
COMBINED CENTRALIZED AND DECENTRALIZED FAULT
DIAGNOSIS FOR DISCRETE EVENT SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

RUHI KARAV

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2014

Approval of the thesis:

COMBINED CENTRALIZED AND DECENTRALIZED FAULT

DIAGNOSIS FOR DISCRETE EVENT SYSTEMS

submitted by RUHI KARAV in partial ful�llment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineer-

ing Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Eng.

Assoc. Prof. Dr. �enan Ece Schmidt
Supervisor, Elect. and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt
Co-supervisor, Mechatronics Eng. Dept., Çankaya Uni.

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. �enan Ece Schmidt
Electrical and Electronics Engineering Department, METU

Prof. Dr. Kemal Leblebicio§lu
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Cüneyt Bazlamaçc�
Electrical and Electronics Engineering Department, METU

Assist. Prof. Dr. Ula³ Beldek
Mechatronics Engineering Department, Çankaya University

Date:

I hereby declare that all information in this document has been ob-

tained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct,

I have fully cited and referenced all material and results that are not

original to this work.

Name, Last Name: RUHI KARAV

Signature :

iv

ABSTRACT

COMBINED CENTRALIZED AND DECENTRALIZED FAULT
DIAGNOSIS FOR DISCRETE EVENT SYSTEMS

Karav, Ruhi

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. �enan Ece Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

February 2014, 81 pages

Discrete Event Systems (DES) are used for modeling systems such as manu-

facturing systems, telecommunication systems and transportation systems. It

is possible to incorporate the fault model in the DES model together with a

fault diagnosis approach to evaluate the robustness and the reliability of the

system at the design stage. There are centralized or decentralized fault diagno-

sis approaches in the literature. The centralized fault diagnosis achieves stronger

results however it does not scale to reasonably large systems because of its com-

plexity. The decentralized diagnosis is applicable to real-life systems with a cost

of possible misses of faults.

This thesis proposes a combination of centralized and decentralized fault diag-

nosis for DES models. To this end, the thesis makes use of the observation

that some parts of the faulty DES behavior might be detected by decentral-

ized diagnosis while other parts need a centralized diagnoser. Hence, the overall

v

complexity of the diagnosis is reduced while maintaining the ability to detect all

faults. The thesis proposes a systematic diagnosis approach together with the

algorithms and practical applications to manufacturing system and communica-

tion network examples.

Keywords: Discrete Event System, Centralized Diagnosis, Decentralized Diag-

nosis, Testing Automaton, Finite Detection Delay, Mask Function, libFAUDES

vi

ÖZ

AYRIK OLAYLI S�STEMLER �Ç�N B�RLE��K MERKEZ� VE DA�ITILMI�
BOZUKLUK TANILAMA

Karav, Ruhi

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. �enan Ece Schmidt

Ortak Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt

�ubat 2014 , 81 sayfa

Günlük ya³amdaki üretim sistemleri, telekomüniskasyon sistemleri ve ta³�ma sis-

temleri gibi pekçok alan Ayr�k Olayl� Sistem olarak modellenmektedir. Bu ayr�k

olayl� sistemlerde hatal� olaylar meydana gelebilir. Bu yüzden ba³ka bir alan

olan bozukluk tan�lay�c� incelenmelidir. Literatürde pekçok bozukluk tan�lay�c�

mimari vard�r. Bunlar monolitik, da§�t�lm�³ ve modüler mimarilerdir. Bu çal�³-

mada biz monolitik ve da§�t�lm�³ mimarilere yo§unla³aca§�z. Bu iki mimaride de

tek bir sistemde hata ay�klama i³lemi yap�l�r. Ancak monolitik mimaride tek ve

genel bir bozukluk tan�lay�c� kullan�l�rken, da§�t�lm�³ mimari yerel tan�lay�c�lar�

kullan�r. Literatürde e§er bir sistem da§�t�lm�³ tan�lay�c� mimari ile ay�klana-

biliyorsa sadece da§�t�lm�³ mimari kullan�l�r. Ancak bu sa§lam�yorsa monolitik

mimari kullan�l�r. Biz bu iki mimariyi birle³tirdik. Bizim mimarimiz mümkün

oldu§u kadar da§�t�lm�³, zorunluluk oran�nda da monolitik kullanmaya dayan-

maktad�r.

vii

Anahtar Kelimeler: Ayr�k Olayl� Sistem, Merkezi Bozukluk Tan�lay�c�, Da§�t�lm�³

Bozukluk Tan�lay�c�, Test Otomat�, S�n�rl� Alg�lama Gecikmesi, Maske Fonksi-

yonu, libFAUDES

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to thank my advisors Associate Professors �enan Ece Schmidt and

Klaus Werner Schmidt for their guidance and friendship. They encouraged me

to �nish thesis work.

I would like to express my appreciation to Mehmet Ali Gülden and Kenan Ah�ska

for their friendships and for motivating me throughout this work.

There are lots of people that were with me during my thesis work. They always

supported me. It is impossible to explain why they are so important. Therefore,

i will give names of some of my friends; Ahmet Karakaya, Gökhan Ordu, Alper

Avc�o§lu, Serkan Nas, Ömer Batmaz.

My family also provided invaluable support for this work. I would like to thank

specially to my wife, Kadriye Sultan for her patience. She always makes me feel

loved and cared. I would like to thank my father Davut, my mother Nimet, my

brother Enes and my sister Gülendam.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

2 DISCRETE EVENT SYSTEMS 5

2.1 Language . 5

2.1.1 String . 6

2.1.2 Language . 6

2.2 Automata . 7

2.2.1 Deterministic Automata 7

2.2.2 Non-deterministic Automata 8

xi

2.2.3 Operations on Automata 8

3 CENTRALIZED DIAGNOSIS 11

3.1 Diagnosability . 11

3.2 Testing Diagnosability 13

3.3 Complexity Analysis . 17

4 DECENTRALIZED DIAGNOSIS 21

4.1 Co-diagnosability . 22

4.2 Codiagnosability Checking 24

4.2.1 Constructing the Augmented Speci�cation Au-
tomaton, (H) 24

4.2.2 Constructing the Testing Automaton 25

4.2.3 Checking the Violation of Codiagnosability . . 27

4.3 Implementation in libFAUDES 27

4.3.1 Augmented Speci�cation Automaton 27

4.3.2 Testing Automaton 28

4.3.3 Checking the Violation of Codiagnosability . . 43

4.4 Complexity Analysis . 46

5 COMBINATIONOF CENTRALIZED ANDDECENTRALIZED
DIAGNOSIS ALGORITHM . 49

5.1 Supremal Co-Diagnosable Sublanguage 49

5.2 Implementation in libFAUDES 51

6 APPLICATION EXAMPLES 65

xii

6.1 Communication Application 65

6.1.1 Communication System Modeling 65

6.1.2 Diagnosing of "BreakA−B" Event 70

6.1.3 Diagnosing of "BreakC −D" Event 71

6.2 Manufacturing Application 72

6.2.1 Manufacturing System Modeling 73

6.2.2 Diagnosability of Manufacturing System 75

7 CONCLUSION . 77

REFERENCES . 79

xiii

LIST OF TABLES

TABLES

Table 3.1 Global Observation Mask of The Plant 15

Table 3.2 Global Observation Mask of The Plant 19

Table 4.1 Local Observation Masks . 30

Table 4.2 Local Observation Masks . 44

Table 4.3 Local Observation Masks . 45

Table 5.1 Local Observation Masks . 61

Table 5.2 Local Observation Masks . 63

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 The �rst three rules of Weighted Directed Graph W 14

Figure 3.2 The fourth rule of Weighted Directed Graph W 14

Figure 3.3 The sixth rule of Weighted Directed Graph W 15

Figure 3.4 The eighth rule of Weighted Directed Graph W 15

Figure 3.5 Generator, G . 16

Figure 3.6 Speci�cation Automaton, K 16

Figure 3.7 Weighted Directed Graph W 17

Figure 3.8 Generator, G2 . 17

Figure 3.9 Weighted Directed Graph with Negative Edge Weight 18

Figure 3.10 Generator . 18

Figure 3.11 Speci�cation . 19

Figure 3.12Weighted Directed Graph including BLOCK state 19

Figure 4.1 Decentralized Diagnosis Architecture 21

Figure 4.2 A Plant without self loop . 23

Figure 4.3 A Plant with self loop . 23

Figure 4.4 Testing automaton construction, cases 1,2,3 31

xv

Figure 4.5 Testing automaton construction, case 4 31

Figure 4.6 Testing automaton construction, case 7 33

Figure 4.7 Testing automaton construction, case 8 33

Figure 4.8 Testing automaton construction, case 9 34

Figure 4.9 Testing automaton construction, case 12 35

Figure 4.10 Testing automaton construction, case 13 36

Figure 4.11 Testing automaton construction, case 14 37

Figure 4.12 Testing automaton construction, case 17 38

Figure 4.13 Testing automaton construction, case 18 39

Figure 4.14 Testing automaton construction, case 19 39

Figure 4.15 Testing automaton construction, case 23 42

Figure 4.16 Testing Automaton . 43

Figure 4.17 Codiagnosable Generator,G 45

Figure 4.18 Speci�cation,K . 45

Figure 4.19 Testing Automaton with only Faulty States 46

Figure 4.20 Non-codiagnosable plant G 46

Figure 4.21 Speci�cation automaton C 47

Figure 4.22 Indeterminate cycle in the testing automaton 47

Figure 4.23 Generator which is deadlock-free 48

Figure 5.1 Supremal Codiagnosable Subpart of Plant 51

Figure 5.2 Nonco-diagnosable Subpart of Plant 51

Figure 5.3 Testing Automaton of Supremal Codiagnosable Subpart . . . 52

xvi

Figure 5.4 Testing Automaton of Noncodiagnosable Subpart 53

Figure 5.5 Testing Automaton Part Before Step-7 55

Figure 5.6 Testing Automaton Part After Step-7 55

Figure 5.7 Generator without deadlocking states 57

Figure 5.8 Testing Automaton with only Faulty States 57

Figure 5.9 Indeterminate cycles marked in Testing Automaton 58

Figure 5.10 Trimmed Testing Automaton 59

Figure 5.11 (L(G) \ Lco) . 59

Figure 5.12 Lnon = K ∪ (L(G) \ Lco) . 59

Figure 5.13 Lnon = K ∪ (L(G) \ Lco) where (L(G) \ Lco) = ∅ 60

Figure 5.14 Lnon = K ∪ (L(G) \ Lco) where Lnon = G 60

Figure 5.15 Generator, G . 61

Figure 5.16 Speci�cation including unobservable cycle 61

Figure 5.17 Lnon = K ∪ (L(G) \ Lco) where Lnon = K 62

Figure 5.18 Generator including deadlocking state 62

Figure 5.19 Speci�cation automaton . 62

Figure 5.20 Testing Automaton that consists of only Faulty States 63

Figure 5.21 Testing Automaton that consists of only Faulty States 64

Figure 5.22 Lnon = G . 64

Figure 6.1 Communication system overview. 66

Figure 6.2 Node-1 . 66

Figure 6.3 Node-2 . 67

xvii

Figure 6.4 Node-3 . 67

Figure 6.5 A-B Link: Transmission to C-D 68

Figure 6.6 A-B Link: Transmission to E-F 68

Figure 6.7 C-D Link . 68

Figure 6.8 Communication Generator 69

Figure 6.9 Communication Speci�cation Automaton including breakC −
D events . 70

Figure 6.10 Non-codiagnosable strings Lnon \K 71

Figure 6.11 Communication Speci�cation Automaton including breakA−B 72

Figure 6.12 Manufacturing Application 73

Figure 6.13 Stack Feeder Part . 74

Figure 6.14 Conveyor Belt Part . 74

Figure 6.15 Product detection fault . 75

Figure 6.16 Manufacturing System . 75

Figure 6.17 Manufacturing Speci�cation Automaton 76

Figure 6.18 Noncodiagnosable Subpart of the Manufacturing System . . . 76

xviii

LIST OF ABBREVIATIONS

DES Discrete Event Systems

G Generator Automaton

H Augmented Speci�cation Automaton

K Speci�cation Automaton

L Language

Lco Supremal codiagnosable sublanguage

Lnon Noncodiagnosable sublanguage

M Global observation mask function

M1 The �rst mask function

M2 The second mask function

T Testing Automaton

x The �rst component of the current state in T

x0 Initial state of G

xnext The �rst component of the next state in T

y0 Initial state of K

y1 The third component of the current state in T

y2 The last component of the current state in T

y The second component of the current state in T

y0 Initial state of H

ynext The second component of the next state in T

y1next The third component of the next state in T

y2next The last component of the next state in T

σ The �rst string of the current event in T where σ ∈ L(G)

