able. Formerly
∣∣∣Σo1md

∣∣∣ = 5 but now
∣∣∣Σo1rmd

∣∣∣ = 2. Even though our previous language

diagnoser model G1md was saving an observer from lots of computation, analysis and

observations, it seems that requiring lots of unnecessary event observation is a draw-

back for it. It is obvious that by using algorithm for reduction of observable event set,

our modified language diagnoser will also save huge amount of cost by removing the

necessity of observing unnecessary events, hence removing the usage of unnecessary

sensors in a real system to observe these event occurrences.

We end this example by computing the wcdd delay by using the algorithm given in

Section 4.3. The backtraces obtained by backward DFS are :

sb1: τ from ”3F” to ”1N”

sb2: γ from ”10F” to ”1N”

And their corresponding forward traces obtained by forward DFS are:

s f 1: σ f 1 − α − β − σ − τ, ∆dds f 1 = 4

s f 2: α − σ f 1 − β − σ − γ, ∆dds f 2 = 3

With such local detection delays of ∆dds f 1 and ∆dds f 2 , it is obvious that wcdd = 4. It

was also computed as 4 for the modified diagnoser without reduction algorithm. So,

we can say that we have reduced the number of required observation set without an

increase in wcdd for this example system.

There was another example system G2 and its corresponding specification language

G2spec as shown in Figure 4.13 and Figure 4.14 respectively, in Section 4.4 and we

will end this section by comparing our modified language diagnoser and the reduced

version of it. Although our modified diagnoser was able to successfully inform the

user by FAILURE events after a failure happened in the system, it needed 4 observable

events to run smoothly. The necessary observable event set was Σo2md={α, β, δ, γ} and∣∣∣Σo2md

∣∣∣= 4.

The reduced modified diagnoser G2rmd for this illustrative system show us that it is

also possible to detect any faulty behavior happened in the system within a finite

event transition according to the specification automaton G2spec by using only 2 event
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Figure 5.2: Reduced Modified Language Diagnoser G2rmd

observations, i.e. α, γ. The reduction in size of required observations from 4 to 2,

again will save us from extra cost for detecting the other 2 unnecessary event genera-

tions, i.e. β, δ in the system.

As in the previous reduced modified diagnoser example, we want to make a com-

parison between wcdds of reduced modified and default modified diagnosers of this

example. The backtraces obtaine by backward DFS are :

sb1: α − δ from ”1F” to ”1N”

sb2: δ − δ from ”1F4F” to ”1N”

Forward traces corresponds to sb1 and sb1 which are obtained by forward DFS are:

s f 1: β − σ f 2 − δ − α, ∆dds f 1 = 2

s f 2: σ f 1 − δ − α, ∆dds f 2 = 2

s f 3: β − σ f 2 − δ − β − σ f 2 − δ, ∆dds f 2 = 4

s f 4: β − σ f 2 − δ − σ f 1 − δ, ∆dds f 2 = 3

s f 5: σ f 1 − δ − β − σ f 2 − δ, ∆dds f 2 = 4

s f 6: σ f 1 − δ − σ f 1 − δ, ∆dds f 2 = 3

s f 7: β − σ f 2 − δ − β − δ, ∆dds f 2 = 3

s f 8: σ f 1 − δ − β − δ, ∆dds f 2 = 3

, respectively. In section 4.3, for the default modified language diagnoser case, we

found out that wcdd was 3 for the modified diagnoser of same example. Even though,

there is a slight increase in wcdd and it equals to 4 in the case of reduced modified

diagnoser, there may be up to 50% reduction in size and cost of sensors by applying

the optimal sensor selection algorithm to this system.
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Remark 4 By applying optimal sensor selection algorithm to a given system, ob-

viously there becomes a reduction in the information of observation of the system.

Although it seems useful for reducing the number of required observations and their

corresponding sensors in order to have a smaller modified diagnoser in size and ac-

cordingly a cheaper one in cost, we may encounter with more delay for the detection

of abnormal behavior occurrences. Necessary observations may happen much later

since there aren’t as much as observable events in reduced modified diagnoser when

compared to the default modified diagnoser.