σ1 The second string of the current event in T where σ1 ∈ Σ

σ2 The third string of the current event in T where σ2 ∈ Σ

Σ Finite event set

Σuo Unobservable event set

Σo Observable event set

xix

Σf Faulty event set

ε Empty string

∆ Set of observation

xx

CHAPTER 1

INTRODUCTION

A large number of technical systems including manufacturing systems [5],[8],

telecommunication systems [2], [1], transportation systems [7] or document pro-

cessing systems [16] can be conveniently modeled as Discrete Event Systems,

DES. Consequently, the Failure diagnosis approaches for DES can be applied to

such system models to support robustness and reliability at the design stage.

The fault diagnosis for DES is based on a DES model that includes the faulty

system behavior, and a characterization of the possible faults (fault model) in

terms of unobservable failure events [17] or a failure speci�cation [13], [25]. The

diagnosis goal is to uniquely identify, if an (unobservable) fault occurred, based

on the partial observation of the actual system behavior. In this context, a

DES is denoted as diagnosable if every modeled fault can be detected after a

bounded number of event occurrences [17]. In order to analyze if all faults of

a DES are diagnosable, the literature provides various approaches that provide

diagnosability test for DES [17, 25, 13, 8, 24, 18, 19, 20].

There are di�erent architectures for the fault diagnosis for DES. In the cen-

tralized architecture, a single diagnosing entity (diagnoser), that observes the

overall behavior of the system is used [8],[17],[25],[24],[26], [18]. Di�erently, de-

centralized approaches rely on diagnoser components at di�erent local sites, that

communicate among each other or to a coordinating entity, in order to obtain

a global diagnosis result [13], [6], [23], [22],[12],[19]. In general, centralized di-

agnosis provides a stronger diagnosis result, since all observations are obtained

and processed by a single entity. However, due to design complexity and due to

1

physical distribution, centralized diagnosis is usually not possible for practical

systems. In that case, the usage of a decentralized architecture has to be taken

into account.

According to the chosen fault model, the veri�cation of event-diagnosability

(failure events) and language-diagnosability(failure speci�cation) is studied in

the literature. In both cases, the diagnosability is investigated separately for

the centralized and decentralized approaches. In contrast, this thesis proposes

to combine decentralized diagnosis and centralized diagnosis. Hereby, the main

motivation of this work is the ability to detect faults by decentralized diagnosers

whenever possible but to use centralized diagnosis whenever necessary.

Di�erent than the previous works in the literature, this thesis employs the ob-

servation that some parts of the faulty DES behavior might be detected by

decentralized diagnosis while other parts need a centralized diagnoser. To this

end, the thesis is based on the observation from [21] that there is a supremal

codiagnosable sublanguage that contains the faulty system behavior that can be

detected by decentralized diagnosers. The remaining system behavior is then

diagnosed using centralized diagnosis.

In view of the described problem setup, the contributions of the thesis are sum-

marized as follows

• We �rst describe the concept of a supremal codiagnosable sublanguage.

This sublanguage contains all strings that can be diagnosed by decentral-

ized diagnosis.

• We next realize an algorithm for the computation of the supremal codiag-

nosable sublanguage and implement this algorithm in the software library

libFAUDES [10, 9]. The algorithm runs in polynomial time.

• We also implement the veri�cation algorithm for codiagnosability accord-

ing to [13] in the scope of this thesis. Hereby, a mistake in the original

formulation of [13] is identi�ed and corrected.

• We demonstrate the applicability of our algorithm by several case studies

from manufacturing systems and computer networks.

2

The remainder of this thesis is organized as follows. Chapter-2 provides the

necessary background and notation regarding DES, languages and automata.

Chapter-3 includes information about centralized diagnosis and the diagnosabil-

ity veri�cation algorithm from [25]. In Chapter-4, decentralized diagnosis is

described and an algorithm from [13] is implemented in libFAUDES. Chapter-5

includes the de�nition of the supremal codiagnosable sublanguage and its algo-

rithmic computation. In addition, the combination of centralized and decentral-

ized diagnosis is performed in this chapter. Several application examples are

provided in Chapter 6 and the last chapter concludes the thesis work.

3

4

CHAPTER 2

DISCRETE EVENT SYSTEMS

We �rst present basic information, notations and de�nitions about Discrete

Event Systems, DES. The readers can consult [3] for more information. A

system is considered as a combination of components, whereby the combina-

tion of these components can perform a function that is not possible with the

individual parts. In the literature, two types of systems are distinguished, time-

driven systems and event-driven systems. In time-driven systems, state tran-

sitions occur continuously or with a synchronized clock. On the other hand,

in event-driven systems, state changes are dependent on discrete instantaneous

actions called events. Therefore, an event-driven system is a combination of

asynchronous and concurrent event processes. Discrete event systems (DES)

are a type of event-driven systems where both the system state space and tran-

sitions between system states are discrete. The scope of this thesis work is the

consideration of DES.

2.1 Language

In discrete event systems, state transitions occur with actions called events. All

events in a DES form a �nite event set that denoted as an alphabet and shown

as Σ = {σ1, σ2, σ3....σn}.

5

2.1.1 String

A sequence of events from alphabet is called as string. In this section, some

operations and de�nitions about string are given.

∗ Length of String : The number of events in a string is called as length of

the string. Length of s is shown as |s|.

∗ Empty String : The string with zero length is called as empty string, in

other word, there is no event in an empty string. Empty string is written

as ε.

∗ Concatenation : Let x and y be two strings, then concatenation of x and y

is written as xy. The length of xy is the sum of the length of x and the

length of y.

∗ Su�x and Pre�x : Let w be the concatenation of x and y, w = xy, then y

is a su�x of w and x is a pre�x of w.

2.1.2 Language

A regular language over Σ is a set of �nite-length strings from Σ. There are

several relevant language operations given below;

∗ Concatenation : Let La and Lb be two language where La,Lb ⊆ Σ?, then

LaLb={s ∈ Σ? : (s = sasb) for (sa ∈ La) and (sb ∈ Lb)}.

∗ Kleene Closure : Let L ⊆ Σ?, then L? = {ε} ∪ L ∪ LL ∪ LLL... is the set
of all possible event sequences that can be formed using the alphabet Σ.

∗ Empty Language : The language that does not have any element, denoted

by ∅.

∗ Pre�x Closure : Let L ⊆ Σ?, then L={s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}. L is

pre�x-closed if L = L.

6

∗ Post-Language : L/s denotes the post-language of L after s such that;

L/s = {t ∈ Σ?|st ∈ L} (2.1)

∗ Natural Projection : Let observable alphabet Σo ⊆ Σ, then P:Σ? → Σ?
o is

de�ne by

P (ε) = ε

P (σ) =

 σ if σ ∈ Σ0

ε if σ 6∈ Σ0

P (sσ) = p(s)p(σ) for s ∈ Σ? and σ ∈ Σ

(2.2)

∗ Inverse Projection : P−1L is de�ned as

P−1L (y) = {s ∈ L : P (s) = y} (2.3)

2.2 Automata

Automata are used to model discrete event systems. Deterministic Automata

and Non-deterministic automata are the types of automata considered in this

thesis.

2.2.1 Deterministic Automata

A deterministic automaton is given by a �ve-tuple, G = (X,Σ, γ, x0, Xm) where,

X is the set of states.

Σ denoted alphabet.

γ : X × Σ→ X is the transition function.

x0 shows initial state.

Xm is marked states where Xm ∈ X.

(2.4)

The most important properties of deterministic automata are, there is only one

initial state and for every predecessor state and event set, there is at most one

successor state de�ned by the transition function.

7

2.2.2 Non-deterministic Automata

Non-deterministic automaton is also �ve-tuple, G = (X,Σ, γ, x0, Xm) where,

X is the set of states.

Σ ∪ {ε} denoted alphabet with empty string.

γ : X × Σ→ 2X is the transition function.

X0 is the set of initial states.

Xm is marked states where Xm ∈ X.

(2.5)

In this type of automaton, transitions from the same predecessor state and with

the same event to multiple successor states are allowed. In addition, there can

be multiple initial states.

2.2.3 Operations on Automata

∗ Accessible Part: There may be some states not reachable from initial state

in an automaton. After deleting these unnecessary states of automaton

A, we have Ac(A), accessible part of automaton A. If A=Ac(A), then A is

accessible.

∗ Coaccessible Part: q state of an automaton A is coaccessible if it is possible

to reach a marked state from this q state. If we delete all states that are

not coaccessible, we have CoAc(A), coaccessible part of A. If A=CoAc(A),

then A is coaccessible.

∗ Trim: An automaton which is both accessible and coaccessible, is trim.

Trim(A) = Ac(CoAc(A)) = CoAc(Ac(A)) (2.6)

∗ Synchronous Composition: Let A = (X,ΣA, γA, x0, Xm) and

B = (Y,ΣB, γB, y0, Ym), then synchronous composition of A and B,

8

A||B = Ac((X × Y,ΣA ∪ ΣB, γ, x0.y0, Xm × Ym)) where

γ(qA.qB, σ) =


γA(qA, σ).γB(qB, σ) if γA(qA, σ) and γB(qB, σ) are de�ned.

γA(qA, σ).qB if γA(qA, σ) is de�ned but γB(qB, σ) is not.

qA.γB(qB, σ) if γB(qB, σ) is de�ned but γA(qA, σ) is not.

qA.qB if γA(qA, σ) and γB(qB, σ) are not de�ned.
(2.7)

∗ Deadlock: If there is deadlock in an automaton, then there is not any possible

event for at least one state in this automaton.

9

10

CHAPTER 3

CENTRALIZED DIAGNOSIS

The main scope of diagnosability is detecting the occurrence of unobservable

failure events in discrete event systems. In this chapter, the centralized fault di-

agnosis of discrete event system is studied. First the de�nition of diagnosability

is given. Then an algorithm to check diagnosability is described.

3.1 Diagnosability

As de�ned in [17], [25] and [14], a DES is modeled by an automaton G =

(X,Σ, δ, x0) where X is the state space, Σ is the alphabet, δ is the transition

function and x0 is the initial state of the system. [17] introduces two types of

events in Σ, observable events Σo and unobservable events Σuo. The de�nition

of these event types is based on the general modeling of DES. On the one hand,

there are events whose occurrence can be directly seen such as actuators events

that are generated by DES controllers or sensor events that are generated from

sensor signals. Such events are termed observable. On the other hand, there can

be events that happen in a DES but whose occurrence cannot be directly seen

such as faults. These events are considered unobservable.