Even though it is not certain and to encounter with such delays, it must be carefully

computed and wcdds must be carefully taken into account before constructing a real

modified diagnoser in order not to meet with unfavourable wcdds.
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CHAPTER 6

APPLICATION EXAMPLE : A COMMUNICATION

NETWORK

In this chapter, we will show the applicability of our modified diagnoser proposal on

an illustrative communication system. In sequence, we will give a brief description

about the overall system, corresponding automaton models for each active part in

the system including normal and faulty behaviors will be introduced. At the end,

our modified diagnoser will be constructed for several cases to be able to detect the

possible failure occurrences happened in the system in terms of the notion of language

diagnosability.

6.1 Communication Network Example

We will use a sample communication network consisted of three separate nodes which

are connected by a communication link. The nodes are connected to communication

link via connection points AB, CD and EF respectively. Overall view of the system

is given Figure 6.1

The general operation of the system can be summarized as follows:

• Node-1 functions as a master in the communication network,

• Node-2 & Node-3 function as slave in the communication network,

• Node-1 runs a query in order to confirm that Nodes 2, 3 and the communication

links are available for sending a command,
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Figure 6.1: Overall view of the communication network

• Node-1 sends the command as soon as it receives the confirmations from the

other nodes.

The system includes some problematic cases in which communication link AB and/or

communication link CD may possibly break any time during the normal operation of

the network and unfortunately these break events, i.e. breakA-B and breakC-D can not

directly be noticed by an observer. Hereby, we will end this section by presenting the

default masking function Pm and hence the events that can be sensed by an observer.

Pm(ε) := ε

Pm(σ) :=


ε if σ ∈{breakA-B, breakC-D}

σ if σ <{breakA-B, breakC-D}

Pm(sσ) := Pm(s)Pm(σ) for s ∈ Σ∗ and σ ∈ Σ

(6.1)

6.2 Models of the System Components

The system is assumed to be composed of mainly 5 components, i.e. Node-1, Node-2,

Node-3, Link-1, Link-2. In this section we will present their DFA models in sequence.

In Figure 6.2, the finite state automaton model for the possible behavior of Node-

1 which is the master node of the communication network is given. To mention it

briefly, its normal behavior can be understood by following the marked states starting

from the initial state. As it is aforementioned, the normal operation of Node-1 starts
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Figure 6.2: Possible Behavior Model of Node-1, the Master Node

with a request, i.e. RC, that is generated for the inquiry of Node-2 and Node-3 and

then the request is passed to the communication link via sendA-B event and later on

Node-1 starts to wait for receiving the responses of Node-2 and Node-3 and generates

RC2 and RC3 for their arrivals. At the end of normal operation, Node-1 sends the

command to the nodes to complete transaction. In spite of this, there may exist some

faulty behavior in the possible behavior of Node-1 and connections on the links AB

and CD may be broken, i.e. breakA-B and breakC-D, any time during this interaction

and this break down cannot directly sensed by sensors according to given masking

function Pm. Additionally, we can see in the model that Node-1 generates related

timer events whenever too much time will elapse after a break down.

Possible behavior model of Node-2 can be seen Figure 6.3 and it is naturally in cor-

relation with the behavior of Node-1. As it can also be discovered by again following

the transitions between marked states, in the normal execution, if no failure such as

breakA-B or breakC-D occurs in the system, it waits until the request from Node-1

arrives to itself over the communication link, i.e. sendC-D, then generates the re-

spective response for it by event respC-D and later on, waits for Node-1 to send the
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Figure 6.3: Possible Behavior Model of Node-2

command to complete the transaction. On the other hand, the possible faulty behavior

on the communication links can also affect the possible behavior of Node-2 and we

can see the corresponding breakA-B and breakC-D events triggering the related timer

events after too much time elapses following a breakdown.

Figure 6.4: Possible Behavior Model of Node-3

The model of Node-3 is shown in Figure 6.4. As expected, its possible behavior is

very similar to the possible behavior of Node-2 except for having no event breakC-D.

We do not expect it to have that break event since the link CD is on the other side of

the network but there might be a break down on link EF and we could denote it by an

event breakE-F. We do not give place to such event since diagnosing a break down on

communication link EF will require exactly the same construction steps as diagnos-

ing a break down on link CD. We make this assumption to keep our overall system

compact as possible for now. Apart from these the remaining possible behavior of

Node-3 can be described by replacing C-D including events.