Σ = Σo ∪ Σuo (3.1)

Mask Function where M:Σ→ ∆∪{ε} is the key element of diagnosability. It is

derived from natural projection described in section-2.1.2. Observable events are

11

detected by sensor part,in other words each observable event is recorded as sensor

readings by sensor. This sensor readings are called observation. Unobservable

events can not be detected by sensor, so the observation of these events is equal

to ε. Therefore, mask function maps each event σ ∈ Σ to its observation ∆∪{ε}
where ∆ is the set of observations. The event types can be described by using

mask function. An event is observable when its observation is not equal to ε,

and an event is unobservable when its observation is equal to ε. Mask function

can be generalized to strings as;

M(sσ) =

 M(s)M(σ) if σ ∈ Σo

M(s) if σ ∈ Σuo

(3.2)

System faults are formulated as aspecification language, K = K ⊆ L(G).

Speci�cation language consists of observable and unobservable events, and every

string that belongs to the speci�cation language is considered as a non-faulty

string of the system. On the other hand, a string s is faulty if s ∈ L(G) \K.

It is desired to detect faulty strings s ∈ L(G) \ K in G by observation of the

system behavior through the observation maskM. As in [17], let G model a DES,

let K be speci�cation language and letM : Σ→ ∆∪{ε} be an observation mask.

Then, K is language-diagnosable with respect to G and M if

(∃n ∈ N)(∀s ∈ L(G) \K)(∀st ∈ L(G), |t| ≥ n or st deadlocks)

⇒ (∀u ∈M−1M(st) ∩ L(G), u 6∈ K) where N is the set of natural numbers
(3.3)

This equation remarks that a language is diagnosable if it satis�es two condi-

tions. First condition is that faulty and non-faulty strings do no share the same

observation result after a bounded number of event occurrences after a fault

occurrence or if a deadlock state is reached. This means that, for any extension

st of s that is longer than a given bound n, there should not be an u ∈ K such

that M(u) = M(st).

In this part, we show three di�erent application. In the �rst application gen-

erator including deadlock state and loops, is diagnosable. Plant in the second

12

application has deadlock state and is not diagnosable. In the �nal application

generator includes indeterminate cycles and is not diagnosable.

Let G in �gure-3.5 be plant, K in �gure-3.6 be speci�cation automaton and M

in table-3.1 be global observation mask where a and c are faulty events. This

plant is diagnosable with respect to K and M, because c event can be diagnosed

after g event and b event can be diagnosed if e event occurs between d and f

events in string.

In the second application, G in �gure-3.10 is not diagnosable with respect to

speci�cation automaton K in �gure-3.11 and global observation mask M given

in table-3.2 where f event is faulty. Because observable event e can occur in

both faulty and nonfaulty string.

In the last application, let the automaton in �gure-3.8 be the plant automaton

G, and the automaton in �gure-3.6 be the speci�cation automaton K and M be

observation mask in table-3.1 where Σuo = {a, b} and Σf = {a}. It is said that

L(G) is not diagnosable with respect to K and M, because both faulty string

and nonfaulty string may consist of d(ef)? events.

3.2 Testing Diagnosability

In [25], Yoo and Garcia suggest an algorithm to check diagnosability of a lan-

guage. This algorithm, depends on the construction of a weighted directed

graph. This graph is shown as W (G,K,M) = (V (G,K), E(G,K,M)) where

G = (X,Σ, δ, x0) is plant automaton, C = (Y,Σ, ν, y0) is speci�cation automa-

ton with K = L(C), M is observation mask. The automaton part in weighted

directed graph is built as,

V ⊆ {Y × Y ×X × {normal, confused}} ∪ {Block}
ν(y1, σ1) = y′1, ν(y2, σ2) = y′2 and δ(x, σ2) = x′.

(3.4)

The edge function, E(G,K,M), can get two values. The values are "0" and

"-1". The rules of edge function is given in the below. Some rules are illustrated

in �gures. These �gures show parts of the weighted directed graph generated

from the automaton G in �gure-3.5, speci�cation K = L(C) in �gure-3.6 and

13

the mask function from table-3.1.

∗ where σ1 and σ2 ∈ L(G) and M(σ1) = M(σ2) = ε

1. (y1, y2, x, normal)→ (y′1, y2, x, normal) and E = 0 if y′1 is de�ned.

2. (y1, y2, x, normal) → (y1, y
′
2, x
′, normal) and E = 0 if y′2 and x′ are

de�ned.

3. (y1, y2, x, normal) → (y1, y2, x
′, confused) and E = −1 if y′2 is not

de�ned but x′ is de�ned.

Figure 3.1: The �rst three rules of Weighted Directed Graph W

4. (y1, y2, x, confused)→ (y′1, y2, x, confused) and E = 0 if y′1 is de�ned.

Figure 3.2: The fourth rule of Weighted Directed Graph W

5. (y1, y2, x, confused) → (y1, y2, x
′, confused) and E = −1 if x′ is de-

�ned.

∗ where σ1 and σ2 ∈ L(G) and M(σ1) = M(σ2) 6= ε

1. (y1, y2, x, normal)→ (y′1, y
′
2, x
′, normal) and E = 0 if y′1,y

′
2 and x

′ are

de�ned.

2. (y1, y2, x, normal)→ (y′1, y2, x
′, normal) and E = −1 if y′1 and x

′ are

de�ned but y′2 is not de�ned.

14

Figure 3.3: The sixth rule of Weighted Directed Graph W

3. (y1, y2, x, confused)→ (y′1, y2, x
′, confused) and E = −1 if y′1 and x

′

are de�ned.

Figure 3.4: The eighth rule of Weighted Directed Graph W

4. (y1, y2, x, confused)→ Block and E = 0 if x′ is not de�ned.

The automaton, V consists of three components. The �rst two components, y1

and y2, are states from K and the last component, x, is a state from G. All

transition of V include two events. The �rst event belongs to the speci�cation

language L(K) and is applied to y1, and the other event belongs to L(G) and is

applied to y2 and x.

y2 and x change simultaneously as long as second applied event is also an ele-

ment of L(K) and indicator becomes normal. When there is no y′2 state de�ned

in C, the indicator part changes to confused. Therefore, the indicator con-

fused, normal shows whether strings s leading to the respective veri�er state are

non-faulty (s ∈ L(K)) or faulty (L(G) \ L(K)).

Yoo and Garcia prove that after constructing weighted directed graph, loops with

negative edge in W indicate the violation of diagnosability. That is, if there is

any loop with negative edge in weighted directed graph, then the language is

not diagnosable with respect to speci�cation language and mask function.

Table3.1: Global Observation Mask of The Plant

σ ∈ Σ a b c d e f g
M(σ) ε ε ε D E F G

15

We illustrate the algorithm on an example. Let G in �gure-3.5 be a plant

automaton, C in �gure-3.6 be speci�cation automaton with K = L(C) and M

be observation mask in table-3.1. These observation means that a, b and c are

unobservable events with respect to given mask function. Moreover, it can be

argued that a fault occurs whenever a or c happen.

Figure 3.5: Generator, G

Figure 3.6: Speci�cation Automaton, K

The weighted directed graph V(G,K,M) is shown in �gure-3.7. In this �gure,

weight functions are shown in the parenthesis for each transition and ε is shown

as eps. The language L(G) is diagnosable with respect to K and M, since there

is not a loop, having negative weight edge, or a block vertex.

Let the automaton in �gure-3.8 be the plant automaton G, and the automaton in

�gure-3.6 be the speci�cation automaton C andM be observation mask in table-

3.1 where Σuo = {a, b} and Σf = {a}. It is said that L(G) is not diagnosable

with respect to K and M, because there is a loop with negative weight edge.

The loop between (6,1,3,c) and (7,1,4,c) can be seen in �gure-3.9.

In the �nal application, let G in �gure-3.10 be generator, K in �gure-3.11 be

speci�cation and M in table-3.2 be global observation mask where f is the

faulty event. G generator is not diagnosable with respect to K speci�cation and

M mask function where f event is faulty, because there is a BLOCK state in

weighted directed graph shown in �gure-3.12.

16

Figure 3.7: Weighted Directed Graph W

Figure 3.8: Generator, G2

3.3 Complexity Analysis

State of weighted directed graph consists of three states and an edge function.

The �rst two states are from speci�cation automaton, and the last state is an

element of generator function. Therefore, complexity of constructing weighted

directed graph is equal to O(|Y |× | > |× |X|) where |Y | is the number of states
in speci�cation automaton and |X| is the number of states in plant automaton.

However, complexity of searching negative edge in weighted directed graph is

more complicated. This problem can be solved by Bellman-Ford Algorithm

approach. As stated in [4], Bellman-Ford algorithm computes the shortest paths

from initial state in a weighted graph. In other words, this algorithm �nds

17

Figure 3.9: Weighted Directed Graph with Negative Edge Weight

Figure 3.10: Generator

negative edge cycles. Complexity of Bellman-Ford Algorithm is O(|V ||E|) where
|V | is the number of vertices and |E| is the number of edges.

18

Figure 3.11: Speci�cation

Table3.2: Global Observation Mask of The Plant

σ ∈ Σ a b c e f
M(σ) ε ε ε E ε

Figure 3.12: Weighted Directed Graph including BLOCK state

19

20

CHAPTER 4

DECENTRALIZED DIAGNOSIS

In the previous chapter, a global observation mask for the diagnosability of entire

generator is discussed. This algorithm can be useful for small systems, but in

large systems this algorithm becomes infeasible. The decentralized diagnosis

architecture is developed for this type of systems. Failure events in a global

system are diagnosed by more than one local observation masks in decentralized

diagnosis architecture. The architecture is symbolized in �gure-4.1.

Figure 4.1: Decentralized Diagnosis Architecture

In this thesis work, we focus on the algorithm suggested by Qui and Kumar in

[13]. In this chapter �rstly notation of codiagnosability is examined. Then codi-

agnosability checking algorithm is given. Finally this algorithm is implemented

in the libFAUDES software library for discrete event systems.

21

4.1 Co-diagnosability

Let G = (X,Σ, δ, x0) be a plant automaton, K be a pre�x-closed speci�cation

language and assume there are m decentralized observation mask, Mi : Σ →
∆i ∪ {ε} where i ∈ {1, 2, 3....m}. (G,K) is codiagnosable with respect to Mi if

(∃n ∈ N)(∀s ∈ L(G) \K)

(∀st ∈ L(G) \K, |t| ≥ n or st deadlocks)

⇒ (∃i ∈ {1,2,3,....,m})(∀u ∈M−1
i Mi(st) ∩ L(G), u ∈ L(G) \K).

(4.1)

This equation remarks that there are two conditions that should be ful�lled.

Firstly, for all arbitrary long faulty strings, there should be at least one mask

Mi that can distinguish the string from non-faulty strings. Secondly, for faulty

deadlock strings, there should not be any non-faulty string that generates the

same observation under all observation masks.

In order to develop the codiagnosability veri�cation algorithm, the condition of

non-codiagnosability is presented. (G,K) is not codiagnosable with respect to

Mi if

(∀n ∈ N)(∃s ∈ L(G) \K)

(∃st ∈ L(G) \K, |t| ≥ n or st deadlocks)such that

(∀i ∈ {1,2,3,....,m})(∃ui ∈M−1
i Mi(st) ∩ L(G), ui ∈ K).

(4.2)

The condition in (4.1) has two cases, deadlocking strings or strings with �nite

detection delay. For a simpler algorithmic treatment, in [13] Qui and Kumar

suggest a trick such that only one case has to be considered. If there exists

a deadlocking state, a self-loop with the event ε is added. Hence the system

becomes deadlock free, whereby adding ε does not change the generated obser-

vations. Let t be a deadlocking string, and the observation result of this string

be Mi(t), then if ε is inserted to that string, observation result becomes Mi(tε
?)

and

22

Mi(t) = Mi(tε
?) (4.3)

For the automaton shown in �gure-4.2, if the system is on state-6, then this

system deadlocks. Because there is not any transition from state-6. However, if

we add self-loop to state-6 in �gure-4.3, then the system becomes deadlock-free.

In �gure-4.3 ε event is denoted by eps.

Figure 4.2: A Plant without self loop

Figure 4.3: A Plant with self loop

Considering the described trick, it is possible to assume that only plants with-

out deadlocks are given. Hence, the codiagnosability veri�cation algorithm is

developed for such plants in the sequel. Plants with deadlocks are extended by

ε-sel�oops and can then be analyzed by the same algorithm.

In this part, we check codiagnosability of three di�erent cases. In the �rst ap-

plication, the language generated by G, shown in �gure-4.17 is codiagnosable

with respect to speci�cation automaton K in �gure-4.18 and observation masks

given in table-4.2 where a and f are unobservable events.Because, the �rst local

observation mask can diagnose b and c events and if there is b event before

c event in string then this string is not faulty otherwise this string is faulty.

Moreover, the second local observation mask can diagnose c and d events. If

there is d event in string then the string is faulty.

23

In the second example, the language generated by G, shown in �gure-4.20 in-

cludes cycle and this automaton is not codiagnosable with respect to speci�ca-

tion automaton K in �gure-4.21 and observation masks function given in table-

4.3 where s and f are unobservable events. Because, the �rst observation mask

can see ABD? for both faulty and nonfaulty strings and the second observation

mask can see ACE? for both faulty and nonfaulty strings. Therefore, faulty and

nonfaulty strings can not be diagnosed by using these local observation masks.

In the last application, generator G and speci�cation K has deadlocking states.

Let G be automaton given in �gure-5.18, K be automaton shown in �gure-5.19

and local observation masks be given in table-5.2 where a and f are unobserv-

able events and f is faulty event. This generator is not codiagnosable, because

b event is observable with the �rst local observation mask and this event can

occur in both faulty and nonfaulty strings. Moreover, c event is observable with

the second local observation mask and it can not be diagnosed by the second

observation mask.

4.2 Codiagnosability Checking

In this section, the algorithm for checking codiagnosability as proposed by Qui

and Kumar in [13] is presented. The algorithm is based on the plant automaton

G = (X,Σ, δ, x0), the speci�cation automaton H = (Y,Σ, β, y0) with L(H) = K

and the observation masks Mi, i = 1, 2. Note that we describe the algorithm for

the case of two local sites for simplicity. The extension to more than two local

sites is straightforward. The algorithm consists of three steps.

4.2.1 Constructing the Augmented Speci�cation Automaton, (H)

The �rst step of the co-diagnosability checking algorithm is the construction of

the Augmented Specification Automaton denoted by H = (Y ,Σ, β, y0). This

automaton is derived from the speci�cation automaton H. The state set of the

augmented speci�cation automaton consists of the state set of the speci�cation

automaton and a new state, F . F is reached in H whenever the speci�cation K

24

is violated.

Y = Y ∪ {F} (4.4)

The transition function of H̄ is derived from the transition function of H by

keeping all transitions of H and adding transitions to the state F whenever

an event is not de�ned at a state of H. Formally, the transition function of the

augmented speci�cation automaton is stated as follows. For all y ∈ Y and σ ∈ Σ

β(y, σ) =

 β(y, σ) if [y ∈ Y] ∧ [β(y, σ) exists]

F if [y = F] ∨ [β(y, σ) does not exist]
(4.5)

4.2.2 Constructing the Testing Automaton

The second step of the co-diagnosability checking algorithm is constructing a

testing automaton T = (Z,ΣT, γ, z0). This automaton includes information

about the plant automaton, augmented speci�cation automaton and the obser-

vation masks. The testing automaton is constructed according to the following

rules,

Z = X × Y × Y × Y
z0 = (x0, y0, y0, y0)

ΣT = (Σ ∪ {ε})× (Σ ∪ {ε})× (Σ ∪ {ε})
γ = Z × Σ

3 → Z is de�ned as

∀z = (x, y, y1, y2) ∈ Z,
σT = (σ, σ1, σ2) ∈ ΣT \ {(ε, ε, ε)}
γ(z, σT) = (α(x, σ), β(y, σ), β(y1, σ1), β(y2, σ2))

(4.6)

if and only if

25

[M1(σ) = M1(σ
1),M2(σ) = M2(σ

2)] ∧ [α(x, σ), β(y1, σ1), β(y2, σ2) 6= ∅].
(4.7)

That is, the state space of the testing automaton is X × Y × Y × Y . In other

words, the �rst component of each testing automaton state belongs to the plant

automaton G, the second component belongs to the augmented speci�cation

automaton H and the last two components are from the speci�cation automaton

K.

For each transition of T, a tuple with three events from (Σ,Σ1,Σ2) is applied

to the respective predecessor states. The �rst event is executed in G and is

applied to the �rst and second components of testing automaton. The second

and third events are executed in H, whereby the second event is applied to the

third component of the testing automaton and the third event is applied to the

last component of the testing automaton. These three events should be related

such that the observation of the �rst and second event should be equal with

respect to M1 and the observations of the �rst and third event should be equal

with respect to M2. Moreover, all three events can not be ε at the same time.

The second component of the testing automaton state keeps track of possible

faulty strings. Whenever a faulty string is followed in the plant, this second

component moves to the state label F and remains there. The third component

of the testing automaton state follows strings in the speci�cation that have the

same observation as the plant string under the observation mask M1, whereas

the fourth component of the testing automaton state follows strings in the speci-

�cation that have the same observation as the plant string under the observation

mask M2. That is, if a state with second component F is reached in the test-

ing automaton, this implies that there is a faulty plant string that is confused

with a non-faulty plant string with the same observation under both observation

masks. Hence, such faulty string cannot be diagnosed.

26

4.2.3 Checking the Violation of Codiagnosability

A language is said to be codiagnosable with respect to the speci�cation language,

if the occurrence of faulty strings can be detected by at least one local observation

mask after a bounded number of event occurrences. The codiagnosability check

can be done by searching indeterminate cycle in the testing automaton. Hereby,

a cycle is given by

Cycle : (zk, σ
T

k, zk+1,zl, σ
T

l , zk) where zi = (xi, yi, y
1
i , y

2
i) ∈ Z and

σTi = (σi, σ
1
i , σ

2
i) ∈ ΣT(i = k, k + 1,, l).

(4.8)

and an indeterminate cycle is given by a cycle such that

∃i ∈ [k, l] such that [(yi = F) ∧ (σi 6= ε)] (4.9)

If there is an indeterminate cycle in the testing automaton, then it holds that

K is not codiagnosable for G and Mi.

4.3 Implementation in libFAUDES

In this section, the implementation of the algorithm given in [13] as a part of

the libFAUDES software library is described. LibFAUDES is an open-source

C++ software library developed for implementation of algorithms of discrete

event systems. This discrete event systems library includes many C++ class and

functions that implement general purpose operations and algorithms contributed

by many researches. The algorithm in [13] is implemented by using these classes

and functions. The algorithm consists of three steps as described in section-4.2.

4.3.1 Augmented Speci�cation Automaton

The �rst step is constructing the augmented speci�cation automaton H from

the given speci�cation automaton H. In libFAUDES, the function

Automaton(Generator &Gen)

27

can be directly used to construct H. This function converts a generator into a

formal automaton. That is, a new state,dump is added to the automaton and

unde�ned transitions lead to the dump state.

4.3.2 Testing Automaton

The second step is constructing the testing automaton as explained in section-

4.2.2. Equation-(4.6) and (4.7) include fundamental properties for this construc-

tion. These two equations are formulated in a very compact form. However,

there are twenty-three cases derived from these two equations. In this thesis

work, all conditions are examined and the following function is implemented in

libFAUDES.

void TestingAutomaton (const System& Gen, const Generator& Spec,

const EventSet& ObsEvent1, const EventSet& ObsEvent2,

Generator& Testing)

This function generates the testing automaton using the plant automaton Gen,

the speci�cation automaton Spec and the local observation masks given by "Ob-

sEvent1" and "ObsEvent2". As explained before, there are twenty-three cases

to construct the testing automaton. All of these cases are examined below. The

general working principle of the algorithm is outlined in algorithm-1.

28

Algorithm 1

Input: G, K, M1, M2

Initialization:

1. Insert state (x0,y0,y0,y0) into state set Z of T

2. Insert state (x0,y0,y0,y0) into stack of waiting states waitingTesting.

3. Empty set of already processed states doneTesting

Iterations:

while (waitingTesting 6= ∅)

1. currentstate=waitingTesting.Top();

2. doneTesting.Insert(currentstate);

3. waitingTesting.Pop(currentstate);

4. x=currentstate[0]; y=currentstate[1]; y1=currentstate[2];

y2=currentstate[3];

5. Determine new states, events and transitions starting from currentstate =

(x, y, y1, y2). The di�erent cases of this step are explained below

6. Insert any new state that was found in step 5. into the state set Z of T

7. Insert any new state to waitingTesting if it does not exist in waitingTest-

ing or doneTesting

8. Insert any new event that was found in step 5. into the event set ΣT of T

9. Insert any new transition that was found in step 5. into T

Return: Testing Automaton T

The details of the twenty-three cases for step 5. of Algorithm 1 are given below.

Moreover, some cases are illustrated in �gures. These �gures are parts of the

testing automaton construction from G in �gure-3.5, K in �gure-3.6 and the

local observation masks in table-4.1.

1. If there is a transition from x with σ event in G and σ event is observable

29

Table4.1: Local Observation Masks

σ ∈ Σ a b c d e f g
M1(σ) ε ε ε A1 B ε D1

M2(σ) ε ε ε A2 ε C D2

with M1 and M2 and there are transitions from y1 with σ and from y2

with σ in K, then

∗ {(x, y, y1, y2),(σ, σ, σ),(xnext, ynext, y
1
next, y

2
next)} transition,

(σ, σ, σ) event and (xnext, ynext, y
1
next, y

2
next) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2
next) state is pushed to waitingTesting

queue if this state was not processed previously.

2. If there is a transition from x with σ event in G and σ event is observable

with M1 and M2 and there are transitions from y1 with σ, and from y2

with σ2 in K where M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

3. If there is a transition from x with σ event in G and σ event is observable

with M1 and M2 and there are transitions from y1 with σ1 and from y2

with σ in K where M1(σ1) = ε, then

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

4. If there is a transition from x with σ event in G and σ event is observable

with M1 and M2 and there are transitions from y1 with σ1 and from y2

with σ2 in K where M1(σ1) = ε and M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, σ1, σ2), (x, y, y1next, y2next)} transition,
(ε, σ1, σ2) event and (x, y, y1next, y

2
next) state are inserted to T .

30

Figure 4.4: Testing automaton construction, cases 1,2,3

Moreover, (x, y, y1next, y
2
next) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

Figure 4.5: Testing automaton construction, case 4

5. If there is a transition from x with σ event in G and σ event is observable

31

with M1 and M2 and there is a transition from y1 with σ1 in K where

M1(σ1) = ε, and there is not any transition from y2 in K, then

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

6. If there is a transition from x with σ event in G and σ event is observable

with M1 and M2 and there is a transition from y2 with σ2 in K where

M2(σ2) = ε, and there is not any transition from y1 in K, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

7. If there is a transition from x with σ event in G and σ event is observable

with only M1 and there are transitions from y1 with σ, and from y2 with

σ2 in K where M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (σ, σ, σ2), (xnext, ynext, y1next, y2next)} transition,
(σ, σ, σ2) event and (xnext, ynext, y

1
next, y

2
next) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2
next) state is pushed to waitingTesting

queue if this state was not processed previously.