We model the behavior of communication links in 4 parts, i.e. Link-AD, Link-AF,

Link-DA and Link-FA. Modelization of the system will end after giving their respec-

tive automata and brief descriptions about their process.
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In Figure 6.5 the model for Link-AD is shown. In the normal operation mode, it

forwards the inquiry to Node-2 by generating a sendC-Devent after the arrival of

sendA-B command.

Figure 6.5: Possible Behavior Model of Link-AD

The behavior of Link-AF is modeled in a similar manner to Link-AD. The link for-

wards the confirmation request sendA-B to Node-3 by generating a sendE-F event in

the normal operation mode. This behavior model is given in Figure 6.6

Figure 6.6: Possible Behavior Model of Link-AD

The remaining models belongs to Link-DA and Link-FA. Since their normal operation

resembles each other and work in a very similar way we will describe them together.

As a normal behavior, these links generate RC2 and RC3 events after the respective

arrival of responses from Node-2 and Node-3 for confirming the request of Node-1.

Additionaly there can happen a breakC-D event on Link-DA during the transaction.

Finally, at the end of this section we will obtain an overall communication network

automaton by synchronizing all the models of the components in the network. For

this purpose, an automaton model G representing the whole communication network

is obtained by synchronous composition of all elements.
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Figure 6.7: Possible Behavior Model of Link-DA

Figure 6.8: Possible Behavior Model of Link-FA

G = GNode−1 ‖ GNode−2 ‖ GNode−3 ‖ GLink−AD ‖ GLink−AF ‖ GLink−DA ‖ GLink−FA (6.2)

6.3 Diagnosis of BreakA-B Event

We will first try our proposal of improved language diagnoser for the purpose of di-

agnosing occurrences of unobservable failure event breakA-B in the communication

network. For being able to diagnose such event in terms of language diagnosability

notion, what we need is a corresponding specification automaton GbreakAB. We will

obtain this specification automaton by erasing the transitions via breakA-B event from

G and then using the accessible part of the remaining automaton. Resultant specifi-

cation automaton GbreakAB is given in Figure 6.10.

As mentioned formerly, our modified language diagnoser is supposed to perform on-

line and centralized diagnosis. For this application example, we assume that our
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Figure 6.9: Possible Behavior Model for Overall Network
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Figure 6.10: Specification Automaton GbreakAB

central diagnoser is observing the overall communication network and evaluating the

gathered observations according to the given masking function in Equation 6.1.

With the supplied observable event set, Σo md={sendA−B, sendC−D, sendE−F, RC,

RC2, RC3, respC − D, respE − F, timer1, timer2, timer3, timer4, timer5, timer6},

the constructed modified language diagnoser is shown in Figure 6.11.

The default construction method for our modified language diagnoser results in this

kind of huge automaton. Despite it is a large and complex automaton, only important

thing to do by an observer is to note the FAILURE events inserted into Gmd indicating

the first time arrivals to F-certain states along a generated event sequence because

Gmd does all of the necessary computations, follows the generated observable event

sequence and alerts for the occurrence of any faulty behavior happened in the system

according to the specification automaton GbreakAB.

The worst case detection delay of the modified diagnoser that is obtained by wcdd

algorithm that is proposed in Section 4.3 equals to 5. To be more explicit, we will

reveal which paths are indicated to be the worst case paths according to algorithm.

Since there are totally hundreds of paths to be analyzed for such a huge system, we

will only reveal the ones causing a worst case detection.