∗ {(x, y, y1, y2), (σ, σ, ε), (xnext, ynext, y1next, y2)} transition,
(σ, σ, ε) event and (xnext, ynext, y

1
next, y

2) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2) state is pushed to waitingTesting queue

if this state was not processed previously.

8. If there is a transition from x with σ event in G and σ event is observable

with only M1 and there is a transition from y1 with σ in K, and there is

32

Figure 4.6: Testing automaton construction, case 7

not any transition from y2 in K, then

∗ {(x, y, y1, y2), (σ, σ, ε), (xnext, ynext, y1next, y2)} transition,
(σ, σ, ε) event and (xnext, ynext, y

1
next, y

2) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2) state is pushed to waitingTesting queue

if this state was not processed previously.

Figure 4.7: Testing automaton construction, case 8

9. If there is a transition from x with σ event in G and σ event is observable

with only M1 and there are transitions from y1 with σ1, and from y2 with

σ2 in K where M1(σ1) = ε and M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, σ1, σ2), (x, y, y1next, y2next)} transition,
(ε, σ1, σ2) event and (x, y, y1next, y

2
next) state are inserted to T .

Moreover, (x, y, y1next, y
2
next) state is pushed to waitingTesting queue

if this state was not processed previously.

33

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

Figure 4.8: Testing automaton construction, case 9

10. If there is a transition from x with σ event in G and σ event is observable

with onlyM1 and there is a transition from y1 with σ1 inK whereM1(σ1) =

ε, and there is not any transition from y2 in K, then

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

11. If there is a transition from x with σ event in G and σ event is observable

with onlyM1 and there is a transition from y2 with σ2 inK whereM2(σ2) =

ε and there is not any transition from y1 in K, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,

34

(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

12. If there is a transition from x with σ event in G and σ event is observable

with only M2 and there are transitions from y2 with σ, and from y1 with

σ1 in K where M1(σ1) = ε, then

∗ {(x, y, y1, y2), (σ, σ1, σ), (xnext, ynext, y
1
next, y

2
next)} transition,

(σ, σ1, σ) event and (xnext, ynext, y
1
next, y

2
next) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2
next) state is pushed to waitingTesting

queue if this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (σ, ε, σ), (xnext, ynext, y
1, y2next)} transition,

(σ, ε, σ) event and (xnext, ynext, y
1, y2next) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2next) state is pushed to waitingTesting queue

if this state was not processed previously.

Figure 4.9: Testing automaton construction, case 12

13. If there is a transition from x with σ event in G and σ event is observable

35

with only M2 and there is a transition from y1 with σ in K, and there is

not any transition from y2 in K, then

∗ {(x, y, y1, y2), (σ, ε, σ), (xnext, ynext, y
1, y2next)} transition,

(σ, ε, σ) event and (xnext, ynext, y
1, y2next) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2next) state is pushed to waitingTesting queue

if this state was not processed previously.

Figure 4.10: Testing automaton construction, case 13

14. If there is a transition from x with σ event in G and σ event is observable

with only M2 and there are transitions from y2 with σ2, and from y1 with

σ1 in K where M1(σ1) = ε and M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, σ2), (x, y, y1next, y2next)} transition,
(ε, σ1, σ2) event and (x, y, y1next, y

2
next) state are inserted to T .

Moreover, (x, y, y1next, y
2
next) state is pushed to waitingTesting queue

if this state was not processed previously.

15. If there is a transition from x with σ event in Generator σ event is observ-

able with only M2 and there is not any transition from y2 in K, and there

is a transition from y1 with σ1 in K where M1(σ1) = ε, then

36

Figure 4.11: Testing automaton construction, case 14

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

16. If there is a transition from x with σ event in G and σ event is observable

with only M2 and there is not any transition from y1 in K, and there is a

transition from y2 with σ2 in K where M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

17. If there is a transition from x with σ event in G and σ is not observable

with neitherM1 norM2 and there is transition from y1 with σ1 in K where

M1(σ1) = ε, and there is not any transition from y2 in K, then

∗ {(x, y, y1, y2), (σ, ε, ε), (xnext, ynext, y1, y2)} transition,
(σ, ε, ε) event and (xnext, ynext, y

1, y2) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,

37

(ε, σ1, ε) event and (x, y, y1next, y
2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (σ, σ1, ε), (xnext, ynext, y1next, y2)} transition,
(σ, σ1, ε) event and (xnext, ynext, y

1
next, y

2) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2) state is pushed to waitingTesting queue

if this state was not processed previously.

Figure 4.12: Testing automaton construction, case 17

18. If there is a transition from x with σ event in G and σ is not observable

with neither M1 nor M2 and there is not any transition from y1 in K and

there is a transition from y2 with σ2 in K where M2(σ2) = ε, then

∗ {(x, y, y1, y2), (σ, ε, ε), (xnext, ynext, y1, y2)} transition,
(σ, ε, ε) event and (xnext, ynext, y

1, y2) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (σ, ε, σ2), (xnext, ynext, y1, y2next)} transition,

38

(σ, ε, σ2) event and (xnext, ynext, y
1, y2next) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2next) state is pushed to waitingTesting queue

if this state was not processed previously.

Figure 4.13: Testing automaton construction, case 18

19. If there is a transition from x with σ event in G and σ is not observable

with neither M1 nor M2 and There is not any function transition from y1

and from y2 in K, then

∗ {(x, y, y1, y2), (σ, ε, ε), (xnext, ynext, y1, y2)} transition,
(σ, ε, ε) event and (xnext, ynext, y

1, y2) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2) state is pushed to waitingTesting queue

if this state was not processed previously.

Figure 4.14: Testing automaton construction, case 19

20. If there is not any transition from x with σ event in G and there are

transitions from y1 with σ1 and from y2 with σ2 in K where M1(σ1) = ε

and M2(σ2) = ε, then

39

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, σ2), (x, y, y1next, y2next)} transition,
(ε, σ1, σ2) event and (x, y, y1next, y

2
next) state are inserted to T .

Moreover, (x, y, y1next, y
2
next) state is pushed to waitingTesting queue

if this state was not processed previously.

21. If there is not any transition from x with σ event in G and there is a

transition from y1 with σ1 in K where M1(σ1) = ε, and there is not any

transition from y2 in K, then

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

22. If there is not any transition from x with σ event in G and there is not

any transition from y1 in K and there is a transition from y2 with σ2 in

K where M2(σ2) = ε, then

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

23. If there is a transition from x with σ event in G and σ is not observable

with neither M1 nor M2 and there are transitions from y1 with σ1 and

from y2 with σ2 in K where M1(σ1) = ε and M2(σ2) = ε, then

∗ {(x, y, y1, y2), (σ, ε, ε), (xnext, ynext, y1, y2)} transition,
(σ, ε, ε) event and (xnext, ynext, y

1, y2) state are inserted to T .

40

Moreover, (xnext, ynext, y
1, y2) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, ε), (x, y, y1next, y2)} transition,
(ε, σ1, ε) event and (x, y, y1next, y

2) state are inserted to T .

Moreover, (x, y, y1next, y
2) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (ε, ε, σ2), (x, y, y1, y2next)} transition,
(ε, ε, σ2) event and (x, y, y1, y2next) state are inserted to T .

Moreover, (x, y, y1, y2next) state is pushed to waitingTesting queue if

this state was not processed previously.

∗ {(x, y, y1, y2), (σ, σ1, ε), (xnext, ynext, y1next, y2)} transition,
(σ, σ1, ε) event and (xnext, ynext, y

1
next, y

2) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (σ, ε, σ2), (xnext, ynext, y1, y2next)} transition,
(σ, ε, σ2) event and (xnext, ynext, y

1, y2next) state are inserted to T .

Moreover, (xnext, ynext, y
1, y2next) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (ε, σ1, σ2), (x, y, y1next, y2next)} transition,
(ε, σ1, σ2) event and (x, y, y1next, y

2
next) state are inserted to T .

Moreover, (x, y, y1next, y
2
next) state is pushed to waitingTesting queue

if this state was not processed previously.

∗ {(x, y, y1, y2), (σ, σ1, σ2), (xnext, ynext, y1next, y2next)} transition,
(σ, σ1, σ2) event and (xnext, ynext, y

1
next, y

2
next) state are inserted to T .

Moreover, (xnext, ynext, y
1
next, y

2
next) state is pushed to waitingTesting

queue if this state was not processed previously.

In order to illustrate the testing automaton construction, the result T of applying

the function TestingAutomaton to the plant G in �gure-3.5, the speci�cation

automaton H in �gure-3.6 and the observation masks in table-4.1 is shown in

�gure-4.16.

41

Figure 4.15: Testing automaton construction, case 23

42

Figure 4.16: Testing Automaton

4.3.3 Checking the Violation of Codiagnosability

The third step to decide violation of co-diagnosability is searching for indetermi-

nate cycles in the testing automaton. If such indeterminate cycles are found, co-

diagnosability is violated. Hereby, the characteristic of an indeterminate cycle is

that it has to contain at least one transitions with an event σT = (σ, σ1, σ2) ∈ ΣT

such that σ 6= ε and that the second component of the testing automaton state

in the cycle must be F . Therefore we should �rst remove all cycles from the

testing automaton that do not ful�ll these conditions. This is achieved by �rst

Deleting all non-faulty states (second component is not f) in the testing au-

tomaton. This step can be achieved by using the function bool DelState(Idx

index) in libFAUDES which deletes states from an automaton by index. We

delete states whose second component is not equal to F.

After deleting non-faulty states, the resulting automaton only consists of faulty

states. Next, we search transitions which events' �rst element is equal to ε. After

�nding these transitions, we construct new testing automaton by using equiva-

lence relation described in section-5.2. Any cycle in this automaton is a candi-

43

date for an indeterminate cycle. By using the function bool ComputeSCC(const

Generator &rGen, const SccFilter &rFilter,std::list <StateSet> &rSccList, State-

Set &rRoots) in libFAUDES, all such cycles are found. The inputs of Com-

puteSCC are an automaton and �lter type. We choose the testing automaton

including only faulty states as the input automaton and "0x02" as input �lter.

When �lter is set to 0x02, all cycles in the system are found and if there is

any cycle in the automaton, ComputeSCC returns true. By using this function,

we detect all loops in the testing automaton consisting of only faulty states.

Therefore, if this function returns true, then this means that there is an indeter-

minate cycle in the testing automaton and the language is not codiagnosable.

ComputeSCC function returns true if we apply the testing automaton given in

�gure-4.16. Because there is an indeterminate cycle in the testing automaton.

This loop can be seen in �gure-5.9. In this �gure, states in the indeterminate

cycle are shown with double circle.

We implement the steps checking codiagnosability with di�erent generator au-

tomata, speci�cation automata and observation masks. In the �rst application,

the language generated by G, shown in �gure-4.17 is codiagnosable with re-

spect to speci�cation automaton K in �gure-4.18 and observation masks given

in table-4.2 where a and f are unobservable events. It can be seen that the test-

ing automaton's part consisting of only faulty states as seen in �gure-4.19 does

not include any cycle, that is, there is not any indeterminate cycle in the testing

automaton. In order to interpret this result, we see that the �rst observation

mask can detect b and c events. If a string includes the event c, but does not

include the event b, it is said that this string is faulty. The second observation

mask can detect c and d events. If a string includes d, then it detects that this

string is faulty. All faulty strings can be detected by local observation masks,

therefore the language generated by G, is codiagnosable.

Table4.2: Local Observation Masks

σ ∈ Σ a b c d f
M1(σ) ε B C ε ε

M2(σ) ε ε C D ε

44

Figure 4.17: Codiagnosable Generator,G

Figure 4.18: Speci�cation,K

In the second example, the language generated by G, shown in �gure-4.20 is

not codiagnosable with respect to speci�cation automaton K in �gure-4.21 and

observation masks function given in table-4.3 where s and f are unobservable

events. This generator is not codiagnosable, because generated testing automa-

ton includes an indeterminate cycle. This cycle is given in �gure-4.22.

Table4.3: Local Observation Masks

σ ∈ Σ a b c d e f s
M1(σ) A B ε D ε ε ε

M2(σ) A ε C ε E ε ε

In the last example, the plant automaton G includes deadlock states, state-4

and state-7. If the system reaches these states, then it remains there. The

testing automaton constructed from generator G given in �gure-5.18, speci�ca-

tion automaton K shown in �gure-5.19 and observation masks given in table-5.2

where a and f are unobservable events and f state is faulty. In [13] Qui and

Kumar suggest that, if there is any deadlock state, add self loop with ε event.

After applying this trick testing automaton consisting of only F states is shown

in �gure-5.20. By looking this �gure, it can be said that this system is codiag-

nosable, as there is not any cycle. However, it is clear that this generator is not

45

Figure 4.19: Testing Automaton with only Faulty States

Figure 4.20: Non-codiagnosable plant G

codiagnosable. This contradiction shows that the trick suggested in [13] is not

correct.

We propose a new trick for deadlocking states. We can add self-loop with new de-

�ned unobservable event, but not ε event, then we have deadlock-free generator

and this generator does not give any wrong information about codiagnosabil-

ity. The result of this operation is given in �gure-4.23. If we apply this trick,

testing automaton consisting of only failure states becomes like in �gure-5.21.

ComputeSCC function returns true, because this system is not codiagnosable.

4.4 Complexity Analysis

The complexity analysis of this algorithm is adapted from [13]. Let |X | be the

size of state set of generator and |Y | be the size of state set of speci�cation

automaton and m be the number of local observation masks. The plant au-

46

Figure 4.21: Speci�cation automaton C

Figure 4.22: Indeterminate cycle in the testing automaton

tomaton can have at most |X|× |Σ| transitions and the speci�cation automaton

includes at most |Y| × |Σ| transitions. The augmented speci�cation automaton

and speci�cation automaton have the same order of states and transitions.

The testing automaton states consist of one state from the plant automaton,

one state from the augmented speci�cation automaton and one state from the

speci�cation automaton for each local observation mask. Therefore, the testing

automaton has at most |X| × |Y |m+1 states and at each state of the testing

automaton, there are at most (|Σ + 1|)m+1 transitions.

There are three steps to construct the testing automaton. The complexity of

constructing the augmented speci�cation automaton depends on the state and

transition number of the speci�cation automaton. Therefore the complexity

of the �rst step is O(|Y | × |Σ|). The complexity of constructing the testing

automaton and detecting indeterminate cycles in the testing automaton depends

47

Figure 4.23: Generator which is deadlock-free

on the state and transition number of the testing automaton. Therefore the

complexity of the second and third step is O(|X|×|Y |m+1×(|Σ|+1)m+1). Together,

the complexity of the algorithm is equal to O(|X| × |Y |m+1 × (|Σ|+ 1)m+1).

48

CHAPTER 5

COMBINATION OF CENTRALIZED AND

DECENTRALIZED DIAGNOSIS ALGORITHM

Centralized diagnosis and decentralized diagnosis are studied in the previous

chapters. In centralized diagnosis algorithm faulty occurrences are detected by

one observation mask in global system. In contrast, in decentralized diagnosis,

fault occurrences have to be detected by more than one observation mask us-

ing decentralized observation. In this chapter we propose a new method that

combines both diagnosis ideas.In particular, we suggest to use decentralized di-

agnosis if possible and to use centralized diagnosis only if it is necessary. To

this end, we �rst establish the concept of a supremal codiagnosable sublanguage

(SupCoDiag) of a system that contains all faulty strings that can be diagnosed

using decentralized diagnosis. Then, we use centralized diagnosis only for faulty

strings that do not belong to SupCoDiag. We further develop a polynomial-time

algorithm for the computation of SupCoDiag.

5.1 Supremal Co-Diagnosable Sublanguage

We introduce the notion of a co-diagnosable sublanguage that contains all faulty

strings whose occurrence can be detected by decentralized diagnosis as de�ned

in [21]. As shown in [21], codiagnosable sublanguages of a plant automaton are

closed under union. Therefore, let L1 ⊆ L be codiagnosable with respect to spec-

i�cation automaton, local observation masks and let L2 be another sublanguage

of plant language be codiagnosable with respect to speci�cation automaton, lo-

49

cal observation mask, we know that these sublanguages are closed under union,

therefore L1 ∪ L2 is codiagnosable with respect to speci�cation automaton and

local observation masks. We aim to �nd the largest sublanguage which is codi-

agnosable to use decentralized diagnoser the most. Therefore, the union of all

codiagnosable sublanguages gives the supremal codiagnosable sublanguage. We

note that the speci�cation language is always a subset of the supremal codiag-

nosable sublanguage.

Let G be a plant automaton, K ⊆ Σ? a speci�cation and Mi i=1,2 observation

masks. Write

C = {L′ ⊆ L(G)|L′ is a co-diagnosable sublanguage for K and Mi, i=1,2}
(5.1)

Then, SupCoD(K,G,M1,M2) := ∪L′∈CL
′ is the supremal element of C. We

symbolized SupCoD(K,G,M1,M2) as Lco. That is, a decentralized diagnoser

can detect all faulty strings in SupCoD(K,G,M1,M2) \K. On the other hand,

the faulty strings in L(G) \ SupCoD(K,G,M1,M2) cannot be detected by a

decentralized diagnoser. This type of faults can in the best case be detected by

a centralized diagnoser.

We identify the non-co-diagnosable sublanguage of L(G) as Lnon = K ∪ (L(G) \
Lco). That is any string in Lnon \ K represents the occurrences of failure that

can not be detected by decentralized diagnosis.

From the previous analysis, we know that G given in �gure-3.5 is not codiag-

nosable with respect to K given in �gure-3.6 and local observation masks given

in table-4.1. As described in section-4.3.3, there is an indeterminate cycle in the

testing automaton for this example. In the literature, after verifying this system

is not codiagnosable, we should diagnose the plant with centralized diagnoser.

However, we suggest dividing the plant given in �gure-3.5 into two subparts.

These parts are given in �gure-5.1 and in �gure-5.2.

The testing automaton of the supremal codiagnosable sublanguge is given in

�gure-5.3. It can be seen that there is not any indeterminate cycle in the testing

automaton. Therefore, this part is indeed codiagnosable. However, the testing

50

Figure 5.1: Supremal Codiagnosable Subpart of Plant

Figure 5.2: Nonco-diagnosable Subpart of Plant

automaton of the noncodiagnosable part is shown in �gure-5.4. In this testing

automaton, there is an indeterminate cycle which the states that are marked

with double circles. Thus, we should attempt diagnosing this part of the plant

using a centralized diagnoser.

5.2 Implementation in libFAUDES

This algorithm aims to use decentralized diagnosis where it is possible and to use

centralized diagnosis where it is necessary. Therefore, we should �nd the minimal

sublanguage of the plant that needs to be diagnosed by a centralized diagnoser,

which is equivalent to �nding the supremal codiagnosable sublanguage. More

precisely, the part of the plant automaton that causes indeterminate cycles in

the testing automaton needs to be identi�ed. To achieve this goal, we �rst

construct the testing automaton and detect all indeterminate cycles. If there is

not any such indeterminate cycle, we conclude that codiagnosability is ful�lled.

Otherwise, we should construct a new automaton that characterizes all plant

strings that lead to indeterminate cycles. To this end, we point out several

observations that will be used for the computation of the supremal codiagnosable

sublanguage.

51

Figure 5.3: Testing Automaton of Supremal Codiagnosable Subpart

We consider the testing automaton T and introduce the set of faulty states

ZF ⊆ Z, the set of indeterminate cycle states CT and the map cG : (ΣT)? → Σ?

as follows:

ZF = {z ∈ Z|z = (−, F,−,−)}

CT = {z ∈ Z|z belongs to an indeterminate cycle}

for all sT = (σ1,−,−)(σ2,−,−) · · · (σm,−,−) ∈ (ΣT)?, cG(sT) = σ1σ2 · · ·σm.

That is, cG projects each string in (ΣT)? to its �rst event component. Using

this notation, the following statements about the testing automaton T can be

deduced.

52

Figure 5.4: Testing Automaton of Noncodiagnosable Subpart

∀sT ∈ L(T) :cG(sT) ∈ L(G) (5.2)

∀sT ∈ L(T) :γ(z0, s
T) ∈ ZF ⇒ cG(sT) /∈ K (5.3)

∀sT ∈ L(T)
such that γ(z0, s

T) ∈ CT , it holds that cG(ŝT) is not

codiagnosable for all ŝT ≤ sT with γ(z0, ŝ
T) ∈ ZF .

(5.4)

That is, projecting strings in L(T) to their �rst event component leads to a

string in L(G) ((5.2)) and projecting a string that leads to a faulty state in T

to its �rst event component leads to a faulty string in L(G) \K ((5.3)). Finally,

all strings that lead to indeterminate cycles in T are projected to strings that

are not codiagnosable ((5.4)).

In addition, we introduce an e�cient algorithm to project the strings in L(T)

to their �rst event component according to the map cG. To this end, we in-

troduce a relation ∼G⊆ Z × Z between the states of the testing automaton

T = (Z,ΣT, γ, z0) as follows. Let

Σ̂T = {σT ∈ ΣT |σT = (σ,−,−) with σ 6= ε}

53

be the set of events in ΣT such that the �rst event component is not equal to ε.

For z1, z2 ∈ Z, we de�ne ∼G such that

1. γ(z1, σ
T) = z2 or γ(z2, σ

T) = z1 for some σT ∈ (ΣT \ Σ̂T) ⇒ z1 ∼G z2

2. z1 = (z′1, σ
T) and z2 = (z′2, σ

T) for σT ∈ Σ̂T and z′1 ∼G z
′
2 ⇒ z1 ∼G z2.

The relation ∼G is adopted from [11, 15], where it is introduced in a di�erent

context. It holds that ∼G de�nes an equivalence relation between the states of T

and it is possible to de�ne the quotient automaton of T with respect to ∼G. Let

ET denote the set of equivalence classes according to ∼G. Then, the quotient

automaton T/ ∼G= (ET ,Σ, ξ, eT0) is de�ned such that

eT0 is the equivalence class that contains z0

∀e ∈ ET and σ ∈ Σ : ξ(e, σ) = e′ if there are z ∈ e, z′ ∈ e′, σT = (σ,−,−) ∈ ΣT

such that z′ = γ(z, σT)

That is, each state of T/ ∼G represents an equivalence class and the transitions

of T/ ∼G characterize how these states are connected by transitions with events

in Σ̂T .

In �gure-5.5 a small part of a testing automaton is given with the set Σ̂T =

{(a,dont_care,dont_care), (c,dont_care,dont_care)}. That is, the equivalence

classes {1, 3}, {2, 4, 5} and {6} are found. Accordingly, the quotient automaton

T/ ∼G is shown in �gure-5.6.