Back trace(s) obtained from Gmd automaton in Figure 6.11 and causing a wcdd are:
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Figure 6.11: Modified Language Diagnoser Gmd for Diagnosing breakA − B
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sb1: timer3-respEF-respCD-sendEF-sendCD from ”16F 82F 92F” to ”3N”

sb2: timer3-respEF-respCD-sendCD-sendEF from ”16F 92 145” to ”3N”

and their corresponding forward traces causing to wcdd obtained by forward DFS are:

s f 1: breakAB-sendCD-sendEF-respCD-respEF-timer3, ∆dds f 1 = 5

s f 2: breakAB-sendEF-sendCD-respCD-respEF-timer3, ∆dds f 2 = 5

We will end this section by presenting the further modified diagnoser, i.e. the re-

duced modified language diagnoser with the optimal observable event set required

for detection of breakA-B in terms of the notion of language diagnosability. The al-

gorithm described in Section 5 reduces the number of necessary observations to only

|Σo rmd|=3, which was |Σo md|=14 formerly, by making the observable event set equal

to Σo rmd={timer1, timer3, timer6} and our modified diagnoser is much more lucid.

Corresponding reduced modified language diagnoser Grmd is given in Figure 6.12.

To be able to make a comparison between the modified and reduced modified diag-

nosers of this communication system for the diagnosis of breakA-B event, we will

compute wcdd for the reduced modified diagnoser, i.e. Grmd.

Back trace for wcdd Grmd is:

sb1: timer3 from ”10F 11F 12F 13F 14F 15F 16F 17F 18F 74F 77F 78F 79F

81F 82F 92F 98F 99F 101F 103F 104F 105F 122F 125F

137F 144F 145F 148F 149F 150F” to ”1N”

and its corresponding forward traces obtained by forward DFS are:

s f 1: RC-sendAB-breakAB-sendEF-sendCD-respCD-respEF-timer3,

∆dds f 1 = 5

s f 2: RC-sendAB-sendCD-breakAB-respCD-sendEF-timer4-respEF-timer3,

∆dds f 2 = 5

Thus, we can conclude by noticing that there is not an increase in wcdd for diagnosis

of breakA-B event although we reduce the size and cost of modified diagnoser signif-

icantly with further enhancement by applying the optimal sensor selection algorithm.
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6.4 Diagnosis of BreakC-D Event

In this section, we will focus our attention to diagnosis of the other unobservable

failure event breakC-D. As in the case of diagnosis of breakA-B event, again we will

need a specification automaton for the detection of breakC-D in terms of language

diagnosability.

An automaton for such purpose is obtained by removing all the existing breakC-D

transitions from the overall network model G and using the accessible part of the

remaining automaton. Such specification automaton GbreakCD obtained by using the

described method is given in Figure 6.13.

We will assume that our diagnoser is observing the overall communication network

and therefore, in the default setting, its observable event set is Σo md={sendA − B,

sendC − D, sendE − F, RC, RC2, RC3, respC − D, respE − F, timer1, timer2,

timer3, timer4, timer5, timer6}.

Using these instructions with overall network model G and specification automaton

GbreakCD, we will have our modified language diagnoser Gmd constructed as it is seen

in Figure 6.14.

Default modified language diagnoser Gmd has a similar large and complex structure

with the Gmd of diagnosis of breakA-B case. Unfortunately, such diagnoser size is

common in central diagnosers of complex systems since they are observing the overall

system and evaluating it. But thanks to our proposal of modified language diagnoser

for saving us dealing with such complex automata, tracking so many possible event

generations and make us only track the generations of FAILURE event.

For the task of breakC-D event diagnosis , the worst case detection delay of the mod-

ified diagnoser equals to 4 according to wcdd algorithm that is proposed in Section

4.3. We will again only reveal the paths are causing to the worst case detection paths

becasue there are too many paths to be analyzed for such a huge system.

By using the after the first step of wcdd computation algorithm, i.e. backward DFS,

we obtain lots of back trace(s). The back trace(s) obtained from Gmd automaton in

Figure 6.11 and causing a wcdd are:
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sb1: timer2-RC3-respEF-sendEF from ”24F” to ”3N”

sb2: timer2-RC3-respEF-sendEF from ”115F” to ”5N 9N”

sb3: timer5-RC3-respEF-sendEF from ”111F” to ”5N 9N”

sb4: RC3-timer4-respEF-sendEF from ”54F” to ”35N”

sb5: RC3-respEF-sendEF-timer4 from ”54F” to ”35N”

and their corresponding forward traces which are resulting in a wcdd and obtained by

forward DFS are:

s f 1: breakCD-sendEF-respEF-RC3-timer2, ∆dds f 1 = 4

s f 2: breakCD-sendEF-respEF-RC3-timer2, ∆dds f 2 = 4

s f 3: breakCD-sendEF-respEF-RC3-timer5, ∆dds f 3 = 4

s f 4: breakCD-sendEF-respEF-timer4-RC3, ∆dds f 3 = 4

s f 5: breakCD-timer4-sendEF-respEF-RC3, ∆dds f 3 = 4

Finally, we will look for any possible reduction in the size of required observable

events for the diagnosis of breakC-D event by using our optimizediagevent algorithm

given in Section 5. The algorithm again reduces the number of required observations

significantly for the diagnosis of breakC-D event and save our modified diagnosers

from tracking unnecessary observable events. After applying the algorithm reduced

modified language diagnoser Grmd finds out that it needs only detecting the genera-

tion of timer2 event for the same diagnosis task. It is obvious that the final reduced

and modified language diagnoser algorithm saves the cost of sensing 13 unnecessary

observations since |Σmd|=14 and |Σrmd|=1. Corresponding Grmd is given in Figure 6.15.

At the end of this section, we will again compute wcdd for the reduced modified

diagnoser, i.e. Grmd in order to make a comparison between the modified and reduced

modified diagnosers of this communication system for the diagnosis of breakC-D

event.

Back traces from Grmd causing to wcdd are:

sb1: timer2 from ”28F 55F 58F 112F 115F” to ”1N”

and their corresponding forward traces causing to wcdd obtained by forward DFS are:

83



s f 1: RC-sendAB-sendCD-respCD-RC2-breakCD-

sendEF-timer4-respEF-RC3-timer2, ∆dds f 1 = 5

s f 2: RC-sendAB-sendCD-breakCD-

sendEF-timer5-respEF-RC3-timer2, ∆dds f 2 = 5

By comparing the worst case detection delays of modified and reduced modified di-

agnoser, we can conclude by noticing that there is a slight increase of wcdd from 4 to

5 for diagnosis of breakC-D event even though we reduce the size and cost of modi-

fied diagnoser significantly with further enhancement by applying the optimal sensor

selection algorithm.
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Figure 6.13: Specification Automaton GbreakCD
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Figure 6.14: Modified Language Diagnoser Gmd for Diagnosing breakC − D

Figure 6.15: Reduced Modified Language Diagnoser Grmd
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis work, we conducted our studies generally on the notion of diagnosability.

As well as already existing DES approaches in the literature, the diagnosability notion

was inspected in terms of both event diagnosability [8], [2], i.e. each faulty behavior is

introduced to the system as failure events and language diagnosability [11], [12], i.e.

each abnormal behavior other than the normal execution of the system is introduced

by a special specification automaton.

As the first contribution, this thesis improves the applicability of basic event/language

diagnosers proposed in [8] by the development of modified event/language diag-

nosers. The main advantage of these modified diagnosers are directly signalling the

detection of a fault and do not require any additional computation. Hence, they can

be conveniently used in online diagnosis. As the second contribution, an algorithm

for the exact worst-case detection delay computation is developed for our modified

language-diagnoser. This is different than other studies that only show the existence

of such worst-case detection delay. Moreover, both of these contributions are gener-

alized and they can be applied to any existing DES modeled system for the detection

of failure occurrences and compute their worst case detection delays even though the

given system needs to be diagnosable for letting the proposed diagnoers detect all

of the faulty behavior occurences and computing their worst case detection delays,

respectively. The third contribution of the thesis is providing an algorithm for reduc-

ing the required observations for diagnosis if there exists such a possible reduction

without losing the property of diagnosability. Though the resultant required observa-

tion set may not be unique and there can exist more than one optimal sensor set with
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respect to the given system, the algorithm is guaranteed to output one of the existing

optimal observation sets without violating diagnosability.

As a result, this thesis offers a modified and, if possible, reduced diagnoser which has

a computed worst case detection delay for each diagnoable failure whenever all of the

methods being proposed in the thesis is applied to a given system. The methodology

is generalized and applicable to all DES modeled systems. Existance of such a modi-

fied diagnoser plus its wcdd computation is guaranteed by the algorithms in the thesis

but there may not be a unique outcome because of the optimal sensor selection al-

gorithm even though the algorithms for modified diagnoser and worst case detection

computation produces a unique modified diagnoser.