Using the above observations and the construction of the quotient automation,

we propose the following algorithm to determine the non-codiagnosable sublan-

guage of L(G).

54

Figure 5.5: Testing Automaton Part Before Step-7

Figure 5.6: Testing Automaton Part After Step-7

Algorithm 2

Input: G, C, M1, M2

Procedure:

1. Introduce sel�oops for deadlock states in G

2. Construct the testing automaton T

3. Determine the indeterminate cycles in T and �nd CT

4. Mark all states in CT

5. Make T trim. The resulting automaton is called T̂

6. Compute the quotient automaton T̂ / ∼G

7. Compute K ∪ L(T̂ / ∼G). The resulting automaton is called Gnon.

Return: Non-codiagnosable sublanguage of L(G) as Lnon = L(Gnon)

In libFAUDES, the non-codiagnosable sublanguage is constructed with the func-

55

tion NonCoDiagPart according to Algorithm 2.

void NonCoDiagPart (const System& Gen, const Generator& Spec,

const EventSet& ObsEvent1, const EventSet& ObsEvent2,

Generator& SupremalCoDiagPart)

In this function the inputs are the plant automaton Gen, the speci�cation au-

tomaton Spec with the local observation masks ObsEvent1 and ObsEvent2. The

function produces the NonCoDiagPart automaton Gnon as described above.

We next illustrate the construction by an example. In this example, the plant

automaton G is given in �gure-3.5, the speci�cation automaton C is given in

�gure-3.6 and the observation masks are given in table-4.1.

• The �rst step to build Gnon is constructing a deadlock free generator. As

described in [13], Qui and Kumar suggest a trick to obtain a deadlock free

generator by introducing ε-sel�oops. However, as is shown in Section 4.3,

while constructing the testing automaton we observe that this approach

is not correct. If we add ε-sel�oops for deadlock states, it turns out that

all indeterminate cycles that are caused by codiagnosability violations in

deadlock states are missed. Hence, as suggested in Section 4.3, we intro-

duce sel�oops with new unobservable events. This procedure is illustrated

in �gure-5.7.

This explanation goes to the section where we explain our correction. Be-

cause, as stated in equation-(4.7) testing automaton does not include any

event, which three components are equal to ε. Therefore, we add new de-

�ned events. Generator seen in �gure-3.5 has a deadlock state, state-10,

and we construct automaton in �gure-5.7.

• The second step is constructing the testing automaton by using

void TestingAutomaton(const System& Gen, const Generator& Spec,const

EventSet& ObsEvent1,const EventSet& ObsEvent2,Generator& Testing).

Details of this function are given in section-4.3. The testing automaton

for this example is shown in �gure-4.16.

56

Figure 5.7: Generator without deadlocking states

• For the third step, [13] Qui and Kumar explain that indeterminate cycles have

to be found. As described above, we �rst determine the faulty part of the

testing automaton by deleting all non-faulty states as shown in �gure-5.8.

Then, the strongly connected components in this automaton are computed

using the function bool ComputeSCC (const Generator &rGen, const Sc-

cFilter &rFilter,std::list <StateSet> &rSccList, StateSet &rRoots).

Figure 5.8: Testing Automaton with only Faulty States

• The fourth step is marking indeterminate cycles that were found in step four

in the testing automaton. All states in indeterminate cycles are marked

57

by using void SetMarkedState(Idx index). The result for this example is

shown in �gure-5.9.

Figure 5.9: Indeterminate cycles marked in Testing Automaton

• Up to this point testing automaton is constructed and all indeterminate cycles

are marked. As de�ned in [13] indeterminate cycles violate codiagnosabil-

ity. Therefore, a new testing automaton T̂ including only indeterminate

cycles and strings reaching to indeterminate cycles from the initial state, is

created. The function bool Trim() in libFAUDES is used to compute this

testing automaton. The output of the trim function is shown in �gure-5.10.

• The quotient automaton T̂ / ∼G is computed from T̂ . The result of this step

is shown in �gure-5.11.

• In section 5.1, we identify noncodiagnosable part as Lnon = K ∪ (L(G) \Lco).

Therefore the last step computes the union of K and the result of the pre-

vious step. The function void LanguageUnion(Generator& G1, Generator

G2, Generator G2) is used for this purpose. Lnon = K ∪ (L(G) \ Lco) for

this example is shown in �gure-5.12. As seen in this �gure, noncodiagnos-

able part is not equal to neither G generator nor K speci�cation. In other

58

Figure 5.10: Trimmed Testing Automaton

Figure 5.11: (L(G) \ Lco)

words, this automaton can not be diagnosed by decentralized diagnoser

and there is no need to diagnose whole system by centralized diagnoser.

The part of generator given in �gure-5.12 can be diagnosed by central-

ized diagnoser and the remaining part can be diagnosed by decentralized

diagnoser.

Figure 5.12: Lnon = K ∪ (L(G) \ Lco)

We next provide several examples in order to further illustrate the computation

of Gnon.

59

In the �rst example, we know from before that the language generated by G

given in �gure-4.17 is codiagnosable with respect to speci�cation language K

shown in �gure-4.18 and the local observation masks given in table-4.2 where a

and f events are unobservable. The testing automaton with only faulty states

is shown in �gure-4.19. We expect that NonCoDiagPart function produces non-

codiagnosable part of G given in �gure-4.17. The result is in �gure-5.13. This

automaton includes only the speci�cation automaton because codiagnosability

is ful�lled.

Figure 5.13: Lnon = K ∪ (L(G) \ Lco) where (L(G) \ Lco) = ∅

In the second example, the language generated by G given in �gure-4.20 is

not codiagnosable with respect to the speci�cation K shown in �gure-4.21 and

the local observation masks given in table-4.3 where s and f events are unob-

servable. In this case, the testing automaton produced from G,K,M1 and M2

includes indeterminate cycles. These cycles are given in �gure-4.22. As stated

in section-4.3.3, G is not codiagnosable, hence it is expected that the func-

tion NonCoDiagPart creates the plant automaton itself. The result is shown in

�gure-5.14

Figure 5.14: Lnon = K ∪ (L(G) \ Lco) where Lnon = G

60

In the third example, generator G and speci�cation K has unobservable cycles,

consisting of only unobservable events. Let G be automaton given in �gure-

5.15, K be automaton shown in �gure-5.16 and local observation masks be

given in table-5.1 where a, b, c and g are unobservable events. This generator

is codiagnosable, because d is observable with both mask functions and the

occurrence of event-d means that the string is faulty, and if there is not any d

event then, the string is not faulty. Lnon is shown in �gure-5.17.

Table5.1: Local Observation Masks

σ ∈ Σ a b c d e f g
M1(σ) ε ε ε D ε F ε

M2(σ) ε ε ε D E ε ε

Figure 5.15: Generator, G

Figure 5.16: Speci�cation including unobservable cycle

In the fourth example, generator G and speci�cation K have deadlocking states.

Let G be automaton given in �gure-5.18, K be automaton shown in �gure-5.19

and local observation masks be given in table-5.2 where a and f are unobservable

events and. This generator is diagnosable, b and c events are observable and if

c event exists before b event in string, then it is known that this string is faulty.

61

Figure 5.17: Lnon = K ∪ (L(G) \ Lco) where Lnon = K

On the other hand, this generator is not codiagnosable with respect to the

local observation masks. It turns out that the noncodiagnosable subpart of this

generator is equal to the generator itself. This system includes a deadlock state,

so we use the trick explained in Section 4.3.3. The testing automaton includes

indeterminate cycles as seen in �gure-5.21 and Lnon is shown in �gure-5.22. We

again note that if the trick suggested in [13] is used, the testing automaton

consisting of faulty states is constructed as shown in �gure-5.20. Although the

system is not codiagnosable, this testing automaton has no indeterminate cycles.

This shows that the computation in [13] is not correct.

Figure 5.18: Generator including deadlocking state

Figure 5.19: Speci�cation automaton

62

Table5.2: Local Observation Masks

σ ∈ Σ a b c f
M1(σ) ε B ε ε

M2(σ) ε ε C ε

Figure 5.20: Testing Automaton that consists of only Faulty States

63

Figure 5.21: Testing Automaton that consists of only Faulty States

Figure 5.22: Lnon = G

64

CHAPTER 6

APPLICATION EXAMPLES

In this chapter, combined decentralized and centralized diagnosis is applied to

two example systems. In section 6.1, a communication system with three nodes

and potential link failures is considered and section 6.2 presents a manufacturing

system example.

6.1 Communication Application

We apply the algorithm suggested in this thesis to a communication system

example. The system consists of three nodes that are connected by a commu-

nication link as illustrated in �gure-6.1. Hereby, the connections A-B and C-D

can break and hence disrupt the communication among the nodes.

We consider the case of an inquiry of Node 1 that has to be con�rmed by Node

2 and 3. After receiving the con�rmation, Node 1 will send a command to the

other nodes. We next provide model automaton for the communication system,

including the potential link failures. To this end, we introduce the fault events

breakA−B and breakC −D.

6.1.1 Communication System Modeling

The model of Node 1 is given in �gure-6.2. In the normal operation, Node 1

generates a request (RC) and sends it on the link A-B (sendA − B)). Then,

it receives responses from Node 2 and Node 3 (RC2 and RC3) and send a

65

Figure 6.1: Communication system overview.

command (command) to complete the interaction. However, the link A-B or C-

D can break at any time during the interaction which cannot be directly observed

by the Node 1. Nevertheless, after the link failure, too much time will elapse,

which will trigger di�erent timers in Node 1 depending on the last observed

event of Node 1. For example, if link A-B breaks directly after sendA−B (state

3), no more events will happen in Node 1 and timer3 elapses.

Figure 6.2: Node-1

The model of Node 2 is shown in �gure-6.3. In its normal operation, a message

is send through the link C-D (sendC −D), a response is generated by Node 2

66

(respC − D) and the command is received from Node 1 (command). Again,

di�erent timers are introduced to indicate if too much time elapses during the

interaction.

Figure 6.3: Node-2

The model of Node 3 is shown in �gure-6.4. A message is send through the link

E-F(sendE − F), Node 3 generates a response (respE − F) and the command

is received from Node 1 (command). In the model of Node 3, there is only one

faulty event, breakA-B. If this event occurs after a message was send on the link

E-F, timer5 will elapse.

Figure 6.4: Node-3

There are two system models for the link A-B. These models are shown in �gure-

6.5 and 6.6. In the �rst model, a message generated by Node 1 is sent on the

Link A-B (SendA−B) and then forwarded to the link C-D (SendC−D) as long

as no link breaks. However, in case of a link failure (breakA−B or breakC−D),

no more transmissions are possible and the automaton model goes to a deadlock

state.

In the second model, the communication between Node 1 and Node 3 on link

A-B is shown. In this system, there is not any faulty event.

67

Figure 6.5: A-B Link: Transmission to C-D

Figure 6.6: A-B Link: Transmission to E-F

The model of link C-D is shown in �gure-6.7 (left-hand side). On the link

between C and D, there are two types of messages. repsC−D is sent by Node 3

and then forwarded to Node 1 as RC2. C-D link may break; if this occurs, the

link model goes to a deadlock state and no further communication is possible

on that link.

Finally, link E-F is seen in �gure-6.7 (right-hand side). This system is analogous

to Link C-D, but there are not any faulty events in this link.

Figure 6.7: C-D Link

The overall plant automaton is given by the synchronous composition of its

component automata. The result of this computation is shown in �gure 6.8.