All algorithms are implemented in the software library libFAUDES [19], [15] and

all of the offered methods and algorithms are applied to a communication network

example after being described in detail and their functionality is demonstrated.

Both of the diagnosers that we proposed in this thesis fall into category of centralized

diagnosis in the literature since all the information obtained from the system is gath-

ered and evaluated by a single diagnosis unit. From this point of view, this study can

be extended for decentralized diagnosis for reaching a more extensive scope in the

notion of diagnosability as a future work.

Additionally, the case in which repeated failures can happen along a trace is not taken

care by our modified diagnosers and only the occurrence of corresponding permanent

type of faulty behavior is reported to an observer. In such a case of repeatedly occur-

ring failures of same type along a trace, our diagnosers will be able to inform the user

only about the occurence of corresponding type of failure, i.e. not about each hap-

pening of that type of failure. As another future work, a more advanced enhancement

on our approach for the modified diagnosers may be used for repeatedly diagnosing

and repairing for the case that faults repeatedly happen along a trace.
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APPENDIX A

Testing Language Diagnosability

In this section we will introduce the method which Yoo suggested in his paper [11]

to the reader for being able to check the existence of finite detection delay. Since it is

used in our thesis work with some simple modification, we had better make the reader

familiar with the algorithm here. Via this proposed method, it can be understood that

if our system has the formerly mentioned system property, language diagnosability.

Moreover, building upon the results of this section, another algorithm for computing

the worst case detection delay, ddia, is mentioned in [11] for the ones who want to

probe the subject.

Our purpose is to build a weighted and directed graph in order to verify the existence

of finite detection delay. We will denote the formerly mentioned two notions, the

normal system behavior and the possible system behavior by N and P, respectively

and our masking function M will be the natural projection function po.

The weighted, directed graph G and its element, the set of vertices V are described as

G(N, P,M) = (V(N, P), E(N, P,M)) (A.1)

where a weight function w is defined for the weighted and directed graph G(N, P,M)

as

w : E → {−1, 0} (A.2)

After completely giving the description of graph G, we will explain the implication
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of it in more detail. The reader must know about the following transition notation

before proceeding into description of how edges are assigned in the graph.

δN(q1, σ
′) = q′1

δN(q2, σ
′) = q′2

δN(q3, σ
′) = q′3

(A.3)

Please note here that, event σ is used to define q2’ and q3’ while event σ′ is used to

define q1’. Since no other constraint is defined for the events in the graph, it can be

thought that events σand σ’ can be identical.

The notation p
i
−→ q implies that there is an edge (p, q) ∈ E with candidate i ∈ {−1, 0}.

The weight of the edge is determined by choosing the minimum of weight candidates

defined over the edge (p, q) ∈ E. The function defines the edges of the graph has the

following rules :

For σ′, σ ∈ ΣP such that M(σ′) = M(σ) = ε

(q1, q2, q3, normal)
0
−→ (q′1, q2, q3, normal) if q′1 is defined

(q1, q2, q3, normal)
0
−→ (q1, q′2, q

′
3, normal) if q′2 and q′3 are defined

(q1, q2, q3, normal)
−1
−−→ (q1, q2, q′3, con f used) if q′2 is not but q′3 is defined

(q1, q2, q3, con f used)
0
−→ (q′1, q2, q3, con f used) if q′1 is defined

(q1, q2, q3, con f used)
−1
−−→ (q1, q2, q′3, con f used) if q′1 is defined

(A.4)

For σ′, σ ∈ ΣP such that M(σ′) = M(σ) , ε

(q1, q2, q3, normal)
0
−→ (q′1, q

′
2, q

′
3, normal) if q′1, q′2 and q′3 are defined

(q1, q2, q3, normal)
−1
−−→ (q′1, q2, q′3, con f used) if q′1,q′3 are defined but q2’ is not

(q1, q2, q3, con f used)
−1
−−→ (q′1, q2, q′3, con f used) if q′1 and q′3 are defined

(A.5)

Finally, the edges to Block vertex are defined as

For σ′, σ ∈ ΣP such that M(σ′) = M(σ) , ε

(q1, q2, q3, con f used)
−1
−−→ Block if q′3 is not defined (A.6)
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It is obvious that an edge existing in the graph can have two possible values as weight

candidates -1 and 0 according to the rules of the function. In case both of the candi-

dates are available for an edge, minimum candidate, i.e. -1, is chosen as the weight

of the edge. With the algorithm described recently, we have our weighted, directed

graph G. From so now, we only consider the accessible part of our graph G. Now

the readers must be ready for understanding the implication of directed and weighted

graph G. The graph G is designed to track traces s′ ∈ L(N) and s ∈ L(P) from the

starting vertex (qN
0 , q

N
0 , q

P
0 , normal). To be more specific, the vertex space and edge

relation are defined to track the traces in the following manner:

QN︸︷︷︸
s’

×QN × QN︸    ︷︷    ︸
s

×{normal, con f used} (A.7)

In [13] Yoo & Garcia studied a transition relation of F-verifier similar to the structure

of this edge definition. The indicator set normal, confused informs us about the trace’s

being in normal behavior L(P) or abnormal behavior L(P) \ L(N). Since q′2 and q′3 is

defined by the same event, the second term QN and the third term QP in a vertex label

track the trace s simultaneously as long as s ∈ L(N). The indicator remains at normal

during this tracking operation. It changes to confused when q′2 is not defined but q′3
is defined. This situation happens when s becomes abnormal, i.e. s ∈ L(P) \ L(N).

Afterwards, we do not need to update the term q2 ∈ QN within a edge from vertices

having indicator confused.

Moreover, it is important to note that the weight candidate -1 is assigned if and only if

q′3 is defined and the vertex reached by that edge has the indicator confused. Finally,

we can have an end for the implication of graph G part by a conclusion which states

that the edges with weight -1 are for updating abnormal traces while the edges with 0

are for updating normal traces.

All the explanation given for this algorithm is for being able to test the given systems

in terms of language diagnosability as stated at the beginning of the section. After

stating the properties of the algorithm, we will give the final conclusion theorem of

the algorithm and an explanatory example for the reader.

Theorem 1 Given two automata N and P as stating normal behavior and possible
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behavior of the language respectively and the natural projection function po, L(P)

is not language diagnosable with respect to L(N) and p0 iff there is a cycle that has

an edge with negative weight or the block vertex is reachable from the start state

(qN
0 , q

N
0 , q

P
0 , normal) in graph G(N, P,M)

Figure A.1: Normal and possible system behavior

Let us look at Figure A.1. The normal behavior L(N) of the system is generated by

automaton N depicted in Figure A.1.a and the possible behavior L(P) is generated by

automaton P depicted in A.1.b. Note that L(N) ⊆ L(P).

Our mask function will be the projection function P1 and it is defined as :

P1(a) = P1(b) = ε and

P1(c) = P1(d) = e

The algorithm for generating the directed, weighted graph G produces the graph G1 in

Figure A.2 with the given projection function P1. It is easily seen that the graph has a

that includes an edge with the negative weight which means that this language is not

language diagnosable with respect to given specification automaton N and projection

function P1.For instance, the traces s1 = bdn ∈ L(P) \ L(N) and s2 = acn ∈ L(N)

cannot be distinguished with given specification language and the mask function since

P1(s1) = P1(s2) for all n ∈ N.

On the other hand, since the notion of language diagnosability depends on normal
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Figure A.2: G1(N, P, P1)

behavior definition, i.e. the specification automaton N, we can make the same system

language diagnosable if we choose a more suitable mask function P2 as such

P2(a) = P2(b) = P2(c) = ε and P2(d) = e

With the same specification automaton defining the normal events in the language, the

algorithm generates the weighted, directed graph G2 in Figure A.3 associated with this

masking function P2. It is clear that the graph G2 does not include any cycle with a

negative weighted edge or blocking states which makes us draw the conclusion of the

language’s being language diagnosable with respect to given specification automaton

N and mask function P2.

Figure A.3: G2(N, P, P2)

The proof and more explanation can be found in [11] for more interested readers.
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