68

Figure 6.8: Communication Generator

69

6.1.2 Diagnosing of "BreakA−B" Event

We want to focus on the occurrence of a failure of link A-B which is indicated

by the event breakA-B. Hereby, we assume that all fault events (breakA−B and

breakC −D) are unobservable. We use a speci�cation automaton that contains

all plant strings without the occurrence of breakA−B as shown in �gure 6.9.

Figure 6.9: Communication Speci�cation Automaton including breakC − D

events

In this example, we investigate the case where Node 2 and Node 3 observe

the communication system behavior and should decide if a failure of link A-

B happened. That is, we use the local observations of Node 2 (sendC − D,

respC − D, command, timer4, timer5) and Node 3 (sendE − F , respE − F ,
command,timer6) to check codiagnosability with respect to the given speci�ca-

tion. In this case, it turns out that codiagnosabiltiy is violated but a subset of

the potential fault occurrences can be detected. The set of strings that cannot

be detected by decentralized diagnosis is shown in �gure-6.10.

Analyzing the set of strings that cannot be detected by decentralized diagnosis,

it can be seen that the failure of link A-B cannot be detected by Node 2 and

Node 3 if it happens before a message is sent to Node 3 (sendE−F) in states 3,

5, 32, 35. This is reasonable by intuition, since Node 3 needs to observe that the

interaction between the nodes started, which happens by receiving a message

from Node 1. Only then, it is possible to detect too much time elapse by timer6

after Node 3 sends its response but does not get a command due to the link

70

Figure 6.10: Non-codiagnosable strings Lnon \K

failure of A-B. The instances of the link failure A-B before a message is sent to

Node 3 have to be detected by centralized diagnosis.

6.1.3 Diagnosing of "BreakC −D" Event

In this section, we want to show codiagnosability of breakC-D event. Therefore,

breakA-B event is assumed to be a nonfaulty and unobservable event. If breakC-

D is the only faulty event in the system, speci�cation automaton becomes as

seen in �gure-6.11.

We focus on codiagnosability of the occurrence of breakC-D with respect to

the local observation masks of Node 1 and Node 3. As stated in section-

subsec:breakAB, (sendA − B,RC,RC2,RC3,timer1,timer2,timer3,command)

are observable events in Node 1 and (sendE−F , respE−F , command,timer6)
are observable events in Node 3. After applying the algorithm suggested in

71

Figure 6.11: Communication Speci�cation Automaton including breakA−B

this thesis work, the non-codiagnosable subpart turns out to be equal to the

speci�cation automaton. That is, this system is codiagnosable with respect to

speci�cation automaton and Node 1, Node 3 observation masks.

6.2 Manufacturing Application

We apply the algorithm suggested in this thesis to a manufacturing system ex-

ample. The system consists of two main parts, stack feeder(SF) and conveyor

belt(C1) as illustrated in �gure-6.12. Hereby, di�erent faults can occur: a prod-

72

uct that is put into the stack feeder may not be recognized correctly (fault

event), a product may stuck between the two system components (stuck event)

and it may leave the stack feeder in a wrong orientation (diag event).

Figure 6.12: Manufacturing Application

The basic operation of the manufacturing system is as follows. After putting

a product into the stack feeder, it detects the product and and pushes it to

the conveyor belt. This pushing action continues until the product leaves the

stack feeder and reaches the conveyor belt. Then, the conveyor belt removes the

product from the manufacturing system.

6.2.1 Manufacturing System Modeling

The model of the stack feeder (SF) is given in �gure-6.13. In the normal oper-

ation, a product of type A or B is detected by SF (sfA, sfB event) and the

73

transition between SF and C1 is initiated (sf−cl event). To this end, the pusher
in SF starts to push the product and the product leaves SF and is passed to C1

(pass event). However, a product can be stuck at the end of SF (stuck event).

At this time, no product can not leave SF and move to C1. Hence, the system

goes to a deadlocking state. On the other hand, a product can be placed in a

wrong orientation and can not leave the SF. SF will assume that new products

arrive and try to move this object to C1.

Figure 6.13: Stack Feeder Part

The model of C1 is shown in �gure-6.14. In its normal operation, a product

comes from SF (sf − c1) and is passed to C1 (pass). After that, either a

product of type A or B reaches C1 (c1 − A or c1 − B). However, if the faults

diag or stuck occur, no product arrives at C1 and the timer timer elapses.

Figure 6.14: Conveyor Belt Part

Last, we model a fault that is related to the detection of the product type. It

is possible that a product of type B arrives but is detected as type A. This is

74

indicated by fault in �gure 6.15.

Figure 6.15: Product detection fault

The overall plant automaton is given by the synchronous composition of its

component automata. The result of this computation is shown in �gure 6.16.

Figure 6.16: Manufacturing System

6.2.2 Diagnosability of Manufacturing System

According to the faults described in the previous section, the speci�cation au-

tomaton for the manufacturing system is given in �gure 6.17. It describes the

correct transport and detection of products in SF and C1.

We next determine the supremal codiagnosable sublanguage for the manufactur-

ing systems using our algorithm. To this end, we compute the non-codiagnosable

75

Figure 6.17: Manufacturing Speci�cation Automaton

part of the system which is shown in �gure 6.18.

Figure 6.18: Noncodiagnosable Subpart of the Manufacturing System

It turns out that all strings that contain the product detection fault (fault) are

not codiagnosable, whereas the other faults (diag and stuck) are codiagnosable.

Intuitively, this is not surprising since it is required to know the sequential order

of events in SF and C1 in order to diagnose fault. However, this sequential

order is not known to any of the local diagnosers. Hence, centralized diagnosis

is needed to detect fault.

76

CHAPTER 7

CONCLUSION

This thesis proposes a novel fault diagnosis approach for Discrete Event Systems

(DES) which combines centralized and decentralized approaches to achieve a

correct fault diagnosis with reduced complexity.

The thesis �rst shows that there is a supremal codiagnosable sublanguage that

contains all strings that can be diagnosed by decentralized diagnosis. Then a

polynomial time algorithm is developed to compute this sublanguage. The de-

veloped algorithm together with the veri�cation algorithm for codiagnosability

according to [13] are implemented using the software library libFAUDES [10, 9].

The testing automaton is the most important part of the veri�cation algorithm.

To build a proper testing automaton, twenty-three cases for adding new transi-

tions and states to the testing automaton are evaluated. Furthermore, a mistake

in the original formulation of [13] is identi�ed and corrected. Following the de-

centralized diagnosis, the diagnosis of the remaining system behavior is carried

out by centralized diagnosis.

Finally, the applicability of the combined diagnosis approach is demonstrated

by several case studies from manufacturing systems and computer networks.

77

78

REFERENCES

[1] A. Benveniste, E. Fabre, S. Haar, and C. Jard. Diagnosis of asynchronous
discrete-event systems: a net unfolding approach. Automatic Control,
48(5):714�727, 2003.

[2] A. Bouloutas, G. Hart, and M. Schwartz. Simple �nite-state fault detectors
for communication networks. Communications, 40(3):477�479, 1992.

[3] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, second edition, 2008.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-

rithms. The MIT Press, 1990.

[5] S. Das and L. Holloway. Characterizing a con�dence space for discrete event
timings for fault monitoring using discrete sensing and actuation signals.
Systems, Man and Cybernetics, 30(1):52�66, 2000.

[6] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized
protocols for failure diagnosis of discrete-event systems. Discrete Event

Systems: Theory and Applications, 10:33�86, 2000.

[7] D. Godbole, J. Lygeros, E. Singh, A. Deshpande, and A. Lindsey. Commu-
nication protocols for a fault-tolerant automated highway system. Control
Systems Technology, 8(5):787�800, 2000.

[8] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm
for testing diagnosability of discrete-event systems. Automatic Control,
46(8):1318�1321, 2001.

[9] libFAUDES. libFAUDES software library for discrete event systems, 2006�
2011.

[10] T. Moor, K. Schmidt, and S. Perk. libfaudes - an open source c++ library
for discrete event systems.

[11] R. Morin. Decompositions of asynchronous systems. In CONCUR '98

Proceedings of the 9th International Conference on Concurrency Theory,
1998.

[12] Y. Pencolé and M. O. Cordier. A formal framework for the decentralised
diagnosis of large scale discrete event systems and its application to telecom-
munication networks. Arti�cial Intelligence, 164(1-2):121�170, 2005.

79

[13] W. Qui and R.Kumar. Decentralized failure diagnosis of discrete event
systems. Systems, Man and Cybernetics, 36(2):384�395, 2006.

[14] R. J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81�98, 1989.

[15] S. L. Ricker. A structure for verifying observational properties of decen-
tralized discrete-event systems. In Electronic Proceedings of the 18th IFAC

World Congress, 2011.

[16] M. Sampath. A hybrid approach to failure diagnosis of industrial systems.
In American Control Conference, volume 3, pages 2077�2082, 2001.

[17] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete-event systems. Automatic Con-

trol, IEEE Transactions on, 40(9):1555�1575, 1995.

[18] K. Schmidt. Abstraction-based failure diagnosis for discrete event systems.
System and Control Letters, 59:42�47, 2010.

[19] K. Schmidt. Abstraction-based veri�cation of codiagnosability for discrete
event systems. Automatica, 46:1489�1494, 2010.

[20] K. Schmidt. Veri�cation of modular diagnosability with local speci�cations
for discrete-event systems. Systems, Man, and Cybernetics: Systems, IEEE

Transactions on, 43(5):1130�1140, 2013.

[21] K. W. Schmidt. Combination of monolithic and decentralized diagnosis of
discrete event systems under decentralized observation. Technical Report,

Çankaya University, 2013.

[22] R. Suu and M. Wonham. Global and local consistencies in distributed fault
diagnosis for discrete-event systems. Automatic Control, 50(12):1923�1935,
2005.

[23] Y. Wang, S. Yoo, and S. Lafortune. Diagnosis of discrete event sys-
tems using decentralized architectures. Discrete Event Dynamic Systems,
17(2):233�263, 2007.

[24] S. Yoo and S. Lafortune. Polynomial time veri�cation of diagnosability of
partially observed discrete-event systems. Automatic Control, 47(9):1491�
1495, 2002.

[25] T. Yoo and H.E.Garcia. Diagnosis of behaviors of interest in partially-
observed discrete-event systems. System Control Letters, 57(12):1023�1029,
2008.

80

[26] S. H. Zad, R. Kwong, and W. Wonham. Fault diagnosis in discrete-event
systems: framework and model reduction. Automatic Control, 48(7):1199�
1212, 2003.

81

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Discrete Event Systems
	Language
	String
	Language

	Automata
	Deterministic Automata
	Non-deterministic Automata
	Operations on Automata

	Centralized Diagnosis
	Diagnosability
	Testing Diagnosability
	Complexity Analysis

	Decentralized Diagnosis
	Co-diagnosability
	Codiagnosability Checking
	Constructing the Augmented Specification Automaton, (H)
	Constructing the Testing Automaton
	Checking the Violation of Codiagnosability

	Implementation in libFAUDES
	Augmented Specification Automaton
	Testing Automaton
	Checking the Violation of Codiagnosability

	Complexity Analysis

	Combination of Centralized and Decentralized Diagnosis Algorithm
	Supremal Co-Diagnosable Sublanguage
	Implementation in libFAUDES

	Application Examples
	Communication Application
	Communication System Modeling
	Diagnosing of "BreakA-B" Event
	Diagnosing of "BreakC-D" Event

	Manufacturing Application
	Manufacturing System Modeling
	Diagnosability of Manufacturing System

	Conclusion
	REFERENCES

